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ABSTRACT

Geometric and tomographic methods of reconstructing three-dimensiona«
cerebral blood vessels from two-dimensional digital subtraction angiograms

are studied experimentally.

Three-dimensional vessel geometry 1is reconstructed from center-line
coordinates of corresponding vessel branches in both stereo and biplane
angiogram pairs. The problem associated with finding corresponding vessel
branches in biplane images was shown to be reduced by re-projection of
stereoscopically reconstructed vessels. Results indicate that the limiting
factor 1in reconstruction accuracy is the degree of vessel foreshortening in

biplane image pairs.

An  iterative algorithm (‘Clean’) is adapted to  tomographic
reconstruction of vessel «cross-sections from a small number of views.
Star-pattern artifacts in images initially formed by back-projection are
removed by iterative deconvolution guided by ‘a priori’ object knowledge.
This procedure is repeated for a set of two-dimensional sections that
describe the three-dimensional vascular structure. Results show that there
is sufficient detail in reconstructed sections to determine the location of

vascular structures.
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RESUME

Des méthods géométriques et  tomographiques ont été étudiées
expérimentalement pour reconstruire les vaisseaux sanguins cérébraux en

trois dimensions a partir d’angiographies soustractées numérisées.

La géométrie tri-dimensionnelle des vaisseaux est reconstruite a partir
des coordonnées sur la ligne centrale des branches correspondantes dans les
angiographies biplane et stéréo. On montre que la difficulté associée a
trouver les branches correspondantes dans les paires d’images biplanes est
réduite par reprojection des vaisseaux reconstruits en stéréo. Les résultats
démontrent que le facteur qui limite la précision de la reconstruction est

le degré de raccourci des vaisseaux dans les paires d’images biplanes.

Un algorithme itératif ('Clean’) a été adapté a la reconstruction
tomographique d’un petit nombre d’images de coupe transversale des
vaisseaux. Les erreurs d’images formées par la surimpression en forme
d’étoile sont enlevées par une déconvolution itératif guidée par des
connaissances ‘a priori’ de l’objet. La procédure est répétée pour un groupe
de sections bi-dimensionnelles qui décrit la structure vasculaire tri-
dimensionnelle. Les résultats démontrent qu’il existe des détails
suffisantes dans les sections reconstruites pour determiner la position des

structures vasculaires.
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PREFACE

This thesis arose out of the need for a three-dimensional (3-d) image of
the cerebral blood vessels to assist the neurosurgeon in the planning of
safe stereotactic surgery. The majot concern in planning passage of probes
or biopsy needles in the brain is blood vessel hemorrhage. In order to
minimize trauma it is necessary to determine the 3-d position of blood
vessels 1in relation to the target volume. The wvork presented in this thesis

is a step in meeting this long term goal.

Chapter 1 is an overview of the broad subject of 3-d vessel
reconstruction. This chapter begins with a brief description of modalities
used to image vessels and makes the case for the use of angiography. Of the
three physical characteristics of blood vessels, flow, morphology, .and
position, the latter is the most important in surgical planning. Methods
that reconstruct the 3-d position of vessels from angiograms are reviewed.
Reconstruction methods are subdivided into related groups: 1) stereoscopic
display, 2) geometric reconstruction from stereo and biplane images, and 3)
tomographic image reconstruction. This chapter revievs the different
methodologies being followed and outlines our present understanding of the
problems in 3-d vascular reconstruction from angiograms. The most likely
approaches are stereo and biplane analyses and tomography. Both these
approaches are considered further in this thesis. The scope of this thesis
is restricted to the evaluation of reconstruction algorithms of these

me thods.

Digital subtraction angiography (DSA) imaging systems have several
physical problems associated with the measurement process. In chapter 2
these problems are described in the context of image formation, detection,
and processing. The consequences of measurement error in DSA image
acquisition are discussed from the point of view of subsequent 3-d analysis

of the angiograms.

The third chapter describes an interactive reconstruction method that
uses stereo and biplane angiograms. A ‘lateral’ stereo DSA image pair and a

single image in a direction orthogonal to the lateral pair (i.e. ‘anterior-




posterior’) are acquired. The biplane pair is made up of the anterior-
posterior image and one of the lateral stereo images. This new method uses
the results of stereo reconstruction to assist the observer in selecting
corresponding vessel branches in the anterior-posterior angiogram. The idea
is to use the computer to provide an orthogonal view of the stereo
reconstructed vessels, rather than have the observer mentally interpret such
a view from a stereoscopically perceived 3-d 1image of the vessels. The
graphical overlay of re-projected vessels in the anterior-posterior
angiogram simplifies the task of resolving the ambiguities of vessel
superposition. Having found corresponding vessel branches in the biplane
images, a final reconstruction is performed. In order to evaluate
reconstruction accuracy, both numerical and phantom experiments were carried

out. This is reported in chapter 4.

Chapter 5 investigates the problem of tomographic image reconstruction
from a small number of projections. The reconstruction problem is simplified
to a form that can be solved using a subtractive deconvolution technique.
The proposed method uses ‘a priori’ information about the blood vessels to
guide the deconvolution process. This method, known as modified-Clean
{(Mclean), attempts to maximally retrieve the reconstructed object consistent
vith 1its projections and reduce artifacts to an acceptable level. In this
manner the best possible use of the available projections is made. Chapter 5
concludes with a discussion of the uniqueness and limitations of the

proposed reconstruction algorithm.

Chapter 6 concludes this thesis vith a summary and presents suggestions

for further research in the 3-d analysis of cerebral angiograms.

The following are believed to be original contributions made by this

thesis:

1) The extension of practical applications of the known principles of

stereo and biplane analyses.

2) The demonstration of the wutility of re-projecting stereo
reconstructed cerebral blood vessels as a tool for finding the

corresponding vessels in the anterior-posterior projection.




3)

4)

5)

6)

The demonstration of the limitations of stereo-biplane stereotactic
reconstruction technique as a function of measurement noise and

correspondence errors.

Thorough analysis of the propagation of errors 1in quantitative
analysis of digital stereoscopic and biplane angiograms made under

stereotactic conditions.

Experimental and observational extensions of knowledge 1in
tomographic image reconstruction of vessel-like objects from a small

number of projections.

The experimental extension of the Clean algorithm to include removal
of star-pattern artifacts in vascular images reconstructed from a

few projections.
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CHAPTER ONE

INTRODUCTION

1.1 Overview

In this chapter the motivation for a three-dimensional (3-d) image of
the cerebral blood vessels and a historical review of techniques to
construct such an image are presented. §1.2 describes the need for a 3-d
image of the cerebral blood vessels in neurosurgical planning, and 4§1.3
discusses the current techniques that are used to image the cerebral blood

vessels.

To date the technique of choice is x-ray subtraction angiography, and
the various methods that have been used to visualize and reconstruct blood
vessels from angiograms are reviewed in §l.4. This chapter concludes with a

summary of the limitations of the existing reconstruction methods.

1.2 Rationale

A 3-d image of the cerebral blood vessels is important to the safe
planning of stereotactic neurosurgery (Szikla et al. 1975). The term
‘stereotaxy’ means ‘arrangement in space’ and refers to any neurosurgical
procedure which places a probe in the region of the brain or spinal cord
without directly visualizing that region (Bosh 1986). Stereotactic
operations are used to safely approach small regions located in «critical
areas of the brain. This is achieved by referencing structures to a rigid
frame (i.e. stereotactic frame) which is fixed to the patient’s skull during
imaging and surgical procedures. Through small burr holes in the skull
recording-stimulating electrodes or biopsy needles can reach almost any
brain region without having to make a large incision in the brain or use
general anesthesia. Irradiation can also be focused stereotactically on
small regions in the brain (Hartmann et al. 1985; Colombo et al. 1985;
Heifetz et al. 1984; Pike et al. 1987).



Since the primary risk to the patient during such interventions is

hemorrhage, then by plotting probe trajectories or isodose distributions in
the 3-d image of the cerebral blood vessels, trauma can be minimized. In
order to accomplish this the stereotactic system requires three components:
an image generating device, historically film x-ray system (Leksell 1951),
but more recently computed tomography (CT) scanners, digital subtraction
angiography (DSA) and magnetic resonance (MR) imaging systems (Peters et al.
1983,1985; Alker et al. 1984; Suetens et al. 1982; Kelly et al. 1984), a
mechanical frame (Leksell 1949; Brown 1979; Peters et al. 1983; Olivier et
al. 1985), and a procedure to transform image-system coordinates to frame

positions (Lirov et al. 1986; Peters et al. 1986; Saw et al. 1987).

Another advantage of having a 3-d image of the cerebral blood vessels is
the possibility to construct any arbitrary perspective viewv of the vessels.
Tomographic sections can also be selected and used to augment a
corresponding MR or CT section image. Integrated images would provide
precise information about the correlation between anatomical and

radiographic data.

Such c¢linical tasks as neurosurgical planning and correlative studies
require a 3-d image of the cerebral vasculature in which the positions of

the blood vessels are accurately known.
1.3 Vascular imaging techniques

The cerebral blood vessels can be visualized by a number of
two-dimensional (2-d) imaging techniques. These include x-ray subtraction
angiography, computed tomography, and magnetic resonance imaging. Although
Doppler ultrasonography is often used to image vessels, it is ineffective in

the cranium (Wedeen et al. 1985).
1.3.1 X-ray subtraction angiography
In x-ray subtraction angiography the cerebral blood vessels can be made

visible by injecting them with a radio-opaque or contrast material,

typically containing iodine. Subtraction techniques are then employed to




eliminate the intervening tissue so that the contrast visualization is
limited solely by noise. The subtraction technique involves obtaining data
both before and after the administration of contrast agent and subtracting
the result. Pre- and post-opacified images can be recorded on either film or
digitally. The subtraction concept is not new (Ziedses des Plantes
1934;1962), but not until the development of digital subtraction angiography
(DSA) has subtraction accuracy been sufficient to isolate less than 1% image

contrast (Kruger and Riederer 1984).

Since the angiogram is just a 2-d projection image, the loss of depth
information limits analysis of the 3-d structure of the vessels.
Furthermore, interpretation is complicated by vessel foreshortening (i.e.
vessels parallel to the line of the x-ray source to the image detector) and

by the overlapping or superposition of vessels in the angiogram.

1.3.2 Computed tomography

Similarly, computed tomography (CT) scanning immediately after the
intravenous injection of a bolus of contrast material enables visuvalization
of the cerebral blood vessels. This method of combined computed
tomography-angiography is often referred to as ‘arterial bolus dynamic
computed tomography scanning’ (Nauta et al. 1984). The resultant images show
vessels associated with lesions and tumours in the CT plane (Nauta et al.
1984).

Although  relatively large vascular structures can sometimes be
visualized on CT scans, many vessels are beneath the resolution of CT
scanners (Bergstrom et al. 1976; Weinstein et al. 1977). The limit of the
size of a blood vessel that can be defined with CT is 1.5mm when the blood
iodine 1level is about 4mg/ml (Bergstrém et al. 1976). There are also some
regions 1in the head, particularly near the base of the brain, where vessels
cannot be demonstrated in a scan because of vascular blushes and bone

artifacts (Naidich et al. 1977).

For those cases in which the stereotactic biopsy trajectory must pass

through several CT planes, it becomes more difficult to show all the vessels



along the entire trajectory. Even if vessels can be reconstructed over all

regions of the brain, multiple overlapping sections would have to be
collected almost simultaneously which is beyond the capabilities of present

equipment (Scanlon et al. 1980; Block et al. 1984).

1.3.3 Magnetic resonance imaging

Several methods have been developed for magnetic resonance (MR) Lliow
imaging (Nishimura et al. 1986; Wedeen et al. 1985; Hale et al. 1985; Valk
et al. 1985; Feinberg et al. 1984; Singer and Crooks 1983; Macovski 1982).
In these methods an image based on flowing material 1is acquired by
discriminating between static and flowing material during the excitation
portion of the imaging process. Static material signals are either
subtracted out (temporal subtraction) or not generated vwhile flowing
material becomes an active source vof signal (canceling excitation).
Moreover, these excitation procedures can be applied to both cross sectional
and ‘projective’ imaging. MR vascular imaging combines the advantages of 3-d
imaging and soft tissue subtraction techniques. The 3-d reconstruction of
vessels «can be shown in any projection, and overlapping vessel segments can
be readily differentiated on the depth encoded image. MR flow imaging is
clinically practical in only large vessels such as the carotids. Limitations
of existing methods are most often attributed to the inherent difficulty of
flow imaging ‘in vivo’ including the small size and complicated anatomy of

important vessels and the high velocity they sustain (Wedeen et al. 1986).

0f the three vascular imaging techniques, angiography is preferred on
the basis of better resolution and good image contrast due to the
subtraction of background (e.g. tissue and bone) from the image. Although
the blood vessels are conspicuous in the angiogram, the interpretation of
vessel depth position usually requires both observer training and additional
angiograms taken at different views. The methods available to recover depth

information from the angiogram are presented in the next section.
1.4 Overvievw of 3-d vascular reconstruction from angiograms

Angiograms all have the fundamental disadvantage that they provide no




o

information as to the position in depth and the shape or lumen geometry of
the vessels (Fig. 1.1). Two important and distinct features in the
angiograms shown in Fig. 1.1 are the highly curved paths of the blood
vessels and the 1large number of blood vessels in the image. The primary
result of this combination is the high degree of vessel overlap in
angiograms from whatever view they are taken. There will alvays be a certain
number of blood vessels that are obscured, and they will be different from
view to view. This result makes finding efficient and rigorous solution(s)

to the reconstruction problem difficult.

In this section a number of approaches to the problem of recovering
vessel depth position from angiograms are reviewed. They include visual
stereoscopic analysis, 3-d measurement or geometric reconstruction from
stereo and biplane angiograms, and tomographic reconstruction from a few
views. Methods of reconstructing vascular morphology and flow from

angiograms are discussed elsewvhere (Reiber et al. 1984; Parker et al. 1987).

1.4.1 Stereoscopic angiography

The most commonly used clinical procedure to study the 3-d structure of
the cerebral vasculature 1is stereoscopic angiography (Doi et al. 1981).
Stereoscopic imaging techniques are simple and usually require no special
equipment. One image is recorded for each eye. Between the recording of each
image the x-ray tube is shifted from the left eye to the right eye position
vhile keeping the image detector fixed. The shift in the tube focus is
usually about 10% of the focus-detector distance (Christensen et al. 1972).
In some radiographic units the x-ray tube and image detector are connected
rigidly together to form a c-arm structure. With these units it is easier to
shift the c-arm a certain number of degrees rather than a specific distance.
In stereo radiography the c-arm is usually rotated 6 to 10 degrees between
images (Christensen et al. 1972). Figs. 1.2 a) and b) give examples of

typical stereoscopic cerebral angiograms using a c-arm rotation technique.

The basis of stereoscopic depth perception is binocular disparity or the
horizontal parallax between corresponding points from images that are

projected on the left and right retinae (Davson 1963; Julesz 1971). A 3-d



a) Lateral view b) Anterior-posterior view

T.gure 1.1 Orthogonal DSA images of the right internal carotid system of

arteries with the 1) callosomarginal and 2) pericallosal
branches indicated. The direction of the x-ray beam for the anterior-
posterior projection is indicated by the large arrow in a).
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impression of the blood vessels is easily obtained from a stereo pair of
angiograms by direct viewing or by means of a stereoscope, an optical
instrument used to superimpose the stereo images. In this manner,
stereoscopy is very useful 1in aiding the observer to differentiate
superimposed vessels. Although depth information can be recovered easily,

there are three important limitations to such procedures.

Firstly, stereoscopic depth perception is only relative, it ranks
objects 1in their order of closeness, but does not disclose the distance
between them. Secondly, the stereoscopic procedure is dependent on both the
stereo recording and viewing geometries. Ideally the stereoscopic image pair
should render an equal or isotropic perception of 3-d space (Jarre and
Teschendorf 1933; Saunders 1968). This is possible by ensuring that the
stereo shift is the same as the distance between the pupils of the viewer of
the stereograms and that the distance from which the stereograms are viewed
is the same as the focus to image detector distance (Kimura et al. 1983).
Practically these geometrical requirements are not always possible to
achieve. Departures from the ideal geometry results in distorted or unevenly
perceived spatial relationships. Variability in pupil to pupil distances of
different observers, vertical parallax due to differences in geometric
magnification of the object, and restrictions on the possible x-ray tube or
c-arm shifts can all affect the geometry required for isotropic stereoscopic

viewing.

The final limitation of this procedure is that depth perception of the
vasculature 1is restricted in one direction. Although biplane stereo pairs
can be used, it is often difficult to fuse the resulting perceived depth
images together into one mental image (Fig. 1.2). For these reasons visual
inspection of stereo images alone is not always sufficient to meet the

requirements of sterectactic neurosurgery planning.
1.4.2 3-d measurements from stereo and biplane angiograms
Stereo and biplane analyses are based on the principle that the 3-d

position of a point can be computed from measurements of that point’s

position in two or more 2-d images (Sutherland 1974). The reconstruction




procedure consists of two basic steps: calibration and matching. In the
calibration step the positions of the x-ray source and image detector for
each viev in the reconstruction are computed to give the transformation
function that describes the mapping of 3-d space onto the image. In the next
step, points in one view are matched vith the corresponding points in the
other views. From the measured 2-d coordinates of the point in each view its
3-d position is computed. The process of matching corresponding points is

often referred to as the ‘correspondence problem’ (Duda and Hart 1973).

In angiograms, points are selected along the vessel mid- or center-line,
and if enough points are used vessels can be traced accurately in 3-d space.
Given either stereo or biplane angiograms the correspondence problem is
non-trivial because of vessel superposition. A number of different methods
for reconstructing blood vessels from stereo or biplane angiograms have been

reported.

1.4.2.1 Reconstruction from stereo images

The most common approach to reconstructing the cerebral blood vessels
has been to stereoscopically trace vessel center-line points in 3-d from a
stereo pair of angiograms. Lateral angiograms are most often used because
small vessels are best visualized in these projections (Fig. 1.2a). Small
vessels are incompletely observed on other projections because of increased

superposition.

Early examples of this approach require an observer to stereoscopically
trace vessel center-lines (Vignaud and Korach 1973; Rabischong et al. 1975;
Vignaud et al. 1979). This approach is often known as ‘stereogrammetry’ or
‘stereoradiogrammetry. ’ With the aid of a stereoscope and operator
controlled stereo cursor, known collectively as a stereocomparator, the
center-line of vessels can be traced in 3-d from a stereo pair of film
angiograms. The observer usually enters as few points as is necessary to
trace a vessel accurately. The reconstructed vessels are approximated as a
series of 3-d points connected by straight 1line segments. Accurate
reconstruction of vessel depth position (i.e. 0.5-1.0mm) has been

demonstrated with film angiograms recorded at x-ray source to film distances



of approximately two meters (Vignaud and Korach 1973). Long focal lengths in
addition to an adequate stereo shift (see §1.4.1) and sub-millimeter
accuracy 1in disparity measurements are necessary for such reconstruction

accuracy (Suetens et al. 1983).

This procedure of recording the data, at about 150 points per hour, may
be too time consuming to be used clinically if many vessel are to be
reconstructed (Vignaud et al. 1979; Rabischong et al. 1975). In spite of
this limitation, stereoradiogrammetry is still the method of choice
(Garibotto et al. 1985; Legout et al. 1985). Only a skilled observer is able

to detect and outline all the blood vessels unambiguously.

Recently efforts are being made to automate reconstruction from stereo
images (Suetens et al. 1983; Hoffmann et al. 1987). Two essential steps in
automating reconstruction are blood vessel delineation or segmentation on
angiograms and establishing correspondence of vessels between stereo
angiograms. Suetens’ method uses a thinning technique to delineate blood
vessels from a digitized £ilm angiogram as a string of line segments
characterized by an orientation, width, and intensity. Vessel line segments
are then matched on how w-ll line features in both images conform to each
other. This 1is approached in an iterative way and is based on the
‘consistency’ property of disparity (Barnard and Thompson 1980). At vessel
crossovers observer intervention is required. It is wunlikely that one of
these features alone will be invariant from one projection image to another
because of the physics of the imaging process and superposition of vessels
in projection. Suetens et al. (1983) recognize this important aspect of the
correspondence problem and require conformity of several vessel features.
Matching 1is successful when all or most of the line features are invariant
in both images. The weak aspect of this method is its sensitivity tn errors
in vessel delineation (Suetens et al. 1983). Reconstruction errors arise
when the blood vessels are delineated incorrectly and inconsistencies are

introduced into the characterization of vessel-center line features,
Hoffmann et al. (1987) attempt to correlate vessel trace intensity

profiles in order to establish vessel correspondence in digitized film

angiograms. Their method uses a ‘double-square-box’ region of search
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technique to track vessels in stereo angiograms and obtain vessel intensity
profiles along a line perpendicular to the tracking direction. As a vessel
is tracked in one image its intensity profile is correlated with candidate
profiles along the stereoscopic image shift line in the other image. The
center-point of the candidate profile that compares best is taken as the
corresponding point. Vessel profile matching should 'ork well when a high
spatial correlation between the stereoscopic images exists. A geometric
magnification of two 1is used to achieve reconstruction accuracy of
approximately 1mm. This method shares the same potential limitations as
Suetens’, a sensitivity to both tracing errors and inconsistencies in the
vessel features that arise from inadequate spatial correlation between
stereoc images. Even with recording conditions such as long focal lengths or
large geometric magnifications, some projected vessels may be foreshortened
or superimposed in only one image and spatial correlation for that vessel is

lost.

Rather than determining a probe’s trajectory through the reconstructed
vascular structure, its path may be plotted in a stereoscopic pair of
angiograms (Suetens et al. 1984; Ghosh and Boulianne 1984; Cloutier et al.
1985). Viewing a stereo pair of angiograms an observer with the aid of a
stereo image of a straight line or ‘floating-line’ representing a probe can
simulate implantation by localizing visually this line in the 3-d space of
the angiogram (Ghosh and Boulianne 1984). Once a safe path has been found
the image coordinates of the stereo probe end points are read and the 3-d
spatial trajectory computed. Since this method relies on stereo depth
perception, requirements for isotropic perception of 3-d space should be met
(Saunders 1968). Visual path determination has the advantage that 1its
practical implementation 1is relatively simple and economically feasible
(Cloutier et al. 1985). A shortcoming of this method is that the observer
cannot look around the object. Blood vessels and probes can only be viewed

from one direction.

Most common c-arm digital subtraction angiography units are not capable
of meeting the requirements of stereo reconstruction for high spatial
correlated images and accurate measurement. Realization of stereo

reconstruction needs special DSA units in order to meet these requirements.
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Another approach to the reconstruction problem is to use biplane rather than

stereo angiograms.
1.4.2.2 Reconstruction from biplane images

Vessel reconstruction from biplane angiograms generally incorporate a
‘ray-projection’ technique to find vessel point correspondences. Ray-
projection methods are based on the relationship that a point in one 2-d
view or image can be back-projected as a line for any other view (Sayre et
al. 1974). The display of a back-projected position from one view onto
another view limits the search space for a corresponding point to a line.
Rather than being required to recognize the position of the same point as
seen in the conjugate view, the observer is required only to recognize the
intersection of the back-projected line and the vessel being traced. As a
result, analysis is no longer limited to stereo views, any arbitrary set of

views can be used providing they have been calibrated.

This method has been used to reconstruct blood vessels from biplane film
cerebral angiograms (Sayre et al. 1979; Potel et al. 1979) and coronary
arteries from biplane cinefluoroscopic films (MacKay et al. 1982; Potel et
al. 1983). In spite of the reduced requirements on the observer, this method
is still time consuming and is better suited to studies which restrict
attention to a few vessels or even to a few points. Although intersection of
the back-projected line with the trace in the other view is necessary for
correspondence, it is not sufficient. Problems occur wvhen a back-projected
line does not intersect a vessel, or intersects several vessels, or one
vessel several times, and when some candidate points are obscured by vessel
superposition. In practice the observer uses gross morphology such as
arterial tree connectivity or additional views to resolve the correspondence

problem (Rubin et al. 1978; 1980).

There have been several attempts at completely automating vessel
reconstruction from biplane angiograms. Kim et al. (1982) used a
contrast-edge tracking algorithm to resolve the problem of finding vessel
correspondence in biplane digital subtraction angiograms. Starting with

completely opacified vessels in biplane images, the center-lines are traced
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along vessels to provide the necessary pixel position data. Next, in each
image frame of both studies the moving edge of contrast density along the
center-line is detected and evaluated using a matching method of
cross-correlation for the two sequential frames’ <contrast-density. In
synchronized biplane studies the contrast-edge points of two images are
considered as the corresponding points at each frame. The advantage of this
method 1is that if the arrival times of the contrast media are different for
neighboring or superimposed vessels, ambiguous correspondences can be
avoided. Also, finding a match in a foreshortened vessel can easily be
located by the stationary contrast-edge points. To date the use of the ‘time
history’ of vessel center-line pixels has been the only known technique to

directly address the problems of vessel superposition and toreshortening.

For small sized vessels (<2.0mm) the accuracy of this method is low, and
back-projection lines are used to determine corresponding points on vessels.
Errors in the 3-d reconstruction are related to the cross-correlation
matching method of tracking contrast-edge densities and are sensitive to
noise effects existing in the DSA system. Reconstruction errors would also

occur if the vessel center-line is incorrectly traced.

Fujii et al. (1983) describe a method of matching graph representations
of the vessel center-line in biplane cerebral angicgrams. This method is
used to find corresponding vessel branches in biplane imapes from where the
method proceeds to match individual branch points. The method consists of
two steps. In the first step the center-line points of the vessels from
biplane digital angiograms are extracted separately and their structure
represented as graphs by computer. A graph is formed by characterizing as
nodes, pixels such as end points, crosses, and bifurcations. All other
pixkels are characterized as constituents of arcs. The list of nodes and arcs
include various attributes describing both the structure of the graph and
the features of the vascular image. In the second step, using the back-
projection 1lines of node points and taking into account node attributes and
the knowledge that node ordering is preserved from one view to another,
corresponding node point locations are matched. This is followed by matching
the center-line points of corresponding vessel branches using the back-

projection lines of each point.
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By matching vessel branches first, ambiguities that arise when the
back-projected line crosses several branches can be resolved. The potential
problem of multiple crossings along the same branch still remains. Blume
(1984) suggests ‘a priori’ information about the vessels be wused to
determine correspondences in these cases. ‘A priori’ knowledge can take the
form of previously determined correspondences (Barba et al. 1987) or vessel
connectivity (Parker et al. 1985;1987). Another difficulty occurs when
vessels are superimposed and cannot be completely detected by the computer.
In the event of missing vessel center-line points the procedure requires the
observer to complete the matching. Other examples of graph matching used in
biplane reconstruction methods can be found in Smith and Starmer (1976),

Gerbrands et ai. (1982);, and Blume (1984).

Parker et al. (1985;1987) address the problem of reconstructing coronary
vessels from biplane digital subtraction angiograms. In their method, forks
in the arteries or bifurcation points are manually identified and matched
with the assistance of back-projection 1lines in each view. Thereafter the
blood vessels between the bifurcations or nodes in the angiograms are
isolated and given a center-line description by computer. Center-line points
of the vessel between matched nodes are then automatically matched to
reconstruct the vessel in 3-d space. Their method of finding correspondences
between nodes is different from Fujii’s, it is based on how ‘close’ 3-d
lines from a possible match of peoint pairs intersect. For each vessel
center-line point in one image a set of measures of possible candidate
points in the other image is constructed. Corresponding points are selected
vhich minimize the intersection distance at all points along the vessel
branch under a constraint of vessel connectivity. Given a pair of
corresponding branches where the order of vessel points along both branches
is knovn, it is reasonable to assume that the order of individual points in
corresponding pairs should also be preserved. When one of the vessels of a
matched pair of branches is foreshortened, the longer branch (containing

more points) is matched onto the shorter branch.

The use of a ‘distance minimizing point matching’ technique also takes

into account that the back-projection line only provides an approximation of
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corresponding locations due to the probable propagation of measurement
errors in the reconstruction calculations. Parker’s results indicate the

usefulness of the intersection distance as a measure of correspondence.

When accurate reconstruction is required, biplane analysis is desirable.
The chief factor in determining the applicability of biplane reconstruction
methods 1is the degree of difficulty in determining both branch and point
correspondences. This largely depends on the geometry of the vascular tree
being imaged. In the case of coronary vessels, biplane analysis is pessible
because there are few vessels and their paths follow a relatively straight
course. The usefulness of the described biplane reconstruction methods is
limited for cerebral angiograms. The cerebral blood vessels are more
numerous, and finding correspondences in biplane images is difficult because
of the large degree of vessel projection superposition. Referring to the
angiograms in Fig. 1.1, vessels indicated in the 1lateral projection
angiogram are shown as superimposed and foreshortened in the anterior-
posterior projection. The lack of sufficient bifurcation points makes it
difficult to represent vessels in angiograms as graphs. Matching longer
vessel branches to shorter branches in cerebral angiograms is not always
possible because of the varying degrees of foreshortening in corresponding
vessel branches. The projection of long lengths and folding paths of the
cerebral branches is unlikely to produce images where all or most of the

vessel foreshortening is restricted to one of the branch pairs.

1.4.3 Few view tomography

The last approach considered in the construction of a 3-d angiogram is
to reconstruct a stack of 2-d parallel plane sections through the cerebral
vasculature tomographically from a set of its angiograms. The reconstructed
sections are then reassembled into a 3-d stack. Image reconstruction from a
set of projections would be suitable given the availability of DSA. However
in DSA it is undesiratle under constraints of patient exposure, data
collection time, and computational expense to collect a set of projection
measurements that is complete in the sense of CT. Reconstruction from
incomplete projection sets almost always leads to unacceptable artifacts in

the image (Heffernan and Bates 1982). The reconstruction image will show
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streaks radiating away from dense objects. Even for a small number of
objects in a section, the overlap of stresks results in spurious detail that
may be hard to recognize and discount. Current methods deal vwith the absence
of measured projections by either estimating the missing projections or by

minimizing the artifacts in the reconstructed image.

A number of interpolation methods for reconstructing images in which
small numbers of widely spaced projections of order of 10 have been studied
(Heffernan and Bates 1982; Suetens et al. 1982). Heffernan and Bates (1982)
described methods which estimated missing projections using Fourier series
and Gerchberg-type interpolation (Gerchberg 1974). After comparing the
result of reconstruction on a numerical phantonm they found that
interpolation schemes were improved by incorporation of prior knowledge
about the object. They concluded that the general structure of how ‘a
priori’ knowledge is 1incorporated, rather than the detailed form of the
recursive scheme used, determines its usefulness as an interpolation method.
Sustens et al. (1982) using an interpolation scheme based on Lent and Tuy’s
(1981) algorithm, with prior constraints on the density values of the pixels
in the image, confirmed that incorporation of ‘a priori’ information into
interpolation schemes gives considerable improvement of the reconstructed
images. The strategy of interpolating the missing projections on the basis
of ‘a priori’ Inowledge has not been entirely successful with actual
measured projection data. Such methods are quite sensitive to noise in the

data (Garden ard Bates 1984).

Another approach taken to this problem of few projections is to minimize
the artifacts in the reconstructed image using ‘a priori’ information about
the object. By minimizing artifacts the most probable image of the object is
reconstructed from the available projections. Heffernan and Bates (1982)
shoved that the incorporation of such constraints as image positivity and
size into the reconstruction process rendered images which are superior to
those which did not wutilize such information. Garden and Bates (1984)
demonstrated how object size or extent can be estimated and incorporated in
reconstruction using an interactive method. Their method is based on the
observation that in most images reconstructed from an incomplete set of

projections, the boundaries of piece-vwise constant regions are reconstructed
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well enough to be recognizable by a human observer. After the observer
traces the outline of object boundaries in the reconstructed image, the
object 1is reconstructed again with this information. They found that this
method gave quite faithful reconstructions. The application of ‘a priori’
object knowledge in 1image reconstruction from a set of incomplete
projections has also appeared 1in the context of radio astronomy (Hdgbom

1974) and ‘non-destructive testing’ (Heffernan and Robb 1985).

Rougee et al. (1988) describe the use of ART (algebraic reconstruction
techniques) to reconstruct blood vessels from 15 projections. From the given
projections, object regions thought to contain vessels are defined and used
to eliminate reconstruction from where no object is present. The detection
of object regions is based on the extreme value reconstruction method which
vas initially developed for tomosynthesis. This is discussed later in this
section. The use of ART with region of support detected reduces the level of
streak artifact in reconstructed images. The final level of streak artifact
in these images depends on how well the object regions are detected. Both
the complexity of the vasculature and the number of available projections

will determine the ‘faithfulness’ of estimated object regions.

Spears et al. (1988) reconstructed coronary vessels from 6 to 18
angiographic views by incorporating a global image constraint into the
reconstruction scheme. Specifically, entropy was maximized in an attempt to
reduce artifacts caused by the limited number of views. This led to a
smoothed reconstruction image where streak artifacts were reduced. Results
of reconstruction depended on the number of available projections and the

complexity of the anatomic vascular structure.

Instead of trying to reconstruct the images tomographically in the sense
of CT, tomosynthetic reconstruction has been proposed for DSA (Kruger et al.
1983; 1984; Maravilla et al. 1984). Tomosynthesis or back-projection
techniques use a limited number of x-ray projection images over a limited
range of angles. Based on the principles of classical circular tomography
(Ziedses des Plantes 1932), tomosynthesis involves the analysis of a series
of discrete x-ray images produced by multiple exposure of an x-ray source

occupying known positions in a circular path in a plane located above the
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object to be reconstructed. Below the object the image detector moves
synchronously with the x-ray source in an opposite direction about a fulcrum
residing in the plane of interest (Grant 1972). Alternatively, a 2-d planar
array of sources of a known geometric relationship to each other (Nadjmi et
al, 1980; Haaker et al. 1985) or a rotating focal spot x-ray tube (Smith and
Kruger 1987; Kruger and Smith 1988) can be used instead of moving the x-ray
source through a circular path. Since the focal plane 1is parallel to the
recorded projection images, the back-projection step is accomplished by
simple addition of images. Tomosynthetic reconstructions result in a sharp
image of structures lying in the tomosynthetic plane on which blurred images

of the object detail lying outside the plane of interest are superimposed.

The major advantage of tomosynthesis is that any tomographic plane
parallel to the original plane of focus can be produced by summation of the
same set of projections provided each image is shifted an appropriate amount
in an appropriate direction within the the image plane. Tomosynthesis 1is
also more suitable in cases of limited angular sampling in which
conventional techniques cannot be directly applied. Implementation of
tomosynthesis to DSA systems that scan rotationally is not as
straightforward. Such systems have no naturally focused plane and the
back-projection step is more complicated than simple translations and

summations (Kampp 1986; Liu et al. 1987; Ning et al. 1988).

Tomosynthetic reconstruction methods suffer mainly from the disadvantage
that isolation of a tomosynthetic slice is incomplete because structures in
outlying planes are only blurred rather than removed. This makes
constructing a 3-d image of the vessels difficult because blurred arteries
need to be removed. Haaker et al. (1985) showed that the degree of blurring
can be reduced by non-linear reconstruction. Referred to as ‘extreme value
reconstruction,’ this method selects the minimum of the back-projection
values assigned to a reconstruction pixel rather than the sum of these
values. Hence, the value of each pixel location and consequently blurring is
reduced by the lack of support existing for that location in the given
projection set. Extreme value reconstruction requires that each pixel has a
free projection in at least one view. This condition is more likely to be

met as the number of views available is increased. Improvements to the
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extreme value reconstruction algorithm are described by Kruger et al.
(1987) (see also Ning et al. 1988). Although such techniques may remove blur
in one region, not every region of the image will be affected in the same
way. Object visualization may be degraded with excessive noise in a region

originally free from overlapping blur (Kruger et al. 1987).

Other methods of removing blurring involve deconvolution techniques
(Ruttimann et al. 1984; Kawata and Sklansky 1985; Ghosh-Roy et al. 1985).
Restoration does not result in a faithful reconstruction, rather a spatially
filtered (high-pass) version of the tomosynthetic slice results. Success in
removing blurring is limited because in absence of additional information no
amount of image manipulation can restore the missing projections (Hanson
1982a). Furthermore the solution will not be unique as the information

previded is incomplete.

Preferred methods to the image reconstruction problem of few
projections are of an ‘ad hoc’ nature; they all incorporate to some extent
‘a priori’ knowledge about the object. The accuracy of the reconstructed
image appears to depend on the discriminating nature or the uniqueness of

the ‘a priori’ information available.
1.5 Conclusion

With the aim of developing new methods to reconstruct the 3-d geometry
of the cerebral vasculature for purposes of neurosurgery planning, existing
imaging modalities and reconstruction methods were reviewed. Of the
available imaging modalities DSA seems best suited for the reconstruction
task. Since it must be accepted that only a small number of angiographic

projections are practically available, two approaches are applicable.

The first approach is characterized by methods that attempt to recognize
object information or features in the projections needed for matching the
same object in multiple images. If all object points are uniquely determined
in all views, the reconstruction problem is solved. Stereo reconstruction
from DSA images recorded using common c-arm wunits is not expected to be

sufficiently accurate for surgical planning. For reasons of limited digital



o

spatial resolution, vessel superposition and foreshortening in projection,
and system noise, resulting tracing and correspondence errors would limit
accuracy. Reconstruction accuracy can be improved by more exact methods of
vessel tracing, or by reducing its sensitivity to errors by changing image
recording parameters, or instead using an orthogonal pair of images.
Increasing the focal 1length or geometric magnification 1is not always
possible or practical with most c-arm DSA units, and in these circumstances
biplane analyses would be preferred. The problem faced with wusing biplane
cerebral angiograms is that vessel superposition and foreshortening make
finding corresponding vessel branches in anterior-posterior angiograms

difficult.

In light of these limitations, a new geometric reconstruction method
which uses both stereo and biplane images is presented in chapter 3. This
method has two distinguishing features. The first is the use of lateral
stereo reconstruction results to match corresponding vessel branches between
image pairs which are not spatially correlated as in the extreme case of
biplane images. The other feature is the vessel correspondence algorithm
which uses existing techniques modified and applied in a novel manner. This
algorithm assigns an initial point-pair matching between vessel branches on
the basis of ‘intersection distance’ (Parker et al. 1985;1987). Unlike
Parker’s method, matching errors are reduced iteratively by a relaxation
labeling process (Barnard and Thompson 1980; Suetens et al. 1983) which is
better suited to this task because of the ease with which ‘a priori’ object
information can be incorporated. In addition to ‘continuity of disparity’
(Barnard and Thompson 1980), the relaxation labeling process incorporates a
vessel connectivity constraint; the order of individual vessel points in
corresponding pairs should be preserved. Chapter 4 assesses the accuracy
level achievable in the planning of neurosurgical procedures based on

angiograms using the method described in chapter 3.

Tomographic image reconstruction from a few given angiographic views is
the other possible approach considered. Problems arise due to the limited
number oi projections available for reconstruction which lead to
unacceptable image artifacts. However, previous work indicates that this

lack of information may be made up in part by adequate ‘a priori’ knowledge
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about the image. Such knowledge may be used to improve constraints on the
solution of the reconstruction procedure in an attempt to maximally retrieve

the reconstructed object consistent with its projections.

A nev method of rcuoonstructing images of the cerebral blood vessels from
a few projections is proposed. The method reduces reconstruction artifacts
by a process of iterative deconvolution guided by ‘a priori’ knowledge about
the vessels. This method 1is based on the ‘Clean’ technique introduced by
Hégbom (1974) to restore radio-source maps reconstructed from an incomplete
set of observations or measurements. Chapter 5 describes the modification of
Clean and 1its novel application to the problem of vascular image

reconstruction from a fewv projections.

The next chapter is concerned with image acquisition and display in DSA.
Common  techniques and problems are discussed together with typical
properties of the image which help to define the problem of 3-d analysis of

angiogranms.
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CHAPTER TWO

PHYSICAL ASPECTS OF DIGITAL SUBTRACTION ANGIOGRAPHY

2.1 Introduction

A common goal of all digital subtraction angiography (DSA) systems is to
isolate object contrast which results from the passage of an iodine dye
through some blood vessels of interest (Kruger and Riederer 1984). Object
contrast is isolated by the subtraction of angiograms taken before and after
patient injection or administration of iodine dye. This technique is known
as ‘mask-mode’ subtraction. Once the subtracted image is in digitized form,
image processing techniques (e.g. filtering, averaging, windowing, etc.) can

be employed to further enhance image contrast (Kruger and Riederer 1984).

The ease of subtraction and digital processing afforded by DSA has made
angiographic examinations safer, allowing examinations on patients where
conventional £film angiography would not have been considered previously.
Other advantages of DSA over film angiography include decreased dye
requirement, reduced nead for selective catheterization, diminished film
costs, lessened examination time, and increased contrast recognition (Crummy

et al. 1982).

This chapter examines how attenuation thickness of iodine in opacified
vessels 1is measured in a typical DSA system. §2.2 describes the imaging
principle of mask-mode subtraction in DSA. An overview of the DS4
measurement system and the causes of measurement error are described in
§2.3 and §2.4 respectively. §2.5 concludes the chapter vith a discussion of
the relative importance of measurement errors on quantitative analysis of

DSA images.
2.2 Imaging principle

In digital subtraction angiography the quantity imaged 1is the

attenuation coefficient distribution of the administered contrast agent. For
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photon energies in the diagnostic range, 40 to 100 keV, attenuation occurs
primarily by photo-electric and Compton scatter interactions. The basics of

the attenuation process can be found described in Johns and Cunningham

(1984).

Fig. 2.1 illustrates the principle of mask-mode subtracticn. Referring
to Fig. 2.1, let My be the linear attenuation coefficient of the tissue and
My be the linear attenuation coefficient of the administered iodine dye in
the anatomical region under study. For an incident photon fluence at energy

Eo’ the background transmitted fluence or ‘mask’ signal at the detector is

® = ¢ (E)) exp [ -u . (E)d, ] (2.1)

wvhere dt is the tissue thickness. After the administration of iodine dye, a

certain amount of blood is replaced by iodine and the new or ‘live’ signal

becomes

¢2 = ¢O(Eo) exp | '"t(Eo)(dt'di) - ”i(Eo)di ] (2.2)
vhere di is the 1iodine thickness. It is reasonable to assume that di<<dt
such that (dt—di)~dt, hence,

@2 = ¢O(Eo) exp | —ut(Eo)dt - ui(Eo)di ] (2.3)

Linearizing (2.1) and (2.3) by taking logarithms of both sides and then
subtracting them gives rise to the line integral of the attenuation

coefficient of the iodine dye,

C = log (¢2/¢1) = —ui(Eo)di (2.4)

The logarithmic subtraction estimates the desired attenuation thickness of
iodine. This quantity, C, represents the radiographic or object contrast of

iodine.
2.3 Measurement system

The measurement system used in DSA generally consists of three physical
components: an x-ray source, an x-ray detector, and digital processor. These

components are depicted in Fig. 2.2 for a typical measurement system and are

described in the following subsections.
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Figure 2.1 Formation of the subtraction signal. (Adapted from Shaw et al
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2.3.1 X-ray source

X rays are generated when electrons emitted from a heated filament are
accelerated by the voltage (kV) applied across the tube to the focal spot of
the anode or target. The target consisting of a heavy metal, wusually
tungsten, acts to slow down the electrons to produce a continuous
distribution of radiation (Johns and Cunningham 1984). This continuous

distribution of radiation is often called 'Bremsstrahlung’ radiation.

There are two physical problems associated with real x-ray souices:
polyenergetic x rays and the shape of the x-ray beam. Because subtraction
techniques are based on a model for monoenergetic x rays, a polyenergetic x
ray beam gives rise to error in the determination of 1odine thickness. This
error is due to the phenomenon known as ‘beam hardening’ and depends on both
the beam energy spectrum and the object (§2.4.1). The physical problems
related to the shape of the x-ray beam are characterized by the finite size
of the x-ray tube focal spot and the divergent shape of the generated beam.

These two factors have a major influence on spatial resclution (§2.4.2).

2.3.2 ¥-ray detector

Most systems employ an image intensifier (II) as the x-ray detector
(Fig. 2.2). In addition to the primary x rays, scattered x rays are also
detected. Often image intensifiers include a grid in order to preferentially
attenuate scattered x rays. Such grids consist of thin lead strips aligned
parallel to the primary radiation direction. However, the use of ~«catter
reduction grids can attenuate as much as 50-60% of the primary radiation
(Kruger and Riederer 19B4), and as a result wider air gaps between patient
and detector are used where possible. The effect of detected «cattered =
rays is to reduce object contrast and contribute effectively random noise in
the measured intensity. The deterministic component of scatter is considered

in §2.4.4.

At the image intensifier x-rays strike a CsI (cesium iodide) phosphor

layer vwhich converts their energy into light. The emitted light is then




converted into electrons from an underlying photocathode, and under the
influence of a potential drop of 20 to 30 kV these electrons are accelerated
and focused onto a minified output phosphor. This process results in a
brightness gain of 5,000 to 10,000 times at the output phosphor (Kruger and
Riederer 1984). The resulting pattern of light intensity at the output of
the 1image intensifier is read-out by a television video camera via a set of

lenses or fibre-optic coupling.

The output image of some image intensifiers is geometrically distorted
by the curvature of the input screen and the electron optics. The output
image has a ‘pin-cushion’ appearance and results in the non-uniform
representation of area by picture elements (§2.4.6). Images also suffer from
veiling glare, the scatter of electrons and 1light photons within the image
intensifier and light photons within the optical coupling. The result of

veiling glare leads to a decreased measurement of iodine contrast thickness.

The resolution limit of current CsI image intensifiers range from 4 to 5
line pairs per mm (lp mm—l) (Kruger and Riederer 1984). This generally
exceeds the spatial resolution limits of present DSA systems (§2.4.5).
Therefore the image intensifier is usually not a limiting factor on spatial

resolution.

The ideal detector has an output signal vhose statistical properties and
behavior are exactly those of the transmitted photons. In actual practice
statistical noise from the image-intensifier-camera chain makes preservation
of the input signal difficult. The effect of no.se on the measurement of

information from the transmitted signal is considered in §2.4.3.

2.3.3 Processor

The major functions of the digital processor are analog-to-digital
conversion (ADC) of the video signal, storing digital images for latter
recall, and manipulating digital images (e.g. subtraction, averaging,

vindowing, etc.).

The video signals are spatially sampled and stored in one of two image




S

memories in the processor as a two-dimensional matirix of grey scale values,
Each element of the image matrix is referred to as a 'pixel.’ Typically the
video signal is spatially sampled to form a 512x512 or 1024x1024 image

matrix, and the intensity of each pixel is sampled to either 8 or 10 bits.

The mask image 1is usually acquired first and stored in one memory.
During contrast administration, a sequence of live images is acquired and
stored in the other memory. These live images ate then recalled and
subtracted from the stored mask to give a series of difference images. Once
subtracted, the image is then windowed and changed back to an analog «ignal
by the digital-to-analog converter (DAC) to be displayed on a TV monitor,
Vindowing refers to the linear stretching of the mapping between grey levels

in an image,

0 , bin § bl
bout = B(bin—bl)/(bz—bl) , b1 < bin ¢ b2 (2.9)
B , by >b
in 2
where bout is the grey level after windoving, bin is the initial grey level,

and (bl’bz) is the band of levels expanded to cover the entiire hrightness
range (0-B). Depending on the application, various image processing
techniques can be performed in addition to mask-mode «<«ubtraction m

windowving (Mistretta 1974).

Generally logarithmic processing of the video signal 1is used to insure
density uniformity of the vessels in the subtracted image (§2.?). The video
signal may be processed using a logarithmic amplifier on the incoming analog

signal or by using a look-up table on the digitized signal.
2.4 System non-linearities

From the previous description of the physical components of a DSA -ystem
it is evident that errors in the measurement of position and amplitude of
the subtraction signal are possible in practice. The basic limits to the
linearity between the subtraction signal and the contrast thickness at image
formation are: the physical properties of the incident x-ray bheam (§2.4.1

and §2.4.2), noise (§2.4.3), x-ray scatter (§2.4.4), the effects of -patial

26




sampling (§2.4.5), pin-cushion distortion (§2.4.6), and patiert motion
(§2.4.7). This section briefly discusses these sources of measurement error

and where possible suggests how they can be overcome.
2.4.1 Beam energy

A consequence of polyenergetic x-ray beams is that lower energy x rays
are attenuated more strongly by matter than those of higher energy. As the
beam propagates through the object 1its energy distribution or spectrum
‘hardens’ as the low energy or ‘softer’ x rays are preferentially removed
from the beam. This phenomenon is called ‘beam hardening’ (Nalcioglu and Lou
1979) and results in a reduction of measured object contrast (Shaw et al.

1981).

Although for simple objects these non-linearities can be predicted and
identified, they are object dependent. Beam hardening 1is important in
circumstances when measurements from regions of widely varying tissue and
bone thicknesses in an angiogram or measurements from different views are to

be compared.

The most common approach to correct for beam hardening in D3A is to fix
plates of attenuating materials between the x-ray source and object. In this
way the beam hardening property can be employed advantageously to constrain
or filter the x-ray spectrum. Copper and aluminum filters can be used to
narrow the spectrum and shift it towards the higher energies over which the
variations in attenuation coefficients are negligible (Bursch et al. 1971;
Heintzen et al. 1971). This is achieved at the expense of object contrast.
Another approach 1is to apply a non-linear correction factor determined
experimentally for an homogeneous object (Nalcioglu et al. 1983). This
technique is only adequate when the anatomical location under study can be

simulated using a calibration object.
2.4.2 Beam shape

The angular divergence of the x-ray beam and finite focal spot size may

under certain circumstances render a spatially distorted subtraction image.
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The effects of angular divergence and finite focal spot are described.

X rays form a beam which diverges from a point source. The effect
associated with divergent or cone beam projections is geometric ot object
depth-dependent magnification. An object’s apparent size will depend on its
depth position within the diverging beam (Fig. 2.3). The projection of an
object point at (xo,yo,zo), with respect to the focal spot, onto the image

or detector plane at (x,y) is given by

(x,y) = (x,,¥,) M(£;) (2.6)

where M(fl) is the geometric magnification of the size of the object seen by

the detector. The geometric magnification is

M(f19 = f/f1 (2.7)

vhere f is the focus to detector distance and fl is the horizontal distance
between the object and focus (i.e. f1=zo). If the object is tilted (Fig.
2.4), it will not be uniformly magnified. As a consequence, incorrect
interpretations about an object’s size may be made from its projection image
unless its orientation and shape are known ‘a priori.’ The limiting spatial
resolution of the primary x-ray image at the detector also depends on

geometric magnification.

The effective resolution of the imaging system increases by the same
magnification factor at the expense of a decreased field of view and
increased patient exposure. After a certain point, increasing the
magnification will decrease the effective spatial resolution due to
increased geometric unsharpness resulting from the finite focal spot. The

effect of a finite source is now considered.

In practice the source distribution is a three-dimensional surface,
square in shape and planar. Fig. 2.5 represents a cross section of the focal
spot and the effect of focal spot size on a point object being imaged. The
size of the focal spot causes a broadening of the signal due to spatial
averaging or convolution over the area of the magnified focal spot size at
the detector. The consequence of finite source size is to ‘blur’ the

available information or limit the resolution. The width of blurring S, due
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Figure 2.3 Magnification of an object by oblique rays. (Adapted from
Macovski 1983)
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Figure 2.4 Distortion of the shape and size of the image of a tilted object
depends on the position of the object in the x-ray beam.
(Adapted from Macovski 1983)
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to a square focal spot of length s as a function of magnification M is given

by (McNeil 1966)

Sy = s(M-1)[ 1 + (xocot(e)/f]—scot(e)) ] (2.8)

vhere © is the ‘target angle and X, is the distance from center line to
object of interest. For small geometric magnifications (£ 1.35) the second
term in (2.8) is sufficiently small that Sy is effectively spatially
invariant. The contribution of the focal spot to resolution re in the object
plane for objects on the center line is (Kruger et al. 1981)
ry = M/s(M-1) (2.9)

Fig. 2.6 shows the resolution limit set by the finite focal spot size and
geometric magnification (2.9). A magnification of at least 1.25 is almost
always present due to the geometry of the equipment, though larger geometric
magnifications may be used in practice. The choice of a focal spot size in
pulsed mode DSA involves a trade-off between the increased geometric
unsharpness resulting from a larger focal spot and the decreased patient
motion blurring resulting from the higher allowed tube currents and

correspondingly shorter exposure time.

From the curves in Fig. 2.6, the effect of focal spot blur becomes
important at large magnifications. For large objects, contrast is unaffected
by Dblurring since it merely rounds the edges of the object and does not
change 1its central value. However, for smaller structures the contrast will

definitely be affected.

Geometric unsharpness resulting from the finite size of the focal spot
can be corrected by deconvolving the focal spot response in cases where
magnification cannot be further reduced. The focal response can be
extricated from the signal in a manner analogous to correcting for the
effects of the collimator response characteristics in CT (Braceweli 1977).
The problem with carrying out such a correction is that it is assumed that
the focal spot blurring function is spatially invariant vwhich is not always

true (2.8).
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Figure 2.5 Geometry of vertical plane perpendicular focal spot. (Adapted

from McNeil 1966)
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Figure 2.6 Resolution limit of a focal spot of width s (mm) plotted
function of magnification (M).
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2.4.3 Noise

A fundamental limit on the detection and measurement of information in
the subtraction signal is noise. The presence of noise in the subtraction
signal 1is readily noticeable by fluctuations in image pixel values fiom one
area to another about a regional average. In DSA, noise is an accumulated
effect of factors such as Poisson counting statistics, scatter, and additive
noise (Macovski 1983). Additive electrical noise is introduced primarily by
statistical variations of II-TV camera parameters and ADC converter step

non-uniformities (Roehrig et al. 1981).

Each noise component is independent and can be assumed to be comparable
in pre- and post-contrast measurements. Hence, the total variance in the
subtraction signal, the logarithm of the ratio of two signals (2.4), is

given by (Macovski 1983)

2 2
" = (2/N.n) + (2/N.) + 20, (2.10)

where n is the fraction of x-ray photons captured, o, represents the
standard deviation of the additive noise, and Nt and NS are respectively the
mean numbers of transmitted and scattered photons per picture element. Of
the two types of noise sources described 1in (2.10), one of them will
dominate a DSA image and limit information extractable as well as image
quality. At low detected x-ray exposure, photon noise will dominate. As
exposure 1increases either the system or the digitization noise component
will gradually dominate the photon statistics. In this case noise reduction
techniques such as frame integration are needed. Frame integration reduces o
by (k)l/2 vhere k is the number of frames averaged together.

2.4.4 X-ray scatter and veiling glare

Images acquired from x-ray image intensifiers are degraded by the

acceptance of scattered radiation
scatter and glare is to produce
errors that lead to a reduction in
1982; Nalcioglu et al. 1983). 0f
(Riederer et al. 1981; Shaw et al.

and by veiling glare. The result of both
spatially non-uniform video black level
the measured object contrast (Shaw et al.
the two effects, x-ray scatter dominates
1982).



Attempts to reduce the detrimental effect of scatter have included
geometric techniques (§2.3.2), deconvolution techniques (Shaw et al. 1982;
Boone 1986; Naimuddin et al. 1987; Love and Kruger 1987; Siebert and Boone
1988), iterative deconvolution techniques (Fahimi and Macovski 1989), and
the use of scanning 1lead bars (Shawv and Plewes 1985). Deconvolution
techniques have also been proposed to correct for veiling glare (Shaw et al.

1982; Seibert et al. 1985).
2.4.5 Sampling

In practice, the spatial resolution is dominated by the focal spot size
(§2.4.2) and sampling (i.e. the pixel resolution). The process of sampling
affects the spatial frequency content of an image by limiting its spatial
resolution and in circumstances of inadequate sampling, the creation of
artificial structures or ‘aliasing.’ The effect of sampling on the spatial
resolution is described below. A description of aliasing and its

consequences can be found in Legault (1973) and Bracewell (1978).

The pixel size depends on the display matrix and on the diameter of the
image 1in the patient plane. The latter is determined by the active input-
phosphor size and geometric magnification. For a given maximum resolution
r , the sampling intervals Ox and &y needed in order to avoid aliasing is

max
specified by the Nyquist sampling theorem (Nyquist 1928) as

K/2w = 1722z = 12y 2 1 . (2.11)
vhere K is the number of pixels along each side of the square image matrix
and WV is the width in the detector plane of the digitized image. The noise
or uncertainty in measured pixel coordinates due to the spatial quantization
&x and Ay is respectively (Stearnes 1975)

2

2
Tax = Oy~ /12 (2.12)

2
= Mx"/12 and aAy =

In the object plane the spatial resolution limit due to the image matrix
is given as (KM/2V). Fig. 2.7 illustrates the effect of these parameters on

the spatial resolution 1limit in the object plane for typical display
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Figure 2.7 Resolution 1limit of a KxK image matrix plotted as a function of
magnification (M). A field size of W = 153mm is assumed. The
resolution limit of a 1.2mm focal spot is also plotted.
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Figure 2.8 Pin-cushion distortion by the image intensifier of a square
cm-grid. (Adapted from Casperson 1976)
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matrices wused in DSA: 256x256, 512x512, and 1024x1024. From Fig. 2.7 the
optimum resolution occurs at the magnification where the resolution limits
due to finite sampling and focal spot blur become equal (i.e. s(M-1) = 24x
=240y).

2.4.6 Pin-cushion distortion

Some image intensifiers produce images with a noticeable ‘pin-cushion’
distortion. In addition to the curvature of the input phosphor, sources of
this distortion include poor electron optics, influence of stray magnetic
fields on electrons, and poor optics in the recording camera (Christensen et
al. 1972). The result of this distortion is that image size, shape, and
absorption information are functions of field location (Casperson et al.

1976).

The level of pin-cushion distortion is usually assessed from an image of
a cm-grid which is positioned against the input screen (Fig. 2.8).
Typically, grid spacing magnification is observed to increase the further
awvay it is from the center of the image. There are two common approaches to

correct for pin-cushion distortion.

The first approach is based on the assumption that the distortion is
radially symmetric about the center of the image intensifier and that the
relative magnification of a pixel’s position can be determined from its
radius. Either an empirically determined analytical function of the radius
(Brown et al. 1977) or stored relative magnification factors for a single

radial line (Alderman 1981) can be then used to correct for the distortion.

The other approach is based on the assumption that the grid spacing at
the image center is undistorted and that this spacing can be used as the
basis to estimate the ‘ideal’ or undistorted positions of all other grid
intersections. For each intersection point the difference between observed
and estimated position is computed and stored as a correction vector,
Correction vectors for points between grid intersections can be determined
by means of a bilinear interpolation between the correction vectors of the

four neighboring intersection points (Kooijman et al. 1982; see also
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Chakraborty 1987). Of the two approaches, the latter is preferred because
the distortion in the 1image intensifier wused in this work could not be

approximated by a simple analytic function.

2.4.7 Patient motion

A basic postulate of DSA is that all images are geometirical projections
of the same object. This is violated if there is any movement ot the body
during examination. Motion produces a misregistration of mask and live

signals and results in an inexact cancellation of background signal.

Current DSA machines with capability of pulse exposure (1 to 10 per sec)
can take an examination in as little 2-5 seconds. In cases where very small
focal spots are used, reducing power output requires longer exposure
intervals. Any motion during this interval will result in blurring. Although
physiologic motion (e.g. cardiac contraction, respiration) is not
necessarily a difficulty with cerebral examinations, involuntary head motion
would lead to registration artifacts. The effect of motion in DSA i«

generally a loss of contrast and spatial resclution.

Two techniques commonly used to reduce motion artifacts are ‘re-masking’
and ‘pixel-shifting.’ Re-masking is the proceis by which an observe:r selects
a mask and live image pair that gives the bes: subtracted image (Kruger and
Riederer 1984). Alternatively, some types of motion artifacts can be removed
by pixel-shifting or re-registration. This technique involves shifting one
image until it matches the other to provide optimal artifact cancellation
(Venot and Leclerc 1984). Re-registration can also be achieved by using

‘spatial-varp’ techniques (Pickens et al. 1987).

2.5 Conclusion

This chapter has reviewed the relationship bhetween the measured
subtraction signal in a DSA image and the actual vessel-contrast thickness
of iodine at 1image formation. Underlying physical processes in image
formation, detection, and processing impose limitations on the measured

subtraction signal. The measured signal is affected hy several sources: the



beam energy and shape, photon and system noise, x-ray scatter and image

intensifier veiling glare, spatial sampling, image intensifier spatial
distortion, and patient motion. The relative importance of these sources of
non-linearities depends on what use is to be made of the subtracted image.

Applications can be categorized as either diagnostic or quantitative.

The diagnostic value of DSA is well established and depends essentially
on factors that affect detectability in an image such as noise, resolution,
and inherent object contrast. Image quality is dependent on the proper
adjustment of geometric magnification, pixel size, beam quality, and
radiation exposure at the image intensifier input. There are several
limitations to the use of DSA (Crummy et al. 1982). First is the reduced
spatial resolution of DSA (2-3 1p mm—l) in comparison to film angiography
(10 1p mmhl). Secondly, the inability to perform simultaneous biplane
examinations 1is disadvantageous. This is due to the cost of having two
separate imaging chains and the increase in the amount of scatter radiation
which reduces the quality of the images. Lastly, the field size of current
image intensifiers (270 mm) limits both examinations 1in some areas and the
use of magnification techniques. Using larger image intensifiers (359 - 411
mm) 1is costly and would require the typical 512x512 image matrix to be

upgraded to at least 1024x1024 in order to avoid image degradation from

occurring.

Examples of the quantitative information available from DSA are three-
dimensional (3-d) coordinates of points identified in stereo or biplane
image pairs, the geometrical measurements of projected features, the most
common being vessel mid-lines and diameters, cross sectional areas and
volumes of blood vessels, and blood flow measurements. The measurement of
3-d coordinates of noints from DSA image pairs is basically limited to
spatial quantization noise in the measured coordinates in each image. The
noise in measured coordinates associated with spatial sampling is random and
can be reduced by increasing spatial sampling or by increasing geometric
magnification to a limit set by the focal spot size of the x-ray tube used.
Image coordinates may also be distorted by the image intensifier. Error in
measured coordinates due to image intensifier pin-cushion distortion is

deterministic. Distortion is usually smallest at the center of the image and
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increases towards the edge. Image pin-cushion distortion can usually be

corrected by simple image mapping techniques.

Image processing techniques to recover vessel information, such as
mid-lines and diameters, and to measure object contrast requite that some
physical features of the vessel being imaged (e.g. shape, position, contrast
etc.) be detectable end have a ‘faithful’ correspondence in the measured
signal. The most common limitation to such techniques is vessel projection
superposition and foreshortening. For techniques that attempt to measutre
object contrast in a subtracted image, or reconstruct object contrast
tomographically from a given number of DSA projections, system linearity lis
important. Degradation of linearity is primarily a result of beam hardening,
scatter, and veiling glare. When photon statistics are good, system noise

will limit the precision of the subtracted signal.

There are really few strategies to deal with system non-linearities. The
simplest solution is to re-design the detector system eliminating or
reducing the source of error to within tolerable limits for the desired
application. A more expedient solution is to directly correct for these
errors by either avoiding or compensating for them. However, it is simpler
to describe these effects than it is to physically separate them from other
errors and then correct them. The other possibility is to use image
processing techniques that are sufficiently robust to tolerate these sources

of error.
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CHAPTER THREE

GEOMETRIC RECONSTRUCTION FROM DSA IMAGE PAIRS: METHOD

3.1 Introduction

Methods of reconstructing three-dimensional (3-d) vessel geometry from
either stereo or biplane pairs of digital subtraction angiograms (DSA) vere
reviewed in §1.4.2. The conditions under which these methods are applicable
are different from those found in cerebral DSA. The nature of the
reconstruction problem in cerebral DSA is described in §3.2. There are two
important and related aspects of this problem. The first is image coordinate
measurement errors vhich are no longer negligible when digital angiograms
are used for stereo reconstruction. The other aspect is the difficulty in
finding corresponding vessels between widely spaced views, particularly
biplane angiograms. This correspondence problem is often the result of
trying to reduce the effect of measurement error by increasing the angular
separation between vievs. The correspondence problem for widely spaced views
exists whether or not some attempt is made to compensate for measurement
error. The problem of finding correspondences between angiograms from

different views is discussed in §3.3.

§3.4 describes a new interactive technique for finding correspondences
between vessels in biplane angiograms. In the proposed method the 3-d
coordinates of a vessel’s center-line 1is reconstructed from a pair of
lateral stereo DSA images. This first reconstruction is re-projected into
the anterior-posterior (AP) image of the biplane pair and used to aid the
observer in selecting the corresponding vessel. The corresponding vessels
from the biplane images are then used in the final reconstruction. Chapter 4
describes the experiments and the results obtained in the evaluation of this

method.
3.2 Problems in 3-d vessel reconstruction from cerebral DSA images

Reconstructing the 3-d geometry of an object from differences in its

-39 -




measured image coordinates, or disparity, between their projections in
different views involves two aspects. They are the selection of readily
distinguishable object points as candidates for matching and the definition
of criteria for deciding which matches are correct (Barnard and Thompson
1980). Problems associated with meeting these requirements in reconstruction

of vessels from cerebral DSA stereo and biplane images are considered below.

The first step towards matching of points 1in different views 1is the
identification of the projections of the cerebral vessels in each angiogram
by segmentation. Segmentation is the process of partitioning an image into
distinct meaningful regions. As blood vessels are generally thin and
elongated structures, prints along the medial axis or center-line of a
vessel in an angiogrum would adequately describe its structure and be
suitable candidates for matching (Vignaud and Korach 1973). However
automatic segmentation or manual tracking of ves<els in angiograms is not a
trivial problem due to system non-linearities (§2.4) and vessel
superposition and foreshortening in projection. The latter depends on both
the 3-d structure of the vascular system and its projections. In comparison
to other systems, such as the coronary vessels, the cerebral vasculature is
complex. The pattern of vessel superposition and foreshortening in cerebral
angiograms of lateral and anterior-posterior views is shown in Fig. 3.1,
regions where vessel tracking or segmentation would be ambiguous are
indicated. Of the two projections, the vessels 1in the anterior-posterior

angiogram are the more difficult to segment.

Most methods of vessel segmentation (§3.4.5) are intended for simpler
vessel geometries than expected in cerebral angiograms. Their application in
cerebral DSA would not be reliable and pose too many difficulties to be
clinically practical. The preferred means of tracking vessels is still the
human observer. The perceptual skills of the observer are often the only

means of resolving ambiguities that are encountered in tracking vessels.

Given the traced vessels from two different views, the next step is
finding a matching between the sets of traced center-line points from each
image. Points from both images should be matched if they are image plane

projections of the same object point. The problem is to determine which
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image point pairs to use and to choose the basis for deciding which matches
are correct. The possible projections considered for matching are restricted
by the geometry of the stereotactic frame (§3.4.3.1) to either stereo or

biplane viewvs.

It was pointed out in §1.4.2.1 that both manual and computer
techniques for matching stereo angiograms are possible. With manual
techniques, the observer views the images stereosccpically and tracks in 3-d
the perceived vessel depth using a stereo cursor. The primary limitation of
manual techniques 1is the time consuminyg aspect of co.respondence point
entry. Most automated systems have attempted to overcome this limitation by

finding matches between segmented stereo images computationally.

Correspondence algorithms have been based on the similarity of local
point properties between stereo pairs and the point’s local relationship to
neighboring vessel points, such as ‘continuity of disparity’ (§1.4.2.1).
Except for vessels whose medial axes 1lie either in the direction of
disparity or perpendicular to the plane of projection in one of the images,
most vessels in angiograms can be matched unambiguously. However, the
accuracy of reconstruction can be poor in stereo analysis of digital
angiograms. The uncertainty in the measurements of the matched set of image
coordinates, due to both incorrect tracking and the finite pixel size of a
digital angiogram, is no longer negligible (Suetens et al. 1983). At least a
30 degree angular separation between views is necessary before the distance
between the location of the object point and its reconstruction becomes
equal to the pixel width in the image (Blume 1984). The loss of accuracy due
to measurement error can also be reduced by increasing the geometric
magnification (Sherlock and Aitken 1980). Sherlock and Aitken showed that
the reduction in the magnitude of reconstruction error was proportional to
the increase in geometric magnification. However, the short focal lengths (=~
110 cm) and small image intensifier field sizes (~154-270 mm) of the c-arm
unit used in this work made magnification techniques impractical for

stereotactic applications.

The other possibility is to match vessel traces between more widely

spaced views such as biplane images (Fig. 3.1). The biplane angiograms are
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often not similar, and only major vessel features such as forks and

junctions may be identifiable in both views. A number of methods for
matching orthogonal views described in §1.4.2.2 take advantage of these
features. The common approach has been to construct a ‘tree’ or ‘graph’
description of the segmented vasculature using major vessel features as
‘node’ points. Next, the nodes of these graphs in the two views are matched
on the basis of their relationships with other nodes in the graph. Having
established correct correspondence between the nodes, the individual trace
points along paths or branches connecting the nodes are then matched. This
method of finding corresponding branches is limited by the complexity of the
3-d vascular system. It assumes that an angiogram palr can be described by
tree structures or graphs that are different but have essentially the same
relational structure between node points. Where this is possible, such as in

cardioangiograms, this method has demonstrated success (§1.4.2.2).

For cerebral angiograms shown in Fig. 3.1, it can be observed that the
projections of the 3-d vessel system are too complex to be completely
described by the same node points and tree structure relationships in each
view. Such vessel features such as forks and junctions which constitute node
points may be visible in one view but not the other. This makes it difficult
not only to match nodes but to subsequently identify corresponding lateral
vessel branches in an anterior-posterior angiogram. There 1is obviously a

need to overcome this limitatiocn.

In order to perform any matching between biplane cerebral angiograms, ‘a
priori’ information about how the vessels are structured in 3-d is needed,
The approach proposed 1is based on the thesis that although the vessel
reconstruction from lateral stereo image pairs 1is generally inaccurate for
Stereotactic planning, it may provide a good estimate of the vessel’s 3-d
geometry. Given the x-ray beam geometry for the anterior-posterior
projection, the reconstructed vessel can be re-projected into the
anterior-posterior 1image. The biplane images are now 1in a format which
provides direct comparison of vessels. Taking advantage of prior knowledge
that the vessel’s center-line points are ordered and connected, the vessel
reconstructed from the stereo images should exhibit recognizable structure

on re-projection in the anterior-posterior view 1in spite of reconstruction
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errors. The observer then selects the vessel that resembles the re-projected
one. Point correspondence between matched branches is then established using

a computer algorithm described in the following section.
3.3 Vessel trace correspondence principle

Given the 2-d center-line traces of the same vessel in two different
views, the correspondence problem is simplified to finding the match between
any point along the trace of the vessel in one view with the matching view
of the second trace. The possible approaches to this correspondence problem
are discussed in §3.3.1. §3.3.2 describes the proposed correspondence

algorithm.
3.3.1 Background

The nature of the correspondence problem in matching vessels in
angiogram pairs of different views depends on the 3-d complexity of the
vessels and their projections. These aspects of the vessel correspondence
problem are discussed in §3.3.1.1. In previous work, vessel correspondence
algorithms have been based either on correlation of similarities in the
vessel traces or on a construction of a system of 2-d and 3-d rays from the
view transformation data (§3.4.3.2) of each view. The use of rays or
‘auxiliary’ lines is referred to as ‘ray- or ‘back- projection’ (MacKay et
al. 1982; Mol et al. 1986). The use of correlation and ray-projection
approaches are described in §3.3.1.2 and §3.3.1.3.

3.3.1.1 Vessel correspondence problem

Fig. 3.2 shows a 3-d line curve projected onto images ‘A’ and ‘B,’ where
the sampled points of the projected curve are given by (xa'ya)n' n=1,2,...,N
and (xb,yb)m, m=1,2,...,M respectively. The shift or ‘disparity’ between
corresponding  points assigned to (xa,ya)n, n=1,2,...,N is given by
(bx, 8y)

(AXvAY)n = (xb_xa’yb_ya)n,m (3-1)

Disparate image pairs may be produced either by rotation of the x-ray

YA




Figure 3.2 Illustration of projection geometry used in the correspondence
and reconstruction problems. Projection of line SaPa into image
‘B’ is the ‘auxiliary’ line of Pa.
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Figure 3.3 Relationship of Xy to X, vhere Xy and X, are the 'k’ pixel
coordinates of a projected vessel in image ‘A’ and ‘B’

respectively (see Fig. 3.2).
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source-image detector assembly creating an angular separation between views
or by a lateral translation of the assembly or x-ray source. The distance
translated is called the ‘stereo shift.’ Rotation of the source-detector

assembly is the method of choice with the c-arm unit used in this wotrk.

The central problem in determining correspondences between the sample
points of vessel traces is that, except for branching points, there are few
‘exact’ point correspondences between them. Because of the arbitrary
orientation of the 3-d vessels, the sampled projected vessels will have
different numbers of points in each view. This becomes more evident as the
angular separation or stereo shift distance is increased. This problem can
be better explained by looking at a plot of X, versus x, of known point
correspondences for a single vessel branch (Fig. 3.3). In Fig. 3.3, zero,
negative, or infinite slopes in the relationship between X, and Ay, give rise

to points that are unavailable for matching.

Negative slopes mean that a vessel overlaps itself either completely or
partially in one of the two images. This makes matching difficult because
there 1is more than one match possible. By keeping the angle between view
pairs small, as in the case with stereo pairs, the instances of vessel
superimposition occurring in just one of the images can be reduced. The
chance of superimposition by other projected vessels still remains a

problem.

Zero or infinite slopes mean that the x-ray source in one of the tvo
views is looking directly down a vessel, and the vessel is completely
foreshortened. As a result one point may map onto many points. Depending on
the 3-d vasculature of interest, there is often a preferred view where the
complex pattern of vessel superimposition and foreshortening can be
minimized. In the case of cerebral vasculature, this is the lateral view

(Vignaud et al. 1979).

As the angle separating the image pair increases, spatial correlation
between vessel traces is lost. Superimposition and foreshortening of vessels
make each image of the pair different as is the case with the biplane

cerebral angiograms in Fig. 3.1.
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3.3.1.2 Correlation-based algorithms

Most existing algorithms for matching images from stereo views of the
same object surface incorporate the technique of ‘pixel correlation’ (Levine
et al. 1973; Mori et al. 1973; Yakimovsky and Cunningham 1978; Frei et al.
1980; Barnard and Thompson 1980). Fig. 3.4 illustrates the principle of
pixel correlation for a stereo image pair. Given a small windowed region in
the left image centered at (xl,y), the object of pixel correlation is to
find the matching region in the right image. A measure of ‘agreement’
between the image content of the two windoved regions is calculated by means
of cross-correlation, or a similar technique. A match is found when the
measure of agreement reaches a maximum. However, when these image pairs are
angiograms, images in corresponding windows are not likely to be the same
(e.g. windows a, b, and ¢ in Fig. 3.5). This is an important limitation in

the use of traditional correlation-based methods.

Instead of correlating windows in both images, characteristics of the
vessel trace in both views may be compared. Algorithms for correlating
vessel trace features have been proposed by Hoffmann et al. (1987) and

Suetens et al. (1983). Both algorithms are discussed below.

Hoffmann’s algorithm is based on comparing background-subtracted vessel
profiles in stereo-magnified image pairs (Doi et al. 1976;1983). As a vessel
in one image is being tracked, a vessel profile is obtained along a line
perpendicular to the tracking direction (Hoffmann et al. 1986). This profile
is then compared to a set of candidate track point profiles along the
stereoscopic image shift line in the other image. Agreement is measured by
computing the root-mean-square (RMS) differences between profiles of the
given track point and the set of candidate points. The track point of the
profile in the set that gives the lowest RMS difference is selected as the

corresponding point.

This algorithm assumes that the vessel profiles are invariant in the
stereo image pair. This does not hold if the profiles are of vessels that
are foreshortened or obscured in only one of the images, or if

misregistration artifacts are present. Furthermore, ambiguities may still
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Pigure 3.4 Principle of image-window pixel correlation. 3 and X, lie on a

common ‘y’ or the stereo shift line in the left and right images

of the stereo pair.

Xy X, X
I Imm C
y £] y - LJ
pr—
stationary moving
vindow window
left image right image

Pigure 3.5 Stereoscopic pair of DSA images
indicated.

- 48 -

with corresponding windows




arise because most points in the trace are not ‘discrete’ in the sense that
they can be easily distinguished from their neighbors. Suetens et al. (1983)

addressed this problem by incorporating a global mechanism into the

correspondence algorithm to find a preferred set of matches.

Their algorithm begins with matching points between a stereo pair of
vessel traces on the basis of similarity of local vessel characteristics for
each point pair. Each sample point in the trace belongs to a characteristic
vessel segment of a distinct orientation, width, and intensity. They found
that this alone is not sufficient to establish all correspondences. A
preferred set of matches is found by an iterative process (Barnard and
Thompson 1980) of evaluating different sets of point pairings and selecting
the one set whose disparities are the most ‘consistent.’ Consistency is a
measure of how well the disparity of a match ‘conforms’ to its neighboring
matches and is a consequence of the continuity of real world surfaces.
Suetens’ algorithm (1983) for finding correspondences between stereo image

pairs produced by a stereo shift technique is described below.

For each vessel track point in the left image, (xa,ya)n, a set L of
disparity vectors of possible matches is constructed in the other image.
Points 1in the right 1image are selected as possible matches 1if they are
within a distance S, of two horizontal lines from the ‘y’ coordinate of the
considered point in the left image. Let 1%i=(Ax,Ay)i be a disparity vector

in L that can be assigned to the point (xa,y ) and let p(léi) be an estimate

a
of its likelihood. The initial probabilities po(lei) are based on a measure

of similarity between local vessel features at track points in the left and

right images,

0,47 - o >
ply)y = vl HA-p )/ fw(l i) (3.2)
where w(lei) is a measure of similarity for lei. w(lei) is given by
- > - -
w(l17) =1/ (1 +a |8 (A7) ]+ ay|a (A7) ] + az]e, 7)) (3.3)

- . .
wvhere ajr ag, and ay are constants and vhere Ao(l i) is the difference
between the orientation values of the considered vessel segments at points
. . . 2 . . .
in the left and right images, Aw(l i) is the difference between their

widths, and Ain(l%i) is the difference between their intensity values. The
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probability that point (xa,ya) in the left image does not correspond to any
point in the right is pog,

P’y =1 - maxi[w(l*i)l (3.4)

These probabilities are iteratively modified by applying the requirement
of consistency. For each possible match nearly the same disparities are
searched for among the neighbors. If there are any found, the possibility of
this match increases. Consistency requires pk+1(l+i), k=0,1..., to increase

if many neighboring points have a high probability of having disparity 143

that makes
- -

Ihy -1 5 1< vy (3.5)
where ¥ is an appropriate threshold (e.g. w1=2 in Suetens et al. 1983).
Othervise, pk+1(l+i) should decrease. The consistency condition is given by

-3 -

17 -1 ; [l = max [ [ax; - ijl, |ay; - ijl ] (3.6)

A point (xa,ya)n is considered a neighbor of (xa,ya) if there 1is a

continuous path of track points between them consisting of no more than K
points (e.g. K=5 in Suetens et al. 1983). Only those candidates consistent
with their neighbors can survive through several iterations of ‘relaxation.’
‘Relaxation labeling’ is a technique introduced by Rosenfeld et al. (1976)
and Zucker (1976). The basic principle of relaxation labeling is to perform

ambiguity reduction by applying iterated parallel operations.

The following rule is used to update pk(lﬁi):

> "k+l,,~

k+1 “k+l,,~ k
p (li)=p (li)/(p0+ 1flp a ) (3.7)
wvhere
p ) = PR e k) (3.8)
and
k,,» k -
v(1l i) = Z.( 29 ? n(1 j) )
. (3.9)
nt o (X,,y,), near (x .,y ), (x,y) # (x,y)
) - =Y
1 j: l'l i 1 j|| < ¥ Y
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In (3.9) pk (143) is the prohahility that (xa,ya)n in the left image has
disparity 1 j after the kth iteration. The probability that no match exists

is updated by

p %)) (3.10)

The convergence characteristics of the model are influenced by a damping

parameter Q and gain parameter G, in Suetens et al. (1983) Q=0.3 and G=0.4 .

After each iteration the algorithm purges those matches with a
probability less than 0.01. Iteration stops when the probability values
reach a steady state, but 1in practice it is stopped after 10 to 20
iterations (Barnard and Thompson 1980; Suetens et al. 1983). Points that
have a disparity with probability greater than 0.7 are considered to be

matched.

Suetens et al, (1983) demonstrated the feasibility of this algorithm on
an x-ray stereo image pair of a test object composed of a skull and a number
of copper wires. The weak point of their technique is not the algorithm but
vith vessel tracking and feature extraction. Stereo angiogram pairs that are
not collected ‘simul taneously’ or that contain foreshortened and
superimposed vessels make vessel tracking and subsequent measurement of

features difficult. In cerebral angiography such images are common.
3.3.1.3 Ray-based algorithms

Finding correspondences using ray-projection is based on the assumption
that a point in one view will map to a line segment in the image plane for
any other view. Hence, the corresponding image of the point in the desired
view will ideally be found at some position along this line (Fig. 3.2). The
correspondence search is then limited to displacements along this auxiliary
line or back-projected ray (MacKay et al. 1982; Potel et al. 1983). The
ray-projection approach has been used in a wide variety of applications in
the solution of the correspondence problem (Kim et al. 1982; MacKay et al.
1982; Potel et al. 1983; Blume 1984; Barba et al. 1987).
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There are two potential problems associated with the use of the
ray-projection algorithm. The first is that although intersection of the
back-projected ray with the trace in the second view 1is necessaiy for
correspondence, it is not sufficient. The back-projected ray can in fact
cross a trace at several locations as shown in Fig. 3.2. Blume (1984)
suggests that ‘a priori’ knowledge be wused to resolve the ambiguous
correspondences. ‘A priori’ knowledge can take the form of previously
determined correspondence (Barba et al. 1987). The other problem is that in
the presence of measurement inaccuracies, geometric distortion, and object
motion, the auxiliary line of a point may not intersect the corresponding
point in the trace of the conjugate image. Instead correspondence can be
selected on the basis of hov close the 3-d lines of candidate matching
points intersect (Parker et al. 1985;1986;1987). The methods of Parker et
al. (1985;1986;1987) and Barba et al.(1987) are discussed below.

Barba et al. (1987) use previously determined correspondences to resolve
multiple matches between vessel traces from biplane angiograms. Their
correspondence algorithm begins with a selection of two consecutive track or
‘seed’ points on the vessel trace in image ‘A’ whose auxiliary lines
intersect a tracked vessel in the other image ‘B’ only once. The projected
vessel length is then calculated from the Euclidean distance between the two
intersection points. Next, for each track point in image ‘'A,’ starting from
the seed points and working uniformly along one direction of the tracked
vessel, a corresponding auxiliary line in image ‘B’ is computed. The track
point within 1.5 times the projected vessel length of the previous
intersection 1is selected, and this length is updated. The procedure is

repeated in the other direction along the vessel away from the seed points.

This method depends on unambiguous matches and vessel connectivity to
resclve ambiguous matches. In the presence of measurement noise, unambiguous
matches may potentially be incorrect and result in reconstruction errors.
Since previous correspondences are used, such errors would be propagated in

the reconstruction through the rest of the trace.

In Parker et al. (1985;1986;1987) a set of measures of how ‘close’ 3-d
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lines from a possible match of point pairs intersect and vessel connectivity
are used to determine matches. This method is used to match vessel traces
from a pair of gated coronary angiograms separated by about 90 degrees.
Their method begins with an observer selecting as nodes the start and stop
points of vessel branches in the tree. Given a pair of vessel branch traces,
a set of matches for each point in the 1longer trace with each point in the
shorter trace is constructed. For each pair of matched points, two lines in
3-d are constructed, and the distance of the segment between the points of
closest approach between the two lines is computed (Fig. 3.6). The
reconstructed coordinates are taken at the midpoint of this segment. The
squared value of the distance of each pair, dmnz, is represented by the
matrix M(m,n) (Fig. 3.7). The top 1left and bottom right indices of the
matrix represent the known correspondences of the start and stop end points
of the vessel branch trace in each view. The smaller the squared distance
value the more 1likely that the pair of points it represents are in
correspondence. This reduces the problem of finding the best set of matches
to finding the minimum cost path from the wupper 1left corner of the
‘likelihood’ matrix to the lower right. The values in M(m,n) are updated by

rows starting from n = 2,

M(m,n) = M(m,n) + min( M(m-u,n-1) ) (3.11)

u: ( -b4m,...-1,0,1,...,8m )
vhere the connectivity constraint requires that indices of subsequent
matches can differ by at most |am| from indices of previous matches. For
each rov element of M(m,n) the path chosen by the search algorithm from the
previous row is stored as a pointer. The final path of index pairing is then
specified by the bottom right index of the matrix (i.e. known stop end
points of the vessel branch traces). The pointer at this matrix element
indicates the path to the element in the previous 1ow. ‘Chaining’ together
the pointers row by rov this way, the final path is constructed. This search
process 1is referred to as ‘dynamic programming.’ Other related applications
of dynamic programming have been described in Pope et al. (1984;1985) and
Parker and Pryor (1982).

If the start and stop node points of a pair of vessel branches are not

known, the final path can be specified by the minimum value in the last row
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Figure 3.6 The minimum distance dzmn between two lines corresponding to the

paired points (xa,ya)n and (xb,yb)m. (After Parker et al. 1986)

View ‘A’
Point n

Focal Spots \

View ‘B’
Point m

Figure 3.7 The likelihood matrix of minimum distances d2mn between the line
t

of the n™" point in a branch in view ‘A’ paired with the line of

the m " point in the matching branch in view ‘B’. (After Parker
et al. 1986)

Viev ‘B’, m

View ‘A’, n
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of M(m,n). Difficulties arise if the minimum value appears in more than one

rov element.

In comparison to the previous method, this method should be less
sensitive to measurement noise in the image coordinates of the points being
matched, but less flexible to large changes in indices that would reflect
vessel foreshortening. Its application in cerebral angiography is not
straightforvard. Unlike the system of coronary arteries, there are few node

points that can be advantageously used.

3.3.2 Proposed algorithm

Building on the work of Suetens et al. (1983) and Parker et al. (1985;
1986;1987), an algorithm for automatic matching of points along a matched
pair of traces from any pair of views 1is proposed. The proposed
correspondence algorithm is similar to Suetens’ et al. (1983), but different
in the way candidate points are found and in the how the initial
probabilities are estimated and iterated. These three differences are

described below.

Ray-projection is used to find an initial set of possible disparities
for each point (xa,ya) of trace ‘A.’ Every point in the vessel trace ‘B’ is
considered as a candidate match if its distance along the normal to the
projected ray 1is less than S, Because of patient re-positioning after
rotating the c-arm assembly, the 'y’ coordinates of the projected vessels
will not necessarily lie on the same horizontal lines. s, is adjusted to
reflect any inaccuracies in the auxiliary line that may arise from

measurement errors.

The second difference is that the initial probabilities are based on the
contents of the likelihood matrix (Parker et al. 1985;1986;1987). Since
point features cannot be expected to be invariant in non-stereo projections,
each disparity in the set is assigned an initial probability based on the
distance dmnz' A matrix M(m.n) is constructed of the candidate matches and
updated according to u: O0,1,...,8m in (3.11) in order to avoid ambiguous

matches that may result from multiple crossings. Rather than constructing
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the final path through the 1likelihood matrix by chaining, the updated

elements of M(m,n) are used as the initial probability estimates where

-

w(l)) =17 (1+alMmn)]) (3.12)

replaces (3.3). The expected advantage of iterating the initial
probabilities in parallel operations is that the level of ambiguity in

candidate matches should be reduced further than by chaining.

The last difference in the proposed algorithm 1is the addition of an

ordering constraint to 1%3 in (3.9),

ra’i < ra’j y 0 S(rb’j - rb,i) S W2 (3-13)
Fayi ” Fa,j 0y 1 -1p,5) £
where indices in trace ‘A’ r_ , and r_ ., and trace ‘B’ r, ., and r, ., are
a,i '] b,i b,j

associated with the disparity vector 1 i and its neighbor 1 3 respectively.
By this constraint, the rank order of indices of 1_’i vith its neighbor 1_3
in trace ‘B’ must be the same as in trace ‘A.’ Since blood vessels are
linear and connected objects, it is reasonable to assume that the ordering
of track points representing the connected path of a vessel should be
preserved in different projections. 0f course, should a vessel’s 3-d path
lie almost entirely along the direction of projection 1in one of the images
being compared then this constraint would be defeated. In the case of the
cerebral vessel tree, foreshortening of entire vessel branches is unlikely.
The threshold 1) gives the size of the neighborhood of 1—)i in trace ‘B’
wvhere 1%5 is allowed. This constraint is important for matching points
between biplane vessel traces where except for very simple vessel geometries

consistency of disparity does not hold.
3.4 Stereo - biplane reconstruction method

It has been proposed in §3.2 that vessels reconstructed from stereo
views will often exhibit recognizable structure from which information
useful in biplane analysis should be extractable by the observer. In order
to take advantage of the observer’s insight and to efficiently make use of

this prior knowledge, an interactive reconstruction method has been
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developed. An overview of the proposed method to reconstruct vessels from

stereo and biplane DSA images is outlined in §3.4.1. §3.4.2-3.4.6 describe

the design of the algorithms used.
3.4.1 Overview of proposed method

The reconstruction procedure uses as input three DSA images, a lateral
stereo pair and a single anterior-posterior image of the head and
Stereotactic frame together. All views are collected by c-arm rotation
(§3.4.2). The output of this procedure is a set of 3-d coordinates that
represent the center-line positions of the blood vessels in the stereotactic
coordinate system. A function chart of the procedure 1is shown in Fig. 3.8.

The ten steps of this procedure are outlined below.

The first step in the procedure is the calibration of the x-ray beam
geometry and pin-cushion distortion in the lateral stereo and anterior-
posterior DSA images (§3.4.3). The u-ray views are calibrated directly from
the 1images of the stereotactic frame’s fiducial markers in the angiograms.
The stereotactic frame remains attached to the patient’s head during DSA
examination. It is then a simple task for t! observer to identify the 2-d
image coordinates of the markers in an angiogram displayed on a CRT monitor
(Peters et al. 1986). Next, the computer uses these measurements to compute
the transformation constants between 3-d object space and the 2-d image in
each view. The transformation constants are then used later in the
reconstruction and re-projection steps of the procedure. Because images
suffer from pin-cushion distortion. the images are calibrated to correct for
this distortion. A 1lcm square wire grid is imaged, and a correction

procedure similar to Kooijman’s technique (§2.4.6) is used.

Following calibration, the lateral stereo angiograms are displayed
stereoscopically in step 2. The stereo image pair is displayed as a red-blue
anaglyph or a colour CRT monitor (§3.4.4). This permits the observer to
visually select those branches of vessels in both images that are of
interest to be reconstructed. The observer proceeds with one vessel branch
at a time. In step 3, the selected vessel branch in each angiogram of the

stereo pair is manually tracked (§3.4.5).
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Figure 3.8 Function chart of reconstruction procedure.

INPUT: Lateral stereo and anterior-posterior stereotactic DSA images

Steps Performed by
1) Calibration of input images observer & computer
2) Display stereo lateral images computer
3) Track branch of vessel projected observer

in the stereo image pair

4) Match stereo vessel traces computer
S5) 3-d reconstruction from stereo pairs computer
6) Re-project 3-d coordinates to computer

anterior-posterior image

7) Track corresponding vessel observer
branch in anterior-posterior
image
8) Match biplane vessel traces computer
9) 3-d reconstruction from biplane pairs computer
10) Return to 2) until all vessel observer

branches reconstructed

OUTPUT: 3-d coordinates of tracked vessel
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The two sets of 2-d points representing the tracked vessels are matched
by the computer in step 4. Image points are paired using the algorithm
described previously in §3.3.2. In step 5, the 3-d coordinates of the track
points are then reconstructed from the set of matches. The pair of 2-d image
coordinates of each point and the calibration data from each view are used
to compute the point’s 3-d coordinates. Given the calibration data for the
anterior-posterior view, the reconstructed 3-d points are then re-projected

by the computer and displayed in the anterior-posterior angiogram in step 6

(§3.4.6).

In step 7, the vessel branch in the anterior-posterior angiogram that
most resembles the re-projected vessel is selected by the observer. This
vessel is then tracked by the observer. Steps 8 and 9 are the same as steps
4 and 5 except that the biplane vessel traces are matched instead of the
stereo traces. The final 3-d coordinates are re-computed on the basis of the
biplane matches. The procedure is repeated for any number of vessel

branches.
3.4.2 Stereo and biplane acquisition of DSA images

Fig. 3.9 illustrates the coordinate system of the data collection model
and the notations that are adopted here. Referring to Figs. 3.9 and 3.10,
the x,y,z (cartesian) coordinates are fixed in object space where f1 is the
distance of the x-ray source to P, the object point to be reconstructed, and

f
2
between 70 to 90 cm and fz is between 10 to 40 cm. In cerebral DSA,

is the distance of P to the 1image intensifier surface. Typically, f1 is

projection images are acquired by rotating a fixed x-ray source-detector or
c-arm assembly around the patient’'s head at variable angles of 8 and B. In
practice B is kept constant (usually B=90 degrees) and the c-arm is rotated
in 8. Lateral and anterior-posterior views are specified by 60 and €=90

degrees respectively.
The effect of 3-d space can be created by viewing the stereo image pair

on a stereoscopic CRT display system. The various CRT displays systems

possible are discussed in §3.4.4,
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Figure 3.9 Data collection geometry.
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Figure 3.10 Schematic representation of c-arm showing relevant geometric
parameters.
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3.4.3 Calibration

The calibration of the x-ray equipment as it is used in this procedure
consists of estimation of both x-ray beam geometry and pin-cushion
distortion in the DSA image. A description of the stereotactic frame used in
calibrating the x-ray beam is presented in §3.4.3.1, and §3.4.3.2 describes
the calibration technique. The correction technique for image pin-cushion

distortion is given in §3.4.3.3.
3.4.3.1 Description of the MNI stereotactic frame

The stereotactic frame used at the Montreal Neurological Institute (MNI)
(Tipal 1989) is shown in Fig. 3.11 fitted with plexiglass plates on the
anterior-posterior (x-axis) and lateral (z-axis) sides. On each plate there
are four 0.5mm diameter steel pellet markers at the vertices of a square.
The object coordinates of the fiducial markers 1in lateral and anterior-
posterior plates are listed in Table 3.1. The image location of these
fiducials in the angiogram is used to calibrate the x-ray beam geometry with
respect to the object or stereotactic coordinate system in either
anterior-posterior or lateral views. This physical arrangement of fiducial
markers at geometric magnifications of 1.25 to 1.5 and a 154 mm image
intensifier field size permits a range of ~+7-10 degree rotation in 6 trom
either of the biplane directions. Outside of this range the images will not
contain the projections of all fiducial markers necessary for calibration.
Although the frame’s coordinate system uses the ‘left-handed’ convention, a

‘right-handed’ system is assumed throughout the rest of this chapter.
3.4.3.2 X-ray beam geometry calibration

In order to reconstruct points from their images or re-project them into
images of different views, the mapping of 3-d object points onto the 2-d
image must be determined for each view. The 3-d to 2-d mapping can be

modeled by a linear transformation in homogeneous coordinotes (Sutherland

1974).

Referring to Fig. 3.9, the projected image plane coordinates of a point
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Figure 3.11 Principle axes of stereotactic frame. Fiducial markers are
indicated by small arrows.

Table 3.1 3-d coordinates of fiducial markers in stereotactic frame.

Fiducial Marker Set X [em] y [em] z [cm]
Lateral Proximal Plate 4.0 9.0 -9.0
11.0 9.0 -9.0
4.0 3.0 -9.0
11.0 3.0 -9.0
Lateral Distal Plate 4.0 9.0 9.0
11.0 9.0 9.0
4.0 3.0 9.0
11.0 3.0 9.0
Anterior Plate -5.0 8.0 2.0
-5.0 4.0 2.0
-5.0 8.0 -2.0
-5.0 4.0 -2.0
Posterior Plate 15.0 8.0 2.0
15.0 4.0 2.0
15.0 8.0 -2.0
15.0 4.0 ~2.0




P can be expressed in homogeneous coordinates as (x’,y’,h) vhere x=x'/h and
y=y’/h. The mapping of point P, (xo,yo,zo,l), onto its image can be then
given by

(x',y’,h) = (Xo,yo,zo,l)[Tl (3.14)

where |[T] is a 4x3 matrix. The advantage of homogeneous coordinates is that
a single matrix [T] can accomplish full coordinate transformation operations

on P, such as perspective, rotation, translation, and scaling.

The elements of the transformation matrix [T} can be determined if the
positions of the focal spot and image plane with respect to object space
coordinate system are measured directly prior to imaging. The major
disadvantage of determining the transformation in this way is that there is
no way of knowving if any changes to the geometry have occurred during
imaging. Instead the transformation matrix [T] may be calculated from the
knowledge of a set of image projections of known 3-d points. This technique
of computing [T]) is called view calibration (Sutherland 1974). If T41, T»2,
and T

3
two equations:

are the column vectors of [T], then each known point gives rise to

O}
(3.15)
(Xosyoyzofl)(Taz - yT+3) =0

1l

> >
(xo:yoyzoyl)(T 1 - xT 3)

For k known points, the corresponding pairs of (3.15) can be represented in

matrix form as

(AHT"] = t,,5[B] (3.16)

vhere [A] is a 2k x 11 matrix, [T'] is a column matrix containing eleven of
the twelve elements of the matrix [T], [B] is a 2k column matrix, and the
twelfth matrix element t43 is a scaling factor. This scaling factor is
typically set to wunity without loss of generality. Eleven equations are
needed to sclve for [T’] and thus six or more points give rise to an over-
determined system which can be solved in a least squares sense using a

generalized inverse (Strang 1980),

(Tr1 = ¢ (a1t1a) ) lartys) (3.17)

The constants of [T’] can be determined if there are at least 6 known 3-d

object points in the image with the restriction that no more than four
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object points should be coplanar and that no more than three of the imaged
points be collinear (Adams 1981). In stereotactic applications, the
necessary system of control points is provided by the fiducial plates of the

stereotactic frame (§3.4.3.1).

Each plate of the sterectactic frame consists of 4 distributed fiducial
markers with known spatial coordinates defining (he object space in the
frame (Table 3.1). As the stereotactic frame is also imaged during the DSA
examination, the result 1is that the image displays a set of 8 easily
identified spots at the periphery of the image (Fig. 3.12). Fig. 3.12a), b),
and c¢) shov photographs correspornding to typical DSA mask images of lateral,
lateral stereo, and anterior-posterior views of the head and fiducial plates
of the stereotactic frame. It is not necessary that the center-line of the
x-ray beam be perpendicular to the face of the frame, merely that all 8 of

the markers be distinguishable within the image.

The observer using a track-ball controlled graphics cursor enters the
position of the 8 fiducial points in each displayed image. The
transformation |[T’] for each view is computed and stored for later use in

the reconstruction and re-projection operations described in §3.4.6.
3.4.3.3 Image pin-cushion distortion correction

DSA images suffer from image pin-cushion distortion and as a result
objects near the edges of the image are selectively magnified compared to
its size in the center of the field (§2.4.6). The degree of image
pin-cushion distortion will depend primarily on the input phosphor

curvature and this will be different for each tube manufacturer.

To correct for pin-cushion distortion a plexiglass tablet with an
embedded 1lcm-grid of copper wires 1is imaged prior to examination (Fig.
3.13). The distortion patterns for lateral, lateral stereo, and
anterior-posterior views shown in Fig. 3.13 are different because of the
changing 1interaction with the earth’s magnetic field on the electron optics
of the image intensifier as the c-arm assembly is rotated to each view.

Since the distortion cannot be described by a simple analytic function,
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Figure 3.12 Mask images of the head and the stereotactic frame. Images of
‘ the 8 fiducial markers are indicated by small arrows.

a) Lateral view b) Lateral stereo view

c) Anterior-posterior view
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Figure 3.13 Pin-cushion distortion pattern in subtracted images of a cm
wire-grid. Grid imaged with a 231lmm Philips CsI image
intensifier operating in its 154mm mode. The image matrix size
is 512 x 512.

a) Lateral view b) Lateral stereo view

c) Anterior-posterior view
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Kooijman’s technique (Kooijman et al. 1982) was chosen from those reviewed

in §2.4.6. The implementation of their method is described below.

This technique’s implementation is semi-automated. The observer starts
by indicating the four corners of the grid square at the center of the
image, indicated by the small cross hairs in Fig. 3.14a). The computer then
calculates the positions of the undistorted grid intersection points (Fig.
3.14b). To measure the correction vectors, the coordinates of the wire-grid
intersections need to be detected. The detection algorithm uses two facts.
First, intersections of wires distinguish themselves by a lov pixel value
compared to the background, and secondly the positions of corresponding
ideal and wire grid intersections are in close proximity of each other.
Wire-grid 1intersections are detected by searching the image for a local
minimum in a 15x15 window centered at each of the ideal grid intersection
positions. The correction vectors are then stored in a look-up table
according to the location of the point the correction represents. Fig.

3.14c) shows the correction vector for each wire-grid intersection point.

3.4.4 3-d display of stereo DSA images

In this work a c-arm rotation technique is used to acquire stereo images
in DSA. Fig 1.2 shows photographs of representative stereo digital
subtraction angiograms in lateral and anterior-posterior directions. The
stereo pair in both anterior-posterior and lateral views is obtained by
rotating the c-arm assembly by }46|=7 degrees in each view. The stereoscopic
impression of depth created by the resulting image pair was found to be
sufficient for the purposes of resolving continuity of vessels at crossings

with other vessels.

A number of CRT-based displays for 3-d viewing of stereo angiograms is
possible. Fig. 3.15 presents a generic tree of some of the more interesting
CRT stereo display systems. These systems do not provide directly viewable
stereoscopic images, a special apparatus is required to permit each eye to

see only the image intended for it.

Time parallel systems are characterized by the simultaneous presentation
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Figure 3.14 a to c¢) S
technique.

a) Indication of center square
in distorted grid image.

tep by step illustration of pin-cushion calibration

b) Prediction of undistorted
grid intersections in image.
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Figure 3.15 Generic tvee for CRT stereoscopic display systems. (After Hodges
and McAliister 1985)

CRT STEREO DISPLAY SYSTEMS

Time multiplex Time parallel

Electro- Separate
optical Mechanical Anaglyphic image
Shutters Split screen

PLZT shutters
—_ Dual CRTs

o«
-~

Liquid crystals

Switching at eyes

Switching at screen
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of left- and right-eye views. A vell known example of a time parallel system
is the ‘anaglyph’ display in which the two images of the stereo pair are
displayed on the same CRT using complementary colours. The observer then
views the images through glasses with filters matching the complementary
colours (Von Helmholtz 1925; Wolvin 1967; Ferguson 1968). Other examples of
time parallel systems present views side by side on a single CRT screen or
on adjacent CRT screens. These systems require either reflective or optical
means to deliver the correct view to each eye (Ortony 1970; Sand 1984; Dietz
and Kuhn 1980; Herman 1986).

Time multiplexed systems are characterized by rapidly presenting
alternate left- and right-eye views on a single CRT display. To synchronize
the views to the correct eye a shutter mechanism is employed. Systems have
evolved from heavy mechanical shutters (Lane 1982) to lighter weight
shutters with faster switching times. The later are typically constructed
using either lead lanthanum zirconate titanate (PLZT) electrooptic ceramics
or liquid crystal panels (Roese and Turner 1976 Lipton and Meyer 1984;
Hodges and McAllister 1985). Alternatively, the shutter mechanism can be
placed directly in front of the CRT and the observer views the images
through a pair of polarized glasses (Tektronix 1989). An example of the
medical application of this display technology is described by Herman
(1986).

The inconvenience and restraint ¢f wearing a viewing device has led to
the development of autostereoscopic displays. Examples of systems that do
not require a special viewing device include: lenticular displays (Meacham
1986) and Fresnel displays (Rudell and Sheima 1983).

0f the different sterec CRT viewing systems considered a colour
anaglyph display was selected for this work on the basis of availability,
cost, and ease of implementation. A dual monitor/polarizing screen approach
vas tried and abandoned because of difficulties in matching the brightness
and geometrical distortion of the two channels. §3.4.4.1 presents details of

the implementation of an anaglyph display system.
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3.4.4.1 Implementation of colour anaglyph method

There are essentially two schemes by which a stereo pair can be
displayed as an anaglyph. The first is to add the stereo image pair together
‘temporally’ by swvitching alternately left and right images and modifying
the colour map look-up-table (LUT) according to the displav image’s
designated colour. The colours commonly used in stereo anaglyphs are red and
blue. This means of presentation requires a separate image frame buffer for
each image o1 one 1image frame buffer large enough to accommodate the two
images. Furthermore, unless the alternate images are presented at normal
frame rates (e.g. 60 cycles per second) the resulting ‘flicker’ can be

disturbing to the observer.

The other method to present anaglyphs on CRTs is to ‘spatially’ sum the
left and right images. The images are processed in order that each image
does not change 1its intensity value when added to the other the images.
Processing consists of first selecting N/2 bit range of pixel values from
each image where N is the total number of input bits to the colour map LUTs.
In this case the display processor being wused (Lesidata 3400, Lexidata
Corp.) offers red and blue LUTs of 1024 channels each, hence N=10 and the
images must be reduced to 5 bits each. By ‘windowing’ (§2.3.3) the image,
the 5 bits that ‘best’ represent the angiogram can be selected. Becauvse of
different levels of image background in the angiogram, some regions of the
image may be thresholded out of the 5 bit image. Next, the red and blue
LUTs, each 1024 channels, are divided into 32 bands of 32 channels each. In
the red LUTs, each band is linearly ramped vith values ranging from 0 to 255
(Fig. 3.16). In the blue LUTs, each band has a level value that starts at O
for the first band and steps up to 255 for the last band with 31 steps of
height 8 between the first and last bands (Fig. 3.16). With both LUTs set,
the pixel values of the left image (red LUTs) are divided by 32. The blue
image pixel values are scaled to form multiples of 32. Modifying the images
and the LUTs in this way allows the images to be overlapped when added to
each other. Though the dynamic range in the images is reduced by a factor of
32, this is acceptable for digital subtracted cerebral angiograms. Fig. 3.17

shows an example of angiograms processed for anaglyph presentation.
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Figure 3.16 Definition of bit-plane values of colour map look-up-table (LUT)
locations for ‘Red-Blue’ anaglyph image presentation. Green LUTs

are set to zero.
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3.4.5 Tracking of vessels in DSA images

If complete and homogeneous filling of the arterv with contrast agent is
assumed, equation (2.4) indicates that the grey-level intensity in the
subtraction image is proportional to irradiated vessel thickness. For a
circularly-cylindrical artery with its main axis orthogonal to the x-ray
beam, this means that the intensity values shov a maximum in the center of
the projected artery (Brown et al. 1977). This 1s approximately so in most
cases, thus the center-line of a vessel in an angiogram should adequately
describe 1its structure. Furthermore, vessels in angiograms are separated
from background by relatively sharp transitions in their grey-level values.
The center-line of a vessel may be found either by manually tracing 1t
directly or by computer measurement and tracking of local edge and line
attributes of the vessel in the angiogram. Although manual tracing is quite

simple, it can be a time consuming if many vessels are to be traced.

Any attempt to automate vessel segmentation in angiograms is faced with
problems of noise and the complex 3-d structure of the vessels. Vessels may
be obscured at crossings as arteries of the 3-d system intersect in the 2-d
projection or vessels may be poorly visible if iodine contrast is low. Usual
simple segmentation techniques such as thresholding are not applicable to
angiograms (Suetens et al. 1983). This is becduse the grey-level intensities
of vessels are not constrained to a unique range of values. The use of
spatially wvariant thresholds showed little 1improvement 1in vessel seg-
mentation (Suetens et al. 1983). Unimodal girey-level profiles are not always
sufficient to uniquely characterize vessels in an angiogram, and other
features need to be considered i1n segmentation. In addition to (i) grey-
level intensity, other features may include: (ii) grey-level imensity
continuity, (iii) linearity, vessels are thin and elongated structures which

join to form a tree-like object, or exhibit (iv) ‘connectedness.’

Most vessel segmentation techniques reported to date have consisted of
the detection and sequential tracking of vessel features (i-iv) 1in an
angiogram. Tracking usually consists of point to point ‘line-following’
guided by the assumed connectivity of the detected feature(s) in the image

of the vessel. Given a point on the vessel center-line, the next point is
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searched for in an area expected to contain the continuation. This area can
be either a fixed size or adjusted according to previously determined
points. A number of such segmentation techniques have been implemented where
tracking is guided by local intensity maxima at vessel center-lines
(Gerbrands et al. 1982; Stevenson et al. 1987), continuity of vessel
contrast profiles (Hoffmann et al. 1986; Kitamura et al. 1988}, and
continuity of vessel center-line, width, orientation, and intensity (Sun
1989). The task of vessel tracking has also been addressed wusing dynamic

programming techniques (Parker et al. 1985; Dallas and Roehrig 1987).

Such techniques are capable of detecting thin straight vessel segments
in an angiogram. Tracking 1is less reliable for vessels that follow sharp
turns, or fold over themselves, and for small vessels where noise is a
factor. Segments of such vessels in angiograms may prove to be difficult to
extract because it may no longer possess the ‘'linear’ or other features

(i-1ii) that the detection operators are expecting.

Another approach to the segmentation problem is to separate the vessel
detection and tracking operations. Nguyen and Sklansky (1986) describe a
technique that attempts to detect all maximum grey-level pixels that may
form a vessel’s center-line. Only those points with similar attributes are
then merged and tracked. At each candidate point, the direction of the
vessel segment, vessel boundaries, and grey-level value are measured and
stored as local properties attributed to that point. Attributes can be
weighted to emphasize certain properties depending on the applicatiion. Other
examples of this approach are described by Fukui et al. (1980) and Collorec
and Coatrieux (1988). The main advantage of this 'bottom-up’ approach to
vessel segmentation is that 1t is less sensitive to vessel superposition and
foreshortening than the previous ‘'top-down’ approach. However, problems
occur with small vessels where grey-level profiles are no longer unimodal,
and vessel boundaries may be diffi~ult to detect because of low contrast and

noise in the image.
The sources of these limitations occur more frequently in cerebral

angiography than in coronary angiography for which most of the described

methods were intended. Improved reliability and accuracy in vessel
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segmentation techniques are needed before they can be used routinely in

clinical studies. Recently, rule-based expert systems have been proposed to
guide segmentation of geometrically complex vessels 1in an attempt to
unambiguously detect and identify all vessels (Ritchings et al. 1985;
Stansfield 1986; Smets et al. 1988). Although the use of expert systems
looks promising, precise tracking of geometrically complex vessels is

presently still reserved to the domain of the experienced human observer.
3.4.6 Reconstruction and re-projection algorithms

With two images given by transformation matrices [T} and {U], and the
coordinates of the corresponding points in each image (xa,ya) and (xb,yb),
the coordinates of the 3-d object point (xo,yo,zo) can be reconstructed. In
addition, re-projection operations on 3-d points are also possible if the
desired view transformation matrix |[T] is known. The mathematics of the

reconstruction and re-projection operations are described below.

For any (x,y) and matrix [T}, (3.15) describes two planes whose
intersection gives the equation of a line in 3-d object coordinates along
wvhich the real object point must lie. After the transformation matrices [T]
for view ‘A’ and [U] for view ‘B’ are determined and the corresponding point
pair (xa,ya) and (xb,yb) is given, the two lines can be constructed wvhose
intersection gives the location of the real point 1i1n object space

coordinates. The four equations arising from (3.15) can be written in matrix

form as
[ f1t13%a ftesta Yttt | [ t43%a7%1 |
[0}
'127%13Ya Yo7 aVa f327t33¥, t43¥a 42
vo| = (3.18)
"M%y Yo Moa®p M3ty i Us3®p~s1
(o]
LU oYYy UopTUgYy Y3p7YagYy L U43Yp7 g2 -

This matrix equation represents a system of 4 equations in 3 unknowns,
(xo,yo,zo), which can be solved in a least squares sense by a generalized
inverse (see 3.17). The transformation matrices can also be used to
re-project 3-d points or to locate the auxiliary line of a 2-d point in

another view,
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Re-projection of a 3-d point (xo,yo,zo) onto an image described by [T]

can be computed from (3.15),

>
|

t312o + t41) / h

- 9
y = (tlzxo + tzzyo + t3220 + t42) / h (3.19)

= (Lg%, + Ty, *

ho= (t3%, * Ty3¥g + 13375 * Ty3)
The display and interaction of 3-d data are discussed further in appendices

A and B respectively.

The re-projection or back-projection of a 2-d point in one view onto a
line in another view can also be reckoned from (3.18). Since (3.18)
represents an over-determined system of 4 equations in 3 unknowns, it would
be still possible to solve for (xo,yo,zo) if one of its rows was dropped.
Given (xa,ya) the point of interest in image ‘A’ and (xb) the left edge of
the image in ‘B’ are specified in (3.18), the matching system of 3 equations
can be solved for (Xo,yo,zo)l. This point 1is then projected through
transform [U] to give (xb,yb)l, the intersection of the projected 3-d line
with the left edge of image ‘B.’ The process is rcpeated for the right edge
of image ‘B’ to give (xb, b)r' The points (xb,yb)1 and (xb,yb)r define the
auxiliary line of (xa,ya) in image ‘B.’ In an analogous manner, an auxiliary
line betwveen the left and right edges in image ‘A’ can be constructed when

(xp1¥y) is specified.

If the two lines corresponding to image coordinate points (xa,ya) and

(xb,yb) have parametric equations

X = Xy + jlb X = Xy + j2c
Yy =¥y + gb Yy =¥y + 8yt (3.20)
z =2y + klb 2 = 25 + kzc
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then the minimum distance d between them is given by the expression

*27% You¥1 %37y

3 &y k)
X Y] k,
d = (3.21)
. ) 2 2 172
[ ’31 g g1 Kk ki 3y ]
+ +
iy & g, ky ky 3,

where the vertical bars | | denote the determinant of the matrix inside.
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CHAPTER FOUR

GEOMETRIC RECONSTRUCTION FROM DSA IMAGE PATRS: IMPLEMENTATION & EVALUATION

4.1 Introduction

This chapter examines the reconstruction method described in chapter 3.
Its scope is limited to determining reconstruction error dependence on both

measurement errors and the correspondence algorithm.

The accuracy of 3-d point reconstruction from stereo and biplane image
pairs depends primarily on the error in the measurements of point and
fiducial marker image pixel coordinates, and the assignment of point and
marker correspondences. The work of Sherlock and Aitken (1980) details the
relationship of reconstruction error to measurement error in x-ray film
systems with long focal length (i.e. greater than 2m). Its applicability to
digital subtraction angiography (DSA), where focal lengths are short (i.e.
between 1-Z2m), is uncertain. Similarly, the contribution of fiducial image
measurement errors to reconstruction error is also not known. For these
reasons, the sensitivity of reconstruction to measurement errors is examined
under conditions similar to those found in cerebral DSA (see §3.4.2 and
§3.4.3.1).

This chapter reports the results of experiments on the sensitivity of
reconstruction accuracy to measurement errors in the image coordinates of
the target or test points and in the image coordinates of the fiducials
(84.2). §4.3 reports on the results of experiments with the correspondence
algorithm, and §4.4 concludes the chapter with a discussion of results and

possible further refinements to this method.
4.2 Reconstruction sensitivity to measurement error
This section describes the methodology and results of experiments that

examine reconstruction sensitivity to measurement error. The geometry of

reconstruction and definitions of error measures are described in §4.2.1 and
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§4.2.2 respectively. The possible sources of measurement error are outlined

in §4.2.3.

Occurrence of measurement errors in both the image coordinates of the
fiducial markers and test point: in actual measurements of accuracy make
separate examination of these two contributions to reconstruction error
difficult. For this reason reconstruction is simulated numerically on a VAX
11/750 computer. §4.2.4 and §4.2.5 respectively report the results of
computer simulation experiments on the effect of measurement error in image
coordinates of test points and fiducials on reconstruction. These results
are compared with actual measurements of accuracy made on a test phantom

described in §4.2.6.
4.2.1 Reconstruction coordinate system

Fig. 4.1 sketches the reconstruction coordinate system used throughout
this chapter. Referring to Fig. 4.1, a test or target point P~ is projected
into two images ‘A,’' and ‘B.’ The image of P~ in each respective view is
measured by the coordinates (xa,ya)p and (xb’yb)p' The isocenter is
designated by point 0” located at (7.5cm,6cm,0cm) in the stereotactic
coordinate system (§3.4.3.1) and is also the point from which the geometric
magnification is computed (§2.4.2). For purposes of discussion all
references to test point and fiducial marker coordinates are made from the
reconstruction coordinate system. The rctation angle of a view or projection

is given by © about 0, the axis of rotation of the c-arm assembly.

The projections of the lateral and the anterior-posterior fiducial
points of the stereotactic frame are given by the image coordinates

(xa’ya)lat,j and (xb’yb)ap,j respectively where j=1,...,8.

4.2.2 Definitions of error measures

Knowledge of the image coordinates of the fiducial markers allows the

. . > . . .
{%,y,2) coordinates of point P to be estimated as P%e from its image
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Figure 4.1 Illustration of the geometry of the x-ray imaging system used in
reconstruction.

Image Planes
lBl IA'

SRy

Focal Spots

Table 4.1 Pixel widths and corresponding RMS error associated with 256,

512, and 1024 square image matrices for a 154mm image
intensifier.
Matrix Size Pixel Width Uncertainty RMS error
[mm/pixel] +[mm] +{mm]
256 x 256 0.6 0.3 0.17
512 x 512 0.3 0.15 0.087
1024 x 1024 0.15 0.075 0.043
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coordinates (xa,ya)p and (xb,yb)p. The error in Paé is denoted by APQ,

ap” - p7 P"e - (&x, by, 02) (4.1)

wvhere X = x - X by =y - Yo &z = z - zg
and by its norm or linear distance error D,
D2 = sz + Ayz + Azz (4.2)

. . s 2>, .
The uncertainty with which P is reconstructed depends on the error in the

measured image coordinates of the test point and the fiducial markers. The

possible types of measurement errors are discussed in the following section.

4.2.3 Sources of measurement error

Error in the measured image coordinates of projected test and fiducial
points can arise from several sources. They are sampling or digitization,
observation, correspondence, focal spot blur, image intensifier distortion,

and patient motion.

Digitization  error occurs because the image is finitely sampled
(§2.4.5), hence the precision of the measured image coordinates is
fundamentally limited by their pixel size., Table 4.1 lists the three most
common pixel sizes for a 154mm image intensifier and their corresponding
root-mean-square (rms) error on the assumption that digitization error 1is
random (2.12).

Inaccurate localization of point image coordinates by either the
observer or computer introduces error in the reconstruction. Error in the
assignment of pixel coordinates is referred to here as observation error. It
is expected that the likelihood of this error increases as the image feature
{e.g. fiducial points, vessel center-points or lines) to be reconstructed
becomes more complicated and observation requires more judgment. The
statistical nature of observation error is assumed to be independent and

nermally distributed (Blume 1984).

Another source of measurement error is correspondence error, the

incorrect classification or matching of pixel pairs. The character of this
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error depends on the correspondence algorithm used. For the purposes of this

section correspondence error is included in the class of observation errors.

The effect of finite focal spot size (§2.4.2) and image intensifier
pin-cushion distortion (§2.4.6) also contribute to measurement error.
Whereas digitization and observation errors are essentially random, focal
spot blur and pin-cushion distortion are systematic. Thesz errors can be
minimized by reducing geometric magnification in case of focal spot blur and
by using a grid technique (§2.4.6 and §3.4.3.3) for pin-cushion distortion

correction.

The last potential source of measurement error is patient movement
(§2.4.7). Patient motion during a DSA examination produces registration
artifacts which makes it more difficult for the observer or the computer to
correctly ‘observe’ the image coordinates of the fiducials or the vessel
center-lines. §2.4.7 outlines the different techniques that can be used to
reduce artifacts. Since the fiducial markers also move with patient head
motion and providing all fiducial markers are visible in the image, patient
motion will not result in any calibration error. Although for individual

frames calibration may be different.

0f these types of measurement error, digitization and observation errors

are of most concern. These errors are studied in the following sections.
4.2.4 Measurement error in image pair coordinates

The sensitivity of 3-d point reconstruction to measurement error in the
target or test point image coordinates can be characterized by general
analytical expressions for ap” (§4.2.4.1) and by simulating errors
numerically for a known Pa, (xa,ya)p, and (xb’yb)p (§4.2.4.2). It is assumed
that there are no uncertainties in the image coordinates of the fiducial

markers.
4.2.4.1 Theory

The propagation of error can be expressed in terms of a Taylor expansion
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of the reconstruction equations or in terms of the root-mean-square error.

Both are considered below.

. . ; 4
The Taylor expansion to the first order of the coordinates of P e about

. . - .
the true or actual values of the image coordinates of point P 1is given by

\
Ax 3x/axa ax/aya 3x/ 9K ax/ayb Axa

b
-
AP = By | = ay/axa ay/aya ay/axb ay/ayb Aya (4.3)
laz B2/ d2/dy, /¥ 2/dy) |k,
\Ayb)

where Axa, Aya, Axb, and Ayb are the uncertainties in the measured image
coordinates. The Jacobian matrix evaluated for the special case of P~ at the
origin and symmetrical projection angles G:—G%:Gb (Sherlock and Aitken 1980)

is equal to

sec(8) 0 sec(8) O
1/(2M) 0 1 0 1 (4.4)
-csc(®) 0 csc(B) O
wvhere M is the geometric magnification. The dependence of &x and 4z with the
angle of projection are respectively functions of the secant and cosecant of
6, Oy is independent of 8. From (4.4) it is evident that reconstruction
error will be mostly in the ‘2z’ coordinate for projection angles (28) less
than 60 degrees and that as 26 approaches 90 degrees, 4x and Az become equal

in magnitude.

&P~ as expressed by (4.3) gives a pessimistic estimate of reconstruction
error. The probability of a number of uncertainties combining in magnitude
and direction to give the worst possible result for Peé is small. For this
reason the root-mean-square (rms) error is used. The rms error in Pﬁ; is

given by P-)'r R

ms
2 2
Xrms ; [(GX/adi)di,rms]
I 20 .|k rcapradd. )2 (4.5
rms - Yems B ; i’Vi,rms +3)
2 2
rms f [(aZ/adi)di,rms]
di: ( xa7 yar xb’ yb ), i=1,...,4
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ﬁ

Substituting the known partial derivatives from (4.4), Pe,rms for the case

of P~ at the origin and symmetrical projection angles is

1/2

(x sec(e))2 + (x sec(e))2

a,rms b, rms

>, ) 2 2
P rms 17(2M4) (ya,rms) * (yb,rms) (4.6)

(x csc(e))2 + (x csc(e))2

a,rms b, rms
The dependence of X ms and Z ns with the angle of projection are functions
of the squares of the secant and cosecant of 6, Y rms is independent of 6.
Still, wuncertainty in 24 is dominant for small angles and as 26 approaches

90 degrees, x and z become equal in magnitude.
rms rms

The partial derivatives used in these equations were derived for the
special ca<e of P~ at the origin and symmetric projection angles. Sherlock
and Aitken (1980) demonstrated that the Jacobian was adequate for points
other than P* = (0,0,0). Their work does not indicate if this also holds
true under conditions in DSA of shorter focal lengths and asymmetric angles
between projection pairs. These uncertainties are addressed by means of

computer simulation experiments.
4.2.4.2 Simulation experiments

The basic simulation experiment consists of substituting the actual
numerical values of the image coordinates (xa,ya,xb,yb) of P» with (xa¢Ad,
yatAd, xbtAd, ybtAd) which are input to the reconstruction algorithm. The
values of Ad are found by drawing four separate error terms randomly from a
specified distribution of values. For digitization errors, &d is drawn
randomly from a uniform distribution of values iAdd, and for observation
errors, Od is randomly drawn from a normal distribution of values i(do)rms'
The reconstructed coordinates of Paé are then compared to P, and the
residual errors are computed by (4.1). The basic trial is repeated N times

. >, .
and the rms error in P o 1s given by

;(ij>2

> 2 J 2

(27 % = am jHAyJ-) (4.7)
I (Azj)2

J
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The errors of the three coordinates are also combined to give a linear
distance error Drms (see 4.2). The angular seprration between projection
pairs is denoted by 48 (i.e. eb-ea). Except for the error model described by

(4.6), asymmetric incidences are assumed, eb is varied and Eg:O degrees.

The error model described by (4.6), the dependence of error on position
> . ;
of P, on the magnitude of measurement error, and on the geometric

magnification are examined using simulation.
4.2.4.2.1 Expt. 1: Comparison of modeled and simulated error

Reconstruction error dependence on separation angle 086 for given
measurement errors was simulated and compared to the errors calculated

directly from (4.6).

Fig. 4.2 shows the dependence of Dlrms’ distance error of Pa'rms’ on 4B
for both digitization and observation errors using (4.6). The geometric
magnification was held constant at a value of 1.25 where the focal length
was 125cm. In Fig. 4.2a) reconstruction error versus angular separation is
plotted for a digitization error of Add=t0.15mm (i.e. pixel size of 0.3mm)
which corresponds to (dd)rms=t0.087mm. Fig. 4.2b) shows the error plot for
an observation error of +1 pixel, or (do)rms=¢0.3mm. These error plots are
compared to the values obtained by simulation using the same measurement

. - A
errors for a point P at the origin.

It vas found that the difference between reconstruction errors
determined analytically and by simulation decreased as the number of trials
N in each simulation increased. The standard deviation in the rms error

P-*rms is expressed by (Bevington 1969)

- 1/2 .
o = P rms, i / ( 2(N-1) ) for i= 1,2,3 (4.8)

Fig. 4.3 shows the difference between reconstruction errors determined

rms,i)'
Overall, good agreement of simulation with the model is observed in Fig.

analytically and by simulation for N=10,000 where oi=0.007(Pé

4.3. At angles nearing 90 degrees, differences approach the round-off error
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Figure 4.2 D'r

digitization error of (d

ms
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Figure 4.3 Difference betveen the distance error in Paé determined

. . \ - .
analytically and by simulation (D'rms—Drms) for P at the origin

given a) a digitization error of Add=¢0.15mm and b) an

. -
observation error of (d) =+0.3mm in image coordinates of P .
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associated with the reconstruction which was determined to be +0.001mm by

computing Drms for a measurement error equal to zero. At small angles (46<20

degrees) the differences in Fig. 4.3 are expectedly larger (4.8). Since the

magnitudes of these differences are small in comparison to the magnitude of

errots being examined, they can be ignored. Consequently N is set to 10,000

in all simulation experiments described below.

4.2.4.2.2 Expt. 2: Dependence on position

Simulation was used to evaluate the reconstruction error for test points
at locations other than the origin. Test points at 1locations on the line
through +(5cm,5cm, 5cm), representative of stereotactic Space, vere
reconstructed. Rather than simulating measurement error for all angular
separations, 06 was restricted to 5, 10, 15, and 90 degrees which represent
the more likely projections in DSA stereotaxy. The geometric magnification
was kept at 1.25 with a focal length of 125 cm. The distance error Drms was
computed for a typical measurement error consisting of combined digitization

error of AddztO.ISmm and observation error of (d_) =+0. 3mm.
o’ rms

Fig. 4.4 shows that reconstruction error is reduced as the test peint
location moves away from the image plane. As magnification of the test point
increases, the measurement error relative to the image ccordinates of the
point becomes smaller, and consequently reconstruction error is reduced. The
percent difference in error between points reconstructed at +(5cm,5cm,5cm)
and the origin 1is approximacely 10% for 46< 5, 10, and 15 degrees and
approximately 5% for 90 degrees. These difference are redured by a factor of
tvo at +(2cm,2cm,2cm). For small angles (i.e. 4610 degrees) and the above
stated measurement error magnitudes, reconstruction error dependence on the
location of the test point will be important. In contrast, for biplane pairs
such differences can be ignored. The reconstruction error in each coordinate
for P% at +(5cm,5cm,5¢cm) and the origin is listed in Table 4.2. The rms
error 1in each coordinate generally increases for test points closer to the
image plane. For angles of 48 from 5 to 15 degrees the 'y’ rms error
component doesn’t follow this trend since points away from the origin have
image measurement errors that contribute to all three error components

unlike measurement errors in (4.6). As the angle between projection pairs
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Figure 4.4 D in P e at different positions given a digitization error of

rms
Add=g0.15mm and an observation error of (do)rms=ﬁ0.3mm in test

point image coordinates.
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Table 4.2 RMS error in reconstructed coordinates for different angular
separations given a digitization error of Add=¢0.15mm and an
observation error of (do)rms=¢0.3mm in test point image
coordinates.

Angular RMS Error [mm] in Reconstructed Coordinates of Test Points

Separation (x,y,2) [mm] at:

[deg. ] (-50,-50,-50) (0, 0, 0) (50,50,50)

b4 y z X y z X y z
5 0.437 0.283 4.50 0.249 0.176 4.05 0.170 0.253 13.64
10 0.344 0.214 2.24 0.249 0.176 2.02 0.182 0.192 1.82
15 0.314 0.199 1.49 0.249 0.176 1.34 0.198 0.178 1.21
90 0.262 0.185 0.265 0.249 0.176 0.252 0.237 0.168 0.240
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increases, these cross-contributions become less evident in the error. As
expected the Z s OrYor decreased and the X mg €ILOTr increased with

increasing 46. At the origin and at (-5cm,-5cm,-5cm) the X mg ©FLOT remained
constant and decreased respectively with increasing 46 which is thought to

be due to the asymmetry of the incidence angles of the projection pair.

Reconstruction error dependence on position can be reduced by increasing
the focal length. Fig. 4.5 shows Drms for P~ at +(5em,5¢m,5em) and the
origin reconstructed from projection pairs separated by A88=5 degrees with
different focal lengths wunder the same simulation parameters as above.
Th~se curves indicate that the focal length should be increased from 125cm
to at least 250cm in order to reduce the percent difference between points

at +(5cm,5cm,5cm) and the origin by half to 5%.
4.2.4.2.3 Expt. 3: Dependence on magnitude of measurement error

The effect of changing the magnitude of the measurement error on
reconstruction error wvas simulated. Digitization and observation errors were
considered in turn. P%rms vas computed for digitization errors of
Add=¢0.075, +0.15, and +0.3 mm and for an observation in error by one pixel
at each digitization, (do)rm,S of +0.15, +0.3, and +0.6mm respectively.
Points at +(3cm,5cm,5cm) and the origin were reconstructed from projection
pairs separated by 46-5, 10, 15 and 90 degrees. The geometric magnification

wvas 1.25 and the focal length was 125cm.

It was ohserved that the reconstruction error is proportional to both
types of measurem: nt error at all three test point locations. Table 4.3
lists rms errors in reconstructed coordinates for the worst case, P’ at
-(5cm,5cm,5em) for A8-5 and 90 degrees. The next section considers how the
geometric magnification M can be selected to minimize the error of

reconstruction for different magnitudes of measurement error.
4,2.4.2.4 Expt. 4: Dependence on geometric magnification

The effect of changing the geometric magnification on reconstruction

error was simulated for reconstruction from projection pairs separated by
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Figure 4.5 Drms in Pa; for different focal lengths given a digitization

error of Add=30.15mm and an observation error of (do)rms=¢0.3mm

in test point image coordinates. (46=5degrees)
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Table 4.3 RMS error in reconstructed coordinates for different magnitudes
of digitization and observation errors in test point image
coordinates.

Digitization RMS Error [mm] in Reconstructed Coordirnates of Tesr Point

Error (-50,-50,-50) [mm] at angular separations [deg.] of:
[mm] 5 90
X y Z X y z
0.075 0.061 0.039 0.621 0.036 0.026 0.037
0.15 0.122 0.078 1.24 0.073 0.052 0.073
0.30 0.243 0.156 2.48 0.146 0.103 0.147
Observation RMS Error [mm] in Reconstructed Coordinates of Test Point
Error (-50,-50,-50) {mm) at angular separations |[deg.] of:
{mm] 5 90
X y F4 X y z
0.15 0.210 0.136 2.15 0.126 0.089 0.127
0.30 0.420 0.272 4.33 0.252 0.178 0.255
0.60 0.841 0.545 8.60 0.504 0.356 0.510
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46= 5, 10, 15, and 90 degrees. Geometric magnification was changed by
translating the isocenter 0~ along the focal axis, where the focal length

remained at 125cm.

In order to examine this relationship, Drms was measured for a test
point, -(5cm,5cm,5cm), at geometric magnifications ranging from M= 1.2 to
2.0. Measurement errors corresponding to a combined digitization and
observation error of Add=10.15 mm and (do)rms=t0'3 mm respectively were
simulated. Fig. 4.6 shows the results. Table 4.4 lists qums that result for
geometric magnifications of M= 1.25, 1.5, and 2.0 at A46=5 and 90 degrees.

These results indicate that error is approximately proportional to (1/M).

There are two limits to how large the geometric magnification can be
made in order to reduce reconstruction errors. The first limitation is
imposed by the focal spot width (§2.4.2). Referring to Fig. 2.7, a pixel
width of 0.3mm will limit spatial resolution for magnifications up to 1.5
when the foral spot width is kept less than 1.2mm. The other potential
limitation is the availability ~f large i1mage intensifier field sizes, which
would be necessary for the fiducial maikers to be visible for calibration at
increased geometric magnifications. With the current dimensions of the
fiducial marker system (§3.4.3.1) and a 154mm image intensifier, increases
in geometric magnification are limited to approximately 1.33. Geometric
magnification can be increased further if the dimensions of the fiducial
markers are reduced. However, since reconstruction depends on the error in
the measurements of the image coordinates of the fiducials as well, a
trade-off 1is expected between fiducial dimensions and reconstruction error.

This relationship is considered in the section below.
4.2.5 Measurement ervor in fiducial image coordinates

In the previous section error in reconstruction was examined assuming
there were no errors in the image coordinates of the fiducials. In practice,
digitization and observation errors are introduced into the measurements of
the fiducial point image coordinates. Since the fiducial markers image as
‘points,’ observation errors are less likely to occur than in observing

vessel center-point image coordinates,




Figure 4.6 Drms in Paé at -(5cm,5cm,5cm) for different geometric
magnifications given a digitization error of Add=¢0.15mm and an

observation error of (do)rms=t0.3mm in test point image

coordinates.
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Table 4.4 RMS error in reconstructed coordinates for geometric
magnifications of 1.25, 1.5, and 2.0 given a digitization error
of Add=¢0.15mm and an observation error of (d) =+0.3mm in

o’rms

test point image coordinates.

Geometric RMS Error [mm] in Reconstructed Coordinates of Test Point
Magnification (-50,-50,-50) {mm] at angular separations |[deg.] of:
5 90
X y b4 X y z
1.25 0.437 0.283 4.50 0.262 0.185 0.265
1.5 0.401 0.266 3.79 0.221 0.156 0.224
2.0 0.357 0.251 2.97 0.169 0.120 0.171




Instead of deriving an expression for the relationship between
reconstruction error and fiducial image coordinate measurement error, it is
evaluated by means of simulation. The basic simulation experiment is similar

to that described in §4.2.4.2.
4.2.5.1 Simulation experiments

The basic experiment considers only error from the measurements of the
fiducial markers in image pairs. Referring to §4.2.1, there are two separate

sets of fiducial markers and both are considered.

In each simulation trial the actual numerical wvalues of the image
coordinates of the fiducials (xa,ya)j and (xb,yb)j are substituted with
(xa¢Ad,yatAd)j and (xbtad,ybiAd)j, j=1,...,8. The values of the error terms,
& for each image coordinate, are found by drawing 32 separate error terms
randomly from a specified distribution of values. The reconstructed point
coordinates are then calculated, and the residual error in the reconstructed
coordinates from the actual values is computed. The trial is repeated N=5000
times, and Parms is computed by (4.7) where the standard deviation in Parms
is 0.01(P ). The number of trials was reduced to 5000 from the previous
set of simulations, without loss of precision, in order to reduce the long
computation times associated with simulating fiducial measurement errors

(i.e. 32 versus 4 error terms).

Simulation experiments evaluating reconstruction error dependence on the
angle between projection pairs, magnitude of the measurement error,
geometric magnification, and fiducial marker system dimensions are described

with results below.
4.2.5.1.1 Expt. 1: Dependence on projection angle

The reconstruction error that results from varying only the angle
separating the projection pairs was simulated. Projection pairs separated by

88= 5 to 15 degrees and A46= 80 to 90 degrees, corresponding to the stereo

and biplane views of the lateral and anterior-posterior fiducial plates of
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. >
the stereotactic frame, wvere selected for reconstruction. A test point P at

the origin was reconstructed for a digitization error Add of +0.15mm and an

observation error (do)rms of +0.3mm separately. The geometric magnification

was kept at 1.25 for a focal length of 125c¢m.

Fig. 4.7 shows the resulting error Parms due to image coordinate error
of the lateral fiducials in projections separated by 5 to 15 degrees. The
curves for 'x’ and ‘y’ rms errors remain essentially constant and are very
small in comparison to the ‘'z’ rms error curves. Reconstruction error
consists predominately of error in the 'z’ coordinate which decreases by
half from 5 to 10 degrees. These estimates of error are less than the error
magnitude resulting from measurement errors in the image coordinates of test

points (Fig. 4.2).

Fig. 4.8 shows Pﬁrms due to image coordinate error in both the lateral
and anterior-posterior fiducials in projections separated by A86=80 to 90
degrees. The error curves in Fig. 4.8 remain almost constant from 80 to 90
degrees and the magnitude of these errors indicate fiducial error is not as

important as test point image cuordinate measurement error contributions.

4.2.5.1.2 Expt. 2: Dependence on position

The dependence of reconstruction error on positinn in stereotactic space
wvas simulated. Points on a line through +(5cm,5cm,5cm) were reconstructed
with lateral fiducial image coordinate errors in projections separated by
846- 5, 10, and 15 degrees, and with anterior-posterior and lateral fiducial
image coordinate errors in projections separated by 06=90 degrees.
Measurement error consisted of a digitization error Add of +0.15mm and
ooservation error (d ) of +0.3mm. Geometric magnification remained at

o’rms
1.25 for a focal length of 125cm.

Fig. 4.9 shows that the distance error Drms along the line through
+(5¢m,5¢cm,5em)  is smallest at or near the origin. Error values increase
dramatically £for those points that 1lie near or just outside the volume
defined by the fiducial markers. Table 4.5 lists the reconstruction error in

. 4 —— .
each coordinate of P at +(5cm,5ecm,5cm) and the origin. In comparison to
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function of angular separation for

o ,=+0.15mm and b) an

d

a) a digitization error

observation error of

the lateral fiducial image coordinates.

a) Digitization error, Add=t0.15mm
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Figure 4.8 RMS error in reconstructed coordinates for P—)e at the origin as
a function of angular separation for a) a digitization error of
AddziO.ISmm and b) an observation error of (do)rms=¢0.3mm in
both  the lateral and anterior-posterior fiducial image

coordinates.
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Figure 4.9

Drms in P e at different positions given a digitization error of

Add=¢0.15mm and an observation error of (do)rms=:0.3mm in

fiducial point image coordinates.
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Table 4.5 RMS error in reconstructed coordinates for different angular
separations given a digitization error of Add=¢0.15mm and an
observation error of (do)rmsziO.Smm in fiducial point image
coordinates.

Angular RMS Error [mm] in Reconstructed Coordinates of Test Points

Separation (x,v,2) [mm] at:

[deg. ] (-50,-50,-50) (0, 0, 0) (50,50, 50)

X y 2 X y z X y z
5 0.477 0.405 4.78 0.173 0.087 2.74 0.202 0.313 4.39
10 0.352 0.332 2.39 0.173 0.085 1.27 0.220 0.242 2.17
15 0.349 0.322 1.52 0.175 0.085 0.823 0.243 0.221 1.43
90 0.295 0.606 0.832 0.174 0.092 0.145 0.289 0.421 0.875
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Table 4.2, reconstruction error at points outside the region of space
defined by the fiducial markers can be expected to be larger than errors due

to measurement error in the image coordinates of the test points.

It was also found that this dependence on position could not be reduced
by increasing the focal length as shown with measurement errors in test
point image coordinates. Fig. 4.10 shows the magnitude of Parms at
-(5¢em, 5cm,5em), -(2cm,2cm,2cm), and the origin reconstructed from projection
pairs separated by A46=5 degrees with different focal lengths under the same
simulation parameters. The geometric magnification was kept constant at
1.25. The error plots in Fig. 4.10 remain essentially constant for focal

length of 125cm to 500cm.
4.2.5.1.3 Expt. 3: Dependence on measurement error

Reconstruction error dependence on the magnitude of digitization and
observation errors was evaluated. In the simulations, P—’rms vas computed for
digitization errors of Add=¢0.075, +0.15, and +0.3 mm and observation errors
of (d,) = 0.15, 30.3, and :0.6mm. Three test points, P at x(5cm,Scm,Scm)
and the origin, were reconstructed with lateral fiducial image coordinate
errors 1in projections separated by 488 5, 10, and 15 degrees, and with
anterior-posterior and lateral fiducial image coordinate errors in
projections separated by 46-90 degrees. The geometric magnification was kept
at 1.25 for a focal length of 125cm.

- .
P rms Vs found to be proportional to both types of measurement error at
. . . s .
all three test point locations. Table 4.6 lists P mS for a test point at

-(5cm, 5cem,5em) for A8 5 and 90 degrees.
4,2.5.1.4 Expt. 4: Dependence on geometric magnification

Error was computed in reconstruction from projection pairs separated by
de= 5, 10, 15, and 90 degrees at different values of geometric magnification
for a fixed focal length of 125cm. The measurement error consisted of a
combined digitization error Add of +0.15mm and observation error (d ) of

o’ rms
t0.3mm  in both  the 1lateral and anterior-posterior fiducial image
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Figure 4.10 Drms in Pqé for different focal lengths given a digitization

error of Add=¢0.15mm and an observation error of (do)rm3=¢0.3mm

in fiducial point image coordinates. (40 = 5 degrees)
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Table 4.6 RMS error in reconstructed coordinates for different magnitudes
of digitization and observation errors in fiducial point image
coordinates.

Digitization RMS Error [mm] in Reconstructed Coordinates of Test Point

Error (-50,-50,-50) [mm] at angular separations [deg.] of:
[mm] 5 90
X v z X y z
0.075 0.067 0.055 0.675 0.041 0.084 0.116
0.15 0.135 0.110 1.35 0.082 0.169 0.232
0.30 0.270 0.221 2.70 0.163 0.337 0.465
Observation RMS Error [mm] in Reconstructed Coordinates of Test Point
Error (-50,-50,-50) [mm] at angular separations {deg.] of:
[mm] 5 90
X y z X y z
0.15 0.229 0.190 2.30 0.142 0.291 0.399
0.30 0.458 0,380 4.59 0.284 0.582 0.799
0.60 0.916 0.761 9.20 0.568 1.16 1.60
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coordinates.

Fig. 4.11 shows Drms in the reconstruction of a test point at
-(5cm,5¢m,5cm) for geometric magnifications from M=1.2 to 2.0. The error in
each coordinate of the test point reconstructed at 46= 5 and 90 degrees is
listed in Table 4.7. In this data reconstruction error is approximately

proportional to (1/M).
4.2.5.1.5 Expt. 5: Dependence on fiducial dimensions

In this experiment the effect of changing the 3-d spatial distribution
of the fiducial markers in both pairs of plates on reconstruction error wvas
considered. Three test points, P* at the origin, -(2cm,2cm,2cm), and
-(5c¢cm,5em, S5em), were reconstructed with a combined digitization error Add of
+0.15mm and observation error (do)rms of +0.3mm in the fiducial image
coordinates. Projection pairs separated by a6-= 5, 10, 15, and 90 degrees |,
vere considered. The geometric magnification was kept at 1.25 for a focal

length of 125cm.

Results are 1listed for projection pairs separated by 86 5 and 90
degrees as representative of the range of error expected. Table 4.8 lists
the distance errors Drms that result when the size of the square formed by
the fiducials in the lateral and anterior-posterior plates was changed. The
depth or the distance between fiducial plates was held constant at 20cm. The
error at the origin remained constant for both projection pairs at 465
degrees (i.e. 2.30+40.02mm) and 4690 degrees (i.e. 0.22+0.01lmm). For test
points near or outside the region of 3-d space defined by the fiducial
markers, errors can be large. These errors are reduced as the size of

fiducial distribution increases to include these points.

The effect of changing the distance between the pairs of lateral and
anterior-posterior fiducial plates is presented in Table 4.9. The size of
the square made by the fiducials in each plate is fixed at 8cm. Changing the
distance between plates produced changes in the reconstruction at only the
test point at -(5cm,5cm,5cm), error at the other test points remained

essentially constant. For projection pairs separated by 465 degrees, the
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Figure 4.11 Drms in Pq; at -(5cm,5cm,5cem) for different geometric

‘ magnifications given a digitization error of Add=¢0.15mm and an

observation error of (d.) =+0.3mm in fiducial point image

o’rms
coordinates.
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Table 4.7 RMS error 1in reconstructed coordinates for geometric

magnifications of 1.25, 1.5, and 2.0 given a digitization error

of Add=10.15mm and an observation error of (d) =+0.3mm in

o’ rms
fiducial point image coordinates.

Geometric
Magnification

RMS Error [mm] in Reconstructed Coordinates of Test Point
(~50,-50,-50) [mm] at angular separations [deg.] of:

5 90
X y z X y z
1.2 0.477 0.405 4.78 0.296 0.604 0.832
1.5 0.432 0.356 4.02 0.244 0.512 0.688
2.0 0.374 0.312 3.04 0.184 0.394 0.496
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Table 4.8 D in Paé that result when the size of the square formed by
the fiducials in both the lateral and anterior-posterior plates
is varied.

Width of Distance Error [mm] in Reconstructed Coordinates
Square of Test Point (x,y,z) [mm} at:
[mm] (-20,-20,-20) (-50,-50,-50)

A8 =5 A8 = 90 08 =5 88 = 90

40 3.09 0.337 13.1 1.42
60 2.57 0.262 6.31 0.676
80 2.49 0.245 4.17 0.438
100 2.47 0.239 3.38 0.342
120 2.46 0.236 3.05 0.299

Table 4.9 Drms in Pqé that result when the distance between the pairs of

lateral and anterior-posterior plates is varied.
Distance Distance Error [mm] in Reconstructed Coordinates
between plates of Test Point (x,y,z) [mm] at:
{mm] (-50,-50,-50)
A8 = 5 88 = 90

40 4,75 0.465

60 4.39 0.441

80 4,25 0.437
100 4.17 0.438

120 4,13 0.438
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error magnitude at the origin was 2.30+0.02mm and at -(2cm,2cm,2cm) was
2.510.02mm. For projection pairs separated by 06<90 degrees, the error
magnitude at the origin was 0.22+0.0lmm and at -(2cm,2cm,2cm) was
0.25+0.01mm. Table 4.9 shows that reconstruction error decreases
vhen the fiducial geometry is increased to a volume that contains the test
point. In comparison to Table 4.8, sensitivity to change in the fiducial
geometry is more significant in the lateral dimensions (i.e. in the

direction of disparity measurements).
4.2.6 Physical determination of accuracy: phantom test

In order to measure reconstruction error under typical examination
conditions, stereo and biplane projections of a test object composed of
steel beads vere imaged and used to reconstruct the 3-d coordinates of each
bead. The reconstructed coordinates were compared to the actual coordinates,
determined physically by stereotactic instruments, and the mean residual

error and standard deviation were then computed.
4.2.6.1 Description of experiment

The test object was made up of 25 spherical steel beads, ranging in
diameter from 0.9 to 1.2mm, mounted to the surface of a plexiglass plate.
These 25 beads were arranged in a square lcm grid pattern (Fig. 4.12). This
plate was attached by wires to the frame so as to center the plate in the
proximal lateral half and later in the distal lateral half of the frame. The
3-d coordinates of each bead were determined by a biopsy needle that was
attached to the frame by calibrated side bars. Table 4.10 lists the measured
3-d coordinates of the beads with respect to the stereotactic coordinate
system. The spatial distribution of the fiducial markers is given in Table
3.1 where the «center of the region defined by these markers is at
(7.5¢em,6cm,0cm). Although the 'x’ and ‘y’ coordinates of the frame’s side
bars are calibrated in 2mm divisions, it was possible to visually
interpolate to within 1Imm steps reliably. The minimum uncertainty of the

measurements listed in Table 4.10 is (+0.5mm,+0.5mm, +0.25mm).

Images of the frame with test beads were recorded on a Technicare DR-960
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consisting of 25 beads spaced on a lcm

square grid. Bead positions are indexed for reference with Table

4.10.

phantom

Figure 4.12 Plan of test

A

'10

‘12 '13 '14 °15

1

‘17 ‘18 19 "20

16

"22 '23 "2 °25

21

Table 4.10 Actual 3-d coordinates of test beads in the stereotactic frame.

Actual Coordinates Of Test Beads (+.05cm, +.05¢m, +.025¢cm)

Proximal Lateral

Distal Lateral

Bead

No.

777776666655555&444/433333

96307963079631807/418074.I.Q/

ooooooooooooooooo

6789967899678997789977899

7777766666666555555544/4/4/4

0752008520075209752097529

55678556785567845678/45677

SHNOTNO N0 O N
=~

14
15
16
20
23
24
25

21
22
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DSA unit interfaced to a Philips CsI 154mm/231mm image intensifier and vere
digitized to 10 bits and sampled on a 512x512 matrix. A large focal spot of
1.2mm width (nominal) was used. Three projections of the frame were imaged,
spaced & 0, 7, and 90 degrees. The focal length was 125cm and the geometric
magnification was approximately 1.25 in each projection. To correct for
pin-cushion distortion (§3.4.3.3) a lcm-grid was left fixed to the face of
the image intensifier during the entire imaging procedure. With the image
intensifier operating in 154mm mode, the pixel size for the 512x512 matrix

is approximately 0.3mm.

Figs. 4.13, 4.14, and 4.15 show images of the test beads in the proximal
lateral half of the frame recorded at & 0, 7, and 90 degree projections
respectively. Similarly Figs. 4.16, 4.17, and 4.18 show different projection
images of the test beads in the distal lateral half of the frame. Images in
Jigs. 4.13-18a) show the observed 2-d coordinates of the beads and fiducial
markers designated by the white dots and cross hairs respectively. In Figs.
4,13-18b) the computed correction vectors are shown superimposed at

intersections of the cm-grid.

In all of these images the 2-d coordinates of the beads and fiduciaui
markers were selected by an observer using a track-ball controlled graphics
cursor wvhere the cursor was vlaced over the center of the image of the beads

and fiducial markers.

4.2.6.2 Results

The results of reconstruction are summarized in Table 4.11 where image
coordinates of the beads and fiducials markers were not corrected for

pin-cushion distortion and in Table 4.12 after corrections.

From both tables the mean error in ‘'‘x’ and 'y’ coordinates was
determined to be approximately 0.5+0.5mm which reflects the uncertainty of
the physical measurements. The mean error in the ‘'z’ coordinate was found to
be 0.5+2.0mm in the stereo reconstructions and 0.5+0.3mm in biplane
reconstructions. These values are within the range of errors predicted in

Tables 4.3 and 4.6. For digitization errors of +0.15mm and an observation
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Figure 4.15 DSA images of test bead phantom (proximal lateral) and 1lcm
correction grid in © = 90 degree projection.

a) fiducial markers and beads selected b) correction vectors indicated
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Figure 4.16 DSA images of test bead phantom (distal lateral) and 1lcm
correction grid in 6 = O degree projection.

a) fiducial markers and beads selected b) correction vectors indicated
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Figure 4.17 DSA images of test bead phantom (distal lateral) and lcm
correction grid in © = 7 degree projection.

a) fiducial markers and beads selected b) correction vectors indicated
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Figure 4.18 DSA images of test bead phantom (distal lateral) and 1lcm
correction grid in © = 90 degree projection.

a) fiducial markers and beads selected b) correction vectors indicated
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Table 4.11 Residual errors resulting from a
calculated values of coordinates

cushion distortion correcticn.

comparison of

of

actual and
test beads without pin

Residual Error [mm] in Reconstructed Coordinates of Test Beads
{no pin-cushion correction)

Angular
Separation X Z
{deg. ] mean +o mean +g0 mean +o
Proximal lateral 7 0.4 0.6 0.3 0.6 -0.5 1.7
90 0.4 0.6 0.3 0.7 0.2 0.2
Distal lateral 7 0.1 0.5 -0.3 0.5 0.3 1.5
90 0.4 0.6 -0.3 0.4 0.4 0.3

Table 4.12 Residual errors resulting from a

distortion correction.

comparison of

actual and
calculated values of coordinates of test beads after pin cushion

Residual Error [mm] in Reconstructed Coordinates of Test Beads

(after pin-cushion correction)

Angular
Separation X Y Z
[deg. ] mean +ag mean +¢ mean +o
Proximal lateral 7 0.5 0.6 -0.1 0.5 -0.5 2.0
90 0.5 0.5 0.1 0.6 -0.3 0.2
Distal lateral 7 -0.5 0.5 -0.4 0.5 0.5 1.8
90. -0.5 0.5 -0.2 0.5 0.5 0.2
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error of +1 pixel in both the image coordinates of test points and

fiducials, the error in ‘z’ at the origin of the frame is expected to be
g

+4,7mm and +0.3mm for stereo and biplane reconstructions respectively.

It was by this method that the frame’s calibrated horizontal side-bars
were found to be misaligned. The 'x’ coordinate mean error in this case was

found to be biased at 2mm.

Contrary to expectations, pin-cushion distortion correction did not
result in a reduction in reconstruction error (Tables 4.11-12). A possible
explanation is that for this method of correction any potential gain is
offset by introduction >f measurement errors associated with the computation
of the correction vectors. This would be the case especially for those test
beads near the center of the image whose locations are slightly distorted
(see Figs 4.13-18b). Another possible explanation for why reconstruction
efror changes little with image pin-cushion correction is that a first-order
correction for the linear component of the distortion occurs through the

calibration of the fiducial markers.

Tables 4.11 and 4.12 show that reconstruction errors for beads located
in the lateral proximal and distal halves of the frame are almost the same.
The observed invariance of reconstruction error with position is probably
due to the effects of measurement error in the fiducials and test point

image coordinates averaging out the reconstruction error.
4.2.7 Summary

Experiments describing the relationship between reconstruction error and
measurement error in fiducial and test point image coordinates have been
performed and analyzed. Reconstruction errors were found to be proportional
to measurement error magnitude and inversely proportional to geometric
magnification for both errors in fiducial and test point image coordinates.
For reconstruction of points at or near the isocenter, measurement error in
the test point image coordinates dominates reconstruction error. Measurement
error in the fiducial marker image coordinates becomes important when test

points are located outside the volume defined by the system of fiducial
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markers.

Results from test point image coordinate error experiments showed
agreement with (4.6) derived from Sherlock and Aitken’s work (1980).
However, these equations do not describe the dependence of error at
locations other than the origin. Errors change as much as :10% of the values
at the origin, and the actual error depends on the geometric magnification
of the test point and the focal length. In the case of fiducial image
coordinate errors, dependence on position varies with the location of the
point with respect to the fiducial volume. Points outside the volume defined
by the fiducial markers have large reconstruction errors. These errors can

be reduced by increasing the size of the pattern of fiducial markers.

Physical determination of reconstruction accuracy from image pairs of
test beads for 7 and 90 degree separations demonstrated errors less than
(lmm,1lmm,2.5mm) and (lmm,1mm,0.7mm) respectively. Although these error
values represent the best possible reconstruction, since observation errors
are minimal, the potential for large errors exists for angular separations
around 5 degrees. The magnitude of reconstruction error is best reduced by
using finer digitizations, at least O0.15mm/pixel. This would still permit
using projections separated by small angles which 1is necessary for finding
correspondences between conjugate pixels. When this is not possible or
practical, reconstruction error should be reduced by increasing angular
separation. Changing angular separation from 5 to 10 degrees reduces
reconstruction error by about half. A minimum of at least 10 degrees
separation is then necessary and can be achieved with stereotactic DSA by
using symmetric projections (e=eb=-ea). Any potential reduction in
reconstruction error is limited by the difficulty of finding correspondences
in more widely spaced projection pairs. The next section examines
observation error associated with the proposed correspondence algorithm

(§3.3.2).
4.3 Reconstruction sensitivity to correspondence error

The other potential source of reconstruction error is the mismatching of

vessel trace points between views. Both vessel topology and the algorithm by
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which correspondence is established contribute to this error. This section
describes the methodology and results of experiments that examine both

aspects of error in the correspondence algorithm described in §3.3.2.

§4.3.1 examines the sensitivity of the correspondence measure for known
point-pairs to measurement errors in the point-pair and fiducial marker
image coordinates. In §4.3,2 the results of matching simulated vessel traces
are presented, and §4.3.3 describes the results of matching actual vessel

traces from DSA image pairs. §4.3.4 concludes with a summary.
4.3.1 Correspondence measure sensitivity to measurement error

The likelihood that a point-pair is in correspondence is based on the
‘closeness’ or distance between the intersection of 3-d lines from these
point-pairs (§3.3.1.3). This assumption is examined. Computer simulation was
used to calculate the probability distributions of these distances for
different magnitudes of digitization and observation errors in the image

coordinates of the point-pairs and fiducial markers (§4.3.1.1.1-3).
4.3.1.1 Simulation experiments

The basic simulation experiment is similar to that described in §4.2.4.2
and §4.2.5.1 previously. A 3-d test point was reconstructed with error terms
in the image coordinates of the test point and fiducial markers. The error
terms were randomly drawn from a specified distribution of values. On
reconstruction the distance dmn between the intersection of the 3-d lines
was computed (§3.4.6). The basic trial was repeated N times and a normalized
histogram of dmn vas computed. The width of each histogram bin was 0.01 mm.
From this probability distribution, the final estimate of the distance value
dmn is given by the ‘median’ value of the distribution. The median of a
probability distribution is defined here as the value dmed for which larger
and smaller values of dmn are equally probable (Bevington 1969). This

measure was chosen because the distribution was found to be skewed.

The dependence of dmn on the magnitude of digitization and observation
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errors in the image coordinates of the point-pair and fiducial markers was
examined by simulation. In each of these simulation experiments the basic
trial was repeated 5,000 times, for which the round-off error associated
with dmn vas determined to be +0.005 mm. This estimate of error was
determined by computing dmn in the absence of measurement errors. Since
values of dmn are compared with values from other match pairs that differ by
one to three pixels in their disparities, the results of the simulations for
a test point P~ at the origin should be generalizable for other locations.

In these experiments only asymmetric incidences were considered.
4.3.1.1.1 Expt. 1: Dependence on angular separation

The dependence of dmn on angular separation was simulated for

digitization errors of Add=¢0.15 mm in the image coordinates of the test
. s e . >

point and fiducial markers individually. The test point P was reconstructed

from image pairs separated by angles of 46=5, 10, 15, and 90 degrees.

Fig. 4.19 shows the normalized histograms of dmn for errors in the image
coordinates of the test point. The maximum value in the histograms is
observed at a value of dmn other than zero. This bias is thought to be due
to the combination of round-off error in the reconstruction calculations and
in histogram ‘binning.’ It is also noted that the distributions and their
median values do not change significantly with increased angular separation.
Invariance in dmed with angular separation is explained by taking into
account that the projection pair 1is separated by rotation A8 about the
y-axis. For this recording geometry, errors in the 'y’ image coordinates
will affect dmn more than errors in the ‘x’ image coordinates of the test

point.

The normalized histograms of dmn for errors in image coordinates of the
fiducial markers are shown in Fig. 4.20. Observations made for Fig. 4.19

hold for Fig. 4.20. As expected the median values from this source of error

are smaller.
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Figure 4.19 Probability distributions of dmn

for angular separations of a)

5, b) 10, ¢) 15, and d) 90 degrees, given a digitization eriol
of Add=i0.15mm in the test point image coordinates.
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Figure 4.20 Probability distributions of dmn
5, b) 10, ¢) 15, and d) 90 degrees, given a digitization error
of Add=¢0.15mm in the fiducial marker image coordinates.
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4.3.1.1.2 Expt. 2: Dependence on magnitude of measurement error

The effect of different magnitudes of measurement error on dmn vas
simulated. Measurement errors in the image coordinates of the test point
pairs and fiducial markers were considered separately and in combination.
The test point P~ vas reconstructed from image pairs separated by an angle

of 86= 5 degrees.

Table 4,13 lists the median values dmed for different magnitudes of
digitization and observation errors in the test point image coordinates
only. Values of dmed indicate that dmn is proportional to the magnitude of
measurement error and will be sufficiently different so that observation

errors can be discriminated.

Table 4.14 lists the median values dmed for different magnitudes of
digitization and observation errors in the fiducial marker image coordinates
only. As expected dmn is proportional to the magnitude of measurement error

and is approximately half of the values in Table 4.13.

Tables 4.15-4.17 list the median values dmed resulting from observation
errors in image coordinates under different conditions of measurement error
in the fiducial marker image coordinates. Digitization error was :0.15 mm in
both the test point and fiducial marker image coordinates. As the
observation error in the fiducial marker image coordinates increases, Table

4.15 shows that differences in d between different magnitudes of

med
observation errors in the test point image coordinates decrease. Tables 4.16
and 4.17 shov the contribution of observation errors in the ‘x’ and 'y’ test
point image coordinates respectively. The results in Tables 4.16 and 4.17
indicate that dmn will primarily reflect observation errors in the 'y’ image
coordinates fer this image-recording geometry. However, reconstruction error

is predominately due to error in the ‘x’ image coordinates.
4.3.2 Error sensitivity of correspondence algorithm

The disparity and reconstruction errors associated with the

correspondence algorithm described in §3.3.2 wvere estimated by matching
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Table 4.13 Median values of d for different magnitudes of digitization
and observation errors in test point image coordinates.

Digitization error Observation error Median of dmn
Add fmm] (do)rms [mm] dmed +0.01 ([mm]
0.15 0.0 0.07
0.3 0.0 0.14
0.0 0.3 0.23
0.0 0.6 0.45
0.15 0.3 0.24
0.15 0.6 0.46
Table 4.14 Median values of d for different magnitudes of digitization

; n : : ) ; .
and observation errors in fiducial marker image coordinates.

Digitization error Observation error Median of dmn
Add [mm] (do)rms [mm] dmed +0.01 [mm]
0.15 0. 0.03
0.3 0.0 0.06
0.0 0.3 0.11
0.0 0.6 0.22
0.15 0.3 0.12
0.15 0.6 0.23
Table 4.15 Median values of d for different magnitudes of observation

X m . . ; :
errors in the teSt point and the fiducial marker image
coordinates. Digitization error, Add =+ 0.15 mm.

Fiducial Marker Image Test Point Image Median of dmn
Coordinate Error Coordinate Error

(do)rms [mm] (do)rms [mm] dmed +0.01 [mm]

0.0 0.0 0.08

0.0 0.3 0.24

0.0 0.6 0.45

0.3 0.0 0.13

0.3 0.3 0.26

0.3 0.6 0.47

0.6 0.0 0.23

0.6 0.3 0.32

0.6 0.6 0.49
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Table 4.16 Median values of d n for different magnitudes of observation
errors in the tesT point ‘x' image coordinate and in the
fiducial marker image coordinates. Digitization etton, Add'

+0.15 mm.
Fiducial Marker 1Image Test Point Image Median of dmn
Coordinate Error Coordinate Error .
]
(do)rms (mm] (do)rms (mm] dmed £0.01 {mm]
0.0 0.0 0.03
0.0 0.3 0.03
0.0 0.6 0.03
0.3 0.0 0.12
0.3 0.3 0.12
0.3 0.6 0,13
Table 4.17 Median values of d n for different magnitudes of obwerration
errors in the tesT point ‘y’ image <c¢oaordinate and 1n the
fiducial marker image coordinates. Digitization error, Add=
+0.15 mm.
Fiducial Marker Image Test Point Image Median of dmn
Coordinate Error Coordinate Error
(do)rms [mm] (do)rms [mm] dmed +0.01 [mm]
0.0 0.0 N.08
0.0 0.3 0.24
0.0 0.6 0,47
0.3 0.0 0.14
0.3 0.3 0.27
0.3 0.6 0.47
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computer-generated stereo and biplane images of a 3-d piece-wise constant
curve. Details of the experiment and algorithm parameters are described in

§4.3.2.1 and §4.3.2.2-3 present the results.

4.3.2.1 Method

Sampled 3-d piece-wise constant curves were projected using
transformation matrices calibrated from actual DSA images (§3.4.3). The
points in the lateral trace (8=0 degrees) were then matched to the points in
the lateral stereo (6=7 degrees) and anterior-posterior traces (&=90
degrees). The parameters used in the algorithm for stereo pairs were sr=4,
fMm=2 for the initial correspondence and for relaxation labeling: K=2, 0=0.3,
G=0.4, w1=2, and ¢§=2' Parameters for biplane matching were the same except
for ¥ the constraint of disparity continuity was not applied. alH(m,n)l
ranged from O to 10, and the algorithm was stopped after 20 iterations. When
Py > 0.75, the corresponding trace point wvas not reconstructed.

Reconstruction by this algorithm is referred to as method (II).

Results of the correspondence search were evaluated by comparing the
estimated and actual disparity values by using both mean error (i.e.
actual-estimated) and worst case (W) differences. The worst case for
differences between actual, Ax, and estimated, Axe, disparities for ‘x’ is
given by

V = max | Axi - &
14 <

e,i | (4.9)

The worst case difference for ‘y’ disparities is similarly defined. The
reconstruction that results from a particular set of trace point
correspondences 1is also evaluated by comparison to the known 3~d
coordinates of the piece-wise constant curve using mean and worst case

differences.
For comparison, the mean and worst case differences in the disparities
and reconstructions were computed for the correspondences after ‘chaining’

the initial estimates (see §3.3.1.3). This is denoted as method (I).

§4.3.2.2 and §4.3.2.3 present results of the correspondence search and
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reconstruction for twvo examples of 3-d curves that are typical of the

geometrical complexities of vessels found in the cerebral vasculature.

4.3.2.2 Example 1

Fig. 4.21 shows plots of a 3-d curve projected into lateral, lateral
stereo, and anterior-posterior views. The traces consist of 72, 77, and 83
sample points in the lateral, lateral stereo, and anterior-posterior images

respectively.

Tables 4.1B-19 1list the mean and worst case differences 1in the
disparities and reconstructions that result from matching between the stereo
pair of traces (Fig. 4.21a) and b)). The differences 1in disparity and
reconstruction indicate that relaxation (method II) of the initial estimates
of correspondence reduces the worst case value. The vorst case errot is
found to occur along horizontal sections of the trace where matching is
ambiguous. This is seen in Fig. 4.22b) and c¢) vhere the results of stereo
reconstruction have been re-projected into the anterior-posterior view. Fig.
4.22a) shows the re-projection of the reronstruction from the known
correspondences in the stereo trace pair and represents the results of a

‘best-case’ reconstruction.

The mean and worst case differences in disparities and reconstructions
that result from matching between biplane trace pairs (Fig. 4.21a) and ¢))
are listed in Tables 4.20-21. In the biplane case, improvements similar to
the stereo case are observed in the disparities and reconstructions, but are
smaller in magnitude. Again the worst-case reconstruction is observed along
the horizontal sections. Given the magnitude of these errors 1t 1s difficult
to observe them on re-projection, instead a plot of the relationship between
indices of the lateral and anterior-posterior trace points (§3.3.2) is
preferred (Fig. 4.23). The known correspondences are compated to those
estimated by chaining (method I) and by relaxation labeling (method T1) in
Fig. 4.23a) and b) respectively. Deviations from the known correspondences
in these plots are largely due to 1incorrect matching along projected hori-
zontal sections. Overall, the results of relaxation labeling render a hetter

estimate of correspondences than does chaining the initial estimates alone.
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Table 4.18 Error in disparity associated with correspondences detetmined
by methods I and II for stereo trace pair 1.

Correspondence Disparity Eirror in [pixels]
mean +o worst case
Method ax by ax by
I -0.6 1.1 2.5 1.5 4 5
II -0.5 0.8 1.9 1.3 2 4

Table 4.19 FError 1in coordinate reconstruction associated with the known
correspondences, and correspondences determined by methods I and
IT for stereo trace pair 1.

Correspondence Reconstruction Error in [mm]}
mean +g worst case
Method 2 z
Actual 3.2 2.8 8.0
I 7.7 2.9 13.8
II 6.9 1.7 10.1

Table 4.20 Error in disparity associated with correspondences determined
by methods I and II for biplane trace pair 1.

Correspondence Disparity Error in [pixels]
mean +o worst case
Method Ox by Ax by
I -0.3 2.2 -0.6 1.2 8 3
II -0.3 1.9 -0.6 1.2 6 3

Table 4.21 Error in coordinate reconstruction associated with the known
correspondences, and correspondences determined by methods I and
II for biplane trace pair 1.

Correspondence Reconstruction Error in [mm]
mean +ag worst case
Method z z
Actual 0.0 0.1 0.4
I -N.2 0.5 1.8
II -0.2 0.4 1.4
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4.3.2.3 Example 2

A more complex 3-d curve was considered. Fig. 4.24 shows plots of the
curve’s lateral, lateral stereo, and anterior-posterior projections. The
projected curve in the 1lateral, lateral stereo, and anterior-posterior

images consists respectively of 161, 160, and 160 sample points.

Tables 4.22-23 1list the mean and worst case differences in the
disparities and reconstructions that result from matching between the stereo
pair of traces (Fig. 4.24a) and b)). Anterior-posterior re-projections of
these reconstructions are shown in Fig. 4.25., The mean and worst case
differences in disparities and reconstructions that result from matching
betveen biplane trace pairs (Fig. 4.24a) and c¢)) are listed in Tables
4,24-25. The plots of correspondence between indices of the lateral and

anterior-posterior trace points are shown in Fig. 4.26.

Results of matching stereo and biplane traces again show an improvement
in correspondence and reconstruction error with the application of
relaxation labeling (method II) under constraints of continuity and
connectivity. Correspondence errors occur primarily along the projected

horizontal sections of the trace.

4.3.3 Application to cerebral DSA

Two examples of the application of the correspondence algorithm to
vessel traces from DSA image pairs are presented. §4.3.3.1 summarizes the
method used to collect the DSA images and extract the vessel traces.
§4.3.3.2-3 presents two vessels reconstructed from its stereo and biplane

projections using the procedure described in §3.4.
4.3.3.1 Method

DSA images of a patient fitted with a stereotactic frame were collected
at three projections 6 = 0, 7, and 90 degrees on a Technicare DR-960 DSA

unit interfaced to a Philips CsI 154mm/231mm image intensifier operating in

154mm mode. All images were digitized to 10 bits and sampled on a 512x512
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Table 4.22 Error in disparity associated with correspondences determined
by methods I and II for stereo trace pair 2.

Correspondence Disparity Error in [pixels]
mean +a vorst case
Method Ax dy Ax by
I -2.0 1.0 -0.9 2.2 5 4
II -1.8 0.9 -0.7 2.0 4 4

Table 4.23 Error in coordinate reconstruction associated with the known
correspondences, and correspondences determined by methods I and
11 for stereo trace pair 2,

Correspondence Reconstruction Error in [mm]
mean +o¢ worst case
Method z z
Actual 1.3 2.1 9.1
I 7.5 2.6 14.2
II 6.8 2.1 12.9

Table 4.24 Error in disparity associated with correspondences determined
by methods I and II for biplane trace pair 2.

Correspondence Disparity Error in [pixels]
mean +¢ worst case
Method ox by ax Ay
I 1.0 2.7 0.2 1.0 13 2
I1 0.4 2.2 0.1 1.0 11 2

Table 4.25 Error in coordinate reconstruction associated with the known
correspondences, and correspondences determined by methous I and
IT biplane trace pair 2.

Correspondence Reconstruction Error in {[mm]
mean +o worst case
Method z z
Actual 0.0 0.1 0.2
T -0.2 0.6 2.7
II -0.2 0.5 1.3
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matrix. A focal spot of 1.2mm vidth (nominal) was used. The focal length was
approximately 120cm, and geometric magnification was approximately 1.25 in

each projection. Images were transferred for processing onto a VAX 11/750.

Vessels' center-lines were sampled manually. Sampling of wvessels that
are superimposed or greatly foreshortened was performed by the observer
viewing the images stereoscopically (§3.4.4). By these means matching vessel
traces from stereo views were selected. The anterior-posterior trace was
found after the stereo pairs vere reconstructed and re-projected into the
anterior-posterior wview. The vessel that most resembles the re-projection

was selected and tracked.

The correspondence algorithm proposed in §3.3.2 was used to find the
matches between vessel trace points in stereo and biplane images. From the
paired trace points the 3-d vessel coordinates were estimated. The
parameters used in the algorithm for stereo pairs vere Sr=10 and f&m=4 fo1
the initial correspondence, and for relaxation: K=2, Q=0.3, G=0.4, w1=3, and
¢2=3- Parameters for biplane matching were the same, except for ¥y vhich wvas
not used. The range of a|M(m,n)| was from O to 10 and the algorithm was
stopped after 20 iterations. Vhen P, > 0.75, the corresponding trace point

was not reconstructed.

Two examples of vessel traces matched and reconstructed from steteo and
biplane images are presented. In each example the lateral trace points were
matched to points in the lateral stereo and the anterior-posterior traces.
There were no trace point pairs with Py 2 0.75, and all paired points were

reconstructed.
4.3.3.2 Example 1

Figs. 4.27a) and b) shov a stereo pair of vessel traces which were
matched. The resulting matched vessel trace points were used to reconstruct
the vessel shown re-projected in the anterior-posterior DSA image (Fig.
4.27c). Fig. 4.27d) shovs the vessel that most resembles the re-projection
in Fig. 4.27c¢).

The differences betwveen traces in Fig. 4.27c) and d) are 1larger than
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Figure 4.27 Example 1: Illustration of a vessel reconstructed £rom lateral

stereo DSA images a) & b). The reconstructed trace is
re-projected into the AP image in «¢) for comparison with the trace of the
actual vessel in d). In a), b), and d) every 5th point in the trace is drawn.

The reconstructed points in c¢) are denoted by ‘plus’ signs and are joined by
lines.

a) Tracked vessel in lateral image

c) AP re-projection d) Tracked wvessel in AP image

b) Tracked vessel in lateral stereo image




Figure 4.28 Example 1: Illustration of a vessel reconstiucted from biplane

DSA images a) & b). The AP re-projection of the reconstructed
trace is shown in c¢) for comparison with the actual vessel trace d). In a)
and b) every 5th point in the trace is drawn.

a) Tracked vessel in lateral image b) Tracked vessel in AP image

c) AP re-projection d) Actual AP vessel trace
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vhat would be expected on the basis of the simulation experiments. What is

different in this case is the addition of measurement error from the
tracking process. Errors in the sampled vessel are probably larger than :1
pixel. As -expected the largest correspondence errors occur along the

projected horizontal sections of the traces.

Figs. 4.28a) and b) show the traces from the lateral and anterior-
posterior 1images which were matched and used to reconstruct the vessel
indicated. Fig. 4.28c¢) shows the reconstructed vessel re-projected into the
anterior-posterior view. Both the original and re-projected traces are
plotted to better illustrate their differences. On comparing these traces,
large gaps are seen between reconstructed points. This results when the

vessel trace being matched is foreshortened (e.g. the lateral trace in this

case).
4.3.3.3 Example 2

Figs. 4.29 and 4.30 illustrate the sequence of reconstruction of a

vessel from lateral stereo and biplane DSA images respectively.

Fig. 4.29c) shows the anterior-posterior re-projection of the stereo
reconstructed vessel. In comparison to Fig. 4.29d), there are large errors
at points where the vessel in the lateral DSA 1image is foreshortened and
folds over itself. The vessel was tracked incorrectly in those segments and
consequently reconstruction artifacts such as the ‘loop’ in Fig. 4.29¢c)

arose.

The result of biplane reconstruction shown in Fig. 4.30c) exhibits the
same errors as seen with the previous example. Segments of the vessel in the
lateral DSA image that are almost completely foreshortened do not match well
with the points in the anterior-posterior trace. Mismatching occurs because
there 1is no longer one to one mapping between the points in the trace pair,
and the indices in the anterior-posterior trace differ by more than W - For
both examples, the resulting gaps in the reconstruction can be approximated

by linear interpolation because these vessel sections are almost straight.
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4.29 Example 2: Illustration of a vessel reconstructed from lateral
- stereo DSA images a) & b). The 1teconstiucted trace is
re-projected into the AP image in c¢) for comparison with the trace of the
actual vessel in d). In a), b) and d) every Sth point in the trace is drawn.
The reconstructed points in c¢) are denoted by ‘plus’ signs and are joined by

lines.

Figure

v

a) Tracked vessel in lateral image b) Tracked vessel in lateral stereo tmage

d) Tracked vessel in AP image
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4,30 Example 2: Illustration of a
images a) & b).

vessel reconstructed from biplane
the reconstructed

and b) every 5th point in the trace is drawn.

a) Tracked vessel in lateral image

¢) AP re-projection
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4.3.4 Summary

In this section reconstruction sensitivity to correspondence error was
studied. Particularly, the sensitivity of correspondence to measurement
errors and the correspondence errors that result from matching simulated and

actual vessel traces were considered.

Simulation experiments showed that the correspondence estimate based on
the distance between 3-d intersecting rays from the point-pair it repiesents
was proporticnal to the measurement error in the point-pair and fiducial
marker image coordinates. However, there are two limitations associated with
this correspondence measure. First, as the observation ertor in the
fiducial marker image coordinates increases, correspondence estimates are no
longer proportional to  measurement error in the point-pair image
coordinates. Differences in the correspondence estimates originating from
observation errecrs in the point-pair image coordinates deciease. The other
limitation 1is that the correspondence estimate does not reflect differences
between point-pairs that have the same 'y’ disparities (for this recording
geometry). This means that ambiguities will occur when points from

horizontal sections of traces are matched.

Matching experiments with simulated stereo and biplane projections of
3-d piece-vise constant curves demonstrated that the proposed technique of
relaxation labeling of initial correspondences follows global trends in
disparity continuity and vessel connectivity better than using a chaining
technique. The mean error in the estimated disparities ranges from 1 to 3}
pixels after several iterations of relaxation labeling. Expectedly large
errors occur when horizontal and/or foreshortened sections of the traces are
matched. These errors 1in disparity, howvever, are smaller than those

appearing from chaining the initial correspondence estimates alone,

The computing time associated vith finding the initial correspondences
and refining them by relaxation labeling depends on the number of points in
each trace, the number of possible matches found for each point, and the
number of iterations. For examples 1 (i.e. ~75 points) and 2 (i.e. ~160

points), the computing time to match sterec traces was approximately 0.25
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and 1.2 minutes respectively on a VAX-750.

Results of matching stereo and biplane vessel traces fro» DSA images
were similar to those from matching 3-d curve traces. Matching vessel traces
from DSA images involved an additional source of error, an observation error
associated wvith the vessel tracking process. Even with stereoscopic views it
is difficult to manually track the vessel center-line where the vessel folds
on itself. The combination of tracking error and vessel foreshortening
produce artifacts in reconstruction from stereo pairs. Vessel reconstruction
from biplane pairs had gaps in it corresponding to those sections of vessel
in the anterior-posterior image that appear foreshortened in the lateral
image. Fortunately, these sections are straight and can be approximated by

linear interpolation.

4.4 Conclusions

In this chapter the factors that influence geometric reconstruction of
the vessel center-line from stereo and biplane images were examined. These
factors were vessel trace point and fiducial marker image coordinate errors

and correspondence errors.

The sensitivity of reconstruction to measurement error was shown to
depend primarily on the angular separation between the image pair, image
pixel size, and the geometric magnification. Reconstruction error was found
to be proportional to the image pixel size and inversely proportional to the
geometric magnification. Increasing angular separation between views from 5
to 15 degrees drastically decreases the reconstruction error, but will
result in an image pair where the stereoscopic impression of depth is
distorted. For larger angular separations the improvement in reconstruction
decreases. The contribution to reconstruction error from error in the
fiducial marker coordinates becomes important when test points are outside

the volume defined by the system of fiducial markers.
Reconstruction sensitivity to correspondence error depends on the

correspondence algorithm and the vessel topology. The correspondence

algorithm has a mean error in disparity that ranges from 1 to 3 pixels. It
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vas found to be limited in finding matches between horizontal sections of
vessel traces and between vessel traces where one of the vessels |is
foreshortened and superimposed on itself. Part of the problem with

superimposed vessels is that they are difficult to track correctly.

The results of reconstructing vessel traces from stereo DSA images
showed how large reconstruction error can be when correspondence errors are
taken into account. In spite of these errors, the anterior-posterior
re-projection of the stereo reconstruction 1is sufficient to determine the
vessel to which it corresponds. Biplane reconstruction of vessel traces
showved errors primarily due to vessel foreshortening in one of the images.
The missing reconstruction points that result may be approximated by linear

interpolation.

In stereotactic operations it is important to avoid blood vessels. By
the proposed technique the vessels can be reconstructed and an unobstructed
path through the vascular structure plotted. In light of the above results,
this will be possible providing the errors associated with the reconstructed

vessels are taken into account.

There are basically two ways in which geometric vessel reconstruction
can be improved. The first and most obvious is to minimize the influence of
the error sources by increasing the image matrix size and geometric
magnification. The other is to directly reduce the error associated with
vessel tracking, especially in vessels that are self-superimposed, and with
the correspondence algorithm. 1In order to improve on the correspondence
algorithm, the possibility that a vessel trace point may match into several
peints in the conjugate trace should be considered. In addition, other
measures of correspondence that could be used to resolve ambiguities that
arise from matching points from horizontal sections of traces should be

investigated.
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CHAPTER FIVE

ITERATIVE 3-D RECONSTRUCTION OF VASCULAR IMAGES FROM A FEW VIEWS

5.1 Introduction

An alternate means of reconstructing the 3-d coordinates of vessels from
its projections is computed tomography. §5.2 reviews the relevant image
reconstruction theory. It would be advantageous and practical if the number
of projections used in image reconstruction were kept small (e.g. 4 to 16
projections, especially the 4 views constituting a stereo pair). However,
when fewer than the required projections are used in image reconstruction,
the reconstructed images tend to be severely contaminated by streak
artifacts. The problem of streak artifacts is discussed in §5.3 and §5.4.
§5.5 proposes a method to recognize and discount these artifacts by using ‘a
priori’ information about the blood vessels. The proposed method
reconstructs a 3-d vascular network in a series of 2-d sections by
back-projection and summation of the projections followed by non-linear
iterative deconvolution of the summated image. The reconstruction method is
tested on both numerical examples and a 3-d wire phantom resembling
vasculature. The results are presented in §5.6 and §5.7 respectively, and

the chapter is summarized in §5.8.
5.2 Reconstruction theory overview

5.2.1 Preliminaries

"Computed tomography (CT) is a technique by which each slice of the
object can be viewed in total isolation, that 1is, with complete freedom of
clutter from adjacent slices" (Barrett and Swindell 1981). CT consists of
the reconstruction of a density image from computations on transmission
measurements whose paths are restricted to lie within the plane or slice of
interest through the object. The actual quantity reconstructed is the x-ray
linear attenuation coefficient (Brooks and Di Chiro 1976). The way in which
a cross section is reconstructed depends on both the x-ray beam geometry and

the measurement system.
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The simplest reconstruction procedure arises when the x-ray beam

geometry is parallel, and the detectors respond to only those x rays
arriving from within a desired thin section of space (Fig. 5.1). It is also

assumed here that the material properties of the object are time-invariant.

Fig. 5.2 illustrates the image and Fourier space coordinate systems that
are adopted here. The x,y (cartesian) and r;6 (polar) coordinates describe
image space. Similarly the u,v (cartesian) and p;¢ (polar) coordinates
describe Fourier space. In image space the &,n (cartesian) coordinates can
be rotated by ¢ about the origin with respect to the x,y coordinates. A(r;6)
and A&, Nn) are defined to be the image density of the cross section, in

polar and cartesian coordinates respectively, to be reconstructed.

Transmission measurements taken from the object in ¢ direction along

lines parallel to the n axis are sets of projections f£(&;4),

(=]

3
£(&54) = - log [——d—] = Jk(ﬁ,n) dn (5.1)
%

o —
vhere the fluence of the x-ray beam measured at the detector, ¢d’ is related
to the incident photon fluence, ¢o’ by the linear attenuation coefficients
of the object ME,n). Given a set of measured projections f(&;¢), the object
A(r;8) can be reconstructed from its projections. There are two conceptually
different approaches to the image reconstruction problem. The first approach
is the transform method (Bates and Peters 1971; Peters 1973; Lewitt 1983;
Louis and Natterer 1983). The other approach consists of algebraic
techniques, also known as iterative methods (Gordon and Herman 1974; Herman
and Lent 1976; Censor 1981;1983). Transform and algebraic techniques are
revieved in §5.2.2 and §5.2.4 respectively. §5.2.3 comments on the sampling

requirements of transform reconstruction methods.
5.2.2 Transform reconstruction methods

The ‘projection theorem’ relates the projections to the Fourier
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Figure 5.1 Parallel x rays propagating through a thin object section Mr;®)
' towvards a detector array.
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Figure 5.2 1Image and Fourier space coordinate geometry used for the
reconstruction method.
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transform of the density,

-4

A(p;$) = J £(E $) exp {ianE] dE (5.2)

—0

where i =j—1 . The Fourier inverse of (5.2) is

-]

£(&¢) = JA(p;cb) exp [—iZnoE] de (5.3)
The way the projection theorem (5.2) can be used for image reconstruction is

described in the following section.
5.2.2.1 Reconstruction by direct inversion

If the value of A(u,v) is known for all (u,v) then the density X can be

reconstructed by

-

A(x,y) = JJ A(u,v) exp [-iZn(ux + vy)] du dv (5.4)
—
Given measured projections f(&;¢), only certain values of A(u,v) can be
calculated. According to (5.2) p;¢ space is built up by sets of 1-d
transforms of projections along radial lines as shown in Fig. 5.3 for the
case of 6 projections. The function to be transformed must be sampled on a
rectangular grid. In order to do so requires an interpolation from polar to
cartesian coordinates. This reconstruction method is summarized by the

following

n o
Mx,y) = Mr;8) = J A op; ¢) exp [—ianpcos(G - ¢)] pdp dé (5.9)
0 -0 ’
and is referred to as ‘direct Fourier inversion' (Bracewell 1956). The chief
difficulty with this method is the need for very accurate interpolation from
polar to cartesian coordinates in Fourier space. Interpolation in Fourier
space can be avoided when back-projection is the basis of reconstruction. In
back-projection, interpolation is in image space. The radial blurring in the

image that results from back-projection and the techniques to compensate foi




Figure 5.3 Fourier transform of projections indicated by solid radial
. lines. Dots indicate the location of the set of samples which
completely define A(u,v).

v

Figure 5.4 Back-projection of four projections of a small circular region
of high density.

X
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it are described below.

5.2.2.2 Simple back-projaction

Let XN (r;©) denote the reconstructed image density after ‘back-
projection’
].YI
N(r;8) = f(rcos(8 — ¢); ¢) d¢ (5.6)

Jy

The back-projection operation consists of simply smearing each projection
across image space along the directions in which they were measured. The
density of each point in the image is then estimated by summing all rays
intersecting at that point. The resulting image is often referied to as a
‘layergram’ (Bates and Peters 1971). Fig. 5.4 shows the back-projection of
projections of a small circular region of high density, where the
overlapping projections give rise to radially dependent blurring on which
the true image is superimposed. Each point in the reconstructed image is
blurred, since it consists of the superposition of each piojected ray
passing through the true object at that point. This bluiring can be

characterized as follows.

Substituting (5.3) into (5.6) gives

n (-]
ANM(r;9) = J p—l Np; ¢) exp [-iZurpcos(B - ¢)] p dp dé (5.7)

0 -0

Rewriting (5.7) gives
N(r;i0) = Byl o' A(ei#) )} = Fylo ') * Nr;®) (5.8)

vhere FZ[] denotes a two-dimensional Fourier transform, and * is the symbol

for convolution adopted here. The inverse transform of c:_'1 is r-'l (Bates and

Peters 1971). The interpolation problem is further discussed by Smith et al.
(1973), Peters (1973), and Crowther et al. (1970).
5.2.2.3 FPiltered back-projection

Radial blurring can be compensated basically in two ways. The first
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method is known as ‘convolution back-projection,’

E(E ) = Fil lo] ) % £(5®) =Jq(a—aw E(E54) dF (5.9)
—
vhere q is a convolving function and is defined to be such that its inverse
Fourier transform approximates |p|. The technique of convolution back-
projection is discussed in detail by Bracewell and Riddle (1967),
Ramachandran and Lakshminarayanan (1971), Shepp and Logan (1974), and Lewitt
et al. (1978).

The convolving function q(r) is approximated by calculating the inverse
Fourier transform of |p|r = |el|W(p), vhere W(p) is a vindow function.
Instead of the ‘ramp’ filter |p|, an apodized functien |p|r is used since it
would handle noisy data better. Examples of two commonly used window

functions are WRL (Ramachandran and Lakshminarayanan 1971),

1, Ipl <0p
Voo (p) = nax (5.10)
RL 0, el > o
’ e max
and wSL (Shepp and Logan 1974),
| sinc(p/2p_ ) |, |ol <o
Vo (p) = max max (5.11)
SL 0 o] > »
! max

wvhere Pnax is the upper limit on the frequency (i.e. cut-off frequency) that

can be meaningfully reconstructed.

An alternative method of compensating for radial blurring is based on

deconvolving r—'1 from A (r;98),

Mr;0) = Fyl o] Fo0 M (r;0) } 1} (5.12)

(5.12) 1is referred to as ‘rho-filtered back-projection,’ derived in detail
by Bates and Peters (1971). (5.12) can also be implemented by modifying each
of the projections f(§;4) in Fourier space before back-projection (Bracewell
and Riddle 1967; Ramachandran and Lakshminarayanan 1971). Both space and

Fourier approaches are used in practice and are numerically equivalent.
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The expressions describing the different reconstruction methods
presented are in continuous forms and have to be replaced by approximate
expressions in order to implement them digitally. This is discussed in the

next section.
5.2.3 Sampling requirements

In practice, projections are measured at N discrete angles, and each
projection has M samples. The requirements of £ and ¢ sampling are commented

on in §5.2.3.1 and §5.2.3.2 respectively.
5.2.3.1 & sampling

The sampled projection is defined by

£(58 = d I f(nd;e) 8(E = md) (5.13)
M=~
where &(.) is the Dirac delta function, and d is the sample spacing. If the
image is known to exist within a circle of diameter D then the number of
samples per projection is M = D/d. Given the Nyquist sampling criterion is
satisfied (i.e. A(p;¢) is negligible for |p| > 1/2d), then there will be no

aliasing error in the projection samples (Levitt et al. 1978).

In the case of convolution back-projection, (5.9) becomes
[+

£r.(&9) = £7(jdj¢9) = d I q((j-m)d) f(md;$), j=0,+1,... (5.14)

M=—@®

The filter array elements of the convolving function q() corresponding to

lo[Wgp (p) and [p|Vg (p) are

1/4¢% Lk o= 0
Qg (kd) = { 0 , k #0 and even (5.15)
RL “1/(fd%%) Kk odd
and
22 2
qSL(kd) = -2/4"n°(4k” - 1) , k = 0, +1, +2,... (5.16)
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5.2.3.2 ¢ sampling

Since there are only a limited number of projections measured, the
back-projection operation (5.6) has to be evaluated by some numerical
procedure. Given projections measured at N angles equally spaced throughout
an interval of n radians, (5.6) is usually rewritten to become a sum

containing one value from each projection,

n N
N (r39) = —N—* nfl £ (rcos(8 - ¢); ¢) (3.17)
wvhere N= n/A¢ and ¢n = nd¢. In order to achieve a resolution equal to 2d,

the minimum number of N projections required is then given by (Crovther et

al. 1970)

N = nb/2d (5.18)

If there 1is insufficient ¢ sampling, aliasing errors and interpolation
errors, referred to as ‘clutter,’ result in the reconstruction (Smith et al.
1973). The problem of image reconstruction from a few projections (i.e. 4 to

16 projections) is further discussed in §5.3.
5.2.4 Algebraic reconstruction methods

5.2.4.1 Fundamentals

Algebraic reconstruction methods differ fundamentally from transform
methods in that the image reconstruction problem 1is ‘discretized’ at the
very beginning. Fig. 5.5 shows image space defined as a square array of
pixels that encloses the object cross section to be reconstructed. The
density within the jth square ( 14§<J ) is assigned a value Aj. The image
projections g4 of the square array are defined as a strip integral over the
image with the area of the strip defined by the ith ray. The total number of
rays 1in all projections is equal to I. Referring to Fig. 5.5, aij is the

th

length of intersection of the i ray with the jth pixel for all i and j,

and represents the contribution of the jth pixel to the total attenuation

th

along the i ray. The image projection g5 is defined as a finite sum of
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Figure 5.5 The image projection g. shown as an integral of X, along the ith
ray. Detail on the right shows the ith ray passlng through the

)

)

jth pixel.

i=s JIIRI3
N\
AY

=y

1th ray

image projection

density contributions along the ith ray path,

J
g, = L a,.\ i=1,...,I (5.19)

Given a set of measured projections fi, the solution set {Aj} is sought

to the equations
J
f = I a,.A i=1,...,I (5.20)

5.2.4.2 Matrix inversion

(5.20) represents a series of I linear equations in J unknowns for which

a solution should be attainable by inverting the matrix aij'
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I 4
. = I . £, 5.21
Yoo I T (5.21)

In practice the number of elements in is large which leads to

a,.

1]
prohibitive computation times and makes inversion more sensitive to noise in
the projection data (Barrett and Swindell 1981). These reasons have prompted

the development of iterative methods for image reconstruction.
5.2.4.3 Iterative reconstruction methods

Solutions to (5.20) are based on the ‘'method of projections’ (Kaczmarz
1937). These iterative methods seek the solution that will maximize in some

sense the similarity betveen the set of measured projections fi and the

image projections g

Following Barrett and Swindell (1981) a typical iterative algorithm
consists of the following steps:

(1) Assume an initial image Aj.

(ii) Compute image ptrojections 84 by (5.19).

(iii) Compare g, to measured projections fi'

(iv) Compute correction factors and update Aj values.

(v) Repeat from ,i1) with new iterations, or end with final image.

A common example of an iterative reconstruction algorithm is algebraic
reconstruction techniques (ART) introduced by Gordon et al. (1970). In ART,
differences between the measured and computed projections (i.e. fi—gi) are

ith ray. For this reason ART is

assigned to all image pixels within the
sometimes called a ‘ray by ray’ reconstruction method. Update of Aj is
repeated k times for the whole set of projections until convergence is
attained. The algorithm is said to be ‘constrained’ if ‘a priori-
information 1is incorporated. The most common constraints employed are image
positivity and image extent (see §5.3.2). ‘Unconstrained’ ART has been shown
to converge for consistent equations (5.20) to the solution with the
smallest variance (Herman et al. 1973). 1If one attempts to solve a set of
equations such as (5.20) which are inconsistent, unconstrained ART improves

at first then gets progressively worse (Gilbert 1972).
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In contrast to ART methods 1is a scheme referred to as simultaneous
iterative reconstruction technique (SIRT) (Gilbert 1972). In SIRT each image

pixel is corrected by using data from all the rays simultaneously at each

iteration. This ‘point by point’ approach makes reconstruction less
sensitive to measurement errors in the projection data (Gilbert 1972). A
variation on SIRT is iterative least squares technique (ILST) (Goitein

1972).

Recast as a problem in terms of optimization theory, the solution to
(5.20) can also be found that maximizes its entropy (e.g. S(Xj)=—leog(xj)).
This solution can be thought of as being the least biased while still being
consistent with the given projection data (Minerbo 1979). The choice of
entropy ensures image positivity and maximizes the smoothness of the
reconstruction. Examples of implementation of the maximum entropy approach
are discussed by Minerbo (1979), who refer to it as ‘MENT,’ Lent (1977),
Frieden (1980) and Smith and Grandy (1985).

5.2.5 Comparison between transform and algebraic reconstruction methods

The relative merits of transform and algebraic reconstruction methods
depend on practical considerations: application, the range of views, and the
number of views. For a fixed recording geometry, and when the number of
samples per projection and azimuthal sampling are satisfied in the sense of
§5.2.3, transform methods are preferred. Algebraic techniques are deemed
more adaptable to non-standard reconstruction problems, such as situations
where the projections are incomplete (Oppenheim 1977). This is probably due
to the functional being optimized which imposes subjective constraints on
the reconstructed images (Heffernan and Bates 1982). In addition to this,
iterative techniques allow explicit ‘a priori’ object knowledge to he easily
introduced into the reconstruction procedure. In this way 1iterative

techniques become flexible in handling new reconstruction problems.
5.3 Reconstruction from a few views

This section is concerned with the problem of reconstructing an image
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vhen the number of measured projections N is much less than required by
(5.18). It is assumed that each projection contains sufficient ray-sums to

satisfy the sampling constraints set out in §5.2.3.1.

In absence of measured projections, reconstruction by methods described
in §5.2.2.1 - §5.2.2.3 leads to artifacts in the reconstruction image
(Hanson 1982a). Consider the case where the image is a two-dimensional delta

function located at the origin, MRXx,y) = &x)&8(y), and its 2-d Fourier

transform is A{u,v)=1. The back-projection reconstruction of A(x,y) from 5,
10, and 20 projections evenly spaced in an interval of n radians is shown in
Fig. 5.6b)-d) respectively. The relief plots show a distorted or ‘dirty’
delta function elongated along the directions of projection. This streaking
or star-pattern artifact can be thought of as being superimposed on the true
image. Fig. 5.7 illustrates this point, where Figs. 5.7b)-d) show images of
a numerical phantom in Fig. 5.7a) reconstructed by back-projection of 5, 10,
and 20 evenly spaced projections. Approaches to the problem of fevw

projections are reviewed in §5.3.1.

In spite of streaking some objects in the reconstructed image can be
inferred from its form and structure (Fig. 5.7). The streaking artifact is
particularly serious for objects that are relatively smaller in size and
contrast. The former observation indicates the possibility of using ‘a
priori’ knowledge about form and structure regarding the object’s density
distribution 1in reconstruction. §5.3.2 discusses the role of ‘a priori’

information.
5.3.1 Previous work

Algorithms for image reconstruction from a few projections can be
grouped into three approaches: methods which use conventional transform
algerithms applied to an augmented set of projections, methods that
incorporate into the reconstruction scheme global image constraints, or ‘a

priori’ knowledge abcut the type of image expected to be reconstructed.
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Figure 5.6 a) point source object and its reconstruction by back-
projection from b) N=5, c) N= 10, and d) N=20 projections.
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Figure 5.7 Illustration of streak artifacts due to back-projection
reconstruction: a) original object, and its reconstruction from
b) N=5, c¢) N=10, and d) N=20 projections evenly spaced over n
radians.
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5.3.1.1 Interpolation of missing projections

The first approach is to analytically compute the missing projections
from the known measured projections. The advantage of such an approach is
that it enables the transform reconstruction methods to be applied. As
discussed in §5.2.3, transform methods require that the projection set be
complete in the number of projections and the number of samples in each
projection. Given incomplete projections, it 1is necessary to estimate the

missing projection values.

Much of the reported work on interpolating missing projections has been
described for the related problem of limited angular range of views in which
a range of projections is not measured. Inguye (1979) estimates the

projections in the missing range by fitting a Fourier series to the measured

projections (see also Wagner 1979). However, this method leads to large

differences in reconstructed images if there is any noise in the projection
data. Generally the process of completing missing projections results in
reconstruction artifacts, since the interpolated projections are
inconsistent with the object being reconstructed (Oppenheim 1977; Heffernan
and Bates 1982). An analytic treatment of this problem is given by Davison
(1983) who showed that the problem of computing missing projections is
ill-conditioned, and therefore, the data must be extremely accurate ‘o yield

a successful reconstruction. This result cannot be circumvented in absence

of stiong ‘a priori’ constraints on the unknown density distribution of the

object being reconstructed.

In an attempt to 1limit reconstruction artifact Gerchberg’s algorithm
(Gerchberg 1974) has been implemented tn estimate missing projections in CT
(Tam and Perez-Mendez 1981; Sato et al. 1981; Heffernan and Bates 1982;
Nassi et al. 1982). Gerchberg’s algorithm is an iterative scheme which
successively applies constraints in frequency domain and image spa-e.
Unlike algebraic techniques, any errors introduced in the iterative process
are not corrected and would build up with ruccessive iterations (Heffernan
and Bates 1982).
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5.3.1.2 Application of global image constraints

Another approach to 1image reconstruction in the face of missing
projections is to employ iterative techniques which place global constraints
on the image. The iterative approach can provide a solution based on the
given projection values and does not require that any missing values be
estimated. In this sense iterative methods are better suited than transform
methods to the problem of reconstruction frem a few projections. Cramples of
such methods are SIRT, ART, and MENT. These methods have proved to reduce
artifacts when there are limited projections available (Oppenheim 1977;
Heffernan and Bates 1982). An example of this approach is an implementation

of MENT for vascular reconstruction by Spears et al. (1988).

Spears et al. (1988) used MENT to reconstruct coronary arterial trees
‘in vitro’ from 6 to 18 cine angiographic views (equally spaced over n). The
choice of entropy leads to global smoothing and thus, reduces the amount of
streaking in the final reconstructed image. They found that the number of
projections necessary for an acceptable reconstruction depends greatly on
the «complexity of the anatomic structure of the vessels. This 1is to be
expected since the reconstructed image reflects only the ‘statistical’

structure imposed by the available measured projections.
5.3.1.3 Application of ‘a priori’ image information

The 1last approach to the problem of missing projections is to use ‘a

priori’ information about the type of image expected to be reconstructed.

This approach has been successful in the application of limited-view
computed tomography to non-destructive materials testing. Hanson (1982b)
showved empirically the extent of improvement in reconstruction from limited
views when it is known ‘a priori’ that the image is a collection of specific
shapes. Their approach first fits model parameters in a least squares sense
to the available projections. The fitted model is then used as the initial
estimate in an ART-type algorithm (see also Rougee et al. 1988). In another
example, Heffernan and Robb (1985) were able to reconstruct images from few

projections where the reconstruction is a sample of a well defined image.
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Garden and Bates (1984) presented a general technique to estimate the
type of image expected in reconstruction. Available ‘a priori’ information
about the image structure is revealed by direct reconstruction. Their
algorithm takes advantage of the observation that in spite of streak
artifacts, structure and bourdaries of objects in the reconstructed image
are recognizable to humans. Garden and Bates mathematically argued that as
the size of the object extent increases it becomes more recognizable in the

reconstructed image. Their algorithm is as follows.

From the measured projections an image 1is reconstructed by convolution
back-projection. Visually boundaries of regions that appear divided in the
reconstructed image are traced out by cursor. The computer calculates the
average density inside each region and forms a ‘piece-wise constant’ image
consisting of the selected regions whose pixel values are set to the
region’s average. The piece-wise constant image 1is re-projected along
directions of the original projections, and the computed projections are
then subtracted from the originals. The difference is reconstructed by
convolution back-projection and visually checked for any remaining useful
information. 1If visual inspection cf the difference image reveals that its
amplitude 1is everywhere negligible, then the piece-wise constant image is
taken to be the best estimate of the original object. Otherwvise, the
difference image is added to the piece-wise constant image, and the operator
re-traces new boundaries. This interactive process is repeated until the
operator decides that the amplitude of the difference image is negligible.
The iterative nature of this approach provides the facility for redefining
the ‘a priori’ constraints after each iteration. After two to four

iterations the reconstructed image resembles the true object.

5.3.2 ‘A priori’ image information

‘A priori’ knowledge is usually based on the perceptive experience that
certain object patterns and structure are recognized as acceptable in a
given context, whereas others are not possible and are thus strongly
rejected. The most common ‘a priori’ constraints invoked in reconstruction

algorithms are image positivity, in the radiographical context density is
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always positive, and image extent, the smallest convex region or regions in
image space which encloses the image. If the properties of the material
making up the cross section are known, interval constraints on the density
values can also be imposed. Other ‘a priori’ constraints based on image
estimates of size, shape, and boundary locations are also possible (Rossi
and Willsky 1983).

The application of ‘'a priori’ constraints in reconstruction algorithms
is basically ‘ad hoc,’ depending largely on the object being reconstructed.
In the case of image reconstruction from projections of opacified blood
vessels, several ‘a priori’ assumptions are made about the object and the

reconstruction problem.

Let the 3-d object to be reconstructed be partitioned into a stack of
L mutually parallel axial sections where the density of the lth object cross
section is described by kl(x,y). It is assumed that Xl(x,y) is reconstructed
from the corresponding rows of each of the N planar projections. Since only
single sections are Leing considered, the ‘l’ subscript is dropped for
reasons of convenience. The problem under consideration has the following

form:

(A) Object MXx,y) consists of J regions of opacified vessels of finite

extent surrounded by empty background:

ki, Peq, {(k, € R: j=1,2,...,J}
AX,y) = J ] (5.22)

0, P eg@

+
vhere P is a point in image space ? as shown in Fig. 5.8. Image
space R is partitioned into two non-intersecting regions e and @ .
Q+ represents background and @ the J non-intersecting regions of

finite extent S%:

J
Q= U (5.23)

(B) The density of piece-vise constant regions 2 should always be

positive, ijQ-
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Figure 5.8 Notation and coordinate system for piece-wise constant image.
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(C) The opacified vessels within each object section are continuous

with vessels in the adjacent cross sections or slices.

(D) The reconstructed image X\, is related to the true image by
N

XfN(x,y) = starN(x,y) * AN(%,¥) (5.24)
where the star-function (Smith et al, 1973) is given by

2n

N
starN(r;e) = f { &®© —-¢n) + &8O —-¢n + 1) ) (5.25)

Nr n=1
8(.) denotes the Dirac delta function. The star-function can be
thought of as the point spread function (PSF) associated with the
unfiltered back-projection reconstruction from N finite projections
at {¢N}. The star-function is given by the reconstruction of a
single point wusing (5.17) and 1is superimposed at the original
point. Fig. 5.6 gives examples of starN(x,y) for different numbers

of projections.

(E) As an initial approximation, the locations of maxima in the
reconstructed image )'N(x,y) (i.e. the centers of star-patterns)
generally correspond to regions of opacification Qj in th original
object A(x,y) when these regions are ‘point-like’ and have the same

high densities.

- 159 -




sl

5.4 Problem statement

Given a data set consisting of a small number of projections of the
vessels in the brain, the problem of reducing artifacts in the back-
projection image can be solved using ‘a priori’ object knowledge listed in
§5.3.2 (A)-(E). In addition to ‘a priori’ object knowledge, it is assumed
that the vessel in anatomical cross section can be approximated as being
‘point-like.’ The general problem can be posed; given [f,¢n,N} and the above
‘a priori’ assumptions, estimate Mx,y) by selectively reducing the star-
pattern artifacts in A’N, the streaked reconstructed image, within some

specified region @_of image space.

A streaked image results when a reconstruction algorithm is applied to

the few measured projections,

AN = RN(fS(E;¢n)} (5.26)
where the reconstruction operator RN{.} is linear and invariant throughout

the image plane. The reconstruction operator considered here is simple

back-projection (5.17). The streaked reconstructed image is modeled by

N(xyy) = ” A(X73y") stary(x-x’,y-y') dx’dy’ (5.27)
Q

wvhere Xe is the estimate of the true image. The actual streaked image X’N is

always non-ideal in the sense

A'N(x,y) = Ab(x,y) + d(x,y) (5.28)
vhere d(x,y) is the difference or residual image and includes additive noise
and any differences between the actual streaked image X’N and the model kb

(5.27).

The problem can be restated; given both X'N as defined by (5.26) and Xb
in the form defined by (5.27), estimate X to within limits set by the
residual d. The estimate of the true image AE is constructed by a solution

method that minimizes the residual d,
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d(x,y) = X'N(x,y) - Jj Xe(x’,y') starN(x—x‘,y-y') dx’ dy’ (5.29)
Q

to within limits set by the noise level in A'N. In the next section a
solution to (5.29) is proposed that consists of subtractively deconvolving

stary from X’N at only those points that are centers of star-patterns.
5.5 Reconstruction method

The problem of selectively removing star-pattern artifacts from the
reconstructed image is addressed by a subtractive deconvolution technique
known as ‘Clean.’ Clean was introduced by Hoégbom (1974) to restore radio-
source maps reconstructed from 1incomplete observations that suffered from
star-pattern type artifacts. This algorithm was demonstrated to be very
successful with images of radio-sources that are essentially blank sky with
videly distributed point-source components. The position and amplitudes of
these point-source components are determined by a simple iterative procedure
vhich 1is described in §5.5.1. The idea of star-pattern removal in emission
tomography was applied by Muellehner and Wetzel (1971). They experienced
poor results since the objects being reconstructed were too large and
extended for successful restoration. As a consequence of both the similarity
of the reconstruction problem described in §5.4 to Hogbom’s and that blood
vessels in an anatomical cross section may be approximated as point-sources,
the extension of Clean to medical imaging of blood vessels is investigated.
The application of the Clean algorithm is described in §5.5.2 and details of

its implementation are presented in §5.5.3.
5.5.1 CLEAN algorithm

The notion of how subtractive deconvolution, in particular Clean, arises
is presented. Let G(x,y) and G'(x,y) represent the true and degraded images
of the same object respectively. It is assumed that each point in G exists
at only a single data point and can be regarded as a ‘true’ impulse. In
contrast, each point in G’ exists at a sequence of points and is considered
a ‘spread’ impulse. It follows that given the point spread function (PSF),
kiown or estimated ‘a priori,’ each data point in G’ can be reduced down to

some residual level by successively subtracting out each of the spread
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impulses.

Subtractive deconvolution is appropriate when the true image is composed
of 1isolated points, and when the main effect of the PSF is to reduce
contrast rather than resolution (Bates and McDonnell 1986). Hogbom's
cleaning 2lgorithm is specifically suited for this class of images. The
Clean algorithm operates in the image plane and fits the ‘a priori’ model of
the true image to the observed projections. The cleaning algorithm is

described below using Hdogbom’s graphic terminology.

The algorithm begins with a degraded or ‘dirty’ image G’(O), the
recoverable or ‘clean’ 1image Ge(o) which is 1initially empty, and the
synthesized PSF or ‘dirty beam.’ Each time the dirty beam (i.e. a spread
impulse) is subtracted out from the dirty image the clean image takes on the
value of the true impulse at the appropriate position. The clean image
becomes the true image after all the subtractions have been completed. The
(k=0) Ge(k=0)’ where k denotes the

iterative process by which images G’ and

iteration number, are updated consists of the following steps:

(i) Locate the maximum in G’(k) and determine its amplitude P.

(ii) Add to Ge(k) a point-source at this location of amplitude oP, where
a is the loop gain.

(iii) Convolve the dirty beam with a point-source of amplitude oP at this
location.

(iv) Compute G'(k+l) by subtracting the result of this convolution from
¢,

(v) Update k-k+1 and return to (i) unless G’(k+1)(x,y)<c for all (x,y),

vhere ¢ is the convergence criterion.
(vi) Convolve the clean image Ge(k) by the ideal PSF to obtain a smooth
clean image.

(vii) Add the residual G’(k+1)

to the smooth clean image.
Steps (i), (ii), (v), and (vi) are at control of the observer. If the

maxima in the degraded image are located at the same positions as the true

impulses then cleaning will determine the amplitudes from these positions.
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The wuser selects the loop gain and the convergence criterion. The loop gain
may range between 0 and 1. If the image has an impulsive character, the loop
gain can be as large as unity so as to reduce the number of iterations. For
images consisting of extended components, a small loop gain is necessary and

more iterations are required.

The convergence or stopping criterion is based on an estimate of noise
in G’(O)(x,y) and is set close to the average of background values. In those
cases where the noise level is comparable to the amplitudes of the point-
sources 1in G’, cleaning 1is not successful. Performance of Clean not only
depends on noise levels, but on the shape of the PSF. If the PSF is wide, it
is more likely that the maxima in the degraded image are not located at the
same positions as the true impulses. In this circumstance, cleaning proceeds
from wrong positions, and the cleaned image bears no resemblance to the true
image (Bates et al. 1982). The use of an ideal PSF in step (vi) takes into
account that it is not possible to resolve image features beyond a limat,
that 1is, the PSF is of finite width. In practice this step is essentially a

‘cosmetic’ operation (Bates and McDonnell 1986).

In cases where the residual can be reduced to zero and the true image
consists of a collection of point-sources whose number is less than half of
the observed visibility samples in Fourier domain, Clean will then converge
to the correct solution (Schwarz 1978). Thus, 1if there is sufficient ‘a
priori’ knowledge of the true image, the image components can be located and
their amplitudes determined. When the true image does not consist of
‘point-like’ objects, cleaning will tend to be inefficient. A generalized
approach to subtractive deconvolution of a wide class of blurred images is
described by Bates et al. (1982;1984).

5.5.2 Modified Clean (MCLEAN) algorithm

The problem of reconstructing 2-d axial sections of blood vessels from
a few subtracted angiograms is similar to Hogbom’s problem in two ways.
Firstly, it is similar in the sense that the true image can be approximated
by widely distributed point-like objects. Secondly, the maxima of star-

patterns in the degraded image A’N formed by back-projection (5.17)
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generally correspond to regions of opacification in the true image. In this

case the dirty beam is described by the star-function (5.25).

The algorithm used to determine both the regions of opacification in the
streaked reconstructed image A'N and their amplitudes is based on Clean. It
is referred to here as ‘Mclean.’ Rather than subtracting out the star-
function from the dirty image A’N as 1in steps (iii & iv) of §5.5.1, the
computed projections gs(5;¢n) of the selected peak point are used to
subtract from the measured projections fS(E;¢n). The updated version of the
dirty 1image 1is then formed by bvack-projecting the modified measured
projections. Both forms of implementing the subtractive deconvolution step
are numerically equivalent, but the latter form lends itself to comparison

with other iterative algorithms.

Reconstruction of the original object is achieved by the following steps

for each section in the 3-d object:

(i) Set k-0. Introduce empty clean image Xé( ), and dirty image X' (k)
computed from projections £ (k)(i, n) as defined by (5.17).

(ii) Locate the maximum in X' (k) and determine its amplitude P.

(iii) Add to A (k) a point-source at this location of amplitude oP.

(1v) Compute g, (k )(£,¢ ) of the point-source corresponding to of.

(vi) Update f (k+1)(a,¢ )ef (k)(E $)-8 (k)(i, $,) at each data point.

(vii)  Compute x' (k+1) from f (k*l)(a 6 ) as defined by (5.17).
(viii) Update kﬂk+1 and return to (ii) unless X (k+1)<c for all (x,y).

In step (ii) the search regions for maxima are restricted to the finite
extent of the image, an estimate of @ . The proposed algorithm then proceeds

to determine amplitudes from the positions found by the search.

Mclean 1is primarily different from algebraic algorithms (see §5.2.4.3)
in that deconvolution is selective and based on ‘a priori’ object knowledge.
As demonstrated by Garden and Bates (1984) and Heffernan and Robb (1985),
the more accurate the ‘a priori’ estimate of the true object 1is, the more

probable the final reconstructed image will resemble the true image. The
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extent of agreement is limited by the ‘a priori’ information available and
ultimately to the measured projections., This method will not recover

information lost because of the incompleteness of the projection set.
5.5.3 Implementation

The implementation of back- and re-projection operations, and
determination of image extent are described in §5.5.3.1, §5.5.3.2, and

§5.5.3.3 respectively.
5.5.3.1 Back-projection algorithm

In the back-projection operation values from fS(E;¢n) are assigned to
elements of a 2-d matrix of square pixels representing the reconstructed
section X'. There are basically two ways to implement the back-projection

operation.

The first method is to assign a fraction of the value of point fs(5;¢n)
being back-projected in a manner similar to (5.21). In the other method, the
value appropriate to the ray that passes exactly through the center of each
image pixel is computed from the projection data. Referring to Fig. 5.9, if
the contribution to the x,yth point in N from fs(£;¢n) being considered is
fS(E’;¢n) where §“5£’5£m+1, then the value of the reconstructed grid point
is updated by the rule

Ny = Nyt PEEGE) ¢ (-RE(R qi4) (5.30)
vhere p is the fraction of the interval between fS(Em;¢n) and fs(Em+1;¢n)
defined by the intersection with the &-directed vector fs of a perpendicular

dropped to the x,yth point in X\’ .

Peters’ (1981) back-projection scheme using linear interpolation between
sample points of the projection is adopted here. The advantage offered by
this scheme is the convenience with which it can be inverted to provide

re-projection.
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Figure 5.9 Center of each pixel is re-projected to the measured projection
and pixel value is assigned as a weighted sum of the two samples
of fs closest to the re-projected point.

\

5.5.3.2 Re-projection algorithm

Re-projection can be performed by the inverse operation of either of the
two back-projection schemes outlined in §5.5.3.1. The first method based on

predetermined weights of the image array is characterized by (5.19).

The second method assigns values from the x,y grid to sample points of
the projection. Referring to Fig. 5.9, the x,yth point is re-projected and

its immediate neighbors in the sampled projection are updated by

g5 (Eyidy) gs(5idy) + PNy y } (5.31)
gs(£m+1;¢n) = gs(Eﬁ+1;¢n) + (l*P)X'x’y

This re-projection algorithm is essentially the inverse of the back-
projection procedure (5.30). However, this re-projection scheme will result
in large oscillatory errors at angles where grid points are strongly aligned

(Peters 1981). These errors can be corrected by using a scaling function
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g,(% ),

gs'(5;¢n) = gS(E;¢n) / gC(E;¢n) (5.32)
The correction function is specified by computing gs/gs’ of a known cbject

density distribution, such as a uniform square, for all desired angles of
(¢N} (Peters 1981).

5.5.3.3 Estimation of image extent

The extents of the sub-images (i.e. @ by 5.22) in the layergram are
estimated by setting values of those points in the image to zero if it has a
corresponding ‘null ray,’ otherwvise its value is preset to some arbitrary

(non-zero) level (Heffernan and Bates 1982).

A null ray is defined to be any straight line through image space along
which the integral of the density 1is zero. Hence, the image 1is zero along
the null ray since the image density cannot be negative (Brooks and Di Chiro
1976). The resulting 1image gives an estimate of the extents of the
sub-images. These extents are collectively referred to here as the ‘image

extent’ or the image '‘mask.’ The computed mask image Am(x,y) is defined as

(5.33)

0, if min [£(&;4.)] <O
A (%,9) = { nee

1, othervise

where & is the projected position of (x,y) along fs(£;¢n). The estimation

of the image extent by (5.33) is possible because the object is sparse.
5.6 Computational experiments

Since the proposed reconstruction algorithm (§5.5.2) does not lend
itself to simple analytical expressions, an empirical approach is taken to
gain understanding of its effects.

To evaluate the reconstruction method, its performance was simulated on

a computer using analytically defined projections of 2-d sections that are

representative of the types of density distributions which are measured 1in
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cerebral DSA. §5.6.1 describes the 2-d phantoms wused and the method for
generating the phantoms’ projections. Incomplete projections are then
simulated by deleting the appropriate projections from the complete set.
Next, reconstruction from the remaining projections is performed using the
Mclean algorithm (§5.5.2). Finally, the reconstructed section 1is compared
with the original section using distance measures described in §5.6.2. For
comparison results from two other reconstruction methods are examined. The
first method (I) consists of convolution back-projection (§5.2.2.3) where a
Shepp-Logan filter is used (5.16). The other method (II) takes the filtered
layergram reconstructed by method (I) and sets the image to zero outside its
known extent. The extent of the image is specified by its mask as defined in
§5.5.3.3. The Mclean algorithm 1is designated as method (III). The three
reconstruction algorithms were implemented in Fortran-77 on a Digital
Equipment Corp. VAX 11/750 computer equipped with a Lexidata image display

and utilizing the VMS operating system.

§5.6.3 describes the basic image reconstruction experiment. For each
method both the number of projections and the magnitude of noise in the
projections are varied. The results of reconstruction using methods I, II,

and ITI are presented in §5.6.3.1-3 respectively.
5.6.1 Simulation of projection data

Figs. 5.10a)-c¢) show computer generated images of ‘typical’ 2-d
cross sections of a 3-d density distribution of opacified blood vessels. All
images are displayed in a 64x64 pixel matrix where densities of zero or less
are represented by black and densities of 20 or over are represented by
white. Densities between O and 20 are ‘windowed’ or mapped linearly onto 256
different grey levels (see 2.5). Although the original images are between O
and 10 (see Tables 5.1-3), the display window is larger in order to account
for possible ‘overshoots’ in the reconstructed images. Each of the computer
generated phantoms contains sufficient structure to permit reconstruction to

be evaluated realistically.

The simulated vascular cross sections in each of the images in Fig. 5.10

consist of elliptical boundaries enclosing regions of given density. Fig.
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i Figure 5.10 a)-c) Grey-scale images of computer generated phantoms. Phantoms
consist of ellipses of various densities superimposed on a zero
background. Images are windowed between O and 20. See Tables

5.1-3 for a list of component ellipses of phantoms shown below.

a) Phantom A b) Phantom B

c) Phantom C

-

-t

o

s
H




Table 5.1 Component ellipses of phantom A (see Fig. 5.10a). ¢ is the angle
. between the major and x axes.

Ellipse Coord. of the A B ¥ k
center (x,y) Major Axis Minor Axis Rotation Angle Grey Level

1 38, 20 3 2 80 9

2 42, 32 3 3 0 11

3 33, 33 2 2 0 10

4 29, 49 3 2 165 12

5 20, 39 2 2 0 10

Table 5.2 Component ellipses of phantom B (see Fig. 5.10b). ¢ is the angle
between the major and x axes.

Ellipse Coord. of the A B v k
center (x,y) Major Axis Minor Axis Rotation Angle Grey Level

10
10

48, 29
44, 40
35, 46
36, 25
33, 33
22, 40
24, 24
20, 20
15, 25

OO BN
LSS S S S S TN SIS
NSILSELSN SIS N CN SN SN S
eleloleNoNoReNeNe)
OO o ©O

Table 5.3 Component ellipses of phantom C (see Fig. 5.10c) ¢ is the angle
between the major and x axes.

Ellipse Coord. of the A B ' k
center (X,y) Major Axis Minor Axis Rotation Angle Grey Level
1 48, 29 2 2 0 10
2 44, 40 2 2 0 10
3 35, 46 2 2 0 9
4 36, 25 2 2 0 2
5 33, 33 2 2 0 5
6 22, 40 Z 2 0 8
7 24, 24 2 2 0 8
8 20, 20 2 2 0 10
9 15, 25 2 2 ¢ 5
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5.10a) shows a section consisting of 5 objects that are different in shape
and size (Table 5.1). Figs. 5.10b) and c¢) illustrate sections where there
are many (i.e. 9) disk shaped objects. Fig. 5.10c) (Table 5.3) is different
from Fig. 5.10b) (Table 5.2) in that there are larger differences betveen
object densities. Images in Fig. 5.10 a), b), and c¢) are referred to here as

phantoms ‘A,’ '‘B,’ and ‘C’ respectively.

The projections of the test phantoms are computed analytically rather
than re-projecting (§5.5.3.2) the digitized images. This avoids the problem
of biasing the test of the algorithm by using the same procedure to
determine the projections as for the reconstruction (Crowther and Klug 1971;
Smith et al. 1973). Fig. 5.11 illustrates a projection of an ellipse where

the density distribution is

2 2
X y
Xx,y) = k, for 7+ 57— 1 (inside thc ellipse)
A B (5.34)
= 0, othervise (outside the ellipse)

The expression for the relationship between A(x,y) (5.34) and its projection

£(&;¢) is given by (Rosenfeld and Kak 1982)

2kAB 3 7
£(&9) - ——Z——Ja (¢) - & for [&] < a(®)
a“’(¢) (5.35)
= 0 for |E] > a(4)
where az(¢) = Azcosz¢ + stin2¢ (5.36)

The projection of an image composed of a number of e¢llipses 1is simply the
sum of the projections for each of the ellipses. Projections of the 2-d
computer phantom are produced along 180 angles evenly spaced over n radians.

Each simulated projection consists of 128 samples (§5.2.3.1).
5.6.2 Comparison criteria
It is often difficult to evaluate the quality of reconstruction and

assess drtifacts quantitatively from visual inspection of grey scale images

alone. For this reason a conventional root-mean-square error criterion is
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Figure 5.11 Illustration of a projection of an ellipse. (After Rosenfeld and
Kak 1982)

f(Es¢) = —5— |2 (- ¢
a”(9)

2

cosz¢ + stinztb

a2($) = A

p A

B ¢

\A\
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adopted. Folloving Heffernan and Bates (1982) the ‘distance’ between the

reconstructed image Xe and the original image A is given by the total error

EX(T,9) - ”[ A(xiy) - Mx,y) 12 de (5.37)
Q

wvhere T represents the Roman numeral identifying the reconstruction method,
and @ is partitioned into convex image regions 2 and background 9+ (see
5.22 and 5.23). The computed error in the region of the image extent
reflects the distance in pixel values between actual and reconstructed
object regions, whereas the background error measure indicates the amount of
artifact removed in reconstruction. The error criterion associated with a

reconstruction (Heffernan and Bates 1982) is introduced as

e(T,2) = E(T,Q) / E(1,9) (5.38)

wvhich compares any of the reconstruction methods with method (I). This error

criterion is taken as a measure of reconstruction accuracy.
5.6.3 Basic experiment

The basic experiment consists of reconstructing images from N given
projections of a phantom. The reconstructed images are then compared to the
corresponding true images visually and by computing the error criterion
(5.38). The total error resulting from method I reconstruction using N=5
projections serves as the basis of comparison in (5.38). In cerebral DSA 5
projections are reasonably achievable in practice. Each experiment also
considers the effect of noise in the projections on reconstruction error.
This experiment is performed for phantoms A, B, and C using reconstruction
methods I, II, and III.

Reconstruction accuracy or error is expected to depend on both the
number of given prcjections and on the degree to which the given projections
are representative of the complete set. Images are reconstructed from 4, 5,
10, 15, and 20 projections evenly spaced over n radians. To investigate the
feasibility of reconstruction from biplane stereo pairs, projections are

taken at angles ¢ = 0, 10, 90, and 100 degrees. The set of biplane stereo
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projections is denoted by N = 4S. All possible sets of N projections are
formed by incrementing the starting angle in one degree steps over a span of
(180/N) degrees. Images are then reconstructed from all possible sets of N
projections and the mean total errer (5.37) is computed and reported as a
fraction of the mean total error for 5 given projections (5.38). Similarly
reconstruction from all possible stereo biplane projection pairs are also

evaluated in this manner.

The major factor expected to affect reconstruction accuracy is
projection noise. Both object dependent and additive noise are introduced to
the projections. Object dependent noise in each projection is simulated by
multiplying the true projection values by a random number with Gaussian
distribution of mean 1 and standard deviation g Phantoms are reconstructed
from simulated projections with o = 5 and 10% noise. Noise values drawn
randomly from a Gaussian distribution of mean 0 and standard deviation 9,
are also added to the true projection. In these reconstruction experiments
additive noise levels of 0,= 1 and 5 are considered. Fig. 5.12 shows an
example of a true projection (e.g. phantom C, ¢=60 degrees) corrupted by
multiplicative (i.e. am=102) and additive (i.e. ca=5) noise. Multiplicative
and additive noise are expected to propagate errors into the

object-layergram isometry and the computed image extent of the layergram.

Tables listing the error in phantom reconstructions are only presented
for phantom C which were found to be representative of results for the other

phantoms in each of the three metheds.
5.6.3.1 Method I: Convolution back-projection

Phantoms A, B, and C were reconstructed by convolution back-projection
using a Shepp-Logan filter where the cut-off frequency is defined by the
Nyquist sampling frequency (§5.2.2.3). Figs. 5.13, 5.14, and 5.15 show the
results of applying this method when there are N given projections of the

test phantoms A, B, and C respectively.

Figs. 5.13-15 a)-c) show that angular aliasing and clutter (§5.2.3.2)

dominate images reconstructed by four and five projections. Streak artifacts
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Figure 5.13 Reconstruction of phantom A wusing method I (convolution
back-projection) from N given projections. Images are windowed
between 0 and 20.

al N 4 stereo
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Figure 5.14 Reconstruction
back-projection)
between 0 and 20.

a N =4 steren

of phantom B using method I (convolution
Images are windowed

from N given projections.
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Figure 5.15 Reconstruction of phantom C using method I (convolution

back-projection) from N given projections.
between 0 and 20.

a N = 4 stereo
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Table 5.4 Error criteria for method I, using different numbers of given
projections (N) applied to phantom C. (9+, image background; @,
image extent)

N Number of
Projections Projection Sets e(I,Q+) e(I1,9)
48 80 1.16 +.09 1.2 +.2
4 45 1.15 +.07 1.1 +.1
5 36 1.0 1.0
10 18 .65 +.04 65 .04
15 12 47 +.03 49 +.04
20 9 37 +.02 .38 +.03
32 6 .23 +.01 .28 +.03
64 3 .09 +.01 200 +.02

Table 5.5 Error criteria for method I, wusing different numbers of given
projections (N) and different levels of projection noise (o )
applied to phantom C. (Q+, image background; Q , image extent)

N 9, = 5% o) = 10%

Projections e(I,Q+) e(1,2) e(I,9+) e(1,2)
43 1.19 +.09 1.3 +.2 1.27  +.09 1.4 +.2

4 1.18 +.08 1.2 +.1 1.26 +.08 1.2 +.2

5 1.03 +.08 1.06 +.09 1.12  +.08 1.2 +.1

10 .67 +.04 70 +.05 .72 +.04 .83 +.07
15 49 +.03 .54 +.05 .54 +.03 .66  +.05
20 .38 +£.02 .40 +.04 420 +.02 A48 +.04

Table 5.6 Error criteria for method I, using different numbers of given
projections (N) and different levels of projection noise (o)
applied to phantom C. (Q+, image background; Q@ , image extent)

N o, = 1 o, = 5
Projections s(I,9+) e(I1.2) s(I,§+) e(1.2)
4S8 1.2 +.1 1.2 +.2 1.3 +.1 1.4 +.2
4 1.2 +.1 1.1 +.1 1.3 +.1 1.3 +.1
5 1.0 +.1 1.0 +.1 1.2 +.1 1.2 +.1
10 .65 .04 .65 +.06 .78 +.04 .81 +.06
15 48  +.03 .49 +.04 .99 +.03 65 +.05
20 37 +.02 .38 +.03 .48 +.03 .52 +.04
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combine in the reconstructed images to appear as false or pseudo objects
that can not be distinguished from true objects. As the number of
projections used in reconstruction is increased, the Jlevel of artifact
decreases. It then becomes possible on the basis of object ‘a priori’
knowledge (see §5.3.2) to distinguish between pseudo and true objects.
Streak artifacts in images reconstructed from 10 and more projections (see
Figs. 5.13-15 d)~-£f)) have lower grey level or pixel values and are different
in extent by comparison to the reconstructed objects. All objects 1in the
phantom reconstructions can be identified with exception of the fourth
object of phantom C (see Table 5.3). The pixel value of this reconstructed
object 1is within the range of background or artifact pixel values. Although
images reconstructed from 15 and 20 projections are sufficient to identify
and locate phantom objects, the extent and pixel values of these structures

are poorly reconstructed.

Table 5.4 lists the error criteria for reconstructions of phantom C from
N given projections with no noise. This table shows that the level of error
in image background decreases quickly with increasing numbers of projections
used in reconstruction. Unlike visual inspection of the reconstructions, the
image background error criterion does not indicate how artifacts are

spatially distributed.

The error in the regions of the image extent is seen to decrease slowly
with increasing numbers of projections in Table 5.4. This 1is a direct
consequence of the incompleteness of the projection set. Reconstruction from
noisy projections shows moderate increases in both errors in the image

extent and background (see Tables 5.5 and 5.6).
5.6.3.2 Method II: Masked convolution back-projection

Given the piece-wise constant nature of the object to be reconstructed
(see §5.3.2), a scheme to reduce reconstruction artifacts by image extent
constraints ‘a posteriori’ was investigated. The scheme incorporating image
extent information after convolution back-projection is referred to here as

‘masked convolution back-projection’ or method II.
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Masked convolution back-projection consists of computing the image
extent (§5.5.3.3) from N given projections and then using the image extent
to mask the corresponding filtered layergram. All image pixels in the

filtered layergram outside the computed image extent are set to zero value.

Figs. 5.16, 5.17, and 5.18 illustrate the application of method II to
test phantoms A, B, and C respectively for N given projections. Comparing
images in Figs. 5.16-18 to the corresponding images in Figs. 5.13-15 show
the degree to which the computed image extent improves reconstruction. Figs.
5.16-18 a) and b) show the improvement in images reconstructed from four
evenly spaced projections over that from biplane stereo projections. The
former set of projections can be thought to be a better representation of
the complete projection set than the latter. As the number of projections
equals the number of piece-wise constant objects in the section, a little
artifact remains (see Figs. 5.16c) and 5.17-18d)). After reconstruction of
phantoms from 15 and 20 projections almost all pseudo objects are masked out

(see Figs. 5.16-18 e) and £)).

Table 5.7 shows error in the image background decreases with increasing
numbers of given projections. The error in image background decreases
quickly to small levels, but not to zero. Fewer projections are required to
reduce background error to negligible levels than would be achieved by
method I (e.g. N=10 vs. N=64 in Table 5.4). In contrast the error in the
image extent decreases slowly. Both non-zero image background levels and
larger error levels in the image extent are due to incorrectly computed
image extents. This affects reconstruction by masking out regions of the
true 1image extent and by retaining some pixels from the background. The
remaining portion of image extent changes very little with the number of
projections which accounts for the almost constant error in image extent,
The inclusion of background image pixels accounts for non-zero image
background levels. Error in the computation of image extent is thought to be
due to insufficient numbers of projections. Uniform angular sampling of
projections 1is important as shown by the differences between background
errors 1in images reconstructed from 4 equally spaced views and stereo
biplane views. These results also support observations made above about

Figs. 5.16-18 a) and b).
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Figure 5.16 Reconstruction of phantom A using method II (masked convolution
back-projection) from N given projections. Images are windowed

between O and 20.
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Figure 5.17 Reconstruction of phantom B using method II (masked convolution

back-projection) from N given projections. Images are vindowed
between O and 20.
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Figure 5.18 Reconstruction of phantom C using method II (masked convolution
back-projection) from N given projections. Images are windoved
between 0 and 20.
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Table 5.7 Error criteria for method II, using different numbers of given
proiections (N) applied to phantom C. (9+, image background; Q_,
image extent)

N Number of

Projections Projection Sets e(II,Q+) S(11,9)
48 80 .63 +.06 1.2 +.2
4 45 46 +,06 1.1 +.1

5 36 31 +.05 1.01 +.07

10 18 06 +£.02 .69 +.05

15 12 .02 +.01 .59 +.05

20 9 .01 +.01 54 +.05

Table 5.8 Error criteria for method 1I, using different numbers of given
projections (N) and different levels of projection noise {¢ )
applied tc rchantom C. (Q+, image background; ? , image extent)

N o = 5% o = 10%
Projections E(II,Q+) e(II, %) C(II,Q+) €(II,2)
48§ .64 +.06 1.3 £.2 .67 +.06 1.4 +.2
4 47 +.06 1.2 +.1 .53 +.06 1.3 +.01
5 .32 +.05 1.05 +.08 .35 +.06 1.20 +.09
10 .06 +.02 T4 +.06 .07 +.02 .85 +.07
15 .02 +.01 .62 +.06 .03 +.01 71 +.06
20 .01 +.01 .55 +.06 .02 +.01 .60 +.06

Table 5.9 Error criteria for method II, using different numbers of given
projections (N) and different levels of projection noise (o )
applied to phantom C. (Q+, image background; Q@ , image extent)

N g, = 1 o, = 5
Projections e(II,Q+) e(1I,) e(II,Q+) e(I1,Q)
4S .89 +.06 1.2 +.2 .99 +.07 1.4 +.2
4 .84 +.06 1.1 +.2 .95 +.07 1.3 +.1
5 .66 +.06 1.0 +.1 .76 +.06 1.2 +.1
10 .28 +.03 .67 +.06 .32 +.03 .80 +.07
15 .14 +.02 .54 +.06 .16 +.02 .66 +.06
20 .07 +.01 .48 +.06 .09 +.02 .61 +.06
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Error values listed in Table 5.8 indicate that phantoms reconstructed
from projections with o = 5% and 10% noise result in images slightly less
faithful than from projections with no noise. In the presence of additive
noise, a large increase in image background error is observed, especially
for the case of N<15 ;rojections. This is expected since the method of
computing the image extent relies on the use of null-rays (see §5.5.3.3),
and additive noise in the projections would reduce the number of these rays

available.
5.6.3.3 Method III: Mclean

Results of applying method III to different numbers of projections of
phantoms are presented. The gain was set to o« = 0.3, and the convergence
criterion c¢ was calculated by taking the average of all image pixel values
outside the computed extent in the initially formed layergram. The effect of
gain and convergence criterion settings on reconstruction error is discussed

later in §5.6.3.3.1.

Figs. 5.19, 5.20, and 5.21 showv the results of reconstruction from
noiseless projections of phantoms A, B, and C respectively using Mclean. In
Figs. 5.19-21 a) and b), images of phantoms reconstructed from 4 equally
spaced views are superior to those images reconstructed from biplane stereo
views. Biplane stereo data renders a poorer reconstruction since it
introduces more false object points. This is in part due to better isometry
between the true image and the layergram from 4 equally spaced projections.
This layergram is less cluttered (see Figs. 5.16-18 a) and b)) than the
layergram formed from bLiplane stereo projections. Another factor is the
larger differences in image pixel values of the layergram between true and
pseudo objects than in the biplane stereo layergram. With exception of
sections consisting of a very few objects (i.e. 1less than 5 objects) there
is a lack of sufficient information in the stereo projections to form an
adequate layergram for cleaning. These results indicate that Mclean requires
the number of given projections to be at least equal to the number of the

objects in the section (for these types of phantoms).

Results also indicate that when object regions consist of relatively the
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Figure 5.19 Reconstruction of phantom A using method III (Mclean) from N
given projections. Images are windowed betveen 0 and 20.
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Figure

5.20 Reconstruction of

phantom B using method III (Mclean) from N

given projections. Images are windowed between O and 20.
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Figure 5.21 Reconstruction of phantom C using method III (Mclean) from N
given projections. Images are windowed between 0 and 20.
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Table 5.10 Error

criteria for method III, using different numbers of given
projections (N) applied to phantom C. (Q+, image background; @ ,
image extent)

N Number of
Projections Projection Sets :(III,Q+) e(111,9)
43 80 30 +.07 1.7 +.1
4 45 .18 +.05 1.5 +.1
5 36 .09 +.02 1.3 +.1
10 18 .01 +.01 1.01 +.06
15 12 0 .95 £.06
20 9 .0 .92 +.06
Table 5.11 Error criteria for method III, using different numbers of given
projections (N) and different levels of projection noise (o )
applied to phantom C. (Q,, image background; @ , image extent)
N g = 5% g = 10%
Projections c(III,Q+) e(ITI,R ) s(III,Q+) e(III,Q)
4S .30 +£.07 1.7 +.1 .31 +.08 1.8 +.1
4 .18 +.05 1.5 +.1 .19 +.05 1.7 +.1
5 .09 +.02 1.3 +.1 10 +.02 1.5 +.1
10 .01 +.01 1.07 +.07 .01 +.01 1.20 +.08
15 .0 1.01  +.06 .0 1.07 +.08
20 .0 .98 +.06 .0 1.02 +.06

Table 5.12 Error

projections

criteria for method III, using different numbers of given
projection noise (o)
applied to phantom C. (Q+, image background; @ , image extent)

(N)

and different levels of

N . =1 o =5
Projections e(I11,9,)° (111,92 ) e(I11,2,)° e(111,9 )
45 .28 +.06 1.7 +.1 .30 +.07 1.8 +.1
4 18 £.05 1.5  :.1 21 +.05 1.7 +.1
5 09 £.02 1.3+l 14 +.02 1.5 1.1
10 .0 1.07  +.06 .02 +.02 1.20 +.08
15 .0 1.04  +.06 .0 1.10  +.07
20 .0 1.02  £.06 .0 1.06 +.06
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same densities, Mclean 1is successful in reconstructing these regions.

Objects with densities <50% of the maximum in a section are poorly
reconstructed by Mclean. The reconstruction of object 4 in phantom C is an
example of Mclean’s inability to entirely recover objects whose amplitudes

are near background values in the layergram (Fig. 5.21).

In comparison to the results of method II, the number of pseudo objects
is significantly i1educed by method III for the case of 4 and 5 projections.
Consequently, true objects can be more readily distinguished from the pseudo
objects. The reconstructed images in Figs, 5.19-21 are also observed to be
lumpy and have holes. This reconstruction artifact 1is expected since the
objects being reconstructed by Mclean are extended in shape and not of

point-like extent (Bates et al. 1982; 1984).

Table 5.10 lists the error criteria for reconstructed phantom C. The
error 1in image background 1is much less than errors in the corresponding
cases reconstructed by method II. This is because Mclean begins with an
empty reconstruction image and ends before image pixel values of the
remaining true objects become comparable to the values of the pseudo
objects. As the number of projections increases, the level of image
background error decreases (see Table 5.4), and Mclean becomes better at
distinguishing between true and pseudo objects. The amount of improvement
over 1images reconstructed by method II can be seen by comparing images of

Figs. 5.19-21 and Figs. 5.16-18.

The error values of reconstructed image extent are worse than in images
reconstructed by methods I and II. This happens because cleaning terminates
on the convergence parameter wvhich is set slightly above noise levels in the
image. Hence, Mclean terminates before all image points are found, and as a
result, error in the image extent is large because of missing object points.
Lowering the convergence parameter would reduce error in the reconstructed
image extent but at the expense of an increased error in image background.
Using more projections results in a marginal reduction in the image extent

error.

Table 5.11 shows results of Mclean with levels of o, = 5% and 10% noise
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in the projections. Error values for both image extent and background
increase little vith increasing noise levels in bprojections. Table 5.12
shows similar results for the case of additive noise. This indicates that
Mclean is primarily guided by the maxima of the star-pattern artifacts in
the layergram. The computed extent does little to constrain the iterative
process of subtractive deconvolution In comparison to method II, Mclean
offers an advantage when N is very small and the projections are noisy (i.e.

the image extent is difficult to estimate).
5.6.3.3.1 Selection of gain parameter

To examine the effect of gain on the accuracy and convergence of Mclean,
phantom C was reconstructed from 5 noiseless projections using gains ranging
from o = 0.1 to 0.9. Results presented for phantom C are representative for

phantoms A and B.

Table 5.13 shows the error in both image extent and barkground increases
with 1increasing gain. The convergence parameter is set equal to the average
of image background values. As gain is 1increased, fewer 1iterations are
required and fewer points are found. From this table a gain of « = 0.3 was
selected since it offered a good trade-off between accuracy and

computational speed (i.e. the number of iterations).

Table 5.13 Error criteria for method IIT, using 5 given projections and
different gains (o) applied to pha~tom C. (Q+, image background;
Q@ , image extent)

Gain Number

o of Iterations e(III,Q+) e(I1I,Q )
0.1 300 .06 +.01 1.06 +.09
0.2 150 .07 +.01 1.1 +.1
0.3 100 09 +.02 1.3 +.1
0.4 75 12 +.02 1.7 +.1
0.5 60 .15 +.03 2.1 +.1
0.6 50 .18 +.04 2.5 +.1
0.7 45 .21 +.06 2.9 +.2
0.8 35 .24 +.08 3.3 +.2
0.9 30 .28 +.08 3.6 +.2
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The approximate computing time on a VAX-750 for one iteration is
2.7MM%x107©

improved by performing reconstruction on newer hardvare (e.g. 80386, 68030,

minutes on a MxM grid and given N projections. This time can be

etc.).

The convergence rates for method IIT using 5 given projections applied
to phantom C is illustrated for no noise and °é=5 in Figs. 5.22 and 5.23
respectively. The convergence criterion is set to ¢ = 2.0 which is below the
average image background value. Plots in Fig. 5.22a) show that the rate of
convergence increases with increasing gain, but that the final level of
error in image extent is also higher. When gain is increased to o = 0.5, the
error increases then decreases. The initial rise in error is due to an
over-2stimation of peak values wused to update the Mclean image. As more
peints in the image extent are found, this error decreases. The consequence
of over-estimating reconstructed values is also seen in plots for « = 0.1
and 0.3 as spurious increases in the error curve. Generally, Mclean

converges slowly since it operates on only one pixel per iteration.

The plots in Fig. 5.22a) show that after 300, 150, and 60 iterations,
vhen convergence criteria is less than average background pixel values for «
= 0.1, 0.3, and 0.5 respectively, that there was no further improvements in
image extent. In contrast, error in image background increases with further
iteration as shown in Fig. 5.22b). The magnitude of these errors also
increases with increasing gain. The rise in image background error begins
vhen 1image pixel values corresponding to the true objects and background in
the reduced layergram become comparable. If the iterative process in these
examples were allowed to continue until the layergram was reduced to zero,

the final recovered image would resemble the initial masked layergran.

Fig. 5.23 shows the convergence rates for reconstruction from
projections with additive noise (aa=5). The effect of noise is seen to
increase the final level of error in pixel values of the image extent. The
problem of over-estimating pixel values is also more common as seen by the
increased occurrence and size of spurious fluctuations in the error plots

shown in Fig. 5.23a).
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Figure 5.22 Convergence rates for method III using 5 given projections with

no noise and gains of « = 0.1, 0.3, and 0.5 applied to phantom
C. The error criterion is plotted for a) image extent @ and b) image
background S?+.
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g

rates for method III using 5 given projections with
0.3, and 0.5 applied to

extent @ and b)

Figure 5.23 Convergence
noise (aa = 5) and gains of « = 0.1,

phantom C. The error” criterion is plotted for a) image
image background Q.
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5.7 Phantom experiments

The Mclean reconstruction algorithm was evaluated on a 3-d wire phantom
resembling the cerebral blood vessels. The phantom consists of a network of
soldered aluminum wires ranging from 0.5 to 1.0 mm in thickness embedded in
a 6 cm diameter cylinder of wax. Referring to Fig. 5.24, the phantom was
positioned 5 cm from the center of the image intensifier, where the distance
between the image intensifier and x-ray source was 115 cm. Different
projections were obtained by rotating the phantom by ¢ degrees about its
long axis. Fig. 5.25 shows a subtracted digital x-ray image of the 3-d wire
object wused as the test phantom. The image was recorded on a Technicare
DR-960 DSA wunit interfaced to a Philips 154mm/231mm image intensifier
(operating in 154mm mode) and was digitized to 10 bits and sampled on a
512x512 matrix. For convenience and flexibility the  subsequent

reconstrucsion wvas performed on a separate computer system, a VAX 11/750.

Four, six, and eight projections equally spaced over n radians were used
as input in the reconstruction process. A corresponding mask image for each
projection was matched, and each image pair was then logarithmically
processed and subtracted in such a manner as to give positive contrast.
Projections consisting of 128 samples each, centered on the 512x512 image
matrix, were used in reconstructing the phantom’s cross sections on a grid
of 64x64 pixels. The degree of pin-cushion distortion occurring in the
region of the 1image matrix containing each projection was found to be
negligible. The gain wvas set to o« = 0.2, and the convergence criterion was
set equal to the average image background value in each section.

To 1illustrate the results of Mclean, the 27th

and 66th sections (Fig.
5.25) of the reconstructed phantom were compared to the same sections
reconstructed by method I (convolution back-projection). The reconstructed
phantom was also re-projected and compared to the original projections of
the phantom at 10 and 110 degrees. These projections were selected because
they were different from the projections used in the reconstruction process.
Peters’ (1981) algorithm was used for the re-projection operation

(§5.5.3.2).
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1 Figure 5.24 Data collection geometry for 3-d wire phantom.

X-ray tube Image intensifier

O:I /é\

Wire phantom

e

110 cm 5 ¢m

Figure 5.25 Digital subtracted x-ray image of the wire phantom indicating A)
27th and B) 66th of the 128 sections in the phantom. Images are
windowved between O and 100,
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5.7.1 Results

Figs. 5.26-29 show the results of applying method I to 4, 6, 8, and 32
projections of the test phantom. Comparing reconstructed images from 4, 6,
and 8 projections to images from 36 projections, the degree of
correspondence between the centers of the star-patterns and object structure
is observed. Streaks extending from objects in the sections reconstructed
from 36 projections are artifacts due to angular and translation errors
associated vith encoding the projection angles and computing the center of

rotation in each projection respectively.

After an average of 150 iterations the images reconstructed by Mclean,
Figs. 5.26-29, show good correspondence to the original sections. However,
the accuracy of the reconstructed pixel values is limited as also
demonstrated by simulation experiments (§5.6.3.3). In the presence of noise
the reduced layergram or difference image d(x,y) (eq. 5.29) cannot be
reduced to zero, and the reconstruction method arrives at the most probable
image of the true section. As the number of projections is increased, object

extent is better reconstructed.

Figs. 5.30-31 show the reconstructed phantom re-projected and compared
with the original phantom projections at 10 and 110 degrees. In each
projection the position of wires in the reconstructed phantom generally
match the original. Again the extent of agreement depends on both the degree
to which the difference image can be reduced and the number of projections

used.

In spite of the error level in individual reconstructed sections, it is
seen that when the 3-d object stack is re-projected to form a ‘radiographic
view,’ the visual images are similar for the 4, 6, 8 and ideal projections
(Figs. 5.30-31). Artifacts in reconstructed sections can be visually
discounted in the re-projected images since they bear no resemblance to the
actual vessel-like objects. Simple algorithms to do this computationally,
such as finding vessel connectivity through an inter-slice comparison, were
tried and later abandoned since similar artifacts in adjacent slices are

often correlated. It remains undetermined how to best incorporate this ‘a
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Figure 5.26 The 27th section of the phantom

reconstructed by  conveolution
back-projection from A) 36, B) 8, C) 6 and D)
4 projections. Images are windowed between 0

and 20.

Figure 5.27 The 66th section of the phantom

reconstructed by convolution
back-projection from A) 36, B) 8, C) 6 & D) 4
projections. Images are windowed between 0

and 20.
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5.28 The 27th section of the phantom

reconstructed by  convolution
back-projection from A) 36 projections and
by Mclean from B) 8, C) 6 & D) 4 projection.
Images are vindowed between O and 20.

Figure

Figure 5.29 The 66th section of the phantom

reconstruction by convolution
back-projection from A) 36 projections and
by Mclean from B) 8, C) 6 & D) 4 projections.
Images are windowed between O and 20.
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Figure 5.30 10 degree projection of the A)

original phantom and the phantom
reconstructed by Mclean from B) 8, C) 6, & D)
4 projections. Images are windowed between 0
and 100.

Figure 5.31 110 degree projection of the A)

original phantom and the phantom
reconstiucted by Mclean from B) 8, C) 6, & D)
4 projections. Images are windowed between 0O
and 100.




priori’ knowledge in reconstruction.

Thus from a qualitative viewpoint, where the structure of the vessels
rather than the density is important, such algorithms operating on a small

number of views may well have a future.

5.8 Conclusions

The problem of few projections in image reconstruction may be formulated
as a restoration task when the true 1image consists of point-approximated
objects. The original image is estimated by selectively reducing star-
pattern artifacts in the layergram image. Restoration is guided by the ‘a
priori’ information that for sparse and point-like objects a general

isometry exists between the original and its layergram image.

Results of the computer simulation experiments (§5.6) have shown that
the accuracy of Mclean depends largely on the number of given projections
and to a lesser degree on noise in measured projections. For the phantoms
considered, Mclean requires at least the same number of projections as there
are piece-wise constant objects in the section to be reconstructed.
Furthermore, these objects should all have almost the same density values.
Under such conditicens there is sufficient isometry between the true image
and its layergram that object 1location is faithfully reconstructed. By
comparison to reconstruction by direct and masked convolution
back-projection, the Mclean reconstructed image is not dominated by streak
artifacts. In cases where 4 projections are sufficient for reconstruction, 4
equally spaced views render a more accurate reconstruction than that from
biplane stereo views. Overall the accuracy of value of the reconstructed
pixels is less 1impressive than the correspondence between true and
reconstructed objects. It is possible that pixel accuracy can be further
improved by adapting Mclean to deconvolve the layergram from all points in
the computed image extent simultaneously rather than point by point. This
would only be practical if the computed extent of the image was known

exactly.

In the presence of both additive and multiplicative Gaussian noise, the
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Mclean algorithm remains robust as reconstruction error increases slowly

with increasing noise levels in the given projections. Mclean’s performance
does not change much when it is not possible to estimate the image extent.
This is a clear advantage over computed image extent based methods. Gain and
convergence criterion values selected by the operator determine the accuracy
of Mclean. It was found that gain should be no larger than o = 0.3. Results
can be improved by making « as small as computing time expense allows. Since
the final reconstruction depends on gain and convergence parameters, the
image reconstructed by Mclean is not unique. Instead Mclean reconstructs a
good estimate of the true image that is consistent with projections and ‘a

priori’ information.

For the class of objects typified by the phantoms considered here, the
minimum number of projections needed by Mclean should be equal to the number
of objects in the section. Although numbers less than this are possible
since artifacts present in the reconstruction can usually be visually
discounted. Given sections with other combinations of object sizes and
shapes, the minimum number of projections would have to be determined
empirically because Mclean is based on certain expectations about the object
to be recovered. It is expected that for more extended or larger sized

objects, Mclean would not be as efficient.

Mclean was also shown to successfully reconstruct all sections of a 3-d
test phantom from projections collected on a DSA unit. This experiment (see
§5.7) also highlighted two potential problems associated with the practical
implementation of Mclean. The first problem is determining the correct
angular encoding and measurement of center of rotation as most DSA units are
not designed to provide this information., Misalignment of projections would
result in an incorrectly formed layergram from which Mclean would proceed to
deconvolve star-pattern artifacts from wrong locations. This problem may be
remedied by the use of some sort of stereotactic marker set which allows the
fiducials to be recorded in the desired projections. The other problem of
implementation 1is the x-ray cone beam geometry of DSA systems. Mclean for
purpcses of study and ease of implementation was based on a parallel beam
geometry. This problem was avoided in the experiment described in §5.7 by

making the test phantom small in size and by keeping geometric magnification
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near unity in order to approximate a parallel beam geometry. A possible
solution to this problem would be to adapt Mclean to deconvolve a 3-d
layergram formed from back-projecting the given 2-d projections. There are
other problems associated with image-intensifier based computed tomography
that need to be considered (Ning and Kruger 1988). These include the
time-variant nature of vascular iodine concentration, image pin-cushion
distortion, and the effects of detector noise, x-ray exposure levels, and

levels of x-ray scatter.

As demonstrated both by the simulation and phantom experiments, details
of vessel-like objects in the cleaned reconstructed cross section are much
improved by comparison to the back-projected image and the computed image
extent. Mclean is similar to iterative algorithms (see §5.2.4.3) in that
difference projections are computed, but is different in that only those
pixels that are deemed to be part of the actual objects are re-projected.
Consequently, iterative techniques only partially remove streaking artifact
and at the expense of blurring object details (Spears et al. 1988). The
advantage offered by Mclean is that most if not all streak artifacts are
removed. This makes the reconstructed data set suitable for re-projection.
The cost associated with Mclean is that the extent of the object is not
always entirely reconstructed, and reconstructed pixel values are
inaccurate. If the structure of the vessels is the important factor, rather
than the absolute vessel density values, then these drawbacks may be

overlooked.

The main conclusion that can be drawn from these experiments is that the
location and boundaries of the vascular structure in cross section can be
reconstructed from a few views using Mclean, an iterative back-projection
deconvolution method. The accuracy of Mclean is limited to the given
projection set, or rather to within the 1limits set by the initial

layergram.
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CHAPTER SIX

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

Two different methods of reconstructing vessels from DSA images have
been presented. In chapters 3 and 4 a method of geometric reconstruction
from stereo and biplane images was described and evaluated. Chapter 5 was
concerned with vascular image reconstruction from a small number of given
projections. This final chapter presents conclusions and suggestions for

further research with respect to 3-d vessel reconstruction from cerebral

angiograms.
6.1 Geometric reconstruction from DSA image pairs

Chapter 3 describes a reconstruction method in which 3-d vessel
center-lines are computed from its traces in different views. The aim there
vas to improve accuracy of stereo pair reconstruction by using biplane
images. Because of the complexity of the vasculature in the anterior-
posterior projection, an approach was taken to use re-projected vessels
reconstructed from lateral stereo images to help the observer find the
correct vessel in the anterior-posterior image. Chapter 4 investigated the
propagation of several different types of measurement errors in this

reconstruction method.

Simulation experiments demonstrated that reconstruction errors wvere
proportional to measurement error magnitude in test point image coordinates
and inversely proportional to the geometric magnification. This is in
agreement with Sherlock and Aitken’'s results (1980). 1In addition these
simulation experiments revealed a similar relationship for measurement error
in the fiducial image coordinates, and that this source of error was
important in stereo image pairs. For biplane images, test point image
coordinate measurement error dominates reconstruction. Simulation results
also indicate that for the given geometrical parameters of the image
collection procedure described here, the error magnitude is position

variant.
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Reconstruction accuracy was determined physically to be +0.5mm in each
coordinate for biplane analysis and +0.5mm in ‘x’, ‘y’ coordinates and
+2.0mm in ‘z’ for stereo analysis. This base-line level of accuracy can be
improved if DSA units with finer sampling matrices are available. 1In the
presence of observation and correspondence error, reconstruction accuracy is
degraded. Stereo depth reconstruction error of >>2.0mm can be expected which

is not tolerable in surgical planning.

Correspondence of a point-pair was measured on the basis of the distance
between 3-d intersecting rays from the pair. This measure was improved by
relaxation labeling given constraints of disparity and vessel connectivity.
The correspondence algorithm was found to have a mean error in disparity
that ranged from 1 to 3 pixels after relaxation 1labeling. Simulation
experiments shoved that this algorithm encountered difficulties with
classifying match pairs between horizontal segments of vessels, and where
one of the vessels being matched is greatly foreshortened. Although these
problems can be remedied by interpolating across the segments where
correspondence failed, algorithms which are not limited by such vessel
geometries are needed. The correspondence measure was also found to be
limited when there are large errors in the measured fiducial image
coordinates. For the particular system of fiducial markers employed here,
measurement error in the fiducial image coordinates is primarily due to

sampling.

Application of the reconstruction procedure to actual DSA images showed
that anterior-posterior re-projection of stereoc reconstructed vessels helped
the observer identify vessels in the angiogram. Because of the complexity of
projected vessels in the anterior-posterior image, a skilled observer is
still the only means of reliably tracing the desired vessels. Despite the
advantages of this method there 1is a need for computer segmentation of
vessels in cerebral angiograms. Reliable segmentation algorithms would
minimize tracking error and provide additional information about the vessel
that could be incorporated iato the proposed correspondence algorithm,.
Additional modeling of vessel features and the imaging process would be

necessary to completely automate detection of vessels in biplane cerebral
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angiograms. This is an interesting area for future research.
6.2 Iterative 3-d reconstruction of vascular images from a few views

A method of reconstructing images from a small number of given
projections is investigated in chapter 5. It was found that the use of ‘'a
priori’ knowledge about the object gives reconstructions which are superior
to those obtained by either convolution or masked-convolution back-
projection. The reconstruction algorithm Mclean 1is used to selectively
reduce star-pattern artifacts in the layergram. This technique assumes that
the section being reconstructed consists of point or piece-wise constant
objects. Object sections containing vessels are sufficiently piece-wise in
their extent to be reconstructed by Mclean. Deconvolution of star-pattern or
streak artifacts in a layergram is guided primarily by the general isometry

that exists between the true object section and its layergram.

Simulation results indicate Mclean requires that the amplitudes of the
section’s objects should all have nearly the same high values. The accuracy
of reconstructed pixel values was shown to be less impressive than the
correspondence between the true and reconstructed objects. A solution for

this needs further study.

The number of required projections for reconstruction by Mclean depends
on the number of objects in the section. For phantom objects considered, it
was found that at least the same number of projections as objects are needed
in order to reconstruct images where artifact levels are tolerable. Because
the groups of object sections considered for reconstruction were not

exhaustive, this observation requires further investigation.

In the presence of both multiplicative and additive noise in simulated
projections, reconstruction error increased moderately with increasing noise
levels. Mclean was also shown to successfully reconstruct sections of a 3-d
vessel-1ike phantom from its projections recorded on a DSA unit. Before
actual vessels ciin be reconstructed using Mclean, the practical problems
associated with image-intensifier based computed tomography need to be

considered. Simulation results indicate that the Mclean algorithm should be
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sufficiently robust to handle non-linearities in projection data due to
time-variant nature of vascular iodine concentration and noise. However,
adapting the algorithm to a cone-beam geometry requires further

investigation.

Simulation and phantom experiments have demonstrated that details of
vessel-like objects can be reconstructed from a small number of projections
by Mclean. This is achieved at the expense of pixel value accuracy as noted
above and after many 1iterations. The slow rate of convergence may be too
time consuming if many sections are to be reconstructed. The convergence
rate can be improved by adapting Mclean to deconvolve the layergram from all
points in the computed image extent simultaneously rather than sequentially.
This may be possible providing an accurate estimate of the extent of the

image is known. Means to compute the image extent are needed.

6.3 Summary

In summary, two new methods fer reconstructing the cerebral blood
vessels have been presented. 0f the two, the stereo-biplane method would be
preferred when the number of different available views is strictly limited
(i.e. 3 or 4 projections). Furthermore, this method offers an advantage when
only a few selected vessel branches need to be reconstructed in the planning
of a neurosurgical procedure. The results of vessel reconstruction by this
method are also in a more suitable form for merging with images from
different modalities and for the purposes of an interactive stereoscopic
display of the vessels (Appendices A and B). The other reconstruction
method, Mclean, would be preferred when 6 to 10 different projections are
available and would previde a more efficient reconstruction of all the
cerebral blood vessel branches. In cases where planning is concerned with a
region of interest that spans a few axial sections, Mclean is better suited.
Finally, the results of Mclean may be a more appropriate starting point from
vhich other techniques can be used to infer additional information regarding

the vessel’s lumen shape and density.

Another avenue for further research is the incorporation of measurements

obtained from one reconstruction technique into another. For example,
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results of stereo-biplane reconstruction may be merged into the Mclean
algorithm to provide additional ‘a priori’ object information with which to
tie down uncertainty in reconstruction. Alternately, Mclean may be used as a

starting point for the other technique.
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APPENDIX A
DISPLAY OF 3-D RECONSTRUCTION RESULTS

Information available from a reconstructed 3-d angiogram can be
presented by many different techniques. The problem remains as to which
technique best presents this information. This chapter briefly describes
several of the common 3-d display strategies possible (§A.1) and suggests

the use of a stereo re-projection technique (§A.2).

A.1 Display of 3-d data

There are several ways of displaying information about vessel structure
and 1if later computed, the iodine density distribution of a reconstructed
3-d angiogram. Two approaches to the problem of displaying 3-d information
in general have been identified by Udupa (1983). The first involves
displaying the 3-d information, the structure and density distribution of
the object, as a continuous image in 3-d space. The second approach involves
extracting important information and displaying it effectively in two

dimensions.

The first approach is implemented wusing optical means of creating
‘space-filling’ 3-d displays. Such displays attempt to construct the optical
equivalent of a three-dimensional array of image points illuminated to form
a model of the object. The observer’s inter-ocular spacing provides the
perspective difference which generates the binocular depth clues without the
aid of special viewing devices. These methods include holograms (Lesem and
Hirsh 1968; Huang 1971; Gabor 1972; Benton 1977; Greguss 1977; Perlmutter
1982), integral photography wusing arrays of lenses (i.e. autostereoscopy
using multiple stereoscopic images) (Lippmann 1908; de Montebello 1977a),
and vibrating or rotating mirror and lens devices (Withey 1958; Muirhead
1961; Traub 1967; de Montebello 1977b; Mark and Hull 1977; Simon and Walters
1977; Fajans 1979).

Holography and integral photography are at present considered

impractical for image display because of long image production times which
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preclude interactive manipulation. In any case, these methods afford only a

limited range of viewing angles. Most vibrating or rotating mirror and lens
devices have mechanical properties that prevent routine use, with exception
of the 'vari-focal’ or ‘vibrating’ mirror (Muirhead 1961; Traub 1967; Ravson
1969; Baxter 1978; Yamanaka et al. 1988). Vari-focal mirror displays may
suffer from problems of ambiguity in 3-d synthesis which can be overcome by
pre-processing techniques such as surface detection and voxel dimming

(Mills, Fuchs, and Pizer 1984).

An alternative approach to the 3-d image display is to use 2-d
renditions of the 3-d image space. This is the approach most commonly taken
to display 3-d angiograms. Of the various 2-d CRT-based methods only those
that would be useful for angiograms are discussed. A survey of 2-d CRT-based
methodologies and applications can be found in Herman et al. (1982) and

Udupa (1983).

The simplest method to display 3-d angiograms is to re-project the
vessel center-lines at any arbitrary angle (Vignaud et al. 1979; Smith and
Starmer 1976). This offers the advantage of generating projection images
that are not available to the imaging device. The ‘stick-figure’ images of
the vessels can also be re-projected in the form of stereo pairs and
displayed using one of the methods described in §3.4.4. Taking advantage of
the data source, the generation of multiple stereo pairs from various
projection directions 1is possible. This allows a 1limited look-around

capability similar to the optical space filling displays described above.

If vessel width is available at each sample or center-line point, images
of the vessels can be rendered in solid form using ‘'shading’ techniques
(Parker et al. 1985; Legout et al. 1985; Mol et al. 1986). Solid images of
vessels would be helpful in the diagnosis of vascular diseases, for example,
involving vascular malformations. The computer techniques used to render a
solid image of the vessels are described in a standard text on computer

graphics (Newman and Sproull 1979).

The last method to display 3-d angiograms 1is to partition the 3-d

information into a sequence of 2-d sections at any angle and present these
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as a montage of image panels similar to CT images. This is particularly
useful if the 2-d section can be merged with data from different imaging
modalities in the same 3-d space (Rubin and Sayre 1978; Vignaud et al.
1979). A major advantage of these computer image/graphic techniques is that
they can be implemented on existing digital hardware of most medical imaging

facilities.
A.2 Re-projection algorithm

Three-dimensional vessel structure can be represented on a CRT as a
tvo-dimensional line image with an appreciation of depth by producing a
stereo pair of the structure, separate 1line images to each eye. The
perception of depth can be appreciably augmented by smoothly rotating the
3-d structure about an axis to allow continuous observation of the changing
projections as they appear on the CRT display screen (i.e. motion parallax).
The required image rotation and stereo projection of the vessel structure

are achieved by coordinate transformation of the 3-d center-line points.

To permit observation of various projections of the 3-d structure, it is
necessary to orient the structure to the desired viewing angles by rotation.
Rotation about a fixed point in three dimensions can be representad by three
successive 2-d rotations about a fixed set of orthogonal axes (Fig. A.1).
Given an arbitrary data point P’ with coordinates (x,y,2z) and a rotation
sequence first about ‘x’, then ‘y’, and finally ‘'z’ the resulting location
of P” in the reference system with rotated coordinates (x',y’,z’) is (Rogers

and Adams 1976)

X! = xcos(B)cos(¢d) + y(sin(a)sin(8)cos(é$) - cos(a)sin(é¢)) )
+ 2(cos(a)sin(B)cos($) + sin(a)sin(¢))

y' = xcos(8)sin(4$) + y(sin(w)sin(8)sin{$) + cos(a)cos(9d)) (A.1)
+ 2z(cos(a)sin(B)sin(¢$) - sin{a)cos($))

z' = -xsin(B) + ysin(a)cos(8) + zcos(wa)cos(B) J

Once the desired orientation of the 3-d structure has been obtained,
separate projections are used to generate the stereo image pair. The 3-d

coordinates of point P~ are projected for the left and right eye views as
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Figure A.1 Definition of rotation angles about coordinate axes X,y,3z:

z A

Figure A.2 Geometry of stereo projections.
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shown in Fig. A4.2. The projected coordinates of P~ for each viev is given by

X] = (szx + (sxz/2))/(sz-z)
X, = (s,% - (sxz/2))/(sz—z) (A.2)
Yie = (5,9)/(s,-2)

wvhere X, and X, are the ‘x’ coordinates of the projected point in left and
right eye views respectively. Both the viewing distance s, and the inter-
ocular separation s, are inputted by the operator. The stereo image pair can

then be displayed as anaglyphs (§3.4.4).
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APPENDIX B

INTERACTION VITH STEREQSCOPIC IMAGES

It is necessary not only to view but to be able to interact with the 3-d
space created by stereoscopic images. With either stereo DSA images or
stereo re-projections of 3-d reconstructed vessels the capacity to determine
the 3-d coordinates of points on vessels and ‘clear’ corridors of 3-d space
for safe passage of probes 1is important. What is commonly used is a '3-d
cursor’ consisting of a point or cross shaped object at a 3-d location in
space vhich is appropriately projected into each image of the stereo pair
(Kim et al. 1987; Takemura et al. 1988; Suetens et al. 1988). The 3-d cursor
works by having the operator adjust the position of the cursor so that it
appears in the same 3-d position as the point of interest in the image. This

type of cursor is often referred to as a ‘floating-dot.’

The idea of a floating-dot has been extended to lines in the planning of
probe trajectories in stereo angiograms (Ghosh and Boulianne 1984). They
describe a mechanical system for use on stereo film angiograms to position a
line in 3-d space of the angiogram such that no vessels are cut. Extension
of this method of simulating probe trajectory in stereo DSA images is
straightforward to implement using a stereo cursor. First, the location of
the probe-end-point is determined using the stereo cursor and then marked in
the stereo angiogram. Next, the entry-point of the probe is positioned using
the cursor so as to stretch a 3-d line through space te the end-point of the
probe. In this way a safe probe trajectory can be determined in either the
stereo DSA images recorded or the stereo re-projections of the reconstructed

angiogram.
The problem of implementing a 3-d cursor involves two aspects: the
stereo projection of points or lines and finding a suitable physical device

to move the 3-d cursor. Both aspects are considered.

The projected coordinates of the 3-d cursor in each image of the stereo
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pairs are computed by coordinate transformation for a known set of view
parameters. For stereo re-projection, the coordinates are transformed
according to the viewing distance and inter-ocular separation of the 3-d
display system (§A.2). In the case of stereo DSA images, the viev
transformation matrices computed at calibration (§3.4.3) are used to

re-project the cursor into each image of the stereo pair (§3.4.6).

In the anaglyph presentation of stereo images (§3.4.4), the cursor
object and line are written into the image with the appropriate intensity
values. The values of the pixels at the location of the cursor or line are
saved before the cursor or line 1is written into the image display. As the
cursor or line is moved old values are restored from the saved copies. Fig.
B.1 shows a pair of stereo DSA images with a possible probe trajectory

constructed using a 3-d cursor.

Sometimes points of interest may lie in regions of the image that have
poor stereo fusion for such reasons as large parallax values, parallax in
‘y! direction, or local stereo misregistration due to pin-cushion
distortion. In these instances the ray-projection technique (§3.3.1.3) may

be used to find the corresponding projection of a 3-d point.

The other aspect in the problem of implementing a 3-d cursor is howv to
physically move the cursor in 3-d space created by the stereo images on the
CRT display. Manual control of the 3-d cursor is usually done with some 2-d
control, such as a joystick, or puck/trackball, plus a separate control for
depth. The awkwardness of these devices has led to the development of
ergonomic one-handed 3-d track control devices. Herman (1986) describes two
commercially available devices. Unfortunately such devices can be often

quite costly.

Instead, a one-handed 3-d track control using the numeric key-pad of a
CRT terminal keyboard (VT-220, Digital Equipment Company) is proposed. Fig.
B.2 shows the programmed cursor direction and function assignment of each
key. Keys ‘1’ to '9' except ‘5’ move the cursor in the image plane in fixed
pre-determined steps. Key '5’ moves the cursor into or out of the image

plane, where the actual direction may be toggled by stroking the ‘0’ key.
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Figure B.1

Simulated probe in DSA stereo anaglyph image.
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Figure B.2 3-d cursor control using terminal key-board numeric pad.
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The ‘ENTER’ key is used to exit the cursor mode of the program. The preset
steps at which the cursor moves at can be temporarily increased by
successively stroking the desired key. If the time lapsed between successive
key strokes is smaller than a pre-determined period then the step <size is

incremented proportionately to the frequency of the key stroke.

It was found that after a minimum of training, observers were able to
manipulate the cursor without any difficulties. However, this arrangement
was found to be quite inconvenient for left-handed users since the numetric

key-pad is located on the right hand side of the keyboard.
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List of Important Symbols

Meaning

constants

weighting factor
general function
length of major axis
2-d matrix

grey level

total number of grey levels

length of minor axis
2-d matrix
convergence criterion
object contrast
thickness

distance

2-d difference matrix
damping factor
distance

diameter

energy

difference measure
length

proiection

Fourier operator
projection

gain parameter

2-d function

pure number

pure number

pure number
disparity vector

set of disparity vectors

geometric magnification

pure number

2-d matrix

pure number

probability

constant

filter coefficients,
filter kernal

damping parameter
resolution

sample index number

radius

real numbers

reconstruction operator

distance

2-d function

2-d matrix
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GLOSSARY

List of Important Symbols

Meaning

spatial frequency component
conjugate to x

2-d matrix

spatial frequency component
conjugate to y

general function
similarity measure
diameter

difference measure

vindow function
cartesian coordinate,
general variable
cartesian coordinate
cartesian coordinate

gain parameter

angle

angle

Dirac delta function
change in something

difference measure

veighting factor

rotated coordinate
conjugate to y

angle

2-d function

Fourier transform of A()
linear attenuation
coefficient

rotated coordinate
conjugate to x

3.14159

spatial frequency component
conjugate to r

standard deviation
(square root of variance)

variance

angle

particle fluence
constant

angle

region of image space
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Name

sinc(x)
PSF
RMS

Name

ADC

AP

CRT

Csl

CT

DAC

DSA
Fortran
IT

LAT
LEXIDATA
LuUT

MR
PHILIPS
PLZT
TECHNICARE
TV
VAX,VMS

VT-220
2-d
3-d

GLOSSARY

Named Functions

Meaning

sin(nx)/mx
point spread function
root mean square value

Abbreviations

Meaning

analog-to-digital converter
anterior-posterior

cathode ray tube

cesium iodide

comput (eriz)ed tomography
digital-to-analog converter
digital subtraction angiography
computer language

image intensifier

lateral

computer display/processor trademark
look-up-table

magnetic resonance

trademark

lead lanthanum zirconate titanate
trademark

television

trademarks labeling computer,
operating systems

key-board trademark

two dimensions, two-dimensional
three dimensions, three-dimensional
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