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ABSTRACT 

Let R(t) be the error term in Weyl's law for (2n + 1)-dimensional Heisenberg 

manifolds. We praye that in the 'rational' case, R(À) is of or der O(tn - 7/ 41 ). In the 

'irrational' case, for generic (2n + 1)-dimensional Heisenberg manifolds with n > 1, 

we praye that the error term is of the order 08(tn- 1/ 4+O), for every positive 6. The 

polynomial growth is optimal. We also praye that for arithmetic Heisenberg metrics, 

ft IR(t)1 2dt = cT2n+! + 08(T2n+!+8), where c is a specifie nonzero constant and 6 is 

an arbitrary small positive number. In the three dimension al case, this is consistent 

with the conjecture of Petridis and Toth [PT] stating that R(t) = 08(â+8). 
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ABRÉGÉ 

Résumé. Soit R(t) le terme d'erreur de la loi de Weyl pour la variété riemanni­

enne d'Heisenberg à (2n + 1)-dimensions . Nous prouvons que dans le cas 'rationel', 

R(À) est d'ordre O(tn - 7/ 41 ). Dans le cas 'irrationel', pour des variétés riemanniennes 

d'Heisenberg génériques à (2n+l)-dimensions avec n > 1, nous prouvons que le terme 

d'erreur est d'ordre Oo(tn- 1/ 4+o), pour tout <5 positif. La croissance polynômiale est 

optimale. Nous prouvons aussi que fIT IR(t)l2dt = cT2n+! + Oo(T2n+±+8), où c est 

une constante spécifique non nulle et <5 est un nombre positif arbitrairement petit. 

Ce résultat est avancée vers la conjecture de Petridis et Toth [PT] qui énonce que 

pour n = 1, nous avons R(t) = Oo(t~+O). 
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CHAPTER 1 
Introduction 

1.1 A short history of Weyl's law 

Let (M, g) be a closed n-dimensional Riemannian manifold with metric g and 

Laplace-Beltrami operator L\. Let its eigenvalues be 0 = Ào < ÀI ~ .... For the 

spectral counting function N(t) = #{j, Àj ~ t} we have Hormander's theorem 

N( ) = vol(Bn)vol(M) n/2 O( (n-I)/2) 
t (21f)n t + t , 

where vol(Bn) is the volume of the n-dimensional unit ball and by O(t(n-I)/2) we 

mean a term which grows no faster than t(n-I)/2 as t tends to infinity. 

The estimate of the error term in the Hormander's theorem, defined by 

is in gene~al sharp, as the well-known example of the sphere sn with its canonical 

metric shows [Ho]. However, the question of determining the optimal bound for 

this error term in any given example is a difficult problem which depends on the 

properties of the associated geodesic fiow. In many cases, this is an open problem. 

Nevertheless, for certain types of manifolds sorne improvements have been obtained 

and in a few cases the conjectured optimal bound has been attained. 

The results obtained in this direction can be classified in three categories: (i) 

The first type of results deal with the upper bound for the rate of the growth of the 

1 



error term( Le. the O-results). (ii) The second type deal with finding a lower bound 

for this growth( Le. the O-results). (iii) FinaIly, the third type are results about the 

averages and the moments of the error term. 

One of the first results on pointwise estimates is due to Duistermaat and Guillemin 

[DG] which asserts that in the case where the geodesic fiow is clean and the set of 

unit-speed geodesics in S* M has null Liouville measure, then one can improve the 

Hûrmander bound to 

R(t) = o(t(n-l)/2). 

Subsequently, Ivrii [Iv] gave a different proof of this result and extended it to man­

ifolds with boundary. There are sorne additional improvements in R(t) that are 

known in sorne specifie examples. For instance, in the case of hyperbolic manifolds, 

a result of Bérard [Bé] gives: 

R(t) = O(t(n-l)/2 j log t). 

This result is likely far from optimal. Indeed, it has been conjectured that, at least 

in the non-arithmetic casé R(t) = O(tcl
) for aIl 8 > O. In fact, even for noncompact 

arithmetic surfaces with cusps, such as H j S L2 (Z), one has 

R(t) = c t1
/
2 logt + O(tl/2

), 

see [Hej2]. For compact arithmetic surfaces arising from quaternion algebras Selberg 

proved that R(t) = O(t1/ 4 jlogt); see [Hej!]. 

In the opposite case of completely integrable geodesic fiow there are several cases 

where improved error terms are known: For generic convex surfaces of revolution, 
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Colin de Verdière [Co] showed that 

which agrees with a result of Van der Corput and Sierpinski [Si] for the classical 

circle problem in 2 dimensions, Le. for the torus R2 / Z2. 

There are also additional more general results of Volovoy [Vol under long-time 

recurrence estimates for the geodesic fiow, but they are difficult to quantify. The 

geometricaIly simplest example of an integrable geodesic fiow on a surface is 2-

dimensional fiat torus. In this case, Hardy's conjecture [Ha2] states that it is not 

likely that 

for aIl <5 > O. Hardy [Ha3] also proved that for T 2 this is the best possible upper 

bound, Le. R(t) = O(t1/ 4 (log t)1/4). See [H~ for the best O-result. Sarnak [Sa] has 

generalized this upper bound and gave a geometric interpretation for it using the 

trace formula. He showed that if the geodesic fiow on a two dimensional· manifold 

has the property that, for sorne fixed T, the fixed point set of the fiow for time T is 

two dimensional in the three dimensional unit cotangent sphere, then R(t) = O(t1/ 4 ). 

There is much evidence, both numerical and otherwise to suggest that Hardy's 

bound is optimal. For instance, a classical result of Cramér [Cr] states that for T 2
: 

Hm ~ fT IR(t)12dt = C, 
T->oo T'i JI 

where C = 6;3 L~ ~:J: with r(n) = #{(a, b) E Z2; n = a2 + b2
}. 
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As the first natural non-commutative generalization of T2 consider Hl, the 3-

dimensional Heisenberg manifold, which has completely integrable geodesic flow [Bu]. 

Petridis and Toth [PT] have proved that, for certain 'arithmetic' Heisenberg metrics 

on Hl, R(t) = O(t5/6+8). Later in [CPT] the exponent was improved and the result 

was extended to allieft-invariant Heisenberg metrics. It was conjectured in [PT] that 

for Hl 

(1.1) 

Moreover, Petridis and Toth [PT] have also proved the following L2 result for Hl, by 

averaging over perturbations of the metric 9 and defining M ( u) = (H dr, 9 ( u) ), 

where l = [1 - E, 1 + E]. 

The conjecture (1.1) follows from the standard conjectures on the growth of 

exponential sums, see [CPT]. The exponential sums that show up have convex phase 

and, consequently, van der Corput's method and the method of exponent pairs can 

be applied. In the case of 2n + I-dimensional Heisenberg manifolds with n > 1, we 

face multiple sums with linear dependence on n - 1 variables. 

1.2 The statement of the results on Heisenberg manifolds 

As we have mentioned in section 1.1, according to a conjecture by Petridis and 

Toth [PT], for three dimensional Heisenberg manifolds: 

R(t) = 08(t~+8), (1.2) 
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.~. 

for every positive 8. Moreover, this conjecture would follow from the standard con-

jectures on the growth of exponential sums. 

In higher dimensions, Le. (Hn/f, g) where n > 1, in joint work with Petridis 

[KP] we have proved the following pointwise estimates: 

Theorem 1.2.1 Let (Hn/f, g) be the (2n + l)-dimensional Heisenberg manifold 

where n > 1 and the metric 9 is in the orthogonal form 

Let Jn be the standard symplectic matrix 

( 
0 Inoxn ) Jn = 

-Inxn 

Denote the eigenvalues of h-1Jn by ±J=Id], 1 ::; j ::; n. If the ratios d/ /di
2 are 

rational, then 

R(t) = O(tn
-

7/ 41 ). 

Remark 1 Conjecturally, in the 'rational' case the best estimate, following from 

(3.17), is 

(1.3) 

Theorem 1.2.2 Let (Hn/f,g) and {:::J=IdJ; 1::; j::; n} be as defined in Theorem 

1.2.1. If there exists at least one irrational coefficient dj 2/ dn 
2, then for almostall 
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metrics g, which are the on es where this irrational coefficient 0 satisfies the Diophan-

tine condition Ilj011 » 1j(j log2 j), we have 

for every 8 > O. 

Our second result concerns the average behavior of the error term which has the same 

structure as Cramér's theorem in the case of two-dimensional tori. This L2-result 

can be considered as evidence for the pointwise conjecture (1.1). 

Theorem 1.2.3 Let M = (Ht/r, g) be the 3-dimensional Heisenberg manifold where 

1 0 0 

the metric 9 is in the form 9 = 0 1 0 . Then, there exists a positive constant 

o 0 27r 

c such that 

(1.4) 

for every 8 > O. 

Remark 1 Theorem 1.2.3 holds for allleft-invariant Riemannian metrics on Ht/r. 

The proof ,is similar. 

For Heisenberg manifolds of dimension n > 3 we prove: 

T(~::::m :).2.4 For the (2n + l)-dimensional Heisenberg manifold with metric 9 = 

, where hnx2n is the identity matrix, one can similarly prove that there 
o 27r 
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exists a positive constant c such that 

(1.5) 

for every 5 > o. 

Remark 2 The proof of Theorem 1.2.4 is very similar ta the case n = 3 and we 

include itin section 4.3. We are currently unable ta extend Theorem 1.2.4 to all 

left-invariant Riemannian metrics on Hn/r, but we hope to return to this question 

elsewhere. 
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CHAPTER 2 
Background on Heisenberg manifolds 

2.1 Heisenberg canonical commutation relations 

As the structure in Heisenberg algebras originates naturally from the canoni-

cal commutation relations in Hamiltonian and quantum mechanics, we devote this 

section to review these relations. 

Hamiltonian mechanics: In classical or equivalently Hamiltonian mechanics, one 

is interested in investigating the motion of a particle moving in Rn. According to 

Newton's principle of determinacy, all motions of the system are uniquely determined 

by their initial positions and momentums( which is massxvelocity). Therefore, by 

using the notation p(t) and q(t) in order for the momentum and position of the 

particle at time t, Newton's equation turns out as a system of first-order differential 

equations, more pre~isely a Hamiltonian equation on the phase space {(p, q); p, q E 

Rn}. The physical observables are real-valued smooth functions on the phase space. 

Concerning the Hamiltonian system correspondent to Newton's equation, the 

time evolutions of the particle are the symplectomorphisms or the canonical trans­

formations which are the diffeomorphisms of R2n preserving the canonical 2-form 

w = dp /\ dq. 

Shortly, in Hamiltonian mechanics we are working with smooth observables on a 

symplectic space (R2n, w). As a result of the non-degeneracy of w, there is a one to one 

correspondence between I-forms and vector fields and therefore to every observable 
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r' .. 

f we can correspond a Hamiltonian vector field X f where w(Y, X f ) = df(Y) for every 

vector field y, In the other words, X f = L,(*!: â~i - ~ â;J 
On the space of smooth observables, we can define a Lie algebra structure ob­

tained from the following Poisson bracket operation: 

Specifically, for the coordinate functions from the basis {Pi, qi; i = 1,2, .. " n} we have 

the following identities: . 

(2.1) 

which are called Heisenberg canonical commutation relations in Hamiltonian me-

chanics. 

Quantum mechanics: As we mentioned before, in classical mechanics, the future 

behavior of the particle depends only on its initial position and momentum. However, 

the physical experiments in most of the quantum systems show that this is no longer 

true. In quantum mechanics which has been shaped during the last century one 

works with the systems where instead of finding the precise position of the particle, 

one can only predict the probability of having the particle in a certain region of the 

state space. In other words, the state space of the system is no longer Rn but the 

Borel subsets of Rn and the observables are the expectations of seeing the particle 

in a specifie Borel set, which gives us the probability distributions, In a precise 

mathematical formulation, one thinks of the observables as the self-adjoint operators 

from L2(Rn) to L2(Rn), In this setting, the coordinate functions qj and Pi correspond 
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to the operators: 

By formally defining the commutator of every two self-adjoint operators A and B 

as [A, B] = AB - BA, we obtain a Lie algebra structure on the set of the quantum 

observables. For operators Pj and Qj we have: 

(2.2) 

which are called the canonical quantum commutation relations. 

2.2 Heisenberg group and algebra 

As we saw in the previous section, the Heisenberg canonical commutation rela-

tions given by (2.1) and (2.2) are the sameLie algebra structures and introducing 

a third 1-variable coordinate t, we can rewrite them in one equation: 

[(p, q, t), (p', q', t')] = (0,0, p.q' - q.p') (2.3) 

where p, q E Rn and tER. 

Therefore, taking R2n+1 with the natural vector-space structure and the Lie 

bracket given by (2.3), de fines a Lie algebra called the Heisenberg algebra denoted 

by hn. Now, letting Pl," ., Pn, QI, ... ,Qn, T to be the standard basis for R2n+1, the 

Lie algebra structure of hn is given by: 
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Thus, according to (2.1) and (2.2), classical and quantum mechanics have Lie alge­

bra structures isomorphic to Heisenberg algebra hn . An equivalent way of defining 

hn is through the matrix representations: 

hn = {X(x,y,t): x,y E Rn,t ER}, 

where X(x, y, t) is defined in (2.5). This gives a Lie subalgebra of gln+2(R). 

Notation: For a row vector x and a column vector y in Rn, let X(x, y, t) and 

,,/(x, y, t) be the (n + 2) x (n + 2) matrices 

° x t 

X(x, y, t) = ° 0 y 

° ° ° 

1 x t 

, ,,/(x, y, t) = ° In y 

001 

(2.5) 

Let Zn = {X(O, 0, t), tER}, then Zn is both the center and the derived subalgebra 

of hn. If we also identify the subspace {X(x,y,O),x,y E Rn} of hn with R2n, then 

hn is the direct sum of these subspaces: hn = R2n EB Zn' 

Define Z = X(O, 0,1), then the standard basis of hn is given by 0 = {Xl, X2, ... , YI, ... , Yn, Z}, 

where the first 2n elements are the standard basis of R2n. The nonzero brackets 

among the elements of 0 are thus given by [Xi, Yi] = Z for 1 ~ i ~ n, which as we 

mentioned before are just the standard commutation relations in Hamiltonian and 

quantum mechanics. 

As the matrices X(x, y, t) are nilpotent of degree 3, we get: 

exp(X(x, y, t)) = 1 + X(x, y, t) + X2(X, y, t) = ,,/(x, y, t + ~x . y) =: ,,/*(x, y, t). (2.6) 
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Taking the group law as: 

"(*(x, y, t) . "(*(X', y', t') = "(* ( X(x, y, t) + X(x', y', t') + ~ [X(x, y, t), X(x' , y', tl
)]) , 

(2.7) 

we get a Lie group H~: 

H~ = ("(*(x,y,t): x,y E Rn,t ER}, 

which is called the (2n + 1)-dimensional unpolarized Heisenberg group. One may 

instead of taking (2.7) as the group law, think of the natural matrix multiplication 

between matrices of the form "((x, y, t). This defines the Heisenberg group Hn = 

{"((x, y, t); x, Y E Rn, tER} as the Lie subgroup of Gln+2 (R). The group law is 

given by: 

"}'(x, y, t) . "((x', y', t') = "}'(x + x', y + y', t + t' + X . y'). 

Now, the matrix exponential maps hn diffeomorphically onto Hn and satisfies 

{

exp: hn ~ Hn, 

X(x, y, t) ~ "}'(x, y, t + (1/2)x . y). 

Automorphisms of the Heisenberg group: Denote by Aut(H~), Aut(Hn) and 

Aut(hn ), in order the automorphism groups of the Heisenberg group as a Lie group 

and the Heisenberg algebra as a Lie algebra. Since H~ and Hn are isomorphic Lie 

groups, their automorphism groups are trivially equal. Also since Hn is a simply 

connected Lie group, it has the same automorphisms as its Lie algebra. Therefore, 
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To identify Aut(H~), we define the principal automorphisms as in the following 

four types: 

1. Symplectic maps: These are the automorphisms which act on the symplectic 

subspace R2n of hn : 

for J = ( 0 
-Inxn 

Inxn) o . For every S E SP2n(R), we define an automorphism 

of H~ by: 

S(--y(x, y, t)) = "((S(x, y), t). 

2. Dilations: For every r > 0, define t5r by: 

3. Inner automorphisms: These are the inner automorphisms of the group H~, 

Le. for every "((a, b, c) we get an automorphism by: 

"(a,b,c"((X, y, t) = "((a, b, c)"((x, y, t)"(-1(a, b, c) = "((x, y, t + a· y - b· x). 

4. Inversion and identity: They take every group element to its inverse or every 

element to itself. 

Theorem 2.2.1 Every automorphism of H~ has a unique expression as 0:10:20:30:4, 

where O:i belongs to the i-th type of automorphisms introduced above. 
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2.3 Heisenberg manifolds 

Definition 2.3.1 A Riemannian Heisenberg manifold is a pair (Hn/r, g) where r 

is a uniform discrete subgroup of Hn, i. e. the quotient Hn/r is compact, and g is a 

Riemannian metric on Hn/r whose lift to Hn is left Hn-invariant. 

Heisenberg manifolds are circle bundles over tori. 

2.3.1 Classification of the uniform discrete subgroups of Hn 

For every n-tuple r = (rI, r2, ... , rn) E z~ such that rih+1 for every i, let r zn 

denote the n-tuples x = (Xl, X2, ... , xn ) where Xi E riZ. Define 

rr = b(x,y,t): X E rZn,y E zn,t E Z}. 

It is clear that rr is a uniform discrete subgroup of Hn. 

Theorem 2.3.2 [GW} The subgroups rr classify the uniform discrete subgroups of 

Hn up to automorphism. In other words for every uniform discrete subgroups of Hn 

there exists a unique n-tuple r and an automorphism of Hn which maps r to rr. 

Also if two subgroups r rand r sare isomorphic then rand sare equal. 

/ 

Corollary 2.3.3 [GW} Given any Riemannian Heisenberg manifold M = (Hn/r, g) 

there exists a unique n-tuple r as before and a left-invariant metric 9 on Hn such 

that M is isometric to (Hn/rr,g). 

Since every left-invariant metric 9 on Hn is uniquely determined by an inner 

product on hn , we can identify the left-invariant metrics with their matrices relative 

to the standard basis 5 of hn . 

For any 9 we can choose an inner automorphism <p of Hn such that R 2n is orthog­

onal to Zn with respect to r.p*g. Therefore (Hn/r, g) will be isometric to (Rn/r, r.p*g) 
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and we can replace every left-invariant metric 9 by cp*g and always assume that the 

metric 9 is in the following form 

where h is a positive-definite 2n x 2n matrix and g2n+l is a positive real number. 

The volume of the Heisenberg manifold is given by vol(Hn/fr' g) = IfrIVdet(g), 

2.3.2 The spectrum of Heisenberg manifolds. 

Assume that M = (Hn/f, g) is a Heisenberg manifold and COO(M) is the set of 

the smooth functions on M. We can view the functions on M as the le ft f-invariant 

functions on Hn. So, the Laplace-Beltrami operator on COO(M) is given by 

2n+l 

f:l.j = - L ul j, 
i=l 

where U1, U2, ... , U2n+1 is any g-orthonormal basis of hn. 

The action of Ui is defined by 

where Ris the quasi-regular representation of Hn on L2(Hn/f), that is R('y')j('y) = 

j('y,,!'). Thus the extension of f:l. to an unbounded operator on U(Hn/r) is defined 

as 
2n+l 

f:l.j = - L (R*Ui )2 f. 
i=l 

15 



Notation: Let r = (rl' r2, ... ,rn) such that for every i, rilrHl' then by I5r we 

mean a matrix in the following form 

I5r - , _ (r
nxn 0) 
o 1 

where rnxn is the diagonal matrix with the vector r = (rl' r2, ... , rn) as the main 

diagonal and 1 is the n x n identity matrix. Also as before without loss of generality 

we can assume that the metric g is of the form 

g = (h2nx2n 0). 
o g2n+1 

Define Jn to be the 2n x 2n matrix 

( 
0 Inxn) . Jn = 

-Inxn 0 

The matrix h- l Jn is similar to the skew-symmetric matrix h- l / 2 Jnh-l/2, so it has 

pure imaginary eigenvalues which we denote by ±HciJ; 1 :::; j :::; n. 

Denote the spectrum of M = (Hn/rn g) by ~(r, g), that is the collection of 

aIl eigenvalues of the Laplacian, counting the multiplicities. Then ~(r, g) = ~l U 

~2, where ~l contains the eigenvalues of the first type corresponding to the 2n­

dimensional tori as a submanifold of M, and ~2 is the second part resulting from 

the non-commutative structure of the Heisenberg manifold. 

More precisely, let Lr = {X(x,y,Z),Xi E riZ,y E zn,z E Z} be a lattice in the 

Lie algebra h. Then L:1(r, h) is the spectrum of the Laplace operator on the fiat torus 
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(R2n / Lr, h), see [GW, p. 259J. Ta be more precise, for every two n-tuples a, b E zn, 

define 

where by [a, bJ we mean the vector concatenating a and b, and [a, bJt stands for its 

transpose. Then, we have 

~l(r, h) = p(a, b) : (a, b) E z2n}, 

where À(a, b) is counted once for each pair (a, b) E z2n such that À = À(a, b). 

The second part of the spectrum, ~2 contains the eigenvalues of the form: 

n 

p,(c, k) = 47r2c2/g2n+l + L 27rcd;(2ki + 1) 
i=l 

and 

where every p,(c, k) is counted with the multiplicity 2cn lrr l . 
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CHAPTER 3 
Pointwise Estimates Of The Spectral Counting Function 

3.1 Computation of the error term. 

The spectral counting function corresponding to type II eigenvalues is defined 

by 

NII(t) = #{p,(e, k); p,(e, k) ::; t}, (3.1) 

where every p,(e, k) on the right-hand side of (3.1) is counted 2en lrr l times, for each 

pair (e, k) su ch that p, = p,(e, k). 

In the calculations for NII(t), without loss of generality, we assume that r = 

(1, 1, , ... , 1). . In the general case, the only change is a coefficient 1 r ri in 2en 1 r ri, 

for the multiplicity of each p,( e, k), which also appears in the coefficients of vol( M) 

and vol(R2njLr,h) = Irrldet(h). Therefore, we continue with the computation of 

NII(t) only for r = (1,1" ... , 1) and we count every p,(e, k) with multiplicity 2en . We 

compute asymptotics with 2 terms in the expansions, since we need to see that the 

second term of order tn cancels the contribution of the main term of type l (torus) 

eigenvalues. The calculations with 2 terms require the Euler summation formula 

[GK], which we quote in its only use in this paper: 

(3.2) 
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Here 'ljJ(u) is the first Bernoulli function (row of teeth function) defined by 'ljJ(u) = 

u - [u] - 1/2. Now p,( e, k) ::; t if and only if 

Let bi = dT 92n+ Ii (27r). Then p,( e, k) ::; 47r2t /92n+ 1 if and only if e( e+ L: 2biki + L: bi) ::; 

t.80 

Define 
i 

and Si = ~ bjkj . 
j=l 

1. 

(3.3) 

We adopt the following notation. When a sum is indexed by the variable ki , this 

means that the range of ki is 0 ::; ki ::; (0:: - si-d/bi. We have 

N2(t) = ~NII(47r2t/92n+l) = ~ en ~ ~ ... ~ 1. (3.4) 
O<c~v't kl k2 kn 

Evaluating the last sum on the right-hand side of (3.4), we get 

Continuing with the next summation in (3.4), we get: 
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Evaluating 2:.:k
n

-
1 

1 and 2:.:k
n

-
1 

kn-l' using Euler summation (3.2), we obtain: 

By induction we get 

We set /3 = 2:.:~ bi · Hence, 

0<c<0 kl,.:-:,kn 

For the first sum on the right-hand side of (4.39) we substitute Ct = t/(2c)-c/2-/3/2, 

use the binomial theorem and (3.2), and obtain 

Here we notice that the sums involving the binomial coefficients can actually be 

calculated explicitly. By plugging x = 1 into the expansion of (1 - x)n we get that 

1 - (ï) + (2) - ... = 0, which shows that the term with the row-tooth function 

disappears. By integration over [0,1] the expansion of (1 - x2)n we get 
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see [GR, 3.621.4, p. 412]. This gives 

(3.7) 

1 11 n-l (-l)i 
In the second summation in (4.39) we use - = (1 - xt- l dx = L -. - (ni l

) 
n 0 i=O '/, + 1 

to get 

For the fourth summation in (4.39), using Œ ::; t/(2c), we have 

(3.9) 

Substituting the results from (3.7), (3.8) and (3.9), back into (4.39), we have, 

Since NIl(t) = 2N2(92n+lt/(47r2)) and bj = d;92n+t!(27r), we have proved that 

( ) 
_ n+l/2 .J92n+12n+1n! 1 1 

NIl t - t (27r)n+1(2n + l)!did~ ... d; - t
n 
(27r)n2nn!d~d~ ... d; - R(t) + O(t

n
-

2
), 

where 

(3.10) 

On the other hand, we denote the spectral counting function, corresponding to type 

l eigenvalues, by Nf(t). Sihce Nf(t) represents the spectral counting function of the 
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~ .. 
! 

2n-dimensional torus T equipped with the me tric h, we have 

Therefore, if N (t) denotes the spectral counting function of the Heisenberg manifold 

(M, g), then N(t) = N[(t) + N[[(t). From (3.10) and (3.11), we have 

~g 2n +1n l 
N(t) = tn+1/2 V .'-I2n+1 ,. _ R(t) + O(tn-~) 

(21r)n+1(2n + l)!drcq ... d~ , 

where R(t) is defined by (3.10). Since vol(Hn/r) = yldet(h). 92n+b we get the 

correct constant in the main term in Weyl's law for a (2n+ l)-dimensional manifold. 

3.2 Proof of theorem 1.2.1. 

Suppose that bn-t/bn is a rational number, i.e. bn-t/bn = Pn-t/qn-l where Pn-l 

and qn-l are two positive integers such that (Pn-b qn-l) = 1. Then, using the fact 

that 'IjJ ( u) has period 1, we get 

L 'IjJ((a - sn-l)/bn) 
kn - 1 

L 'IjJ ( a - Sn-2 ~ bn-1kn- 1 ) 

kn-l 

We substitute back into (3.10). The 0(1) term contributes 0(tn - 3/ 2 ) as it gives the 

sum in (4.39) with 2 variables less. We get 

R(t) = 
o<c<v't 

k1 , .•• ,kn - 2 

(3.12) 
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Without loss of generality, we continue with estimating the first summation on the 

right-hand side of (3.12) with j = 0: 

~ n ( ) "I,(a - Sn-2) ~ n( ) (a - Sn-2) ~ nb (a - Sn-2) L...J C a - Sn-2 'f/ b = L...J c a-sn-3 'ljJ b - L...J c n-2kn-2'ljJ b . 
kn -2 n kn -2 n kn -2 n 

(3.13) 

To evaluate the first term on the right-hand side of (3.13), we proceed as in (3.12). 

That is, since bn- 2/bn is a rational number, we can write it as bn- 2/bn = Pn-dqn-2' 

where Pn-2 and qn-2 are two relatively prime, positive integers. So 

L'ljJ (a - sn-2) = qnfl 'ljJ (a - Sn-3 - jbn_2) x ([a - Sn-3] + 0(1)) . 
k bn '-0 bn qn-2bn-2 
n-2 J-

(3.14) 

For the second term in (3.13) summation by parts gives 

(3.15) 

The first sum on the right-hand side of (3.15) has been evaluated in (3.14). The 

second term is equal to 

a:-Sn _3 

1~ ( L 'ljJ(a - Sn-3 ~ bn- 2kn- 2))dx 
0::okn -2::O X 

a-sn _3 qn-2- 1 . 1 bn
-2 ( ~ 'ljJ(a - Sn-;n- Jbn- 2)) x ([q:) + O(l))dx 

(
qnfl 'ljJ(a - Sn-3 - jbn- 2)) x (_1_ (a - sn_3)2 + O(a)). 

j=l bn 2qn-2 bn- 2 
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~. 
1 

Taking the results from the last equation and (3.14), (3.15) back into (3.13), we 

have proved that 

~ n ( ) ./. (a -Sn-2) L...J C a - Sn-2 '1-' b
n 

= 
O<c<Vt 

kl •... ,kn -2 

L qI: I 

cn'ljJ (a - Sn-:n- jbn_2) O((a-sn_3)2). 

o<c<Vt 3=0 
h, ... ,kn -3 

We use the last result in (3.12) to get 

Finally, by induction, after n - 1 steps, and given a = t/(2c) - c/2 - {3/2 we get: 

If (k, l) is an exponent pair [GK], by [GK, Lemma 4.3, p. 39], if f(x) satisfies the 

properties in the definition of exponent pairs, then 

L 'ljJ(J(m))« tk/(k+l) N((l-s)k+l)/(k+l) + rI N S • (3.16) 
mE[a,b] 

We apply (3.16) to f(x) =:= (tx- l - x - (3)/(2bn ). Using a dyadic decomposition we 

get 

L 'ljJ(J(m)) « tk/(k+l) (2- j - 1u)(-k+I)/(k+l) + rl(Tj-1u)2, 

mE[2- j - 1u,2- j u] 

for u ~ 0. If k < l the series 2- j ( -k+l)/(k+l) converges and we get the estimate 

L 'ljJ(J(m)) « tk/(k+I)U(l-k)/(k+l) + r 1u2 « t(k+I)/(2k+2). 

m:5!u 
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This implies, using summation by parts, that 

R(t) = O(tn - I / 2+(k+l)/(2k+2)). (3.17) 

The exponent pair (11/30,16/30), see [GK] gives the statement of theorem 1.2.1. 

The conjectural best exponent pairs (6,1/2 + 6) gives the conjecture 1.3. 

3.3 Proof of Theorem 1.2.2 

In theorem 1.2.2 we assume that at least one of the coefficients d/ / dn 
2

, 1 :::; i :::; 

n - 1, is irrational. Without loss of generality, we can assume that this happens for 

i = n - 1. In fact, obtaining the formula (3.10) was based on an optional ordering 

for the summations over kl , k2 , ••• ,kn-I in (3.4). 

According to Vaaler's theorem [Va], see also [GK, p.116], for every positive 

integer J, there exist constants {'Yi; 1 :::; li 1 :::; J}, satisfying the property l'Yi 1 « 1 / li l, 

such that for every real number w 

'IjJ(w) - L 'Yie27ri(jW)«~. 
1:::;1i19 

(3.18) 

Therefore, by fixing J and taking w = (a - sn-I)/bn in Vaaler's theorem, we have 

L'IjJ (a -b
Sn

-
I)« L l'Yi 1 1 L exp(27rii(a - sn-d/bn)) 1 + a -;n-2. (3.19) 

kn-l n 1:::;lil:::;J kn-l 
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To estimate the right-hand side of (3.19), we have 

L e21ri(j"-:~-1) 

kn-l kn-l 

-21ri(j bn-l )(("-"n-2 )+1) 1 - e bn bn-l 1 1 
----------,b,.------ < 'b < 'b ' 

2 'C n-l) - Isin(1rJ n-l)1 - 211J n-lll 1_e- 1rtJ ---;;;:;:- bn bn 

(3.20) 

where, for every real number 0, 11011 is the distance between ° and the nearest integer. 

By Diophantine approximation, the equation IIjoli < ~11 , has infinitely many 
J og J 

integer solutions for almost no O. In the other words, for almost an irrational 0 there 

exists a constant Ko such that, IIjoli ;::: jl~:2j for every positive integer j. Therefore, 

applying this approximation for the right-hand side of (3.20), we have 

(3.21) 

where K is a positive constant, dependent on bn-l/bn, and 6 is an arbitrary positive 

real number. 

Substituting (3.21) in (3.19), and noticing that l'Yi 1 « l/ljl, we obtain 

~ ./, (a - sn-l)' JI 2J a -Sn-2 
L.t 'f/ b

n 
«og + J . 

kn-l ' 

Substituting (3.22) in (3.10), we have 

R(t)« L en LL'" L (JIog2J + a - ;n-2). 
o<c:Sv't kl k2 kn -2 

26 

(3.22) 

(3.23) 



For the last summation on the right-hand side of (3.23), we have 

L (JIog2J + Ci - ;n-2) = 
kn -2 

L (JIog2 J + Ci - Sn-3 ~ bn- 3kn- 3 ) 
kn -2 

Therefore, by induction, we have 

L L ... L (Jlog2 J + Ci - ;n-2) « Ci
n- 2 Jlog2 J + Ci

n- 1 J-1. (3.25) 
kl k2 kn -2 

Substituting (3.25) in (3.23) and using (3.3), we see that 

R(t) « 

« 

L CnCin- 2 Jlog2 J + Cin- 1 J-1 
o<c:sJt 

L {cn(~t-2 Jlog2 J + cn(~t-1~} 
o<c:sJt 

tn- 2 L (c2 Jlog2 J + tcJ-1). 
o<c:sJt 

Taking J = cP on the right-hand si de of (3.26), we have 

(3.26) 

R(t)«tn- 2 L C2+pp210g2C+tn- 1 L c1-p«p2tn+(-1+p)/210g2t+tn-p/2. 

o<c:sJt o<c:sJt 
(3.27) 

So, to optimize the estimate on the right-hand side of (3.27), we choose p = 1/2 -

2 log log t / log t and we are done: R( t) « tn - 1/ 4 10g t. 
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CHAPTER 4 
Cramér's Formula ( L2-Estimates) 

4.1 Estimates for regularized spectral counting function 

The idea of the proof of the theorem 1.2.3 is to use the Poisson summation 

formula to write the error term, corresponding to type II eigenvalues, in a form 

which can be estimated by the method of the stationary phase. 

The spectral counting function is defined by 

N(t) = NT(t) + NH(t) , (4.1) 

where NT(t) is the spectral counting function of the torus, defined by: 

and N H (t) is defined by 

The estimates for NT(t) are well-known. For example, 

NT(t) = !...- + O(d), 
41l' 

(4.2) 
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will suffice for our purposes. This bound was known toGauss. To evaluate NH(t), 

we write: 

2c. (4.3) 
c(c+(2k+1))9/27r 

To estimate (4.3) we split the sum, into two pieces: Define At = {(x, y) j x > 0, y > 

0, x(x + y) ::; t} and Bt = {(x, y)j x> 0, y> 0, x(x + 2y) ::; t}. Then, we have 

(4.4) 

where 

NA(21ft) = 2: (2C)XAt (C, k), (4.5) 
(c,k)EZ2 

and 

NB (21ft) = 2: (2c)XBt(c, k). (4.6) 
(c,k)EZ2 

In order to apply the Poisson summation formula for NA(21ft) and NB (21ft) , we 

need to regularize the characteristic functions XAt and XBt' Take p to be a smooth 

symmetric positive function on R2 with fR2 p(x,y)dxdy = 1 and supp(p) ç [-1, IJ2. 

Let Pf(X, y) = C2p(~, ~), where we make an explicit choice of E > ° later on. Consider 

the mollified counting functions: 

NÂ(t):= 2: (2C)XAt(C, k) * Pf(C, k), (4.7) 
(c,k)EZ2 
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and 

N1(t):= L (2C)XBt(C, k) * p€(c, k). (4.8) 
(c,k)EZ2 

Lemma 4.1.1 Let T be an arbitrarily large number and put E = T- 1 . Then, for 

1 < t < T and C > 2 we have, 

and 

Proof. We prove the first series of inequalities in 4.1:1. The second series follows 

in the same way. Given At = {(x,y);x > O,y > O,x(x + y) :::; t}, let BAt to 

be the hyperbola x(x + y) = t. If a point X = (x, y) E Z+ 2 lies at a distance 

greater than V2E from BAt, then XAt * P€(X) = XAt(X). Therefore, by taking 

0 1 = {(c,k) E Z2;dist((c,k),BAt+K€) > V2E}, we have, 

(c,k)EZ2 

On the other hand, 

NA(27rt) = L (2C)XA t (C, k). 
(c,k)EZ2 
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So, to get NÂ (t + K E) ~ NA (27ft), it suffices to choose E and K so that Z2 n At ç 0 1, 

Since the closest point of Z2 n At to 8At+K € is (1, [t - 1]), it suffices to require that: 

(4.9) 

Equation (4.9) is equivalent to 4K E > 4E2 + 4 + 4Et + 8E. SO, it is enough to choose 

K ~ 2T and E ::; ~. The inequality N'A (t - G) ::; NA (27ft) can be proved in the same 

way and we are done. 

Lemma 4.1.1 will help us to convert our results on N'A(t) and NB(t) back to 

Remark 3 

1. Henceforth, we always assume E = T- 1 for a fixed large T and t E [1, Tl. Also 

we assume that 5 is an arbitrary small positive number independent of T. 

2. By the notation f(x) « g(x), we mean that there exists a positive constant G 

such that If(x)1 ::; Glg(x)1 for every x. 

Proposition 4.1.2 The following asymptotic expansion holds for N'A: 

(4.10) 

where, 

RA(t) 

(4.11) 
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Proof. Applying the Poisson summation formula to N;'(t) in (4.7) gives: 

À,v 

+ 2:: 2xXA(À, v)~(À, v) + 2:: 2xXA(À, v)~(À, v). (4.12) 
. À=0,v;60 À;60,v;60 

We first estimate each term on the right-hand side of (4.12). For the first term, we 

get: 

J f 1° 11.-X 

4 2xXA (0,0) = J A 2xdydx = 0 0 x 2xdydx = 3d . 

Sinee ~(O, 0) = 1, 

(4.13) 

To evaluate the second term in (4.12), we write 

Therefore, 

2:: 2xXA(À, O).~(À, 0) 
>';60 

J f f0 11.-X 

J A 2xe21ri>,xdydx = Jo 0 x 2xe21riÀxdydx 

t 4 (40 4) 21ri>'0 
- 7riÀ + (27riÀ)3 + (27riÀ)2 - (27riÀ)3 e . 

'" ( -t 4 807riÀ - 4 21ri>.0) ~ ( ) 
~ 7riÀ + (27riÀ)3 + (27riÀ)3 e .p, À,O 
À;60 

= 2:: -:~~(À, 0) + O( 0). (4.14) 
>';60 7rZ 
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Without loss of generality, we can assume that p(x, y) - e(x)e(y), where, e E 

C<f((O, 1)) such that I e(x)dx = 1. Then, 

L p(EÀ, O) = L ~(EÀ) = L ~ r e27ri€>,xe(x)dx = r (L e27ri
€>'X) e(x)dx, 

>,,..0 À >''''0 À >,,..0 J R J R >,,..0 À 

where, for the last equality we have used the absolutely convergence of the sum­

mation 2:::>,,..0 * IR e27ri€>,xe(x)dx. This follows by noticing that * IR e27ri€>,xf2(x)dx = 

- l I e27ri€>'x n'(x)dx. 
27r~€>,2 R ~ 

Using the formula [z] - z + ~ = 2:::nto e~:::z , which holds for every z ri. Z, we 

get: 

L P(E~, 0) = r 21fi([EX] - EX + ~)f2(x)dx = r 21fi( ~ - Ex)e(x)dx = 1fi + O(E) 
>'1'0 J R J R 2 

(4.15) 

since [EX] = 0, because e E C<f((O, 1)). 

Therefore, substituting (4.15) into (4.14) gives thefollowing result for the 

second term on the right-hand side of (4.12): 

L 2xXA(À, O)Pe(À, 0) = -t + O(Et) + O( 0) = -t + O( 0), (4.16) 
>'1'0 

since E = T-I. 

For the third term on the right-hand side of (4.12), we have: 

2xXA(O, v) = J 12xe27riVYdYdX 

1° 2x 27riv(t/X-X)d 1° 2x d --e x- -- x 
o 21fiv 0 21fiv 

rI 2tx e2rriVtv(1/x-x)dx _ t 2tx dx. (4.17) 
Jo 21fiv Jo 21fiv 
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.~. 

We daim that the first integra1 on the right-hand si de of (4.17) is « ::fJ. To prove 

this, put f(x) = ~ - x. Since f has no critica1 point, we integrate by parts to get: 

- e27rt0vf(x) dx 
[

xe27ri0Vf(X)] 1 11. Vtl/f'(x) - xVtl/f"(x) 

Vtl/ f'(x) 0 0 (Vtl/ f'(x))2 
1 

« Vtl/' 

Therefore, 

L 2xXA(O, I/)P€(O, 1/) 
v;60 

'" 0 (Vt) _ t '" ;>;'(0: 1/) = O( 0) - ! + O(Et) 
~ ~ ~ 2ml/ 2 
v;60 v;60 

t 
= -'2 + 0(0), (4.18) 

~ (0 ) ~ (À 0) 
sinee by symmetry" ~ = " ~ = 1-. + O(E) (see (4.15)) and E = T- 1

. 6v;60 27rW 6À;60 27rtÀ 2 

Finally, for the fourth term on the right-hand side of (4.12), we need the f01-

10wing proposition: 

Proposition 4.1.3 The sum 

L L 2xXA(.'\' l/)p€(À, 1/) = RÂ(t) + O(Û+O), (4.19) 
À;60 v;60 

where, 

RÂ(t) 

( 4.20) 

Proof. See appendix A. 
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80, combining the results (4.13), (4.16), (4.18) and (4.19) for the four terms 

III (4.12) proves Proposition 4.1.2 and we are done. 

Remark 4 The following similar estimate holds for NÉ: 

where 

4.2 Proof of theorem 1.2.3 

(4.21) 

( 4.22) 

Given the formulas for the regularized counting functions in Proposition 4.1.2 

and Remark 4, we prove Theorem 1.2.3 in three steps: First, we find a new expression 

for RA in Proposition 4.2.1 so as to effectively estimate averages over short spectral 

intervals. Then, we evaluate L2-estimates for RA(t) and RA(t + C) - RB(t - C). 

Finally, using Lemma 4.1.1, we get rid of the mollifier E and prove Theorem 1.2.3. 

4.2.1 Step1: A new expression for RA: 

Following an argument of Cramér [Cr l, we daim: 

Proposition 4.2.1 One can rewrite RA(t) in the form: 

R'A(t) = 

+ 
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where O(J(x)) = f(x + 1) - f(x). 

Proof. Let FÂ(t) be the first summation on the right-hand side of (4.20), that is: 

Then, 

Writing tH FÂ(u)du = J;+1 FÂ(u)du - J; FÂ(u)du, we get: 

( 4.24) 

Next, we need: 

Lemma 4.2.2 The following holds, 

I
t+1 

RA(t) = t RA(u)du + O(d+8
). ( 4.25) 

Proof. Write 

I
t+1 It+1 

t RA(u)du = RA(t) + t (RA(u) - RA(t))du. ( 4.26) 
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~. 
; 

For t :::; U :::; t + 1, 

RA(U) - RA(t) = NA(u) - NA(t) + 0(0). 

So, using Lemma 4.1.1, 

RA(U) - RA(t) o (NA (211'(u + C)) - NA (211'(t - C))) + 0(0) 

= 0(NA(211'u) - NA(211't)) + 0(0). 

From the definition of NA(211't) (see (4.5)), 

for any <5 > O. The lemma follows from (4.26), (4.27) and (4.28). 

Thus, from (4.24) and Lemma 4.2.2, it follows that: 

RA(t) = 

+ 

+ 

+ 

( 4.27) 

( 4.28) 

We claim that the second and the fourth terms on the right-hand side of (4.29) are 

O(ti). Indeed, to bound the second sum on the right-hand side of (4.29), use that 
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O(J(t)) = !tHI f'(u)du to get 

L p,-~lI-~O (â cos(47r../iJIW - ~)) Pt(P,+lI, lI)« L p,-~lI-h~JIW = O(t~). 
0< v '5,/.t O<v'5,/.t 

( 4.30) 

The estimate for the fourth sum on the right-hand side of (4.29) is the same as in 

(4.30). 

Consequently, from (4.29) and (4.30), Proposition 4.2.1 follows. 

4.2.2 Step2: L2-estimate for RA: 

We now show that for any 6 > 0, 

where Cl is a positive constant. 

For simplicity, we do the computations for EA (t), which is the first summation 

> on the right-hand side of (4.23) in Proposition 4.2.1; that is, 

EA(t) = 

Then, 

(4.31) 
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Let n = J-lIJ, m = J-l'IJ', On(t) = 0 (â sin( 41l"Vtvln - ~)) and Om(t) = 0 (t~ sin( 41l"Vtrm- ~)). 

It follows that, 

liT On(t)em(t)dtl « liT 0 (t~é7riv'tv'n) 0 (t~é7riv'tvm) dtl 

+ liT 0 (de-47riv'tv'n) 0 (dé7riv'tvm) dtl. (4.32) 

For m > n, bath integrals on the right-hand side of (4.32) are bounded by: 

fT (é7riv't(vm-v'n)) IG(T) + IG(l)1 + ft IG'(t)ldt 
JI G(t) d rm - vin < rm - vin ' ( 4.33) 

where G(t) = ;;i ((1 + t)~é7rivm(vm-v't) -1) ((1 + t)~e-47riv'n(vm-v't) -1). 
By Taylor expansion, one can show that G(t) « min{t3 , t\,/mn} and G'(t) « 

min{t2 + dm~, ty'mn}. Sa, 

(4.34) 

Next, we recall that: 

L (lT e (d sin(41l"Yty'ïW - ~)) 0 (t~ sin(41l"Yty'J-l'IJ' - ~)) dt) J-l-iIJ-~J-l,-iIJ'-~ 
O<V~p., 

O<V'~I-", 
J./v'f.J1V 

2 L L L L (lT On(t)Om(t)dt) n-~J-l-lm-~J-l,-l 
m>O l"'Im, O<n<m I"ln, . 

J1'?'vm J1?'v'n 

« L L (jT On(t)Om(t)dt) n-~+8m-~+8. (4.35) 
O<mO<n<m l 
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Therefore, substituting the estimate (4.34) in (4.35), gives: 

L (lT 
0 (t~ sin(41fVtJIW - ~)) 0 (t~ sin(41fVtvp,'V' - ~)) dt) p,-i'F~p,,-iv'-~ 

O<v$/L. 
O<"/'5:/-L', 
p/lI'ilW 

« 

( 4.36) 

Thus, we are left with the case where m = n, that is p,v = p,'v'. This diagonal case 

will give the leading term in (4.31). We have, 

(On(t))2 = ~02 (t~é7riVtv'n) + ~02 (t~e-47riVtv'n) + ~O (t~é7riVtv'n) 0 (t~e-47riVtv'n) . 

(4.37) 

The same argument used to prove (4.34) shows that: 

and the same estimate ho Ids for 02 (t~e-47riVtv'n). 

So, we Just continue with ~O (t~ é 7riVtv'n) 0 (t~ e-47riVtv'n). 
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Now, for n < T, using the fact that e(J(t)) 

ftt
+1 du ftu f"(s)ds, we have: 

e (t~é1riVtVn) e (t~e-41riVtVn) 

f(t + 1) - f(t) 

= (27riVnt~é1riVtVn + O(nti)) (-27riVnt~e-41riVtVn + O(nti)) 

47r2nâ + O(n~t + n2d). 

On the other hand, for n ;:::: T, 

Therefore, 

O<lJ5J), O<v'$/"', 
ll/ lJ'=/LlJ 

41 

f'(t) + 

( 4.38) 



We split the sum in (4.38) into the pieces where J-l ~ Tl/4 and J-l > T 1/4. We daim 

that the pie ce where J-l > T 1/ 4 is residual. To see this, note that: 

O<J.I~IL, o<v' <p,', 
J.L>Tl/4 J.L'V'~J.LV 

J-l 
,-1 

< T~ L J-l-~ L v-!-l-d(J-lV) = T~ L J-l-2d(J-l) L v- 1d(v) 
J.L>Tl/4 O<V~J.L vfiiI/ J.L>Tl/4 O<V~J.L 

T~ L J-l-2d(J-l)10g2(J-l) = Ot5(T~+O). (4.39) 
J.L>Tl/4 

So, if J-l ~ T 1
/
4 then J-l' ~ fJ'V' = fJV ~ fJ2 ~ r!. Since E = T- 1

, we have EV ~ 

EfJ ~ T-~ and EV' ~ EJ-l' ~ T-!. Therefore, by Taylor expanding the functions 

p(EJ-l + EV, EV) and p(EJ-l' + EV', EV') around the point (0,0) and using (4.39), we can 

evaluate the summation in (4.38) as follows: 

T~ L L J-l-IJ-l'-I(J-lvt!P€(J-l + V, v)~(J-l' + v', v') 
O<V~J.L 0<"'$1", 

J.L'v' =J.LV 

T~ L L J-l-IJ-l'-I(J-lV)-! + Oo(T~+t5). 
O<V~J.L 0<,,'$1", 

J.L'v'=J.LV 

Therefore, substituting (4.40) in (4.38), we get: 

O<v~J.L 0<"'$1", 
J.L'V'=J.LV 
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(4.41) 



Finally, combining the results from (4.36) and (4.41), gives: 

l T 

IEÂ(tWdt = cllT~ + Oo(T~+O), 

where, 

The argument for R~(t) follows in the same way and one gets: 

where, 

00 

+ 2 L n-~ L /1-1 L /1,-1) 
n=1 Jlln,Jl2:vIn Jl'ln,Jl'>vIn 

( 4.42) 

Remar k 5 The argument for RiJ (t) is the same as for R~ (t). The result is that: 

1. 

( 4.43) 

2. 

(4.44) 
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for C = Cl + C2 - 2C3, where C3 is a positive constant defined by, 

00 00 

-1 
P, 

+ L n-~ L p,-l L p,'-l + L n-~ L p,-l L p,'-l). 

n=l J.tln,J.t2:vn J.t'14n,J.t'>2vn n=l J.tln,J.t>vn J.t'14n,J.t'2:2vn 

Also the same result is true for Ir IRA(t - C) - RÉ(t + C)1 2dt. 

Remark 6 One can rewrite C as the following: 

where 5(n) = L d. 
dln,d<vn 

4.2.3 Step 3: Eliminating the mollification: 

The last step in the proof of the Theorem 1.2.3 is to use Lemma 4.1.1 to get rid 

of the mollification in E and praye the L2-estimate for RH(t), which is the error term 

corresponding to type II eigenvalues. From Lemma 4.1.1, by choosing E = T-l and 

t E [1, Tl, we get, 

For simplicity we do the calculations for the second inequality in (4.45), the other 

should be proceeded similarly. Taking L2-norms in (4.45) gives: 
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Thus, by expanding both sides in (4.46) we get: 

Thus, 

We claim that 

( 4.47) 

To see this, note that 

1 " fT 9 2 . r. r= 5 1 27r L..J ( t4e 1rtytyILVdt)/-l-4//-4P€(/-l + //, //) + O(T-OO
) 

O<V:SIL:ST1 +o< 1 

« L Tlf /-l-7/4//-~ = O(T~). 
O<V:SIL:ST1 +o< 

Similarly, we have ft dR'A(t)dt = O(T~) and ft dRB(t)dt = O(T~), which proves 

our claim in (4.4 7). 

Henee, 

(RH(t))2dt + 2 (-â - -)RH(t)dt ~ (R'A(t + C) - RÉ(t - C))2dt + O(T~), fT fT 2 t fT 
1 1 3 2 1 
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whieh implies that 

On the other hand, from the leftmost inequality in (4.45), we also have 

TT' 

j 2 j 23 t 5 9 0 (RH(t)) dt + 2 (-t2 - - )RH(t)dt ~ cT'i + Oo(Ti+ ). 
1 1 3 2 

Henee, 

( 4.48) 

Similarly, it is also true that 

( 4.49) 

sinee 

Therefore, by adding a term ~d - ~ to both sides of this inequality and taking 

L2-norms we are done. 

Combining (4.48) and (4.49), proves that 

l T 

(RH(t))2dt = cT~ + Oo(T~+O). 

Now RH(t) is the error term eorresponding to NH(27rt) and we know that it differs 

with R(27rt) which is the error term eorresponding to N(27rt) only by a term of order 
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O( .fi). Therefore, 

This proves Theorem 1.2.3. 

4.3 Proof of theorem 1.2.4 

Let N (t) be the spectral counting function of the (2n+ 1 )-dimensional Heisenberg 

manifold. Therefore, 

N(t) = NT(t) + NH(t), 

where Nr(t) is the spectral counting function of 2n-dimensional torus with the metric 

h = 12nx2n and NH(t) is defined by 

For Nr(t) we use the trivial estimate resulted from Hôrmander's theorem: 

1 (t)n Nr(t) = n!2n 211" + 0 (t
n
-!) , 

and we continue with computing NH(t): 

NH(211"t) = L 2cn = L 2cn L 1 = L 2cn (~~~-l) 
c(c+2 L kj+n)9 c(c+2k+n)st kl + ... +kn=k c(c+2k+n)st 

~ 2 cnkn-1 + ~ n cnkn-2 + 0 (tn-!) . 
~ (n - 1)! ~ (n - 2)! 
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Let At = {(x, y); x(x + 2y + n) ::; t, x > 0, y > O} and PE(X, y) be as defined in third 

section. We define the mollified counting function N€(t) as: 

NE(t) .- (n ~ 1)! L (cnkn-l)xAt(C, k) * PE(C, k) (4.50) 
(c,k)EZ2 

+ (n: 2)! L (cnkn-2)XAt(c, k) * PE(C, k). 
(c,k)EZ2 

Proposition 4.3.1 The following asymptotic expansion holds for NE (t) : 

(4.51) 

where, 

Proof. Applying the Poisson summation formula to the first sum in NE(t) (defined 

by (4.50)) gives: 

L (cnkn-l)xAJC, k) * PE(C, k) = L Xnyn=l XA ('\ I/)Â(À, 1/) 
(c,k)EZ2 À,v 

= Xnyn=lXA(O, O)Â(O, 0) + L Xnyn=lXA(À, I/)Â(À, 1/) 
ÀfO,v=O 

+ L Xnyn=lXA(À, I/)Â(À, 1/) + L Xnyn=l XA (À, I/)Â(À, 1/). (4.52) 
À=O,vfO ÀfO,vfO 
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We first estimate each term on the right-hand side of (4.52). For the first term, we 

get: 

Also similar computations like those we did in third section shows that: 

(4.54) 

and 

L xn~lXA(O' I/)Pe(O, 1/) = 0 (tn-~) . ( 4.55) 
vfO 

For the fourth term on the right-hand side of (4.52), 
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Now using the method of the stationary phase and following the same argument as 

in the appendix, we will have: 

L XnJj-=lXA(À, 1/)Â(À, 1/) 
A"oO,v"oO 

1 

tn-4 "" 7r 5 1 1/ ~ f.1, + 1/ (1 (1) 
2

n
-

1
7r ~ (-ltncos(27rVtf.1,1/ - 4)f.1,-41/-4(1- j)n-l pe(-2-,1/) + 0 tn- 2+ 

O<V</1 

( 4.56) 

Combining the results from (4.53), ... , (4.56), we have proved that: 

Finally applying the Poisson summation formula to the second sum in Ne(t) (defined 

by (4.50)) and using the same argument that we used for the first sum, we get: 

This completes the proof of proposition 4.3.1. 

Given the estimate (4.51) for Ne(t), the rest of the pro of for theorem 1.2.4 

follows exactly like the proof of theorem 1.2.3. 
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APPENDIX A 

4.4 Proof of Proposition 4.1.3: 

After a simple integration, we get for v =1 0: 

2xXA (À, v) = J i 2xe27ri(>"x+VY)dydx = 1° 1t
/
x
-

x 
2xe27ri>"xe27riVYdydx 

(4.57) 

The summation over the second integral in (4.57) leads to a term of order O(dH ) 

for every positive 8. To see this, for v =1 0, 

10:. 27ri>"x _ ~ [xe
27ri

>"X _ e
27ri

>"X] ° Vi _l_ 
e dx - 2 'À 2' \2 «\ + \2' o V v 7n 7f~/\ 0 v/\ v/\ 

Therefore, 

where a and 8 are arbitrarily small positive numbers. 

To evaluate the first integral on the right-hand side of (4.57), make the change 

of variable y = 0' 

(4.59) 

It is convenient to introduce the new variable fJ = À-v. Let f(y) = fJY +~. Then, 

the phase, f(y), has no critical point iff fJ = 0 or ~ < 0 or ~ > 1. We show that 

in any of these cases, the summation over the integral in (4.59) leads to a term of 
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order O(d+8) for every positive 8. To see this, note that 

Hence, 

( 4.60) 

Therefore, combining the results form (4.57), (4.58), (4.59) and (4.60), we have 

L L 2xXA(À, lI)Pe(À, li) = L (11 :fll e27ri..;t(J.tY+~)dY) Pe(J1+lI, lI)+o(d H ). 
),#0 v#O 0<~<1140 0 . fJ-- , 

(4.61) 

If 0 < ~ :::; 1, then the phase has a critical point -If. Without loss of generality 

assume that 0 < li :::; J1. After making a change of variable z = VT!y, we get: 
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Using a standard integration by parts, one can see that Jo~ ~e27riVtiW(Z+~)dz = 

O(f.lJr;;;;). Therefore the summation over this integral leads to a term of order 

O(dH ), that is: 

L (1~ :: e27riVtiW(Z+~)dZ) Pe(/1 + v, v) = O(t4H ). 

O<V~f.l 0 /1 
( 4.63) 

Consider the second integral on the right-hand si de of (4.62). Applying the method 

of stationary phase( see [Cop]), we get: 

( 4.64) 

and therefore, taking the summation we have: 

( 4.65) 

To evaluate the third integral on the right-hand si de of (4.62), we use the 

following lemma( for pro of, see [Cop] pages 29-33): 

Lemma 4.4.1' Suppose f and cP are analytic functions, regular in a simply connected 

open region D in the complex plane, containing the interval [1, a] from the real axis. 

Also, suppose that f is real on the real axis and has exactly one stationary point 

x = 1 in [1, a] where 1"(1) > O. Then, 

la cP(x)eisf(x)dx = 

where é := J f(a) - f(l). 

( 4.66) 
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Therefore, from (4.66) we get that: 

( 4.67) 

where c = &;. Renee, taking the summation gives: 

( 4.68) 

( 4.69) 

Given a similar result as the one in (4.69) for the ease J-l ::; v < 0, we have proved 

that: 

whieh proves the proposition. 

54 



/~" 

[BG] 

[Bé] 

[BI] 

[Bu] 

[Co] 

[Cop] 

[CPT] 

REFERENCES 

V. Bentkus, F. G6tze, Lattice point problems and distribution of values of 
quadratic forms, Ann. of Math. (2) 50:3 (1999), 977-1027. 

P.H. Bérard, On the wave equation on a compact Riemannian manifold 
without conjugate points, Math. Z. 155:3 (1977), 249-276. 

P. BIeher, On the distribution of the number of lattice points inside a family 
of convex ovals, Duke Math. J. 67:3 (1992), 461-481. 

L. Butler, Integrable geodesic fiows on n-step nilmanifolds, J. Geom. Phys. 
36 (2000), no. 3-4, 315-323. 

y. Colin de Verdière, Spectre conjoint d'opérateurs pseudo-diifférentiels qui 
commtent. II. Le cas intégrable, Math. Z. 171(1) (1980) 51-73. 

E.T. Copson, Asymptotic Expansions, Cambridge University Press(1965) 
29-33. 

D. Chung, Y.N. Petridis, J.A. Toth, The remained in Weyl's Law for Heisen­
berg manifolds II, Bonner Mathematische Schriften, Nr. 360, Bonn, 2003, 
16 pages. 

[Cr] H. Cramér, Über zwei Siitze von Herm G.H. Hardy, Math. Z. 15(1922) 
201-210. 

[DG] J.J. Duistermaat & V. Guillemin, The spectrum of positive elliptic operators 
and periodic bicharacteristics, Invent. Math. 29(1) (1975) 39-79. 

[Fo] G.B. Folland, Harmonie Analysis in Phase Space, Princeton University 
Press(1989) 9-73. 

[Fr] F. Fricker, Einführung in die Gitterpunketlehre, (Introduction to lattice point 
theoryj Lehrbücher und M onogmphien aus dem Gebiete der Exakten Wis­
senschaften(LMW), Mathematische Reihe [Textbooks and Monographs in 
the Exact Sciences] 73, Birkhauser Verlag, Basel-Boston, Mas., 1982. 

55 



r~ 
1 

r" 

56 

[Go] F. Gotze, Lattice point problems and values of quadratic forms, Inventiones 
Mathematicae 157(1) (2004) 195-226. 

[GW] C. Gordon & E. Wilson, The spectrum of the Laplacian on Reimannian 
Heisenberg manifolds, Miehigan Math. J. 33(2) (1986) 253-271. 

[GR] 1. S. Gradshteyn, 1. M. Ryzhik, Table of Integrals, Series and Products, 
Fifth edition, Alan Jeffrey, ed., Academie Press, San Diego, 1994. 

[GK] S. W. Graham, G. Kolesnik, Van der Corput's method of exponential sums, 
London Mathematieal Society Lecture Note Series, 126. Cambridge Uni­
versity Press, Cambridge, 1991. vi+ 120 pp. 

[Hf] 

[Hal] 

[Ha2] 

[Ha3] 

[Hej1] 

[Hej2] 

[Ho] 

[Hu] 

[Iv] 

J. Hafner, New omega theorems for two classical lattice point problems, 
Invent. Math. 63 (1981), no. 2, 181-186. 

G.H. Hardy, On Dirichlet's divis or problem, Proc. London Math. Soc. (2) 
15 (1916), 1-25. 

G.H. Hardy, The average order of the arithmeticalfunctions P(x) ans ~(x), 
Proc. London Math. Soc. 15 (1916), 192-213. 

G.H. Hardy, On the expression of a number as the sum of two squares, 
Quart. J. Math. 46(1915) 263-283. 

D. Hejhal, The Selberg trace formula for PSL(2, R), vol. 1, Springer Lecture 
notes in Mathematics 548 (1976). 

D. Hejhal, The Selberg trace formula for PSL(2, R), vol. 2, Springer Lecture 
notes in Mathematies 1001 (1983). 

L. Hormander, The spectral function of an elliptic operator, Acta Math. 
121(1968) 193-218. 

M.N. Huxley, Exponential sums and lattice points, II. Proc. London Math. 
Soc. (3) 66:2 (1993), 279-301. 

V.YA. Ivrii, Precise Spectral Asymptotics for Elliptic Operators Acting in 
Fibrings over Manifolds with Boundary, Springer Lecture Notes in Mathe­
maties 1100 (1984). 

[KP] M. Khosravi, Y.N. Petridis, The remainder in Weyl's Law for n-dimensional 
Heisenberg manifolds, Proc. Amer. Math. Soc. 133 (2005), 3561-3571. 



[KT] 

[PT] 

[Sa] 

[Si] 

[St] 

[Va] 

[Vol 

57 

M. Khosravi, J.A. Toth, Cramér's formula for Heisenberg manifolds, to 
appear in Annales de l'Institut Fourier. 

YN. Petridis, J.A. Toth, The remainder in Weyl's law for Heisenberg man­
ifolds, J. Diff. Geom. 60(2002) 455-483. 

P. Sarnak, Arithmetic quantom chaos, The Schur Lectures (1992) (Tel 
Aviv), Israel Math. Conf. Proc. 8, Bar-Ilan Univ., Ramat Gan (1995), 183-
236. 

W. Sierpinski, Sur un problème du calcul des fonctions asymptotiques in 
Oeuvres choisies, Tome l Éditions Scientifiques de Pologne, Warsaw (1974), 
73-108. 

E.M. Stein, Harmonie Analysis, Princeton University Press(1993) 527-574. 

J. D. Vaaler, Some extremal functions in Fourier analysis, Bull. Amer. 
Math, Soc. (N.S.) 12 (1985), no. 2, 183-216. 

A.V. Volovoy, Improved two-term asymptotics for the eigenvalue distribu­
tion function of an ellitic operator on a compact manifold, Comm. Partial 
DifferentiaI Equations 15:11 (1990), 1509-1563. 


