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ABSTRACT

Let R(t) be the error term in Weyl’s law for (2n + 1)-dimensional Heisenberg
manifolds. We prove that in the ‘rational’ case, R()) is of order O(¢t*~7/41). In the
‘irrational’ case, for generic (2n + 1)-dimensional Heisenberg manifolds with n > 1,
we prove that the error term is of the order O5(t"~1/4+3), for every positive §. The
polynomial growth is optimal. We also prove that for arithmetic Heisenberg metrics,
flT |R(t)|2dt = ¢T?+32 4 O5(T2+1+9) where c is a specific nonzero constant and § is
an arbitrary small positive number. In the three dimensional case, this is consistent

with the conjecture of Petridis and Toth [PT] stating that R(t) = O5(t3*?).
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ABREGE

Résumé. Soit R(t) le terme d’erreur de la loi de Weyl pour la variété riemanni-
enne d’Heisenberg a (2n + 1)-dimensions . Nous prouvons que dans le cas ‘rationel’,
R()) est d’ordre O(t"~"/41). Dans le cas ‘irrationel’, pour des variétés riemanniennes
d’Heisenberg génériques & (2n+1)-dimensions avec n > 1, nous prouvons que le terme

d’erreur est d’ordre Os(t"~1/4+%) pour tout & positif . La croissance polyndmiale est

_optimale. Nous prouvons aussi que [, |R(t)[?dt = ¢T?+3 + O5(T?"i*9), ot c est

une constante spécifique non nulle et § est un nombre positif arbitrairement petit.
Ce résultat est avancée vers la conjecture de Petridis et Toth [PT] qui énonce que

pour 7 = 1, nous avons R(t) = Os(ti+9).
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CHAPTER 1
Introduction

1.1 A short history of Weyl’s law
Let (M, g) be a closed n-dimensional Riemannian manifold with metric g and
Laplace-Beltrami operator A. Let its eigenvalues be 0 = Ay < A; < ---. For the

spectral counting function N(t) = #{j, A\; < ¢t} we have Hérmander’s theorem

vol(By)vol(M) /2
(2m)

where vol(B,) is the volume of the n-dimensional unit ball and by O(t™~1/2) we

N(t) = +O(t(n-172),

mean a term which grows no faster than t™~1/2 as ¢ tends to infinity.

The estimate of the error term in the Hérmander’s theorem, defined by

vol( B, )vol(M) (/2
G

is in general sharp, as the well-known example of the sphere S™ with its canonical

R(t) = N(tr) -

metric shows [HG]. However, the question of determining the optimal bound for
this error term in any given example is a difficult problem which depends on the
properties of the associated geodesic flow. In many cases, this is an open problem.
Nevertheless, for certain types of manifolds some improvefnents have been obtajned
and in a few cases the conjectured optimal bound has been attained.

The results obtained in this direction can be classified in three categories: (i)

The first type of results deal with the upper bound for the rate of the growth of the



error term( i.e. the O-results). (ii) The second type deal with finding a lower bound
for this growth( i.e. the Q-results). (iii) Finally, the third type are results about the
averages and the moments of the error term.

One of the first results on pointwise estimates is due to Duistermaat and Guillemin
[DG]| which asserts that in the case where the geodesic ﬁéw is clean and the set of
unit-speed geodesics in S*M has null Liouville measure, then one can improve the

Ho6rmarnder bound to

R(t) = o(t™172),

Subsequently, Ivrii [Iv] gave a different proof of this result and extended it to man-
ifolds with boundary. There are some additional improvements in R(t) that are
known in some specific examples. For instance, in the case of hyperbolic manifolds,

a result of Bérard [Bé| gives:
R(t) = Ot/ 1og ).

This result is likely far from optimal. Indeed, it has been conjectured that, at least
in the non-arithmetic case R(t) = O(t°) for all § > 0. In fact, even for noncompact

arithmetic surfaces with cusps, such as H/SLy(Z), one has
R(t) = ct?logt + O(tY/?),

see [Hej2]. For compact arithmetic surfaces arising from quaternion algebras Selberg
proved that R(t) = Q(t'/4/logt); see [Hejl].
In the opposite case of completely integrable geodesic flow there are several cases

where improved error terms are known: For generic convex surfaces of revolution,
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Colin de Verditre [Co] showed that
R(t) = 0(t'%),

which agrees with a result of Van der Corput and Sierpinski [Si] for the classical
circle problem in 2 dimensions, i.e. for the torus R?/Z2.

There are also additional more general results of Volovoy [Vo] under long-time

‘recurrence estimates for the geodesic flow, but they are difficult to quantify. The

geometrically simplest example of an integrable geodesic flow on a surface is 2-
dimensional flat torus. In this case, Hardy’s conjecture [Ha2] states that it is not

likely that

R(t) = O5(ti+9)

for all § > 0. Hardy [Ha3] also proved that for T2 this is the best possible upper
bound, i.e. R(t) = Q(tY4(logt)4). See [Hf] for the best Q-result. Sarnak [Sa] has
generalized this upper bound and gave a geometric interpretation for it using the
trace formula. He showed that if the geodesic flow on a two dimensional manifold
has the property that, for some fixed T, the fixed point set of ‘the flow for time T is
two dimensional in the three dimensional unit cotangent sphere, then R(t) = Q(¢'/4).

There is much evidence, both numerical and otherwise to suggest that Hardy’s

bound is optimal. For instance, a classical result of Cramér [Cr| states that for 7%

where C' = 55 > 7° %}‘}—; with r(n) = #{(a,b) € Z%n = a® + b*}.

3



As the first natural non-commutative generalization of T? consider Hi, the 3-
dimensional Heisenberg manifold, which has completely integrable geodesic flow [Bu].
Petridis and Toth [PT] have proved that,v for certain ‘arithmetic’ Heisenberg metrics
on Hy, R(t) = O(t5/5+%). Later in [CPT] the exponent was improved and the result
was extended to all leftfinvariant Heisenberg metrics. It was conjectured in [PT] that
for Hy

R(t) = O5(t3/**%). (L1)

Moreover, Petridis and Toth [PT] have also proved the following L? result for Hy, by

averaging over perturbations of the metric g and defining M(u) = (H, /T, g(u)),
|R(t, u)|?du < Ct3/2+9
s ‘

where [ = [1 —¢€,1+¢].

The conjecture (1.1) follows from the standard conjectures on the growth of
exponential sums, see [CPT]. The exponential sums that show up have convex phase
and, consequently, van der Corput’s method and the method of exponent pairs can
be applied. In the case of 2n + 1-dimensional Heisenberg manifolds with n > 1, we
face multiple sums with linear dependence on n — 1 variables.

1.2 The statement of the results on Heisenberg manifolds
As we have mentioned in section 1.1, according to a conjecture by Petridis and

Toth [PT], for three dimensional Heisenberg manifolds:

R(t) = O5(t3*), (1.2)



for every positive 6. Moreover, this conjecture would follow from the standard con-
jectures on the growth of exponential sums.

In higher dimensions, i.e. (H,/I',g) where n > 1, in joint work with Petridis
[KP] we have proved the following pointwise estimates:
Theorem 1.2.1 Let (H,/T,g) be the (2n + 1)-dimensional Heisenberg manifold

where n > 1 and the metric g is in the orthogonal form

h 0
g =
0 9an+1

Let J, be the standard symplectic matrix

= 0 Inxn

—Inxn 0

Denote the eigenvalues of h™1J, by :I:\/——ldg,l < j < n. If the ratios dj2/d,-2 are
rational, then

R(t) = Ot "/4),
Remark 1 Conjecturally, in the ‘rational’ case the best estimate, following from
(8.17), is

R(t) = Os(tm1/4+9), (1.3)

Theorem 1.2.2 Let (H,/T,g) and {*v/=1d%1 < j < n} be as defined in Theorem

1.2.1. If there exists at least one irrational coefficient d;?/d,*, then for almost all



metrics g, which are the ones where this irrational coefficient 8 satisfies the Diophan-

tine condition ||50| > 1/(jlog? j), we have
R(t) = Os(t"4%),

for every § > 0.

Our second result concerns the average behavior of the error term which has the same
structure as Cramér’s theorem in the case of two-dimensional tori. This L2-result
can be considered as evidence for the pointwise conjecture (1.1).

Theorem 1.2.3 Let M = (Hy /T, g) be the 3-dimensional Heisenberg manifold where

10 0
the metric g is in the formg= |0 1 0 |. Then, there exists a positive constant
0 0 27
¢ such that
T 5 9 s
/ R(t)Pdt = T3 + 05(TH), (1.4)
1

for every § > 0.
Remark 1 Theorem 1.2.8 holds for all left-invariant Riemannian metrics on Hy/T.
The proof is similar.
For Heisenberg manifolds of dimension n > 3 we prove:
Theorem 1.2.4 For the (2n + 1)-dimensional Heisenberg manifold with metric g =

IanZn 0

, where Iynyxan s the identity matriz, one can similarly prove that there
0 27 ;



s~

N

exists a positive constant ¢ such that

T
/1 IR()Pdt = cT>4 4+ O5(T?+4+9), (15)

for every § > 0.

Remark 2 The proof of Theorem 1.2.4 is very similar to the case n = 3 and we
include it in section 4.3. We are currently unable to extend Theorem 1.2.4 to all

left-invariant Riemannian metrics on H, /T, but we hope to return to this question

elsewhere.



CHAPTER 2
Background on Heisenberg manifolds

2.1 Heisenberg canonical commutation relations

As the structure in Heisenberg algebras originates naturally from the canoni-
cal commutation relations in Hamiltonian and quantum mechanics, we devote this
section to review these relations.
Hamiltonian mechanics: In classical or equivalently Hamiltonian mechanics, one
is interested in investigating the motion of a particle moving in R®. According to
Newton’s principle of determinacy, all motions of the system are uniquely determined
by their initial positions and momentums( which is massxvelocity). Therefore, by
using the notation p(t) and ¢(t) in order for the momentum and position of the
particle at time ¢, Newton’s equation turns out as a system of first-order differential
equations, more precisely a Hamiltonian equation on the phase space {(p,9);p,q €
R"™}. The physical observables are real-valued smooth functions on the phase space.

Concerning the Hamiltonian system correspondent to Newton’s equation, the
time evolutions of the particle are the symplectomorphisms or the canonical trans-
formations which are the diffeomorphisms of R?" preserving the canonical 2-form
w=dpAdq.

Shortly, in Hémiltonian mechanics we are working with smooth observables on a
symplectic space (R?™, w). As a result of the non-degeneracy of w, there is a one to one

correspondence between 1-forms and vector fields and therefore to every observable



[ we can correspond a Hamiltonian vector field X; where w(Y, X;) = df (Y') for every

vector field Y. In the other words, X; = Z(a% a‘zi - 62%5%).

On the space of smooth observables, we can define a Lie algebra structure ob-

tained from the following Poisson bracket operation:

of 8g of 0
‘{f,g} = w(Xy, Xg) = 2(5525% B 3;: 311)'

Specifically, for the coordinate functions from the basis {p;, ¢;;7 = 1,2, ..., n} we have

the following identities:

{piapj} = 07 {(Iu%} = 07 {pi) q]} = 5@]7 (21)

which are called Heisenberg canonical commutation relations in Hamiltonian me-
chanics.

Quantum mechanics: As we mentioned before, in classical mechanics, the future
behavior of the particle depends only on its initial position and momentum. However,
the physical experiments in most of the quantum systems show that this is no longer
true. In quantum mechanics which has been shaped during the last century one
works with the systems where instead of finding the precise position of the particle,
one can only predict the probability of having the particle in a certain region of the
state space. In other words, the state space of the system is no longer R™ but the
Borel subsets of R™ and the observables are the expectations of seeing the particle
in a specific Borel set, which gives us the probability distributions. In a precise
mathematical formulation, one thinks of the observables as the self-adjoint operators

from L2(R™) to L2(R™). In this setting, the coordinate functions g; and p; correspond



to the operators:

X;f(x) =Q;f(z) = z;f(z) and hD; f(z) = P;f(z) = N of

" 27i Oz (2)-
By formally defining the commutator of every two self-adjoint operators A and B
as [A, B] = AB — BA, we obtain a Lie algebra structure on the set of the quantum

observables. For operators P; and @); we have:

[ljja Pk] = Oa [Qj7 Qk] = Oa [P]) Qk] - %Ia (22)

which are called the canonical quantum commutation relations.
2.2 Heisenberg group and algebra

As we saw in the previous section, the Heisenberg canonical commutation rela-
tions given by (2.1) and (2.2) are the same Lie algebra structures and introducing

a third 1-variable coordinate ¢, we can rewrite them in one equation:

(0, 4,), @, ¢, )] = (0,0,p.¢ — q.1) (2.3)

where p,q € R* and t € R.

Therefore, taking R*"*! with the natural vector-space structure and the Lie
bracket given by (2.3), defines a Lie algebra called the Heisenberg algebra denoted
by k.. Now, letting Py, ..., P, @1,...,Qn, T to be the standard basis for R?"**!, the

Lie algebra structure of h, is given by:

[IDJ" Pk] =0, [Qka] =0, [PJ"T] =0, [QJ"T] =0, [PJ,Qk] = 6jkT' (2‘4)

10



Thus, according to (2.1) and (2.2), classical and quantum mechanics have Lie alge-
bra structures isomorphic to Heisenberg algebra h,. An equivalent way of defining

hy is through the matrix representations:
hn = {X(z,y,t) : z,y € R",t € R},

where X (z,y,t) is defined in (2.5). This gives a Lie subaigebra of gl,.o(R).
Notation: For a row vector  and a column vector y in R™, let X(z,y,t) and

v(z,y,t) be the (n+ 2) x (n + 2) matrices

0 = ¢ 1 = ¢
X(y,t)=10 0 y| ,v=zut)=|0 L, y|. (2.5)
000 0 0 1

Let z, = {X(0,0,t),t € R}, then z, is both the center and the derived subalgebra

of hy. If we also identify the subspace {X(z,y,0),z,y € R"} of h, with R*, then

hy, is the direct sum of these subspaces: h, = R*" @ zn.. ‘

Define Z = X (0,0, 1), then the standard basis of A, is given by § = { X1, X», ..., Y3, ..., Ys, Z},

where the first 2n elements are the standard basis of R?". The nonzero brackets

among the elements of 4 are thus given by [X;,Y;] = Z for 1 < i < n, which as we

mentioned before are just the standard commutation relations in Hamiltonian and

quantum mechanics.

As the matrices X (z,y,t) are nilpotent of degree 3, we get:

1
exp(X(z,y,8)) = I + X(z,y,t) + X*(z,9,t) = v(z,y,t + 3% y) =7 (z,y,1).(2.6)

11



Taking the group law as:

1
Y (@, u,t) -y (2 ) = (X(w, y,1) + X (@', ¢/, 1) + 5 [X (2, 9,0), X (2,0, t')]) ,
(2.7)
we get a Lie group H,:

H! = {v*(z,y,t) : z,y € R",t € R},

which is called the (2n + 1)-dimensional unpolarized Heisenberg group. One may
instead of taking (2.7) as the group law, think of the natural matrix multiplication
between matrices of the form v(z,y,t). This defines the Heisenberg group H, =
{v(z,y,t);z,y € R",t € R} as the Lie subgroup of Gl,;2(R). The group law is
given by:

Y@,y t) (@Y ) =y + 2y +y e+t 2 y).

Now, the matrix exponential maps h,, diffeomorphically onto H,, and satisfies

exp : hy — Hy,
X(x,y,t) — 7(x’y’t + (1/2)'7: : y)'

Automorphisms of the Heisenberg group: Denote by Aut(H}), Aut(H,) and
Aut(hy,), in order the automorphism groups of the Heisenberg group as a Lie group
and the Heisenberg algebra as a Lie algebra. Since H; and H,, are isomorphic Lie
groups, their agtomorphism groups-are trivially equal. Also since H, is a simply

connected Lie group, it has the same automorphisms as its Lie algebra. Therefore,

Aut(H,) = Aut(h,).

12



To identify Aut(H}), we define the principal automorphisms as in the following

four types:

1. Symplectic maps: These are the automorphisms which act on the symplectic

subspace R?" of hy,:
* Span(R) = {S € Glon(R); SJS* = J}

ITL n
for J = “* 1. For every S € Spa,(R), we define an automorphism

_Ian 0
of H} by:
S(y(x,y,t)) = v(S(=,9),1).

. Dilations: For every r > 0, define 4, by:

5. (v(m, y,t)) = y(rz, ry, r’t).

. Inner automorphisms: These are the inner automorphisms of the group H},

i.e. for every 7(a,b,c) we get an automorphism by:

YoV (®, ¥, 1) = ¥(a, b, )y(z,y, )y (a,b,¢) = v(z,y,t +a -y —b- ).

. Inversion and identity: They take every group element to its inverse or every

element to itself.

Theorem 2.2.1 Every automorphism of H; has a unique expression as o;onpazoy,

where «; belongs to the i-th type of automorphisms introduced above.

13
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2.3 Heisenberg manifolds
Definition 2.3.1 A Riemannian Heisenberg manifold is a pair (H,/T,g) where T
is a uniform discrete subgroup of H,, i.e. the quotient H, /T is compact, and g is a
Riemannian metric on H, /T whose lift to H, is left H,-invariant.
Heisenberg manifolds are circle bundles over tori. |
2.3.1 Classification of the uniform discrete subgroups of H,

For evefy n-tuple r = (ry,7g,...,7n) € Z} such that r|riy, for every ¢, let rZ™

denote the n-tuples z = (21,23, ..., T,) where z; € r;Z. Define
L, ={v(z,yt):zerZyeZ"teZ}.

It is clear that I', is a uniform discrete subgroup of H,.
Theorem 2.3.2 [GW] The subgroups I, classify the uniform discrete subgroups of
H,, up to automorphism. In other words for every uniform discrete subgroups of H,
there exists a unique n-tuple r and an automorphism of H, ‘which maps I' to T';.
Also if two subgroups T', and Ty are isomorphic then r and s are equal.
Corollary 2.3.3 [GW] Given any Riemannian Heisenberg manifold M = (H, /T, g)
there ezists a unique n-tuple r as before and a left-invariant metric § on H, such
that M is isometric to (H, /T, ).

Since every left-invariant metric g on H, is uniquely determined by an inner
/product on h,, we can identify the left-invariant metrics with their matrices relative
to the standard basis § of A,,.

For any g we can choose an inner automorphism ¢ of H,, such that R?" is orthog-

onal to z, with respect to ¢*g. Therefore (H, /I, g) will be isometric to (H, /T, ¢*g)

14
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and we can replace every left-invariant metric g by ©*g and always assume that the

metric g is in the following form

h 0
g= )
0 9gont1

where h is a positive-definite 2n x 2n matrix and gs,.1 is a positive real number.
The volume of the Heisenberg manifold is given by vol(H,/T', g) = |T'x|1/det(g),
where |Iy| = ry-rg- -1y for 7 = (r1,72, ...y ).
2.3.2 The spectrum of Heisenberg manifolds.
Assume that M = (H, /T, g) is a Heisenberg manifold and C*®°(M) is the set of
the smooth functions on M. We can view the functions on M as the left I-invariant

functions on H,. So, the Laplace-Beltrami operator on C°5(M ) is given by

2n+1
Af =~ U,
i=1
where Uy, Us, ..., Ugyny1 is any g-orthonormal basis of h,,.

The action of U; is defined by

Uif) = 5 Tress(tU)) = (RUDF()

where R is the quasi-regular representation of H,, on L?(H,/T), that is R(¥')f(v) =
f(7¥). Thus the extension of A to an unbounded operator on L%(H, /T") is defined

as

Af =~ Z(R*Ui)zf.~

15



Notation: Let r = (ry,79,...,7,) such that for every i, r;|r;1, then by 4, we

mean a matrix in the following form

where 7,4, is the diagonal matrix with the vector r = (ry,7,...,7,) as the main
diagonal and [ is the n X n identity matrix. Also as before without loss of generality

we can assume that the metric g is of the form

h2n><2n 0
g =
0 Gon41
Define J,, to be the 2n x 2n matrix
Jp = g
"‘Inxn O

The matrix h~1J, is similar to the skew-symmetric matrix h~1/2J,h~1/2, so it has
pure imaginary eigenvalues which we denote by :l:\/—_ld?; 1<j5j<n.

Denote the spectrum of M = (H,/T,,g) by X(r,g), that is the collection of
all eigenvalues of the Laplacian, counting the multiplicities. Then ¥(r,g) = £, U
3o, where ¥; contains the eigenvalues of the first type corresponding to the 2n-
dimensional tori as a submanifold of M, and ¥, is the second part resulting from
the non-commutative structure of the Heisenberg manifold.

More precisely, let L, = {X(z,y,2),2; € r;Z,y € Z™, z € Z} be a lattice in the

Lie algebra h. Then X4 (r, h) is the spectrum of the Laplace operator on the flat torus

16
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(R?/L,, h), see [GW, p. 259]. To be more precise, for every two n-tuples a,b € Z,
define
Ma, b) = 47[a, b](6,R6,) " a, B]',

where by [a,b] we mean the vector concatenating a and b, and [a, b]* stands for its

transpose. Then, we have
21(r,h) = {A(a,b) : (a,b) € Z°},

where \(a, b) is counted once for each pair (a,b) € Z?" such that A = A(a, b).

. The second part of the spectrum, Y5 contains the eigenvalues of the form:

u(c, k) = 47%c2/gany1 + Z 2med?(2k; + 1)

i=1
and

Lo(ryg) = {ulc,k):ce Zy, ke (Z, U{0})"},

where every u(c, k) is counted with the multiplicity 2¢™|T,| .

17
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CHAPTER 3
Pointwise Estimates Of The Spectral Counting Function

3.1 Computation of the error term.
The spectral counting function corresponding to type II eigenvalues is defined
by |
Nip(t) = #{plc, k); ple, k) <t} (3.1)

where every p(c, k) on the right-hand side of (3.1) is counted 2¢*|T;| times, for each
pair (¢, k) such that u = u(c, k).

In the calculations for Ny;(t), without loss of generality, we assume that r =
(1,1,,...,1). 'In the general case, the only change is a coefficient |I',| in 2¢"|T|,
for the multiplicity of each u(c, k), which also appears in the coefficients of vol( M)
and vol(R*/L,,h) = |I'.|det(h). Therefore, we continue with the computation of
Nyp(t) only for r = (1,1,,...,1) and we count every u(c, k) with multiplicity 2¢™. We
compute asymptotics with 2 terms in the expansions, since we need to see that the
second term of order " cancels the contribution of the main term of type I (torus)
eigenvalues. The calculations with 2 terms require the Euler summation formula
[GK], which we quote in its only use in this paper:

a+l

Z n® = :+ T Y(u)u® + Ou*™h). (3.2)

n<u

18



Here 9(u) is the first Bernoulli function (row of teeth function) defined by ¥ (u) =
u — [u] — 1/2. Now p(c, k) <t if and only if

c (C + Z d?92n+1ki/7T + Z d?ggn+1/(27r)) S tgzn+1/471'2.

Let b; = d?gan+1/(27). Then p(c, k) < 4%t/ gant if and only if c(c+d " 2b;ki+) b;) <
t.So

Nir(4n2t ) gons1) = Z 2¢" =2 Z " Z 1.

c(c+2 T biki+3 b) <t e<VE bk t-g-Eh

Define

t c 1 ! |
a=§;“§_§zbi’ and Sizzbjkj~ (3.3)

i=1

We adopt the following notation. When a sum is indexed by the variable k;, this

means that the range of k; is 0 < k; < (o — 8;_1)/b;. We have

Ng(t)z—;-NH(47r o) = 3 ¢ ZZ 21. (3.4)

0<c<Vvi k1 ke

Evaluating the last sum on the right-hand side of (3.4), we get

Sn 2) bn-—lkn-—l & — Sy
1 = -
Z n bn w ( bn ) *

Continuing with the next summation in (3.4), we get:

S Y1 - (A5 T Y ety (250,

kn 1 kn kn 1 kn 1 kn_

(3.5)

| =
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Evaluating 37, 1and )3,  kn-1, using Euler summation (3.2), we obtain:

Y 1= 2bgz~1’+%(a-sn_2)(bb§fjl Zw( )+o()

kn 1 kn . kn 1
By induction we get
_ o™ (by+---+ bn)a" !
klzk R e N ) Zk: v +0().

We set 3 =3¢ b;. Hence,

. ,360("1
Z ¢ = Z nlb1b2 + Z 2(n — 1)1byby...by,

0<esvi 0<c<Vi

n

Ig:.ci)c/; 0<e<vit
S : For the first sum on the right-hand side of (4.39) we substitute oo = t/(2¢)—c/2—0/2,
use the binomial theorem and (3.2), and obtain
tn+1/2
5 car - 2
O<esv/t

Here we notice that the sums involving the binomial coefficients can actually be
calculated explicitly. By plugging z = 1 into the expansion of (1 — z)™ we get that
1—-()+ (3)—--- = 0, which shows that the term with the row-tooth function

disappears. By integration over [0, 1] the expansion of (1 — z%)" we get

L /2 n)!!
—(?)/3+(§)/5—---=/0 (1—:1:2)"d:c=/0 sin2"+1udu=@—§t—2—_’_—)—'lj)—”-,

20
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see [GR, 3.621.4, p. 412]. This gives

non_ mrl 2"nin! " 1
I R TG R R N )
0<c<VE
N Oy O
In th d tion in (4.39 —=/ l—2)"'de = A
n the second summation in ( )weusen 0( )" dx ;i-&—l(’ )
to get
nomel o _t_ n-—l— - ¢ n—2 E E _ tn ol
L de= 2 <<2c )\ % 2 tg) T ) Tt
0<e<VE 0<e<Ve

(3.8)

For the fourth summation in (4.39), using o < t/(2c), we have

Y cart=0| Y 22| = o@r3). (3.9)

O<egv/t 0<e<Vi

Substituting the results from (3.7), (3.8) and (3.9), back into (4.39), we have,

- 2! 1 " a— Sp_1 1
No(t) = e — T/ o™ 2).
2(t) (2n + 1)!b1b2...bnt ’ 2n+1nlbiby.. by o<z<:¢z Y < b, ) o)
11‘-'1—,;:1!—1

Since Ny(t) = 2N3(gan41t/(47%)) and b; = d3gans1/(2), we have proved that

/'——2n+1n! 1 .
Ni(t) = tn+1/2 92n+1 —_n . ¢ -3
utt) o n+ DEB.E | Grrendd.g o),

where

HOEEY C"ZZ---Zw<“—"ES'Ei). (3.10)
0<e<VE ki ke kn—1

On the other hand, we denote the spectral counting function, corresponding to type

I eigenvalues, by N,(t). Since Ny(t) represents the spectral counting function of the

21



2n-dimensional torus T' equipped with the metric h, we have

" (A nl 1 n n—t

Therefore, if N(t) denotes the spectral counting function of the Heisenberg manifold

(M, g), then N(t) = N;(t) + Nyr(t). From (3.10) and (3.11), we have

n+1,,1
_ n+1/2 v g2n+12 n: _ n—1 .
N = yian + Di@dg.E ~ [+ o),

where R(t) is defined by (3.10). Since vol(H,/T') = /det(h) - gan+1, we get the

correct constant in the main term in Weyl’s law for a (2n + 1)-dimensional manifold.
3.2 Proof of theorem 1.2.1.

Suppose that b,_1/b, is a rational number, i.e. b,—1/b, = Pn—1/gn-1 Where p,_1 ‘
and ¢,-1 are two positive integers such that (p,-1,¢s—1) = 1. Then, using the fact

that ¥(u) has period 1, we get

S (@ = saor)/b) = S0 (“ - b—bk>

kn—l kn—l
anc17l o — 89 — jb oa—s
— Z ’l/) < n—2 J n—-l) % <{ n—2:| + 0(1)> .
j=0 bn Qn—lbn—l

We substitute back into (3.10). The O(1) term contributes O(t"~3/2) as it gives the

sum in (4.39) with 2 variables less. We get

Rt = Y qﬂflc“ (a ‘b:“‘2> " (0‘ — Sn-2 'jb"‘1> +.O(t"'%). (3.12)

—1bp-
0<e<vE §=0 Gn—-10p-1

kl ::::: kn—Z
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Without loss of generality, we continue with estimating the first summation on the

right-hand side of (3.12) with j = 0:

D ¢ (o= sna) YTE) = 3 Mo s E) = 3 okt

kn_2 kn_2 kn—2

(3.13)
To evaluate the first term on the right-hand side of (3.13), we proceed as in (3.12).
That is, since b,_2/b, is a rational number, we can write it as b,—2/by = Pp—2/qn—2,

where p,-2 and ¢,_2 are two relatively prime, positive integers. So

o(52) = 8 () < (] vow).

kn—2
(3.14)
For the second term in (3.13) summation by parts gives
— Sp—-2 & — Sp—3 o — Sp—2
anzw( ) = ——Zw(—————)
kn2 b2 (7 bn
a"S5n—3
/ e ( PR, S” 2) )d:c. (3.15)

0<kp-2<z
The first sum on the right-hand side of (3.15) has been evaluated in (3.14). The

second term is equal to

C!Sns

— Sp-3 — bn—2kn—2
0<I§2<m 1/’( bn )) &

"‘5"3 n-2-1

=/ (3 v ‘;;j”"‘%)x([qn o)
= (S wem ey (L (amm) L o),

j=1

23
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Taking the results from the last equation and (3.14),

have proved that

—s gn—2—1
n—2

E " (a— 8p_2) Y ( ) E g
0<c§\/2 0<c<\/_

k1, n—2 k1, kn-3

We use the last result in (3.12) to get

(3.15) back into (3.13), we

w(°

— Sp-3

br

=22 0((a-s,-2)).

R(t) = <0<§f " S (@ sama) <(g—_bs__s)>)

ki ke kn—3

Finally, by induction, after n — 1 steps, and given a = t/(2c) — ¢/2 — §/2 we get:

Ri)=0] >, ca™ 17»/’ =0| > C"(é —c=p)" Y (

0<c<vi 0<c<Vi

If (k,1) is an exponent pair [GK], by [GK, Lemma 4.3, p. 39}, if f(z) satisfies the

properties in the definition of exponent pairs, then

Z W(f(m)) < tHE+D N (=0D/e)) 4 41,

mela,b}

(3.16)

We apply (3.16) to f(z) = (tz~! — z — B)/(2b,). Using a dyadic decomposition we

get

Do (f(m)) <« H B (g7l (TR/GHD 4 =1 (97 )2,

me[2-I~ 14,277 y)

for u < V1. If k < [ the series 279(-*+D/(k+1) converges and we get the estimate

z W(f « R/ EFD =R /0+1) | y=1y2 o 4(k+D)/(2h+2)

m<u
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This implies, using summation by parts, that
R(t) = O(tn1/2+(k+0/2k+2)y (3.17)

The exponent pair (11/30,16/30), see [GK] gives the statement of theorem 1.2.1.
The conjectural best exponent pairs (4, 1/2 + &) gives the conjecture 1.3.
3.3 Proof of Theorem 1.2.2

In theorem 1.2.2 we assume that at least one of the coefficients djz / d31<j<
n — 1, is irrational. Without loss of generality, we can assume that this happens for
j =n —1. In fact, obtaining the formula (3.10) was based on an optional ordering
for the summations over ky, ko, ..., k,—1 in (3.4).

According to Vaaler’s theorem [Val, see also [GK, p.116], for every positive
integer J, there exist constants {~y;; 1 < |j| < J}, satisfying the property |v;| < 1/|4],
such that for every real number w

P(w) — IS“ZISJ'yjezwi(jw) < % (3.18)
Therefore, by fixing J and taking w = (& — s,-1)/b, in Vaaler’s theorem, we have

> v (9‘%) < X il X exp@rigla - sa-i)/ba)| + =2 (3.19)

kn-1 1<lfI<S kn-t
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To estimate the right-hand side of (3.19), we have

LSy k
§ :CZM(J%) — 27r1 o 8" 2)§ : —2mi(j P> bn= 1 In—ltn-l,

kn_l kn 1

| 2B +)

b

1 1
< 73b S ib
) | sin(Zge=2)| 2| Bt

(3.20)

1 _ e——27|"i(j

where, for every real number 6, ||8] is the distance between 6 and the nearest integer.

By Diophantine approximation, the equation ||j8|| < == has infinitely many

log
integer solutions for almost no 6. In the other words, for almost all irrational 6 there
exists a constant K, such that, |70 > Jl—%— for every positive integer j. Therefore,

applying this approximation for the right-hand side of (3.20), we have

| expl@rmisec = sucs) )| € g < Klillog,  (321)

where K is a positive constant, dependent on b,_1/b,, and ¢ is an arbitrary positive

kn—1

real number.

Substituting (3.21) in (3.19), and noticing that |v;| < 1/|j|, we obtain

Sw ( ) < Jlog J+ ———jsl‘ﬁ (3.22)

kn—1

Substituting (3.22) in (3.10), we have

Ry< Y o33 % (Jlog2J+ 9‘-_—;1”‘—2) . (3.23)

0<e<Ve ki k2 kn—2
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For the last summation on the r‘ight-hand side of (3.23), we have

] 2 A — Sp-g . 2 a— Sp_3 — bn_skn_s
> (Jlog J+ T) = Y (Jlog J+ > )

kn,_z kn—-Z

& (@ —8p_3)Jlog?J + (o — s,_3)2J 71, (3.24)

Therefore, by induction, we have

S Y (08T + QL;@) < a" 2 Jlog?J + a* 1L, (3.25)

k1 ke kn-2

Substituting (3.25) in (3.23) and using (3.3), we see that

R(t) <« Z c"a™ 2 Jlog?J + a1 J !

0<e<ViE
n _t_ n—2 2 ) E n—l_l_
& Z {c (C) Jlog*J + ¢ (C) J}
0<c<Vi
_ = g2 Z (P Jlog?J + teJ71). (3.26)
0<c<VE

Taking J = ¢” on the right-hand side of (3.26), we have

R(t) & tn—2 Z 62+pp210g2c+ t’rL-—l Z cl~—p & p2tﬁ+(~1+P)/2log2t + tn—p/Q.
0<e<Vi O<c<vi

(3.27)
So, to optimize the estimate on the right-hand side of (3.27), we choose p = 1/2 —

2loglogt/logt and we are done: R(t) < t" *logt.
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CHAPTER 4
Cramér’s Formula ( L:-Estimates)

4.1 Estimates for regularized spectral counting function

The idea of the proof of the theorem 1.2.3 is to use the Poisson summation
formula to write the error term, corresponding to type II eigenvalues, in a form
which can be estimated by the method of the stationary phase.

The spectral counting function is defined by
N(t) = Nr(t) + Ng(t), ‘ (4.1)
where Nz(t) is the spectral counting function of the torus, defined by:
Nr(t) = #{) € £1; X < t},
and Ng(t) is defined by
Nu(t) = #{) € Iy; A <t}
The estimates for Ny(t) are well-known. For example,

Nr(t) = — + O(t2), (4.2)
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will suffice for our purposes. This bound was known to Gauss. To evaluate Ng(t),
we write:
Ny(t) = > 2 (4.3)
c(c+(2k+1))<t/2m
To estimate (4.3) we split the sum, into two pieces: Define A; = {(z,y);z > 0,y >

0,z(x+y) <t} and B, = {(z,y);z > 0,y > 0,z(z + 2y) < t}. Then, we have

Ny (2nt) = Na(2t) — Np(2mt), (4.4)
where

Na(2mt) =( g_:zz(zc)xm(c, k), (4.5)
and |

Na(zr) = 3 (2 (46)

In order to apply the Poisson summation formula for N4(27t) and Np(2nt), we
need to regularize the characteristic functions x4, and xp,. Take p to be a smooth

symmetric positive function on R? with [g, p(x,y)dzdy = 1 and supp(p) C [-1,1]%.

p(£, £), where we make an explicit choice of € > 0 later on. Consider

el e

Let pe(w,y) = ¢

the mollified counting functions:

Nﬁx(t) = Z (ZC)XAt(C’ k) * pé(c, k)’ v (47)
(e,k)eZ?

29



and
N(t)i= Y (29xm.(c: k) * pelc, k). (4.8)
(c,k)ez2
Lemma 4.1.1 Let T be an arbitrarily large number and put € = T*. Then, for

1<t<T and C > 2 we have,
N§(t — C) < Na(2nt) < Ng(t + O),

and

Ng(t — C) < Ng(2nt) < Ng(t+ C).
Proof. We prove the first series of inequalities in 4.1.1. The second series follows
in the same way. Given A, = {(z,y);z > 0,y > 0,z(z + y) < t}, let 9A; to
be the hyperbola z(z +y) = ¢. If a point X = (z,y) € Z,? lies at a distance
greater than v/2¢ from 0A;, then x4, * p(X) = xa,(X). Therefore, by taking
Q1 = {(c, k) € Z2;dist((c, k), 0A4 k) > V2¢}, we have,

Na(t + KG) = Z (20)(XAt+Ke * ,05)(0, k)
(c,k)eZ2

= D CIanrleR)+ D (20 (Xawx. * (e k).

(c,k)esh (c,k)€Z2\y

On the other hand,

Na(@rt)= ) (20)xa,(c. k).

(c,k)ez?
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So, to get N&(t+ Ke) > Na(2nt), it suffices to choose € and K so that Z2N A; C €.

Since the closest point of Z2N A; to 0As k. is (1, [t — 1)), it suffices to require that:

—t+ V12 + 4t + 4Ke
2 x

dist((1,1), ( )) > V2e. (4.9)

Equation (4.9) is equivalent to 4Ke > 4€? + 4 + 4et + 8¢. So, it is enough to choose
K >2T and e < 7. The inequality N (t — C) < Na(2nt) can be proved in the same
way and we are done. “

Lemma 4.1.1 will help us to convert our results on N§(t) and Ng(t) back to
Ny (t).
Remark 3
1. Henceforth, we always assume ¢ = T~! for a fized large T and t € [1,T]. Also
we assume that 6 is an arbitrary small positive number independent of T.

2. By the notation f(z) < g(x), we mean that there exists a positive constant C
such that |f(z)| < Clg(z)| for every .

Proposition 4.1.2 The following asymptotic expansion holds for N§:

4
N3(0) = 313 - gt + R4 () + O(t3+9), (4.10)
where,
1 3 ™ 5 1
“(t) = — t1 cos(dmvt\/aw — =) T ip (u+ v, v
0 = 757 3 eolam/ivm - i
1
+ Z t4 cos(dm vt/ ~ E),u“%u*%,’o\e(,u +vv). (4.11)
\/iﬂ- O<v<p 4 ‘
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P
y, .

Proof. Applying the Poisson summation formula to N§(t) in (4.7) gives:

il

Ni(t) = D 2Zexa(Av)ahv)
AV

= 2ax4(0,005.(0,0)+ Y 2zxa(\¥)B(Av)

A#0,r=0

+ S TOEO Y+ Y B AN (412)

©A=0,v#£0 A#0,v#£0 .

We first estimate each term on the right-hand side of (4.12). For the first term, we

— vt e 4 3
22x4(0,0) = // 2zdydz -——/ / 2zdydr = gti.
A o Jo

Since p.(0,0) =1,

get:

(S

22X 4(0,0).5:(0,0) = (4.13)

W
o~

To evaluate the second term in (4.12), we write

Vi iz .
2zx4(A\,0) = / /A 21e*™ M dydy = /0 /o 25e*™* dydz
t Vi

_ 4 4 4 2miavit
= mﬁ(zm)ﬁ((zmy (2m)3)6 ‘

Therefore,

e —t 4 8vimir—4 .
3 200 = S (= V) AA0
)\z#:o X (A, 0).5c(X, 0) ?L;O (Wi)\ + (2miA)3 - (2miN)3 ° > pA0)

=y ;r"i—;,z(x, 0) + O(). (4.14)

A0
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Without loss of generality, we can assume that p(z,y) = p(z)e(y), where, o €
€&°((0,1)) such that [ o(z)dz = 1. Then,

—~ 6/\, 0 ~ 6)\ 1 omicAs e21rieAz
ZB_(_)\_)_=ZQ_(X—)._—.ZX/Re g(:c)dx=/R<§ 3 )Q(x)dx,

A#£0 A#£0 A#£0

where, for the last equality we have used the absolutely convergence of the sum-
mation 37, 5 5 [z ¥ o(z)dz. This follows by noticing that ; [, e*™*g(z)dzx =
_m fR eZMGI\xQI(ZIJ)dx.

Using the formula [2] — 2z + 3 = 3, 4 %, which holds for every z ¢ Z, we

get:

pleA 1
Z Ple),0) = / 27i([ex] — ex + l)g(:c)dac = / 2mi(= — ex)o(z)dzr = i + O(e)
N A ) il
(4.15)
since [ez] = 0, because p € C§°((0, 1)).
Therefore, substituting (4.15) into (4.14) gives the following result for the
second term on the right-hand side of (4.12):
> 22X (X 0051, 0) = —t + O(et) + O(V) = —t + O(V), (4.16)
A#0
since € = T~L.

For the third term on the right-hand side of (4.12), we have:

x4 (0,v) = / /A 22e*™Y dydzx

Vit Vi
— / 2_‘7"e21ri1/(t/:z:——:z:)d:E _ / 2z dr
0 0

2miv 2miv
. 1
_ / Ztﬂ'C ezwiﬁu(l/w—w)dx_/ 2t."13 dx. (4.17)
0 2miv o 2miv
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We claim that the first integral on the right-hand side of (4.17) is < %g To prove

this, put f(z) = % — z. Since f has no critical point, we integrate by parts to get:

Vitv f!(z)

, 1
/1 $62M\/ny(w)d$ — erﬂ'z\/ZVf(a:) - /1 e27ri\/iuf(z) \/ZVf’(.’Z) — iL‘\/Zl/f”(J)) dr
0 0 (\/lef,(x))z

Therefore,

> 2x4(0,0)p0,v) = > 0O (1—/‘@ —t 32%7”) =0(Vt) - % + O(et)
v#0 v#£0 v#0

——;- +0(WVt), (4.18)

il

since by symmetry 3, ’7‘253’:) =) a0 ﬁezg:\if) =1+0(c) (see (4.15) )and e =T"1.

Finally, for the fourth term on the right-hand side of (4.12), we need the fol-
lowing proposition:

Proposition 4.1.3 The sum

D2 ZxaAv)pA v) = Ra() + O(t3%), (4.19)
A£0 v£0

where,

1 3 T 5 _1
“(t) = — t4 cos(47r\/¥ v — =)\ v ip(u+ v, v
DY) Vi =) (u+v,)
1 3 ™ 5 1
—_— 4 4 — =y~ swTip, , V). 4.20
t 5 > thcos(@nViyim — DuT it v y). (4.20)

O<v<p

Proof. See appendix A.
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So, combining the results (4.13), (4.16), (4.18) and (4.19) for the four terms
in (4.12) proves Proposition 4.1.2 and we are done.

Remark 4 The following similar estimate holds for N§:

Ng(t) = %t% — t + R(t) + O(t3%9), (4.21)
where
B) = —t3 D cos@mViyar - DuTiv i+ v)/2,v)
O<v<p
1 ~
+ ;t% Z cos(2mVt\/Ii —%),u_%l/_%pe((u-l-V)/Z,l/). (4.22)
O<v<p

4.2 Proof of theorem 1.2.3

Given the formulas for the regularized counting functions in Proposition 4.1.2
and Remark 4, we prove Theorem 1.2.3 in three steps: First, we find a new expression
for R in Proposition 4.2.1 so as to effectively estimate averageé over short spectral
intervals. Then, we evaluate L2-estimates for R4(t) and R4(t + C) — Rg(t — C).
Finally, using Lemma 4.1.1, we get rid of the mollifier ¢ and prove Theorem 1.2.3.
4.2.1 Stepl: A new expression for R4:

Following an argument of Cramér [Cr], we claim:

Proposition 4.2.1 One can rewrite R5(t) in the form:

1 7 3 5 T
Ry(t) = —— 3 whvte (thsin(nrviyim — 0)) pulu+ v,
a(t) o on? o<,,5”u v ( sin(4m vt/ 4)>p(,u v)
1 _T _3,(,5 . T\ A~ 146
wivT10 [t sin(AnvViyaw — =) ) po(p + v, v) + O(t2+9),
=) (¢% sin(anvEv/mw = D) Bl +v,0) + O(H*)
(4.23)
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 where 8(f(z)) = f(z + 1) — f(z).
Proof. Let F§(t) be the first summation on the right-hand side of (4.20), that is:

1 . R
Fi(t) = Ton Z t4 cos(4mv/i\ /v — g),u'%z/_%pe(u + v, v).

O<v<py

Then,

/0 Fi(u)du = 2\/.2_ > Z piy 4sm(47r\/_\/ﬂ———)p5(u+u v)

O<v<p
5t Z -1,% cos(47r\/z\/_u — E)'\( + )+ O(t%)
62 O<U<Mu W — Dbep+ v, :

Writing F u)du = t+1 F5(u du L Fe (u)du, we get:
t A A 0t A

t+1 1
FS(w)du =
/t A(u)du =

Z P URY (t% sin(4m vt/ v — Z—)) pe(p +v,v)

o<v<y

9 5, (3 T\ ~ 1
+16\/§7r3 0;;1 1y~ 10 (t4 cos(4nv/t\/iw — Z)) Pe(p+v,v) +O(t%), (4.24)

where 0(f(z)) = f(z + 1) — f(=).
Next, we need:
Lemma 4.2.2 The following holds,
t+1

Ry(t) = R4 (w)du + O(t7+9), (4.25)

t

Proof. Write

t+1

R (w)du = RS, (t) + /t " (Re (w) — RS (8))du. (4.26)

t
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Fort<u<t+1,
Ry (u) — Ry (t) = Nj(u) — N5(t) + O(Vt).
So, using Lemma 4.1.1,

Ry(u) = R4(t) = O(Na(2n(u+C))— Na(2n(t - C))) + O(V1)

O(Na(2mu) — Na(27t)) + O(V1). (4.27)
From the definition of N4(27t) (see (4.5)),

Na@mu) — Na(@rt) < 3 2c=04(t3*), (4.28)
ellt+1],e<4/Te+1]

for any 6 > 0. The lemma follows from (4.26), (4.27) and (4.28).
Thus, from (4.24) and Lemma 4.2.2, it follows that:

€ 1 7 3 5 ™ —~
RY(t) = N Z piy Ze(ti s1n(47r\/f,/,uy—z)> Pe(pt + v, 1)

o<y
5 9 5 3 T
— = TapTag (e 4 - —)) Pe )
+ TN 0<E,,< po iy 40(t4 cos(4mVi\/Ii 4))p(u+l/ v)
<u
]. 7 3 5 ™
+ ~3y730 (t3 sin(drVt — =) pelpp + v, v
N O<§V<Mu ( (Arviyu 4)) Pe(pt )
5 9 5 3 ™ 1
+ — ~3,710 (t1 cos(dnViymw — =) pe(p + v, v) + O(t3+°).
o5 O W (6 cos(n Vi — ) Bl v,0) + O()

O<v<p

(4.29)

We claim that the second and the fourth terms on the right-hand side of (4.29) are

O(t%). Indeed, to bound the second sum on the right-hand side of (4.29), use that
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0(f(t)) = [/ f'(u)du to get

Z /f%u‘%ﬁ (t% cos(47r\/i\/ﬁ — %)) Pe(ptr,v) K u'%u_%ti\/u_ = O(t%).
O<v<p ) ‘ O<v<p

(4.30)
The esfimate for the fourth sum on the right-hand side of (4.29) is the same as in
(4.30).
Consequently, from (4.29) and (4.30), Proposition 4.2.1 follows.
4.2.2 Step2: L’-estimate for R:

We now show that for any é > 0,
T 5 g8 §
/ RS (6)[2dt = ey TS + O5(TH+),
1

where ¢; is a positive constant.

For simplicity, we do the computations for F4(t), which is the first summation

" on the right-hand side of (4.23) in Proposition 4.2.1; that is,

1 ~3, (L5 . T\ ~
Eq(t) = W) Z pivTie (t2 sm(47rx/f«/w/—z)) P + v, v).

o<y

Then,

/ ' | B (t)2dt = # 3 /1 ' (¢4 sin(an vy — %)) 0 (t% sin(4r v/ Wy — g)) dt

1 0<v<y,
o<’ <p!

R s R A A )] (431
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Letn=pv,m= v, 6,(t) =60 (t?i sin(4rv/ty/n — %)) and 6,,(t) =6 (t% sin(4mv/t/m — %))
It follows that,
|/ O(t)0m(t)dt] < |/ t4e4’”\ff) 0 (t4e4”"/_‘/_) dt|

+ | / 9 tZe-“”‘ﬁ\/ﬁ)e(tZe“m\”*/ﬁ) dt|.  (4.32)
1

For m > n, both integrals on the right-hand side of (4.32) are bounded by:

( AmivE(y/m— \/")> <| (T )+|G(1)|+f1 |G (¢ |dt
vm—/n vm—/n ’

where G(t) = & ((1+ DietmVm/FTVO 1) (14 hletmiva/FFT-vD _ 1),
By Taylor expansion, one can show that G(t) < min{t? t2y/mn} and G'(t) <

min{t? + t2m2, t/mn}. So,

(4.33)

min{T® + T2m32 szznz}

| /1 0, (£)0m(t)dt] < N (4.34)

Next, we recall that:

T 5 m 5 m 7 3,1 , .38
Z </ 6 (tz sin(4nvt /v — Z)) 6 (tZ sin(4mvt/ ' — Z)> dt) Py T T
o<v<u, 1

o<y’ <pl,
W' Epy

= 22 Z Z Z(/ 6, ( m(tdt)n fuimiy !

m>0 p/|m, 0<n<m ujn,

wWzym p=y/n
< > > (/ 0, (t)00m ) n i, (4.35)
0<m 0<n<m
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Therefore, substituting the estimate (4.34) in (4.35), gives:

T s 7r 5o m T _3 -1 %
Z / 9(t4 sin(4nv/t\/1x —Z))e(u sm(47r\/1_5\/u’u’—z)) dt | pmsvTay/ "5 7
o<v<y, 1

o< <y,
W' #Fpv

. 3 1 i 1
< Z Z (m1n{T3+T2m2,T2m2n2}> n_%""sm_%H

0<m 0<n<m \/ﬁi - \/ﬁ
T2m%n% 5 5 T%m% + T8 5 5
~545, 846 546, ~5+5
« L () g (TR
0<7£2m 0Zn<m
= O(T**¥) + O(T3*%) = O(T39). (4.36)

Thus, we are left with the case where m = n, that is v = u'v/. This diagonal case

will give the leading term in (4.31). We have,

On)* = %92 ‘(t%ellﬂﬂﬁ) + 292 (t%e_m‘ﬁ‘/ﬁ) + —;-9 (ﬁa«mﬁ) 0 (t%e—4niﬁﬁ) _
(4.37)

The same argument used to prove (4.34) shows that:

T 2,1 1
, Tnzn? 5
Z g2 (t%e“’”‘/z‘/ﬁ) x n 3t < } :— x n=3t0 = O(T?),
/1 — Vn+n (

n>0

and the same estimate holds for 62 (t%e“‘*”iﬂ\/ﬁ),

So, we just continue with 36 (t%e‘l’”‘/{\/ﬁ) 6 (t%e“‘"i‘/z‘/’_‘).
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Now, for n < T, using the fact that 6(f(¢)) = f(t +1) — f(t) = f(t) +
S du [ f"(s)ds, we have:
0 (t%e“’”'\/fﬁ) 9 (t%e”4"i‘/z‘/'_‘>
= (27ri\/ﬁt%e4”i‘ﬂ‘/'_‘ + O(nt%)> (—27ri\/ﬁt%e'4"i‘/z‘/ﬁ + O(nt%))
= 4n’nt? + O(n7t + n’t2).
On the other hand, for n > T,
0 (t%e“”‘/f\/ﬁ) 9 (t%e“"""/f\/ﬁ) = O(t%).

Therefore,

Z Z </1 (“ sin(4mv't\/uv — “)) (t4 sin(4mvVt/ v — = ) )

0<v<p o</ <y,
[,L’V’:/“_/

SN T U X (T A X (T

R (%‘”T“O(WT%M%)) n%

0<n<T plnpu>/n ! |nu' >vn

-~ nn j\““—‘“““‘—
X Pe(ﬂf + ) _)pé(lu’ + Ty + Z Z O(T2)n 2 'u /J’ + O(T2)
A TN o
B in,u’ >/n
: 8% =i ne T m,
2 Z Z —nTu M PE(M‘F— —)pe( — _)+O(T2+6)
0<n<T pin.u2 Vi, 5 K M W
winuw' > /n
(4.38)
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We split the sum in (4.38) into the pieces where u < T'4 and p > T4, We claim
that the piece where y > T4 is residual. To see this, note that:

THY X wTWTw)E=TE Yo y v 3

O0<v<p, 0<u <y, u>TH4 O<v<p NS NZ
u>TYA wv'=pv

< Z Z yh d(pv) = T? Z p2d(w) Z v~ld(v)
p>TL/4 O<v<pu VH# u>TL/A o<v<p

= T Z p2d(u)log? (1) = Og(T%J"S). (4.39)
u>T1/4

So, if p < TY4 then o/ < WV = uv < p? < T%. Since € = T2, we have ev <
ep < T-% and &/ < e/ < T-3. Therefore, by Taylor expanding the functions
plep + ev, ev) and p(ep’ + e, ev') around the point (0,0) and using (4.39), we can

evaluate the summation in (4.38) as follows:

Y2 D N TRV (7% e X (TSN X (PN

o<v<u 0<u’<u
W' =py

= T3 Y 3wt T uw)"E + 05(TF). (4.40)

O<v<u o</ <y,
IJ/VI=#V

Therefore, substituting (4.40) in (4.38), we get:

Z Z </1 (t‘* sin(4n vt /v — —)) (t4 sin( 47r\/_\/ﬁ_17— - ) >

O<v<sp o</ <yu!,
wv = py

—_ 3 e ————
VAP + v v)pe(i + V' V)

=75y 3 X %nwﬂ-w L+ 05(T3+9). (4.41)

0<n<T pln,u>v/n p'in,u' > vn
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Finally, combining the results from (4.36) and (4.41), gives:

T
/ |E4()]Pdt = enT? + O5(T+),
1

where,
1 & s _1 -1 Y _i - -1
ST DD DS END DRk =D DL D DY D DR
p=1 O<vp W ! 2 10 n=1 pin.p>vn W' 2/n

The argument for R4 (¢) follows in the same way and one gets:

T
/ |R,(H)2dt = o1 T3 + Os(T+0), (4.42)
1
where,
1 =~ _i L .
fm St Y Y Yt Y Y W
n=1 pln,p>yn o |n.p' 2 /m n=1 uln.u>va win' >
SN S
n=1 sl p>/m win >m

Remark 5 The argument for Rg(t) is the same as for R4(t). The result is that:

1.

T
[ IBs@Fa = it + 04T89), (4.49
1

where ¢y = 2¢;1.

T
/ |R(t + C) — RS(t — C)*dt = cT'3 + O5(T1+9), (4.44)
1
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for ¢ = c1 + ¢y — 2c3, where c3 is a positive constant defined by,

I D S I W

n=1 uln,pu>vn W |4n,pu' >2/n n=1 pln,p>n W ldn,pw>2y/n
o0 o0
1 1
-1 -1 —1 -1 -1 =1
+ > n72 > o o 4T Y nE D g > W
n=1 plnu>/n wldn.u >2v/n n=1 pln,p>+/n W l4n,u'>2y/n

Also the same result is true for flT |R4(t — C) — Rg(t + C)|%dt.

Remark 6 One can rewrite ¢ as the following:
€= o i n—%é(n) (65(n) — 6(4n)) + 2 i n=*5(n2)
5m% &~ B 2
L - —4 2y 2 L Nt s
+ 1072 nz;l’n (65(n?) — 6(4n )) + yos ;n ,

where §(n) = Z d.

dln,d<+/n

TN

4.2.3 Step 3: Eliminating the mollification:

The last step in the proof of the Theorem 1.2.3 is to use Lemma 4.1.1 to get rid
of the mollification in ¢ and prove the L2-estimate for Ry (t), which is the error term
cofresponding to type II eigenvalues. From Lemma 4.1.1, by choosing ¢ = T~! and

t € [1,T], we get,
(N4t — C) = Ng(t + 0))? < (Ny(2nt))? < (N(t+ C) — Ng(t — €))% (4.45)

For simplicity we do the calculations for the second inequality in (4.45), the other

should be proceeded similarly. Taking L2-norms in (4.45) gives:

T o T o
/1 (%t%——%—i—RH(t))zdtS /1 (gt%—%+0(t%+5)+3j4(t+0)—ReB(t—C)ydt. (4.46)
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Thus, by expanding both sides in (4.46) we get:

T
/lT(gté - %)zdt + /1T(RH(t))2dt+ 2/1 (%t% — %)RH(t)dt <

T T
G- gras [ R+ 0) - Ryt - ©) + O et

4 2/1T(§t% ~ £+ OU))(RY (6 + C) ~ Ry(t — C))d.

Thus,
/ Y Ru(0)dt +2 / T(gt% - DRult)dt < / C(RS(t+ C) — Ry (t — Ot
+ 2/T(§t% - % + O(t3+9)) (R (t + C) — R (t — C))dt.

We claim that

| / T(%t% — 5+ O ) (Rt + O) ~ Ry(t - C))di = O(T%) (4.47)

To see this, note that

T ' T
/ LEES()dt = -21? >« / 52T VIR ) 3D, (i + vy ) + O(T™)
1 .

1 O<y<u<Tito

< Z T% "yt = O(T%).

O<y<uLT+a

Similarly, we have fth%Rf‘l(t)dt = O(T%) and fth%RﬁB(t)dt = O(T%), which proves
our claim in (4.47).

Hence,

/1 CRu(t)?dt + 2 /1 T(gt% — ) Ralt)dt < /1 R+ C) — Ryt — C))2dt + O(TY),
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/\.

which implies that
g 2 T2, ¢ s 5+
| (Ry(t))*dt + 2 (gtz — E)RH(t)dt < Tz + O5(T3™°).
1 1

On the other hand, from the leftmost inequality in (4.45), we also have

T T ) . .
/ (Ru(t))*dt + 2/ (gt% - %)Rg(t)dt > (T + O5(TH9).
1 1

Hence,
T 9 Tos ¢ 5 945
/1 (Rua(t))2dt + 2 /1 (ot = 5)Ru(0)dt = T + O5(T4). (4.48)
Similarly, it is also true that
T Tos t. 5 9
/ (Ru(t))2dt — 2 / (31 ~ 2)Ru(t)dt = €T + 05(TH¥), (4.49)
1 1
since

Ralt = C) ~ R+ )+ OH) < ~Riy() < R+ C) — Ri(e - C) 4 O(14%9)

Therefore, by adding a term %t% - % to both sides of this inequality and taking
L?-norms we are done.

Combining (4.48) and (4.49), proves that
T 5 2
/ (Ru(£))2dt = T + O5(TH).
1

Now Rpg(t) is the error term corresponding to Ny (27t) and we know that it differs

with R(27t) which is the error term corresponding to N(27t) only by a term of order
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O(v't). Therefore,
T 5 9
/ (R(t))%dt = c(27)"/T% + O5(T1*°).
1

This proves Theorem 1.2.3.
4.3 Proof of theorem 1.2.4

Let N(t) be the spectral counting function of the (2n-+1)-dimensional Heisenberg
manifold. Therefore,

N(t) = Np(t) + Nu(t),

where Nr(t) is the spectral counting function of 2n-dimensional torus with the metric

h = Iynxan and Ng(t) is defined by
- Nyg(t) = #{(c, k1, ka2, ..., kn); ¢ > 0,k; > 0,2mc(c+ 2ky + ... + 2k, + n) < t}.
,/”‘\ For Nr(t) we use the trivial estimate resulted from Hérmander’s theorem:

Nr(t) = n!12" (%)n + 0 (t”_%) ;

and we continue with computing Ny (t):

Nam) = 3 2= 30 2 3 1= 3 2 ()

c(e+23 kj+n)<t c(c+2k+n)<t k1+...+kn=k c(c+2k+n)<t

= Z oD E 1)!c"k"_1 + Z w ib 2)!0’%"_2 +0 (t"‘%) .
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Let A, = {(z,y);z(z + 2y +n) <t,z >0,y > 0} and p(z,y) Be as defined in third

section. We define the mollified counting function N(t) as:

MO = T @Feh) e (4.50)

n —
(n—2)! > (E ) xae k) % pelc, k).
(n =2 (ck)ez?

Proposition 4.3.1 The following asymptotic expansion holds for N(t):

_ iy _ L p n-j+6) 451
N = Gt - + Rl(t) + 0 (13+9) (451)
where,
tn_lli wn T, _5 _1 Vip_ 1~ M+ V
R(t) = P T Z (=1)"" cos(2my/tuv — Z)M (1l - ;) Pe( 5 V).

O<v<py
Proof. Applying the Poisson summation formula to the first sum in N,(¢) (defined
by (4.50)) gives:

S (@R xale B) #ple B) = 3 om0, RO )

(c,k)eZ2 Ay

= o1y, (0,005:0,0) + D anynly, (A WA\ v)
AA0,v=0

+ Y A B + ) i v)E(A ). (452)
A=0,#0 A#£0,v50
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N

;//\\‘

We first estimate each term on the right-hand side of (4.52). For the first term, we

get:

— Zw__—_ 1
™y 1x4(0,0) = / / "y tdydz = / o —(t — z? — nz)"dx
0

1
= O ey " "2 4.
Gt et +0 (1), (4.53)

Also similar computations like those we did in third section shows that:

-1 1
> ey 004N, 0) = —5t" + 0 (), (4.54)
A#£0
and
— R .
> a1y, (0,1):(0,v) = O (t 2) . (4.55)
v#0

For the fourth term on the right-hand side of (4.52),

:Engn\—IXA()\7 1/) — / / " n—l 2771()\x+uy)dydx
n ¢ n—1 7rz((2/\ v)z+4)
- 2"71'21/ ? (_x_ —z-n) do
0
v ' Vi
_ (_1) "(n - 1) / xn(_t_ T n)n—zewi((2)\—u)z+”;‘)dx
2n(miv)?2  Jo z
v 1
— (“1) ntn / .'L'(l _ 1;2 _ ﬁf)n—lewi\/ﬁ((2)\—u)x+§)dx
wiv J Vi
(_1)un(n — 1)t”_1 /1 xn(l _ 1‘2 _ Z_lf_)n—2e7ri\/f((2)\-u)x+§)dx
2n(miv)? 0 Vi
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Now using the method of the stationary phase and following the same argument as

in the appendix, we will have:

Z xn:ljnt1XA()‘a V)Pe(A, V)

A£O,U#0

1
_ "1 v T, _5 _1 14 —1~ H""V B
= s 0;,,;”(_1) " cos(2my/tuy — Z)u ay74(1 — ;)” pE(T, v)+ 0 (t" 2 )

(4.56)

Combining the results from (4.53),..., (4.56), we have proved that:

(Z%T)T z (k™ VYxa,(c, k) * pelc, k)

" (ck)eZ?

2n+1n! n+% m
(2n + 1)! (n—1)i2n

I

n

- —n% Y R(t)+ 0 (t“—%”)

Finally applying the Poisson summation formula to the second sum in N(t) (defined

by (4.50)) and using the same argument that we used for the first sum, we get:

1
(n—1)12n

ﬁ Z (k") xa,(c, k) * pe(c, k) =

(c,k)e22

o0 (1)

This completes the proof of proposition 4.3.1.
Given the estimate (4.51) for N(t), the rest of the proof for theorem 1.2.4

follows exactly like the proof of theorerﬁ 1.2.3.
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APPENDIX A
4.4 Proof of Proposition 4.1.3:

After a simple integration, we get for v # 0:

o tjz—x
2xXA()‘)V) — // 2w62m()\m+uy dyd:c __/ / 27rz)\w 21rwydydx

— /ﬁ 2z eZm)\a: 2riv(t/z— m)dCE / 2z 21rz)\a:dx (4 57) :
0o 2mw 0 2miv ) '

The summation over the second integral in (4.57) leads to a term of order O(¢2+?)

for every positive §. To see this, for v # 0,

/ﬁxe%ri)\wdz, _ 1 $e27ri)\z 2m)\z Vi \/_
0 v N 2miN  2miN2 ],

Sox o )\

Therefore,

- Z <Aﬂ%e2riAxdm> Pe(\v) < Z Z ( )—I—O(t"”)

A#0,0#0 0<,\<t1+°‘ O<y<tlte

= O(t?In(t)) = O(t7%9), (4.58)

where o and ¢ are arbitrarily small positive numbers.
To evaluate the first integral on the right-hand side of (4.57), make the change
of variable y = —?ﬁ,

Vit 1
/ 2_"1.:627riz\a:e21riu(t/z—:t) dr = / 2ty 2#1\/-((/\ viy+< )dy (459)
0 2mwv 0 27r21/

It is convenient to introduce the new variable uy = A — v. Let f(y) = py + % Then,
the phase, f(y), has no critical point iff 4 = 0 or ﬁ < 0or ﬁ > 1. We show that

in any of these cases, the summation over the integral in (4.59) leads to a term of
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order O(tz+9) for evéry positive §. To see this, note that

. 1
/1 ye%i\/?(uvﬁ)dy _ ye%m/ff(y) (f (y) yf”(y)) 627ri\/5f(y)dy
0 Vi) |, \/' F2(y)

1 1 " (y) 3
S Viu—v " ViesE f’ \/—/ lf’2(y ay T Vi
Hence,

: iy )
E </ 7ez1m/i(m;+;)dy) P+ v,v)
0

= 2 ¥
u=0 OI 1<% O £<0

< ViLz+Vi Y ommVi ¥ 1

vV — 14
0<V O<u<r<gli+ta £<0,0<pitlte, ( ,LL)
0<lyj<tite

+O(t7°) = O(t249). (4.60)
Therefore, combining the results form (4.57), (4.58), (4.59) and (4.60), we have

SSEO RO = T ([ e i) a0

A0 10 0< LT put0 iy
(4.61)

If0 < ﬁ < 1, then the phase has a critical point \/g . Without loss of generality
assume that 0 < v < u. After making a change of variable z = \/gy, we get;:

/1 t_ye2wi\/f(uy+§)dy — /\/_ tz e2riviw(z+1) 1,
oV 0 12

ot

1 1 [
_ / 212 omiviEn(er ) gy 4 / b2 amivam (et g / vE b2 omivawa+1) g,
0o M ) 1 1 M

2

(4.62)
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1 .
Using a standard integration by parts, one can see that f02 %ezmm(”%)dz =

O(ﬁ) Therefore the summation over this integral leads to a term of order
O(tz9), that is:
1
b, '
> ( / i —i-e2mW<z+%>dz> Pl + v,v) = O(t3%9), (4.63)
O<v<p o T
Consider the second integral on the right-hand side of (4.62). Applying the method

of stationary phase( see [Cop]), we get:

1
Lz omiygim(z+1) L AmiEpv+ ¢
—eT ds = ——————VITT 4 O , 4.64
/% f 2V 2u/tuv (u\/tuv) (464

and therefore, taking the summation we have:

1
L2 orivimm(=+) g, | 5
1 z p d . \
E </l m’,ue 2 | Pe(p+ v, v)

O<v<py 2
3 .
- LS b i s )+ OE). (469)
2ﬂ\/§0<u§u

To evaluate the third integral on the right-hand side of (4.62), we use the
following lemmay( for proof, see [Cop| pages 29-33):
Lemma 4.4.1" Suppose f and ¢ are analytic functions, regular in a simply connected
open region D in the complex plane, containing the interval [L,a] from the real axis.
Also, suppose that f is real on the real axis and has exactly one stationary point

z =1 in[1,a] where f'(1) > 0. Then,

[ @ = | [-Ta e 4 o
1

2sf"(1) ss)’ (4.66)

where € := +/ f(a) — f(l)
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,/“\

Therefore, from (4.66) we get that:

Vi tz i ] ¢
27rz\/i—ﬁ;( +z)dz — 647""\/5[’;4‘% +0 , 4.67
/1 o 2\/5/1{%/11/ (usv tﬂV) ( )

where ¢ = YL Hence, taking the summation gives:

v
Vi ¢
> ( / — VI Dz | o+ v,v)
1

o’
O<v<p K
3

Z 64W1\/W_V—Tu, iy~ 4’05(;,4 +v,v) + O(t2+5)- (4.68)
271-\/— O<v<p

Combining (4.63), (4.65) and (4.68), we find that:

\/_
Z (/ tz 21n\/tu_ll(z+ )dz p ([,L""Vay)
0

O<v<py 7TZ,LL
3
t4 dminfE—in 8 1.
= e 44V 4p6(M+y,y)
2mV/2 Oéu
3
t_ : in —~
+— Z VI =Ry E D (1 + v, v) + O(t39), (4.69)
27“/5 O<v<py

Given a similar result as the one in (4.69) for the case u < v < 0, we have proved

that:
o~ . 1 ty -
> > e vp(A ) = D ( / —” Wi+ )dy> pelp+v,v) + O(t+)
A£D v#£0 0<¥<1u0 V0
1 3 s 5 1
= — ta cos(4mvV't — =\ ivTip(u+ v, v
\/§7r ) vty — T Pe(p )

O<v<y

\/5 Z ¢ cos(47r\/_\/_——) “3uip(u + v, v) + O(t319),

O<v<p

which proves the proposition.
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