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Abstract

Time resolved small angle x-ray scattering (SAXS) using synchrotron radia-
tion was applied to the study of the kinetics of spinodal decomposition (SD) in
an AlZn binary alloy at critical composition quenched into the immiscible region.
These millisecond time scale measurements, performed at the National Synchrotron
Light Source (Brookhaven National Labs., N.Y.), constitute the first direct experi-
mentz! verification in a binary alloy of the theory proposed by Langer, Bar-on and
Miller in 1975 for SD. A scheme based on the composition distribution functional
is proposed to account for the decomposition taking place during the quench. The
interatomic mobility, a free energy gradient coefficient and two coefficients that suf-
fice to determine a coarse-grained (intensive) free energy have been obtained in the
framework of this theory. The mobilities obtained compare well with tracer diffusion
measurements reported in literature. A dependence of the coarse-grained free en-
ergy coeflicients on the coarse-graining length is found and a procedure is proposed
to uniquely choose the values of these coeflicients based on the predicted integrated
intensity from the equilibrium concentrations and on the measured integrated in-
tensities.

Late-stage coarsening regimes were also investigated. In these regimes, growth
exponents higher than the value 1/3 predicted by the Lifshitz-Slyozov-Wagner theory
are obtained. These higher values, comprised between 0.40 and 0.45 are consistent
with predictions that alloys in which elastic effects are important can present a
transition regime from a ¢'/3 growth law to a t'/2 law. The structure factors do not
quite scale. They also present a shoulder at high wavevectors, a feature not reported

before in metallic alloys.



Résumé

Une étude terporelle de la décomposition spinodale de AlZn par
diffusion centrale des rayons X

La diffusion centrale des rayons X in sifu (SAXS) par rayonnement synchrotron
a été appliquée a ’étude de la cinétique de la décomposition spinodale dans un
alliage binaire AlZn & la composition critique, trempé dans la région immiscible.
Ces mesures & 1’échelle du milliéme de seconde, effectuées au National Synchrotron
Light Source du Brookhaven National Labs., constituent la premiére vérification
expérimentale directe dans un alliage binaire de la théorie développée par Langer,
Bar-on et Miller en 1975 pour la décomposition spinodale. Une méthode basée sur
la fonction de distribution de la composition est proposée pour tenir compte de la
décomposition qui a lieu au cours de la trempe. La mobilité interatomique, un co-
efficient du gradient d’énergie libre et deux coefficients qui suffisent pour quantifier
une énergie libre granulée (intensive) hors équilibre ont été obtenus dans le cadre
de cette théorie. Les mobililés obtenues sont compatibles avec les mesures de diffu-
sion de traceurs publiées. Les coefficients de 1’énergie libre granulée dépendent de
la longueur de granulation et une procédure est proposée pour choisir de maniere
unique les valeurs de ces coeflicients. Cette procédure est basée sur les intensités
intégrées calculées pour les concentrations a I’équilibre prédites et sur les intensités
intégrées mesurées.

Les stades avancés de la décomposition ont également été étudiés. Dans ces
régimes, des exposants de croissance supérieurs a 1/3, la valeur prédite par la théorie
- de Lifshitz-Slyozov-Wagner, ont €té obienus. Ces valeurs élevées, comprises entre
0.40 et 0.45, sont consistantes avec la prédiction que les alliages pour lesquels les
effets élastiques sont importants peuvent présenter un régime de transition passant
d’une loi de croissance en t*/3 A une loi en t'/2, Les facteurs de structure n’obéissent
pas tout a fait & une loi d’échelle. Ils présentent également une bosse aux vecteurs

d’ondes élevés, ce qui n’a pas été rapporté auparavant pour un alliage métallique.
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Chapter 1

Introduction

1.1 Motivation and outline

Phase transitions and more generally, non-equilibrium phenomena, are presently at
the center of intense scientific activity. This field has experienced a marked growth
due both to advances in theoretical tools, such as renormalization group (RG) theory
in the early seventies, and to improvements in the experimental techniques such as
the use of intense x-ray radiation from synchrotron storage rings. This thesis is
concerned primarily with a specific non-equilibrium phenomenon known as spinodal
decomposition (SD) which occurs when a system of uniform density is forced into an

unstable state resulting in the decomposition into regions of two different densities.

As well as testing current understanding of non-equilibrium phenomena, the
study of SD presents technological importance since the use of kinetic raeasurements
allows for the determination of atomic diffusivities in the solid-siate. Indeed, SD
theories are based directly on the concept of a thermodynamic driving force for
diffusion in nonideal one-phase systems. 'i‘hus, comparison of theory and experiment
on the kinetics of the early stage of 5D also tests our fundamental understanding of

interdiffusion in the one-phase region.

This thesis presents a study of SD in a binary alloy of Al and Zn. This binary
alloy is isomorphous to many important physical systems such as ferromagnetic, su-

perconducting and normal metal mixtures and vapour-liquid mixtures, binary fluids,
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Figure 1.1: Representative description of a gas-liquid phase separation process, In (2) the phase
dingram is represented with regions I, IT and III the vapour, the coexistence and the liquid regions
respectively. The arrows show a quench into the unstable region (II) followed by the phase separa-
tion into liquid (III) and vapour. The dotted line corresponds to the classical spinodal. In (b), (c)
and (d) a “non-equilibrium ” bulk free energy is plotted as a function of the density, p. The dots
schematically represent the onc point distribution function. In (b) the sysiem is in single phase
equilibrium. In (c) the system is in an unstable non-equilibrium state immediately following the
quench from the single phase region. In (d} the system has reached final two phase equilibrium.
(Courtesy of K.R. Elder.{1])

Before proceeding to describe the specifics of the 4. alloy, some of the essential
features of phase transitions can be understood by using an everyday example,
the boiling of water (a vapour-liquid mixture). Schematically, the constant-volume
phase diagram of water may be represented as in Figure (1.1). The important fea-
ture of this phase diagram is the presence of a coexittence region (region II). This
is a region of forbidden density (p) which exists at temperatures below a critical
temperature (7.). If water is prepared at a density and temperature in this region
it will spontaneously decompose into a high density liquid in equilibrium with a low
density gas (i.e. it will boil). As the temperature is increased, the density difference

between the gas and lquid phases decreases. At T. the density difference becomes

zero and above T, there is no longer a transition. The curve that bounds the co-



existence region and gives the densities pg(T) and pr(T) of the coexisting phases is

called the coexistence line (the solid line in Part (a)).

The forbidden region of densities is only strictly forbidden in thermodynamic
cquilibrium, Superheated water and supercooled steam are proof that water can ex-

ist at temperatures and densities within the coexistence region, at least temporarily.

The coexistence region can be subdivided into two regions based upon thes-
modynamic stability. In one region water is said to be metastable and in the other
unstable. The metastable region exists below 7% near the coexistence line. Water
prepared with a density in the metastable region by a rapid decrease in pressure for
example, must first ove:~ome a nucleation barrier for it to decompose into liquid
(water) and gas (steam). 1..s kinetics of the transition in this region are deter-
mined by the nucleation of droplets and their subsequent growth. As the density
of the initial state is forced further away from the coexisience line, the nucleation
barrier decreases until it disappears altogether. Water forced into this barrier-free
region is unstable and begins to phase separate on all length scales. Water forced to
boil this way phase separates by spinodal decomposition. Similarly, the arrows on
Fig. (1.1a) describe a temperature quench and the subsequent process of spinodal
decomposition of gas into a mixture of lignid and steam. Parts (b}, (c) and (d) of
this figure show the bulk free energy f(p) corzesponding respectively to the high
temperature state, the unstable state and the final coexistence state (two minima).
Classical theories, exemplified by the Van der Waals equation of state, predict a
sharp distinction between metastability and unstability. Modern theories of phase
trausitions show that this sharp distinction is only an artifact of mean field theories.
The dashed curve on Fig. (1.1a) which separates the metastable and the unstable
region is called the spinodal line.

Alloys are essentially solid mixtures. Not unlike the phase diagram for a
vapour-liquid mixture, some present a temperature-composition domain where the
constituent atoms are not soluble in the ratios making up a given composition:

the coexistence region, here called a region of immiscibility, or a miscibility gap.



The coexistence line now gives the compositions of the two coexisting phases. The
maximum temperature of this region is also called the critical temperature and the
corresponding coniposition is the critical composition. Phase segregation also occurs
in other systems which possess a miscibility gap following a quench into that region
from the one-phase region. Fxamples are binary fluids and polymer mixtures. The
kinetics of the phase unmixing in these systems is an issue of both theoretical and

practical interest as a typical example of non-equilibriur: phenomena.[2,3]

The process of phase segregation when quenching an alloy, a liquid or a polymer
from a uniform state into the miscibility gap can be concepiually divided into {wo
stages. During the early stage, the initial phase transforms into domains of the final
phase(s), driven by a bulk free-energy difference. During the late stage, the domains
of the final phase(s) coarsen, driven by the interfacial free energy. The early stage
of a first-order phase transition is expected to be either a nucleated process or, as
is the case in the present work, a spinodal (continuous) process, depending upon
whether the initial phase is metastable or unstable as in the case of the vapour-liquid
mixture.[4]

The main subject of this thesis is the study of early-stage homogeneous phase
decomposition (SD) in AlZn close to the critical composition by small angle x-ray
scattering (SAXS). Though the phase separation in this alloy has been extensively
investigated by conventional methods such as resistance and magnetic susceptibility
measurements, transmission electron microscopy (TEM) and small angle x-ray and
neutron scattesing (SAXS and SANS), there are no early time measurements avail-
able for the separation near the composition of maximum separation rate (the critical
composition). Previous studies of SD in AlZn have only been done at compositions

or temperatures well removed from the critical point.

Time resolved small angle x-ray scattering (SAXS) offers a powerful experimen-
tal probe to study phase separation since the detailed kinetics of non-equilibrium
states can be followed by the direct measure of fluctuations. The quantity mea-

sured is the time evolution of the equal-time two-point composition correlation
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function (¢f. § 2.1). The experiments were performed with synchrotron radia-
tion at the National Synchrotron Light Source (NSLS), using beam line IBM-MIT
X20C (Brookhaven National Laboratory). With the use of synchrotron x-ray sources
for the study of dynamic phenomena, in situ time-resolved x-ray scattering is now
possible on time scales orders of magnitudes shorter than with conventional x-ray
sources.[5] To achieve subsecond time resolution, the synchrotron source is combined
with a fast detector system, a beamline geometry to enhance high photon fluxes and
a temperature controller capable of rapid quenches. Ref. (6] shows that it is possible

with the experimental setup employed to acquire a complete diflraction pattern as

fast as every 3 ms.

As mentioned above, this thesis raises two major aspects of interest in current
research. From a fundamental point of view, this work yields new insight into the
non-equilibrium process of SD. More specifically, the collected data provides a direct
and quantitative experimental verification of a nonlinear theory proposed by Langer,
Bar-On and Miﬂer‘(LBM) in 1975.[7] The kinetic parameters obtained within the
framework of this theory are the atomic mobility, a gradient free encrgy coefficient

and two coefficients that suffice to determine a coarse-grained (intcnsive) free energy.

The second aspect follows from the coarse-grained free energy and the inter-
diffusion coeflicient obtained by using the LBM theory. These parameters have
important predictive power for thermal and mechanical stability in all technological
materials. Despite their importance, very litile is known about them from phase
decomposition experiments. In particular, no satisfactory difflusion model has been
tested to interpret the kinetic parameters from x-ray data for early stage SD, when
composition gradients are small. Sustained efforts have been given to the study of
solid state diffusion. In particular, the use of synchrotrons to study diffusivity has
gained recognition in the materials community[8]. To predict mixing or unmixing

characteristics <f matenals, it is necessary first to know the diffusive properties.

The outline of this dissertation is the following. The remainder of the Intro-

duction will examine fundamentals of critical phenomena, of solid solutions and of



solid-state diffusion. These concepts constitute the essential background to the work
of this thesis. Chapter II presents an introduction to small angle scattering (SAS).
This is followed by an historic perspective on SD which includes the presentation of
a classical linear theory and a survey of measurements (Ch. III). Emphasis will be
placed on measurements in AlZn alloys and on experimental methods. The descrip-
tion of the experimental procedure for the present work is given in Chapter IV, with
particular attention given to the application of state-of-the-art time resolved SAXS
and to the requirements to be met to produce data orders of magnitudes faster than
achicved by previous workers. Necessary calibrations and data reduction are also
described. The LBM theory is introduced in Chapter V. The presentation and
discussion of the measurements in Chapter VI are divided in two parts: the “early
stages” (t < 1.6 s) and the “late stages” (to 10 ¢t X 55 s). It is in the frame-
work of the LBM theory that the early stage data is analysed (§ 6.2). Late-stage
considerations are also introduced (§ 5.5), and put to the test with the late stage
measurements (§ 6.3). The results and discussion that form the body of Chapter VI
especially shed light on the characteristic length inherent to the description of the
LBM theory. The resulting predicted equilibrium phase diagram and interdiffusion

constant are compared with that of the classical models and measurements.

1.2 Critical and non-equilibrium phenomena

In Figure (1.1), at low temperatures there is a rather large difference between the
liquid and gas densities, p; and pg. However, as the critical temperature is ap-
proached this density difference tends to zero. The existence of a quantity which is
non-zero below T, and zero above T, is a common feature associated with the critical
points of a wide variety of physical systems. In the study of critical phenomena, the
quantity pr, — pg is called the order parameter for the liquid-gas critical point.[9]
The region near T and p. in the liquid-vapor phase diagram is of particular

interest. Over a century ago, it was disrovered during measurements on carbon



dioxide that when held in a state close to but above the critical point, this gas

scattered incident light strongly. The phenomenon was called critical opalescence
and opened up the field of critical phenomena. |

There is a simple qualitative explanation for critical opalescence. Above T,
the gas molecules move freely, with random collisions. As the temperature nears
T,, the time spent by the molecules near one (or more) molecules during collision
eventis increases, and the interaction between molecules starts to play a role in their
spatial distribution. Small “droplets” of correlated molecules start to appear. As
the critical point is approached still closer, the droplets grow in their dimensions.
In fact, when the fluid is brought close enough to its critical point for these droplets
to acquire lateral dimensions or the order of the wavelength of light, the light is
scattered strongly giving rise to the phenomenon of critical opalescence. These
droplets, though not stable and constantly forming and dissolving, exist in sufficient

number at any given time to produce the effect.

The boiling of water at the critical density has all the features of a continuous
phase transition since the order parameter varies in a continuous way as T passes
through T.. Phgse transitions are classified as first or second order if the order
parameter is discontinuous or continuous at the transition temperature. Thus the
phase transition of water at the critical density is a second order transition. First
order phase transitions have discontinuous first derivatives of the free energy, such

as the latent heat, Second order phase transitions have continuous first derivatives.

The qualitative picture offered for the behavior of a CO; as it approached T,
only required one condition: that the position of molecules be correlated over a
certain range. The length scale of this correlation, the correlation length ¢, is the
characteristic length scale of critical phenomena, It may be thought of as being
roughly the diameter of a “droplet”. At the critical point, the correlation length
¢ diverges. In this region, characteristic functions such as the specific heat and
the susceptibility also diverge due to the divergence of ¢{. Indeed, the physically

measurable extensive quantities follow simple power laws near the critical point. An



example of the singularities observed at T, is that of the isothermal compressibility

k)= 3 (55) - (1)
In a p — P phase diagram, the isotherms acquire a flat portion in the immediate
vicinity of the critical point. Thus the slope (8P/8p)r becomes zero as T' — TF and
K7(T) diverges to infinity. Considering the huge density fluctuations associated with
critical opalescence, it is not surprising that the response of the density to a very
small pressure fluctuation is infinite. In fact, in § 2.3 the density fluctuations will
be shown to be directly related to the isothermal compressibility (or equivalently,
to the differential susceptibility when the system is probed by x-rays) and hence to
the derivative (8p/0P)r.
The singular functions observed at 7, are given in terms of power-laws and
the exponents are called critical exponents. For instance, introducing u reduced

temperature ¢ as
e=1 - —, (1.2)
K7 is described by

Ky ~ (—€)™" (e<0)
~ () (e>10). (1.3)

An important element of critical phenomena is the universality of the singular
functions in the critical regions of the phase diagrams, of very differing systems.
Guggenheim was the first to recognize this fact when he found that the t:mperature
dependence of the liquid-gas density difference pr — pe (the order parameter) for
various fluids, properly normalized, fall on one and the same curve.[10] Effectively,

this corresponds to the following critical relation
PL — pa ~ E'B . (1.4)

There are universal classes generic to critical regions in which many physical
systems with differing order parameters fall into, leading to the same critical expo-

nents. Thus the description of critical phenomena in the iquid-vapour system can
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Exponent Definition Value i - -(.Qiuantityw—
Mean ﬁeldTIsing 3d
a Oy ~ Ac~® 0 012 |  specificheat
8 (8¢)coex ~ £BeP % 0.339 coexistence curve
¥ Xs ~ Ce™ 1 1.25 differential susceptibility
v ¢~ b 3 0.62 correlation length
7 G(r) ~ =T 0 & pair correlation
(e = 0) function’

Table 1.1; Power law relations for critical phenomena in binary alloys with critical exponent values
for the mean field approximation and the Ising 3d Monte Carlo model. The critical amplitudes are
given by 4, B, C, & and W in this Table. ¢ is the reduced temperature as defined by Eq. {1.2)
and r is the radial distance in G(r). The Ising 3d exponcnts are quoted from Refs. [11,12].

IThe pair correlation function will be formally introduced in § 2.1.

apply to binary alloys with a miscibility gap. The order parameter in a binary alloy
is the composition difference between the bulk and any of the two coexisting phases,
(6¢)coex- This quantity near the critical point maps onto the density difference

pL — pe of the liquid-vapour system.[9] Eq. (1.4) now takes the torm {e < 1)
(6C)coex o (1-5)

Table (1.1) lists the power laws with the corresponding critical exponents for
thermodynamics response functions relevant in this work. The differential suscep-
tibility, x, is given instead of the isothermal compressibility for convenience since
x-ray scattering is performed. These two quantities are essentially equivalent and
possess the same critical exponent, v. Expressions for the differential susceptibility
will be derived in § 2.1. The notation for the critical amplitudes (A4, B, etc.) is
also introduced in Table (1.1). Numerical values are given for the case of mean field
interactions and for numerical simulation results from Moute Carlo studies with an

Ising 3d model.

Table (1.1) describes the thermodynamics, i.e. the statics, of a system such as a

binary alloy near 7,. The universal character of the singular functions makes it such

9
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that the study of a particular system can yield insight into very differing systems.
Non-equilibrium systems also present some unifying characteristics. These systems
are described by a (somewhat larger) number of standard models. Two such models
are the “model A” with a nonconserved order parameter only (the crystallization
of amorphous alloys, Glauber Monte Carlo dynamics, etc.), and “model B” with a
conserved order parameter only (the phase separation in a binary alloy as studied
here, Kawasaki Monte Carlo dynamics, etc.)[13] The study of non-equilibrium sys-
tems attempts to describe as accurately as possible the dynamic evolution of the
structure of the system by equations of motion based on these models. Thus the
equations of motion should apply to physical systems which can be very different
provided they can be described by the same dynamic model. Not unlike the study
of the thermodynamics of critical phenomena, the study of the dynamics of a par-
ticular system can also be mapped onto very differing systems. Hence, the study of
the dynamics of SD in the binary alloy AlZn (model B) in the critical region has
relevance in many physical systems displaying critical behavior as it constitutes a

probe of a model equation of motion for the structure.

Although the dynamics of phase separation are studied, the best fit values
of the parameters that enter the model equation to describe the time-evolution of
the system will be compared against the predictions from critical phenomena. This
provides a self-consistency check on the model equation as well as on the calibration

of the experimental measurements.

1.3 Solid solutions

This section introduces the miscibility gap of the AlZn phase diagram and estimates
of the classical lines that limit the metastable (the solvus) and unstable regions
(the spinodal). To achieve this, the classical conditions for phase stability are first
summarized and applied to a classical model of solid solutions. The description of
alloys used here corresponds essentially to a mean field theory.

10
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Figure 1.2: Phase diagrarm for AlZn. The compositions and aging temperatures of published studies
of spinodal decomposition are shown (this will be the topic of § 3.3 and Table 3.1) along with those
of the present study (below the azrow). (co is the atomic fraction of Zn.)

Before proceeding, it is important to become familiar with the phase diagram
for AlZn (Fig. 1.2).[14,15] The Al-Zn system is a eutectic system and involves a
monotectoid reaction and a miscibility gap in the solid state. The top of the mis-
cibility gap, the critical point, lies at 624.5 K and at ¢ = 0.395.! Either side of
the miscibility gap has a face centered cubic (fcc) solid solution which only dif-
fers in lattice parameter as the ratio of Al to Zn atoms differ. The Al-rich phase
is usually denoted as aAl and the Zn-rich phase as a’Al. The eutectoid reaction
(a’Al = aAl + Zn) is located at 550 K with compositions for a’Al, aAl and SZn
of 0.59, 0.165 and 0.984 respectively. The (Al) liquidus and solidus descend to a
eutectic equilibrium with close packed hexagonal (Zn) at 654 K.

From the first law of thermodynamics, a system at equilibrium everywhere will

not perform any work, i.e. there must not be any gradient in the thermodynamic

1Unless stated otherwise, the concentrations cp will be given in atomic fractions of Zn, thus

0.395 is equivalent to 39.5 at. % Zn.
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potential at any location. This can only be accomplished when the thermodynamic
potential of the system is at a minimum value. In a solid, the independent vari-
ables are pressure and temperature, and the intensive value of the thermodynamic
potential should be the chemical potential of each atomic species at equilibrium.
Therefore, it is appropriate to consider the Gibbs free energy (also called the excess
enthalpy)

G=H-TS (1.6)

where H is the enthalpy and S the entropy. The area inside a two phase region, the
miscibility gap, cannot in principle be described by thermodynamics since a system
cannot be kept in such a state forever. However, just as in the case of superheated
water or supcrcooled steam mentioned in § 1.1, a system can be pushed into a state
away from equilibrium in this region. An extension of the thermodynamic potential
from the one-phase region can be performed and used to describe wheiher the state

reached is expected to be metastable or unstable. This is described below.

Figure (1.1a) showed two curves (solid and dashed) separating three regions on
the liquid-vapour phase diagram. These regions correspond to composition ranges
of the non-equilibrium free energy f(p) after a quench, shown in Part (b) and (c),
namely two convex regions separated by a concave region.? The spinodal line which
bounds the concave region corresponding to unstable states is given by the locus of
all points where %?— = 0.3 The coexistence line is given by the points of contact of
the common tangent t¢ the two convex regions of G(c, T') since this is the free energy
a mixture of pkases would have. In solids for which the phase diagram presents a
miscibility gap such that two phases coexist at equilibrium, the spinodal line is
obtained as in the case of the liquid-vapour system. The compositions of the two

phases coexisting at equilibrium also satisfy the common tangent construct i.e. the

3A function f(z) is 2 convex function of z providing the cord joining the points f(z,) and f(z3)
lies above or on the curve f(z) for all 2 in the interval 2; < z < z3. A function f(x} is a concave

function of z if the function —f(z) is convex.[9]
*The origin of the term “spinodal” decomposition comes from the appearance of the turning

points of an isotherm in a G-P diagram, looking like cusps or spinodes.{16]
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two phases must have equal chemical potentials, The relative fraction of the two

phases satisfy the lever rule.

Models of solid solution are based on simplifying assumptions. Without these,
the treatment of solid solutions, in particular near a discontinuity in the solubility,
quickly becomes a formidable task. Modeling of the equilibrium phase diagram often
starts from ideal solution theory which considers a mixture of noninteracting atoms,
i.e. a system with no heat of mixing (H = 0 in Eq. 1.6) and only configurational

contribution to the entropy. The free energy of mixing per atom is then
gm(co,T) = RT [eolnco + (1 — o) 1n(1 ~ co)] (1.7)

where R is Rydberg’s constant (8.314 J/{mol-K)). The value gn(co,T) dif-
fers from the chemical potential p= py; = pz, only by a linear offset. In-
deed if pu? (i = Al,Zn) is the chemical potential in the pure constituent then
gm = colppy+ (1 — co)Dpuzy Where Ap; = p; — pf.

The departure from an ideal mixture is accomplished by modeling the interac-
tion between the atoms. To first order, the interaction will depend on the composi-
tion and the temperature. The enthalpy of mixing can thus be phenomenologically
obtained by fitting a chosen polynomial in ¢y and 7' to reproduce the experimen-
tally obtained boundary of the miscibility gap. Model equations generally differ
in the form of the polynomials used to express the temperature and composition
dependence of the mixing energy. They correspond to the presence of mean field
interactions between atoms and are analogous to the zeroth order approximation in
numerical simulations. These models are referred to in literature as “regular solu-
tion models”, owing this apellation to the regular behavior of the physical quantities
with composition (a solution having ideal configurational entropy and an enthalpy
of mixing which varies parabolically with composition[17]).

Unlike liquids, in crystalline solids atorns are arranged into a lattice. To main-
tain the lattice coherency when local composition fluctnations occur, coherency
stresses exist and the associated (elastic) strain energies contribute to the Gibbs

free energy. This coherency constraint changes both the solubility limits and the
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Figure 1.3: (a)} Incoberent (chemical) coexistence and spinodal lines (1 and 2 respectively), coherent
coexistence and spinodal lines (3 and 4 respectively) from calculations by a regular solution model
for AlZn with cg = 0.395 (see text). (b) Excess enthalpy (Gibbs free energy) at 560 K with g, the
mixing contribution and g .4 the elastic strain energy contribution. The coexisting phases have
compositions ¢q = 0.176 and ¢or = 0.593, The inflection points (8%g/8c? = 0) of gu + geon (the
dashed Lne) arc located at ¢ = 0.278 and 0.462 and define the coherent spinodal. The dotted line
shows the common tangent to the chemical free energy.
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limits of metastability. Thus for solids coherent and incoherent (also called chem-
ical) boundaries can be calculated depending upon whether the strain energy has
been included in the free energy or not. Figure (1.3a) shows four curves. The solid
Iines (1 and 2) are the coexistence line, also called the solvus, and the spinodal line
for the incoherent free energy and are similar to those introduced in Fig. (1.1) for
the liquid water - vapour system.* The dashed lines (3 and 4) represent the corre-
sponding coherent solvus and the coherent spinodal line. The top of the dashed lines
is the critical composition to coherent fluctations. The incoherent solvus (1) bounds
the solubility (or miscibility) gap and is thus the boundary appearing on Fig. (1.2).
The incoherent spinodal (2) has the same maximum and is inside the incoherent
solvus. The region of metastability lies between the incoherent solvus (1), and the
the coberent spinodal (4) which represents the true limit of metastability. Thus,
the coherency constraint is responsible for the lowering of the spinodal line from the
chemical spinodal (2) d.e. it effectively causes a shift of the unstable region (where
8;—5— < 0) to a lower temperature. Consequently, the (coherent) critical point does
not touch the stable region (above the solvus) and the region of metastability above
the unstable region is extended to lower temperatures. The strain energy can be
looked at as stabilizing the system against infinitesimal composition fluctuations for

some undercooling below the chemical spinodal.[4]

The construction of the curves on Fig. (1.3a) is now described. To this ef-
fect, two parametrizations of the chemical miscibility gap currently existing in the
literature are exzmined. They differ by the possibility of existence of an upper mis-
cibility gap in the AlZn alloy. The simplest diagram, with no upper miscibility gap,
was presented in Fig. (1.2).% It is not the purpose of this work to determine which
parametrization is more accurate. In both cases, the parameters needed were found

by fitting the free encrgy versus concentration curves to reproduce the miscibility

*It should be emphasized that the dashed lines in Fig. (1.3) do not all represent spinodals as
was the case in Fig. (1.1).

5The diagram with an upper miscibility gap is shown in Ref. [18]. For a comparison of the two,
see Ref. [19].
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gap. The parametrization without au upper miscibility gap was chosen to produce
Fig. (1.3a) as it is most frequently quoted in the more recent literature (most of-
ten reproduced from Ref. [20]). In this parametrization initiated by Lasek[21] the
miscibility gap as measured by Minster et al.[22] is reproduced by modeling the
correction to the ideal free energy of mixing (Eq. 1.7) by

gm{co, T') = RT [coIn eg + (1 — co)In(1 — co)] + ca(l — co)¥{co, T) R (1.8)

where

Qco,T) = D + Eco + FT 4 HTq (1.9)

with D =1244, F = —1512, F = 0.219K~* and H = 1.795K™*. The coexistence
line (curve 1) is obtained by performing Maxwell’s construction® on isotherms of the
chemical potential. Since the parameters entering the empirical relation for g,, were
chosen from fits to the coexistence line, reproducing it in this way provides a check
on the model. It is important for the work in this thesis to note that the solvus is
asymmetric in composition. The chemical spinodal (curve 2) is obtained by finding
the roots of 8%g,,/0c*. The top of the calculated chemical spinodal coincides with
the top of the solvus at ¢y = 0.395 and 625.6 K. These values agree well with the
generally accepted location of the top of the chemical solvus (¢f. p. 11).

The derivation of the coberent curves (3 and 4) is difficult when elastic
anisotropy is included. Thus, to simplify, the alloy is assumed isotropic. The elastic
energy introduced by lattice distortions depends on Poisson’s ratio v, on Young’s
modulus E, and on the fractional change in lattice parareter a with composition

7 = (1/a)(da/dc), evaluated at the average composition ¢o[4]:

Geon = (¢ — co)*7°Y, (1.10)

*Maxwell's constraction consists essentially in finding the values of ¢, and ¢, such that

‘e’ 8gm(e, T)dc

o =0,

Ca
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Symboel Alo.g27no 38 W

2 4.054 x 1071° FCC unit cell side![24]
Nnv 6.00 x 10?® atoms/m? atomic density?
7 ~2.5 x 1072 relative change of

lattice parameter'[24]

v 0.34 Poisson’s ratio[4]
E [-6.00107 4 1.1] x 10~ J/m? Young's modulus[23)

plu 12.53 m?/kg mass absorption coefficient?

Table 1.2: Physical parameters for Al g2Zng sg . T is the absolute temperature.

1Extrapolated from measured values above the miscibility gap.
?Calculated from the value of aq.

3The value = —0.023 is used in g.op for the calculations based on the Ladek parametrization of
the free energy (Eqs. 1.8 and 1.9).
%Calculated in § 4.3.

where the usual definition for Y has been used, ¥ = E/(1 — v). Values of  and
v for Alge:Zmg3s are given in Table (1.2). The empirical relationship used for the
temperature and concentration dependence of E was obtained by Kardasev et al.[23]
based on a comprehensive measurement in the composition range 0 — 0.629 (given

in Table 1.2 for cg = 0.38). At the average alloy concentration cg, the strain energy

does not raise the free energy.

The common tangent was found for g, + g.on by using Maxwell’s construction
in order to obtain the coherent coexistence line (curve 3), and the coherent spinodal
(curve 4) was found by determining the roots of (§%gm/0c) + (8?geon/8c*) = 0.
The calculated coherent spinodal lies entirely inside the chemical spinodal. The
depression of the temperature of the coherent curves below the chemical curves,

depends on the magnitude of 7. The profile of the coherent curves will also depend
on the bulk alloy composition, cq.

The obtained coherent spinodal is asymmetric in composition as shown on

Fig. (1.3a) and the coherent critical point (the top of the coherent spinodal) is at
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a lower composition (0.383 ai 597 K) than the incoherent critical point (top of the
solvus and, identically, of the incoherent spinodal at cg = 0.395).7

In Fig. (1.3b), isotherms (T = 560 K) are shown for the free energy with and
without the coherency energy (dashed and solid lines respectively). The common
tangent to gm is also shown as a doited line and the tangency points correspond
to the coexistence cornpositions ¢, and cy {points on curve (1) at 560 K in Part
(a)). The two {unmarked) points of inflection comprised between ¢, and cos locate
the position of the chemical spinodal at that temperature (points on curve (2) at
560 X in Part (a)). Similarly, the points of inflection on the dashed curve locate the
coherent spinodal concentrations (points on curve (4) at 560 K in Part (a)). The
latter are, of course, nearer to the center of the miscibility gap. Indeed, as noted
in Part (a), the rise in free energy due to the coherency energy is accompmﬁed by
a na.rrowing of the concave range. At 560 K, as for the entire temperature range
530 - 630 K, the departure of the free energy from the common tangent inside the
miscibility gap is a small fraction of the overall change in free energy between each
of the pure constituents. This figure will be revisited in § 1.4 in the context of the
driving force for unmixing (cf. Fig. 1.4).

A last comment about the spinodal line is in order before closing this section.
The “classical” spinodal (either with or without the inclusion of elastic energy} cal-
culated to produce Figure (1.3) was computed from the extension of equilibrium

"These values were obtained with 1 = —0.023, This value of  was chosen such that the calen-
lated T. malched that suggested in Ref. [25]. (With the value of ) given in Table 1.2 T, is calculated
at 591 K.} If, instend of using parametrisation (1.9), the phase diagram is produced fo]]ouﬁg the
work of Loffler el ¢l{26] which makes provisions for the existence of an upper miscibility gap, i.e.
with

gm(6, T} = RT[clnc+ (1~ c}In(l — &)] + ¢(1 - ¢) [ao + boT + ¢(a1 + 5, T)] RT
with the values of the empirical coefficients ao = 4.20, by = —3.13 x 10-K~1, a; = —2.60 and
by = 2.89 x 1073K"?, then the top of the chemical spinodal and of the solvus line is obtained at
0.372 (629 K) and that of the coherent spinodal at 0.367 (597 K) with the value n = —0.025 listed
in Table {1.2).
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properties by empirical models into a region where equilibrium thermodynamics
is unphysical. In practice, it cannot be thought of as a sharp transition between
a metastable and an unstable region, i.e. one where segregation takes place by
a nucleation process and one where fluctuations are unstable on all length scales,
respectively. Only in the case of a mean field theory, is there a sharp boundary
between these two mechanisms. The concept of a spinodal line and, in particular its
existence or position, depends on the thermal history and on the way the measure-
ment is performed since it is only in the dynamic evolution of a system prepared
off-equilibrium (such as supercooled vapour) that it is effectively observable. In
practice, the location of the spinodal line cannot be measured directly.[27]

1.4 Composition AQuctuations and diffusion

Atomic diffusion is often the underlying mechanism for the kinetic evolution of alloys.
. This section introduces the terminology relevant to experimental diffusion studies
by first examining the atomic mobility, then the thermodyramic driving force and,
finally, the interatomic diffusion. Diffusion constants are obtained in this work and
although the temperature domain for the measurements is lower than that covered
by conventional methods, the values obtained can be checked against more classical

measurements.

I. ATOMIC MOBILITY — It is helpful to first consider Brownian motion of particles
in a colloidal suspension. The collision events between the underlying solution and
the particles impart movement to the particles. Due {o the nature of the thermally
generated impulsions, the motion i» characteristically random. These impulses give
a viscous drag of the solution on the particles. Since the drag is proportioral to the
velocity, a “mobility” can be defined for the particles as the inverse of the propor-
tionality constant. Now, any system in thermodynamic equilibrium is constantly
subjected to thermally activated composition fluctuations and responds to these

microscopic perturbations by changing composition locally. Just as in the case of
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Brownian motion in a colloid solution, the return to a configuration of minimal en-
ergy is not instantaneous but is “slowed down” by a frictional force, essentially the

resistance to motion of an atom, a particle, etc. by its surroundings.

In solids in which the motion of atoms is governed by thermal noise alone,
self diffusion occurs.[28] Self diffusion coefficients D} (i = A, B),? also called tracer
diffusion coefficients, are measured by the atomic flux of a tracer isotope introduced
at low concentration in an alloy in thermodynamic equilibrium i.e. from the time

evolution of prepared radioisotopes concentration profiles.?

The self-diffusion coeflicients often obey an Arrhenius relation, described by
two paramecters, an activation energy Ey and a prefactor, the “frequency factor”,
Dg,

D}(T) = Dyeat . (1.11)
What is now required is an atomic “mobility”, i.e. the inverse of the drag to the
atomic motion resulting from a unit potential gradient. Since the “thermal” driving
force —gbd‘i% [30] gives rise to measured diffusion constants D} (T') or, a total diffusion
of tracer atoms in the alloy approximated by the weighted sum oD% + (1 — co) Dy
then, in analogy to Brownian motion, the mobility, M, can be obtained by taking
the ratio of the observed diffusion to the driving force:

co(1 — <)

M=
NyksT

[coD}y + (2 — c0) D3] (1.12)

where Ny the number of atoms per unit volume. This relation, introduced
heuristically, conveniently relates the mobilities M (always positive) to the tracer

diffusivities.[31-33] It is not expected to apply in all solid systems but should be

8]t will now be useful to talk in terms of a mixture of A and B atoms. The notation employed
here follows that of the previous section and will be used in the remainder of the thesis, namely ¢
is the atomic fraction of B atoms in the AB binary alloy, herce 1 - ¢g is the atomic fraction of A

atoms.
®Strictly, if the tracer is of the same species as the major component then the (tzacer) self-

diffusion coefficient is measured, otherwise the tracer impurity coefficient (or solute diffusion co-
cfficient) is measured.[29] However, in concentrated alloys, the nomenclatare is relaxed and either

D3, or D_ will be referred to as self-diffusion coefficients in Aly.e2Zng 28 -
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valid for metallic solid solutions in which atom sizes are not too different. The
atomic mobility will be further introduced in § 5.2.

1. THERMODYNAMIC DRIVING FORCE — When an alloy is not in thermodynamic
equilibrium, the diffusion which is responsible for its return to equilibrium is driven
by a thermodynamic force. In contrast to other phenomena described by linear ther-

modynamics of irreversible processes, the conservation of solute imposes a constraint

on the return to equilibrium, i.e.

/(c“ co)dr = 0. (1.13)

To satisfy this condition, the equilibrium state will consist of a spatial inhomogeneity
in the concentration i.e. with B-rich and A-rich macroscopic regions. The process
is assumed to be controlled by an intensive free energy densily. Though it had
been convenient to use Gibbs’ free energy in § 1.3 to generate the phase diagram
for AiZn, the Helmholtz free energy f(r) will now be used since integrations will
be performed over the volume of the alloy to compute the minima while satisfying
condition (1.13). However, locally g(c) = f(»)/Ny and the two can be interchanged.
Implicit in this choice is a “coarse-graining” or local averaging of the composition
about points over the volume of the alloy. The actual role of this mesoscopic scale

will become apparent in Chapter V. As & general rule, reference to the chemical
potential will still require the use of g{c).

For small composition variations at the point », f(r) can be expanded in terms

of the concentration ¢(#)

f(e, Ve, Vie,...) = fole) + iV3e+ f2 | Ve |* +--- (1.14)

where, since f is a scalar and must be invariant with respect to the direction of the
gradient (assuming isotzopy or a cubic lattice), only the terms in even powers of V
are nonvanishing[17]. Ignoring higher order terms, integrating using the divergence

theorem for [(fiV?*c)dV and defining

_ dfi
S (1.15)
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to be the gradient energy coeflicient, theories use:

f(r) = fole(r)) + 5 | Ve(r) |* . (1.16)

The gradient energy term thus expresses the energy change of a volume element
of given composition if it is surrounded by material of different composition and
will appear macroscopically as the surface free energy if the composition gradient is
sharp.

The driving force for phase separation will be the gradient of the generalized
thermodynamic potential corresponding to departures from the concentration profile
c(r) that will minimize f f(r)}dr. This minimization problem requires an undeter-
mined Lagrange multiplier[32,34], say A(c — ¢}, such that Eq. (1.13) is satisfied.
This multiplier turns out to be

A= ~2xV2 + ?gf. (1.17)

This X is precisely the generalized chemical potential. Indeed, if x is set to zero,
%{:‘1 = X which is just the usual condition of ﬁniformity of chemical potential. The
presence of the gradient energy coefficient x opposes the growth of short wavelength
concentration fluctuations since « is positive for clustering systems (s is negative
for ordering systems(35]). The driving force for phase separation will be given by
gradients of the potential A. As a rule, it increases with the undercooling below T,
i.e. with the depth of the quench. |

Figure (1.4) illustrates some key aspects of phase separation in binary alloys
(T < T.) based on the thermodynamic driving force. As previously, ¢o is the average
alloy composition. Firstly, two free energy curves (the solid and dashed curves with
a concave region) are examined independently to discuss the difference between the
unstable and the metastable regions. The common tangent to the convex regions
for each curve (dotted lines, see footnote p. 12) determine the coexistence values

(Coxs Cat for the solid curve and cq,, cqy for the dashed curve).

o With g(c) given by the solid curve, ¢y is located between the inflection points

of g(c) (i.e. inside the concave region) and the tangent to g(co) is above the
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g(c)

Up

Figure 1.4: Schematic representation of the thermodynamic diiving force for phase separation
from average composilion cg. The dashed and solid curves with concave regions show respectively
the free energy g(c) with and without inclusion of the contribution from coherency stresses. The
incoherent coexistence concentrations are ¢,, and Cat and the coherent values ure ¢,, and Cat-

The values p, and pp sxe the chemical potentials of A and B atoms at equilibrium {to within a
linear offset). The driving force is greater for incoherent (MN) than for coherent (M'N’) unmixing.

(Schematization of Fig. 1.3.)
frec energy curve in the entire composition range {ca,, ¢at]. The driving force
(such as MN) for decomposition is positive for all local composition fluctua-
tions between c,, and c,s. Thus, the alloy is unstable against fluctuations of
amplitude comprised over the entire miscibility gap and decomposition begins

immediately. This case corresponds to spinodal decomposition (SD).

e If, instead, g{c) is given by the dashed curve, thereis a range where the tangent
to g(co) is below the free energy curve {the shaded region immediately to the
right of ¢p). In this composition range, the driving force for local fluctuations
is negative. Hence an energy barrier exists (a surface energy) and there has

to be a sufficient local departure from ¢y for decomposition to occur, ie, a
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nuclei of the second phase has to form. Precipitates will not nucleate instantly

and the siate is metastable. This case corresponds to nucleation and growth

(NG).

Next, the effect of coherency stresses on the driving force, hence on the phase
diagram are examined by considering that the solid curve represents g.(c), i.e.
without contributions from coherency stresses while the dashed curve represents the
corresponding ¢y,(c) + geon(c) at the same temperature. Locally, the driving force
is proportional to ¢o(1 — co)%:;?. Figure (1.4) thus allows to examine the eflect of

elastic strains on the driving force after a quench from the one-phase region. At a

given temperature, coherency stresses result in:

o A lowering of the thermodynamic driving force. Indeed, (MN) is the driving
force for incoherent phase separation from ¢ to ¢yt and (M’N’) is the driving
force for coherent phase separation from cg to Cqy- The lower thermodynamic
driving force results in slower diffusion. (The actual calculation of (MN) would

require the knowledge of the chemical activities.)

o A narrowing of the composition range of the unstable region., This is exempli-
fied at the concentration cp. With no coherency stresses (solid curve for g(c)),
after 2 quench from the one-phase region of the phase diagram, the alloy starts
off in the unstable region (region comprised inside curve 2 of Fig. 1.3a) and the
phase decomposition occurs by SD. However, for the same quench, it is in the
metastable region of the coherent phase diagram (region comprised between
curves 1 and 3 of Fig. 1.3a) and the decomposition is expected to occur by
NG instead of SD. Thus, the coherency stresses which raise the free energy
also always lower the thermodynamic driving force, narrowing the composition

range of the unstable region. This is precisely the effect mentiored in § 1.3.

111. INTERDIFFUSION — The mobility introduced in Eq. (1.12) to relate the observed

atomic diffusion with the thermal driving force also relates the atomic diffusion under
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the influence of a thermodynamic driving force. If the departure from equilibrium is
not {oo important then linear thermodynamics of irreversible processes says that the
solute flux J is proportional to the gradient of the thermodynamic potential A.[4,32]
The gradient of A is taken across an interface at rest with respect to a moving frame
of reference such that the flux of B atoms is equal and opposite to the flux of A
atoms (the Matano interface). With y the direction normal to the interface,

J = —M-—

8*f
= M [@‘-'vc—znv%]. (1.18)

If M is assumed concentration independent, the conservation of solute leads to:

Bc

[v amvc — 2KV ] (1.19)

Assuming that the concentration does not depart too rouch from the average

concentration cp, a series expansion of the free energy density curvature (8 fo/8¢c?)

about this value

Bfo _ 8fo

8 ~ 8|

(¢ — o) 8*fo
2 |,

Feee (120)

&fo
Heme) G

allows one to write the linearized form of the diffusion equation as:

o ()] 28

In this equation and in the following expressions, f will be taken to denote the

v? - 2nv‘] c. (1.21)

free energy including the the contribution from the coherency strains according to
Eq. (1.10) i.e. the second derivative with respect to composition of the expression
for the coherency energy.

However, in concentrated solutions (neither A, nor B, is present in a small
conceﬁtration), and where composition gradients exist, it is practical to introduce

new coefficients. The flux of B atoms in an AB alloy containing concentration
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gradients is described by the intrinsic diffusion coefficient, Dp, and given by

dc 2
5 = Davic (1.22)

Similarly for A atoms, D4 is introduced. The intrinsic diffusion coeflicients (when
composition gradicnis exist) and the tracer diffusion coefficients (with no composi-
tion gradient) are related through!®

Da _ (1 - ) 1 9 _Ds
Dy OV T N kT 93 T Dy

(1.23)

The rate of mixing (or unmixing) of the two species, is described by the chem-

ical or interdiffusion coefficient D :
D=coDa+(1—co)Dz. (1.24)

D has units of m?/s. Both the inirinsic and the interdiffusion coefficients relate the
time rate of change of local concentration with the concentration gradients. The free
energy dependence is included in the coefficient D. From Egs. (1.12) and (1.23),
keeping in mind the rationale for the use of f, the Helmholiz free energy per unit
volume, instcad of g (cf. p. 21):

D=Mf" (1.25)

where primes denote derivatives with respect to the atomic fraction evaluated at ¢
as in Eq. (1.21). The diffusion equation (Eq. 1.21) expressed with the coefficent D

ig then;

aC — 5 Y
a:sz (c+-}_7 | VC lz) . (146)
(To simplify the notation, the subscript “0” has been dropped.) Both Eq. (1.21)

and Eq. (1.26) are generalizations of Fick’s second law. Indeed, if the contribution

101, the metallurgical literature, an equivalent form of this relation is the Darken[36] relation

between the intrinsic diffusion coefficents and the {racer diffusion coefficients in an AB alloy :

Ds _ (ga/ksT) _ Dg

D, ohm(l-c) Dy

where g4 is the ¢ = 0 intercept of the tangent of the curve g = g{c) at ¢o.
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from the gradient energy to the thermodynamic potential (Eq. 1.17) is neglected,
then Eq. (1.26) simply becomes 8c/8t = DV3c. In the region below the spinodal
line, i.e. where 8%g/8c* < 0, the intrinsic diffusion coefficients D4 and Dpg, and the
interdiffusion coefficient D will be negative. In this case, the solution of A - B atoms
will “unmix”.

Equation (1.21) (and Eq. 1.26) is known as Cahn’s formulation of the diffusion
equation.[4] This equation lacks the Langevin “thermal”. driving force responsible
for tracer self-diffusion mentioned in the discussion leading to the iniroduction of
the atomic mobility, M (cf. p. 20). In the case of diffusion in an alloy with a con-
centration gradient, this term also plays a physical role. It will be discussed in the
context of SD, resulting in the Cahn-Hilliard-Cook equation, in Chapter III. The
quantities f, x and M in Eq. (1.21) are precisely the same as those appearing in the
LBM equation of motion employed to model the kinetic evolution of the measured
structure factors in this work. So, it will be crucial to examine the possible compar-
isons between the values measured in phase separating experiments performed and

the more conventional measurements of diffusion in solids of other workers.

The determination of the interdiffusion constant D can be performed on un-
mixing systems, i.e. in phase separation studies as in this work, or on mixing
systems. In mixing systems, a class of experiments use the decay of the intensity
of x-ray reflection with time during the annealing of artificially made composition

modulated materials (multilayezrs).[35]

Though knowledge about x-ray scattering is required to discuss these experi-
ments and will be the topic of Chapter II, a brief survey of the scattering predicted
by Eq. (1.21) for mixing multilayers is proposed at this point. It was stressed as part
lof ihe motivation for the work presented in this dissertation that measurements in
phase separating systems offered an alternative for the determination of solid state
diffusivities and free energy gradients other than by the application of an equation
of motion such as Eq. (1.21) to artificially modulated multilayers.

In a scatiering experiment, it is the Fourier transform of the composition
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modulation spectrum which is measured. For a wave vector of modulus g, the
amplitude of the corresponding modulation I(g), will be the Fourier transform of

Eq. (1.21):
q. (1.21) o)y [
ot 1 Oc?

A small amplitude concentration modulation then decays exponentially with an

+anet | 19). (127)

inverse relaxation time 7:

| T I
"qM[“a?

Tq

+ 2xg? ] (1.28)
co
or, according to Eq. (1.25):
1 2Ty 27
— =9 D[1+2xg%/ ] - (1.29)
q
One tlien measures the evolution of the scattering intensity for several values of ¢,

or composition modulations, to allow for the verification of the ag® +bg* dependence

of 7, and to determine the physical parameters,

The first tests of Eq. (1.28) or conversely of Eq. (1.21), came from preparing
multilayers of iwo components by vapour deposition of individual layers of 1 — 3 nm
and following the homogenization process upon annealing (CuAu[37], AuAg[38] and
CuPd[39]). In particular, for AuAg and CuPd, confirmation of both gradient en-
ergy and coherency energy eflects was obtained and values of the gradient energy
coeffident k were measured. These experiments served to demonstrate unambigu-
ously the general validity of Cahn’s diffusion equation in describing the kinetics of
multilayers homogenizing in time.

To close this section, an estimate of the gradient energy term x is introduced by
assuming an interatomic (pair) interaction energy for the computation of f(r) and
reevaluating Eqs. (1.14) and (1.16). The interaction energy depends on the number
of participating pairs at each pairing distance or shell, and on the contribution of

the nth shell to the ordering energy. The pairing energy is written as

Wn = €AB, — % (ean. +epB.) (1.30)
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with ¢ the interaction strength between atom i located at a site R and atom j
located on the n'h shell at position ». As empirical model equations for g{c) were
used to reproduce the miscibility gap, Eq. (1.30) is just a different stiarting point
to derive the regular solution model through the temperature-dependent values of
the interaction parameters €4p_. In Eq. (1.30), as A and B atoms increasingly tend
to cluster with atoms of their own species, w, becomes increasingly negative and,

conversely, for complete solubility between A and B atoms, w, will be positive.

The probabilily of having a pair BA with B at R and A at R+ r is ¢(R)[1 -
o(R+ ). Expanding c{ R+ ) about R and assuming cubic symmetry, the number
of pairs with B at R and A on the nth shell about site R with radius r,, is therefore

Zn {(B) [1 - c(B)] — c(B) VZc(R)r2} (1.31)

where Z, is the number of sites contributing to the nth shell. The contribution of

site /2 to the internal energy is then

U(R) = Zawne(R)[1 — o(R)] = 3 Zuriwac(R) Vie(R). (1.32)
With

W=y Znw, (1.33)

n

and the mean square range of the pair interaction ¥?, written as

2
 XnZprawa

2
¢ _ Z‘ann 1

(1.34)

Eq. (1.32) becomes
2 wip?
U(R) = wce(R)[1 ~ (R)] — c(R)V c(R)—-z—- . (1.35)
Since F = U — TS, and the configurational entropy {S) only contributes to

fo(c), after integration over the volume of the sample (compare with Eq. 1.16), it

follows that
_wy?
=—5-

The gradient energy term & therefore corresponds to the product of an interaction

.4

(1.36)

energy per unit volume times a mean square range of interaction. For a regular
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Figure 1.5: Bstimates of x from Eq. (1.37) with the regzlar solution model given by Eq. (1.9) for
the temperature range measured. The solid line corresponds to nearest-neighbor interactions only
and the dashed line to a Lennard-Jones potential.

solution with the interaction given as in Eq. (1.30), if h is the enthalpy per unit

volume co(1 — ¢)f, then w = 4h at ¢ = 0.5[17] and
k= 2hyp*. (1.37)

For an estimate of k, the empirical equation with four comstants D, E, F
and H introduced earlier (Eq. 1.9) is used to calculate h. With ry as the nearest
neighbor distance, Eq. (1.34) gives ¢ = \/ 13-1-0 for nearest-neighbor interactions only
and ¥ = \/gro for a Lennard-Jones potential. The calculated estimates are shown
on Fig. (1.5). The values obtained remain only empirical estimates of the order
of magnitude of x and of its relative temperature dependence. To refine the values
obtained, the coefficient in Eq. (1.37) should have been corrected for the actual alloy
composition and the mean interaction potential distance 3 should have been more

appropriate for a fcc lattice.
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Chapter 2
Small angle x-ray scattering

This Chapter introduces small angle x-ray scattering (SAXS) and its relationship
with density correlations in real space. Sum rules for the scattering intensily are

also presented.

2.1 X.ray scattering and correlations

Electrons in solids or molecules scatter incident x-rays. Each part of the eleciron
distribution acts as a scattering center. Thus if a group of atoms arranged in some
arbitrary manner is placed in a parallel monochromatic beam of x-rays, each atom
can also be considered as a scattering center emiiting a scattered wave which is
coherent with the incident radiation. The total scattered photon wave will be the
combination of the waves scattered by all scattering centers. The scattercd waves
interfere with each other and the resulting intensity will thus depend on the direction
of observation and is related to the ‘real’ space atomic structure of the object by a
Fourier transform. Thus x-ray scattering allows one to determine the distribution

of atoms in solids, on surfaces, in liquid metals, etc.

The scattering vector is defined in terms of the incident and scattered wavevec-

tors k, and k as in Fig. (2.1) by:
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Figure 2.1: Standard definition of q.

q=k-k0 (2.1)

with k = 2x /)X where A is the photon wavelength. Since k = ko, the angle of scat-

tering 6 is related to the scattering vector g by
g = 2kgsinf (2.2)

i.e. ¢=4xsinffA.

The coberent scatiering intensity I(6,¢) (in a solid angle df2) from the scat-
tering centers normalized to the incident photon flux Iy (per m?) is equivalent to

the differential scattering cross-section (in m?/steradians):

dr _1(6,9)

=1 (2.3)

The arrangement of atoms A(r) at discrete sites ¥,,, with » the position vector, can

be expressed as the sum over all sites of the corresponding form factor:
A(r) =Y fob(r — rs) | (2.4)
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where [, is the alomic form factor for the atom at site n. The Fourier transform of

A(r) is
A(g) = faeT 9T (2.5)

and the scaltering intensity will be given by the square of A(gq). Thus, the differential

scattering cross-section is given by

d . .
d—?i =300 fnfaeT TR, - (26)

With expression (2.6), the maxima in scatiering intensity will occur when
g (tm—7,) =210 (2.7)

where n is any integer. This is known as Bragg’s condition and Bragg scattering
will occur at the wavevectors ¢ in crystals where »,, — #, = 2un when the number

of scattering atoms is large.

To examine the more general case of the scattering of eleciromagnetic radiation
by an arbitrary electron density, the atoms at discrete sites are replaced by radial

electron density functions p.(r) in Eq. (2.6):

doy or :
ot A —iG(P=—Ta)
o Vv fpe(rm)p,(rﬂ)e dr,.dr,, (2.8)

where o7 is the Thomson electron cross-section (the square of the classical electron
radius) or =’ -'_;‘%“?- = 7.94 x 1073 m?/el.? and doy/d (in m™!) is the differential
cross-section per unit volume of the sample. Equation (2.8) is precisely the Fourier

transform of the equal-time two-point electron density correlation function

= or [ €97 (pu(r)p(o))dr (29)

where translational invariance has been assumed and

(P} = [ pe(r)pclo)ir | [ ar (2:10)

where { ) denotes the thermal average.
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The alloy composition ¢ (in atomic fraction of one constituent in 2 binary alloy,
at. fract.) is used in this work instead of the electronic densities, p.. A structure

factor in real space S(v) is defined with this units convention:

5(r) {e(ro)e(ro + 7))

- (“f;;) (pelrolpe(ro + 7). (211)

Thus S(r) is in (at. fract.)? (ot mol?*/m®). The units of g(q), the Fourier transform
of S(r),
3(q) = f T S(r)dr - (2.12)

are (at. fract.)’m® (or mol?/m®). From Eqs. (2.9) and (2.11), the structure factor is

proportional to the differential scattering cross-section

§ =op! (’&2’) =g (2.13)

Thus the differential scattering cross-section is the Fourier transform of the
two-point pair correlation function {c(ro)c(ro + 7)) and 5(q) is simply the product
of %h"-’- with a prefactor. Certain conditions have to be satisfied for this derivation
to be valid. i. The Born approximation has to apply, i.e. multiple scattering events
in the sample can be neglected. ii. The scattering must occur exclusively elastically,
through Thomson scattering, i.e. as if the electrons were free electrons. This would
not be the case if the energy of the x-ray pholon was close to a core-level binding
energy since the corresponding optical absorption edge would influence the scattering
resulting in inelastic scattering (anomalous scattering). In this work the energy used
(~ 6 keV) is far from absorption edges in Al and Zn (1.56 and 9.69 keV for the K
edge of Al and Zn respectively). It is not necessary to include inelastic effects from
Compton scattering either since at very small scattering angles it vanishes. iii. In
the definition of the scattering cross-section, conditions for Fraunhofer diffraction

were assumed, i.e. it was tacitly assumed that the source and the detector were

both effectively at infinity.



Our choice of units to express S(») and $(q) will allow a direct comparison

between the measured scattering and the equations of motion for kinetic theories of

SD.

The term ‘small angle’ scattering (SAS) can be misleading. Indeed, SAS does
not in_ply small diffraction angles but rather small values of the magnitude ¢ of the
scattering vector. The angle range of SAS is usually of order 0 < ¢ < x/d, , where
d, is the interatomic distance.[42] For Algg;Zng3s , using the fcc lattice spacing
from Tabls 1.2, d, equals 2.87 A (ao/+/2). Thus this gives an upper Limit of about
g=1A"? to the SAS range. For Cu K, radiation () = 1.54 A) this corresponds
to a diffraction angle of 14° but for neutrons with a wavelength of 8 A this angle
increases to 80°. At the beam energy in this work (E == 5.989 keV, i.e. X = 2.07 A)
this would correspond to a diffraction angle of 19°. The lowest order Bragg reflection
(111) would occur at a diffraction angle of 52.4° (¢ = 2.68 A~). In this work,
reciprocal vectors cover the range 0.01 to 0.085 A~ and thus features with length
scales between 60 and 600 A are probed.

2.2 Thermal diffuse scattering

At equilibrium, the structure factor of a binary alloy, i.e. the scattering due to
thermal composition fluctuations can be estimated from the equipartition of the
free energy. Ignoring terms of bigher ordes than quadratic, taking the integral of
f(r) (Eq. 1.16),

G= j &r [ | Véce(r) [ +5"6¢H(r) ] (2.14)

LThis choice of units is a departure from the nsual scattering power in terms of “electron units
per atom” (Laue Units) where the intensity per atom is compared to a number of diffracting
electrons giving the same intensity.[40] The corresponding quintity in nentron diffraction is the
coherent differential cross-section per atom, do/df}, expressed in units of “cm? per sterad per
atom” [41]. In this sense, the units used in this work are closer to those of nentron scattering than

those conventionally used in x-ray scattering.
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v 'th " in J/m® and & in J/m and where the notation

Se{r) =c[r) — e (2.15)

has been introduced to neglect the constant offset to G provided by ¢g. The Fourier

transform F {6c(»)} is introduced as

Sc(r) = zi f dgbc(q)e'dT (2.16)

Then, by substituting the inverse Fourer transform, F—? {S‘E(q)} to &c(r) in
Eq. (2.14) the following expression is obtained[43]

i 2
(2 oy [ 2 (ka4 £7) | 8() | (2.17)
Hence the free energy in the qth Fourier mode is
G(q) = (xa* + f") | 5c(q) I (2.18)
whose average value should be kgT, by equipartition of energy. Hence
= kpT
5 2 _BL _
(F@F) = 2
= Sorla)lr (2.19)

which is precisely the Fourier transform of the expression in ‘Eq. {2.11). Hence, the

equilibrium structure factor is given by a Lorentzian centered at ¢ = 0. Using the

correlation length €,

Eq. (2.19) can be rewritten as

kyT
x(g? +£77)
and Soz(g)|r, as in Eq.( 2.13), is in m®, Equation (2.19) is known as the Ornstein-

Soz(q)lr = (2.21)

Zernike structure factor.

When the alloy is not in equilibrinm, Eq. (2.19) should be the asymptotic state
(or infinite time limit) of the dynamic equation of motion employed to predict the
kinetics of the return to equilibrium.
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2.3 Sum rules

Since the measured scattering intensity relates so simply to the equal-time two-point
correlation function (c¢f. Eq. 2.9), it is siraightforward to make some predictions
about the observed scatiering intensity, independent of models of the correlation
function. These are often called “sum rules”. Once established, these rules provide

easy checks for both the experimentalist and the theorist.

The differential electric susceptibility is given by

= lim mS(q) (2.22)

9—0 ad
where ag is the latlice parameter. The first sum rule is obtainced from Eq. (2.19) by
setiing ¢ = 0. This rule is thus a susceptibility sum rule :

kBT

S{g=0)= i

(2.23)

where f' is evaluated along ¢ = ¢,.

Two more sum rules are introduced. The first applies at all times whereas the

second is valid when interfaces exist, that is at the late stages of the decomposition.

The fluctuations are related tc correlations by noticing that S(#) as defined

in Eq. (2.11) has the property S(0) = &. Taking the inverse Fourier transform of
Eq. (2.13),

1 o .
— iq-r
S) = G | S(a)e9 7 dg (2.24)
and, for r = 0, an expression for the integrated intensity @, is obtained[44)
1
%=y J, S@ia=Te=ap (2.25)

where ¢ is the average composition. The averaging in Eq. (2.25) involves the integral

over the scattering volume,

Qo = f (c— co)?dV . (2.26)

When, as in the case of bulk alloy compositions and temperatures inside a miscibility

gap as in Fig. (1.3), two phases coexist in the alloy near or at equilibrium, the volume
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fraction of each phase is obtained by the lever rule:

ye = X% (2.27)
Cat — Ca
V;a' = 1— V:
€0~ Ca
= . 2.2
p— (2.28)
Then, Eq. (2.26) can be approximated by
Qo = (ca— o)V + (cat — €)'V
= (cg — €a)(Car — ¢o) (2.29)

where Eqs. (2.27) and (2.28) have been used. This expression can alternately be

written as
Qo = VEV (car — €a) | (2.30)

which is equivalent to the formulation of the sum rule by Tomita[45] where
Cat — Cq = 1. Eq. (2.25) was originally[46] written in terms of the local fluctvations
of the electron density m.

The next rule applies for systems which posess regions of uniform composition,
either ¢, or ¢4, separated by interfaces. The scatiering contrast in the small angle
range then comes solely from the interfaces. If the area element of an interface is

written da and V is the volume of the whole system, the interface area density can

be defined by ,
A= f da)V . (2.31)

The first term of a large g expansion for the Fourier transform of the correlation

function of a system with interfaces is the Porod law[47]
lim ¢*S(q) = 27 A. (2.32)

According to this equation if there is a sharp interface between two phases the value
of ¢*S(q) should be constant for large g.

38



Chapter 3

Farly descriptions of spinocdal

decomposition

This Chapter makes a review of the early descriptions of spinodal decomposition
(SD), in particular of linear thcories, und of the measurements to date, mainly
for binary alloys. Before doing so, the text below summarizes some key differences
between SD and the other decomposition process introduced in Chapter I, nucleation

and growth (NG). The relev.nce of such distinctions is also questioned.

3.1 A foreword

The main features of NG and SD described in § 1.1 for phase transitions in a gas-
liquid system also apply for a binary alloy. As shown in Fig. (3.1a) the decay of
a metastable phase to a stable phase by NG occurs in roughly two stages. The
first stage involves the formation of nuclei of the precipilate phase (nucleation)
through fluctuations in the one-phase medium and often requires an incubation
period. Afterwards, the nuclei grow in time. However, SD displays long-wavelength
fluctuations thut lower the excess enthalpy immediately after the quench into an
unstable state as schematized in Part (b). These fluctuations grow in time on all

length scales.
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Figure 3.1: Schematic morphologies of phase separation mechanisms. (From Ref. [48], p. 87.)

Before considering exclusively the SD process, it is appropriate to consider the
nature of the spinodal curve. This will lead to some comments on the important
choice of interpretation that measurements of the kinetics of unmixing processes
have to present the characteristics of only one or the other of these processes.

I. COHERENCY STRAINS: THE SPINODAL CURVE, A KINETIC BOUNDARY —

A priori schematization (3.1b) of the SD process could suggest that near T
where the decomposition is only thermally activated, it would present continuous
characteristics reminiscent of water near its critical point (¢f. § 1.2). In the case
of water, the order parameter varies in a continuous way as T, is crossed, suggest-
ing a second order transition. However, in crystalline solids such as the AlZn alloy
there is a metastable region above T, (i.e. above the spinodal region) where the
alloy will decompose by NG after an incubation time § 1.3. Thus, as SD proceeds
after a quasistatic crossing of T, (' — T.") the order parameter evolves asymptot-

ically to the difference between the chemical solvus compositions at that tempera-
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ture, cor — ¢ # 0. Clearly, in this case the order parameter is discontinuous at T..
The decomposition is thus a fluctuation-induced first order transition.[49] Hence,
even at T, the spinodal curve represents a kinetic boundary rather than a static

boundary.![50]

1. FINITE RANGE INTERACTIONS: THE SPINODAL CURVE, A TRANSITION REGION

Chapter I gave a description of phase transitions based on mean field inter-
actions between molecules, atoms, etc. which corresponds to the classical (Landau)
theory of phase transitions. In practice, this description remains valid in the limit
of weak long range interactions. In systems where interactions have a finite range,
it is often argued that the spinodal curve, if it exists, is a smooth transition region
between metastable states and unstable states. Descriptions not based on mean
field interactions have been developed, such as cluster dynamics.[50-52] These do
not have a sharp transition between SD and NG: all states inside the miscibility gap
are metastable and the nucleation rate increases continuously with the undercooling
(i.e. the over-saturation). Thus, for instance, results frorm Monte-Carlo simulations
of the kinetics 3d Ising model in the “unstable region” have been interpreted us-
ing either analyses appropriate for nucleation or heterophase fluctuations[50-54] or
coarse-graining cooperative models, as in this work (c¢f. Chap. V).{7]

This dissertation assumes a sharp spinodal and thus that SD can be distin-
guished from NG by the differences introduced above. Since, the alloy composition
is close to the critical composition, and thus as far as possible from the classical
spinodal for any given quench temperature, the smearing of the spinodal line is not
a direct issue. A direct casting of the measurements to the study of the kinetics of

SD can thus be justified without having to evaluate alternate decomposition mech-

1The point at the top of the miscibility gap is also 8 first order transition point. Strictly, an
alloy quenched into the region below this point is metastable and the decomposition oceurs by
NG. This process is inherently discontinuous and requires a surface energy, and has consequently
a discontinuity in the first derivatives of the free energy. A discontinuity in the order parameter is

also implied since at the onset of decomposition, it goes exactly to cor — ca # 0.
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anisms. However, measurcments reported in the literature at compositions closer to

the classical spinodal are not free from this concern (cf. § 3.3).

3.2 Linear theories

The groundwork for the current ideas of spinodal decomposition was laid by
Hillert[55] in a paper in 1961, and more generally the first equation to predict the
time-evolution of the scattered intensity is due to Cahn[4,56] in the years 1961 and
1962. Excellent reviews have been written on this topic.[32,57] The Cahn-Hilliard
(CH) equation of motion and the Cahn-Hilliard-Cook (CHC) equation of motion
are described in this section as the two main linear equations of motion proposed to

describe the early stage evolution of an alloy during SD.

The generalized diffusion equation developed by Cahn was introduced in Chap-
ter I (Eq. 1.21). This equation was formulated for an elastically continuous decom-
posing system. Eq. (1.27) provided the corresponding equation of motion (the CH
equation) for the scattered x-ray intensity I(g,t) associated with the Fourier compo-
nent of wavenumber g for an isotropic body at a constant aging temperature. The

solution to Equation (1.27) predicts the scattering at time ¢ to be:

1(g,t) = I(g,0) exp[2R(q) - 2] . (3.1)

In this expression, I(g,0) is the initial scattering intensity before any evolution at

the aging temperature, and R(q) is an amplification factor given by%:
R(¢) = ~(D/ ") (f' + 2°Y +2x¢")¢" (32)

where as in Chapter I, D is the interdiffusion coefficient, f” the second composition
derivative of the free energy per unit volume and 25°Y the second derivative of the

elastic energy (cf. p. 17).

Figure (3.2) shows the calculated amplification factor with parameter values
taken from Rundmand and Hilliard’s work on an AlZa alloy[58] (cf. § 3.3). Equation

*Exceptionally, in this section the elastic energy contribution to f is written explicitly,
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Figore 3.2: Schematic diagram showing the variation of the amplification factor R(g), with the
wavevector ¢ (¢f. Eq. 3.2) inside the spinodal. Numerical values used are D[1 + (29%Y /)] =
—2.4 x 1073 m3/5 and kDff" = 2.9 x 107*! mi/s (¢f. Table 2 of Ref. [58]). This curve has

a maximum at g, = 1.44 x 10° m~! (X, = 43.7TA) and intersects the abscissa (dashed line} at
¢c = 2.03 X 10° m~1 (A, = 2x/q. = 30.84).

(3.1) predicts that the intensity corresponding to a given Fourier component will

either grow or decay, depending on the sign of R(g). For one nontrivial value ¢,
such that R{g.) =0,

¢ = \/—(f”+2n’Y)_/2f= . (3:3)
= ¢ (3-4)

the associated Fourier component does not change with time. The wavenumber g,
thus corresponds to a time-independent crossover in 7{q,t). The amplification factor
also has a maximum at R(gs) for which the growth rate of the associated Fourier
component will also be maximum and, from Eq. (3.2),

G = qc/ﬁ . (3.5)
Cahn’s theory was expanded by Cook[30] to include the effects of thermal
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fluctuations by adding a Langevin source term. The resulting Cahn-Hilliard-Coock

(CHC) linearized equation of motion applies to the absoluie scatiering intensity

5(¢,1),
53((93'9 — 2R(q)S(q, 1) + 2Mhp T’ (3.6)

where the time-independent amplification factor R(q) is as in the Cahn-Hilliard

equation and M is the atomic mobility.

According to Cook’s theory, the intensity is no longer given by Eq. (3.1} but
bv the solution of Eq. (3.6) with appropriate boundary conditions:

S(q,t) = [8(¢,0) — Soz(g)tr,) exp[2R(q)t] + Soz(q}|z, - (3.7

In this equation Soz(g)lr, is the scatltering associated with thermal fluctuations
at the aging temperature as given by Eq. (2.19) (replacing f" by f*+ 27°Y).
Figure (3.3) shows typical equilibrum Ornstein-Zernike structure factors Spz(g)
for a phase separated alloy i.e. at a temperature below T, (solid line) and for the
same alloy in the one-phase region (dashed line). For bulk alloy compositions in
the unstable region of the phase diagram the solid line shows that Spz(g} < 0 for
g < q., since (f" + 27°Y < 0). Thus, coherent equilibrium fluctuations do not occur
over length scales larger than £ since these would contribute to the structure factor

at wavenumbers below q. (¢f. Eq 3.4).

Fig. (3.4) shows the solution of the CHC equation for a hypothetical quench
from an annealing temperature 7} in in the one-phase region to an aging temperature
T, inside the miscibility gap at selected times. The equilibrium structure factors
corresponding to the anneal and the aging temperatures are as given in Fig. (3.3).
The amplification factor is as given in Fig. (3.2). As in the case of the CH equation
of motion, Fig. (3.4) shows that there is a fixed crossover of the S{g,t), which is now
labeled ¢f. However, ¢’ is larger than g.. Fourier modes with q < ¢! grow and those
with g > ¢! decay asymptotically to the equilibrium value at the aging temperature
(solid hne in Fig. 3.3). This is also verified by taking the large time limit when
2548 = 0 in Eq. (8.6) for the case R(g) < 0 which gives S(¢) = 7285~ which is
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Figure 3.3: Equilibrimin scattering due to thermal fluctuations above (dashed line} and below the
critical temperature (solid line), Eq. (2.19), computed for g, = 2.03 x 10° m~! (cf. Fig. 3.2 and
Eq. 3.3) and ' +9?Y = —-9.9x 101 J/m? (cf. Table 2 of Ref. ([58]) for T' = 338 K in Aly 75Z2n0.122
(solid line). The dashed line shows the equilibriam scattering above T corresponding to the same
correlation length, ¢ = ¢;'!, taking arbitrarily f* + ?Y = 2.475 x 107!% J/m? and T = 378 K.
the expected equilibrium scattering at the wavenumber ¢ (Eq. 2.19). This limit and
the expected stationary solution will only be approached for the wavevectors larger
than g¢..

The nontrivial wavenumber g. which corresponds to the cross-over in the CHC
equation of motion is also the wavenumber for which Soz(g)lr. = So z(q)|:p' in
Fig. (3.3) i.e. 0.255 A-'. Indeed, from Eq. (3.6), solving 8S(q,t)/0t = 0, gives
S(dst) = Soz{d))lr,- As expected, setting S(¢,0) = Soz(¢)lr, in Eq. (3.7) gives
the same result.

The CHC equation of motion predicts 2 linear growth of the amplitude of the
wavevector ¢, as shown by tke inset in Fig. (3.4). This can be checked by expanding
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Figure 3.4: Structure factor for the CHC equation of motion. The dashed line shows S(g,t = 0) =
S03{(q)|r—=ses x and corresponds to the dashed line in Fig. (3.3). The solid lines correspond to
Eq. (3.7) solved with the same R(gq} shown in Fig. (3.2) for ¢ = 100, 1000, 2000, 6600 5. The inset
shows the linear growth for S(g.,1).
RO x5 1 4 2R(g)t in Eq. (3.7)° and, after substitution of the expressions for R
(Eq. 3.2) and Soz(g)lr, (Eq. 2.19), by taking the limit ¢* — ~(f" + 27°Y)/2x (cf.
Eq. 3.3) which gives

5(qe,t) = 5(g.,0) + 2MkpTq’t. (3.8)
Modes with wavenumbers ¢ < ¢. will grow exponentially without bound as in the
CH equation and those comprised in g. < ¢ < ¢/ will grow asymptotically to the
equilibrium scattering value Spz(q)!r,.

The CHC equation reduces to Eq. (3.1) when random fluctuations can be

31t is necessary to expand R(g) since

qﬁ_{lg Soz(q)lr, — .
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considered negligible. However, in the very early stages of decomposition when
the amplitudes of the composition waves are small the random fluctuations will
constitute a significative fraction of the composition fluctuation amplitudes and
the CHC equation is more appropriate. At high wavenrumbers, the CHC equation

predicts the correct asymptotic behavior of the structure factor.

3.3 Experimental results

This section presents a brief survey of experimental studies of spinodal decomposi-
tion. The works are critically reviewed with respect to whether they unambiguously
prove the cccurrence of a SD process. Although wuch theoretical work has siressed
SD, it has proven remarkahly difficult fo obtain experimental results. The first ex-
penmental studies of 5D were carried out on alloys and, in particular, on AlZzn alloys,
and a nuinber of review papers appeared a décade ago {for example, see Ref. [42]).
Subsequently, the investigation has spread to other systems such as binary fluids,
glasses and polymers. The account of experimental results first concenirates on SD
measurements in AlZn alloys. This is followed by a review of some recent SD studies

in other systems. Finally, an overview of the reported studies on the late stages of

SD is presented.

Maany efforts have been made to verify the CH and the CHC theories of spinodal
decomposition. However, to date, there is no unconditionally accepted experimental
verification of these theorics in a phase transition context for a metallic system (in
§ 1.4, some diffusion studies in multilayers were mentioned in the context of the
CH equation). In a lot of measurements, the practical difficulties in unambiguously
measuring features unique to SD seriously restrict the interpretation of the data.

There is abundant experimental literature on AlZn binary alloys. The critenia
for inclusion in this review is whether or not the workers examined their data in the
framework of SD. The interpretation of experimental results is somewhat dependent

on the idea that a sharp spinodal line can be drawn as in Figure (1.3) to separate
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SD processes from NG processes. Though a sharp spinodal line does not exist in
fact it is convenient to use it to jusiify the use of SD theories inside the region it
bounds. However, in some cases, alloys aged at the same point on the phase dia-
gram have been alternately analysed in terms of a NG theory (such as Langer and
Schwartz’s cluster dynamics[59]) or a SD theory by different authors. For example,
in a very comprehensive study by Guyot ef al. using small angle neutron scattering
(SANS)[60], transmission electron microscopy (TEM)[61,62] and resistivity mea-
surements[63] clustering has been studied in Alyg327n0.0ss aged at 293 K, whereas
Murakami et al.[64] present measurements on the same alloy at 313 K interpreted
in terms of the CH equation. These analyses represent two different phenomeno-
logical pictures of the decomposition process. As models, they are idealizations. It
is beyond the scope of this dissertation to examine in detail decomposition models
other than SD. As a point of interest, the principal conclusions of Guyot’s studies
were the lack of an observed sharp spinedal transition and an increase in the nu-
cleation rate of the Guinier-Preston (GP) zones with the undercooling (i.e. with
Zn supersaturation). The lack of signature of the SD process is also found in some
cases to work the other way. Indeed, for some measurements of AlZn alloys outside

the spinodal, scattering reminescent of &) was observed.

Though SD can be divided up into at least two stages, early and late, rigorously,
it 1s only at the onset of the phase separation process, in the very early stage, that
SD can be discriminated against NG. Indeed, it is in this stage that the most typical
characteristics of spinodal decomposition — homogeneous buildup of fluctuations —
should appear. The most critical work on SD should then aim at the study of the
very early stages of the phase-separation process. Critical comparison of the theory
and observations is, however, not easy for the early stages, partly berause of the
experimental difficulty in distinguishing these stages from the lat~ stages i.e. the
scaling stage.

A full and significant determination of the early time kinetics is not an easy

task. The quench must be perfect: it must preserve the high temperature disorder,
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a condition which is difficult to meet with highly over-saturated systems. Defects
which lead to heterogeneous nucleation must be avoided. Small composition fluctu-
ations are difficult lo characterize. In all kinetic studies, it is imperative that any
change occurs on time scales comparable to the time scales on which the measure-
ment is performed. The choice of a system for the study of SD will depend, amongst
other things, on the expected rate of decomposition. In the set of binary alloys that
possess a miscibility gap, decomposition rates will vary widely and will be, of course,
temperature dependent at any given composition. In general, the driving force in-
creases with undercooling but the atomic mobilitics decrease as the temperature is
lower. So, near the spinodal line, decomposition wili be slower due to the small
driving force and at low temperatures the decomposition will be slow due to the low
mobility. Few experiments have been performed with sufficient time resolution to
study the range of early-stage behaviour between these limiting cases. Higher time
resolution is needed {or the faster reaction processes so that the measurements will

be faster than the total transformation time of the fastest reaction of interest.

Alternately, instead of speeding up the experiment, one can try to slow down
the decomposition. Small quantities of certain alloying elements (Sn[65], Cu[66]
and Mg) are known to retard the decomposition rate in the carly stages of the
coarsening of modulations in AlZn alloys. Some of the studies have hence been
performed on AlZnX alloys. For instance, Hoyt et al[67] addcd 0.01 at.% Mg to
retard discontinuous grain boundary precipitation. These studies have shown that
as the alloying composition gets closer to the critical composition, the decomposition
kinetics for coherent decomposition (SD) becornes faster and in cases where there
might be competition with incoherent precipitation processes (NG}, the time scales
over which the latter would occur become much longer than those for SD and the
incoherent precipitation essentially vanishes. Thus, if sufficient time resolution can
be achieved to measure SD near the critical composition where the kinetics are

faster, the measurement will be more reliable.

Table 3.1 lists the experimental investigations of SD in AlZn to date. This
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list does not include studies of NG and experimental determinations of the loca-
tion of the solvus curve such as the early investigations performed by resistivity

measurements.

These studies (except that of Hoyt et al.[67]) were performed at compositions
or temperatures well removed from the critical point. The points on the phase di-
agram of Fig. (1.2) showed the aging compositions and temperatures of all studies
listed in Table (3.1). The points on the phase diagram corresponding to the mea-
surements reported in this thesis were also shown, poinied at by the arrow. These
are practically at the criticau ~maposition and cover temperatures both near T, and
at the temperature of maximum decomposition rate (about 560 K) The tail end of

the arrow is at the anneal temperature in this work.

Workers have interpreted their measurements, looking for a number of sig-
natures of spinodal decomposition in the alloy AlZn. The main landmarks are
enumerated below, This should serve the purpose of putting in perspective the

measurements reported in this dissertation,

1.(A) SCATTERING FUNCTION: THE NAIVE PICTURE — Most of the measurements
reported in Table (3.1) are of the scattering function, either by SANS or SAXS. The
measurements of scattering functions constitute the most direct route to verification
of SD theories. Indeed the structure factor at the very early times is one of the two
most specific characteristics of SD; the other being the absence of an incubation time
for the decomposition to commence. However, to daté, experimental conditions for
such measurements have not been controlled sufficiently to allow conclusive com-
parison with existing theories. The first evidence of spinodal decomposition was
inferred from measurements of the kinetic evolution of the scattering function in
relative units and fitting to the CH equation. However, with the introduction of the
thermal fluctuations in the CH equation (Eq. 3.1), knowing the scattering function
only in relative units became insufficient and it became necessary to obtain abso-
lute structure factors to check measurements against the CHC equation (Eq. 3.6).

In both cases, with the difivsion équations, it is possible to derive s and D. To
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Author! Year

Composition | Method !Early time|Late time|Analysis )
(at. % Zn)
Bonfiglioli[68] {1966 9.7, 20.5 SAXS No No [Q(t) and
and 28.5 scaltering
profiles
Rundman[58] {1967 22 SAXS Yes No |CH
Murakami[64] |1969 6.8 SAXS Yes No |CH
Agarwal[69,70}1 1973} 22 and 28 | SAXS,TEM Yes No |CH
Junquaf71] 1974 6.8 MS? No No |discriminate
between SD and
_ nucleation
Naudon[72] 1974 6.8 SAXS Yes No  |SAS profiles
Evolution
of GP zones
Acuna[73] 1974 15 SAXS Yes No |CH,CHC
Delafond[74] [1975 6.8 ER® No No |discriminate
between SD and
NG
Bartel[75] 1975 224 SAXS No Yes  [t'/3 coarsening,
Q(t) and D
Laslaz[61,76] |1977 6.8 TEM No | No [Evolution
of GP zones
Ciach{66] 1979 22° SAXS, TEM No No |Obtain T, from
qualitative
observalion
of scattering
Ungée[77] 1981 6 - 21 SAXS No | No |Determination |
of T, by Q(t)
Furusaka[78] |1985 6.8 SANS Yes Yes |S(q)~q?
at high g for
early times
Hoyt[67,79] [1989]12, 22 and 32%| SAXS Yes Yes |CHCY

Table 3.1: Published studies of spinodal decemposition in AlZn. By late time, it is meant a “scaling-
like” analysis, This list does not include studies in which the data is analysed exclusively from
the perspective of NG though there exisis some overlap on the phase diagram with measurements
presented above. The most notable case is that of Hennion et al{60] who performed SANS on
aﬂoys Alo_g;_; Zno‘oss (293 and 333 K) and A].o_gagZﬂologg (363 and 383 K) (see tcxt).

1Only the first anthor is given for succintness,

3Magnetic susceptibility measurements.

3Electrical resistivity measurements.

40.1 at.% Mg alloy.

%0, 1 and 3 at.% Cu alloys.

©0.01 at.% Mg for the three alloys.

"These anthors also present what could be termed a qualitative discussion of LBM with their data.
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this day most authors have worked in relative scattering inteusity increase and have
not reported absolute scaitering cross-sections. They introduce an arbitrary nor-

malization constant for the scaliering due to thermal fluctuations (for example, see

Ref. [67] and the text below).

The first experiment {o quantitaiively verify the theory of SD by checking the
CH theory was undertaken by Rundman and Hilliard in 1967[58] (RH), who applied
SAXS on an Alg7s7Zng 2z alloy aged at 338 K. The evidence seemed to agree favorably
with the expectations from the CH theory. Namely, the measured scattering inten-
sity (in relative units) presented a time-independent crossover point at ¢. (¢f. p. 43),
the obtained amplification factor R(q) possessed a maximum at ¢./v/2 and had the
right fanctional dependence and, in the framework of the theory, the data, when
interpreted according to the theory, yielded an interdiffusion coefficient that agreed
in magnitude and sign with that obtained by an extrapolation of high-temperature
measurements. For instance, for wavenumbers below a critical wavenumber, ¢,
the intensity is increasing, whereas for ¢ > ¢, the intensity decreases continuously.
However, despite these expected features, the very nature of what was being mea-
sured was debated.[80,81] Namely, the alloy seemed to show marked SAXS right
at the beginning of the aging and it could be speculated that the later stages of

decomposition, when coarsening is occuring were being observed.

Other workers repeated the RH experiment for other compositions (see Ta-
ble 3.1).[64,70,73] In general, these early investigators looked for a time-invariant
crossover point in the scattering intensity ¢. and a time-invariant nonzero wavevec-
tor of the maximum in scattering intensity, qp,.

In all these studies, the measurements have generally been interpreted in terms
of an analysis of the amplification factor R(g).[58] What is required is the values of
the parameters D and x.

With the CH equation of motion (3.1), the slope of log J(g) vs. t yields R(g).
The obtained R(g) plotted against g are generally found to agree in shape with
the theoretically calculated one{82]. It is observed that as the aging temperature is
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increased, ¢ and g shift to smaller wavenumber and R(g) decrcases. This agrees

with the expected temperature dependence of g2, and ¢?. Indeed, for ¢2,[57)

T-T 5 H
—— = Y-k (3.9)

where T, is the critical unmixing temperature at composition ¢ and 1 is an inter-
action distance. A similar relation holds for g,, since gn = ¢./v2. In theory, if the
experimentally determined values of ¢, and ¢? were equal to zero, the corresponding
aging temperature T should be equal to the spinodal temperature T;. So, in theory
the amplification factor R(g¢) and the wavenumber q at a few values of temperature
should provide a means to determine the spinodal temperature for that alloy compo-
sition. But in experiments[64], the exponential growth of the intensily slows down
after some time and the slope AI(g)/At that is required o obtain R(q) should only
be taken for the aging times shorier than this time.

If instead, measurements are analysed in terms of the CHC equation, the
simplest route to extract &, the gradient energy coeflicient, and D, the interdiffusion

coefficient, is to rewrite Equation (3.7) in the form

S(g,t) — Soz(q)lr )
la ] = 2R(g})t. 3.10
(5(‘1, 0) — Soz(g)lr, (@ (8.10)
The amplification factor R(q) is as given by Eq. (3.2), making use of the relation
between M and D (Eq. 1.25)
Rlg) =~ Y\ 2xD
q: =-D (1 + fn - 77;- 2' (311)

In this analysis, a plot of the left side of equation (3.10) versus aging time will

yield R(q) and a plot of R(g)/q* versus ¢* should be a straight line with slope and
intercept related to the parameters x and D. In their receat synchrotron work on
Alg 3372ng g5 Hoyt et al.[67] obtained a straight line for R(q)/q® versus ¢ from which
%~ 3.5% 1072 J/m and D ~ —2.54 X 1022 m? /5 were obtained. These are close to
the RH values. Hoyt et al.[67,79] measure intensities in counts per second whereas
the function Spz(g) is expressed in absolute units and to overcome this difficulty
they have multiplied Soz(¢) by a factor such that the best straight line fit is obtained
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according to equation (3.11). This procedure was suggested in the original work by
Cook|[30].

From the first measurements aimed at verifying the CHC equation{73] it was
obvious that it does not constitute an adequate description of experimentally deter-
mined, time-dependent, structure functions; the notable exception being the very
recent Cu-Mn study of Gaulin ef al.[83]. In a tynical experiment, the position of
the peak in the structure function shifts to smaller values of ¢ with increased aging
time, whereas the CHC theory predicts an exponential increase in the scattered in-
tensity with virtually no shift in the peak position. This discrepancy between theory
and experiment is due to the neglect of nonlinear terms in the diffusion equation.
As pointed out in an carly paper by Cahn[84], nonlinear effects play an important
role soon aftier the quench and thus any successful theory of spinodal decomposition
should include the contributions to the higher derivatives of the free energy with
respect to concentration (Eq. 1.20).

Central to the interpretation of most investigations is that there be a unique
crossover and maximum growth wavevecto. and that the intensity for wavenumbers
below g. grow exponentially ad infinitum. These features were found to be lacking in
studies on AlZn, first by Bartel et al[75] and in more recent studies[67]. This opens

the question that if early stage is what is truly measured, then nonlinear terms have

to be included.

The time-resolution is an open issue in all investigations so far reported as it
cannot be asserted that any reported measurement was performed at an early enough
stage, i.e. before the formation of interfaces when SD and NG can be distinguished.
The coupling of dynamic measurement of §(g,t) with integrated intensity values can
provide some further information on the reliability of the measurement. The pres-
ence or lack of an incubation period in integrated intensity measurements becomes

the new criterion to distinguish between NG and SD respectively.

I.(B) SCATTERING FUNCTION: PATCHING UP FOR FINITE TIME QUENCHES —

Complications in the practical measurements of SD arise from {wo major sources
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during the quench. (i) A finite time is required to lower the temperature from the
annealing to the aging temperature, the quench time. (ii) In most cases when the
kinetics are faster than the available experimental time resolution, the quench is
perforined to a temperature much lower than the aging temperature to “freeze”
the “initial” structure for measurement. This quench is then followed by one or
more up-quenches to measure the time dependence of the scatiering function. Fach
of these iwo experimental “compromises” has an effect on the measured scattering

function though the effect of the second has sometimes not been recognized.

A consequence of reaching the aging temperature via an np-quench which has
been alluded to by seme researchers, but more often neglected, is that some phase
sepa.ation has occured during the initial quench to a low temperature. Thus the al-
loy can potentially evolve towards points on the phase diagram that are further from
¢g than the coherent coexistence values at the aging temperature. When nonlinear
terms are included in the equation of motion for the structure factor (¢f. Chap. V),
the critical wavevector ¢, is expected to decrease with time. However, if during the
quench, the alloy has evolved towards compositions beyond the equilibrium com-
positions at the aging temperature, a lower ¢/ than would otherwise exist during
initial stages of SD at the aging temperature will be observed. This rationale is
supported by the experimental observations[67] that the wavenumbers relaxing the
fastest to equilibrium amplitudes lie on the high-¢ side of the quenched-in peak.*
Thus, during the initial stages of isothermal aging the decrease in ¢ predicted by
nonlinear terms combined with the increase in ¢, resulting from the up-quench can
result in the observation of a stationary value of ¢ at early times. A stationary ¢/ is
precisely what linear theory predicts and the analysis of the data in the framework

of this theory would be erroneous.

This points out more the necessity to perform 8D experiments with a single
quench to the aging temperature directly from the one phase region above the mis-
cibility gap. These considerations have been brought up in light of the early time

#This is also obvious in the LBM theory; ¢f. Chapter V.
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behavior of the structure function data for AlggsZng sz reported by Hoyt et al[67]

To circumvent the shortcoming of finite time quenches, in some case model
equations have been proposed to theoretically predict the eflects of continuous cool-
ing on spinodal decompotition. The first io do so were Huston ef 6l.[31] in terms of
the CH theory. Carmesin ef al.[85] also offer a detailed accourt of continuous cool-
ing. These researchers rederive expressions for the time dependent reduced structure
function in the framework of both a nonlinear theory (LBM) and the CHC theory
allowing the temperature dependent mobility and free energy to be functions of
time. Hoyt et all67] put a lot of emphasis in their analysis on the importance of
modeling the time evolution of the structure function during the quench as well as

during the isothermal aging.

In this dissertation, the issue of modeling the phase decomposition during the
quench 18 treated differently. The quench times used are faster by two orders of
inagnitude than any previously reported study and quenches directly to the aging
temperature are performed. Furthermore, whereas Hoyt et al. favor more effort to
be put on the analysis of the evolution during the quench, a quantitative analysis
from the quenched-in structure is presented here. It is believed that by achieving
faster quenches to the aging temperature and dezaling explicitly with the quenched-in

structure factor spinodal decomposition theories can be critically evaluated.

1. INTEGRATED INTENSITY — According to the sum rule given by Eq. (2.25), the
integrated intensity, Qg, about the origin of reciprocal space can be used for the
determination of the percent completion of the decomposition. Indeed, when the
alloys are aged below the coherent critical temperature, T., the value of {c — ¢)?
and hence @ should increase with aging time until the decomposition is completed.
Furthermore, a signature of SD is that this increase in @Qp should proceed with no
incubation period. After the decomposition is completed @y should remain con-
stant. The determination of the presence or the absence of an incubation period
before Qg starts to increase can, in theory, be used to discriminate between NG and

SD. However, in practice, since the experimenial procedure between the onset of
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the quench and the first measure of the integrated intensity cannot be monitored
absolutely, it 1s difficult to affirm that the absence of incubation really indicates a
SD process, However, the measure of an incubation period certainly indicates that

the system is phase separating by a NG mechanism.

In addition to the interpretation problems posed by the sample conditioning
procedure for the isothermal studies on Q(2}, there exists the possibility of competing
transformations occurring while SD is taking place. Such transformations, such as

supposed NG at the grain boundaries in the RH measurements can complicate the

interpretation of Q(¢) data.

Nevertheless, on the basis of their own measurement of the evolution of the in-
tegrated intensity at room temperature, Gerold and Merz{80,81] proposed that that
the RH results were in fact obtained in decomposition stages wlere only coarsening

was occurring. In this decomposition regime Eq. (3.1) should not even have been

used.

Murakami et al.[64] calculated Qo(t) for Alpg32Zng oes sSpecimens aged at four
different temperatures (313, 333, 3563 and 373 K). In all cases, the calculated Qoft)
increase during the initial few minutes and show little change afterwards. This sug-
gests that, at the time when Q(t) has stabilized, the decomposition has progressed to
the stage where the sample consists of domains of compositions lying on the solvus

line (metastable miscibility gap boundary).

Attempts were made to capture an earlier stage in the decomposition process
than the RH measurement, at the same alloy composition. Agarwal and Herman[70)
performed a SAXS experiment using liquid-quenched specimens and calculated Q(¢)
as well as reporting the measured scattering intensities. Their results, while offering
somewhat different estimates of I, the interdiffusion coefficient, and «, the gradient
energy coefficient, were substaniially in agreement with those of RH.

The attempts to separate SD from NG on the basis of the absence of an incuba-
tion period for decomposition are not limited to calculations of Q(t) from scattering

experiments. Junqua et al.[71] distinguish between the nucleation process and SD
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by magnetic susceptibilily measurements on Al p327n0.068 samples (¢f. Table 3.1).
The time change of the magnetic susceptibility and the presence or the absence of a

delay before this change is then taken as 2 signature of the decomposition process.

111, HIGH g BEHAVIOR — Another of the sum rules iniroduced in § 2.3, Porod’s
law (Eq. 2.32), can contribute to distinguish between SD and NG processes. This
sum rule indeed provides a means to verify the existence of sharp interfaces since
¢*5(g,1t) should then be constant for large ¢. If the decomposition proceeds by the
spinodal mechanism, the mixture consists of composition fluctuations of groﬂving
amplitude. The conceniration of solutes inside the “clusters-to-be” should increase
with increasing aging time, while the conéentration in the raatrix should decrease.
There should be no clearly definable interface between the clusters and the matrix
until later {imes, wlen coarsening sets in. On the other hand for NG, as was de-
picted in schematic (3.1), the concentration of solutes inside the particles should be
constant throughout the course of the entire decomposition process and the concen-
tration gradient at the interface should be infinitely large. Thus, for NG Porod’s
law should apply from the onset of the isothermal measurement whereas in the case
of SD a time delay is expected. It was argued above that the sole argument of the
absence of incubation period for the increase in integrated intensity wasn’t sufficient
to confirm that decomposition occurs by SD. Similarly, the onset of a ¢* tail for the
first isothermal scattering profile, though in theory a signature of NG, is not suffi-
cient in practice to affirm that the decomposition mechanism should be N3 rather
than SD. Indeed, there could have been a time regime shorter than the quench time

scale in which continuous composition fluctuations existed.

Murakami et ol[64], whose measurement of an incubation time before the
increase in Q(t) was mentioned above, have also examined the high-¢ behavior of
the measured scattering functions for the same alloy (Al s32Zn9.0ss). They report
a monotonous increase of ¢'S(g) with g over the complete g-range measured in the

first scattening profiles during the isothermal annealing. However, after a certain
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time, ¢*5(g) becomes constant for large ¢ and Porod’s law is then satisfied.® This
time becomes longer for the lower temperatures (ranging from 2 mins at 373 X to 6
mins at 313 K after & quench from 573 K). These results mean that sharp interfaces
exist only after that time is reached. The time valucs at which Porod’s law starts
to apply abnost coincide with their measured time of saturation of Q(t). This
result indicates that until the time when Porod’s law applies for high-g is reached
the concentrations of solutes inside and outside the clusters and the concentration
gradient at the interface do not have any fixed value, but they increase with the
aging time. The two facts together support the occurrence of SD and argue against

a NG mechanism.

The same authors observe that at 413 K ¢*S(q) is a constant cven after the
earliest aging time they could observe, which was 30 s. From this they conclude that
the mechanism of decomposition at this higher temperature is not spinodal as for
lov.er temperatures, but nucleation and growth. Though this is likely the case, on
the basis of their observations alone, it is not possible io be positive for the reasons
arzued sbove. Hence, at the teraperatures above T, the particles will be formed by
- the nucleation and growth mechanism and the constancy of ¢*S(g) with respect to
g will be found from the beginning of the aging. This constancy will not be found if
the aging temperature is below T, where the decomposition occurs by the spinodal
mechanism,

From the axperimental point of view the whole unmixing kinetics must be
defermined and closely compared with the theoretical predictions. Partial observa-
tions, such as the search for an incubation period whose lower limit varies consider-
ably with experimental technique, or observation of a periodic iwo-phase morphology

are clearly insufficient.

Binary alloys with slower decompesition kinetics than AlZn near the crtical

composition have recently been investigated. Perhaps the most interesting measure-

5These workers use a slit-collimation and the corresponding expression for Porod’s law: ¢*J{q)

is constant for large ¢ where J(g) is their measured scattered intensities.[47]
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ments were performed on FeCr alloys, an alloy which has cmall elastic strains. This
alloy has been studied by SANS.[78,86,87] Nonlinearities in the SD of FeCr alloys
have been reported. For instance, Furusaka et al[78,88] even present approxima-
tions to compute the LBM equation of motion on FeggsCro4o and Fep70Cro.so. The
shortest time incremental step they use is 5 mins for FeggoCrp .40 aged at 100 K.[78]
During the early stages, these authors report a ¢~ dependence of the structure fac-
tor at high ¢. Nonlinear effects were also observed in the more recent SANS work of

Furusaka et al.[87) (four alloy compositions including Feg s0Cro.40, Feo.70Cro.30) and
of LaSalle et 01[86] (Feo_sscro_gg).

Studics of spinodal decomposition have also been performed in non-metallic
systems. Light scattering measurements in binary fluids and in polymers offer valu-
able information op {he decomposition process in these systems. The CHC equation
of motion was shown {o describe well the unmixing of pseudobinary polymer sys-
tems in the early-time regime.[89,90] Studies[91] near the consolute point in binary
liquids, demonstrate the importance of nonlinear effects at early times even though
an earlier study[92] had conclusively analysed scattering results in terms of the CH
equation. Studies of systems of glasses[93,94] also present a conclusive verification
of the CHC theory. The systems with a time regime during which the CHC the-
ory is found to be valid share one common characteristic: they all have long range

interaction forces.

Table (3.1) includes a column labeled “late time”. Investigations into the later
time regime of SD are included as they complement the early stage dynamic studies.
A discussion of the dynamics of the late stages of spinodal decomposition will be

given in § 5.5. The late stages measurements performed in the course of the work

presented in this dissertation will be introduced and discussed in § 6.3.

The late stages dynamics regime is characterized by a time independent struc-
ture function which scales the structure factors by a length scale varying as a power
law ~ ¢7", Such a scaling has been found to hold in phase-separation processes in

liquid mixtures,[95] 2 glass system,[96) and a number of binary alloys.[60,97,98]
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Studics of the late-stage or scaling regime have primarily focused on the value of
the growth exponent n, as well as the scale invariant function for the structure factor.
The value of n is of importance, because it is the signature of the thermodynamic
forces which are responsible for the phase transition. However, at present, there

exists no successful analytical theory for the late stages of SD (cf. § 5.5).

During the late stages, domains of each phase coexist and are thus separated

by interfaces. From measurements in this regine alone, it is not possible to separate

SD and NG processes.

The late stages have been studied {or most of the systems mentioned above in

the discussion of the carly stages.

Furusaka[78] shows a scaled function cbiained for Al;s32Znoces alloys aged
at 389 K for up to 60 mins. Indced, he observes that afler a cerlain aging time,
dyramical scaling holds for the scattering function. The time regime during which
the scaling holds coincides with the time for which a ¢™* dependence of the structure
factor is obtained for high ¢ values (cf. Eq. 2.32). Hoyt et al.[79] have also shown that
the late stages scattering in AlZn alloys (Alpg12n9.0s, Alo7s7n022 and AlggeZno.sq)
quenched inside the spinodal region present a universal scaled structure function.
However, ncither of these two studies present a value for the growth exponent, n.
A study of coarsening in Al 77715 220Mgo.00: aged at 398 K by Forouhi and De
Fontaine[99] revealed a three part late stages with a growth exponent of 1/3 in the
latest part and lower values in the earlier parts. However, it is not clear how these
carlier {attributed to cluster coagulation) parts would relate to the mechanism of

SD near critical composition.

In their work on Mng ¢7Cug 53, Gaulin ef al.[83] have obtained strong evidence
for the late stages dynamwic scaling regime. They found that a universal scaling
function is sufficient (o describe the time-dependent structure factor and a growth

exponent of —0.37 £ 0.03.

A scaling function was also obtained in the late stages in three FeCr alloys

(Feo.60Cro.40, Fe0.6sCro.32 and Feg 76Cro24)(100]. For these measurements, it was also
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found that the time independent growth exponent fell in the range 0.12 < n < 0.22
depending on composition and aging temperature. However, Katano et al.{101) have
obtained a siriking result during the aging of Feg ¢¢Cro a4 at 773 K. The growth expo-
nent changes from 0.17(+40.02) to 0.33(40.03) around 30 h. During this “crossover”

phenomenon there is also a change in the dynamical scaling function,

Finally scaling funclions and growth exponents have also been measured in
non-melallic systems. Phase separating binary fluids[95,102,103] present a scaling
function and a growth exponent close to 1/3. A crossover between 1/3 and 1 was
found at some late time (and was explained by Siggia[104]). Fluciuations relaxing
in the single phase region above the critical point after a pressure jump also reveal
& scaling function and an exponent of n = 1/3[105]. The late stages studies in
polymer mixtures by light scattering of Bates et al.[90] exhibit a scaling function
as well but, whereas in the previous systems, the growth exponent was independent
of temperature, in this case it was found to be temperature dependent. However,
in agreement with the earlier results of Nojima at ¢l[106], the exponent is of order
n = 0.29 + 0.05 for relatively small supersaturation. Finally, Craievich et al.[96)
found a scaling function and a growili exponent of n = 0.23 in a quasibinary glass
phase-separating by 5D.

This Chapter has limited the discussion to linear theories and left out the
nonlinear theories for early times. The overview of the investigations of SD presented
in this section suggests that the CH and the CHC theories may not apply in the case
of binary alloys. This is also supported by theoretical estimates of the nonlinear
terms (¢f. § 5.3). A good indicator of the importauce of nonlinear effects was
exemplified by the work mentioned on FeCr alloys. A recent exception is the SANS
work of Gaulin et al.[83] in Mnge7Cugs. This work makes no provisions for the

points raised in 1.{B) above.

As the experimental investigations improve and capture earlier stages of the
decomposition process studies that were first taken as evidence of the application of

linear theories of SD may have to be reevaluated.
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Chapter 4

Experimaental Method

4.1 Tutroduction

The experiment is described with an emphasis on two principal aspects. The first
describes how to take full advantage of the high intensily synchrotron radiation to
perform in sifu time resolved x-ray scattering at time resolutions crders of magni-
tude faster than has ever previously been reported for a study of phase separation in
binary alloys. The nccessity of achieving high time resolution has been emphasized
in chapters I and I1I. In addition to high x-ray fluxes, high time resolution experi-
ments require: (i} abrupt quenches, (ii) rapid data acquisition, and (iii) a seusitive
temperature control. The second describes how to obtain reliable absolute structure

factors for use in the study of phase separation.

The first two sections of this chapter will treat these two aspects. The next
section will cover temperature calibration. To conclude, the instrumental response
of the position sensitive detector (PSD), or convolution of the measured scattering

patierns is examined and a deconvolution proposed.

Of coutse, the minimal requirement is that the time required for acquiring a
scattering pattern be less than the time scale of the return to equilibrium after a

departure from equilibrium. This requirement is met to an unprecedented level at a
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compositio.n very close to the critical composition and at temperatures both above
and below the critical temperature, including the temnperature of fastest kinetics.
Further, the elaborate discussion dividing the previous researchers on the evolution
of the phase separation during the quench and the reheating to the aging tempera-
ture is substantially obviated in two very important ways: by quenching directly to
the aging temperature and performing truly in situ measurements and by the sheer

rapidity of the experiment (it’s all over in two seconds!)

During a typical spinodal decomposition run, a ribbon of AlZn, is first resis-
tively self-heated in situ in a helium atmosphere (slightly above 1 atm) to an anneal
temperature T, well above T.. It is then quenched directly to a constant aging
temeperature T, by decreasing the current. For some time preceding and during the
quench, and while aging, x-ray diffraction profiles and the sample tempera;ture are
recorded as functions of time. To study {the isothermal phase decomposition kinet-
ics, the same sample was repeatedly cycled through anunealling and aging cycles.
As a test of reproducibility, identical temperature cycles were often repeated and
they showed the same temperature evolution. An infrared pyrometer monitored the
sample temperature. By control of the power to the sample, the sample temperature
could be dropped 150 K to a constant aging temperature in less than 100 ms (to
within an estimated standard deviation of 0.5 K). These high cooling rates allow
quenches directly to the aging temperature quickly enough to take advantage of the

time resolution of the x-ray measurement.

The bright synchrotron source, detector and data collection software allowed
for entire spectra to be obtained as rapidly as every 0.005 s. X-ray diffraction
profiles are recorded in real-time every 5 or 10 ms by a linear position-sensitive

detector (PSD) based on a photodiode array.[107)

The high incident intensity is provided by synchrotron radiation from the Na-
tional Synchrotron Light Source at the Brookhaven National Laberatory using the
IBM-MIT bending-magnet beamline X-20C optimized for time-resolved scattering
studies. This dissertation does not focus on the operation of the beamline. Re-

64



garding the design and operation of the detector or beamline X-20C, the reader 1s
referred to Refs. [107-110] for a description with more details than provided in the

sections to follow.

4.2 In situ time resolved x-ray spectra acquisi-

tion

With the ability to heat and cool the sample fast, parameters have to be monitored
simultaneously and rapidly. Examples of such parameters are the sample tempera-
ture and resistance, incident beam intensity and runuing time. However, the most

important quantity is the scattered x-ray intensity since it provides the measurement

of the structure of the sample.

Scattering data were acquired in “runs” in which the sample would be first an-
nealed at a temperature T} in the single phase region, well above the miscibility gap,
and then quenched to a lower temperature T, either above or below the solvus line,
and held isothermally. The evolution of the scattering was ineasured by recording
a series of consecutive scattering patterns as the sample phase separated, or, above
T., as the thermal fluctuations re-equilibrated. In order to characterize and as a
verification of initial conditions, each run was initiated so that several patterns were

recorded before the quench. The runs were always started from the same anneal

temperature, T,.

4.2.1 Synchrotron radiation and the beamline

Is it of course paramount to the measurement performed for this work that the x-ray
source be very intense. To a very large extent, it is the availability of synchrotron
sources that prompted this investigation of spinodal decomposition in AlZn, a sys-
tem where no decisive measurement could be performed, due to the experimental

limitations stressed in chapters I and III.
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Synchrotron are circular particle accelerators. They are used for various
charged particles and in particular as eleciron storage rings. Synchrotron radia-
tion is the electromagnetic radiation that is emitted tangentially to the trajectory
of the charged particles which are moving at relativistic speeds in the circular orbits
of the synchrotron.

Today, synchrotron radiation is widely used in physics, biology, medical sdi-
ence, chemistry and technology. Synchrotron radiation has two characteristics which
cannot be obtained from conventional radiation sources. One is the wide range of
wavelengths or energies (from 107 to 10° A). With these photon energies, studies
on atoms, molecules, solids and biological systems can be accomplished. The other
is the high incident photon flux. This allows experimenis on systems where the
ratio of the scattered to the incident beam intensity would be too small using a

conventional x-rays source.

The electron storage ring at NSLS used to generate x-rays has a circumfcrence

of 170.1 m and operates at an electron energy of 2.5 GeV.

The electrons in the storage ring circulate in bunches and the number of cir-
culating bunches is adjusied so that the current is of order 100 mA. The beamline
is connected to the ring by a water cooled fast valve and the radiation is delivered
to the beamline at every passage of an electron bunch in the ring at the point of
tangency. The electrons travel at a relativistic speed and a typical bunch length is
10 cm. The photons are thus radiated with a pulse duration of nanoseconds. The
repetition rate between bunches determinéd by the number of bunches and the size
of the storage ring is typically around 500 ns for a single bunch at NSLS. Hence,
the storage ring radiation can be considered continuous when measurements are

performed on times scales of a millisecond or longer, as is the case in this work.

The source produces a transverse eleciromagnetic wave polarized in the hori-
zontal plane of the orbit.[111] The radiation pattern exiting the ring at the porthole
is confined to a forward-directed narrow cone, when viewed by an observer in the

laboratory frame. The aperture angles are proportional o ¥ = mc?/E, where m is
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Figure 4.1: Schematic optical configuration of IBM/MIT beamline X-20C at the National Syrc-
chrotron Light Source (reproduced from Ref. [107]).

the rest mass of the electron, ¢ is the velocity of light and E is the electron energy.
The vertical angular divergence of the beam is %, which for a ring energy of 2.5 GeV
gives 7~1 = 0.2 mrad (or 0.012° FWHM).

Figure (4.1) shows a diagram of the beamline. The main optical components
are a 1:1 focusing mirrors and a double crystal monochromator. With the monochro-
mator used, these provide a typical intensity of 10'® photons per second at energies
between 5 and 8 keV with the synchrotron ring current of 100 mA. The entire
optical path to the hutch, 22 m long, is under vacuum (10~7 torr).

The mirror focusses 4 mrad into a 1 x 1 mm? spot at the sample. Indeed,
despite the small angular divergence, the length of the beamline makes it necessary
to focus the beam. The mirror is silicon coated with platinum and is toroidal with
4 cm and 1.5 km radii. The refraction index of materials for x-rays is less than one

and so for small angles total external reflection occurs. Four rods allow to adjust
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both the mernidional radius and the incident glancing angle. The beam can thus be
focussed in both vertical and horizontal directions. Since the size of X-ray source is
0.38 mm horizontal x 0.12 mm vertical, with an aperture angle 5 rarad x 0.23 mrad
without a mirror, the beam size at 22 m would be 110 x 5 mm?, with the ensuing
decrease in flux. By using the mirror, the increase in the intensity achieved by
focusing is nearly 10° {imes.{109)

The wide-bandpass monochromator at NSLS beamline X-20C has been the
subiject of a paper.[107] The monoechromator, 14 m away from the souxce, selects
the desired photon energy by eliminating photons of all energies except those with
values within a bandpass. The monochromator incorporates artificial W-8i muitilay-
ers with a period of 23 A rather than crystals. The bandpass of the monochromator
is relatively wide, at the energy used, AE/E = 1 x 102 (FWHM) (or, equivalently,
AM X = 1%), which is almost two orders of magnitude larger than a typical crystal
monochromator. Compared to a conventional Ge(111) monochremator, the mul-
tilayers used here have low resolution. For relatively low resolution measurements
(such as diffuse or small-angle scattering), this translates into almost two orders of
magnitude increase in signal. It has been designed to trade-off resolution for inten-
sity. The monochromator uses two antiparallel multilayers, one fixed and the other
movable. The energy is selected by adjusting the angle of incidence.[112]

The incident beam intensity, focusing and positioning at the center of the
spectrometer are optimized at the time of beam alignment. The alignment of the

beam is mostly controlled by the mirror and the monochromator.

The energy of the beam was tuned to just below the Cr K edge, i.e. at
A = 2.070 A or E = 5.989 keV.

The operation of the beamline is computer controlled, with the specTM!
software. The computer controls the slits which adjust the beam size, the mirror
to focus the beam on the center of the sample chamber, the monochromator to

select the proper wavelength, and the spectrometer which orients the sample and

'From Certified Scientific Sofiware, P.O. Box 329, cambridge, MA.
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detector. Also, it controls the horizontal and vertical position of the table on which
the spectrometer is mounted. This equipment is controlled by 32 stepping motors.

At the experimental area end of the beamline, the experiment is assisted by a
second computer acquiring the diffracted intensity via a detector, the incident beam
intensity via an ion chamber, the transmitted intensity via a beamstop current, the
sample temperature via a pyrometer, sample voltags and resistance via voltmeters.

The computer also controls the experimental timing and the heating schedule of the

sample.

The ion chamber is used to measure the incident beam inteusities. The ap-
paratus which is enclosed within the experimental hutch is shown schematically in
Fig. (4.2). Two sets of front slits are used to collimate the beam and intensily data
are collected via a Si photodiode linear position sensitive detector (PSD). The flight
paths connect direcily to the sample chamber in order to avoid parasitic small angle
scattering that could be produced by windows. Thus the slits are effectively in the
sample chamber. Be windows are placed at the ends of the flight paths, away from

the sample chammber. A pyrometer monitors the temnperature.

4.2.2 The sample

The optimization of the sample is one factor that coniribuies to the performance of
in situ time resolved studies. High x-ray fluxes allow the use of thin samples whereas
by comparison, neutron scattering would require much larger samples. As a direct
consequence of using thin targets, the thermal mass is appreciably lower and the
surface area to volume ratio is large, enabling fast quenﬁhes. The very technique of
heating and ¢ -oling the saraple can then depart from the conventional furnaces (cf.
§ 4.2.4).

All the results reported in this dissertation were collected from a single sample,

near critical composition, repeatedly cycled through anneal and quench-to-aging
schedules.?

3More than one sample was prepared at different compositions and results of measnrements at
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Figure 4.2: Sctup in the hutch (reproduced from Ref. [112]).

The sample was prepared by melt spinning small alloy ingots (1 g). The
melting points of pure Al and Zn are relatively close to each other (660.452°C and
419.58°C), making the alloying by melting relatively easy. Calculated masses of high
purity Al and Zn® are first melted and mixed in an arc furnace under a iitanium
gettered argon gas atmospherc to prepare the alloy ingots. This was repeated three
times to ensure homogeneity, furning over the pellet between each melting. Any
surface oxide layer wa.s. removed by a chemical etch. A section was cut by diamond
saw, etched again, and put in a quartz crucible jor melt spinning. The melt spinning
was performed in 35 kPa He to prevent oxidation and high purity argon gas was
used to eject the molten material onto the copper wheel. The tangential wheel
speed, at 60 m/s, and ejection pressure (about 50 kPa Ar) were optimized so that

two off-criticel compositions will be the topic of a separate publication,
3A1 99.999% from Alfe Products (MA.), cut from ingot; Zn 99.95% from Merk and Co. (Mon-
treal), cut from rod.
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the resulting ribbcu size was 1.5 mm wide and about 15 pm thick {cf. v. 86).

The target cowmposition for the sample used in the present work was
Alp s05Zn0.305, ‘he composition of the top of the miscibility gap (cf p. 11). How-
ever, weighing the ingot after the alloying in the arc furnace revealed a weight loss
of a few percent. Spectrographic composition analysis was performed at IBM and
a composition of 59.440.2 wt. % Zn and 40.240.2 wt. % Al was obtained. The
samples are therefore Alg ¢27ny 35 indicating evaporation of Zn, which has the lower
melting point and higher partial pressure. The obtained compnsition is very close
to the coherent critical composition calculated in § 1.3.

Bach sample was then cut from the ribbon to be about 35 mm long. The

samples were polycrystalline and a grain size of ~ 1 win was measured by TEM,

4.2.3 Sample chamber

The sample chamber is mounted on a Huber spectrometer. Iis design allows a
flexibility in experimnent geometries. There are five windows, positioned so that
each covers 20° and a pair exists for each 20° range from 0 to 180°. For the SAXS
experiments, three windows are used: an incident beam window and the straight
through window (180°), and a window for the pyrometer reading. The first window
is oper. to the beam path, i.e. the He filled flight tube, and the second is a thin
beryllium foil, which has small x-ray absorption (absorption depth = 1.4 mm for
A =2.1A[113]). The window; for pyrometer reading is covered with quartz which

is relatively transparent to infrared light. The sample chamber is evacuated and

back-filled with helium (slightly above 1 atm).

A schematic view of the interior of the sample chamber is shown on Fig. (4.3).
The sample holder is mounied on a sample manipulator which is positioned along
the center of the cylindrical chamber. The sample holder can be freely rotated
about its axis. Hence, diffraction patterns can be measured in reflection as well as

in transmission. One end of the sample is attached to a rotating spindle. When
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Figure 4.3: Schematic of the sample chamber.
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thermal expansion of the sample occurs, the spindle rotates under spring tension
and keeps the surface of the ribbon in a fixed plane. Eleciric leads on both ends of
the sample are connected to a copper cooling pipe for wuter or gas, tightly mounted
to the chamber flange. Temperature drifts were minimized by keeping a constant
temperature at the extremities of the sample by flowing water in the cooling pipe.
The current is delivered to the sample by the same pipe. An electrically insulating
ieflon pipe is used to connect the top of the ccoling pipes to ensure that electrical
conduction from one post to tne other occurs only through the sample (any ionic
conduction in the water is neglegible). At the other end of the sample manipulator,
a linear vacuum feedthrough is located and it is connected to a de motor. The mnotor
allows the translation of the sarnple holder in and out of the beam and te center the

sample in the beam.

4.2.4 Sample tecmperature control and mieasurement

One of the most important experimental challenges of in situ studies of phase sepa-
ration kiuctics is the necessity to heat the samples in a manner that allows the rapid

change in sample temperature as well as control of stability and uniforimity.

The first motive for achicving high cooling rates is to satisfy isothermal con-
ditions for the range of kinetics to be measured for the system. Specifically, as the
quench is performed, a high cooling rale is required, so that any phase separation

occuring before the aging temperature is reached can be minimized.

In general, to reduce the quench time and the time constant for stabilizing at
the quench temperature, the thermal mass of the sample must be reduced. Thus
with conventional furnaces which typically have a large thermal mass, the cooling
rate during an in sifu quench is limited by the furnace itself. The thin metal ribbons
of uniform cross section used in the presented measurements can be sclf-heated just

hy passing a current through them and this has the effect of producing » large central

region of uniform temperature.
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A few parameters of the set-up also contribule to optimizing the quench rate,
The most important is the pressure of the surrounding He. This high thermal
conductivity atmosphere means more input power is required to get to the same
temperature. Jowever, upon dropping the current through the sample, the queach
rates achieved are much faster than in vacuum. He also absorbs much less x-rays
than air. As was mentioned in the previous section, the sample holder was water

cooled, to prevent slow tempersture drifts.

The obtained experimental conditions can be summed up zs follows, The
samples, ribbons produced by melt spinning typically 1.5 mm wide by 15 pum thick,
fulfill well the condition of low thermal mass. The ribbons are resistively heated
to the anneal temperature (689.9 K, cf. p. 92) by circulating a current through a
35 mm lregth in one stmosphere of helium gas. By lowering the current abruptly,
the quench was performed to the in silu aging temperature. The quench time was
about 15 ms for shallow quenches and 100 ms for deep quenches (see Fig. 4.4). The

cooling ratles obtained are then in excess of 10° K /s.

For {he experiments reported it has been possible to cycle a single sample
through repeated anneals and guenches to the aging temperature.

The temperature was monitored by an infrared pyrometer. Two reasons prevail
for choosing a pyrometer over a thermocouple. Firsily, if the sample were put in
contact with a thermocouple, heat diffusion from the sample surface through the
thermocouple junction would result and locally the temperature would be lowered.
This effect would be particularly dramatic in regard to the low thermal mass of the
sampie. Secendly, ideally the temperature reading position on the sample should
be coincident with the location of the incident x--- » X-ray scattering from the

thermocouple would be unavoidable in that case.

A pyrometer which uses infrared radiatior. - a=et aglternative to overcome
the above mentioned difficulties. The pyromete. s anufactured by IRCON
(series 60) and accepts infrared radiation (wavelength ~ 2.3um). It has a focal

spot of 1 mm radius. As mentioned in the previous subsection, the port on the
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Figure 4.4: Temperature during a run for a shallow quench T, = 611.8 K (a) and a deep quench
T, = 502.2 K (b) from the anneal temperature T, = 689.9 K. The convention used i that i =0 s
at the first scan after the quench, when isothermal aging begins.

sample chamber through which the pyrometer monitors the sample temperature is
covered by a quartz (Si0O;) window, which is transparent to infrared radiation. The

calibration of the pyrometer reading will be the topic of § 4.4.

Finally, controlling the sample temperature is challenging. A conventional tem-
perature controller has a long response time (for example, 100 ms for Eurotherm).
With this long time constant, the quench times cannot be as short as required by the
experiment. The choice of a pyrometer with a faster response time, namely 10 ms,
to read and to conirol the sample temperature should contribute to satisfy better

these two conditions.

At steady state, heat generated throughout the volume of the sample is radi-
ated at the surface or conducted away along the length, Conduction by convection
dominates the heat removal in the He gas. The temperature profile along the sam-

ple will vary. It will be cooler at the clamping positions but flat near the center.
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However, since the point on which the pyrometer is focused is made coincident with
the location illuminated by the x-ray beam, the temperature recorded should corre-
spond fairly closely to that of the regicn where the scattering is measured. To get
the right transformation temperature during the experiment, the focal spot of the
pyrometer is manually made coincident to the point illuminated by the x-ray beam.!
The voltage across the ribbon was controlled. This lead to a constant temperature
as the sample resistance did not vary with time. Through this method, a constant

temperature to within 0.5 K is obtained.

A ballast resistor is used in the electric circuit in series with the sample to
minimize the power fluctuation caused by any change of sample resistance which
might happen during the transformation. The resistance is chosen to satisfy the
condition g%%)) = 0, where P is the power at the sample and R is the resistance of
the sample. This means that the ballast resistor should be of the same resistance
value as the sample. By working near this point, the changes in resistance which
occur during phase separation have minimal effect on the power applied to the

sample and minimize the effect on the sample temperature.

4.2.5 Detector and measurement of scattering patterns

The detector is the last topic of section 4.2 because of its importance both for fast
difflraction acquisition and for obtaining absolute structure factors which will be the

topic of Section 4.3.

An important aspect to increasing the time resolution is decreasing the time
required to acquire each scattering pattern, i.e. the time to perform a scan, With
conventional detectors, of which the most generally used is the scintillation detector,
the maximum count rate is typically 10° counts per seconds and photons are counted
at a given angle for a given time. To acquire a scattering pattern, it is necessary to

physically move the detector to a new location, count again, and so on, The detector

“This is performed by first exposing x-ray sensitive paper to the beam and then aiming the

pyrometer at the exposed spot.
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used in this study is a position sensitive detector (PSD) made from a linear array
of photodiodes. It can simultaneously record scattering at many angles. Using such
a detector eliminates the need to move the detector and appreciably reduces the
time to record a complete scattering pattern. In contrast to the photoemission in a
scintillation detector, an x-ray photon produces electron-hole pairs in a photodiode

and the signal is produced as they discharge the biased photodiode[114].

The PSD used in this study has been described in a paper.[107] It has been
built by modifying a commersial system based on a 1024-clement photodiode array
designed for visible light detection. Each diode is 25 gm in width and 2.5 mm in
height and the total array length is 25.6 mm.

The PSD is attached on the 26 arm of the specirometer allowing the central

angle {0 be easily varied and was positioned with the direct beamn near one end of

the array.

The control system of the PSD is the optical multichannel analyzer (OMA)
console from EG&G Princeton Applied Research. A model 1462 detector interface
(OMA 1II) controls the information retrieved from the detector array. Operationally,
four quantities have to be defined 5§, 1, J and ET.

The first, SS, is an integer that sets the electronic bunching of diedes into
pixels. As more diodes are grouped together, higher time resolutions can be achieved
at the expense of spatial resolution. For example, if 16 pixels are binned together,
there will 64 pixels to scan and the time to visit the entire array will be lower than
if all 1024 diodes have to be scanned individually. It takes 16.4 ms to scan 1024
pixels and 2.5 ms when the pixels are grouped by 16 into 64 detectors. For our
experiments the pixels were mostly bunched by 4 or 16.

Since every pixel is read once during the scanning time, the output signal of a
pixel is a time integrated intensity of all photons counted since the last access. Other
than for the very brief interval required to perform the read/reset operation, each
detector element continuously integrates the photon flux falling on it throughout its
" exposure time, ET.
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The detector interface cumulates the values in an internal memory for I times
before a readout is provided for each pixel. The total number of readouts for each
pixel (o1 number of scans of the array) during a run is set by a parameter J. Hence,
each scan is performed over (ET)(I) seconds and the total run time is (ET)(I}(J)
seconds and results in J diffraction patterms. The digitization of the signal by the
detector interface is limited to 2' counts. If the accumulated counts are in excess
of this value, the readout will be “saturated”. Since a noise is associated with each
readout, the optimum ET is so that the largest count rate is close to but under 2

counts per ET.

The general rules for the selection of 8§, I, J and ET can be summed up as
follows. To achieve higher time resolution where necessary the pixel bunching, SS,
is increased at the expense of resolution and the exposure time, ET, is decreased.
This contributes to the better time resolution in two ways: the total array scan visit
time is reduced and the intensity per pixel for a given ET is increased by a factor SS,
allowing the decrease in ET for a same signal level. Fortunately, in the case of the
system studied, the faster kinetics happen at temperatures for which the scattering

intensily is the highest and the signal to noise ratio never becomes a problem.

For a given set of conditions, all pixel exposure times are equal. However,
because the pixels are serially scanned, the exposure time for any given pixel is
skewed by one pixel time with respect to that of the preceding or following pixel.
This skewness in pixel visit {ime would be of no consequence for a static structure
factor measurement. In a dynamic measurement, this non-simultaneity of pixel visit
has to remain negligible with respect to the exposure time. In the case of the work
reported here, this skewness from one end of the array to the other is not negligible
vis-a-vis the exposure time. The scatiering patterns obtained for the early stage
data (bunching by 4) have a difference of 7 ms between pixels near the beamstop and
pixels farthest from the beamstop. However, since the time scale for the evolution
of the system studied is much larger than 7 ms, this effect will not be important.

The late stage data has longer exposure times (1 s) and the pixel visit time becomes
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Figure 4.5: Dark curreat.

time becomes negligible.

Each pixel of the PSD has a temperature dependent dark current, a fluctu-
ating leakage current in the detector elements due to thermally generated charge
carriers in the semiconductor junction when voltage is applied. To keep this dark
current constant, the temperature of the PSD has to be kept constant and to keep
this current low, the PSD array is cooled to —40°C. (The dark current is halved
with approximately each 7° cooled[114].) The dark current is integrated during the
exposure, If the scattered intensity to be measured is low, the dark current would
limit the maximum practical exposure time; if an integration continues long enough,
the dark current will saturate the detector.

Patterns of the dark current were necessary to correct for the offset in the
output from each PSD pixel at zero x-ray signal. Dark patterns were periodically
taken during runs with the shutters closed with counting times taken to be the same
as the (ET)(I) of the scans. A typical dark pattern can be seen from Fig. (4.5). The
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Vigure 4.6: Typical parasitic pattern. The dark pattern has been subtracted.

“detector counts” units, or analog-to-digital units (ADU) on the ordinate axis are
directly obtained from the controller. This figure also shows that some pixels on
the PSD that have a “burnt in” pattern. It results from radiation damage to the

photodiode by exposure to intense x-rays.

A parasitic scattering pattern, i.e. the scattering originating from slits or the
helium in the beam path was taken without the sample in place and is shown in
Fig. (4.6) after subtraction of the dark pattern. The shadow of the beamstop used
to prevent the main beam from hitting the detector is shown.

In principle, the correction to a given diffraction pattern shruld consist mainly
of a subtraction of a “parasitic” pattern which includes the “dark” pattern. How-
ever, the actual procedure followed depended on the analysis performed and will be
introduced with the description of the recults. In all cases, the dark pattern was

removed from all scans simply by subtracting it from all recorded patterns of a run.

Figure (4.7) presents the scattering patterns obtained at representative jimies
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Figure 4.7: Scatte.ing measured during a run at 541 K with the PSD diodes bunched by four. The
negative time ( O ) corresponds to the last scun before the quench began. The time t = 0.0 (W)
corresponds to the first scan after the aging temperature was reached. In this run, since ET = 0.01
and I = 1, one scan was measured every 0.01 s and the scans shown in this figure are 40 scans
apart. The dark pattern has been subtracted.

during a run at 541 K after subtraction of a dark pattern taken just before the run.
The time of recording of the first scan after equilibration at the aging temperature
is taken to be ¢ = 0 5. The bottom pattern ( @ } corresponds to the last vcan before

the quench was initiated. Thus, the difference in scattering between the first two
profiles corresponds to the increase during the quench.

The output of the control system, containing the scattering patterns is fed
into the control computer but can also be monitored by oscilloscope. This way, the
evolution of SAXS intensities can be observid in real time, thus allowing immediate

adjustment of experimental conditions.
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4.3 Conversion of scattering patterns to abso-

lute structure factors

"The preceediug section described how to obtain scattering patterns such as displayed
in Fig. (4.7). To convert the measurcd scattering into absolute structure factors 5(g)
the diflerential cross-section per unit volumne of the sample doy(g)/dS) must first be
evaluated and Equation {2.13) is used to complete the calculation. This quantity is
the measured intensity in the pixel p centered at a wavevector ¢ = 2x8/A norinalized
to the incident beam intensity Iy for unit sample thickness, t, and unit solid angle,
9,

————— =t X = X - (4.1)

But first, a calibration of the detector is necessary in order to convert detector
counts (ADU) inlo counts per scconds (cps). A conversion factor can be obtained,
based on counting statistics. Since the dominant noise on each pixel is given by
Poisson statistics, the variance ¢? should be simply equal to the number of events
N. The calibration of counts per ADU for each individual pixel was determined by
recording the number of counts in each pixel resulting from exposing the detecior
to a uniform distribution of radiation for an exposure time of 1 s, 25 times. In each
pixel, the variance over the 25 exposures of the measured number of counts should
then be equal to the average of all the counts (after subtraction of the dark current
in each pixel).

The efficiency (ADU to counts) was measured by scattering from Kapton in
air at 6 keV with 26 ~ 60° wiht the detector located 140 mnm away from the Kapton
foil. Fig. (4.9) displays the measured signal across the detector array averaged over
25 scans of one second each. There is little variability and that which is present
can be ascribed to systematic errors as checked by comparison to the reading from

a scintillation counter. The calculation of the noise of the PSD gives less than one
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fying that this adopted calibration works. The efficiency, is then®

0.2

gPSD = }V . (42)

The conversion factor £psp was set to the average value of 0.685 for all diodes.

The incident beam intensity is monitored by the beamstop which has been
instrumented to measure the x-rays incident upon it. Fig. (4.8) presents a dia-
gram of the operation of the beamstop. The beamstop is about 1.5 mm wide {¢f.
Fig. 4.6) in the scattering direction {z), and spans the full width of the detector
in the perpendicular direction. The front of the beamstop is about 3 cm upstream
from the detector surface. The beamstop casts a shadow about the size of its width
on the PSD. The beamstop is made of copper and is mounted on a linear motion
feedthrough so that it is electrically insulated from thie feedthrough and from the

51t should be remarked upon that though this number is Jess than unity here, it could be greater

than one if the gain to the ADU converter in increased. This emphasizes that this number is really
a calibration of counts/ADU.
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grounded beam pipe. The motion is along the detector to allow placement of the
beamstop in the incident beam. Two 90 V batteries in series located between the
beamstop and the input to the current amplifier (Keithley) provide a voltage bias.
A floating voltage source is required since one side of the beamstop ion chamber,
the beam pipe, is grounded and the other, the current amplifier (Keithley) is also
grounded. With the configuration used, the beamstop is biased positive with re-
spect to the beam pipe. The positive output voltage from the Keithley is fed to the
External Analog input of the PSD. The PSD digitizes the signal from the Keithley
with each scaltering pattern. This allows for casy recovery of the heamstop inten-
sity for analysis of the scattering profiles. Essentially the x-rays hit the beamstop,
generating a current which is measured.

The main part of the signal comes from ionization of the helium gas by elec-
trons cjected from the surface of the copper. The beamstop is run similar to an
ion chamber, with the bias set “on the plateau” i.e. in the range where all the
ions are collected. However, the acceleration is not great enough to produce sec-
ondary ionization, so that the current measured by the Keithley current amplifier
iz independent of the biasing voltage. The signal is also relatively independent of
the polarity of the bias. It would be difficult to calculate from first principles the
efficiency of conversion of x-rays to ejected electrons. & .ch a calculation would have
to account for many factors such as an eflective escape depth, smaller than the
absorption length of the x-rays, from which electrons can escape. However, if the
signal is assumed proportional to the incident intensity fo, it turns out that the
photocurrent efficiency of the beamstop is similar to that of a 12 cm helium gas ion
chamber. The heliumn is much less efficient at absorbing x-rays than copper, and
seerns to compensate for the inefliciency of the copper at ejecting electrons.

Because of the analegy between the beamstop and an ion chamber, it is in-
structive to start by looking at I...,,, the expected current measured from an ion
chamber bombarded by I photons per second. The current depends on the pho-

ton energy E, the photoionization potential V;, the linear absorption coefficient u
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(in cm™') as well as on the length of the chamber, £. The measured current (in
Amperes) in an ion chamber is then
E ~19
Lycas =To X o x € x ppx 1.6 x 107, (4.3)
Vo
In the range £ ~ 5 — 8 keV, the following empirical relationship between the linear
absorption cocflicient and energy holds for the total cross-section dataf115] :

mo_ (&)lﬂfs{m/#ﬂ/los(&/ﬂ:) (14)
H2 E,
with

log(p1/p2)/ log(Ey/ Ey) == —3.538. (4.5)
The efficiency calibration of an ion chamber at detecting photons of energy E, can

be defined as
S_{(El) = Im“a,/fo, (46)

and in Eq. (4.3) the efficiency groups the terms % X &x px1.6x107"C, Combining

(4.5) and (4.3) with reference to an energy, say Ei, of known efficiency £(E;), in

He,

Tneas(E) = E1(E) (—E‘%) o (4.7)

The ratio Jg/Tneas = 2.6 % 10'® cps/A was obtained from an efliciency calibza-
tion at 6.91 keV for the beamstop using a bolometer. Thus,

Ep(6.91keV) = 3.8 x 107%°A/cps. (4.3}

The calculation of the beainstop efficiency, denoted as £p is only an estimate.
Since, to first order, the energy dependence of absorption is about the same for
any material and the photoelectrons are produced from absorption on the top few
thousand Angsiroms of the copper in the beamstop, the correction for the energy
difference between 6.91 and 5.99 keV is performed using (4.7). This agrees with a
comparison to an incident beam on an ion chamber. The correction for energy thus
gi_ves

(6.910/5.989)*%%® = 1.438, (4.9)
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or 1.81 x 10%® cps/A at 5.989 keV (£5(5.989keV) = 5.53 x 107° A/cps).

There is also absorption in the windows between the photodiode array and the
beamstop. If photons arriving at the photodiode array are used as the reference,
and considering absorption in 250 pm Be, 75 ym Kapton, and 10 mm air (24%),
one obtains 1.38 x 10'® cps/A at 5.989 keV (£5(5.989 keV) = 7.27 x 10-%0 A/cps).

The thickness of the sample is calculated using the ratio of the current at the
beamstop with and without the sample in the beam and the (total) linear absorpiion
coefficient, u (its inverse, ;1; is the absorption length). If an intensity Iy of photons
is incident to the surface of a material of density p, then the intensity at a depth =

inside the mat-rial will be obtained from

I = Iye ™™

= Iye (5 (4.10)

The quantity (ﬁ) is known as the mass absorption coeflicient (in m?/kg) and
- _— 2 —
can be found in tables. For Al and Zn [115], (%‘)A‘ = 11.77 m*/kg and (ﬁ)Zn = 13.03

m?/kg. For Algg2Zngss a weighted average is performed,

BB, o
P AlgeaZng 38 P/ al P/ zn

where wy and wgz, are the weight fraciions of Al and Zn (0.40 and 0.60 respec-
tively) giving (#) Alo g2y = 1253 m%/kg. With p=4.130 x 10° kg/m?, the
value g = 5.175 x 10* m~! is obtained, i.e. p~! = 19.3pm.

Substituting into Eq. (4.10) with the measured values for J and Jg of 0.31 x 10~
and 0.78 X 107" A respectively gives z = —~In % = 0.922p7! or z = 17.7 x 107¢ m,
i.e. the sample is evaluated to be 17.7 pm or 0.922 absorption lengths thick. This
agrees with estimates from a micrometer.

The detector was centered so that the unscatiered beam is near one of the
d-*ertor’s extremities (the beamstop blocks the direct beam). The diodes were

seically grouped either by 4 or 16 to form an array of 256 or 64 pixels re-

spectively. The sample to detector distance, R, was set at 733.5 mim such that
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Figure 4.9: Scattering averaged over 26 scans after subtraction of the dark current from kaptor in
air with 28 ~ 60°, 140 mm from detector surface.

the 26.5 mm long photodiode array covered reciprocal vectors in the range 0.01 to
0.085 A-? at an x-ray wavelength ) of 2.07 A. A single diode spanned a range of
Ag = 1.03x10~* A-1. The difference between the solid angle A subtended by a
pixel near the direct beam and a more distant pixel is of order 0.09 %. An average
value of 9.283 x 10~® steradians is used for the surface of a diode in the conversion
to absolute structure factors. Depending on the bunching, this surface is multiplied
by 4, 16, etc.

The incident beam intensity is obtained from the recorded monitor counts in
the last pixel of the PSD. Taking account of the ADU conversion (in volts) by the
current amplifier and the efficiency of the beamstop (£g), Io is given by :

__ [monitor counts]
16384 x Ep x I’

where, in the denominator, is the multiple of ET setting the the scan time (I x ET).

A (4.12)

The numerical value of the vartation of electron density with composi-
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Figure 4.10: Absolute structure factors after conversion from measured scattering for a run at
541 K (cf. Fig. 4.7). The negative time (O ) corresponds to the last scan before the quench began.
The time ¢ = 0.0 (@ ) corzesponds to the first scan after the aging temperature was resched. A
representative error bar corresponding to S(g,t) = 4.0 x 1077 m?® is displayed on the right.

tion, dp./de, in Eq. (2.13) is estimated for a fcc lattice with lattice comstant
ag = 4.054 x 1072 m (cf. Table 1.2), i.e.

dp.
de

4
= (Zan — Zu)—
]
= 1017 x 10°°m ™3, {4.13)

Finally, with o7 = 7.94 x 107% m?/el.? (¢f. p. 33) Eq. (2.13) gives

I
S(q) = 7.408 x 10~%(at. fract.)*m® x =

A (4.14)

for the conversion between measured scattering intensities I and structure factors
S(gq) in the case of unbunched pixels. The units agree with those derived in § 2.1
and the numerical factor is multiplied by the bunching number (4 or 16) as needed.

Figure (4.10) shows the result of the conversion applied to the scattering pat-

terns that were given on Fig. (4.7). An error bar given by Poisson statistics is given
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at the right of the structure factors and is representative for S(g,t) = 4.0 x 107 m®.
The high intensity below ¢ = 0.02 A1 is mostly due to grain-boundary scattering.

To obtain Eq. (4.14), it was implicitly assumed that the scattering from cor-
related domains is sufficiently isotropic so that p(*) = p(r). In particular, it is
assuraed that any texture present in the sample will not affect appreciably the den-

sity correlations over the length scales measured.

The absolute calibration is susceptible to many systematic errors. A discussion
of the uncertainty introduced by each step of the calculation was not performed. It
is through comparisons of the results obtained with expected quantities derived from

other measurements that the level of confidence in the calibration will be evaluated

in Chapter VL

4.4 Temperature calibration

The temperature was measured by a commercial infrared pyrometer. For the mea-
surement, a nominal body emissivily was set on the pyrometer. This section de-

scribes the conversion of the pyrometer temperatures to real temperatures.

The expression used by the pyrometer to determine the temperature can be
derived starting from Planck’s law for the radiated power at a wavelength A from a

body at temperature T',[116]

mov= () Sy o

where ¢ is the speed of light, & is Planck’s constant and ¢ an emissivity prefactor.

Expression (4.15) reduces to Wien’s law at the wavelength used (2.3 x 107® m) since

he/Akp = 6259 K and exp(6259/T) > 1:

R=—A (4.16)

2 ()

All constants have been combined in the numerator.
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If Tpyro is the temperature read by the pyrometer and Apyro includes the emis-

sivity setting on the pyrometer, the emissivity correction to the pyromcter reading

will satisfy

A Apyo (4.17)
exp (92_1?9) exp (%)

where T is the true temperature and A includes the real emissivity., This relation

simplifies to
LR S (4.18)
T  Tpyro ' ’

Thus, only one constant, U, needs to be determined to obtain corrected temperatures

(T) from nominal ones {Tpyro). The constant C can be calculated given one known
temperature. This is performed below using T..

Five runs performed at aging temperatures above T, are used to determine 7.
For these runs, the equilibrium structure factors should have the Ornstein-Zernicke
form (Eq. 2.19). It is assumed that over a range of high ¢ wavevectors the asymptotic
regime was reached within the time of the run (2s). The difference in structure factor
between the last and the first five scans of each run was taken. The latter group
being before the onset of the quench, this removes the grain-boundary scattering

but the equilibrium scattering at T, is also removed. For the fit, Soz(a}ly, was

included.

Fig. (4.11) shows the measured “equilibrium” structure factors (symbols) with
data over the full range of wavenumbers resulting from the manipulation described
above. It also shows the Ornstein-Zernike forms (curves) drawn from results of
the fitting procedure. The bottom curve shows the structure factor calculated for
the anneal temperature, So.z.(¢)|r,- It is small comparative to any other structure

factor displayed in the Figure.

In the temperature range of these runs, the parameters x and f” can be taken,

to first order, to be linear functions of temperature, i.e.

K(T) = Kot sm(T—To) (4.19)
f(Ty = F(T-T), (4.20)
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Figure 4.11: Best fit Omstein-Zernike structure factors Spz(g) for 598.0 (15 ), 599.8 (A ), 601.4
(V), 604.8 (¢ ) and 607.2 K ( O ) {from top to bottom). The fit was performed on a restricled
range from 0.046 to 0.08% A~'. The bottom curve shows Soz(g) at Te = 688.4 K (obtained from
the calculated values of Ty, f"(T.) and x(7,)). This curve is added onto all other curves. The
insert shows the-a linearived form of the equilibrium structure factors (1/5(g)|r versusg®) with
solid lines representing the calculated equilibrinm structure factors.
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In Eq. (4.20), f" vanishes at T.

When using expressions (4.19) and (4.20), a three parameter fit was found to
be sufficient and x,, was fixed to zero. The fit to

kEeT: kBT
S ;rI‘i\ - S :Ta = o - 7 4.21
(q / (q ) 2!“%(]2 + F(Tz — Tc) 2!{,‘192 -|-. F(Ta - Tc) ( )

was done simultaneously for five runs at temperatures above that nominally taken

to be T.. In this expression, T, was nominally taken as the annealing temperature

measured by the pyrometer. In this step, the value obtained for T, is the critical

temperature measured by the pyromeier.

With the help of Eq. (4.18), the value found above for T.pyro and the lit-
erature value T, = 597.15 K were sufficient {o determine the correction constant
C' to be —4.3976 x 107% K~!. As a check, all five iemperatures in the fit are
changed to their real values through Eq. (4.18) and the fit is performed a sec-
ond time resulting in the same best fit values F = (14.978 % 1.091) x 108 J/m’K,
Ka = (2.3143 £ 0.096) x 107'® J/m and T, = 597.15 + 0.47 K.

The calibrated annealing temperature is calculated to be T, = 689.9 K, and
F(Ts) = 1.269 x 10° J/m®. These values, along with «(T,) = &, are sufficient to

characterize So.z.(g)|r.-

In Chapter VI, it will be shown that the results of the fits to the dynamic

evolution of the structure facter agree independently with this choice of T, to within

0.5 K.

4.5 Instrumental resolution

An account of collimation distortions is one of the most complicated tasks in small-
angle experimental data evaluation.[117] Ideally, the quantity that has {2 be mea-
sured is the structure factor ${g). Instead, what is measured is the scattering which
results from the convolution (or “smearing’) of the intrinsic S(q) by the response

function of the instrument. Further, the scattering is measured only at several
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discrete points. The two principal sources of smearing of 5(g) will be taken into ac-
count: the detector area, which effectively acts like a slit with a width and a height,

and the finite size of the beam.

The first question that should be asked when considering the quantification of

the instrumental resolution is; how to account for it?

There are two possible ways to include instrumental resolution. If & specific
model has to be compared to the experimentally determined scattering function,
then the structure factor generated by the model should be convoluted by the in-
strumental response function and the result compared to the experimental data. If,
on the other hand, no model exists, then the experimental scattering function should
be deconvoluted with the instrumental response function to provide a structure fac-
tor. The first procedure is better because it is preferable to convolve the structure
factor predicted by a model to take account of the instrumental resolution than to
modify the data by a deconvolution procedure. Indeed, only in the first case is the

form obtained unique.

In the context of this work, it was found that for the early stage study v s,
where an equation of motion for the structure factor is checked against the data,
the convolution of the model structure factors produces a small effect. Indeed, at
this stage, most of the critical features are located away from the beamstop where
the “smearing” is most important. For the late stages runs, in which the maximum
of the peak moves towards and into the beamstop, there is no satisfactory analytic
theory for the profile and evolution of the structure factor and the experimental
data was deconvoluted. The quantitative analysis of the structure factor measured
at late times therefore takes into account the instrumental resolution. Should a
theory becoms available to predict S(q,t) at late times, then this structure factor

could be convoluted and compared to the data.
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4.5.1 Convelution

The convolution, or “smearing” of the structure factor S(q) depends on the beam
profile, the width and the height of the pixel and the g-range detected will depend
on the sample-to-detector distance, L. Figure (4.12) shows the scattering geometry.
The origin of u is chosen for convenience at the center of the intensity distribution of
the beam. The incident beam profile is quantified by an intensity density function,
j(u), with u a vector in the plane normal to thc incident beam at the sample.
Similarly, a function W,(v) defines the shape of the pixel p, with v a vector in the

detector plane. It 1s unity when v is inside the pixel area and zero elsewhere.

The measured scattering efficiency per unit thickness E5(p) into pixel p result-
ing from scattering at a wavenumber g is the integration over the beamn profile that
fall on the surface of pixel p after scattiering with a wavevector ¢. For an isotropic

sample, i.e. S(q) = S(g), this is
) 1, .. , .
L%ﬂ:jjzﬁ@m@wuwmfm (1.22)
These integrals can be considered as the definition of a linear operator R,
R,[S(a)) = E%()- (4.23)

The structure factor S(g) can only be measured at a finite number of ¢ values.
Suppose a discrete set of S(g;) sufficient to numerically approximate S(gq) for all

g-wavevectors by an intzrpolation scheme. Then S(g) is given by the sum
5{g) = 3. S(g)di(a)- (4.24)

where ¢;(q) delermines the interpolation scheme, for a lincar interpolation it would

be a hat function centered about ¢;. The measured scattering in 2 pixel p becomes

E%(p)

Il

R, [E s (‘Ii)¢i(‘i‘)‘
= 2 5(a)R, [4i(9)]- (4.25)

94



s T Yo e
e _

Locus of half intensity |

Figure 4.12: Scattering geometry. (a) Side view. The beam is along the horisontal Z-axis. The
scattering is measured along the verticsl axis (). {b) Projection in the detector plane of the beam
incident on the sample.
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Expression (4.25) presents the important advantage that once ¢;(q) is selected
R,$i(q) can be computed for all ¢; and the transpose of the resulting matrix,

M = Bylgi(q)] (4.26)
is independent of sample scattering. The matrix M relates “pixel”-space (rows) to
g-space (columns). Column ¢ gives the sprea:cl of ¢i(q) into each pixel resulting from
all illuminated points in the sample. Conversely row p stores the fractions of pixel p

covered by the “scattering” function ¢;(q) from all illuminated points in the sample,

for all i. As constructed, each row is normalized to unity.

Since the detector geemetry is fixed for all the scans in a run and for all the

runs reported in this work, Eq. (4.25) can now conveniently be rewritten as the

matrix product®
E%(p;) = MiS(%). | (4.27)
The approach presented above allows the inclusion of other factors in the
instrumental resolution. For instance, a wavelength distribution could be considered.
Though the evaluation of M would be more complex, it needs to be performed only

once for a given geometry of the experiment and wavelength distribution. For the

measurements reported in this thesis, the wavelength specirum is not important.

In this work R,[¢i(q)] is calculated using the defined integration weighting
functions j{u) and W,(v). Four independent variables are sufficient to compute

Eq. (4.26). The numerical procedure of convolution depends on the choice of these

variables. In polar coordinates,

2x :
- 4.28
4=37" (4.28)

which is conveniently independent of § for isotropic scattering’, the integration

weight over a pixel can be expressed as

Wy(0) = W (1,0,0). (429
®An added convenience is that M is a block-dirgonal matrix and thus requires relatively little

computer storage.
TFor a discussion of the solution in cartesian coordinates with u,,#,,y and z as independent

variables, see ref. [48].

96



W,(v) is unity inside pixel p and zero outside. The computation of (4.26) becomes
1 2% .
ﬁﬁzﬁLQM£ﬂmw%@%@Wm (4.30)

In the Z-direction, the beam profile was measured with the PSD. In the 3-
direction, the dumbell-like shape was captured on polaroid film and modelled as the
sum of {wo gaussians of equal FWHM separated by a distance measured by ruler.

Figure (4.13) shows & contour plot of the beam profile where it has been

assurned that j(») can be expressed as:

i(?) = 51{z} 72(¥) (4.31)

and where the intensity distribution is normalized such that
/ﬂuﬂu=1. (4.32)

Fig. (4.14) shows how six regularly spaced delta-function scaitering rings would
be measured or smeared by the detector array. For comparison, a span of five pixels
(bunched by four, i.e. 20 diodes) is shown.

At the smaller ¢ values (i.e. closer to the beamstop) the asymetry (lopsided
towards low g) of the measured scattering is more important and reflects the high
degrec of curvature of the annuli shown in Fig. (4.12) whereas as g increases, the
annuli segments appear closer fo parallel lines through the pixel and the smearing
results principally from the finite size of the beam (Fig. 4.13).

4,5.2 Decoanvolution

The deconvolution is the inverse of the convolution. It is numerically unstable. One

solution is by iteration, a numerical technique to invert the matrix.

The aim is to find a set of § (g:) such that

E%(p) = M, S(). (4.33)
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Figure 4.13: Beam profile. The z axis is in bunched pixels coordinates, with one unit equal to 100
pm.
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Figure 4.14: Position sensitive detector (PSD) response function. The dashed vertical lines are
stilised idealised §-functions, snnali in reciprocal space, and the solid curves represent the measured -
profile by the PSD. The resolution (FWHM) ranges from 0.0024 to 0.0017 A-!. The resolution
varies very little between 0.04 A~ and the end of the detector range, 0.085 A-1.
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Such a set may be found by the iteration of

8@ = $(Qne1 + (BS(p) — MpeS(q)a1) (4.34)

and n is the deconvolution iteration number. It is convenient to use ES(p) as the

first trial function, i.e. $(q)o = £%(p).

The deconvolution, or unsmearing, will pull features from lower g to higher g
and will be important only for the lower g range measured. In effect, it can be said

that the deconvolution pulls some signal out of, and away from the beamstop.

The “smearing” also smears sharp fealures of the structure factor and, con-
versely, the deconvolution will amplify any noise in S(g). To circumvent this prob-
lem, the measured E(p) is first smoothed with a spline function before deconvolution
and the noise removed by the smoothing is added back-in to 5(q) after the decon-
volution has converged.

To conclude, the result of the deconvolution for representative structure factors
during two runs is presented on Figure (4.15). The convolution correction is only
important when the peak maximum moves below .01A™%. Typically this will cccur
at eatrlier times at higher quench temperatures due both to higher decomposition
rates and a lower initial wavevector for the maximum of §(g,¢) () than for deep
quenches (b). However, in all cases, the deconvolution has little effect at the early
times of the fast runs (2 s). As expected for scans with peak maxima near the
beamstop edge, the deconvolution has the effect of moving the maxima to higher
¢ and sharpening the peak itself. In this figure, the last structure factor before
the quench was subtracted off all shown S(g,t) to remove the low ¢ high intensity

scattering. This procedure, used in the analysis of the data, will be introduced in
§ 6.1.
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Figure 4.16: Effect of the deconvolution on the structure factors for a shallow quench (a) and a
deeper quench (b). The sero of time corresponds to the time at which the temperature crossed T..
The ordinate axis has the last structure factor before the quench subiracted off all shown S(g, ).
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Chapter 5

Theoretical background

Chapter III has presented a seview of the carly descriptions of spinodal decompo-
sition. The equations of meotion for the structure factor that were introduced were
linear. However, both experiments and theory indicate that nonlinear terms have
to be included when dealing with binary alloys. Discrepancies between linear theo-
ries and SAS measurements of SD were reported in Chapter I1I. This Chapter will
preseat theoretical estimates of the nonlinearity in the SD of binary alloys.

This review of theory comprises two parts. The first deals with early stages of
SD while the second is concerned by the late stages of SD. After an introduction
to coarse-graining for the statistical description of a binary alloy, the equation of
motion for the structure factor is derived. Following this, estimates of the impor-
tance of nonlinear terms are presented. The nonlinear theory developed by Langer,
Bar—on and Miller[7] (LBM) is then ivtroduced (§ 5.4). The late stages cannot be
described by the LBM equation of motion. The second half of this Chapter will
review late stages scaling predictions and phenomenological scaling forms for the

structure factor.
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5.1 Coarse-grained free energy functional

On a microscopic scale, binary alloys can be modelled by some Hamiltonian with
interatomic interactions. Since these interactions are short range they are often
modeled by an Ising model.[118] This Ising Hamiltonian should be adequate for
computing equilibrium properties of the system. The resulting equilibrium free
energy using this Hamiltonian is a convex function of composition and contains no
information about metastable or unstable states. A mechanism is needed which
includes irreversible effects to express the non-equilibrium dynamics. This section
introduces a coarse grained frece energy to describe the metastable and unstable
states for systems.

The coarse graining can be justified heuristically by proposing that equilibrium
thermodynamics apply locally in each region but that the thermodynamic variables
differ from region to region. The approach to equilibrium of the system is then
governed by the evolution of this generalized non-equilibrium free energy to the
true equilibrium free energy in much the same way that two blocks of different

temperatures will approach a common temperature when put in thermal contact.

The system is coarse grained by breaking it down in subvolumes of edge length
a, each containing a large number of atoms.[118,119] A discrete cell composition,
c(*a), is introduced as the average local composition in the mesoscopic region cen-
tered at 7,. Fach cell must be sufficiently large such that the composition and
the free energy can be regarded as smoothly varying from one cell to the next and
yet, it cannot be made arbitrarily large in order to ensure that SD does not occur
in any cell. Ideally, the block size should be of order the characteristic length of
critical phenomena, i.e. the correlation length £ (¢f. p. 7). In principle, a coarse
graining length is selected i.e. a length scale for the averaging, then the calcu-
lation of averages is performed and the result is checked for consistency with the

phenomenological dynamics measured.

The calculation of the grand canonical partition function of the coarse-grained
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system from a microscopic model would involve iwo steps. First, the average over
the microscopic configurations {¢} compatible with a given constraint {c,}, corre-
sponding to a specific configuration of cell variables has to be performed. Next, the
average over all the possible configurations {¢,} has to be computed:

T = e W, (5.1)

{ei}

In Eq. (5.1), F{c.} is the generalized free energy for the set of coarse-grained cells
{co} and H{c;} is the Hamiltonian for each of the statistical ensembles {¢;}. As the
coarse-graining length is increased, i.e. the number of cells is decreased, the number

of microscopic configurations {¢;} compatible with the constraint {c,} increases.

Instead of working with discrete cell composition variables {c.}, defined at
discretized points #,, a field ¢(7) defined for all » which extrapolates smoothly the
ca(Po) is introduced and thus F{c(+)} E F{c,}. Further, the quantily c(»,t) is
introduced similarly to Eq. (2.15), except that it is now time-dependent :

Se(r,t) = e(r,t) — co. (5.2)

Figure (5.1) presents a schematic of the true equilibrium free energy F(&c),
and of a coarse grained free energy density f{6c) (the part of F{c(r)} which is
independent of gradients of c(r)). The true free enecrgy differs from the coarse
grained free ¢nergy density in one important respect, F(6c) is a convex function of
¢ whereas f(éc) has two distinct minima for temperatures and compositions within
the miscibility gap and exhibits a region of negative curvature. The best argument
to justify the composition dependence of f(dc) is the a posteriori test of the pre-
dicted dynamics obtained for the convex region. It is not easy to perform explicitly
the coarse graiming procedures described above starting from a fully microscopic
model. Instead, one assumes a phenomenological Ginzburg-Landau form for the
coarse grained free energy F'{c(r)}.

The process of averaging inside subvolumes, 1.e. coarse-graining is implicit in

the regular solution model (mean field ) description of the miscibility gap of § 1.3
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_Figure b.1: Schematic graph of the coarse-grained free energy density f(6c) and the cortesponding

equilibrium free energy F{8c). The dashed sections denote the analytic continuation of #(8c) into
the metastable region.[120}
where Gibbs’ free energy possessed a convex region and the introduction of the

intensive free energy of § 1.4. The integral over Eq. (1.16), provides the Landau-

Ginzburg form for the coarse-grained free energy, .

Fielr)} = [dr [35 1 Velr) [ +5(e(r) (53)

where the subscript to fo{c(r)) has been dropped to simplify the notation. As
previously,  is the coefficient to the free energy gradient term, F{¢(r}} will depend
on the limits of integration. The lower integration limit will correspond to the size
of the coarse-graining cell and the upper limit of integration will be the system
size. The cutoffs are often referred to as the short wavelength or ultra-violet cutoff
and the long wavelength or infrared cutoff. Thus, the Landau-Ginzburg free energy
functional F{c(r)} contains only spatial variation c(r) with wavelengths larger than
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the coarse-graining length.?

F{c(r)} has to be such as to reflect the physical properties of the microscopic
model. In particular it has to account for the phase transition which occurs at T%(c).
A simple expression for f(6¢) that satisfies this condition can be written down for

the case of the critical composition, assuming symmetry of the miscibility gap. This

is the usual “c*” approximation

f(6c) = % (5e)? + % (5¢)* (5.4)

bt 3

where 7, the prefactor to (§¢c)?, is temperature dependent. It is negative when
T < T. and positive for T > T,. Thus, below the critical point, f(8c) has a double
well structure not unlike the regular solution model of Chapter 1.[17,34] Both r and
u have dimnensions of J/m®. With the free energy functional defined in this way, the

coexistence points fc...- at a given temperature are given by the roots of 5%; =0

8Ccoex = T4/ —7/u. (5.5)

Similarly, in the mean field himit the compositions on the spinodal line are given by

i.e,

5C_,p =+ —'r/3'u, . (56)

The mean field correlation length s temperature-dependent. In particular,
near T,, it diverges to infinity and infinite wavelength fluctuations are predicted

(and observed as critical opalescence in binary fluids). Conscquently, the coarse

1A heuristic argument for the existence of the convex region in f(éc) based on the coarse
graining procedure can be suggested based on surface energy o associsted with the breaking down
of the bulk into subvolumes. The intensive coarse grained free energy would then tend towards
the true free energy as the coarse graining length is made arbitrarily large lima—. oo 5\%‘— = 0 with
the disappearance of the concave region. In the microscopic model of nearest-neighbor interacting
stoms, as the system is partitioned into boxes, atoms at the surface coniribute mors cnergy to the
total energy of a cell than atoms in the bulk (in effect, these atoms contribute an additional surface
energy). So the obtained coarse-grained free energy is always larger than the true thermodynamic

free energy. This was the case in Figure (5.1).
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graining length should also be temperature dependent, increasing as T gets closer
to T, both from above and below. In the limiting case where it is comparable to
the size of the system, then the coarse grained free energy tends towards the exact

equilibrium convex free energy.[121]

The location of the spinodal curve is found to depend on the coarse-graining
size. This dependence of thelocation of the spinodal curve on the coarse-graining size
is consistent with predictions by Langer [121] and Binder et al.{52] on the sncothness

of the dynamical transilion between nucleation and spinodal decompeosition.

The determination of the free energy functional is important for a dynamical
description of a given system. The first attempts were quite phenomenological. They
involved determining relevant parameters in (5.3) from extrapolations of measured

thermodynamic quantities in the stable region of the phase diagram.[58]

5.2 Equation of motion for the non-equilibrium

structure factor

The equation of motion for the non-equilibtium S(gq,¢) can be calculated via the
appropriate Fokker-Planck equation. A derivation of the Fokker-Planck equation is
outlined below, based on a paper by Langer.[119]

The state of the phase separation is quantized by the time dependent
statistical distribution of all coarse grained composition variations, denoted as
p({(8¢)a},t).[119,122] Instead of the complex microscopic description of the interac-
tions required to account for the dynamic evolution of the alloy, a simple procedure
is to simulate their combined effects by coupling the coarse grained system to a heat
bath.[123] One source of energy for the heat bath could presumably be the phonon
modes which reequilibrate rapidly in comparison with the composition changes. A

master equation can be written for p({(8¢c)q},2) :

LML {z} W ({8c} {6 Ne({6¢},8) ~ W({6¢} {8chp({och, )] (5.7)
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where the summation is over all the possible composition configurations {c.} and
W({<},{¢'}) is the rate at which the thermal bath induces transitions from {c'}
to {c}. The central aspect to the phenomenological description of the separation
process has become the transition rates W({c'}, {6c}).

A detailed description of the derivation of the transition rates performed by
Langer is not done here. However, some remarks on the phenomenological assump-
tions are given. The coarse gra.'mec.I free energy (Eq. 5.3) is the appropriate energy
for the system for a configuration {(6¢c)} and thus p({{§¢).},t) will be proportional
to exp(—F{(6c)})- Making use of the condition of detailed balance the transition
probability can be expressed as

W({éch,{c’}) = exp 5,;1;5: (F({fe}) — F({&<D)| ({8}, {6c})  (5.8)
where Q({6c'},{6¢}) is an atomic jump frequency. The function £ 15 assumed to
depend only on the change in 8¢, and thus is composition independent. This point
is important in the derivation of the rates. Since the coarse graining cells contain a
large number of sites, the change in §c corresponding to a single transition is small.
Thus € must be sharply peaked around éc The sites are assumed saturated with
atoms, so the local composition has to be conserved and the changes in cell concen-
trations are always symmetric i.¢. if a particular cell composition ¢, changes by +9,
the composition of the neighboring cell will change from ¢, to ¢, 9. Consequently
Q will be symmetric in ¥. An atomic jump rate, I' is introduced. For this, the only
changes in the solute atoms distribution between the cells allowed is the swap of
unlike atoms between two specific neighboring cells. If there are N, sites per cell,
then N2/2 sites in cell @ (or o) are nearest neighbors to sites in cell o’ (or a) and

T to within a constant factor is given by :
T = NP, (6e+ 1/Ny)ay (Sc — 1/No)aty- - 1, {- - -5 (6€)ar (6€)ary - . }) . (5.9)
Taking the second moment over all  first noticing that for 9 == 1/N,, 92Q = N;4/°T
+o0
/ 92Q(8)dd = N1 (5.10)
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where the condition that T' is a sharp function centered at ¥ = 0 has been used.
Equation (5.7) then becomes:

5 |
ot ({5cht) = 2N5f326ca kBT BcaF ('Za) F)p k9

+(6pl{56h0) - (g) = o5k (5.11)
where 31,1,y means summation over o nearest neighbors to o and F = F({éc}).
Asin the introduction of the coarse grained free energy in the previous section,
it is convenient to introduce a continuous field §c(r) which extrapolates smoothly
the variables {6c.}. After some algebra, using the functional derivative 8/3¢c, =
(Noa3)6/8c() and replacing the summation on cells by (Nyaj)~! fd», Equation
(5.11) takes the form of a Fokker-Planck equation for the p{éc(#),t} :

Bp{c(r) t} /d 6J(c

5 ?) (5.12)

The integral extends over all space and J(r) is a probability current given by

Helrt) = ~ o (sptetr) 0+ bor B L) ey

In Chapter II, it was shown that SAXS probed the iwo-point equal time density
(or composition) correlation function of the system. The derivation of sum rules also
required knowledge of moments of the composition distribution. Moments of the

composition fluctuations in a coarse-grained system are taken over the distribution

functional p{c(r)}

((6e)") = [p{(6)}(8e)" d(5c). 1y
While in Chapter IT angular brackets { } implied a thermal average, here they take
the meaning of a sum over all configurations of a non-equilibrinm ensemble. As a
consequence, the first moment (average) of a composition dependent quantity will
generally not be equal to the value this quantity would take at a composition value
equal to the bulk composition, i.e. if a simple thermal average was performed for

which normalization is done to the volume of integration. However, in the limit when °
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p({éc}) is a sharply peaked function of cin the neighborhood of {c} = {¢}[119] then
the average of any funclion of {¢} can be approximated by the value taken by the
same function at {c}. In that limit, the Fokker-Planck equation reduces to the
generalized diffusion equation (Eq. 1.26) with the identification

2MkpT

ag

I =

(5.15)
where M is the atomic mobility as introduced in § 1.4.2

The ntl order non-equilibrium two-point equal-time correlation can be writien

Sa(P — #o) = (6™ (7, 1)6c(ro, t)) (5.16)
where omission of the subscript n will mean S;(r — 7). Again, in Eq. (2.11) the

angular brackets { ) implied a thermal average and they now take the meaning of

an average over a non-equilibrium ensemble

S(lr—ro]) = f D[SclpalSe(r), Sclro)] Sc(r)6c(ro) . (5.17)

The functional integral on the right-hand side denotes the integral over the fields
{éc}.
Expzression (5.12) allows one to derive the equation of motion for the struciure

factor S(q,t), which is the Fourier transform of the {wo-point equal time real space
correlation function S(» — ro,t) (cf. § 2.1)

S(q,t) = F[{bc(r,t)8c(ro,t)}]. (5.18)

The real space correlation function is obtained by multiplying both sides of Eq. (5.12)
by Sc{r,t)§c(ry,t) and a sum is performed over all possible configurations {6c(r)}
to obtain S(» — ro,t). Taking the Fourier transform of the result gives®

20D~ o |(w+ 1) 0.0+ 5 gy Flede(ant

+2MEpTq? (5.19)

3An alternate derivation for Eq. (5.12) is to start by a Langevin equation instead of the master
equation (see Ref. [118]).

3The calenlus involved is well described in Ref. [118].
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The functions 5(g) and $,(g) are respectively the Fourier transform of the
two-point (cf. Eq. 5.16) and the (n — 1)th order of the two-point equal time non-
equilibrium correlation function (¢f. Eq. 5.16). This procedure takes fully into
account the composition distribution functional. Equation (5.19) is the first of
an infinite hierarchy of coupled partial differential equations (pde), one for each
moment. Indeed, each moment equation is such that it depends on the higher order
moments. This equation is exact under the coarse-graining assumption for the {ree
energy (5.3). Even by restricting f(c) to the “¢'” approximation (5.4), the hierarchy
of pde will not be finite as S, will be required to solve the equation of motion for 3,
and S5 1o sclve for S, and so on. A central problem to theories of 5D is ihe closing

of the infinite hierarchy of coupled pde required in the calculation of %gn(q,t).

5.3 Estimates of the importance of nonlinear

terms

Linearization schemes have hecn proposed to solve Equation (5.19). These include
the linear theories due primarily to Hillert(55], Cahn[57] and Cook[30] which have
been reviewed in the discussion of early theories of spinodal decomposition {Chap-
ter IIT), Cakn’s linear equation {Eq. 1.21) is obtained if the thermal noise term,
2MkyTq?, is neglected as well as all correlation functions of order higher than two.
H, instead, the thermal noise term is retained but highest order correlation func-
tions, g(q,t), are again neglected, then the CHC equation results (Eq. 3.6). Before
introducing the approximation scheme of Langer, Bar-on and Miller which retains
some nonlinearity of Eq. (5.19), this section introduces estimates of the importance

of the nonlinear terms.

A criterion for the applicability of a mean field theory to a phase transition
was introduced by Ginzburg who stated that below 7’ the fluctuations in the order
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parameter, which will be defined as

¢=c—c., (5.20)

averaged aver a region the size of the correlation length (a coarse-graining cell} must
be small compared to the value of ¢ itself.[124] Binder generalized the Ginzburg
criterion for SD in the way that follows.[125] By analogy to the formation of nuclei
of second phase during nucleation from a metastable state, call ¢(oco) the value of
the order parameter away from an “interface” and ¢(0) the value at the center of
a “second phase particle”. Then, introducing ¢ = ¢ — ¢y where ¢ = (co - ), the

generalized Ginzburg criterion can be writien as

([56()]%) < [¢{o0) — $(0))* . (5.21)

The Ornstein-Zernike form for the correlation function {the Fourier transform of

Eq. (2.19)), is appropriate for a mean field theory. Thus, making the maximum

possible choice of a coarse-graining cell, the lhs becomes{43]

([86(r)}?) o< £ H(VR) ™2 (5.22)

where the proportionality constant includes a factor k7. Interpreting ¢ in

Eq. (5.22) as a characteristic wavelength of the phase separation process with max-

imum amplitude growth, i.e.

SiONE
T } (5.23)

and, expanding 82 f(¢$)/0¢° about the value of the order parameter at the spinodal

line, ¢,,, and using ¢,, x (1 — %)1/2,

e (VR (1- E)”'z (1 . ) . (5.24)

Eq. (5.21) then becomes, with ¢(0} = ¢,, and ¢{co) = ¢,

o (VR |

kaT (VA)* (1 g;) (1 . f—) < (do— b} (5.25)
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With (¢ — ¢,,)* = ¢2,(1 — 2 )2,

p dup

kT (VR)™ (uz)—% (1— ¢ )— <1. (5.26)

Using definition (5.20), the condition for validity of the linear theory can thus be
expressed by the following inequality :

3/2
R 1 ) C‘P(T)} . (5.27)

From the expression of the Landau-Ginzburg free energy functional, Eq. (5.3), /s
is of order the range of the composition gradients and evidently /s represents the
range of interaction. For alloy systems, Binder[125] argues that +/k is sufficiently
small such that the above inequality is never satisfied. Mean field theories should
therefore be valid only in systems with long range interactions. Linear equations of
motion such as the CHC equation are essentially a mean field formula and therefore
only holds strictly for cases of infinite range interactions. They should then only
be observed in systems such as polymer blends which fulfill condition (5.27). This

prediction has recently been confirmed by computer simulations.[126)

Since linear theory or mean field approximation deals with the limit where the
interaction force has a long range, Grant et al.[127] propose a perturbation expansion
where the small parameter, ¢, is proportional to the inverse of the range of the force.
Following their work, it is convenient to convert Eq. (5.19) to a dimensionless form

by making the following change of variables,

& 1/2
k= (_) q, (5.28)
T
9 M2
T = ( MT ) t, (5'29)
K
a2 {
v=(%) o, (5.30)
and to render the structure factor dimensionless,
N2,
S= (T) 3. (5.31)
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The resulting dimensionless equation of motion for the structure factor for a critical

quench in the two-phase region is

__.._""Sgr”") = K [(K 4 1)S(k,7) + Sulk, )] + k3 (5.32)

where € is the intensily of the thermal noise and is given by

kpTu (—T‘)Slz

r*

- (5.33)

In Eq. {5.32), ¢ is the only quantity that was not scaled away. If one sets 4 = ¥/,

then § — €8, 84 — €28, and the dimensionless equation of motion takes the form

asgi ) _ g (K + 1)S(k,7) + €Sa(k,7)] + &2 (5.34)

The parameter ¢ determines the contribution of the fourth order term in energy
and its strength with respect {o the noise. From Eq. (5.33), € ~ (y/5)™® and thus
in the limit of infinite range interaction, when mean field theory is expected to be
valid according to inequality (5.27), ¢ — 0 and the CHC equation of motion is
recovered. The range of the free energies “interaction” is then proportional to /s
since the parameter ¢ is small when the range of the interaction is large and CHC is
expected to be valid. This is consistent with the heuristic picture that linear theory
is expected to work when local composition fluctuations are small, corresponding to
small but long wavelength fuctuations, with minimal composition gradients.

Eq. (5.34) provides a direct way to find the time regime of validity of CHC,
tmax if € is nonzero (and small). An expansion on % = $(® 4 /%)) 4 ... breaks
down for (D x /%), The corresponding expansion for the dimensionless struc-
ture factor is S(k,7) = SN (k,7) + /28 (k,7) + - .. Keeping only the leading
term in the expansion for the structure factor, Equation (5.34) becomes

a

B;S(‘)(k,'r) = k*(k* + 1)SW(k,7) + k2. (5.35)

To leading order in the expansion in the range of the force, the result of the CHC
theory is reobtained. Expression (5.35) will break down when S ~ ¢S ie.
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e'aX ~ g, Thus, tpax ~ —lne~ In{y/k).* Grant et al[127] provide calculations
and considerations for the first order perturbation. The equation of motion ob-.
tained after considerable algebra for the structure factor to order ¢? develops only a
Gaussian one-point density distribution furctional. To obtain a late {ime bimodal
distribution would require higher order terms. To date, such & calculation has not

been performed.

The small parameter € can be expressed in terms of more familiar quantities.
Introducing x as the susceptibility and, as in the susceptibility sum rule of § 2.3
(cf. Eq. 2.23), with the lattice constant aq,

1 kgl
ag O*f[0(8¢)?
T
- LheT (5.36)

3
ag T

Il

X

With the thermal correlation lengih € defined as in Eq. (2.20) by

1 }.( azf)
e " & 3(8¢)?f coex

] {21-/5 (T <T,) (537
rie (T'>T.)

where, again, x is the length scale for the interactions. Using the coexistence value

for the “c*” model (Eq. 5.4), Equation {5.33) can now be written as

(%) o

Near the critical point ¢, x and (§¢)coex are expected to follow power laws (cf.
Table 1.1) with critical exponents v, 4 and 8 and critical amplitudes £, ¢’ and B.
Assuming hyperscaling, the critical exponents should obey

28+4 =3/ (5.39)
#This result can also be obtained directly from the generalised Gingbuig criterion (Eq. 5.21) by
recalling that fuctnations will grow exponentially if below g, and asking how long the inequality

will remain valid.[125] This result can also be interpreted in terms of a mean first passage-time for
the decay of an unstable state.[128]
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and Eq. (5.38) gives that
¢ o {a0/é0)’ (5.40)
which indicates that ¢ remains finite at the critical point. This result is consistent
with the identification of § with the range of the interaction in the mean field critical
region.[125]
Most systems present short-range forces and ¢ ~ 1. Then fyax ~Inl is a
very small quaatity. For long-range force systems, such as -polymer blends with a

Flory-Huggins free energy[125,129], ao/¢ < 1 and there is a range in which CHC
should be valid.

5.4 The Langer—Bar-on—Miller Theory

5.4.1 Eqguation of motion

Langer, Bar-on and Miller[7] proposed a scheme to {runcate Equation (5.19) and
close the hierarchy of pde. The resulting equation of motion predicts how p{§c(»), ¢}
will evolve in time. For high temperature or disordered systems p{éc(r),1} will be
a very sharply peaked distribution centered at the average concentration cg. As
the system is aged in the miscibility gap and two equilibrium phases are formed,
pléc(r),t} becomes a doubly peaked functional with the peaks located at the <on-

centrations of the precipitate and matrix phases.

The LBM scheme rests on the following Ansatz for the two-point distribution

function p; :

pale(r), c(ro)] = pu [5c(r)] pa [6c(ro)] {1 +7(1 ¥ = o [}6c(r)éc(ro)}.  (5.41)

In this expression, p[f¢| is the one-point distribution function which must be not-

mealized so that
+o0
J[ p1 6] d(8¢) = 1 (5.42)

116



and .
+co
/ p1]6c)bcd(bc) = 0. (5.43)
: faad e~
The function p;[6c] is expected to become doubly peaked when phase separation
occurs. The function v(r) appearing in Eq. (5.41) is proportional to the correla-

tion function. By the definition of the two-point equal-time correlation function

{Eq. 5.17) and using normalization conditions (5.42) and (5.43) :

S(tr —wo ) = ()Y x(l7 =7 l)- (5.44)

The great simplification achieved by Eq. (5.41) is that all the S,(| » — # |) have the

same P-dependence as S{| » — #o |):

Sallr~rol) = [ Dscloalbe(r), 6c(ra)l6c(r)" 6c(ro)
((Se) (I~ 7o)

(o) g
((5))S(|r of). (5.45)

Equation (5.45) is useful in closing the hierarchy of coupled pde.

IR

¢

Eq. (5.19) then simplifies to the LBM equation of motion®:

‘9____5((?‘1’ Y _ oM@ (s¢ + A) 8(9,8) + 2Mk5T (5.46)

where § (g,t) is the structure function and

Lo, (o)
A= L Gty ek 6 (a1)

Equations (5.46) and (5.47) constitute a set of coupled differential equations. The
LBM theory is derived by further imposing restrictions for the calculation of A.

It can be noted that if the source term in equation (5.46), the last term on
the right hand side, is néglected, and the sum truncated at the first term in the
expression for A in equation (5.47), then the Cahn-Hilliard equation (Eq. 1.21) is

®The hat notation to denote the Fourier transform of S(r) for S(g) will only be used when
confusion is possible between the two in the text,
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obtained. On the other hand, if the source term is kept but the sum still truncated

at the first term for A, then the Cahn-Hilliard-Cook equation (Eq. 3.6) is obtained.

The explicit g-dependence of g;.é‘,,(q,t) has been removed by using approx-
imation (5.45) and its time depend:nce has been simplified to one time varying
parameter, A. The infinite hierarchy of p.d.e. though simplified still remains to be
closed. In the calculation of A, the sum (5.47) will have to be truncated.

Whereas in the Cook equation 82f /8¢ was constant in time, A = A(t) is not,

a coupling between the modes is provided by A. There is no intrinsic g-dependence

of A. The integral
((6)) = Gz [2a5(a) (5.48)
over the entire range of g-space up to the cut-ofl provides the “mean field ” coupling
(cf. Eq. 2.25). Equations {5.46) and (5.47) cannot be used in this form due to the
hierarchy of coupled pde’s: to solve 85(q,t)/dt requires the solution of §°5(q,t)/0t
and so on ad infinitumn.
Because (6c?) is a positive, increasing function of time, the characteristic wave
number g, must decrease. That is, the mean-square fluctuations, via the nonlincar

part of %E, cause a quahialively correct coarsening of the precipitation pattern.

To solve the nonlinear equation (5.46), the density probability distribution
functional (i.e. the one-point composition distribution functional) first proposed by
Langer and Bar-on[122] is used by LBM. In this Ansatz, p(6c) is parametrized by

the sum of two Gaussians centered at §¢ = b; and b; and a width o which evolve in

time.

H60) = Gt enp (- )

= €
(bl + bg) oV it 202
b1 (§C + bz)z)
e - . 5.49
+ (b] ’+‘ bz)O’ 271" exP ( 20'2 ( )

At t = 0, the system is in a single phase state, b; = b, = 0. At £ = 0 when the
solution is still in a disordered state, ¢* is much greater than the product b;b; and

p(6c) will be a sharply peaked function centered at 8¢ = 0 as described above. At
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later aging times two distinct peaks in p(§c) appear thus simulating the phase sep-
aration process. As time passes, these values get displaced towards the equilibrium
two-phase concentrations. If the separation occurs at critical composition, then
01(t) = ba(t) = b(t). Expressing p(dc) as a doubly pzaked function is an essential
aspect of the noalinear problem. As pointed out by LBM, the CHC linearization
implies that p(&c) remains peaked at §c = 0 and as a result is valid only at very
carly aging times. The moments of {{6c)?) (¢f. Eq. 5.14) just involves Gaussian
integrals and

((8¢)2) = o + bibs. (5.50)

In the mean field approximation, p(éc) remains centered at zero at all times.
So the LBM equation of motion differs from the mean field closing scheme{130]
by the introduction of the two Gaussians for the density functional p(8c). With b

moving away from zero, the fourth cumulant,

{(8e)}e = ((60)") = 3{(8¢)")* . (5.51)

is nonzero. In an earlier approximation, Langer[130] employed the time-dependent
self-consistent Hartree approximation according to which p({c},t) can be written, at
all times, as the exponential of some negative quadratic form in the function &c(»).
Though this was an analytically legitimate approximation, §c(r) had to remain
single-peaked and centered at zero. The average of any product containing an odd

number of factors §c(r)} will vanish and {§¢*) = 3(8c?)? and the fourth cumulant is

ZE€ro.

One consequence of using the “c*” approximation is that §°f/8(8¢)® is zero.
This poses a serious problem near the classical spinodal line when the coefficient
7 is very small. Other than for the very restrictive case when an alloy is at the
critical composition and the coherent spinodal symmetric about this composition,
the decomposition occurs via fluctuations which are not at all symmetric about
§c = 0.[84] The approximation provided by Eq. (5.4) will give a poor picture near
the boundaries of the spinodal region and a nonzero & f/8(6c)® should be considered.
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5.4.2 Scaled LBM equation of motion

In a praciical system, the most direct route to use the LBM theory is to work in the
dimensional form of the equation of motion, where the wavevectors, atomic mobility
and free energy gradient coefficient assume their physical units, namely Eq. (5.46).
However, it is instructive to examine the reduced form suggested by Langer et al.[7)
f01; Eq. (5.46). The connection between the dimensional set of parameters and the

reduced ones is straightforward and useful for comparison between discrete dynamics

simulations and physical measurements.

In the reduced equation of motion for the structure faclor derived in § 5.3
there was no explicit coarse-graining. However, in the LBM theory, the “mcan field
coupling”, implicit in the computation of A(t) (Eq. 5.47), requires integrals with a

high-wavevector cutoff, 7.e. a coarse-graining length in real space.

Langer et al[7] assumed that the free energy functional f(8¢) near the critical
point was given by a scaled version of (5.4), for a coarse-graining siz¢ proportional to
the correlation length £. Ouly one system-dependent dimensionless parameter, fq,
entered their approximation for f(éc). The value of this parameter was determined

from known critical exponents and critical amplitudes of the three-dimensional Ising

model.

Using ¢ as defined in Eq. (5.20), the free energy is expressed in a scaled form
with ¢s (solvus), the value of ¢ at the miscibility gap boundaries. The intensive free

energy f(¢) is expressed in terms of a scaled (dimensionless) intensive free energy,

@ ($/¢s) by the form

6= (425 fotta ) (5.52)

where kpT'/a® has the units of J/m® and f; is unitless. The parameter fy turns ocut
to be the only system-dependent quantity in the model. It is such that ${(0) = 0,
'(+1) = 1, ¥(0) = 0 and $"(0) = —-1.

For the particular case of the “c*” form of f(¢), Eq. (5.4), recalling that the
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solvus line is (—r/u)'/?, the following is obtained

1) = T a(5/45) (5.53
with
B($/45) = ~3(8/45)" + 5(9/d5)" (554)

The normalization conditions for $($/¢s) enumerated above are all satisfied by this
form. Comparing (5.52) and (5.53), the “c'” free energy coefficients r and u can be

expressed as

kgT fo
= - ey (5.55)
and
_ kT A
=T (5.56)

A relationship can be obtained between f; and the small parameter € intro-
duced in § 5.3. However, before substituting the expressions for r and « in Eq. (5.33},
it is necessary to know the coarse-graining length dependence of x. This is done by

using the mean field result that the correlation length £ = ¢ obeys

1 18%f
It ;%g, (5.57)
thus
keT fo
2 __ "
“ = &“(1) (5.58)
and with ”(1) = 2 (¢f. Eq. 5.54),
1 kpT'fo
K= ?z- ---;E;:z;— . (5.59)
Now, substituting for r,  and x in Eq. (5.33),
3,8
ﬁ:i (5.60)

i.e. ¢ ~ f-1. The parameter ¢ is the small parameter introduced in the discussion
of the perturbation expansion in the long-range force imit by Grant et al.[127]
(cf. § 5.3). Thus, fo is related to the range of the force as follows from arguments

presented earlier.
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Exe

Hence, besides the knowledge of the location of the solvus line and a free
energy functional form there is only one system-dependent dimensionless constant
needed. In a discrete dynamics simulation of the reduced equation of motion, these

two quantities are chosen at the onset and the dynamic evolution of the structure

factor is ohserved.

The reduced scattering vector is then § = ¢/q. where ¢ is identified with the
critical value of ¢ when ¢ = 0 or

ksT fo
2 feed |4
€= (5.61)

The reduced time, 7, and reduced structure function, S, are given by

r = 2Mrg’ (5.62)
and
5 o\
5(3,7) = 3% S(a,0). (5.63)
a’gis
Thus, equation (5.46) is rewritten in the very simple form
05(@71) a2 w -
—g—rl =-g'(¢ - p)S+7. (5.64)

In Eq. (5.64), a®, the coarse graining volume has been scaled away and

— 1 6(1)(:0 -+ y)
p= (yz)( Y5 ) (5.65)
with
y=4bc/ds, zo=o/ds- (5.66)

Figure (5.2) presents the scaled structure factor for a quench at critical com-
position and fy = 5.8. For decomposition occuring near the center of the spinodal
region, the sequence of functions 5(g) for increasing 7 after quench exhibits a grow-
ing peak which moves toward lower § and displays a crossover on the high-g side.

Comparison of Monte Carlo simulation results with the LBM theory have
shown reasonable agreement. However, the works of Billotet and Binder[131] and

of Binder et al[52] point out some of the difficulties associated with the use of
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Figure 5.2: The scaled structure factor 5(3, 7) for a quench at critical composition and fo = 6.8
at various scaled times 7. The inset depicts the distribution fanction p(y) at two of these times.
(From Langer et al.[7])

this theﬁry. First, there iz an unfortunate dependence of certain results on the -
(arbitrary) choice of the coarse graining cell size a. Namely, the results depend on
the choice of the ratio a/{. Second, there is a spinodal curve implicit in the LBM
theory, whose location is shifted from the classical curve and also depends on the
choice of cell size. The third point, presented by Binder et al{52] is that the LBM
theory does not describe either the fluctuations due to nucleation and growth or the
extended transition from spinodal decomposition to nucleation. This last point is
based on the observation by these workers that the LBM theory exhibits metastable
states with infinite lifetime in the region between the coexistence curve and the
spinodal curve. Finally, Binder[51] has argued that the late time behavior of the
LBM equation is inconsistent with the late stages t'/® growth law predicted by the
Liighitz-Slyozov-Wagner introduced in the next section.
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5.5 Late stages

The equations of motion introduced for the early stages of SD break down when
terms of higher order than those retained become important, This is the case during
the late stages when domains of each phase coexist. In particular, Monte Carlo
results[51] kave shown that the LBM theory becomes inaccurate when domains

reach sizes which are a few times the correlation length.

The studies reported in the experimental review (§ 3.3) established that the
late stages present a scaling regime during which the microstructure remains self-
similar for all times. A single.timc-dependent length scale then suffices to describe
the time evolution of the structure factor. An appropriate choice for this length
would be the average domain size, denoted® as R(t). The scaling assumption is that

the wavevector ¢, corresponding to the maximum of 5(gq,1) is related to R(t) by
gm(t) = 2rR7(2) (5.67)

and that the dimensionless S(g/gn(¢),t)/A3(t) should be time-invariant when plot-
ted against gR(¢). Thus, a scaling function F(g/g,.) can be introduced such that
the scaling of the structure factors S{q,t) can be written as
- q

S(q,t =cm3tF(—--) 5.68

(:8)=Ca(F { 05 (5.68)

where C is a dimensionless constant (independent of t) chosen such that F(1) = 1.
For convenience, & dimensionless quantity z(t) is introduced as

q

z(t ———

© = 7o

= El;qﬂ(t). (5.69)

I

H Equation (5.68) is valid the time dependent R(t) and the scaling function F(z)
will suffice to describe S{g,t) at any time during the late stages.

®R(#) should not be confused with the time-independent amplification factor in the CH equation
of motion defined by Eq. (3.2).
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Marro, Lebowitz and Kalos{132] and Furukawa[133] were the first to explicitly
show that S(q,t) in the late stages of SD in Monte Carlo studies obeys the scaling
relationship given b)T Eq. (5.68).

The existence of a scaling function for the late stages implies that growth
exponents can be obtained in that regime. Experimental determinations of the
growth exponents were mentioned in § 3.3. Defining Sn(t) = S(gm(t),t) as the
maximum value of S(g,%), the growth exponents will be denoted as n and =’ and
are defined by

R(t) ~t" (5.70)
and

Sen(t) ~ ™. (5.71)

When domains have reached the equilibrium composition, the question that
can be asked is what drives the system to further evolve and coarsen? Indeed, late
stages SD systems are still in a far-from-equilibrium state. However, in this regime,
the only regions still out of equilibrium are the interfaces. Consequently, to predict
the time evolution of 5(g,t) during the scaling regime, it is appropriate to focus on
the motion of the interfaces which separate the domains, rather than on the domains
themselves. The interface area density .LA(t) (Eq. 2.31) is high and therefore a large
amount of surface free energy associated with these interfaces is present. As the
domains of cach phase grow, A(t) decreases and proportionally to it, the surface
energy also decreases. As the coarsening proceeds (a process often called Ostwald
ripening), small domains with large curvatures disappear, while large domains with
small curvatures continue to grow. Thus, the essential physics must reside in the

interfuces,

Studies of the late stages or scaling regbne have primarily focused on the value
of the growth exponent n, as well as on the scale invariant functions like F(z). The
value of n is of importance, because it is the signature of the thermodynamic forces
which are responsible for the phase transition. For sysiems with a non-conserved

order parameter (described by model A, ¢f. p. 10) the study of random interface
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dynamics has provided strong predictions, notably a growth law (the Allen-Cahn
law[134]) as well as a scaled form F(z)[135]. However, for unmixing binary alloys
(deseribed by model B), to date, neither a growth law nor a scaling form has been
derived directly from interface dynamics although n is believed to be 1/3. The
remainder of this section will address first the value of the growth exponent and

then the scaling form F(z).

5.5.1 Growth law

Attempts to obtain a theoretical value for the growth exponent n have been made
through physical arguments and numerical simulations. The main physical argu-

ments are examined and a survey of the principal numerical results then follows.

The basic assumptions commonly used are that in the late siages of phase
separation (except in the critical region) domains are separated by well defined in-
terfaces whose mean radius of curvature is sufficiently greater than the thickness
of the interface (~ ¢), but A(f) remains finite (# 0).[45] Further the interface is
assumed to be smooth, i.e. finite curvatures are defined almost everywhere. Singu-

larities such as corner, edge, contact and fractal surface, etc. are smoothed by the

surface tension and are negligible.

The dynamics of the interfaces are sensitive to the presence or the absence of
conservation laws. The order parameter which describes a spinodal system (model
B) obeys a local conservation law.[136] This parameter is usually the local concen-
tration of ope of the components of the system, and therefore obeys a continuity
equation. The decomposition will thus be limited by diffusion. As a result, changes
in the system require diffusion of material across increasingly large distances and
the late stages coarsening proceeds increasingly slowly (Eq. 5.70). This hehavior
contrasts with the rapid approach to completion which occurs in magnetic or struc-
tural phase transformations (model A). These systems possess no local conservation

law and thus no long range material transport is required.
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To develop an intuitile picture of the growth in a conserved order parameter
system {(model B} it is somewhat easier to start with a system with a nonconserved
order parameter (model A). Since the reduction of surface energy drives the process,
the interfacial motion acts to reduce the local surface area: curved interfaces move,
and when part of an interface becomes flat, it stops moving. The interface velocity
v, in the most simple case for model A, is a function of only the local curvature
K.7 At late times the interfaces become gently curved, so K is small. A Taylor

expansion then gives:

v(K)=DK +..., (5.72)

with D a positive constant with units of [m?/s]. Any time-dependent length made
with D, the only parameter in the equation of motion, must obey, R(t) = (Dt)!/2.
Thus, n = 1/2 for the nonconserved system. Eq. (5.72) is the Allen-Cahn law[134]
and has been verified through both experimental and theoretical studies.[137,138]
The growth exponent n is independent of temperature. All of the temperature
dependance is contained in the coefficient D.[139]

In the case of a system with a conserved order parameter, some of these con-
siderations still apply. The velocity of the interfaces is such that, on average, the
curvature is reduced, since the motion of the interfaces is driven by the minimiza-
tion of surface free energy. However, when thé order parameter is conserved, the
interfacial motion is coupled to the motion of material “under” the interface. For
an interface to flaiten, material within curved regions must diffuse away. Thus, al-
though v = DK may still apply, the diffusion constant itself must now become, for
example, a function of curvature. In their most general form, the interface equations
of motion for a conserved order parameter system can involve the coupled nonlo-
cal motion of many widely separated domains, and are quite intractable, There
are two important situations, however, where simplifications occur: long-range and

short-range diffusion.

The case of long-range diffusion during nucleation and growth is the subject of

"In fact, K = K; + K; where Ky and K3 are the principal curvatures of the interface.[134]
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the theory of Lifshitz and Slyozov[140] and, independently, of Wagner[141] (LSW).
The LSW theory assumes a system close to equilibrium, i.e. it deals with the
case of small initial supersaturation in the asymptotic time regime (t — c0). The
droplets are far apart as compared with their average size. The physical picture
is one of widely spaced domains of one phase coarsening in the mean field limit
near the coexistence curve. Each domain is solely characterized by its radius R(t).
Interactions between droplets can thus be ignored. A given droplet then grows by
diffusion from the surrounding solution.

During the first stage of NG when nuclei of second phase form (cf. p. 39) there
is a surface energy cost to the creation of bulk volumes of second phase. Thus there
is a trade-off between the lowering of the free energy resulting from the creation
of volumes of second phase and the risc in energy due to interfaces. At any time,
second phase droplets smaller than a certain critical size, i (¢) will “dissolve” as the
energy balance between the surface and the bulk is unfavorable for their existence
and droplets larger than R.(f) will grow. If A is the degree of supersaturation of
the alloy and « is a parameter proportional to the surface tension beiween the two
phases, then the LSW theory predicts that the time dependence of the mean droplet

size is obtained by solving

%?- ~ % (A(t)'— %) . (5.73)
Hence, R.(t) = a/A(t) and droplets with radius R > R(t) grow while those for which
R < R, disappear. Eq. (5.73) predicts for asymptotic times a powér law growth with
exponent n = 1/3 for large R.

The LSW theory also predicts the time-evolution of ike composition distribu-
tion i.e. the time variation of R.(t) and the second phase particle size distribution by
a system of two coupled nonlinear differential equations.{142] Thus a scaled form for
the domain size distribution is also predicted. Essentially, these equations express
that R.(t) increases with time and that large domains with a narrow distribution
of sizes are obtained. Thus LSW provide a nonlinear equation of motion that can

describe late stages behavior during a first order phase transition. The growth expo-
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nent value and the domain size distribution function prcdicied by the LSW theory

are universal and independent of the material parameters.

A number of numerical studies have confirmed the qualitative features of LSW
theory.[143,144] Some of the experimental studies cited in § 3.3 have reported a
growth exponent n = 1/3 in agreement with the LSW value. This was the case for
instance in the study of the relaxation in the one phase region above a critical point
in a bipary fluid by Wong et al.[105]

When the simplifying assumptions that enter in the LSW theory are relaxed,
for instance to describe systems conditioned into regions of the phase diagram away
from the coexistence line, where volume fractions of each end-phase might be com-
parable, correlations between domains become important and significantly alter the
shape of the composition distribution function.[145-148] However, early numerical
tests of these correlations carried out by Beenakker[149] and Voorhees and Glicks-
man(150,151] all resulted in a growth law with n = 1 in accord with the LSW value.
These studies involve expansions with (V,#)/? as the small parameter and thus

should work only for bulk compositions still not too distant from the coexistence

line. The effects of correlations between domains were first noticed by Weins and

Cuhn.[152]

The situation in the case of the late stages of SD is very different from the
idealized low supersaturation with isolated and widely spaced domains dealt with
by the LSW theory. Figure (5.3) shows a typical microstructure for late stages
SD with comparable volume fractions of the two phases obtained by Monte Carlo
simulations.[153] The microstructure consists of a network of highly conuected and

interpenetrating domains.

Although long range diffusion is still expected to be the dominant mechanism
of phase separation for late {imes, it is likely that other kinetic mechanisms are im-
portant during the intermediate stages of growth. In particular, transient behavior

involving short range diffusion of material along interfaces is expected.

Before proposing a scenario for the effect of interconnected domains on inter-
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Figare 5.3: Late stage coarsening configurations from a MC stady at times 1000, 20 000, 100 000
and 160 000 Monte Carlo time steps for spinodal decomposition. (From Roland and Grant[153].)
face velocily, short range interfacial diffusion is considered for systems with a con-
served order parameter. Indeed, it is expected that surface reduction by smoothing
of the interfaces should be important in a transient regime during which interfaces
have high curvatures. It is assnmed that the domain pattern can be characterized
by a single length scale R{t) as in the case of LSW long-range diffusion and that at
asymptotic times, equilibrium is locally satisfied or length scales small compared to
R(t). This means that the interfaces between domains of the two phases have local
radii of curvature of order R(t)} or greater.

For an element of curved interface to be in local equilibrium requires that the
pressure due to surface tension, of order ¢/ R(t), cancel that due to the local gradient
in chemical potential, of order co(tq — ptot) With ps and g the chemical potential
in the two equilibrivmn compositions. Thus the chemical potential of the interface,

Pint 18 of order o /coR(t) and its variations from place to place are of the same order.
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The gradients of the chemical potential of the interface are associated with gradients
of curvature, K. The curvature is reduced by the flux of atoms on the interface,

which will be of order
J ~ _'vlf‘int ~ -"V.K, (5.74)

where the gradient is taken with respect to the arc length of the surface. The surface
divergence of —J yields the increase in the number of particles per unit area per
unit time. Therefore the velocity of a surface element along its normal due to surface

diffusion is{153]

d
%ﬂ = D,V3K, (5.75)

where D, is a constant [m®/s] independent of the local curvature but which depends
on f"(c)|.,. Equation (5.75) predicts a growth exponent n = 1/4.

Long range inter-domain diffusion and short range diffusion along interfaces
occur simultaneously during stages when interfaces have high curvatures. However,
the smoothing of interfaces by interfacial diffusion does not contribute to domain
growth. Ratler, it is the long range thermally driven diffusion of atoms through the
bulk (domains) that leads to the increase of R(t). Interfacial diffusion contributes to
the redistribution of long range inter-domain diffusing atoms that reach interfaces
and thus limits the effectiveness of long range diffusion !o increase R(#). Indeed,
these atoms ultimately have to be transported at the niinimal curvature points
on the interfaces (or leave the interface and diffuse to ancther point through the
bulk solute). In general, the thermodynamic driving force for iuterfacial diffusion is
much greater than thermal diffusion in the bulk. However, the interface area density
A ~ 1/R(t), and thus in the time regime when local rearrangernents are importaat,
the growth rate may be limited by the relocation of solutes along the interfaces.
The net result is a slower coarsening at the earlier stages of coarsening. At later
times, when interfaces are gently curved, long range diffusing atoms achieve a better
accretion success. They adhere to locations with less need for further transport along
interfaces and the growth then no longer dépends on interfacial diffusion. Thus, with
this heuristic description, the growth exponent would be expected to progress from
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1/4 (cf. Eq. 5.75) in a regime when interfacial diffusion is important to relocate new
atoms on the interfaces to 1/3 in a regime when interfaces have smoothed out and

inter-domain diffusion becomes the main contributor to interface motion.

To express the coarsening at times when the interfacial diffusion is important,

Huse{154] introduces an effective growth exponent, n.sy,

dln R(t)
dln(t) °

Mess(8) = (5.76)

Thus, assuming a growth law with an exponent n = 1/3 in the limit of large
R, as for the LSW theory, the effective exponent n.s; should obey
Ro -2
R + O(R™*(1)), (5.77)

with R; a length that rellects the importance of interfacial diffusion. If Ry > 0,

[Ty )

ness(t) =

nesf(t) will asymptotically tend to 1/3 from below and coarsening will be slowed
down by interfacial diffusion.

Physical arguments can also be given for inequalitics which will bound the
growth exponent n. One such argument has been given by Grant[155] in terms of
the dynamical eritical exponent z.

To understand his argument, the exponent z is first introduced, starting from
the power law for the fall off to zero at T, of the pair correlation function, G(r),

with distance r (c¢f. Table 1.1). Taking the Fourier transform of that relation gives

S(q)~¢"*. (5.78)

Thus in the limit of infinitesimal ¢ and with the help of Eq. (2.22) which defines the
differential susceptibility x.,,

X, o £277 (5.79)
with ¢ diverging as given in Table (1.1). Comparison between the susceptibility
sum rule (Eq. 2.23) and the thermodynamic driving force for diffusion {¢f. p. 24)
indicates that diffusion constants should vanish at the critical point proportionally

to £727 (critical slowing down). However, the atomic mobilities remain finite at the
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critical point. Therefore the dynamic scaling exponent z is introduced to express

that the order parameter relaxation rate should go to zero as {~*(k¢)? with[13]
z=4— 7. (5.80)

This expression for the dynamical exponent z constitutes an exact result from critical
dynamics for model B.

Grant’s argument goes as follows. If one quenches close to T, time scales
are affected by critical slowing down. Tims scales must then be measured in units
of the correlation time 7, and length scales in units of the correlation length £.

Incorporating this into the growth law (Eq. 5.70) gives
R()/E ~ (t/7)". (5.81)
The dynamical scaling assumption is[13] T ~ ¢* and thus{156]
R(t)/t" ~ (T, — T)=), : (5.82)

where  is the correlation length exponernt (cf. Table 1.1). Since the driving force for
a first-order phase transition is due to thermodynamic forces, and not fluctuations,
thermal fluctuations can only slow down domain growth, or leave it unaffected. Thus

the inequality z > 1/n must be satisfied. Using Eq. (5.80) this inequality becomes
n>1/(4~-17). (5.83)

Using 17 ~ 7 for the Ising 3d model (cf. Table 1.1) condition (5.83) thus becomes
that n £ 0.25.

An upper bound on the value of n has been given in a study by Yeung.[157] He
considered the nonlinear Langevin equation for SD and found that a self-consistent
requirement of being in the scaling regime for model B was that n < 1/3.

To complete this review of theoretical predictions for the growth exponent n,
Monte Carlo (MC) studies on SD systems are examined. An interesting consequence

of self-similarity (i.e. scaling) is that it is possible to address only length scales much

133



larger than that of the smallest topological details and thus small lengths can be
ignored. Furthermore, rescaling of length and time lend themselves well to real space
RG methods. In a recent MCRG study of late stages SD on the 2d Ising model,
Roland and Grant[153] have obtained n = 0.338 + 0.008 and a strong transient time
range involving an n.;4(t) = 1. They observed that the transient was iterated away
by the RG transformation, leaving n = }. This crossover from /4 to t!/3 scaling
would be expected of short range diffusion eflects as small topological details of the
interfaces are iterated away.

Earlier MC studies have also confirmed a n = 1/3 growth law for late stages
after some initial transients for systeins quenched in a miscibility gap. This is the
case, for instance, in the work of Lebowitz et al.[158] Huse also carried out a Monte
Carlo simulations of SD and obtained values of n.s4(t) between 0.12 and 0.25. From
n.44(t) he extrapolates an asymptotic velue (for R1(¢) - 0) of n = 0.29 + 0.04.

5.5.2 Scaling forms

To date there is no systematic derivation of an analytical form for the scaling function
F(z) for SD in conserved order parameter systems. Two semi-empirical forms are

introduced in this section and compared to the data in § 6.3.

The only feature of F(z) for which there is a heuristic theory in excellent
agreement with experiment is the large z behavior. This is given by Porod’s law,
¢f. Eq. (2.32) which predicts F(z) ~ z~* for large z, when interfaces exist.

The first scaling form is suggested by Fratzl and Lebowitz[159,160]. The start-
ing point is the expression obtained by Debye et al.[161] for the correlation function
for a random distribution of interfaces between two phases. Using the notation of
Eq. (2.27) where V2 is the volume fraction of “minority” phase (the Al-rich phase
in this work, for instance, though V= & V'), then

S(r) = Ve~ Ve |- ———“‘L——] (5.84)
V(1 -V7)
where A is the interface surface area per unit volume as defined in Eq. (2.31).
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However, the long range diffusion fields required to satisfy composition conservation
induce a modulation of S(r) with a time-dependent wavelength related to the fastest

growing mode(2], say A,

S(r) = V(1 - Vo) exp

A ] sin $%r ' (5.85)

il
This expression also ensures that the average composition within a volume of diam-
eter A,, will remain constant. The approximate scaling function L;(z) normalized
so that L,(1) = 1 is given by

bl 4'72 A Am
————— = —— sy = [ [ —] | .86
h @D T e T [41/:*(1 Ve ] B8

Equation (5.86) is then tailored by an additional prefactor of «*/(z* + ¢} where ¢

Ly(z) =

is a constant to suit the observed z* dependence of S(«)® when z — 0 obtained in

MC simulations by Yeung[157] and others{162,163], yielding, after normalization,

az? b
Firuy(e) = PPl o g (5.87)
with
4+*
S (e
c = —-———-————d M
b—d(t —d)’
dz
a = (1+e)(1+ -b—). (5.88)

Only two parameters need to be fit to with data, v and d, both dimensionless.
If the parameter d is set to zero in expressions (5.87) and (5.88), then expression
(5.86) is recovered. According to Fratzl et al{159] the parameter v has a simple
dependence on the relative fraction of the two phases in the system and seems to be

independent of temperature. Figure (5.4) presents F(FL)(”) calculated for v = 0.5
and d = 0.06.

The second scaling form examined in this work is suggested by Ohta and
Nozaki.[164] They apply a derivation that has proven successful for systems with

8See footnote on p. 117.
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Figure 5.4: Scaling form F(FL)(z) calculated from Eqs. (5.87)} and (5.88) based on the work of
Fratxl and Lebowits[159,160]. The parameter values were set to v = 0.5 and d = 0.06.

a nonconserved order parameter (model A). However, that derivation has to be
corrected to account for long-range diffusion fields in conserved order parameter
systems. In terms of the Fourier component E-c(q,t) of §c(r,t), following the nota-
tion of § 2.2, they propose the foﬂowing equation of motion for the interfaces from
arguments based on the motion of thin interfaces:

8 = 1 ~
500:8) = o~ + S A)ic(g, ). (5.89)
The correlation function (§c(r,t)éc(0,t)) obtained from Eq. (5.89) is given by

(5er, 050, 0) = g5z [ da s (~t+ AP 4igr)  (590)

‘where A is a constant. The position of the interfaces is given by 6¢(r,t) = 0 as long as

the length scale of the domains is sufficiently larger than the interface thickness and
assuming saturated domains (i.e. at compositions given by either of the coexistence

values).[135] Assuming Gaussianly correlated interface compositions {éc} and using

136



o .‘:‘L,‘

a step function on the sign value of §c{r,t) in Eq. (5.90) the two-point real-space

equal time correlation function, also denoted as G(r,t), can be rewritten as (cf.

Eq. 5.16)[165
q. 5.16)[165] S v (3) L [(5c(?,t)56(0:t))] (5.91)
r "o, - T sin ((66)2) .

where ((éc)?) = (6c(0)bc(0)}. The structure factor is then obtained by the Fourier

transform of Eq. (5.91). The structure factors are self-similar at all times and thus

the scaling form is obtained from the computed S{g,¢) by inverting Eq. (5.68),

Fony(z) = CTTR7()S(q,t) (5.92)

where the length R(t) is taken to be the first vanishing point of G(r,t). Alternately,
F(ON)(:B) can also be computed from the ratio

Fony(z) = 0 (5.93)

since F(1) = 1.
Figure (5.5a) shows the predicted scaling form using Eq. (5.92) within a mul-
tiplicative constant C™! and with A = 7.5 (in Eq. 5.90), value suggested by Ohta

and Nozaki[164} for a 3d system. A shoulder exists on the high-z tail of Fion)(%)
as better evidenced in the logarithmic plot (Part b).

Part (c) of this figure shows the scaled correlation function G(r/R). In accord
with the definition of R(t), this plot shows that G{1) = 0. Finally, Part (d) intro-
duces a plot of z“F(ON)(z) versus ¢, known as a “Porod plot”, where F(ON)(*) was
computed using Eq. (5.93). In accord with the normalization condition, F(1) = I,
this plots shows that z*F{(z) at z = 1 is unity. This representation is useful to verify
the validity of sum rule (2.32) and will be used in the discussion of the late stages
results (cf. § 6.3).

The shoulder displayed by F(ON)(”) was not present in the Fratzl-Lebowitz
scaling form (Fig. 5.4). However, in the derivation of F(ON)(”): interface concen-
trations were assumed Gaussianly distributed. This assumption is only rigorously

true in systems with a non-conserved order parameter (model A) and justification

for this choice was not offered.
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Figure 5.5: (a) Ohta-Nosaki scaling form obtained by taking the ratio of the Fourier transform
of Eq. (5.91) snd R%(t) (¢f. Eq. 5.92). (b) Same plot on a Jogarithmic scale to eraphasise the
existence of a shoulder on the high z = gR(t) tail. (c) Scaled correlation finction G(r/R}). (d)
Porod plot of Fon)(z) computed using Eq. (5.93).
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An artifact of F(ON)(Z) is that it does not vanish as z — 0 but gees to
about 7% of Fion)(1) instead. This suggests that S(g=0,t) increases without
bound in Eq. (5.68). This violates the susceptibilily sum rule (Eq. 2.23) and
would imply an increase in the number of atoms. Furthermore, as expected since
lim,,o F(z) # 0, the logarithmic plot in Part (b) also indicates that the condition
lim,_.q F(ON)(;B) ~ z* is not satisfied. However, the late stages structure factors

measured in this dissertation are not sensitive to the very low z part of F(ON)("’)

and this feature should not affect fits to the Ohta-Nozaki scaling form.

Recent measurements on polymers by Bates ef 4l.[90] have shown evidence
of a shoulder at high-q. Thus, experimental evidence exists of the existence of an
harmonic to the principal peak in a conserved order parameter system quenched in
a miscibility gap as suggested by the F(ON)(z) form.

Recently, Shinozaki and Oono[166] have studied the asymptotic F(z) for SD
in 3d at the critical composition by a (deterministic) cell-dynamical system. The
form factor they obtain agrees well witk with the Ohta-Nozaki form factor, away
from small q. In particular, they obiain a significant second peak. Their results
also satisfy Porod’s law and the small-q exponent is consistent with F(z) ~ 2 with
§ > 4. This result is in agreement with the MC results of Yeung.[157]
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Chapter 6

Results and discussion

6.1 'The data

Runs were performed both above and below 7. (597.15 K). Table (6.1) lists all the
runs reported in this thesis. Runs labeled with a single letter (A through W) took 2 s
(cf. § 4.4) and will serve for the early stage kinetics study (§ 6.2) while those labeled
with two letters (AA through EE) took 60 s and will be used to study late-stage
coarsening (§ 6.3).

For the data analysis, the last scattering pattern recorded before quenching
the sample is subtracted from all structure factors measured during the isothermal
aging. This subtraction removes any parasitic scattering and more importantly any
constant grain boundary small angle scattering intrinsic to polycrystalline samples.
The resulting structure factors are denoted as AS(q,¢). The size of the background
so removed is less than 25% of the scattering at a wavevector of .01A 7" and falls off to
5% at ¢ = 0.03A-1. In addition to removing any constant temperature independent
scattering, this subtraction also removes any equilibrium scattering contribution at
T.. In some cases, it will be necesszcy to correct for the absence of this temperature-

dependent scattering in AS{q,¢).

The time of recording of the first scan after temperature stabilization at the

140



Run [ ET (s) | 1| J {#bins | T(X)} |Run || ET (s)| I | J |# bins | T (K)
Farly stage study (2 s) O || 0.005 | 1 [400| 64 | 595.8
A |l 0.010 |1]200] 256 | 502.2 P || 0.005 | 1 |400] 64 | 596.5
B | 0.010 |1]200| 256 | 521.6 Q || 0.010 | 1 |200]| 256 | 596.8
C || 0.010 |1]200]| 256 | 541.4 R || 0005 2 (200 64 | 596.9
D || 0.010 |1]200]| 256 | 551.1 S || 0005 | 2 |200| 64 | 599.1
E | 0010 |1]200| 256 | 558.7 T | 0.005 | 2 |200] 64 | 599.5
F | 0.010 [1]200]| 256 | 572.8 U {0005 | 2 {200 64 | 6050
G Il 0610 |1]200| 256 | 587.1 v I 0.005 | 2 |200| 64 | 6065
H Il 0005 |1]400| 64 |588.1 | | W || 0.000 | 1 |20 256 | 611.8
I | 0.005 [1[400{ 64 | 592.3 Late stages study (60 s)
J |l 0.005 [1[400] 64 |5925 | | AA{ 0.010 |100| 60 | 256 | 51L5
K || 0005 |1]|400| 64 {5934 | | BB 0010 |100] 60 | 256 | 536.9
L | 0005 |1{400| 64 | 5934 |} cc | 0010 |100| 60 | 256 | 562.8
M || 0.005 |1/400| 64 | 5954 | | DD | 0010 |100] 60 | 256 | 577.9
N | 0005 |1]400| 64 | 5957 | | EE | 0.010 | 100 | 60 | 256 | 588.2 |

Table 6.1: List of runs reported in this work. All quenches are performed starting from the same
annealing temperature, T, = 689.9 K (cf. p. 92). T is the calibrated temperature (cf, § 4.4).

aging temperature, i.e. of the “quenched-in scattering pattern”, is chosen as {f = 0
ging P ’ EP

for the early stage study runs. Thus, the t=0 scan shows the amount of structure

that develops during the quench. Three such patterns are shown in Fig. (6.1).

The AS(q,t = 0) are modeled by a Lorentzian with maximum J, centered

about go 7 0 and full width at half meximum {FWHM) T,

AS(g,t=10) =

Iy

(9~ 90)* + (T/2)*

(6.1)

The value of Iy gives an indication of the amount of decomposition that has pro-
cecded during the quench. The solid lines on Fig. (6.1) show the result for best fits
to this model (the fits were performed over the range {0.020, 0.686] A~*). The best
fit values of the parameters Iy, T and gq for all 2 s runs are reported on Fig. (6.2). As
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Figure 8.1: Quenched-in scattering AS(g,t = 0} for three runs : (® ) above T, &t 606 K (run U),
(A ) immediately below T at 597 K (run R) and ( B ) for & deeper quench, at 541 K (run C}. The
solid lines show in each case the model Lorentzian (Eq. 6.1).

the quench temperature is decreased, the scattering maximum, Iy, is larger. Thus,
for deeper quenches, the quenched-in AS(q, = 0) increases. Also, with decper
quenches, gy is larger, reflecting the larger critical wavevectors associated with be-
ing farther from T.. The FWHM, I', appears to be less sensitive to the quench

temperature than the other two parameters.

Figure (6.32) shows “time slices” of the evolution of AS(g,t) during run C, i.e.
for a quench from 690 to 541 K. The points show the measured structure factors at
various times after the sample began to phase separate. The solid lines are fits to
the LBM theory discussed in § 6.2.3. Part (b) of Fig. (6.7) displays “g-slices” rather
than “time-slices” of AS(g,t). They are the time evolution of the structure factor

at fixed values of the wavevector g. The bold line shows the recorded temperature.

For all runs, both above and below T, it was found that the high g wavevectors

relaxed faster than the low g wavevectors. As evidenced in Fig. (6.3b), the relaxation
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Figure 6.3: (a) Stracture factors AS(g,?) during the early stage of spinodal decomposition at 641 K
(run C) at selected times after a quench from 690 K. Solid lines show best fit to the LBM theory
to the full 1.6 8 (cf. § 6.2.3). A representative exzor bar is displayed to the right. (b) AS(q,1) for
several fixed g. The bold solid line shows the tempersinre during the quench and during aging.
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does not occur monotonically; the scattering intensities at the two higher values of g
displayed (0.045 and 0.055 A-1) first increase, reach 2 maximum, and then decrease.
Thus, the evolution of AS(q,?) is nonlinear in time and hence does not display
exponential growth. The time evolution of the AS{g, ) displays the well documented
feature[2] of cross-over on the high ¢ side. However, as a consequence of the non
monotonic behavior, this crossover moves to lower g va'ues as the decomposition

proceeds. The AS(q,t) also sharpen as the maximum moves towards lower q.

The relaxation of composition fluctuations in the region above ihe top of the
coherent miscibility gap after quenches from T, to T; > T has also been measured.
Fig. (6.4a) displays the structure factors AS(q,t) at selected times during the reequi-
libration of fluctuations at 599 K after a quench from 690 K (run S). Solid lines show
the best fit to the LBM theory and will be discussed in § 6.2.3. Part (b) displays
the sa.nie non-monotonic behaviour seen for quenches into the unstable region of the
phase diagram, below T..

Figure (6.4) is representative of all the runs above T (S — W). As in Fig. (6.3)
for run Cin which T' < 7., in run S the wavevectors of higher g relax faster than those

" of lower ¢. Furthermore, a crossover of the tails is also observed. The non-monotonic

increase of AS{g,t) for 0.025 and 0.035 A~? also implies that the growtk is nonlinear.
These last two features are somewhat unexpected for a quench above T.. A priori a
linear, consequently monotonic, growth of AS(g, ) at all ¢ would bg expected since
the amplitude of equilibrium fluctuations increases as the temperature is decreased
in the one phase region, with ihe ensuing increase in scattering intensity over the
wavevector range measured. -

The measured nonlinear behavior in the runs sbove 7, can be attributed to
iwo causes. So far it has been assumed that the calibrated temperatures were exact
within the estimated standard deviation of 0.5 K during a run. However, some
temperature smearing probably occurs in all runs due to an uneven temperature
across the width of the sample with parts near the edges cooler than those near the

center. The edges may even be at temperatures below T, for the runs assumed to -
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Figure 6.4: (a) Stracture factors AS(q, t) during re-equilibration at 599 K {run S) at selected timcs
afier a quench from 690 K. Solid lines show best fit to the LBM theory to the full 1.6 s (cf. § 6.2.3).
A representative error bar is displayed to the right. (b) AS(g,?} for several fixed g. The bold solid
line shows the temperature during the quench and during aging.
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lie immediately above T.. This smearing is estimated to be of the order of a few
degrees. |

The nonlinear behavior is observed even during the run with the highest tem-
perature, at 612 K (run W). Thus temperature smearing could not account for all
of the nonlinearity. It is not unreasonable to expect nonlinear coupling between the
modes even if the quench is not crossing a transition temperature. A simple heuris-
tic argument can illustrate this point. During the course of the reequilibration of
fluctuations, the short wavelength fluctuations (higher ¢ modes) are in a local com-
position environment that depends on tl}e the longer wavelength fluctuations (lower
g modes). The high ¢ modes relax the fastest. However, as the slower long wave-
length fluctuations reequilibrate the local composition distribution changes and the
short wavelength fluctuations have to find a new equilibrium value. The observation
of nonlinear growth in the one phase region m;aa.ns that it does not constitute a sufli-
cient test to determine that a system is decomposing into two phases. It is therefore
necessary to measure the time evolution of the reequilibration of fluctuations in the
one phase region or of SD and to subsequently determine the sign of f” by fitting
an equation of motion for AS(q,t) in order to distinguish between the two.

Above T,, the nonlinear “up-and-down” behavior is more important nearer to
T. but occurs at a faster rate the higher (above T.) the temperature. It should be
noted that the ordinate scale on Fig. (6.4) is an order of magnitude less than that
of the AS(g,t) shown for a quench in the unstable region in Fig. (8.3).

1 This figure is based on an estimate by S. Brauer[167] of the parabolic temperature profile across
the width of Fe;B and Co3B ribbons. For these samples with a width/thickness aspect ratio of
1.5mm/25um held isothermally at about 673 K, he estimates the temperature difference between
the center and the edges to be ~ 35 & 10 K. However, in the work of this thesis, the temperatures
are between ~ 100 to 200 K lower and the Alyg:Zng 35 sample, though of roughly the same width
is only about 18 um thick (¢f. p. 86}, Thus, the tempezature difference between the center and
the edges of the ribbor is ot expected {o be as large. As in this work, the FezB and Co;B ribbons
were surrounded by ~ 1 atr:. of e so that convection was responsible for heat dissipation and

heating was provided by passing a current through the sample,
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Figure 6.5: Integrated intensities Q(t) for selected runs (a) below T, : M: A (502.2K); A: B
(521.6 K); V: C (5414 K); @: E (558.7K); ®: G (587.1 K); O: J (592.5 K) and (b) above
T.: B:5(599.1K); &: W (611.8 K). The time ¢ = 0 is the time of the first scan afler the
aging temperature has been reached (corresponding to the quenched-in AS{(q,t = 0}). The zohd
lines aze obtained from fits to Eq. (6.2) (see text).

148



#f::;lzr-.:“"

7’4.*

To close this survey of the data, the time evolution of the integrated intensities
Q@(t) is described. From sum rule (2.25) Q(t) is expected to go asymptotically to
{c — ¢co)?. As in the expression for the sum rule, the integration over the measured
q-range (0.01 to 0.085 A~?) is performed on the structure factors §(g,t) with no
high temperature scattering subtraction, Above T, the time-dependent @(t) should
reflect the reequilibration of the composition fluctuations. Below 7., the main part
of Q(t) should result from the formation of regions of the phases @ and «'. The
contribution to Q(t) by equilibrium fluctuations within each region and at interfaces
should be small and should be decreasing as {(f) increases with time during the

decomposition.

Figure (6.5) shows Q(t) for selected runs both below and above 7.. Rather
than the expected asymptotic increase to a fixed value for runs below T, Q(¢) is
found to increase monotonically with {ime with no apparent saturation in all runs,
as shown in Part (a) for selected runs, Indeed, after a rapid exponential increase,
Q(%) is scen to go asymptotically to a line of small positive slope. Similarly, for all
runs above T, after a rapid exponential increase, Q(t) follows a linear relationship
with time, however, with a small negative slope as exemplified for selected runs in
Past (b). |

The fact that Q(t) asymptotically approaches a linear time dependence rather
than a fixed constant could be interpreted as a process with two time constants: a

fast and a slow time constant. The integrated intensities Q(t) were modelled by®
Q(t) = C + (A + Bt)(1 — exp(—t/to)). (6.2)

With this model, the fa.ét time constant is #p and the slow one would be to first order
A/B. The amount of quenched-in structure can be estimated from the value of €
while the coherent solubility limit can be estimated by C + A. Figure (6.6) shows
the obtained time constants and values of C for all runs A — Z. Aplot of C + A
will be given in § 6.2.4 (Fig. 6.14). The unexpected decrease in Q(t) after 0.2 s for

3The constant A in Eq. (6.2) should not be confused with the interface area density defined in
Eq. (2.31).
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T > T, may be due to scatiering moving behind the beamstop.

The time constants t; and .4/B are independent of the intensity normalization
described in § 4.3. However, the value of A4 + C depends directly on this normal-
ization and the sum rule instructs that if the overall normalization procedure to
obtain absolute structure factors is correct, then (A + C)3 should fall on the coher-
ent solvus well below Te. This is in fact the case, as will be shown in the plot (6.14)
(cf. § 6.2.4).

6.2 Fit to early stage theories

6.2.1 An attempt at the CHC linear equation

As a first analysis of the time-evolution of the early stages data, the measured struc-
ture factors are compared to the evolution predicted by the CHC linear equation
introduced in § 3.2 (Eq. 3.6). The CHC equation predicts the structure factor at any
time from a boundary value, at ¢t = 0, for example. For an infinitely fast quench (a
“square quench”), the initial structure factor would be the quenched-in equilibrium
scattering at the anneal temperaiure, Soz(g)lr, (cf Eq. 2.19). The CHC equation
predicts that below T. modes with ¢ < ¢/ will grow and those with ¢ > ¢, will de-
cay, where ¢ is the wavevector of crossover as shown on Fig (3.4). Furthermore,
modes for which the amplification factor R(q) (c¢f. Eq. 3.2) is positive will grow
exponentially without bound. These are the modes with wavevectors ¢ < ¢. (< ¢.)
(the critical wavevector g, corresponds to the reciprocal of the mean field correlation
length, cf. Eq. 3.4). On the other hand, modes with g > ¢. asymptotically evolve
to the equilibrium structure factor at the aging iemperature, Soz(q)|r,.

Since no quench can be infinitely fast, starting with a quenched-in structure,
and observing its isothermal evolution should be a sufficient test of CHC in the time
regime available in the experiments performed. To obtain values for the parameters
f", x and M at the aging temperature T, it would appear sufficient, since the CHC
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equation of motion is linear, to perform a fit to the measured structure factors in

the range ¢ > ¢. using

S(g,t) = S(g,t) + [Soz()lr, ~ $(g, 1)) x {1 —exp(2R(q)(t' - ¢£))} (6.3)

with ¢’ > t. This model equation has the advantage that no knowledge of the high

temperature equilibrium structure factor Soz(g)|r, is required.

In practice low g small angle scattering due to grain boundaries, has not been
taken into account in Eq. (6.3). If this scattering is independent of time and tem-
perature, then taking differences between the measured S(gq,t) at two times, cancels
it out. This works for the S(g,t') and S(g,t) outside the brackets in Eq. (6.3) but
it is not possible to cancel the constant low g small angle scattering which is part of
S(q,t) inside the brackets. Thus, instead of using the measured S{q,t), the AS(q,t)
introduced in § 6.1 which have the last scan before the quench subtracted should be
used. However, as pointed on p. 140 all AS(q,t) then have the high temperature
equilibrium scattering resulting from thermal fluctuations Soz{q)|r. (Eq. 2.19) sub-
tracted. This quantity should be added back since these fluctuations represent the
initial state that subsequently evolves in time. Hence, to test the CHC equation,
it is necessary to use an expression where knowledge of Soz{q)!r, is required. For
convenience, Soz(q)lr, and Soz(g)|r, are rewritten, using ¢ (cf. Eq. 3.3) as

_ ksT
Soz(q) = FERTOL (6.4)

The fits should therefore be to

AS(g,t) = AS(q,0)

ksT kgT )
———| = 148(q,0)+ —5——
w(g2 + 9%, ( @O+ v 7. }
X [1 — exp (~2qunq(q3 + 2q2)t)]T' . (6.5)

This expression yields the correct asymptotic result for ¢ > ¢. : lim,_,oo AS(E) =
Soz(9)lr, — Soz(@lr.-

Fig. (6.7) shows the measured AS(q,t) for seven iimes during the aging for a
relatively deep quench, run C (541 K), and the solid and dashed lines correspond
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Figure 6.7: (a) Evolution of the structure factor AS(g,t) during the isothermal aging at 541 K
(run C). The initial AS(g,? = 0) corresponds to the normalized quenched-in pattern with the last
- high temperature scan before the quench subtracted off. (b) “g-slices” (see text). The dashed lines

show the best fit predictions from the CHC theory (cf. Eq. 6.5) after a fit to the first 0.2 s (solid
lines).
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to the model equation (Eq. 6.5). The annealing temperature parameters used were
taken from § 4.4. The best fit values obtained for the parameters at the aging
temperature from fitting to the first 0.2 s (20 scans) were x = (4.8 £ 0.1) x 107*
J/m, f" = (—1.85 4 0.07) x 10" J/m® and M = (1.13 £ 0.04) x 10~ m®/Js. The
equation of motion is then solved with these parameters for the times 0.4, 0.8, 1.2
and 1.6 s to show how the predicted structure factors deviate frora the measured
AS(g,t) and present an increase which is slower than exponential growth. The
apparent success of CHC at the earliest times is intrinsic to fitling an exponential
relationship that propagates the initial structure factor, in a time regime where the
profile does not change appreciably. The real test came from systematic fits to
increasingly longer time domains (i.e. up to 0.05, 0.1, 0.15, 0.2, etc. seconds). In
all cases, a breakdown of CHC with respect to the measured AS{(q,t) is obtained
in the scans following those included in the fitting range. For instance, when best
fit structure factors are computed up to 0.1 s, the structure factors predicted for
t = 0.2 s depart appreciably from measured AS(q,t). As the quench temperature is
set nearer to T, (T' < T.), the best fit to the model progressively reproduce with less

success the structure factors over the time range of the fits, and this at increasingly

earlier times.

The fact that nonlinear effects are observed even at temperatures in the neigh-
borhood and above T. as displayed in Fig. (6.4) means that the CHC linear equation
cannot describe the measured time evolution of AS(g,t) at these temperatures (the
nonlinearity is observed at temperatures beyond the estimated temperature smear-
ing from T < T.). Since f" increases with temperature above T, in binary alloys in
which & > 0, Soz(q) monotonically increases with temperature for all g. Thus the
monotonic bekavior built-into the CHC equation means that it is not even possible

to find scattering wavevectors where the intensity would decrease at any time as

observed in the data.
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6.2.2 The LBM scheme

In this first nonlinear analysis of the data, the sample is assumed to be at critical
composition and the coherent miscibility gap is assumed to be symmetric about that
composition.® In the LBM theory, the density probability distribution functional is
taken to be the sun of two Gaussians with peak positions b; and b; and width o
(¢f. Eq.5.49). Assuming critical composition of the sample brings the simplification
that by(t) = by(¢) = b(t). Furthermore, combined with the choice of the “c*” model
it also means that %’;ﬂco = 0 in the expression for A (Eq. 5.47).

To the fitting parameters &, r, u and M, two final parameters are required, the
wavevector cutoff g,,,. and by. Integrals in reciprocal space have to be evaluated up
to a cutoff (¢f. p. 105). This cutoff should be of the order of the inverse mean field

correlation length ¢! and for the corresponding real space coarse-graining length a,
24
ez = [657)3 /a. (6.6)

In the limit where ... goes to infinity, the existence of g2 tails in the structure fac-
tor makes the integrals over S(g) diverge. For instance, the integral over Soz(q)|r,

(Eq. 2.19) is not bounded for large g since the integrand is constant at large g, i.e.

47!‘kBqu _47rk5T
Bgren T s -1

Instead of starting the LBM calculations with a system in a single phase state
at t = 0, as described in § 5.4.1, it is assumed that a certain amount of phase sep-
aration has occurred during the quench. The LBM equation of motion is nonlinear
and history dependent. Given an initial scattering pattern the amount of phase
separation determined by the parameter b(t) is needed jor the LBM equations to
generate Syppm{g,t’) at all later times. Explicitly, for £ = 0, to account for the
quenched-in AS(q,t = 0}, the parameter by = 5(0) is set to a nonzero value. Thus

the composition distribution is already assumed double-peaked at the earliest scans.

3The second of these conditions is known from § 1.3 not to be satisfied and a re-analysis with

%—:{- # 0 and results for off-critical quenches are forthcoming.[168]
[ )
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When the Landau-Ginzburg coarse-grained free energy (Eq. 5.3) is used with
the “c*” approximation (Eq. 5.4), then the calculation of 4 (Eq. 5.47) simplifies to:

(e
A= T G
e (B0
= 'r+-6- 3{(8c)*) + (5 (6.8)

where the cumulant {(6¢)*). was defined in Eq. (5.51).

The initial structure factor given to the LBM algorithm, Sy pm(g,t = 0), con-
sists of two parts. One is the quenched-in structure factor AS(q,t = 0) parametrized
by a Lorentzian centered at zero, Eq. (6.1). However, as in the casc of the CHC equa-
tion, as well as the constant term due to grain boundary scattering, the subtraction
has removed the high temperature equilibrium scattering nceded by LBM. Thus, the
second part is the estimate of the temperature-dependent scattering for the equilib-
rium fluctuations at T, Soz(q)|z, (Eq. 2.19). This contribution was estimated from
the temperature dependence of the scattering above T in § 4.4. Although the values
estimated are small (0.034 x 107* m? at 0.01 A-') it is important to include them.
Afterwards, the theoretical structure factors Sypm(g,t) have Soz{g)lr, subtracted
to compare with data, thus compensating for the missing Soz{g})|r, in AS(qg,1).

The assumptions of a critical quench and a symmetric gap imply that
bi(t) = by(t) and

((80)) = {(6)) = 0 (639)
at all times. Integration of the parametrized form of p(8c) (Eq. 5.49) gives relations

to compute the averages {{8c)?}, ((§¢)*). and {(8¢c)®) at any given time in terms of

the parameters b and o:

{(6¢)*) = o +b7, (6.18)
((5c))e = —2b%, (6-11)
{(6c)®) = 150° 4+ 450%8% + 150%0* + b°. (6.12)

The differential equations for the time dependent behavior of ((8c)?) and
{(8¢)*)c are derived using the Fokker-Planck equation (Ey. (5.12). These differ-
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ential equations depend on the higher moment {(6c)®}. New averages are computed
after each time increment step and are then used to uniquely determine b and o.
Thus a new form of p{éc) is established which, in turn, allows the computation of
the average {(6¢c)®). This sequence of computations complete one iteration cycle.

The computation procedure is thus as follows.! At any time ¢, Sygm(q,t), b(t)
and o(t) are known. The algorithm loops through the following for each time step
At:

e Compute {(6c)?) and {(6c)*). at time ¢ + At. From the equation of motion for
the single-point distribution function, using Eq. (5.14):

%((&)2) — oM [W+kBT (-Oiﬁ-qi‘)] (6.13)
d _ {(8c)*)e 3 5 @ )8 — ((6c)%)?
oo, = o [wlbe S (o - LIT) (oo
with
W= —ﬁ'[)qm ¢*(rq* + A)Sym(g, t)dg, (6.15)

where A, {(6c)?), ((§¢)%) and ((6c)®) are calculated using Egs. (6.8), (6.10),
(6.11) and (6.12) respectively and definition (5.51) for {(6¢)%)..

¢ Compute Sypm{g,t + At) from Eq. (5.46).

e Using Eq. (6.11), b(t + At) is obtained and then using Eq. (6.10), o(t + At) is
obtained.

The effect of the short-wavelength cutoff inherent to the LBM scheme was
investigated in two different ways. In the first, gnq. was fixed independently of T
and r. This would be equivalent to a fixed temperature independent coarse-graining
length in real space (cf. Eq. 6.6). In the second procedure the cutoff was constrained
to be proportional to the inverse of the correlation length (Eq. 5.37)

Frmax = Q/E

= ay/-2r/k (6.16)

*The code to compute Sy, gp(g,?)} was provided by K.R. Elder.
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for T < 7..° The motivation for this choice is determined by the fact that the length
scale in the description of SD dynamics has to satisfy the conditions for a mesoscopic
scale as discussed on page 103, The proportionality constant a should be of order
unity. With Eq. (6.6), the coarse-graining length is then

- £, (6.17)

6.2.3 Fit results

Fits have been made to the mcasured scattering patterns for all temperatures inves-
tigated. With fits performed at a fixed g, . independent of T' and », the temperature
dependence obtained for the parameters is unphysical. Specifically, best fit | r | were
found to increase as T, is approached although one expects r — 0 as T — T.. With
fits performed such that the cutoff g4, satisfies Eq. (6.16) with a fixed and nomi-
nally chosen of order unity, the fitting results in the expected decrease of | r | as T’ is
approached. However, if a different value of a is picked, an equivalent fit is obtained
and the best fit values of r and u differ but x, gno. and M are unaffected. If a is
allowed to vary during the fit with the other paramncters &, r, u, M and by, then the
fitting procedure dces not converge indicating that the fit is overdetermined. With
a fixed a, the second procedure corresponds to the use of a temperature dependent
coarse-graining length since { is temperature dependent {¢f. § 5.1). In the remain-
der of this dissertation, the results are ihus analysed with the cutoff constrained
proportional to ¢ . The value o = 2.59 has been chosen for reasons to be given in
§6.2.5.

For all runs, fits were performed to all scans up to 1.6 s, t.e. to 160 or 320
AS(q,t) for scans every 0.01 or 0.005 s respectively. The agreement between best fit

St.am(g,t) and AS(q,t) is very good for quenches below T..° This was exemplified

YFor T > Tty Gunaz = /1 /K.
8As mentioned on p. 156, to compensate for the missing Soz{g)|r, in the A5(q,t), the theory

S1.pm(g,?) have this quantity subtracted off on all plots. However, for the discussion of the
fits, these curves will be referred to as S gps(g.t), and the removal of the Soz(g)|r. will not be
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in Fig. (6.3a) for run C (541 K), where best fit theory Sypm(g,%) are shown as
solid lines. In this run, a scattering pattern was measured every 0.01 s (ET = 0.01,
¢f. Table 6.1), and thus 160 complete AS(g,t) were fit. The corresponding best fit
parameters for this run are K = 4.54£0.01 x 107" J/m, r = —4.774£0.01 x 107 J/m?,
2 = 1.368 £ 0.001 x 10° J/m® and M = 1.145 4+ 0.009 x 102" m®/Js. The value
of the parameter & is close to that obtained when fitting the first 0.2 5 with the
CHC equation of motion and the values of M are identical (cf. p. 154). However,
the parameter » is larger by more than a factor of two from the best fit f* in the
CHC equation of motion. This difference is somewhat expected since there is an
additional free energy parameter, u, in the LBM equation of motion. An estimate
of f using Eq. (5.4) gives

F(6c) = r + 3u(bc)*, (6.18)

and a value of | 7 | larger than | f* | since 7 < 0 and 3u(6c)* > 0 after phase sepa-

ration starts.

All fits have comparable quality as that shown in Fig. (6.3) and show that this
model effectively parametrizes the data. Systematic fits were also performed for all
runs for times up to 0.2, 0.4, 0.8 and 1.2 s and in all cases it was verified both that
the best fit values for all parameters did not vary beyond one standard deviation
and that the extrapolated Spm(g,t = 1.6 s) was still of comparable quality of fit
to the AS(g,t = 1.6 s) as that which resulted from fitting the full 1.6 .7 In the
last section that deals with the comparison of AS(q,t) with the LBM equation of
motion, § 6.2.7, a breakdown between Syppm(g,t) and experimental AS(g,t) does

occur but at times beyond those investigated in the early stage ruas.

The relaxation of composition fuctuations after a quench to a temperature
above T, (r > 0) is not described with equal success as the phase separation below

T.. Nevertheless, the results are still quite satisfactory. In Fig. (6.4a), for run S

mentioned explicitly.
"This is in sharp contrast with the observation on p. 154 that the structure factors computed

using CHC systematically departed from AS(g,1) after the time interval of the fit.
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(599.1 K), the solid lines display the best fit S;,pm(g,£) to the full 1.6 s. At high
wavevectors, best fit Sy, pm(g,t) track relatively well the experimental AS{g,t). The
generated Sy pm(q,t) present a non-monotonic growth as do AS(gq,t) even though
the value of the free energy parameter r is slightly positive. At low ¢, the mea-
sured AS(q,t) grows faster than the model Sy pp(q,t). The best fit values of the
parameters for this run are £ = 1.03 £ 0.01 X 107'® J/m, r = 8.7 £ 1.9 x 10* J/m?,
2= 33+ 13 x 10" J/m® and M = (7.6 +0.3) x 10-** m®/Js. As can be noticed
from comparing these values with the best fit values for run C quoted above, error

bars for the free energy parameters (r and u) for runs above T, are much larger than

for deep quench runs.

Best fit values of &, r, u, M and by have been obtained, for all early stage
runs, both above and below T,.. Best fit results for the first four parameters are
summarized in Fig. (6.8) for fits to 1.6 s. The parameter by, which characterizes the
amount of quenched-in structure is shown in Fig. (6.9). It increases with the depth
of the quench and scales with the integrated intensity of this scaltering (about 60%
of the final scattering for a = 2.59). The values of b, are consistent with a smooth
extrapolation of b(t) back to 5(0) for each run. The values of the free energy gradient
parameter, x, are positive, as expected for a phase separating system and are of the
same order of magnitude as the estimates shown in Fig. (1.5). They depend little
on temperature and peak slightly below T,. The parameter r is monotonic and
goes through zero at T, in agreement with the temperature calibration from the
single phase equilibrium structure fators {¢f. § 4.4). The parameter u varies slightly
with temperature showing a slight anomaly at T.. The mobility M is an increasing
function of temperature, also showing an anomaly near T.. The curves in Part (d}

of Fig. (6.8) are based on tracer diffusivities measurements and will be described in

§ 6.2.6.

During the fitting, the two free energy parameters r and u where highly anti-
correlated. In practice, as 7 < 0 and u > 0, this means that these two parameters

were varying the same way in absolute value during the search for best fit. Fur-
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Figure 6.9: Best fit values of by for all runs with T < T, for a = 2.59.

thermore, when r and u were both adjusted, i.e. free to vary, the goodness of fit
estimator, x?, was relatively insensitive to large anticorrelated variations in the val-
ues of these parameters. These observations turn out to contribute to an interesting,
fortuitous but systematic feature of the theory and will be further elaborated upon

in § 6.2.4.

In the study of relaxation, the fits are not very sensitive to the value of the free
energy parameter r. This suggests that it is only possible to obtain an upper bound
for this parameter since it affects Sppp(g,t) in the low ¢ range only (< 0.02 A-1),
This is easily seen from the expression of the equilibrium structure factor (Eq. 2.19).
When r is increased by an order of magnitude the Soz(g) starts to differ appreciably
only at values of ¢ < 0.02 A=, The same remarks apply in the calculation of W
(Eq. 6.15) where again any wavevector ¢ such that r < xg?, will not be affected by
a change in r. This point will also be reexamined in § 6.2.4.

To complete this survey of best fit results, the effect of a change in the calibra-
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tion factor in Eq. (4.14) on the model parameters is examined. Finally, the values
of the thermal noise term which was introduced in the scaled equation of motion
(Eq. 5.32) and the reduced time also used in that equation are cumputed for all

runs, using the best fit parameter values.

The effect of the overall intensity calibration of AS(g,t) on the best fit pa-
rameters can be summarized simply. If the calibrated structure factors, AS(q,t),
are scaled up by a factor J, i.e. AS — JAS, then s ~ /T, v — /T, v —u/J?
and M — JM, and the quenched-in AS(g,t = 0) and the equilibrium Soz(q)|r, are
increased by the same factor J.

Table (6.2) lists the calculated values of ¢ using Eq. (5.33) and of 7 using
Eq. (5.29) for a = 2.59 for all the runs to 1.6 s. The values of ¢ are relatively
independent of the temperature but are relatively high, indicating a highly nonlinear
situation. The values of 7 peak near the maximum decomposition rate temperature
(between 551 and 559 ). Closer to T., the values of 7/t decrease, being of order
unity for the runs closest to 7.. The dimensionless 7 and € are unaffected by the

overall intensity calibration of AS(q,¢).

6.2.4 Coarse-graining length dependence of r, u, kK and M

The dependence of r, u, k and M on « was investigated by fixing o in the range 1/4/2
to 2v/2 and computing best fit values. The goodness of fit estimator, x?, did rot
change, indicating that the fits obtained were equivalent. As pointed by Eq. (6.16),
this allowed the investigation of the effect of the cutoff in terms of a fixed number
of inverse correlation lengths at all temperatures on the values of the parameters
and consequeatly, of the obtained phase diagram. It was found that r ~ a2 and
u~ a”® and that « and M were unaffected by the choice of a. In other terms,
the constant of proportionality between ¢, and \/TT/” could be varied without
affecting the quality of the fits provided = is divided by a® and u is divided by o®.
From the a-dependence of r and u and Egs. (5.29) and (5.33) r ~ a™* and € ~ a2,
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T € T/t

(K) (0.01 5)

502.2 5.01 + 0.69 0.505 + 0.117
521.6 3.03 + 0.09 1.049 £ 0.022
h41.4 484 £+ 0.01 1.145 + 0.007
551.1 492 £+ 0.09 1.769 + 0.036
558.7 4.87 £ 0.01 1.620 £ 0.008
572.8 4.60 £ 0.63 0.725 £ 0.162
587.1 440 + 90.07 0.176 4 0.003
589.1 442 £ 0.09 | 0.171 + 0.005
592.3 494 £ 0.50 0.144 + 0.024
592.5 4.62 £ 0.03 0.080 + 0.001
593.4! 4.96 + 0.11 0.088 + 0.002
593.4% 5.53 + 0.09 0.128 + 0.003
595.4 4.97 £+ 0.10 0.061 -+ 0.002
595.7 592 £ 0.13 | 0.071 £+ 0.003
595.8 547 £ 0.11 0.085 £ 0.002
596.5 740 £ 0.18 0.033 £ 0.002
596.8 9.50 + 0.53 0.015 + 0.002
596.9 6.68 + 0.11 0.038 + 0.001

Teble 6.2: Values of € and 7 for & = 2.59 as calculated from Eq. (5.29) and Eq. (5.33). The errors
are calculated from the standard deviations of best fit x, », u and M.

1Run K.
2Run L.

The r ~ a~? scaling implies a unique wavevector cutoff @maz for each temper-
ature. Figure (6.10) shows the value of o, selected by the fitting procedure for
all runs A — Z. It increases with the depth of the quench (gma; = 0.375 A1 at
541 K), and is minimum non-zero near T, (gmqe = 0.u34 A~? at 507 K). Near T.,
¢maz €ven moves below the detector window i.e. below the maximum ¢ measured.
In these instances, the modes with wavenumbers above @maz 8ppear to have already

reequilibrated at the time of the first isothermal scan at T,. This will be further

elaborated below.
The separation of ((8c)*(t)) into b*(t) and o?(t) (¢f. Eq. 6.10), including the
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Pigure 6.10;: Wavevector cutoff gmas selected by the fitting procedure for all early stage runs when
@mas i8 constrained proportional to §~! following Eq. (6.16).

t = 0 values, depends on a. However, (§c*(t)) is independent of the choice of « since
it is calculated directly from the data. As a is increased, b(t) (and by) decreases
while ¢(t) increases. This implies that the choice of a affects the extent to which
the LBM algorithm assumes the decomposition has proceeded before the isothermal
aging began (i.e. before the first scan after the quench was recorded). Figure (6.11a)
shows b(t) for both @ =1 and a = 2.59. Part (b) of this figure presents —A(t) in
each case. There is no obvious quantitative scaling relationship between either A(t)
or b(t) and a. For all runs below T, the model equation used for the time dependence
of the integrated intensity, Eq. (6.2) was also applied to the time-dependence of b(t)
(above T, b{t) = 0 for all times). In all cases, Eq. (6.2) tracked very well b(¢) as
shown by the solid lines on Fig. (6.11a) for run C. The obtained best fit values
of A + C were found to be relatively independent of a. These are reportegl later

in Fig. (6.14). Also, going from a = 1 {0 a = 2.59, by analogy to the linear CH
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Figure 6.11: Time-evolution of b(t) (¢f. Eq. 6.10) and of the coupling term A(t) (cf. Eq. 5.47) for
ron C (541 X) witha=1( O) and @ = 2.59 ( O ). Every second point has been plotted only.
The solid lines in (a) are best fit curves to BEq. (6.2) (see text).

equation, the “critical” wavenumber ¢, calculated using Eq. (3.3) decreases from
0.376 to 0.145 A-". In the CH theory, ¢, corresponds to the location of the crossover
point, and thus, extending the analogy, the latter value is more commensurate to

the observed location of the crossover point in the early scans.

Since {(6c)*(t)) consists of two terms (¢f. Eq. 6.10), Figure (6.112) gives an
incomplete picture of the SD process. Figure (6.12) presents the calculated one-
point composition density functional p(éc) for discrete values of &c at selected times
between 0.01 and 1.6 s for « =1 (a) and a = 2.59 (b). This figure clearly illustrates
the influence of a on the range of the decomposition process assumed in the best
fit LBM result. For instance, at a = 2.59, Fig. (6.11a) shows that the value of b(t)
starts off at about 60% of the asymptotic value reached. The corresponding time
evolution of p(&c) (part b) displays a major change in profile, progressing from a

single broad peak distribution to one in which the differentiation of two symmetric
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Figure 6.12: Calculated time-evolution of the one-point composition deasity functional, p(t), for
run C (541 K) with {a) & = 1 snd (b) a = 2.59 at ¢ = 0.01, 0.40, 0.80, 1.20 and. 1.6G =. The arrows
indicate the direction of the change in the profile of p{éc) as SD proceeds.

peaks about 1-b(t) becomes more ovbvious. For a = 1, Fig. (6.11a) showed that the
separation into domains of distinct phases was near completion in the decomposition

stages captured, For this o, the evolution of p(éc) (part a) indicates that most of the
composition fluctuations are occurring about compositions which are well defined
and near the final b(¢).

Fig. (6.13) shows the breakdown between the two terms contributing
to 8S5ysm(q,t)/0¢ in Eq. (5.46) (solid curve).  The dashed curve gives
~2M ¢*(ng® + A)S1pm(9,t) and the dotted curve gives 2MkgTq?. The salient fea-
tures displayed by the solid curve are that for any given time (i} a wavevector will
grow at a maximum rate, (i) another will be stationary (a time-dependent cross-over

point) and (iii) high ¢ modes, such that

2Mg*(kq’ + A)S pm(q,t) ~ 2MEpTq’ (6.19)
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Figure 6.13: Contributions from the amplification term —2M ¢*(xg® + A)S,aa(q,t} (dashed line)
and the thermal term 2MksTg® (dotted line) to the time evolution of S;pa(g,1) by the LBM
equation, The values used for the parameters correspond to best fit results for run C (541 K} with
a = 2.59. For each time, the left arrow points to the value of g # 0 for which 8S,5u:(g,t)}/0t =0
and the right arrow is a guide to the eye to indicate the lower limit of the g-rangs for which
0S1pa(q,1)/8t essentially vanishes.
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have reequilibrated to thermal equilibrium at the aging temperature t.e. they are

described by Soz(q)]:r‘.
Similarly to the CHC equation (Eq. 3.6), condition (6.19) indicates that the
asymptotic S pm(q,1) is reached at a given ¢ when

kgT

Suamig,t) = e+ A

(6.20)

However, in Eq. (3.6), only modes of wavevectors for which the time-independent
R(q) < 0 will reach equilibrium. In the LBM scheme, A reflects the mean field
coupling between all the modes and is thus time-dependent. In Eq. (6.8}, with
r < 0,u > 0and {(§c)}*). <0 (cf Eq. 6.11) the net eflect of an increase in {(6c)?) is
that | A | decreases with time. Thus, the threshold value for modes to grow or decay
is time-dependent and moves towards smaller ¢ in time. As the cross-over sweeps
by a given wavevector, the intensity at this ¢ which has been increasing until then,
starts to decrease {owards the equilibrium intensity. The decrease of A with time
is also responsible for the slower growth of modes for Sy gm{g,t) than with linear
theory exponential growth. Linear theory would be obiained by keeping only the
first term (r) in Eq. (6.8).

Point (iii) can equivalently be arrived at from the LBM algorithm (cf. p. 157).
The quantity W defined in Eq. (6.15) provides the mean field coupling between the
modes. In Eq. (6.13), the time derivative %((6‘3)2) will vanish when W = —%&—qumx,
ie.

1 Imax k T
(zw)sjo ¢*(5q" + A)SLpm(q,t)dg = 1(?«2 o - (6.21)

Any increase of ¢, beyond a sufficiently large value will contribute to an equal
increment on both sides of this equation. Thus modes beyond this gn.. do not
contribute to %((&)2). For large g and ¢ the Sy pm{q,t) that would satisfy this
equality is again given by Eq. (6.20). Thus, although Eq. (6.21) is never satisfied
when the integral is performed over the entire ¢g-range at any time during SD, the

contributions from high ¢ modes to both sides of Eq. (6.21) are equal when condition
(6.19) is valid. Thus reequilibrated modes do not contribute more than equilibrium
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thermal noise to integral (6.15), that is they decouple from lower wavenumber modes,
As the decomposition progresses, modes of successively lower ¢ stop contributing to

the mean field coupling.

As it turns out, the value of g, sclected by the fitting procedure is in the
q-range where Eq. (6.19) is satisficd immediately after the quench. For instance, in
Fig. (6.13), the value of ¢,z picked by the fit to LBM is 0.375 A-t (run C). This
is beyond the right arrow in Part (a) which indicates (as a subjective guide to the
eye) a lower limit for the g-range such that 85y 3pm{g,t)/3t — 0. Since modes at
progressively lower g values have reequilibrate:! as the aging proceeds, guq. could
reflect the highest ¢ modes thai have not yet reequilibrated by the timne the first
scan after the quench is recorded, i.e. in AS{g,t = 0). Under this assumption,
as faster quench rates are achieved to a given aging temperature, an increase of
gmaz 15 expected. It is not clear that an experiment independent significance can be

assigned t0 Qmqz for cases where the quench is not ideally instantaneous.

Since the free energy parameter r always appears summed with xq? (¢f. Egs. 6.8
and 6.1b), it mostly contributes to the computations at low ¢. Thus if r is in
the range where it is small with respect to xq?, changing its value will have litile
influence on Sypm(g,t). Furthermore, since the detector imposes a low ¢ limit on
AS{q,t), there is no direct comparison with Spgpm(¢,t) in the very low ¢ range.
Thus in that g range, the value of 7 affects S;gu{q,t) only through the integral in
expression (6.15), t.e. the mean field coupling. But as ¢ — 0 the integrand also goes
to zero and thus contributions to the integral become smaller. Thus, the fits are
not sensitive to changesn r when the value of this parameter is small. This lack of
sensitivity for » can be used to explain the observed scaling of r and u with powers
of a. Since gnq. is uniquely picked by the fitting algorithm for each run, the value
of the parameter r is completely determined by the choice of a in Eq. (6.16) and
has to obey r ~ a~2. That is to say, the value of r does not affect Sy pp(g,t) in as
much as + is then chosen so that the numerical value A(¢) accounts for the coupling

between modes (Eq. 5.47) in a rescaled phase diagram (¢f. Eq. 5.5) and produces

170



very similar Sppm(g,t). This ties in well with the anticorrelation between r and u

during the fits reported in § 6.2.3.

The scaling or r and v with a was verified to be accidental by observing that
exirapolation of Sypm(g,t) for much longer times (up to 10 s) did not produce
rigorously identical results for @ = 1/v/2 and a = 1.

The a-dependence of 7, u, and & can also be examined by rewriting the expres-
sions for r, u and « given in Chapter V (Eqgs. 5.55, 5.56 and 5.59) using the defining
equation for a (Eq. 6.17) and the relation between a and the coarse-graining length

a (Eq. 6.17) as

_ 1 (ksTfo) ,
ro= T 6w (W) Imaz (6.22)
. 1 kBTfO 3 '
U= a3 (W) Imaz (6.23)
a? (kgTfo
K = 1252 (—(,IS%_ Fmaz - (6.24)

It is possible to obtain the conditions that r ~ a™%, u ~ o2 and that s does not de-
pend o2 « from the three equations above by setting fo ~ a~! since ¢g = \/:r/—u ~
all?,

However, this raises a contradiction when considering fp as introduced in
Eq. (5.52). According to the LBM paper(7], the dependence on a of the intensive
free energy f(¢) should be comprised in fy, the only adjustable system dependent
parameter, i.e. fo ~ a™® is expected. This a scaling of f, is obtained by rewriting

the susceptibility sum rule, Eq. (2.23), in terms of Eq. {5.52),

03¢2
5(0) = —3_ 6.25
( ) fo@lt(l) ( )
and also using Eq. (2.22) for the differential susceptibility the following expression
for fp is obtained :
e (L) B (6.26)
" \ao/ %@"(1)° '
Next, using Eq. (6.17) and the power law relations listed in Table (1.1) this equation
becomes .
¢ 6’ fo Bt —3' 284"
0= '0?' (';; —C—éﬁfl_)e (6.27)
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where ¢ is the reduced temperature as defined by Eq. (1.2). In this equation, £ is the
critical amplitude of the correlation length, C' that of the differential susceptibility

and B that of the coexistence curve. Assuming hyperscaling to hold (i.e. Eq. 5.39),

fo can thus be written as :

6x2 (£\° B2
for 7;‘5;‘ (;;) W . (6.28)

This derivation produces the fi ~ a™ scaling. However, the observed accidental
scaling of » and u with « and hence of the phase diagram (which is the topic of
the next section) implies that the critical amplitudes would also scale with a. The
natural scaling relations to assume for a “c*” free energy, based on the a scaling of
r and u, are B ~ a, C ~ o and & ~ a. Thus, Eq. (6.28) then produces fo ~ a™!.%

According to Equation (6.28), fo is expected to be temnperature independent.
Rewriting Equation (5.60) to relate fp to « and e,

_ 6n%1

fo= (6.31)

@ e
and ucing the values of € tabulated for @ = 2.59 in Table (6.2) gives f, ~ 0.25 with
a scatter between temperatures comparable to that of e. Langer et al.[7] have pro-

posed an estimate of fy using Eq. (6.28) with numerical estimates for the simple-

cubic Ising model[11,173] of B = 1.57, C' = 0.193 and &,/ao = 0.248. The value they

81t is easy to propose a simple situation where the observed accidental scaling would result. If

2 4
¢/ds € 1 then (7’%) > (3%) and Eq. (5.54) becomes

{(¢/ds) ~ "%(Wtﬁs): : (6.29)

From the dependence ¢s ~ al/?, this gives @ (3%) ~ a~!, This makes the intensive free energy
f(#) ~ a=? according to Eq. (5.53). Pinally, rewriting Eq. (5.52) as :

fl¢) = (%) Fo®(¢/$5)dmer (6.30)

it can be seen that to self-consistently satisfy f(¢) ~ a~32, Eq. (6.29) and Eq. (6.30), it is necessary
that fo ~ a~!, which is precisely the relationship that was suggested by Egs. (6.22, 6.23 and 6.24).
However, the limit ¢/¢s < 1 is not expecied to apply in this work and the souxce of the a-scaling

appears to be less tractable than this simple scenario.
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obtain for a = 1, fo = 5.777 is of the same order as the valve obtained in this work,
fo = (2.59)°(0.25) = 4.34 when scaled to the same o (cf. Eq. 6.31).

To close this section, Binder’s formulation of ;che Ginzburg criterion for the
case of SD (Eq. 5.27) is examined in terms of € or fo. At compositions close to the

critical composition Equation (5.27) simplifies to
kT < (VE)(1 - T/T. )2, (6.32)

Using Eq. (6.27) with mean field exponents given in Table (1.1),

T\ 3 2
fo o= (1—E) £2B2/C (6.33)

and, noting that £y o« /k in this regime,
T3
foox (VAP (1- ) (6.34)

which is precisely the rhs of Eq. (6.32). Thus the Binder condition for linear CHC
theory to be valid in the early time regime of SD simplifies to

fo> 1. (6.35)

Thus, the parameter fy, which is related to the range of interaction in the system,

V%, must be very large in order to observe CHC type decomposition.

Condition (6.35) is not satisfied in this work. This agrees with the fact that
nonlinear effects are important even at the earliest aging times with the immediate
shift of the peak in AS(g,t) to smaller g. The values of ¢ listed in Table (6.2) reflect
the immediate importance of the nonlinear terms at the earliest scans measured.
Even for these times it was shown in § 6.2.1 that the CHC equation of motion does
not track the measured AS(q,f). An estimate of the time range of validity of the
CHC theory (cf. p. 115) imax ~ —In ¢ is negative for the ¢ obtained in Table (6.2).
Assuming that the LBM theory is an accurate description of the early stages of phase
separation and invoking the Binder criterion implies the CHC equation should never

be valid for the Al-Zn system.
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6.2.5 The coherent solubility curve

With the free energy parameters r and u in the LBM equation of motion, it is
possible to obtain the mean field coherent cocxistence line. For a LG free energy
functional, ¢, is located at \/_T—' (cf. Eq. 5.5). However, the dependence of r
and v on the choice of o has demonstrated that a unique frce energy cannot be

determined from measured AS(q,t) using the LBM theory alone.

The sum rule (2.25) which relates the integrated intensity Q(¢) to composition
fluctuations also says that well below Ti, Q1/%(t) should fall on the coexistence line
provided the normalization to absolute intensities is correctly performed.? This
provides a means to choose the value of a uniquely since the location of ¢, scales
as a'/2 (cf. Eq. 5.5). The value & = 2.59 used in the discussion of § 6.2.3 was chosen
so that {/—r/u matched well the square root of the integrated intensity for the six
runs well below T.. as shown on Fig. (6.14). The circles in this figure show the
values of +/—7r/u with & = 2.59. The integrated intensities correspond to the values

at t = 1.6 s and the square root of these values are shown as squares.

The calculated cpee can also be compared to the square root of the integrated
intensity predicted from the coherent solvus calculated for the two regular solution
parametrizations of the miscibility gap boundary in § 1.3. The first parametriza-
tion was that of Lasek[21] (c¢f. Fig. 1.3} shown as a solid curve in Figure (6.14)
and the second was suggested by Loffler ef ol.[26] (see footnote p. 18) and is shown
as a dashed line. Due to the asymmetry of the coherent solvus in the AlZn alloy,
even when the bulk sample composition is close to the critical composition as in
this work, both the Al-rich (¢,) and Zn-rich (¢o) phase compositions have to be in-
cluded in the calculation of Q(t). Unfortunately, this also means that the complete

solvus line cannot be derived from measurements at a single alloy composition.*®

®This is valid at temperatures where contributions from thermal fluctuations to the scattering
intensity are negligible compared to the scattering due to thermodynamically driven fluctuations

(including domains). This condition is not satisfied near 7; and above.
10Two off-critical alloy compositions have also been investigated and the results will be reported
separately.
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Figure 6.14: Square root of the measured intensity, Q3 (¢), at ¢ = 1.6 s for all runs (& ,. Coherent
solubility line éc.,... predicted from best fit free energy parameters » and 4 (O ) with a = 2.59
chosen to match @Q¥(t = 1.65) for the six runs well below T,. The best fit value of A + C for
b(t) as described by the text ( & ) and the integrated intensity predicted from the coherent solvus
calculated using two different regular solution parametrizations introduced in § 1.3 { (i) from
Lagek[21] ¢f. Fig. 1.3 (solid curve) and (ii) from Loffler ef al.[26), see footnote p. 18) are also
shown. The compositions ¢, and ¢, are respectively the coexistence compositions to the left and
the right of the coherent miscibilily gap.

The agreement between the solid curve and the square root of the measured inte-
grated intensities ( @ ) favorably supports the conversion factors employed to convert

scattering intensity to structure factors.

Finally, the extrapolated values for b(¢) are plotted ( A ) from the best fit
values of A+ C obtained for b(t) (cf. p. 165). As expected, since {(6c)?) is the
sum of two terms, o and ¥, b(t — o0) is lower than @*/*(t). This parameter
was included on Fig. (6.14) as it provides a good indication of the degree of phase
separation. Furthermore, if the LBM theory could describe the SD until late stages,
the one-point distribution functional should become a very sharp distribution about

+b(t — o). However, the S ppm(g,t) will be shown to depart appreciably from
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Figure 6.15: Best fit power law relation for the order parameter and the correlation length : Mean
field correlation length ¢ (© ) and mean field coexistence line Sccpee = £1/—7/u (M ). The dashed
line shows the mean field coexistence Line obtained by fixing the critical exponent § = 0.5, the
mean field value. The solid line shows the mean field correlstion length with the mean field critical
exponent ¥ == 0.5 (cf. Table 1.1).

AS(q,t) for times later than 1.6 s (§ 6.2.7).

With a set to 2.59, A 4 C can be seen on Fig. (6.14) to go above the value of
v/ o~ However, the curves in part (a) of Fig. (6.11) suggest that the initial increase
is followed by an asymptotic behavior somewhat superimposed on a linear sloping
background. Hence the asymptote appears not to saturate at a constant value. This

is verified by extending the model times to 60 s.

Although the data near T is too limited for measurement of critical exponents,
it is still interesting to compare the predicted mean field coexistence line and the
correlation line with the power laws introduced in § 1.2 for the critical region. Figure
(6.15) shows the power law behavior of the mean field coexistence line 8ccoer (@ )

and of the correlation length £ ( @ ). The dashed line represents the mean field
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coexistence line obtained by fixing the critical exponent in §c.oee ~ Ble|? to the
mean field value, 8 = 0.5. If, instead, a fit restricted to the data within 5% of T, is
performed, the critical exponent 3 obtained is 0.38:£0.04, which compares well with
the value 0.339 given in Table (1.1) for the 3-d Ising model. On the other hand,
if the power law fit is performed over the whole range of data shown, the result is

B = 0.46 + 0.02 which is closer to the mean field value.

The solid lines display the best fit result to the power law relationship for the
mean field correlation length ¢ (Eq. 5.37) which diverges at T, as § ~ £y |e|™ (T2 T.)
(cf. Table 1.1). The best fit value v = 0.52 £ 0.04 obtained corresponds well to the
mean field value v = 0.5 which has been given in Table {1.1).

Fitting the AS(q,t) with the LBM theory was found not to determine uniquely
values of » and u. The numerical value of » and u for @ = 2.59 can be further
investigated using the contact with the true thermodynamic free energy in the stable
one-phase region as predicted by the regular sclution model {(RSM) which was used
to model the miscibility gap in § 1.3. This is accomplished by matching the location

Of the SOlvuS Ciolvus

(RSM) — JLBM) (6.36)

relvus 10lvun

and the values of f* along this line
52 fRSM)

azf(LBM)
T 82 T

=0 (6.37)

Cyolymn Caolvus

However, in the RSM, f” has a different value on the Al-rich («) and the Zn-rich (o)
branches of the solvus line. Thus, as pointed above, it is not possible to determine the

position of the two branches with measurements performed at a single composition.

First, with the LG free energy employed in the LBM equation of motion,

BZf(LBM)
ac®

Csolvms

= 4r. (6.38)

11 The values of the critical amplitudes used to produce the solid line were £. = 2.330.2 A and
€+ =11+86A.
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Figure 6.16: Contact between the regular soluiion free energy and the Landau-Ginrburg free
energy functional. (a) The dashed lines labeled () and (@'} display the value of r computed using
Eq. (6.38) along the solvus line on the Al-rich (a) and the Zn-rich (a') sides respectively. The
points show the values of r obtained from best fit LBM equation of motion for runs A through W
for 1.6 s with a = 2.59 {¢f. Fig. 6.8). The solid line shows a weighted average of the two dashed
curves (cf. Eq. 6.40). (b) Same as in (a) for the parameter u using Eq. (6.39) for the computation
of the values and Eq. (6.41) for the average.

Since (Cootras — c,_.)(LBM) = :i:\/—r/_u then

1 62f(LBM)
2(LBM) 5e?

salvas

= 4u. (6.39)

Ciolras

Second, for the RSM, using matching conditions (6.36) and (6.37) and Eqgs. (6.38)
and (6.39) the corresponding RSM values of » and u are obtained by the weighted

averages
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where ¢, and cor are the RSM coexistence values on the Al and Zn-rich sides of the
miscibility gap respectively.

Figure (56.16) shows r and u values along both branches of the solvus and a
weighted average in each case, namely Part (a) shows that the order of magnitude
and temperature dependence of r agrees with the prediction of the RSM along the
solvus. However,in Part (b), v and wF5M) disagree on the temperature dependence.
The RSM predicts a decrease as T, is approached from below while the values
obtained from fitting to the LBM theory show the opposite trend. This difference
may be attributed to the anomaly mentioned earlier. Namely, it was found that
r appeared to be governed entirely by the choice of a to give the required ¢,
resulting in a constraint on the value of u to generate the appropriate A(t). It thus
appears that even if the choice of an appropriate value of a allows one to produce the
coherent coexistence line, the resulting values of r and, particularly u, are probably
not “good” free energy parameters to extrapolate into the thermodynamic region of

the phase diagram.

6.2.6 Interdiffusion

Obtained best fit mobilities M can be checked against tracer diffusion data in AlZn
alloys using Eq. (1.12). Based on the results of other workers that the interdiffu-
sion coefficient in AlZn solid solutions at ¢ < 0.4 is governed by the zinc tracer

diffusivity[169] Dy , it is a good approximation to write

co(1 — co)
M=20 T
NyksT

(1-co)D7y . (6.42)
In the derivation of the LBM equation of motion it was assumed that M is in-
dependent of the local composition ¢(r). Equation (6.42) satisfies this condition
since M is considered sufficiently approximated by a composition independent value
corresponding to the value for the bulk composition ¢q.

Fig. (6.8d) shows the mobility obtained from this relation with D}, (T) com-

puted from an Arrhenius equation (Eq. 1.11) with activation energy Eyp, and fre-
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Author Ey7n D3y
(x1071% J) (x107% m?/s)
Hilliard[169] 1.66 + 0.06 1.4 4:0.8
Cermak[170] 1.7315 £ 0.0675 | 2.48 4+ 1.72
Gédény[171,172] | 1.69 £ 0.03 1.8 +0.3

Table 6.3: Interpolated activation energy, F, 7, , and pre-exponential factor, DY g (¢f Eq. 1.11)
for Zn self-diffusion in Algg3Zng,38 measured by tracer diffusion.

quency factor Dy interpolated for ¢ = 0.38 for the three measurements of tracer
diffusion in concentrated AlZna alloys reported in literature. In each case, the inter-
polated values of Eyz,, and Dp, from the two compositions that bracket co are given
in Table (6.3).2 The activation energies Ey7, were interpolated linearly and the
pre-exponential factors I, = were interpolated logarithmically. The values of Egz,
are of order 1 eV (for instance, Fy = 1.04 eV for the result of Hilliard et al.[169]).
The errors are interpolated from their values at the bracketing compositions and
are thus estimates. The value of the atomic density Ny is taken from Table (1.2).
The agreement between the calculated and the best fit M is particularly striking
in view of the fact that the lowest temperatures for which self-diffusion coeflicients
of Zn were measured by these workers were in the one-phase region. For instance,
the measurements of Hilliard ef al.[169] at the lowest temperatures were 633 K for
c=0.369 and 598 K for ¢ = 0.494. The error bars on the calculaied M are more
than 50% of the values due to large error bars in D?

oZn’

Equation (6.42) is the most direct comparison between M and diffusion data.
However, in the past (¢f. § 1.4}, the interdiffusion constant D would be obtained
from fits to the CHC equation of motion. In the formulation of the LBM equation
of motion, atomic mobilities M are ohtained separately from the thermodynamic
driving force. Hence, to compare best fit M to interdiffusion constants, it would

be necessary to know the second derivative of the free energy with respect to com-

12These compositions are respectively 0.369 and 0.494 for Ref. [169], 0.3127 and 0.4151 for
Ref. [170], and 0.289 and 0.400 for Ref. 1171,172].
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position that is, to “recouple” the thermodynamic driving force with the mobilities
using Eq. (1.25).

Two situations allow the approximation off" by » in Eq. (1.25). Firstly, at
early stages of SD when §c ~ 0 the “c*” free energy model (Eq. 5.4) gives f"=1r
and

D =Mr. (6.43)

‘I'he second case is at the other extreme, when the local compositions are near
equilibrium values. The contact between the coarse-grained free energy and the
free energy obtained by the regular solution model performed in the preceeding
section and shown in Fig. (6.16) indicated that in this case f” = r. This allows the
evaluation of D along the solvus also using Eq. (6.43). Using either the RSM value
model of f” or LBM best fit r with a = 2.59 will provide the same thermodynamic
driving force. Since r ~ a~? and M is independent of a, D ~ a2, As an example
of a typical value in this work, at 541 K, D = ~5.0 x 10~17 m?/s for a = 2.59. {?Vith
expression (6.43), D turns out to be independent of the overall intensity calibration
for AS(g,t) (¢f p. 163).

In homogenizing systems, the temperature dependence of the thermodynamic
driving force is weak.[174] However, since f” vanishes at T, and has a different sign
on either side of T in systems which undergo SD, the thermodynamic driving force
is strongly temperature dependent. In this case, Hilliard[32] suggests to expand

F/(T) about T.,
) =@ -1 = r- 1y, (6.44)

where s = §%s/0¢* (s is the entropy per unit volume) has negligible temperature

dependence. Equations (1.12 and (1.25) can be combined to write

D= CO(IJIT-VCI:});J;(T) [coD} + (1 — co) D] (6.45)

which can then be rewritten as

DT cof{l — ¢co)s” . \ ;e
T_T == (NkB) [CODA+(1—CQJ'DB]‘ (6'46)
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Figure 6.17: Interdiffusivity D obtained from Eq. (6.43) (D). Below T, —D is plotted. The
dashed line is intended as & guide to the eye. The solid symbols (top curve) coirespond to the
product ﬁT/(T — T.) following s iepresentation suggssted by Hilliard.[32] The solid line shows
that the Arrhenius curve for DT/(T — T:) both above and below T, (see footnote p. 183).

500 540

Based on zelation (6.46), Hilliard then suggests to present interdiffusion data
near the spinodal line as an Arrhenius plot of DT/(T —T.). A straight line would be
expected if the zctivation energies of the tracer diffusivities of the two constituents
are not too different or if the one tracer diffusivity dominates over the other. Such
a plot is shown in Fig. (6.17) with the results of Eq. (6.43) with « == 2.59. The solid
symbols (top curve) correspond to DT/(T —T,). The solid curve DT(T — T.) versus
T with a logarithmic ordinate axis shows that the Arrhenius plot extrapolates well
into the spinodal. The two parameters required in the Arrhenius relation to produce
the solid line, Ey and A, are highly correlated when performing a fit with the data
and the range of data is limited to two decades. Thus, best fit £y and A could not be
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determined accurately.!® The bottom set of points in this figure show D calculated

from Eq. (6.43) (0 ). This quantity is discontinuous at 7. (5 —+ 0) since » — 0 as
T — T.. Below T, the points show -D.

In substitutional solid solutions such as AlZn alloys, the interchange of atoms
(Al~Al, AlZn and Zn<Zn) ocenrs through vacancies.[28] More generally, the
tracer self-diffusion of Zn (and though much smaller, Al) by means of a vacancy
mechanism is closely related to the motion of the vacancies, which may be used
to define a vacancy diffusion coeflicient, Thus, it is important to have an equilib-
rium concentration of vacancies in the alloy at the aging temperature to measure
appropriate diffusion properties. If the concentration of vacancies is higher than the
equilibrium value, then the diffusion constants observed will be higher than should
otherwise be observed. In a quench--and-age experiment, the possibility exists for
the presence of “quench vacancies” retained from the initial one-phase high temper-
ature state. These quench vacancies are gradually eliminated from the system by
being trapped at zone interfaces or removed at sinks. Thus, these should decrease
with time until the density of vacancies reaches the value corresponding to the ex-
pected “thermal vacancy” concentration. These are then in equilibrium at the aging
temperature and their number should remain constant. In a scenario in which the
vacancy concentration would not have reached an equilibrium value after a quench
and thus would still evolve over the course of the time resolved measurement!® the
diffusion constant would decrease during the experiment, i.e. the time separating

two successive interchanges of atoms (or atom-vacancy interchanges) would net be

constant.

13The values obtained in producing the best fit solid line to
DI(T - T.) = Aexp(—Eo/kpT)

on Fig. (6.17) were Eg = 9+ 5 x 1072%) (0.6 £ 0.3 eV) and A =146 x 107° m?/s,
14guch a scenario is proposed by Hennion et al[60] in their measurement of nucleation and

growth in single crystal AizZn. They suggest that quench vacancics are responsible for a high

diffusion constant during the initial stages of phase separation in their experiments.
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No sitempt is performed 1o estimate the vacancy concentration relaxation
time. Facts in this study suggest that they have probably reached equilibnum con-
centrations by the time the isothermal annealing begins. Firstly, the aging temper-
atures are higher than any previous work on 5D in AlZn alloys and a polycrystalline
sample was used. Therefore there should be more sites for the quenched-in vacancies
to become inactive and their diffusion to these sites should be faster than at lower
temperatures. Also, the exdstence of a maximum decomposition rate above which
the process is limited by the driving force and below which it is diffusion limited
supports the view that the vacancies intervening in the diffusion at the aging tem-
perature are not quenched-in but thermally activated. Finally, the best evidence
is that the measured tracer diffusivity of Zn (i.e. self-diffusion of Zn at thermal
equilibrium) extrapolates well into the spinodal region for the deeper quenches as
presented in Fig. (6.8d).

Finally, it should be noted that vacancy mediated diffusion has recently been
used in a MC simulation study by Yaldram et al. on a two-dimensional lattice.[175]
They found that diffusion depends on the atoms with the higher jump rate (cf.
p- 108) or, equivalently, the higher self-diffusion coeflicient, in agreement with the
working hypothesis used to produce Eq. (6.42). Their results essentially do not
differ from the usv~l Kawasaki spin-exchange dynamics employed in MC studies of

diffusive problems (i.e. atom-atom swaps).

8.2.7 Breakdown of LBM

The comparison of the predicted evolution of Sypm{g,t) for later times and the
AS{(q,t) collected in the long runs (AA — EE) was performed. Though there is
always a temperature difference between the two runs in any pair of a fast run and a
long run, it is possible to get an estimate of the performance of LBM at later times
to describe the measured AS(q,t). Fig. (6.18) shows the S;pm(g, t) calculated up fo
52.6 s from best fit parameters to short run C (541 K) reported in § 6.2.3 (solid lines).

The experimental AS{g,t) (points) correspond to deconvolved structure factors for
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run BB (537 K). This late stages run has the temperature nearest to that of run C.
This Figure shows that at 2.6 s, the Sppm(g,t) still tracks well the data wheseas
the S;,pm{g,t) growth is slower than the measured AS(g,t) for later times. Also,
the maximum in the extrapolated Sypy;(g,t) does not move to lower ¢ as rapidly as
that in the measured AS(g,t). At higher temperatures, as the maximum of AS(q,?)

moves earlier to lower g, the breakdown between Sy pp(g,t) and measured AS(q,t)

occurs faster.

For the long scans, £ = 0 is defined as the time at which the measured sample
temperature crosses T.. For instance, in the case of run BB, the first scan read after
reaching the aging temperature was recorded 0.6 s after T, was crossed. Since one
scan is recorded every second (ET = 0.01, I = 100, cf. Table 6.1), then the third scan
at the aging temperature is stored at ¢ = 2.6. This first AS(g,t) shown corrcsponds
to that scan. However, each recorded scan in the long runs integrates over a longer
time and a readout at 1.6 s would compare best to an earlier scan during a fast run
(ET = 0.01, I = 1). Nevertheless, this discrepancy is negligible in the check of the
late time extrapolation of the Syppm(q,t), as evidenced by Fig. (6.18).

Fig. (6.19) compares the time dependence of the wavevector g, corresponding
to the maximum of AS(g,t) for runs C and BB (points) and of Sy gp(g,t) (line). As
observed in Fig. (6.18), the coarsening displayed by Spgm(q,t) is slower than that
of AS(q,t). It is found that extrapolation of Sppp(g,t) with the parameters from
the best fit to run C (up to 1.6 s) results in a time dependence of g, which goes
asymptotically to £1/% as shown by the slope of the solid line in the figure. A regime
with slow !/% coarsening was reported in the original LBM work[7]. However, after
~ 50r, they also report a transition to a {%?'? coarsening. Figure (6.19) presents
no evidence of such a tramsition for ¢.(t) for Sppm(g,t) even though for run C,
Table (6.2) gives 7/t = 114.9 £ 0.7 57! and thus the Sppm(q,t) were computed
up to 6894r. The absence of transition regime in the generated Sypm(g,t) is not
explained even though, as was mentioned in § 6.2.4, the calculated value of the

system dependent parameter fy from best fit results to early stages AS(q,t) is of
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Figure 6.18: Breakdown of LBM after early stages. The points correspond to the decomvolved
AS(g,t) for run BB, at T = 537 K. The solid curves show the ASypp(g,t) calculated from the
parameters obtained from the fit to 1.6 s for run C (541 K). The first ASygp(g,t) caleulated
for t = 2.8 s is completely covered by the experimental AS(g,t) for that time. The bumpiness in
ASppM(g.1) at the later times is due to the discretization in ¢. The inset shows AS(g,?) for run
C with the best fit AS; gy to 1.6 5. The ¢ = 0 data is the quenched-in structure factor.
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Figure 6.19: Late time coarsening with LBM. The points show the position of the maximur: of
4A5(g,1} for runs C and BB, g for all scans. The solid line shows g, obtained from Sppgp{q,1)

up to ¢ = 60 5.
the same order as the estimated value used by Langer et al.[7] to generate their
Siem(e,t)-

Finally, this investigation of the time at which the Sygm(q,t) departs sig-
nificantly from the measured AS(g,t} confirms that fits to times up to 1.6 s are
expected to be equivalent. Since the values of T are temperature-dependent, with
maximum values for quenches to temperatures near that of maximum phase separa-
tion rate (cf. Table 6.2), a logical choice would have been to fit up to equal values of
7 for all temperatures in order to obtain the temperature dependence of the model
parameters. However, since the breakdown between the LBM and measured struc-
ture factors occurs for times longer than the duration of the fast run, the fits can
equivalently be performed up to 1.6 s for all runs. As noted in § 6.2.3, this was also
verified by performing fits for up to 0.1, 0.2, 0.4, 0.8, 1.2 s in all cases and obtaining

parameter values within the error bars of those obtained for the fits to 1.6 s.
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6.3 Late stages

6.3.1 Growth law and scaling

The data collected for late-stage studies (i.e. up to 60 s) will now be discussed.
Three aspects will be addressed: the scaling exponents n and n/, the scaling form
F(z), and the high wavenumber tail of AS(q,t) (cf. § 5.5).

For this part of the analysis it is necessary to use deconvolved scans. The
deconvolution procedure has been the topic of § 4.5.2 and the resulting unsmeared
structure factors for runs AA (511 K) and EE (588 K) were presented in Fig. (4.15).
It was scen that the effect of the deconvolution is more important near the beamstop.
The maximum of AS(g,t) is found closer to the beamstop at an earlier time, the
higher the run temperature, due to a combination of both higher decomposition
rates for the runs of high 7 (cf. Table 6.2) and the decrease of g, (i.e. larger §) as T
increases. Furthermore, for the runs corresponding to the higher temperatures, CC,
DD and EE, there is a time at which the peak maximum is blocked oy the beamstop
(35.4, 27.5 and 19.6 s respectively after the sample temperature has crossed T, in

the quench process).

A usual graphical check for scaling is to plot the scaled quantities S(g,t)/Sm (%)
versus ¢ = g/qm(t) with S,,(t) the maximum of S(g,t) and g,.(t) the cozresponding
wavevector, as defined in § 5.5, and to verify that the obtained profiles overlap
for all times in the scaling regime. Figure (6.20) shows such a plot for run BB
(536.9 K) at selected times. However, this plot makes use of the AS(g,t), which
have the high temperature scattering subtracted, instead of using S(g,t). Since the
equilibrium scattering at T is small compared to the late-stage S(g,t) for runs AA
— EE (< 107® w?, ¢f Fig. 4.11), using AS(q, ) instead of S(g,¢) should not affect
appreciably the results.

Except for the first scan (at ¢ = 2.6 s), all scans displayed on this plot should

have been recorded at intermediate or late stages. However, the structure factors

do not quite scale, i.e. the displayed AS(q,t)/AS(t) do not identicall" . verlap.
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Figure 6.20: “Classical” scaling plot: late-stage scaled structure factors for run BB (537 K). The
scaled scattering function does not quite scale. A scan was recorded every 1.0 s, hence the displayed
AS(g,t)/ASm(t) are ten scans apart. The inset shows the AS(g,t) before scaling.
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Figure 6.21: Logarithmic plot displaying the scaled structure factors AS{q,t)/AS5,(t) at T = 637K
for the same times as Fig. (6.20). A shoulder is observed on the high g tail. The dashed line shows
the best fit result to the Ohta-Nozaki scaling form, F(ON)(") (¢f. text).

When all scans of run BB are examined, it is found that from ¢ ~ 11 s, the scaled
scattering profiles broaden more slowly than at earlier times. This deviatien from
scaling is well outside the experimental error. Examination of the inset to Fig. (6.20)
indicates that AS,,(f) undergoes an almost fivefold increase in this “quasi scaling”
regime. All runs performed for the late-stage studies (AA through EE) have %een
found to display a similar quasi scaling feature.

A logarithmic plot displaying the same scaled structure factors for run
BB is given in Fig. (6.21). This representation shows the extent to which the
AS(g,t)/ASn(t) are broadening with time. On the high g side AS(g,t)/ASn(t)
does not to drop as g* (the dashed line, which will be described below, has a ¢—*
tail). Hence, Porod’s law (Eq. 2.32) is not satisfied.

Fig. (6.21) also shows that the scaled structure factors present a shoulder at
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approximately 3¢m. This shoulder is one of the most interesting results of the late
stages study. Experimentally, a shoulder at high ¢ has been reported for light scat-
tering measurements on deuterated polymers[90] and in neutron scattering measure-
ments of the static structure of porous glasses.[176] A computer simulation study
on a cell-dynamical-system by Shinozaki[166] also produced a structure factor with
a shoulder (cf.§ 5.5.2). However, its existence had never been reported clearly for a
binary alloy.

In Fig. (5.5), it was shown that the analytical expression for the Ohta-Nozaki
scaling form F(ON)(E) (Eq. 5.91) also posesses a shoulder. The dashed line in
Fig. (6.21) shows a best fit to F(ON)(Z) for the t = 12.62 s “scaling profile” (the sec-
ond solid curve from the bottom) with 4 = 4.02. Comparison between the dashed
line and the corresponding lAS/ASm shows that the best fit F(ON)("”) drops too
steeply above g,,. In fact, the measured scattering at the shoulder is at least three

times larger than would be predicted by F(ON)(Q’)-

Figure (6.22) shows the best fit Fratzl-Lebowitz scaling form, F(FL)(”)
(Eq. 5.87) obtained for AS(q,t)/AS,(t) also for run BB at £ = 12.61 s. This log-
arithmic plot shows again the departure from a ¢g~* tail at high ¢ observed in the
data since F{pp)(z) (solid curve) has this ¢=* dependence. Evidently, the Fipp(z)
scaling form needs to be modified for these data since it does not possess a shoulder
at high g.

Figure (6.23) presents a Porod plot, (¢*AS versus q), for run CC at four
different times. (At t = 2.46 5, the SD has not yet entered the late stages.) Such
a plot is useful to check sum rule (2.32) since for this rule to be valid ¢*AS(q,t)
should tend to a constant. This is not the case here since g*AS{g, ) still varies for
large g as expected from the absence of a ¢~* tail in Fig. (6.21). This Porod plot

also hints at the existence of a second shoulder at the latest times (at ~ 0.075 A
for t = 52.46 s).

Shoulders at high g are not unexpected in late stages of SD and have been

observed for instance during the SD of polymer mixtures as mentioned above. The
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Figure 6.22: Scaled siructure factor for run BB (T =537) K at £ = 12.61 s ( O ) with best fit
Fratzl-Lebowitz scaling form, F(FL)(Z) (Eq. 5.87) with d = 0.06 and v = 0.407 {solid curve).

scattering from randomly distributed sharp interfaces with, however, a characteristic
length scale, { ~ ¢;! should give rise to higher order harmonics. Furthermore, the
observed late stages ¢*AS(q,t) are reminiscent of those observed by workers in
studies of atomic dynamics in liquids{177] where many oscillations exist about a
constant value. In the case of iquids, however, instcad of ¢*5(q) going to a constant
for large g, the invariant is ¢>5(q). Spooner et al[178] have reported that a Porod
asymptote is reached in 2 Porod plot of neutron scattering data obtained during SD

in a FeCr alloy. However, they do not report a shoulder at high ¢.

Fig. (6.24) shows the time dependence of AS,,(t}, the maximum of AS(q,¢),
and the corresponding g7 for the run BB (537 K). The solid lines are best fit to

power laws with

A8 (gmyt) = ASo(t + to)*™ (6.47)
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Figure 6.23: Porod plot for run CC (T = 563 K) at selected times.

and
gm(t) = qo(t +£o)™" . (6.48)

The best fit values for the parameters ASy, ¢y and n’ in Eq. (6.47) and for ¢, to
and n in Eq. (6.48) are listed in Table (6.4) along with values for the other runs.
All runs {AA — EE) displayed similar quality power law fits. The uncertainties
reported for the numerical values of the parameters correspond to the calculated
standard deviations with the goodness of fit estimator x* = 1 when all points are

assumed to have an equal weight in the least squares fit.

The growth exponent n = 0.42 for ¢;'(2) in run BB as well as values obtained
for all runs are higher than the value n = 1/3 predicted by the LSW law (¢f. p. 128).
These values indicate that coarsening occurs at a faster rate than predicted from

long range diffusion fields.

The result that growth exponents are greater than 1/3 for all late-stags runs is
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Figure 6.24: Time dependence of the maximuem of the structure factor, S, (O ), and the corre-
sponding ¢! (O ) for run BB (7 = 537 X). The solid kines aie power law fits to Egs. (6.47) and
(6.48).

somewhat unexpected. According tc Equation (5.77), n.y(t) should asymptotically
tend to 1/3 from below (Linearly in 1/R(t) with (Rp > 0)). Furthermore, experimen-

tal work on other systems with a conserved order parameter (cf. p. 62) had yielded
values n < 1/3.

Effective growth exponents n.;4(t) (Eq. 5.76) were computed for all late-stage

runs (AA — EE) using
dln gm
dlnt

and Fig. (6.25) gives the results. Thus, n.ss(¢) goes asymptotically to a value above

(6.49)

Meft = —

1/3 from below, i.e. n.sy(t) crosses 1/3. This suggests that the phenomenological
Jdescription of the motion of structureless interfaces put forth in § 5.5.1 would have

to be modified.

The lack of power law behavior may be due to coupling {o other dynamic
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AS(gm,t) = ASoft + to)* gm(t) = @o(t + to)™
T ASy to n' qo to n

(K) || (10*"m?) (s) (1072 A7) (s)

511 2.26 144+1.68 | 0.33+£0.05 ) 82+1.0 |2.9840.67{0.45 £ 0.03
537 4.76 0.57+£0451{0344+0.02{ 53417 |{1.03:£0.130.42+0.01
563 6.72 0.44 £ 0.17 | 0.35 £ 0.01 || 3.29 £ 0.12 { 0.26 4 0.06 | 0.39 4 0.01
578 6.04 034 £0.26 | 0.37+:0.03 || 3.00 £ 0.10 | 0.33 3- 0.05 | 0.43 £ 0.01
588 3.95 0.40 £ 0.24 | 0.40 £ 0.03 || 3.07 + 0.24 | 0.62 & 0.19 | 0.47 £ 0.02

Table 6.4: Best-fit parameter values to growth laws (6.47) and (6.48) for all late stages runs (AA
— EE). The temperatures are listed to the nearest degree (cf. Table 6.1).

processes. Recently, Enomoto and Kawasaki[179,180] have examired the effect of
elastic interactions among droplets on the growth exponent during droplet growth.
The predicted effect depends on the sign of the difference in the shear modulus
between the interior and exterior of second phase particles. This was checked in
a quantitative evaluation of the effect of the elastic encrgy on the coarsening pro-
cess of spherical droplets by numerical calculations and computer simulations. An
enhancement of precipitate growth as R(t) ~ t1/? after the R(t) ~ t}/* stage is pre-
dicted when the shear modulus is larger inside the inclusion than outside. This case

could be likened to that observed in Fig. (6.25).

Most of the cases examined by computer simulations by Enomoto and
Kawasaki[179,180] were for relatively low second phase volume fractions, V> ~ 0.01,
However, some simulations with V* ~ 0.1 have also presented an effect of the elastic
field at the interface though somewhat delayed in time. They relate this delay to the
correlation effects between domains. Though V. and V* in this study depend on
the aging temperature (cp is not exactly at the critical composition and the gap is
asymmetric), they are close t0 0.5 in all late-stage runs. Thus, it may be appropriate
to attribute values of n lazger than 1/3 obtained in this work to elastic interations
between domains, however the available computer simulations for comparison were

performed for much smaller volume fractions.
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Figure 6.25: Calculated effective exponent for all late stages runs, n.sy(2), as defined by Eq. (6.76).

There has not yet been an experimental account of a system crossing over from
a growth exponent of 1/3 to a 1/2 exponent due to elastic effects. However, the case
of a system with a shear modulus larger in the matrix phase than in the second
phase particles has been examined in a measurement of the growth of second phase
inclusions in Tio.soMop 20 by Fratzl ef al.[181] In this system a stage with R(¢) ~ /e
was observed, followed by a decrease in the growth exponent. The growth eventually

stops completely.

A measurement of phase separation in the binary alloy MnCu by Gaulin e?
al.[83] reports scaling and a growth exponent of n = 1/3. However, in this alloy, the
variation of solid solution lattice parameters[182] in the range of phase separation

composition is small, which leads to a minimal strain energy effect.

Finally, it is interesting to note that if no instrumental unsmearing had been
performed to the measured scatiering intensity patterns, the effective exponent ob-

tained would have been nearer to 1/3.
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6.3.2 Interface width correction

The late stages of SD involve at least two length scales: the average domain size R(t)
and the width w of the interfaces. The nonzero width w has not been considered
yet in the discussion of late-stage SD. This width is essentially due to thermal
fluctuations which roughen the interface and thus w ~ £. Since short length scale
features show up at high wavevectors in the structure factor, interfaces betweem
domains will affect §(g,t) at the high g tail. This section introduces a correction to
the high ¢ tail of the scaling function to account for w.

In the previous section, it was shown that the late stages AS(g,t) did not
present the expected ¢~ tail predicted by Porod’s law (Fig. 6.22). Instead, the
AS(g,t) were found to drop faster than ¢~* for all runs (AA -— EE). This faster
decrease corresponds to the expected effect of nonzero interfacial widths. Indeed,
the derivation of Porod’s law is based on a model in which there are sharp interfaces
between the domains 1.e. w = 0. In practice, this means that Porod’s law is not
expected to work unless the domain size is much greater than the interfacial width.

A correction for the finite width w of the interfaces can be attempted by intro-
ducing a dimensionless shaping (or enveloping) time independent function S{gq,w)

to the scaling function F{z).[183] Equation (5.68) can thus be rewritien as
5(1,t) = CS(q,w)q, () F (=) (6.50)
subject to limg_o S{q,w) = 1.

The form used for S{gq,w) will be an hyperbolic tangent:

S(q,w) = [gzr;csch (nq-%t-?-ﬂz . (6.51)

The only adjustable parameter in the Eq. (6.51) is the time-independent width
w. Its value was obtained by fitting

Su(g,t) = 2rA(t)g*S(q, w) (6.52)

to the measured AS(g,t) over a g-range beyond the shoulder. In Eq. (6.52), which

is a modified form of Porod’s law to take accourt of w, the constant A is the same
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as defined in Eq. (2.31) and is a measure of the interfacial area per unit volume.
The values of w are expected to be temperature-dependent, and to increase as the

aging temperature approaches T,.

For the g-range restricted to [0.048, 0.089] A=, the best fit results to Eq. (6.52)
are reported in Table (6.5).'® The noise in ¢*AS(g,t) (cf. Fig. 6.23) is reflected by
the large uncertainties in the best fit values reported for A(t) in Table (6.5). The
temperature dependence of w is not obvious from the values listed in Table (6.5) due
to the large errors for the three runs corresponding to the higher aging temperatures.
The interpretation of the best fit values for w is limited by the noise at high ¢ and
by the possibility of yet an additional shoulder at the latest times measured.

Furthermore, at a given temperature, the position of the first shoulder is a
function of time; as time increases, the shoulders moving to lower wavevectors.
Hence, when fitting Eq. (6.52) over a fixed range of g, the relative location with
respect to the shoulder maximum changes in time as the shoulder moves. The
fitting range of ¢ was chosen such that in all cases 1he shoulder maximum was below
the lower limit. However, any additional prospective shoulder would be likely to
influence the fit result as it sweeps by the ¢g-window during the evolution of AS (g,¢).
An estimation of the effect of the relative location of the shoulder maximum with
respect to the fitting range on best fit values of w yielded at most 10% variation in
w for 12 < ¢t & 52 5. This effect is in general monotonic over the times investigated,
resulting in an increase of best fit w with {ime. However all such estimates of w lie

within the error bars of the values listed in Table (6.5).

Figure (6.26a) shows S(g,w) calculated from Eq. (6.51) with w = 15.1 A. Part
(b) shows the g~* Porod tail and a corrected $(g,w)g™* for t = 12.61 s, which over-
laps with the measured data (run BB). The form S(g,w) used cortesponds to the
one shown in (a). Although the best fit w for this earlier time differs from the value

1¥As was the case for Table (6.4) the uncertainties on the parameter values correspond to the
calculated standard deviations with x? = 1. However, in the present case, the standard deviations
calculated for each qg*AS(g,t) were used to weight the data points in the least squares fit to
Eq. (6.52),
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rigure 6.26: (a) Imierfacial width correction term S{g,w) calculated from Eq. (8.51) with
w = 15.1 A. (b) Porod tail {g~*) and corrected to account for finite interfacial width ({g, w)g™4)
with S shown in (a). The data correspond to run BB.
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T t A(t) w

® | & | qom (A)

511 52.64 2.38 £ 0.69 15.24+ 3.8
537 52.61 1.69 4: 0.48 17.24+ 3.5
563 52.46 0.83 & 0.87 20.1 £ 12.2
578 52.51 0.58 4+ 1.26 24.0 £ 23.5
588 52.64 0.17 4 0.17 11.8 £+ 16.1

Tubie 6.5: Best fit width correction parameter values to account for deviations from AS(g, t} ~ ¢~*
at large g (6.52) for all late-stage runs (AA — EE). The temperatures are listed to the nearest
degree (cf. Table 6.1).

reported in Table (6.5) for ¢ = 52.61 s, it is still within the error bars of that value.

Figure (6.27) compares the Ohta-Nozaki scaling form F(ON)(T') given by
Eq. (5.90) corrected for the interfacial width using Eq. (6.52) to the scaled AS(q,t =
12.61 s) for run BB. The solid line represents the uncorrected best fit Fion(z)
with A = 4.0 and the dashed line is the corrected Fioy)(z) using Eq. (6.51) with
w =160 A. Although the high ¢ tail of the corrected Fioy)(z) displays a decay
with the same power as the scaled data, the value of Fioy)(z) at the shoulder is too

small to model the data, as remarked in the previous section.
A bvest fit value w can be determined by the procedure above to obtain a
“corrected” Porod tail that tracks the high ¢ dependence of measured AS(g,t).

However, an additional check on the applicability of Porod’s law can be performed
by rewriting Eq. (2.32) as[45]

‘[n ¢*S(q) — 27 4] dg = 0 (6.53)
This equation is not satisfied by Fig. (6.23) since ¢*AS5(g,t) is not constant with ¢
for large q.

Figure (6.28) displays the AS(q,t) modified by the inverse of the width cor-
rection prefactor. This figure is representative of the result obtained for all runs
AA — EE and shows that Eq.(6.53) cannot be satisfied. Even with the interfacial

width correction term to make lim, ... $7(q,w)q*AS(g) a nonzero constant, the
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Figure 6.27: Scaling profile for run BB (T = 537 K). The solid line shows & best fit to the Ohta-
Nogaki form, F(ON)(Z) (Eq. 5.93). The dashed line shows S{g,w = 16 A)F(ON)(z) to account
for finite interfacial width as discussed in fext,

main peak in ¢*S~'(g,w)(g,t)AS(q) is always too small and the integral (6.53) is
negative. At the later times the peak in AS5(g,t) is higher, but since it is located at
a lower g, its contribution to the ¢g*AS(g) part of the integrand decreases {as shown
by Fig. 6.28), and the integral is increasingly negative. Consequently, although the
high g tails that do not obey Porod’s law can be rationalised in terms of interfacial
width effects, the simple use of a shaping function employed in this section appears

to be insufficient to reconcile measured AS(g,t) with the sum law (2.32).
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BB) at selected times. (The value w = 17.2 A corresponds to the value given in Table (6.5) for
t=52.61s.) -
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Chapter 7
Conclusicns

This thesis has presented in situ measurements of time resolved structure factors
for (a) early stage and (b) late-stage phase separation kinetics following the quench
of the binary alloy Alyg:Zngasin the unstable region of its phase diagram. The
experimental time resolution (up to 5 ms) was made possible by the use of a bright
synchrotron x-ray source, a position sensitive dector, fast counting electronics and a
rapid temperature change by resistive heatii:z. The measurements allowed the first

experimental check of three important aspects of critical phenomena in alloys:

¢ The first extensive experimental verification of the validity of the nonlinear
equation of motion for the evolution of the siructure factor in an alloy during
early stages of SD introduced by Langer, Bar-on and Miller (LBM).[7] The
early stage regime of the measurements was confirmed by the determination
of the integrated intensity. The Cahn-Hilliard-Cook linear equation of motion
was found insufficient to describe the evolution of S(gq,t) over the early time
regime measured. However, fits with the LBM theory tracked successfully the
measured structure factors and best fit parameters have been obtained. These

include the free energy parameters r and u, the gradient energy coefficient x

and the atomic mobility M.
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o The nonlinear relaxation of fluctuations after & quench in the one-phace region
above T.. The time-evolution of S(g,t) for T > T. presents features similar to
those for the phase decomposition at T' < T.. In particular, there are high ¢
modes which grow initially and subsequently decay.

o The first measurement of non scaling features in the structure factors during
the late stages of SD in a binary alloy, including the exdstence of a shoulder on
the high wavevector side of the main peak. These effects may be attributed

to elastic effects between domains of the two product phases.

The early time regime investigated is of considerable scientific interest because
it is only in the early stage of the phase separation that SD can be unambiguously
identified. The main conclusions from the fit of the LBM theory to the structure

factors measured during the eazly stages of SD may be summarized as follows:

¢ The high wavenumber cutoff g,... had to be constrained proportional {o the
inverse of the mean field correlation length with a proportionality constant a.
The choice of a influences the range of the decomposition process assumed in
the best fit LBM result, as verified by the composition distribution functional

~ during the isothermal aging.

e The decomposition which occurs during the quench can be accounted for by
considering an initial composition distribution functional doubly peaked about
nonzero +by. As expected, b increases with the depth of the quench inside
the spinodal region. Its value decreases with an increase of the cutoff factor

a.

e The gradient free energy coefficient s increases with temperature and peaks

near T.. It is independent of a.

¢ The “c*” free energy parameters r and u obtained were highly anticorrelated
during the fit. The best fit r depends linearly on | T — 7. | and scales as a2,
The value of « increases slightly with temperature showing a slight anomaly at
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T. and scales as a™®. The calculated \/-r/u allowed the determination of the
mean field phase diagram (coexistence line) which scales as a!/?. From this
scaling relationship the numerical value of @ was chosen such that the predicted
integrated intensity at the resulting mean field coexistence line agreed with the
measured integrated intensity for the quenches away from T.. Agreement was
then was found between the calculated coexistence line and a predictior by a

regular solution model.

o The atomic mobility M was determined separately from the thermodynamic
driving force. It increases exponentially with temperature and is independent
of a. A comparison of M with the temperature-dependent values calculated

from three tracer diffusivity measurements in the literature showed remarkable

agreement.

e A thermal noise strength term ¢ was computed for all runs and relatively

high values are obtained as expected from the highly nonlinear characteristics

observed for the decomposition.

e At times of order 2.6 s, the LBM equation of motlion becomes inadequate to

predict the evolution of the measured structure factors.

To perform the instrumental deconvolution for the PSD a new computational
technique was developed and used for the late-stage data. The results of the mea-

surements of late-stage SD are:

o A shoulder is observed at high ¢. This is the first time this feature is reported
for a binary alloy.

o The measured scattering profiles do not quite scale during the time of the
measurement. Comparison of the measured structure factors with two scal-
ing forms was unsuccessful aithough the form suggested by Ohta and Nozaki
presents a profile similar to the data. In particular, this form has a shoulder

at high ¢ as observed experimentally.
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e Growth exponents were calculated to be 0.40 < n < 0.45. These values are
larger than reposted earlier for a conserved order parameter system. They are
however not inconsistent with recent predictions for alloys in which the shear

modulus is larger inside precipitates than in the matrix phase.

e High ¢ tails do not go as ¢~* as expected from Porod’s law for systems with
sharp interfaces. A correction was suggested to azcount for interfaces with a

width of order of the correlation length and explain the departure from ideal
g* tails.

While this research has satisfied the goals stated in the introduction and in
doing so has yielded a new and valuable verification of early stage theory as well
as some unexpected late-stage results, it also raised several new questions which

require aew analyses of the present data and further experiments for their answer.

¢ He-analyse the measurements presented in this dissertation and analyse addi-
tional measurements at compositions away from the critical composition using
a non-symmetric form of the free energy functional instead of the “c*” form.
This work is necessary to resolve both branches of the asymmetric solvus and

thus further verify the LBM equation of motion.

e Reduce the thickness of the ribbons. Thinner ribbons would give faster quench

rates, resulting in a dec:ease of the quenched-in structure.

¢ Perform new measirements optimized with a better temperature control to
study the critical region (critical exponents). Although the temperature con-
trol for the measurements presented in this dissertation was more than ade-
quate for the investigation of the kinetics of SD, it could be improved further
to minimize the temperature smearing across the width of the sample for in-
stance. The present results should be compared with results obtained with
narrower ribbons or with a beam more collimated in the horizontal direction

(the direciion of the ribbon width).
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o Investigate of the influence of elastic constraints on the growth exponent.
Structure factors should be measured beyond the times studied in this dis-
sertation to investigate the possibility of a scaling form at later times with a
growth exponeni of 1/2 as predicted by Enomoto and Kawasaki.[179,180] A

systematic study at various alloy compositions should also be performed to

complement late-stage results.

o Apply coherent small angle x-ray scattering[184] to the study of SD in single
crystals of AlZn to obtain higher order correlation functions. This is possible

since the speckle patterns obtained by coherent scattering corcespond to a

complete Fourier transform of the recal-space structure.

The first item is presently under investigation by the author,
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