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Abstraet

Time resolved small angle x-ray scattering (SAXS) using synchrotron radia­

tion was applied to the study of the kinetics of spinodal <:!ecomposition (SD) in

an AlZn binary aIloy at critical composition quenched into the immiscible region.

These rnillisecond time scale measurements, performed at the National Synchrotron

Light Source (Brookhaven National Labs., N.Y.), constitute the first direct experi­

mentcl verification in a binary aIloy of the theory proposed by Langer, Bar-on and

Miller in 1975 for SD. A scheme based on the composition distribution funetional

is proposed to account for the decomposition taking place during the quench. The

interatomic mobility, a free energy gradient coefficient and two coefficients that suf­

fice to determine a coarse-grained (intensive) free energy have been obtained in the

framework of this theory. The mobilities obtained compare weil with tracer diffusion

measurements reported in literature. A dependence of the coarse-grained free en·

ergy coefficients on the coarse-graining length is found and a procedure is proposed

to uniquely choose the values of these coefficients based on the predicted integrated

intensity from the equilibrium concentrations and on the measured integrated in­

tensities.

Late-stage coarsening regimes were also investigated. In these regimes, growth

exponents higher than the value 1/3 predieted by the Lifshitz-Slyozov-Wagner theory

are obtained. These higher values, comprised between 0.40 and 0.45 are consistent

with predictions that aIloys in which e1astic effects are important can present a

transition regime from a t1
/

3 growth law to a t1
/

2 law. The structure factors do not

quite scale. They also present a shoulder at high waveveetors, a feature not reported

before in metallic aIloys.
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Résumé

Une étude temporelle de la décomposition spinodale de AIZn par

diffusion centrale des rayons X

La diffusion centrale des rayons X in situ (SAXS) par rayonnement synchrotron

a été appliquée à l'étude de la cinéflque de la décomposition spinodale dans un

alliage binaire AlZn à la composition critique, trempé dans la région immiscible.

Ces mesures à l'échelle du millième de seconde, effectuées au National Synchrotron

Light Source du Brookhaven National Labs., constituent la première vérification

expérimentale directe dans un alliage binaire de la théorie développée par Langer,

Bar-on et Miller en 1975 pour la décomposition spinodale. Une méthode basée sur

la fonction de distribution de la composition est proposée pour tenir compte de la

décomposition qui a lieu au cours de la trempe. La mobilité interatomique, un co­

efficient du gradient d'énergie libre et deux coefficients qui suffisent pour quantifier

une énergie libre granulée (intensive) hors équilibre ont été obtenus dans le cadre

de cette théorie. Les mobilités obtenues sont compatibles avec les mesures de diffu­

sion de traceurs publiées. Les coefficients de l'énergie libre gramùée dépendent de

la longueur de granlùation et une procédure est proposée pour choisir de manière

unique les valeurs de ces coefficients. Cette procédure est basée sur les intensités

intégrées calculées pour les concentrations à l'équilibre prédites et sur les intensités

intégrées mesurées.

Les stades avancés de la décomposition ont également été étudiés. Dans ces

régimes, des exposants de croissance supérieurs à 1/3, la valeur prédite pu la théorie

de Lifshitz-Slyozov-Wagner, ont été obtenus. Ces valeurs élevées, comprises entre

0040 et 0.45, sont consistantes avec la prédiction que les a1J.iages pour lesquels les

effets élastiques sont importants peuvent présenter un régime de transition passant

d'une loi de croissance en t1f3 à une loi en t1f2
• Les facteurs de structure n'obéissent

pas tout à fait à une loi d'échelle. Ils présentent égaIement une bosse aux vecteurs

d'ondes élevés, ce qui n'a pas été rapporté auparavant pour un a1J.iage méta1J.ique.
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Chapter 1

Introduction

1.1 Motivation and outline

Phase trll.Ilsitions and more generally, non-equilibrium phenomena, are prcsently at

the center of intense scientific activity. This field has experienced a marked growth

due both to advances in theoretical tools, such as renormaHzation group (RG) theory

in the early seventies, and to improvements in the experimental techniques such as

the use of intense x-ray radiation from synchrotron storage rings. This thesis is

concerned primarily with a specific non-equilibrium phenomenon known as spinodal

decomposition (SD) which occurs when a system of uniform density is forced into an

unst::.bl.o state resulting in the decomposition into regions of two different densities.

As well as testing cturent understanding of non-equilibrium phenomena, the

study of SD presents technological importance since the use of kinetic measurements

allows for the deterrnination of atornic diffusivities in the solid-state. Indeed, SD

theories are based directly on the concept of a thermodynarnic driving force for

diffusion in nonideal one-phase systems. Thus, comparison of theory and experiment

on the kinetics of the early stage of SD also tests our fundamental understanding of

interdiffusion in the one-phase region.

This thesis presents a study of SD in a binary alloy of Al and Zn. This binary

alloy is isomorphous to many important physical systems such as ferromagnetic, su­

percondueting and normal metal mixttues and vapotu-liquid mixttues, binary fluids.
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Figure 1.1: Representative description of a gas-liquid phase separation process. In (a) the phase
diagram io represented with regions l, II and III the Yaj.'<>ur, the coexistence and the liquid regions
respedive1y. The anows show a quench into the unstahle region (II) followed by the phase separa­
tion into liquid (III) and vapour. The dotted line corresponds to the classical spinodaI. In (b), (c)
and (d) Il "non-equilibrium " bull: Cree energy is plotted as Il funetion of the density, p. The dots
schematieally represent the one point distribution function. In (b) the system io in single phase
equilibrium. In (c) the system is in an unstable non-equilibrium state immediate1y following the
quench nom the single phase region. In (d) the system has reached final two phase equilibrium.
(Courtesy of K-R. Elder.[I])

Before proceeding to describe the specifies of the ~.:" alloy, some of the essential

featmes of phase transitions can be understood by using an everyday example,

the boiling of water (a vapom-liquid mîxtme). Schematical1y, the constant-volume

phase diagram of water may be represented as in Figme (LI). The important fea­

tme of this phase iliagram is the presence of a coexietence region (region II). This

is a region of forbidden density (p) which exists at temperatures below a critical

temperature (Tc). li water is prepared at a density and temperatme in this region

it will spontaneously decompose into a high density liquid in equilibrium with a low

density gus (i.e. it will boil). As the temperatme is increa.sed, the density difference

between the gas and liquid phases decreases. At Tc the density ilifference becomes

zero and above TC! there is no longer a transition. The cmve that bounds the co-

2



existence region and givcs the densities PG(T) and PL(T) of the coexisting phases i6

calleà the coexistence !ine (the so!id !ine in Part (a)).

The forbidden region of densities is oruy strictly forbidden in thermodynarnic

equilibrium. Superheated vrater and supercooled steam are proof that water can ex­

ist at temperatures and densities within the coexistence region, at least temporarily.

The coexistence region can be subdiv;ded into two rcgions based upon ther­

modynarnic stability. In one region water is said to be rnctastable and in the other

unstable. The metastable region exists be10w Tc near the coexistence !ine. Water

prepared with a density in the metastable region by a rapid decrease in pressure for

example, must first ove, "·orne a nuc1eation barrier for it to decompose into liquid

(water) and gas (steam). 1:.·~ kinetics of the transition in this region are deter­

mined by the nuc1eation of droplets and their subsequent growth. As the density

of the initial state is forced further away from the coexistence line, the nuc1eation

barrier decreases until it disappears altogether. Water forced into thi6 barrier-free

region is unstable and begin6 to phase separate on alllength scales. Water forced to

boil this way phase separates by spinodal decomposition. Similarly, the arrOW6 on

Fig. (l.Ia) describe a temperature quench and the subsequent process of spinodal

decomposition of gas into a mixture of liqllid and steam. Parts (b), (c) and (d) of

this figure show the bulk free energy f(p) corresponding respective1y to the high

temperature state, the unstable state and the final coexistence state (two minima).

Classical theories, exemplified by the Van der Waals eqllation of state, predict a

sharp distinction between metastabi!ity and unstability. Modern theories of phase

transitions show that this sharp distinction is oruy an artifact of mean field theories.

The dashed curve on Fig. (l.Ia) which separates the metastable and the unstable

region is called the spinodal line.

Alloys are essentially so!id mixtures. Not urù.ike the phase dill@:am for a

vapour-liquid mixture, some present a temperature-composition domain where the

constituent atoms are not soluble in the ratios making up a given composition:

the coexistence region, here called a region of immiseibility, or a miscibility gap.

3



The coexistence !ine now gives the compositions of the two coexisting phases. The

maximum temperature of this regjon is also called the critical temperature and the

corresponding con.position is the critical composition. Phase segregation also occurs

in other systems which possess a miscibility gap following a quench into that regjon

from the one-phase region. Examples are binary f1uids and polymer mixtures. The

kinetics of the phase unmixing in these systems is an issue of both theoretical and

practical interest as a typical example of non-equi!ibriuL phenomena.[2,3]

The process of phase segregation when quenching an aIloy, a liquid or a polymer

from a uniform state into the miscibility gap can be conceptually divided into Iwo

stages. During the early stage, the initial phase transforms into domains of the final

phase(s), driven by a bulk free-energy di!ference. During the late stage, the domains

of the final phase(s) coo.rsen, driven by the interfacial free energy. The early stage

of a first-order phase transition is expected to be either a nucleated process or, as

is the case in the present work, a spinoda! (continuous) process, depending upon

whether the initial phase is metastable or unstable as in the case of the vapour-liquid

mixture. [4]

The main subject of this thesis is the study of early-stage homogeneous phase

decomposition (SD) in AIZn close to the critical composition by small angle x-ray

scattering (SAXS). Though the phase separation in this aIloy has been extensively

investigated by conventiona! methods such as resistance and magnetic susceptibility

measurements, transmission electron microscopy (TEM) and small angle x-ray and

neutron scattering (SAXS and SANS), there are no early time measurements avail­

able for the separation near the composition of maximum separation rate (the critica!

composition). Previous studies of SD in AIZn have only been done at compositions

or temperatures weil removed from the critical point.

Time resolved small angle x-ray scattering (SAXS) o!fers a powerful experimen­

ta! probe to study phase separation since the detailed kinetics of non-equilibrium

states can be followed by the direct measure of fluctuations. The quantity mea­

sured is the time evolution of the equal-time two-point composition correlation

4
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function (cf. § 2.1). The experiments were performed with synchrotron radia­

tion at the National Synchrotron Light Source (NSLS), u,ing beam line IBM-MIT

X20C (Brookhaven National Laboratory). With the use of synchrotron x-ray sources

for the study of dynamic phenomena, in situ time-resolved x-ray scattering is now

possible on time scales orders of magnitudes shorter than with conventional x-ray

sources. [5] To achieve subsecond time resolution, the synchrotron source is combined

with a fast detector system, a beamline geometry to enhance high photon fluxes and

a temperature controller capable of rapid quenches. ReL [6] shows that it is possible

with the experimental setup employed to acquire a complete diffraction pattern as

fast as every 3 ms.

As mentioned above, this thesis raises two major aspects of interest in current

research. From a fundamental point of view, this work yiclds new insight into the

non-equilibrium process of SD. More specifically, the colleded data provides a direct

and quantitative experimental verification of a nonlinear theory proposed by Langer,

Bar-On and Miller (LBM) in 1975.[7] The kinetic parameters obtained within the

framework of this theory are the atomic mobility, a gradient free energy coefficient

and two coefficients that suffice to determine a coarse-grained (intensive) free energy.

The second aspect follows from the coarse-grained free energy and the inter­

diffusion coefficient obtained by using the LBM theory. These parameters have

important predictive power for thermal and mechanical stability in ail technological

materials. Despite their importance, very little is known about them from phase

decomposition experiments. In particular, no satisfactory diffusion modcl has been

tested to interpret the kinetic parameters from x-ray data for carly stage SD, when

composition gradients are small. Sustained efforts have been given to the study of

solid state diffusion. In particular, the lise of synchrotrons to study diffusivity has

gained recognition in the materials community[8]. To predict mixing or unmixing

characteristice d materials, it is necessary first to know the diffusive properties.

The outline of this dissertation is the follo.·:ing. The remainder of the Intro­

duction will examine fundamentals of critical phenomena, of solid solutions and of

5



solid-state diffusion. These concepts constitute the essential background to the work

of this thesis. Chapter II presents an introduction to small angle scattering (SAS).

This is followed by an historie perspective on SD which includes the presentation of

a classicalli"ear theory and a survey of measurements (Ch. III). Emphasis will be

placed on measurements in AlZn aIloys and on experimental methods. The descrip­

tion of the experimental procedure for the present work is given in Chal'ter IV, with

particular attention given to the application of state-of-the-art time resolved SAXS

and to the requirements to be met to produce data orders of magnitudes faster than

achieved by previous workers. Necessary calibrations and data reduction are a1so

described. The LBM theory is introduced in Chapter V. The presentation and

discussion of the measurements in Chapter VI are divided in two parts: the "early

stages" (t < 1.6 s) and the "late stages" (to la ~ t ~ 55 s). It is in the framc­

work of the LBM theory that the early stage data is analysed (§ 6.2). Late-stage

considerations are a1so introduced (§ 5.5), and put to the test with the late stage

measurements (§ 6.3). The results and discussion that form the body of Chapter VI

espeeially shed light on the characteristic length inherent to the description of the

LBM thcory. The resulting predicted equilibrium phase diagram and interdiffusion

constant are compared with that of the classical models and measurements.

1.2 Critical and non-equilibrium phenomena

In Figure (1.1), at low temperatures there is a rather large difference between the

liquid and gas densities, PL and PO' However, as the critical temperature is ap­

proached this density difference tends to zero. The existence of a quantity which is

non-zero below T, and zero above T, is a common feature assoeiated with the critical

points of a wide variety of physical systems. In the study of critical phenomena, the

quantity PL - Po is called the order parameter for the liquid-gas critical point.[9]

The region near T, and P, in the liquid-vapor phase diagram is of particular

intcrest. OVer a century ago, it was disr0yered during measurements on carbon

6



dioxide that when held in a state close to but above the critical point, this gM

scattered incident light strong1y. The phenomenon was ca1led critical opalescence

and opened up the field of critical phenomena.

There is a simple qualitative explanation for critical opalescence. Above Tc,

the gas molecul"s move freely, with random collisions. As the temperature nears

Tc, the time spent by the molecules near one (or more) molecules during collision

events increases, and the interaction between molecules starts to play a rok in thcir

spatial distribution. Sma1l "droplets" of corrclated molecules start to appear. As

the critical point is approached still closer, the droplets grow in thcir dimensions.

In fact, when the lluid is brought close enough to its critical point for these droplets

to acquire latera! dimensions on the order of the wavc1ength of light, the light is

scattered strong1y giving rise to the phenomenon of critical opa.lescence. These

droplets, though not stable and constantly fornling and dissolving, exist in sufficient

number at any given time to produce the effeet.

The boiling of water at the critical density has ail the features of a continuous

phase transition since the order parameter varies in a continuous way 8.8 T passes

through Tc. Phase transitions are classified as fust or second order if the order

parameter is discontinuous or continuous at the tra.nsition temperature. Thus the

phase transition of water at the critica! density is a second order transition. Fust

order phase transitions have discontinuous fust derivatives of the free energy, sucb

8.8 the latent heat. Second order phase transitions have continuous fust derivatives.

The qualitative pieture offered for the behavior of a COz as it approached Tc

ouly required one condition: that the position of molecules be corrc1ated over a

certain range. The length scale of this correlation, the corrc1ation length €, is the

cbaracteristic length scale of critica1 phenomena. It may be thought of as being

roughly the diameter of a "droplet". At the critical point, the correlation length

€ diverges. In this region, characteristic funetions such as the specifie heat and

the susceptibility aIso diverge due to the divergence of €. Indeed, the physica1ly

measurable extensive quantities follow simple power laws near the critical point. An

7



example of the 8ingularitie8 observed at Tc is that of the isothermal compres8ibility

KT(T) = ~ (:;L. (1.1)

In a P - P phll8e diagram, the isotherm8 acquire a fiat portion in the immediate

vicinity of the critical point. Thu8 the slope (8P/8p)T become8 zero as T -+ T.+ and

KT(T) diverges to infinity. Considering the huge density fluctuation8 associated with

critical opalescence, it is not surprising that the response of the density to a very

sma.ll pressure fluctuation is infinite. In fact, in § 2.3 the density fluctuations will

be shown to be directly related to the isothermal compressibility (or equiva.1ently,

to the differential susceptibility when the system is probed by x-rays) and hence to

the derivative (8p/8P)T'

The singular functions observed at T. are given in terms of power-laws and

the exponents are called critical exponents. For instance, introducing 1\ reduced

temperature e as

KT is described by

KT ~ (-et~'

~ (et~

T
T'•

(e < 0)

(e ~ 0).

(1.2)

(1.3)

An important e1ement of critical phenomena is the universality of the singular

funetions in the critical regions of the phase diagrams, of very differing systems.

Guggenheim was the first to recognize this fact when he found that the t~mperature

dependence of the liquid-gas density difference PL - pa (the order parameter) for

various f1uids, properly normalized, fa.ll on one and the same curve.[10] Effective1y,

this corresponds to the following critical relation

PL - pa ~ e!. (1.4)

There are universal classes generic to critica! regions in which many physica!

systems with differing order parameters fa.ll into, leading to the SaIDe critica! expo­

nenta. Thus the description of critica! phenomena in the liquid-vapour system can

8



function 1

Quantity

pair corrc1a.tion

3d

5 differential susceptibility

2 correlation length

2 specifie heat

39 coexistence curve

Exponent Definition Value

Mean field Ising
-- ------

cr C,· ~ Ae-a 0 0.1

{3 (5e)coex ~ ±Be13 l 0.3
2, x. ~ Cg-"'" 1 1.2

Il ç ~ çoe- v' l 0.6
2

1J G(r) ~ .,-w.+. 0 1
18

(e = 0)
--

Table 1.1: Power law relations for critiC'.a1 phellomena in binary alloys with criticaJ exponcnt vnJut"s
for the mean field approximation and the Ising 3d Monte Carlo model. The criticnl amplitudes nre
given by A, B, C, '0 and W in this Table. ,is the rcduced temperature as defincd by Eq. (1.2)
and T is the radial distance in G(r). The Ising 3d exponents are quoted from Ref,. [11,121.

IThe pair correlation function will he forrnally inhoduccd in § 2.1.

apply to binary alloys with a miscibility gap. The order parameter in a binary alloy

is the composition difference between the bulk and any of the two coex.isting phases,

(5c)coex. This quantity near the critical point maps OIltO the density difference

PL - pc of the liquid-vapour sYltem.[9] Eq. (1.4) now takes th lorm (e < 1)

(5e)coex ex e13 • (1.5)

Table (1.1) lists the power laws with the corresponding critical exponents for

thermodynamies response functions relevant in trus work. The differential suscep­

tibility, x. is given instead of the isothermal compressibility for convenience sinee

x-ray scattering is performed. These tV!O quantities are essentially equivalent and

possess the same eritical ex.ponent, ,. Expressions for the differential susceptibility

will be derived in § 2.1. The notation for the critical amplitudes (A, B, etc.) is

also introduced in Table (1.1). Numerical values are given for the case of mean field

interactions and for numerical simulation results from MOIlte Carlo studies with an

Ising 3d mode!.

Table (1.1) deseribes the thermodynamies, i.e. the staties, of a system sueh as a

binary alloy near Tc. The universal character of the singular [unctions makes it such

9



that the study of a particular system can yie!d insight into very differing systems.

Non-equilibrium systems a.lso present some unifying characteristics. These systems

are described by a (somewhat larger) number of standard models. Two such modela

are the "mode! A" with a nonconserved order parameter ouly (the crysta.llization

of amorphous alloys, Glauber Monte Carlo dynamics, ete.), and "mode! B" with a

conserved order parameter ouly (the phase separation in a binary alloy as studied

here, Kawasaki Monte Carlo dynamics, etc. )[13J The study of non-equilibrium sys­

tems attempts to describe as accurate!y as possible the dynamic evolution of the

structure of the system by equations of motion based on these models. Thus the

equations of motion should apply to physica.l systems which can be very different

provided they can be described by the same dynamic mode!. Not unlike the study

of the thermodynamics of critica.l phenomena, the study of the dynamics of a par­

ticular system can a.lso be mapped onto very differing systems. Bence, the -study of

the dynamics of SD in the binary alloy AIZn (mode! B) in the critica.l region has

re!evance in many physica.l systems displaying critica.l behavior as it constitutes a

probe of a mode! equation of motion for the structure.

Although the dynamics of phase separation are studied, the best fit values

of the parameters that enter the mode! equation to describe the time-evolution of

the system will be compared against the predictions from critica.l phenomena. This

provides a self-consistency check on the mode! equation as weIl as on the calibration

of the experimenta.l measurements.

1.3 Solid solutions

This section introduces the miscibility gap of the AlZn phase diagram and estimates

of the classica.l lines that limit the metastable (the solvus) and unstable regions

(the spinoda.l). To achieve this, the classical conditions for phase stability are first

summa.rized and applied to a c1assical model of solid solutions. The description of

alloys used here corresponds essentially to a mean field theory.

10
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Figure 1.2: Phase dïaglaro fOI AlZn. The compositions and aging tempelatures ofpublished studies
ofspinodal decomposition &le shown (this will he the topic or; 3.3 and Table 3.1) along with those
of the plesent otudy (below the &lIOW). (co is the atomic fraction of Zn.)

Bcfore proceeding, it is important to become familiar with the phase diagram

for AIZn (Fig. 1.2).[14,15] The Al-Zn system is a eutedic system and involves a

monotectoid reaction and a miscibility gap in the solid state. The top of the mis­

cibility gap, the critical point, lies at 624.5 K and at Co = 0.395.1 Either side of

the miscibility gap has a face centered cubic (fcc) solid solution which only dif­

fers in !attice parameter as the ratio of AI to Zn atoms differ. The Al-rich phase

is usually denoted as aAI and the Zn-rich phase as a'AI. The eutectoid reaction

(a'AI r" aAI + Zn) is located at 550 K with compositions for a'AI, aAI and f3Zn

of 0.59, 0.165 and 0.984 respedive1y. The (AI) liquidus and solidus descend to li

eutectic equilibrium with close packed hexagonal (Zn) at 654 K.

From the first law of thermodynamics, a system at eqtÙiii:>rium everywhere will

not perform any work, i.e. there must not be any gradient in the thermodynamic

~..

----;----~~~--,----
1UnIesa atated othelWÏ5e, the concentlation.s CO w'J1 he given in atomie fraction.s of Zn, thns

0.395 is O<luivalent to 39.5 at. % Zn.
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potential at any location. This can only be accomplished when the thennodyna.mic

potential of the system is at a minimum value. In a solid, the independent vari­

ables are pressure and temperature, and the intensive value of the thennodyna.mic

potential should be the chemical potential of ea.ch atornic species at equilibrium.

Therefore, it is appropriate to consider the Gibbs free energy (also called the excess

enthalpy)

G=H -TS (1.6)

where His the enthalpy and S the entropy. The area inside a two phase region, the

miscibility gap, cannot in principle be described by thermodyna.mics sinee a system

eannot be kept in such astate forever. However, just as in the case of superheated

water or supercooled steam mentioned in § 1.1, a system can be pushed into astate

away from equilibrium in this region. An extension of the thermodyno.mic potential

from the one-phase region can be performed and used to describe wheiher the state

rea.ched is expected to be metastable or unstable. This is described below.

Figure (LIa) showed two curves (solid and dashed) separating three regions on

the liqniè,-va.pour phase diagram. These regions correspond to composition ranges

of the non-equilibrium free energy f(p) aCter a quench, shown in Part (b) and (c),

namely two convex regions separated by a concave region.2 The spinodalline which

bounds the concave region corresponding to unstable states is given by the locus of

all points where ~ = 0.8 The coexistence line is given by the points of contact of

the common tangent tl> the two convex regions of G(c, T) since this is the free energy

a mixture of phases wonld have. In solids for which the phase diagram presents a

miscibility gap such that two phases coexist at equilibrium, the spinodal line is

obtained as in the case of the liqnid-va.pour system. The compositions of the two

phases coexisting at equilibrium also satisfy the common tangent construet i. e. the

, A function 1("') is a convex function of", providing the cord joining the points 1("',) and 1(",,)

lies aOOve or on the CUlve 1("') for ail '" in the interva! "" < '" < "'" A funetion f("') is a concave

funetion oh if the function - f(z) is convex.[9]

'The origin of the term "spinodal" decomposition comes from the appearance of the tUlning

l'''ints of an isotherm in a G-P diagram, looking like cusps or spmodes.[16]

12



two phases must have equal chemical potentials. The relative fraction of the two

phases satisfy the lever rue.

Models of solid solution are based on simpIifying assumptions. Without these,

the treatment of solid solutions, in particular near a discontinuity in the solubility,

quickly becomes a formidable task. Modeling of the equilibrium phase diagram often

starts from ideal solution theory which considcrs a mixture of noninteracting atoms,

i.e. a system with no heat of mixing (H = 0 in Eq. 1.6) and only configurational

contribution to the entropy. The free energy of mixing per atom is then

(1.7)

where R is Rydberg's constant (8.314 Jj(mol·K)). The value gm(CQ, T) dif­

fers from the chemical potential /l = IlAl = IlZn only by a linear offset. In­

deed if Il? (i = Al,Zn) is the chemical potential ID the pure constituent then

gm = CQt./lAl +(1 - CQ)t.IlZn where t.lli := /li - Il?'

The dcparture from an ideal mixture is accomplished by modeling the interac­

tion between the atoms. To first order, the interaction will depcnd on the composi­

tion and the temperature. The enthalpy of rnixing can thus be phenomenologicaIly

obtained by fitting a chosen polynomial in CQ and T to reproduce the experimen­

tally obtained boundary of the miscibility gap. Model equations generaIly differ

in the form of the polynomials used to express the temperature and composition

dependence of the mixing energy. They correspond to the presence of mean field

interactions between atoms and are analogous to the zeroth order approximation in

numerical simulations. These models are referred to in literature as "regular solu­

tion modeIs", owing this apellation to the regnlar behavior of the physical quantities

with composition (a solution having ideal configurational entropy and an enthalpy

of mixing which varies parabolicaIly with composition[17]).

Unlile liquids, in crystalIïne solids atoms are arranged into a lattice. To main­

tain the lattice coherency when local composition fluctuations occur, coherency

stresses e:x:ist and the associated (elastic) strain energies contribute to the Gihhs

free energy. This coherency consiraint changes both the solubility limits and the

13
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Figure 1.3: (a) Incoberenl (chemica!) coexistence and spinodallines (1 and 2 respective!y), coberenl
coexistence and spinoda!lines (3 and 4 respeclive!y) from ca!culations by a regular solution mode!
for AlZn wilh CO = 0.395 (sec lm). (b) Excess enlhalpy (Gibbs frec enugy) al 560 K wilh g", Ihe
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dashed line) are localed al c = 0.279 and 0.462 and deline the coberenl spinodal. Til. dolled lin•
•hows Ihe common langent 10 Ihe chemica! frec energy.
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limits of metastability. Thus for solids coherent and incoherent (also ealled chem­

ical) boundaries can be calculated depending upon whether the strain energy has

been ineluded in the free energy or not. Figure (1.3a) shows four curves. The solid

linea (1 and 2) are the coexistence line, aIso called the solvus, and the spinodalline

for the incoherent free energy and are similar to those introduced in Fig. (1.1) for

the liquid water - vapour system.4 The dashed lines (3 and 4) represent the corre­

sponding coherent solvus and the coherent spinodalline. The top of the dashed lines

is the critieal composition to coherent f1uetations. The incoherent solvus (1) bounds

the solubility (or miscibility) gap and is thus the boundary appearing on Fig. (1.2).

The incoherent spinodal (2) has the same maximum and is inside the incoherent

solvus. The region of metastability lies between the incoherent solvus (1), and the

the coherent spinodal (4) which represents the true limit of metastability. Thus,

the coherency constraint is responsible for the lowering of the spinodalline from the

chemical spinodal (2) i. e. it effectively causes a shi!t of the unstable region (where

a;:; < 0) to a lower temperature. Conscquently, the (coherent) critieal point does

not touch the stable region (above the solvus) and the region of metastahility above

the unstable region is extended to lower temperatures. The strain energy can be

looked at as' stabilizing the system against infinitesimal composition fluctuations for

some undercooling below the chemical spinodal.[4]

The construction of the eurves on Fig. (1.3a) is now described. To this ef­

fcet, two parametrizations of the chemical miscibility gap currently existing in the

literature are ex?.ID.ined. They differ by the possibility of existence of an upper mis­

cibility gap in the AlZn alloy. The simplest diagram, with no upper miscibility gap,

was presented in Fig. (1.2).8 It is not the purpose of this work to determine wlùch

parametrization is more accurate. In both cases, the parameters needed were found

by fitting the free energy versus concentration cun'es to reproduce the miscibility

4It shouId he emphasised lhal lhe dashed lin.. in Fig. (1.3) do nol ail represenl spinodals as

was lhe case in Fig. (1.1).
8The diagzam wilh an upper miscibilily gap is shown in Ref. (18J. For a comparison of lhe Iwo,

Bee Ref. [19].
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gap. The parametrization without ,,-u upper miscibility gap was chosen to produce

Fig. (1.3a) as it is most frequently quoted in the more recent literatllle (most of­

ten reproduced from Rer. [20]). In this parametrization initiated by Lailek[21] the

rniscibility gap as measured by Münster et al.[22J is reproduced by rnodeling the

correction to the ideal free energy of rnixing (Eq. 1.7) by

9m(co, T) = RT [CO In CO +(1 - CO) 1n(1 - CO)] + co(1 - co)n(co, T) R (1.8)

where

n(co,T) = D +Eco +FT +HTco (1.9)

with D = 1244, E = -1512, F =0.219K-1 and H = 1.795K-1
• The coexistence

line (curve 1) is obtained by perforrning Maxwell's constructionS on isotherms of the

chernical potential. Since the parameters entering the empirical relation for 9m were

chosen from fits to the coexistence line, reproducing it in this way provides a check

on the model. It is important for the work in (his thesis to note that the solvus is

asymmetric in composition. The chemical spinodal (curve 2) is obtained by finding

the roots of 829m/8<? The top of the calculated chemical spinodal coincides with

the top of the solvus at CO = 0.395 and 625.6 K. These values agree weil with the

generally accepted location of the top of the chemical solvus (cf. p. 11).

The derivation of the coherent curves (3 and 4) is difficult when e1astic

anisotropy is included. Thus, to simplify, the aIloy is assumed isotropic. The elastic

energy introduced by lattice distortions depends on Poisson's ratio v, on Young's

modulus E, and on the fractional change in lattice parMoeter a with composition

TI = (1/a)(da/dc), evaluated at the average composition Ci)[4]:

(LlO)

"Maxwell'. construclion consists esseutially in finding the values of Ca and Ca' sncb that
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Symbol AIo.6, Zno.38

an 4.054 X 10-10 m Fee unit cell side l [24]

NNV 6.00 x 102
• atoms/m3 atomic density2

.

1/ -~.5 X 10-' relative change of

lattice parameter' ·
3[24]

Il 0.34 Poisson'. ratio[4]

E [-Ii.0010T +1.1] x 10-11 J/m3 Young's modnlus[23]
--

plI' 12.53 m' Ikg mass absorption coefficient'

Table 1.2: Physical pmameters for Alo.62ZD.o.38 . T is the absolute temperature.

1Extrapolated from measured values above the miseibility gap.

2Caleulated from the value of "".

8The value '1 = -0.023 is used in g,oh for the calculations based ou the L..sel paramelrization of

the fI.. energy (Eqs. 1.8 and 1.9).

'Calculated in ! 4.3.

where the usual definition for Y has bcen used, Y =EI(l - Il). Values of 1/ and

Il for Alo.6,Zno.38 are given in Table (1.2). The empirical relationship used for the

temperature and concentration dependence of E was obtained by Kardasev et al.[23]

ba.sed on a comprehensive measurement in the composition range 0 - 0.629 (given

in Table 1.2 for Co = 0.38). At the average alloy concentration Co, the strain energy

does not raise the !Ice energy.

The common tangent was found for 9m +9coh by using Maxwell'. construction

in order to obtain the coherent coexistence line (curve 3), and the coherent spinodal

(curve 4) was found by determining the roots of (829mI8c') +(829col-./8c2) = O.

The calcnlated coherent spinodal lies entire!y inside the ch"mical spinodal. The

depression of the temperature of the coherent curves below the chemical curves,

depends on the magnitude of 1/. The profile of the coherent curves will also depend

on the bulk alloy composition, Co.

The obtallled coherent spinodal is asymmetric in composition s.a shown on

Fig. (1.3a) and the coherent critical point (the top of the coherent spinodal) is at
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a lower composition (0.383 al 597 K) than the incohcrent c~itical point (top of the

solvus and, identically, of the incoherenl spinodal al Co = 0.395).7

In Fig. (1.3b), isotherms (T = 560 K) are shown for the free energy with and

without the coherency energy (dashed and solid lines respective1y). The common

tangent to gm is a1s0 shown as a dotted line and the tangency points correspond

to the coexistence compositions Ca and Ca' (l'oints on curve (1) at 560 K in Part

(a)). The two (unmarked) points of inflection comprised between Ca and Ca' locate

the position of the chernical spinodal at that temperature (points on curve (2) at

560 K in Part (a)). Sirnilarly, the points of infiection on the dashed curve locate the

coherent spinodal concentrations (points on curve (4) at 560 K in Part (a)). The

latter are, of course, nearer to the center of the miscibility gap. Indeed, as noted

in Part (a), the nse in free energy due to the coherency energy is accompanied by

a narrowing of the concave range. At 560 K, as for the entire temperll.ture range

530 - 630 K, the departure of the free energy from the common tangent inside the

miscibility gap is a small fraction of the overall change in free energy between each

of the pure constituents. This figure will be revisited in § 1.4 in the context of the

driving force for unrnixing (cf. Fig. 1.4).

A last comment about the spinodalline is in order before closing this section.

The "classical" spinodal (either with or without the inclusion of e1astic energy) cal­

culated to produce Figure (1.3) was computed from the extension of equilibrium

7Th""" values were obtained with 1/ = -0.023. This value of') was chosen such that the ca!eu­

Iated T, matched that suggested in Ref. [25]. (With the value of') given in Table 1.2 T. is ca!cnlated

at 591 K.) If, instead ofusing parametrlsation (1.9), the phase diagram is produced following the

work of LolHer et al.[26] which makes provisions for the existence of an upper miscibility gap. i.e.

with

gm(e, T) = RT [cine +(1- e) In(l - e)] + e(l- e) [ao + boT +e(al +bIT)] RT

with the values of the empirica! coefficients ao = 4.20, bo = -3.13 X 10-8K-I. al = -2.60 and

bt = 2.89 x 10-8K-" then the top of the chemica! spinodal and of the solVUA line is obtained at

0.372 (629 K) and that of the coherent spinodal at 0.367 (597 K) with the value') = -0.025 Iisted

in Table (1.2).
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properties by empirical mode1s into a region where eqnilibrium thermodynamics

is unphysieal. In practice, it cannot be thought of as a sharp transition betwcen

a metastable and an unstable rcgion, i. c. one where segregation takes place by

a nuc1eation process and one where fluctuations are unstable on aIl length scales,

respective1y. ûnly in the case of a mean field theory, is there a sharp boundary

between these two mechanisms. The concept of a spinodalline and, in partieular its

existence or position, depends on the thermal history and on the way the measure­

ment is performed since it is only in the dynamic evolution of a system prepared

off··equilibrium (such as supercooled vapour) that it is effective1y observable. In

practice, the location of the spinodalline cannot be measured direetly.[27]

1.4 Composition fluctuations and diffusion

Atomic diffusion is often the underlying mechanism for the kinetic evolution of aIloys.

This section introduces the terminology re1evant to experimental diffusion studies

by fust examining the atomic mobility, then the thermodynamic driving force and,

finaIly, the interatomic diffusion. Diffusion constants are obtained in this work and

although the temperature domain for the measurcments is lower than that covered

by conventional methods, the values obtained can be checked against more classical

measurements.

I. ATOMIC MOBILITY - It is helpful to fust consider Brownian motion of partic1es

in a colloidal suspension. The collision events betwcen the underlying solution and

the particles impart movement to the particles. Due to the nature of the thermaIly

generated impulsions, the motion i. characteristicaIly random. These impulses give

a viscous drag of the solution on the partic1es. Since the drag is proportio~al to the

velocity, a "mobility" can be defined for the partic1es as the !nverse of the propor­

tionality constant. Now, any system in thermodynamic equilibrium is constantly

subjected to thermaIly activated composition fluctuations and responds to thcse

microscopie perturbations by cbanging composition 10caIly. Just as in the case of
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Brownian motion in a colloid solution, the retum to a configuration of minimal en­

erg}' is not instantaneous but is "slowed clown" by a frietional force, essentially the

resistance to motion of an atom, a partic1e, etc. by its surroundings.

In 80lids in which the motion of atoms is governed by thermal noise alone,

self düfusion occurs.[28] Self diffusion coefficients Di (i = A, B),S also cal1ed tracer

diffusion coefficients, are measured by the atornic flux of a tracer isotope introduced

at low concentration in an aIloy in thermodynarnic equilibrium i.e. from the time

evolution of prepared radioisotopes concentration profiles.9

The self-diffusion coefficients often obey an Arrhenius relation, described by

two parameters, an activation energy Eo and a prefactor, the "frequency factor",

-BOi
D;(T) = D7,;e 'ST • (1.11)

What is now required is an atomic "mobility", i.e. the inverse of the drag to the

atomic motion resulting from a unit potential gradient. Since the "thermal" driving

force ::&':!'c:) [30] gives rise to measured düfusion constants D;(T) or, a total düfusion

of tracer atoms in the aIloy approximated by the weighted sum CoD;" +(1 - Co)DÊ

then, in analogy to Brownian motion, the mobility, M, can be obtained by taking

the ratio of the observed diffusion to the driving force:

M = Co(1 - Co) [~"D· -l- f' - ~")D.]
NvkBT '"" Â .,' "" B (1.12)

where Nv the number of atoms per unit volume. This relation, introduced

heuristically, conveniently relates the mobilities M (always positive) to the tracer

diffusivities.[31-33] lt is not expeeted to apply in ail solid systems but should he

BU will now he useful to taIk in tenna of a mixture of A and B atoms. The notation employed

here follows that orthe previons se<:tion and will be nsed in the remainder orthe thesiB, namely CO

Ï8 the atomic fraction of B atoms in the AB binary alloy, hence 1 - CO Ï8 the atomic fraction of A

atoms.
·Strictly, if the tracer Ï8 of the same species as the major component then the (tracer) sdf-

diffusion coefficient Ï8 measured, otherwÏ8e the tracer impnrity coefficient (or solute diffusion c0­

efficient) Ï8 measured.[29] However, in concentrated alloys, the nomenclature is relaxed and either

D~ or D;' will he referred to as sdf-<llifusion coefficients in Alo.6'Zno....
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valid for metallic so!id solutions in which atom sizes are not too different. The

atomic mohility will be further inhoduced in § 5.2.

II. THERMODYNAMIC DRIVING FORCE - When an alloy is not in thermodynanuc

equilibrium, the diffusion which is responsible for its return to equilibrium is driven

by a thermodynamic force. In contrast to other phenomena described by !inear ther­

modynamics of irreversible processes, the conservation of solute imposes IL conshaint

on the return to equilibrium, i.e.

f (c - eo)d,. = O. (1.13)

To satis!y this condition, the equi!ibrium state will consist of a spatial inhomogeneity

in the concentration i.e. with B--rich and A-rich macroscopic regions. The process

is assumed to be controlled by an intensive free energy density. Though it had

been convenient to use Gibbs' free energy in § 1.3 to generate the phase diagram

for AlZn, the Helmholtz free energy f(,.) will now be used since integrations will

be performed over the volume of the aIIoy to compute the minima while satisfying

condition (1.13). However,locally g(c) = f(")1Ny and the two can be interchanged.

Implieit in this choice is a "coarse-graining" or local averaging of the composition

about points over the volume of the aIIoy. The actual role of this mes06copic scale

will become apparent in Chapter V. As a general rule, reference to the chemical

potential will still require the use of g(c).

For smalI composition variations at the point,., f(,.) cn he expanded in terms

orthe concentration c(t' )

f(c, Vc, V'c, ...) = fo(c) + f1V'c + f,l Vc l' +... (1.14)

where, since f is a scalar and must be invariant with respect to the direction of the

gradient (assuming isotropy or a cubic lattice), only the terms in even powers of V

are nonvanishing[17]. Ignoring higher order terms, integrating using the divergence

theorem for fU1 V'c)dV and defining

dit,,= -- +f,- de
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to be the gradient energy coefficient, theories use:

f(r) = fo(c(,,)) +" 1 Vc(r) 1
2

• (1.16)

(1.17)

The graàicnt energy terrn thus expresses the energy change of a volume element

of given composition if it is surrounded !Jy material of different composition and

will appear macroscopically as the surface free energy if the composition gradient is

sharp.

The driving force for phase separation will be the gradient of the generalized

thermodynamic potential corresponding to departures from the concentration profile

c( .. ) that will minimize J f( r )dr. This minimization problem requires an undeter­

mined Lagrange multiplier[32,34], say >'(c - Co), such that Eq. (1.13) is satisfied.

This multiplier turns out to be

>. = -2"V2c + ôfo
•

ôc

This >. is precisely the generalized chemical potential. Indeed, if " is set to zero,

~ = >. which is just the usual condition of uuiformity of chemical potential. The

presence of the gradient energy coefficient" opposes the growth of short wavelength

concentration fluctuations since " is positive for c1ustering systems (" is negative

for ordering systems[35]). The driving force for phase separation will be given by

gradients of the potential >.. As a rule, it increases with the undercooling below Te,

i. e. with the depth ofthe quench.

Figure (1.4) illustrates some key aspects of phase separation in binary alloys

(T < Te) based on the thermodynamic driving force. As previously, Co is the average

alloy composition. Firstly, two free energy curves (the solid and dashed curves with

a concave region) are exaruined independently to discuss the difference between the

unstable and the metastable regions. The co=on tangent to the convex regions

for each curve (dotted lines, sec footnote p. 12) determine the coexistence values

(Ca" Ca' for the solid curve and Ca" Ca' for the dashed curve)., ,

• With g(c) given by the solid curve, Co is located between the infIection points

of g(c) (i. e. inside the concave region) and the tangent to g(Co) is above the
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Figure 1.4: Schernatic Iepresentation of the thermodynarnic driving force for pha.se separation
frOID average composition Co. The dnshed and solid CUIVes with concave regions show respccLive1y
the ûee energy g(c) with and without inclusion of the contribution ûom coherency stresses. The
incoherent coexistence concentrations are cal and ca' and the coherent values are Ca~ and Cal., ,
The values l'A. and PB are the chemical potentials of A and B atoms at equilibrium (to within a
linear offset). The driving force is greater for incoherent (MN) than for coherent (M'N') unmixing.
(Schematization of Fig. 1.3.)

free energy curve in the entire composition range [ca" cad- The driving force

(such as MN) for decomposition is positive for all local composition fluctua­

tions between Ca, and ca~' Thus, the alloy is unstable against fluctuations of

amplitude comprised over the entire miscibility gap and decomposition begins

immediately. This case corresponds to spinodal decomposition (SD) .

• If, instead, g(c) is given by the dashed curve, there is a range where the tangent

to g(Co) is below the free energy eurve (the shaded region imrnediately to the

right of Co). In this composition range, the driving force for local fluctuations

is negative. Rence an energy barrier exists (a surface energy) and there has

to be a sufficient local departure from Co for decomposition to occur, i.e. a
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nuclei of the second phase has to form. Precipitates will not nucleate instantly

and the state is metastable. This case corresponds to nucleation and growth

(NG).

Next, the effect of coherency stresses on the driving force, hence on the phase

diagram are examined by considering that the solid curve represents gm(c), i.e.

without contributions from coherency stresses while the dashed curve represents the

corresponding gm(c) +gcoh(C) at the same temperature. Locally, the driving force

is proportional to Co(l - Co)f). Figure (1.4) thus allows to examine the effeet of

elastic strains on the driving force after a quench from the one-phase region. At a

given temperature, coherency stresses result in:

• A lowering of the thcrmodynamic driving force. Indeed, (MN) is the driving

force for incoherent phase separation from Co to ca; and (M'N') is the driving

force for coherent phase separation from Co to cal' The lower thermodynamic

driving force results in slower diffusion. (The aetual calculation of (MN) would

require the knowledge of the chemical aetivities.)

• A narrowing of the composition range of the unstable region. This is exempli­

fied at the concentration Co. With no coherency stresses (solid curve for g(c)),

after a quench from the one-phase region of the phase diagram, the alloy starts

off in the unstable region (region comprised inside curve 2 of Fig. 1.3a) and the

phase decomposition occurs by SD. However, for the same quench, it is in the

metastable region of the coherent phase diagram (region comprised between

curveS 1 and 3 of Fig. 1.3a) and the decomposition is expeeted to occur by

NG instead of SD. Thus, the coherency stresses which raise the free energy

also always lower the thermodynamic driving force, narrowing the composition

range of the unstable region. This is precisely the effect mentioDed in § 1.3.

III. INTERDIFFUSION - The mobility introduced in Eq. (1.12) to relate the observed

atomic diffusion with the thermal driving force also relates the atomic diffusion under
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the influence of a thcrroodyna.mic driving force. If the departure from equilibrium is

not too important then linear thermodyna.mics of irreversible processes says that the

solute flux J is proportional to the gradient of the thermodyna.mic potential ~.[4,321

Th" gradient of ~ is taken across an interface at rest with respect to a moving frame

of reference such that the flux of B atoms is equal and opposite to the flux of A

atoms (the Matano interface). With y the direction normal to the interface,

J = _Md~
dy

[
B' Jo 3 ]= -M Bt?-Vc-2I<Vc (1.18)

If M is assumed concentration independent, the conservation of solute leads to:

(1.19)

Assuilling that the concentration does not depart too much from the average

concentration Co, a series expansion ofthe free energy density curvature (B' Jo/Be')

about this value

+(_ ) 8"Jo + (e - Co)' tr Jo
c Co Bc:1 2 Be'

co co

+... (1.20)

allows one to write the linearized forro of the diffusion equation as:

(1.21)

In this eqllation and in the following expressions, J will be taken to denote the

free energy inclllding the the contribution from the coherency strains according to

Eq. (1.10) i.e. the second derivative with respect to composition of the expression

for the coherency energy.

However, in concentrated solutions (neither A, nor B, is present in a small

concentration), and where composition gradients exist, it is practical 10 introduce

new coefficients. The flux of B atoms in an AB alloy containing concentration
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gradients i. described by the intrinsic diffusion coefficient, DB, and given by

(1.22)

Similarly for A atoms, DAis introduced. The intrinsic diffusion coefficients (when

composition gradients exist) and the tracer diffusion coefficients (with no composi­

tion gradient) are related through10

(1.23)

The rate of mixing (or unmixing) of the two species, is described by the chem­

ical or interdiffusion coefficient D :

(1.24)

D has units of m'/s. Both the intrinsic and the interdiffusion coefficients relate the

time rate of change of local concentration with the concentration gradients. The free

energy dependence is included in the coefficient D. From Eqs. (1.12) and (1.23),

keeping in mind the rationale for the use of f, the Helmholtz free energy per unit

volume, instcad of g (cf. p. 21):

D = Mf" (1.25)

where primes denote derivatives with respect to the atolnÎc fraction evaluated at Co

as in Eq. (1.21). The diffusion equation (Eq. 1.21) expressed with the coefficent D
i8 then:

(1.~6)

(To simplify the notation, the subscript "0" has been dropped.) Both Eq. (1.21)

and Eq. (1.26) are generalizationi; of Fick's second law. Indeed, if the. contribution

lOIn the metallurgical Iiterature, lLll equiva1ent form of this relation is the Darken[36] relation

between the intrinsic diJl'usion coe1licents lLlld the tracer diJl'nsion coefficients in lLll AB alloy :

where gA is the c = 0 intercept of the tlLllgent of the curve 9 = g(c) at Co.
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from the gradient energy to the thermodynamic potential (Eq. 1.17) i. neglected,

then Eq. (1.26) simply becomes âc/ât = D'il'c. In the region be!ow the spinodal

line, i.e. where â2g/âc2 < 0, the intrinsic diffusion coefficients DA and DB, and the

interdiffusion coefficie,ut D will be negative. lu this case, the solution of A - B atoms

will " ."1lIIIIllX •

Equation (1.21) (and Eq. 1.26) is known as C"Jlll'S formulation orthe diffusion

equation.[4] This equation lacks the Langevin "thermal" driving force responsible

for tracer self-di.ffusion mentioncd in the discussion leading to the introduction of

the atomic mobility, M (cf. p. 20). In the case of diffusion in an alloy with a con­

centration grad.ient, this term also plays a physical role. It will be discussed in the

èontext of sn, resulting in the Calm-Rilliard-Cook equation, in Chapter III. The

quantities!", K and M in Eq. (1.21) are precisely the sarne as those appearing in the

LBM equation of motion employed to mode! the kinetic evolution of the measured

structure factors in this wark. So, it will be crucial to examine the possible compar­

isons between the values measured in phase separating experiments performed and

the more conventional measurements of diffusion in soljds of other workers.

The determination of the interdiffusion constant D can be performed on un­

mixing systems, i.e. in phase separation studies as in this work, or on mixing

systems. In mixing systems, a class of experiments use the deeay of the intensity

of x-ray r"Hection with time during the annealing of artificially made composition

modulated materials (multilayers).[35]

Though knowledge about x-ray seattering is required to diseuss these experi­

ments and will be the topie of Chapter II, a brief survey of the scattering predieted

by Eq. (1.21) for mixing multilayers is proposed at this point. It was stressed as part

of the motivation for the work presented in this dissertation that measurements in

phase separating systems offered an alternative for the determination of solid state

diffusivities and free energy gradients other than by the application of an equation

of motion sucb as Eq. (1.21) to artificially modulated multilayers.

In a scattering experiment, it is the Fourier transform of the composition
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modulation spectrum wruch is measured. For a wave v"ctor of modulus q, the

amplitude of the corresponding modulation I(q), will be the Fourier transform of

(1.27)

Eq. (1.21):

âI(q) = -q'M [tflal +2K,q2] I(q).
&t âc2

co

A small amplitude concentration modulation then decays exponentially with an

inverse relaxation time T:

(1.28)

or, aceording to Eq. (1.25):

(1.29)

One then measures the evolution of the scattering intensity for several values of q,

or composition modulations, to aIlow for the verification of the aq2 +bq4 dependence

of T. and to determine the physical parameters.

The fust tests of Eq. (1.28) or conversely of Eq. (1.21), came from preparing

multilayers of two components hy vapour deposition of individuallayers of 1 - 3 nm

and following the homogenization process upon annealing (CuAu[37], AuAg[38] and

CuPd[39J). In partieular, for AuAg and CuPd, confirmation of both gradient en­

ergy and coherency energy effects was obtained and values of the gradient energy

coefficient K, were measured. These =periments served to demonstrate unambigu­

ously the general validity of Cahu's diffusion equation in describing the kinetics of

multilayers homogenizing in time.

To close this section, an estimate of the gradient energy term K, is introdueed by

assuming an interatomic (pair) interaction energy for the computation of 1(.,.) and

reevaluating Eqs. (1.14) and (1.16). The interaction energy depends on the number

of participating pairs at each pairing distance or shell, and on the contribution of

the nth shell to the ordering energy. The pairing energy is written as

(1.30)
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with 'ij. the interaction strength between atom i located at a site R and atom j

located on the nth shel1 at position l'. As empiricai mode! equations for g(c) were

used to reproduce the miscibility gap, Eq. (1.30) is just a different starting point

to derive the regular solution mode! through the temperature-dependent values of

the interaction parameters 'AB.' In Eq. (1.30), as A and B l'toms incre.;;<ingly tend

to c1uster with l'toms of their own species, Wn becomes increasingly negative and,

conversely, for complete solubility between A andB atoms, W n will be positive.

The probability of having a pair BA with B at R and A at R +l' is c(R)[I­

c(R+ l')]. Expanding c(R+ l') about Rand assuming cubic symmetry, the number

of pairs with B at R and A on the nth shell about site R with radius rn i8 therefore

Zn {c(R) [1- c(R)J - c(R) \7'c(R)r~} (1.31)

where Zn is the number of sites contributing to the nth shell. The contribution of

site R to the internai energy is then

(1.32)

With

n n

(1.33)

and the mean square range of the pair interaction 1/J', wl'itten as

./.' _ En Znr~Wn
'1' - ,

EnZ"Wn

Eq. (1.32) becomes

w1/J'UeR) = wc(R) [1 - c(R)]- c(R) \7'c(R)-2-'

(1.34)

(1.35)

Since F = U - TS, and the c01l.l'igurationai entropy (S) only contributes to

fo(c), arter integration over the volume of the sample (compare with Eq. 1.16), it

follows that
w1/J'

/Ç=-2-' (1.36)

The gradient energy term /Ç therefore corresponds to the produet of an interaction

energy per unit volume times a mean square range of interaction. For a regular
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Figure 1.5: Estimates of 1< from Eq. (1.37) with the reg::Jar solution mode! given by Eq. (1.9) for
the te.mperature range measured. The solid line corresponds to nearest-neighbor interactions only
and the dashed line to a Lennard-Jones potential.

solution with the interaction given as in Eq_ (1.30), if h is the enthalpy per unit

volume Co(1 - Co)I1, then w = 4h at c c= 0.5[17] and

1< = 2h-.jJ2 • (1.37)

For an estimate of 1<, the empirical equation with four constants D, E, F

and H introduced earlier (Eq. 1.9) is used to calculate h. With ro as the nearest

neighbor distance, Eq. (1.34) gives -.jJ = Jfro for nearest-neighbor interactions only

and -.jJ = JTfro for a Lennard-Jones potential. The calculated estimates are shown

on Fig. (1.5). The values obtained remain only empirical estimates of the order

of magnitude of K and of its relative temperature dependence. To reline the values

obtained , the coefficient in Eq. (1.37) should have been corrected for the actual alloy

composition and the mean interaction potential distance -.jJ shonld have been more

appropriate for a fcc lat tice.
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Chapter 2

Small angle x-ray scattering

This Chapter introduces small angle x-ray scattering (SAXS) and its rclationship

with density correlations in real space. Sum raIes for the scattering intcnsity are

also presented.

2.1 X-ray scattering and correlations

Electrons in solids or lllolecules scatter incident x-rays. Each part of the dedron

distribution acts as a scattering center. Thus if a group of atoms arrangcd in some

arbitrary manner is placed in a paraUeI monochromatic beam of x-rays, each atom

can also be considered as a scattering ceder emitting a scattercd wave which is

coherent with the incident radiation. The total scattered photon wave will be the

combination of the waves scattered by ail scat tering centers. The scattercd waves

interfere with each other and the resulting intensity will thus depend on the direction

of observation and is related to the 'real' space atomic structure of the object by a

Fourier transform. Thus x-ray scattering allows one to determine the distribution

of atoms in solids, on surfaces, in Iiquid metals, etc.

The scattering vector is defined in terms of the incident and scattered wavevec­

tors k o and k as in Fig. (2.1) by:
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Figure 2.1: StandlUd definition of q.

q = le - ka (2.1)

with k = 27':/),. where ),. is the photon wa.velength. Since k = ka, the angle of sca.t­

tering 0 is related to the scattering vector q by

q = 2kasinll (2.2)

i.e. q=4.,;sinO/),..

The coherent scattering intensity I(O,,p) (in a solid angle dfl) from the scat­

tering centers norma.lized to the incident photon flux 10 (per m2 ) is equivalent to

the differentia! sc80ttering cross-section (in m2/ster8odians):

tJq I(O,,p)
dfl = 1

0
(2.3)

The arrangement of 8otoms A(l') 80t discrete sites "n, with l' the position vector, cm

he expressed as the SUlll over all sites of the corresponding form factor:

(2.4)
n
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where ln is the atomic form factor for the atom at site n. The Fourier transform of

A(,,) is

A(q) = L In e-·q·,,·
n

(2.5)

and the scattering intensity will be given by the square of A(q). Thus, the diffcrential

scattering cross-section is given by

With expression (2.6), the maxima in scattering intensity will occur when

q . ("m -- "n) = 21rn

(2.6)

(2.7)

where n is any integer. This is known as Bragg's condition and Bragg scattering

will occur at the waveveetors q in crystals where "m - "n = 2,rn when the number

of scattering atoms is large.

To examine the more gencral case of the scattering of e1cetromagnetic radiation

by an arbitrary e1eetron density, the atoms at discrete sites are replaced by radial

e1ectron density fllnetions P.(,,) in Eq. (2.6):

(2.8)

where UT is the Thomson electron cross-section (the square of the classical e1ectron

radius) UT = m~'" = 7.94 x 10-50 m2/e1.2 and duv/dû (in m-1
) is the differential

cross-seetiOll per unit volume of the sample. Equation (2.8) is predsely the Fourier

transform of the equal-time two-point e1ectron density correlation funetion

where translational invariance has been assumed and

(P'(")P.(o)} == f P.(")p.(o)d,, / f dl'

where ( ) denotes the thermal average.
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The alIoy composition c (in atomic fraction of one constituent in a binary alIoy,

at. fract.) is used in this work instead of the electronic densities, p•• A structure

factor in rea! space S(1") is defined with this units convention:

S(,,) _ (c("o)c(1'o +1'))

(
d )-2

= :: (p'("o)P.(l'o+1')). (2.11)

Thus S(,,) is in (at. fract.)2 (or moF/m6
). The units of S(q), the Fourier transform

of S(,,),

S(q) = f e,q·" S( l' )d" (2.12)

are (at. fract.)2m3 (or mol2/mS). From Eqs. (2.9) and (2.11), the structure factor is

proportiona! to the differentia! scattering cross-section

S. _ -1 (dP') -2 duv
- O"T de dO . (2.13)

Thus the differentia! scattering cross-section is the Fourier transform of the

two-point pair correlation function (c(1'o)c("o +1')) and S(q) is sinlply the product

of ~d' with a prefactor. Certain conditions have to be satisfied for this derivation

to be valid. i. The Born approximation has to apply, i.e. multiple scattering events

in the sample can be neglected. ü. The scattering must occur exclusive1y elastically,

through Thomson scattering, i.e. as if the e1ectrons were free electrons. This would

not be the case if the energy of the x-ray photon Was close to a core-leve1 binding

energy since the corresponding optica! absorption edge would influence the scattering

resulting in inelastic scattering (anomalous scattering). In this work the energy used

(~6 keV) is far from absorption edges in Al e.nd Zn (1.56 and 9.69 keV for the K

edge of Al and Zn respectively). lt is not necessary to include ine1astic effectsfrom

Compton scattering either since at very small scattering angles it vanishes. m. In

the definition of the scattering cross-section, conditions for Fraunhofer diffraction

were assumed, i. e. it was tacitly assumed that the source and the detector were

both effectively at infinity.
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Our choice of units to express S(,.) and S(q) will allow a direct comparïson

between the measured scattering and the equations of motion for kinetic theories of

SD.1

The term 'small angle' scattering (SAS) can be lnÎsleading. Indeed, SAS does

not iL. ?ly small diffraction angles but rather small values of the mltgnitude q of the

scattering vector. The angle range of SAS is usually of order 0 < q < 'Ir/d. , where

d. is the interatolnÎc distance.[42J For Alo.62ZIltl.38 , llSing the fcc lattice spacing

!rom Tabb 1.2, d. equals 2.87 A (0.0/../2). Thus this gives an upper lilnÎt of about

q =' 1 A-1 to the SAS range. For Cu Ka radiation (À =' 1.54 A) this corresponds

to a diffraction angle of 14° but for neutrons with a wavelength of 8 A tlùs angle

increases to 80°. At the beam energy in this work (E =' 5.989 keV, i.e. À=' 2.07 A)

this would correspond to a difli:action angle of 19°. The lowcst order Bragg refiection

(111) would occur at a difli:action angle of 52.4° (q =' 2.68 A-1). In this work,

reciprocal vectors coyer the range 0.01 to 0.085 A-1 and thus features with length

scales betVleen 60 and 600 Aare probed.

2.2 Thermal diffuse scattering

At eqilllibrium, the structure factor of a binary alloy, i.e. the scattering due to

thermal composition fluctuations can be estimated from the equipartition of the

!ree energy. Ignoring terrIlS of bjgher orde.: than quadratic, tiling the integra! of

J(,.) (Eq. 1.16),

G =' jd'r [1> 1 \7Sc(,.) 1
2 +!"oc'(,.) 1

2
] (2.14)

IThis choice oC units is a departure from the nsuaI scat1ering power in terms of "electron unita

per atom" (Laue Unils) where the intensity per atom is compare<! to a number of diJfrading

e1ectrOllil giving the same intensity.[40] The conesponding qU').Iltity in neutron diffraction is the

coherent dürerential cross-section per atom, <Ur/dO, expresse<! in unils of ·cm' per .terad per

atom" [41]. In this sense, the unils use<! in this work are c10ser to those of neutron 8CAt!ering than

those conventionally used in x-ray scattering.
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1 'th f" in Jjm3 and 1< in Jjm and where the notation

6c(I') = c(l') - C;) (2.15)

has bcen inhodueed to neglect the constant offset to G provided by C;). The Fourier

tran.fonn 1" {8c( l')} i. inhodueed as

(2.16)

Then, by substituting the inverse Fourier transform, 1"-1 {6c(q)} to &(1') in

Eq. (2.14) the fol1owing expression is obtained[43]

(2.17)

Henee the frec energy in the qth Fourier mode is

whose average value should be kBT, by equipartition of energy. Henee

(1 5 ) 2 kBT
c(q I} = I<q2+f"

- SOZ(q)IT

(2.18)

(2.19)

which is preciseIy the Fourier transform of the expression inEq. (2.11). Henee, the

equilibriurn structure factor is given by a Lorentzian centered at q = O. Dsing the

correlation length {,

(2.20)

Eq. (2.19) can be rewritten as

kBT
SOZ(q)IT = l«q2 +{-2) (2.21)

and SOZ(q)IT, as in Eq.( 2.13), is in m3 • Equation (2.19) is known as the Ornstein­

Zernike structure factor.

When the alloy is not in equilibrium, Eq. (2.19) should be the asymptotic state

(or infinite time Iimit) of the dynamic equation of motion employed to predicl the

kinetics of the return to equilibrium.
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2.3 SUll rules

Since the mea.sured scattering intensily relates so simply to the equal-time two-point

wrrela.tion function (cf Eq. 2.9), it is slraightforward to make some predictions

about the observed scattering intensity, independent of models of the correlation

function. These are often called "sum rules". Once established, these rules provide

easy checks for both the experirnentalist and the theorist.

The differential electric susceptibility is given by

x. == lim 13S(q).
1iI-0 ao

(2.22)

where a., is the lattice parameter. The fust sum rule is obtaincd from Eq. (2.19) by

setting q == O. This rule is thus a susceptibility sum rule :

(2.23)

w1ere fil is evaIuated aIong c == Ca'

Two more sum rules are introduced. The fust applies at aIl times whereas the

se=nd is valid when int"rfaces exist, that is at the late stages of lhe decomposilion.

The fluctuations are related t" correlations by noticing that S(1') as defllled

in Eq. (2.11) has the property S(O) == 2. Taking the inverse Fourier transform of

Eq. (2.13),

1 fa"" .S(1') == - S(q)e,q·1' dq
(211')3 0

and, for l' == 0, an expression for the integrated intensity Qo is oblained[44]

1 ("" .
Qo == (211')3 Jo S(q)dq == (c - Co)2

(2.24)

(2.25)

where Co is the average composition. The averaging in Eq. (2.25) involves the integral

over the scattering volume,

(2.26)

When, as in the case of bulk aIloy compositions and temperatures inside a nllscibility

gap as in Fig. (1.3), two phases coexist in the aIloy near or at equilibrium, the volume
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fraction of each phase is obtained by the lever mle:

va Ca' - Co
=• Ca' - Ca

va' - 1- va• •
Co - Ca-
Ca' - Ca

Then, Eq. (2.26) can be approximated by

= (c{) - Ca)(ca ' - C{))

(2.27)

(2.28)

(2.29)

where Eqs. (2.27) and (2.28) have been used. This expression can alternately be

written as

Qo = v:,al';,°'(cal - ca) (2.30)

which is equivalent to the formulation of the sum rule by Tomita[45] where

Ca' - Ca = 1. Eq. (2.25) was originally[46] written in terms of the local fiuctt'.ations

of the e1eetron density (p - Po)'.

The next rule applies for systems which posess regions of uniform composition,

either Ca or Ca', separated by interfaces. The scattering contrast in the smalI angle

range then comes salely from the interfaces. Ji the area element of an ·interface is

written da and V is the volume of the whole system, the interface area density can

be defined by

A=1da/V. (2.31)

The fust term of a large q expansion for the Fourier transform of the correlation

funetion of a system with interfaces is the Porod law[47]

(2.32)

."

According to this equation if there is a sharp interface between two phases the value

of q4S(q) should be constant for large q.
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Chapter 3

Early descriptions of spinodal

decomposition

This Chapter maltes a review of the early descriptions of spinodaI decomposition

(Sn), in particu1ar of Iinear thcories, iilld of the measurements to date, mainly

for binary aIloys. Before doing so, the text be10w summarizes sorne key differenccs

between sn and the other decornposition process introduced in Chapter l, nucleation

and growth (NG). The re!ev"nce of such distinctions is aIso questioned.

3.1 A foreword

The main featUIes of NG and sn described in § 1.1 for phase transitions in a gas­

Iiquid system aIso apply for a binary aIloy. As shown in Fig. (3.1a) the decay of

a metastable phase to a stable phase by NG occurs in roughly two stages. The

fust stage involves the formation of nuclei of the precipitate phase (nucleation)

through fluctuations in the one-phase medium and often requires an incubation

period. Afterwards, the nuclei grow in time. However, sn displays long-wave!ength

fluctuations th:.t lower the excess enthaIpy immecliate1y aCter the quench into an

unstable state as schematized in Part (b). These fluctuations grow in time on ail

lcngth scaIes.

39



nucleation and growth__n,__ spinodal decomposition

early

c

1- late

distance

Figure 3.1: Schematic morphologies ofphase separation mechanisms. (From Rer. (48], p. 87.)

Before considering exclusively the SD process, it is appropriate to consider the

nature of the spinodal curve. This will lead to sorne comments on the important

choice of interpretation that measurements of the kinetics of unmixing processes

have to present the characteristics of only one or the other of these processes.

1. COHERENCY STRAINS: THE SPINODAL CURVE, A KINETIC BOUNDARY -

A priori schematization (3.1b) of the SD process could suggest that near Te

where the decomposition is only thermally activated, it would present continuous

charaeteristics reminiscent of water near its critical point (cf. § 1.2). In the case

of water, the order parameter varies in a continuous way as Tc is crossed, suggest.

ing a second order transition. However, in crystalline solids such as the AIZn alloy

there is a metastable region above Te (i.e. above the spinodal region) where the

a1Joy will decompose by NG after an incubation time § 1.3. Thus, as SD proceeds

after a quasistatic crossing of Te (T -+ Tc-) the order parameter evolves asymptot·

ically to the difference between the chemical solvus compositions at that tempera.
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ture, co<' - Co< oJ O. Clearly, in this case the order parameter is discontinuous at Tc.

The decomposition is thus a fluctuation-induced first order transition.[49] lIence,

even at Tc, the spinodal curve represents a kinetic boundary rather than a .tatic

boundary.l [50]

II. FINlTE RANGE INTERACTIONS: THE SPINODAL CURVE, A TRANSITION REGION

Chapter 1 gave a description of phase transitions based on lIlean field inter­

actions between moleeules, atoms, etc. which corresponds to the clitssical (Landitu)

theory of phase transitions. In practice, this description remains valid in the limit

of weak long range interactions. In systems where interactions have a finite range,

it is often argued that the spinodal curve, if it exists, is a smooth transition region

between metastable states and unstable states. Descriptions not based on meitn

field interactions have been devcloped, such as cluster dynamics.[50-52] These do

not have a sharp transition between SD and NG: aU states inside the miscibility gap

are metastable and the nucleation rate increases continuously with the undercooling

(i.e. the over-saturation). Thus, for instance, results from Monte-Carlo simulations

of the kinetics 3d Ising modcl in the "unstable region" have bcen interpretcd us­

ing eithcr analyses appropriate for nuc1eation or heterophase fluctuatiolls[50-54] or

coarse-graining cooperative models, as in trus work (cf. Chap. V).[7]

This dissertation assumes a sharp spinodal and thus that SD can be distin­

guished from NG by the differences introduced above. Since, the alloy composition

is close to the critica1 composition, and thus as far as possible from the c1assical

spinodal for any given quench temperature, the srnearing of the spinoda! line is not

a direct issue. A direct casting of the measurernents to the study of the kinetics of

SD can thus be justified without having to evaluate a1ternate decomposition mech-

IThe point at the top of the miscibility gap is also a first order transition point. StricUy, an

alloy quenched into the region below this point is metastahle and the decomposition oceurs by

NG. This process is inherently discontinuous and requires a surface energy, and has consequently

a disconlinuily in the firsl derivalives of lhe free energy. A disconlinuily in lhe order parameter is

also irnplied since al lhe onsel of decomposilion, il goes exactly 10 Ca' - Ca l' O.

41



amsrns. However, measurernents reported in the literature at compositions closer to

the classical spinodal are not free from this concern (cf. § 3.3).

3.2 Linear theories

The groundwork for the current ideas of spinodal decomposition was laid by

Hillert[55] in a paper in 1961, and more generally the first equation to predict the

time-evolulion of the scattered intensity is due to Cahn[4,56] in the years 1961 and

1962. Excellent reviews have been written on this topic.[32,57] The Cahn-Hilliard

(CH) equation of motion and the Cahn-Hilliard-Cook (CHC) equation of motion

are described in this section as the two main linear equations of motion proposed to

describe the early stage evolution of an alloy during SD.

The generalized diffusion equation deve10ped by Cahn was inhoduced in Chap­

ter 1 (Eq. 1.21). This equation was formulated for an e1astically continuous decom­

posing system. Eq. (1.27) provided the corresponding equation of motion (the CH

equation) for the scattered x-ray intensity I(q, t) associated with the Fourier compo­

nent of wavenumber q for an isotropie body at a constant aging temperature. The

solution to Equation (1.27) predicts the scattering at time t to be:

I(q,t) = I(q,0)exp[2R(q)· t]. (3.1)

ln this expression, I( q, 0) is the initial scatlering intensity before any evolution at

the aging temperature, and R(q) is an amplification factor given by2:

R(q) = -(DI!") (f" + 2'12y +2Kq')q' (3.2)

where as in Chapter l, D is the interdiffusion coefficient, !" the second composition

derivative of the free energy per unit volume and 2'12y the second derivative of the

e1astic energy (cf. p. 17).

Figure (3.2) shows the calculated amplification factor with parameter values

taken from Rundmand and Hilliard's work on an AIZn alloy[58] (cf. §3.3). Equation

'Exceptionally, in tbis section the e!ldic energy contribution to f" is written explicit!y.
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Figme 3.2: Schematie diagram showing the variation of the amplification factor R(q), with the
",aveveetor q (cf. Eq. 3.2) inside the spinodal. Numeriea1 values used are .0[1 + (2'l'Y/I")] =
-2.4 X 10-" m'/s and ".0/1" = 2.9 X 10-<1 m'/s (cf. Table 2 of Ref. [58]). This eurve haB
a maximum at qm = 1.44 X 10· m- 1

(.\", = 43.7A) ..ad intersects the abseïssa (d8Shed line) at
q, = 2.03 X 10· m-1 p.,.= 27:/q, = 30.9A).

(3.1) predicts that the intensity corresponding to a given Fourier component will

either grow or decay, depending on the sign of R(q). For one nontrivial value qe

BUch that R(qe) = 0,

qe = J-(f" +2TJ2Y)/2"

_ e-1

(3.3)

(3.4)

the associated Fourier component does not change with time. The wavenumber qe

thus corresponds to a time-independent C;Ossover in JIq, t). The amplification factor

also has a maximum at R(qm) for which the growth rate of the associated Fourier

component will also he maximum IUld, from Eq. (3.2),

(3.5)

Cahn's theory was expanded by Cook[30J to include the effects of thermal
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f1ucl uations by adding a Lnngevin source term. The resulting Cahn-Hilliard-Cook

(CHC) linearized equation of motion applies to the absolute scattering intensity

S(q,t),

8S1~'t1 = 2R(q)S(q,t)+2MkB Tq' (3.6)

where the time-independent amplification faclor R(q) is as In the Ca.hn-Hilliard

equation and Mis the atonùc mobility.

According to Cook's theory, the intensity is no longer givcn by Eq. (3.1) but

bv the solution of Eq. (3.6) with appropriate boundary conditions:

S( q, t) = [stq, 0) - Soz( q)IT,] exp[2R(q)tJ + Soz(q)IT, . (3.7)

In this cquation SOZ(q)IT, is the scattering associated with thermal fluctuations

at the aging temperature as given by Eq. (2.19) (replacing 1" by 1" +2'7'Y).

Figure (3.3) shows typical equilibrium Ornstein-Zernike structure factors Soz(q)

for a phase separated alloy i.e. at a temperature below Tc (solid line) and for the

same alloy in the one-phase region (dashed line). For bulk ailoy compositions in

the unstable rcgion of the phase diagram the solid line shows that Soz( q) < 0 for

q < qq since (f" + 2'7'Y < 0). Thus, coherent equilibrium f1ucluations do not occur

over length scales larger than ç since these would contribute to the structure factor

at wavenumbers below qc (cf. Eq 3.4).

Fig. (3.4) shows the solution of the CHC equation for a hypothetical queneh

from an annealing temperature Ta in in the one-phase region to an aging temperature

Tq inside the miscibility gap at selected times. The equilibrium structure factors

corresponding to the anneal and the aging temperatures are as given in Fig. (3.3).

The amplification factor is as given in Fig. (3.2). As in the case of the CH equation

of motion, Fig. (3.4) shows that there is a fixed crossover of the S(q, t), which is now

labeled q~. However, q~ is larger than qc. Fourier modes with q < q~ grow and those

with q > q~ decay asymptoticaily to the equilibrium value at the aging temperature

(solid line in Fig. 3.3). This is a1so verified by taking the large time Iimit when

Ii~~q) = 0 in Eq. (3.6) for the case R(q) < 0 which gives S(q) = "'l'+~*~2"'Y which is
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Figtue 3.3: Equilibrimn """Itering due 10 Ihermal f1uclualions above (dashed line) and below Ih.
crilical temperattue (solid line), Eq. (2.19), computed for q, = 2.03 X 10° m- I (cf. Fig. 3.2 and
Eq. 3.3) and f" +'l'Y = -9.9 X lOlO Jima (cf. Table 2 of Ref. ([58]) for T = 338 K Î.Il Alo.7'Znc...
(solid line). The dashed line shows th. equilibrium scaltering above T, corresponcliDj! 10 Ihe sam.
correlation length, e=q;\ taking arbitrarily l" + 'l'y =2.475 X 10-10 Jima and T =378 K.

the expected equilibrium scattering at the wavenumber q (Eq. 2.19). This limit and

the expected stationary solution will only be approached for the wavevectors larger

thu q,.

The nontrivial wavenumber i, which corresponds to the cross-over in the CHC

equation of motion is also the wavenumber for which SOZ(q)IT. = SOZ(q)IT, in

Fig. (3.3) i.e. 0.255 A-l. Indeed, from Eq. (3.6), solving âS(q,t)/ât = 0, gîves

S(i"t) = SOZ(i,)IT
f

• As expected, setting S(tc,O) = SOZ(i,)ITf in Eq. (3.7) gîves

the same result.

The CHC equation of motion predicts a linear growth of the amplitude of the

wavevector q" as shown by the Înset in Fig. (3.4). This cau be checked by expauding
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shows th. linear gromh for S(qco t).

e'R(q)l ~ 1 + 2R(q)t in Eq. (3.7)3 and, after substitution of the expressions for R

(Eq. 3.2) and SOZ(q)IT, (Eq. 2.19), by taking the limit q2 --4 _(fil +2T/2Y)/2K. (cf

Eq. 3.3) which gives

(3.8)

Modes with wavenumbers q < q. will grow exponentially without bound as in the

CH equation and those comprised in q. < q < te will grow asymptotically to the

equilibrium scattering value SOZ(q)!T,.

The CHC equation reduces to Eq. (3.1) when random :fluctuations can be

aIt is necessary ta expand R(q) since
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considered negligible. However, in the very carly stages of dccomposition when

the amplitudes of the composition waves arc sma.11 the random fluctuations will

constitute a significative fraction of the composition fluctuation amplitudcs ..nd

the CHC equation is more appropriate. At high wavcnumbcrs, the CHC equation

predicts the correct asymptotic behavior of the structure factor.

3.3 Experimental results

This s",ction presents a brief survey of experimenta.1 studics of spinoda.1 decomposi­

tion. The works are critica.1ly reviewcd with respect to whether they unambiguously

prove the occunence of a SD process. Although Illuch theoretica.1 work has stressed

SD, it has proven remarkably difficult to obtain experimenta.1 resu1ts. The first ex­

perimenta.1 studics of SD were carried out on a.lloys and, in particu1ar, on AIZn a.lloys,

and a number of review papers al'pearcd a decade ago (for example, see Ref. [42]).

Subsequently, the investigation has spread to other systems such as binary fluirls,

glasscs and polymers. The account of experimenta.1 remlts first concentrates on SD

measurements in AIZn a.lloys. This is followed by a review of sorne recent SD studics

in other systems. Fina.lly, an overview of the reported studies on the late stages of

SD is presented.

Many efforts have been made to verify the CH and the ClIC theories of spinoda.1

decomposition. However, ta date, there is no unconditiona.lly accepted experimenta.1

verification of these theories in a. phase transition context for a meta.llic system (in

§ 1.4, some diffusion studies in multila.yers were mentioned in the context of the

CR equa.tion). In a lot of measurements, the praetica.1 difficu1ties in unambiguously

measuring fea.tures unique to SD seriously restrict the interpretation of the data.

There is abundant experimenta.1literature on AIZn binary a.lloys. The criteria.

for inclusion in this review is whether or not the workers examined their data in the

framework of SD. The interpretation of experimenta.1 results is somewhat dependent

on the idea that a sharp spinoda.1 line can be drawn as in Figure (1.3) to separate
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sn processes from NG processes. Though a sharp spinodal line does not exist in

fact it is convenient to use it to justify the use of sn theories inside the region it

bounds. However, in sorne cases, aIloys aged at the same point on the phase dia­

gram have been alternately analysed in terms of a NG theory (sueh as Langer and

Schwartz's C!uster dynamics[59]) or a sn theory by different authors. For example,

in a very comprehensive study by Guyot et al. using small angle neutron scattering

(SANS)[60], transmission eleetron microscopy (TEM)[61,62] and resistivity mea­

surement6[63] c!ustering has been studied in AIo.932 Zno.068 aged at 293 K, whereas

Mura}.&mi et al.[64J present measurements on the same aIloy at 313 K interpreted

in termB of the CH equation. These analyses represent two different phenomeno­

logical pic!ures of the decomposition process. As models, they are idealizations. It

is beyond the scope of this dissertation to examine in detail decomposition models

other than sn. As a point of interest, the principal conclusions of Guyot's studies

were the lack of an observed sharp spinodal transition and an increase in the nu­

c!eation rate of the Guinier-Preston (GP) zones with the undercooling (i.e. with

Zn supersaturation). The lack of signature of the sn process is also found in some

cases to work the other way. Indeed, for some measurements of AlZn aIloys outside

the spinodal, seattering reminescent of f. J was observed.

Though sn can be divided up into at least two stages, early and late, rigorously,

it is only at the onset of the phase separation process, in the very early stage, that

sn can be diserimÎnated against NG. Indeed, it is in this stage that the most typical

characteristics of spinodal decomposition - homogeneous buildup of fluctuations ­

should appear. The mos1 critical work on sn should then aim at the study of the

very early stages of the phase-separation process. Critical eompanson of the theory

and observations is, however, not easy for the early stages, partly ber.ause f'f the

experimental difficulty in distinguishing these stages from the lak stages i.e. the

scaling stage.

A full and significant determination of the early time lcineties is not an easy

task. The quench must be perfeet: it must preserve the high temperature disorder,
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a condition which is difficult 1.0 ll1eet with highly over-~"turated ~y.tems. Ddects

which lead 1.0 heterogeneous nuclc"tion must be avoided. SmaJI composition fludu­

ations are difficult to cb"r"derize. In all kinetic studies, it is illlperative that ,my

change occurs on time scales comparable to tbe time scales on which the me,,~ure­

ment is performed. The choice of a system for the ~tudy of SO will depend, alllongst

other things, on tbe expected rate of dccomposition. In the ~ct of Linary aJloys th"t

possess a miscibility gap, decomposition rates will v"ry widcly "nd will be, of course,

temperature dependent al. any given composition. In gell<'ral, the driving force in­

ere",es with undercooling but the atomic mobilities decre"se as the tempe",ture is

lower. So, near the spinodal line, decomposition will be slower duc 1.0 the small

driving force and at low temperatures the decompo~ition will be slow duc to the low

mobility. Few expcriments have been performed with sullicient time resolution to

study the range of early-stage behaviour between these limiting cases. IIigher time

resolution is needed for the faster readion processes so that the measuremellts will

be faster than the total tra!lsformation time of the fastest reaction of interest.

Alternatdy, instead of speeding up the experiment, one c"n try 1.0 slow down

the decornposition. Srnall quantities of certain alloying clements (Sn[65), Cu[6G]

and Mg) are known 1.0 retard the decornposition rate in the carly stages of the

coarserung of modulations in AIZn aHoys. Some of the studies have hence been

performed on AIZnX alloys. For instance, Hoyt et (11.[67] added 0.01 at.% ~1g 1.0

retard discontinuous grain bounàary precipitation. These studies have shown that

as the alloying composition gets closer 1.0 the critical composition, the decomposition

kinetics for coherent decomposition (SO) becornes faster and in cases where there

might be competition with incoherent precipitation processes (NG), the time scales

over which the latter would occur become much longer than those for SD "nd the

incoherent precipitation essentiaJly varushes. Thus, if sufficient tirne resolution can

be achieved 1.0 measure SD near the critical composition where the kinetics are

faster, the measurement will be more reliable.

Table 3.1 lists the experimental investigations of SD in AIZn 1.0 date. This
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list does not include studies of NG and experimental determinations of the loca­

tion of the solvus curve such as the carly investigations performed by resistivity

Dlea.surements.

These studies (except that of Hoyt et al.[67]) were performed at compositions

or temperaturcs well removed !rom the critical point. The points on the phase di­

agram of Fig. (1.2) showed the aging compositions and temperatures of aIl studies

Jisted in Table (3.1). The points on the phase diagram corresponding to the mea­

surements reported in this the.is were "Iso shown, pointed at by the arrow. These

are l'ractical1y at the critic,," ""Ic:position and cover temperatures both near T. and

at the temperature of maximum d"",mposition rate (about 560 K). The tail end of

the arrow is at the anneal tcmperature in this Vlork.

Workers have intcrpreted their measurements, looking for a number of sig­

natures of spinodal decomposition in the al10y AlZn. The main landmarks are

enumerated bdow. This should serve the purpose of putting in perspective the

measurements reportcd in this dissertation.

I.(A) SCATTERING FUNCTION: THE NAIVE PICTURE - Most of the measurements

reported in Table (3.1) are of the scattering function, either by SANS or SAXS. The

measurements of scattering funetions constitute the most direct route to verification

of sn theories. Indeed the structure factor at the very early times is one of the two

IDOSt specific characteristics of Sni the other being the absence of an incubation time

for the decomp06ition to commence. However, to date, experimental conditions for

such measurements have not been controlled sufficiently to al10w conclusive com­

panson with existing theories. The fust evidence of spinodal decomposition was

inferred !rom measurements of the kinetic evolution of the scattering function in

relative units and fitting to the CH equation. However, with the introduction of the

thermal fluctuations in the CH equation (Eq. 3.1), knowing the scattering funetion

only in relative units became insufficient and it became necessary to obtain abso­

lute structure factors to check measurements against the CHC equation (Eq. 3.6).

In both cases, with the difi't'sion equations, it is possible to derive /Ç and D. To

50



Author' Year Cornposition Method 1Early time Late time Analysis
(at. % Zn)

Bonfiglioli[68] 1966 9.7,20.5 SAXS No No Q(t) and
and 215.5 scaltering

..- profiles
"-

Rundman[58] 1967 22 SAXS Yes No CH
Murakami[64] 1969 6.8 SAXS

f--
Yes No CH

Agarwal[69,70] 1973 22 and 28 SAXS,TEM Yes No CH
--

Junqua[71] 1974 6.8 MS' No-- --No . ._-
discriminate
between SD and
nuc1eation

Naudon[72] 1974 6.8 SAXS -- --,-'----- ._-- ._-_.. -
Yes No SAS profiles

Evolution
of GP zones

Acuna[73] 1974 15 SAXS Yes No CH,CHC
Delafond[74] 1975 6.8 ER3 No No discriminate

between SD and
NG

Bartel[75] 1975 224 SAXS No Ycs tl / 3 coarscning~-

. --=-0
Q(t) and D

Laslaz[61,76] 1977 6.8 TEM No No Evolution --
of GP zones

Ciach[66] 1979 22" SAXS, TEM No No Obtain Tc from
qualitative
observation
of scattering

Ungar[77]
------- - ._--

1981 6 - 21 SAXS No No Determination
of Tc by Q(t)

Furusaka[78] 1985 6.8 SANS Yes Ycs S(q) ~ q 2

at high q for
early times

Hoyt[67,79] 1989 12, 22 and 32" SAXS Yes Yes CHC7

Table 3.1: Publishe<! studies ofspinodal decomposition in AlZn. By Iate time, it is moant a "S<a1ing­
like" analysis. This Iist does not include studies in which the data is analysed e.xclusively from
the perspective of NG though there e.xists sorne overlap on the phase diagram with measurements
presente<! above. The most notable case is that of Rennion et a1.(60] who performe<! SANS on
alloys AIo.9<;Zno.o5s (293 and 333 K) and AIo.o32Zno.062 (363 and 383 K) (see text).

lOnly the fust author is given for succintness.

'Magnetic susceptibility measurernents.

'E1ectrical resistivity measurements.

40.1 at.% Mg aIloy.

'0, 1 and 3 at.% Cu aIloy•.

60.01 at.% Mg for the three aIloy,.

7These ..uthor. aIso prc&,nt wh..t conld he terme<! .. qualitative discmsion of LBM with thcir data.
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tHs day most authors have worked in relative scattering intensity increase and have

not reportcd absolute scattering cross-sections. They introduce an arbitrary nor­

rnalization constant for the scattering due to thermal fluctuations (for example, see

Ref. [67] and the text below).

The litst experiment to quantitatively verify the theory of SD by checking the

CH theory was undertaken by Rundman and Hilliard in 1967[58J (RH), who applied

SAXS on an Alo.7SZI1<l.22 alloy aged at 338 K. The evidence seemed to agree favorably

with the expectations from the CH theory. Namely, the measured scattering inten­

sity (in relative units) presented a time-independent crossover point at qc (cf. p. 43),

the obtaoined amplification factor R(q) possessed a maximum at qJ/2 and had the

right funetional dependencc and, in the framework of the theory, the data, when

interpreted according to the theory, yielded an interdiffusion coefficient that agreed

in magnitude and sign with that obtained by an extrapolation of high-temperature

measuremenis. For instance, for wavenumbers below a critical wavenumber, qe,

the intensity is increasing, whereas for q > qc the intensity decreases continuously.

However, despite these expected features, the very nature of what was being mea­

.ured was debated.[80,81] Narnely, the alloy seemed to show marked SAXS right

at the heginning of the aging and it could he speculated that the later stages of

decomposition, when coarsening is occuring were being observed.

Other workers repeated the RH experiment for other compositions (see Ta­

ble 3.1).[64,70,73] In general, these carly investigators looked for a time-invariant

crossover point in the scattering intensity qc and a time-invariant nonzero wavevec­

tor of the maximum in scattering intensity, qm'

In ail these studies, the measnrements have generally been interpreted in terms

of an analysis of the arnplification factor R(q).[58] What is required is the values of

the parameters D and /Ç.

With the CH equation of motion (3.1), the slope oflog I(q) vs. t yields R(q).

The obtained R(q) plotted against q are generally found to agree in shape with

the theoretically calculated one[~2]. It is observed that as the aging temperature is
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(3.9)

increased, q... and qc shift to smaller wavcnumber and R(q) decreases. This agrecs

with the expeeted temperature dependence of q~ and q:. Indecd, for q:,[57]

T - Ts q2
- = tf>2[c(1 - c)l~

Tc 2

where Tc is the criticaI unmixing temperature at composition c and tf> is an inter­

action distance. A similar relation holds for q... since q... = q,/,;2. In theory, if the

experimentaIly determined values of q~ and q: were equaI to zero, the corresponding

aging temperature T should be equaI to the spinodaI temperature T,. So, in theory

the amplification factor R(q) and the wavenumber q at a few values of tempcrature

should provide a mea.ns to determine the spinodaI temperature for that alloy compo­

sition. But in experlments[64], the exponentiaI growth of the intensity slows down

after sorne time and the slope ti.I(q)/ti.t that is required to obtain R(q) should only

be taken for the aging times shoIter than this time.

If insteM, measurements are anaIysed in terms of the CHe equation, the

simplest route to extract ", the grament energy coefficient, and D, the interdiffusion

coefficient, is to rewrite Equation (3.7) in the form

ln (S(q,t) - Soz(q)lr,) = 2R(q)t.
S(q, 0) - Soz(q)lr,

(3.10)

(3.11)

The amplification factor R(q) is as given by Eq. (3.2), making use of the relation

between M and D (Eq. 1.25)

R(q) = -D (1 21)2Y ) _ 2"1? 2.

q2 + f" f" q

In this anaIysis, a plot of the left side of equation (3.10) versus aging time will

yield R(q) and a plot of R(q)/q2 versus q2 should be a straight !ine with slope and

intercept related to the parameters " and D. In their recent synchrotron work on

Alo.32ZIlo.88 Royt et al.[67] obtained a straight !ine for R(q)/q2 versus q2 !rom which

,,::::: 3.5 X 10-10 J/m and D ::::: -2.54 x 10-22 m2/s were obtained. These are close to

the RH values. Royt et al.[67,79] measure intensities in connts per second whereas

the funetion Soz(q) i5 expressed in ab501ute units and to overcome this difficu1ty

they have mu1tip!ied Soz(q) by a factor such that the best straight line fit is obtained
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according to equation (3.11). This procedure was suggested in the original work by

Cook[30].

From the first measurements aimed at verifying the CHC equation[73] it was

obvious that it does not constitute an adequate description of experimentally deter­

mined, time-dependent, struclure functionsj the notable exception being the very

recent Cu-Mn study of Gaulin et al. [83]. In a ty:>ical experiment, the position of

the peak in the struclure function shifts to smaller values of q with increased aging

time, whereas the CHC theory predicts an exponential increase in the scattered in·

tensity with virtually no shift in the peak position. This discrepancy between theory

and expe:iment is due to the neglect of nonlinear terms in the diffusion equation.

As pointed out in an carly paper by Cahn[84], nonlinear effects play an important

IOle soon aftcr t.he quench and t.hus any successful theory of spinodal decomposition

should include t.he contributions t.o the higher derivatives of the free energy with

respect to concentration (Eq. 1.20).

Central to the interpretation of most investigations is that there be a unique

crossover and maximum growth waveveeto. and that the intensity for wavenumbers

below qc grow exponentially ad infinitum. These features were found to be lacking in

studies on AlZn, first by Barte! et al.[75] and in more recent studies[67]. This opens

the question that if early stage is what is truly measured, then nonlinear terms have

to be included.

The time-resolution is an open issue in all investigations so far reported as it

cannot be asserted that any reported measurement was performed at an early enough

stage, i. e. before the formation of interfaces when sn and NG can be distinguished.

The coupling of dynamic measurement of S(q, t) with integrated intensity values can

provide some further information on the reliability of the measurement. The pres­

ence or lack of an incubation period in integrated intensity measurements becomes

the new criterion to distinguish between NG and sn respectively.

I.(B) SCATTERING FUNCTION: PATCHING UP FOR FINITE TIME QUENCHES ­

Complications in the practical measurements of sn arise from two major sources

54



during the quench. (i) A linite time is required to lowcr the temperatme from the

annealing to the aging temperature, the quench time. (ii) In most cases when the

kinetics are faster than the available experimentaI time resolution, the quench is

perforilled to a temperatme much lower than the aging temperature.to "freeze"

the "initiaI" structme for measurement. This quench is then followed by one or

more up-quenches to measure the time dependence of the scattering function. Each

of these two experimentaI "compromises" has an effect on the measured scattering

funetion though the effect of the second has sornetimes not been recognized.

A consequence of rea.ching the aging temperature via an np-quench which has

bren alluded to by wme researchers, but more often neglected, is that sorne phase

sep~ation has occmed during the initiaI quench to a low temperature. Thus the aI­

loy can potentiaIly evolve towards points on the phase diagram that are further from

Co than the coherent coexistence values at the aging temperature. When nonlinear

tenus are included in the equation of motion for the structure factor (cf. Chal'. V),

the criticaI waveveetor tic is expected to decrease with time. However, if during the

quench, the aIloy has evolved towards compositions beyond the equilibrium com­

positions at the aging temperature, a lower q; than wOltld otherwise exist during

initiaI stages of SD at the aging temperature will be observed. This rationaIe is

supported by the experimentaI observations[67] th..t the wavenurnbers relaxing the

fastest to equilibrium amplitudes lie on the high-q side of the quenched-in peak.·

Thus, during the initiaI stages of isothermaI aging the decrease in tic predicted by

non1inear terms combined with the increase in tic resu1ting from the up-quench Can

resu1t in the observation of a stationary vaIue of tic at early times. A stationary tic is

precise1y what linea.r theory prediets and the anaIysis of the data in the framework

of tlis theory wou1d be enoneous.

Tbis points out more the necessity to perform SD experiments with a single

quench to the aging temperature directly from the one phase region above the mis­

cibility gap. These considerations have been brought up in light of the early time

40fhis is also obvions in the LBM theory; cf. Chapter V.
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bchavior of the structure function data for Alo.68Zn~.32 reported by Hoyt et al.[67]

To circumvent the shortcoming of finite time quenches, in some case model

cquations have been proposcd to theoretically predict the effeets of continuous cool·

ing on spillodal decompoeition. The fust io do so were Huston et al.[31] in terms of

the CH theory. Carmesin et al.[85] a1s0 offer a detailed account of continuous cool·

ing. These researchcrs rcderive expressions for the time dependent reduced structure

function in the frlilllework of both a nonJinear theory (LBM) and the CHC theory

allowing the temperature dependent mobility and free energy to be functions of

time. Hoyt et al.[67] put a lot of emphasis in their analysis on the importance of

modeling the time evolution of the structure function during the quench as well as

during the isothermal aging.

In this dissertation, the issue of modeling the phllSe decomposition during the

quench is treated differently. The quench times used are faster br two orders of

magnitude than any previously reported stndy and quenches directly to the aging

temperature are performed. Furthermore, whereas Hoyt et al. favor more effort to

be put on the analysis of the evolution during the quench, a quantitative analysis

from the quenched-in structure is presented here. It is believed that by a.chieving

faster quenches to the aging temperature and dealing explicitly with the quenched-in

structure factor spinodal decomposition theories can be criticaJ1y evaluated.

II. INTEGF...ATED INTENSITY - According to the sum rule given by Eq. (2.25), the

integrated intensity, Qo, about the origin of reciprocal space can be used for the

determination of the percent completion of the decomposition. Indeed, when the

aJ10ys are aged below the coherent critical temperature, Tc, the value of (c - Co)2

and hence Qo should incrcase with aging time until the decomposition is completed.

Furthermore, a signature of 8D is that this increase in Qo should proceed with no

incubation period. After the decomposition is completed Qo should remain con·

stant. The determination of the presence or the absence of an incubation period

before Qo starts to increase can, in theory, be used to discriminate between NG and

8D. However, in practice, since the experimental procedure between the onset of
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the quench and the first measure of the integrated intensity cannot be monitored

absolutely, it is difficu1t to affirm that the absence of incubation really indicates a

SD process. Howeyer, the measure of an incubation period certainly indicates that

the system is phase separating by a NO mechanism.

In addition to the interpretation problems posed by the sample conditioning

procedure for the isothermal studies on Q(t), there exists the possibility of competing

transformations occurring while SD is taking place. Such tra.nsformations, such as

supposed NO at the grain boundaries in the RH measurements can complicate the

interpretation of Q(t) data.

Neyertheless, on the basis of their own measurement of the evolution of the in­

tegrated intensity at room temperature, Gerold and Merz[80,81] proposed that that

the RH results were in faet obtained in decornposition stages where only coarsening

was occurring. In tills decomposition regime Bq. (3.1) should not even have bcen

used.

MUl'akam.i et al.[64J calcu1ated Qo(t) for AJ".932ZnO.068 specimens aged at four

different temperatures (313, 333, 353 aud 373 K). In all cases, the calculated Qo(t)

inerease during the initial few minutes and show little change afterwards. This sug­

gests that, at the time when Q(t) has stabilized, the decomposition has progreS5ed to

the stage where the sampIe consists of domains of compositions Iying on the solyus

line (metastable m.iscibility gap boundary).

Attempts were made to capture an earlier stage in the decomposition process

than the RH measurement, at the same alloy composition. Agarwal and Herman[70]

performed a SAXS experiment using Iiqu.id-quenched specimens and calcu1ated Q(t)

as weil as reporting the measured scattering intensities. Their results, while offering

somewhat different estimates of D, the interdiffusion coefficient, and 1<, the gradient

energy coefficient, werc substautially in agreement with those of RH.

The attempts to separate SD from NG on the basis of the absence of an incuba­

tion period for decomposition arc not Iim.ited to calcu1ations of Q( t) from scattering

experiments. Junqua et al.[71] distingu.ish between the nucleation process and SD
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by magnetic susceptibility measurements on ALJ.mZ!4J.OO8 samples (cf Table 3.1).

The time change of the magnetic susceptibility and the presence or the absence of a

dclay bdore this change is then taken as a signature of the decomposition process.

III. HIGR q BEHAVIOR - Another of the sum rules iniroduced in § 2.3, Porod's

law (Eq. 2.32), can contribute to distinguish between SD and NG processes. This

sum rule indeed provides a means to verify the existence of sharp interfaces since

q4S(q, t) should then be constant for large q. If the decomposition proceeds by the

spinodal mechanism, the mixture consists of composition fluctuations of growing

amplitude. The concentration of solutes iuside the "clusters·to-be" should incrcase

with increasing aging time, while the concentration in the r::i.trix should decrease.

There should be no clearly definable interface betwccn the clusters and the matrix

untillater times, when coarsening sets in. On the other hand for NG, as was de·

pieted in schematic (3.1), the concentration of solutes i.mide the pa.rticles should be

constant throughout the course of the entire decomposition process and the concen·

t.ra.tion gradient at the interface should be infinite1y large. Thus, for NG Porod's

law should apply from the onset of the isothermal measurement whereas in the case

of SD a time de1ay is expected. It was argued above that the sole argument of the

absence of incubation perioù for the increase in integrated intensity wasn't sufficient

to confirm that decomposition occurs by SD. Sin.ùlarly, the onset of a q4 tail for the

first isothermal scattering profile, though in theory a signature of NG, i.s not suffi·

cient in practice to affirm that the decomposition mechanism should be NU rather

than SD. Indeed, there cowd have been a time regime shorter than thequench time

scale in which continuous composition flnctuations existed.

Murakarni et al.[64], whose measurement of an incubation time before the

increase in Q(t) was mentioned above, have also examined the l,igh-Çf behavior of

the mea.sured scattering functions for the SaIlle alloy (Alo.932ZIlo.oos). They report

a monotonous increase of q4S(q) with q over the complete q-range me:asured in the

first scattering profiles during the isothermal annealing. However, B.fter a certain
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time, q4 S(q) becomes constant for large q and Porod's law is then satiafied.5 This

time hecomes longer for the lower teruperatures (ra.nging from 2 mins at 373 K to 6

mins at 313 K after a quench from ~)73 K). These results mean that sharp interfaces

exist only after that time is reached. The time values at which Porod', law starts

to "l'ply "huost coincide with their measured time of satumtion of Q(t). This

resnlt inclicates that uutil the time when Porod's law applies for high-q is reached

the concentrations of solutes imide a.nd outside the clusters and the concentration

gradient at the interface do not have any fixed value, but they increase with the

aging time. The two facts t0t:ether support the occurrence of SD a.nd argue "gai"st

a NG mechanism.

The sa.r:ne anthors observe that at 413 K q4S(q) is a constant cven ancr the

earliest "{!,-iug tune they could observe, which wa.. 30 s. From this they conclude that

the mechanism of decomposition at this higher temperature is not spinodal as for

10" er temperatmes, but llucleation and growth. Though this is likely the cose, on

the basis of their observations aJonc, it is not possible ;0 be positive for the rea"ona

al(',<led above. Rence, at the temperaturcs above T" the l'articles will be formed by

the nnclca.tion and growth mec.hanism and the coustancy of q4 S(q) with respect to

q will he found from the beginniug of the agiug. This wnstancy will not be found if

the aging temperature is bclow Tc whcre the decomposition oCCU!S by the spinodal

mechanism.

From tb.e "xperimental point of view the whole unmixing kinetics must be

determined and closely compared with the theoretical predictions. Partial observa.­

tions, such as the search for an incubation period whose lower Jimit varies cousider­

ably with experimental technique, or obsenation of a perioclic two-phase morphoJogy

are clearly insufficient.

Binary alloys with slower decompü>dion kinetics than AIZn near tlle critica!

composition have recently been invcstige.ted. Perhaps the mûst interesting measure­

5These ..orke", use a slil-<ollim,,~ion lUl<llhe corresponding expression for Porod'.law: ri J(q)

is constant for large q where J(q) is lhei" measured scallered intensilies.[47]
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ments were performed on FeCr aIloys, an aJloy which haB "",ail elastic strains. This

aIloy has hcen studied by SANS.[78,86,87] Nonlinearities in the sn of FeCr aIloys

have becn reported. For instance, Furusaka et aI.[78,88] ev"n present approxima­

tions to compute the LEM cquation of motion on Feo.60Cro.40 and Feo.70CrO.SO' The

shortest time incremental step they use i8 5 mins for Fe-o.60CrO.40 aged at 100 K.[78]

During the early str.ges, these authors report a q-2 dependence of the structure fac­

tor at bigh q. Nonlinear efrects were also ohserved in the more rcœnt SANS work of

Furusaka et al.[87] (four aIloy compositions incll1ding Feo.60Cro.40, Feo.7oCro.so) and

of I,aSaIle et al.[86] (Feo.68Cro.32)'

Studies of spinodal decomposition have also been performed in non-metallic

systems. Light scattering measurements in binary fluids and in polymera offer valu­

able information OI>. ihe decomposition process in these systems. The CHC equation

of motion was shown to describe well the unmixing of pseudobinary polymer sys­

tems in :he carly-tune regime.[89,90] Studies[91] near the consolute point in binary

liquids, demonstrate the importance of nonlinear effects at early times even though

an carlier study[92] had conclusive1y analysed scattering results in terms of the CH

equation. Studies of systems of glasses[93,94] also present a conclusive verification

of the CHC theory. The systems with a time regime during which the CHC the­

ory is found to be valid share one common charaeteristic: they ail have long range

interaction forces.

Table (3.1) includes a column labe1ed «Iate time". Investigations into the later

time regime of sn are inclllded as they complement the early stage dynamic studies.

A discussion of the dynamics of the late stages of spinodal decomposition will be

given in § 5.5. The late stages measurements performed in the course of the work

presentc'<! in this dissertation will he introduced and discussed in § 6.3.

The late stages dynamics regime is character:ized by a time independent struc­

ture funetion which scales the structure factors by alength scale varying as a power

law ~ t-n • Such a scaling has been found ta hold in phase-separation processes in

Iiquid mixtures,[95] " glass system,[96j and a number of binary alloys.[60,97,98]

60



,

Studies of the late-stage or scaling regime have primarily focused on the value of

t',e gro,,1h exponent n, as weil as the scale invariant function for the structure faclor.

The value of n is of inlportance, because it is the signature of the thermodynamic

forces which are responsibJe for the phase transition. However, at present, there

exists no successful ana1ytica1 theory for the late stages of SD (cf. § 5.5).

During the late stages, domains of each phase coerist and are thus separ..ted

by interfaces. From measurements in this rcgillle alone, it is not possible to sep",ate

SD and NG processes.

The late stages have been studied for most of the systems Illcntioned above in

the discussion of the carly stages.

Furusaka[78] shows a scaled fundion ohtained for Alc.932Zno.G6ll alloys aged

at 389 K for up to 60 mins. Indccd, he observes that «fter a cert,tin ll.ging time,

dyr'amica1 scaling holds for the scattering function. The time regime dUrÏllg which

the g<,aljng holds coincides with the time for wlllch a q'-4 dependcnce of the structure

faclor is obtained for high q values (cf. Eq.2.32). Hoyt et al.[79] have a1so shown that

the late stages scattering in AlZn a1loys (Alo.",Zno.OIl, AIo.7sZno.22 and AIo.ssZno.44)

quenched inside the spinoda1 region present a universa1 scaled structure fundion.

However, neither of these two studies present a value for the growth exponent, n.

A study of coarsemng in Alo.779Zno.22oMgo.ool aged at 398 K by Forouhi and De

Fontaine[99] revea1ed a tluee part late stages wit"' '" growth exponent of 1/3 in the

latest part and lower values in the earlier parts. However, it is not clear how these

earlier (attributed to duster coagulation) parts wouId relate to the l'1echanism of

SD near critica1 composition.

In their work on Mno.67Cno.S3' Gaulin et al.[83] have obtained strong evidence

for the late stages dynamjc sca1ing relime. They found that a umversa1 scaling

function is (mfficient "0 describe the time-dependent structure factor and a growth

exponent of -0.37 ± 0.03.

A scaling function was also obtained in the late stages in thrce FeCr alloys

(Feo.60CrO.4l), Feo.saCrO.32 and Feo.76Cro.24)[100J. For these measuIements, it was also
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found that the time independent growth exponent fell in the range 0.12 < n < 0.22

dcpcnding on composition and aging ternperature. However, Katano et al.[lOl] have

obtfÙned a striking result during the aging of Feo.wCro,. at 773 K. The growth expo­

nent changes from 0.17(±0.02) to 0.33(±0.03) around 30 h. During this "crossover"

phcnomenon thcre is also a change in the dynamical scaling function.

Finally scaling functions and growth cxponents have also been measured in

non-metallic systems. Phase separating binary Huids[95,102,103] present a scaling

function and a growth exponent close to 1/3. A crossover between 1/3 and 1 was

found at sorne late time (and was explained by Siggia[104J). Fluctuations relaxjng

in the single phase region above the critical point arter a pressure jump also reveal

a scaling function and an exponent of n = 1/3[105J. The late stages stumes in

polymer mixtures by light scattering of Bates et a/.[90] exhibit a scaling function

as weil but, whereas in the previous systems, the growth exponent was independent

of ternperature, in tms case it was found to be temperature dependent. However,

in agreement with the earlier results of Nojima at a/.[106], the exponent is of order

n = 0.29 ± 0.05 for relatively small supersaturation. Finally, Craievich et a/.[96]

found a scaling function and a g.r;:,wtti exponent of n = 0.23 in a quasibinary glass

phase-separating by ~D.

Tms Chapter has limited the mscussion to !.inear theories and left out the

nonlinear theories for carly times. The overview of the investigations of SD presented

in t,ms section suggests that the CH and the CHC theories may not apply in the case

of binary alloys. Tms is also supported by theoretical estimates of the nonlinear

terms (cf. § 5.3). A good indicator of the importa:ilce of nonlinear effects was

exemplified by the work mentioned on FeCr alIoys. A recent exception is the SANS

work of Gaulin et a/.[83] in MnO.67CuO.33' Tms work makes no provisions for the

points raised in L(B) above.

As the experimental investigations improve and capture earlier stages of the

decornposition ptocess studies that were first taken as evidence of the application of

linear theories of SD may have to bc rcevaluated.
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Chapter 4

Experimental Method

4.1 Introduction

The erperiment is d~scribed with an emphasis on two principal aspech. The first

dcscribes how to take full e.dvantage of the high intensity synchrotron radiation to

perform in situ time resolved x-ray scattering at time resolutions orders of magni­

tude {,,-,ter than has ever previously been rcported for a study of ph/l$e separation in

binary alloys. The neces8ity of achieving high time resolution has been emphasized

in chapters 1 and III. In addition to high x-ray fluxes, high time resolution experi­

ments require: (i) abrupt quenches, (ü) rapid data acquisition, and (iü) a sellsitive

temperature contro!. The second describes how to obtain reliable ab80111te structure

factors for use in the study of phase separation.

The fust two sections of this chap~er will treat these two aspecta. The next

section will cover tcmperature calibration. To conclude, the instrumental response

of the position sensitive detector (PSD), or convolution of the measured scattering

patterns is examined and a deconvolution proposed.

Of course, the minimal requirement is that the time reqnired for acqniring a

acatteTing pattern be less than the tirne scale of the return ta equilibrium after a

departure from equilibrium. This requirement is met ta an unprecedented levd at a
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composition very close to the critical composition and at tempcratures both above

and below the critical temperature, including the temperature of fastest kinetics.

Further, the c1aborate discussion dividing the previous researchers on the evolution

of the phase separation during the quench and the reheating to the aging tempera­

turc is substantially obviated in two very important ways: by quenching directly to

the a.ging temperature and performing truly in situ measurements and by the shecr

rapidity of the experiment (it's all over in two seconds!)

During a typical spinodal decomposition run, a ribbon of AlZn, il first resis­

tivcly seli-heated in situ in a helium atmosphere (sJ.ightly above 1 atm) 10 an anneal

temperature T. weil above Tc. It is then quenched direetly to a cOllBtant aging

temperature T. by decreasing the current. For some time preceding and during the

quench, and while aging, x-ray diffraction profiles and the sample temperature are

recorded as functions of time. To study the isothermal phase decomposition kinet­

ics, the same sample was repeatedIy cycled through annealIing and aging cycles.

As a test of reproducibility, identical temperature cycles were often repeated and

they showed the same temperature evolution. An illfrared pyrometer monitored the

sample temperature. By control of the power to the sample, the sample temperature

could be dropped 150 K ~o a constant aging tempcrature in less than 100 ms (to

within an estimated standard deviation of 0.5 K). These high cooling rates allow

quenches direcily to the aging temperature quickly enough to take advantage of the

time resolution of the x-ray measurement.

The bright synchrotron source, detector and data collection software alIowed

for entire spectra to be obtained as rapidly as every -0.005 s. X-ray diffraction

profiles are recorded in real-time every 5 or 10 ms by a Iinear position-sensitive

detecior (PSD) based on a photodiode array.[107]

The high incident intensity is provided by synchrotron radiation from the Na­

tional Synchrotron Light Source at the Brookhaven National Laboratory using the

IBM-MIT bending-magnet b~amline X-20C optimized for time-resolved scattering

studics. This dissertation docs not focus on the operation of the beamline. Re-
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garding the design and operation of the ddector or beamline X-2üC, the reader is

rcferred to Refs. [107-110] for a description with more details than provided in the

sections to follow.

4.2 In situ time l'esolved x-ray spectra acquisi­

tion

With the ability to heat and cool the sampie fast, parame!ers have to be monitored

sill1ultaneously and rapidly. Examples of such paramctcrs are the sam pIe tempera­

ture and resistance, incident beam intensity and running time. iIowevcr, the most

important quantity is the scattered x-ray intensity sinee it providcs the measllrcment

of the structure of the sample.

Scattering data were acquired in "runs" in which the sam pIe WOlild be tirst an­

nealed at a temperature Ta in the single phase region, weil above the miscibility gap,

and then quenched to a lower temperature Tq , either above or below the solvus li ne,

and held isothermally. The evolution of the scattering was llleasured by rccording

a series of consecutive scattering patterns as the sampie phase separated, or, above

Tc, as the thermal fluctuations re-equilibrated. In order to charactcrize and as a

verification of initial conditions, each run was initiated so that several patterns were

recorded before the quench. The runs were always started from the same anneal

temperature, Ta.

4.2.1 Synchrotron radiation and the beamline

ls it of course paramount to the measurement perforrned for this work that the x-ray

source be very intense. To a very large extent, it is the availability of synchrotron

sources that prompted this investigation of spinodal decomposition in AlZn, a sys­

tem where no decisive measurement could be performed, due to the experimental

linùtations stressed in chapters 1 and III.
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Synchrotron are circular particle accelerators. They are used for various

charged particles and in particular as eleetron storage rings. Synchrotron radia·

tion is the eleetromagnetic radiation that is emitted tangentially to the trajeetory

of the charged particles which are moving at relativistic speeds in the circular orbita

of the synchrotron.

Today, synchrotron radiation is widely used in physies, biology, mcdical sci·

cnce, chemistry and technology. Synchrotron radiation has two characteristics which

cannot he obtained from conventional radiation sources. One is the me range of

wave!mgths or energies (from 10-1 to 103 Â). With thesc photon energies, studies

on atoms, molecules, 80lids and biological systems can be accomplished. The other

is the high incident photon flux. This alIows txperiments on systems where the

ratio of the scattered to the incident beam inttnsity would be too small using a

conventional x-rays source.

The e!eetron storage ring at NSLS used to generate x-rays has a circurnfèrellce

of 170.1 m and operates at an e!ectron energy of 2.5 GeV.

The e!ectrons in the storage ring circulate in buncl,es and the number of ciro

culating bunches is adjusted so that the CUIrent i. of order 100 mA. The beamline

is connected to the ring by a water cooled fast valve and the radiation is delivered

to the beamline at every passage of an e!eetron bunch in the ring at the point of

tangency. The e!eetrons travel at a relativistic .peed and a typieal bunch lcngth is

10 cm. The photons are thus radiated with a pulse duration of nanoseconds. The

repetition rate between bunches determined by the number of bunches and the size

of the storage ring is typieally around 500 ns for a single bunch at NSLS. Rence,

the storage ring radiation cao be considered continuous when measurements are

performed on times scales of a millisecond or longer, as is the case in this work.

The source produces a transverse e1eetromagnetic wave polarized in the hori­

zontal plane of the orbit.[111J The radiation pattern exiting the ring at the porthole

is confined to a forward-directed narrow cone, when vieweG. by an obB'-rver in the

l..boratory frame. The aperture angles are proportional to 7 = me?/ E, where mis
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Figuze 4.1: 8chematic optical configuration of IBM/MIT beamIine X-20C at the National Syn­
wolron Lighl Souzce (reproduced from Ref. [107]).

the rest mass of the e1eetron, c is the ve10city of light and E is the e1eetron energy.

The vertical augular divergence ofthe beam is .!., which for a ring energy of 2.5 GeV
~

gives 7-1 = 0.2 mrad (or 0.012° FWHM).

Figure (4.1) shows a diagranl of the beamline. The main optical components

are a 1:1 foeusing minors and a double crystal monochromator. With the monochro­

mator used, these provide a typical intensity of 10'3 photons per second at energies

between 5 and 8 keV with the synchrotron ring current of 100 mA. The entire

optical path to the hutch, 22 m long, is under vacuum (10-7 torr).

The minor focusses 4 mrad into a 1 X 1 mm2 spot at the sample. Indeed,

despite the small angular divergence, the length of the beamline makes it necessary

to focus the beam. The minor is silicon coated with platinum and is toroidal with

4 cm and 1.5 km radii. The refraetion index of materia1s for x-rays is less than one

and 50 for small angles total extemal refleetion occurs. Four rods allow to adjust
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both th" m"ridion1Ù ra.dius and th" incident glancing p.ngle. The beam can thus be

foeusse<! in both vertical and horizontal directions. Since the size of x-ray source is

0.38 mm hori7.ontal X 0.12 mm vertical, with an aperture angle 5 mra.d x 0.23 mra.d

without a mirror, th" beam size at 22 m would be 110 x 5 mm2, with the ensuing

decrease in flux. By using the mirror, the increase in the intensity a.chieved by

focusing is nearly lOs times.[109]

The wide-bandpass monochromator at NSLS beam.!ine X-20C has been the

subject of a paper.[107) The monochromator, 14 m away from the source, sel..ds

the desired photon energy by eliminating photons of al! energies except thosel;ith

values within a bandpass. The monochromator incorporates artificial W-Si multilay­

ers with a period of 23 A rather than crystals. The bandpass of the monochromator

is relatively wide, at the energy used, t1E / E '" 1 X 10-2 (FWHM) (or, equivalently,

t1>../>.. '" 1%), which is almost two orders of magnitude larger than a typical crystal

monochromator. Compared to a conventional Ge(ll1) monochromator, the mul­

tilayers used here have low resolution. For relatively low resolution measurements

(such as diffuse or small-angle scattering), this translates into almost two orders of

magnitude increase in signal. It has been designed to tra.de-off resolution for inten­

sity. The monochromator uses two antiparallel multilayers, one fixed and the other

movable. The energy is seleded by a.djusting the angle of incidence. [112]

The incident beam intensity, focusing and positioning at the center of the

spectrometer are optirnized at the time of beam alignment. The alignment of the

beam is mostly controlled by the mirror and the monochromator.

The energy of the beam was tuned to just below the Cr K edge, i.e. at

>.. '" 2.070 Aor E '" 5.989 keV.

The operation of the beamline is computer controlled, with the spec™1

software. The computer contro1s the slits which a.djust the beam size, the mirror

to focus the beam on the center of the sample chamber, the monochromator to

select the proper wavelength, and the spectrometer which orients the sample and

lFrom Certilied Scientilic Software, P.O. Box 329, cambridge, MA.
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detedor. AIso, it controis the horizontal and vertical position of the table on wbich

the spectrometer is mounted. This equipment is contro!Jed by 32 stcpping motors.

At the experimental area end of the beamline, the experiment is lUlsisted by"

"",cond computer a.cquiring the diffraeted intensity via a detedor, the incident beam

intensity via an ion chamber, the transluitted intens;ty via a beamstop eurrent, the

sample temperature via a pyrometer, sample voltag" and resistance via voitmeters.

The computer a1so controis the experirncntal timing and the heating schedule of the

sample.

The ion d",.mber is lIsed to mcasure the incident bearn inteusities. The ap­

pamtus wbich is enclooed within the experimcntal hutch is shawn schcmatically in

Fig. (4.2). Two sets of front slits are lIscd to co!Jirnate the beam and intensity data

arc colleded via a Si photodjode linear position sensitive detector (PSD). The flight

paths conneet directly to the saml'le chamber in order to avoid parasitic small angle

scattering that could be produced by windows. Thus the slits are effeetively in the

sample cha.mber. Be windows are placed at the ends of the flight paths, away from

the sample chamber. A pyrometer morutors the tCillperat ure.

4.2.2 r.rhe sample

The optimization of the sample is one factor that cont.ributes to the performance of

in situ time re80Ived studies. High x-ray fluxes aIlow the use of tmn samples whereas

by comparison, neutron scattering would require much larger samples. As a direct

consequence of lIsing tmn targets, the thermal mass is appreciably Iower and the

surface area to volume ratio is large, enabling fast quenches. The very technique of

heating and ( .oling the sample can then depart from the conventional fDInaces (cf.

§ 4.2.4).

AlI the results reported in tbis dissertation were colleeted from a single saml'le,

near critical composition, repeatedly cycled through anneal and quench-to-aging

schedules.2

'More than one sample was prepared at diff'ezent compositions and lesults of mea.sulemenls al
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Figure 4.2: Setup in the huteh (reprodueed from Ref. [112]).

The .ample was prepared by melt spinning small alloy ingots (1 g). The

melting points of pure Al and Zn are relatively close to each other (660.452°0 and

419.58°0), malcing the alloying by me1ting relative1y easy. Oalculated masses of high

punty Al and Zns are first melted and mixed in an arc furnace under a titanium

gettered argon gas atmospherc to prepare the alloy ingots. This was repea.ted three

times to ensure homogeneity, turning over tne pellet between each me1ting. Any

surface o::cide layer Wll.8 removed by a cllemical etch. A section was cut by diamond

saw, ekhed again, and put in a. quartz crucible Îor me1t spinning. The melt spinning

was performed in 35 kPa He to prevent o::cidation and high punty argon gas was

used to eject the molten materia.1 onto tbe copper wheel. The tangentia.1 wheel

speed, at 60 m/s, and ejection pressure (about 50 kPa Ar) were optimized ~o that

t...o oft'-aitical compositions will he the topie ofa separate publi<:alion.

'AI 99.999% from Alfe Produels (MA.), eut from ingot; Zn 99.95% from Merk and Co. (Mon-

treal), cui from rod.
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the resulting ribbcn size was 1.5 mm wide and about 15 IlIll thjek (cf. \,.86).

The target cmnposition for the saml'le used in the present work was

Alo,ô06Zno,396, the composition of the top of the miscibility gap (cf. p. 11). How­

ever, weighing the ingot after the alloying in the arc fumace revealed a weight loss

of a few percent. Spectrographie composition analysis was performed al. IBM and

a composition of 59A±0.2 wt. % Zn and 40.2±0.2 wt. % AI was obtained. 'l'he

samples are therefore Alo,6,Zno,38 indicating evaporation of Zn, which has the lower

melting point and higher partial pressure. 'l'he obtained compnsition is very close

1.0 the coherent critical composition calculated in § 1.3.

Each sample was then eut from the ribbon to be about 35 mm long. The

samples were polycrystaJline and a grain size of ~ 1 .um was measured by 'rEM.

4.2.3 Sarnple chamber

'l'he sample chamber is mounted on a Huber spectrometer. !ts design allows a

fiexibility in ",xperiment geometries. There are five windows, positioned so that

each covers 20° and a pair exists for eac.h 20° range from 0 1.0 180°. For the SAXS

experiments, three windows are used: an incident beam window and the straight

through window (180°), and a window for the pyrometer reading. The first window

is ope!: to the bearn path, i.e. the He filled fiight tube, and the second is a thin

beryllium foil, which has small x-ray absorption (absorption depth ~ lA mm for

.À =2.1Â[113]). The windovl for pyromcier reading is covered with quartz which

is relatively transparent 1.0 infrared light. 'l'he saml'le chamber is evacuated and

back-filled with helium (slightly above 1 atm).

A schematic view of the interior of the sample charnber is shown on Fig. (4.3).

The sample holder is mounted on a saml'le manipulator which is positioned along

the center of the cylindrical chamber. 'l'he sample holder can be freely rotated

about its axis. Hence, diffraction patterns can be measured in refiection as well as

in transmission. One end of the sampIe is attached to a rotating spindIe. When

71



-----

"-

"\

\
\

,
"-

"\

\
1

- - --
'"/

1

1
1

1

'"'"/
1

1
1

1

Teflon
pipe

Linear
feedthrough

Copper
pipe

Water in

Teflon

Teflon

Chamber flange

DC
motor

, Water out

Figure 4.3: Schematic of the sampie chamb<,·r.

72



thermal expanSIon of the sampIe occurs, the spindle tota.tes tllHler tiprll1g tCII:-ÎOll

and keeps the surface of the ribbon in a fixed plane. Eledric leads on both ends of

the sample are connectcd to a copper cooling pipe for water or gas, tighlly mounted

to the chamber f!:l.nge. Tt'lnperature drifts Wl.'rl' minjmized by kt'cping a rotlsta.nt

temperatllre at the extremities of the sample by flowing water in the cooling pipe.

The eurrent is delivered to the sam l'le by the saIne' pipc. An c!eetric"l!y insulating

tcllon pipe is used to connect the top of the (co!ing pipes to ensure that ('!edrical

conduction from one post to tlle other occurs only through the ,ample (any ionic

conduction in the water is ncgkgible). At the other end of the s'lInple manipulator,

a linear vacuum feedthrough is lowted and it is conneded to a de motor. TI... motor

allows the translation uf the s«,nple hulder in ,,,,d out of the beam 'L1I,l te, (t'nkr the

sample in the beam.

4.2.4 Sample tcrnperature control and nleasurcmcnt

One of the most important experirnentaJ challenges of in si/u sturiie; of phase sepa­

ration kiudics is the neeessity to heat the samples in a manner that allows the r"l'id

change in sampIe temperature as weli as control of stability and uniforrnity.

The first motive for achieving hi,h cooling rates is to satisfy isotherrna] con­

(litions for the range of kineties to b" measured for the system. SpecifieaJly, as the

quench is performed, a high cooling rate is required, so that "ny phase sep'lfation

occuring before the aging temperature is reaehed can be minimized.

In gcneral, to reduce the quench time and the time constant for staLilizing at

the qti~nch lemperature, the thermal mass of the sample must be reduced. Thus

with conventional fumaces which typicaliy have a hrge thermal Polass, the cooling

rate during an in situ quench is iimited by the furnace itself. The thin metal ribbons

of uniform cross section used in the presented measurements can be sdf-heatcd just

by passing a current through them and this has the effect of producing ~.large central

region of uniform temperat ure.
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A few parameters of the set-up ll.\so contrihute to optimiz;ng the quench rate.

The most important is the pressure of the surrounding Ile. This high thermal

conductivity atmosphere means more input power is required to get to the same

tempera.ture. IIowever, upo,n dropping the current through the sample, the queneh

rates aehieved are much faster than in vacuum. He also absorbs much less x-rays

than air. As Wall rnentioned in the prevlous section, the sample holder was water

cooled, to prevent slow temperature drifts.

The obtained experimental conditions can be summed up "-S foJ1ows. The

samples, ribhons produced by melt spinning typieally 1.5 mm wide by 15 Ilm thick,

fulfill weil the condition of low thermal mass. The ribbons are resistive!y heated

to the a1111eal temperature (689.9 K, cf. p. 92) by circulating a enrrent thIough a

35 mm l,'ogth in one atmosphere of helium gas. By lowering the current abruptly,

the quench WaJl performed to the in situ aging temperature. The quench time was

about 15 ms for shallow quenches and 100 ms for deep quenches (sec Fig. 4.4). The

cooling rates obtai.ued are then in excess of 103 K/s.

For the experiments report~d it has been possible to cycle a single sample

through repeated anneals and quenches to the aging temperature.

The temperature was IDonitored by an infrared pyrometer. Two rcasons prevail

for choosing a pyrometer over a thermocouple. Firstly, ü the sample were put in

contact with a thermocouple, heat diffusion from the sample surface through the

thermocouple junction would resu!t and locally the temperaturewou!d be lowered.

This effect wou!ù be particu!arly dramatic in regard to the low thermal mass of the

sample. Secondly, ideally the temperature reading position on the sample should

be coincident with the location of the incident X-' '. X-ray scattering from the

thermocouple would he unavoidable in that cas~

A pyrometer which uses infrared radiatior, ~Q.~ alternative to overcome

the above mentioned difficulties. The pyromettc. ,mufactured by IRCON

(series 60) and accepts infrared radiation (wave!ength ~ 2.3~m). It has a focal

spot of 1 mm radius. As mentioned in the previous subseetion, the port on the
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sample chamber through which the pyrometer monitors the sample temperature is

covered by a quartz (Si02 ) window, whi...h is transparent to infrared radiation. The

calibration of the pyrometer reading will be the topic of § 4.4.

Finally, controlling the sample temperature is challenging. A conventiona! tem­

perature controller has a long response time (for example, 100 ms for Eurotherm).

With this long time constant, the quench times cannot be as short as required by the

experiment. The choice of a pyrometer with a faster re8ponse time, namely 10 ms,

to rend and to control the sample temperature should contribute to satisfy better

these two conditions.

At 8te&dy state, heat generated throughout the volume of the sample is radi­

ated at the surface or conducted away along the length. Conduction by convection

dominates the hat removal in the He gas. The temperature profile along the SaIn­

pIe will vary. It will be cooler at the clamping positions but fiat near the center.
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lIowever, since the point on which the pyrometer is focused is made coincident with

the location illuminated by the x-ray beam, the temperature recorded should corre­

spond fairly closely to that of the region where the scattering is measured. Ta get

the right transformation temperature during the experiment, the focal spot of the

pyrometer is manuaJJy made coincident to the point illllminated by the x-ray beam. 4

The voltage across the ribbon was controlled. This lead to a constant temperature

as the sam l'le resistance did not vary with time. Through trus method, a constant

temperature to within 0.5 K is obtained.

A ballast rcsistor is used in the c!ectric circwt ln senes with the saml'le to

minimize the power fluctuation caus~d by any change of sample resistance which

might happen during thG transformation. The rcsistance is chosen to satisfy the

condition ~%B = 0, where P is the power at the sample and Ris the resistance of

the sample. Trus means that the ba1Jast resistor should be of the same resistance

value as the sample. By working near this point, the changes in resistance which

occur during phase sepa.ration have ruinimal effect on the power applied to the

saml'le and minimize the effect on the saml'le temperature.

4.2.5 Detector and measurement of scattering patterns

The detectç,r is the last tapie of section 4.2 because of its importance both for fast

diffraction acquisition and for obtaining absolute structure factors wruch will be the

topic of Section 4.3.

An important aspect to increasing the time resolution is decreasing the time

reqwred to acquire each scattering pattern, i.e. the time to perform a scan. With

conventional detectors, of which the mosi genera1Jy used is the scintillation detector,

the maximum count rate is typica1Jy 106 counts per seconds and photons are counted

at a given angle for a given time. To acqwre a scattering pattern, it is necessary to

physica1Jy move the detector to a new location, count again, and so on. The detector

"This is performed by filst exposing x-ray sensitive paper to the beam and then aiming the

pyromeler at the exposed spot.
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llsed in this study is a position sensitive detcetor (PSD) made from a linear array

of photodiodes. It can simllltancollsly record scattering at many angles. Using sllch

a detector e!iminatcs the need to move the deteetor and appreciably reduces the

time to record a complete scattering pattern. In contrast to the photoemission in a

scintillation detector, an x-ray photon produces electron-hole pairs in a photodiode

and the signal is produced as they discharge the biased photodiode[114].

The PSD use<! in this sludy has been described in a paper.[107] It has been

bllilt by modifying a commercial system based on a 1024-elemenl photodiode anay

designed for visible light detection. Ea.ch diode is 25 l'm in widlh and 2.5 mm in

height and the total acray length is 25.6 mm.

The PSD is attached on the 20 atm of the 6 pectrometer allowing the central

,,-ugle to be e"-'iily va.r:ied and was posilioncd with the djteet beam ncar one end of

the array.

The control system of the PSD is the optical multichannel analyzer (OMA)

console from EG&G Princeton Applied Research. A model 1462 detcctor interface

(OMA III) controls the information retrieved from the deteetor array. Operational1y,

four quantities have to be defined S5, l, J and ET.

The first, 5S, is an integer that sets the electronic bunching of diodes into

pixels. As more diodes axe grouped together, higher time resolutions can be achieved

at the expense of spatial resolution. For example, if 16 pixels are binned together,

there will 64 pixels to scan and the time to visit the entire anay will be lower than

if alI 1024 dindes have to be scanned individually. It tales 16.4 ms to scan 1024

pixels and 2.5 ms when the pixels are grouped by 16 into 64 deteetors. For our

experiments the pixels were mostly bunched by 4 or 16.

Since every pixel is read once during the scanning time, the output signal of a

pixel is a time integrate~intensity of all photons counted since the last access. Other

than for the very brief interva.! required to perform the read/reset operation, each

detector element continuously integrates the photon flux falling on it tbroughout its

. exposure time, ET.
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Tb.. detector interface cUBlulates the values in an internal memory for 1 times

before a .eadout is provided for each pixel. The total number of readouts for each

pixel (01 number of scans of the array) during a run is set by a parameter J. Hence,

each scan is performed over (ET)(I) seconds and the total run time is (ET)(I)(J)

seconds anà results in J diffraction pat tems. The digitization of the signal by the

detec\or interface is lirnited to 214 counts. If the accumulated counts are in excess

of this value, the readout will be "saturated". Since a noise is associated with each

readout, the optimum ET is so that the largest count rate is close to but under 214

counts per ET.

The gener"l rules for the selection of S8, 1, J and ET can be summed up as

follows. '1'0 achieve higher time resolution where necessary the pixel 1unching, 8S,

is increased at the expense of resolution and the exposure time, ET, is decreased.

This contributes to the better time resolution in two ways: the total array scan visit

time is reduced and the intensity per pixel for a given ET is increased by a factor 88,

aIlowing the decrease in ET for a same signal level. Fortunately, in the case of the

system studied, the faster kinetics happen at temperatures for which the scattering

intensity is the highest and the signal to noise ratio never becomes a problem.

For a given set of conditions, ail pixel exposure times are equal. However,

bccause the pixc1s are serially scanned, the exposure time for any given pixe! is

skewed by one pixel time with respect to that of the preceding or following pixel.

This skewness in pixel visit time would be of no consequence for a static structure

factor measurement. In a dynamic measurement, this non-simultaneity of pixel visit

has to rl'main negligible with respect to the exposure time. In the case of the work

reported here, this skewness from one end of the array to the other is not negligible

vis-à-vis the exposure time. The scattering patterns obtained for the early stage

data (bunching by 4) have a di!ference of 7 ms between pixels near the beamstop and

pixels farthest from the beamstop. However, since the time scale for the evolution

of the system studied is much larger t.han 7 ms, this e!fect will not be important.

The late stage data has longer exposure times (1 s) and the pixel visit time becomes
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Ea.ch pixd of the PSD has a temperature dependent dark current, a fluctu­

ating lea.lœge current in the detector elements due to thermaUy generated charge

carriers in the semiconductor junction when voltage is applied. To keep tbis dark

current constant, the temperature of the PSD has to he kept constant &nd to keep

tbis current low, the PSD array is cooled to -40°C. (The dark current is halved

with approximatdy ea.ch 7° cooled[114].) The dark current is integrated <luring the

exposure. II the scattered intensity to he measured is low, the dark current would

limit the maximum practica.1 exposure time; if an integration continues long enough,

the dark current will saturate the detector.

Patterns of the dark current were necessary to correct for the offset in the

output !rom ea.ch PSD pixd at zero x-ray signal. Dark patterns were periodica.1ly

taken during runs with the shutters closed with counting times taken to he the same

as the (ET)(I) of the SCaDS. A typica.1 dark pattern cau he seen !rom Fig. (4.5). The
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:'igure 4.6: Typica! parasitic pattern. The dark pattern has been subtracled.

"detector counts" units, or analog-to-digital units (ADU) on the ordinate axis are

directly obtained from the controller. This figure also shows that some pixels on

the PSD that have a "burnt in" pattern. It results from radiation damage to the

photodiode by exposure to intense x-rays.

A parasitic scattering pattern, i.e. the scattering originating from slits or the

helium in the beam path was taken without the sample in place and is shown in

Fig. (4.6) after subtraction of the dark pattern. The shadow of the beamstop used

to prevent the main beam from hitting the detector is shown.

In prineiple, the correction to a given diffraction pattern shnuld consist mainly

of a subtraetion of a "parasitic" pattern which includes the "dark" pattern. How­

ever, the actual procedure followed depended on the analysis performed and will be

introduced with the description of the re::,!ts. In all cases, the dark pattern was

removed from all scans simply by subtracting it from all recorded patterns of a run.

Figure (4.7) presents the scattering patterns obtained at representative tilles
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during a run at 541 K after subtraction of a dark pattern taken just before the run.

The time of recording of the first scan after equilibration at the aging teruperature

is taken to be t = 0 s. The bottom pattern ( • ) corresponds to the last .·:an before

the quench was initiated. Thus, the difference in scattering between the first two

profiles corresponds to the increase during the quench.

The output of tb control system, containing the scattering patkrns is fed

into the control computer but can also be monitored by oscilloscope. This way, the

evolution of SAXS intensities can be observd in real time, thus aIlowing immediate

adjustment of experimental conditions.
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4.3 Conversion of scattering patterns to abso-

lute structure factors

The preceediug section described how 1.0 obtain scattering patterns such as displayed

in Fig. (4.7). 1'0 convert the mcasurcd scattering into absolute structure factors S(q)

the differential cross-section per urut volume of the sample dav(q)/drt must first be

evaluated and Equation (2.13) is used 1.0 complete the calculation. This quantity is

the rneasured intensity in the pixel p centered al. a wavevector q = 27[0/ À normalized

1.0 the incident bcaIll intcnsity 10 for unit saml'le thickness, t, and unit solid angle,

n,
dav(q) l(p) 1 1
-_.~~ = ---- x - x - .

drt 10 rt t
(4.1 )

But first, a calibration of the detec!or is necessary in order to convert detector

counts (ADD) into counts l'cr seconds (eps). A conversion factor can be obtained,

based on counting statistics. Since the dominant noise on each pixel is given by

Poisson statistics, the variance ,,2 should be simply equal to the number of events

N. The calibration of counts per ADD for cach individual pixel was determined by

recording the number of counts in each pixel resulting from exposing the detector

ta a uniform distribution of radiation for an cxposure time of 1 s, 25 times. In each

pixel, the variance over the 25 exposurcs of the measured number of counts should

then be equal to the average of ail the counts (after subtraction of the dark current

in each pixel).

The efficiency (ADD to counts) was measured by scattering from Kapton in

air al. 6 keV with 20 ~ 60° wiht the detector located 140 mm away from the Kapton

foil. Fig. (4.9) displays the measured signa! acrosS the detector array averaged over

25 scans of one second each. There is little variability and that which is present

cau be ascribed to systematic errors as checked by comparison to the reading from

a scintillation counter. The calculation of the noise of the PSD gives less than one
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Figure 4.8: Schematic of bCll.mstop operatiC':::J..

fying that tms adopted calibration works. The efliciency, is thenS

(4.2)

The conversion factor fps D was set to the average value of 0.685 for all diodes.

The incident beam intensity is monitored by the bcamstop wmch has been

instrumented to measure the x-rays incident upon it. Fig. (4.8) presents a dia­

gram of the operation of the beamstop. The beamstop is about 1.5 mm wide (cf.

f'g. 4.6) in the scattering direction (.i), and spans the full width of the detector

in the perpendicular direction. The front of the beamstop is about 3 cm upstream

from the detcctor surface. The beamstop casts a shadow about thl" size of its width

on the PSD. The beamstop is made of copper and is mounted on a linear motion

feedthrough so that it is e1eetrically insulated !rom tllC feedthrough and from the

Su should he remarked upon that though this numher is Jess than umty here, it could be greater

than one nthe gain to the ADU converter li increased. This emphasiJes thatthis number is really

a ealibration of countslADU.
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grounded bealIl pipe. The motion is along the dclector to allow placement of the

bealIlstop in the incident beam. Two 90 V balteries in series located between the

bealIlStop and the input to the current amplifier (Keithley) provide a voltage bias.

A flo"ting voltage source is required since one side of the beamstop ion chamber,

\lle bearn pipe, is grounrled and the other, the current amplifier (Keithley) is also

grounded. With the configuration used, the beamstop is biased positive with re­

spect to the beam pipe. The positive output yoltage from the Keithley is fed to the

Extcrnal Analog input of the PSD. The PSD digitizes the signal frorn the Keithley

with each scaltering paltern. This allows for easy recovery of the beamstop inten­

sity for analysis of the scattering profiles. Essentially the x-rays hit the beamstop,

generating a current which is measured.

The main part of the signal comes from ionization of the helium gas by elec­

trons ejected from the surface of the copper. The beamstop is run similar to an

ion chamber, with the bias set "on the plateau" i. e. in the range wh~re ail the

ions are collected. Rowever, the accderation is not great enough to produce sec­

ondary ionization, so that the currcnt m"asured by the Keithley current amplifier

ie indepcndent oi the biasing v"ltage. The signal is also relatively independent of

the polarity of the bias. Il would be difficult to calculate from first principles the

efficiency of conversion of x-rays to ejected electrons. S.ch a calculation would have

to account for many factors such as an effective escape depth, smaller than the

absorption length of the x-rays, from which e!ectrons can escape. However, if the

signal is assumed proportional to the incident intensity 10' it turns out that the

photocurrent efficiency of the beamstop is similar to that of a 12 cm helium gas ion

chamber. The helium is much Jess efficient at absorbing x-rays than copper, and

seems to compensate for tàe inefficiency of the copper at ejeeting electrons.

Because of the analogy between the beamstop and an ion chamber, it is in­

structive to start by looking at l ....ta" the expected current measured from an ion

cha.mber bombarded by 10 photons per second. The cunent depends on the pho­

ton energy E, the photoionization potential Vo, the linear absorption coefficient J1
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(in cm-l ) as weil as on the length of the chamber, l. The Illeasured current (in

Amperes) in an i0il chamber is then

l - l E -1.n",. - 0 X Vo X l X Ji- X 1.6 X 10 . (4.3)

(4.4)

In the range E ~ 5 - 8 keV, the following empirical rehüionsillp betwcen the linear

absorption coefficient and energy holds for the total cross-sectic)ll data[115] :

Ji-l = (El ) JOf'1.I',f"J J/los(E,fEJ )

Ji-2 E2

with

(4.5)

The efficiency calibration of an ion chamber at deteeting photons of energy El can

be defined as

(4.6)

and in Eq. (4.3) the efficiency groups the terms :. X l X Ji- X 1.6 X lO- l,C. Combining

(4.5) and (4.3) with reference to an energy, say El, of known efficiency E(Et}, in

He,

(4.7)

The ratio 10 / I~". = 2.6 X 1019 cps/A was obtaincd !rom an efficiency calibra­

tion at 6.91 keV for the beamstop using a bolometer. Thus,

EB (6.91keV) = 3.8 X 10-20 A/cps. (4.3)

The calculation uf the beamstop efficiency, denoted as EB is OlJy an estimate.

Since, to first order, the energy dependence of absorption is about the same fo?

any material and the photoelectrons arc produced from absorption on the ta>, few

thollsand Angstroms of the copper in the beamstop, the correction for the energy

difference between 6.91 and 5.99 keV is perfoImed using (4.7). Till. agrees with a

comparison to an incident beam on an ion chamber. The correction for cnergy thuB

gives

(6.910/5.989?·638 = 1.438,
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or 1.81 X 1019 cps/A at 5.989 keV (t'B(5.989keV) = 5.53 x 10-20 A/cps).

There is also absorption in the windows between the photodiode anay and the

bea.mstop. If photons arriving at the photodiode array are nsed as the reference,

and considering absorption in 250 p.ID. Be, 75 Il·m Kaplon, and 10 mm air (24%),

one obtains 1.38 x 1019 cps/A at 5.989 keV (t'B(5.989 keV) = 7.27 X 10- 20 A/cps).

The thiekness of t.he sample is calcn1ated nsing the ratio of the cnrrent at the

beamstop w:.th and withont the sample in the beam and the (total) linear absorption

coefficient, p. (its inverse, ~ is the absorption length). If an int.ensity 10 of photons

is incident to the surface of a material of density p, then the intensity at a depth x

inside the mat,·rial will be obt.ained from

1 = 10e- l'"

= Ioe-(;)P'. (4.10)

(4.11 )

The quantity (~) is known as the mass absorption coefficient (in m2/kg) and

can be found in tables. For Al and Zn [115], (I!.) = 11.77 Ill' /kg and (I!) = 13.03
P Al P Zn

m' /kg. For AJO.6,ZnO.38 a weighted average is performed,

(!!:.) - WAI (!!:.) + wz (!!:.)
p AIo.6 , Zno.38 - p Al n p Zn

where WAI and WZn are the weight fraci;ons of Al and Zn (DAO and 0.60 respec­

tively) giving (I!.)Al Z = 12.53 m' /kg. With p = 4.130 X 103 kg/m3, the
P '0.6' nO.38

value p. = 5.175 X 10' m-1 is obtained, i.e. p.' 1 = 19.3p.m.

Substituting into Eq. (4.10) with the rneasured values for land 10 of 0.31 x 10-7

and 0.78 X 10-7 A respectively gives x = _lln.f- =0.922p.-1 or x = 17.7 X 10-6 m,
" '0

i.e. the sample is evaluated to be 17.7 p.m or 0.922 absorption Jengths thick. This

agrees with estimates from a rnicrometer.

The deteetor was centered so th»t the unscattered beam is near one of the

d·,'·or.tor's extrernities (the beamstop bloc.ks the direct beam). The diodes were

J;;ically grouped either by 4 or 16 to form an array of 256 or 64 pixels re­

spectively. The sampIe to detector distance, R, was set at 733.5 mm such that
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Figuze 4.9: ScaUering averaged over 25 8C&IllI after suMraction of the dark CUIrent from kapton in
air with 28 ~ 60'. 140 mm from detector surface.

the 26.5 mm long photodiode anay oovered reciprocal vectors in the range 0.01 to

0.085 A-1 at an x-ray wavelength À of 2.07 A. A single diode spanned a range of

!:J.q = 1.03xl0-4 A-l. The difference between the solid angle !:J.f! subtended by a

pixel near the direct beam and a more distant pixel is of order 0.09 %. An average

value of 9.283 X lO-s steradians is used for the surface of a diode in the oonverRion

to absolutc structure factors. Depending on the bunching, this surface ÎI multiplied

by 4, 16, etc.

The incident beam intensity is obtained from the reoorded monitor oounts in

the last pixel of the PSD. Taking acoount of the ADU conversion (in volts) by the

current amplifier and the efliciency of the beamstop (EB ), 10 is given by :

l _ [monitor counts]
.1:0 - •

1638.4 X EB xl

where l, in the denominator, is the multiple of ET setting the the scan time (1 X ET).

The numerical value of the variation of electron density with composi-
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FigUIe 4.10: Absolute struc!UIe fa<:tors a1'teI eouvelsion from measUIe<! scattering rOI alun at
541 K (cf. Fig. 4.7). The negative time (0 ) corresponds to the last scan heroIe the quench 1>egan.
The time t = 0.0 ( • ) conc'Sponds to the fust scan a1'teI the aging temperature was resche<!. A
representative error bar corresponding to S(q, t) = 4.0 X 10-27 m8 is displayed on the right.

tion, dp./de, in Eq. (2.13) is estimated for a fcc lattice with lattice constant

ao = 4.054 x 10-10 m (cf. Table 1.2), i.e.

dp. 4
de

= (ZZn - ZAI)"S
ao

- 1.017 x 103Om-3
• (4.13)

Finally, with UT = 7.94 X 10-30 m' /eP (cf. p. 33) Eq. (2.13) gives

1
S(q) = 7.408 X 1O-8 (at. fract.)'m3 x 1

0
(4.14)

for the conversion between measured scattering intensities 1 and structure factors

S(q) in the case of unbunched pixels. The unit. agree with those derived in § 2.1

and the numerical factor is multiplied by the bunching number (4 or 16) as needed.

Figure (4.10) shows the result of the conversion applied to the seattering pat­

terns that were given on Fig. (4.7). An error bar given by Poisson statistics is given
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at the right of the structure factors and is representative for S(q, t) = 4.0 X 10-27 mS.

The high intensity below q = 0.02 A-1 is mostly due to grain-boundary scattering.

To obtain Eq. (4.14), it was implicitly assumed that the scattering from cor­

related domains is sufficiently isotropie so that p(7') = p(r). In particular, it is

assumed that any texture present in the sample will not affect appreciably the den­

sity correlations over the length scales measured.

The absolute calibrat.ion is susceptible to many systematic errors. A discussion

of the uncertainty introduced by each step of the calculation was not performed. It

is through comparisons of the results obtained with expected quantities derived from

other measurements that the level of confidence in the calibration will be evaluated

in Chapter VI.

4.4 Temperature calibration

The temperature was measured by a commercial infrared pyrometer. For the mea­

surement, a nominal body emissivity was set on the pyrometer. This section de­

scribes the conversion of the pyrometer temperatures to real temperatures.

The expression used by the pyrometer to determine the temperature can be

derived starting from Planck's law for the radiated power at a wavelength >. from a

body at temperature T,[116]

(4.15)

(4.16)

where c is the speed of light, h is Planck's constant and € an emissivity prefactor.

Expression (4.15) reduces to Wien's law at the wavelength used (2.3 x 10-6 m) since

hc/>'kB = 6259 K and exp(6259/T) ~ 1 :

R- €A
- exp (6~9) .

Ail constants have been combined in the numerator.
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If Tpyro is the temperature read by the pyrometer and Apyro inclu:k~ the emis­

sivity setting on the pyrorneter, the emissivity correction to the pyrolllcter reading

will satisfy
A A pyro

exp (825~) = ( 62S9 )
T exp-Tpyro

where T is the true temperature and A includes the real emissivity.

simplifies to

(4.17)

This relation

1 1
-=-+C. (4.18)
T T pyro

Thus, ooly one constant, C, needs to be determined to obtain corrected temperatures

(T) from nominal ones (Tpyro ). The constant C can be calculated given one known

temperature. This is performed below using Tc.

Five runs performed at aging temperatures above Tc are used to determine Tc.

For these runs, the equilibrium structure factors should have the Ornstein-Zcrnicke

form (Eq. 2.19). It is assumed that over a range of high q wavevectors tlle asymptotic

regime was rcached within the time of the run (2 s). The difference in structure factor

between the last and the first five scans of each run was taken. The latter group

being before the onset of the quench, this removes the grain-boundary scattering

but the eqilllibrium scattering at Ta is also removed. For the fit, So.Z.(q)!T. was

included.

Fig. (4.11) shows the measured "equilibrium" structure factors (symbols) with

data over the full range of wavenumbers resulting from the manipulation described

above. It also shows the Ornstein-Zernike forms (curves) drawn from results of

the fitting procedure. The bottom curve shows the structure factor calculated for

the anneal temperature, So.Z.(q)!T•. It is small comparative to any other structure

factor displayed in the Figure.

In the temperature range of these runs, the parameters 1< and j" can be taken,

to first order, to be !inear functions of tempcrature, i.e.

I«T) = I<a + I<m(T - Tc)

j"(T) = F(T - Tc),
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Figure 4.11: Belt fit Ornstein-Zernike structure factors Soz(q) for 598.0 (0).599.8 (t. ). 601.4
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91



In Eq. (4.20), f" vanishes at T,.

When using expressions (4.19) and (4.20), a three parameter fit was found to

be sufficient and Km was fuced to zero. The fit to

S( T'\ S( ) _ kBTi
q, ,/ - q, Ta - 2 2 +F(T. - T )

Kaq _.~ c
(4.21)

was done simultaneously for five runs at temperatures above that nominal1y taken

to be T,. In this expression, Ta was nominally taken as the annealing temperature

measured by the pyrometer. In this step, the value obtained for T, is the critical

temperature measured by the pyrome'er.

With the help of Eq. (4.18), the value found above for T,pyro and the lit­

erature value T, = 597.15 K were sufficient to determine the correction constant

C to be -4.3976 X 10-5 K-1 • As a check, all five temperatures in the fit are

changed to their real values through Eq. (4.18) and the fit is performed a sec­

ond time resu1ting in the sarne best fit values F = (14.978 ± 1.091) x 106 J/m3 K,

Ka = (2.3143 ± 0.090) x 10-10 J/m and T, = 597.15 ± 0.47 K.

The calibrated annealing temperature is calculated to he Ta = 689.9 K, and

f"(Ta) = 1.269 x 109 J1m3
• These values, along wi:h K(Ta) = Ka are sufficient to

characterize So.Z.(q)IT•.

In Chapter VI, it will be shown that the results of the fits to the dynamic

evolution of the skueture faetC'r agree independently with this choice of T, to within

0.5 K.

4.5 Instrumental resolution

An account of collimation distortions is one of the most complicated tasks in small­

angle experimental data evaluation.[1l7] Ideally, the quantity that has b he mea­

sured is the structure factor S(q). Instead, what is measured is the scattering whieh

resu1ts from the convolution (or "smearing') of the intrinsie S(q) by the response

function of the instrument. Further, the scattering is measured only at several
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discrcte points. The two principal sources of smearing of S(q) will be taken into ac­

count: the deteetor area, which effectively aets like a slit with a width and a height,

and the finite size of the beam.

The first question that should be asked when considering the quantification of

the instrumental resolution is: how to account for it?

There are two possible ways to include instrumental resolution. If a specific

mode! has to be compared to the experimental!y determined scattering function,

then the structure factor generated by the mode! should be convoluted by the in­

strumental response funetion and the result compared to the experimental data. If,

on the other hand, no model exists, then the experimental scattering :unction should

be deconvoluted with the instrumental .response function to provide a structure fac­

tor. The fust procedure is better because it is preferable to convolve the struclure

factor predicted by a model to take account of the instrumental resolution tban to

modify the data by a deconvolution procedure. Indeed, only in the first case is the

form obtained unique.

In the context of this work, it was found that for the early stage study Il' cS,

where an equation of motion for the structure factor is checked against the data,

the convolution of the model structure factors produces a smal! effect. Indeed, at

tbis stage, most of the critical features are located away from the beamstop where

the "smearing" is most important. For the late stages runs, in wbich the maximum

of the peak moves towards and into the beamstop, there is no satisfactory analytic

theory fol' the profile and evolution of the structure factor and the experimental

data Was deconvoluted. The quantitative analysis of the structure factor measured

at late times therefore takes into account the instrumental resolution. Should a

theory become available to predict S(q,t) at late times, then tbis structure factor

could be convoluted and compared to the data.
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4.,5.1 Convolution

The convolution, or "smeanllg" of the structure factor S(q) depends on the beam

profile, the width and the height of the pixel and the q-range detected will depend

on the sample-to-deteetor distance, L. Figure (4.12) shows the scattering geometry.

The origin of u is chosen for convenience at the center of the intensity distribution of

the beam. The incident beam profile is quantilied by an intensity density function,

j(u), with u a vector in the plane normal to the incident beam at the sample.

Similarly, a function Wp ( '!l) defines the shape of the pixel p, with V a vector in the

detector plane. It is unity when V is inside the pixel area and zero elsewhere.

The measured scattering efficiency per ~t thidrness ES(p) into pixel p result­

ing from scattering at a wavenumber q is the integration over the beam profile that

faU on the surface of pixel p after scattering with a wavevcctor q. For an isotropic

sample, i.e. S(q) = S(q), this is

(.1.22)

These integrals can be considered as the definition of a !incar operator Rp

(4.23)

The structure factor S(q) can ouly be measured at a linite number of q values.

Suppose a discrete set of S(qi) sufficient to nuruericaUy approximate S(q) for aU

q-wavevectors by an int~rpolation scheme. Then S(q) is given by the suru

S(q) = L S(qi)<Pi(q). (4.24)

where <Pi(q) determines the interpolation scheme, for a lincar interpolation it would

be a hat funetion centered about qi. The measured scattering in a pixel p becomes

ES(p) = Rp [~S(qi)<Pi(q)]

= L S(qi)Rp [<Pi(q)].
i
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Expression (4.25) presents the important ac!vantage that once <P.(q) is selected

R,,<P.(q) can be computed for all q. and the transpose of the resulting matrix,

M;' == R" [<P. (q)] (4.26)

is independent of sample scattering. The matrix M relates "pixel~-space (rows) to

q-space (columns). Column q gives the spreac! of <Pi(q) into each pixel resulting from

aIl illuminated points in the sample. Conversely row p stores the fractions of pixel p

covered by the "scattering" function <P.(q) from ail illuminated points in the sample,

for ail i. As constructed, each row is normalized to unity.

Since the detector ge&metry is fixed for ail the scans in a run and for ail the

runs reported in this work, Eq. (4.25) cao now conveniently be rewritten as the

matrix product6

(4.27)

The approach presented above aIlows the inclusion of other factors in the

instrumental resolution. For instance, a wavelength distribution could be considcred.

Though the eva1uation of M would be more complex, it needs to be performed only

once for a given geometry of the experiment and wavelength distribution. For the

measUIements reported in this thesis, the wavelength speetrum is not important.

In this work R,,[<Pi(q)] is calculated using the defmed integration weighting

functions j(u) and Wp ( t1). FOUI independent variables are sufficient to compute

Eq. (4.26). The numerical procedure of convolution depends on the choice of these

variables. In polar coordinates,
271"

q=-r
>'L

(4.28)

which is conveniently independent of 9 for isotropie scattering7 , the integration

weight over a pixel Cali be expressed as

(4.29)

•An added convenienee is lhal Misa blocl:-<!iagonal malm and lhus requires relalively Jillie

computer slorage.
7For a discussion of lhe solulion in earlesinn eoordinales wilh Ur, U" !I and z ... independenl

variables, see lef. [48].
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W~(11) is unity inside pixel p and zero outside. The computation of (4.26) becomes

1 j 1.2
..M~ = L2 4>.(q) Wp ( u, q, O)dOj( u )d'u.

00 6:=0
(4.30)

In the z-direction, the beam profile was measured with the PSD. In the y­
direction, the dumbell-like shape was captUIed on polaroid film and mode11ed as th

sum of two gaussians of equal FWHM separated by a distance measured by ruler.

FigUIe (4.13) shows a contoUI plot of the beam profile where it has been

ass1!-'1led that j(~) can be expressed as:

and where the intensity distribution is normalized such th80t

f j(u)du = 1.

(4.31)

(4.32)

Fig. (4.14) shows how six regularly spaced delta-function scattering rings would

be measUIed or smeared by the detector anay. For comparison, a span of five pixels

(bunched by foUI, i.e. 20 diodes) is shown.

At the smaller q values (i. e. closer to the beamstop) the asymetry (lopsided

towards low q) of the measUIed scattering is more important and re:f!eets the high

degree of curvatUIe of the annuli shown in Fig. (4.12) whereas as q increases, the

annuli segments appear closer to parallel lines through the pixel and the smearing

results principally from the finite size of the beam (Fig. 4.13).

4.5.2 Deconvolution

The dcconvolution is the inverse of the convolution. It is numerically unstable. One

solution is by iteration, a numerical technique to invert the matrix.

The rom is to find a set of S(qi) such that

(4.33)
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Such a set may he found hy the iteration of

(4.34)

and n is the deconvolution iteration numher. It is convenient to use ES(p) lU! the

first trial function, i.e. S(q)o == ES(p).

The deconvolution, or unsmearing, will pull features from lower q to higher q

and will he important only for the lower q range mC'l.Sured. In effect, it c.an he said

that the deconvolution pulls some signal out of, aud away from t11e heamstop.

The "smearing" also smears sharp features of the structure factor and, con­

versely, the deconvolution will amplify any noise in S(q). To circulllvent this proh­

lem, the measured E(p) is first smootheà with a spline funetion before dcconvolution

and the noise removed by the smoothing is added back-in to S(q) after the decon­

volution has converged.

To conclude, the rcsult of the deconvolution for representat;ve structure flietors

during two runs is pl'esented on Figure (4.15). The convolution correction is only

important when the peak maximum moves below .01Â-1. Typically t!lis will occur

at earlier times at higher quench temperatures due both to higher decomposition

rates and a lower initial wavevector for the maximum of S( q, t) (a) than for àeep

quenches (b). However, in al! cases, the deconvolution has little effect at the early

times of the fast runs (2 s). As expected for scans with peak maxima near the

heamstop edge, the deconvolution has the effect of moving the maxima to higher

q and sharpening the peak itself. In this figure, the last structure factor hefore

the quenc1l was suhtracted off al! shown S(q,t) to remove the low q high intensity

scattering. This procedure, used in the analysis of the data, will he introduced in

§ 6.1.
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FigUIe 4.16: Eil'ect of the deconvolution on the struetuze factors for a shallow quench (a) and a
deeper quench (h). The RIO oftime correspouds to the time at which the temperatuze crossed T•.
The ordinale axis has the last .truetuze factor before the quench subtracted off ail sho...-n S(q, t).
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Chapter 5

l'rheoretical background

Chapter III has presented a Ieview of the early descriptions of spinodal decompo­

sition. The equations of motion for the structure factor that were introduced were

lin.ear. However, both experiments a.nd theory indicate that I;."nlinear terms have

to be included when dealing with binary aIloys. Discrepancies between linear theo­

ries and SAS measurements of SD were reported in Chapter III. This Chapter wiU

present theoretical estimates of the nonlinearity in the SD of binary alloys.

This review of theory comprises two parts. The first deals with early stages of

SD while the second is concerned by the late stages of SD. After an introduction

to coarse-graining for the statistical description of a binary alloy, the equation of

motion for the structure factor is derived. Following this, estimates of the impor­

tance of nonlinear terms are presented. The nonlinear theory developed by Langer,

Bar-Qn and Miller[7] (LBM) io then introduced (§ 5.4). The late stages cannot be

described by the LBM equation of motion. The second half of this Chapter will

review late stages scaling predictions and phenomenological scaJing forms for the

structure factor.
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5.1 Coarse-grained free. energy functional

On a microscopic scale, binary alloys can be modeUed by sOille Hamiltoman with

interatomic interactions. Since these interactions are short range they are often

mode1ed by an Ising model.[118] This Ising Hamiltoman should he adequate for

computing equilibriurn properties of the system. The resulting equilihriurn free

energy using this Hamiltoman is a convex function of composition and eontains no

information about metastable or unstable states. A mechanism is needed whieh

includes irreversible effects to express the non-equilihriurn dyna.mics. This section

introduccs a coarse grained free energy to describe the metastable and unstable

states for systems.

The coarse graining cau be justified heuristically by proposing that equilibriurn

thermodyna.mics apply locally in each region but that the thermodyna.mic variables

differ from region to region. The approach to equilibriurn of the system is then

govemed by the evolution of this gener<Jized non-equilibrium free energy to the

true equilibriurn lice energy in much the sa.me way that two hlocks of different

tcmpcratures will approach a common temperature when put in thermal contact.

The system is coarse grained by breaking it down in subvolurnes of edge length

a, each containing a large number of atoms.[118,119] A discrete cel! composition,

c(ra), is introduced as the average local composition in the mesoscopic region cen­

tered at ,.a' Each cel! must he sufIiciently large sucb that the composition aud

the frce energy can be regarded as smoothly varying from one ceU to the next and

yet, it cannot be made arbitrariIy large in order to ensure that SD does not occur

in any cel!. Ideally, the block size should be of order the characteristic length of

critica! phenomena, i. e. the corre1ation length e(cf. p. 7). In princip!e, a cOarse

graining length is se1ected i. e. a length scale for the averaging, then the calcu­

lation of l'verages is performed and the result is checked for consistency with the

phenomenologica! dyna.mics measured.

The calculation of the gr'illd canomca! partition function of the coarse-grained
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system from a microscopic mode! would involve iwo steps. First, the average over

the microscopie configurations {c;} compatible with a given constraint {ca}, corre­

sponding to a specific configuration of cel! variables has to be performed. Next, the

avp.rage over ail the possible configurations {ca} has to be computed:

(5.1)

In Eq. (5.1), F {Ca} is the generalized free energy for the set of coarse-grained cells

{ca} and H {c;} is the Hamiltonian for each of the statistica! ensembles {c;}. As the

coarse-gr~ining length is increased, i.e. the number of cells is decreased, the number

of microocopic configurations {ci} compatible with the constraint {Ca} increases.

Instead of working with discrete cell composition variables {ca}, defined at

discretized points "a, a field c(,,) defined for ail " wlùch extrapolates smoothly the

ca(l'a) is introduced and thus F{c(r)} == F{ca }. Further, the quantity 8c(r,t) is

introduced sirnilarly to Eq. (2.15), except that it is now time-dependent :

(5.2)

Figure (5.1) presents a schematic of the true equilibrium free energy F(5c),

and of a coarse grained free energy density J(5c) (the part of F{c( r)} wlùch is

independent of gradients of c(r)). The true free energy differs from the coarse

grained free energy density in one important respect, F(5c) is a convex function of

c whereas J(5c) has two distinct minima for temperatures and compositions witlùn

the miscibility gap and er.h.ibits a region of negative curvature. The best argument

to justify the composition dependence of J(5c) is the a posteriori test of the pre­

dicted dynarnics obtained for the convex region. It is not easy to perforrn explicitly

the coarse graining procedures described above starting from a fully microscopic

mode!. Instead, one assumes a phenomenologica! Ginzburg-Landau form for the

coarse grained free energy F{c(r )}.

The process of averaging inside subvolumes, i.e. coarse-graining is implicit in

the regular solution mode! (mean field ) description of the miscibility gap of § 1.3
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.FigUIe 6.1: Scllematic graph of the coarse-grained froc energy density J(ée) and the corresponding
equilibrium froc energy F(6e). The dashed sections denote the analytic continuation of l' (ée) into
the metastable region.[120J

where Gibbs' free energy possessed a convex region and the introo.uction of the

intensive free energy of § 1.4. The integral over Eq. (1.16), provides the Landau­

Ginzburg form for the coarse-grained free energy,

F{c(I')} = 1dl' [~" 1V'c(I') 1
2 +f(c(I'))] (5.3)

where the subscript to fo(c(I')) has been dropped to simplify the notation. As

previous!y, " is the coefficient to the free energy gradient term. F{c(I')} will depend

on the limits of integration. The lower integration limit will correspond to the size

of the coarse-graining cell and the upper limit of integration will be the system

size. The cutoffs are often referred to as the short wavelength or ultra-violet cutoff

and the long wavelength or infrared cutoff. Thus, the Landau-Ginzburg free energ)'

iu..'\etional F{c(l' )} contains only spatial variation c(l') with wavelengths larger than
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the coarse-graining length.!

F{c(r)} has to be such as to rcflect the physical propcrties of the microscopic

mode!. In particular it has to account for the phase transition which occurs at T,(c).

A simple expression for j(oc) that satisfies this condition can be written down for

the case of the critical composition, assuming symmetry of the miscibility gap. This

is the usual "c·" approximation

r u
j(oc) == "2 (OC)2 + "4 (oc)· (5.4)

where r, the prefactor to (OC)2, is temperature dcpendent. Il is negative when

T < T, and positive for T > T,. Thus, bclow the critical point, j(oc) has a double

weil structure not unlike the rcgular solution mode! of Che_l'ter I.[17,34J Both rand

u have dirr.ensions of J /m3
. With the free energy functional dcfincd in t.his way, the

coexistence points oC,oe~ at a given temperature are given by the roots of aff~j "' 0

t.e.

(5.5)

Similarly, in the mean field limit the compositions on the spinodal line are given by

~ O'8(.,)' == t. e.

oC'P == ±J-r/3u. (5.6)

The mean field correlation length '0 temperature-dependent. In particular,

near T" it diverges to infinity and infinite wave!ength fluctuations are predicted

(and observed as critical opalescence in binary f1uids). Consequentiy, the coarse

lA heuristic argument for the existence of the convex region in J(6c) bas~d on the ceRIse

graining procedure can he suggested based on surface energy 0' associated with the breaking clown

of the bulk into subvolumes. The intensive ceRIse grained free energy would then tend towards

the true free energy as the conrse graining length is made arbitrarily large lima. ..... oo ~# = 0 with

the disappearance of the concave region. In the microscopie model of nearest~neighborintcracting

atoms, as the system is partitioned into boxes, atoms at the surface contribute mor: ~neI8Y to the

total energy ofa cell than atoms in the buU: (in effect, these atoms contributc an additional snrface

energy). 50 the obtained coarse-grained Cree energy is a1ways larger th an the true thermodynamic

free energy. This was the case in Figure (5.1).
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graining length should a1so be temperature depcndent, increasing as T gets c10ser

to Tc> both from above and below. In the Iimiting case where it is comparable to

the size of the system, then the coarse grained free energy tends towards the exact

equilibrium convex free energy.[121]

The location of th" spinodal curve is found to depend on the coarse-graining

size. This dependence of the location of the spinodal curve on the coarse-graining size

is consistent with predictions by Langer [121] and Binder et al.[52] on the S1l100thness

of the dynamical transition between nucleation and spinodal decomposition.

The deterrnination of the fIee energy functional is important for a dynamical

description of a given system. The fust attempts were quite phenomenological. They

involved detennining relevant parameters in (5.3) fIom extrapolations of measured

thermodynamic quantities in the stable region of the phase diagram.[58]

5.2 Equation of motion for the non-equilibrium

structure factor

The equation of motion for the non-equilibrium S(q,t) cau be calculated via the

appropriate Fokker-Planck equation. A derivation of the Fokker-Planck equation is

outlined below, based on a paper by Langer.[119]

The state of the phase separation is quantized by the time dependenl

statistical distribution of ail coarse g<ained composition variations, denoted as

p({(Sc)",}, t).[119,122] Instead ofthe complex microscopie description ofthe interac­

tions requiIed to account for the dynamic evolution of the aIloy, a simple procedure

is to simulate their combined eifects by coupling the coarse grained system to a heat

0ath.[123J One source of energy for the heat bath could presumably be the phonon

modes which reequilibrate rapidly in comparison with the composition changes. A

master equation can be written for p({(Sc)",},t):

8p({~)},t) = t [W({Sc},{Sc'})p({Sc'},t) - W({Sc'}, {Sc})p({Sc}, t)] (5.7)
{Ca}
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where the summation is over ail the possible composition configurations {<;,.} and

W({r.},{d}) is the rate at which the thermal bath induces transitions from {dl

to {c}. The central aspect to the phenomenological description of the separation

process has become the transition rates W({Sd}, {Sc}).

A deta.i1ed description of the derivation of the transition rates performed by

Langer is not done here. However, sorne remarks on the phenomenological assump­

tions are given. The coarse grained free energy (Eq. 5.3) is the appropriate energy

for the system for a configuration {(Sc)} and thus p({(Sc)o},t) will be proportional

to exp( -F{(Sc)}). Making use of the condition of dcia.i1ed balance the transition

probability can be expressed as

W({Sc},{c'}) = exp [2k~T (F({Sc}) - F({Sc'}))] n({sc'}, {Sc}) (5.8)

wheie n({Sd}, {Sc}) is an atomic jump frequency. The function n is assllmed to

depend ooly on the change in Sc, and thus is composition independent. This point

is important in the derivation of the rates. Since the coarse graining ceUs contain a

large number of sites, the change in Sc correspondlng to a single transition is small.

Thus n must be sharply peaked around Sc The sites are assumed saturated with

atoms, sa the local composition has to be conserved and the changes in ecU concen·

trations are always symmetric i.e. if a particular cell composition Co changes by +19,

the composition of the neighboring cell will change from do to do - 19. Consequently

n will he symmetric in 19. An atomic jump rate, r is introduced. For this, the ooly

changes in the solute atoms distribution beiween the ceUs aIlowed is the swap of

unlike atoms between two specifie neighboring cells. If there are Nv sites per ceU,

then N;,/3 sites in cell a (or d) are nearest neighbors to sites in ecU d (or a) and

r to within a constant factor is given by :

Taking the second moment over ail {} fust notieing that for {} ~" 1/Nv, {}2n = N;4/3r

(5.10)
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where the condition that r is a sharp function centered at ,J = 0 has been used.

Equation (5.7) then becomes:

8
8tP({5c},t)

. r 8[1 8 . 8
= 2,,6/32:>8;;- k T(6 8c F - L:: 8a,F)p({5c}, t)

l'tv Cl Cl B a {a' a}

+(6
8
8

p({5c},t)- L:: 8:P({5C},t)] , (5.11)
Ca (a' a>

where E(a' a) means summation over cx' nearest neighbors to a and F = F({5c}).

As in the introduction of the coarse grained Cree energy in the previous section,

it is convenient to introduce a continuous field 5e(,.) wmch extrapolates smoothly

the variables {5ca }. ACter sorne algebra, using the functional derivative 8j8ea =

(N.a~)5j 5c(,.) and replaeing the summation on cells by (N.a~)-l Jd.,., Equation

(5.11) takes the form of a Fokker-Planck equation for the p{5e(,.),t}:

8p{c(,.),t} = -Id 5J(c(,.),t)
et ,. 5e(,.) . (5.12)

The integral extends over all space and J(,.) is a probability current given by

(5.13)

In Chapter II, it was shown that SAXS probed the two-point equal time density

(or composition) correlation function of the system. The derivation of sum IUles also

required knowledge of moments of the composition distribution. Moments of the

composition fluctuations in a coarse-grained system are taken over the distribution

funetional p{c(,.)}

« 5ct) == 1p{(5c)}(5ct d(5e). (5.14)

While in Chapter II angular brackets ( ) implied a thermal average, here they take

the meaning of a sum over all configurations of a non-equilibrium ensemble. As a

consequence, the fust moment (average) of a composition dependent quantity will

generally not be equal to the value tms quantity would take at a composition value

equal to the bulk composition, i.e. if a simple thermal average was performed for

wmch normalization is done to the volume of integration. However, in the limit when
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(5.15)

p({Sc}Hs a sllluply peaked function of c in the neighborhood of {c} = {ë}(119] then

the average of any fun ct ion of {cl can be approximated by the value taken by the

same funetion at {ë}. In that limït, the Fokker-Planck equation reduces to the

general.ized diffusion equation (Eq. 1.26) with the identification

r = 2MkB T
a~

where M is the atomic mobility as introduced in § 1.4.'

The nth order non-equilibrium two-point equal-time correlation can be written

as:

(5.16)

where omission of the snbscript n will mean S,(1' - 1'0)' Again, in Eq. (2.11) the

angular brackets ( ) implied a thermal average and they now tale the meaning of

an avera.ge over a non-equilibrium ensemble

The functional integral on the right-hand side denotes the integral over the fields

{6c}.

Expression (5.12) alIows one to derive the equation of motion for the structure

factor S(q, t), which is the Fourier transform of the two-point eqllaI time real space

correlation function S(l' - 1'0, t) (cf § 2.1)

S(q,t) = F[(Sc(1',t)Sc(1'o,t))J. (5.18)

The real space correlation function is obtained by multiplying both sides of Eq. (5.12)

by Sc(", t)Sc(1'", t) and a sum is perfonned over alI possible configurations {Sc(1')}

to obtain S(" - "0, t). Taking the Fourier transform of the result gives'

8S(q,t)
8t - -2Mq' [("q' + ~~/co)

+2MkB Tq2

• 00 1 ô"f. ]
S(q,t) +E(n -1)! 8e" /coSn(q,t)

(5.19)

'An alternate derivation for Eq. (5.12) is 10 starl by a Langevin equalion instead of the masler

eqnation (sec Ref. [118]).

"The caleul1lll involved is weil described in Ref. [118].
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The functions S(q) and Sn(q) are respectively the Fourier transform of the

two-point (cf. Eq. 5.16) and the (n - 1)th order of the two-point equal time non­

equilibrium correlation funetion (cf. Eq. 5.16). This procedure takes fully into

account the composition distribution funetional. Equation (5.19) is the first of

an infinite hierarchy of coupled partial differential equations (pde), one for each

moment. Indeed, each moment equation is such that it depends on the higher order

moments. This equation is exact under the coarse-graining assumption for the free

energy (5.3). Even by restrieting f(c) to the <lé" approximation (5.4), the hierarchy

of pde will not be finite as S. will be required to solve the equation of motion for S2
and Sa to selve for S. and so on. A central problem to theories of SD is ihe closing

of the infinite hierarchy of coupIed pde required in the calculation of *,Sn(q, t).

5.3 Estimates of the importance of nonlinear

terms

Linearization schemes have becn proposed to solve Equation (5.19). These include

the linear theories due primarily to Hillert[55], Cahn[57] and Cook[30] which have

been reviewed in the discussion of early theories of spinodal decomposition (Chap­

ter III). Cahn's linear equation (Eq. 1.21) is obtained if the thermal noise term,

2MkBTl, is negleeted as weil as ail correlation functions of order higher than two.

If, instead, the thermal noise term is retained but highest order correlation func­

tions, f,'(q, t), are again neglected, then the CHC equation results (Eq. 3.6). Before

introducing the approximation scheme of Langer, Bar-on and Miller which retains

some nonlinearity of Eq. (5.19), this section introduces estimates of the importance

of the nonlinear terms.

A criterion for the applicability of a mean field theory to a phase transition

was introduced by Ginzburg who stated that below Tc the fluctuations in the order
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parameter, wlllch will be defined as

</>==C-CCl (5.20)

averaged aver a region the size of the correlation length (a coarse-graining ceU) mllst

be small compared to the value of ,p itself.[124] Binder generalized the Ginzburg

criterion for SD in the way that foUows.[125] By analogy to the formation of nuc1ei

of second phase during nuc1eation from a metastable state, caU ,p(00) the value of

the order parameter away from an "interface" and ,p(0) the value at the center of

a "second phase partic1e". Then, introducing o,p == ,p -,po where,po == (co -- cc), the

generalized Ginzburg criterion can be writ ten as

(5.21)

The Omstein-Zernike form for the correlation fllnetion (the Fourier tmnsform of

Eq. (2.19)), is appropriate for a mean field theory. Thus, making the maximum

possible choice of a coarse-grain.i.ng ceU, the lhs becomcs[43}

where the proportionality constant includes a factor kBT. Interpretiag ~ in

Eq. (5.22) as a charaeteristic wavelength of the phase separation process with max­

imum amplitude growth, i.e.

(5.23)

and, expanding 8 2J( ,p)/8,p' about the value of the ord~r parameter at the spinodal

line, ,p,p, and using ,p,p ex (1 _ ~ )'/2,

".J.'

( T)'/2 ( ,p)îç-' ex (v'Kt' 1 - - 1 - -
Tc ,p,p

Eq. (5.21) then becomes, with ,p(0) == ,p,p and ,p(oo) == ,po,
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With C,p - ,p.p)' = ,p;p(1- -/:;)',

T -t ( ,p )-~
kilT (,fit 3 (1- -) 1- - «1.

Tc ,p.p
(5.26)

Using definition (5.20), the condition for validity of the !inear theory can thus be

exprcssed by the following inequality :

(5.27)

From the expression of the Landau-Ginzburg free energy functional, Eq. (5.3), ,fi

is of order the range of the composition gradients and evidently ,fi represents the

range of interaction. For alloy systems, Binder[125] argues that ,fi is sufficiently

small such that the above inequality is never satisfied. Mean field theories should

therefore be valid ouly in systems with long range interactions. Linear equations of

motion such as the erre equation are essentially a mean field formula and therefore

only holds strictly for cases of infinite range intemdions. They should then only

be observed in systems such as polymer blends which fulfill condition (5.27). This

prediction has recently been confinned by computer simulations.[126]

Since linear theory or mean field approximation deals with the limit where the

interaction force has a long range, Grant et al.[127] propose a perturbation expansion

whcre the small parameter, E, is proportional to the inverse of the range of the force.

Following their work, it is convenient to convert Eq. (5.19) to a dimensionless form

by making the following change of variables,

_(,,)"/2k - - q,
T

(
u \ '/2

1/;= ;; (Sc),

and to render the structure factor dimensionless,

(_r)3/' .s= - S.

"
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The resulting dimensionless equation of motion for the structure factor for a critical

quench in the two-phase region is

ôS~;r) = -k' [W + l)S(k,r) +S.(k,r)] +<k2

where < is the intensity of the thermal noise and is givcn by

(5.32)

(5.33)

In Eq. ~5.32), < is the only quantity that was not scaled away. If one sets ;j == 1/;.,fi,

then S --> <S, S. --> <'S. and the dimcnsionless equation of motion takes the form

ôS~~,r) = -k' [W + l)S(k,r) +<S.(k,r)] +k'. (5.34)

The parameter < detennines the contribution of the foudh order term in energy

and its strength with respect to the noise. From Eq. (5.33), < ~ (v'K)-s and thus

in the limit of infinite range interaction, when mean field theory is expected to be

valid according to inequality (5.27), < --> 0 and the CHC equation of motion is

recovered. The range of the free energies "interaction" is then proportional to ,;K

since the parameter < is smalI when the range of the intera.ction is large and CHC is

expected to be valid. Tlùs is consistent with the heuristic picture that linear theory

is expected to work when local composition fluctuations are sma.ll, corresponding to

smalI but long wavelength fluctuations, with minimal composition gradients.

Eq. (5.34) provides a direct way to find the time regime of validity of CHC,

t max if < is nonzero (and small). An expansion on 1/; = 1/;(0) +<1/'1/;(1) +... breaks

down for 1/;(0) ::::J <1/'1/;(1). The corresponding expansion for the dimensionless struc­

ture factor is S(k,r) = w(1)(k,r) +<3f2S(')(k,r) +.... Keeping only the leading

term ID the expansion for the structure factor, Equation (5.34) becomes

(5.35)

To leading order in the expansion in the range of the force, the result of the CRC

theory is reobtained. Expression (5.35) will break down when S(1) ~ <S(') i.e.
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etmax ~ €. Thus, tmax ~ -ln € ~ ln(y'i<).4 Grant et al.[127] provide calculations

and considerations for the first order perturbation. The equation of motion ob­

tained arter considerable algebra for the structure factor to order €2 develops only a

Gaussian one-point density distribution functional. To obtain a late time bimodal

distribution would rcquire bigher order terms. To date, such a calculation has not

been performcd.

(5.36)= ---
a~ r

X ==

The small parameter € can be expressed in terms of more familiar quantities.

Introducing X as the susceptibility and, as in the susceptibility sum rule of § 2.3

(cf. Eq. 2.23), with the lattice constant /to,

1 kBT
a~ 82f /-;:-8(7":S'""'c)"'2

1 kBT

With the thermal correlation Icngth edcfined as in Eq. (2.20) by

(5.37)

where, again, " is the length scale for the m.tero.etions. Using the coexistence value

for the "c4n mode! (Eq. 5.4), Equation (5.33) can now be written as

(5.38)
€ = ~ (Sc~oex (?r

Near the critical point e, X and (Sc)coex are expected to follow power laws (cf.

Table 1.1) with critical exponents v, 1 and f3 and critica1 amplitùdes eo, G and B.

Assuming hypersca1ing, the critical exponents should obey

2f3 +l' = 3v' (5.39)

~his resull tan aIso he obtained directly nom Ihe generalUed GinsbUIg critenon (Eq. 5.21) by

recalling that lInclnations will grow exponentially if below q, and 8SDng how long the inequalily

will remain valid.{125] This resull tan aIso he inlerpreted in lerms ofa mean fust passage-time for

the decay of an unstable 5Iate.[128]
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and Eq. (5.38) gives that

(5.40)

which indicates that € remains finite at the critical point. This result is consistent

with the identification of eo with the range of the interaction in the mean fidd critieal

region.[125]

Most systems pre&ent short-range forces and € ~ 1. Then t lUax ~ ln 1 is a

very smaIl q"3:Jltity. For long-range force systems, such as polymer blends with a

Flory-lluggins free energy[125,129], aole ~ 1 and there is a range in which ClIC

should be valid.

5.4 The J....anger-Bar-on-Miller Theory

5.4.1 Equation of motion

Langer, Bar-on and Miller[7] proposed a scheme to truncate Equation (5.19) and

close the hierarchy of pde. The resulting equation of motion prediets how p{6c(I"), t}

will evolve in time. For high temperature or disordered systems p{oe(1"), t} will be

a very sharply peaked distribution centered at the average concentration Co. As

the system is aged in the miscibility gap and two equilibrium phases are forrned,

p{Se(1"), t} becomes a doubly peaked funetional with the peaks located at the ~on­

centrations of the precipitate and matrix phases.

The LBM scheme rests on the foIlowing Ansatz for the two-point distribution

funetion P2 :

P2 [Sc(I"),6c(1'o)] ~ Pl [6c(I")]Pl [Se(1'o)]{l +,(1 l' - 1'0 l)oe(I")6c(1'o)}, (5.41)

In this expression, ptfoe] is the one-point distribution funetion whieh must be nor­

malized 50 that
1+00

1-00 Pl [6c] d(6c) == 1
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and

(5.43)

The function pdoc] is expected to become doubly peaked when phase separation

occurs. The fuuction ,(r) appea.ring in Eq. (5.41) is proportional to the correla·

tion function. By the definition of the two-point equal-time correlation funetion

(Eq. 5.17) and using nonualization conditions (5.42) and (5.43) :

(5.44)

The great simplification achieved by Eq. (5.41) is that al! the Sn(11' - 1'0 1) have the

same r-dependence as S(I l' - 1'0 1):

Sn(1 l' - 1'01) = JV[OC]p2[oc(r),oc(ro)Joc(rt-1oc(ro)

~ ((octh(lr-rol)

""' ((oct)S(1 1)
((OC)2) l" - 1'0 •

Equation (5.45) is useful in c10sing the hierarchy of coupled pde.

Eq. (5.19) then simplifies to the LBM equation of motion6
:

where S(q, t) is the structure function and

(5.45)

(5.46)

(5.47)

Equations (5.46) and (5.47) constitute a set of coupled differential equations. The

LBM theory is derived by further imposing restrictions for the calculation of A.

It can be noted that if the source tenu in equation (5.46), the last tenu on

the right hand side, is neglected, and the sum truncated at the fust term in the

expression for A in equation (5.47), then the Calln-Hilliard equation (Eq. 1.21) is

"The hat notation to deMte the Fonrier transform oC S(1') Cor S(q) will only he use<! when

confusion is possible betwee,. the two in the ten.
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obtained. On the other hand, if the source term is kept but the sum still truneated

al. the first term for A, then the Cahn-Hilliard-Cook equation (Eq. 3.6) is obt.Jned.

The explieit q-dependenee of *,.~,,(q, t) has been rcmoved by using approx­

imation (5.45) and its time dependŒce has been simplified to one time varying

parameter, A. The infinite hierarehy of p.d.e. though simplified still remains to be

closed. In the ealeulation of A, the sum (5.47) will have to be truneated.

Whereas in the Cook equation 82f 1ac~ was constant in time, A == A(t) is not,

a coupling between the modes is provided by A. There is no intrinsic q-ùepcndcnce

of A. The integral

1 J -((OC)2) = (211")3 dq S(q) (5.48)

over the entire range of q-space up to the cut-off provides the "mcan field" coupling

(cf. Eq.2.25). Equations (5.46) and (5.47) cannot be n"ed in this fonu due to the

Illcrarehy of coupied pde's: to solve aS(q, t)1Dt requires the solution of a3 S( q, t)1at

and so on ad infinitum.

Because (oc2 ) is a positive, incrcasing function of time, the charaeteristic wave

number qc must dccrease. Thal. is, the mean-square fluctuations, via the nonlinear

part of ~, cause a qualitatively correct coarsening of the precipitation pattern.

To solve the nonlinear equation (5.46), the densil.y probability distribution

funetional (i. e. the one-point composition distribution funetional) first proposed by

Langer and Bar-on[122] is used by LBM. In this Ansatz, p(oc) is parametrized by

the sum of two Gaussians centered al. oc = b, and b2 and a width cr which evolve in

time.

p(oc) b2 ( (OC-b,)2)cxp -
(b, +b2 ) cr.,f2; 2cr2

b, ( (Oc+b2Y)+ exp - - .
(b, +b2 ) cr..;27r 2cr2

(5.49)

At t = 0, the system is in a single phase state, b, = b2 == O. At t = 0 when the

solution is still in a disordered state, cr' is mueh greater than the producl. b,b2 and

p(5c) will be a sharply peaked function cenl.ered al. Sc = 0 as described above. At
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later aging times two distinct peaks in p(5c) appear thus simulating the phase sep­

aration process. As time passes, these values gct displaced towards the equilibrium

two-phase concentrations. If the separation occurs at critical composition, then

01(t) = b,(t) = b(t). Expressing p(5c) as a doubly paked function is an essential

aspect of the nO..llinear probJem. As pointed out by LBM, the CHC linearization

implies that p(5c) remains peaked at 5c = 0 and as a result is valid only at very

carly aging times. The moments of ((5c)') (cf. Eq. 5.14) just involves Gaussian

integrals and

(5.50)

In the mean field approximation, p(5c) remains centered at zero at all times.

So the LBM equation of motion differs from the mean field closing scheme[130]

by the introduction of the two Gaussians for the density functional p(5c). With b

moving away from zero, the fourth cumulant,

(5.51)

is nonzero. In an earlier approximation, Langer[130] employed the time-dependent

self-consistent Hartree approximation according to which p({c}, t) can be written, at

all times, as the exponential of sorne negative quadratic form in the function 5c(7').

Though this was an analytically legitimate approximation, 5c( l') had to remain

single-peaked and centered at zero. The average of any product containing an odd

number of factors 8c(l') will vanish and (5c4 ) = 3(8c')' and the fourth cumulant is

zero.

One consequence of using the "c4" approximation is that 83f /8(8C)3 is zero.

This poses a serious problem near the classical spinodal \ine when the coefficient

r is very small. Other than for the very restrictive case when an alloy is at the

critical composition and the coherent spinodal syrnrnetric about this composition,

the decomposition occurs via fluctuations which are not at all symrnetric about

5c = 0.[84) The approximation provided by Eq. (5.4) will give a poor picture near

the boundaries of the spinodal region and a nonzero asf /8(Sc)3 should he considered.
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5.4.2 Scaled LBM equation of motion

In a practical system, the most direct route 1.0 use the LBM theory is to work in the

dimensional form of the equation of motion, whcre the wavcveetors, atomic mobility

and free energy gradient coefficient assume their physical units, namely Eq. (5.16).

However, il. is instructive to exanùne the reduced form suggested by Langer et a/.[7)

for Eq. (5.46). The connection between the dimensional set of parameters and the

reduced ones is straightforward and uscfu] for comparison betwcen discrete dynamics

simulations and physical measurements.

In the reduced equation of motion for the structure factor derived in § 5.3

there was no explicit coarse-graining. However, in the LEM theory, the "mean field

coupling", implicit in the computation of A(t) (l'lq. 5.47), requires integrals with a

high-waveveetor eutoff, i.e. a coarse-graining length in real space.

Langer et a/.[7] assumed that the free energy funetional f(/ie) near the critical

point was given by a scaled version of (5.4), for a coarse-graining size proportionaJ to

the correlation length ç. OnJy one system-dependent dimensionless parameter, fo,

entered their approximation for f(5e). The value of this parameter was determined

from known criticaJ exponents and critical amplitudes of the three-dimensionaJ Ising

mode!.

Using q, aS defined in Eq. (5.20), the free energy is expressed in a scaled form

with q,s (solvus), the value of q, al. the miscibility gap boundaries. The intensive free

energy f( q,) is expressed in terms of a scaJed (dimensionless) intensive free energy,

ip(q,jq,s) by the form

f(q,) = (k:n foif!(q,jq,s) (5.52)

wh"re kBT1a3 has the units of J1m3 and fo is unitless. The parameter fo turns out

1.0 be the onJy system-dependent quantity in the mode!. It is such that if!(0) = 0,

ip'(±l) = 1, if!'(O) = 0 and if!"(0) = -1.

For the particular case of the "c4
" form of f( q,), Eq. (5.4), recalling that the
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solvus !ine is (_r/u)I/2, the following is obtained

2

f(,p) = ~ip(,pIrPS)
u

with

(5.53)

(5.54)

The normalization conditions for ip(,plrPs) enumerated above are all satisfied by this

form. Comparing (5.52) and (5.53), the "c4n frce energy coefficients r and u can be

expressed as

and

r= (5.55)

kBTfo
u = 3-1.4'

a 'l'S
(5.56)

A relationship can be obtained between fa a.où the small parameter f intro­

duced in §5.3. However, before substituting the expressions for r and u in Eq. (5.33),

it is necessary to know the coarse-graining length dependence of K. This is done by

using the mean field result that the correlation length e== q;l obeys

thus

2 = kBTla ipll(1)
qo Kas,p~

and with ipll(1) == 2 (cf. Eq.5.54),

1 kBTlo
K = --=::~

q~ a3,p~

Now, substituting for r, u and K in Eq. (5.33),

(5.57)

(5.58)

(5.59)

(5.60)

1. e. f ~ 1;;1. The parameter f is the small parameter introduced in the discussion

of the perturbation expansion in the long-range force limit by Grant et al.[127]

(cf. § 5.3). Thus, la is related to the range of the force as. follows from arguments

presented ear!ier.
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Renee, besides the know!edge of the location of the solvus li ne and a frce

energy functional form there is only one system-dcpenrlcnt dimcnsion!ess constant

needed. In a discrete dynamics simulation of the reduccd equation of motion, thcse

two quantities are chosen at the onset and the dynamic evolution of the structure

factor is observed.

The reduced scattering vector is then q == qjqc whcre qc is identified with the

critical value of q when </> == 0 or

2 knTfo
qc == 3.<-2 •

"a 'f'S

The reduced time, T, and reduced structure function, S, are given by

and
- _ fo
S(q,T)== wS(q,t).

a 'f'S

Thus, equation (5.46) is rewritten in the very simple form

oS(q, T) -2(-2 )-S 1 -2
OT == -q q - Ji- T q .

In Eq. (5.64), a", the coarse graining volume has been scaled away and

_ 1 ( 8<1>("'0 + y) )
Ji- = - (y2) Y oy

with

(5.61 )

(5.62)

(5.63)

(5.64)

(5.65)

(5.66)

Figure (5.2) presents the scaled structure factor for a quench at critical com­

position and fo = 5.8. For decomposition occuring near the center of the spinodal

region, the sequence of functions S(q) for increasing T after quench exhibits a grow­

ing peak which moves toward lower q and displays a crossover on the high-q side.

Comparison of Monte Carlo simulation results with the LBM theory have

shown reasonable agreement. Rowever, the works of Billotet and Binder[131] and

of Binder et al. [52] point out sorne of the difficultics associatcd with the use of
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..t MO"" &ealed tim.. T. The inset depicts the distribution Cundion p(y) ..t two of th... üm...
(From Langer et al.[7])

this theory. First, there is an unfortunate dependence of certain results on the

(arbitrary) choice of the coarse graining cell size a. Namely, the results depend on

the choice of the ratio ale. Second, there is a spinodal cune implicit in the LBM

theory, whose location is shifted from the classical cune and also depends on the

choice of cell size. The third point, preren1;ed by Binder et al.[52] is th..t the LBM

theory does not describe either the fluctuations due to nucleation and growth or the

extended transition !rom spinodal decomposition to nucleation•. This last point is

based on the observation by these workers that the LBM theory exhibits metastable

states with infinite Iifetime in the region between the coexistence cune and the

spinodal cuneo Finally, Binder[51] has argued that the late time behavior of the

LBM equation is inconsistent with the late stages t i/S growth law predicted by the

Liishitz-Slyozov-Wagner illltroduced in the next section.
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5.5 Late stages

The equations of motion introduced for the early stages of sn break down when

terms of higher order than those retained become important. Til.is is the case during

the late stages when domains of each phase coexist. In particular, Monte Carlo

results[5l] have shown that the LBM theory becomes inaccurate when domains

reach sizes which are a few times the correlation length.

The studies reported in the experimental review (§ 3.3) established that the

late stages present a scaling regime during which the microstructure remains self­

similar for al! times. A single tirne-dependent length scale then suffices to describe

the time evolution of the structure factor. An appropriate choice for this length

would be the average domain size, denoted6 as R(t). The scaJing assull1ption is that

the wavevector qm corresponding to the maximum of S(q,t) is related to R(t) by

(5.67)

and that the dimensionless S(q/qm(t), t)/Jë3(t) should be time-invariant when plot­

ted against qR(t). Thus, a scaling function F(q/qm) can be introduced such that

the scaling ofthe structure factors S(q, t) can be written as

S(q,t) = Cq;;.3(t)F Cm(t») (5.68)

where C is a dimensionless constant (independent of t) chosen such that F(l) = 1.

For convenience, a dimensionless quantity z(t) is introduced as

z(t)
q

- qm(t)
1

- -qR(t).
2...

(5.69)

Ji Equation (5.68) is valid the time dependent R(t) and the scaling funetion F(z)

will suffice to describe S(q, t) at any time during the late stages.

6R(t) should not he conIused wilh the lime-independenl amplificalion factor in lhe CH equ6tion

of motion defined by Eq. (3.2).
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Marro, Lcbowitz and Kalos[132J and Furukawa[133J were the fust to explicitly

show that S(q, t) in the late stages of SD in Monte Carlo studies obeys the sc<iling

re!ationship given by Eq. (5.68).

The existence of a scaling function for the late stages implies that growth

exponents can be obtained in that regime. Experimental determinations of the

growth exponents were mentioned in § 3.3. Defining Sm(t) == S(qm(t),t) li.'! the

maximum value of S(q, t), the growth exponents will be denoted li.'! n and n' and

are defmed by

(5.70)

and

(5.71)

When domains have reached the equilibrium composition, the question that

can be asked is what drives the system to further evolve and coarsen? Indeed, rate

stages SD systems are still in a far-from-equilibrium state. However, in this regime,

the only regions still out of equilibrium are the interfaces. Consequently, to prediet

the time evo!ution of S(q, t) during the scaling regime, it is appropriate to focus on

the motion of the interfaces which separate the domains, rather than on the doma.Ïns

themselves. The interface area density A.(t) (Eq. 2.31) is high and therefore a large

amount of surface free energy associated with these interfaces is present. As the

domains of each phase grow, A(t) decreases and proportionally to it, the surface

energy also decreases. As the coarsening proceeds (a process orten cal1ed Ostwald

ripening), small domains with large curvatures disappear, while large domains with

small curvatures continue to grow. Thus, the essential physics must reside in the

interfaces.

8tudies of the late stages or scaling regime have prima.rily focused on the value

of the growth exponent n, as weil as on the scale invariant funetions like F(z). The

value of n is of importance, because it is the signature of the thermodynamic forces

which are responsible for the phase transition. For systems with a non-conserved

order parameter (described by mode! A, cf. p. 10) the study of random interface

125



- ..... dynamics has provided strong predictions, notably a growth law (the Allen-Calm

law[134J) as weil as a scaled form F(:c)[135J. However, for unmixing binary alloys

(described by model B), to date, neither a growth law nor a scaling form has been

derived directly from interface dyna.mics although n is believed to be 1/3. The

remainder of this section will address first the value of the growth exponent and

then the scaling form F(:c).

5.5.1 Growth law

Attempts to obtain a theoretical value for the growth exponent n have been made

through physical arguments and numerical simulations. The main physical argu­

ments are examined and a survey of the principal numerical results then follows.

The basic assumptions commouly used are that in the late stages of phase

separation (except in the critical region) domains are separatcd by weil defined in­

terfaces whose mean radius of curvature is sufficiently greater than the thickne8s

of the interface (~ 0, but .A(t) remains finite (1" 0).[45] Further the interface is

assumed to be smooth, i. e. finite curvahues are defined a.1most everywhere. Singu­

larities sucb as corner, edge, contact and fractal surface, etc. are smoothed by the

surface tension and are negligible.

The dynamics of the interfaces are sensitive to the presence or the absence of

conservation laws. The order para.meter which describes a spinodal system (mode!

B) obeys a local conservation law.[136] This parameter is usually the local concen­

tration of one of the components of the system, and therefore obeys a continuity

equation. The decomposition will thus he lirnited by diffusion. As a result, changes

in the system require diffusion of matecial across increasingly large distances and

the late stages coarsening proceeds increasingly slowly (Eq. 5.70). This behavior

contrasts with the rapid approach to completion which occurs in magnetic or struc­

tural phase transformations (mode! A). These systems possess no local conservation

law and thus nO long range material transport is required.
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To dcvelop an intuitite picture of the growth in a conserved order parameter

system (mode! B) it is somewhat easier to start with a system with a nonconserved

order parameter (mode! A). Since the reduetion of surface energy drives the process,

the interfacial motion acts to reduce the local surface area: curved interfaces move,

and when part of an interface becomes Hat, it stops moving. The interface ve10city

v, in the most simple case for mode! A, is 11. function of only the local curvature

K.7 At late times the interfaces become gently curved, so K is smaIl. A Taylor

expansion then gives:

v(K) = DK +... , (5.72)

with D a positive constant with units of [m2/sJ. Any time-dependent length made

with D, the only parameter in the equation of motion, must obey, R(t) = (Dt)'/2.

Thus, n = 1/2 for the nonconserved system. Eq. (5.72) is the Allen-Cahn law[134]

and has been verified through both experimental and theoretieal studies.[137,138]

The growth exponent n is independent of temperature. AlI of the temperature

dependance is contained in the coefficient D.[139]

In the case of a system with a conserved order parameter, some of these con­

siderations still apply. The velocity of the interfaces is such that, on average, the

curvature is reduced, since the motion of the interfaces is driven by the minimiza­

tion of surface Cree energy. However, ""hen the order parameter is conserved, the

interfacial motion is coupled to the motion of material "under" the interface. For

an interface to Hatten, material within curved regions must diffuse away. Thus, al­

though v = D K may still apply, the diffusion constant itself must now become, for

example, a function of curvature. In their most general forro, the interface equations

of motion for a conserved order parameter system can involve the coupied nonle­

cal motion of many wide!y separated domains, and are quite intractable. There

are two important situations, however, where simplifications occur: long-range and

short-range diffusion.

The case of long-range diffusion during nuc1eation and growth is the subject of

TIn fad, K = K, +K, where K, and K, are the principal curvatures of the inie.rfaee.[134]
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(5.73)

the the-ory of Lifshitz and Slyozov[140] and, independently, of Wagner[141] (LSW).

The LSW theory assumes a system close to equilibrium, i. e. it deals with the

case of smal1 initial superoaturation in the asymptotic time regime (t --t 00). The

droplets are far apart as compared with their average size. The physical picture

is one of widely spaced domains of one phase coarsening in the mean field limit

near the coexistence curve. Each domain is soldy charaeterized by its radius R(t).

Interactions between droplets can thus be ignored. A given droplet then grows by

diffusion from the surrounding solution.

During the fust stage of NG when nuclei of second phase form (cf p. 39) there

is a surface energy cost to the creation of bulk volumes of second phase. Thus there

is a trade-off between the lowering of the frce energy resulting from the creation

of volumes of second phase and the risc in energy due to interfaccs. At any time,

second phase droplets smal1er than a certain critical size, R.,(t) will "dissolve" as the

energy balance between the surface and the bulk is unfavorable for their existence

and moplets larger than R.,(t) will grow. If LI. is the degrce of supersaturation of

the alloy and a is a parameter proportional to the surface tension bctween the two

phases, then the LSW theory predicts that the time dependence of the mean droplet

size is obtained by solving

dR = 'D (LI.(t) _ a)
dt R R .

lIence, R.,(t) = alLI.(t) and moplcls with radius R > R(t) grow while those for which

R < R., disappear. Eq. (5.73) predicts for asymptotic times a power law growth with

exponcnt n = 1/3 for large R.

The LSW theory also prediets the time-evolution of the composition distribu­

tion i.e. the time variation of R.,(t) and the second phase particle size distribution by

a system of two coupled nonlinear differential equations.[142] Thus a scaled form for

the domain size distribution is also predieted. Essential1y, these equations express

that R.,(t) increases with time and that large domains with a narrow distribution

of sizes are obtained. Thus LSW provide a nonlinear equation of motion that can

describe late stages beh..vior during a fust order phase transition. The growth expo-
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ncnt value and the domain size distribution function prdkted by the LSW theory

are univcrsal and independent of the material parameters.

A numbcr of numencal studics have confirmed the qualitative features of LSW

theory.[143,144] Sorne of the experimental studies cited in § 3.3 have reported a

growth exponent n = 1/3 in agreement with the LSW value. This was the case for

instance in the study of the relaxation in the one phase region above a critical point

in a binary fluid by Wong et a/.[10S]

When the simplifying assumptions that enter in the LSW theory are relaxed,

for instance to describe systems conditioned into regions of the phase diagram away

from the coexistence line, where volume fractions of each end··phase might be com­

parable, correlations between domains become important and significantly alter the

shape of the composition distribution flillction.[145-148) However, early numerical

tests of these correlations carried out by Beenakker[149) and Voorhees and Clicks­

man[IS0,ISI] all resulted in a growth law with n = l in accord with the LSW value.

These studies involve expansions with (v"a)1/2 as the small parameter and thus

should work only for bulk compositions still not too distant from the coexistence

line. The effects of correlations between domains were first noticed by Weins and

Cr...hn.[IS2]

The situation in the case of the late stages of SD is very different from the

idealized low supersaturation with isolated and widely spaced domains dealt with

by the LSW theory. Figure (5.3) shows a typica1 microstructure for late stages

SD with comparable volume fractions of the two phases obtained by Monte Carlo

simulations.[IS3] The microstructure cousists of a network of highly connected and

interpenetrating domains.

Although long range diffusion is still expected to be the dominant mechanism

of phase separation for late times, it is likely that other kinetic mechanisms are im­

portant during the intermediate stages of growth. In particu1ar, transient behavior

involving short range diffusion of matenal along interfaces is expected.

Before proposing a scenario for the effect of interconnected domains on inter-
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Figure 5.3: Late stage coarsening configurations !rom a MC study at limes 1000, 20 000, 100 000
and 160 000 Monte Carlo time steps for spinoda1 decomposition. (From Roland and Grant[153].)

face velocity, short range interfacial diffusion is considered for systems with a ron­

served order parameter. Indeed, it is expected that surface reduetion by smoothing

of the interfaces should he important in a transient regime during which interfaces

have high curvatures. It is assumed that the domain pattern can be characterized

bya single length scale R(t) as in the case of LSW long-range diffusion and that at

lISymptotic times, equilibrium is locally satisfied on length scales small compared to

R(t). This L'lean8 that the interfaces between domains of the two phases have local

radii of curvature of order R(t) or greater.

For an element of curved interface to he in local equilibrium requires that the

pressure due to surface tension, of order u/ R(t), cancel that due to the local gradient

in chemical potential, of order eo(Pa - Pa') with Pa and /la' the chemical potential

in the two equilibrium compositions. Thus the chemical potential of the interface,

Jlint is of order u/eoR(t) and its VlUÏations !rom place to place are orthe same order.
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The graàients of the chemical potential of the interface are associated 'Nith gradients

of curvature, K. The curvature is reduced by the flux of atoms on the i.'1terface,

which will be of order

.1 ~ -V.JLint ~ -V.K, (5.74)

where the graàient is taken with respect to the arc length of the surface. The surface

divergence of -.1 yie1ds the increase in the number of particles per unit area per

unit time. Therefore the velocity of a surface element along its normal due to surface

diffusion i.s[153]

(5.75)

where D. is a constant [m3/s] independent of the local curvature but which depends

on l"(c)I",. Equation (5.75) predicts a growth exponent n = 1/4.

Long range inter-domain diffusion and short range diffusion along interfaces

occur simultaneously during stages when interfaces have high curvatures. However,

the smoothing of interfaces by interfacial diffusion does not contribute to domain

growth. Rather, it is the long range thermally driven diffusion of atoms through the

bulle (domains) that leaàs to the increase of R(t). Interfacial diffusion contributes to

the redistribution of long range inter-domain diffusing atoms that reach interfaces

and thus limits the effeetiveness of long range diffusion to increase R(t). Indeed,

these atoms ultimately have to be transported at the minimal curvature points

on the interfaces (or leave the interface and diffuse to another point through the

bulk solute). In general, the thermodynamic driving force for interfacial diffusion is

much greater than thermal diffusion in the bulle. However, the interface area density

A ~ 1/R(t), and thus in the time regime when local rearrangements are important,

the growth rate may be limited by the re1ocation of solutes along the interfaces.

The net result is a slower coarsening at the earlier stages of coarsening. At later

times, when interfaces are gently curved, long range diffusing atoms achieve a better

accretien success. They adhere to locations with less need for further transport along

interfaces and the growth then no longer depends on interfacial diffusion. Thus, with

this heuristic description, the growth exponent would be expected to progress from
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1/4 (cf. Eq. 5.75) in a regime when interfacial diffusion is important to re10cate ncw

atoms on the interfaces to 1/3 in a regime when interfaces have smoothed out and

inter-domain diffusion becomes the main contributor to interface motion.

To express the coarsening at times when the interfacial diffusion is important,

Huse[154] introduces an effeetive growth exponent, n'f"

dln R(t)
n'ff(t) = dln(t) (5.76)

Thus, assuming a growth law with an exponent n = 1/3 in the limit of large

R, as for the LSW theory, the effective exponent n'ff should obey

(5.77)

with R" a length that reReets the importance of interfacial diffusion. If Ro > 0,

n'f/(t) will asymptotically tend to 1/3 from helow and coarscning will bc slowed

down by interfacial diffusion.

Physical arguments can also be given for inequalities which will bound the

growth exponent n. One such argument has been given by Grant[155] in tenns of

the dynamical critical exponent z.

To understand bis argument, the exponent z is first introduced, starting from

the power law for the fall off 1.0 zero al. Tc of the pair correlation function, G(r),

with distance r (cf. Table 1.1). Taking the Fourier transform of that relation gives

(5.78)

Thus in the limit of infinitesimal q and with the he1p of Eq. (2.22) which delines the

differential susceptibility X..

(5.79)

with ç diverging as given in Table (1.1). Comparison between the susceptibility

sum rule (Eq. 2.23) and 1he thermodynamic driving force for diffusion (cf. p. 24)

indicates that diffusion constants should vanish al. the critical point proportionally

1.0 ç-2-I-~ (critical slowing down). However, the atomic mobilities remain linite at the

132



critical point. Therefore the dynamic scaling exponent z is introduced to express

that the order parameter relaxation rate sho'ùld go to zero as e-'(ke? with[13]

z=4-7]. (5.80)

This expression for the dynamical exponent z constitutes an exact result from critical

dynamics for model B.

Grant's argument goes as follows. If one quenches close to Tc, time scales

are afi'ected by critical slowing down. Tim" scales must then be measured in units

of the correlation time r, and length scales in units of the correlation length e.
Incorporating this into the growth law (Eq. 5.70) gives

R(t)lf, ~ (tir)".

The dynamical scaling assumption is[13] r ~ e and thus[156]

(5.81)

(5.82)

where v is the correlation length exponent (cf. Table 1.1). Since the driving force for

a first·order phase transition is due to thermodynamic forces, and not fluctuations,

thermal fluctuations cau only slow down domain growth, or leave it unafi'ected. Thus

the inequality z :::: lin must be satisfied. Using Eq. (5.80) this inequality becomes

n:::: 1/(4 -7]). (5.83)

Using 7] ~ 118 for the Ising 3d mode! (cf. Table 1.1) condition (5.83) thus becomes

that n ~ 0.25.

An upper bound on the value of n has been given in a study by Yeung.[157] He

considered the nonlinear Langevin equation for SD and found that a self·consistent

,equirement of being in the scaling regime for mode! B was that n :$ 1/3.

To complete this review of theoretical predictions for the growth exponent n,

Monte Carlo (MC) studies on SD systems are examined. An interesting consequence

of self·similarity (i. e. scaling) is that it is possible to address only length scales much
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larger than that of the smallest topological details and thus small lengths can be

ignored. Furthermare, rescaling oflength and time lend themselves weil to realspace

RG methods. In a recent MCRG study of late stages SD on the 2d Ising model,

Roland and Grant[153] have obtained n = 0.338 ± 0.008 and a strong transient time

range involving an neJl(t) = ~. They observed that the transient was iterated away

by th" RG transformation, leaving n = l. This crassaver from t'/4 to t'/3 scaling

would be expected of short range diffusian effects as small topological details <.lf the

interfaces are iterated away.

Earlier MC studies have also canfirmed a n = 1/3 growth law for late stages

arter some initial transients for systems quenched in a miscibility gap. This is the

case, for instance, in the work of Lebowitz et al.[158] Ruse also carried out a Monte

Carlo simulations of SD and obtained values of nett(t) between 0.12 and 0.25. From

nett(t) he extrapolates an asymptatic value (far R-'(t) -, 0) of n = 0.29 *0.04.

5.5.2 Scaling forms

To date there is no systematic derivation of an analytical farm for the scaling function

F(z) for SD in conserved order pararneter systems. Two semi-empirical forms are

introduced in this section and compared to the data in § 6.3.

The only feature of F(z) far which there is a heuristic theory in excellent

agreement with experiment is the large z behavior. This is given by Porod's law,

cf. Eq. (2.32) which predicts F(z) ~ z-4 for large z, when interfaces exist.

The mst scaling forro is suggested by Fratzl and Lebowitz[159,160]. The stari­

ing point is the expression obtained by Debye et al.[161] for the correlation funetion

for a random distribution of interfaces between two phases. Using the notation of

Eq. (2.27) where v.a is the volume fraction of "minarity" phase (the Al-rich phase

in this work, for instance, though v.a ~ v"a'), then

(5.84)

where A is the interface surface area per unit volume as defined in Eq. (2.31).
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However, the long range diffusion fields required to satisfy composition conservation

induce a modulation of S(r) with a time-dependent wavelength related to the fastest

growing mode[2], say Àm ,

S(r) = Vu
a (1- Vu

a
) exp [

A ] sin 12!.rÀm4Va(1 _Va) 12!.r
v tI >.,."

(5.85)

(5.86)

(5.87)

This expression also ensures that the average composition within a volume of diam­

eter Àm will remain constant. The approximate scaJing function LI (x) normaJized

so that L1 (1) = 1 is given by

L1(x) = bd (:~ _1)2; b1 = (1 ~1~2)2 j 1 = [4Vua(:- Vua)][~;] .
Equation (5.86) is then tailored by an additional prefactor of ,,4/(x4+ c) where c

is a constant to suit the observed x4 dependence of S(",)8 when x -> 0 obtained in

MC simulations by Yeung[157] and others[162,163], yielding, after normaJization,

ax4 b
F(FL)(X)= x4+c b+(x2-1+d)2

with

(5.88)

Only two parameters need to be fit to with data, 1 and d, both dimensionless.

If the parameter dis set to zero in expressions (5.87) and (5.88), then expression

(5.86) is recovered. According to Fratzl et al.[159] the parameter 1 has a simple

dependence on the relative fraction of the two phases in the system and seems to be

independent of temperature. Figure (5.4) presents F(FL)(X) calculated for 1 = 0.5

and d = 0.06.

The second scaJing f<.lrm ex"mined in this work is suggested by Ohta and

Nozaki.[164J They apply a derivati.on that has proven successful for systems with

8See rootnote on p. 117.
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Figlue 5.4: Scaling fotm F(FL)(z) calculated from Eqs. (5.87) and (5.88) based 011 the work of

Frabl and Lebowib[159,160]. The parameter WU" wete set to'Y =0.5 and d =0.06.

a nonconserved order parameter (model A). However, that derivation has to be

corrected to account for long-range diffusion fields in conserved order parameter

systems. In terms of the Fourier component 5c(q,t) of 5e(p,t), following the nota­

tion of § 2.2, they propose the following equation of motion for the interfaces from

arguments 'based on the motion of thin interfaces:

(5.89)

(5.90)

..~

The correlation funetion (5e(p,t)5c(o,i») obtained from Eq. (5.89) is given by

(5c(p, t)5c(o,t») = (2~)3 / dq exp (-q't +Aqtl/3 +iq • p)

where A is a constant. The position ofthe interfaces is given by 5c(p, t) = 0 as long as

the length scale of the domains is sufliciently larger than the interface thickness and

assuming saturated domains (i. e. at compositions given by either of the coexistence

values).[135] Assuming Gaussianly correlated interface compositions {Se} and using
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Eq. 5.16)[165]

a step function on the sign value of oC(l', t) in Eq. (5.90) the two-point real-space

equal time correlation function, also denoted as G(r, t), can be rewritten as (cf.

S( _ ) = (~) . -1 [(oc(l',t)5c(0,t))] (591)
l' l'o,t 7l" sm ((5C)2) .

where ((&)2) = (5c(0)5c(0)). The structure factor is then obtained by the Fourier

transform of Eq. (5.91). The structure factors are self-similar at all times and thus

the scaling form is obtained from the computed S(q,t) by inverting Eq. (5.68),

(5.92)

(5.93)

where the length R(t) is taken to be the first vanishing point of G(r, t). Alternately,

F(ON)( x) can also be computed from the ratio

S(q, t)
F(ON)(X) = Sm(t)

since F(I) = 1.

Figure (5.5a) shows the predicted scaling form using Eq. (5.92) within a mu1­

tiplicative constant C-1 and with A = 7.5 (in Eq. 5.90), value suggested by Ohta

and Nozaki[164] for a 3d system. A shoulder exists on the high-x tail of F(ON)(x)

as better evidenced in the logarithmic plot (Part b).

Part (c) ofthis figure shows the scaled correlation function G(r/R). In accord

wiih the definition of R(t), this plot shows that G(I) = O. Finally, Part (d) intro­

duces a plot of x4 F(ON)(X) versus x, known as a "Porod plot", where F(ON)(x) was

computed using Eq. (5.93). In accord with the normalization condition, F(I) = 1,

this plots shows that x4 F(x) at x = 1 is unity. This representation is usefu1 to verify

the validity of sum ru1e (2.32) and will be used in the discussion of the late stages

resu1ts (cf. § 6.3).

The shou1der displayed by F(ON)(X) was not present in the Fratzl-Lebowitz

sca!;ng form (Fig. 5.4). However, in the derivation of F(ON)(X), int"tface concen­

trations were assumed Gaussianly distributed. This assumption is only rigorously

truc in systems with a non-conserved order parameter (mode! A) and justification

for this choice was not offered.
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An arlifact of F(ON) (z) is that it does not varush as z -> 0 but goes to

about 7% of F(ON)(I) instead. This suggests that S(q = 0, t) increlllles without

bound in Eq. (5.68). This violates the susceptibility SUIn rule (Eq. 2.23) and

would imply an increase in the number of atoms. Furthermore, as expected since

limœ_o F(z) i' 0, the logarithmic plot in Part (b) also indicates that the condition

lim._o F(ON)(Z) ~ z4 is not satisfied. However, the late stages structure factors

measured in this dissertation are not sensitive to the very low z part of F(ON)(Z)

and this feature should not affect fits to the Ohta-Nozaki scallng form.

Recent measurements on polymers by Bates et al.[90] have shown evidence

of a shoulder at high-q. Thus, experimental evidence exists of the existence of an

harmonic to the principal peak in a conserved order parameter system quenched in

a miscibility gap as suggested by the F(ON)(Z) form.

Recently, Shinozaki and Oono[166] have studied the asyrnptotic F(z) for SD

in 3d at the critical composition by a (deterministic) cell-dynamical system. The

form factor they obtain agrees well with with the Ohta-Nozaki form factor, away

from smail q. In parlicular, they obtain a significant second peak. Their results

also satisfy Porod 's law and the smail-q exponent is consistent with F(z) ~ z5 with

8 :::: 4. This result is in agreement with the MC results of Yeung.[157]
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Chapter 6

Results and discussion

6.1 The data

Runs were performed both above and below Tc (597.15 K). 'n,ble (6.1) lists ail the

runs reported ill this thesis. RUlls labeled with a single letter (A through W) took 2 s

(cf. § 4.4) and will serve for the early stage kinetics study (§ 6.2) while those labeled

with two letters (AA through EE) took 60 s and will be used to study late-st<tge

coarsening (§ 6.3).

For the data analysis, the last scattering pattern recorded before quenching

the sample is subtracted from ail structure factors measured during the isothennal

aging. This subtraction rcmoves any parasitic scattering and more importantly any

constant grain boundary small angle scattering intrinsic to polycrystalline samples.

The resulting structure factors are denoted as IlS(q,t). The size of the background

so removed is less than 25% of the scattering at a wavevector of .01A -1 and falls off to

5% at q = 0.03Â -1. In addition to removing any constant. tempcrature independent

scattering, this subtraction also removes any equilibrium scattering contribution at

Ta' In sorne cases, it will be necess:-.ry to correct for the absence of this temperature­

dependent scattering ili !\S( q, t).

The time of recording of the first scan after temperature stabilization at the

140



Rlln ET (s) l J # bins T (K)
--'-

Early stage stlldy (2 s)

A 0.010 • 200 256 502.2,

B 0.010 1 200 256 521.6

C 0.010 1 200 256 541.4

D 0.010 1 200 256 551.1

E 0.010 1 200 256 558.7

F 0.010 1 200 256 572.8

G 0.010 1 200 256 587.1

H 0.005 1 400 64 589.1

l 0.005 1 400 64 592.3

J 0.005 1 400 64 592.5

K 0.005 1 400 64 593.4

L 0.005 1 400 64 593.4

M 0.005 1 400 64 595.4

N 0.005 1 400 64 595.7

~.

Run ET (s) l J # bins T (K)

0 0.005 1 400 64 595.8

P 0.005 1 400 64 596.5

Q 0.010 1 200 256 596.8

R 0.005 2 200 64 596.9

S 0.005 2 200 64 599.1

T 0.005 2 200 64 599.5

U 0.005 2 200 64 605.0

V 0.005 2 200 64 606.5

W 0.010 1 200 256 611.8

1-
Late stages study (60 s)

AA 0.010 100 60 256 511.5

BB 0.010 100 60 256 536.9

CC 0.010 100 60 256 562.8

DD 0.010 100 60 256 577.9

EE 0.010 100 60 256 588.2

Table 6.1: List of runs reported in this work. AIl quenches a.re performed starting from the same
annealing temperatnre. T. = 689.9 K (cf. p. 92). T is the calibrated temperature (ef. § 4.4).

aging temperature, i.e. of the "quenched-in scattering pattern", is chosen as (t = 0)

for the early stage study runs. Thus, the t=O scan sho'7s the amount of structure

that develops during the quench. Three such patterns are shown in Fig. (6.1).

The /!"S( q, t = 0) are modeled by a Lorentzian with maximum ID centered

about qo cl 0 and full width at half maximum (FWHM) f,

ID
/!"S(q, t = 0) = (q _ qO)2 + (f/2)2 (6.1 )

The value of ID gives an indication of the amount of decomposition that has pro­

ceeded during the quench. The solid lines on Fig. (6.1) show the result for best lits

to this mode! (the fits were performed over the range [0.020, 0.086J A-1). The best

fit values of the parameters ID, r and qo for a112 s rUlls are reported on Fig. (6.2). As

141



,.-...
(") 158
00
('l,
0
....... 10'-"
,.-...
0
11

~

0" 5'-"en
<1

0
0 0.02 0.04 0.06 0.08

q (À-!)

Figure 6.1: Quended-in scattering ilS(q, t = 0) for three runs : (. ) .bove Tc al 605 K (run D),
(A) immediately be!ow Tc at 597 K (run R) and (.) for a deeper quench, al 541 K (run Cl. The
solid lines show in each case the mode! Lorentzian (Eq. 6.1).

the quench temperature is decreased, the scattering maximum, Jo, is larger. Thus,

for deeper quenches, the quenched-in .6.S(q, t = 0) increases. Also, with decper

quenches, qo is larger, refiecting the larger critical wavevectors associated with be­

ing farther from Tc. The FWHM, r, appears to be less sensitive to the quench

temperature than the other two parameters.

Figure (6.3a) shows "time slices" of the evolution of .6.S(q, t) during run C, i.e.

for a quench from 690 to 541 K. The points show the measurcd structure factors at

various times after the sample began to phase separate. The solid lines are lits to

the LBM theory discussed in § 6.2.3. Part (b) of Fig. (6.7) displays "q-slices" rather

than "time-slices" of .6.S(q,t). They are the time evolution of the structure factor

at fixed values of the wavevector q. The bold !ine shows the recorded tcmperature.

For aU runs, both above and below Tc it was found that the high q waveveetors

relaxed faster than the low q wavevectors. As evidenced in Fig. (6.3b), the relaxation
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does not occur monotonicallYi the scattering intensities at the two higher values of q

displayed (0.045 and 0.055 A-1) first increase, reach a maximum, and then decrease.

Thus, the evolution of /i8(q,t) is non1ine'ar in t~e and hence does not display

exponentia! growth. The time evolution of th /i8(q, t) displays the weil documented

feature[2] of cross-over on the high q side. H'~wever, as a consequence of the non

monotonic behavior, this crossover moves to iowe,· q values as the decomposition

proceeds. The /i8(q,t) a1so sharpen as the maximum moves towardslower q.

The relaxation of composition fluctuations in the region above the top of the

coherent miscibility gap arter quenches from T. to Tq > Tc has also been measured.

Fig. (6.4a) displays the structure factors/i8(q,t) at se1ected times during the reequi­

libration of fluctuations at 599 K &fter aquench from 690 K (run S). Solid !ines show

the best fit to the LBM theory and will be discussed in § 6.2.3. Part (b) displays

the same non-monotonic behaviour seen for quenches into the unstable region of the

phase diagram, below Tc.

Figure (6.4) is representative of ail the runs above Tc (S - W). As in Fig. (6.3)

for run C in which T < Tc, in run S the wavevectors ofhigher q relax faster than those

, of lower q. Furthermore, a crossovel' of the tails is a1so observed. The non-monotonic

increase of /iS(q, t) for 0.025 and 0.035 A-1 a1so implies that the growth is non1inear.

These last two features are 80mewhat unexpected for a quench above Tc. J. priori a

!inear, consequently monotonic, growth of /i8(q, t) at ail q would be expected since

the amplitude of equilibrium fluctuations increases as the temperature is decreased

in the one phase region, with the ensuing increase in scattering intensity over the

wavevector range measured.

The measured non1inear behavior in the runs above Tc can be attributed to

two causes. So far it has been assumed that the calibrated temperatures were exact

within the estimated standard deviation of 0.5 K during a run. However, some

temperature smearing probably occurs in ail runs due to an uneven temperature

&Cross the width of the sample with parts near the edges cooler than those near the

center. The edges may even be at temperatures bdow Tc for the runs, a8sumed to '
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lie immediately above Tc. This smearing is estimated to he of the order of a few

degrees.1

The nonlinear behavior is observed even during the run with the highest tem­

per.dure, at 612 K (run W). Thus temperature smearing could not account for ail

of the nonlinearity. It is not unreasonable to expect nonlinear coupling between the

modes even if the quench is not crossing a transition temperature. A simple heuris­

tic argument can illustrate this point. During the course of the reequilibration of

fluctuations, the short wavelength fluctuations (higher q modes) are in a local com­

position environment that depends on the the longer wavelength fluctuations (Iower

q modes). The high q modes relax the fastest. However, as the slower long wave­

length fluctuations reequilibrate the local composition distribution changes and the

short wavelength fluctuations have to find a new equilibrium value. The observation

of nonlinear growth in the one phase region means that it does not constitute a suffi­

eient test to determine that a system is decomposing into two phases. It is therefore

necessary to mcasure the time evolution of the reequilibration of fluctuations in the

one phase region or of SD and to subsequently determine the sign of f" by fitting

an equation of motion for liS(q,t) in order to distinguish between the two.

Above Tc, the nonlinear "np-and-down" behavior is more important nearer to

Tc but occms at a faster rate the higher (above Tc) the temperature. It should be

notcd that the ordinate scale on Fig. (6.4) is an order of magnitude less than that

of the liS(q,t) shown for a quench in the unstable region in Fig. (6.3).

'Tbis figUIe is based on an estimate by S. Braner[167] orthe parabolie temperatUIe profile aCross

the width of Fe.B and Co2B ribbons. For these samples with a widthjthickness aspect ratio of

1.5mmj25J'm held isothermally at abont 673 K, he estimates the temperatUIe differenee between

the center and the edges to be - 35 ± la K. However, in the worl< of tbis thesis, the temperatures

are between - 100 to 200 K lower and the Alo.62 ZIl<>... sample, thongh ofronghly the same width

is only abont 18 J'm thid< (cf. p. 86). Thns, the tempelatUIe diffelenee between the center and

the edges of the ribbon is 'lOt e:xpected to be as large. As in tbis worl<, the Fe.B and C02B ribbons

were 8UIrounded by - 1 ah"-. cf He. 50 that convection was responsible for heat dissipation and

heating was provided by passing a elUrent throngh the sample.
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Iines are obtained nom fits to Eq. (6.2) (see terl).
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To close this survey of the data, the time evolution of the integrated intensities

Q(t) is described. From sum rule (2.25) Q(t) is expected to go asymptotica1ly to

(c - Co}2. As in the expression for the SUIn rule, the integration over the measured

q-range (0.01 to 0.085 A-1) is performed on the structure factors S(q, t) with no

high temperature scattering subtraction. Above TC! the time-dependent Q(t) should

reflect the reequilibration of the composition fluctuations. Below Tc, the main part

of Q(t) should result from the formation of regions of the phases a and cl. The

contribution to Q(t) by equilibrium fluctuations within each region and at interfaces

shollld be sma1l and should be decreasing as Q(t) increases with time during the

decomposition.

Figure (6.5) shows Q(t) for selected runs both below and above Tc. Rather

than the expected asymptotic increase to a fixed value for runs below Tc, Q(t) is

found to increase monotonica1ly with time with no apparent saturation in a1l runs,

as shown in Part (a) for selected runs. Indeed, after a rapid exponential increase,

Q(t) is seen to go asymptotica1ly to a line of sma1l positive slope. Similarly, for a1l

runs above Tc, after a rapid exponential increase, Q(t) follows a linear relationship

with time, however, with a sman negative slope as exemplified for selected runs in

Part (b).

The fact that Q(t) asymptotica1ly approaches a linear time dependence rather

than a fixed constant could be interpreted as a process with two time constants: a

fast and a slow time constant. The integrated intensities Q(t) were modelled by2

Q(t) = C+(A +Bt)(l- exp(-t/ta». (6.2)

With this model, the fast time constant is ta and the slow one would he to fust order

A/B. The amount of quencbed-in structure can he estimated from the value of C

while the coherent soluhility limit can he estimated hy C+A. Figme (6.6) shows

the ohtained time constants and values of C for a1l runs A - Z. A plot of C +A

will he given in § 6.2.4 (Fig. 6.14). The unexpected decrease in Q(t) after 0.2 s for

2The consw.n! A in Eq. (6.2) should not he confused with the interface aIea densily defined in

Eq. (2.31).
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T > Tc may be due to scattering moving behind the beamstop.

The time constants ta and AIB are independent of the intensity normalization

described in § 4.3. nowever, the value of A +C depends directly on this normal­

ization and the sum rule instructs that if the overal! norma.1ization procedure to

obta.in absolute structlUe factors is correct, then (A +C)! should fal! on the coher­

ent solvus well below Tc. This is in fact the case, as will be shown in the plot (6.14)

(cf. § 6.2.4).

6.2 Fit to early stage theories

6.2.1 An attempt at the CHC linear equation

As a mst a.na.1ysis of the time-evolution of the early stages data, the measured struc­

tlUe factors are compared to the evolution predicted by the cne linear equation

introduced in § 3.2 (Eq. 3.6). The cne equation prediets the structure factor at any

time from a boundary value, at t = 0, for example. For an infinite1y fast quench (a

"square quench"), the initial structure factor would be the quenched-in equilibrium

scattering at the /illneal temperatlUe, SOZ(q)IT. (cf. Eq. 2.19). The cne equation

predicts that be10w Tc modes with q < q:, will grow and those with q > q:, will de­

cay, where tI. is the wavevector of crossover as shown on Fig (3.4). Furthermore,

modes for which the amplification factor R(q) (cf. Eq. 3.2) is positive will grow

exponential!y without bound. These are the modes with wavevectors q < qc « tI.)
(the critica1 w",vevector qc corresponds to the reciproca1 of the mean field correlation

length, cf. Eq. 3.4). On the other hand, modes with q> qc asymptotical1y evolve

to the equilibrium struetlUe factor at the aging temperatlUe, Soz(q)IT,.

Since no quench can be infinite1y fast, starting with a quenched-in structure,

and observing its isothermal evolution should be a sufficient test of cne in the time

regime available in the experiments performed. To obta.in values for the parameters

f", " and M at the a.ging temperatlUe Tf it would appear sufficient, Binee the cne

150



25

20

5

16

,-... 12CI)

N
0

0..... 8
'-'
..9

4

20

0

~ (a) -
Il

f- Il -

f- Il -Il

- -.~. II1II
1- -

-
0

~
0

-
f-

(b) -
+f- -

1- +

fi

-
1- -
f- • -
1- -
f- - Il ; -

f- (c) -
f- -
f-

~
-

f- - Il - -
Il

Il Il

f- -
~

+. + -l-
Il.

-500 540

T(K)

580 620

Figure 6.6: Resulta of lit of Q(t) to Eq. (6.2) for aD ruila. (a) Estimate of quenched-in slrudure
!rom C. Time conslanls for inlegraled intensilies (b) to and (c) A/B.

151



equation of motion is linear, to perform a fit to the measured structure factors in

the range q > qc using

S(q,t') = S(q,t) + [SOZ(q)IT, - S(q,t)] x {1- exp(2R(q)(t' - t))} (6.3)

with t' > t. This model equation has the advantage that no knowledge of the high

temperature equilibrium structure factor SOZ(q)IT. is required.

In practice low q smali angle scattering due to grain boundaries, has not been

taken into account in Eq. (6.3). If this scattering is independent of time and tem­

perature, then taking differences between the measured S(q, t) at two times, cancels

it out. This works for the S(q,t') and S(q,t) outside the brackets in Eq. (6.3) but

it is not possible to cancel the constant low q smali angle scattering which is part of

S(q, t) inside the brackets. Thus, instead of using the llleasured S(q, t), the (). S(q, t)

intIoduced in § 6.1 which have the last scan before the quench subtracted should be

used. However, as pointed on p. 140 ali ()'S( q, t) then have the high temperature

equilibrium scattering resulting from thermal fluctuations SOZ(q)IT. (Eq. 2.19) sub­

tracted. This quantity should be added back since these fluctuations represent the

initial state that subsequently evolves in time. IIence, to test the CHe equation,

it is necessary to use an expression where knowledge of Soz(q)IT. is reqillred. For

convenience, Soz(q)IT. and Soz(q)[T, are rewritten, using q: (cf. Eq. 3.3) as

kBT
Soz(q) = (2 2) . (6.4)

K qc + q

The fits should therefore be to

()'S(q,t) - {)'S(q, 0)

+ [K(q~B:q2) IT' - ({).S(q, 0) + K(q~B:q2lJ ]

x [1 - exp (-2Mq2Kq(q~+2l)t)]T, . (6.5)

This expression yields the correct asymptotic result for q > qc : limt_co ()'S( t) =

SOZ(q)IT, - SOZ(q)IT•.

Fig. (6.7) shows the measured ()'S(q,t) for seven times during the aging for a

relatively deep quench, run C (541 K), and the solid and dashed lines correepond
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to the model equation (Eq. 6.5). The annealing temperature parameters used were

taken from § 4.4. The best fit values obtained for the parameters at the aging

temperature from fiiting to the first 0.2 s (20 scans) were " = (4.8 ± 0.1) X 10-11

Jim, f" = (-1.85 ± 0.07) X 107 J/m" and M = (1.13 ± 0.04) X 10-24 m6 /Js. The

equation of motion is then solved with these parameters for the times 0.4, 0.8, 1.2

and 1.6 s to show how the predicted structure factors deviate fro,"" the measured

L!J.S(q,t) and present an increa6e which is slower than exponential growth. The

apparent success of CHC at the earliest times is intrinsic to fitting an exponential

relationship that propagates the initial structure factor, in a time regime where the

profile does not change appreciably. The real test came from systematic fits to

increasingly longer time domains (i.e. up to 0.05, 0.1, 0.15, 0.2, etc. seconds). In

all cases, a breakdown of CHC with respect to the measured flS(q,t) is obtained

in the scans folIowing those included in the fitting range. For instance, when best

fit structure factors are computed up to 0.1 s, the structure factors predicted for

t = 0.2 s depart appreciably from measured flS( q, t). As the quench temperature is

set nearer to Tc (T < Tc), the best fit to the model progressively reproduce with less

success the structure factors over the time range of the fits, and this at increasingly

earlier times.

The fact that nonlinear effects are observed even at temperatures in the neigh.

borhood and above Tc as displayed in Fig. (6.4) means that the CHC !inear equation

cannot describe the measured time evolution of L!J.S(q, t) at these temperatures (the

nonlinearity is observed at temperatures beyond the estimated temperatllre smear·

ing from T < Tc). Since f" increases with temperature above Tc, in binary aIloys in

which " > 0, Soz(q) monotonicaIly increases with temperature for aIl q. Thus the

monotonic behavior built·into the CHC equation means that it is not even possible

to find scattering wavevectors where the intensity would decrease at any time as

observed in the data.
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6.2.2 The LBM scheme

In this first nonlinear analysis of the data, the sample is assumed to be at critical

composition and the coherent miscibility gap is assumed to be symmetric about that

composition.' In the LBM theory, the density probability ilistribution functional is

taken to be the sum of two Gaussians with peak positions b1 and b2 and width CT

(cf. Eq.5.49). Assuming critical composition of the sample 1Jrings the simplification

t,hat b1(t) =0 b2(t) == b(t). Furthermore, combined with the choice of the "é" mode!

it also meanS that fcflco =0 0 in the expression for A (Eq. 5.47).

To the fitting parameters K, r, u and M, two final parameters are required, the

wavevector cutoIr qm•• and bo• Integrals in reciprocal space have to be evaluated up

to a cutoIr (cf. p. 105). This cutoIr should be of the order of the inverse mean field

correlation length e-1 and for the corresponiling real space coarse-graining length a,

2J1/qmaiZ = [611.' 3 a. (6.6)

In the limit where qm•• goes to infinity, the existence of q-2 tails in the structure fac­

tor makes the integrals over S(q) iliverge. For instance, the integral over SOZ(q)IT.

(Eq. 2.19) is not bounded for large q since the integrand is constant at large q, i.e.

Jim 47rkB T q2 =0 47rkB T .
q_oo K(q2 +e-2) K

(6.7)

Instead of starting the LEM calculations with a system in a single phase state

at t =0 0, as described in § 5.4.1, it is assumed that a certain amount of phase sep­

aration has occurred during the quench. The LEM equation of motion is nonlinear

and history dependent. Given an initial scattering pattern the amount of phase

separation determined by the parameter b(t) is needed for the LEM equations to

generate SLBM(q, t') at aU later times. ExpJicitly, for t =0 0, to account for the

quenched-in /!"S(q,t =0 0), the parameter bo == b(O) is set to a nonzero value. Thu~

the composition ilistribution is already assumed double-peaked at the earJiest scans.

3The second of these conditions is known !rom! 1.3 not to he satisfied and a re-analysis with

g.8· '" 0 and results for off-critica! quenches lUe forthcoming.[168]'.
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(6.8)

When the Landau-Ginzburg coarse-grained free energy (Eq. 5.3) is used with

the "e4» approximation (Eq. 5.4), then the calculation of A (Eq. 5.47) simplifies to:

A = r ::((5e)4)
+ 6 ((5e)2)

= r + '~ [3((5e)2) + ((5c)4)e]
Ô ((5c)2)

wh"re the cumulant ((5c)4)e was defined in Eq. (5.51).

The initial structure factor given to the LBM algorithm, SLBM(q, t = 0), con­

sists of two parts. One is the quenched-in structure factor 6S( q, t = 0) parametrized

by a Lorentzian centered at zero, Eq. (6.1). However, as in the case of the CHC equa­

tion, as weil as the constant term due to grain boundary scattering, the suhtraction

has removed the high temperature equilibrium scattering needed by LBM. Thus, the

second part is the estimate of the temperature-dependent scattering for the equilib­

rium fluctuations at Ta, SOZ(q)IT. (Eq. 2.19). This contribntion was estimated from

the temperature dependence of the scattering above Te in § 4.4. Although the values

estimated are small (0.034 X 10-27 m3 at 0.01 À-1) it is important to include them.

Afterwards, the theoretical structure factors SLBM(q,t) have SOZ(q)IT. subtracted

to compare with data, thus compensating for the missing Soz(q)iT. in 6S(q, 1).

The assumptions of a critical quench and a symmetric gap imply t.hat

b,(t) = b2(t) and

(6.9)

at ail times. Integration of the parametrized form of p(5c) (Eq. 5.49) gives relations

to compute the averages ((5c)'), ((5c)4)e and ((5c)6) at any given lime in terms of

the parameters band <7:

((5c)') =

((6c)4)e =

((5c)6) =

(6.10)

(6.11)

(6.12)

The differential eqllations for the time dependent behavior of ((5c)2) and

((5c)4)c are derived usin'g the Fokker-Planck equalion (E,!. (5.12). These dilTer-

156



ential equations depend on the higher moment ((6C)6). New averages are computed

after each time increment step and arc then used to uniquely determine band (J'.

Thug a new form of p(6c) is established which, in turn, allows the computation of

the average ((&)6). This sequence of computations complete one iteration cycle.

The computation procedure is thus as follows.4 At any time t, SLBM(q, t), bit)

and (J'(t) are known. The algorithm loops through the following for each time step

~t:

• Compute ((6c)') and ((6c)4)c at time t + ~t. From the equation of motion for

the single-point distribution function, using Eq. (5.14):

~ ((&)') =

~ ((6c)4)c =

with
1 rqm

.. 4w = - 27r2 Jo q (I<q2 +A)SLBM(q,t)dq, (6.15)

where A, ((6c)2), ((6C)4) and ((6C)6) are calculated using Eqs. (6.8), (6.10),

(6.11) and (6.12) respectively and definition (5.51) for ((6C)4)c.

• Compute SLBM(q, t + ~t) from Eq. (5.46).

• Using Eq. (6.11), bit +~t) is obtained and then using Eq. (6.10), (J'(t +~t) is

obtained.

The effect of the short-wavelength cutoff inherent to the LBM scheme was

investigated in two different ways. In the first, qma. was fixed independently of T

and r. This would be equivalent to a fixed temperature independent eoarse-graining

length in real space (cf Eq.6.6). In the second procedure the cutoff was constrained

to be proportional to the inverse of the correlation length (Eq. 5.37)

qma. = 0.1f.

= 0..,j-2r ll<

4The code to compute SLBM(q,l) was provîded by K.R. Eider.
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(6.17)

for T < 1~.6 The motivation for this choice is determined by the faet that the length

scale in the description of SD dynamics has to satisfy the conditions for a mesoscopic

scale as discussed on page 103. The proportionality constant Cl should be of order

unity. With Eq. (6.6), the coarse-graining length is then

(671"')k
a= ---ç.

Cl

6.2.3 Fit results

Fits have been made to the measured scattering patterns for all temperatures inves­

tigated. With fits performed at a fixed qma. independent of T and r, the temperature

dependence obtained for the parameters is unphysical. Specifica11y, best fit 1 r 1 were

found to incrp.ase as Tc is approached although one expeets r ---> 0 as T ----+ Tc. With

fits performed such that the cutoff qma. satisfies Eq. (6.16) with Cl fixed and nomi­

na11y chosen of order unity, the fitting results in the expccted decrease of 1 rias Tc is

approached. IIowever, if a different value of Cl is picked, an equivalent fit is obtained

and the best fit values of rand u differ but 1<, qma. and Mare unaffected. If Cl is

allowed to vary during the fit with the other paramcters 1<, r, u, M and bo, thcn the

fitting procedure dres not converge indicating that the fit is overdetermincd. With

a fixed Cl, the s"cond procedure corresponds to the use of a temperature depcndent

coarse-graining length since ç is temperature dependent (cf. § 5.1). In the remain­

der of this dissertation, the results are thus analysed with the cutoff constrained

proportional to ç-l. The value Cl = 2.59 has been chosen for reasons to he given in

§ 6.2.5.

For all mns, fits were performed to all scans up to 1.6 s, i.e. to 160 or 320

flS( q, t) for scans every 0.01 or 0.005 s respectively. The agreement between bcst fit

SLBM(q,t) and flS(q,t) is very good for quenehes below Tc." This was exemplified

SFor T > Tc, qm4: = 0:#.
"As mentioned on p. 156, to compensate for the missing SOZ(q)IT. in the LlS(q,I), the theory

SLBM(q, t) have thL quantity suhtracted off on al! plots. However, for the discussion of the

fils, these CUIVes will be referred to as SLBM(q, 1), and the remova! of the SOZ(q)IT. will not be
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In Fig. (6.3a) for run e (541 K), where best fit theory SLBM(q,t) are shown as

solid lines. In this run, a scattering pattern was measured every 0.01 s (ET = 0.01,

cf. Table 6.1), and thus 160 complete flS(q, t) were fit. The corresponding best fit

parameters for this run are" = 4.54±0.01 x 10-11 Jjm, r = -4.77±0.01 x 107 Jjm3
,

u = 1.368 ± 0.001 x 10· J jm3 and M = 1.145 ± 0.009 x 10-24 mS j Js. The value

of the parameter " is close 1,0 that obtained when fitting the first 0.2 s with the

CHe equation of motion and the values of M ?fe identical (cf. p. 154). However,

the parameter r is larger by more than " factor of two from the best fit fil in the

CHe equation of motion. This difference is somewhat expected since there is an

additional free energy parameter, u, in the LBM equation of motion. An estimate

of 1" using Eq. (5.4) gives

1"(Sc) = r + 3u(SC)4 , (6.18)

and a value of 1 r Ilarger than 11" 1 sinee r < 0 and 3u(Sc)4 > 0 arter phase sepa-

ration starts.

Ail fits have comparable quality as that shown in Fig. (6.3) and show that this

mode! effeetive!y parametrizes the data. Systematic fits were also performed for ail

runs for times up 1,0 0.2, 0.4, 0.8 and 1.2 s and in ail cases il, was verified both that

the best fit values for ail parameters did not vary beyond one standard G.eviation

and that the extrapolated SLBM(q, t = 1.6 s) was still of comparable quality of fit

to the flS(q,t = 1.6 s) as that which resulted from fitting the full 1.6 s.7 In the

last section that deals with the compa.r:ison of flS(q, t) with the LBM equation of

motion, § 6.2.7, a brea.kdown between SLBM(q,t) and experimental flS(q,t) does

occur but at times beyond those investigatt.d in the early stage rons.

The relaxation of composition fluctuations arter a quench to a temperature

above Tc (r > 0) is not described with equal success as the phase separation below

Tc. Nevertheless, the results are still quite satisfactory. In Fig. (6.4a), for run S

mentioned explicitly.

'This is in sharp contrast with the observation on p. 154 that the structure factors computed

using CHC systematically dcparted from LlS(q, l) arter the time interval of the fit.
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(599.1 K), the solid lines display the best fit SLBM(q,t) to the full 1.6 s. At high

wavevectors, best fit SLBM(q, t) traek relative!y weil the experimental L'l.S( q, t). The

generated SLBM(q, t) present a non-monotonie growth as do L'l.S( q, t) even though

the value of the free energy parameter r is slightly positive. At low q, the mea­

sured Ll.S(q,t) grows faster than the mode! SLBM(q,t). The best fit values of the

parameters for tms run are K = 1.03 ± 0.01 x 10-10 J jm, r = 8.7 ± 1.9 x 10' J jm3,

u = 3.3 ± 1.3 x 10'0 Jjm3 and M = (7.6 ± 0.3) x 10- 24 m6 jJs. As can be noticed

from comparing these values with the best fit values for run C quoted above, error

bars for the free energy parameters (r and u) for runs above Tc are mueh larger than

for deep quench runs.

Best fit values of K, r, u, M and bo have been obtained, for all early stage

runs, both above and below Tc. Best fit results for the first four parameters are

summarized in Fig. (6.8) for fits to 1.6 s. The parameter bo, whieh characterizes the

amount of quenehed-in structure is shown in Fig. (6.9). It inereases with the depth

of the queneh and scales with the integrated intensity of tms scattering (about 60%

of the final scattering for Cl = 2.59). The values of bo are consistent with a smooth

extrapolation of b(t) baek to b(O) for each run. The values of the free energy gradient

parameter, K, are positive, as expected for a phase separating system and are of the

same order of magn.itude as the estimates shown in Fig. (1.5). They depend little

on temperature and peak slightly below Tc. The parameter r is monotonie and

goes through zerO at Tc in agreement with the temperature calibration from the

single phase equilibrium structure fators (cf. § 4.4). The parameter u varies slightly

with temperature showing a ~light anomaly at Tc. The mobility M i3 an inereasing

function of temperature, also showing an anomaly near Tc. The eurves in Part (d)

of Fig. (6.8) are based on tracer diffusivities measurements and will be described in

§ 6.2.6.

During the fitting, the two free energy parameters rand u where highly anti·

correlated. In practiee, as r < 0 and u > 0, this means that these two parameters

were varying the same way in absolute value during the search for best fit. Fur-
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thermore, when rand u were both adjusted, i.e. free to vary, the goodness of fit

estimator, X2
, was relatively insensitive to large anticorrelated variations in the val­

ues of these parameters. These observations turn out to contribute to an interesting,

fortuitous but systematic feature of the theory and will be further elaborated upon

in § 6.2.4.

In the study of relaxation, the fits are not very sensitive to the value of the free

energy parameter r. This suggests that it is only possible to obtain an upper bound

for this parameter since it affects SLBM(q, t) in the low q range only « 0.02 A-1).

This is easily seen from the expression of the equilibrium structure factor (Eq. 2.19).

When r is increased by an order of magnitude the Soz(q) starts to differ appreciably

only at values of q < 0.02 A-1. The same remarks apply in the calculation of W

(Eq. 6.15) where again any wavevector q such that r ~ K.q2, will not be affected by

a change in r. This point will also be reexamined in § 6.2.4.

To complete this survey of best fit results, the effect of a change in the calibra-
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tion factor in Eq. (4.14) on the model parameters is examined. Finaily, the values

of the thermal noise term which was introduced in the scaled equation of motion

(Eq. 5.32) and the reduced time also used in that equation are cclmputed for ail

runs, using the best fit parameter values.

The effect of the overail intensity calibration of llB(q, t) on the best fit pa­

rameters can be summarized simply. If the calibrated structure factors, llB(q, t),

are scaled up by a factor .J, i.e. llB -> .JllB, then K-> K/.J, r -> r/.J, u -> u/.J2

and M -> .JM, and the quenched-in llB(q, t = 0) and the equilibrium Boz(q)IT. are

increased by the same factor .J.

Table (6.2) lists the calculated values of € using Eq. (5.33) and of T using

Eq. (5.29) for a = 2.59 for ail the runs to 1.6 s. The values of € are relatively

independent of the temperature but are relatively high, indicating a highly nonlinear

situation. The values of T peak near the maximum decomposition rate temperature

(between 551 and 559 ..~). Closer to Tc, the values of T /t decrease, being of order

unitY for the runs closest to Tc. The dimensionless T and € are unaffected by the

overail intensity calibration of llB(q,t).

6.2.4 Coarse-graining length dependence of T, u, K and M

The dependence of r, u, K and M on a was investigated by fixing a in the range 1/..;'2

to 2..;'2 and computing best fit values. The goodness of fit estimator, X2 , did c.ot

change, indicating that the fits obtained were equivalent. As pointed by Eq. (6.16),

this ailowed the investigation of the effect of the cutoff in terms of a fixed number

of inverse correlation lengths at ail temperatures on the values of the parameters

and consequeatly, of the obtained phase diagram. It was found that r ~ a-2 and

u ~ a-3 and that K and M were unaffeeted by the choice of a. In other terms,

the constant of proportionality between qmaz and J-2r / K could be varied without

affecting the quality of the fits provided r is divided by a 2 and u is divided by a 3 •

From the a-dependence of r and u and Eqs. (5.29) and (5.33) T ~ a-4 and € ~ a-2 •
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T f T It
(K) (0.01 S)-I

502.2 5.01 ± 0.69 0.505 ± 0.117
521.6 5.03 ± 0.09 1.049 ± 0.022
~41.4 4.84 ± 0.01 1.149 ± 0.007

1 551.1 4.92 ± 0.09 1.769 ± 0.036
558.7 4.87 ± 0.01 1.620 ± 0.008
572.8 4.60 ± 0.63 0.725 ± 0.162
587.1 4.40 ± 0.07 0.176 ± 0.003
589.1 4.42 ± 0.09 0.171 ± 0.005
592.3 4.94 ± 0.50 0.144 ± 0.024
592.5 4.62 ± 0.03 0.090 ± 0.001
593.4' 4.96 ± 0.11 0.088 ± 0.002
593.42 5.53 ± 0.09 0.128 ± 0.003
595.4 4.97 ± 0.10 0.061 ± 0.002
595.7 5.92 ± 0.13 0.071 ± 0.003
595.8 5.47 ± 0.11 0.085 ± 0.002
596.5 7.40 ± 0.18 0.033 ± 0.002
596.8 9.50 ± 0.53 0.015 ± 0.002
596.9 6.68 ± 0.11 0.038 ± 0.001

Table 6.2: Values of. and T for" =2.59 as calculated from Eq. (5.29) and Eq. (5.33). The errors
are caJcuJated froID the standard deviations ofbest fit "", r, u and M.

I Run K.

'Run L.

The r ~ 0-
2 scaling implies a unique waveveetor cuto/f qmaz for each temper­

ature. Figure (6.10) shows the value of qmaz selected by the fitting procedure for

a11 runs A - Z. It increases with the depth of the quench (qmaz = 0.375 A-1 at

541 K), and is minimum non-zero near T, (qmaz = O.vA A-1 at 597 K). Near T"

qmaz even moves below the deteetor window i. e. bclow the maJÙmum q measured.

In these instances, the modes with wavenumbers above qmaz appear to have already

reequilibrated at the time of the first isothermal scan at Tq • This will be further

elaborated below.

The separation of ((5C)2(t)) into b2(t) and (72(t) (cf. Eq. 6.10), including the
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Figure 6.10: Wavevector cuto/f qma. selected by the fitting procedure for ail carly stage runs when
qma. is constramed proportiona! to e- I following Eq. (6.16).

t = 0 values, depends on cr. However, (Se2(t») is independent of the ehoiee of cr sinee

it is calculated directly from the data. As cr is increased, b(t) (and 1>0) deereases

while u(t) increases. This implies that the choiee of cr affects the extent to which

the LBM algorithm assumes the decomposition has proceeded before the isothermal

aging began (i.e. before the first scan after the quench was recorded). Figure (6.11a)

shows b(t) for both cr = 1 and cr = 2.59. Part (b) of this figure presents -A(t) in

each case. There is no obvious quantitative scaling relationship between eith~r A(t)

or b(t) and cr. For aIl runs below Tc the model equation used for the time dependence

of the integrated intensity, Eq. (6.2) was also applied to the time-dependence of b(t)

(above Tc, b(t) = 0 for aIl times). In aIl cases, Eq. (6.2) tracked very weIl b(t) as

shown by the solid lines on Fig. (6.11a) for run C. The obtained best fit values

of A +C were found to be relatively independent of cr. These are reported later

in Fig. (6.14). AIBo, going from cr = 1 to cr = 2.59, by analogy to the linear CH
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Figure 6.11: Time-evolution of b(t) (cf. Eq. 6.10) and of the coupling term A(t) (cf. Eq. 5.47) for
run C (541 K) with ct = 1 ( 0) and ct = 2.59 ( 0 ). Every second point has been plotted only.
The solid Iines in (a) are best fit curves to Eq. (6.2) (see text).

equation, the "critical" wavenumber qe, calculated using Eq. (3.3) decreases from

0.376 to 0.145 A-1. In the CH theory, qc corresponds to the location of the crossover

point, and thus, extending the analogy, the latter value is more commensurate to

the observed location of the crossover point in the early scans.

Since ((6c)2(t)) consists of two terms (cf. Eq. 6.10), Figure (6.lIa) gives an

incomplete picture of the sn process. Figure (6.12) presents the calcuhted one­

point composition density functional p(6c) for discrete values of 6c at seleded times

between 0.01 and 1.6 s for a = 1 (a) and a = 2.59 (b). This figure clearly illustrates

the influence of a on the range of the decomposition process assumed in the best

fit LBM result. For instance, at a = 2.59, Fig. (6.11a) shows that the value of b(t)

starts off at about 60% of the asymptotic value reached. The corresponding time

evolution of p(6c) (part b) displays a major change in profile, progressing from a

single broad peak distribution to one in which the differentiation of two symmetric
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run C (541 K) wilh (a) " =1 and (h) " =2.59 al t =0.01, 0.40, 0.80, 1.20 and. 1.6~,. The arrows
indicale lhe direction of the change in the profile of p(6c) as SD procecds.

peaks about ±b(t) becomes more obvious. For a = 1, Fig. (6.11a) showed that the

separation into domains of distinct phases was near completion in the decomposition

stages captured. For this a, the evolution of p(5c) (part a) indicates that most of the

composition fluctuations are occurring about compositions which are weil defined

and near the final b(t).

Fig. (6.13) shows the breakdown between the two terms contributing

to aSLBM(q,t)jât in Eq. (5.46) (solid curve). The dashed curve gives

-2Mq2(t<.l + A)SLBM(q,t) and the dotted curve gives 2MkB Tq2. The salient fea·

tures displayed by the solid curve are that for any given time (i) a wavevector will

grow at a maximum rate, (ü) another will be stationary (a time.dependent cross·over

point) and (ili) high q medes, such that

(6.19)
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have reequilibrated to thermal equilibrium at the aging temperature i.e. they are

described by Soz(q)JT,.

Similarly to the CHe equation (Eq. 3.6), condition (6.19) indicates that the

asymptotic SLBM(q,t) is reached at a given q when

However, in Eq. (3.6), only modes of wavevectors for which the time-independent

R(q) < 0 will reach equilibrium. In the LEM scheme, A refiects the mean field

coupling between all the modes and is thus time-dependent. In Eq. (6.8), with

r < 0, 'IL > 0 and ((5c)'), < 0 (cf. Eq. 6.11) the net effect of an increase in ((5c)2) is

that 1 A 1 decreases with time. Thus, the threshold value for modes to grow or decay

is time.dependent and moves towards smaller q in time. As the cross-over sweeps

by a given wavevector, the intensity at this q which has been increasing until then,

starts to decrease towards the equilibrium intensity. The decrease of A with time

is also responsible for the slower growth of modes for SLBM(q, t) than with linear

theory exponential growth. Linear theory would be obtail1ed by kceping only the

first term (r) in Eq. (6.8).

Point (iii) can equivalently be arrived at from the LBM algorithm (cf. p. 157).

The quantity W defined in Eq. (6.15) provides the mean field coupling between the

modes. In Eq. (6.13), the time derivative 1. ((5c)2) will vanish when W = -~g;,q~az'

I.e.

(6.21)

Any increase of qmaz beyond a sufficiently large value will contribute to an equal

increment on both sides of tbis equation. Thus modes beyond tbis qmaz do not

contribute to 1.((&)2). For large q and t the SLBM(q,t) that would satisfy this

equality is again given by Eq. (6.20). Thus, although Eq. (6.21) is never satisfied

when the integral is performed over the entire q-range at any time during sn, the

contributions from bigh q modes to both sides of Eq. (6.21) are equal when condition

(6.19) is valid. Thus reequilibrated modes do not contribute more than equilibrium
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thermal noise to integral (6.15), that is they decoup!e from lowcr w"venumber modes.

As the decomposition progresses, modes of successivcIy lower q stop contributillg to

the mean field coupling.

A. ,t turns out, the value of qma. se1ected by the fittillg procedure is in the

q-range where Eq. (6.19) is satisfied immediately after the quench. For inst"nce, in

Fig. (6.13), the value of q'M' pkked by the fit to LBM is 0.375 A-1 (run Cl. This

is beyond the right "rrow in Part (a) which indicates (RS a subjective guide to the

eye) a !ower limit for the q-range such that 8SLBM (q, t)/8t -> O. Since modes at

progressive!y !ower q values have reequilibrate.:! as the aging procccds, q",a. couid

refiect the highcst q modes thaÎ have not yet reequilibrated by the time the first

scan after the quench is recorded, i.e. in !:>S(q,t = 0). Under this assumption,

as faster quench rates are achieved to a given aging temperature, "n increase of

qma. is expected. It is not cleu that an experiment illdependent significance can be

assigned to qma. for cases where the quellch is not ideally instantaneous.

Since the free energy parameter r always appears "lInmed with K. q2 (cf. Eqs. 6.8

and 6.11», it most1y contributes to the computations at low q. Thus if r is in

the range where it is small with respect to K. q2, challging its value will have litt!e

influence on SLBM(q, t). Furthermore, since the detector imposes a !ow q limit on

Ll.S(q,t), there is no direct comparison with SLBM(q,t) in the very low q range.

Thus in that q range, the value of r affects SLBM(q,t) oruy through the integral in

expression (6.15), i.e. the mean field coupling. But as q --+ 0 the integrand also goes

to zero and thus contributions to the integral become smaller. Thus, the fits are

not sensitive to ~hanges in r when the value of this parameter is srmd1. Tlûs lack of

sensitivity for r can be used to explain the observed scaling of rand u with powers

of cr. Since qma. is uniquely picked by the fitting algoritbm for each run, the value

of the parameter r is comp!etely determined by the choice of cr in Eq. (6.16) and

hRS to obey r ~ cr- 2 • That is to say, the value of r does not affect SLBM(q, t) in as

much as ,., is then cho~en 50 that the numerical value A( t) accounts for the coupling

between modes (Eq. 5.47) in a rescaled phRSe diagram (cf. Eq. 5.5) and produces
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(6.22)

(6.23)

vcry similar SLBM(q,t). This tics in weil with the anticorrclation between rand u

during the fits reportcd in § 6.2.3.

The scaling or rand u with a was verified to be accidentai by obscrving that

cxtrapolation of SLJ3M(q, t) for much longer times (up to 10 s) did not produce

rigorously identical results for a = 1/V2 and a = 1.

The a-depcndcnce of r, u, and", can also be examined by rewriting the expres­

sions for r, u and", given in Chapter V (Eqs. 5.55, 5.56 and 5.59) using the defining

equation for a (Eq. 6.17) and the relation between a and the coarse-graining length

a (Eq. 6.17) as

r = 1 (kBTlo) 3
- 671'2 </>~ qmaz

u = 1 (kBTlo) 3
671'2 </>~ qmaz

'" = 1;:2 (kB~/o) qmaz' (6.24)

Il is possible to obtain the conditions that r ~ a- 2 , u ~ a- 3 and that '" does not de­

pend 01 afrom the three equations above by setting 10 ~ a-' since </>5 = J-r/u ~

a'/2.

However, this raises a contradiction when considering 10 as introduced in

Eq. (5.52). According to the LEM paper[7], the dependence on a of the intensive

free energy 1(</» should be comprised in 10, the only adjustable system dependent

parameter, i.e. 10 ~ a-3 is expected. This a scaling of 10 is obtained by rewiiting

the susceptibility sum rule, Eq. (2.23), in tenus of Eq. (5.52),

a3 </>2
SeO) = 10~1I(1) (6.25)

and also using Eq. (2.22) for the differential susceptibility the foilowing expression

for 10 is obtained :

(
a)3 </>~10 - - (6.26)

- ao X.~II(I) .

Next, using Eq. (6.17) and the power law relations listed in Table (1.1) this equation

becomes

(6.27)
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where ê is the reduced temperature as delined by Eq. (1.2). In this equation, ço is the

critical amplitude of the correlation lcngth, 0 that of the difTerential susceptibility

and B that of the coexistence curve. Assuming hyperscaling to hold (i. e. Eq. 5.39),

lù can thus be written as :

61l'2 (f)3 B2
lo~ a3 :: 0<1>"(1)' (6.28)

This derivation produces the 10 ~ a-3 sca.ling. However, the obscrved accidentai

sca.ling of rand u with 0: and hence of the phase diagram (which is the topic of

the next section) implies that the critical amplitudes would also scale with a. The

natural sca.ling relations to assume for a "c·" free energy, bascd on the a scaling of

rand u, are B ~ 0:, C ~ a 2 and ço ~ a. Thus, Eq. (6.28) then produces 10 ~ a-'."

According to Equation (6.28), 10 is expected to be temperature independent.

Rewriting Equation (5.60) to relate 10 to 0: and €,

(6.31)

and m;ng the values of € tabulated for 0: = 2.59 in Table (6.2) gives 10 ~ 0.25 with

a scatter between temperatures comparable to that of €. Langer et al. [7] have pro­

posed an estimate of 10 using Eq. (6.28) with numerical estimates for the simple­

cubic Ising model[1l,173] of B = 1.57, C = 0.193 and ço/ao = 0.248. The value they

BIt is easy to propose a simple situation where the observed accidentai scaling would result. If

,pNs ~ 11hen (t)' ~ (tr and Eq. (5.54) becomes

(6.29)

(6.30)

From lhe dependence,ps ~ aIl', lhis gives <1> (t) ~ 01.-'. Tbis maIes lhe inlensive free energy

f(,p) ~ 01.-' according la Eq. (5.53). Finally, rewriling Eq. (5.52) as :

f(,p) = (~;) fo <I>(,pNs)q':na.

il can be seen thallo self-consislenlly salisfy f(,p) ~ 01.-', Eq. (6.29) and Eq. (6.30), il is necessary

thal fo ~ 01.-" which is precisely the relalionship Ihal was suggesled by Eqs. (6.22,6.23 and 6.24).

However, lhe limil ,pNs ~ 1 is nol expecte.d 10 .pply in Ibis work and Ihe source of Ihe a-scaJing

appears 10 be less lraclable lhan Ibis simple scenario.
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obtain for a = 1, fo = 5.777 is of the same order as the value obtained in this work,

fo = (2.59j3(O.25) = 4.34 when sea.!ed to the same a (cf. Eq. 6.31).

To dose this section, Binder's formulation of the Ginzburg criterion for the

case of SD (Eq. 5.27) is examined in terms of E or fo. At compositions dose to the

critica.! composition Equation (5.27) simplifies to

Using Eq. (6.27) with mean field exponents given in Table (1.1),

( T) 1/2
10 ex: a- 3 1 - Tc çgB2 /O

and, noting that ço ex: fi in this regime,

(6.32)

(6.33)

(6.34)

which is precisely the rhs of Eq. (6.32). Thus the Binder condition for linear CHC

theory to be va.lid in the carly time regime of SD simplifies to

fo ~ 1. (6.35)

Thus, the parameter fo, which is related to the range of interaction in the system,

.jK., must be very large in order to observe CHC type decomposition.

Condition (6.35) is not satisfied in this work. This agrees with the fact that

nonlinear effects are important even at the earliest aging times with the immediate

shift of the peak in ~S(q, t) to smiller q. The values of E listed in Table (6.2) refiect

the immediate importance of the nonlinear terms at the earliest scans measured.

Even for these times it Was shown in § 6.2.1 that the CHC equation of motion does

not track the measured ~S(q, t). An estimate of the time ~ange of va.lidity of the

CHC theory (cf p. 115) tmo.x ,·v -ln E is negative for the E obtained in Table (6.2).

Assuming t.hat the LBM theory is an accurate d.2~cription of the early stages of phase

separation and invoking the Binder criterion implies the CHC equation should never

be va.lid for the Al-Zn system.
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6.2.5 The coherent solubility curve

With the free energy parameters rand U III the LBM equation of motion, it is

possible to obtain the mean field coherent coexistence !ine. For a LG free energy

funetional, Oc"',, is located at R (cf. gq. 5.5). However, the dependence of r

and u on the choice of Cl has demonstrated that a unique free energy cannot be

determined from measured Ll.S(q, t) using the LEM theory a1one.

The sum rule (2.25) which relates the integrated intensity Q(t) to composition

fluctuations a1so says that weil below Tc> QI /2(t) should fall on the coexistence !ine

provided the normalization to absolute intensities is correetly performed.9 This

provides a means to choase the value of Cl uniqucly since the location of oC,o« scales

as Cll/2 (cf. Eq. 5.5). The value Cl = 2.59 used in the discussion of § 6.2.3 was chosen

so that J-rlu matched weil the square root of the integrated intensity for the six

runs weil below T,. as shown on Fig. (6.14). The circles in this figure show the

values of J-rlu with Cl = 2.59. The integrated intensities correspond to the values

at t = 1.6 s and the square root of these values are shown as squares.

The calculated oC'o<. can also be compared to the square root of the integrated

intensity predieted from the coherent solvus calculated for the two regular solution

parametrizations of the miscibility gap boundary in § 1.3. The first parametriza­

tion was that of La!iek[21] (cf. Fig. 1.3) shown as a so!id curve in Figure (6.14)

and the second was suggested by Lomer et al.[26] (see footnote p. 18) and is shown

as a dashed !ine. Due to the asymmetry of the coherent solvus in the AIZn aIIoy,

even when the bulk sample composition is close to the critical composition as in

this work, both the Al-rich (ca) and Zn-rich (ca') phase compositions have ta be in­

c1uded in the calculation of Q(t). Unfortunately, this also means that the complete

solvus !ine cannot be derived from measurements at a single aIIoy composition.lo

9This is valid at temperatures where contributions from thermal fluctuations to the scattering

intensity are negligible compared to the scattering due to the,modynamically driven fluctuations

(including domains). This condition is not satisfied near T, and above.
IOTwo off-critical aIloy compositions have also been investigated and the results will be reported

separately.
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Figure 6.14: Square rool of lhe measured iulensily, Q~ (t), al t = 1.6 s for ail runs (II). Coherent
solubilily Jiue 6c,"," predieted from besl fil free energy paramelers T and u ( 0 ) wilh Cl: = 2.59
chosen to malch Q~ (t = 1.6s) for lhe si:< runs weil below T,. The besl fil vaIue of .A + C for
b(t) as described by the lext ( Â ) and lhe integrated iutensity predicted from the coherent solvus
calculated usiug two diJferent regular solution pararnetrizations iutroduced iu ! 1.3 ( (i) frore
LaSek[21] cf. Fig. 1.3 (solid curve) and (ü) from LôIHer et al.[26], see foot note p. 18) are also
shown. The compositions Ca and Ca' are respeetively the coexistence compositions to the left and
the rigM of the coherent mizcibility gap.

The agreement between the solid curve and the square root of the measured inte­

grated intensities ( • ) favorably supports the conversion fadors employed to convert

scattering intensity to structure factors.

Fina1ly, the extrapolated values for b(t) are plotted ( Â ) from the best fit

values of A +C obtained for b(t) (cf. p. 165). As expected, since ((8C)2) is the

sum of two terms, (F2 and b?, b(t -> (0) is lower than Ql/2( t). This parameter

was included on Fig. (6.14) as it provides a good indication of the degree of phase

separation. Furthermore, if the LBM theory could dcscrîbe the sn untillate stages,

the one-point distribution funetional should become a very sharp distribution about

±b(t -> (0). However, the SLBM(q,t) will be shown to depart appreciably from
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~S(q, t) for times later than 1.6 s (§ 6.2.7).

With cr set to 2.59, A +C can be seen on Fig. (6.14) to go above the value of

..;;t-. However, the curves in part (a) of Fig. (6.11) suggest that the initial increase

is followed by an asymptotic behavior somewhat superimposed ou a linear sloping

background. Hence the asymptote appears not to saturate at a constant value. This

is verified by extending the model times to 60 s.

Although the data near Tc is too limited for measurement of critical exponentB,

it is still interesting to compare the predieted mean field coexistence line and the

correlation line with the power laws introduced in §1.2 for the critical region. Figure

(6.15) shows the power law behavior of the mean field coexistence line {jcc"". ( • )

and of the correlation length ç ( .). The dashed line represents the mean field
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coexistence line obtained by fixing the critical exponent in 6e,~. ~ Blel~ to the

mean field value, f3 = 0.5. If, instead, a fit restricted to the data within 5% of T, is

performed, the critical exponent f3 obtained is 0.38±0.04, which compares weil with

the value 0.339 gîven in Table (1.1) for the 3-d Ising mode!. On the other hand,

if the power law fit is performed over the whole range of data shown, the result is

f3 = 0.46 ± 0.02 which is closer to the mean field value.

The solid lines display the best fit result to the power law relationship for the

mean field correlation length ç (Eq. 5.37) which diverges at T, as ç~ ç± lej-V (T~Tc)

(cf Table 1.1). The best fit value Il = 0.52 ± 0.04 obtained corresponds weil to the

mean field value Il = 0.5 which has been given in Table (1.1).H

Fitting the ~S(q,t)with the LBM theory was found not to deiermine uniquely

values of r and u. Th" numerical value of rand u for a = 2.59 can be further

investigated using the contact with the true thermodynarnic free energy in the stable

one-phase regîon as predicted by the regular solution mode! (RSM) which was used

to model the miscibility gap i.n § 1.3. This is accomplished by matching the location

of the solvus c.ol......

,fRSM) = ,fLBM)
loh.. JOlY ••

and the values of f" along this line

(j2 f(RSM) 1 = (j2 f(LBM)

Be2 Bc2
C,olY.. Caoh' ••

(6.36)

(6.37)

However, in the RSM, f" has a different value on the Al-rich (a) and the Zn-rich (a')

branches of the solvus line. Thus, as pointed above, it is not possible to determine the

position of the two branches with measurements performed at a single composition.

First, with the LG free energy employed in the LBM equation of motion,

(6.38)

"The values of the critica! amplitudes used to produce the solid line were ç_ = 2.3 ± 0.2 A and

ç+ = 11 ±6 A.

177



• •

u

III

a

IIIIII

III

III

III

(b)

(a)

--------- --------u' - --o

2
~O

&-2
r-e -4......
~ -6

520 540 560

T (K)

580 600 620

Figure 6.16: Contact between the regular solution free energy and the Landau-Ginzburg Cree
energy functional. (a) The dashed lines labeled (a) and (a') display the value ofr computed using
Eq. (6.38) along the solvus line on the Al-rich (a) and the Zn-rich (a') sides respectively. The
points show the values of r obtained !rom best fit LBM equation of motion for runs A through W
fOI 1.6 s with a =2.59 (cf. Fig. 6.8). The solid line shows a weighted average of the two dashed
curves (cf. Eq. 6.40). (b) Same as in (a) for the parameter u using Eq. (6.39) 'for the computation
of the values and Eq. (6.41) for the average.

(6.39)

Sinee (C.o'", - cc)(LBM) = ±F/u then

1 8
2

JC
LBM

) 1
2(LBM) 8c2 = 4u.

CIO!?. Clol....

Second, for the RSM, using matching conditions (6.36) and (6.37) and Eqs. (6.38)

and (6.39) the corresponding RSM values of rand u are obtained by the weighted

averages

1 [8' IC
RSM

) 1 8' IC
RSM

) 1 ]
r(RSM) = -",8e'''-4_-,--c=.a (Co - ca) + 8e'4 ca' (Ca' - CO)

Ca' - Ca
(6.40)

and

1 [8' t(RSM) 1 8' tCRSMj 1 ]
U(RSM) = 8e' 2 Ca (Co - Ca) + 8e' 2 ca' (Ca' - Co)

Ca' - Ca 4ca 4ca ,
(6.4J)
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where Ca and Ca' are the RSM coexistence values on the Al and Zn-rich sides of the

miscibility gap respectively.

Figure (5.16) shows r and li values along both branches of the solvus and a

weighted average in each case, namely Part (a) shows that the order of magnitude

and temperature dependence of r agrees with the prediction of the RSM along the

solvus. However, in Part (b), li and u<RSM) disagree on the temperature dependence.

The RSM predicts a decrease as Tc is approached from below while the values

obtained from fitting to the LBM theory show the opposite trend. This difference

may be attributed to the anomaly mentioned earlier. Namely, il was found that

r appeared to be governed entirely by the choice of Cl to give the required qmaz

resulting in a constraint on the value of li to generate the appropriate A(t). Il thus

appears that even if the choice of an appropriate value of Cl allows one to produce the

coherent coexistence line, the resulting values of rand, particularly li, are probably

not "good" free energy parameters to extrapolat" into the thermodynamic region of

the phase diagram.

6.2.6 Interdiffusion

Obtained best fit mobilities M can be checked against tracer diffusion data in AlZn

alloys using Eq. (1.12). Based on the results of other workers that the interdiffu­

sion coefficient in AlZn solid solutions at Co < 0.4 is governed by the zinc tracer

diffusivity[169] Din' it is a good approximation to write

(6.42)

In the derivation of the LBM equation of motion it was assumed that M is in­

dependent of the local composition c(,.). Equation (6.42) satisfies this condition

since M is ",,;J.sidered sufficiently approximated by a composition independent value

corresponding to the value for the bulk composition Co.

Fig. (6.8d) shows the mobility obtained from this relation with Dzn(T) com­

puted from an Arrhenius equation (Eq. 1.11) with activation energy EoZn and fre-
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Author Eozn D~Zn

(x 10-19 J) (x10- 6 m2/s)

Hilliard[169] 1.66 ± 0.06 1.4 ± 0.8

Cermak[170] 1.7315 ± 0.0675 2.48 ± 1.72

Godény[171,172] 1.69 ± 0.03 1.8 ± 0.3_.
Table 6.3: !nterpolated""tivation energy, E oZn ' and pre-exponential factor, D" Z ,(cf. Eq. 1.11)
for Zn self-diffnsion in AJa.6,Zno.38 measured by tracer diffnsion. 0 n

quency factor D~Zn interpolated for Co = 0.38 for the three measurer'1ents of tracer

diffusion in coneentrated AIZn alIoys reported in literature. In each case, the inter­

polated values of EOZn and D~Zn from the two compositions that bracket Co are given

in Table (6.3).J2 The activation energies EOZn were interpolated linearly and the

pre-exponential factors D~Zn were interpo!ated logarithmically. The values of EoZn

are of order 1 eV (for instance, Eo = 1.04 eV for the result of Hiillard et al.[169J).

The errors are interpolated from their values at the bracketing compositions and

are thus estimates. The value of the atomic density Nv is taken from Table (1.2).

The agreement between the calculated and the best fit M is particularly striking

in view of the fact that the lowest temperatures for which self·diffusion coefficients

of Zn were measured by these workers were in the one-phase region. For instance,

the measurements of Hilliard et al.[169] at the lowest temperatures were 633 K for

c = 0.369 and 598 K for c = 0.494. The error bars on the ealculated M are more

than 50% of the values due to large error bars in D~Zn'

Equation (6.42) is the most direct comparison between M and diffusion data.

However, in the past (cf. § 1.4), the interdiffusion constant D would be obtained

from fits to the CHC equation of motion. In the formulation of the LBM equation

of motion, atomic mobilities Mare ohtained separately from the thermodynamic

driving force. Henee, to compare best fit M to interdiffusion constants, it would

be necessary to know the second derivatlve of the free energy with respect to corn-

!2These compositions are respeetively 0.369 and 0.494 for Ref. [169J, 0.3127 and 0.4151 for

Ref. [170], and 0.289 and 0.400 for Ref. fl71,I72J.
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position that is, to "recouple" the thermodynamic driving force with the mobilities

using Eq. (1.25).

Two situations allow the approximation off" by r in Eq. (1.25). Firstly, at

early stages of SD when Oc ~ 0 the "c4 " Cree energy mode! (Eq. 5.4) gives f" = r

and

(6.43)

The second case is at the other extreme, when the local compositions are near

equilibrium values. The contact between the coarse-grained Cree energy and the

Cree energy obtained by the regular solution model performed in the preceeding

section and shown in Fig. (6.16) indicated that in this case f" ~ r. This allows the

evaluation of D along the solvus also using Eq. (6.43). Using either the RSM value

mode! of f" or LBM best fit r with a = 2.59 will provide the same thermodynamic

driving force. Since r ~ a-2 and M is independent of a, D ~ a-2• As an example

of a typical value in this work, at 541 K, D = -5.0 X 10-17 m2/s for a = 2.59. With

expression (6.43), D turns out to be independent of the overall intensity calibration

for t.S(q,t) (cf. p. 163).

In homogenizing systems, the temperature dependence of the therm'ldynamie

driving force is weak.[;l74] However, sinee f" vanishes at Tc and has a different sign

on either side of Tc in systems whieh undergo SD, the thermodynamie driving force

is strongly temperature dependent. In this case, Hilliard[32] suggests to expand

f"(T) about Tc,

f"(T) = (T - Tc)i; = -(T - Tc)a", (6.44)

where ail = 82a/8c2 (a is the entropy per unit volume) has negligible temperature

dependence. Equations (1.12 and (1.25) ean be combined to write

li = eo(l _. eo)f"(T) [eoD" + (1 _ eo)D"]
NvkBT A B

which (.an then be rewritten as
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lhallhe Arrheuius curve for DT/(T - Tc) bolh above and below Tc (see foolnole p. 183).

Based on relation (6.46), Hilliard then suggests to present interdiffusion data

near the spinodalline as an Arrhenius plot of DT/(T - Tc). A straight line would be

expeeted if the ",ctivation energies of the tracer diffusivities of the two constituents

are not too different or if the one tracer diffusivity dominates over the other. Such

a plot is shown in Fig. (6.17) with the results of Eq. (6.43) w·jth 0: ,= 2.59. The solid

symbols (top cUIve) correspond to DT/(T - Tc). The solid cline i5T(T - Te) ver'Su..

T with a logarithmic ordinate axis shows that the Arrhenius plot extrapolates weIl

into the spinodal. The two parameters required in the Arrhenius relation to produce

the solid line, Eo and A, are higWy correlat'ed when penonning a fit with the data

and the range of data is limited to two decades. Thus, best fit Eo and A could not be
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determined accurately.'3 The bottom set of points in this figure show D clùculated

from Bq. (6.43) (0 ). This quantity is discontinuous at Tc (D --> 0) since T --> 0 as

T --> Tc. Be10w TC) the points show - D.

In substitutional solid solutions such as AIZn alloys, the interchange of atoms

(Ah-,AI, AI.... Zn and Zn....Zn) occurs through vacancies.[28] More generally, the

tracer self-diffusion of Zn (and though mllch smaller, Al) by means of a vacancy

mechanism is c10sely related to the motion of the vacancies, which may be used

to define a vacancy diffusion coefficient. Thus, it is important to have an equilib­

rium concentration of vacancies in the alloy at the aging temperature to measure

appropriate diffusion properties. If the concentration of vacancies is higher than the

equilibrium value, then the diffusion constants observed will be higher than should

otherwise be observed. In a quench-and-age experiment, the possibility exists for

the presence of "quench vacanciesn retained from the initial one-phase high temper­

ature state. These quench vacancies are gradually e1iminated from the system by

being trapped at zone interfaces or removed at sinks. Thus, these should decrease

with time until the density of vacancies reaches the value correüponding to the ex­

peeted "thermal vacancy" concentration. These are then in equilibrium at the aging

temperature and their number should remain constant. In a scenario in which the

vacancy concentration would not have reached an equilibrium value after a quench

and thus would still evolve over the course of the time resolved measurement14 the

diffusion constant would decrease during the experiment, i. e. the time separating

two successive interchanges of atoms (or atom-vacancy interchanges) would not be

constant.

"The values obtained in producing Ihe besl fil solid line 10

DT(T - Tc) = A exp(-EolkBT)

on Fig. (6.17) were Eo= 9 ± 5 x 10-2oJ (0.6 ± 0.3 eV) and A = 1 ± 6 x 10-0 m'/s.
14Such a scenario is pIOposed by Hennion et a/.[60] iu Iheu measuremenl of nueleaUon and

growlh in single cryslal AlZn. They suggesl Ihal quench vacancies are responsible for a high

diJfusion constant during the inili,.] stage.. of phase sep~ration in theu experimenl•.
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No i1ttp.mpt is performed to estimate the vacancy concentration relaxation

time. Facts in this study suggest that they have probably reached equilibrium con­

centrhtiom by the time the isothermal annealing begins. Firstly, the aging temper­

atures are higher than any previous work on SD in AIZn alloys and a polycrystalline

sample was used. Therefore there should be more sites for the quenched-in vacancies

to become inactive and their diffusion to these sites should be faster than at lower

temperatures. AIso, the existenœ of a maximum decomposition rate above whieh

the process is limited by the driving force and below which it is diffusion limited

supports the view that the vacaneies intervening in the diffusion at the aging tem­

perature are not quenched-in but thermally activated. Finally, the best evidence

is that the measured tracer diffusivity of Zn (i. e. self-diffusion of Zn at thermal

equilibrium) extrapolates weIl into the spinodal region for the deeper quenches as

presented in Fig. (6.8d).

Finally, it should be noted that vacancy mediated diffusion has recently been

used in a MC simulation study by Yaldram et al. on a two-dimensionallattice.[175]

They found that diffusion depends on the atoms with the higher jump rate (cf.

p. 108) or, equivalently, the higher self-diffusion coefficient, in agreement with the

working hypothesis used to produce Eq. (6.42). Their results essentially do not

differ from the usu·1 Kawasaki spin-exchange dynamics employed in MC studies of

diffusive problems (i.e. atom-atom swaps).

6.2.7 Breakdown of LBM

The comparison of the predicted evolution of SLBM(q, t) for later times and the

LlS(q,t) coIlected in the long runs (AA - EE) was performed. Though there is

always a temperature difference between the two l'uns in any pair of a fast l'un and a

long l'un, it is possible to get an estimate of the performance of LBM at latel' times

to describe the measured LlS(q, t). Fig. (6.18) shows the SLBM(q, t) calculated up to

52.6 s from best fit parameters to short l'un C (541 K) reported in § 6.2.3 (solid lines).

The experimental LlS(q,t) (points) correspond to deconvolved structure factors for
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run BB (537 K). This late stages run has the temperature nearest to that of run O.

This Figure shows that at 2.6 s, the SLBM(q,t) still tracks weil the data whe:"as

the SLBM(q, t) growth is slower than the measured flS(q, t) for later times. Also,

the maximum in th.. extrapolated SLBM(q,t) does not move to lower q as rapidly as

that in the measured flS(q,t). At higher temperatures, as the maximum of L\S(q,t)

moves earlier to lower q, the breakdown between SLBM(q,t) and measured flS(q,t)

occurs faster.

For the long scans, t = 0 is defined as the time at which the measured sample

temperai.ure crosses T,. For instance, in the case of run BB, the first scan read after

reaching the aging temperature was recorded 0.6 s after Tc was crossed. Since one

scan is recorded every second (ET = 0.01,1 = 100, cf. Ta1:Jle 6.1), then the third scan

at the aging temperature is stored at t = 2.6. This first flS(q, t) shown corr~sponds

to that scan. However, each recorded scan in the long mns integrates over a longer

time and a readout at 1.6 s would compare best to an earlier scan during a fast run

(ET = 0.01, 1 = 1). Nevertheless, this discrepancy is negligible in the check of the

late time extrapolation of the SLBM(q, t), as evidenced by Fig. (6.18).

Fig. (6.19) compares the time d.ependence of the waveveetor qm corresponding

to the maximum of flS(q, t) for runs 0 and BB (points) and of SLBM(q, t) (line). As

observed in Fig. (6.18), the coarsening displayed by SLBM(q, t) is slower than that

of flS(q, t). It is found that extrapolation of SLBM(q, t) with the parameters from

the best fit to run C (up to 1.6 s) results in a time dependence of qm which goes

asymptotical1y to t l /
6 as shown by the slope of the solid line in the figure. A regime

with slow tI/6 coarsening Was reported in the original LBM work[7]. However, arter

"" 50r, they also report a transition to a t O.212 coarsening. Figure (6.19) presents

no evidence of such a transition for qm(t) for SLBM(q,t) even though for run 0,

Table (6.2) gives rit = 114.9 ± 0.7 S-l and thus the SLBM(q,t) were computed

np to 6894r. The absence of transition regime in the generated SLBM(q,t) is not

explained even though, as was mentioned in § 6.2.4, the calculated value of the

system dependent p"rameter fo from best fit results ta early stages flS( q, t) is of
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the same order as the estimated value used by Langer et al.[7] to generate their

SLBM(q, t).

Finally, this investigation of the time at which the SLBM(q, t) departs sig­

nificantly from the measured ÂS(q, t) confirms that fits to times up to 1.6 8 are

expected to be equivalent. Since the values of T are temperature-dependent, with

maximum values for quenches to temperatures neur that of maximum phase separa­

tion rate (cf. Table 6.2), a logical choice 'Hould have been to fit up to equal values of

T for all temperatures in order to obtain the temperature dependence of the model

parameters. However, since the breakdown between the LBM and measured struc­

ture factors OCCura for times longer than the duration of the fast run, the fits can

equivalently be performed up to 1.6 s for all runs. As noted in § 6.2.3, this was also

verified by performing fits for up to 0.1, 0.2, 0.4, 0.8, 1.2 sin all cases and obtaining

parameter values within the error bars of those obtained for the fits to 1.6 s.
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6.3 Late stages

6.3.1 Growth law and scaling

The data collected for late-stage studies (i.e. up to 60 s) will now be discussed.

Three aspects will be addressed: the scaling exponents n and n', the scaling form

F(x), and the high w"venumber tail of e:.S(q,t) (cf. § 5.5).

For this part of ',he analysis it is necessary to use deconvolved scans. The

deconvolution procedure has been the topic of § 4.5.2 and the resulting unsmeared

structure factors for runs AA (511 K) and EE (588 K) were presented in Fig. (4.15).

It was seen that the effect ofthe deconvolution is more important near the beamstop.

The maximum of llS(q, t) is found closer to the beamstop at an eartier time, the

higher the run temperature, due to a combination of both higher decomposition

rates for the runs of high r (cf. Table 6.2) and the decrease of qc (i. e. larger ç) as T

increases. Furthermore, for the runs corresponding to the higher temperatures, CC,

DD and EE, there is a time at which the peak maximum is blocked DY the bearnstop

(35.4, 27.5 and 19.6 s respectively after the sample temperature has crossed Tc in

the quench process).

A usual graphical check for scaling is to plot the scaled quantities S(q, t)/Sm(t)

versus x == q/qm(t) with Sm(t) the maximum of S(q,t) and qm(t) the couesponding

wavevector, as defined in § 5.5, and to verify that the obtained profiles overlap

for all times in the scaling regime. Figure (6.20) shows such a plot for run BB

(536.9 K) at se1ected times. However, this plot makes use of the e:.S(q,t), which

have the high temperature scattering subtracted, instead of using S(q, t). Since the

equilibrium scattering at Ta is small compared to the late-stage S(q, t) for runs AA

-EE « 10-29 m~, cf. Fig. 4.11), using e:.S(q,t)instead of S(q,t) should not affect

appreciably the results.

Except for the first scan (at t = 2.6 s), all scans displayed on this plot should

have been recorded at intermediate or late stages. However, the structure factors

do not quite scale, i.e. the displayed e:.S(q, t)/e:.Sm(t) do not identicaD'- .verlap.
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the best fit result to the Ohta-Nozan scaling form, F(ON)(z) (cf. text).

When al1 scans of run BB are examined, it is found that from t ~ 11 s, the scaled

scattering profiles broaden more slowly than at earlier times. This deviatit'n from

scaling is weIl outside the experimental error. Examination of the inset to Fig. (6.20)

indicates that tl.Sm(t) undergoes an almost fivefold increase in thi. "quasi scaling"

regime. All runs performed for the late-stage studies (AA through EE) have been

found to display a similar quasi scaling feature.

A logarithmic plot displaying the same scaled structure factors for run

BB is given in Fig. (6.21). This representation shows the extent to which the

tl.S(q,t)/tl.Sm(t) are broadening with time. On the high q side tl.S(q,t)/tl.Sm(t)

does not to drop as q-4 (the dashed line, which will be described below, has a q-4

tail). Bence, Porod's law (Eq. 2.32) is not satisfied.

Fig. (6.21) also shows that the scaled structure factors present a shoulder at
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approxirnate1y 3qm' This shoulder is one of the most interesting results of the late

stages study. Exrerimentally, a shoulder at high q has been reported for light scat­

tering measuremcnts on deuterated polymers[90] and in neutron scattering measure­

ments of the static structure of porous glasses.[176] A computer simulation study

on a eell-dynamical-system by Shinozaki[166] a1so produced a structure factor with

a shoulder (cf.§ 5.5.2). However, its existence had never been reported clearly for a

binary alloy.

In Fig. (5.5), it was shawn that the analytical expression for the Ohta-Nozaki

scaling form F(ON)(:C) (Eq. 5.91) a1so posesses a shoulder. The dashed line in

Fig. (6.21) shows a best fit to F(ON)(:C) for the t = 12.62 s "scaling profile" (the sec­

ond solid curve from the bottom) with A = 4.02. Cornparison between the dashed

line and the corresponding t!J.S/ t!J.Sm shows that the best fit F(ON) (:c) drops tao

steeply above qm' In fact, the measured scattering at the shoulder is at !east three

times larger than wouid be predicted by F(ON) (:c).

Figure (6.22) shows the best fit Fratzl-Lebowitz scaling form, F(FL)(:l:)

(Eq. 5.87) obtained for t!J.S(q,t)/t!J.Sm(t) a1so for run BB at t = 12.61 s. This log­

arithmic plot shows again the departure from a q-4 tail at high q observed in the

data since F(FL)(:C) (solid curve) has this q-4 dependence. Evidently, the F(FL)(:C)

scaling form needs to be modified for these data since it does not possess a shoulder

at high q.

Figure (6.23) presents a Porod plot, (q4t!J.S versus q), for run CC at four

different times. (At t = 2.46 s, the sn has not yet entered the late stages.) Such

a plot is usefuI to check sum rule (2.32) since for this rule to be valid q4t!J.S(q,t)

shouId tend ta a constant. This is not the case here since q4t!J.S(q,t) still varies for

large q as expeeted from the .,bsence of a q-4 tail in Fig. (6.21). This Porod plot

a1so hints at th.e existence of a second shoulder at the latest times (at ~ 0.075 A-1

for t = 52.46 sJ.

ShouIders at high q are not unexpeded in late stages of sn and have been

observed for instanCl" during the sn of polymer mixtures as mentioned above. The
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scatteriOlg from randomly distributed sharp interfaces with, ho·"',,ver, a characteristic

length scale, e~ q;' should give rise to higher order harmonies. Furthermore, the

observed late stages q4 /lS(q, t) are rerniniscent of those observed by workers in

studies of atornic dynarnics in liquids[177] where many oscillations exist about a

constant value. In the case ofliquids, however, inst-:;ad of q4 S(q) going to a constant

for large q, th invariant is q2S(q). Spooner et al.[178] have reported that a Porod

asymptote is reaôhed in a Porod plot of neutron scattering data obtained during SD

in a Feer alloy. However, they do not report a shoulder at high q.

Fig. (6.24) shows the time dependence of /lSm(t), the maximum of /lS(q,t),

and the corresponding q;;" for the run BB (537 K). The solid lines are best fit to

power laws with

(6.47)
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and

(6.48)

The best fit values for the parameters flSo, to and ni in Eq. (6.47) and for qo, to

and n in Eq. (6.48) are listed in Table (6.4) along with values for the other runs.

Ali runs (AA - EE) displayed similar quality power law fits. The uncertainties

reported for the numerical values of the parameters correspond to the calcu1ated

standard deviaHons with the goodness of fit estimator X2 = 1 when aIl points are

assumed to have an equal weight in the least squares fit.

The growth exponent n = 0.42 for q;;;'(t) in run BB as weil as values obtained

for al! runs are higher than the value n = 1/3 predicted by the LSW law (cf. p. 128).

These values indicate that coarsening occurs at a faster rate than predicted from

long range diffusion fields.

The resu1t that growth exponents are greater than 1/3 for aIllate-stal(~ runs is
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somewhat uneJtpected. According to Equation (5.77), n'Ji(t) should asymptotical1y

tend to 1/3 from below (linearly in 1/R(t) with (Ra > 0)). Furthermore, eJtperimen­

ta! work on other systems with a conserved order parameter (cf. p. 62) had yie1ded

values n ~ 1/3.

Effective growth exponents n'Ji(t) (Eq. 5.76) were computed for alllate-stage

runs (AA - EE) using

(6.49)

and Fig. (6.25) gîves the results. Thus, n'Ji(t) goes asymptotical1y to a value above

1/3 from below, i.e. n'Ji(t) crosses 1/3. This suggests that the phenomenologîcal

description of the motion of structure1es. interfaces put forth in § 5.5.1 would have

to be modified.

The lack of power law behavior may be due to coupling to other dynamic
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~Sm(qm, t) = ~So(t +tO)3n' qm(t) = qO(t + tO)-n

T ~So to n' qo to n

(K) (10- 27m3
) (s) (10- 2 A-1) (s)

511 2.26 1.44 ± 1.68 0.33 ± 0.05 8.G ± 1.0 2.98 ± 0.67 0.45 ± 0.03

537 4.76 0.57 ± 0.45 0.34 ± 0.02 5.3 ± 1.7 1.03 ± 0.13 0.42 ± 0.01

563 6.72 0.44 ± 0.17 0.35 ± 0.01 3.29 ± 0.12 0.26 ± 0.06 0.39 ± 0.01

578 6.04 0.34 ± 0.26 0.37 ± 0.03 3.00 ± 0.10 0.33 ± 0.05 0.43 ± 0.01

588 3.95 0.40 ± 0.24 0040 ± 0.03 3.07 ± 0.24 0.62 ± 0.19 0.47 ± 0.02

Table 6.4: Best-fit parameter values to growth laws (6.47) and (6.48) for alIlate stages runs (AA
- EE). Tbe temperatures are listed to the nearest degree (cf. Table 6.1).

processes. Recently, Enomoto and Kawasaki[179,180] have examined the effect of

e1astic interactions among droplets on the growth exponent during droplet growth.

The predicted effect depends on the sign of the difference in the shear modulus

between the interior and exterior of second phase particles. This was checked in

a q'ùantitative evaluation of the effect of the e1astic energy on the coarsening pro­

cess of spherical droplets by numerical calculations and computer simulations. An

enhancement of precipitate growth as R(t) ~ t l /
2 after the R(t) ~ tl

/ 3 stage is pre­

dieted when the shear modulus is larger inside the inclusion than outside. This case

could be likened to that observed in Fig. (6.25).

Most of the cases examined by computer simulations by Enomoto' and

Kawasa.ki[179,180] were for relatively low second phase volume fractions, v,," ~ 0.01.

However, some simulations with v,," ~ 0.1 have also presented an effect of the e1astic

field at the interface though somewhat delayed in time. They relate tbis de1ay to the

correlation effects between domains. Though v,," and V...• in tbis study depend on

the aging temperatllIe (Co is not exaetly at the critical composition and the gap is

asymmetric), they are close to 0.5 in alllate-stage runs. Thus, it may be appropriate

to attribute values of n larger than 1/3 obtained in tbis work to elastic interations

between domains, however the available computer simulations for comparison were

performed for much smaller volume fractions.
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Figure 6.25: Ca.leulated effective exponent for ail late stages Iuns, n'1f(!)' as defined by Eq. (5.76).

There has not yet been an experimental account of a system crossing over from

a growth exponent of 1/3 to a 1/2 exponent due to elastic effeets. However, the case

of a system with a shear modulus larger in the matrix phase than in the second

phase particles has been examined in a measurement of the growth of second phase

inclusions in T~.80Moo.20by Pratzl et al.[181] In this system a stage with R(t) ~ t lfS

was observed, followed by a decrease in the growth exponent. The growth eventually

stops completely.

A measurement of phase separation in the binary alIoy MnCu by Gaulin et

al.[83] reports scaling and a growth exponent of n = 1/3. However, in this alIoy, the

variation of solid solution lattice parameters[182] in the range of phase separation

composition is small, which leads to a minimal strain energy effect.

F'inally, it is interesting to note that if no instrumental unsmearing had been

performed to the measured scattering intensity patterns, the effective exponent ob·

tained would have been nearer to 1/3.
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6.3.2 Interface width correction

The Iate stages of SD involve at Ieast two Iength scales: the average domain size R(t)

and the width w of the interfaces. The nonzero width w has not been cOllsidered

yet in the discussion of late-stage SD. This width is essentially duc to thermal

fluctuations which roughen the interface and thus w ~ ç. Since short length scale

features show up at high wavevectors in the structure factor, interfaces betweem

domains will affect S(q, t) at the high q tail. This section introduces a correction to

the high q tail ofthe scaling function to account for w.

In the previous section, it was shown that the late stages 6S(q,t) did not

present the expected q-4 tail predicted by Porod's Iaw (Fig. 6.2~). Instead, the

l!l.S(q,t) were found to drop faster than q-4 for all runs (AA - EE). This faster

decrease corresponds to the expected effect of nonzero interfacial widths. Indeed,

the derivation of Porod's Iaw is based on a mode! in which there are sharp interfaces

between the domains i.e. w = o. In practice, this means that Porod's Iaw is not

expected to work unless the domain size is much greater than the interfacial width.

A correction for the finite width w of the interfaces can be attempted by intro­

ducing a dimensionless shaping (or enveloping) time independent function S(q, w)

to the scaling function F(:t).[183] Equation (5.68) can thus be rewritten aS

S(q,t) = CS(q,w)q;;;3(t)F(:t)

subject to limq~oS(q, w) = l.

The form used for S(q,w) will be an hyperbolic tangent:

[q1rW (q1rW)] 2
S(q,w) = -2-csch -2-

(6.50)

(6.51)

The only adjustable parameter in the Eq. (6.51) is the time-independent width

w. !ts value was obtained by fitting

(6.52)

.,-,.
to the measured l!l.S(q,t) over). q-range beyond the shoulder. In Eq. (6.52), which

is a modified form of Porod's Iaw to take account of w, the constant A is the saille
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as defined in Eq. (2.31) and is a measure of the interfacial area per unit volume.

The values of w are expeeted to be temperature-dependent, and to increase as the

aging temperature approaches T,.

For the q-range restrieted to [0.048, 0.089] A-1, the best fit results to Eq. (6.52)

are reported in Table (6.5).15 The noise in q4~8(q,t) (cf. Fig. 6.23) is reflected by

the large uncertainties in the best fit values reported for A(t) in Table (6.5). The

temperature dependence of w is not obvious from the values listed in Table (6.5) due

to the large errors for the three ru,~s corresponding to the higher aging temperatures.

The interpretation of the best fit values for w is limited by the noise at high q and

by the possibility of yet an additional shoulder at the latest times measured.

Furthermore, at a given tem!,eraturc, the position of the first shoulder is a

function of time; as time increases, the shoulders moving to lower waveveetors.

Hence, when fitting Eq. (6.52) over a fixed range of q, the relative location with

respect to the shoulder maximum changes in time as the shoulder moves. The

fitting range of q was chosen such that in all cases j ne shoulder maximum was below

the lower limit. However, any additional prospective shoulder would be likely to

influence the fit result as it sweeps by the q-window during the evolution of ~S(q,t).

An estimation of the effect of the relative location of the shoulder maximum with

respect to the fitting range on best fit values of w yielded at most 10% variation in

w for 12 :s t :s 52 s. This effect is in general monotonie over the times investigated,

resulting in an increase of best fit w with time. However all such estimates of w lie

within the erro! bars of the values listed in Table (6.5).

Figure (6.26a) shows S(q,w) calculated from Eq. (6.51) with w = 15.1 A. Part

(b) shows the q-4 Porod tail and a correeted S(q, W)q-4 for t = 12.61 s, which over­

laps w;th the measured data (run BB). The form S(q, w) used corresponds to the

one shown in (a). Although the best fit w for this earlier time differs from the value

15As was the case for Table (6.4) the uncertainties on the parameter values correspond to the

calculated standard deviations with X' = 1. However, in the present case, the standard deviations

calculated for each q48 S(q, t) were used to weight the data points in the least squares fit to

Eq. (6.52).

198



1.0

0.8 (a)
,.......,
0<....... 0.6•
Ir)
.......
Il
~ 0.4a

'0}

0.2

0.0 0.02 0.04 0.06
q (Â-l)

0.08 0.1

t=12.61s
a

-1

,......., -2s
~ -3
~

lZl<] -4
.........s -5

-6

-7

-0.4 0.0 0.4 0.8

log(q/qm)

1.2 1.6

Ngure 6.26: (a) Interfacial width correction term S(q, w) calcnlated from Eq. (6.51) with
w = 15.1 A. (h) Porod tai] (q-4) and corrected to account for finite interfacial width (05(q, w)q-4)
with S shown in (a). The data correspond to run BB.

199



T t A(t) w

(K) (s) (107m-1 ) (À)

511 52.64 2.38 ± 0.69 15.2 ± 3.8

537 52.61 1.69 ± 0.48 17.2 ± 3.5

563 52.46 0.83 ± 0.87 20.1 ± 12.2

578 52.51 0.58 ± 1.26 24.0 ± 23.5

588 52.64 0.17±0.17 11.8 ± 16.1

Table 6.5: Besl fil widlh correclion parameler values 10 account for denalions from ÀS(q, 1) _ q-4
at large q (6.52) for ail lale-slage runs (AA - EE). The lemperalures are listed to the nearesl
degree (cf. Table 6.1).

reported in Table (6.5) for t = 52.61 s, it is still within the error bars of that value.

Figure (6.27) compares the Ohta-Nozaki scaling form F(ON)(X) given by

Eq. (5.90) corrected for the interfacial width using Eq. (6.52) to the scaled 6S(q,t =

12.61 s) for run BB. The solid line represents the uncorrected best fit F(ON)(X)

with A = 4.0 and the dashed line is the corrected F(ON)(X) using Eq. (6.51) with

w = 16.0 Â.. Although the high q tail of the corrected F(ON)(X) displays a decay

with the s~,me power as the scaled data, the value of F(ON)(X) at the shoulder is too

small to model the data, as remarked in the previous section.

A oest fit value w can be determined by the procedure above to obtain a

"corrected" Porod tail that tracks the high q dependence of measured 6S(q, t).

However, an additional check on the applicability of Porod's law can be performed

by rewriting Eq. (2.32) as[45J

(6.53)

This equation is not satisfied by Fig. (6.23) since q46S(q,t) is not constant with q

for large q.

Figure (6.28) displays the 68(q, t) modified by the inverse of the width cor­

rection prefactor. This figure is representative of the result obtained for ail runs

AA - EE and shows that Eq.(6.53) cannot be satisfied. Even with the interfacial

width correction term to make limq_co S-l(q, w)q46S(q) a nonzero constant, the
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for finite interfacial width as discussed in text.

main peak in q4 S-'(q,w)(q,t)IlS(q) is a!ways too small and the integra! (6.53) is

negative. At the later times the peak in IlS(q, t) is higher, but since it is located at

a lower q, its contribution to the q4 11S(q) part of the integrand decreases (as shown

by Fig. 6.28), and the integra! is increasingly negative. Consequently, although the

high q tails that do not obey Porod's law can be rationalised in terms of interfacial

width effects, tne simple use of a shaping funetion employed in this section appears

to be insufficient to reconcile measured IlS(q, t) with the sum law (2.32).
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Chapter 7

Conclusions

This thesis has presented in situ measurements of time resolved structure factors

for (a) early stage and (b) late-stage phase separation kinetics following the quench

of the binary alloy AIo.62Zno.38 in the unstable region of its phase diagram. The

experimenta1 time resolution (up to 5 ms) was made possible by the use of a bright

synchrotron x-ray source, a position sensitive dedor, fast counting e1edronics and a

rapid temperature change by resistive heatb~. The measurements allowed the first

experimenta1 check of three important aspeds of critica1 phenomena in alloys:

• The first extensive experimenta1 verification of the validity of the non!inear

equation of motion for the evolution of the structure factor in an alloy during

early stages of sn introduced by Langer, Bar-on and Miller (LBM).[7] The

early stage regime of the measurements was confirmed by the determination

of the integrated intensity. The Cahn-Hilliard-Cook !inear equation of motion

was found insufficient to describe the evolution of S(q, t) over the early time

regime measured. However, fits with the LBM theory tracked successfully the

measured structure factors and best fit parameters have been obtained. These

include the free energy parameters r and u, the gradient energy coefficient K

and the atomic mobility M.
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• The nonlinear relaxation of fluctuations after a quench in the one-pha..,e region

above T,. The time-evolution of S(q, t) for T > T, presents features similar to

those for the phase decomposition at T < T,. In particu!ar, there are high q

modes which grow initially and subsequently decay.

• The first measurement of non scaling features in the structure factors during

the iate stages of sn in a binary alloy, including the existence of a shou!der on

the high wavevector side of the main peak. These effects may be attributed

to elastic effects between domains of the two product phases.

The early time regime investigated is of considerable scientific interest because

it is only in the early stage of the phase separation that sn can be unambiguously

identified. The main conclusions from the fit of the LBM theory to the structure

factors measured during the early stages of sn may be summa.rized as follows:

• The high wavenumber cutoff qm= had to be constrained proportional to the

inverse of the mean field correlation length with a proportionality constant Cl.

The choice of cr influences the range of the decomposition process assumed in

the best fit LBM resu!t, as verified by the composition distribution functional

during the isothermal aging.

• The decomposition which occurs during the quench can be accounted for by

considering an initial composition distribution functional doubly peaked about

nonzero ±bo. As expected, 110 increases with the depth of the quench inside

the spinodal region. Its value decrea.ses with an increase of the cutoff factor

Cl.

• The gradient free energy coefficient JÇ increa.ses with temperature and peaks

near T,. It is independent of Cl.

• The "c4
" free energy parameters r and U obtained were highly anticorrelated

during the fit. The best fit r depends linearly on 1 T - Tc 1 and scales as cr-z.

The value of u increases slightly with temperature showing a slight anomaly at
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Tc and scales as a-3
• The calculated J-r/u al10wed the determination of the

mean field phase diagram (coexistence line) which scales as a 1/ 2 • From this

scaling relationship the numerical value of a was chosen such that the predicted

integrated intensity at the resulting mean field coexistence line agreed with the

measured integrated intensity for the quenches away from Tc. Agreement was

then was found between the calculated coexistence line and a predictiop_ by a

regular solution mode!.

• The atomic mobility M was determined separately from the thermodynamic

driving force. It increases exponential1y with temperature and is independent

of a. A comparison of M with the temperature-dependent values calculated

from three tracer diffusivity measurements in the literature showed remarkable

agreement.

• A thermal noise strength term € was computed for ail runs and relatively

high values are obtained as expected from the higlùy nonlinear characteristics

observed for the decomposition.

• At times of order 2.6 s, the LBM equation of motion becomes inadequate to

predict the evolution of the measured structure factors.

To perform the instrumental deconvolution for the PSD a new computational

technique was developed and used for the late-stage data. The results of the mea­

surements of late-stage SD are:

• A shoulder is observed at high q. This is the first time this feature is reported

for a binary al1oy.

• The measured scattering profiles do not quite scale during the time of the

measurement. Comparison of the measured structure factors with two scal­

ing forms was unsuccessful although the form suggested by ühta and Nozaki

presents a profile similar to the data. In particular, this form has a shoulder

at high q as observed experimental1y.
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• Growth exponents were calculated to be DAO :;, n :;, 0.45. These values are

larger than report.ed earlier for a conserved order parameter system. They are

however not incomistent with recent predictions for alloys in which the shear

modulus is larger inside precipitates than in the matrix phase.

• High q tails do not go as q-4 as expected from Porod's law for systems with

sharp interfaces. A correction was suggested to a~count for interfaces with a

width of order of the correlation length and explain the departure from ideal

q-4 tails.

While this research has satisfied the goals stated in the introduction and in

doing so has yielded a new and valuable verification of early stage theory as weil

as sorne unexpected late-stage results, it a1so raised several new questions which

require llew analyses of the present data and further experiments for their answer.

• Re-analyse the measurements presented in this dissertation and analyse addi­

tional measurements at compositions away from the critical composition using

a non-symmetric form of the free energy functional instead of the "C
4ll form.

This work is necessary to resolve both branches of the asymmetric solvus and

thus further verify the LBM equation of motion.

• Reduce the thickness of the ribbons. Thinner ribbons would give faster quench

rates, resulting in a dec,ease of the quenched-in structure.

• Perform new measurements optimized with a better temperature control to

study the critical region (critical exponents). Although the temperature con­

trol for the measurements presented in this dissertation was more than ade­

quate for the investigation of the kinetics of SD, it could be improved further

to minimize the temperature smearing across the width of the sample for in­

stance. The present results should be compared with results obtained with

narrower ribbons or with a beam more collimated in the horizontal direction

(the direction of the ribbon width).
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• Investigate of the influence of e1astic constraints on the growth exponent.

Structure faetors should be measured beyond the times studied in this dis­

sertation to investigate the possibility of a scaling form at later times with a

growth exponent of 1/2 as predicted by Enomoto and Kawasaki.[179,180] A

systematic study at various alloy compositions should also be performed to

complement late-stage results .

• Apply coherent small angle x-ray scattering[184] to the study of sn in single

crystals of AlZn to obtain higher order correlation functions. This is possible

since the speckle patterns obtained by coherent scattering correspond to a

complete Fourier transform of the rcal-space structure.

The first item is presently under investigation by the author.
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