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Abstract 

The approximate variation of the mean properties in an axisymmetric jet and a two dimensional 

jet with an ambient coflow in an infinite duct have been determined using the excess momentum 

equation and an entrainment function.  The turbulent velocity flux, consisting of a portion due to 

the excess jet velocity and a portion due to the turbulent coflow velocity, is carried by a velocity 

approximately equal to the top hat velocity.  The entrainment into this flow is driven by the 

excess jet velocity and the entrainment function varies to allow for the change in entrainment 

from the strong jet to the weak jet.  The entrainment constant is determined from the data of  

Nickels and Perry [14] for the axisymmetric case and the data of Bradbury and Riley [6] for the 

two dimensional case.  All coflow experiments are in ducts and the effect of the duct is explored 

for the axisymmetric case.  This paper is a prelude to the study of a buoyant jet in a coflow and a 

buoyant jet in a crossflow. 

Résumé 

Les variations approchées des propriétés moyennes d’un jet axisymétrique et d’un jet plan dans 

un courant de même direction en conduite infinie ont été déterminés en utilisant l’équation des 

quantités de mouvement supplémentaires et une fonction d’entrainement.  Le flux de vitesse 

turbulente, composé en partie du supplément de vitesse dû au jet, en partie du courant turbulent, 

est transporté à une vitesse approximativement égale à celle du ‘dessus de chapeau’ (de l’axe du 

jet).  L’entrainement dans cet écoulement est piloté par le supplement de vitesse du jet, et la 

fonction d’entrainement varie pour permettre de passer de l’entrainmement du jet fort à celui du 

jet faible.  La constante d’entrainement est determinée à partir des données de Nickels et Perry 

[14] pour le cas axisymétrique, et celles de Bradbury et Riley [6] pour le jet plan.  Toutes les 

expériences de courant portant sont faites en conduites et l’influence de la conduite est étudiée 

dans le cas axisymétrique.  Cet article est un prélude à l’étude d’un jet flottant en co-courant et en 
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courant traversier. 

 

 

 

Introduction 

Buoyant jets in a still fluid and in a crossflow have been studied for a long time (Wood et al. 

[20]).   For jets in a still fluid, the variation of the mean properties in the turbulent region of the 

jet are obtained using the momentum equation, the continuity equation and a closure equation in 

the form of an entrainment equation whose coefficient is proportional to the mean centre line 

velocity (Morton, Taylor and Turner [13]).   Taylor [18] showed that, outside the turbulent 

region, the flow is irrotational and can be approximated with a line of sinks whose strengths are 

proportional to the entrainment velocity.  A second approach to the closure equation is to use 

empirical measurements of the constant rate of spread of the turbulent region  (Wood et.al. [20], 

Wright [21], Chu et.al [8]). 

 

In most studies, the ratio of the crossflow velocity to the initial jet velocity is quite large (>0.05). 

 This is appropriate for cases where the flow is in the atmosphere.  When the flow is in the ocean, 

 such as from a submerged sewage outfall, the normal crossflow is a very small percentage of the 

initial jet velocity.  For this very small ratio of the crossflow velocity to the initial velocity, 

detailed entrainment velocity measurements have shown that the flow outside the turbulent 

region can be obtained by superimposing the irrotational crossflow with the sink appropriate to 

the jet entrainment (Gaskin [10]).  This illustrated how, as the crossflow increases, the 

entrainment flow changes gradually from the normal entrainment flow into a sink to a forced 

entrainment flow.  This is the motivation for exploring the use of the continuity and momentum 

equations combined with an entrainment function as a closure assumption. 

The behaviour of a buoyant jet in any flow can be divided into a number of regimes in which 

particular physical processes dominate.  In these regimes, simple dimensional analysis allows the 

form of the trajectory, the width and the dilution to be determined and any numerical model 

should, in the limit, satisfy all these regimes.  One of the simpler of these regimes is a jet in a 

coflow  without ambient turbulence and this is the case considered here. 

For a plane or axisymmetic jet in a still fluid, it has been well established that the velocity and 
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turbulence profiles are self preserving (Hussein et al. [11], Papanicolaou and List [15], Wood 

et.al. [20] and others).  There have also been a number of studies of jets released parallel and in 

the direction of a flowing fluid (Forstall and Shapiro [9], Bradbury and Riley [6], Smith and 

Hughes [17], Antonia and Bilger [3], Nickels and Perry [14], and Chu et.al. [8]).  These cases 

have been called plane or axisymmetric jets in a coflow and  it has been shown that the excess 

mean velocities are approximately self-preserving in both the axisymmetric and the two 

dimensional flow, assuming a point momentum source.  However, the product of the turbulence 

velocities are not self preserving  (Townsend [19], Antonio & Bilger [3], Nickels and Perry [14]) 

 and this suggests that the normal entrainment constant changes from that for a strong jet to that 

for a weak jet  (see Hussein et al.[11] for a discussion on self preservation).  The flow is 

completely self preserving only in the limit of a strong jet and a weak jet.  However, a useful 

solution for engineering applications can be obtained if the assumption of self preservation of the 

mean excess velocities is used over the complete range from a strong jet to a weak jet and the 

form of the entrainment can be approximated.  

In the first part of this paper, a new approach to an analysis of the mean velocities in a jet in a 

coflow without ambient turbulence and in an infinite duct is discussed.  In the second portion,  

modifications for the case where the coflow is in a duct are discussed.  Finally the method 

developed for the axisymmetric jet is applied to a plane jet in an infinite duct. 

  

The axisymmetric jet with a  coflow in a large duct 

The jet flow is illustrated in Figure 1.  The flow consists of a non-turbulent coflow outside the jet 

and a turbulent region inside the jet.  This turbulent region consists of the jet flow (ueg region) 

and the turbulent portion of the coflow within the jet boundaries (U region).  When the jet 

occupies only a small portion of the duct, the flow is long and narrow and this allows the 

boundary layer assumption to be made.  This implies that the time averaged excess velocity 

(subscript e) and tracer distributions are self similar and they are normally assumed to have a 

Gaussian velocity distribution (subscript g). 
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This is illustrated in Figure 1, where ueg is the velocity at a radius r, Ueg is the centre line velocity 

and bg is a characteristic radius (in this case it is the radius at which the value of ueg/Ueg equals 

1/e).  The continuity equation for the jet in an ambient flow in a frictionless duct of area A is, 

U A + U d  
4
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Neglecting the friction on the sides of the duct and assuming the duct is large enough not to affect 

the coflow velocity, the coflow at the orifice, Uo, is equal to the coflow downstream, U.  The 
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where po and px are the pressures at the orifice and at a distance x downstream.  Now, subtracting 

U times the continuity equation, dividing by the maximum average velocity (Ueg) and the width 

(bg)  and assuming po is zero, we get 
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The first term on the left hand side of equation (4) is the momentum due to the jet excess velocity 

and the contribution of the streamwise pressure gradient and the second term is the momentum 

due to the coflow velocity. 

For a jet in a still fluid (or zero ambient flow) Hussein et. al. [11] show that the first term can be 

replaced by the momentum integral to the second order, 
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where u, v and w are the dimensionless turbulence velocities.  The first term on the right hand 
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side, due to the  time averaged jet excess velocities with assumed Gaussian distribution, can be 

integrated to give a shape constant for the momentum flux Im of π/2.  Hussein et. al.'s [11] data 

suggests that the contribution of the turbulence velocities is about 10% of that of the mean 

velocities.  We will combine the two contributions by increasing Im by 10% to 1.72.  The second 

dimensionless term in equation (4) is the shape function for the volume flux, 
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After substitution, the momentum equation becomes 

 2dUU+dU 
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The value of the length scale for the strong jet (subscript J) to the weak jet (subscript WJ) 

transition is 
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Writing b' = bg/lJ,WJ and U' = Ueg/U then the dimensionless form of equation (7) is, 

e + f = 1 = bUI + bUI
2

q
22

m   (9) 

where f, equal to ImU'2b'2, is the momentum due to the excess jet velocity and e, equal to IqU'b'2, 

is the momentum due to the coflow velocity.  This can be rewritten as 
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where q' is equal to IqU'b'2 + Iq
2b'2/Im.  The flow consists of a non turbulent volume flux outside 

the jet with a velocity of U and a turbulent volume flux within the jet with a velocity of U + ueg. 

 The turbulent volume flux, q', can be decomposed into a term related to the excess velocity 

(IqU'b'2 = πU'b'2 ) and a second term  related to the turbulent portion of the coflow velocity 

(Iq
2b'2/Im = 5.81b'2 ).  It is also worth noting that the velocity carried by q' is the top hat velocity 

((Im/Iq)U' = 0.54U' ) used by Morton et. al. [13] for jets in a still fluid and Chu et al. [8] for a jet 

in a coflow. 

Using this definition for q' and noting that U' = (Iq/Im)(f/e) and b' = (Im
0.5/Iq)(e/f 0.5), we get  
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The entrainment into the turbulent flow, q', which consists of the excess velocity flux and the 

turbulent coflow flux (see Figure 1), is driven by the excess velocity, U', and this leads to 
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where αc is the entrainment constant for the coflowing jet and x' = x/lJ,WJ.  When e (momentum 

due to the coflow) is small αc will tend to the entrainment constant for a jet in a still fluid αj.  

Hussein et al. [11] get αj equal to 0.057 and hence equations (10) and (12) give the solution for  

a jet in a still fluid. The solutions are 
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For the strong jet in a coflow the data from Nickels and Perry [14] give a constant of 6.9 in 

equation (14). 

In the weak jet the boundary between the turbulent fluid and the irrotational fluid is more 

convoluted than in the strong jet.  Townsend [19] suggests that the variation in the entrainment 

might be explained by assuming, at least in  plane jets and wakes that " (1) the basic entrainment 

is carried out by ordinary eddies of the turbulent motion, and (2) the additional folding is carried 

out by a distinct group of eddies, the entrainment eddies, which develop in intensity sufficient to 

produce large entrainment ratios in wakes and  "weak" jets".  To satisfy the additional 

entrainment caused by the convoluted boundary between the turbulent and the irrotational flow 

we write 

e)k + (1   ejc    (15) 

This satisfies the conditions when e tends to zero (jet in still fluid) and allows for the extra 

entrainment when e is large (weak jet).  Hence 
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Substituting for e and letting f tend to zero, the solution gives the velocity decay as x-2/3.  This is 

the value obtained by simple dimensional analysis for a weak jet (Wood et al.[20]). 

To obtain a complete solution, the initial conditions must be obtained from the zone of flow 

establishment. 

 

 

 

The zone of flow establishment 

To integrate the equations it is necessary to determine the value of f and x' at the end of the zone 

of flow establishment (ZFE).  The dimensionless position is given by x' = x/ lJ,WJ.  Experiments 

show that the length of the ZFE depends on the relative magnitudes of the coflow and initial jet 

velocities (Abramovich [1], Rajaratnam [16]).  For coflows less than the initial jet velocity, the 

length of the ZFE increases exponentially (from x/d = 7 for U' =  which is a still fluid, to x/d = 

25 for U' = 1.33).  For coflows greater than the initial jet velocity, the length of the ZFE decreases 

exponentially, returning to the still fluid value for U' = 0.33 and decreasing gradually for higher 

coflows.  x' at the end of the zone of flow establishment is 
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where U'o is Ueo/U.  Nickels and Perry [14] conducted the definitive experiments in a large wind 

tunnel for a jet in a coflow.  The values of U' were 20, 10 and 2 and equation (17) yields x' values 

of 0.385, 0.97 and 6 respectively.  These values at the end of the zone of flow establishment are 

in agreement with Nickels and Perry's results within an acceptable error.  Equating the 

momentum flux at the orifice and the end of the zone of flow establishment and noting that the 

maximum velocity is constant, we obtain the value of b'2 as 1/(ImU'2 + IqU').  This leads to values 

of b' of 0.038, 0.073 and 0.282 respectively. Then fo equal to ImU'2/(ImU'2 + IqU') is calculated, 

giving values of  0.909, 0.833 and 0.5 respectively. 

Using these calculated initial conditions for U' of 20, the complete solutions were plotted for trial 

values of ke of 0, 0.5, 1.0 and 1.5,  and the value of 1.0 was selected as the best-fit to Nickels & 

Perry's [14] data.  The model using ke = 1.0 is compared to measured velocity data in Figure 2 

and the agreement is satisfactory.  In Figure 3 the model width is compared with the experimental 

data.  
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The effects of a finite duct 

All experiments are carried out in finite ducts, which modify the jet behaviour from that found in 

infinite ducts.  The duct confines the flow, causing the entrainment into the jet to be fed from a 

reversal in the coflow (Hussein et al. [11]) as shown in Figure 4.  The flow reversal reduces the 

coflow velocity.  The total momentum of the flow is split between the jet momentum and the 

momentum that contributes to a reduction in the coflow velocity resulting in a reduction of the jet 

momentum.  A model for this effect is developed assuming a frictionless duct and accounting for 

the contributions due to jet turbulence and mean pressure variations.   

If the value of the coflow velocity is U0 at the end of the zone of flow establishment, the 

continuity equation is given by equation (2).  The momentum equation is  
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where  px is measured from po and pv is the variable part of the pressure due to the duct influence. 

 Subtracting Uo times the continuity equation from the momentum equation and setting po to 

zero gives 
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Assuming that the jet maintains approximate self-similarity so that the shape constants for an 

infinite duct still apply, that the momentum flux due to the portion of the pressure in an infinite 

duct can still be represented by the shape factor Im increased by 10% (as per Hussein [11]) and 

that A  A.   Writing px = p + Δp and Ux = U + ΔU , we get 
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Using Bernoulli's equation along a streamline located in the coflow, we get 
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Substituting (21) into (20) and rearranging 
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On the right hand side of equation (22), the first term is the jet excess momentum for an infinite 

duct, the second term is the reducton in jet excess momentum due to the finite duct, the third 

term is the momentum due to the coflow in the infinite duct and the fourth term is the increase in 

the coflow momentum due to the finite duct.  Let the transition length scale for strong jet to weak 

jet, lJ,WJ be as before as given in equation (8) but replacing U with U0 and write b'=bg/lJ,WJ, 

U'=Ueg/U0, U'=Ux/U0 and ΔU'=ΔU/U0.  Assuming that the changing portion of the 

pressure, pv, is approximately self similar, then the dimensionless value of the pressure difference 

can be described by a shape function, Ip, which is determined by fitting the curve to the 

experimental data as, 
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Equation (22) can be written in dimensionless form as, 
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As before letting f = ImU'2b'2 and e = IqU'b'2, substitution gives 
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We can write the momentum equation as a turbulent volume flux q' carried by a velocity of  

 (Im/Iq)U'  as, 
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and q' can be rewritten assuming we can use the previous definitions of U' and b' for a jet in an 

infinite duct, 
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 
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































)eU2 + (1 - 1

e
 

I

I
 + 1= 

b 
I

I
 U2 + 1 + bUI  

I

I
 + 1=q

m

p

m

q

2

q

m

p 22

 

 

(27) 

Differentiating q' and assuming that the equation for the entrainment into the turbulent region of 

the jet does not change (i.e. it is still driven by the jet excess velocity) we get 

  
   

I

e - 1
 ek + 12= 

e)U2 + 1

dx

Ud
 e2 - 

dx

de

I

I
 + 1

m

ej2

2

m

p

2
1

2
1

1 














































  

 

(28) 

Due to the confinement of the flow by the duct, the increase in the flow in the turbulent region 

must come from a decrease in the ambient coflow.  If the ambient coflow velocity is still assumed 

constant over the area ( U' is only a function of x' ), then 

dx

Ud
 A- = 

dx

de 



  

 

(29) 

With the initial conditions and equations (28) and (29), the effect of the finite duct was explored 

for all cases and the effect on the experiments of Nickels and Perry [14] was negligible.   This is 

illustrated for the case of  U' of 20 and A' of 5.12 in Figure 5.  The effect of the duct area is not 

apparent until x' is well beyond the experimental data.  The model indicates that the jet velocity 

and hence momentum begins to decrease once the jet occupies 15% of the duct,  decreases very 

rapidly once the jet occupies 45% of the duct and at some point downstream will no longer be 

distinguishable from the coflow.  Baturin [4] had similar observations in ventilation applications. 

 The  reduction in the coflow velocity is also illustrated. 

 

The asymptotic solution for the plane jet in a coflow  

The method described above can also be used for a plane jet in a coflow and, for the case of an 

infinite duct, will be summarized.  With the assumed Gaussian velocity distribution, the 

momentum equation for this case is 

dUU + dU = bUIU + bUI eo
2
eogegqg

2
egm   (30) 

Where the shape constant for the discharge is 

1.77 = 
b

b
 d 

U

u
   2 = I

geg

eg

0

q 















 
 

(31) 
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In the calculations for Im the results of Bradbury [5] suggest that the turbulent terms balance the 

pressure distribution term, hence 

25

2

1. = 
b

b
 d 

U

u
   2 = I

geg

eg

0

m 















 

 

(32) 

The length scale for the transition from the strong jet (J) to the weak jet (WJ) is again given by 

equation (8).  Defining b' = bg/lJ,WJ and U' = Ueg/U we get the dimensionless form of the 

momentum equation, 

 = e + f = bUI + bUI q
2

m 1  (33) 

This may be written as 

1 = U 
I

I
  b 

I

I
 + bUI

q

m

m

2
q

q









  

 

(34) 

defining  

e 1

e
 = 

f

e
 + e = b

I

I
 + bUI = q

2

m

2
q

q









  

 

(35) 

Then, assuming equation (14) as the function for the entrainment but with a new value of ke,  

 
 

e

e  1
 

I

I
 ek + 12 = 

e

1

xd

de
 = 

xd

qd

m

q

ej






2

1
 

 

(36) 

With a strong jet e tends to zero and hence from equation (36)  

x
I

I
 4= e

m

q

j
2 








  

 

(37) 

and thus 

  xxI

I

eI

fI
U

jjm

q

m

q















1353.0

4

2

2


 

 

(38) 

Bradbury and Riley get a coefficent of 6.25 and hence the entrainment constant αj is 0.057.  To 

obtain the complete solution we need the initial conditions.  Bradbury and Riley's [6] experiments 

had a maximum velocity ratio of 6 and, to cover the experimental range, the initial conditions 

will be determined for this ratio.  It is also worth noting that for the experiments the inlet velocity 

was not uniform and thus the excess momentum equation is written as 

bUIU + bUI = dUIU + dUI egq
2
egmeoqo

2
eomo   (39) 

where Im and Iq are the shape functions determined in the inlet.  This gives a new value of 
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U

UIU + UI

d

l
2

eoqo
2
eomoWJJ






,
 

 

(40) 

where U'o is Ueo/U .  Now for a strong jet x/d is approximately equal to 5 (Albertson et al [2]) 

hence 

UI + UI

5
 = 

l

d
 

d

x
 = 

l

x
 =x

oqo
2
omoWJJ,WJJ, 

  
 

(41) 

Assuming that the maximum velocity does not change from the inlet to the end of the zone of 

flow establishment, using the excess momentum equation and dividing the velocities by U , we 

get 

UI + UI

UI + UI
 = 

d

b

oq
2
om

oqo
2
omo




 

 

(42) 

and 

U’I+U’I

U’I
=b’U’I=f

oq
2
om

2
om

o
2
omo

 
 

(43) 

and 

UI + UI

1
 = 

l

b
 = b

oq
2
omWJJ,

o


  
 

(44) 

For U'o equalling 6, bo' is 0.0179 and fo is 0.81.  As pointed out by Bradbury and Riley [6], there 

still remains a problem with x' which depends on the shape factor in the inlet.  If the velocity 

distribution is uniform, x' is 0.12 and if parabolic x' is 0.09.  This is a minor change. 

Accepting these initial conditions the complete solution is obtained by integrating equation (36) 

with a value of ke of 0.80.  Figure 6 is the graph of 1/U'2  as a function of x' calculated in this 

manner, which is compared to the results obtained by Bradbury and Riley [6].  Similarly Figure 7 

shows the width growth Δ (Δ is 0.832b') as a function of x'. 

 

The spread function 

In this paper the closure assumption is a modified form of the entrainment assumption.  It is also 

possible to use the spread assumption below 

Uc + U

Uc
 k = 

xd

bd

eg

eg

s










 
 

(45) 

For both the axisymmetric and the two dimensional flow the experimental  value of  ks is 0.11 

and c is an empirical constant.    It is noteworthy that Wood et al. [20] and Knudsen [12] used the 
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data available at the time and empirically determined the value of c as 1.  For the axisymmetric 

case, Chu, Lee and Chu [8] used Chu's [7] concept of dominant eddy hypothesis to obtain a value 

of  0.5 (approximately the top hat velocity Im/Iq) and Wright [21] also suggests a value of  0.5. 

For the two dimensional case the data suggest that c equals 1. 

 

Conclusion 

A modified entrainment equation combined with the momentum equation can be used to obtain 

an approximate solution for the mean properties of jets in a coflow.  The turbulent velocity flux, 

consisting of a portion due to the excess jet velocity and a portion due to the turbulent coflow 

velocity, is carried by a velocity approximately equal to the top hat velocity.  The entrainment 

into this flow is driven by the jet excess velocity and the modified entrainment function allows 

for the change in entrainment from the strong jet to the weak jet.  The same functional 

relationship for the entrainment is applied for an axisymmetric and a plane jet in a coflow.  It is 

thought that this modification is due to clustering of eddies distorting the boundary between the 

turbulent fluid and the irrotational fluid.  With the constant, which depends the additional 

entrainment in the weak jet case, the predicted mean properties agree with the experimental 

results.  For the axisymmetric jet an allowance can be made for a finite duct size  
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Nomenclature / Notation 

A, A, Aj duct area, coflow area, jet area 

bg   jet characteristic jet half-width where ueg/Ueg = 1/e 

d   diameter of jet at origin or orifice diameter 

e   momentum flux due to coflow velocity 

f   momentum flux due to excess jet velocity 

Iq, Im, Ip  shape constant for volume flux , for momentum flux, for jet pressure difference 

ke   constant accounting for additional entrainment in a weak jet 

lJ,WJ   length scale for transition from a strong jet (J) to a weak jet (WJ) 

Meo   initial jet momentum flux 

po, px, pv pressure in jet at orifice, at x in an infinite duct, variation at x due to finite duct 

po, p   pressure in the coflow at orifice, at a distance x from origin in an infinite duct 

px, Δp in a finite duct: pressure in the coflow at a distance x, variation from p 

q'   turbulent volume flux within jet 

r   jet radius 

u', v', w' dimensionless turbulent velocity fluctuations 

ue, ueg  local time averaged excess jet velocity, " with gaussian distribution  

Ueo, Ueg  initial jet excess velocity, time averaged centreline jet excess velocity 

U,U0, Ux coflow velocity, initial coflow velocity, coflow velocity at  a distance x 

x   downstream distance 

αj,αc   entrainment constant for jet in a still fluid, for jet in a coflow 

ρ   fluid density 

'   indicates a dimensionless value 
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Figures for  "The axisymmetric and a plane jet in a coflow" 

 

 

Figure 1.   The nomenclature for an axisymmetric jet in a coflow. The shaded portion within the 

jet is turbulent. 

 

 

Figure 2.  The variation of Ueg/U as a function of  x/lJ,WJ for an axisymmetric jet in a non-

turbulent coflow in an infinite duct. Experimental data is compared to the present integral theory. 
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Figure 3.  The value of the width of the jet (bg /1.414) as a function of x/lJ,WJ for an axisymmetric 

jet in a non-turbulent coflow in an infinite duct. Experimental data is compared to the present 

integral theory. 

 

 

Figure 4.  The nomenclature for the axisymmetric jet in a coflow in a finite duct illustrating the 

modifications due to the effect of the confinement of the flow. 
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Figure 5.  The decay of Ueg/Uo and Ux/Uo as a function of x/lJ,WJ due to the finite duct.  The 

solid line is the empirical theory with a non turbulent coflow and the grey line allows for the 

correction for the duct size.  The data of Nickels and Perry [14] for a velocity ratio of 20 is 

shown. 

 

 

Figure 6.  The variation (U/Ueg)
2 as a function of x/lJ,WJ for a plane jet in a coflow.  The 

experiments were reported by Bradbury and Riley [6]. 
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Figure 7.  The variation of the width Δ (Δ = 0.832 b') as a function of x/lJ,WJ for a plane jet in a 

coflow.  The experiments were reported by Bradbury and Riley [6]. 


