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ABSTRACT: 

In addition to a proper radar calibration, quantitative estimation of precipitation 
from VRF radars requires the extraction of the precipitation signal out of the 
Doppler spectra. It also requires the proper conversion of this precipitation signal 
into a reflectivity factor. 

This research develops a multi-faceted approach for the calibration of VRF 
vertically-pointing radars, by combining a first calibration method that compares 
the recorded VRF signal to power coming from a noise generator and a second 
calibration method that compares recorded VRF signal to cosmic radiation. This 
approach allows the retrieval of antenna and receiver parameters (such as noise 
levels, efficiency, and gain), and four other equations for the corresponding errors. 
In addition, we develop an equation for calibrating Doppler spectra. 

The analysis is focused on rain observations with VRF radar. We verify the 
hypothesis that IKI2 = 0.93 for most of the rain observations at VRF band. A 
signal-processing algorithm for extracting the rain signal out of the VRF power 
spectra is then presented. This work also derives a general version of the radar 
equation valid for vertically pointing radars, as weIl as a particular version ofthis· 
equation valid for the McGill VRF radar. The study then makes numerical 
simulations of several profiles of precipitation signal at VRF band, by combining 
high-resolution profiles of precipitation signal (from a calibrated X-band radar) 
and the VRF antenna pattern in our general version of the radar equation. The 
analyses indicate that VRF reflectivity at gates above the melting layer is 
artificially enhanced by the precipitation signal collected from the side lobes. 

This work also studies the effect of precipitation in the scattering properties of 
c1ear air. We analyze several cases of stratiform and convective rain, occurring in 
a continental mid-latitude environment (Montreal, Lat.45.4loN, Long.73.94°W). 
For these cases, Doppler spectra taken by a VRF vertically-pointing radar were 
used to retrieve simultaneous co-Iocated values of precipitation intensity 
(rainrates) and degrees of refractive index fluctuation (structure-function 
parameter for refractivity turbulence, Cn

2
). We validated these retrievals using co­

located, calibrated measurements of precipitation signal at X-band. The 
comparison between equivalent reflectivity factors at X and VRF bands agrees 
within 1 dB. The study inc1udes rainrates between 0.3 and 78 mmlh, and C/ 
values between 10-16 and 10-12 m-213

, retrieved from the VRF spectra at 2.5 km 
height. The study finds that the occurrence of rain is associated with distinctive 
changes in the structure of air refractive index fluctuations, and that these changes 
are of a turbulent nature for the most intense rainrates. 
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RÉSUMÉ: 

En plus d'une calibration appropriée, l'estimation quantitative des précipitations à 
partir de radars VHF nécessite l'extraction du signal précipitant du spectre 
Doppler. Ceci nécessite également une conversion adéquate de ce signal en 
facteur de réflectivité. 
Ce travail de recherche a pour objectif de développer une approche multi-facette 
pour la calibration des radars VHF à visée verticale. Ceci est réalisé en combinant 
deux méthodes de calibration: la première méthode compare le signal VHF 
enregistré au le signal issu d'un générateur de bruit et la seconde compare le 
signal VHF enregistré aux radiations cosmiques. Cette approche permet de 
restituer les paramètres de l'antenne et du récepteur (comme le niveau de bruit, 
efficacité, et le gain), ainsi que les équations des erreurs correspondantes. De plus, 
nous avons développé une équation pour calibrer le spectre Doppler. 
Cette étude est axée sur des observations de pluie d'un radar VHF. Nous avons 
vérifié l'hypothèse IKI2 = 0.93 pour la pluie en bande VHF. Un algorithme de 
traitement du signal permettant d'extraire le signal de pluie des spectres Doppler 
VHF est présenté. Ce travail présente également une version générale de 
l'équation radar, valide pour les radars a visée verticale, ainsi qu'une version 
spécifique de cette équation dédiée au radar VHF de McGill. Des simulations 
numériques de quelques profils de signaux précipitant en bande VHF, sont 
réalisées en combinant des profils de fines résolution issus de radar bande X 
calibrés et du champ d'antenne VHF de notre équation radar générale. L'analyse 
indique que la réflectivité radar VHF au dessus de la zone de fonte est 
artificiellement augmentée par le signal précipitant provenant de la direction des 
lobes secondaires. 
Cette étude est également axeé sur l'effet des précipitations sur les propriétés de 
rétrodiffusion de l'air clair. Nous analysons certains cas de pluies stratiformes et 
convectives, survenus dans un environnement continental de moyenne latitude 
(Montréal, Lat.45.4l oN, Long.73.94°0). Pour ces différents cas, le spectre 
Doppler issu du radar VHF à visée verticale a été utilisé pour restituer 
simultanément les valeurs d'intensité des précipitations (taux de pluie) et la 
fluctuation de l'index de réfraction (paramètres de la fonction de réfractivité 
turbulente, C/). Nous avons validé ces restitutions en utilisant des mesures co­
localisées de précipitations, issues de radars en bande X calibrés. La comparaison 
entre les facteurs de réflectivité équivalente radar en bandes X et VHF sont en bon 
accord, à IdB près. L'étude prend en compte des taux de précipitations variant 
entre 0.3 et 78 mmlh et des valeurs de C/ comprises entre 10-16 et 10-12 m-2I3

, 

celles-ci étant restituées à partir du spectre VHF à 2.5 km d'altitude. Il a été 
montré que l'occurrence des précipitations est associée avec les changements de 
structures de l'index de réfraction de l'air et que ces changements sont de nature 
turbulente pour les taux de précipitations les plus intenses. 
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RESUMEN: 

Ademas de una adecuada calibracion deI radar, la estimacion cuantitativa de la 
precipitacion a partir de radares VHF requiere de la extraccion de la sefial de 
precipitacion en el espectro Doppler. También se requiere una conversion apropiada de 
esta senal de precipitacion al factor de reflectividad de radar. 
Esta investigacion desarrolla una estrategia mixta para la calibracion de radares VHF que 
apunten verticalmente, la cual combina un primer método de calibracion que compara la 
sefial registrada en VHF y la potencia proveniente de un equipo generador de sefial ruido, 
asi coma un segundo método de calibracion que compara la senal registrada en VHF con 
la radiacion cosmica. Esta estrategia permite obtener los parametros de la antena y el 
receptor (tales coma los niveles de ruido, eficiencia y ganancia), asi coma las ecuaciones 
para calcular los errores respectivos. Ademas, se desarrolla una ecuacion para la 
calibracion deI espectro Doppler. 
El analisis se enfoca en observaciones de lluvia con radar VHF. Se verifica la hipotesis de 
que IKI2 = 0.93 para la mayoria de las observaciones de lluvia en la banda VHF. Se 
presenta un algoritmo de procesamiento de la sefial para extraer la sefial de lluvia a partir 
deI espectro de potencias en VHF. Este trabajo también deriva una version general de la 
ecuacion deI radar, valida para radares que apuntan verticalmente, asi coma una version 
particular de esta ecuacion valida para el radar VHF de McGill. Este estudio continua 
haciendo simulaciones numéricas de varios perfiles de la sefial de precipitacion en la 
banda VHF, mediante la combinacion de perfiles de sefial de precipitacion a alta 
resolucion (obtenidos con un radar en banda X, previamente calibrado) y el patron de 
dispersion de la antena, ambos combinados en nuestra version general de la ecuacion deI 
radar. Los analisis indican que la reflectividad en VHF, para rangos arriba del nivel de 
fusion, queda artificialmente aumentada por la sefial de la precipitacion que es recogida 
en la direccion de los lobulos laterales deI patron de la antena. 
Este trabajo también estudia el efecto de la precipitacion en las propiedades de dispersion 
deI aire claro. Se analizan varios casos de lluvia estratiforme y convectiva, que ocurren en 
un ambiente continental de latitudes medias (Montreal, Lat.45.41°N, Long.73.94°0). Para 
estos casos se utiliza el espectro Doppler, obtenido por un radar VHF que apunta 
verticalmente, para obtener valores correspondientes de la intensidad de precipitacion 
(lluvia) y el grado de fluctuacion en el indice de refraccion (el parametro de la funcion 
estructura para la refractividad por turbulencia, C/). Se validan estas estimaciones 
utilizando medidas calibradas de la sefial de la precipitacion en la banda X, las cuales son 
simultaneas y representativas de un volumen similar a las medidas en VHF. La 
comparacion entre los factores de reflectividad equivalente en bandas X y VHF 
concuerda dentro de 1 dB de diferencia. El estudio incluye intensidades de lluvia entre 
0.3 y 78 mm/h, asi coma valores de C/ entre 10-16 y 10-12 m-2/3

, todos obtenidos a partir 
de espectros en VHF a una altura de 2.5 km. El estudio encuentra que la ocurrencia de 
lluvia esta asociada con cambios distintivos en la estructura de las fluctuaciones deI 
indice de refractividad del aire, y que estos cambios son de naturaleza turbulenta para las 
lluvias mas intensas. 
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STATEMENT OF ORIGINALITY: 

Elements of this thesis that constitute original scholarship and an advancement 

ofknowledge are the following: 

- Development of a multi-faceted approach for the calibration of VHF (vertically­

pointing) radars, which provides the values and uncertainties for various antenna 

and receiver parameters (such as noises, efficiency, and gain). 

- Development of a signal-processing algorithm to retrieve rain intensity, au­

turbulence signal, and vertical air velocities, all these over the same sampling 

volume and using only observations from a VHF radar. 

- Derivation of a general version of the radar equation, which is valid for 

vertically-pointing radars with targets within a few kilometers range, but still 

within the antenna far-field region. 

- Development of a numerical model to simulate how the scatter signal received 

through antenna sidelobes can affect the measured profile of precipitation 

reflectivity. 

- Analysis of a unique dataset for rainrates, vertical air velocities, and au­

turbulence signaIs (simultaneously measured during several rain events, typical of 

continental mid-latitude environments), which illustrates how rain affects the 

scattering properties of the c1ear air. 
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LIST OF SYMBOLS: 

The following symbols are those used most frequently in this thesis. 

Digital units of the analog-to-digital converter in the radar receiver 
Antenna effective area (in m2

) 

First radar-calibration coefficient (the constant, in Watts), from the noise­
generator method 

Asky First radar-calibration coefficient (the constant, in Watts), from the sky­
noise method 

BNG Second radar-calibration coefficient (the slope, in W/au), from the nois.e­
generator method 

Bsky Second radar-calibration coefficient (the slope, in W/au) , from the sky-
noise method 

BPFwidth Band-pass filter width of the radar receiver (in Hz) 
c Speed of light in a vacuum 
c' Speed oflight in the atmosphere 
C/ Structure-function parameter for refractivity turbulence (in m-213

) 

dAt Finite area that is perpendicular to the direction of the radar-transmitted 
radiation. 

dAs Average scattering cross-section of radar targets. 
D Antenna directivity 
Dmax 

De 
DSR 

e 

f 
jj 

Antenna maximum directivity 
Equivalent-spherical raindrop diameter (in mm) 
Doppler spectral range (in Hz), corresponding to those spectral frequency 
bins recorded after signal processing 
Antenna efficiency 
Antenna efficiency during reception of radar signal 
Antenna efficiency during transmission of radar signal 
Water-vapour pressure (in mb or Pa) 
Doppler frequency shift (in Hz) 
Doppler frequency at the j-th spectral bin, corresponding to the c1ear-air 
peak (in Hz) 

fmin Smallest Doppler frequency of retrieved precipitation spectrum 
fprecip Doppler frequencies in the precipitation spectrum (in Hz) 
JR Radar operating frequency (in Hz) 
/sampling Radar sampling rate (in Hz) 
Jo Relaxation frequency of pure water 
F Normalized one-way antenna polar-diagram (or antenna pattern) 
F NG Factor of the noise-generator hardware (one unit increment ln F NG 

corresponds to 290 Kelvins increase in brightness temperature) 
g Shape oftransmitted pulse (as a function of range) 
G Antenna gain 
gRx Receiver gain (in au/W) 
kBoltzmann Boltzmann constant (1.381xlO-23 J/K) 
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L 
LB 
Lo 
m 
M 
n 
n 
n 
n 
N 
Na 
Neoh 

Ne 
NRx 
p 
Peal 

PNG 

Pout 

P'out 

Pr 
PRF 
PRx 
Psky 

Pt 

PTx 

r 
R 
R 
S 
Seal 

Spreeip 

SPOSS 

Sv HF 

Sout 

S'out 

Transition scale between viscous and inertial subranges of turbulence (i.e., 
the Inner sc ale) 
Transmitted pulse length (in m) 
Transition scale between inertial and buoyancy subranges of turbulence 
Outer scale of turbulence (inside the inertial subrange) 
Complex refractive index for a given scatterer 
Vertical gradient of the potential refractive index 
Atmospheric refractive index 
Number of spectral bins 
Real part of the complex refractive index, for a given scatterer 
Imaginary part of the complex refractive index, for a given scatterer 
Drop size distribution (in mm-l m-3

) 

Antenna noise (in Watts) 
Number of samples used for coherent averages during radar signal 
processmg 
Number density of [ree electrons (in m-3

) 

Receiver noise (in au) 
Atmospheric pressure (in mb or Pa) 
Calibrated received power (in Watts) 
Power input by the noise generator into the radar receiver (in Watts) 
Digital value of the total received power (in arbitraryunits), output by the 
computer after signal processing, and corresponding to the integral of Sout. 

Digital value of the received power (in arbitrary units), in the recorded 
spectral range, corresponding to the integral of S'out. 

Backscatter power input into the radar antenna 
Pulse repetition frequency (in Hz) 
Power output from the antenna into the receiver hardware 
Sky power (from co smic radio emissions, in Watts) 
Power transmitted by the radar antenna into the space 
Power transmited by the radar transmitter into the antenna 
Range to scatterer, as variable 
Range, as constant (in m) 
Rainfall rate (in mmlh) 
Doppler spectral density 
Calibrated power-density spectra (in WlHz) 
Doppler power density of precipitation signal 
Doppler spectrum of reflectivity factors from POSS measurements 
Doppler spectrum ofreflectivity factors from VHF precipitation signaIs 
Full spectral density (in auIHz) , corresponding to Doppler frequencies 
within ± 0.5 !samPling 

Stored Doppler spectra (in aulHz) , corresponding to Doppler frequencies 
within ± 0.5 DSR 
Temperature (in Kelvins or degrees Celsius) 
Receiver noise temperature (in Kelvins) 
Doppler velo city (in mis) 
Terminal fall velocity (in mis) of a raindrop at any given height 
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Vo Raindrop tenninal faU velocity (in mis) at sea level 
V Radar sampling volume 
Z Radar reflectivity factor (in mm6 m-3

) 

Ze Equivalent reflectivity factor (in mm6 m-3
) 

Zposs Reflectivity factor from POSS measurements (i.e., Sposs integration) 
ZVHF Reflectivity factor from VHF measurements (i.e., SVHF integration) 
fJ Spectral index (for our studies, it is approximately equal to 2.5) 

/j.f Bin resolution of the Doppler spectra (in Hz) 

<l1n 2> Mean square fluctuations of the refractive index 
/j.r Width of radar range gate (in meters) 
& Turbulent energy dissipation rate (in m2 

S-3) 

q Relative dielectric constant 

q' Real part of the relative dielectric constant (i.e., the relative pennittivity) 

q" Imaginary part of the relative dielectric constant (i.e., the lost factor) 

qs Static dielectric constant 

q", High-frequency dielectric constant 

ç; Amplitude reflection coefficient of a refractive-index discontinuity 
IKI2 Scatterer dielectric factor 
À Radar wavelength (in m) 
17 Radar reflectivity (in m-1

) 

17 precip Radar reflectivity from precipitation signal (in m-1
) 

o M Solid angle of the one-way main lobe 

Op Solid angle of the one-way fuU-antenna-pattern 

tjJ Azimuth angle (in degrees or radians) 
pAir density at a given height (in kg m-3

) 

Po Air density at sea level (in kg m-3
) 

a AIR Spectral width of c1ear-air Doppler spectrum (in mis) 

(aJi Back-scattering cross section of the ith isotropic scatterer 

B Zenith angle (in degrees or radians) 
Bs Aspect sensitivity factor (in degrees) 

Bt Zenith angle of an off-vertical tilt direction 

BD One-way half-power half-beamwidth (in degrees or radians) 

OlE Brunt-Vaisala frequency (in Hz) 
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CHAPTERl: 

INTRODUCTION 

1.1. Motivation 

While precipitation intensity is one of the most important scalars measured in 

meteorology, the wind can be consider as the most important meteorological 

vector to be measured. There is a sensor that has the potential to achieve 

simultaneous measurements of precipitation and wind. Consider for example 

vertical velocities. Although these are difficult to measure, they can be 

determined from the Doppler velo city obtained by c1ear-air-sensitive radars 

pointing vertically. Furthermore, by altemating the direction of the transmitter 

and receiver antenna beam, in at least two particular off-vertical directions, it is 

possible to construct time series of the vertical profile of the 3-D wind above the 

radar. These radars have also the potential of receiving additional signal from 

precipitation. 

The radars described in the previous paragraph are called wind profilers, and 

their measurements are used in fields such as air traffic safety, weather numerical 

modeling, severe weather forecasting, and pollution dispersion [e.g., Benjamin et 

al., 2004]. Applications of wind profilers also inc1ude c1imatic analysis of long­

term variations in the wind field, as well as diagnosis and forecasting of the 

severity of specific events (e.g. atmospheric waves, c1ear-air turbulence, and 

mesoscale convective systems). The real-time monitoring of wind profiles can 

provide information related to air pollution, air traffic hazards, and safety in high-
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risk areas such as chemical and nuc1ear plants. Furthermore, radar wind profiles 

could be assimilated into numerical models of continental-scale and local 

weather, as well as air pollution. A single wind profiler or a network may be used 

in connection with other instruments and models to describe specific phenomena 

such as fronts, topographic induced effects, and exchange of air masses between 

the troposphere and the stratosphere. 

Traditionally, radar meteorology applied to precipitation physics has been 

done mainly using the microwave band (e1ectromagnetic wavelengths between 1 

m to 1 mm, or frequencies between 300 MHz and 300 GHz; AMS [2000]). 

However, wind-profiler radars operating at VHF band (wavelengths between 10 

m to 1 m, or frequencies between 30 MHz and 300 MHz) may present sorne 

advantages since they measure backscatter from both c1ear air and precipitation. 

(Both signaIs produce independent contributions in VHF Doppler power spectra.) 

It is then possible to quantify the amounts of precipitation and c1ear air 

turbulence. 

Unfortunately, precipitation signal has been traditionally considered as dutter 

(unwanted echoes) by the VHF community. Thus, most of the VHF signal 

processing and analysis have avoided the treatment of the precipitation signal. 

This research proposaI will proceed differently by identifying the potential that 

VHF radars have in the study of precipitation physics. 

It is also a very opportune time to pursue this line of research, since the 

McGill University radar observatory has recently acquired a VHF wind profiler 

[described in Campos and Hocking, 2003]. Although the radar design is such that 

its mode of operation requires sorne modification in order to retrieve 
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meteorological information other than winds, this radar was able to perform the 

data collection for this research. Furthermore, extensive data were available to 

complement these VHF measurements, from other instruments co-Iocated at the 

McGill VHF site (e.g. raindrop sizes at ground and Doppler spectra from an X­

band, vertically-pointing radar). 

The next section will discuss the basic scientific princip les involved in the 

operation of VHF radars. The final section will state the scientific problems to be 

addressed in this Thesis, which inc1udes the objectives and detailed plan of this 

research. 

1.2. Literature review 

Radars that operate with electromagnetic radiation of wavelengths between 1 

and 10 m (frequencies between 300 and 30 MHz) are called VHF (Very High 

Frequency) radars. Using VHF electromagnetic waves allows simultaneous 

detection of "c1ear air" signaIs as well as precipitation signaIs. By transmitting 

and receiving electromagnetic waves that propagate in the vertical direction, VHF 

radars are capable of measuring signaIs retumed from the troposphere, 

stratosphere, and in sorne cases even from the mesosphere. Due to these 

capabilities, they have also been called MST (Mesosphere-Stratosphere­

Troposphere) radars, ST (Stratosphere-Troposphere) radars, c1ear-air radars, and 

wind profilers. 

In addition to the basic capabilities, VHF radars can be optimized to produce 

measurements of one or more of the following meteorological variables [see 
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Rottger and Larsen, 1990, and references therein]: 3-D wind, momentum flux, 

turbulence, Rainfall Drop-Size Distributions (DSDs), temperature and humidity 

profiles, and lightning. Later in this thesis, we will discuss some important 

methods to retrieve fundamental atmospheric variables from VRF radar 

observations. 

The capabilities of the VRF radar make it a valuable tool for the study of 

cloud formation and precipitation development. In fact, the understanding of 

these processes is the fundamental goal of cloud physics. 

1.2.1. General backscatter radar equation 

In general, electromagnetic waves transmitted by the radar will be 

backscattered (or reflected) by the propagating medium according to the radar 

equation. (The Appendix and Chapter 3 will consider a general form of the radar 

equation; however, the CUITent Chapter 1 will use a simplified form of the radar 

equation, which facilitates the introduction of some basic concepts.) For a 

Gaussian beam pattern, and for scatterers in the far-field being uniformly 

distributed throughout the entire volume (from which power is scattered back to 

the receiver), a simplified form of the radar equation can be given by [e.g., 

Balsley and Gage, 1980] 

(1.1) 

where Pr (in units of watts) is the average returned power, e is an efficiency 

factor for the antenna transmission lines, PTx (in watts) is the transmitted power, 
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Ae is the effective antenna area, and fl.r is the range gate width. The value of 17 

(in m-1
) is the radar reflectivity per unit volume, and r (in meters) is the range. 

The radar reflectivity is determined by the scattering elements present in the 

sampling volume (the medium through which the electromagnetic wave 

propagates). Thus, the radar reflectivity is defined in terms of the total 

backscattering cross-sectional area as [e.g., Battan, 1973, equation 4.8] 

~)o-Ji 
17=....:;vo:;...I __ 

vol 
(1.2) 

where (O"Ji is the back-scattering cross section of the ith isotropic scatterer, and 

vol is the sampling volume (i.e., the entire volume from which power is scattered 

back to the receiver at any instant). Note that, strictly speaking, the propagating 

medium may also produce reflection in addition to scatter. 

Whether the scatter elements are solid, liquid, gas, or plasma, the theory is 

similar. The special appealing of the VHF radar resides in its capability to 

differentiate the backscatter from clear air from the signal due to precipitation 

particles (and even from lightning). We will discuss these capabilities in the 

following sections. 

1.2.2. Scattering from clear air 

1.2.2.1. Refractive index 

As the electromagnetic wave propagates in a medium, or as it passes through 

the interface between two media, the wave is affected by the composition 

changes of the medium. These density changes produce changes in the speed of 
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propagation of the electromagnetic wave. For instance, the speed of the wave 

may slow down while the frequency stays constant. As a consequence, the 

direction of energy propagation can be changed. This is called refraction. The 

amount of refraction is determined by the atmospheric refractive index, n, and 

this index is defined by [e.g. Rottger and Larsen, 1990, eqn.l] 

(1.3) 

where c' is the actual wave speed and c is the speed of light in a vacuum. The 

value p is the atmospheric pressure (in mb), T is the absolute temperature (in 

Kelvin), ev is the partial pressure ofwater vapor (vapor pressure, in mb), Ne is the 

number density of free electrons (in m-3
), andlR is the radar operating frequency 

(in Hz; IR = c'j À, :::::! cj À" and À, is the radar wavelength). Note that the term 

dependent on Ne needs not to be considered for heights below the mesosphere. 

With respect to the refractive index gradient, the term proportional to ev is most 

important in the lower troposphere, while the term proportional to p dominates in 

the upper troposphere and the stratosphere. 

For a given volume (the one sampled by the VHF radar), the refractive index 

gradients occur due to: (a) mixing of the vertical profile of refractive index by 

atmospheric turbulence, and / or (b) the presence of a boundary between two 

distinct stratified layers. Scattering and reflection processes associated with 

vertical gradients of refractive index will be discussed in the following 

subsections. 
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1.2.2.2. Scattering models 

Scattering of electromagnetic waves can be produced by fluctuations of n. 

Models for scattered power based on turbulent mixing of n can be traced back to 

Megaw [1957], Silverman [1956], Booker and Gordon [1950], and many others. 

However, the theory is brought together in a general framework by Tatarski 

[1961]; he provides the context of electromagnetic wave propagation through 

turbulent media. Specifie applications to backscattering from the c1ear 

atmosphere have been considered by Atlas et al. [1966] and Ottersten [1969 and 

1969c]. Experimental confirmation of the theory was forthcoming in a series of 

experiments conducted at Wallops Island [Kropfli et al., 1968], in Virginia, USA. 

There is not yet a complete model that explains all the backscattering 

mechanisms observed with VHF radiation in c1ear air. However, we can simplify 

the problem by considering a few basic scattering and reflection mechanisms that 

explain various aspects of the observed radar echoes. These basic mechanisms 

include scattering from isotropic turbulence, scattering from anisotropic 

turbulence, Fresnel reflection from isolated layers, and Fresnel scattering from 

multiple stable layers. They provide statistical estimates of the magnitude of 

backscattered power that can be useful in designing new radar systems. 

Furthermore, these mechanisms provide a rationale for relating backscattered 

power to atmospheric parameters (such as eddy dissipation rate and atmospheric 

stability). 
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Figure 1.1. Three different vertical profiles of the refractive index gradient 

(as observed by a VHF radar). In each panel, two nearby vertical profiles 

of dnldz illustrate the structure illuminated by the radar beam. Panel A 

illustrates isotropie turbulence pertinent to isotropie turbulence scattering. 

Panel B illustrates random yet transversely coherent structure pertinent to 

Fresnel scattering. Panel C illustrates a few isolated sharp coherent 

gradients pertinent to Fresnel reflection. [From Gage, 1990.] 

In order to explain these simplified backscattering mechanisms, let us first 

analyze the profile of refractivity in the atmosphere. As an idealized picture of the 

refractivity structure in the atmosphere, Figure 1.1 shows different vertical 

profiles of the refractive-index vertical gradients, dn/dz. Three different panels 

are presented, where each one characterizes a particular simplified model of 

scattering. In each panel, two vertical profiles of dnldz illustrate the structure 

illuminated by the radar beam. In panel A, the beam illuminates a volume of 

turbulence with random structure evident in the radio refractive index. There is 

no pronounced horizontal coherency in the case of active turbulence (i.e., the two 

random profiles of refractive-index gradient are not significantly correlated). This 
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pattern of refractive-index gradient is related to the so-called Turbulence 

scattering. A much different structure is illustrated in panel C, where isolated 

sharp gradients that are horizontally coherent are shown. Each layer would cause 

a partial reflection of an incident radar pulse. This second pattern is associated to 

Fresnel reflection. An intermediate example of atmospheric structure is illustrated 

in panel B. In this case, the profile illustrates randomness in the vertical but 

maintains sorne horizontal coherence. This structure is thought to be pertinent to 

a multiple partial reflection process that will be referred to as Fresnel scattering. 

1.2.2.2.1. Turbulence scatter 

The principal scattering mechanism was introduced to tropospheric radio 

propagation by Booker and Gordon [1950] and has been extended to inc1ude 

radar backscattering from the c1ear air by Gttersten [1969, 1969b and 1969c]. The 

process is called turbulence scatter. This type of backscatter was also named 

Bragg scatter [Gossard et al., 1982] because of its similarity to X-ray diffraction 

in crystals, as originally put forward by Sir Lawrence Bragg and his father, Sir 

William Bragg, for which they jointly received the 1915 Nobel Prize in Physics. 

Turbulence scatter can be isotropie if the turbulent irregularities of the 

refractive index are homogeneously random and statistically similar in all 

directions (homogeneous and isotropie). Turbulence scatter can be anisotropie if 

the statistical properties of the irregularities, namely their correlation distances, 

are dependent on direction. The angular (spatial) dependence of the radar echoes 

is called the aspect sensitivity, and it can be different for isotropic and anisotropie 

turbulence scatter. Isotropie turbulence scatter does not cause an aspect 

9 



./~. 

.r-'-

sensitivity, while anisotropie turbulence scatter does cause an aspect sensitivity 

[e.g., Hocking and Hamza, 1997]. The temporal variations of the radar echoes 

should be similar in both isotropie and anisotropie turbulence scattering. This is 

due to the randomly fluctuating irregularities, and the Doppler spectrum should 

show a shape that is approximately Gaussian. 

In these cases, the magnitude of the backscattered echo from the clear 

atmosphere depends on the intensity of refractivity turbulence, which is 

parameterized by [e.g., Hocking, 1985, p.1405] 

2 In(x + r) - n(xt 
C = '--------'-

n Ir 1
2

/
3 

(1.4) 

where x represent a position vector, r a spatial displacement, and the average is 

over space and time. Here Cn
2 (in units of m-2/3

) is the structure-function 

parameter for refractivity turbulence, and it is defined for locally homogeneous 

isotropie turbulence in the inertial subrange by [Ottersten, 1969]: 

C 2 = a <f).n 2> L -7j . 
nO' (1.5) 

where a is a constant (about 5), <f).n 2> is the mean square fluctuations of the 

refractive index, and La is the outer scale of turbulence in the inertial subrange, 

which is proportional to the square root of the turbulent energy dissipation rate [; 

and the -3/2 power ofthe buoyancy frequency WB' 

The radar reflectivity for scattering from volume-filling, isotropie turbulence 

in the inertial subrange is given in terms of Cn 
2 by [Ottersten, 1969c]: 

2 -JI 
1] = 0.38 Cn Â /3 ; 

where Â is the radar wavelength (in units ofmeters). 
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It should be noted that the assurnption of isotropie turbulence is questionable 

for the wavelength range that characterizes VRF radars. In reality, these c1ear-air 

scatterers are anisotropie, twisted, contorted, string-like structures, which have a 

broadly ellipsoidal shape on average [e.g., Hocking, 1997b; Hocking and Hamza, 

1997]. The effect of this anisotropy is to produce underestimates of the mean 

wind. To illustrate this, consider the fact that the scatter is preferentially produced 

from angles c10ser to overhead than the true angle of the radar transmitted beam 

[e.g., Hocking, 1997b]. Thus when horizontal velocities are estimated from a 

relation such as vhorizontal = vradial 1. e ,where () is the true zenith angle of the /sin 

transmitted beam, then the computed horizontal wind speed is an underestimate. 

Equation (1.6) is appropriate only if the scales ofrefractive index fluctuations 

(of size equal to half the radar wavelength) lie within the inertial subrange of the 

spectrum of turbulence. In this range, the rate at which turbulent energy is 

transferred to smaller scales as larger eddies fragment depends only on the 

dissipation rate E of turbulent energy. Rowever, as the scale becomes smaller, the 

kinetic energy density of the eddies is diminished due to viscous effects, and 

much of the turbulent energy is dissipated as heat. This small scale range is often 

called the 'viscous ' (or dissipation) range. In this scale range, the radar power 

density spectrum decreases more rapidly with decreasing turbulence intensity 

than for scales within the inertial subrange. The transition between inertial and 

viscous ranges is defined by the scale where the kinetic energy starts to be lost as 

heat. This is 10, the inner scale for density fluctuations. In the troposphere, this 
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transition scale is roughly between 3x 10-3 m and 2x 10-2 m [Hocking, 1985, 

fig.1]. 

At very large scales, buoyancy effects become important, and turbulent eddies 

adopt an elongated appearance, with horizontal scales much larger than their 

vertical dimensions ('pancake' -like). The scale for determining the transition 

region between the inertial and buoyancy range is [Weinstock, 1978; Hocking, 

1985] 

L = -- 8/2 OJ /2· (
21C) 11 -3/ 

B 0.62 B' 
(1.7) 

where 8 is the turbulent energy dissipation rate and OJB is the Brunt-Vaisala 

frequency of the atmosphere at the height of the turbulence (about 1 oscillation 

every 8 minutes). Notice that Lo = 0.035 LB [Hocking, 1985, equation 44]. In the 

troposphere, LB is roughly between 80 m and 3000 m [Hocking, 1985, Figure 1]. 

The inertial range of turbulence only applies strictly for scales somewhat less 

than LB and larger than the inner scale 10. For approximated values of LB and 10 

see Hocking [1985, page 1410]. 

The appearance of a height continuum of echoes observed with VHF radars 

may be a result of their capability to detect layers of weaker E for which 

ÂVHF > Âtransition (where Âtransition == 2 10 ), so that irregularities of n are still within 

the inertial subrange. However, if radar does not have adequate resolution, the 

intermittent turbulence occurring in various layers could appear continuous in 

height. High-resolution VHF observations by Rottger and Schmidt [1979] clearly' 

show the layered structure of reflectivity 17. 
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1.2.2.2.2. Fresnel reflection 

The aspect sensitivity and persistence of radar echoes observed by vertically 

pointing VHF radars cannot be explained by the theory of isotropie-turbulence 

scatter. In fact, these echoes are often related to partial reflections from steep 

vertical gradients of the refractive index (discontinuities). The radar equation has 

to be extended to coyer this condition. 

Fresnel reflection is observed if a single, dominating discontinuity of the 

refractive index with a large horizontal extent exists in the vertical direction. A 

distinct aspect sensitivity should be observed. High-resolution, vertical power 

profiles should reveal prominent spikes, and height-time intensity plots should 

show thin and persistent structures. The temporal variations should indicate long 

coherence times. The process is also called partial reflection, because only a 

small fraction of the incident power is reflected. Fresnel reflection is also called 

specular reflection by sorne authors if the height of the horizontal surface of the 

discontinuity is assumed to vary slowly as a function of horizontal distance, and 

diffuse reflection if the discontinuity is assumed to be corrugated or somewhat 

rough. 

In this case, the power received from a single refractivity discontinuity is 

[Friend, 1949; Rottger and Larsen, 1990] 

(1.8) 

where ; is the amplitude reflection coefficient of the refractive-index 

discontinuity, which is a function of the radar wave1ength and the vertical 
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refractive index gradient. As we would expect, the. power received from Fresnel 

reflection is a maximum when the radar antenna beam is normal to the length 

extension of the discontinuity. 

1.2.2.2.3. Fresnel scatter 

Instead of a single discontinuity, there can be several (or many) refractive 

index discontinuities along the pointing direction of the radar beam in the range 

resolution cell. Then Fresnel scatter occurs. In this case, the radar reflectivity is 

given by [Hocking and Rottger, 1983] 

(1.9) 

where F~ is a calibration constant (which must be determined empirically for each 

radar), dependent on the radar wavelength and on altitude, <M> is the mean 

gradient of potential refractive index (potential here refers to conditions where 

potential temperature and specific humidity are constant with height), and 

M == dn . The value of r M (.~r) depends on the form of <M> as a function of 
dz 

height, such that r M (~r) = ~r if <M> is constant with height. The quantity 

{Fr <.M> y is called the generalized reflection coefficient. 

An alternative interpretation of Fresnel scatter at vertical incidence is quasi-

specular reflection. Horizontally oriented facets of waves on a number of layers 

are assumed to exist within the pulse volume, and the reflections from aIl the 

facets then add incoherently. 
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The stratification in the atmosphere generally causes the refractive index 

discontinuities to be randomly distributed along an axis close to the vertical 

direction, having a large correlation distance in the horizontal direction. Because 

the refractive-index discontinuities are statistically independent, the temporal 

echo characteristics are similar to those of turbulence scatter, but the average 

power profile varies smoothly with altitude. 

The terms Fresnel scatter and Fresnel reflection have been introduced because 

the horizontal correlation distance of the discontinuities is longer than the radar 

wavelength but of the order of the Fresnel zone, (r ,.1)1/2. The definition of 

Fresnel scatter and Fresnel reflection depends, in sorne sense, on the radar range 

resolution. Fresnel scatter is more likely to be observed with coarse height 

resolution, and Fresnel reflection is more likely to be observed with good height 

resolution. The discontinuities must be of the order of a radar wavelength or less 

in the vertical direction but of broad extent in the horizontal direction, which, 

because of diffusion, should be more likely to happen at larger vertical scales. 

Thus, radars using smaller wavelengths (e.g. URF band) in clear air probably 

detect only turbulence scatter, whereas VRF radars will usually detect a 

combination of the different processes, particularly when using a vertical beam. 

1.2.2.3. Real atmosphere 

The previous discussion on simplified scattering models lead us toward sorne 

operational considerations: 1) Non-volume filling scatter and reflection from 

severallayers have an influence on the accuracy of velocity determinations, since 
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the effective beam angle is changed due to anisotropic scatter and reflection (see 

section 2.2.2.1). 2) If off-vertical beams are used, antenna sidelobes close to the 

zenith direction have to be sufficiently suppressed to reduce unwanted signaIs 

from reflected components. Otherwise signal power and velocity estimates will 

be inaccurate. 3) The echoes due to Fresnel scatter and Fresnel reflection are 

frequently much stronger than the echoes due to turbulence scatter, enhancing the 

radar sensitivity and allowing VRF radars to detect echoes from higher altitudes 

with a vertical beam than with off-vertical beams. 

Discrimination between Fresnel reflection, Fresnel scatter, and anisotropic and 

isotropic turbulence scatter is possible for observed echoes using a near-vertical 

beam at VRF wavelengths. Hocking and Hamza [1997] develop a discrimination 

method based on the aspect sensitivity factor, defined as [e.g., Mardoc, 2002, 

p.23] 

B '-1 S = sIn 

where Pr(O) is the power received by the radar from the vertical direction, Pre BI) 

is the power received by the radar in the tilted direction Bt' and Bo is the one-

way half-power half-beamwidth of the antenna pattern. According to this method, 

es should be greater than 5° in aIl cases of turbulent scatter. SmaIler values (es 

approaching to zero) are indicative of Fresnel reflection. Using the operational Bs 

observations from the McGill VRF radar in the summer months, over Montreal, 

we observe turbulence scattering conditions to persist over the lower troposphere 
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(up to 4 km height) and Fresnel reflection conditions to persist around the 

tropopause (near 10 km height). 

Partially reflecting layers evolve with time and possess varying degrees of 

spatial (transverse) coherence. They generally will be tilted by internaI wave 

motions causing the quasi-specular echoes to fade. Furthermore, the echoing 

medium appears different when probed by radio waves possessing different 

wavelengths. As a result of these and many other complications a statistical 

approach is often needed to account for the echoes observed by VHF radars. 

1.2.3. Scattering from precipitation 

Raindrops, snowflakes, and hail are examples of an important class of radar 

targets known as distributed precipitation targets. In all these cases, the scatter 

elements are precipitation particles with dimensions much smaller than the radar 

wavelength. Thus, Rayleigh scatter occurs and the radar cross section is inversely 

proportional to the fourth power of the wavelength. The instantaneous returned 

power from precipitation scatterers is then given by the weather radar equation 

[e.g., Probert-Jones, 1962, eqn.3] 

(1.10) 

where Pr (in units of watts) is the average returned power, PTx (in watts) is the 

transmitted power, A (in meters) is the radar wavelength, L (in meters) is the 

pulse length, Gis the antenna gain, Ba is the 3-dB beamwidths, and r (in meters) 

is the range. The radar reflectivity per unit volume, 17 (in m-1
), is given by [e.g. 

Rinehart, 1997, eqn. 5.13] 
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(1.11 ) 

where De is the equivalent-spherical diameter of the precipitation particle, and the 

quantity IDe 6 == Z is defined as the radar reflectivity factor. For equation 
vol 

(1.11), IDe6 is expressed in m3
, but Z is usually given in mm6 m-3

. Note also 
vol 

that the quantity dBZ == 10 log JO Z. Then, 

(1.12) 

IKI is the magnitude of a parameter re1ated to the complex index of refraction. 

The value of IKI2 depends upon the material composition, the temperature, and 

the radar wavelength. Unfortunately, the exact values for IKI2 in the. VHF band 

are still unknown. Generally, the typical values at S-band, IKI2 ~ 0.93 for water, 

and IKI2 ~ 0.21 for ice, are used [e.g., Chilson et al., 1993]. 

Equation (1.10), expresses Pr in terms of constants, radar parameters, and 

scatter parameters. However, this equation is only valid for targets that can be 

approximated as spherical particles having a diameter size that is small when 

compared to the radar wavelength (a condition for the Rayleigh approximation) 

and for electromagnetic waves that are attenuated by precipitation. Both 

conditions are generally valid for VHF wavelengths, while these conditions are 

not always fulfilled for shorter wavelengths (e.g. measurement of large partic1es 

such as hail using weather radars operating at X, C, or S band). 
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1.2.4. Comparison of precipitation vs. clear air 

The VHF band is optimal for obtaining independent, simultaneous signal from 

precipitation and clear air. This is put in context by Chilson et al. [1993], here in 

Figure 1.2, where the reflectivities for turbulent and for precipitation scatterers 

are shown as a function of the radar wavelength. The plotted values correspond to 

Z between 30 and 50 dBZ and are typical of those observed in moderate and 

heavy rainfall, respectively. The values of C/ equal to 10-15 m-Z/3 and 10-13 m-Z/3 

are likewise representative of what one might find in moderate and severe 

turbulence similar to that expected in a thunderstorm. It is clear that the returned 

VHF (6 m) signal should exhibit sorne contribution from both precipitation as 

well as turbulence, whereas at smaller wavelengths (e.g. at UHF, 70 cm) the 

signal will be dominated only by precipitation. 

Unfortunately, ranges for Z and C/ in Figure 1.2 are still very wide. As well, 

these estimates assume that IKlz is the same at S, UHF, and VHF bands. Notice 

also that the Cn
2 values in Figure 1.2 are simply approximate estimations [Chilson 

et al., 1993, p.665], which still have to be corroborated for particular locations, 

although sorne C/ estimates can be inferred from more recent measurements of 

turbulence within c10uds and precipitation [i.e., White et al., 1996; Knight and 

Miller, 1998; and Meischner et al., 2001]. 
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Figure 1.2. C/ and Z as a function of the radar wavelength. By plotting 

the values of reflectivity 17 as a function of radar wavelength À, for 

precipitation and clear-air turbulence, the values of C/ and Z are 

compared. The values presented (for C/ and Z) are typical of those found 

in a thunderstorm environment. Note that at VHF band (wavelengths near 

6 m) 17(Z) -::::, 17(Cn 2), which indicates that the radar is more or less 

equally sensitive to precipitation and to clear-air turbulence. At UHF 

band (wavelengths near 70 cm) the radar is much more sensitive to 

precipitation than to clear air. [From Chi/son et al., 1993.] 

1.2.5. Emissions at VHF band 

In addition to the backscattered signal, a VHF radar will also receive 

electromagnetic radiation that has been emitted by other sources. When these 

VHF emissions correspond with a very broad spectrum of Doppler frequency 
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shifts, then they are called white noise. In general, noise in VHF radars has a 

large contribution from environmental, cosmic, and atmospheric sources, and it is 

not easily quantified. Therefore, antenna design and the specifie radar location 

and frequency band of operation define the system noise. The main sources of 

white noise in VHF band (applied to the study of the atmosphere) are Co smic 

VHF emissions. These co smic emissions vary with time and space. 

In addition, every lightning discharge emits a broadband radio signal called 

'sferics'. Although the peak in electromagnetic frequency of a sferic is around 10 

kHz (in the very low frequency, VLF, band), the emission is still very strong at 

the VHF band. Thus, every time there is a lightning discharge in the vicinity of 

the radar, the noise floor rises dramaticaHy at aH range gates. Furthermore, 

because of its high reflectivity at VHF, lightning echoes can enter through the 

antenna sidelobes. 

Emissions of broadcast telecommunication systems that operate into the VHF 

range are also a contaminant. These emissions are caHed interference. They also 

raise the noise floor significantly at aH range gates, but their duration is much 

longer than in the case of lightning (broadcast transmissions can last a few 

seconds or minutes, while lightning emissions only last a few milliseconds). 
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1.3. Objectives 

This research focuses on the following questions: How can we use VHF radar 

as an operational tool for the study of precipitation physics? What are the typical 

backscatter signaIs that rain and turbulence produce at VHF band during 

precipitation events? The key to answer these questions lays in the umque 

potential that VHF radars have for simultaneously measuring air vertical velocity 

and precipitation intensity. 

There are four basic requirements in order to typify precipitation and 

turbulence signaIs at VHF. First, we require a detailed review to the radar 

calibration process. Second, we need to develop a signal-processing algorithm 

that allows the automatic separation of precipitation and clear-air signaIs. Third, 

we must apply this algorithm in an efficient analysis of large radar datasets taken 

during rain. Fourth, we must generate statistics of Z and C/ values observed in 

the Montreal region. Accomplishments of these basic requirements are the four 

specific objectives ofthis research. 

In aIl cases, the McGiIl VHF radar [Campos and Hocking, 2003] is used as the 

main analysis too1. Additionally, other remote sensors are used, such as an X­

band vertically-pointing radar, as well as ground measurements of raindrop-size 

distributions. (Details about these instruments are given in the forthcoming 

chapters.) 

The following four chapters achieve the scientific objectives of the thesis, and 

the final chapter discusses the main findings and provides sorne suggestions for 

future research. 
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CHAPTER2: 

A MULTI-FACETED APPROACH TO CALIBRATE VHF 
RADAR ANTENNA AND RECEIVER 

ABSTRACT 

Many quantitative analyses of radar signal require a radar calibration. Established 

calibration methods for VHF radar provide only partial information about antenna 

or receiver parameters. We propose that a more complete approach to calibrate 

VHF radar can be obtained by combining multiple calibration methods. To test 

this, we developed a calibration technique by combining a first calibration method 

that compares the recorded VHF signal to power coming from a noise generator 

and a second calibration method that compares recorded VHF signal to cosmic 

radiation. We derive four equations that allow us to retrieve antenna and receiver 

parameters (such as noises, efficiency, and gain), and four other equations for 

the corresponding errors: In addition, we develop an equation for calibrating 

Doppler spectra. To test our calibration technique, we collected an extensive 

dataset from the McGill VHF radar. For validation, we performed a third 

calibration using measurements of voltage and impedance to compute power 

losses in the antenna transmission lines. Based on our equations, we have found 

the values for the antenna and receiver parameters in the McGill VHF radar, and 

their corresponding uncertainties, and we have compared these to the energy 

losses obtained by the third calibration method. The antenna efficiencies derived 

by our technique and by the third calibration method agreed within 0.5 dB. 

Furthermore, analyses of our calibrated Doppler spectra in rain demonstrate the 

potential of this calibration technique for absolute measurement of precipitation 

by wind-profiler radar. 
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2.1. Introduction 

Numerous meteorological applications have been made possible through VRF 

radar techniques [see for example the reviews by Rottger and Larsen, 1990; Gage, 

1990; and Gage and Gossard, 2003]. Measurements of absolute backscatter 

power by VRF (Very Righ Frequency) radars are one important aspect of 

atmospheric studies of c1ear-air turbulence [e.g., Hocking, 1985] and precipitation 

[e.g., Wakasugi et al., 1986]. There is, however, a central issue that must be dealt 

with before attempting any quantitative study of precipitating weather systems 

with VRF radars: the radar calibration. 

In a typical setting for VRF radars (Figure 2.1), a pulse ofknown power PTx is 

sent from the transmitter hardware towards the antennas. Actual antennas also 

have power losses, in particular due to impedance mismatches and thermal-energy 

dissipation in the antenna structure and cables. Therefore, the power radiated to 

space Pt is actually smaller than the power available at the antenna input PTx. The 

ratio of these quantities is the antenna transmission efficiency (or radiation loss 

factor, eT = Pt /PTx ). Further power losses are also experienced during the antenna 

reception, i.e., between the point at which the backscattered power is input into 

the antenna (Pr ) and the point at which the power is output from the antenna 

towards the receiver hardware (PR>; ). The reception efficiency is then given by eR 

= PR>; /Pr . In addition, the transmitter can leak small amounts of power into the 

receiver, cables, and antenna structure, generating electromagnetic noise at the 

radar VRF frequency. These leaked powers (expressed here as antenna noise Na 

24 



and Receiver Noise NRx) can be particularly significant during the radar reception 

period. We then can write: 

~ \ 7 dL 
'----_----J t 

r 

P,-x 
Rx 

~::(Qr<$ 
Pout ","<--1 0 

Figure 2.1. Simplified schematic diagram of a typical VHF radar. Tx is 
the transmitter, Rx the receiver, and ADe the analog-to-digital 
converter. Others symbols are referred to in the text. The N-G 
corresponds to a Noise-Generator hardware, which can be switched in 
at point S (as input for the receiver in order to perform a calibration). 

(2.1) 

Of further relevance, however, is the fact that the power output after signal 

processing (Pout) has been usually converted, by an analog-to-digital-converter 

(ADe), into numbers with arbitrary units (au). In the linear region of a receiver 
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with linear ampli fiers , the conversion from W to au is mathematically expressed 

by the receiver gain, g Rx , such that 

Pout = PRx gRx + N Rx • (2.2) 

Notice that g Rx is not an efficiency, because efficiency denotes sorne loss (of 

power). Variable g Rx combines two factors: amplification in the receiver and the 

conversion factor from Watts into arbitrary units (madeby the ADe). 

Measurement or retrieval of several meteorological variables (such as 

turbulence and precipitation intensity) requires that Pout must be given in Watts 

(W) instead of arbitrary units (au). A calibration procedure is thus required. The 

standard calibration procedure involves a noise-generator hardware that is 

connected directly to the receiver. Rowever, this calibrationdoes not take into 

account the antenna parameters (antenna noise and efficiencies), nor transmitter 

characteristics (PTx). 

On the other hand, using known sources of cosmic radiation is a common 

method for calibrating radio telescopes [e.g., Léna et al., 1998, section 3.5]. We 

can also apply this method to calibrate VRF radars, given the fact that at VRF 

band the power from cosmic sources is large, and that this cosmic power can in 

princip le be computed from the Rayleigh-Jeans approximation to the Plank's Law 

[e.g., Ulaby et al., 1981, section 4-3.3]. Unfortunately, attempts at VRF radar­

calibration using co smic radiation have been reported in the 1iterature on1y a few 

times [e.g., Hocking et al., 1983; Green èt al., 1983; Campistron et al., 2001]. A 

calibration from known sources of cosmic radiation is more complex than the 

calibration from a noise generator. There is also the inconvenience that, when 
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computing the receiver power from the radar equation, we need to know the 

antenna parameters (e.g., Na and eR ) independently from the receiver parameters 

(e.g., NRx and gRx ); and this cannot be calculated from cosmic-noise calibrations 

only. 

ln this chapter, we overcome these radar calibration difficulties by both 

improving the model for cosmic radio sources and also by combining this method 

with the known noise-generator method. We present here our new VHF 

calibration approach that provides estimates of both the antenna parameters and 

the receiver parameters. We also perform an independent check through a third 

calibration method, which uses measurements of voltage and impedance to 

compute power losses at different points along the antenna transmission lines. 

2.2. Methods 

Any radar power calibration involves a comparison between a known power 

source and the radar power measurement. In the first part of our calibration 

technique, the known power source corresponds to the input (in Watts) from a 

noise-generator. In the second part, the known power source is the cosmic radio 

emissions (in Watts). We then combine both calibrations results to retrieve 

particular antenna and receiver parameters. We will now explain each part in 

more detail. 

2.2.1. Noise-generator calibration 
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r--. 
i For the first part of the calibration, the noise-generator calibration, the radar 

hardware was configured as in Figure 2.1. In this case, the power PNG from the 

noise-generator hardware (N-G) was input into the receiver hardware Rx. This 

power was digitized by the Analog-to-Digital Converter (ADC) and then sent to a 

computer, where the signal processing took place. This gave as a result the output 

power Pout (in arbitrary units, au). The objective here was to obtain a linear 

relation between the power input by the noise-generator (PNG, in Watts) and the 

radar power output after all signal processing (Pout, in au); i.e., 

P NG = Pout B NG + A NG ; (2.3) 

where ANG is the power (noise) generated within the receiver hardware, measured 

in Watts. BNG corresponds to the conversion factor between the input and output 

powers, measured in W/au. It should be noted that this calibration cannot be used 

to obtain any antenna parameters (e.g., efficiency and noise). 

2.2.2. Sky-noise calibration 

Figure 2.2 illustrates the second part of our method, the sky-noise calibration. 

This figure presents a radar hardware configuration where the power received by 

the antennas cornes exclusively from cosmic sources. Under these conditions, a 

linear relation can be obtained between the VHF cosmic radio emissions (sky 

power: Psky = Pr, in Watts) and the radar output power (Pout, in au); i.e., 

PSky = Pout B sky + A sky ; (2.4) 

where Asky corresponds to the power (noise) generated within the radar hardware, 

measured in Watts, and Bsky (measured in W/au) is the conversion factor between 
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the power received by the antennas and the power output after the signal 

processing. 

.. ~ 
f< J;t 

* 
~ 

{t 

* 

PSky 

Pout-E-( --1 0 

Figure 2.2. Hardware configuration during sky-noise calibration. 

The values of Psky were obtained from sky surveys of co smic radio emissions 
, 

at VHF [e.g., Campistron et al., 2001; Milogradov-Turin and Smith, 1973; Roger 

et al., 1999]. These sky surveysare usually given as brightness temperatures (T]) 

valid for a given electromagnetic frequency (Ji). This survey frequency is hardly 

ever equal to the electromagnetic operation frequency of our radar (12). Therefore, 
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we had to correct these brightness temperatures before applying them in our 

calibration. The sky brightness temperature corresponding to our radar frequency 

(T2) is then given by [e.g., Roger et al., 1999, page 14; or Campistron et al., 2001, 

equation 3] 

T = T, (/2 J-fJ 

21ft (2.5) 

where the brightness temperatures are both given in Kelvins, and fJ is the so-called 

spectral index. Although fJ varies according to the position in the sky as well as 

the ratiof/fj [e.g., Roger et al., 1999, present a sky survey forfj = 22 MHz andh 

= 408 MHz, with fJ in the range 2.40 to 2.55, and its average is 2.5], it is generally 

assumed that fJ;:::: 2.5. This assumption leads to a relative error smaller than 3% in 

the retrieved temperature at VHF band [Campistron et al., 2001]. 

Then, the cosmic power (in Watts) at 52 MHz is given by [e.g., Ulaby et al., 

1981, section 4.4] 

Psky = k Boltzmann T2 BP F width (2.6) 

where kBoltzmann = 1.381xl0-23 J/K is the Boltzmann constant [e.g., Mohr and 

Taylor, 2003; recall also that J/K = W / (Hz K)], and BPFwidth is the band-pass 

filter width of the radar receiver, in Hertz. The derivation of equation (2.6) takes 

into account the facts that the cosmic radiation is unpolarized, and that our 

linearly-polarized antenna will then collect half of the incident (unpolarized) 

co smic power [Ulaby et al., 1981]. 

This sky-noise calibration only provided information about the antenna and 

receiver parameters in a general sense. Particular values such as antenna 
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efficiency or receiver noise could not be retrieved in this manner. However, we 

were able to retrieve these antenna and receiver parameters by combining both the 

sky-noise calibration and noise-generator calibration methods. The next section 

explains the procedure. 

2.2.3. Combining both calibration methods 

Particular expressions for antenna and receiver parameters were derived by 

combining equations (2.1), (2.2), (2.3), and (2.4). Starting from equations (2.2) 

and (2.3), with PRx = PNG : 

- N Rx Pout A B P --+-= NG + NG out ~ 
gRx gRx 

(2.7) 

and 

(2.8) 

As well, from equations (2.1) and (2.2): 

(2.9) 

From equations (2.4) and (2.9), with Pr = Psky : 

Then, from equation (2.7): 
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(2.1 0) 

Aiso from equations (2.4) and (2.9): 

Then from equations (2.7), (2.8), and (2.10): 

(2.11) 

In addition, expressions for the uncertainties in the antenna and receiver 

estimates (eR, Na, gRx' and NRx) were derived from the following expression [e.g., 

Press et al., 1986, page 505]: 

(2.12) 

where 0- 2 (f) is the variance uncertainty of the function f , which is a function 

that depends on variables Xl , X2 , ••• , Xn-l , X n • As weIl, 0-
2 (xJ is the variance 

uncertainty for the i-th variable. Equation (2.12) was then applied to equations 

(2.7), (2.8), (2.10), and (2.11) in order to obtain the following one-standard-

deviation uncertainties: 

o-(g )= o-(BNG ) . 

Rx B 2 ' 
NG 

(2.13) 

(2.14) 

(2.15) 
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2 A 2 A 2 B 2 

( ) _ 2 ( ) B NG 2 ( ) sky 2 (B ) sky NG 2 (A ). 
Œ' Na - Œ' Asky -2- + Œ' B NG -2- + Œ' sky 4 + Œ' NG' 

Bsky Bsky Bsky 

(2.16) 

from the square ofuncertainties in the coefficients of equations (2.3) and (2.4). 

Therefore, the antenna and receiver parameters were found from equations 

(2.7), (2.8), (2.10), and (2.11); and the corresponding uncertainties were computed 

from equations (2.13), (2.14), (2.15), and (2.16). 

2.2.4. Computing 'calibrated power spectra 

Once we have the calibration of the radar measured power (Pout), we proceed 

with a calibration of the power densities. To do this we produce Doppler spectra 

from a recorded time series and then proceed as follows. We assume that the 

spectra are recorded at steps ~f. Then, from equation (2.4) we know that 

~f l S sky {fJ + S sky {fJ + ... + S sky {fJ J = 
Asky + Bsky ~f [Saut {fJ+ Saut {fJ+ ... + Saut {fJ] 

where ~f is the spectral bin resolution (in Hz). The variables Soul fi) and Ssky( fi ) 

correspond to the Doppler power densities at the i-th spectral bin (a total of n 

spectral bins), given in aulHz for the variables with the subscript out and in WlHz 

for the variables with the subscript sky. The previous equation can also be 

expressed as 
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.~. 

Therefore, the power-densities calibration equation for the i-th spectral bin is 

given by 

(2.17) 

Note that, for the derivation of equation (2.17), the linear relation in equation (2.4) 

must be applied for the powers in linear units. 

It is not rare to have radar signal processing performing coherent averaging 

(e.g., in the Mc Gill VHF radar). Under these conditions, the full spectral range is 

defined by the radar sarnpling rate as follows: 

PRF 
fmmpling =N ; 

coh 

(2.18) 

where PRF is the radar pulse repetition frequency and Ncoh is the number of 

sarnples used for the coherent averages (given in Table 2.1). 

Table 2.1. Mc Gill VHF Radar parameters 
Parameter 

Bearn direction 
Transmitted wavelength (frequency) 

Peak transmitted power 
One-way half-power half-beamwidth 

Pulse duration 
Pulse repetition frequency (P RF) 

Band pass Rx filter width (BPFwidth) 
Number of coherent averages (Ncoh) 

Doppler spectral range (DSR, after 
signal processing) 
Time resolution 

Location (Lat., Long.) 

Value 
vertical 

5.77 m (52.0 MHz) 
40 kW 

2.3 degrees 
3.5 ilS 

6.0 kHz 
400 kHz 

16 
20Hz 

Approx. 35 s / profile 
45.409° N, 73.937° W 

Another common signal processing practice (also performed by the Mc Gill 

VHF radar) is to store only Doppler power spectra within a range of interesting 
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frequencies [i.e., S'out(fi)]. If the full spectral range [i.e., Sout(fi)] corresponds to 

Doppler frequencies within ± 0.5 Isampling , then the quantity Pout, corresponding to 

the full spectral range, is given by 

P = P' fsampling = P' out PRF 
out out DSR DSR N coh 

(2.19) 

where 

+ fsampling /2 

Pout = ISout(f) ; 
f = - fsampling /2 

+DSR/2 

P'out = IS'aut (f) ; 
f=-DSR/2 

and P 'out is the total power integrated within the stored Doppler spectral range 

(DSR). 

Equation (2.17) has then to be modified according to equations (2.18) and 

(2.19). For this, we use the fact that the power density is conserved for a white-

noise spectrum. As well, we recognize that the application of coherent averaging 

(of in-phase and quadrature time series, as it is done in our signal processing) 

reduces the full spectral range [reduction already inc1uded in the definition of 

Isampling; i.e., equation (2.18)] and the measured Psky (since the spectral density 

magnitude is preserved at all frequency bins; e.g., Lyons, 1997, p.321). Therefore, 

the calibrated power-density spectra, Seal, at the frequency binji, must be such that 

(2.20) 

where Neoh is the number of samples used for the coherent averages, /).f is the 

spectral bin resolution, and Psky is given in Watts. In addition, equation (2.4) 
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provides us with a conversion between Watts and arbitrary units. Therefore, from 

equations (2.4), and (2.20) we obtain that 

Asky + Bsky Pout = /).f ~ (.) 
~Scal ft . 

N coh fsampling DSR i=1 
(2.21) 

Rowever, from Equation (2.19) we know that 

t [/).f S'out (ft)] 
= ..!.:i=~l ____ _ 

fSamPling DSR 
(2.22) 

where S'out(fï) is the measured spectral density (in auIRz) at the Doppler frequency 

binfi. Then, by combining (2.21) and (2.22), we have that 

n 

Asky + Bsky ~ [/).f S'out (ft)] _ /).f n S . 

-N-CO-h-j,-'-sa-mp-lin-g N coh DSR - DSR ~ cal (ft) , (2.23) 

DSR Asky B n' n 

=> /).f j, + NSCkyOh L"=1 S'out (ft) = L"=l Seal (ft) ; 
N coh sampling 

Since /).f = DSR/n , we thus get, 

Scal (ft) = [ Asky + Bsky S'out (ft )l_l_ . 
fsampling 'j N eoh 

(2.24) 

2.2.5. Operation al background 

To show the application of our method we used data from the McGill VRF 

radar [described by Campos and Hocking, 2003] working under the configuration 

described in Table 2.1. The signal processing used here was the same as in 
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Hocking [1997, section 4]. Every 35 seconds, a profile of 45 Doppler power 

spectra (300-point discrete-spectrum within a spectral range of ± 10.0 Hz, for 45 

range gates between 0.5 and 23.0 km) was produced. We integrated each ofthese 

spectra in order to obtain corresponding P 'out values; i.e., the integrated powers (in 

au) within the Doppler spectral range (DSR, see Table 2.1). 

As described in section 2.2.1, during the noise-generator calibration, a small 

modification was made in the reception hardware. The noise-generator output was 

connected to the receiver, instead of the line from the transmitter-receiver switch. 

Then, different noise sources were obtained by changing the factor F NG in the 

noise-generator hardware. One unit increment in F NG was equivalent to a 290 

Kelvins increase in brightness temperature. At F NG = 0, the noise generator still 

introduces a small amount of power into the receiver. This amount depends on the 

noise generator temperature (approximately 290 K) in a manner similar to 

equation (2.6). Therefore, power input by the nOIse generator into the radar 

receiver was given by: 

PNG = (FNG + 1) (290K) kBoltzmann BPFwidth (2.25) 

where PNG is the noise-generator power (in Watts, measured in the radar receiver 

just after the band-pass filter). As before, kBoltzmann is the Boltzmann constant and 

BPFwidth is the band-pass filter width of the radar receiver (given in Table 2.1), in 

Hertz. 

For the second part of our calibration, there was no need to disconnect the 

transmitter, or to alter the normal operation of the radar in any way. We kept the 

radar hardware and software working as usual (i.e., Figure 2.1 with line from 
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transmitter-receiver switch connected to receiver). The known power sources 

from co smic radio emissions (in Watts) were then compared with the 

corresponding radar integrated power (in au) measured only at very high range 

gates (between 17.5 and 22.5 km). At these ranges, backscattering of the 

transmitted power and other terrestrial VHF radio sources is negligible. Thus, the 

radar received powers-at these high ranges only-were considered as coming 

exc1usively from cosmic sources. 

2.3. Results 

2.3.1. Noise-generator calibration 

The noise-generator calibration was performed using observations made on 21 

October 2004, a day without precipitation. The results are presented in Figure 2.3. 

For a given P NG value, there are 45 P 'out values plotted in the X-axis. These P 'out 

values correspond to the 45 radar range gates (between 0.5 and 23.0 km) available 

at each profile. We then computed the Pout values plotted in the abscissa (X-axis) 

of Figure 2.3 by using equation (2.19). The range of F values, from 0 to 30 units, 

was sampled twice (the two datasets are represented in Figure 2.3 as small 

crosses). A Chi-square linear fit [Press et al., 1986, section 14.2] was then used to 

obtain the relation 

PNG = (-3.420x 10-15 ±6.7x10-17)[W]+~ut (9.250 x 10-21 ±2.3x10-23 )[Wlau] ; 

(2.26) 
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where the units are given in square brackets, and the uncertainties correspond to 

one standard-deviation errors in the coefficients estimates. The relationship (2.26) 

is presented as a line in Figure 2.3. 

Noise Generator Colibration 

30 5 

4 

20 

10 

5 

o 

5.1 19.4 33.8 48.2 62.5 
Pout (105 au) 

Figure 2.3. Result of the noise-generator calibration. The left-side Y­
axis is the noise-generator factor F NG, which is related to the right­
side Y-axis, the power PNG , by equation (2.25). For every PNG value, 
there are 45 Pout values (corresponding to 45 radar range gates), which 
are computed from equation (2.19) and plotted in the X-axis. The 
linear relation in equation (2.26) is given by the line, and it is obtained 
from two calibration experiments (990 observations in total). 
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2.3.2. Cosmic-Noise calibration 

2.3.2.1. Sky map 

The cosmic noise power Psky at the radar operating frequency (52 MHz) was 

obtained from a sky brightness temperatures map at 45 MHz (the closest available 

frequency). We used data published by Campistron et al. [2001], which 

corresponds to epoch-J1999 equatorial-coordinates. These coordinates, right 

ascension and declination, are continuously changing in time, primarily as a result 

of the precession of the equinoxes. We then had to convert the figure coordinates 

from the epoch J1999 to the epoch J2004 (the epoch of the radar observations). 

For this, we used the standard procedure given in section B42 of The 

Astronomical Almanac [Nautical Almanac Offices, 2003]. The resulting sky map 

is presented in Figure 2.4, which has a resolution of 1.5 minutes in right-ascension 

hour and 1 degree in declination angle. 

To test the reliability of this 45 MHz map, we compared its brightness 

temperatures at a particular declination angle (matching our VHF radar 

observations) with the corresponding values from the maps by Milogradov-Turin 

and Smith [1973] and by Roger et al. [1999]. The first map corresponds to a 38 

MHz frequency and epoch J1967, and the second map corresponds to 22 MHz 

frequency and epoch B1950. For this comparison, we then had to convert the 45, 

38, and 22 MHz temperatures to 52 MHz by using equation (2.5) with /3=2.5. As 

well, we had to precess the coordinates to a common astronomical epoch, in this 

case J2004 (the epoch of our VHF radar observations). Finally, we use linear 

interpolation in order to obtain the temperature value at the declination of 45.409° 
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and with a right ascension resolution of 0.25 hours. Figure 2.5 presents the 

comparison of sky brightness temperatures for the three maps. The only 

significant disagreement is with the 22 MHz map, at right ascension between 19 

and 22 hours, probably due to contamination by the strong signal from Cygnus A. 

However, there is general agreement between the three sky maps, which indicates 

the reliability of the 45 MHz map. 

Radio Background at 52 MHz 

-M 
o .-
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* 10 
~ ---
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6 

1 t' 'NN"l'''·''?' , 

Declination (J2004) = 45.4° 

(3=2.5 

...... 45 MHz 
-- - 38 MHz 

22 MHz 

41 
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o 5 10 15 20 
right ascension (hours, J2004) 

Figure 2.5. Comparison of 52 MHz sky brightness 
temperatures at 45.409° declination. It is obtained by 
applying equation (2.5), with f3 =2.5, to the data in sky 
surveys at 45 MHz (in dotted line) , 38 MHz (in dashed 
line), and 22 MHz (in continuous line). 
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Considering our radar antenna pattern and time resolution, the radar 

observations and the sky map did not match in resolution (the datasets 

representativeness are not the same). Therefore, the sky brightness 

temperatures-at the radar dec1ination-were smoothed in order to resemble our 

VHF radar resolution. We did this by convolving the 45 MHz map (Figure 2.4) 

with a direct numerical simulation of the one-way antenna pattern (i.e., the 

antenna one-way polar-diagram). This antenna pattern was provided by the radar 

manufacturer (Mardoc Inc., of London, Ontario, Canada) and it is presented in 

Figure 2.6. Notice that, as the kernel of the convolution operation, we used only a 

section of the full antenna pattern (zenith angles smaller than 13°, having the same 

resolution as the sky map, i.e., 1.5 minutes per 1 degree). Zenith angles greater 

than 13° were not used since they imply a kernel outside the sky map. In any case, 

the sidelobes of the antenna pattern located outside 12° zenith angles are not 

significant (their magnitudes are generally smaller than -15 dB). For aIl right 

ascension hours (at a resolution of 1.5 minutes), the convolution was performed 

with the kernel centered at the dec1ination of our radar observations (i.e., 45.409° 

dec1ination angle, at the dashed line in Figure 2.4). The result for this convolution, 

between the sky brightness temperatures and the antenna pattern, was used as 

input for equation (2.5). The resulting 52-MHz brightness-temperatures are 

plotted in Figure 2.8 as the red hne. 
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2.3.2.2. Sky noise 

Between 14 and 17 October 2004, the McGill VHF radar was operated 

according to the specifications given in Table 2.1. We selected the period in 

Figure 2.7, where the sky noise could be assumed to be due only to cosmic 

sources. From the measured Doppler power spectra, we computed the total 

integrated power (for spectral Doppler frequencies between -10.0 Hz and +10.0 

Hz) at ranges between 17.5 and 22.5 km. At these high ranges, the Doppler power 

spectra received by VHF radars are basically formed by white noise, and when we 

integrate these spectra we obtain the so-called sky noise. We then used equation 

(2.19) to correct the total integrated power for not storing the full Doppler spectra. 

Notice that the temporal evolution of the sky noise power has a 23-hours-56-

minutes cycle (i.e., a sidereal day). This confirms the dominant cosmic origin of 

the noise observed by our VHF radar. 

In sorne cases, a few extreme, spurious power observations can be measured 

by VHF radars, and these observations correspond to signaIs from non-cosmic 

sources (e.g., human interference or broadcasting). These signaIs must be 

eliminated before proceeding with our calibration. In Figure 2.7, we have already 

filtered out· these spurious data by eliminating sky-noise values that were six or 

more median-absolute-deviations away from the median sky noise (the median for 

the whole observation period). 
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Figure 2.7. Example of a time series (in UTC) for sky-noise power 
[spectral integral within the Doppler spectral range and corrected by 
equation (2.19)], measured by the McGill VRF radar, with the beam 
at vertical direction, at ranges between 17.5 and, 22.5 km, from 14 
(starting at 22:50 UTC) to 17 (ending at 13:30 UTC) October, 2004. 

By knowing the direction in the sky at which our radar is pointing at a given 

time, we can compute the equatorial coordinates (right ascension and declination) 

of this direction. We computed the radar pointing directions (for the co smic sky-

noise periods in Figure 2.7) by using standard astronomical procedures valid for 

the epoch J2004 [e.g., Lang, 1999]. Since our radar was located at a fixed 

longitude and elevation angle (vertical direction), our cosmic sky noises 

correspond to a fixed declination with varying right ascension. This is shown in 

Figure 2.8, where the VRF cosmic sky-noises (black and blue points, in 105 au) 

are plotted as a function of right ascension. Since our radar measurements 
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correspond to a dec1ination of 45.409°, we can compare our integrated powers 

with the corresponding 52 MHz sky brightness temperatures computed in section 

2.3.2.1. These temperatures are over-plotted in Figure 2.8 as the red line (in 

kiloKelvins). 
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Figure 2.8. Cosmic sky noise measured by the McGill VHF radar. 
These correspond to nearly 63 hours of observations during conditions 
of negligible non-cosmic VHF radio-sources (between 14 and 17 
October, 2004). The left-side Y-axis and the points correspond to radar 
measurements at ranges between 17.5 and 22.5 km, (The black points 
were measured during night time, between 23.1 UTC and ILl UTC. 
The blue points correspond to observations taken during the remaining 
day-time periods, between 11.1 and 23.1 UTC.) The red line and right­
side Y -axis are obtained from the temperature values at the dashed line 
in Figure 2.4 (i.e., a dec1ination of 45.409°), the radar antenna pattern in 
Figure 2.6 (i.e., the convolution kernel), and equation (2.5) with {3=2.5. 
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The black observations in Figure 2.8, which correspond to night-time radar­

measurements taken between 23.1 UTC (7 :06 pm local time) and 11.1 UTC (7 :06 

am local time), match well with the corresponding sky temperatures (red points). 

However, the observations in blue, which corresponds to day-time measurements 

taken between 11.1 UTC and 23.1 UTC, tend to be above the corresponding sky 

brightness temperatures. For radio waves, day-time sky-noise is very challenging 

to analyze. On one hand, we have the power contribution from the Sun, which for 

our VHF band corresponds to a brightness temperature in the order of 105 K 

[Subramanian, 2004]. This temperature corresponds to about 1O-l3 Watts [from 

equations (2.5) and (2.6)]. On the other hand, there is the ionospheric absorption 

of radio waves, which affects all cosmic radiation when passing through the D and 

E ionospheric layers (at 60 to 100 km altitude). Ionospheric absorption is a well­

known phenomenon, which is controlled in part by solar activity (i.e., sun spot 

number). Observations taken during the night are practically free from these 

inconveniences. We therefore filtered out aIl the measurements taken between 

7:06 am and 7:06 pm (i.e., approximately between sunrise and sunset). 

2.3.2.3. From arbitrary units to Watts 

In order to obtain the sky-noise powers, the brightness temperatures (red 

points) in Figure 2.8 were multiplied by the Boltzman constant and the radar 

Band-Pass-Filter width [i.e., equation (2.6)]. However, the radar measurements 

(black points) in Figure 2.8 still had a large amount of scatter, which could 

complicate the empirical derivation of the coefficients in equation (2.4). We 

reduced this scatter in the following manner: for each Psky observation (in Watts), 
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we selected an radar observations (black points in Figure 2.8, in arbitrary units) 

that were within ± 45 seconds around the Psky hour angle. (Recall that the 

resolution of the Psky observations is 1.5 minutes.) The median of these radar 

observations was then the radar output power, Pout, to be matched to the Psky 

observation. The matched pairs are shown in Figure 2.9 as right ascension time 

series, where the Hne corresponds to the sky-noise powers (Psky , in Watts), and 

the points correspond to the Pout values (in arbitrary units). 

Matched (Sky) Noise at McGi11 VHF Radar 
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Figure 2.9. Expected and measured cosmic powers. The points 
and the left-side Y-axis (Pout, in 105 au) are obtained from median 
values of the radar measurements (black points in Figure 2.8). The 
line and the right-side Y-axis (Psky, in 10-14 Watts) are obtained 
from equation (2.6) and the brightness temperatures in Figure 2.8. 

To eliminate the unlikely possibility of having a lag between the two time 

series in Figure 2.9, we computed the cross correlation between the two series. 
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The maximum cross correlation was found at lag time equal zero (not shown). 

This me ans that no time lag can be found between the two time series, and if there 

is one, it will be less than the interval between two consecutive observations (i.e., 

1.5 minutes). Thus, no lag- time correction was applied. 

We can also visualize the data in Figure 2.9 by plotting Psky as a function of 

Pout. This leads to the scatter plot in Figure 2.10 and the linear relation for power 

in Watts as a function of power in arbitrary units (the line in Figure 2.10). As 

described in section 2.2.2, we expect a linear relation, but the uncertainties abm.lt 

the variation of fJ in space [see equation (2.5)] could deviate the expected linear 

relation slightly. Fortunately, Figure 2.10 indicates that this small effect can be 

neglected in our case. 

The data in Figure 2.10 might be described as two separate populations, each 

with a larger slope than the one given in the figure line. From equation (2.10), we 

know that a larger calibration slope in the figure dataset will imply a much smaller 

antenna efficiency eR (in the order of the 35%), and this will disagree with the 

antenna efficiency estimations in the coming section 2.4 (Le., eR in the order of 

50%). In addition, the data in Figure 2.9 does not support the existence of two 

separate populations; therefore, we discard this possibility. 

A single linear relation between power in Watts and power in arbitrary units 

was then derived by minimizing the Chi-square error statistic, as in Press et al. 

[1986], and it is given as follows: 

~ky = (-1.797x 10-14 ± 9.4 x 10-16
) [w] + ~ut (2.095 x 10-20 ± 3.6x 1O-22 )[W / au] . 

(2.27) 
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As before, the units are given in square brackets, and the uncertainties correspond 

to one standard-deviation errors in the coefficients estimates. 
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Figure 2.10. Scatter plot of expected versus measured 
co smic sky-noise power. The Y -axis values (Psky , in 10-14 

Watts) correspond to the Hne in Figure 2.9. The X-axis 
values (Pout, in 105 au) are the corresponding points in Figure 
2.9. The line here corresponds to equation (2.27). 

2.3.3. Radar hardware coefficients 

In order to calculate the values of antenna and receiver parameters, we need to 

compare our two sets of calibration equations [i.e., the sky-noise calibration in 

equation (2.27) and the noise-generator calibration in equation (2.26)]. The 

comparison is shown in Figure 2.11, where the sky-noise calibration is plotted as 
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a dashed line and the noise generator calibration is given as a continuous line. Of 

course, the slope of the noise-generator calibration is smaller than the slope of the 

sky-noise calibration, and we expect this difference from equation (2.10). 
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Figure 2.11. Comparison of noise-generator and sky-noise 
calibrations. The sky-noise calibration [equation (2.27)] is 
plotted as a dashed line, and the solid line represents the 
noise-generator calibration [equation (2.26)]. 

The hardware parameters can now be computed from equations (2.7), (2.8), 

(2.10), and (2.11) simply by noticing the correspondence between equations (2.4) 

and (2.27), and between (2.3) and (2.26). As well, their corresponding 

uncertainties are estimated from equations (2.13) to (2.16). These values are given 

in Table 2.2. Notice that the antenna efficiency in Table 2.2, eR = 44%, refers only 

to reception. The antenna system was originally designed to maximize transmitted 
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power, and the overall power losses on transmission are estimated to be less than 

2 dB [Mardoc Inc., 2006, personal communication]; i.e., eT = 63%. 

Table 2.2. Hardware parameters obtained from calibration 
Parameter Value Uncertainty 

eR 0.442 0.008 
Na 1. 14xlO-14 W 4xlO-16 W 
gRx 1.081xl02o au/W 3xl017 au/W 
NRx 3.70xl05 au 7xl03 au 
TRx 619 K 12 K 

To compute the receiver noise temperature, TRx, we use an equation similar to 

equation (2.6); i.e., N Rx (W) = kBoltzmann T Rx BPFwidth ,where NRx(W) is the receiver 

noise expressed in units of Watts. This receiver noise can be computed from the 

NRx value in Table 2.2 and the slope in equation (2.26), or from the offset in 

equation (2.26). In both cases, we obtain that the receiver noise temperature (for 

the McGill radar) is about 619 ± 12 K. 

2.4. Antenna matching unit 

T 0 validate our results, we will now study the various subcomponents of the 

radar antenna that are most likely leading to power losses. This analysis leads to a 

third calibration method, which will provide an independent estimation of the 

antenna efficiency. 
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Figure 2.12. Matching between transmitter and antenna aerials 
(Antennas) for the Mc Gill VHF radar. Each cable has a length as 
specified at the bottom of the diagram, expressed in form of 
wavelength Â, where Â is the electromagnetic wavelength within 
the coaxial cable. Cables are joined using T -shaped connectors. The 
matching boxes are combinations of capacitors and conductors that 
permit matching of 25 n to 50 n. There are four transmitter ports, 
each feeding eight antenna aerials. The shaded portion (output port 
3,03) was used separately for further tests, as discussed in the text. 
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l'~' In this regard the antenna transmission lines are the most important. In order to 

minimize energy losses, the impedance in the antenna aerials is matched to the 

transmitter impedance through an arrangement of coaxial cables. These 

assemblies of cables are then called the antenna matching units. For the McGill 

VRF radar, we use a matching arrangement like the one shown in Figure 2.12. 

This includes matching cab les made from RG213 coaxial cable, with lengths as 

indicated in the figure, and beam-pointing boxes that are used to introduce phase 

delays to the antennas in order to implement beam pointing. The internaI details of 

the beam-pointing boxes are not shown on the figure, but the efficiency of these 

units will be considered separately in due course. The matching boxes at the 

Transmitter end hold inductors of approximately 75 nH and capacitors to earth of 

about 60pF, which are tunable in order to provide final accurate matching. 

The arrangement in Figure 2.12 includes matching boxes and switching boxes. 

In order to assess the performance of this arrangement, we have built a slightly 

simpler system which contains no switching boxes, and used it for performing the 

third calibration method. This arrangement is shown in Figure 2.13. We will first 

discuss the operation of this unit, and consider theoretical efficiencies. Following 

this, we will report the results of a series of measurements on the system, and 

compare with theory. Finally, we will retum to the original matching arrangement 

(Figure 2.12) and make further measurements, which can then be interpreted in 

terms of our results using Figure 2.13. 
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16 element feed. 

Figure 2.13. Simplified antenna-diagram during 
transmission. The transmitter feed is at point A, and 
the antenna aerials connect at the 16 output ports 
above point 1. Cable lengths are specified in the text. 

In order to properly understand the efficiency of an impedance matching 

system, like that shown in Figure 2.13, it is necessary to consider both its forward 

and backward transmission characteristics. The cable impedance is assumed to be 

50 n. The simplified transmission lines shown in Figure 2.13 had cables lengths 

of one half of a wavelength between H and l, one quarter of a wavelength between 

G and F, one half of a wavelength between E and D, and one quarter of a 

wavelength between C and B. We assume that the antennas are all tuned to 50 n. 

Where two cables come together as at G/H, the point G (looking out towards the 

antenna aerials) sees an impedance of 25 n. The quarter wave section tF-G 
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transforms this to 100 n. The point E, looking out towards the antenna aerials, 

sees an effective impedance of 2 x 100 n impedances in parallel, or 50 n. The 

point D, looking out towards the antenna aerials, also sees 50 n. Point C sees 2 x 

50 n impedances in series, and so sees 25 n. This maps to 100 n at B (looking 

towards the antenna aerials). Finally, point A sees 2 x 100 n impedances in 

parallel, or 50 n. These results are summarized in the fourth column of Table 2.3. 

Table 2.3. Impedance at different points of the antenna transmission lines, for 
the McGill VHF radar. 

Point Looking towards transmitter Looking towards aerials (aU aerials 
ln ~Transmitter terminated in 50 02 terminated in 50 02 

Figure Theory Measurement Theory Measurement 
2.13 ± [0.5 0, 1.00J ± [0.5 0, 1.0°] 

A [50.00,0°] [50.00,0°] [50.00,0°] [48.00, 13.0°] 

B [33.30,0°] [100.0 0, 0°] 

C [75.00,0°] [75.50, -1.4°] [25.00,0°] [26.80,5.9°] 

D [30.00,0°] [31.50,5.6°] [50.00,0°] 

E [83.3 0,0°] [80.90,3.so] [50.00,0°] [49.00,8.8°] 

F [45.45 0, 0°] [44.4 0, 3.so] [100.00,0°] 

G [55.00,0°] [57.5 0, _4.0°] [25.00,0°] [26.5 0, 11.8°] 

Il [27.250,0°] [50.00,0°] 

l [27.250,0°] [29.0 0, 7.so] [50.00,0°] 

The fifth column in Table 2.3 shows actual measurements of the impedances, 

expressed as magnitudes and angles, as measured by a Hewlett-Packard Vector-

Impedance Meter. Agreement with theoretical expectations is good, and 

differences are due to the facts that (i) the characteristic impedance of the cable 

was actually close to 51 n, and (ii) slight errors in cutting the lengths of the cab les 
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to exact multiples of a quarter of a wavelength. (Optimal cable lengths were 

determined using a vector-impedance meter, with the cables being open circuit. 

The quarter-wavelength cab les were cut until impedance was zero, and the half-

wavelength cables were cut until impedance was maximum.) 

In the previous paragraph we examined impedance transformations in the 

matching unit, comparing theoretical and experimental values. It is also necessary 

to examine power transmission, which is best done by looking at voltages at 

various points along the antenna transmission lines. 

A continuous-wave 52.00-MHz signal, ofpeak-to-peak voltage equal to 1.16 V 

(as measured into a Cathode Ray Oscilloscope loaded with 50 Q), was fed into the 

point A in Figure 2.13. In addition, all terminations except that at "1" were given 

50 Q loads. The voltage measured into a 50 Q load at "1" was then equal to 28 

m V peak to peak. It would be expected that the applied power should be equally 

d· 'b d Il 1 d h' f h . . 1 1.16
2 

h h 1stn ute across a oa s, so t at 1 t e mput power 1S - X --, t en t e 
2 50 

output voltage should be 29 mV. The total cable length from input to output is 1.5 

wavelengths, or 5.71m, since the velocity propagation factor for RG213 cable is 

0.66. This RG213 coaxial cable has a loss factor of 1.3 dB per 30m at 52 MHz, so 

losses of 0.25 dB are expected. This should reduce the received signal to a peak 

voltage of 28.2 mV, consistent with our measured value. Hence the losses on 

transmission through such a matching unit are about 0.2 dB, mainly due to cable 

attenuation. 

In considering the system efficiency of a transmit-receive system like this, it is 

also necessary to consider the return path of the signal. It is well known that with 

58 



a weIl designed antenna array, the sky noise received by the radar is independent 

of the number of antenna aerials, provided that the sky noise is isotropic in origin. 

Suppose that a single antenna aerial is used, and fed directly into point A in Figure 

2.13, from where it passes through a transmit-receive switch to a receiver. Let the 

signal power received be P. Now suppose that 16 antenna aerials are now used, 

and are fed by the matching arrangement in Figure 2.13. Each antenna aerial 

receives power P, but as the signal passes back through the stages of the matching 

unit, more and more is 10st by reflections. Sorne of it ends up being re-radiated by 

other antenna aerials in the array. In fact the power expected at the point A due to 

the signal received at one antenna is only P/16. The accumulated power from aIl 

antenna aerials is 16 times this, or P. In terms of polar diagrams, this resuIt can be 

determined by recognizing that the collection of 16 antenna aerials has a narrower 

polar diagram than a single antenna aerial, but in terms of the actual matching 

used, the resuIt arises because of power losses due to reflections on the retum 

path. The received signal strength (and therefore the sky-noise temperature) is 

thus independent of the number of antenna aerials used. This is a well-known 

result that is employed in calibrating many radio systems, and it has been used in 

the early sections ofthis chapter as weIl. 

To see this more c1early, it is a simple matter to determine the impedances seen 

at various stages of the matching path looking back towards the transmitter (as 

opposed to the previous cases, which were determined looking out towards the 

antenna aerials). To begin, consider the point B (in Figure 2.13) looking back 

towards the transmitter. It sees a 50 Q load in the form of the transmitter, and a 
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100 n load commg m from the other arm of the V -section closest to the 

transmitter. Hence point B sees 33.3 n. This maps to 75 n at point C due to the 

quarter-wavelength section. By working along the matching unit from A to l, the 

impedances seen in the second column of Table 2.3 can easily be deduced. In 

Table 2.3, column 3 shows experimental values of the impedances, and again 

agreement between theory and experiment is good. 

It is now necessary to determine the power expected to be received at the point 

A, assuming that this point is terminated in 50 n, and aIl other cab les above the 

point 1 in Figure 2.13 are· also terminated in 50 Q. This can be calculated by 

looking at transmission efficiencies at each point. For example, a 50 Q input 

applied at point 1 sees an impedance of27.25 n, so a voltage re:flection coefficient 

of (50-27.25)/(50+27.25) =0.2945 applies. Hence the re:flected power is 8.7% of 

the original. The transmitted power is therefore 91.3% of the original. This 

transmitted signal progresses to the junction between G and H, where sorne signal 

passes through to G, sorne is re:flected back, and yet more of the signal passes into 

the adjoining cable and is transmitted into the next termination (or, in a real radar, 

is transmitted into the next antenna aerial). The signal that is re:flected back to 1 is 

partly retransmitted from 1 into the adjoining load, and partly re-re:flected back to 

H - and so forth. The signal that passes through G suffers further re:flection and 

splitting at EIF, and so forth. EventuaIly, onlyone sixteenth of the original signal 

arrives at the point A. 

Experimental testing of this pathway was carried out. An input signal of 1.16 V 

peak-to-peak fed in at "1" produced a signal of 0.26V peak-to-peak at point A. 
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Inserting inputs at other locations similar in location to point "1" gave outputs at 

the point A in the range 0.24 to 0.27 V peak-to-peak. These results are entirely 

consistent with the above expectations, and indicate that even on the return path 

the losses of this matching unit are very modest, and certainly less than 10%, even 

inc1uding losses due to cable attenuation. 

We now return to Figure 2.12. Having performed the above tests, a sub-unit of 

Figure 2.12 (shaded in the figure) was extracted for further tests. As for the circuit 

in Figure 2.13, forward propagation (from the transmitter out to the antenna 

aerials) was very efficient. For the reverse direction, Figure 2.14 shows a series 

of measurements. In this case the input signal was 90 mV peak-to-peak. The 

bearn-pointing units were removed from the circuit. 

Matching 
Unit 

(Nominally 2:1) 

lnput ",,90 niV 

51mV 

25lt'iV 

30rnV 
rO.8tnV 

9:8 1I1V 

Figure 2.14. Simplified antenna-diagrarn during reception. 
(Antenna aerials connect to the right.) 

61 



~ 
! 

Figure 2.14 shows more clearly the distribution of power around the circuit. 

Notice that the input power is proportional to (90)2 y 2, but as before, onlyabout 

91 % of the input power enters the matching unit, and the rest is reflected back into 

the signal generator, due to the mismatch at the input. Since all voltages were 

measured into 50 n, we will dispense with converting powers to Watts, and 

express them in terms of Voltage squared. The transmitted power is therefore 

proportional to 7200 y2. It should be noted that if all of the power produced at all 

the other remaining ports are summed, (512 + 252 + '" + 10.82 + 272), the result is 

5300 y2 - less than, but comparable to, the total input power. Sorne of the signal 

travels over relatively long paths, up to 3 wavelengths (e.g., signal that travels 

form the input, to 13, and back to one of the antenna aerials), so losses of the order 

of 0.5 dB are possible due to cable losses and connector losses. If such losses are 

considered, the total available power is proportional to 7200 x 10-0
.
05 = 6400 y2, 

very similar to the 5300 y2 outputted. Of most importance is the fact the signal 

strength returned to the receiver at 13 is very close to the ideal value of 90/"'-18 = 

31.8 m Y, and sorne of this lost is due to cable losses. Thus the efficiency of this 

matching unit for reception is of the order of (27/31.8)2, or in other words the 

losses are of the order of 1.4 dB. Measurements along other arms gave slightly 

less losses, and overall the system loss due to this matching unit for the retumed 

signal should be less than 1 dB. 

The ab ove test was repeated, but this time we included the bearn-pointing 

boxes. These units added a further 0.5 to 1 dB to the system losses, varying 

slightly from one unit to the next. In addition, the cable to the antennas is 
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Andrews Yz" Heliax, which has a loss of 0.5 dB per 30 meters. Each output port 

feeds to a separate quartet of 4 antenna aerials, and distances to the inner antenna 

aerials are typically 35 meters, and the outer ones are 76 meters. AlI cables are 

carefully cut to integral numbers of wavelengths in length. Therefore cable losses 

are of the order of 0.5 to 1 dB. Sorne small losses can be expected at the final 

antenna matching unit, but they should not be large. Hence due to antenna 

matching issues, we anticipate that the overall system efficiency should be of the 

order of -2 to -3 dB, being comprised of about 1 dB in the matching unit, 0.5 to 1 

dB in the beam-pointing boxes, and 0.5 to 1 dB in the cables that carries the 

signaIs to and from the antenna aerials. Checks of inter-path coupling between 

different paths in the beam-pointing units showed that such coupling is generally 

of the order of -30 dB, and this is not likely to introduce further inefficiencies. 

Therefore, these antenna-matching calculations give an extreme value of -3 dB 

for antenna losses in the McGill VHF radar. This laborious estimation have not 

considered other, less significant, power losses (e.g., at the final antenna-matching 

unit, where the cable feeds four antenna aerials). Consequently, the estimation is 

in general agreement with the antenna efficiency value obtained in Section 2.3 

(from Table 2.2, eR = 0.442 = -3.5 dB). 
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Figure 2.15. Calibrated power spectrum measured by the Mc Gill 
VHF radar. Negative velocities correspond to downward motions. 
The calibrated Doppler spectrum was smoothed (by using a 5-point 
running median) in order to produce the spectrum plotted here. 

2.5. Precipitation applications 

When we applied equation (2.24) to the non-calibrated power spectrum output 

by our radar signal processing (i.e., power densities in auJHz) , we obtain the 

calibrated power spectrum of Figure 2.15 (i.e., power densities in W 1Hz). This 

figure corresponds to a 2.5 km range gate, for a rain event on 9 September 2004, 

at 14:05:45 UTC. (The 2.5-km range is the lowest range gate that we can use for 

precipitation retrievals, and this is determined by the antenna far-field region and 
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the time response of the radar transmitter-receiver switch.) The bimodality is due 

to the simultaneous detection of c1ear-air signal (peak near 0.2 Hz) and rain signal 

(peak near 3.5 Hz). As a reference, we measured at ground level (for the same 

time) a 1-minute rainrate of 13 mmIh. Similarly to our observations in Figure 

2.15, Gage [1990, and references therein] discusses an example of Doppler 

spectrum showing c1ear-air and precipitation echoes during light rain. The 

advantage in our case is that we express our ordinate-calibrated by our 

technique-in W/Hz, while the power densities in Gage's Figure 3.7 are in 

arbitrary units. 

Furthermore, we can convert our calibrated power spectra into reflectivity 

spectra (expressed in units of rn-11Hz) by using a proper radar equation, e.g. [see 

equation (3.28), Chapter 3] 

(2.28) 

where ï] is the reflectivity averaged over the sampling volume, R is the range (in 

meters), L is the transmitter pulse length (in meters), Dmax is the antenna 

maximum directivity, À is the radar wavelength (in meters), and 80 is the one-

way half-power half-beamwidth. By integrating the part of the reflectivity spectra 

that corresponds to c1ear-air signal (frequencies larger than -1.25 Hz for the 

observations in Figure 2.15), we could compute an estimate of air turbulence in 

precipitation conditions; i.e., energy dissipation rates as in the method by Hocking 

[1985, Appendix Al We can also obtain an estimate of the precipitation intensity 

from the spectra in Figure 2.15. 
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As an example, Figure 2.16 shows reflectivity-factor spectra obtained 

simultaneously by the McGill VRF radar and by ground measurements of 

raindrop-size distributions. The abscissa (X-axis) has been changed from Doppler 

frequency shift, f, into Doppler velo city, v, by using the relation f = 2 vi Il. The 

VRF precipitation spectra are wider and a bit shifted towards the negative 

velocities. This is because the beam width is larger in the VRF than in the 

raindrop-size sensor, because air velocities are different in the sampling volume of 

each sensor, and because the change of air density with height implies a 10% 

increase in raindrop faU velo city at 2.5 km height [e.g., Beard, 1985]. Rowever, in 

general there is good agreement between both spectra, which demonstrates the 

potential of using power spectra-calibrated by our technique-for retrieving 

meteorological information such as precipitation bulk quantities (e.g., reflectivity 

factor and rain rates). These meteorological variables are typical in radar 

meteorology, where microwaves are most often used instead oflonger-wavelength 

radio waves. The advantage is that, with the use of VRF radio waves, we can also 

retrieve information about the air motion independently and simultaneously to the 

precipitation. We will discuss this application more in detail in the subsequent 

chapter. 
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Figure 2.16. Comparison of precipitation signal simultaneously 
measured by a VHF wind profiler and by a drop-size distribution 
sens or. The figure plots Doppler spectra of reflectivity factors (in 
dBZ), where the continuous line corresponds to the VHF 
observations taken by the McGill VHF radar, at 2.5 km height. The 
dashed line corresponds to drop-size measurements taken at ground 
by a POSS sensor [instrument described by Sheppard, 1990]. The 
plotted spectra correspond to the median values over 15 minutes, 
taken on 15 July 2004, at around 10:12 UTC, over Montreal, Canada. 

2.6. Discussion 

When dealing with the power measured by VHF radars, it is often necessary to 

convert power units (from the arbitrary units of the analog-to-digital converter) 

into Watts. A radar calibration is then required. This chapter discussed an 

integrated, multiple-method approach for obtaining this calibration, using noise-
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/--- - generator calibration and sky-noise calibration methods, and intelligent 

integration of the methods. There are important inconveniences associated with 

using exc1usive1y one or the other. The noise-generator method requires hardware 

(the noise generator) that is not always available at the radar site, and the normal 

operation of the radar has to be interrupted to connect this hardware. Furthermore, 

the calibration equation that results does not take into account the antenna losses, 

and is therefore not accurate. On the other hand, attempts to calibrate VHF radars 

using the sky-noise method have only been reported a few times in the literature. 

This is most probably re1ated to difficulties in obtaining reference sources of 

cosmic radiation at VHF band. Although this limitation has now been overcome, 

sky-noise calibration-methods do not provide independent information on the 

receiver or antenna parameters. This· information on radar parameters is 

fundamental when applying the radar equation to derive meteorological variables 

such as turbulence and precipitation. 

We overcame these calibration difficulties by combining the sky-noise and the 

noise-generator methods. We present here a more complete approach to radar 

calibration for operations in the VHF band. In addition, our technique allows 

derivation of several antenna and receiver parameters and their corresponding 

uncertainties. We give these parameters for the McGill VHF radar in Table 2.2. 

The application of our calibration technique to the McGill VHF radar 

measurements generates calibrated power spectra like the one in Figure 2.15. 

Another advantage of our calibration technique is that, once the noise­

generator part has been applied, the rest of the calibration can be performed 

during routine observations (without the need for additional hardware or 
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modification of the radar operation). Furthermore, a change in the radar hardware 

does not require a new noise-generator calibration. We simply perform a new sky-

noise calibration [i.e., we obtain Ask;,(new) and Bsky(new) for Equation (2.4)]. For a 

change in the radar antenna, the noise-generator coefficients in Equation (2.3) will 

remain the same. We will then apply our calibration technique using the old noise-

generator coefficients and the new sky-noise coefficients. For a change in the 

radar receiver, the antenna efficiency and antenna noise would remain the same. 

Then, we obtain from Equation (2.10) that 

( ) 
BNG(old) BSky(new) 

BNG new = () 
Bsky old 

(2.30) 

As well, from Equation (2.11) we find that 

() () BNG(old) () () BNG(new) 
ANG new = Asky old () + ANG old - Asky new ( ) 

Bsky old Bsky new 
(2.31) 

At this point, the new coefficients for Equations (2.3) and (2.4) are available and 

our calibration technique can be applied. 

For best implementation of our calibration technique, it is very important to 

select night observation periods when unknown variations of co smic power (e.g., 

solar emissions and ionosphere attenuation of the cosmic power) are minimal. It is 

also important to minimize any non-co smic radio sources (e.g., broadcasting 

signaIs) from the calibration data. The amount of non-cosmic radio sources 

depends on the radar location (an urban site will probably have much more non-

cosmic radio sources than a remote site), and the removal of affected periods can 

be done as in Section 2.3.2.2. 
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Our calibration technique does not consider the power losses in the radar 

transmitter or between the transmitter and the transmitter-receiver switch. In 

general, these omissions are not very relevant, since the length of the cables 

between the transmitter and the transmitter-receiver switch are not very long (i.e., 

very high transmitter efficiencies). As weIl, radar manufacturers usually provide a 

calibrated transmitter. 

In order to validate the results from our calibration technique, we applied a 

third calibration method. The third method corresponded to antenna-matching 

calculations, which provided an independent estimate of the antenna power lost. 

We found this estimate to agree with the antenna efficiency derived by our 

calibration technique. 

This chapter has concentrated on the correct measurement (in units of Watts) 

of power by VHF radars. However, we have also demonstrated the potential of 

using the Doppler spectra calibrated by our technique, in combination with the 

values of radar hardware parameters derived by our technique, for retrieving 

meteorological information such as precipitation bulk quantities (e.g., reflectivity 

factor and rain rates). Nevertheless, the derivation of precipitation quantities 

requires relating the spectra and hardware parameters to a proper radar equation 

(i.e., the relationship between power and targets backscattering cross-sections). As 

weIl, a method for separating the precipitation mode from the air mode has to be 

implemented. We will elaborate more on this application in the subsequent 

chapter. 
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CHAPTER3: 

MEASURING RAINFALL AND VERTICAL AIR 
VELOCITIES USING ONLY OBSERVATIONS WITH A VHF 

RADAR 

ABSTRACT 

This study shows how the measurement of rainfall and vertical air velocities can 

be performed using only observations from a radar operating at the VRF band 

(i.e., meter wavelengths). We verify the assumption that the dielectric factor IKI2 
= 0.93 is valid for rain observations in the VRF band. We then 

derive-analytically and numerically-a more general version of the radar 

equation valid for vertically pointing radars with targets within a few kilometers 

range, but still within the antenna far-field region. Following this, we describe a 

new algorithm for extraction of rain signal out of VRF Doppler spectra. To 

validate our methods, we made co-Iocated measurements ofVRF Doppler spectra 

aloft and raindrop sizes at the ground. The analytical version of our radar 

equation compares well with similar equations available in CUITent literature, and 

this validates the particular case of our numerically-derived radar equation. We 

combine our numerical version of the radar equation and our algorithm for 

extracting precipitation signal. This combination allows us to obtain reflectivity 

factors (from rain signaIs) and vertical velocities (from air signaIs), these being 

simultaneous observations within the same sampling volume. From the dataset 
\ 

collected, we found good agreement (linear correlation coefficient around 0.8) 

between the rain signal derived from VRF observations aloft and from drop sizes 

at ground level. Rence, we are able to measure rainfall amounts and vertical air 

velocities in a simpler and more efficient way, using only observations from a 

VRF wind profiler. This represents a promising step towards the analysis of 

precipitation from large radar datasets. 
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3.1. Introduction 

Quantitative interpretation of precipitation measurements by radars involves 

the representation of the radar signal in terms of the reflectivity factor (i.e., Z 

expressed in units of mm6 m-3
). For vertically-pointing radars operating in the 

VRF band (i.e., meter wavelengths), we have the advantage ofmeasuring also air 

vertical velocities, in addition to the precipitation signal. For this reason, meter-

wavelength radars might be more desirable, for the study of precipitation physics, 

than traditional centimeter-wavelength ràdars. For this to happen, however, we 

must 

(a) Calibrate the measured power density spectra; 

(b) Extract the signal originating for precipitation, an additional step compared to 

centimeter-wave1ength radars; 

(c) Express this received power Pr in terms of the scatterers cross sections (i.e., 

radar reflectivity, 1], expressed in units ofm-1
); and then 

(d) Express this radar reflectivity in terms of the reflectivity factor Z. 

For the case of precipitation particles being the scatterers of our VRF radar 

pulse (i.e., < Rayleigh scatter), requirement (d) can be satisfied by using the 

following expression [e.g., Rinehart, 1997, equation 5.13]: 

(3.1) 

where IKI2 is the dielectric factor, and A is the wavelength of the radar 

transmitted pulse (in meters). Z is the reflectivity factor (expressed in mm6 m-3
). 

The value of IKI2 depends upon the scatterer material, the scatterer temperature, 

and the radar wavelength. Unfortunately, estimations for the values of IKI2 at 
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VRF band are not readily available in the wind-profiler literature. Typically, the 

IKI2 value for S-band (IKI2 ::::: 0.93 for water sampled at 10 cm wave1engths) is 

used instead [e.g., Chi/son et al., 1993]. 

By convention [e.g., Smith, 1984], if IKI2 is taken equal to 0.93 (the value 

corresponding to liquid water at near 20°C, and wavelengths in the S band), then 

Z = Ze' the equivalent radar reflectivity factor that is generally plotted on radar 

displays. This convention is adopted because when radar measurements are made, 

one is often not certain of the hydrometeor phase or composition. Rowever, it is 

still necessary to verify if the assumption of IKI2 = 0.93 is also valid in the VRF 

band. 

The other three requirements are not attained as directly as with requirement 

(d), and they represent a challenge that has been met only partially in the current 

literature [e.g., Lucas et al., 2004; Kobayashi and Adachi, 2005; and references 

therein]. For example, we can accomplish requirement (c) by using the radar 

equation (i.e., the relationship between 17 and Pr). Unfortunately, there are 

several versions of this radar equation that are very often valid only for particular . 

radar configurations [e.g., Probert-Jones, 1962; Gage and Balsley,1980; 

Hocking, 1985]. Furthermore, the derivation of such equations is not always 

presented in detail in the literature. Requirement (b), on the other hand, is 

accomplished through elaborate algorithms of signal processing [e.g., 

Rajopadhyaya et al., 1993; Boyer et al., 2001] or by multi-wavelength techniques 

[e.g., Maguire and Avery, 1994; Schafer et al., 2002]. Adjustment and refinement 

of these algorithms require long periods of numerical experimentation with the 
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corresponding radar datasets. Conceming requirement (a), we should recognize 

that, very often, power density spectra recorded by VHF radars are not expressed 

in units of Watts per frequency bin, but only in the arbitrary units of the radar 

receiver hardware. Requirement (a) then involves a radar calibration, which has 

already been analyzed in Chapter 2. 

In the present chapter, we present our efforts towards the accomplishment of 

requirements (b), (c), and (d). We will be focusing on the case of precipitation 

being rain, because it gives us a signal that is easy to separate from the clear-air 

signal in the power density spectrum, and also because it avoids the 

inconvenience of not knowing the exact IKI2 value for solid precipitation (e.g., 

snow and graupe1). Conceming requirement (d), we verify the assumption that 

IKI2 = 0.93 for most of the rain observations at VHF band. For requirement (c), 

we derive a general version of the radar equation valid for vertically pointing 

radars, as well as a particular version of this equation valid for the McGill VHF 

radar. Then, a numerical algorithm for extracting the rain signal out of the VHF 

power spectra is presented to achieve the requirement (b). The next section 

describes the theoretical considerations for these three requirements. We then 

combine our radar equation and our algorithm for extracting rain signal in section 

3.3, which allow us to retrieve reflectivity factors and air vertical velocities 

during several rainfall observations at Montreal. As well, we validate our method 

by comparing our results with the rain signal from raindrop sizes measured at the 

ground. A discussion of our results is presented in the last section ofthis chapter. 
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3.2. Methods 

3.2.1. Computing the dielectric factor at VHF 

In order to accomplish requirement (d), from the Introduction section of this 

chapter, we consider equation (3.1). It is c1ear that the knowledge of IKI2 at VRF 

band is required in our analysis (and in any quantitative analysis of precipitation 

using radars). For Rayleigh scattering, the scatterer dielectric factor, IKf, is a 

function of the scatterer' s complex refractive index, m, such that [e.g., Marshall 

and Gunn, 1952, p.322; Battan, 1973, p.38] 

m2 -1 
K=---

m2 +2 
(3.2) 

At the same time, m varies with scatterer temperature and radar wavelength. 

Unfortunately, these functional relations are not widely known for the VRF band, 

and generally it is simply assumed that the IKI2 value is the same as in S band; 

We chose to try to obtain an expression for the complex refractive index for 

liquid water as a function of raindrop temperature and VRF wavelength. 

Consider the complex refractive index given by [e.g., Ulaby et al., 1986, p. 

2018] 

m=n'-in" . , (3.3) 

n'=Re{~L (3.4) 

n"=1 ImW} 1 ; (3.5) 

where i = H, ç = ç' - i ç" is the relative dielectric constant (i.e., the ratio 

between the media dielectric-constant and the dielectric constant of empty space), 
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;' is the relative permittivity (energy storage), and ;" is the loss factor (energy 

lost as heat). 

The Debye [1929] model describes well the frequency dependence of the 

dielectric constant for different temperatures. Although this model is limited to 

radar frequencies below 100 GHz and to scatterers consisting of pure water 

particles [Liebe et al., 1991], it is sufficient for our purposes (measuring rainfall 

with 50MHz radars). 

The analyses in this section neglect the fact that raindrops are not strictly 

formed by pure water (i.e., atmospheric aerosols dissolving in raindrops). 

Pruppacker and Klett [1997, p. 715] indicate that concentrations of atmospheric 

aerosols (mainly salt ions) inside raindrops are in the order of 10-4 mole/ liter or 

smaller. Considering that one mole of pure water weights 18.0 g, and that the 

density of water in the troposphere is about 1 kg/liter, we then have a 

concentration of about 56 moles/ liter of pure water. Therefore, the aerosol 

concentration in raindrops is negligible. Furthermore, no anomalies have been 

found in the dielectric properties of water in the presence of such small 

concentrations of salts or organic matter [Blue, 1980]. 

The Debye equations are [e.g., Ulaby et al., 1986, p. 2020]: 

(3.6) 

(3.7) 
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where IR = 3 x 108 m s -1/ À is the frequency of the electromagnetic radiation, C; a) 

is the high-frequency dielectric. constant [whenlR approaches infinite], C;s is the 

static dielectric constant, and la is the relaxation frequency of pure water. Then, 

from Liebe et al. [1991, p. 661, equation (1)] we have 

Çs = 77.66 -103.3 eT ; (3.8) 

where 

e = 1- 300 
T 273.15 + T 

(3.9) 

and Tis the temperature in degrees Celsius. Notice that equation (3.8) is valid for 

a wide span of temperatures; i.e., - 20° C ::; T ::; 60° C. [For a more general 

relationship of Çs as a function of T, see Fernlmdez et al., 1997]. From Liebe et 

al. [1991, p. 667, equation (2a)], we also have that 

(3.10) 

10 = 20.27 + 146.5 eT + 314 e/; (3.11) 

where Jo is expressed in units of GHz. Therefore, by combining equations (3.2) to 

(3.11), we are able to compute the variation of JKJ2 with rain temperature and 

radar frequency, and verify if the assumption of JKJ2 = 0.93 is adequate at VHF 

band. 

Figure 3.1 presents the relative dielectric constants for various raindrop 

temperatures and radar wavelengths. As validation, the upper panel in Figure 3.1 

compares the model by Debye [1929] and the empirical equations by Liebe et al. 

[1991] with actual measurements in liquid water by Hippel [1961] in Table 3.1. 

The lower panel in Figure 3.1 plots the relative complex permittivity for pure 
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liquid water at temperatures from -15°C to 35°C. Similarly, the upper panel in 

Figure 3.2 presents the complex refractive index for liquid water at typical 

tropospheric temperatures. Here, the lower-panel curves in Figure 3.1 are used as 

input into equations (3.4) and (3.5) to obtain complex refractive indexes (plotted 

in upper panel of Figure 3.2). 

Table 3.1. Measurements of dielectric properties for 
liquid water at 25°C [from Hippel, 1961]. 
Uncertainties are about ± 2 % in r;', and about ± 5 % 

in r;"jr;' . 
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3.0xl08 
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5400 

Refractive index factors for various raindrop temperatures and radar 

wavelengths are plotted in the lower panel of Figure 3.2. These were computed 

by using the upper panel curves in Figure 3.2 as inputs into equations (3.3) and 
1 

(3.2). For these cases, it is clear that IKI2 varies between 0.92 and 0.94 at VHF 

band. Therefore, in the quantitative analysis of rain using VHF radars, it is also 

safe (within a 1% or 0.05 dB error) to use the standard weather radar 

approximation that 

IKI2 == 0.93 . (3.12) 

However, if the temperature profile above the VHF radar is known (e.g., from 

radiosonde measurements), then the model described here can provide a more 

precise value for IKI2. 
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Figure 3.1. Relative dielectric constant for pure liquid water, from the 
analytical equations by Debye [1929] and the empirical equations by 
Liebe et al. [1991]; i.e., equations (3.6) to (3.11). The dashed lines 
represent the real component, and the solid lines correspond to the 
imaginary part. The upper panel corresponds to a temperature of 25°C, 
and the corresponding measurements from Table 3.1 are plotted in red. 
The lower panel corresponds to the relative complex permittivity at 
various temperatures. 
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Figure 3.2. Complex refractive indexes (upper panel) and scatterer 
dielectric factors (lower panel) for pure liquid water at various 
temperatures and wavelengths. In the upper panel, the dashed lines 
represent the real component, and the solid lines correspond to the 
imaginary part. Values computed from the data in Figure 3.1 and 
equations (3.2) to (3.5). 
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3.2.2. Deriving a VHF radar equation 

In order to accomplish requirement (c), from the Introduction section of this 

chapter, we start from a general form of the radar equation [i.e., equation (A9), 

derived in the Appendix]: 

R + L/4 2". 

f f 
r=R - L/4 ;=0 

f 77(r,e,?J)[F~e,?J)Y sine de d?J dr; 
r B=O 

(3.13) 

where Pr is the backscatter power input into the radar antennas (expressed in 

Watts), PTx is the power output by the radar transmitter (in Watts), eT is the 

antenna efficiency during transmission, Dmax is the maximum directivity of the 

antenna, Â is the radar wavelength (in meters), L is the transmitted pulse length 

(expressed in units ofmeters), and LI2 is the range resolution. Variables e,?J, and 

r correspond to the zenith, azimuth, and range (the spherical coordinates), 

respectively. The range gate is centered at R, and the values R - LI4 and R + LI4 

correspond to the radial boundaries of our range gate (near-range and far-range 

boundaries, respectively). The radar reflectivity 77 is expressed in m-1
• Fis the 

normalized, one-way polar-diagram of the radar antenna. We have assumed a 

square transmitted pulse although in reality this can be untrue (see the Appendix). 

In order to solve equation (3.13), the main challenge is within the multivariate 

integral, since the coefficients outside this integral are simply hardware constants 

(that will be derived in the following sections). Therefore, let us focus on this 

multivariate integral. It is common practice to assume that the spatial variability 

r' .. of 77 is negligible within a one-gate sampling volume; i.e., 
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17(r,0, r/J) = const.; (3.14) 

. if e and rjJ are in the main lobe of the polar diagrarn, and if r E [ R - ~ , R + ~] . 

Therefore, we obtain from equations (3.13) and (3.14) that 

The square-brackets integral in equation (3.15) is easy to obtain: 

R+Ll4 dr -1 1 L/2 

10 = r~)Ll4 -;;: = R + L/4 + R - L/4 = R 2 - (L/4)2 . 
(3.16) 

Therefore, we only have to deal with the expression 

2Jr Jr 

1 = f fF2 (rjJ,e) sine de drjJ ; (3.17) 
tP~O 8~0 

such that 

(3.18) 

Let us now focus on solving integral l, and particularly on the antenna pattern 

F. In the following section, two approaches are presented for solving equation 

(3.17). 

3.2.2.1. Analytical derivation (from Gaussian lobe) 

Assume that Fis a Gaussian lobe; i.e.: 

F 0 ~ ex __ . 2 __ 0 _ • 

(
- 02 J 0

2 

(,rjJ) P 2 r 2 ,r - 21n2' , (3.19) 
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where 00 is the one-way half-power half-beamwidth. Therefore, by combining 

equations (3.17) and (3.19), we have that 

tr (-02J [2tr] tr (-02J 1 = f exp -2- sinO fd~ dO = 2n f exp -2- sinO dO. 
8=0 r ~=o 8=0 r 

(3.20) 

However, we know that 

(3.21) 

Therefore, 

tr (-02J tr (-02J f exp -2- sinO dO = f exp -2- 0 dO. 
8=0 r 8=0 r 

(3.22) 

Equation (3.22) is verified in Figure 3.3, where the numerical computation of 

the right and left sides of equation (3.22) confirm the agreement within 10-6 units. 

Given the shape of F in Figure 3.3 (small dynamic range in 0), it is also safe to 

assume that the spatial variability of 17 is negligible within the sampling volume. 

Therefore, we verify equation (3.14) as well. 
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Figure 3.3. Gaussian approximation of F, for Bo = 2.3°. 

The solid curve corresponds to the expression in si de the 
. right side integral in equation (3.22). The dashed line (on 
top of the previous curve) corresponds to the expression 
inside the left side integral in equation (3.22). 

With these assumptions, equation (3.20) can take the following shape: 

We can now solve the integral in equation (3.23) by substitution, with 
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However 

2 
2 80 

r =21n2 => 

du = -28 d8 => 

r 2 

f exp =-z 8 d8 = ~ exp -;r 2 - 1 . 11: (8
2 

) 8 2 [ ( 2 2 In2J ] 
8=0 r 41n2 80 

From equations (3.18), (3.23), and (3.25) we obtain 

Moreover, 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

=>;r2 2 In2 » 80
2 

=> 80 «3.70 radians = 2120
; which is valid an the time. 

Therefore, the radar equation will be given by 

p = PTx eT {DmaxY A? 1] L 80
2 

r 256;r21n2[R2 -(L/4)2] 
(3.28) 

Notice that equation (3.28) is equivalent to other earlier radar equations [e.g., 

Hocking, 1985, equation 33a; Probert-Jones, 1962, equation 3]. In general, 

traditional radar equations do not deal with the power input into the antennas 

during reception, Pr, but with the power detected at the receiver (i.e., eR Pr, where 
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eR is the antenna efficiency during reception). For our analysis, we consider eR 

during the calibration stage, which is described in Chapter 2. Taking this into 

account, equation (3.28) will differ from more traditional expressions only at the 

factor [R 2 - (LI 4) 2]. This factor cornes from integral 10 in equation (3.16). 

Traditional radar equations generally assume that the radar range resolution is 

much smaller than the range of the sampling volume, and therefore 

(3.29) 

Equation (3.29) is inaccurate for VHF radars when the ranges are comparable to 

the transmitted pulse lengths. Equation (3.28) is therefore a more general radar 

equation than the ones previously pub li shed in the literature. 

3.2.2.2. Numerical derivation (from antenna polar diagram) 

It should be noted that the assumption in equation (3.19) IS just an 

approximation that does not consider sidelobes in the antenna pattern nor the 

pulse shape. However, if somehow we know the antenna polar diagram valid for 

a particular radar of interest, we then can solve equation (3.17) numerically. As 

an example, we present the case of F that is valid for the McGill VHF radar 

(given in Figure 3.4). This antenna pattern was provided by Mardoc Inc. [2002], 

the company manufacturing this radar system, and it was obtained from accurate 

numerical computations of the antenna-array response to an input power. Notice 

that here 

F(rjJ,8)=0 at 8;;::90°. (3.30) 
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The most relevant details in the structure of F can be observed from Figure 3.5, 

which indicates that the one-way half-power half-beamwidth for this radar is 2.3 

degrees. 

McGi11 VHF Radar 

One-Woy Normolized Power Directivity 

-20 -10 
F (dB) 1 ê :'i!;;zmfili ! , 

-15 -3 

Figure 3.4. One-way antenna pattern (also known as polar diagram, F) 
for the Mc Gill VHF radar. The concentric circ1es correspond to the zenith 
angles in the X and Y axis. The azimuth angles start c10ckwise from the 
positive Y axis. The geographic North is located at 48.7° azimuth. 
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McGi11 VHF Radar (Y=O transect) 
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Figure 3.5. Cross section of the one-way antenna 
pattern. Upper: Transect in Figure 3.4 along the X-axis, 
at the Y-axis equal to zero. Lower: Transect in Figure 
3.4 along the diagonal where the X -axis is equal to the 
Y-axis. The one-way half-power half-beamwidth (at 
2.3° zenith angle) is indicated by dashed lines. 
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Solving equation (3.17) by using the antenna pattern in Figure 3.4 implies 

dealing with the integrand expression [F(çb,B)]2 sinB. Figure 3.6 plots (in solid 

lines) cross sections for this expression, similar to the ones in Figure 3.5. For 

comparison, the corresponding curves for F being a Gaussian lobe (as in section 

3.2.2.1) are also plotted (in dashed lines). The main lobe of (F 2 sinB) lies at 

zenith angles between zero and five degrees. As weIl, the main differences 

between the Gaussian lobe approximation and the computed antenna pattern are 

located only within the sidelobes (i.e., B between 5° and 90°). The numerical 

computation ofintegral I (in steradians) gives as a result 

2ff ff 2ff ff/2 

1= f f[F(çb,B)Y sinB dB dçb = f f[F(çb,B)Y sinB dB dçb = 4.32313 X 10-3 
, 

1/1=0 8=0 1/1=0 8=0 

(3.31) 

with an uncertainty of 10-8 steradians (i.e., 10-8 is the only digit that will vary if 

the computation resolution is increased). Note that the analytical expression for I, 

derived from equations (3.19) to (3.25) in section 3.2.2.1, for our case in which 

Bo = 2.3° , gives (also in steradians) 

2ff ff 

1= f f[F(çb,B)YsinBdBdçb=3.65178xl0-3
• (3.32) 

1/1=0 8=0 
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Figure 3.6. Cross section of the integrand expression F sin (). The 
continuous lines use the one-way antenna patterns in Figures 3.5, and the 
dashed lines correspond to the Gaussian antenna pattern in Figure 3.3. 

Therefore, from equations (3.18) and (3.31), the radar equation for our system 

is given by 

(3.33) 

Notice that equation (3.33) applies only to range gates within the antenna far-

,field region (aiso known as the Fraunhofer region [e.g., Ulaby et al., 1981, p. 

117-121]). For the McGill VHF radar, the far field would begin at around 1.7 km 

range. At ranges smaller than the far-field range, the antenna polar diagram in 

Figure 3.4 is not longer valid. 
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There are other hardware factors that, although they do not invalidate equation 

(3.33), can affect our ability to interpret Pr (i.e., the power received at the 

antennas) from the power output by the radar signal processing, Pout. The most 

important one is the recovery times of the radar receiver (after being hit by the 

transmitter pulse). In the McGill VRF radar, this effect manifests as an abrupt 

decrease in the power intensities as we descend in range. We have noticed this 

effect at the 2.0 km gate and below. For example, systematic power differences 

between the 2.0 km and the 2.5 km gates (the second gate not being affected by 

these hardware factors) are already on the order of9 dB. We have then performed 

our precipitation analysis only at range gates above 2 km. 

There are a few other antenna parameters that depend on F and that are worth 

obtaining. We compute them numerically as follows. The solid angle of the one-

way main-lobe, which describes the effective width of this main lobe, is given in 

steradians by 

3600 50 

0M = f fF(~,e)sineded~=6.9763650xl0-3. (3.34) 
(>=0 0=0 

Notice that the 5° integration limit (in the zenith angle) cornes from Figure 3.6, 

which indicates that the main lobe can be located at e between 0 and 5 degrees. 

Aiso note that we would obtain 0 M = 6.446 xl 0-3 
, if we would have used the 

approximation that the solid angle of a single-lobe radiation-pattern is equal to 

the square of the half-power beamwidth [Ulaby et al., 1981, p. 102]. The solid 

angle of the one-way full-antenna-pattern is given in steradians by 
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360· 180· 360· 90· 

Op = f fF(~,e)sine de d~ = f fF(~,e)sine de d~ = 2.7503684 x 10-2 
• 

,p=0 8=0 

(3.35) 

The maximum directivity is given by [e.g., Ulaby et al., 1981, p.102, equation 

3.21] 

47Z" 
Dmax = - = 456.89773. 

Op 
(3.36) 

Finally, the two-way main-lobe solid-angle is given (in steradians) by 

360· 5· 

lM = f f[F(ç',B)Y sinB dB dç'=3.6692806x10-3
; (3.37) 

,p=0 8=0 

which using equation (3.31) implies that about 85% of the radar signal IS 

transmitted and received from the two-way main-lobe; i.e., 

lM =0.84875. 
I 

(3.38) 

3.2.3. Extracting the rain signal from VHF power spectra 

Conceming requirement (b), from the Introduction section of this chapter, we 

should notice that the automatic separation of the rain signal from the total VRF 

received power represents an interesting challenge in terms of radar signal 

processing. On the one hand, Doppler spectra measured by VRF radar during rain 

events present clearly separated modes. One mode corresponds to the c1ear air 

signal (the slowest) and the other to rain signal (the fastest). Since ground c1utter 

has to be previously removed, we use both a signal-processing software for 

ground-clutter filtering [Hocking, 1997] and a radar antenna layout particularly 
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designed for good ground-clutter suppression (larger than 100 dB in two-way 

mode). One spectrum example is presented in Figure 3.7, which corresponds to 

observations by the McGill VHF radar at a range gate centered at 2.5 km height 

(i.e., the gate between 2.25 and 2.75 km above the ground level). This spectrum 

has a population of scatterers peaking at -3.5 Hz (i.e., a Doppler velo city of about 

-10 mis, typical magnitude for raindrop fall velocities), and a slower population 

peaking at - 0.05 Hz (i.e., a Doppler velo city of -0.14 mis, a weak downdraft). 

We have noticed that, at rainrates of about 4 mmlh or higher, it is not rare to 

observe rain spectral peaks being as strong as (or even stronger than) the clear air 

peak. On the other hand, part of the clear air signal often overlaps within the rain 

spectral range. 

To deal with this challenge, we developed a method for extracting the rain 

signal out of the total Doppler power spectra that is valid for any vertically­

pointing VHF radar. This method has been developed from an empirical basis, 

and it is described as follows. Our method starts with the raw spectra measured 

by the VHF radar (i.e., non-calibrated spectra, expressed in receiver arbitrary 

units per spectral bin, au/Hz). For a given range gate, a spectrum is obtained 

every 35 seconds, for a spectral range within -10.0 and 10.0 Hz, and a spectral 

bin resolution of 0.067 Hz. The ground clutter signal has already been removed 

by a notch filter near 0 Hz [see Hocking, 1997, for details on the Doppler power 

spectra derivation]. 
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Figure 3.7. Doppler power spectrum observed in rain by the Mc Gill 
VHF radar (over Montreal). For this example, on September 9, 2004, 
at 15:29:51 UTC, the beam points vertically and the range gate centers 
at 2.5 km. The vertical line (near zero Hz) represents the frequency 
bin where our method has found the peak in the clear-air spectral. This 
spectral peak corresponds to a downward vertical velocity of 0.1 mis. 

The second step consists in finding the clear-air spectral peak. To do this, we 

search for the four largest power density values located in the spectral range 

between -3 and 10 rn/s. Notice that these vertical Doppler velocities correspond 

(in our radar) to Doppler frequencies between -1.0 and 3.45 Hz. After observing 

several thousands of power spectra taken by the Mc Gill VHF radar, we have 

determined that the clear-air peak is generally located within these Doppler 
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velocities. If the four largest power densities are spaced at velo city intervals 

larger than 1.5 mis (for our radar, frequency intervals larger than 0.5 Hz), then we 

stop the procedure and conclude that no clear-air signal can be retrieved. 

Otherwise, we compute the average frequency for these points, and the frequency 

bin for the clear-air peak,t, will be the one closer to this average frequency. For 

the McGill VHF radar, approaching targets will correspond to negative 

frequencies (and downward, negative Doppler velocities). The vertical line in 

Figure 3.7 (near zero Hz) indicates the clear-air peak obtained for this particular 

case (i.e., -0.1 mis). 

During the third step, we subtract the clear air signal from the recorded 

Doppler power spectrum, and the remaining spectrum will then be the one 

corresponding to precipitation. We assume that the clear-air spectrum is 

symmetrically distributed around its peak. Therefore, the clear-air signal at n 

spectral bins to the right of the clear-air peak should be the same ( on average) as 

at n spectral bins to the left of the clear-air peak. In the recorded Doppler 

spectrum, we will not expect to have precipitation signal to the right of the clear­

air peak. Precipitation signal will be present only to the left of the clear-air peak, 

since (for the vertical-beam direction) precipitation Doppler velocities are always 

more negative than clear-air Doppler velocities. Therefore, it is safe to assume 

that the rain power density is given by 

S precip (jJ-i ) = S(jJ-i) - S(jJ+i) ; (3.39) 

where Sprecip(frJ is the Doppler power density of precipitation at the n-th spectral 

bin (in Watts per Hz), S(fnJ is the Doppler power density ofrecorded spectrum at 
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the n-th spectral bin (in Watts per Hz),} is the spectral bin corresponding to the 

c1ear-air peak, and i is any given spectral bin. 
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Figure 3.8. Precipitation spectrum (solid line) extracted from the 
Doppler power spectrum in Figure 3.7 and equation (3.39). The dotted 
line to the right of the solid line corresponds to the spectral region 
located within (fj - 1 Hz) and jj ; where jj is the frequency bin for the 
c1ear-air peak. The dotted line to the left of the solid line corresponds 
to the spectral region where Doppler frequencies are smaller than a 
threshold valUe/min. The value Of/min is defined by Figure 3.9. 

Figure 3.8 presents the result of applying equation (3.39) to the Doppler power 

spectrum in Figure 3.7. From multiple observations of the performance of this 

method with real data, we have estimated that the largest Doppler frequency that 
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we can retrieve in the rain spectrum is located at 1.0 Hz to the left of the c1ear-air 

peak. Therefore, 

fmin 5, fprecip 5, (rj -1.0)Hz; (3.40) 

where fprecip corresponds to all Doppler frequencies in the retrieved precipitation 

spectrum, and fmin is the smallest Doppler frequency of this precipitation 

spectrum. Notice that fmin corresponds to the Doppler velo city of the largest 

precipitation partic1e. We assume that this Doppler ve10city (v) matches the 

terminal velo city of a 5.8 mm raindrop [i.e., the large st raindrop measured by 

Gunn and Kinzer, 1949, which already corresponds to a giant raindrop, and 

which is very unlikely to occur], falling in a standard atmosphere [ICAO, 1993] 

according to the altitude adjustment by Beard [1985]; i.e., 

V=VT =v, (~ r ; 
m(DJ= 0.375 + 0.025 De; 

(3.41) 

(3.42) 

where VT is the terminal fall velo city (in mis) for a raindrop of diameter De (in 

mm) at any given height, Va is the terminal faU velo city (in mis) of that drop at 

sea level, P is the air density (in kg m-3
) around the falling raindrop at the given 

height, and Po is the air density at sea level (in kg m-3
). For the change of air 

density with height, we use the values of the ICAO standard atmosphere [ICAO, 

1993]. The terminal velocity of this hypothetical, largest raindrop is given in 

Figure 3.9, and the computation for this figure uses De = 5.8 mm, Va = 9.17 mis 

[from Gunn and Kinzer, 1949], and Po = 1.225 kg m-3 [from ICAO, 1993]. 

Therefore, the smallest Doppler frequency of precipitation ({min) depends on the 
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height of the radar range gate, according to the upper X-axis in Figure 3.9. For 

reference, the spectral regions located within -10.0 Hz :::; f < fmin' and within 

(fj -1.0 Hz):::; f < f j , are plotted as dotted lines in Figure 3.8. We eliminated 

these regions from the precipitation spectra since they still contain sorne remnants 

of non-precipitation signal. 

Doppler frequency (Hz) 
-3.2 -3.4 -3.6 -3.8 -4.0 -4.2 

Ul 
o 

6 

5 

4 

E 
03 
..... 
..c: 
.2' 
Q) 

:c 
2 

o '~ ..... i. ..... L ... L.l ... L ... L..J .... J ... .J •..... 1.. ... J... .. .J .... ..1. .. : .. i ..... : ...... !... ... ! ..... : ... J.. ... L ... I. ..... I ...... I. .... .!.. .... I. .... .!.. .. L ... L .. L. .. ~ .... .:. .. . 

9.5 10.0 10.5 11.0 11.5 12.0 12.5 
foll velocity (mis) 

Figure 3.9. A raindrop of 5.8 mm diameter falling at terminal velocity 
in an ICAO Standard atmosphere. The faU velocity at zero km height 
corresponds to observations by Gunn and Kinzer [1949]. The upper X­
axis defines the value offmin to be used in equation (3.40). For example, 
the range gate at 2.5 km height corresponds tofmin = -3.61 Hz. 

In the last step, we integrate the precipitation power densities Sprecip over the 

Doppler spectral range in equation (3.40). As a result, we are finaUy able to 

express the VHF integrated precipitation signal. Notice that the input VHF 
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spectrum, S(fn), can be expressed in any signal-strength units (e.g., power in 

arbitrary units or Watts, reflectivity in m-1
, or reflectivity factor in mm6 m-3

) per 

frequency bin (i.e., Hz). 

3.2.4. Calibrating the VHF spectra 

To deal with the requirement (a), from the Introduction section ofthis chapter, 

we calibrated the VHF power-density spectra using the method described in 

Chapter 2; i.e., 

Pcal = Pout B sky + A sky (3.43) 

where the subscript out correspond to the radar raw output (expressed in the 

arbitrary units of the analog-to-digital converter, in the radar receiver), the 

subscript cal corresponds to the calibrated power (expressed in Watts), and the 

subscript sky corresponds to the values derived from a sky-noise calibration. 

Therefore, the calibration equation of power densities (S) for the i-th spectral bin 

is given by [Chapter 2, equation (2.24)] 

(3.44) 

where Sca/(fi) is the calibrated spectral density (in Watts) at the Doppler frequency 

bin/; ,S'out(fi) is the measured spectral density (in arbitrary units) atfi , and Ncoh is 

the number of coherent averages. Notice that the sampling frequency, /sampling = 

(PRF / Nco,J, is used here for correcting the fact that not aIl the Doppler spectral 

range has being stored during signal processing (only spectral densities within ± 
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10 Hz are being kept). Table 3.2 provides the values we use for the constant 

terms in equation (3.44). 

Table 3.2. Parameters of the Mc Gill VHF Radar. 
Parameter 

Transmitted wavelength (A ) 
Peak transmitted power (PTx) 

Antenna efficiency (eT) 
Transmitted pulse length (L) 

Pulse repetition frequency (PRF) 
Number of coherent averages (Ncoh) 

First calibration coefficient (Asky) 
Second calibration coefficient (Bsk]Î) 

3.2.5. Validating our rain measurements 

Value 
5.77m 
40 kW 
0.631 
1 km 
6kHz 

16 
-1.797xlO-14 W 

2.095x10-2o W/au 

In order to measure rainfall reflectivity factors, using only observations from a 

VHF radar, we first extracted VHF rain signaIs (expressed as power Pr, in Watts) 

applying the method already described in section 3.2.3. Then we combined 

equations (3.1) and (3.33) in order to express the rain signal as reflectivity factor 

Z. For this procedure, the values in Table 3.2 were used. In addition, we required 

that the VHF radar measurements be taken during an event of widespread 

precipitation, having a melting level much higher than the lowest range gate of 

our radar. These requirements provided a sufficiently large datas et of rain 

measurements at least at the very first range gate. We prefer to focus on rain 

measurements (instead of any other precipitation particles) because this will 

avoid the inconvenience of not knowing the exact IKI2 value for solid or melting 

particles. Measured equivalent reflectivity factors Ze are then simply equal to 

theoretical reflectivity factors Z [from equation (3.1)]. As well, rain signaIs are 
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easier to separate (from c1ear-air signaIs) than snow signaIs. For our radar dataset, 

the lowest range gate is between 2.25 and 2.75 km height. It is not often that 

wide-spread precipitation over Montreal presents bright bands above these 

heights. However, we managed to collect VHF data during several precipitation 

events (more than 23 ho urs of rainfall) that fulfill these requirements. 

Co-Iocated with the McGill VHF radar, we operated a Precipitation 

Occurrence Sensor System [POSS, described by Sheppard, 1990] for these 

precipitation events. POSS is a bistatic, X-band (10.5 GHz frequency, 2.85 cm 

wavelength), continuous-wave, Doppler radar. This sens or points upward and 

detects precipitation particles in its sampling volume, which is located only a few 

centimetres above the instrument. [See Campos, 1998, for details on POSS 

calibration, precision and validation history.] The POSS allowed us the 

measurement of raindrop-size distributions at the ground, and from these, the 

radar reflectivity factor was computed by using [e.g., Rogers and Yau, 1989, 

p.190, equation 11.7] 

z (3.45) 

where Z is given in mm6 m-3
, N(De) is the raindrop-size distribution (in mm-1m-3

), 

and De is the equivalent-spherical raindrop-diameter (in mm). The Z values 

obtained from drop sizes at ground were corrected to consider the atmospheric 

conditions at 2.5 km height, and then compared to the VRF reflectivity factors 

obtained aloft. This comparison method resembles the calibration work by Gage 

et al. [2000, section 4], and its outcome is presented in section 3.3.2. 
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3.3. Results 

3.3.1. Expressing VHF rain signal as reflectivity factor 

VHF power-density spectra (expressed in arbitrary units, au), were selected 

for a precipitation event occurring on September 9,2004. This day corresponded 

to the passage of the remnants of hurricane Frances over the radar site. We 

selected the range gate located between 2.25 and 2.75 km height. A new power 

spectrum was obtained every 35 seconds. Considering the transmitted pulse 

length and the two-way half-power half-beamwidth of the VRF radar (i.e., 500m 

and 1.6°, respectively), these observations are representative of a sampling 

volume (per unit time) in the order of2.3 x 105 m3 
S-I. 

We first calibrated the raw VHF spectra (in aulHz) by using equation (3.44) 

and Table 3.2. Then, for each particular calibrated spectrum (in WlHz) , we 

subtracted the noise to the total spectral densities. It is important that we subtract 

the noise at each calibrated power spectrum, since the next step is to combine 

spectra taken at different times (for smoothing), and these spectra may not share 

the same noise. The noise level is estimated here by computing the median 

spectral power densities in the outer 1Hz of the spectrum at each end (i.e., near -

10 and 10 Hz) and then using the minimum value ofthese two estimates. Notice 

that this method for noise estimation is a modification of the method by Hocking 

[1997], where he uses the mean of the outer spectral densities instead of the 

median. We prefer to use the median because it is much less affected by extreme 

power-density values, which would be artifacts generated by non-meteorological 

targets. 
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At this point, the calibrated noise-subtracted VHF-spectra (now a signal 

expressed in WlHz) were time smoothed by computing (for each spectral bin) the 

median value within a 10-minute moving window. The reasonfor applying this 

smoothing is to homogenize the volume representativeness of the VHF and POSS 

observations. 

We then obtain average reflectivity densities (in rn-11Hz) in the following 

stage. After calibration, noise subtraction, and smoothing of the power densities, 

we substituted in equation (3.33) the input values of Pr by the power density at 

each spectral bin. We also replaced the output values of 1] [also in equation 

(3.33)] with the average reflectivity density (in rn-11Hz) at each spectral bin. After 

this, we multiplied the average reflectivity densities by 2/ Â in order to express 

these spectra in units ofreflectivity per Doppler velo city bin [i.e., rn-II (m s-I)]. 

For each spectral bin, the average reflectivity density [in rn-II (m S-I)] was 

input as a substitute for 1] precip into equation (3.1). As a result, we obtained VHF 

Doppler spectra of the reflectivity factor (i.e., the c1ear-air plus precipitation 

spectra, valid for the entire spectral range). From these Doppler spectra, we then 

extracted the precipitation-only spectra, SVHF, following the procedure in section 

3.2.3. An example ofthese spectra is presented in Figure 3.10, where the clear-air 

plus precipitation spectrum is plotted as a continuous line, and the SVHF spectrum 

is plotted as a dotted line. 
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Figure 3.10. Comparison of Doppler spectra measured by 
the VHF radar (solid line for the full spectrum, and dotted 
line for the rain-only signal) and derived from POSS drop­
size distributions (dashed line). The POSS spectrum has 
been corrected for the conditions at 2.5 km height (i.e., air 
vertical velocity and density). Each spectrum has been 
smoothed within a 10-minute window. These data were 
taken on September 9,2004, at 8:40 UTC. 

Finally, all SVHF spectra were integrated in order to obtain a time series of 

VHF reflectivity-factors, ZVHF. We eliminate those spurious or very weak 

observations where ZVHF was less than 10 dBZ. Notice that, from a climatological 

reflectivity-rainrate relation valid for Montreal [e.g., Z = 210 R 1.47, by Lee and 

Zawadzki, 2005], Z = 10 dBZ corresponds to a rainrate of R = 0.13 mmIh. The 

resulting VHF time series is p10tted in Figure 3.11 as a continuous line, for a 

precipitation event lasting about 10 hours, on 9 September 2004. 
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Figure 3.11. Time series of reflectivity factors measured by the 
VHF radar (in solid line, at 2.5 km) and derived from the POSS 
raindrop sizes (in dashed line, corrected for air density and vertical 
velocity at 2.5 km height). Reflectivity factors (in the left-side Y­
axis) have been converted into rain rates (in the right-side Y-axis) 
by using a climatological relationship [Lee and Zawadzki, 2005]. 

3.3.2. Comparing VHF and POSS 

In order to validate our VHF measurements of rain reflectivity factor, 

measurements of raindrop-size distributions where taken at ground level by the 

POSS instrument. The POSS is perhaps the drop-size sens or with the largest 

sampling volume currently available. Its drop-size distributions are representative 

of a sampling volume (per unit time) sized between 0.32 and 190 m3 
S·l 

[depending on the drop diameters, De; Campos and Zawadzki, 2000], located at a 

height of about 2 meters above ground, and measured at one-minute resolution. 

From the drop-size measurements, we computed the reflectivity factors as a 

function of drop-diameters, Z(De} = N(De} D/. The POSS diameter channels 
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were converted into Doppler velocity channels by first using the following 

polynomial fit to the observations by Gunn and Kinzer [1949]: 

Vo =-0.19274+ 4.96255 De -0.90441De
2 +0.05658De

3 
; (3.46) 

where Va is the terminal fall velo city (in mis) at sea level for a raindrop of 

diameter De (in mm). Each terminal velo city at sea level, Va, where then 

converted into a terminal velocity at 2.5 km height (the center of our VRF range 

gate), VT, by using equations (3.41) and (3.42) in an ICAO standard atmosphere 

[ICA 0, 1993]. FinaIly, the air vertical velo city (obtained from the clear-air peak 

in the VRF spectrum, as in section 3.2.3) was added to the 2.5-km raindrop 

velocities to obtain the Doppler velo city channels. At this point, we computed the 

Doppler spectra of reflectivity factors, Sposs, from the ratio between the 

reflectivity factor at each diameter channel and the Doppler-velocity width of the 

corresponding spectral bin. These Sposs spectra were then smoothed by 

computing the median value within a 10-minute moving window, for each 

spectral bin. An example of the results is presented in Figure 3.10, where the 

smoothed Sposs spectrum is plotted as a dashed line. The general features in this 

Figure 3.l0 are typical of those we have observed at other times, and they 

indicate good agreement between the VRF and POSS spectra. We can now 

proceed, in the following paragraphs, with a more quantitative comparison. 

For each particular time of observation, we integrated the smoothed Sposs 

spectra over the diameter range in order to obtain a POSS reflectivity factor, 

Zposs. We also eliminate observations where Zposs was less than 10 dBZ, as we 

did with ZVHF. Figure 3.11 compares a 10-hour time series of Zposs (plotted in 
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r---.. dashed line) and ZVHF (in solid line). The systematic bias of Zposs with respect to 

ZVHF is not always the same, and this is due to changes in the vertical gradient of 

reflectivity, which indicates the presence of different precipitation regimes 

between 2.5 km height and near the ground. The VRF systematic underestimation 

is clear during the second half of the period. Rowever, before we quantified this 

bias, we corrected a smaH time lag found between the two time series. The 

magnitude of this time lag was obtained from the cross correlation .between Zposs 

and ZVHF. We found that the time when the cross correlation reaches its maximum 

is 1.8 minutes for this dataset, which corresponds to the time lag between the two 

time series. This time lag relates to a mismatch between the instruments docks, 

as weH as the time the raindrops took to faH from 2.5 km (where the VRF radar 

measured them) to 2 m above the ground (where the POSS measured them). We 

also found a maximum cross-correlation of 0.83 units for this dataset, which 

corresponds to the linear correlation coefficient when the time lag is corrected. 

This high correlation coefficient is indicative of the good efficiency in our 

method for extracting the precipitation signal out of the VRF Doppler spectra 

(i.e., our section 3.2.3). 

We compared simultaneous measurements of Zposs and ZVHF during several 

precipitation events (widespread, stratiform rain) occurring on 24 May and 9 

September, 2004. In sorne cases we detected rain only in one of the two 

instruments. This is expected due to the different volumes that the POSS and the 

VRF radar represent, for example in cases when the raindrops directly above our 

VRF radar never faH over our POSS. Rowever, we were able to collect more than 
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23 hours of rainfall simultaneously measured by our POSS and VHF sensors (a 

total of2308 pairs). 

Figure 3.12 presents a scatter plot for these ZPOss and ZVHF observations, 

obtained after applying the time-Iag correction explained in the previous 

paragraph. From this dataset, the average bias of ZVHF (with respect to Zposs) was 

obtained from the ratio between the total Zposs and the total ZVHF (totals 

integrated over the whole observation period). This ratio has a value of 2.55, 

which indicates that VHF reflectivity-factors are about 4 dB 10wer than the 

reference POSS values. This is not a large difference considering the fact that the 

measurements from these instruments do not represent exactly the same volume 

in space (i.e., measurements with different representativeness, and raindrop 

populations that can evolve significantly during its descent). Using an X-band 

vertically-pointing radar, we verified that the differences between ZVHF and ZX-band 

-when using similar sampling volumes-are in the order of 1 dB (see Figure 

5.11, in Chapter 5). For reference, Figure 3.12 also plots (as a continuous line) 

the linear relation corresponding to this 4 dB bias. The correlation coefficient 

between ZPOss and ZVHF time series was also computed, which has a value of 0.82 

(0.76 for the reflectivity factors expressed in dBZ). This high correlation 

coefficient, obtained in such complex conditions (dBZ fields are not completely 

homogeneous), validates our analysis methods. 
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Figure 3.12. Scatter plot of reflectivity factors measured by the VHF 
radar and derived from POSS drop sizes. These observations 
correspond to more than 23 hours of rain simultaneously observed by 
our POSS and VHF radar, during 24 May and 9 September 2004 (2308 
pairs in total). The observations have been corrected for any time lag 
between the two sensors. The line corresponds to the average bias of 4 
dB. The correlation coefficients, in Z and dBZ, are presented as well. 

3.4. Discussion 

This chapter extends the operational capabilities of the VHF radar to measure 

precipitation intensity (in units of mm6 m-3
) in addition to air velocity. To 

accomplish this, we presented the mathematical derivation of the VHF radar 
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equation. We have also validated the assumption that IKI2 is 0.93 ± 0.01 for 

rainfall measured by VRF radars. In addition, we provided an efficient method 

for extracting the precipitation signal out of VRF Doppler spectra. These aspects 

have been tested using rain observations taken by the McGill VRF radar and by a 

POSS distrometer. In particular, we compared VRF reflectivity factors [using 

equation (3.33)] with the corresponding reflectivity factors from reference 

raindrop sizes. 

We acknowledge the fact that the POSS and VRF measurements correspond to 

different spatial volumes. On one hand, they correspond to different ranges. The 

VRF measurements correspond to the range at 2.5 km, while the POSS 

observations correspond to 2 meters height (ab ove the ground). On the other 

hand, the magnitude of the VRF and POSS sampling volumes are very different. 

As weIl, the precipitation being measured aloft may not faIl directly below, but it 

can be horizontaUy advected by the wind. We diminished the problem of 

representativeness by applying a time smoothing for both the VRF and POSS 

observations. We also corrected the POSS raindrop velocities for the changes of 

air density with height. As well, we selected typical cases of widespread 

precipitation, with bright-band above the 2.8 km height, where the vertical and 

horizontal gradients of reflectivity are generaUy smaU. In spite of these complex 

sources of uncertainty, we found a 4-dB bias between drop-size measurements 

and VRF time series, which is mainly due to representativeness errors. Even 

better, the linear correlation coefficients between Zposs and ZVHF observations 

were in the order of 0.8. These results validate our entire analysis, which inc1udes 

not only the derived VRF radar equation, but also the method for extracting 
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precipitation signaIs out of VHF power spectra, and the VHF radar calibration (as 

in the method presented in Chapter 2). 

Our retrieval of rain reflectivity factor (from observations of a single VHF 

radar) has not yet considered the effects of the space-variable reflectivity and 

antenna sidelobes. We then recognize that our radar equation in (3.l5) is 

appropriate when dealing with radars that have a narrow transmitted beam and 

high range resolution. Relationship (3.15) may not be valid for radars with 

antenna pattern having significant side lobes (e.g., the McGill VHF radar). The 

reason is that the radar will receive additional power from scatterers located at the 

same distance but in a different direction than the range gate of the main beam. 

Therefore, the radar equation (3.13) is the one to be solved. For the particular 

case of the McGill VHF radar, we have obtained equation (3.33) from equation 

(3.15), which applies for scatterers in the far-field region and assumes a constant 

reflectivity within one-gate sampling volume. Future work will include the 

solution of equation (3.13) in a space-variable field of reflectivity, as well as the 

application of our methods in the analysis of precipitation formation. 
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CHAPTER4: 

EVALUATING THE EFFECTS OF A SPACE-VARIABLE 
REFLECTIVITY AND ANTENNA SIDELOBES INTO THE 

RADAR EQUATION 

ABSTRACT 

Using radar observations to quantify precipitation intensity requires the 

intervention of the radar equation, which converts the precipitation signal into 

reflectivity units. This equation generally assumes that the reflectivity is unifonn 

within each sampling gate and that the sidelobes of the antenna pattern are 

negligible. Our purpose is to provide a more realistic approach that eliminates 

these assumptions when computing profiles of precipitation intensity (by using a 

space-variable reflectivity and antenna pattern of significant side10bes to compute 

profiles of radar reflectivity factor). To achieve this, we obtained simultaneous 

observations of co-Iocated vertically pointing radars, operating in the VHF and X 

bands, as well as raindrop-size measurements at the ground. We used the raindrop 

measurements to correct for attenuation in the precipitation signal at X band. 

Then, we simulated the precipitation signal in the VHF radar by combining this 

X-band signal and the VHF antenna pattern into a general version of the radar 

equation. The simulated precipitation signal at VHF compares well with actual 

measurements by the VHF radar, and this validates our analysis methods. In 

conclusion, our analysis indicates that VHF reflectivity at gates above the melting 

layer is artificially enhanced by the precipitation signal collected in the side-Iobe 

direction. 
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4.1. Introduction 

Quantitative measurements of meteorological variables by radar imply the use 

of the Radar Equation. This is a relationship that links the radar received power to 

the scatterers cross-sections. Standard forms for this equation assume, most of the 

time, an average scatterer cross-section per unit volume (or radar reflectivity) that 

is constant within the sampling volume of a given range gate. Under these 

conditions, and neglecting the effect of the convolution of the transmitted pulse 

with the reflectivity profile, the radar equation is given by the following 

expression [for details on its derivation, see Chapter 3, equation (3.18)]: 

p = PTx eT (Dmax Y Â2 
ïf [ L / 2 ] 2f" { "f[F(e rf..)]2 sine de} drf.. . 

r (4)3 R 2 -(L/4)2. ,'{-' '{-', 
7r ~=o 8=0 

(4.1) 

where Pr is the received power (in Watts), PTx is the transmitter power (in Watts), 

eT is the antenna efficiency during pulse transmission, Dmax is the maximum 

directivity of theantenna pattern, Â is the radar transmitted wave1ength (in 

meters), ïfis the radar reflectivity (in m-1
) averaged over the sampling volume, F 

is the one-way normalized polar-diagram (or antenna pattern), ~ is the azimuth 

angle, e is the zenith angle, R is the range at the center of a given radar gate (in 

meters), Lis the transmitted pulse length (in meters). 

Equation (4.1) is appropriate when dealing with radars that have a narrow 

transmitted beam and high range resolution. However, this relation may not be 

valid for radars with antenna pattern having non-negligible side lobes. The reason 

is that the radar will receive sorne of its power from scatterers located at the same 
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distance but at a different angle to the direction of the main beam. (The McGill 

VHF radar, for example, has been designed to have the narrowest main-beam 

possible, to facilitate determinations of turbulent energy dissipation rate from 

spectral widths [i.e., the method described by Hocking, 1985, section 7]; 

however, this narrowest main beam results in larger sidelobes.) Therefore, it is 

the following radar equation that needs to be solved [for details on its derivation, 

see Chapter 3, equation (3.13)]: 

R + L/4 2" 

f f 
r=R-L/4 1/1=0 

j 17(r,e,tjJ) [F~e,tjJ)y sine de dtjJ dr. 
r 0=0 

(4.2) 

As mentioned in the Appendix, the term r-2 17(r,e,tjJ) inside the previous 

integral should be strictly speaking [r-2 17(r, e, tjJ)] ® g(r) ; where the symbol ® 

represents a convolution, and g(r) describes the transmitted pulse as a function of 

range r. This analysis, however, will not consider the effects of the pulse shape, 

and will therefore assume a square pulse such that 

(4.3) 

The effect of the space variability in the reflectivity has been discussed in the 

light of the radar equation [e.g., Hocking and Rottger, 1983; Zawadzki, 1982; 

Rogers, 1971]. However, for tropospheric signaIs, there are no published analyses 

of this effect in combination with the sidelobes of an antenna pattern. The 

objective of this chapter is then to explore the effects of this more realistic 

approach [i.e., using equation (4.2) in combination with a space-variable 
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reflectivity and with an antenna pattern of non-negligible sidelobes] when 

computing profiles of precipitation intensity. 

4.2. Methods 

Recall that the radar reflectivity, for Rayleigh scatterers, can be expressed as 

[e.g., Rinehart, 1997, equation 5.13]: 

(4.4) 

where IKI2 is the dielectric factor, and À is the wavelength of the radar 

transmitted pulse (in meters). Z is the reflectivity factor (expressed in mm6 m-3
), 

and it provides a measure of the precipitation intensity for hydrometeor targets. 

By convention [e.g., Smith, 1984], if IKI2 is taken equal to 0.93 (the value 

corresponding to liquid water at near 20°C, and wavelengths in the S band), then 

Z =: Ze, the equivalent radar reflectivity factor. This convention is adopted 

because when radar measurements are made, one is often not certain of the 

hydrometeor phase or composition (i.e., we are uncertain of the dielectric factor 

values). 

Bence, from an original field of Ze we can derive a field of '7 using equation 

(4.4), and then apply either equations (4.1) or (4.2) in order to obtain the radar 

received power. Operationally, however, the radar measures received powers, and 

these have to be converted into equivalent reflectivity factors. This can be done 

easily from equation (4.1), using '7 = 17 , but it cannot be done directly if the more 

realistic equation (4.2) is used (because here '7 is within the integral). 
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fi 
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Figure 4.1. Flowchart describing the process by which we simulate 
profiles of equivalent reflectivity factor at VRF band. It uses equation 
(4.2) in combination with a space-variable reflectivity at X-band, and 
with a VRF antenna pattern of non-negligible sidelobes. 

Rowever, we were able to simulate VRF reflectivity factors through equation 

(4.2), using as. input the precipitation signal at X band, and validating the 

simulation with corresponding measurements at VRF band. Figure 4.1 

summarizes our method, which is explained as follows. First, a field of Ze is input 

in equation (4.4) in order to obtain 1J (IKI2 = 0.93 is used here). Then, we input 

this equivalent reflectivity factor into equation (4.2) to obtain a realistic radar 

received power (fbr a given radar range gate). Next, we input the received power 

from equation (4.2) into equation (4.1) in order to obtain an average (within the 

radar gate) reflectivity, Tf. An average equivalent reflectivity factor (for the radar 

gate) is then obtained by rearranging equation (4.4) as follows: 

(4.5) 
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The procedure is repeated for aH radar range gates. At the end, we are able to 

compare the output ~ and the original Ze fields. 

For simplicity, we used Ze fields that were variable only with height z (i.e., 

one-dimensional fields). Therefore, 

17 = 17(z) = 17(r cose). (4.6) 

As weH, we used for [F(e,~)r the values plotted in Figure 4.2, which come from 

a simulation of the Mc Gill VRF antenna polar diagram provided by Mardoc 

[2002]. The values in Table 4.1 were also used. 

McGi11 VHF Radar 
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'" ' .. ",60. ........ . 

Two-Woy Normolized Power Directivity 
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F2 (d 8 ) [:t:::::::~:;l:1!i.;i,E;j!!lillud i 
-30 -6 

Figure 4.2. Two-way antenna pattern of the McGill VRF radar. 
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Table 4.1. McGill VHF Radar parameters 

Parameter Value 

Transmitted wavelength ( A ) 5.77m 

Peak transmitted power (PTx) 40 kW 

Antenna efficiency (eT) 0.631 

Maximum directivity (Dmax) 456.9 

Transmitted pulse length (L) 1 km 

Notice that the integrals in equations (4.1) and (4.2) were computed 

numerically. Therefore, the accuracy of the programs used for integration 

required sorne prior testing. (The reason is that computations were very sensitive 

to the antenna pattern resolution.) Consequently, we first generated a synthetic Ze 

profile that was constant in height (i.e., the vertical dashed line in Figure 4.3), put 

this profile in equation (4.4) to obtain 17, input this reflectivity into (4.2), and 

solved this equation numerically (i.e., the method in Figure 4.1). In principle, the 

reflectivity factors resulting after numerical integration (~) have to be the same 

than the input (Ze), but this will not be true if the resolution used is too coarse for 

an accurate numerical integration. Therefore, we gradually increased the 

integration resolution until the output ~ equalled the input Ze. These two profiles 

for the optimal integration resolution are plotted in Figure 4.3, where the solid 

verticalline (~ constant) is on top of the dashed verticalline (Ze constant). 
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Figure 4.3. Simulation of synthetic Ze profiles as 
they are detected by the full antenna pattern. Vertical 
lines (dashed line on top of solid line) correspond to a 
validation test with input of constant Ze. Diagonal 
lines correspond to a lineady decreasing profile of Ze. 
Dashed lines are input profiles (Ze) and solid lines 
(both continuous and stepped lines) are output 
profiles (~), according to the algorithm in Figure 4.1. 

After validating the integration programs, we generated other different profiles 

of equivalent reflectivity factor, and then considered their range variation when 

computing the ~ values through equation (4.2), i.e., using the method in Figure 

4.1. The profiles are made from zero to 10 km height, which is the typical range 

for the troposphere in mid-latitudes. The first profile is a synthetic reflectivity 

factor that decreases exponentially (lineady in dB) with height. The second 
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profile is an artificial layer of 70 dBZ at 7 km height, and zero dBZ everywhere 

else. The third profile is a synthetic step function, which has a magnitude of 50 

dBZfrom ground to 4 km height, and zero dBZ aloft. The last profile corresponds . 

to reflectivity factors measured by a high-resolution, vertically-pointing, X-band 

radar [i.e., the McGill VPR radar, described by Zawadzld et al., 2001]. In order to 

correct for precipitation attenuation at X band, we collected measurements of 

raindrop sizes near the ground. For this, we use a Precipitation Occurrence Sensor 

System [POSS, described by Sheppard, 1990], which was collocated with the 

VPR and the VRF radars. The results of our analysis are presented in the next 

section. 

4.3. Results 

The first profile of reflectivity factors,where a synthetic Ze decreases with 

height at 10 dBZe per km (a typical decrease observed in snow over Montreal), is 

presented in Figure 4.3 as the diagonal dashed line. The corresponding profile of 

output ~ is also plotted in Figure 4.3 as the diagonal stepped line. The results 

indicate an increase in the .z: slope with height. No significant difference between 

~ and Ze is observed below the 4 km level, but the difference between input and 

output is greater at higher ranges (reaching about 4 dBZe at 9 km height). 

The second profile is plotted as a thick dashed line in Figure 4.4. This is a 

synthetic layer of 70 dBZ magnitude, at 7 km height, and 75 m thickness (and 

zero dBZ everywhere else). Similar types of signaIs have been observed by our 

X-band radar when an aircraft is in its sampling volume. Of course, these aircraft 
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signaIs do not last more than a minute. Rowever, for our numerical simulation, 

we will assume that this second profile corresponds to a layer present in the 

whole sampling volume of our VRF radar. The output ~ is plotted as the thick 

stepped line in Figure 4.4, and it shows a broadening on top of the input profile, 

which extends up to the top of the simulation domain. This result is similar to the 

ionospheric observations at Adelaide (35°S, 138°E) by Hocking and Vincent 

[1982, Figure 5]. In both cases, the spurious signaIs are due to scatter received 

through the antenna si de lobes. 

The third profile, also plotted in Figure 4.4 as a thin dashed line, corresponds 

to a synthetic step function, which has a magnitude of 50 dBZ from ground to 4 

km height, and zero dBZ aloft. This profile is similar to the backscatter signal 

from a summer rain shower as observed by microwave (centimetre wavelength) 

radars, where rainrates of similar intensity are present from the base to the top of 

the cloud. The output ~ is plotted in Figure 4.4 as the thin stepped line. The 

output profile resembles weIl the input Ze at heights below 4km, but the sidelobes 

receive enough scatter at ranges between 4 and 10 km, such that the output ~ 

profile is contaminated above 4 km. 

A fourth, more realistic profile is presented in Figure 4.5, where the input Ze is 

in dashed line and the output ~ is in solid stepped line. For this, we considered a 

set of typical (for Montreal) height profiles of equivalent reflectivity factor 

measured by the McGill VPR radar. The VPR dataset corresponds to Ze values at 

a time resolution of about 30 seconds and at a range resolution of about 75 

meters. We smoothed these VPR measurements by taking, for each particular 
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range gate, the 10-minute median value. Notice that ~ is in fact a simulation of 

the VHF Ze, which is obtained from the Ze observations at X-band. 

---\ 
-----------------:-::.-t 

-output 

2 
----input 

o i! ..... , ..... . 

o 20 40 60 
dBZe 

Figure 4.4. Additional simulations of synthetic Ze profiles as 
they are detected by the full antenna pattern. Thick Hnes 
correspond to a stratified layer of 70 dBZ at 7 km height. Thin 
Hnes correspond to a region of 50 dBZ below 4 km height. 
Dashed lines are input profiles (Ze) and stepped Hnes are 
output profiles (~), according to the algorithm in Figure 4.1. 

Since the VPR operates at X band, precipitation attenuation has to be 

considered. We then calibrated the VPR measurements by comparing the 

equivalent reflectivity factors measured at X-band and the corresponding values 

derived from drop-size distributions at ground. 
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Figure 4.5. Simulated VHF ~ profile (solid stepped line) 

from observed X band Ze profile (dashed line, which already 
include the attenuation correction). The corresponding VHF 
observations are plotted as the dotted line. For this, co­
located and simultaneous radar observations, at X and VHF 
bands, were taken on September 9, 2004, at l3:00 UTC. 

To validate our simulation, the rain signal measured by the VHF radar is also 

plotted as a dotted line in Figure 4.5. This rain signal was obtained from the 

algorithm described in Chapter 3. The application of this algorithm is presented 

in Figure 4.6, for a profile of Doppler spectra measured by our VHF radar. In 

these examples, the crosses (linked by dotted curves) correspond to Doppler 

spectra at different heights, smoothed within a 10 minutes window. The vertical 

lines correspond to the air vertical velocities, as the algorithm derives them for 
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each height. The dark areas correspond to the derived precipitation signal. Notice 

that this algorithm can deal mainly with the precipitation signal coming from 

ranges up to the bright band, where precipitation spectra are not merged with the 

c1ear-air spectra. 
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Figure 4.6. Vertical profile of reflectivity-factor densities observed 
by the Mc Gill VHF radar on 9 September 2004, at 13:00 UTC. The 
dotted lines correspond to raw Doppler spectra, and the dark areas 
below each spectrum correspond to the precipitation signal, 
according to the algorithm described in Chapter 3. These dark areas 
relate to the rain Ze values plotted as dotted line in Figure 4.5. 
Vertical lines are drawn at the spectral bins corresponding to the 
clear-air vertical velocities. Above 3.5 km height, the precipitation 
is in solid or melting phase, and the precipitation spectra merge 
with the clear-air spectra. 
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4.4. Discussion 

From this chapter, it is found that the space-variable reflectivity has a 

noticeableeffect on the radar equation only above the melting level. Above these 

heights, the side lobes of the antenna polar diagram collect enhanced power from 

scatterers located in the bright-band (i.e., ranges in the side-lobe direction 

corresponding to bright-band height). 

For the single profile presented in Figure 4.5, the comparison between the 

simulated and measured VHF rain signaIs (respectively, the dotted and solid lines 

in Figure 4.5) presents good agreement. This agreement validates our numerical 

computations. Additionally, these comparisons can be used in a calibration 

method for VHF Stratospheric-Tropospheric radars, if the VHF radar 

observations are expressed in au (i.e., the units of the analog-to-digital-converter 

in the receiver, as already defined in Section 2.1), and if more reflectivity profiles 

at X-band are analyzed. 

From these results, we also expect that rain-only equivalent reflectivity factors 

will be about the same at X band than at VHF band (when X band measurements 

are corrected for attenuation). Therefore, it is valid to use equation (4.1) for 

quantitative measurements ofrain by VHF radars. However, the expression (4.2) 

has to be considered when dealing with snow quantitative measurements at VHF 

band. 

In general, the differences in Ze from observations at X and VHF bands can be 

assumed to be due mainly to (a) incorrect radar absolute calibration, (b) IKI2 ;;j:. 

0.93, (c) effect of the space-variable reflectivity and antenna sidelobes, (d) 
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inaccurate consideration of the antenna polar diagram F, (e) non-uniformity of 

the raindrop field observed by the VHF radar [see Fabry, 1996, for implications]. 

In this work, we have already minimized the effects ofpoints (a), (b), (c), and (d). 

As a result, no significant differences were found between modeled and observed 

rain signaIs. 
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CHAPTER5: 

THE STRUCTURE OF AIR REFRACTIVE INDEX IN THE 
PRESENCE OF PRECIPITATION 

ABSTRACT 

The spatial distribution of the air refractive index determines the backscattering 

experienced by electromagnetic waves. In the troposphere, turbulence is a 

common mechanism that generates fluctuations or irregularities in the refractive 

index. Vnder these conditions, the strength of the refractive-index irregularities is 

given by Cn 
2

, the structure-function parameter for refractivity turbulence. We 

recognize that the turbulent spatial structure of air refractive index can change 

through dynamic (wind driven) and thermodynamic (temperature and moisture 

driven) processes. However, it is still unclear what effect the precipitation has on 

the scattering properties of the clear air. 

To study the direct and indirect pathways by which precipitation can affect 

clear-air scattering, this work analyzed several cases of stratiform and convective 

rain, occurring in a continental mid-latitude environment (Montreal). For these 

cases, Doppler spectra taken by a VHF vertically-pointing radar were used to 

retrieve simultaneous co-Iocated values of precipitation intensity (raimates) and 

degree of refractive index fluctuations (C/). We validated these retrievals using 

co-Iocated measurements of precipitation signal at X-band. The measurements at 

X band were previously calibrated to compensate for rain attenuation. The 

analysis compares the Doppler spectra taken at different heights by the X and 

VHF radars. As well, the study includes raimates between 0.3 and 78 mmlh, and 

C/ values between 10-16 and 10-12 m-2
/3, retrieved from the VHF spectra at 2.5 km 

height. The research finds that Cn 
2 fluctuations in rain are smoother than in 

precipitation-free conditions, and that its temporal changes are of turbulent nature 

for the most intense raimates. 
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5.1. Introduction 

The spatial distribution of the atmospheric refractive index determines the 

backscattering experienced by electromagnetic waves. This index n [already 

defined in equation (1.3) of the Introduction Chapter] depends on the composition 

and density of the medium in which the waves propagate. In common 

meteorology applications, the medium is considered to be either air or air mixed 

with precipitation partic1es (e.g., rain or snow). For backscatter analyses in radar 

applications, we are therefore interested in measuring the mean square 

fluctuations of the refractive index. As reviewed in Chapter 1, these fluctuations 

Can be due to processes such as turbulence, specular reflections, and viscosity 

waves. 

For the particular case of turbulence backscattering, Tatarski [1961] has 

developed a theory in which the spatial irregularities in the refractive index are 

caused only by turbulence (locally isotropic eddies in the inertial range, with 

dimensions of half the radar wavelength) acting on mean gradients of the 

refractive index. The strength ofthese irregularities is given by C/, the structure-

function parameter for refractivity turbulence [already defined in equation (l.4) 

of the Introduction Chapter]. The parameter C/ depends on the refractive index 

and the turbulence intensity as in the following relation [e.g., Hocking, 1985, 

equations (4) and (43)] 

C 2 = 0.69 &2/3 M 2 

n 2 (5.1) 
OJB 
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where & is the turbulent energy dissipation rate and WB is the Brunt-Vaisala 

frequency. M = an / dz is called the vertical gradient of the potential refractive 

index, where the potential refractive index refers to the refractive index for an 

atmosphere in which potential temperature and specific humidity are constant 

with height [AMS, 2000]. 

Therefore, from equation (5.1), one can see that the C/ parameter can be 

affected either thermodynamically, through the parameters M and WB' or 

dynamicaIly, through the variable &. Thermodynamic processes that affect C/ 

refer mainly changes in the amounts of moisture, temperature and atmospheric 

stability, while the dynamic processes refer to changes in the turbulent mixing of 

the refractive index field. 

S-band (10 cm wavelength) radar observations of non-precipitating cumulus 

clouds indicate an enhanced, mantle-like echo from turbulence scattering around 

the sides and tops of the clouds, particularly in the early growing stages of the 

sm aIl cumulus clouds. Knight and Miller [1998] have noticed that the most 

intense, well-defined mantle echoes occur when clouds penetrate the driest air, 

and they propose two explanations. The first potential reason is that variations in 

the index of refraction are expected from local variations in the water vapor 

content [up to several g m-3 at cloud boundaries, which will affect the term M 2 in 

our equation (5.1)]. These water vapor variations are due to entrainment of sub­

saturated air filaments containing no liquid water, which mix with the cloudy 

saturated air. The mixing between filaments of entrainment air and cloud droplets 

will make the dry-air filaments to become as moi st as the rest of the cloud. 
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However, new filaments of dry air are created continually in the mixing process 

close to the cloud edges, and so there might be strong contributions to the 

turbulence scattering from them. The second explanation for the observed 

behavior of the mantle echo intensities may be invigoration of small-scaie 

turbulence from local buoyancy differences [i.e., the term & in our equation 

(5.1)] caused by the strong evaporative cooling at cloud edge. 

At this point, it is still unclear what effect precipitation has on the scattering 

properties of the clear air. Rogers et al. [1994, p. 539] suggested that the most 

reasonable effect of rain on the layers of enhanced clear-air reflectivity would be 

to increase the vapor content at the driest levels, where evaporation would be 

strongest, and to chill the air at these levels. The air would be cooled (towards the 

wet bulb temperature) and saturated, and the humidity gradient would then be 

smoothed. As a consequence, we should observe a reduction in C/ caused by 

rain. The previous mechanism corresponds to what we can calI the direct effect of 

precipitation on the clear-air scattering. With respect to this direct effect, Chu et 

al. [1994, fig. 2] claim to have shown for the first time that the turbulent 

refractivity echoes be10w the melting level may be depleted so severely, such that 

the precipitation echoes are enormously greater than the refractivity returns by 

about 15 dB. However, another possible explanation for their observations can be 

that the precipitation signal simply got stronger. On the other hand, McDonald et 

al. [2004] analyzed 33 days in which rainrates were larger than 6 mm/h (for a 

continuous period greater than or equal to 20 minutes), and they find that VHF 

received power (clear-air plus precipitation signaIs, non-calibrated) is reduced 

during precipitation. This proves indirectly that a reduction in en 2 can be 
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associated with precipitation. There are, however, other reports of C/ 

enhancements associated to rain [Rogers et al., 1994; Cohn et al.,1995]. 

DIRECTPATHWAY: 

Precipitation intensity 
mcreases 

1 
Evaporation, 

entrainment and 
mlxmg mcrease 

1 
M 2 decreases 

1 
Cn 

2 decreases 

INDIRECT PATHWAY: 

Atmospheric stability 
decreases ... 

... during 
precipitation 

onset 

2 1 
OJB decreases 

M 2 increases 

e mcreases 

1 
C/ increases 

. .. late during 
precipitation 

event 

l 
Mixing 

reduces M2 

1 
C/ decreases 

Figure 5.1. Different pathways by which precipitation 
can affect the scattering properties of clear air. 

The problem is complex, and we also need to consider the indirect effects of 

precipitation on the scattering properties of the air. Figure 5.1 summarize the 

most probable pathways for these indirect effects, which depend mainly on 

atmospheric stability. During the onset of precipitation, stability is reduced with 

respect to a non-precipitating environment, and the term OJ / in equation (5.1) 

becomes smaller. We can guarantee high moisture values as well as a reasonable 

vertical gradient of humidity for the precipitating environment (which is not 

always possible in the non-precipitating conditions), and this implies that the term 

M 2 in equation (5.1) may well become larger than during non-precipitating 

conditions. Recall that as an air parce! ascends, it will experience a decrease of 
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/- temperature with increasing height, and its saturation vapor pressure (which is 

proportional to temperature) will also decrease, therefore producing a moisture 

vertical gradient. The term 8 in equation (5.1) is free to vary during precipitation 

in a similar manner as in the non-precipitating conditions, but the vertical 

motions generated by the atmospheric instability will promote mixing during the 

ons et of precipitation, increasing 8. Therefore, en 2 is allowed to increase for the 

precipitating atmosphere. Sorne time (about a few tens of minutes) after the 

beginning of precipitation, however, it is possible that the air vertical mixing can 

reduce the humidity and temperature gradients, reducing M 2 and C/. An 

additional consideration is that low atmospheric stability and high humidity 

values can enhance the intensity of precipitation itself, and then reinforce the 

direct pathway suggested by Rogers et al. [1994]. In order to test the previous 

theoretical considerations, we require a more observational approach. 

The previous chapt ers in this thesis provide a unique set of tools for 

studying-from an observational point of view-the effects of precipitation on 

the structure of air refractive index. See for example Figure 5.2, which 

corresponds to VRF Doppler spectra in the ranges from 2.5 to 5.5 km. Although 

the precipitation signal cannot be clearly differentiated from the turbulence air 

signal at 4 km (approximately the zero Celsius level) and above, we can quantify 

at lower gates the magnitudes of C/, spectral width of air signal, and equivalent 

reflectivity factor (Ze). This provides a unique dataset of simultaneous 

measurements of turbulence intensity, refractive index structure and precipitation 

intensity. In fact, this study will show that the occurrence of rain is associated to 
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important changes in C/ , which are of turbulent nature for the most intense 

rainfalls. 

VHF beam at Vertical direction 
6.0 

5.5 

00+-

-§., 4.0 + ... +-_ .......... _. 

CD 
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3.5 - ........ --..,... 

2.5 ................ ......".". 
-10 -5 0 5 

Velocity (mis) 
10min-median fime-smoofhing(2004/ 9/ 9, 13: 0:13 UTC) 

Figure 5.2. Example ofVHF Doppler spectra in precipitation. 
These spectra have been smoothed using the median spectral 
densities in a lü-minute moving window. For this event, the 
melting level was located at about 4 km height (see Fig. 5.3). 

5.2. Methods 

5.2.1. Dataset 

This study analyzed several cases of stratiform and convective rain, occurring 

in a continental mid-latitude environment (Table 5.1). For these cases, Doppler 

spectra taken by the McGill VHF radar (vertically-pointing) were recorded, then 
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calibrated by the method in Chapter 2, and then input into the signal processing 

algorithm described in Chapter 3. This results in a datas et of rain and clear-air 

Doppler spectra, which were then used to retrieve simultaneous co-Iocated values 

of precipitation intensity (equivalent reflectivity factors and rainrates, as in 

section 3.3.1 of this the sis ) and intensity of refraction due to turbulence 

(structure-function parameter for refractivity turbulence, C/, from equation 1.6), 

in addition to the spectral width of the clear-air spectra (as a proxy for turbulence 

intensity). 

Table 5.1. Summary of analyzed rain events, occurring in a continental 

mid-latitude environment (Montreal), in which simultaneous and co­

located radar measurements were taken at VHF and X bands. 

Date 

24 May 2004 

10 August 2004 

Il August 2004 

9 September 
2004 

Recorded duration 

00 to 24 UTC 

21 :30 to 24 UTC 

0:00 to 2:45 UTC 

04:40 to 13:40 
UTC 

Characteristics 

Mainly stratiform, with 
melting layer between 3 and 

3.4 km height. 
Mainly convective, with 

melting layer near 3.3 km 
height. 

Mainly convective, with 
melting layer near 3.0 km 

height. 
Mainly stratiform, remnants 
of Hurricane Frances, with 

melting layer between 3.2 and 
4.0 km height. 

For the events in Table 5.1, Figures 5.3, 5.4, 5.5 and 5.6 provide time versus 

height plots of equivalent reflectivity factors and Doppler velocities. These were 

obtained from co-Iocated measurements of precipitation signal at X-band by the 

Mc Gill VPR radar [described by Zawadzki et al., 2001]. Although these X band 

measurements have not been compensated for rain attenuation, they pro vide a 
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general idea about the intensity and nature of the precipitation events summarized 

in Table 5.1. For example, notice the persistence of a bright band in the rain 

events on 24 May and 9 September, 2004. These bright bands occur close to the 

level of the zero Celsius isotherm (i.e., the melting layer given in Table 5.1), and 

they are indicative of stratiform precipitation.[e.g., Fabry and Zawadzki, 1995]. 

The rain events on 10 and Il August 2004, on the other hand, show clear 

examples of convective rain (i.e., absence ofbright band). 
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Figure 5.3. Time series for profiles of Ze at X band, for the stratiform 
rain on 9 September 2004. Upper panel corresponds to equivalent 
reflectivity factors (including rain attenuation, according to the color 
scale to the left) and lower panel to the Doppler velocity (according to 
the color scale to the right). 
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Figure 5.4. Time series for profiles of Ze at X band, for the stratiform rain 
on 24 May 2004. Upper panel corresponds to equivalent reflectivity factors 
(including rain attenuation, according to the color scale to the left) and 
lower panel to the Doppler velocity (according to the color scale to the 
right). 
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Figure 5.5. Time series for profiles of Ze at X band, 
for the convective rain on 10 August 2004. Upper 
panel corresponds to equivalent reflectivity factors 
(including rain attenuation, according to the color 
scale below the plot) and lower panel to the Doppler 
velocity (according to the color scale below the plot). 
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Figure 5.6. Time series for profiles of Ze at X band, for the 
convective rain on Il August 2004. Upper panel corresponds to 
equivalent reflectivity factors (including rain attenuation, according 
to the color scale to the left) and lower panel to the Doppler ve.1ocity 
(according to the color scale to the right). 

5.2.2. Analyses 

The analysis starts by comparing the Doppler spectra taken at several heights 

by the X and VHF radars. As before, the Doppler spectra at X band were 

smoothed in range by using the average spectral density within a 500-meter 

window (i.e., the range resolution of the VHF observations), and aIl spectra (at 

VHF and X bands) were smoothed in time by using the median spectral density 

within a 10-minute moving window (or a three-minute moving window for the 

convective cases). We also correct for any time lag that may exist between the 

two time series, by finding the peak of the cross-correlation between equivalent 

reflectivity factors at VHF and X bands, at 2.5 km range. 
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We also studied the most significant features observed in time series and 

frequency distributions ofrainrates, C 2
, vertical air velocities, and spectral width 

of air signal (all these variables retrieved from VHF Doppler spectra). As before, 

we e1iminate from our analysis those VHF rainfall signaIs (reflectivities, 

equivalent reflectivity factors and rainrates) corresponding the equivalent 

reflectivity factors smaller than 15 dBZ (i.e., rainrates in the order of 0.2 mmlh, 

in any VHF or X band datasets). IndependentIy from the calibration and signal 

processing methods discussed in the previous Chapters of this thesis, we also 

computed the air spectral widths, (j AIR' as a proxy for the time variation of 

turbulence intensity. The algorithm CURVEFIT by Research Systems [2002, 

p.448-449] was used for this computation, with the input function being a 

Gaussian curve centered at the vertical air velocity, the input dataset being the air 

Doppler spectra (i.e., the full VHF spectra minus the rain spectra), and the output 

being the width (standard deviation) of the Gaussian curve that best fits the input 

dataset. (The half-power half-width of the fitted Gaussian is then equal to 

(j AIR ~21n2 .) Because in very few occasions this algorithm did not converged to 

a proper value, we considered only those spectral widths that were positive and 

smaller than 6 median-absolute-deviations above the median spectral width (the 

median of (j AIR for the whole event). The results are given in the next section. 

We realize that the c1ear-air Doppler spectra has three main broadening 

mechanism [e.g., Hocking, 1985]: turbulence broadening (due to turbulence 

intensity), beam broadening (due to the air motion in the direction paralle1 to the 

beam, mainly along the two-way half-power half-beamwidth of the radar pulse), 
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and wind shear broadening (due to wind shear intensity). Our a AIR values include 

these effects. [See Hocking, 1983, for calculation examples for typical beam and 

shear broadening.] Although beam and shear broadening can be dominant 

features in the middle atmosphere (e.g., Hocking, 1985, p.1415), turbulence 

broadening seems to be the dominant process in thunderstorms (e.g., Doviak and 

Zmic, 1993, p.415). In any case, we will assume that the time variations in our 

a AIR values are due mainly to changes in turbulence intensity. The analysis will 

also assume that the time correlations in our variables of study are equal to the 

corresponding space correlations; i.e., the Taylor's hypothesis [Taylor, 1938]. 

We then want to see if the time changes in en 2 can be related to corresponding 

changes in a AIR • If 80, we will conclude that rain affects e/ through dynamic 

processes (i.e., turbulence). Otherwise, we will conclude that rain thermodynamic 

processes (the only other possibility) are responsible for the observed changes in 

e/. There is also a third possibility to consider, that the changes in e/ are not 

related to precipitation. The analysis will compare the most significant features of 

e/ observations during rainy and precipitation-free conditions, such that this 

third possibility can be evaluated. 

5.2.3. Validation 

We validated the main input for our analysis methods, the VHF retrievals of 

rain Ze, by using co-Iocated measurements of precipitation signal at X-band, from 

the McGill VPR radar. Precipitation attenuation has to be considered for any X 

band measurement. We then calibrated the VPR measurements by comparing the 
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equivalent reflectivity factors derived from drop-size distributions. For this 

calibration, we collected measurements of raindrop sizes near the ground, using a 

Precipitation Occurrence Sensor System [POSS, described by Sheppard, 1990] 

that was co-Iocated with the VPR and the VHF radars. An additional calibration 

challenge was that sorne rain accumulated in the radome structure of the VPR 

radar, especially for intense rainrates; this caused e1ectromagnetic absorption and 

complicated the relationship between POSS precipitation intensity and VPR 

received signal. In spite of these complications, we were able to apply this 

calibration for a particular time interval, between 4:40 and 13:40 UTe on 9 

September 2004, where the VPR reflectivities had a roughly exponential (linear 

in dB) response with POSS reflectivities. 

Figure 5.7 presents the time series for simultaneous measurements of 

equivalent reflectivity factors by POSS (solid line) and VPR (dotted line), for the 

event on September 9, 2004. The POSS values (Zposs) correspond to the 10-

minute median at a height of about 2 meters (ab ove ground leve1, agI), while the 

VPR values (ZVPR) correspond to the 10-minute median at 450 meters agI (the 

lowest range gate). The time resolution for the POSS dataset is 1 minute, while 

the VPR time resolution is 30 seconds. We then had to smooth the VPR dataset 

using the average Doppler spectra in a one-minute moving window. After that, a 

time lag of 1.5 minutes was subtracted from the POSS observations (already 

inc1uded in Figure 5.7). This time lag is re1ated to a mismatch between the 

instruments c1ocks, and its magnitude was determined from the maximum of the 

cross-correlation function between the Zposs and the ZVPR time series. The 

underestimation (due to attenuation) by the VPR is c1ear. Therefore, a VPR 
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calibration factor, which compensates for the rain attenuation at X band, is 

obtained from 

Cal.Factor == Median [Z POss (fi )] = 3.87 
ZVPR(t i ) 

(5.6) 

where ti is the time of the simultaneous observation by the POSS and VPR 

instruments. 
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Figure 5.7. Radar reflectivity factors simultaneously measured by 
the McGill VPR radar (dotted) and the POSS drop size 
distributions (solid). VPR values correspond to averages over a 
one-minute moving window. In order to achieve the best match in 
time for the two datasets, 1.5 minutes have been subtracted from 
the POSS time series. 

Figure 5.8 presents the data from Figure 5.7 as a scatter plot (509 pairs in 

total). The dashed line corresponds to the hypothetical case when Zposs and ZVPR 

would be equal, and the solid line corresponds to the case when the calibration 

factor in equation (6) is multiplied to ZVPR' Notice how this solid line is 10cated in 

the observations cluster, which validates the use of equation (5.6) as attenuation 

corrector. The results of this calibration are given in the time series of Figure 5.9, 
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where the corrected VPR dataset is plotted as the dotted line, and the reference 

POSS dataset is plotted as the crosses and solid lines. 
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Figure 5.8. VPR calibration using as reference the equivalent 
reflectivity factors from POSS raindrop sizes. 
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Figure 5.9. Results ofVPR calibration for the event on 9 September 
2004, from 4:40 to 13 :40 UTC. 

The compansons between equivalent reflectivity factors simultaneously 

obtained at X and VHF bands are presented in Figure 5.10. The Ze values at X 

band use the calibration factor in equation (5.6), and the Ze values at VHF band 

are from our algorithm to retrieve VHF precipitation signal (already described in 
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Chapter 3). In order to obtain comparable representativeness from the 

observations at VRF and X bands, the Doppler spectra at X band were smoothed 

in range by using the average spectral density within a 500-meter window (i.e., 

the range resolution of the VRF observations). As weIl, aIl the spectra (at VRF 

and X bands) were smoothed in time by using the median spectral density within 

a 10-minute moving window. Equivalent reflectivity factors were then computed 

from these smoothed spectra. We also correct for any time lag that may exist 

between the two time series (1.2 minutes for this event, due to a mismatch 

between the instruments c1ocks), by finding the peak of the cross-correlation 

between equivalent reflectivity factors at VHF and X, at 2.5 km range. Because 

of the low correlation between equivalent reflectivity factors at VHF and X bands 

during extremely weak precipitation, we eliminate from our analysis those VHF 

rainfall signaIs corresponding to equivalent reflectivity factors smaller than 15 

dBZ (i.e., rainrates in the order of 0.2 mm/h). In summary, Figure 5.11 indicates a 

very small bias (in the order of 1 dB) and a high correlation coefficient of 0.88 

(or 0.80 when dBZ units are used). These agreements validate, once again, the 

signal processing method described in Chapter 3, as well as the analysis method 

of this Chapter. 

144 



Equivale,nt Reflectivity Factors 
.......... .1 ....... , .. , ....... ~., ................... l ............. ........ , .................. " .. 1. •••.•.........•....•. "_'", •• " , ••••••.... ! .........• , ...••.. "., •• , •• , •........•...... ~ ....•.•.•••.••.••.... 1 ......... ,<' •••• , •••• ~ ••••• 

40" l -H+ VH F RAIN.LAGGED xxx X ba nd 
10 

11) 30 
N 
CD 
"0 

25 

20 

06:00 08:00 10:00 12:00 
time (UTe), 9/Sept!2004 

Figure 5.10. Time-series comparison of equivalent reflectivity 
factors simultaneously measured at VRF and X bands, for the event 
on 9 September 2004. These time series correspond to 500m-range­
mean 10-minute-median smoothing spectra at heights from 2.25 to 
2.75 km, using only equivalent reflectivity factors larger or equal 
than 15 dBZ, and the calibrations in equations (5.6) and (2.27). To 
compensate for the time lag between the two datasets, 1.2 minutes 
have been added to the VRF time series. 
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Figure 5.11. Scatter-plot comparison of equivalent 
reflectivity factors simultaneously measured at VHF and 
X bands, for the time series in Figure 5.10. 

5.3. Results 

5.3.1. Profiles 

Figures 5.12, 5.13 and 5.14 present Doppler spectra simultaneously measured 

at VHF and X bands, for three different times during the case on 9 September 

2004. For these profiles, the algorithm for extracting the VHF precipitation signal 

has been applied only for range gates between 2.5 km height (lowest range in the 

VHF dataset) and the gate corresponding to the melting layer. This is because the 

algorithm has not been optimized for analysis of solid or partially melted 
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precipitation (e.g., ice or snow). For example notice, in these figures at the 

heights of the melting layer, the agreement reduction between VHF and X band 

spectra. Of course, the agreement is much better at the lower heights (within the 

rain). 

We also found several cases where the snow-only spectra can be comparable 

to the turbulence-only spectra at VHF band. In Figures 5.13 and 5.14, for 

example, the X band signaIs at ranges above the melting layer (within the snow) 

are comparable to the total (air turbulence plus precipitation) VHF signal. Recall 

also that typical snow fall velocities are comparable to vertical air velocities 

typically observed in the troposphere. Therefore, sorne velocity estimates from 

VHF wind profilers can be biased if snow is present in the radar sampling 

volume, and if the snow signal has not been exc1uded from the wind retrieval. 

The generalization of these implications, however, will require further studies 

which are beyond the objectives ofthis Chapter. 
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Figure 5.12. Doppler spectra, simultaneously measured at VHF and X 
bands, on 9 September 2004, at 13 UTC. Right panel: Doppler spectra 
as a function of height. The VHF dataset is plotted in black and the X 
band spectra in red. Orange areas correspond to the VHF rain signaIs. 
The blue vertical lines correspond to the vertical air ve1ocities. The 
spectra at each range are normalized in the sense that the maximum 
spectral amplitude is plotted full-size. Left panel: Integrated Ze as a 
function of height for the VHF (in black, from the orange areas in the 
right panel) and X band (in red) radars. Each spectrum has been 
smoothed in time using the median of a 10-minute moving window. 
This particular profile corresponds to the datas et plotted in Figure 5.2. 
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Figure 5.14. As in Figure 5.12, but at 9:10 UTC. 

5.3.2. Time series 

In addition to the rain event on 9 September 2004, we analyzed also the events 

on 24 May, 10 August, and 11 August 2004 (from Table 5.1). Figures 5.10 and 

5.11 already provided sorne comparisons between equivalent reflectivity factors 

measured in the 2.5 km height at VHF (retrieved as in Chapter 3 of this thesis) 

and X band (as in the dataset from Figure 5.3). Figures 5.15 and 5.16 give the 
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comparisons for the other events. The main outlier points in the scatter plots of 

these figures (e.g., observations from 14 to 16 UTC, in Figure 5.15) can be 

associated to the fact that the 2.5 km range is very close to the bright band. It is 

then likely that the measurements from the VRF radar (having a larger 

transmitted pulse) would be contaminated. There is also the issue of rain 

accumulated in the radome structure of the X-band radar. As already mentioned 

in Section 5.2.3, this produces significant attenuation of the X-band signal for 

observations during intense rainrates. 

As already mentioned in the Methods (section 5.2), our analysis only 

considers those observation times when Ze at VRF and X band were greater or 

equal to 15 dBZ. For the observation times when these conditions were not met, 

the precipitation reflectivities, equivalent reflectivity factors and rainrates were 

made equal to zero. As well, spurious observations were eliminated from the 

analysis by using only those observation times when the air vertical velo city was 

successfully retrieved by our signal processing method, and when the air spectral 

width ((]' AIR) was positive and smaller than 6 median-absolute-deviations above 

the median spectral width (the median of (]' AIR for the whole event). 
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Figure 5.15. Comparison of rain signal at VHF and X band at 2.5 
km height, for the events on 24 May 2004 (494 pairs). Upper panel: 
Time series of equivalent reflectivity factors simultaneously 
measured at VHF (crosses) and X (solid lines) bands. Lower panel: 
Scatter plot from the dataset in the upper panel. Correlation 
coefficients for equivalent reflectivity factors at VHF and X bands 
are provided. The line corresponds to the best linear fit, where the 
sI ope is the accumulated signal at X band divided by the 
accumulated VHF signal. The X band signal has not been corrected 
for rain attenuation. Each VHF spectra has been smoothed in time 
using the median of a 10-minute moving window. 
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Figure 5.16. As in figure 5.15, but for the events on 10 and Il August 
2004 (103 pairs). Each VHF spectra has been smoothed in time using 
the median of a 3-minute moving window. 

Figures 5.17 and 5.18 present time series of reflectivity 1] [as defined by 

equation (3.33)] from air turbulence and precipitation (rain) at 2.5 height, both 

retrieved from the VHF spectra taken during the events summarized in Table 5.1. 

From the precipitation reflectivities in these figures, there are 186 cases (about 

153 



~', 

14% ofthe 1281 rain observations) where the precipitation reflectivity is equal or 

larger than the turbulence reflectivity (at vertical incidence). These numbers 

provide a magnitude for the risk of bias in velo city estimates from VHF wind 

profilers, when rain is present in the sampling volume, and when the rain signal 

has not been exc1uded from the wind retrieval. Recall that the majority ofvelocity 

retrieval algorithms (in operational VHF radars) assume that the input Doppler 

spectra are mainly due to c1ear-air signaIs. Therefore, if the input Doppler spectra 

contain aiso strong precipitation signaIs, the retrieved air velo city will be bias 

towards the precipitation velocity. 
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Figure 5.17. Time series of VHF reflectivity from air turbulence 
(dashed) and rain (solid), at 2.5 km height, for the events on 9 
September 2004. For this plot, the precipitation reflectivity is equal or 
larger than the turbulence reflectivity in about 5.1 % (35 spectra) of all 
the rain observations (684 spectra). Each VHF spectra has been 
smoothed in time using the median of a 10-minute moving window. 
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For this plot, the precipitation reflectivity is equal or larger than the 
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observations (494 spectra). Each VHF spectra has been smoothed in 
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For the datasets summarized in Table 5.1, Figures 5.20, 5.21 and 5.22 present 

time series of rainrate, C/, vertical air velocity, and spectral width of air signal 

( a AIR)' Observations such as the ones on 24 May 2004, from 14 to 16 UTC 

(Figure 5.21), reveal cases of c1ear correlation between C/ and rainrate. Notice 

also the observations on 9 September 2004 from 10:30 to 12 UTC (Figure 5.20), 

here the increasing values of C/ are correlated with increasing values in a AIR' 

This implies that turbulence is associated to the time variations of C/. In other 

cases, like during the stratiform rain from 2 to 5 UTC on 24 May 2004 (Figure 

5.21), there is a large value of C/ just before the occurrence of rain. In this case, 

Cn
2 and a AIR start to decrease as rain starts to happen. Again, this implies that 

turbulence is driving the time variations of C/. 

Table 5.2. Correlation coefficient between C/ and a AIR' for the datasets 
plotted in Figures 5.20, 5.21, 5.22 and 5.23. Notice the small dynamic 
range of C/ during the event on 9 September 2004, which contributes to 
the low correlation values for this period. 

Event Correlations during 

24 May 2004 
(stratiform rain) 
10 August 2004 
(without precip.) 

10-11 August 2004 
(convective rain) 
Il August 2004 
(without precip.) 

8 September 2004 
(without precip.) 

9 September 2004 
(stratiform rain) 

entire period 
0.23 

(1052 pairs) 
-0.13 

(231 pairs) 
0.54 

(213 pairs) 
-0.45 

(1168 pairs) 
-0.26 

(1276 pairs) 
0.05 

(1171 pairs) 

Correlations only during 
rainy period 

0.28 
(494 pairs) 

0.28 
(103 pairs) 

0.01 
(684 pairs) 

Notice in Table 5.2 that the correlation coefficients between C/ and a AIR 

(computed for periods of several hours) are low. This is because thermodynamic 
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processes are also able to change C/ See for example the rain event occurring 

near 22 UTC on 24 May 2004 (Figure 5.21). Here the increasing values of C/ are 

accompanied by decreasing values of (J" AIR' Since the energy dissipation rate [the 

term & in equation (5.1)] is a function of the spectral width (J" AIR' then C/ should 

also be corre1ated with (J" AIR' Therefore, for this particular rain event, the effects 

of turbulence are exc1uded as the main driving mechanism for the Cn
2 time 

variation. This also leads to the other only possible explanation for the changes in 

C/, i.e., thermodynamic processes that increase the temperature and humidity 

gradients. In any case, our observations show a tendency towards higher 

correlations between Cn
2 and (J" AIR for the higher rainrates (e.g., the correlation in 

Table 5.2 for the convective-rain environment in Figure 5.22). 

Rogers et al. [1994, p. 539] suggested that the effect of rain for turbulence 

scattering would be simply a reduction in C/ caused by a smoothing of the 

humidity gradients. We observe similar conditions in Figure 5.20, for the rain 

event occurring from 8 to 10 UTC, when a decrease of C/ is not accompanied by 

any change in (J" AIR (this leaves the explanation for the C/ changes to 

t~ermodynamic processes only). There are, however, other observations in which 

C/ in creas es thermodynamically. See for example Figure 5.20 and the rain event 

occurring from 5:30 to 6:30 UTC; here C/ increases but the (J" AIR values stay 

around the same magnitude . 
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Figure 5.20. Time series of precipitation and air-turbulence 
variables obtained from VHF spectra at 2.5 km height, for the 
events on 9 September 2004. Upper panel: Rainrate (solid lines, 
scale on the left Y -axis) and C/ (dashed lines, scale on the right Y­
axis). Lower panel: vertical air velocity (dotted stepped lines, scale 
on the left Y -axis) and spectral width of air signal (solid lines, scale 
on the right Y-axis). Each VHF spectra has been smoothed in time 
using the median of a 10-minute moving window. 
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Figure 5.21. As in Figure 5.20, but for the rain events on 24 May 2004. 

159 



,........ 
..c 

'" E 
E 

'-" 

Cl::: 

- precipitation - - - turbulence 

1 
\ ~\ 

,II 
1\ 

1,1 ~ 
III' 1 III III, 

10······ , 
III,' '1 

1111 ,111
11 

1
11

1 
1 

Il 
10- 13 r, Il Il 1 1 1 1 1 il Iii 1 111 1 111 , iliii Il 1 Il 1 "-

III Il ! 
Il 'I" fi 

Il 
Il 1111 Il 1 

1/ 1 Il \111 '1/ rlili l, Il 
. 

1 1/11 1 \ , 
Il Il Il l' 1 1 Il 111111111 

1 1 III Il l' 1 r 11\ 1 • 1 
1 1 1 1 1 Il Il tl\ 1 tl /

I i\ 1 t l 
III 1/ 1 ,1 11\, 

Il Il 1, n\ 1 / Il \ \1 

) ft 1 1 \ 1 III, i 10-14 1 ~M_" 1 ),1 1 1 ·\11 , 
11\ i /

1 
__ 

_ ,1 Il 1 
l '1\, 1 

.... \ I! Il 1 \ i \11 \ 1 .. J, 1 
il 1 11\\" 1 l, 1 1 
l, 1 Il Il 1 1 r. 

21 :00 22:00 

.. ···W 

23:00 00:00 01 :00 02:00 

AIR 

3 3.0 

2.5 

-----UJ 

'" 2.0 E 

0:: 
1.5 <t 

b 

1.0 

0.5 

21 :00 22:00 23:00 00:00 01:00 02:00 
time (UTe), 10/ AUG/2004 & 11/ AUG/2004 

Figure 5.22. As in Figure 5.20, but for the rain events on 10 
and Il August 2004. Each VHF spectra has been smoothed 
in time using the median of a 3-minute moving window. 

t<) 

"-N 
1 

E 
"---" 

N 
c 

U 

Analyses in precipitation-free environment are also presented in Figure 5.23. 

These observations correspond to time series of C/ (dashed lines) and (J AIR 

(solid lines), retrieved from VHF spectra, for periods before or after the 
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precipitation events in Table 5.1. For the periods plotted in Figure 5.23, we verify 

that no precipitation echo was detected by the X-band VPR radar. We also 

checked observations by the McGill, S-band weather radar (reflectivity factor 

observations at 2.5 km height), to make sure that the environment around the 

VHF radar was free from precipitation within a range of 30 to 60 kilometers. The 

most relevant features observed in Figure 5.23 are perhaps the sharp short-time 

variations of C/ with time. Comparing the C/ time series for rainy and 

precipitation-free environments, we can also deduce that rain makes the C/ time 

variations smoother than during precipitation-free conditions. The correlation 

coefficients between C/ and (}" AIR for these precipitation-free environments are 

inc1uded in Table 5.2. These correlations are all negative, which indicates that 

changes in turbulence is not driving the C/ variations during these particular 

periods. 

161 



19:00 20:00 21 :00 
lime (UTC), 10/Aug/2004 

08:00 12:00 16:00 
time (UTC), 8/Sept/2004 

- ŒAIR - - - C,,2 

10:00 12:00 14:00 16:00 18:00 
lime (UTC), 11/Aug/2004 

Figure 5.23. Time series for the spectral width of air signal (solid lines, 
scale on the left Y-axis) and en

2 (dashed lines, scale on the right Y-axis), 
for three precipitation-free environments. Each VHF spectra has been 
smoothed in time using the median ofa 3-minute moving window. 
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5.3.3. Frequency distributions 

Figures 5.24, 5.25 and 5.26 present the frequency distributions for the 

corresponding dataset plotted in Figures 5.20, 5.21 and 5.22. This time, however, 

the analyses also exc1ude any c1ear-air signal for those observation times when Ze 

at VRF and X band are sm aller than 15 dBZ. For the rainrates analyzed here 

(between 0.3 and 78 mmlh), and for our radar sampling volume (per unit time) of 

2.3x 105 rn3 S-1 (corresponding to a two-way half-power half-beamwidth of 1.6", 

and a range gate between 2.25 and 2.75 km height), the vertical velocities were 

found between -2.3 and 3.7 rn/s, while the air spectral width lay between 0.3 and 

3.3 mis. As well, the C/ values lay in the range between 10-16 and 10-12.2 rn-2/3
. In 

comparison, Chi/son et al. [1993, p.665] mention that C/ values between 10-15 

and 10-13 m-2/3 are representative of moderate and severe turbulence to be found 

in a thunderstorm. Similarly, Ralph [1995, p. 258] categorizes as high C/ values 

those measurements between 10-15 and 10-13 rn-2/3
, and as extreme C/ values 

those observations larger than 10-13 m-2/3
• Sorne of these extreme Cn 

2 values are 

present in our dataset, particularly during the convective rain on 10 and Il 

August 2004 (right upper plot in Figure 5.26). 
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Figure 5.24. Frequency distributions for rainrate, C/, vertical air 
velocity, and spectral width of air signal, at 2.5 km height, for the events 
on 9 September 2004. A total of 684 VHF spectra were analyzed during 
times at which the VHF and X band signaIs were larger than 15 dBZ. 

164 



Rain Signol 
24 /May /2004 

Air Sig~al, 
102 f 
101~~~~--~--

LL 10° 

ii: 10- 1 

10"" 2 ~""'" 

-0,544 0,206 0.956 
log[R(mm/h)] 

Air Vertical Velocities 
102 

10 1 
; """" 

-0,722 0.178 1.078 
WAIR (mis) 

102 

LL 
o 100 
Q 

10 1 

-16,0 -14.6 -13,2 

102 

------~ 10 1 

LL 
o 100 
Q 

10- 1 

log[Cn2(m2/3)] 

Air Spectral Width 

0.265 0.865 1.465 
O'AIR (mis) 

Figure 5.25. Frequency distributions for rainrate, C/, vertical air velocity, 
and spectral width of air signal, at 2.5 km height, for the events on 24 May 
2004. A total of 494 VHF spectra were analyzed during times at which the 
VHF and X band signaIs were larger than 15 dBZ. 
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Figure 5.26. Frequency distributions for rainrate, C/, vertical air velocity, 
and spectral width of air signal, at 2.5 km height, for the events on 10 and 
Il August 2004. A total of 103 VHF spectra were analyzed during times at 
which the VHF and X band signaIs were larger than 15 dBZ. 

5.4. Discussion 

Our observations indicate that rain actually affects the structure of air 

refractive index. These C/ fluctuations are smoother than in precipitation-free 

conditions, and can be due to changes in turbulence intensity, moisture amounts, 

or temperature fields. Although dynamic processes (turbulence) were dominant 

for the most intense rainrates, the spectral width of air signal did not always 

changed with C/ This indicates that thermodynamic effects (moi sture and 

temperature) are also capable of generating significant changes in the structure of 

air refractive index. 
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For a total of 1281 VHF spectra measured in rain, our observations show a 

tendency towards more dynamically driven changes in Cn 
2 (higher correlations 

between C/ and (]' AIR) for the higher rainrates. They also identify cases when 

rain thermodynamic processes lead to either increases or decreases in Cn
2

• 

The analyses in this Chapter inc1ude events free of precipitation, as weIl as 

events of convective and stratiform rain, aH typical of continental mid-latitude 

conditions. The measured rainrates are distributed between 0.3 and 78 mm/h, and 

the C/ values lay in the range between 10-16 and 10-12 m-2/3
• The study focuses on 

observations at 2.5 km height, inc1uding time series and frequency distributions 

that can be used in future work as characteristic magnitudes for continental mid­

latitude rain. 

The study shows that sorne (up to 30 %, e.g., Figure 5.18) velocity estimates 

from VHF wirid profilers are in risk of being biased, if precipitation is present in 

the radar sampling volume, and if the precipitation signal has not been exc1uded 

from the wind retrieval. The generalization of these implications, however, will 

require further studies which are beyond the objectives ofthis Chapter. 

As a following step in this research line, it is recornrnended to study the 

vertical profiles of Cn 
2 in precipitation, using the same analysis techniques 

presented here. It will be also recommended to determine & directly, and use it in 

the analyses instead of (]' AIR. This approach will require to know the wind profile 

(to compute the turbulence spectral width) and the vertical profiles oftemperature 

and moisture [to compute the term Min equation (5.1 )], aH above the VHF radar. 

As a result, our analysis techniques in combination with radio sounding 
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observations would lead to a refined understanding of the particulars by which 

precipitation modifies the structure of air refractive index. 
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CHAPTER6: 

SUMMARY AND CONCLUSION 

This work focused on the following questions: How can we use VHF radar as 

an operational tool for the study of precipitation physics? What are the typical 

backscatter signaIs that rain and turbulence produce at VHF band during 

precipitation events? To address these questions, this work takes advantage of the 

unique potential that VHF radars have for simultaneously measuring air vertical 

velo city and precipitation intensity. We collected and analyzed a unique dataset 

of simultaneous and collocated measurements by the McGill VHF radar 

[described by Campos and Hocking, 2003], by the McGill X-band verticaIly­

pointing radar [described by Zawadzki et al., 2001], and by a McGiIl POSS 

instrument [described by Sheppard, 1990]. AIl these measurements were taken 

over Montreal (Lat. 45.41°N, Long. 73.94°W), for selected cases during the 

Spring, Summer and Fall of 2004. 

There are four basic requirements III order to typify precipitation and 

turbulence signaIs at VHF. First, we require a detailed review to the radar 

calibration process. Second, we need to develop a signal-processing algorithm 

that allows the automatic separation of precipitation and c1ear-air signaIs. Third, 

we must apply this algorithm in an efficient analysis of large radar datasets taken 

during rain. Fourth, we must generate statistics of Z and C/ values observed in 

the Montreal region. Accomplishments of these basic requirements are the four 

specific objectives ofthis research. 
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Chapter 2 presented an integrated, multi-faceted approach to calibrate VHF 

radars, using noise-generator calibration and sky-noise calibration methods, and 

intelligent integration of the methods. In addition, our calibration approach allows 

derivation of several antenna and receiver parameters and their corresponding 

uncertainties. We gave these parameters for the McGill VHF radar in Table 2.2. 

The application of our calibration technique to the McGill VHF radar 

measurements allowed us to generate calibrated power spectra (such as the one in 

Figure 2.15). Another advantage of our calibration technique is that, once the 

noise-generator part has been applied, the rest of the calibration can be performed 

during routine observations (without the need for additional hardware or 

modification of the radar operation). Furthermore, a change in the radar hardware 

does not require a new noise-generator calibration. 

Regarding the applicability of the calibration method (in Chapter 2) to 

vertically-pointing radars operating at shorter wavelengths (e.g., at UHF band), 

equation (2.5) indicates that the sky-noise signal received by a 0.75m-wave1ength 

(400 MHz) radar is only 0.006 times the sky-noise signal at 5.77m wavelength 

(the 52 MHz used here). This is a 22 dB reduction. Therefore, the application will 

be limited by the sensitivity of the shorter-wavelength radar for detecting such 

weak signaIs. 

Chapter 3 extends the operational capabilities of the VHF radar to measure 

precipitation intensity (in units of mm6 m-3
) in addition to air velo city. To 

accomplish this, we presented the mathematical derivation of the VHF radar 

equation. We have also validated the assumption that IKI2 is 0.93 ± 0.01 for 
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rainfall rneasured by VRF radars. In addition, we provided an efficient rnethod 

for extracting the precipitation signal out ofVRF Doppler spectra. 

The signal processing algorithm for Doppler-spectra separation of air and rain 

signaIs (in Chapter 3) can be easily applied to radars operating at shorter 

wavelengths. We would expect the air and rain signaIs to behave according to the 

curve slopes in Figure 1.2. The data collected in Chapter 5 show that C/ values 

of 10-13 rn-2/3
, and precipitation reflectivities of 30 dBZ, are cornmon. Therefore, 

the rain signal would be stronger than the air-turbulence signal only by about 10 

or 20 dB. Rowever, the algorithm described in Chapter 3 rnay require rninor 

changes when applied to different precipitation regimes, such as tropical 

environments, with larger turbulence signaIs and stronger vertical motions. In 

these cases, we rnay need to ernpirically adjust equation (3.40) and the spectral 

range where we search for the c1ear-air peale 

We validate our analysis rnethods using time series of equivalent reflectivity 

factors sirnultaneously obtained by our VRF radar, by our X-band radar, and by 

our POSS sensor (all instruments were co-Iocated with a separation of a few tens 

of rneters). We cornputed the correlation coefficient between Zposs and ZVHF, 

finding a value of 0.82 (0.76 for the reflectivity factors expressed in dBZ). We 

also found that the VRF reflectivity-factors are about 4 dB lower than the 

reference POSS values. (This is not a large difference considering the fact that the 

rneasurernents frorn these instruments do not represent exactly the same volume 

in space.) Using our X-band vertically-pointing radar, we verified that the 

differences between ZVHF and ZX-bantr-when using sirnilar sampling 

volumes-are in the order of 1 dB. A high correlation coefficient of 0.88 (or 0.80 
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when dBZ units are used) were obtained between ZVHF and ZX-band. These small 

biases and high correlation coefficients validate our entire analysis methods. 

In Chapter 4, we explored the validity of our general radar equation to 

compute profiles of radar reflectivity factor, for conditions of space-variable 

reflectivity and with an antenna pattern of non-negligible sidelobes. We 

simulated the precipitation signal in the VRF radar by combining X-band signaIs 

(at high range resolution) and the VRF antenna pattern into a general version of 

the radar equation. The simulated precipitation signal at VRF compares weIl with 

actual measurements by the VRF radar, and this validates our analysis methods. 

Our analysis indicates that VRF reflectivity at gates above the melting layer is 

artificially enhanced by the precipitation signal collected in the side-Iobe 

direction. An idea to reduce the problem of side-Iobe contamination by the bright 

band is to redesign the configuration of the antenna array (for smaller sidelobes in 

the antenna pattern). 

Chapter 5 addresses the question on what effect the precipitation has on the 

scattering properties of the c1ear air. Our analysis indicates that rain actually 

affects the structure of air refractive index. These C/ fluctuations are smoother 

than in precipitation-free conditions, and can be due to changes in turbulence 

intensity, moi sture amounts, or temperature fields. Although dynamic processes 

(turbulence) were dominant for the most intense rainrates, the spectral width of 

air signal did not always changed with C/ This indicates that thermodynamic 

effects (moi sture and temperature) are also capable of generating significant 

changes in the structure ofair refractive index . 
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As a following step in this research line, it is recommended to study the 

vertical profiles of C/ in precipitation, using the same analysis techniques 

presented here. It will be also recommended to determine 8 directly, and use it in 

the analyses instead of (]" AIR' This approach will require to know the wind profile 

(to compute the turbulence spectral width) and the vertical profiles oftemperature 

and moisture [to compute the term Min equation (5.1)], all above the VHF radar. 

As a result, our analysis techniques in combination with radio sounding 

observations would lead to a refined understanding of the particulars by which 

precipitation modifies the structure of air refractive index. 

In conclusion, this work extends the operational capabilities of VHF 

vertically-pointing radars by including the rainfall quantification in addition to 

the wind measurement. As well, the study shows how rain actually affects the 

scattering properties of clear air. 

173 



APPENDIX: 

THE RADAR EQUATION 

To begin the derivation of our radar equation, we considered a hypothetical 

monostatic, vertically pointing, VHF radar. Figure Al depicts this radar during 

transmission. 

~ 
dr 

t 

r 

Tx 

Figure Al. VHF radar during transmission. 

For an isotropic radar antenna, the transmitted power flux within a small and 

finite area (perpendicular to the radiation direction) is given by 

(Al) 

where Pt is the total power transmitted by the antennas towards the space, r is the 

range, and dAt is the finite area perpendicular to the radiation direction. Recall 
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that equation (Al) gives the power flux density per unit area, also called intensity 

of radiation. However, for a real antenna, we have that the power flux is given by 

(A2) 

where PTx is the power input into the antennas by the transmitter hardware, and eT 

is the antenna efficiency. D is the directivity (as a function of azimuth ~ and 

zenith B), and it is given as the ratio between the power flux transmitted by the 

real antenna and the power flux that an ideal isotropie antenna would transmit, 

i.e. [e.g., Ulaby et al., 1981, p.102, equation (3.22)]: 

dP 
_1 (antenna) 

:;/ == D(B,~)= Dmax F(B,~) ; 
_1 (isotropie) 
dA1 

(A3) 

where F is the normalized (i.e., its maximum value is one) one-way polar 

diagram (or antenna pattern), and Dmax is the maximum directivity (i.e., the D 

value when the zenith angle is equal to the radar beam direction). 

During backscattering of the radar transmitted pulse (Figure A2), we have that 

the scattered power from targets contained in a volume V (i.e., the sampling 

volume) is given by 

dP=d~dA . 
S dA s' 

1 

(A4) 

where dPs is the scattered power and dAs is the average scattering cross-section of 

the targets. This cross section is given (in spherical coordinates) by 

dAs = 17 dV = 17 r 2 sinB dB d~ dr ; (AS) 
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where 1] is the radar reflectivity (expressed in units of mol). Variable 1] is also 

called the scatterer cross-section per unit volume, and it assumes that power is 

scattered isotropically with an intensity equal to that of the backscattered 

radiation [e.g., Hocking, 1985]. 

11 dV 

r 

Figure A2. Scattering of a radar transmitted signal. 

During reception of the backscattering power into the antenna (Figure A3), the 

following relation applies for the scattered power flux: 

dP, 
(A6) 

where Ae is the effective area of the radar antenna, and it is given by [e.g., 

Skolnik, 1990, equation (6.8)] 

DA} 
A =--

e 4n-
(A7) 
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~ av ;J 
fdPs 

~ 
dr 

t 

r 

Pout~<_-ID 

Figure A3. Reception of a radar transmitted signal. 

In this analysis, we do not need to consider the antenna efficiency during 

reception, eR. Instead, we consider this efficiency during our calibration 

procedure (described in Chapter 2), when applying the conversion between the 

backscatter power input into the antennas, Pr, and the power output by the radar 

signal processing, Pout. 

By combining equations (A2) to (A7), we obtain the following expression: 

dP = PTx eT (DmaxY [F(B,~)y A? 17 sinB d~ dB dr 

r (4ny r 2 
(A8) 
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In order to ob tain the radar equation, let us solve equation (A8) within the 

limits of a volume confined into a given range gate. This implies that 

R + L/4 21< 

f f 
r~R - L/4 tP~O 

f r;{r,e,rjJ) [F~e,rjJ)y sine de drjJ dr 
e~o r 

(A9) 

where L is the transmitted pulse length (expressed in units of meters), and L/2 is 

the range resolution. The range gate is centered at R, and the values R - L/4 and R 

+ L/4 correspond to the radial boundaries of our range gate (near-range and far-

range boundaries, respectively). In equation (A8), r-2 r; is usually convolved 

with the shape of the transmitted pulse. This is so because the received signal is a 

convolution between the reflectivity profile and the radar transmitted pulse [e.g., 

Hocking and Rottger, 1983, section 4]. For simplicity, we approximate here the 

transmitted pulse as a square pulse, and this implies that the convolution between 

r -2 r; and the pulse is such that 

r;(r,e,rjJ) tO\ ():::: r;(r,e,rjJ) 
2 ICYgr_ 2 

r r 
(A10) 

where the symbol ® represents a convolution, and g(r) describes the transmitted 

pulse as a function ofrange r. 

When considering the second range gate, strictly speaking, Pt would not be the 

one given by equation (A2). Instead, it would be only the power that passes the 

first range gate without being backscattered (i.e., the power incident into the first 

range gate minus the power backscattered in this same first gate). However, for 

any given range gate, the power scattered is six or more orders of magnitude 

smaller than the incident power. Therefore, it is safe to assume that the incident 
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power (per unit solid angle) at any given range gate is the same as the power (per 

unit solid angle) incident into the very first range gate, i.e., the one given by 

equation (A2). This is known as the Born approximation [e.g., Ulaby et al., 1986, 

p.1 066]. Therefore, equation (A9) is still valid for any range gate. 
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