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Abstract

In recent years, dependent type systems have gathered interest because they

make it possible to express stronger properties about programs. However, they

are also very verbose. In this thesis, we show how to eliminate some of this

verbosity (for the user) by doing reconstruction over dependent types. More

precisely, we present the work done in the implementation of the Beluga pro-

gramming language. Our goal is to present the key issues arising in reconstruc-

tion and give a formal and accessible description of ideas that have been around

for some time but never given the spotlight. We also prove the soundness of our

reconstruction algorithm.
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Résumé

Au cours des dernières années, les types dépendants ont reçu un intérêt par-

ticulier parce qu’ils permettent d’exprimer des propriétés plus précises sur les

programmes. Cependant, ces systèmes de typage sont aussi très redondants.

Dans cette thèse, nous allons expliquer comment éliminer une partie de cette

redondance en reconstruisant ces types dépendants. Plus précisément, nous

présenterons le travail fait sur l’implémentation du langage Beluga. Notre but

est de présenter les problématiques importantes liées à la reconstruction de types

dépendants et de présenter de façon formelle et accessible certaines idées qui,

malgré le fait qu’elle ne sont pas toutes récentes, sont toujours restées dans

l’ombre jusqu’à maintenant. Une preuve de correction de notre algorithme de

reconstruction est aussi donnée.
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Chapter 1

Introduction

1.1 Motivation

Over the last few years, dependent types and higher order abstract syntax

(HOAS) have received a lot of attention as technical means to represent pro-

grams and reason about them. The idea behind dependent types is to have

types that depend on values. For example, we could index the type of lists with

their length.

nat: type.

z: nat.

s: nat -> nat.

list: nat -> type.

Given the two constructors for natural numbers zero (z) and successor (s), the

types of (natural number) list constructors would then become:

nil: list z.

cons: nat -> list N -> list (s N).

Using these definitions, we could be more precise about the types of list functions

like append (list N -> list M -> list (M + N)), reverse (list N -> list
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N), etc. In general, dependent types will allow us to express stronger properties

about the nature of computations.

In addition to dependent types, the language we describe in this thesis also

supports higher order abstract syntax. This technique allows elegant repre-

sentation of object-languages containing binders by representing binders in the

object-language by binder in the meta-language. As such, it simplifies the sys-

tem by eliminating the need to check for alpha equivalence. Under its apparent

simplicity, HOAS also avoids to the language theorist the need to implement

the various substitution operations, a traditionally error-prone task, by reducing

the problem to β-reductions in the meta-language.

However, having a language that encompass dependent types and unrestricted

recursion, as proposed in Cayenne [Augustsson, 1998], would also make type

checking undecidable. Moreover, this would prevent us from writing proofs

about an object-language represented using HOAS, as full recursion would allow

exotic terms (i.e. type correct meta-language terms that would not correspond

to any object-language terms) to be present, thus breaking adequacy of the

encoding.

While some systems (Agda [Norell, 2007], Epigram [Altenkirch et al., 2005],

chose to provide a weaker form of recursion (structural), at the cost of being

less fit for use as a programming language, an alternative solution to this prob-

lem is to split the language between a data level and a computation level and

consequently, keep type checking tractable. This is the approach followed in

Delphin [Poswolsky and Schürmann, 2008], Beluga [Pientka, 2008] and the idea

behind type polarity proposed by Licata [Licata and Harper, 2009].

One must note that dependently typed lambda calculi are also relevant to the

area of proof theory as they can be used to define different logics. However, this

will not be the main focus of this thesis.

Dependent types are also by nature, pretty redundant. To take the list example

again, the reader might have noticed that N and M were actually free variables

in the types of cons, append and reverse. To be really formal, we should have

quantified over those variables. The type of cons would then become

9



cons: Π N:nat . nat -> list N -> list (s N).

However, this also means that whenever we want to use cons in the future, we

will have to supply it with an additional argument N. This verbosity will only

increase the more complex the functions become. Still, one might wonder if we

could do without those explicit indices given how simple it is to deduce the type

of N and M in the previous example.

Ideas on what information can be omitted in a user-level syntax have been

around since [Pollack, 1990]. While omitting redundant information might seem

at first like a mere convenience, Luther found in [Luther, 2001] that a 50%

reduction in the size of terms could be achieved for a variant of the calculus

of construction. This reduction in size is also of interest to the area of proof-

carrying code [Necula, 1997], as the terms are carried around with the code.

There exists two main schools of thought on how to eliminate that redundancy

for the programmer. One approach is to formalize an implicit, more compact,

language that is shown to be equivalent to the original dependently typed lan-

guage. This implicit language is then checked directly. This approach also

has the potential of being more efficient. The other approach is to present a

lightweight language to the user and then, reconstruct the program to a fully

explicit form. This has the advantage to confine the redundancy elimination

to a pre-phase without modifying the rest of the infrastructure. That leads,

amongst other things, to a simpler (and easier to trust) type checker and the

possibility to reuse existing algorithms for coverage, unification, termination,

etc. This is our approach with Beluga.

1.2 Contribution

This thesis will present the work we have done so far regarding type checking

and type reconstruction for the Beluga language. As hinted before, Beluga is a

dependently typed functional programming language that supports HOAS. The

language is split between a data layer that is essentially the logical framework
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LF [Harper et al., 1993] and a computation layer that supports full recursion

and performs computation over LF objects.

While the idea of implementing LF and performing type reconstruction are

not new, this is to our knowledge, the first time it had been presented in a

formalized way. The already existing descriptions are informal and vague on

many important aspects [Pfenning, 1991], and therefore type reconstruction

remains a black art. Moreover, the fact that Delphin is using Twelf [Pfenning

and Schürmann, 1999] as a back-end leaves Beluga as one of the few competing

implementation of the LF logical framework. As such, our general goal is to

spread knowledge about LF technology by giving a tutorial on how to implement

such a language in a realistic, efficient and provably correct way.

As such, our contributions are the following:

• We extend the contextual modal type theory [Nanevski et al., 2008] with

the context variables and parameter variables (as proposed in [Pientka,

2008]) and formalize it with a spine notation [Cervesato and Pfenning,

2003] and explicit (delayed) substitution [Abadi et al., 1990]. The first

extension will allow us to parameterize computation with contexts. The

two others to provide an efficient implementation.

• We provide a foundation for type reconstruction over a dependently typed

λ-calculus (LF, Beluga’s object layer) and a proof of soundness of our

algorithm.

• We provide an implementation of these features. The prototype is avail-

able on the Beluga website:

http://complogic.cs.mcgill.ca/beluga/

• We also give a survey of other dependently typed systems that include

some form of type reconstruction.
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1.3 Structure of the thesis

To illustrate key concepts of the work done here, we first present in Chapter

2 a motivating example taken from the Twelf repository. The part we use

consists in definitions for cartesian closed categories and a simply-typed lambda

calculus and a translation between the two. Then, Chapter 3 will introduce some

background to our work. Chapter 4 contains the formalization of Beluga data-

level layer with explicit substitutions and spine notation. The reconstruction

algorithm is given in Chapter 5. Finally, some related work is discussed in

Chapter 6.
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Chapter 2

Example: cartesian closed

categories

In this chapter we introduce an example to illustrate key concepts of the work

done in this thesis. In particular, we show how to represent a theory in LF using

higher order abstract syntax. Throughout this presentation, we will highlight

the challenges that reconstruction will have to address. Then, we will present a

Beluga program to show how to reason over LF data.

The example is taken from the Twelf repository and due to Andrzej Filinski.

Because Beluga’s object layer is essentially LF, the syntax for our signature will

be quite similar to the one in Twelf. For reference purpose, we annotate the

figures with the name of the file from which code comes from. The complete

source code can be found in Beluga’s examples suite.

The sequence of declarations c : A. and a : K. is what we call a LF-signature Σ.

a and c are called constants and A and K stand respectively for a type and a

kind. These are introduced more formally in Chapter 3. The syntax used here

is mostly the user-level one. The arrow “A -> B” is syntactic sugar for the type

Πx:A.B where variable x does not occur in type B. Capital letters are what

we call free variables and λ-abstractions are written with a backslash (\). The

13



percent (%) sign is used to delimit comments.

2.1 Cartesian closed categories

Category theory has proven useful as a way to represent various mathematical

structures. In particular, it is often used to model lambda calculi. In its simplest

form a category is composed of only three elements: a class of objects, a class of

morphisms over these objects and an operation of composition over morphisms

that is associative and possesses an identity element.

In order to model a lambda calculus, a category will need three additional

properties: a terminal object, products and exponentials. A object is terminal

if for any object in the category, there exists a morphism from this object to the

terminal object. A category is said to have products if for every pair of objects

X and Y in the category, the product X × Y is an object of the category. We

will not describe the notion of exponential immediately, as it is a little more

complex and would bring no additional understanding at this point, but let’s

just say that it roughly corresponds to the notion of evaluation in a lambda

calculus. A category having these three properties is called cartesian closed.

With these ideas in mind, we are now ready to formalize them in Beluga. We

will describe how these various encodings are done and we then give the full

definition for a cartesian closed category in figure 2.1 for ease of reference.

The first notions we formalize are those of objects (obj) and morphisms (mor).

Objects are abstracted over and do not refer to anything else, so we introduce

them as simple type constants. Morphism, on the other hand are always char-

acterized by their source object (or domain) and their target object (or range),

so we also define morphisms as type constants, but we index them with two

objects. The definition for a category is completed by the composition opera-

tion, which we write (@) and the identity morphism (idc) over all objects. The

usefulness of dependent types is already illustrated here by those two last con-

stants: by indexing the type of morphisms with their domain/range, we have

enough to describe precisely what kind of morphism the composition operation

14



and identity morphism describe.

Before continuing further, we make a few remarks on syntax. First, the arrow

(A -> B) is syntactic sugar for a Πx:A.B abstraction when B does not depend

on the value of x. Therefore, the constant mor is represented internally as

{x:obj}{y:obj}type. Note that we write Π-abstractions using the braces ({})

syntax, as it is the way we write them in ASCII.

Another remark is on the variables appearing in the definition for identity and

composition. While the reader can easily make sense of these definitions, free

variables do not make sense when reasoning formally. For this reason, the first

step of the reconstruction algorithm will be to infer a type for these variables

and reconstruct a Π-abstraction. For example, the reconstructed constant for

identity will be (reconstructed part in red)

{A:obj}.morA A

This indeed make sense, as we need an identity morphism for every object, hence

the Π-quantifier.

In general, it is not always possible to reconstruct the type of a free variable.

We are able to reconstruct a type for a free variable when it appears, at least

once, applied to a list of distinct bound variables (we call it a pattern spine,

more on this in Chapter 5). As A above was not applied to anything, its type

could be inferred.

Free variables are the base of our reconstruction algorithm. Indeed, since we

wrote A implicitly above, whenever we will use the constant idc in the future,

the system will expect no arguments (providing one would raise an error) and

will reconstruct one argument, that is, the term that stands for the variable

A. We could also have written A explicitly, but this would have made the code

more verbose, for the definition and use of idc.

We give another example of reconstruction with the composition constant (@).

15



The reconstructed form will be

@ : {A:obj}{B:obj}{C:obj} mor B C -> mor A B -> mor A C.

We see that the Π prefix grows larger with the number of free variables while

not adding much information. This gives an idea of the verbosity introduced by

explicit dependent types. The term will grow even larger when free variables

will be dependently typed. Similarly to the idc definition, the constant @ will

expect two arguments — of type mor B C and mor A B respectively — when we

use it later on and the reconstruction algorithm will reconstruct three implicit

arguments (A, B and C).

Terminal object is defined next. The definition is quite simple: it only mentions

that one is actually an object and that for every object A there exists a morphism

from A to one.

Products definition is quite simple too. We add in the projections (fst and

snd) and the pair constant that describe the morphisms needed for a category

to “have products”.

As we said before, exponentials model the notion of function evaluation. As

such, we define the arrow objects, that model the functions of type A 7→ B

(arrow A B). The app constant serves to model applications and says that there

exists a morphism that takes an object representing the pair of a function and

its argument and returns an object representing the result. The dual constant

cur says that whenever we have a morphism from the pair A B to C, we also have

a morphism from A to “functions” from B to C. In a programmer’s language, that

means that whenever we have a “function” from a product the curried form of

this function also exists, hence the constant’s name.

2.2 Lambda calculus

Similarly, a simply typed lambda calculus with pairs is defined (fig. 2.2). Terms

(term) are the base objects and come indexed with their type. We reuse the

16



% Basic category

obj : type.

mor : obj -> obj -> type.

idc : mor A A.

@ : mor B C -> mor A B -> mor A C.

% Terminal object

one : obj.

drop : mor A one.

% Products

cross : obj -> obj -> obj.

fst : mor (cross A B) A.

snd : mor (cross A B) B.

pair : mor A B -> mor A C -> mor A (cross B C).

% Exponentials

arrow : obj -> obj -> obj.

app : mor (cross (arrow B C) B) C.

cur : mor (cross A B) C -> mor A (arrow B C).

Figure 2.1: Cartesian closed categories (ccc.elf)

definitions of objects defined in cartesian closed categories to stand for types in

our lambda calculus. Products and exponentials therefore become the product

and functional type respectively. The calculus only characterizes well-type terms

and is quite minimal. It consists of λ-abstractions (llam) and applications

(lapp), together with a constructor for pairs (lpair), projections (lfst and

lsnd) and the base object unit (lunit).

A notable feature is the representation of λ-abstractions using HOAS. The

parenthesizing in the llam declaration tells us that this constant expects one

argument of functional type. In the full example, there is a notion of term

convertibility written as

conv : term A -> term A -> type.

The rules are given in figure 2.3.

The usefulness of HOAS shines when it comes to writing the case for lambda

17



term : obj -> type.

% Functions

llam : (term A -> term B) -> term (arrow A B).

lapp : term (arrow A B) -> term A -> term B.

% Pairs

lpair : term A -> term B -> term (cross A B).

lfst : term (cross A B) -> term A.

lsnd : term (cross A B) -> term B.

% Unit

lunit : term one.

Figure 2.2: Simply-typed lambda-calculus (lambda.elf)

c_refl : conv E E.

c_fst : conv (lfst E) (lfst E’)

<- conv E E’.

c_snd : conv (lsnd E) (lsnd E’)

<- conv E E’.

c_pair : conv (lpair E1 E2) (lpair E1’ E2’)

<- conv E1 E1’

<- conv E2 E2’.

c_lam : conv (llam (\x . E x)) (llam (\x . E’ x))

<- ({x: term _} -> conv (E x) (E’ x)).

c_app : conv (lapp E1 E2) (lapp E1’ E2’)

<- conv E1 E1’

<- conv E2 E2’.

Figure 2.3: Convertibility in the lambda calculus

18



terms congruence: we only have to verify that E and E’ are convertible for an

abstract x. The judgement is completely parametric on the meta-level variable x.

Other cases are simple recursions and c refl says that every term is convertible

to itself.

2.3 Translation function

Translation from cartesian closed categories into lambda calculus is given by the

conc constant. It is quite simple and works as follows: morphisms are translated

to functions of the same type and these are later composed using constructors

from the lambda calculus.

It is when the cid constant is reconstructed that we encounter our first instance

of a meta-variable. As explained earlier, the first argument of conc (idc here)

has to have type mor A B, which is indeed the case. However, because idc has

been reconstructed to be a Π abstraction, the reconstruction for cid must take

that into account. The algorithm will introduce a meta-variable as the first

argument to idc so the type will still be well-formed. Unification will later be

used to find the right instantiation for the meta-variable. In the present case,

reconstruction will return the type

{A:obj} conc A A (idc A) (\x . x)

One might remark that we wrote some free variables in their η-expanded form.

While it might make the functional type of some variable more explicit in some

cases, Beluga is able to make the translation internally. For example, writing

simply conc F M as the premise of the ccur case would have been equivalent

and correct.

The definition for conc is the standard way to write such a translation in Twelf.

We might think of conc as a function that takes a morphism and returns a

function, but still, it is defined as a dependent type like everything else before

it, without any reference to the way we think about it. To that end, the logical
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conc : mor A B -> (term A -> term B) -> type.

cid : conc idc (\x . x).

ccomp : conc (@ F G) (\x . (M (N x)))

<- conc G (\x . N x)

<- conc F (\x . M x).

cunit : conc drop (\x . lunit).

cpair : conc (pair F G) (\x . (lpair (M x) (N x)))

<- conc G (\x . N x)

<- conc F (\x . M x).

cfst : conc fst (\x . (lfst x)).

csnd : conc snd (\x . (lsnd x)).

ccur : conc (cur F) (\a . llam (\b . M (lpair a b)))

<- conc F (\x . M x).

capp : conc app (\a . lapp (lfst a) (lsnd a)).

Figure 2.4: Translation from ccc combinators to lambda-terms (conc.elf)
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framework Twelf allows us to specify a “mode” for conc, written as

%mode conc +D -E.

This means that the first argument (the morphism) is to be thought of as an

input and the second one as an output. This is needed, together with other

declarations, if we want to verify that the translation is indeed a function (i.e.

if it covers all the (morphisms) cases and does terminate).

This shows one of Twelf’s limitation and one of the reasons behind Beluga

design. Even if Beluga’s computational layer is not the focus of this thesis, we

show what the translation would look like when written as a Beluga function in

figure 2.5. The function is written using a simple pattern matching on its only

argument, d. The main difference is that we write functional objects as objects

that depend on a context instead of as λ-abstractions. For example, the case

for idc returns [x] x instead of (\x . x). The let forms are syntactic sugar

for pattern matching (case constructs).

Writing function like this has the advantage of making them built into the

language. Therefore, termination and coverage checkers become part of the

theory instead of being ad-hoc, patched on, features.

2.4 Congruence proof

While the conc example was interesting in itself, it only worked with closed

objects. We present here an example to illustrate the use of context variables

and parameter variables in Beluga. The function we present in figure 2.6 is

a proof that the convertibility defined before (see fig. 2.3) is preserved under

functions.

More precisely, the function takes as an input a function, together with a proof of

convertibility between two terms and returns a proof of convertibility between

the results of applying the function on the two terms. Again, llam is the

interesting case here. Because the argument of llam is a function, we have to

21



rec conc : (mor A B)[] -> (term B)[u:term A] =

fn d => case d of

[] idc =>

[x] x

| [] (@ F G) =>

let [x:term A] (M x) = conc ([] F) in

let [x:term A] (N x) = conc ([] G) in

[x] (M (N x))

| [] drop =>

[x] lunit

| [] (pair F G) =>

let [x:term A] (M x) = conc ([] F) in

let [x:term A] (N x) = conc ([] G) in

[x] lpair (M x) (N x)

| [] fst =>

[x] (lfst x)

| [] snd =>

[x] (lsnd x)

| [] (cur F) =>

let [x:term (cross A B)] (M x) = conc ([] F) in

[a] (llam (\b . (M (lpair a b))))

| [] app =>

[a] (lapp (lfst a) (lsnd a));

Figure 2.5: Translation from ccc combinators to lambda-terms in Beluga
(conc.bel)
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reason with open terms if we are to examine the body of the function. For that

reason, whenever we encounter a binder, we add a variable to the context and

call the cong function recursively. The fact that argument c depends on context

g reflects this idea by saying that the proof can refer to “free” variables (the

ones in g actually). Except for the binder issue, the treatment is quite similar

to the other recursive cases (lfst, lsnd, lpair and lapp).

When we hit a base case that is one of these “free” variable, we use the fact

that a variable will be convertible to itself and return c refl as the proof. This

case is written using a parameter variable #p. In context [g, x:term A], #p

.. will match against any variable contained in g but not x. This is because x

represents the input of the generic function M and not a binder we encountered

in the past. For #p to match against any variable contained in the context, we

would have to write #p .. x.

Because x is the input of function M, hitting the base case x means that M is

actually the identity function. Therefore, the proof we got as an input is also a

proof that two terms are convertible once we apply the identity to them. This

is the reason why we simply return c in this case.

The base case for lunit uses the fact that lunit is convertible to itself by

c refl.

On a more technical level, using context g means we had to define a general

shape for it. The schema definition for ctx says that g consists of variables of

type term a for some a.

Abstraction for context are written with FN and abstraction for meta-variables

— M representing the function in this case — are written with mlam, in a way

that mimics the usual λ-abstractions (written fn x => ...).

A final remark on this example is that it is not always possible to reconstruct

the type of every (free) pattern variable. In this case, we provide the types

explicitly, as in the lfst, lsnd and lapp cases, at the cost of verbosity.
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schema ctx = some [a:obj] term a;

rec cong : {g:(ctx)*} {M::(term B)[g, x:term A]}

(conv (E ..) (E’ ..))[g] ->

(conv (M .. (E ..)) (M .. (E’ ..)))[g] =

FN g => mlam M => fn c =>

case ([g,x:term _] M .. x) of

[g, x:term A] x => c

| [g, x:term A] #p .. => [g] c_refl

| [g, x:term A] lunit => [g] c_refl

| [g, x:term A] (lpair (M1 .. x) (M2 .. x)) =>

let [g] LC1 .. = cong [g] <g, x . M1 .. x> c in

let [g] LC2 .. = cong [g] <g, x . M2 .. x> c in

[g] (c_pair (LC1 ..) (LC2 ..))

| {N::(term (cross B1 B2))[g,x:term A]}

[g, x:term A] (lfst (N .. x)) =>

let [g] LC .. = cong [g] <g, x . N .. x> c in

[g] (c_fst (LC ..))

| {N::(term (cross B1 B2))[g,x:term A]}

[g, x:term A] (lsnd (N .. x)) =>

let [g] LC .. = cong [g] <g, x . N .. x> c in

[g] (c_snd (LC ..))

| [g, x:term A] llam (\y. N .. y x) =>

let [g] D .. = c in

let [g, y:term B1’] (LC .. y) =

cong [g, y:term _] <g, y, x . N .. y x> ([g, y] D ..) in

[g] (c_lam (\y . LC .. y))

| {M1::(term (arrow B1 B2))[g, x:term A]}

[g, x:term A] (lapp (M1 .. x) (M2 .. x)) =>

let [g] LC1 .. = cong [g] <g, x . M1 .. x> c in

let [g] LC2 .. = cong [g] <g, x . M2 .. x> c in

[g] (c_app (LC1 ..) (LC2 ..));

Figure 2.6: Proof that congruence is preserved under a function (cong.bel)
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Chapter 3

Background

Beluga data representation language is strongly inspired by contextual modal

type theory [Nanevski et al., 2008]. The later is itself an extension of the logical

framework LF [Harper et al., 1993]. This chapter presents a short overview of

these two systems.

3.1 LF

LF is a dependently typed lambda calculus. There is very little more to that. In

our presentation, we impose a syntactic restriction to allow only normal forms

to be represented. As such, terms are split between normal and neutral terms

to prevent the presence of redexes.

Contrarily to simple types, dependent types are not valid “by construction”, so

kinds are introduced to allows us to qualify on the validity of types. Contexts

and substitutions complete the theory but are kept separated from the user-level

language for the moment, as in Twelf.
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3.1.1 Syntax

Kinds K ::= type | Πx:A.K

Types A,B ::= Πx:A.B | P

Atomic Types P ::= a | P M

Normal terms M,N ::= λx.M | R

Neutral terms R ::= c | x | R M

Contexts Ψ,Φ ::= · | Ψ, x:A

Substitutions σ ::= · | σ,M/x

3.1.2 Judgements

The type system we introduce here is a bidirectional one: neutral terms (resp.

atomic types) can synthesize a type (resp. kind) while normal terms and types

in general must be checked. We have two judgements for types and two for

terms.

Types Terms

Ψ ` A ⇐ type Ψ `M ⇐ A

Ψ ` P ⇒ K Ψ ` R ⇒ A

The theory is completed by a meta-level judgement that checks that a context

is well-formed and one that checks that a substitution has domain Φ and range

Ψ (i.e. terms in σ can only refer to bound variables declared in Ψ).

Contexts Substitutions

` Ψ ctx Ψ ` σ ⇐ Φ

3.1.3 Typing rules

The typing rules for LF are given in figure 3.1. These rules suppose the presence

of a signature Σ where type level and object level constants are declared. In

practice, these constants are declared in sequence so a declaration can refer to
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the previous ones.

Because the only well-formed terms are normal ones, the substitution operation

we use must not introduce redexes. In order to do so, it needs to keep nor-

malizing whenever it creates one by substituting in a term. This operation is

called hereditary substitution and is described in [Nanevski et al., 2008]. We

annotate the substitution with the type of the term we are substituting to be

able to reason about termination of the operation (as a matter of fact, we also

annotate with the syntactic category category of the term we are substituting

into, to keep up with the definition in [Nanevski et al., 2008]). Indeed, it is

not obvious why hereditary substitution should terminate, as one could imagine

a substitution that would keep on creating new redexes, forever. However, by

having the type A around, the creation of a new redex would tell us two things:

A is actually a function type and the type of the new term we are substituting

is a smaller type than A, namely the input type of the function. Knowing this,

it is easy to see why hereditary substitution will eventually terminate because

all types are finite.

Because we only characterize normal forms, type equality can be seen as syn-

tactic equality or equality modulo α-renaming depending on whether bound

variables are implemented using DeBruijn indices or names.

One should note that in such a system, some terms, like (\x . x x), are not

even typable. In fact, LF is strongly normalizing [Harper et al., 1993]. While

this is an interesting property to have for a data layer, a strongly normalizing

language could not be Turing complete. This is the reason behind the less re-

stricted form of recursion in Beluga’s computational layer [Pientka and Dunfield,

2008].

Having type checking rules for substitutions might seems like overkill, because

we only work with single substitutions (i.e. [M/x]∗A) so far. In the next section

however, they become first class objects, so this is why we reason about substi-

tutions of greater length, which we also call simultaneous substitutions. In fact,

such a simultaneous substitution is already present in the second rule for type

checking substitution. As the objects of the substitution are defined in context
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Ψ and the type A is defined in context Φ, we must first apply the substitution

σ to A when type checking M in the premise of the rule.

3.2 Contextual modal type theory

Contextual modal type theory is basically LF with meta-variables 1 added in.

These are a special class of variables whose (dependent) type also contains the

context it depends on. We read u::A[Ψ] as u has type A in context Ψ. We

separate these declarations from the ordinary bound variables ones by putting

them in a new (meta) context ∆.

Even if it would be possible to use only one context for both type of variables,

they are often treated differently. Ordinary bound variables are used to rep-

resent abstractions in the object language while meta-variables are used to fill

holes (missing arguments) in type reconstruction and are eventually instanti-

ated (to bound variables or more complex terms). Since [Nanevski et al., 2008]

already uses separate contexts, we keep up with the practice and avoid the

need for an operation that would filter either one type of variable from a single

context. We hope this will allow for a cleaner theory.

The syntactic additions are given next. Because contextual variables are defined

in a separate context that does not depend on Ψ, they come with a substitution

in order to make sense in the current (Ψ) context. We also add the notion of

(simultaneous) substitution for meta-variables.

Neutral terms R ::= . . . | u[σ]

Meta-contexts ∆ ::= · | ∆, u::A[Φ]

Contextual substitutions ρ ::= · | ρ, Ψ̂.M/u

The type checking judgements stay mostly the same: we have to thread through

a ∆ context. As before, we also need to add two new judgements for meta-

contexts and contextual substitutions.
1Also called eigenvariables, existential variables or logic variables.
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Types

Ψ ` A⇐ type Ψ, x:A ` B ⇐ type

Ψ ` Πx:A.B ⇐ type

Ψ ` P ⇒ type

Ψ ` P ⇐ type

Atomic types

Σ(a) = K

Ψ ` a⇒ K

Ψ ` P ⇒ Πx:A.K Ψ `M ⇐ A

Ψ ` P M ⇒ [M/x]kAK

Normal Terms

Σ(a) = K

Ψ ` a⇒ K
Ψ ` P ⇒ Πx:A.B Ψ `M ⇐ A

Ψ ` P M ⇒ [M/x]aAB

Ψ, x:A `M ⇐ B

Ψ ` λx.M ⇐ Πx:A.B
Ψ ` R⇒ P ′ P =α P

′

Ψ ` R⇐ P

Neutral Terms

Σ(c) = A

Ψ ` c⇒ A

Ψ(x) = A

Ψ ` x⇒ A
Ψ ` R⇒ Πx:A.B Ψ `M ⇐ A

Ψ ` R M ⇒ [M/x]aAB

Contexts

` · ctx
` Ψ ctx Ψ ` A⇐ type

` Ψ, x:A ctx

Substitutions

Ψ ` · ⇐ ·
Ψ ` σ ⇐ Φ Ψ `M ⇐ [σ]A

Ψ ` σ,M/x⇐ Φ, x:A

Figure 3.1: Typing/kinding rules for LF
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Meta-variables

∆(u) = A[Φ] ∆; Ψ ` σ ⇐ Φ
∆; Ψ ` u[σ]⇒ [σ]A

Meta-contexts

` · mctx

` ∆ mctx ∆; Ψ ` A⇐ type

` ∆, u::A[Ψ] mctx

Contextual substitutions

∆′ ` · ⇐ ·
∆′ ` ρ⇐ ∆ ∆′; [[ρ]]Ψ `M ⇐ [[ρ]]A

∆′ ` ρ, Ψ̂.M/u⇐ ∆, u::A[Ψ]

Figure 3.2: Additional typing rules for CMTT

Meta-contexts Contextual Substitutions

` ∆ mctx ∆′ ` ρ⇐ ∆

The new rules for contextual variables, meta-contexts and contextual substi-

tutions are given in figure 3.2. Note that because a contextual substitution

element will make sense in ∆′, we have to apply the rest of the (contextual)

substitution to the context Ψ and type A when we check that it is well-typed.

We also have to make sure that the bound variables that can appear in such a

substitution element are the same as the ones in the context Ψ of the element’s

type. For this purpose, we keep around a list of names and we write it as Ψ̂

(the notation is taken from [Nanevski et al., 2008]). This issue goes away when

we use DeBruijn indices instead of names.

For reference purpose, we give the substitution rules for meta-variables in figure

3.3. These rules are simple recursions on the various syntactic forms and, as

for bound variable substitutions, they are hereditary and will keep substituting

whenever redexes are created. Again, we annotate the substitution with the

type of the term (and the syntactical category of the term we are substituting
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[[Ψ̂.M/u]]nA[Ψ]λx.N = λx.[[Ψ̂.M/u]]nA[Ψ]N

[[Ψ̂.M/u]]rA[Ψ]c = c

[[Ψ̂.M/u]]rA[Ψ]x = x

[[Ψ̂.M/u]]rA[Ψ]R N = R′ [[Ψ̂.M/u]]nA[Ψ]N if [[Ψ̂.M/u]]rA[Ψ]R = R′

[[Ψ̂.M/u]]rA[Ψ]R N = [N ′/x]nB[Ψ]M
′ if [[Ψ̂.M/u]]rA[Ψ]R = λx.M ′ and

[[Ψ̂.M/u]]nA[Ψ]N = N ′

[[Ψ̂.M/u]]rA[Ψ]u[σ] = [[[Ψ̂.M/u]]sA[Ψ]σ]M
[[Ψ̂.M/u]]rA[Ψ]v[σ] = v[[[Ψ̂.M/u]]sA[Ψ]σ]

Figure 3.3: Contextual substitution

into), to reason about termination of the operation.

So far, we introduced the dependently typed lambda calculus that will serve as

Beluga’s object layer. We added in meta-variables and substitutions (contextual

and bound variable) to provide the technology we will need to perform type

reconstruction over Beluga’s object layer. The next chapter will present an

efficient way to implement the concepts introduced here.

31



Chapter 4

Beluga with explicit

substitutions

In this chapter, we present the syntax and typing rules for an efficient imple-

mentation of Beluga. First, we delay the application of substitutions. Indeed,

in the presence of dependent types, we might need to substitute terms into the

type we are checking against. Delaying the substitution to the moment when

we actually compare two base types allows us to save multiple pass over the

term, an operation that can potentially be costly in the case of larger examples.

We also use a spine formulation instead of the (RM) application. Such a for-

mulation gives us direct access to the head of a term and speed up unification

(by failing early) and weak head normalization, an operation needed by delayed

substitutions. This notation also simplifies the reconstruction phase when we

have to check for pattern spines.

Finally, variables are implemented using DeBruijn [de Bruijn, 1972] indexing.
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4.1 Syntax

As mentioned earlier, Beluga’s object language is LF (dependently typed lambda

calculus), augmented with meta-variables. Those meta-variables, however, are

only accessible to the user in the computational layer. In the context of this

thesis, their purpose will be to fill in implicit arguments during reconstruction.

Because the computation layer also features explicit contexts and context vari-

ables, the substitutions of our data layer will have to reflect this. For example,

in Beluga’s setting, the contexts from the substitutions judgement Ψ ` σ ⇐ Φ

could rely on context variables and the judgement will have to behave in a

correct manner if we were to substitute a concrete context into it.

Moreover, pattern matching on terms with contexts variables brings the need for

a new kind of contextual variable. Indeed, we will not be able to match against

“any bound variable that might be contained in the context we will eventually

substitute for context variable ψ” because meta-variables fail to capture the

atomic nature of this matching and we do not know the exact name of the bound

variables we should match against until we substitute an actual concrete context.

These new variables will be called parameter variables and are written as p[σ].

Aside from their different behavior during matching, the behave similarly to

meta-variables.

Therefore, the language we present here can be though of as “contextual modal

type theory augmented with context variables and parameter variables”. The

addition is of interest mostly because we envision the data layer in the larger

Beluga context, but they will not be necessary to the reconstruction process we

describe in Chapter 5.

Finally, working with delayed substitutions will also bring the need for closures

(a term together with a substitution). Because it is not always possible to keep

those at the judgement level, we introduce syntactic categories for closures on

types, terms and spines.

Because the type checking algorithm is bidirectional, we do not require typing

annotation in λ-abstractions.
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Kinds K ::= type | ΠA.K

Types A,B ::= P | ΠA.B | clo(A, σ)

Atomic types P ::= a · S

Normal terms M,N ::= λ.M | H · S | clo(M,σ)

Head H ::= c | x | u[σ] | p[σ]

Spine S ::= nil |M S | clo(S, σ)

Substitutions σ ::= ↑c,k| σ,M | σ,H | σ,Undef

Context shifts c ::= −ψ | ψ | 0

Contexts Ψ,Φ ::= · | ψ | Ψ, A

Meta-contexts ∆ ::= · | ∆, A[Ψ]

As stated before, the bound variables (x) are represented as integers. For ex-

ample, the λ-abstraction λx.λy.yxx is represented as λ.λ.011 internally. For the

same reason, we do without the names for all λ and Π binders. Similarly, when

reasoning in a context Ψ, bound variable k will refer to the k’th element of Ψ

(if it does not appear under a binder).

Syntax for substitutions is a variation on the explicit substitution defined in

[Abadi et al., 1990]. This choice was made for efficiency reasons. Aside from

being more compact, the “shift” representation will speed up common oper-

ations like composition and inversion. The shift operator is written ↑c,k. Its

argument(s) describe the context we are shifting over. For example, for a con-

text Φ of length n+k and a context Ψ, a prefix of Φ of length n, both containing

no context variable, we would have something like this:

∆; Φ `↑0,k⇐ Ψ

From this formulation, a natural question would be whether or not k can be

negative, if we were to switch the domain and range, for example. In this case,

the (inverse) substitution would not be defined. To avoid any misunderstanding,
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we treat this as a special case: we use Undef’s and restrict k to be positive. We

use Undef’s because it is sometimes meaningful to reason about a substitution

that is not completely defined, in the case of inverse substitution, for example.

However, trying to apply the undefined part of such a substitution would lead

to an error (i.e. no rule covers that, see appendix A.1). Because contexts

can also contain variables, the c argument will tell if we shift over a context

variable or not. This is because these variables eventually get replaced and we

have to adjust the substitution accordingly to the shape of the context that get

substituted for the variable. For example, given [[Ψ/ψ]](↑ψ,2) with Ψ of length

3 and not containing any context variable, the result would need to be ↑0,5

to keep the theory coherent. Finally, shift substitutions can then be extended

with normal terms or heads. Reasoning with DeBruijn indices, these extensions

are understood to be positional. Therefore, the substitution σ,M will replace

bound variable of index 0 with the term M .

We introduce right away an abbreviation for a frequently seen substitution:

Definition 1 (identity) id =↑0,0

4.2 Judgements

We have the usual type checking (resp. type synthesizing) judgement for normal

terms (resp. heads and spines). To that we add a judgement that checks

that a substitution σ has domain Ψ and range Φ. The theory is completed by

judgements for checking that a type is well-kinded and that kinds and contexts

are well-formed. To keep the presentation simple, the details on the latter three

are postponed to the appendix.

Having context variables around brings the question of whether we characterize

them as we characterize terms with types. This is indeed the case, and when

we substitute a context, we first check that it respects a given schema. This

matter is primarily a computation level issue — and outside the scope of this

thesis — so for the remainder of this thesis, we will only assume that contexts
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[[Ψ/ψ]] ↑c,k = ↑c,k if c 6= ±ψ
[[ · /ψ]] ↑±ψ,k = ↑0,k
[[ψ′/ψ]] ↑ψ,k = ↑ψ′,k

[[ψ′/ψ]] ↑−ψ,k = ↑−ψ′,k

[[(Ψ, A)/ψ]] ↑ψ,k = [[Ψ/ψ]] ↑ψ,k+1

[[(Ψ, A)/ψ]] ↑−ψ,k = ([[Ψ/ψ]] ↑−ψ,k),Undef
[[Ψ/ψ]](σ,M) = [[Ψ/ψ]]σ, [[Ψ/ψ]]M
[[Ψ/ψ]](σ,H) = [[Ψ/ψ]]σ, [[Ψ/ψ]]H
[[Ψ/ψ]](σ,Undef) = [[Ψ/ψ]]σ,Undef

Figure 4.1: Context variable substitution in substitution objects

are of a correct form whenever we replace a context variable. More details can

be found in [Dunfield and Pientka, 2009].

In practice, whenever we check a LF signature, we do it in sequence and check

that each constant refers to a well-formed kind or a well-kinded type. That

means that the corresponding judgements are the ones bootstraping the whole

process.

∆; Ψ ` (M,σ1)⇐ (A, σ2)

∆; Ψ ` H ⇒ (A, σ)

∆; Ψ ` (S, σ1) : (A, σ2)⇒ (P, σ)

∆; Ψ ` σ ⇐ Φ

4.3 Substitutions

We present right away some extension and results required by the new definition

of the ↑c,k substitution, because substitutions play such a fundamental role in

the typing rules.

4.3.1 Extension of context variable substitution

Since we keep track of context variables in our substitutions, we had to extend

the notion of context variable substitution defined in [Pientka, 2008].
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Coherently with our restriction that k must be positive, the substitution in a

negative context shift leads to the unrolling of an Undef instead of a decrement-

ing of k. Another remark is that we have to push the substitution into normal

terms and heads since they can contain nested (bound variable) substitutions.

The rules for context variable substitutions into normal terms and heads are

simple recursion on their structure until we encounter a (bound variable) sub-

stitution, so it is omitted here. The rest of the rules, presented in figure 4.1, are

what one would expect.

The following result states that this extension of context variable substitution

does not change anything to the well-formedness of bound variables substitu-

tions. Again, to stay completely formal, we have to make sure that the context

we are substituting is of the correct form (schema).

Lemma 2 (Stability of substitution under context variable substitution)

Given a context Ψ′′ of the correct form to substitute for ψ

If ∆; Ψ′ ` σ ⇐ Ψ

then [[Ψ′′/ψ]]∆; [[Ψ′′/ψ]]Ψ′ ` [[Ψ′′/ψ]]σ ⇐ [[Ψ′′/ψ]]Ψ

Proof: By induction on the length of the derivation.

The interesting cases are the ones with the negative context shift. The substi-

tution could possibly result in unrolling a series of Undef’s that we will want to

check against some types. It is standard practice [Pierce, 1997] to understand

bottom (⊥, the type of Undef) as a subtype of any type.

The full proof is given in appendix A.5.

4.3.2 Composition

Composition is a very common operation on substitutions. The typing rules we

give next will depend on it. We write the composition of σ1 and σ2 as:

σ1 ◦ σ2 = σ
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In the typing rules, we often use the dot1 abbreviation. This abbreviation

encompasses a simple intuition: whenever we substitute under a binder, we

want to avoid capture and have no effect on the newly introduced variable.

These are the reasons behind the ↑0,1 and . . . , 1 parts in the definition.

Definition 3 (dot1 σ)

If Ψ′ ` σ ⇐ Ψ then Ψ′, clo(A, σ) ` (σ◦ ↑0,1), 1 ⇐ Ψ, x:A and we write dot1 σ

for (σ◦ ↑0,1), 1.

Back to composition, one must first remark that, because of the way substitu-

tions are checked, they are always defined in the scope of at most one context

variable. So if σ1 and σ2 would both refer to a context variable, it has to be the

same for σ to be defined.

When we define composition, we maintain the following invariant:

Lemma 4 (Invariant of composition) If Ψ ` σ1 ⇐ Ψ1 and Ψ2 ` σ2 ⇐ Ψ

then Ψ2 ` σ1 ◦ σ2 ⇐ Ψ1.

Proof: By induction on (see appendix A.5.1)

1. the structure of σ1

2. the structure of σ2

3. the value of the shift indices

The definition of composition in figure 4.2 is quite straightforward, if not for

the abundance of base cases. We remark that composition is not defined for all

possible syntactic cases. For example, in

↑ψ,0 ◦ (σ2, H)

it would not make sense to substitute a head for the “first elements” of the

range of ↑ψ,0 since this range can only be the context variable ψ.
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id ◦ σ2 = σ2

↑0,k ◦ ↑0,k′
= ↑0,k+k′

↑ψ,k ◦ ↑0,k′
= ↑ψ,k+k′

↑−ψ,k ◦ ↑0,k′
= ↑−ψ,k+k′

↑−ψ,0 ◦ ↑ψ,k′
= ↑0,k′

↑ψ,0 ◦ ↑−ψ,k′
= ↑0,k′

↑c,k+1 ◦ (σ2, H) = ↑c,k ◦ σ2

↑c,k+1 ◦ (σ2,Undef) = ↑c,k ◦ σ2

↑c,k+1 ◦ (σ2,M) = ↑c,k ◦ σ2

(σ1,M) ◦ σ2 = (σ1 ◦ σ2, [σ2]M)
(σ1, H) ◦ σ2 = (σ1 ◦ σ2, [σ2]H)
(σ1,Undef) ◦ σ2 = (σ1 ◦ σ2,Undef)

Figure 4.2: Composition of substitutions

Lemma 5 (Associativity of composition) When these compositions are de-

fined, they are equal:

σ1 ◦ (σ2 ◦ σ3) = (σ1 ◦ σ2) ◦ σ3

Proof: Induction on the structure of σ1, then σ2 (see appendix A.5.1).

4.3.3 Inversion

Another common operation on substitution is inversion. It is needed, amongst

other things, in unification, which we rely on in the reconstruction algorithm

we present in the next chapter.

Such an inversion however, is only fully defined for substitutions that map each

variable of their domain to a different variable of their range. These substitu-

tions are called pattern substitutions [Miller, 1991]. Indeed, if a substitution

maps many different variables to the same image i, there won’t be a unique

choice for what we want to substitute for i in the inverse substitution.

To cover the greatest number of cases, we will assume a pre-phase of η-contraction

on the substitution elements. This operation is introduced fully in the next
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(σ, x)/,k = (σ)/,k+1

(σ,Undef)/,k = (σ)/,k+1

(↑c,k)/,k′ = (↑−c,k′
).,k

(σ).,0 = σ

(σ).,k =
{

(σ, i).,k−1 if σ0 =↑c,k′
, . . . , xi+1, k, xi−1, . . .

(σ,Undef).,k−1 otherwise

Figure 4.3: Inversion of substitutions

chapter, but intuitively, it contracts terms of the form

λ. . . . .λ.f · 1 2 . . . n

into the unique variable f , where n is the length of the λ prefix. That way, the

substitution

↑0,0;λx.f · x

will have an inverse. We also allow the substitution to contain Undef’s for

reversibility of the operation. The rules in figure 4.3 give the right inverse.

Definition 6 (inverse) σ−1 = (σ)/,0

Inversion of a substitution happens in two phases. The first phase (we identify it

with /) counts the number of variables appearing before we hit the base (↑c,k)

substitution. We then invert the variable count with the shift index k. The

second (.) phase then creates a series of k terms, either relating them to their

preimage under the original substitution σ0 or setting them to Undef.

In practice, the operation of looking into σ0 can be done in constant time by

building up a global array in the first (/) phase of inversion.

Lemma 7 If Ψ ` σ ⇐ Φ then Φ ` σ−1 ⇐ Ψ

Proof: By induction on the size of Φ then on k (see appendix A.5.2).
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∆; Ψ, clo(A, σ2) ` (M, dot1 σ1)⇐ (B, dot1 σ2)
∆; Ψ ` (λ.M, σ1)⇐ (ΠA.B, σ2)

∆; Ψ ` H ⇒ (A, σ) ∆; Ψ ` (S, σ1) : whnf(A, σ)⇒ (P ′, σ′1) (P ′, σ′1) ' (P, σ2)
∆; Ψ ` (H · S, σ1)⇐ (P, σ2)

Figure 4.4: Typing rules for normal terms

Lemma 8 If σ is a pattern substitution, we have:

1. σ ◦ σ−1 = id

2. (σ−1)−1 = σ

Proof: Straightforward from the definition, using an observation on pattern

substitutions (see appendix A.5.2).

Lemma 9 Composition and inversion terminate.

Proof: By structural induction on σ1 and σ2 and σ respectively.

Composition iterates over the structure of σ1 and then, over the structure of σ2,

both of which are finite. Therefore, composition terminates.

Inversion iterates over the structure of σ and then, over the shift index k, both

of which are finite and therefore, inversion terminates. �

4.4 Typing rules

With the substitution properties established, we are now ready to present the

typing rules for Beluga’s object layer. We present first the rules for well-typed

normal terms.

A notable feature of these rules is the use of closures to delay a substitution. The

rules assume that (M,σ1) and (A, σ2) are in weak head normal form (defined in
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Σ(c) = A

∆; Ψ ` c⇒ (A, id)
Ψ(x) = (A, ↑0,x)

∆; Ψ ` x⇒ (A, ↑0,x)
∆(u) = A[Φ] ∆; Ψ ` σ ⇐ Φ

∆; Ψ ` u[σ]⇒ (A, σ)

Figure 4.5: Typing rules for heads

appendix A.1), meaning that closures are pushed inside the term “far enough

to allow us to see its shape”. Concretely, whnf is a linear operation on the size

of σ that checks if there are redexes at the outermost level and resolve them

by composing delayed substitutions. As stated before, this makes for a more

efficient implementation because the hereditary substitution potentially need to

traverse the whole term. For clarity purpose, we only mention the operation

when it’s called in a way that is not obvious from the setting.

One might also note that neutral terms (i.e. terms that are not λ-abstractions)

will always be of atomic type, so heads will always appear with a complete spine.

We use ' to denote convertibility between two terms. This convertibility is ba-

sically η-convertibility under their respective substitutions, computed in a lazy

way (in the implementation, we also have to ignore names and other informa-

tions kept around for error-printing purpose).

The rules for heads are quite straightforward. One must note that, since we

work with indices, Ψ(x) means “take the x-th element from context Ψ. Because

the resulting type A does not depend on the newer declarations, we must shift

it by the index of the variable x (i.e. the number of newer declarations). This is

however not the case for meta-variables, as the substitution σ is a bound variable

substitution and not a meta-variable substitution. Constants are internally

referred to with unique identifiers.

Figure 4.7 presents the various base cases for the shift construct. One notable

case is the unroll rule that creates a new bound variable in the substitution

while incrementing the shift index. The restriction of this rule to cases without

context shift is actually an important one. Otherwise, we would allow substitu-
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∆; Ψ ` (nil, σ1) : (P, σ2)⇒ (P, σ2)

∆; Ψ ` (M,σ1)⇐ (A, σ2) ∆; Ψ ` (S, σ1) : whnf(B, (σ2; clo(M,σ1)))⇒ (P, σ)
∆; Ψ ` (M S, σ1) : (ΠA.B, σ2)⇒ (P, σ)

Figure 4.6: Typing rules for spines

· `↑0,0⇐ · ψ `↑0,0⇐ ψ ψ `↑ψ,0⇐ · · `↑−ψ,0⇐ ψ

Ψ `↑c,k⇐ ·
Ψ, A `↑c,k+1⇐ ·

Ψ `↑c,k⇐ ψ

Ψ, A `↑c,k+1⇐ ψ

Ψ′ `↑0,k+1, k + 1⇐ Ψ, A k ≥ 0
Ψ′ `↑0,k⇐ Ψ, A

unroll

Ψ′ ` σ ⇐ Ψ Ψ′ ` H ⇒ (A′, σ′) (A′, σ′) ' (A, σ)
Ψ′ ` σ,H ⇐ Ψ, A

Ψ′ ` σ ⇐ Ψ
Ψ′ ` σ,Undef ⇐ Ψ, A

Ψ′ ` σ ⇐ Ψ Ψ′ ` (M, id)⇐ (A, σ)
Ψ′ ` σ,M ⇐ Ψ, A

Figure 4.7: Typing rules for substitutions
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tions of this form (variable names written in for explicitness)

ψ, xk:Ak, . . . , x1:A1 `↑ψ,0⇐ xk:Ak, . . . , x1:A1

While this seems sensible at first — each variable xi get shifted by 0 and thus

maps to xi — substituting a context for ψ could introduce new declarations to

the right of the k declarations already there. In the absence of the domain/range,

it would be impossible to infer k when substituting (for a context variable) into

the substitution, and therefore, keep the shift index meaningful. The solution

is to force the substitution to always be unrolled — (↑ψ,k, k, . . . , 1) instead of

↑ψ,0 in this case — at the cost of space and some efficiency.

As expected, the following holds:

Lemma 10 ∆; Ψ ` id⇐ Ψ

Proof: By induction on the length of Ψ.

Theorem 11 Type checking for object-level Beluga terminates.

Proof: By induction on the structure of the various syntactic objects using

lemma 9 and the termination of weak head normalization (based on the termi-

nation of hereditary substitution).

Type-checking for object level Beluga is syntax directed and relies on operations

of convertibility (which is also syntax directed) and weak head normalization

(which is linear on the size of the substitution). We could use the unroll (and

the equivalent rule in convertibility) to expand a substitution indefinitely, but

we only do it when no other case applies. From these facts, it is easy to see that

type-checking for object level Beluga does terminates. �
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Chapter 5

Type reconstruction

In this chapter, we present an algorithm to perform type reconstruction on

Beluga’s user-level syntax. Since the internal syntax uses a DeBruijn index

representation for variables, a first phase is to translate bound variables from

names to indices. On the other hand, the algorithm uses a named representation

for free variables and meta-variables are implemented via references. They are

replaced by bound variables in the very last phase of reconstruction.

We keep up with the practice introduced in the last chapter of only character-

izing fully applied neutral terms. As we do not want to impose the burden of

writing η-expanded forms on the user, our algorithm will have to reconstruct

these, if needed. This is useful in practice as it allows the user to write terms

more compactly when the explicit form of a function is not wanted. Also, we

always create meta-variables of atomic type; this can be achieved with lowering.

This way, we will not have to re-normalize when we substitute a term for a

meta-variable that is associated with a pattern substitution.

We follow the same presentation as before, introducing the syntax, judgements

and rules, together with supporting judgements for η-conversion and lowering.

We then present various supporting lemmas and conclude the chapter with the

soundness statement for our algorithm.
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5.1 Syntax

The user-level syntax for the object layer, as found in the signature of a Beluga

program, is omitted as it is not very interesting. For readability, bound variables

are referred by name and non-dependent products are written using the arrow

(->). For example, an explicit version of the composition operator from Chapter

2:

@ : {A:obj} {B:obj} {C:obj} mor B C -> mor A B -> mor A C.

would be parsed as

@ : Πobj.Πobj.Πobj.Πmor 2 1.Πmor 4 3.mor 5 3

This shows the necessity of having a user syntax even if the translation to

implicit syntax is quite straightforward.

The following picture shows the interpretation process:

The syntax we present here is the output of the indexing phase, so the binders

are already written without names and we omit details about syntactic sugar.

We call this one the implicit syntax. One thing to note is that we allow the user

to write “holes”, written “ ”, in the place of a normal term. This allows the

user to benefit from the reconstruction by omitting some information when it

can be reconstructed.
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Implicit syntax

Implicit Kinds k ::= type | Πa.k

Implicit Types a, b ::= p | Πa.b

Implicit Atomic types p ::= a · s

Implicit Normal terms m,n ::= λ.m | h · s |

Implicit Head h ::= c | x | X

Implicit Spine s ::= nil | m s

Next, we present the internal or explicit syntax for Beluga’s object layer. This

syntax adds in meta-variables and free variables. In our setting, meta-variables

will always be of base type, so they will not appear with a spine. Υ is an un-

ordered context that describes meta-variables. Free variables are very similar

to bound variables, except for the fact that they will be referred by name and

will appear in the unordered context Φ. Those contexts are unordered because,

even if free variables and meta-variable will be introduced in an ordered man-

ner, we will use unification to instantiate some of the meta-variables, and thus

the ordering might need to change. Implicit arguments and free variables are

eventually made explicit at the constant level in the explicit syntax (we recon-

struct one constant type/kind at a time). For this reason the explicit signature

features a number i attached to each constant that will give us the number of

its arguments that are implicit.
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Explicit syntax

Kinds K ::= type | ΠA.K

Atomic types P,Q ::= a · S

Types A,B ::= P | ΠA.B

Normal Terms M,N ::= λ.M | R

Neutral Terms R ::= H · S | u[σ]

Head H ::= c | x | X

Spines S ::= nil |M S

Substitutions σ ::= ↑c,k| σ,M | σ, x

Contexts Ψ ::= · | Ψ, A

Free variable contexts Φ ::= · | Φ, X:A

Meta-contexts Υ ::= · | Υ, u::P [Ψ]

Signature Σ ::= · | Σ, a:(K, i) | Σ, c:(A, i)

5.2 Judgements

For the sake of clarity, we introduce the reconstruction judgements with omit-

ted ∆ contexts. Context variables and meta-variables cannot happen in the

signature, but when we will reconstruct object level terms embedded into a

Beluga function, they could be present. This is the reason why the shift sub-

stitution (↑) still mentions contexts variables in the syntax. However, having

bound meta-variables (as added in the computation layer) would also mean that

the meta-variables we instantiate for fill in missing arguments could depend on

variables in ∆. Thus, their type should be generalized to something of the

form A[Ψ; ∆] and these meta-meta-variables (or meta2 variables) would live on

a higher level than the bound meta-variables accessible to the user. Because we

concentrate on the object layer, we make the simplification that ∆ will always

be empty and therefore, our meta-variables will only have to depend on the

ordinary bound variable context Ψ. Therefore, the rules for meta-variables as
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stated in the previous chapter stay valid.

For our presentation needs, we only mention reconstruction rules for normal

terms and spines. Other rules follow a similar pattern and are given in appendix

B.3. Taking the judgement for normal term as an example, we read it like this:

in contexts Υ1; Φ1; Ψ, implicit term m checks against explicit type (A, σ) and

reconstructs to M , updating contexts Υ1 and Φ1 in the process and generating

the contextual (i.e. meta-variables) substitution ρ. The judgement for spines

follows the same pattern.

The third judgement is called when we encounter a constant that has implicit

arguments. It will accomplish the same thing as the judgement for spines,

but will also introduce i meta-variables before doing so, to create an explicit

spine of the correct form. These meta-variables will have the possibility to be

instantiated later to make sure the whole term is well-typed and the ones left

at the end of reconstruction will then be abstracted at the constant level as

implicit arguments in their turn.

The fourth judgement will be used when we need to infer a type for a free

variable when we first encounter it. Because we can only reconstruct the type

of a free variable if s is a pattern spine (i.e. a spine composed of distinct bound

variables), the judgement makes that assumption. To cover more cases, it is

enough for s to be η-convertible to a pattern spine.

Υ1; Φ1; Ψ ` m ⇐ (A, σ) /ρ (Υ2; Φ2;M)

Υ1; Φ1; Ψ ` s : (A, σ1) ⇐ (P, σ2) /ρ (Υ2; Φ2;S)

Υ1; Φ1; Ψ `i s : (A, σ1) ⇐ (P, σ2) /ρ (Υ2; Φ2;S)

Υ1; Φ1; Ψ ` s ⇐ (P, σ) / ((A, σ);S)

Throughout reconstruction, we maintain the invariant that contexts, contextual

substitutions and types are well-formed:
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`Φ1 Υ1 mctx

Υ1 ` Φ1 fctx

Υ1; Φ1 ` Ψ ctx

Υ1; Φ1; Ψ ` (A, σ) ⇐ type

Υ1; Φ1; Ψ ` (P, σ) ⇐ type

`Φ2 Υ2 mctx

Υ2 ` Φ2 fctx

Υ2 `Φ2 ρ ⇐ Υ1

Proof: By induction on the reconstruction derivation (appendix B.4.1).

An interesting fact to note here is that ρ’s are ultimately generated by unification

and could introduce circular dependencies amongst meta-variables. This is the

main reason behind the unordering of the Υ and Φ contexts. Consequently,

contextual substitutions ρ are not defined incrementally (see appendix): each

of their element must make sense in the substitution’s range Υ2. That way,

it is possible to define a typing judgement for these substitutions, it will still

make sense to apply them — they will produce well-typed objects — and we

are assured that the operation will terminate, even in the presence of circular

dependencies.

5.3 η-conversion

Our reconstruction algorithm allows the user to write terms in either η-expanded

or η-contracted form. For example, for a bound variable x of functional type, a

user could write only x instead of

λyn. . . . .λy1.x · yn . . . y1
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Ψ, clo(A, σ) `i+1 expand y : (B, dot1 σ) / M
Ψ `i expand y : (ΠA.B, σ) / λ.M

Ψ ` y ⇒ (A, ↑0,y) Ψ `i expand (A, ↑0,y)⇒ (P, σ) / S
Ψ `i expand y : (P, σ) / y · S

Ψ `0 expand i : (A, σ1) / M Ψ `i−1 expand (B, (σ1; clo(M, id)))⇒ (P, σ2) / S
Ψ `i expand (ΠA.B, σ1)⇒ (P, σ2) / M S

Ψ `0 expand (P, σ)⇒ (P, σ) / nil

Figure 5.1: Rules for η-expansion of terms

avoiding to write redundant and cumbersome code.

Another use for η-equivalent forms is when we have to infer the type of a free

variable (fig. 5.6). Because we only infer free variable types from a pattern

spine, it is worth it to check if a variable was written in its η-expanded form, to

cover more cases.

The judgements for η-expansion and contraction are:

Υ; Φ; Ψ `i expand x : (A, σ) / M

Υ; Φ; Ψ `i expand (A, σ1)⇒ (P, σ2) / S

contracti m / x

contracti s

The idea behind the judgements for expansion is to count the length of the Π

prefix and then create λ prefix and a spine of the correct form and length. We

keep up with the explicit substitution notation and, for clarity purpose, the

rules do not feature Υ and Φ since they will be constant. The rules are given

in figure 5.1.

η-contraction works the other way, counting the length of the λ prefix and

recursively applying contraction to the spine before checking that it is of the

correct form/length. If so, contraction returns the head (bound variable) of
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contracti+1 m / x

contracti λ.m / x

contracti s

contracti x · s / x

contract0 nil

contract0 m / i contracti−1 s

contracti (m s)

Figure 5.2: Rules for η-contraction of terms

the λ-abstraction body. One notes that, contrarily to expansion, contraction is

not type-directed. This is because we do not have access to the bound variable

before we actually do the contraction. This has the consequence of “accepting”

a term of the form

λy2.λy1.x · y2 y1 nil

for a variable x of type ΠA.P . However, the correctness of the contraction

can be verified afterwards, by checking that the lambda prefix length is less or

equal to the length of the Π prefix of the variable’s type. This is easily done

in the implementation (i.e. by doing a second pass), but to avoid putting this

additional burden on the presentation, we will not mention it further. The rules

for η-contraction are given in figure 5.2.

One important property of η-expansion is that it produces well-typed terms.

The proof is quite straightforward and is found in the appendix.

Lemma 12 (Expansion produces well-typed term)

1. If (Υ; Φ) | Ψ `i expand x : (A, σ) / M

then Υ; Φ; Ψ ` (M, id)⇐ (A, σ).

2. If (Υ; Φ) | Ψ `i expand (A, σ1)⇒ (P, σ2) / S

then Υ; Φ; Ψ ` (S, id) : (A, σ1)⇒ (P, σ2).

Proof: Induction on the expansion derivation (see appendix B.4.2).

Another important property is that, whenever we have an η-expanded form,

we can substitute it for one occurrence of the original variable and the type
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checking judgement will still stand. We prove it for normal terms and spines,

but it is true for all judgements.

Note that the theorem is stated using eager substitution rules, so the contexts

in these rules are not exactly the same that the ones we use in the η-expansion

judgements because the later could contain closures. The former are therefore

normalized version of the output contexts and we use them as such in the proof,

even if we do not introduce the additional annotation in the statement.

Lemma 13 (η-expansion stable under substitution)

If Ψ `i expand x : (B, σ) / N with Ψ(x) = (B, ↑0,x) and

1. Υ; Φ; Ψ `M ⇐ A

2. Υ; Φ; Ψ ` S : A⇒ P

then

1. Υ; Φ; Ψ `M ′ ⇐ A

2. Υ; Φ; Ψ `M ⇐ A′

3. Υ; Φ; Ψ ` S : A′ ⇒ P

4. Υ; Φ; Ψ ` S′ : A⇒ P

Where M ′, A′ and S′ are the original terms where one occurrence of x has been

replaced by N .

Proof: By induction on the typing derivation (appendix B.4.2)

Corollary 14 Result 13 stands for the substitution of any number of occur-

rences of x.

Proof: By multiple application of lemma 13.
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u /∈ Υ
lower(Υ; Φ; Ψ ` (P, σ)) = (u[id];u::clo(P, σ)[Ψ])

lower(Υ; Φ; Ψ, clo(A, σ) ` (B, dot1 σ)) = (M ;u::P [Ψ′])
lower(Υ; Φ; Ψ ` (ΠA.B, σ)) = (λ.M ;u::P [Ψ′])

Figure 5.3: Rules for lowering

5.4 Lowering

To simplify the unification process, we would like to only compare meta-variables

of atomic type. Indeed, comparing two meta-variables applied to spines of

possibly different length would be awkward. This will also have the advantage

of avoiding to re-normalize whenever we instantiate a meta-variable, as we know

it will not create redexes if the meta-variable was associated with a pattern

substitution.

To achieve this, we will always create meta-variables of an atomic type. We call

lowering the type directed process in which we create a new meta-variable (of

atomic type) under a λ-prefix that will match the Π-prefix of the given type.

We write it:

lower(Υ; Φ; Ψ ` (A, σ)) = (M,u::P [Ψ′])

The rules are straightforward and given in figure 5.3.

Lemma 15 (Lowering)

If lower(Υ; Φ; Ψ ` (A, σ)) = (M ;u::P [Ψ′])

then Υ, u::P [Ψ′]; Φ; Ψ ` (M, id)⇐ (A, σ).

Proof: By structural induction on A (appendix B.4.2).

5.5 Reconstruction rules

The reconstruction rules for normal terms feature multiple things. Compared

to the rules written in the previous chapter, the rule for constants will also
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feature an additional element i that gives the number of implicit arguments

that are to be reconstructed. The user can also ask explicitely for a term to

be reconstructed by writing an underscore ( ), which is also translated to a

meta-variable in the internal syntax.

When we encounter a new free variable, we reconstruct its type by examining

the attached spine. The check that s is a pattern spine is to be understood

modulo η-conversion. We then prune the reconstructed type with the empty

substitution to make sure it does not depend on any bound variable in Ψ. After

that, we update the free variable context Φ. When the same free variable is

encountered later, it is treated in a way similar to a bound variable. We do not

need to shift the type we get from the free variable context Φ according to the

(bound variable) context Ψ because we made sure this type was closed before

inserting it in Φ.

Finally, the rule for checking a neutral term against a functional type will simply

create the appropriate λ-prefix and spine in a process akin to η-expansion, to

make sure a neutral term is always of atomic type.

The rules for λ-abstractions and bound variables are pretty much what one

would expect.

The reconstruction rules for spines are straightforward: we unify the types in

the base case and we do a recursion otherwise.

Synthesizing a type from a pattern spine is a little more complex. Although

we only return the expected type in the base case, the recursive case has more

steps to it. First, we contract the current spine element to a bound variable.

If this step fails, then we are not in the presence of a pattern spine and we

cannot reconstruct a type. This could be done in a previous separate check,

but the principle would be the same (and efficiency would suffer by having to

traverse the spine twice). As stated before, given how our contraction is not

type directed, we could make a wrong term right in this process. This can be

avoided by doing a second, type directed contraction, once we get the type of

the contracted variable. We then expand the variable back, to ensure that all

variables of functional type will be fully η-expanded in the internal syntax. One
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Υ1; Φ1; Ψ, clo(A, σ) ` m⇐ (B, dot1 σ) /ρ (Υ2; Φ2;M)
Υ1; Φ1; Ψ ` λ.m⇐ (ΠA.B, σ) /ρ (Υ2; Φ2;λ.M)

h′ = [↑0,n]h s′ = [↑0,n]s σi−1 = dot1 σi A′i = clo(Ai, σi)
Υ1; Φ1; Ψ, A′n, . . . , A

′
1 ` h′ · (s′@((n · nil) . . . (1 · nil)nil))⇐ (P, σ0) /ρ (Υ2; Φ2;R)

Υ1; Φ1; Ψ ` h · s⇐ (ΠAn . . . A1.P, σn) /ρ (Υ2; Φ2;λ. . . . λ.R)

Σ(c) = (A, i) Υ1; Φ1; Ψ `i s : (A, id)⇐ (P, σ) /ρ (Υ2; Φ2;S)
Υ1; Φ1; Ψ ` c · s⇐ (P, σ) /ρ (Υ2; Φ2; c · S)

Ψ(x) = (A, ↑0,x) Υ1; Φ1; Ψ ` s : (A, ↑0,x)⇐ (P, σ) /ρ (Υ2; Φ2;S)
Υ1; Φ1; Ψ ` x · s⇐ (P, σ) /ρ (Υ2; Φ2;x · S)

X /∈ Φ1 s is a pattern spine
Υ1; Φ1; Ψ ` s⇐ (P, σ) / ((A, σ1);S) Υ1; Φ1; Ψ ` (A, σ1) | [·]−1 ⇒ (Υ2; ρ)

Υ1; Φ1; Ψ ` X · s⇐ (P, σ) /ρ (Υ2; [[ρ]]Φ1, X : [[ρ]]clo(A, σ1); [[ρ]](X · S))

Φ1(X) = A Υ1; Φ1; Ψ ` s : (A, id)⇐ (P, σ) /ρ (Υ2; Φ2;S)
Υ1; Φ1; Ψ ` X · s⇐ (P, σ) /ρ (Υ2; Φ2;X · S)

Υ1; Φ1; Ψ ` ⇐ (P, σ) /id(Υ1) (Υ1, u::clo(P, σ)[Ψ]; Φ1;u[id])

Figure 5.4: Reconstruction for normal terms

Υ1; Φ1; Ψ ` (a · S′, σ1) + (a · S, σ2) / (ρ; Υ2)
Υ1; Φ1; Ψ ` nil : (a · S′, σ1)⇐ (a · S, σ2) /ρ (Υ2; [[ρ]]Φ1; nil)

Υ1; Φ1; Ψ ` m⇐ (A, σ1) /ρ1 (Υ2; Φ2;M)
Υ2; Φ2; [[ρ1]]Ψ ` s : ([[ρ1]]B, ([[ρ1]]σ1;M))⇐ [[ρ1]](P, σ2) /ρ2 (Υ3; Φ3;S)

Υ1; Φ1; Ψ ` m s : (ΠA.B, σ1)⇐ (P, σ2) /ρ1◦ ρ2 (Υ3; Φ3; [[ρ2]]M S)

Figure 5.5: Reconstruction for spines
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Υ1; Φ1; Ψ ` nil⇐ (P, σ) / ((P, σ); nil)

contract0 m / x Ψ(x) = (A, ↑0,x) Ψ `0 expand x : (A, ↑0,x) / M
Υ1; Φ1; Ψ ` s⇐ (P, σ) / ((B, σ′′);S) σ′ =↑0,x+1, 1, x, . . . , 1

Υ1; Φ1; Ψ ` m s⇐ (P, σ) / ((Πclo(A, ↑0,x).clo(B, σ′′◦ ↑0,1 ◦ σ′), id);M S)

Figure 5.6: Synthesize type from pattern spine

must note that contraction and expansion are not exactly dual here, even in the

presence of well-typed terms. In fact, for a variable x of type ΠAk. . . . .ΠA1.P ,

we allow the user to write anything between x and λ . . . λ.x where the λ prefix

is of length less or equal to k.

The type we return in the end is a Π abstraction over the type of x. While we

know that x will be in Ψ, we have no guarantee that x will of index 1. To make

sure of that we first shift (B, σ′′) by 1, to avoid capture by the Π binder. We

then adjust the x variable to be of index 1 (it will be the only one), leaving all

the other unchanged. This is the idea behind the seemingly complicated σ′.

The last set of rules is for the reconstruction of missing arguments. We simply

recurse over the argument i to fill in the right number of holes. In the process,

we use the lowering judgement to make sure meta-variables are of base type, so

the holes are filled with either a meta-variable or an equivalent form with a λ

prefix and longer substitution.

We also note that the substitution we get from the recursive call will refer to

u, so we have to remove this part from substitution we return to preserve the

reconstruction invariant.

We are now ready to state the soundness result for our reconstruction algorithm.

Theorem 16 (Soundness of reconstruction)

1. If Υ1; Φ1; Ψ ` m⇐ (A, σ) /ρ (Υ2; Φ2;M)

then Υ2; Φ2; [[ρ]]Ψ `M ⇐ [[ρ]][σ]A.

2. If Υ1; Φ1; Ψ `i s : (A, σ1)⇐ (P, σ2) /ρ (Υ2; Φ2;S)
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Υ1; Φ1; Ψ ` s : (A, σ1)⇐ (P, σ2) /ρ (Υ2; Φ2;S)

Υ1; Φ1; Ψ `0 s : (A, σ1)⇐ (P, σ2) /ρ (Υ2; Φ2;S)

lower(Υ1; Φ; Ψ ` (A, σ1)) = (M,u::Q[Ψ′])
Υ1, u::Q[Ψ′]; Φ1; Ψ `i−1 s : (B, (σ1;M))⇐ (P, σ2) /ρ (Υ2; Φ2;S)

Υ1; Φ1; Ψ `i s : (ΠA.B, σ1)⇐ (P, σ2) /ρ \ (R/u) (Υ2; Φ2; [[ρ]]M S)

Figure 5.7: Reconstruction of missing arguments

then Υ2; Φ2; [[ρ]]Ψ ` S : [[ρ]][σ1]A⇒ [[ρ]][σ2]P .

3. If Υ1; Φ1; Ψ ` s : (A, σ1)⇐ (P, σ2) /ρ (Υ2; Φ2;S)

then Υ2; Φ2; [[ρ]]Ψ ` S : [[ρ]][σ1]A⇒ [[ρ]][σ2]P .

4. If Υ1; Φ1; Ψ ` s⇐ (P, σ2) / ((A, σ1);S)

and s is a pattern spine

then Υ1; Φ1; Ψ ` S : [σ1]A⇒ [σ2]P

and Υ1; Φ1; Ψ ` [σ1]A⇐ type.

Moreover, in the first 3 cases, we have:

[[ρ]]Φ1 ⊆ Φ2 and Υ2 `Φ2 ρ⇐ Υ1 and Υ2 ` Φ2 fctx and `Φ2 Υ2 mctx

Proof: By structural induction on the reconstruction judgment.

The underlying idea is that a reconstructed term will always be type correct

under the updated contexts. The result is written in terms of eager substitution

because our algorithm introduces η-expanded form. That would prevent us

from comparing two types for equality or even convertibility. Fortunately, the

problem goes away when the substitutions are applied either because hereditary

substutition collapses η-expanded form (in the case of non nil spine) or simply

because the η-expansion produces well-typed terms (lemma 12).

The full proof can be found in appendix B.4.3, together with the typing rules

for eager substitution form. The theorem holds for types and kinds as well, but

this part is omitted because it follows a pattern very similar to what is already

there and brings no additional understanding.
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Another note is that the contexts we get from reconstruction are again not

exactly the same that we use in the judgements in eager substitution form. The

later are normalized version (we use them as such in the proof).

The theorem in itself is quite simple: it goes over the various reconstruction

judgements and says that the reconstructed terms will be well-typed. In addi-

tion, when we generate the type for a free variable from a pattern spine, this

type will be well-kinded. Finally, the meta-variable substitution ρ that we gen-

erate will preserve the well-formedness of contexts. The subset relation between

[[ρ]]Φ1 and Φ2 exist because new free variables could be collected in the process.

5.6 Abstraction

Once a term has been reconstructed, we have to get rid of the context it depends

on. This is done in a phase we call abstraction. The idea is to unroll the Υ

and Φ contexts as a Π prefix for the reconstructed terms and kinds (signatures

consist of constants annotated with their type/kind).

The first issue with abstraction is that Υ and Φ are not ordered. In fact, our

implementation does not deal with these contexts explicitely. Instead we use

side effects and global data. With that in mind, the first step of abstraction

is to traverse a term to first collect all the variables of Υ and Φ. We use a

simple algorithm, similar to a depth-first search, that will only collect a variable

if we already have all it’s dependencies. We keep track of variables that we

encountered but did not collect yet to avoid running into infinite loop in case of

circular dependencies. If we cannot find such an ordering, we fail.

We then do a second pass in which we transform free variables and meta-

variables to bound variables, indexing them according to their position in the

contexts. In the case of meta-variables, we also have to transform the substi-

tution to a spine that will be attached to the bound variable. This is just a

matter of unrolling the substitution if needs be, η-expanding bound variables in

the process. This step needs to be type directed to know when to stop unrolling

a shift substitution.
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Once this is done, the rest is just a matter of transforming the (bound variable)

contexts Υ and Ψ into a Π prefix for a given type or kind. We will also keep the

number of implicit arguments (i.e. the number of variables in the two contexts)

with the constant’s type/kind.

60



Chapter 6

Related work

To allow its users to use them efficiently, most dependently typed systems in-

clude some form of type reconstruction. Understanding this problem is an im-

portant step towards incorporating the technology into mainstream languages.

However, because it is often seen as syntactic sugar, the theoretical implication

of type reconstruction are sometimes overlooked. In this chapter, we explore

how type reconstruction is implemented in various other proposal out there.

6.1 Cayenne

The main design choice behind Cayenne [Augustsson, 1998] is the mixing of

dependent types with full recursion. This allows for a “simpler” language (terms

and types are not distinct), but leads to undecidability of type checking. The

prototype has some kind of type reconstruction which is described as a “syntactic

device without any deep semantic properties”. While the syntax tried to stay

close to LEGO’s, the reconstruction algorithm is described as “quite weak” and

needing to move to “a more powerful method that introduces meta-variables

[...] and unification” [Augustsson, 1998]. However, the undecidability of type

checking prevents reconstruction from having any guarantee on which term can

be reconstructed. The language does not support HOAS either.
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6.2 LEGO family

As mentioned before, early ideas on type reconstruction came from Pollack’s

work on LEGO [Pollack, 1990]. This work introduces the notion of placeholders,

or meta-variables. These placeholders then get instantiated in a process called

“mixed prefix unification” [Miller, 1992] that takes into account the bound vari-

ables into which scope the meta-variable appear, not unlike the CMTT approach

of writing a meta-variable together with a closure. He then describes an implicit

function space that is used to infer the placeholders automatically. However, it

differs from our approach in that the user is always allowed to supply implicit

arguments explicitly by a syntactic annotation.

Another difference is that the implicit function declaration needs to be anno-

tated with its input type, where we do infer the type of free variables. However,

LEGO’s polymorphism allows meta-variables to stand in for types, and this

achieves a result that is not far from our use of free variables in terms of syn-

tactic redundancy.

A soudness claim is made about the reconstruction process in LEGO but the

algorithm itself is not given.

Epigram’s implicit syntax is strongly inspired by LEGO’s. In [McBride, 2005],

it is claimed to be different, in that it has a separate implicit function space,

yet they impose a requirement to segregate this function space when doing re-

construction. It is not clear what this implicit function space achieves exactly.

A more general remark is that even if Epigram is presented as a functional

programming language, it still provides its user with the weaker structural re-

cursion [McBride, 2000] and doesn’t support reasonning over HOAS encoding,

thus is less expressive than full Beluga.

In turn, Agda’s [Norell, 2007] implicit syntax is mostly based on Epigram’s,

with a few syntactic variations as far as dependent types and reconstruction

are concerned. As its predecessors, it is polymorphic and has a limited form of

recursion to keep type checking decidable.
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6.3 Twelf family

Being the first implementation of the logical framework LF, Twelf approach to

type reconstruction — sketched in [Pfenning, 1991] — was the main inspiration

of our work. Like in our approach, Twelf allows its user to write constants which

type (or kind) contains free variables and, from that point on, reconstruct the

implicit quantifier and fills in missing arguments, with meta-variables, in the

later use of the constant. It does not allow the user to write implicit arguments

explicitly.

Twelf implementation differs from our approach in that they allow meta-variables

to stand for types, instead of just terms. Because of that, the actual algorithm is

decoupled in two phases: the first one determines the simply typed form of the

terms and, in a second pass, unification is used to instantiate meta-variables and

ensure that a term is dependently well-typed. While our implementation might

seem weaker than Twelf on that point, we implemented all the examples (that

did not use definitions or constraint solvers) of the Twelf library and the net

result was that we had to provide annotations in just a few cases. For example,

where Twelf had

({x: _} conv (M x) (M’ x))

we had to write

({x: term _} conv (M x) (M’ x))

which was not that much of a burden, since this does not make these annotations

heavier than the ones in a simply typed systems. Some other differences are:

• We only characterize β-normal forms while Twelf allows the user to write

terms containing redexes.

• We do not yet support arbitrary annotations.
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• We do not support definitions yet.

Delphin [Poswolsky, 2008] is similar to Beluga in spirit in that it proposes a

dependently typed language suitable for programming. It also uses LF as an

object layer, but does not re-implement reconstruction. Instead, it only reuses

the (mostly undocumented) reconstruction algorithm from Twelf, directly.

Celf [Schack-Nielsen and Schürmann, 2008] is an implementation of the the con-

current logical framework CLF [Watkins et al., 2002] which is itself a conserva-

tive extension of LF. As such, their prototype is similar in functionality to ours

in that it can read Twelf signatures, supports HOAS and performs reconstruc-

tion over dependent types. However, Celf’s focus is different from Beluga’s in

that it is primarily meant to model concurrent systems. At the moment, it does

not support much meta-level functionalities such as coverage and termination

checking or writing proofs in functional style. The high level ideas behind their

reconstruction are similar to ours but they do not provide a detailed description

of their algorithm.

SASyLF [Aldrich et al., 2008] is another LF implementation which purpose is

to bridge the gap between paper proofs and proof assistants. Because of that,

its syntax is very different from Twelf’s and closer to what a proof would look

like on paper. They also use a functional style instead of Twelf’s logic style

to write their proofs, thus being more similar to Beluga in that regard. The

prototype provides functionalities like holes and meta-variables but HOAS is

not fully supported. Since LF is used for data representation, there must be

some kind of (dependent) type reconstruction. However, it is not clear if and

how it is actually done as they give no technical description of their system.

They also make hypothetical judgements more evident by working with explicit

contexts. Their Java implementation being a completely new implementation of

LF, it would be interesting to compare to other proposals out there, but because

their syntax is so different, it is difficult to do in practise as the Twelf library

of examples is not easily (and not yet) translated in SASyLF.
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6.4 Nuprl

Nuprl is yet another dependently typed lambda-calculus. Although the original

system description predates Pollack’s work, newer version could have integrated

his ideas if they had seen fit. The system has meta-variables and allows the

user to omit some parts and use tactics to reconstruct some terms. However,

because type checking and type inference in Nuprl is “highly heuristic” [Felty

et al., 1998] and in general undecidable [Kreitz, 2002], there cannot be many

guarantees on whether and when a term can be reconstructed.

6.5 DML/ATS

DML’s [Xi, 1998] approach to integrating dependent types in functional pro-

graming is opposite to Cayenne’s in that the developers were quite conservative

in choosing to index their types only with natural numbers. This made for a

well-behaved system lacking in expressivity. DML’s successor ATS [Xi, 2004]

allows dependent types to be indexed by any data of simple type. While the

indexing domain is bigger than in DML, it is still quite limited compared to ours

in terms of expressivity. Also, this limitation has the effect of keeping the types

quite small in size and thus, the advantages of type reconstruction would not

be as significant in their setting. They do not seem to have any reconstruction

for now.

6.6 Coq

Coq is a proof assistant based on the calculus of inductive constructions [Paulin-

Mohring, 1993]. As such, it features dependent types and polymorphism. The

approach they take to the reconstruction of dependent types is similar to ours

in that they reconstruct the language to an explicit one. Similarly to LEGO’s,

their reconstruction algorithm works in two passes: one to infer placeholders

(meta-variables) and one to instanciate them. It is shown to be sound in [Säıbi,
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1999].

Their approach differs from ours however in the way they think about their

meta-variables. While they identify the need to know the context in which a

meta-variable is introduced, they do not formalize it in the way CMTT does.

This has the result of making their algorithms (unification, type inference) a

little less straightforward.

Another difference is how they treat free variables. The system they present

[Team, 2009] can infer automatically which arguments are reconstructible. The

task of defining the behaviour of different kinds of implicit variables is left to

the user. For example, argument N of the constant cons

cons: N:nat nat -> list N -> list (s N).

can be inferred from the second argument, so Coq will identify it as implicit.

However, the decision to infer N or not when cons is used will depend on which

option were set by the user. Also, since Coq allows constants to be partially

applied, cons could be understood as the constant itself or the constant applied

to the implicit argumentN . The burden of solving all these technical questions is

left to the user. Another example would be how to order the implicit arguments.

In our setting, this task is solved by abstraction while in Coq, the user always

has to at least name the “free variables”, so the system knows what their order

should be.
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Chapter 7

Conclusion

The goal of this thesis was to give a formal description on how to implement the

data layer of a dependently typed programming language. To motivate our work,

we first presented an example that showed how one could use dependent types

in a programming language (Chapter 2). Then we presented some theoretical

background (Chapter 3). The first contribution of this thesis was to describe how

to adapt ideas on spine calculus, explicit substitutions and De Bruijn indexing

to efficiently implement a dependently typed functional language that supports

reasonning over HOAS. The second contribution was to present an algorithm,

together with proofs of correctness, to reconstruct explicit dependent types from

a lightweight, user level, language.

In the course of our presentation, we compared our system to various other

proposals to show that our work is part of a genuine interest for dependent types,

while showing that we pushed the understanding of these one step further.

We tested our implementation on Twelf library of examples (the ones that did

not use definitions or constraint solvers). Dimitri Kirchner implemented timing

functions and our implementation showed similar timing results as Twelf for the

examples we tested it on. The Beluga prototype is available for download at

http://complogic.cs.mcgill.ca/beluga/
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7.1 Future work

The focus of this thesis was on Beluga’s data layer. There is some work left to

be done in order to have a fully working prototype, most of which is related to

the computational layer.

Computational level reconstruction Type reconstruction issues arise in

the computational layer when we pattern match over data with the “case” con-

struct. We identify three of them:

1. Synthesize branch type In a dependently typed setting, the different

branch patterns could have different types. This is the reason in [Pientka

and Dunfield, 2008] for branch annotation. However, it is often the case

that we can reconstruct these annotation.

2. Infer type for pattern variables Most of the time, the types of (free)

pattern variables can be reconstructed too.

3. Reconstruct missing arguments in patterns As before, we recon-

struct missing arguments for the data we examine. Arguments are filled

with meta2 variables because, as opposed to arguments in the signatures,

they could depend on bound meta-variables present in the ∆ context.

While most of these issues are addressed in the prototype, the theory backing

them is still missing.

Schema checking Beluga features variables that stand for context. Those

variables are characterized by schemas that specify what are the possible shapes

for the context elements. The computational layer will have to feature a mech-

anism for checking a context against a given schema.

Coverage checking In the presence of dependent types, checking that a Bel-

uga function covers all of its domain is not trivial. There is still some work to

do in that area [Dunfield and Pientka, 2009].
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Error messages While this is not a theoretical issue, in order to be useful

our prototype will have to include good error messages. We are confident that

our theory will provide the adequate framework to do so, but for the moment,

the message themselves are quite minimalist.
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Appendix A

Object level Beluga

A.1 Weak head normal form

whnf(λ.M, σ) = (λ.M, σ)
whnf(clo(M,σ1), σ2) = whnf(M,σ1 ◦ σ2)
whnf(u[σ1], σ2) = (u[σ1 ◦ σ2], id)
whnf(p[σ1], σ2) = (p[σ1 ◦ σ2], id)
whnf(c · S, σ) = (c · clo(S, σ), id)
whnf(X · S, σ) = (X · clo(S, σ), id)

whnf(x · S, σ) =
{

whnfRedex((M, id), (S, σ)) if [σ]x = M
(H · clo(S, σ), id) if [σ]x = H

whnfRedex(H · S, σ1)(nil, σ2) = whnf(H · S, σ1)
whnfRedex(λ.M, σ1)(N S, σ2) = whnfRedex(M, (σ1, clo(N, σ2)))(S, σ2)
whnfRedex(M,σ1)(clo(S, σ′2), σ2) = whnfRedex(M,σ1)(S, σ′2 ◦ σ2)
whnfRedex(clo(M,σ′1), σ1)(S, σ2) = whnfRedex(M,σ′1 ◦ σ1)(S, σ2)

We describe here the weak head normalization. This operation is used in the

context where we apply substitutions lazily. Instead of applying a substitution

on a whole term, weak head normalization only applies it on the outmost syn-

tactic level and pushes the substitution down one level by the mean of closures.

This way, we are able to see the shape of a term and the operation is efficient

(linear on the size of the substitution instead of the size of the term). Weak
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head normalization uses the notion of composition defined earlier in Chapter 4.

We mention here the weak head normal form of a term with a free variable (see

Chapter 5), as it will be needed later in reconstruction.

A.2 Convertibility

Next we give the rules for convertibility, needed for type checking. These rules

assume that we are working with weak head normal forms, so closures are not

mentioned explicitly and bound variables are convertible only if they are equal.

We use the dot1 notation defined in Chapter 4.
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Kinds

(A1, σ1) ' (A2, σ2) (K1, dot1 σ1) ' (K2, dot1 σ2)
(ΠA1.K1, σ1) ' (ΠA2.K2, σ2) (type, σ1) ' (type, σ2)

Types

(A1, σ1) ' (A2, σ2) (B1, dot1 σ1) ' (B2, dot1 σ2)
(ΠA1.B1, σ1) ' (ΠA2.B2, σ2)

(S1, σ1) ' (S2, σ2)
(a · S1, σ1) ' (a · S2, σ2)

Normal terms

(M1, dot1 σ1) ' (M2, dot1 σ2)
(λ.M1, σ1) ' (λ.M2, σ2)

(H1, σ1) ' (H2, σ2) (S1, σ1) ' (S2, σ2)
(H1 · S1, σ1) ' (H2 · S2, σ2)

Heads

(c, σ1) ' (c, σ2) (x, σ1) ' (x, σ2)
σ′1 ◦ σ1 ' σ′2 ◦ σ2

(u[σ′1], σ1) ' (u[σ′2], σ2)

Spines

(nil, σ1) ' (nil, σ2)
(M1, σ1) ' (M2, σ2) (S1, σ1) ' (S2, σ2)

(M1 S1, σ1) ' (M2 S2, σ2)

Substitutions
σ1 ' σ2

(σ1;M) ' (σ2,M)
σ1 ' σ2

(σ1, H) ' (σ2, H)
σ1 ' σ2

(σ1,Undef) ' (σ2,Undef)

↑c,k'↑c,k
↑c,k+1, k + 1 ' σ

↑c,k' σ
↑c,k+1, k + 1 ' σ

σ '↑c,k

Lemma 17

If (O1, σ1) ' (O2, σ2) then [σ1]O1 = [σ2]O2 for O ∈ {K,A,M,H, S}

Proof: By induction on the convertibility derivation.

Most of the cases are trivial and follow the simple pattern “inversion – induction

hypothesis – structural equality under a substitution”.
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Base cases happen when we compare constants, nil spines, base kind type and

bound variables. For the first three, they are only convertible if they are equal,

according to the rules, so the conclusion holds. In the bound variable case, we

must note that we are working with weak head normal forms, so the respective

substitutions are already applied, thus the conclusion holds.

For two meta-variables to be convertible, their respective substitutions must be

equal, so the conclusion holds by the fact that substitution is a deterministic

operation. �

A.3 Judgements

∆; Ψ ` K kind

∆; Ψ ` (A, σ)⇐ type

∆; Ψ ` (S, σ1) : (K,σ2)⇒ type

∆ ` Ψ⇐W

` ∆ mctx
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A.4 Typing rules

Kinds

∆; Ψ ` type kind

∆; Ψ ` (A, id)⇐ type ∆; Ψ, A ` K kind

∆; Ψ ` ΠA.K kind

Types

Σ(a) = K ∆; Ψ ` (S, σ1) : (K, id)⇒ type

∆; Ψ ` (a · S, σ1)⇐ type

∆; Ψ ` (A, σ)⇐ type ∆; Ψ, clo(A, σ) ` (B, dot1 σ)⇐ type

∆; Ψ ` (ΠA.B, σ)⇐ type

Type Spines

∆; Ψ ` (nil, σ1) : (type, σ2)⇒ type

∆; Ψ ` (M,σ1)⇐ (A, σ2) ∆; Ψ ` (S, σ1) : whnf(K, (σ2, clo(M,σ1)))⇒ type

∆; Ψ ` (M S, σ1) : (ΠA.K, σ2)⇒ type

Contexts

∆ ` · ctx
∆ ` Ψ ctx ∆; Ψ ` A⇐ type

∆ ` Ψ, A ctx

Meta Contexts

` · mctx

` ∆ mctx ∆ ` Ψ ctx ∆; Ψ ` (A, id)⇐ type

` ∆, A[Ψ] mctx

A.5 Proofs

Lemma 2 (Stability of substitution under context variable substitu-

tion)

Assuming stability of other type checking judgements and convert-

ibility under context variable substitution, and given a context Ψ′′ of
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the correct form to substitute for ψ, we have:

If ∆; Ψ′ ` σ ⇐ Ψ

then [[Ψ′′/ψ]]∆; [[Ψ′′/ψ]]Ψ′ ` [[Ψ′′/ψ]]σ ⇐ [[Ψ′′/ψ]]Ψ

Proof: By induction on the length of the first derivation. We prove the case

where ψ happens at least in one of Ψ′, σ and Ψ (other cases are trivially true).

Note that we omit ∆ contexts for clarity and we write “cvar” as an abbreviation

for “context variable”

Case · `↑0,0⇐ ·

[[Ψ′′/ψ]]· ` [[Ψ′′/ψ]] ↑0,0⇐ [[Ψ′′/ψ]]· def. of cvar substitution

Case ψ `↑0,0⇐ ψ

[[Ψ′′/ψ]]ψ `↑0,0⇐ [[Ψ′′/ψ]]ψ lemma 10

[[Ψ′′/ψ]]ψ ` [[Ψ′′/ψ]] ↑0,0⇐ [[Ψ′′/ψ]]ψ def. of cvar substitution

Case ψ `↑ψ,0⇐ ·

Subcase Ψ′′ = ·, Ak, . . . , A1

Ψ′′ `↑0,k⇐ · typing rule

[[Ψ′′/ψ]]ψ ` [[Ψ′′/ψ]] ↑ψ,0⇐ · def. of cvar substitution

Subcase Ψ′′ = ψ′, Ak, . . . , A1

ψ′, Ak, . . . , A1 `↑ψ
′,k⇐ · typing rule

[[Ψ′′/ψ]]ψ ` [[Ψ′′/ψ]] ↑ψ,0⇐ · def. of cvar substitution

Case · `↑−ψ,0⇐ ψ

Subcase Ψ′′ = ·, Ak, . . . , A1

· `↑0,0,Undef, . . . ,Undef︸ ︷︷ ︸
k

⇐ ·, Ak, . . . , A1 typing rule

· ` ([[ · /ψ]] ↑−ψ,0),Undef, . . . ,Undef︸ ︷︷ ︸
k

⇐ ·, Ak, . . . , A1 def. of cvar substitution

· ` [[Ψ′′/ψ]] ↑−ψ,0⇐ Ψ′′ def. of cvar substitution

[[Ψ′′/ψ]]· ` [[Ψ′′/ψ]] ↑−ψ,0⇐ [[Ψ′′/ψ]]ψ def. of cvar substitution
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Subcase Ψ′′ = ψ′, Ak, . . . , A1

· `↑−ψ′,0, Undef, . . . ,Undef︸ ︷︷ ︸
k

⇐ ψ′, Ak, . . . , A1 typing rule

· ` ([[ψ′/ψ]] ↑−ψ,0),Undef, . . . ,Undef︸ ︷︷ ︸
k

⇐ ψ′, Ak, . . . , A1 def. of cvar substitution

· ` [[Ψ′′/ψ]] ↑−ψ,0⇐ Ψ′′ def. of cvar substitution

[[Ψ′′/ψ]]· ` [[Ψ′′/ψ]] ↑−ψ,0⇐ [[Ψ′′/ψ]]ψ def. of cvar substitution

Case Ψ, A `↑ψ,k+1⇐ ·

Ψ `↑ψ,k⇐ · inversion

[[Ψ′′/ψ]]Ψ ` [[Ψ′′/ψ]] ↑ψ,k⇐ [[Ψ′′/ψ]]· i.h.

let Ψ′′ = ψ′, Al, . . . , A1

[[Ψ′′/ψ]]Ψ `↑ψ′,k+l⇐ [[Ψ′′/ψ]]· def. of cvar substitution

[[Ψ′′/ψ]](Ψ, A) `↑ψ′,k+l+1⇐ [[Ψ′′/ψ]]· typing rule

[[Ψ′′/ψ]](Ψ, A) ` [[Ψ′′/ψ]] ↑ψ,k+1⇐ [[Ψ′′/ψ]]· def. of cvar substitution

Case Ψ, A `↑c,k+1⇐ ψ

Ψ `↑c,k⇐ ψ inversion

[[Ψ′′/ψ]]Ψ ` [[Ψ′′/ψ]] ↑c,k⇐ [[Ψ′′/ψ]]ψ i.h.

Subcase c = 0

[[Ψ′′/ψ]]Ψ `↑0,k⇐ [[Ψ′′/ψ]]ψ def. of cvar substitution

[[Ψ′′/ψ]](Ψ, A) `↑0,k+1⇐ [[Ψ′′/ψ]]ψ typing rule

[[Ψ′′/ψ]](Ψ, A) ` [[Ψ′′/ψ]] ↑0,k+1⇐ [[Ψ′′/ψ]]ψ def. of cvar substitution

Subcase c = −ψ

Subsubcase Ψ′′ = ·, Al, . . . , A1

Ψ `↑0,k,Undef, . . . ,Undef︸ ︷︷ ︸
l

⇐ ·, Al, . . . , A1

def. of cvar substitution (Ψ cannot contain a context variable)

Ψ `↑0,k⇐ · typing rule
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Ψ, A `↑0,k+1⇐ · typing rule

Ψ, A `↑0,k+1,Undef, . . . ,Undef︸ ︷︷ ︸
l

⇐ ·, Al, . . . , A1 typing rule

[[Ψ′′/ψ]](Ψ, A) ` [[Ψ′′/ψ]] ↑−ψ,k+1⇐ [[Ψ′′/ψ]]ψ def. of cvar substitution

Subsubcase Ψ′′ = ψ′, Al, . . . , A1

Ψ `↑−ψ′,k,Undef, . . . ,Undef︸ ︷︷ ︸
l

⇐ ψ′, Al, . . . , A1

def. of cvar substitution (Ψ cannot contain a context variable)

Ψ `↑−ψ′,k⇐ ψ′ typing rule

Ψ, A `↑−ψ′,k+1⇐ ψ′ typing rule

Ψ, A `↑−ψ′,k+1,Undef, . . . ,Undef︸ ︷︷ ︸
l

⇐ ψ′, Al, . . . , A1 typing rule

[[Ψ′′/ψ]](Ψ, A) ` [[Ψ′′/ψ]] ↑−ψ,k+1⇐ [[Ψ′′/ψ]]ψ def. of cvar substitution

Case Ψ′ `↑0,k⇐ Ψ

k ≥ 0 inversion

Ψ′ `↑0,k+1, k + 1⇐ Ψ inversion

[[Ψ′′/ψ]]Ψ′ ` [[Ψ′′/ψ]] ↑0,k+1, k + 1⇐ [[Ψ′′/ψ]]Ψ i.h.

[[Ψ′′/ψ]]Ψ′ `↑0,k+1, k + 1⇐ [[Ψ′′/ψ]]Ψ def. of cvar substitution

[[Ψ′′/ψ]]Ψ′ `↑0,k⇐ [[Ψ′′/ψ]]Ψ typing rule

[[Ψ′′/ψ]]Ψ′ ` [[Ψ′′/ψ]] ↑0,k⇐ [[Ψ′′/ψ]]Ψ def. of cvar substitution

Case Ψ′ ` σ,H ⇐ Ψ, A

Ψ′ ` σ ⇐ Ψ inversion

[[Ψ′′/ψ]]Ψ′ ` [[Ψ′′/ψ]]σ ⇐ [[Ψ′′/ψ]]Ψ i.h.

Ψ′ ` H ⇒ (A′, σ′) inversion

[[Ψ′′/ψ]]Ψ′ ` [[Ψ′′/ψ]]H ⇒ [[Ψ′′/ψ]](A′, σ′) assumption

(A′, σ′) ' (A, σ) inversion

[[Ψ′′/ψ]](A′, σ′) ' [[Ψ′′/ψ]](A, σ) assumption

[[Ψ′′/ψ]]Ψ′ ` [[Ψ′′/ψ]](σ,H)⇐ [[Ψ′′/ψ]](Ψ, A) typing rule
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Case Ψ′ ` σ,Undef ⇐ Ψ, A

Ψ′ ` σ ⇐ Ψ inversion

[[Ψ′′/ψ]]Ψ′ ` [[Ψ′′/ψ]]σ ⇐ [[Ψ′′/ψ]]Ψ i.h.

[[Ψ′′/ψ]]Ψ′ ` [[Ψ′′/ψ]](σ,Undef)⇐ [[Ψ′′/ψ]]Ψ def. of cvar substitution

Case Ψ′ ` σ,M ⇐ Ψ, A

Ψ′ ` (M, id)⇐ (A, σ) inversion

[[Ψ′′/ψ]]Ψ′ ` [[Ψ′′/ψ]](M, id)⇐ [[Ψ′′/ψ]](A, σ) assumption

Ψ′ ` σ ⇐ Ψ inversion

[[Ψ′′/ψ]]Ψ′ ` [[Ψ′′/ψ]]σ ⇐ [[Ψ′′/ψ]]Ψ i.h.

[[Ψ′′/ψ]]Ψ′ ` [[Ψ′′/ψ]](σ,M)⇐ [[Ψ′′/ψ]](Ψ, A) typing rule

�

A.5.1 Composition

We prove some properties about the composition operation defined in Chapter

4.

Lemma 4 (Invariant of composition)

Assuming composition σ1 ◦ σ2 is defined, we have:

If Ψ ` σ1 ⇐ Ψ1 and Ψ2 ` σ2 ⇐ Ψ

then Ψ2 ` σ1 ◦ σ2 ⇐ Ψ1

Proof: Following the definition for composition, we proceed by induction on

1. the structure of σ1

2. the structure of σ2

Case Ψ ` σ1,M ⇐ Ψ1, A

Ψ ` σ1 ⇐ Ψ1 inversion

Ψ2 ` σ1 ◦ σ2 ⇐ Ψ1 i.h.

Ψ ` (M, id)⇐ (A, σ1) inversion
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Ψ2 ` ([σ2]M, id)⇐ (A, σ1 ◦ σ2) subs. lemma

Ψ2 ` (σ1 ◦ σ2, [σ2]M)⇐ Ψ1, A typing rule

Ψ2 ` (σ1,M) ◦ σ2 ⇐ Ψ1, A ◦ rule

Cases for Heads and Undef’s are proven in a similar way.

Case Ψ, A `↑c1,k1⇐ Ψ1 and Ψ2 ` (σ2,M)⇐ Ψ, A

Ψ `↑c1,k1−1⇐ Ψ1 inversion

Ψ2 ` σ2 ⇐ Ψ inversion

Ψ2 `↑c1,k1−1 ◦ σ2 ⇐ Ψ1 i.h.

Ψ2 `↑c1,k1 ◦ (σ2,M)⇐ Ψ1 ◦ rule

Cases for Heads and Undef’s are proven in a similar way.

Case Ψ1, Ak1 , . . . , A1 `↑0,k1⇐ Ψ1

and Ψ1, Ak1 , . . . , A1, Bk2 , . . . , B1 `↑0,k2⇐ Ψ1, Ak1 , . . . , A1

Ψ1, Ak1 , . . . , A1, Bk2 , . . . , B1 `↑0,k1+k2⇐ Ψ1 typing rules

Case ψ,Ak1 , . . . , A1 `↑ψ,k1⇐ ·

and ψ,Ak1 , . . . , A1, Bk2 , . . . , B1 `↑0,k2⇐ ψ,Ak1 , . . . , A1

ψ,Ak1 , . . . , A1, Bk2 , . . . , B1 `↑ψ,k1+k2⇐ · typing rules

Case Ak1 , . . . , A1 `↑−ψ,k1⇐ ψ

and Ak1 , . . . , A1, Bk2 , . . . , B1 `↑0,k2⇐ Ak1 , . . . , A1

Ak1 , . . . , A1, Bk2 , . . . , B1 `↑−ψ,k1+k2 typing rules

Case · `↑−ψ,0⇐ ψ and ψ,Ak2 , . . . , A1 `↑ψ,k2⇐ ·

ψ,Ak2 , . . . , A1 `↑0,k2⇐ ψ typing rule

Case ψ `↑ψ,0⇐ · and Ψ2 `↑−ψ,k2⇐ ψ

Ψ2 `↑0,k2⇐ · typing rule
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Ψ2 `↑ψ,0 ◦ ↑−ψ,k2⇐ · ◦ rule

Case Ψ1 ` id⇐ Ψ1 and Ψ2 ` σ2 ⇐ Ψ1

Ψ2 ` id ◦ σ2 ⇐ Ψ1 ◦ rule

�

Lemma 5 (Associativity of composition)

When these compositions are defined, they are equal:

σ1 ◦ (σ2 ◦ σ3) = (σ1 ◦ σ2) ◦ σ3

Proof: Induction on the structure of σ1, then σ2.

We suppose that σ1, σ2 and σ3 are not the identity (id) substitution, in which

case the theorem becomes trivial by the fact that id is also the right identity.

Case (σ1,M) ◦ (σ2 ◦ σ3)

= (σ1 ◦ (σ2 ◦ σ3), [σ2 ◦ σ3]M) def. of ◦

= ((σ1 ◦ σ2) ◦ σ3, [σ2 ◦ σ3]M) i.h.

= ((σ1 ◦ σ2) ◦ σ3, [σ3][σ2]M) prop. of ◦

= (σ1 ◦ σ2, [σ2]M) ◦ σ3 def. of ◦

= ((σ1,M) ◦ σ2) ◦ σ3 def. of ◦

Case (σ1, H) ◦ (σ2 ◦ σ3)

Case (σ1,Undef) ◦ (σ2 ◦ σ3)

similar to previous case

Case σ1 =↑c1,k1 and (σ2 ◦ σ3) = (σ′,M ′)

σ1 =↑c,k+1 def. of ◦ (σ1 6= id)

σ2 = (σ′2,M) def. of ◦ (σ2 6= id)

↑c,k+1 ◦ ((σ′2,M) ◦ σ3)

=↑c,k+1 ◦ (σ′2 ◦ σ3, [σ3]M) def. of ◦
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=↑c,k ◦ (σ′2 ◦ σ3) def. of ◦

= (↑c,k ◦ σ′2) ◦ σ3 i.h.

= (↑c,k+1 ◦ (σ′2,M)) ◦ σ3 def. of ◦

Case ↑c,k+1 ◦ ((σ2, H) ◦ σ3)

Case ↑c,k+1 ◦ ((σ2,Undef) ◦ σ3)

similar to previous case

Case σ1 =↑c1,k1 and (σ2 ◦ σ3) =↑c,k

σ2 =↑c2,k2 def. of ◦

let σ3 =↑c3,k3 , . . .)

Subcase suffix of σ3 is of length k2 + x

σ1 ◦ (σ2 ◦ σ3)

=↑c1,k1 ◦ (↑c2,0 ◦ ↑c3,k3 , . . .︸︷︷︸
x

) def. of ◦

=↑c1,k1 ◦ (id◦ ↑c3,k3 , . . .) c2 = 0 (else ◦ is undefined)

=↑c1,k1 ◦ ↑c3,k3 , . . . def. of ◦

=↑c1,k1+k2 ◦ ↑c3,k3 , . . .︸︷︷︸
k2+x

def. of ◦

= (↑c1,k1 ◦ ↑c2,k2)◦ ↑c3,k3 , . . . def. of ◦

Subcase suffix of σ3 is of length k2 − x

σ1 ◦ (σ2 ◦ σ3)

=↑c1,k1 ◦ (↑c2,x ◦ ↑c3,k3) def. of ◦

=↑c1,k1 ◦ (↑c2+c3,x+k3) def. of ◦ 1

=↑c1+(c2+c3),k1+(x+k3) def. of ◦

=↑(c1+c2)+c3,(k1+x)+k3 assumption

=↑c1+c2,k1+x ◦ ↑c3,k3 def. of ◦

1c1 + c2 defined as

8>><>>:
c + 0 = c
0 + c = c
c + (−c) = 0
undefined otherwise
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=↑c1+c2,k1+k2 ◦ ↑c3,k3 , . . . def. of ◦

= (↑c1,k1 ◦ ↑c2,k2)◦ ↑c3,k3 , . . . def. of ◦

�

A.5.2 Inversion

We prove some properties about the inversion operation defined in Chapter 4.

Lemma 7 (Inversion produces well-formed substitution)

If Ψ ` σ ⇐ Φ then Φ ` σ−1 ⇐ Ψ

Proof: By induction on the size of Φ then on k.

Case · `↑0,0⇐ ·

· `↑−0,0⇐ · typing rule

Case ψ `↑0,0⇐ ψ

ψ `↑−0,0⇐ ψ typing rule

Case ψ `↑ψ,0⇐ ·

· `↑−ψ,0⇐ ψ typing rule

Case · `↑−ψ,0⇐ ψ

ψ `↑ψ,0⇐ · typing rule

Case Ψ, A `↑c,k+1⇐ ·

Ψ `↑c,k⇐ · inversion

· `↑−c,0,Undef, . . . ,Undef︸ ︷︷ ︸
k

⇐ Ψ i.h.

· `↑−c,0,Undef, . . . ,Undef︸ ︷︷ ︸
k+1

⇐ Ψ, A typing rule
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· ` (↑c,k+1)−1 ⇐ Ψ, A inversion rules

Case Ψ, A `↑c,k+1⇐ ψ

Ψ `↑c,k⇐ ψ inversion

ψ `↑−c,0,Undef, . . . ,Undef︸ ︷︷ ︸
k

⇐ Ψ i.h.

ψ `↑−c,0,Undef, . . . ,Undef︸ ︷︷ ︸
k+1

⇐ Ψ, A typing rule

ψ ` (↑c,k+1)−1 ⇐ Ψ, A inversion rules

Case Ψ′ `↑0,k⇐ Ψ, A

We first observe that Ψ′ = Ψ, A,Ψ′′ and |Ψ′′| = k

Ψ, A `↑0,0⇐ Ψ, A lemma 10

Ψ, A `↑0,0,Undef, . . . ,Undef︸ ︷︷ ︸
k

⇐ Ψ′ typing rule

Ψ, A ` (↑0,k)−1 ⇐ Ψ′ inversion rule

Case Ψ′ ` σ,H ⇐ Ψ, A

Ψ′ ` σ ⇐ Ψ inversion

let σ =↑c,k, Hk′ , . . . ,H1

σ−1 =↑−c,k′
, bk, . . . , b1 inversion rules

Ψ `↑−c,k′
, bk, . . . , b1 ⇐ Ψ′ i.h.

Ψ `↑−c,k′′⇐ · typing rules

Ψ, A `↑−c,k′′+1⇐ · typing rule

Ψ, A `↑−c,k′+1, bk, . . . , b1 ⇐ Ψ′ typing rule

Ψ, A ` (σ,H)−1 ⇐ Ψ′ inversion rules

Inverse is not defined if σ is of the form (σ,Undef) or (σ,M). �

Lemma 8 (Inversion properties)

If σ is a pattern substitution, we have:
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1. σ ◦ σ−1 = id

2. (σ−1)−1 = σ

Proof: [1]

Let σ =↑c,k, ak′ , . . . , a1 σ−1 =↑−c,k′
, bk, . . . , b1 where k, k′ ≥ 0

σ ◦ σ−1 = (↑c,k ◦ (↑−c,k′
, bk, . . . , b1)), [σ−1]ak′ , . . . , [σ−1]a1

= (↑c,0 ◦ ↑−c,k′
), [σ−1]ak′ , . . . , [σ−1]a1

= ↑0,k′
, [σ−1]ak′ , . . . , [σ−1]a1

= ↑0,k′
, k′, . . . , 1

= ↑0,0

The requirement that σ is a pattern substitution is critical here. Indeed, the

equation [σ−1]ai = i is only true if ai 6= Undef and [σ−1]ai is unique. The

later is always defined because ai ≤ k (else σ is not a pattern substitution) and

therefore variable ai is always part of σ−1’s “tail” (the part of the substitution

that is not a shift) and maps to i. Also note that the k′, . . . , 1 part will always

be ordered because we understand these substitutions in the context where we

work with DeBruijn indexing. Therefore, ai do not replace just some variable

in σ’s domain, but precisely the variable of index i. Other steps hold by com-

position rules and the last one by typing rule. �

Proof: [2]

Trivial. The reader can easily verify that applying the inversion operation twice

will always return the original substitution. �
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Appendix B

Reconstruction

B.1 Contextual substitution

[[R/u]]type = type
[[R/u]]ΠA.K = Π([[R/u]]A).([[R/u]]K)

[[R/u]]a · S = a · [[R/u]]S
[[R/u]]ΠA.B = Π([[R/u]]A).([[R/u]]B)

[[R/u]]λ.M = λ.[[R/u]]M
[[R/u]]H · S = H · [[R/u]]S
[[R/u]]u[σ] = clo(R, [[R/u]]σ)
[[R/u]]v[σ] = v[[[R/u]]σ]

[[R/u]]nil = nil
[[R/u]]M S = [[R/u]]M [[R/u]]S

[[R/u]] ↑c,k =↑c,k
[[R/u]](σ,M) = ([[R/u]]σ), ([[R/u]]M)
[[R/u]](σ, x) = ([[R/u]]σ), x

[[R/u]]· = ·
[[R/u]](Ψ, A) = ([[R/u]]Ψ), ([[R/u]]A)
[[R/u]](Φ, X:A) = ([[R/u]]Φ), X:([[R/u]]A)

We list here the rules for contextual substitution. Note that since reconstruction
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works with meta-variables of atomic type, this operation will never introduce

redexes. As such, termination is guaranteed by the fact that this operation is a

simple syntax directed recursion and we will not need to index it with the type

of the term we are substituting, as we did in Chapter 3.

B.2 Additional reconstruction judgements

Υ1; Φ1; Ψ ` k kind /ρ (Υ2; Φ2;K) k reconstructs to K

Υ1; Φ1; Ψ ` a ⇐ type /ρ (Υ2; Φ2;A) a reconstructs to A

Υ1; Φ1; Ψ ` s : (K,σ) ⇐ type /ρ (Υ2; Φ2;S) s reconstructs to S

Υ1; Φ1; Ψ `i s : (K,σ) ⇐ type /ρ (Υ2; Φ2;S) introduce i arguments and

reconstruct s to S

Υ1; Φ1; Ψ ` s ⇐ type / (K;S) s reconstructs to S and

synthesize kind K

B.3 Additional reconstruction rules

Kinds

Υ1; Φ1; Ψ ` type kind /id(Υ1) (Υ1; Φ1; type)

Υ1; Φ1; Ψ ` a⇐ type /ρ1 (Υ2; Φ2;A) Υ2; Φ2; [[ρ1]]Ψ, A ` k kind /ρ2 (Υ3; Φ3;K)
Υ1; Φ1; Ψ ` Πa.k kind /ρ1◦ ρ2 (Υ3; Φ3; Π([[ρ2]]A).K)

Types

Σ(a) = (K, i) Υ1; Φ1; Ψ `i s : (K, id)⇐ type /ρ (Υ2; Φ2;S)
Υ1; Φ1; Ψ ` a · s⇐ type /ρ (Υ2; Φ2; a · S)

Υ1; Φ1; Ψ ` a⇐ type /ρ1 (Υ2; Φ2;A) Υ2; Φ2; [[ρ1]]Ψ, A ` b⇐ type /ρ2 (Υ3; Φ3;B)
Υ1; Φ1; Ψ ` Πa.b⇐ type /ρ1◦ ρ2 (Υ3; Φ3; Π([[ρ2]]A).B)
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Type spines

Υ1; Φ1; Ψ ` nil : (type, σ)⇐ type /id(Υ1) (Υ1; Φ1; nil)

Υ1; Φ1; Ψ ` m⇐ (A, σ) /ρ1 (Υ2; Φ2;M)

Υ2; Φ2; [[ρ1]]Ψ ` s : ([[ρ1]]K, ([[ρ1]]σ,M))⇐ type /ρ2 (Υ3; Φ3;S)

Υ1; Φ1; Ψ ` m s : (ΠA.K, σ)⇐ type /ρ1◦ ρ2 (Υ3; Φ3; [[ρ2]]M S)

Type spines (with missing arguments)

Υ1; Φ1; Ψ ` s : (K,σ)⇐ type /ρ (Υ2; Φ2;S)

Υ1; Φ1; Ψ `0 s : (K,σ)⇐ type /ρ (Υ2; Φ2;S)

lower(Υ1; Φ; Ψ ` (A, σ)) = (M,u::Q[Ψ′])

Υ1, u::Q[Ψ′]; Φ1; Ψ `i−1 s : (K, (σ,M))⇐ type /ρ (Υ2; Φ2;S)

Υ1; Φ1; Ψ `i s : (ΠA.K, σ)⇐ type /ρ \ (R/u) (Υ2; Φ2; [[ρ]]M S)

Type spines (synthesizing)

Υ1; Φ1; Ψ ` nil⇐ type / (type; nil)

contract0 m / x Ψ(x) = (A, ↑0,x) Ψ `0 expand x : (A, ↑0,x) / M

Υ1; Φ1; Ψ ` s⇐ type / (K;S) σ′ =↑0,x+1, 1, x, . . . , 1

Υ1; Φ1; Ψ ` m s⇐ type / (Πclo(A, ↑0,x).clo(K, ↑0,1 ◦ σ′);M S)
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B.4 Proofs

B.4.1 Invariant of reconstruction

Judgements for contexts

`Φ Υ mctx Υ is a well-formed meta context

Υ ` Φ fctx Φ is a well-formed free variable context

Υ; Φ ` Ψ ctx Ψ is a well-formed bound variable context

Υ′ `Φ ρ ⇐ Υ ρ is a contextual substitution with domain Υ and range Υ′

Rules for contexts and contextual substitutions

Meta contexts

for all u::P [Ψ] ∈ Υ Υ; Φ ` Ψ ctx Υ; Φ; Ψ ` (P, id)⇐ type

`Φ Υ mctx

Free variable contexts

for all X:A ∈ Φ Υ; Φ; · ` (A, id)⇐ type

Υ ` Φ fctx

Bound variable contexts

Υ1; Φ1 ` · ctx
Υ; Φ ` Ψ ctx Υ; Φ; Ψ ` (A, id)⇐ type

Υ; Φ ` Ψ, A ctx

Contextual substitutions

for all(R/u) ∈ ρ Υ(u) = P [Ψ] Υ′; Φ; [[ρ]]Ψ ` (R, id)⇐ [[ρ]](P, id)
Υ′ `Φ ρ⇐ Υ

Invariant

With the preceding definitions in mind, the invariant of reconstruction can be

summarized as follow: the algorithm assumes well-kinded types and well-formed

contexts and produces well-formed contexts and contextual substitution.
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· `Φ1 Υ1 mctx

Υ1 ` Φ1 fctx

Υ1; Φ1 ` Ψ ctx

Υ1; Φ1; Ψ ` (A, σ) ⇐ type

Υ1; Φ1; Ψ ` (P, σ) ⇐ type

`Φ2 Υ2 mctx

Υ2 ` Φ2 fctx

Υ2 `Φ2 ρ ⇐ Υ1

Proof: By induction on the reconstruction derivation.

In most cases, the invariant holds simply by the induction hypotheses and the

fact that we manipulate the objects correctly.

The free variable case holds because a similar invariant holds for pruning.

The nil spine case holds because a similar invariant holds for unification.

The placeholder ( ) case holds based on the definition of id(Υ).

The interesting cases left are given next (we prove only the second part of the

invariant).

Case Υ1; Φ1; Ψ `i s : (ΠA.B, σ1)⇐ (P, σ2) /ρ\(R/u) (Υ2; Φ2; [[ρ]]M S)

lower(Υ1; Φ; Ψ ` (A, σ1)) = (M,u::Q[Ψ′]) inversion

Υ1, u::Q[Ψ′]; Φ1; Ψ `i−1 s : (B, (σ1;M))⇐ (P, σ2) /ρ (Υ2; Φ2;S) inversion

`Φ2 Υ2 mctx and Υ2 ` Φ2 fctx i.h.

Υ2 `Φ2 ρ⇐ Υ1, u::Q[Ψ′] i.h.

for all(R/v) ∈ ρ (Υ1, u::Q[Ψ′])(v) = P [Ψ] Υ2; Φ2; [[ρ]]Ψ ` (R, id)⇐ [[ρ]](P, id)

inversion

let ρ′ = ρ\(R/u)

for all(R/v) ∈ ρ′ Υ1(v) = P [Ψ] Υ2; Φ2; [[ρ′]]Ψ ` (R, id)⇐ [[ρ′]](P, id)
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Ψ and Υ1 do not refer to u

Υ2 `Φ2 ρ
′ ⇐ Υ1 typing rule

Case Υ1; Φ1; Ψ ` m s : (ΠA.B, σ1)⇐ (P, σ2) /ρ1◦ ρ2 (Υ3; Φ3; [[ρ2]]M S)

Υ1; Φ1; Ψ ` m⇐ (A, σ1) /ρ1 (Υ2; Φ2;M) inversion

`Φ2 Υ2 mctx and Υ2 ` Φ2 fctx and Υ2 `Φ2 ρ1 ⇐ Υ1 i.h.

Υ2; Φ2; [[ρ1]]Ψ ` s : ([[ρ1]]B, ([[ρ1]]σ1;M))⇐ [[ρ1]](P, σ2) /ρ2 (Υ3; Φ3;S) inversion

`Φ3 Υ3 mctx and Υ3 ` Φ3 fctx and Υ3 `Φ3 ρ2 ⇐ Υ2 i.h.

for all(R/u) ∈ ρ1 Υ1(u) = P [Ψ] Υ2; Φ2; [[ρ1]]Ψ ` (R, id)⇐ [[ρ1]](P, id)

inversion

for all([[ρ2]]R/u) ∈ [[ρ2]]ρ1 Υ1(u) = P [Ψ] Υ3; [[ρ2]]Φ2; [[ρ2]][[ρ1]]Ψ ` ([[ρ2]]R, id)⇐

[[ρ2]][[ρ1]](P, id)

stability of type checking under contextual substitution

for all([[ρ2]]R/u) ∈ [[ρ2]]ρ1 Υ1(u) = P [Ψ] Υ3; Φ3; [[ρ2]][[ρ1]]Ψ ` ([[ρ2]]R, id) ⇐

[[ρ2]][[ρ1]](P, id) [[ρ2]]Φ2 ⊆ Φ3

Υ3 `Φ3 [[ρ2]]ρ1 ⇐ Υ1 typing rule

�

B.4.2 Lemmas

Lemma 18 dot1 id = id

Proof: By using the definition for id, dot1 and using the unroll rule.

dot1 id = (id◦ ↑0,1), 1 def. of dot1

= ↑0,1, 1 def. of ◦

= ↑0,0 typing rule

= id def. of id

�

Lemma 15 (Lowering)

If lower(Υ; Φ; Ψ ` (A, σ)) = (M ;u::P [Ψ′])
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then Υ, u::P [Ψ′]; Φ; Ψ ` (M, id)⇐ (A, σ).

Proof: By structural induction on A.

Case lower(Υ; Φ; Ψ ` (P, σ)) = (u[id];u::clo(P, σ)[Ψ])

(Υ, u::clo(P, σ)[Ψ])(u) = clo(P, σ)[Ψ] def.

Υ, u::clo(P, σ)[Ψ]; Φ; Ψ ` id⇐ Ψ typing rule

σ ◦ id = σ prop. of id

whnf(clo(P, σ), id) = whnf(P, σ ◦ id) def. of whnf

(clo(P, σ), id) ' (P, σ) def. of '

Υ, u::clo(P, σ)[Ψ]; Φ; Ψ ` u[id]⇐ (P, σ) typing rule

Case lower(Υ; Φ; Ψ ` (ΠA.B, σ)) = (λ.M ;u::P [Ψ′])

lower(Υ; Φ; Ψ, clo(A, σ) ` (B, dot1 σ)) = (M ;u::P [Ψ′]) inversion

Υ, u::P [Ψ′]; Φ; Ψ, clo(A, σ) ` (M, id)⇐ (B, dot1 σ) i.h.

Υ, u::P [Ψ′]; Φ; Ψ, clo(A, σ) ` (M, dot1 id)⇐ (B, dot1 σ) lemma 18

Υ, u::P [Ψ′]; Φ; Ψ ` (M, id)⇐ (ΠA.B, σ) typing rule

�

Lemma 12 (η-expansion produces well-typed terms)

1. If Ψ `i expand x : (A, σ) / M then Ψ ` (M, id)⇐ (A, σ).

2. If Ψ `i expand (A, σ1) ⇒ (P, σ2) / S then Ψ ` (S, id) :

(A, σ1)⇒ (P, σ2)

Proof: By induction on the expansion derivation.

Case Ψ `i expand y : (ΠA.B, σ) / λ.M

Ψ, clo(A, σ) `i+1 expand y : (B, dot1 σ) / M inversion

Ψ, clo(A, σ) ` (M, id)⇐ (B, dot1 σ) i.h.1

Ψ, clo(A, σ) ` (M, dot1 id)⇐ (B, dot1 σ) lemma 18

Ψ ` (λ.M, id)⇐ (ΠA.B, σ) typing rule

96



Case Ψ `i expand y : (P, σ) / y · S

Ψ `i expand S ⇒ (A, ↑0,y) / (P, σ) inversion

Ψ ` (S, id) : (A, ↑0,y)⇒ (P, σ) i.h.2

Ψ ` y ⇒ (A, ↑0,y) assumption

(P, σ) ' (P, σ) prop. of '

Ψ ` (y · S, id)⇐ (P, σ) typing rule

Case Ψ `i expand M S ⇒ (ΠA.B, σ1) / (P, σ2)

Ψ `0 expand i : (A, σ1) / M inversion

Ψ ` (M, id)⇐ (A, σ1) i.h.1

Ψ `i−1 expand (B, (σ1; clo(M, id)))⇒ (P, σ2) / S inversion

Ψ ` (S, id) : (B, (σ1; clo(M, id)))⇒ (P, σ2) i.h.2

Ψ ` (M S, id) : (ΠA.B, σ1)⇒ (P, σ2) typing rule

Case Ψ `0 expand nil⇒ (P, σ) / (P, σ)

Ψ ` (nil, id) : (P, σ)⇒ (P, σ) typing rule

�

Lemma 13 (η-expansion stable under substitution)

If Ψ `i expand x : (B, σ) / N with Ψ(x) = (B, ↑0,x) and

1. Υ; Φ; Ψ `M ⇐ A

2. Υ; Φ; Ψ ` S : A⇒ P

then

1. Υ; Φ; Ψ `M ′ ⇐ A

2. Υ; Φ; Ψ `M ⇐ A′

3. Υ; Φ; Ψ ` S : A′ ⇒ P

4. Υ; Φ; Ψ ` S′ : A⇒ P
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Normal terms

Υ; Φ; Ψ, A `M ⇐ B

Υ; Φ; Ψ ` λ.M ⇐ ΠA.B
Υ(u) = P ′[Ψ′] Υ; Φ; Ψ ` σ ⇐ Ψ′ [σ]aΨ′P ′ = P

Υ; Φ; Ψ ` u[σ]⇐ P

Σ(c) = A Φ; Ψ ` S : A⇒ P

Υ; Φ; Ψ ` c · S ⇐ P

Ψ(x) = (A, ↑0,x) Υ; Φ; Ψ ` S : [↑0,x]aΨ1
A⇒ P

Υ; Φ; Ψ ` x · S ⇐ P

Φ(X) = A Υ; Φ; Ψ ` S : A⇒ P

Υ; Φ; Ψ ` X · S ⇐ P

Spines

Υ; Φ; Ψ ` nil : P ⇒ P

Υ; Φ; Ψ `M ⇐ A Υ; Φ; Ψ ` S : [id;M ]aAB ⇒ P

Υ; Φ; Ψ `M S : ΠA.B ⇒ P

Figure B.1: Typing rules for LF objects

Where M ′, A′ and S′ are the original terms where one occurrence of

x has been replaced by N .

Proof: By induction on the typing derivation.

Most cases hold by induction hypothesis.

In the bound variable case, we have two choices: either this is not the one oc-

currence that is replaced, in which case the result holds by assumption. If the

current occurrence is the one that has been replaced, we note that, because

bound variables always appear with a complete spine and hereditary substitu-

tion keeps substituting when it encounters a redex, we will have

[N/x]x · S = x · S

in which case the results also hold by assumption. �

B.4.3 Soundness of reconstruction

Before stating the soundness theorem, we will need a lemma on the invariant

of type checking with explicit substitutions. The lemma is stated for normal
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terms and spines, but it scales to types and kinds as well.

Note that the theorem’s conclusion is stated using eager substitution rules (see

figure B.1), so the contexts in these rules are not exactly the same as in the

premiss because the later could contain closures. The former are therefore

normalized version of the output contexts and we use them as such in the proof,

even if we do not introduce the additional annotation in the statement.

Lemma 19 (Invariant of type checking)

1. If Υ; Φ; Ψ ` (M,σ1)⇐ (A, σ2)

then Υ; Φ; Ψ ` [σ1]M ⇐ [σ2]A

2. If Υ; Φ; Ψ ` (S, σ1) : (A, σ2)⇒ (P, σ)

then Υ; Φ; Ψ ` [σ1]S : [σ2]A⇒ [σ]P

Proof: By induction on the typing derivation.

Case Υ; Φ; Ψ ` (λ.M, σ1)⇐ (ΠA.B, σ2)

Υ; Φ; Ψ, clo(A, σ2) ` (M, dot1 σ1)⇐ (B, dot1 σ2) inversion

Υ; Φ; Ψ, [σ2]A ` [dot1 σ1]M ⇐ [dot1 σ2]B i.h.1

Υ; Φ; Ψ ` λ.[dot1 σ1]M ⇐ Π[σ2]A.[dot1 σ2]B typing rule

Υ; Φ; Ψ ` [σ1]λ.M ⇐ [σ2](ΠA.B) def. of subs.

Case Υ; Φ; Ψ ` (H · S, σ1)⇐ (P, σ2)

Υ; Φ; Ψ ` H ⇒ (A, σ) inversion

Υ; Φ; Ψ ` H ⇒ [σ]A normalized contexts/signature

Υ; Φ; Ψ ` [σ1]H ⇒ [σ]A σ1 = id (prop. of whnf)

Υ; Φ; Ψ ` (S, σ1) : whnf(A, σ)⇒ (P ′, σ′1) inversion

Υ; Φ; Ψ ` [σ1]S : [σ]A⇒ [σ′1]P ′ i.h.2

(P ′, σ′1) ' (P, σ2) inversion

[σ′1]P ′ = [σ2]P lemma 17
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Υ; Φ; Ψ ` [σ1](H · S)⇐ [σ2]P typing rule

Case Υ; Φ; Ψ ` (nil, σ1) : (P, σ2)⇒ (P, σ2)

Υ; Φ; Ψ ` nil : [σ2]P ⇒ [σ2]P typing rule

Υ; Φ; Ψ ` [σ1]nil : [σ2]P ⇒ [σ2]P def. of subs.

Case Υ; Φ; Ψ ` (M S, σ1) : (ΠA.B, σ2)⇒ (P, σ)

Υ; Φ; Ψ ` (M,σ1)⇐ (A, σ2) inversion

Υ; Φ; Ψ ` [σ1]M ⇐ [σ2]A i.h.1

Υ; Φ; Ψ ` (S, σ1) : whnf(B, (σ2; clo(M,σ1)))⇒ (P, σ) inversion

Υ; Φ; Ψ ` [σ1]S : [σ2, clo(M,σ1)]B ⇒ [σ]P i.h.2

Υ; Φ; Ψ ` [σ1]S : [σ2, [σ1]M ]B ⇒ [σ]P prop. of hereditary substitution

Υ; Φ; Ψ ` [σ1]S : [id, [σ1]M ][dot1 σ2]B ⇒ [σ]P def. of dot1 and ◦

Υ; Φ; Ψ ` [σ1](M S) : Π[σ2]A.[dot1 σ2]B ⇒ [σ]P typing rule

Υ; Φ; Ψ ` [σ1](M S) : [σ2](ΠA.B)⇒ [σ]P def. of subs.

�

Theorem 16 (Soundness of reconstruction)

1. If Υ1; Φ1; Ψ ` m⇐ (A, σ) /ρ (Υ2; Φ2;M)

then Υ2; Φ2; [[ρ]]Ψ `M ⇐ [[ρ]][σ]A.

2. If Υ1; Φ1; Ψ `i s : (A, σ1)⇐ (P, σ2) /ρ (Υ2; Φ2;S)

then Υ2; Φ2; [[ρ]]Ψ ` S : [[ρ]][σ1]A⇒ [[ρ]][σ2]P .

3. If Υ1; Φ1; Ψ ` s : (A, σ1)⇐ (P, σ2) /ρ (Υ2; Φ2;S)

then Υ2; Φ2; [[ρ]]Ψ ` S : [[ρ]][σ1]A⇒ [[ρ]][σ2]P .

4. If Υ1; Φ1; Ψ ` s⇐ (P, σ2) / ((A, σ1);S)

and s is a pattern spine

then Υ1; Φ1; Ψ ` S : [σ1]A⇒ [σ2]P

and Υ1; Φ1; Ψ ` [σ1]A⇐ type.

Moreover, in the first 3 cases, we have:
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[[ρ]]Φ1 ⊆ Φ2 and Υ2 `Φ2 ρ⇐ Υ1 and Υ2 ` Φ2 fctx and `Φ2 Υ2 mctx

Proof: By structural induction on the first derivation.

Again here, the conclusion’s contexts are normalized version of the ones from

the premiss. Also, the results about contexts will sometimes be mentioned sim-

ply as “context results” in the proof, without stating explicitly the four results.

Case Υ1; Φ1; Ψ ` λ.m⇐ (ΠA.B, σ) /ρ (Υ2; Φ2;λ.M)

Υ1; Φ1; Ψ, clo(A, σ) ` m⇐ (B, dot1 σ) /ρ (Υ2; Φ2;M) inversion

Υ2; Φ2; [[ρ]](Ψ, [σ]A) `M ⇐ [[ρ]][dot1 σ]B i.h.1

Υ2; Φ2; [[ρ]]Ψ, [[ρ]]([σ]A) `M ⇐ [[ρ]][dot1 σ]B def. of contextual subs.

Υ2; Φ2; [[ρ]]Ψ `M ⇐ Π([[ρ]][σ]A).([[ρ]][dot1 σ]B) typing rule

Υ2; Φ2; [[ρ]]Ψ `M ⇐ [[ρ]][σ](ΠA.B) def. of contextual subs., def. of subs.

context results i.h.1

Case Υ1; Φ1; Ψ ` h · s⇐ (ΠAn . . . A1.P, σn) /ρ (Υ2; Φ2;λ. . . . λ.R)

h′ = [↑0,n]h inversion

s′ = [↑0,n]s inversion

σi−1 = dot1 σi inversion

A′i = clo(Ai, σi) inversion

Υ1; Φ1; Ψ, A′n, . . . , A
′
1 ` h′ · (s′@((n · nil) . . . (1 · nil)nil))⇐ (P, σ0) /ρ (Υ2; Φ2;R)

inversion

Υ2; Φ2; [[ρ]](Ψ, [σn]An, . . . , [σ1]A1) ` R⇐ [[ρ]][σ0]P i.h.1

Υ2; Φ2; [[ρ]]Ψ ` λ. . . . λ.R⇐ [[ρ]][σn](ΠAn . . . A1.P )

typing rule (n times), using def. of subs.

context results i.h.1

Case Υ1; Φ1; Ψ ` c · s⇐ (P, σ) /ρ (Υ2; Φ2; c · S)

Σ(c) = (A, i) inversion

Υ1; Φ1; Ψ `i s : (A, id)⇐ (P, σ) /ρ (Υ2; Φ2;S) inversion
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Υ2; Φ2; [[ρ]]Ψ ` S : [[ρ]]A⇒ [[ρ]][σ]P i.h.2

Υ2; Φ2; [[ρ]]Ψ ` c · S ⇐ [[ρ]][σ]P typing rule

context results i.h.2

Case Υ1; Φ1; Ψ ` x · s⇐ (P, σ) /ρ (Υ2; Φ2;x · S)

Ψ(x) = (A, ↑0,x) inversion

[[ρ]]Ψ(x) = [[ρ]](A, ↑0,x) prop. of contextual subs.

Υ1; Φ1; Ψ ` s : (clo(A, ↑0,x), id)⇐ (P, σ) /ρ (Υ2; Φ2;S) inversion

Υ2; Φ2; [[ρ]]Ψ ` S : [[ρ]][↑0,x]A⇒ [[ρ]][σ]P i.h.3

Υ2; Φ2; [[ρ]]Ψ ` x · S ⇐ [[ρ]][σ]P typing rule

context results i.h.3

Case Υ1; Φ1; Ψ ` X · s⇐ (P, σ) /ρ (Υ2; [[ρ]]Φ1, X : [[ρ]]clo(A, σ1); [[ρ]]X · S)

Υ1; Φ1; Ψ ` (A, σ1) | [·]−1 ⇒ (Υ2; ρ) inversion

[[ρ]]Φ1 ⊆ [[ρ]]Φ1 prop. of ⊆

Υ2 `Φ2 ρ⇐ Υ1 and Υ2 ` [[ρ]]Φ1 fctx and `[[ρ]]Φ1 Υ2 mctx prop. of pruning

s is a pattern spine inversion

Υ1; Φ1; Ψ ` s⇐ (P, σ) / ((A, σ1);S) inversion

Υ1; Φ1; Ψ ` S : [σ1]A⇒ [σ]P i.h.4

Υ2; [[ρ]]Φ1; [[ρ]]Ψ ` [[ρ]]S : [[ρ]][σ1]A⇒ [[ρ]][σ]P prop. of contextual subs.

X /∈ Φ1 inversion

(Φ1, X:clo(A, σ1))(X) = clo(A, σ1) by previous line (Φ is unordered)

Υ1 ` Φ1 fctx assumption

Υ1; Φ1; Ψ ` [σ1]A⇐ type i.h.4

Υ2; [[ρ]]Φ1; · ` [[ρ]][σ1]A⇐ type prop. of pruning

Υ2 ` ([[ρ]]Φ1), X:clo([[ρ]]A, [[ρ]]σ1) fctx typing rule

[[ρ]](Φ1, X:[σ1]A)(X) = [[ρ]][σ1]A X /∈ Φ1

Υ2; [[ρ]](Φ1, X:[σ1]A); [[ρ]]Ψ ` [[ρ]]S : [[ρ]][σ1]A⇒ [[ρ]][σ]P weakening

Υ2; [[ρ]](Φ1, X:[σ1]A); [[ρ]]Ψ ` [[ρ]](X · S)⇐ [[ρ]][σ]P typing rule
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Case Υ1; Φ1; Ψ ` X · s⇐ (P, σ) /ρ (Υ2; Φ2;X · S)

Υ1; Φ1; Ψ ` s : (A, id)⇐ (P, σ) /ρ (Υ2; Φ2;S) inversion

Υ2; Φ2; [[ρ]]Ψ ` S : [[ρ]][id]A⇒ [[ρ]][σ]P i.h.3

context results i.h.3

Φ1(X) = A inversion

[[ρ]]Φ1(X) = [[ρ]]A prop. of contextual subs.

Φ2(X) = [[ρ]]A [[ρ]]Φ1 ⊆ Φ2

Υ2; Φ2; [[ρ]]Ψ ` X · S ⇐ [[ρ]][σ]P typing rule

Case Υ1; Φ1; Ψ ` ⇐ (P, σ) /id(Υ1) (Υ1, u::clo(P, σ)[Ψ]; Φ1;u[id])

(Υ1, u::([σ]P )[Ψ])(u) = ([σ]P )[Ψ]

Υ1, u::[σ]clo(P, σ)[Ψ]; Φ1; Ψ ` id⇐ Ψ lemma 10

[id][σ]P = [σ]P ◦ rule

Υ1, u::([σ]P )[Ψ]; Φ1; Ψ ` u[id]⇐ [σ]P typing rule

Υ1, u::([σ]P )[Ψ]; [[id(Υ1)]]Φ1; [[id(Υ1)]]Ψ ` u[id]⇐ [[id(Υ1)]][σ]P

property of id(Υ)

context results property of id(Υ)

Case Υ1; Φ1; Ψ ` nil : (a · S′, σ1)⇐ (a · S, σ2) /ρ (Υ2; [[ρ]]Φ1; nil)

Υ1; Φ1; Ψ ` (a · S′, σ1) + (a · S, σ2) / (ρ; Υ2) inversion

Υ2 `Φ2 ρ⇐ Υ1 property of +

`Φ2 Υ2 mctx property of +

[[ρ]]Φ1 ⊆ [[ρ]]Φ1 prop. of ⊆

Υ2 ` [[ρ]]Φ1 fctx prop. of contextual subs. and well-formedness of Φ1

Υ2; [[ρ]]Φ1; [[ρ]]Ψ ` nil : [[ρ]][σ1](a · S′)⇒ [[ρ]][σ1](a · S′) typing rule

Υ2; [[ρ]]Φ1; [[ρ]]Ψ ` nil : [[ρ]][σ1](a · S′)⇒ [[ρ]][σ2](a · S) property of +

Case Υ1; Φ1; Ψ ` m s : (ΠA.B, σ1)⇐ (P, σ2) /ρ1◦ ρ2 (Υ3; Φ3; [[ρ2]]M S)

Υ1; Φ1; Ψ ` m⇐ (A, σ1) /ρ1 (Υ2; Φ2;M) inversion

Υ2; Φ2; [[ρ1]]Ψ `M ⇐ [[ρ1]][σ1]A i.h.3

[[ρ1]]Φ1 ⊆ Φ2, Υ2 `Φ2 ρ1 ⇐ Υ1, Υ2 ` Φ2 fctx and `Φ2 Υ2 mctx i.h.3
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Υ2; Φ2; [[ρ1]]Ψ ` s : ([[ρ1]]B, ([[ρ1]]σ1;M))⇐ [[ρ1]](P, σ2) /ρ2 (Υ3; Φ3;S) inversion

Υ3; Φ3; [[ρ1 ◦ ρ2]]Ψ ` S : [[ρ2]][[[ρ1]]σ1;M ]([[ρ1]]B)⇒ [[ρ1 ◦ ρ2]][σ2]P i.h.3

Υ3; Φ3; [[ρ1 ◦ ρ2]]Ψ ` S : [[[ρ1 ◦ ρ2]]σ1; [[ρ2]]M ]([[ρ1 ◦ ρ2]]B)⇒ [[ρ1 ◦ ρ2]][σ2]P

def. of contextual subs.

Υ3; Φ3; [[ρ1◦ ρ2]]Ψ ` S : [id; [[ρ2]]M ][dot1 [[ρ1◦ ρ2]]σ1]([[ρ1◦ ρ2]]B)⇒ [[ρ1◦ ρ2]][σ2]P

◦ rules

Υ3; Φ3; [[ρ1 ◦ ρ2]]Ψ ` S : [id; [[ρ2]]M ][[ρ1 ◦ ρ2]][dot1 σ1]B ⇒ [[ρ1 ◦ ρ2]][σ2]P

property of contextual subs.

[[ρ2]]Φ2 ⊆ Φ3, Υ3 `Φ2 ρ2 ⇐ Υ2, Υ3 ` Φ3 fctx and `Φ3 Υ3 mctx i.h.3

Υ3; Φ3; [[ρ1 ◦ ρ2]]Ψ ` [[ρ2]]M ⇐ [[ρ1 ◦ ρ2]][σ1]A property of contextual subs.

Υ3; Φ3; [[ρ1 ◦ ρ2]]Ψ ` [[ρ2]]M S : Π([[[ρ1 ◦ ρ2]]σ1]A).([[ρ1 ◦ ρ2]][dot1 σ1]B) ⇒

[[ρ1 ◦ ρ2]][σ2]P typing rule

Υ3; Φ3; [[ρ1 ◦ ρ2]]Ψ ` [[ρ2]]M S : [[[ρ1 ◦ ρ2]]σ1](ΠA.B)⇒ [[ρ1 ◦ ρ2]][σ2]P

property of subs. and contextual subs.

[[ρ1 ◦ ρ2]]Φ1 ⊆ Φ3 and Υ3 `Φ3 ρ1 ◦ ρ2 ⇐ Υ1 property of ◦ on contextual subs.

Case Υ1; Φ1; Ψ ` nil⇐ (P, σ) / ((P, σ); nil)

Υ1; Φ1; Ψ ` nil : [σ]P ⇒ [σ]P typing rule

Υ1; Φ1; Ψ ` (P, σ)⇐ type premiss of the reconstruction judgement

Υ1; Φ1; Ψ ` [σ]P ⇐ type lemma 19

Case Υ1; Φ1; Ψ ` m s⇐ (P, σ) / ((Πclo(A, ↑0,x).clo(B, σ′′◦ ↑0,1 ◦ σ′), id);M S)

contract0 m / x inversion

Ψ(x) = (A, ↑0,x) inversion

Ψ `0 expand x : (A, ↑0,x) / M inversion

Ψ ` (M, id)⇐ (A, ↑0,x) lemma 12

Ψ ` [id]M ⇐ [↑0,x]A lemma 19

σ′ =↑0,x+1, 1, x, . . . , 1 inversion

Υ1; Φ1; Ψ ` s⇐ (P, σ) / ((B, σ′′);S) inversion
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Υ1; Φ1; Ψ ` S : [σ′′]B ⇒ [σ]P i.h.4

(↑0,1 ◦ σ′ ◦ (id, x)) = id def. of ◦ and typing rule

Υ1; Φ1; Ψ ` S : [↑0,1 ◦ σ′ ◦ (id, x)][σ′′]B ⇒ [σ]P σ ◦ id = σ

Υ1; Φ1; Ψ ` S : [id, x][σ′′◦ ↑0,1 ◦ σ′]B ⇒ [σ]P associativity of ◦

Υ1; Φ1; Ψ ` S : [id;M ][σ′′◦ ↑0,1 ◦ σ′]B ⇒ [σ]P lemma 13

Υ1; Φ1; Ψ `M S : Π[↑0,x]A.[σ′′◦ ↑0,1 ◦ σ′]B ⇒ [σ]P typing rule

Υ1; Φ1; Ψ ` (A, ↑0,x)⇐ type assumption

Υ1; Φ1; Ψ ` [↑0,x]A⇐ type lemma 19

Υ1; Φ1; Ψ ` [σ′′]B ⇐ type i.h.4

Υ1; Φ1; Ψ, [↑0,x]A ` [↑0,1][σ′′]B ⇐ type weakening

Υ1; Φ1; Ψ, [↑0,x]A ` [σ′][↑0,1][σ′′]B ⇐ type Ψ(x) = Ψ(1)

Υ1; Φ1; Ψ ` Π[↑0,x]A.[σ′′◦ ↑0,1 ◦ σ′]B ⇐ type typing rule

Case Υ1; Φ1; Ψ `0 s : (A, σ1)⇐ (P, σ2) /ρ (Υ2; Φ2;S)

Υ1; Φ1; Ψ ` s : (A, σ1)⇐ (P, σ2) /ρ (Υ2; Φ2;S) inversion

Υ2; Φ2; [[ρ]]Ψ ` S : [[ρ]][σ1]A⇒ [[ρ]][σ2]P i.h.3

context results i.h.3

Case Υ1; Φ1; Ψ `i s : (ΠA.B, σ1)⇐ (P, σ2) /ρ \ (R/u) (Υ2; Φ2; [[ρ]]M S)

Υ1, u::Q[Ψ′]; Φ1; Ψ `i−1 s : (B, (σ1,M))⇐ (P, σ2) /ρ (Υ2; Φ2;S) inversion

Υ2; Φ2; [[ρ]]Ψ ` S : [[ρ]][σ1,M ]B ⇒ [[ρ]][σ2]P i.h.2

Υ2; Φ2; [[ρ]]Ψ ` S : [[ρ]][id,M ][dot1 σ1]B ⇒ [[ρ]][σ2]P ◦ rules & def. of dot1

[[ρ]]Φ1 ⊆ Φ2 and Υ2 `Φ2 ρ⇐ Υ1, u::Q[Ψ′] and Υ2 ` Φ2 fctx

and `Φ2 Υ2 mctx i.h.2

lower(Υ1; Φ; Ψ ` (A, σ1)) = (M,u::Q[Ψ′]) inversion

Υ1, u::Q[Ψ′]; Φ1; Ψ ` (M, id)⇐ (A, σ1) lemma 15

Υ2; Φ2; [[ρ]]Ψ ` [[ρ]](M, id)⇐ [[ρ]](A, σ1) prop. of contextual subs.

Υ2; Φ2; [[ρ]]Ψ ` [[ρ]][id]M ⇐ [[ρ]][σ1]A lemma 19

Υ2; Φ2; [[ρ]]Ψ ` [[ρ]]M S : [[ρ]](Π[σ1]A.[dot1 σ1]B)⇒ [[ρ]][σ2]P typing rule
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Υ2; Φ2; [[ρ]]Ψ ` [[ρ]]M S : [[ρ]][σ1](ΠA.B)⇒ [[ρ]][σ2]P property of subs.

let ρ′ = ρ \ (R/u)

Υ2; Φ2; [[ρ′]]Ψ ` [[ρ]]M S : [[ρ′]][σ1](ΠA.B)⇒ [[ρ′]][σ2]P u /∈ Υ1

[[ρ′]]Φ1 ⊆ Φ2 def. of contextual subs. (u /∈ Φ1)

Υ2 `Φ2 ρ
′ ⇐ Υ1 u /∈ Υ1

�
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