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"What it means really ta understand an equa­
tion - that is, in more than a strictly math­
ematical sense - was described by Dirac. He
said: "I understand what an Equation means
if l have a way of figuring out the charac­
teristics of its solution without actually solv­
ing it." A physical understanding is a com­
pletely unmathematical, imprecise, and in­
exact thing, but absolutely necessary for a
Physicist"

Richard P. Feynman, 1962

Ta the rnemory of Professor Peter P. Silvester
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Abstract

A two-fluid model of dielectric barrier gas discharge is presented in this the­

sis. The model predicts the physical structure of the gas discbarge 0 btained

between two electrodes, when one is covered with a dielectric material: It pre­

dicts the distribution of the electron and ion particle densities, electran energy,

and electric field strength. It is a self-consistent numerical model, in which

the dielectric praperties of the dielectric material are included and the geome­

try of the electrodes is taken into accaunt, thus caupling the charged-particle

transport to the electric field .

New boundary conditions are developed far the electron gas at the anode;

the results indicate that the cornmon baundary conditions frequently used in

the literature give solutions with non-physical behavior. The new boundary

conditions give solutions with the expected physical behavior_

The equations of the model are fonnulated numerically using a Galerkin

finite element method and solved using the Newton iteration method. New

universal matrices for the finite element method are presented which can be

used ta construct complex finite element matrices, by replacing integrals with

matrix products, in a consistent and uniform manner independent of element

shape, dimensionality, and order.

Solutions for OC, pulse-waveform and time-harmonic applied electrode volt­

ages for geometries with and withaut a dielectric barrier are presented. The

regulating effect of the dielectric barrier by surface charge accumulation is

shown for discharge under constant applied voltage, assuming a static tem­

perature for the electron gas, for the full self-consistent mode!. AIso, sim­

ulations of dielectric barrier discharge with applied pulse-waveform voltages

iii



are compared with simulations of applied time-harmonic voltages. The results

show very similar period-averaged electric fields, electron temperature profiles,

charged particle densities, and total conduction CUITent densities. However, a

much higher period-integrated ionization rate is obtained from voltage pulse

simulations, compared ta time-harmonic voltage simulations. Therefore, we

obtain a greater reaction rate for an equivalent conduction current, in a period­

averaged sense, for a discharge driven by pulse-waveform applied voltages than

with time-harmonic applied voltages. Such a difference was Dot observed for

simulations \vithout the dielectric barrier.
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Résumé

Un modèle de type fluide pour décharge éléctrique avec barrière diélectrique

est présenté dans cette thèse. Le modèle prédit la structure physique de la

décharge obtenue entre deux électrodes dans un gaz, une pouvant être cou­

verte d'un matériel diélectrique. Le modèle calcule la distribution de la densité

des électrons et des ions, l'énergie des électrons ainsi que le champ électrique.

C'est un modèle cohérent dans lequel les propriétés diélectrique de la barrière

diélectrique sont prisent en compte ainsi que la géométrie des électrodes, cou­

plant ainsi le mouvement des particules chargées au champ électrique.

De nouvelles conditions aux limites pour le gaz des électrons à l'anode a été

développées. Les résultats démontrent que les conditions couramment utilisé

dans la littérature donne lieu à des solutions ayant des comportements physique

injustifiable. Les solutions obtenues avec les nouvelles conditions aux limites

ont les propiétés physique attendue.

Les équations du modèle sont résolues numériquement par la méthode des

éléments finie de Galerkin avec la méthode iterative de Newton. De nouvelle

matrices universelle sont développées pour la méthode des éléments finie est

présenté permettant la construction des matrices d'élément finie complèxe en

remplaçant les intégrales par des produits de matrices de façon cohérant et

uniforme indépendant de la forme, la dimension et de l'ordre polynômial des

éléments.

Des solutions du modèle pour cas avec courant continue et cas avec voltage

aux électrodes dépendant du temps appliqué sous forme harmonique et pulse

répétés sont présentées pour des géométries avec et sans barrière diélectrique.

L'effet de régulation de la barrière diélectrique par accumulation des charges
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sur la surface de la barrière est obtenue pour des décharges à courant continue

dans deux cas, l'un en supposant que les électrons ont une température statique

et l'autre pour le modèle complet. De plus, des simulations comparées pour cas

avec voltage appliqué de façon harmonique et en forme de pulses répétés sont

présentées. Nous obtenons des résultats similaire pour le champ électrique, la

température des électrons, la distribution des particules ainsi que le courrant

total de conduction moyenné sur une période. Par contre, un plus grand taux

d'ionization, intégré sur une période, est obtenue pour les simulations avec

le voltage appliqué en forme de pulses. Par conséquent, nous obtenons un

plus grand taux de réaction pour un courrant de conduction équivalent, de

façon moyenné, pour les décharges avec un voltage appliqué en forme de pulses

répétés comparativement au cas où le voltage est appliqué de façon harmonique.

Cette difference n'a pas été observée pour les décharges n'ayant pas de barrière

diélectrique.

•
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Chapter 1

Introduction

Applications of non-thermal plasma technology (NTPT) are important and di­

verse in today's world. One of the most important applications of low pressure

radio frequency (RF) glow discharge is in the microelectronics manufacturing

industry. Graves [1] pointed out that up to 30% of aIl process steps in the man­

ufacturing of integrated circuits involve plasmas in one way or another. This

is quite significant considering the large capital investment in sophisticated

equipment required in a semiconductor plant. As an example, Advanced Mi­

cro Devices Inc., of Sunnyvale California, announced on December 14, 1996 [2]

that it would build a $1.9 billion semiconductor plant in Dresden, in eastern

Germany.

Further, the ability of the plasma etching process to remove material ver­

tically, or anisotropically, during the silicon etching process made possible the

reduction of features that would be otherwise unattainable with liquid etchants.

In the early 1970'5 the minimum feature dimension of a chip was about 6 pm, on

July 9, 1996 Lucent Technology Inc., of Murray Hill, New Jersey, announced [3]

that it had developed an electron-beam system, called Scalpel, that can be used

to create circuits with 0.08 p,m features.

Corona discharge and dielectric barrier gas discharge processes were used

as early as the 1850's by Siemens to generate ozone. It is still one of the most

important applications of the gas discharge process at or near atmospheric

pressure, see the review paper of Eliasson and Kogelschatz [4]. Other appli­

cations, which continue ta attract a growing interest from industry, academia,

9



and government laboratories, are the uses of these techniques for reducing or

eliminating nitrogen oxides and sulfur dioxide in fiue gases [5, 6], and volatile

organic compounds (VOCs) in industrial effluents [7], which are important

sources of environmental pollution. Many papers in the proceedings of the

NATO Advanced Research Workshop on Non-Thermal Plasma Techniques for

Pollution Control, edited by Penetrante and Schultheis [8], report on recent

advances in these areas.

In the purpose and goals statement of a recent workshop on the treatment of

gaseous emissions via plasma technology organized by NIST [9], it was stated:

•
10 CHAPTER 1. INTRODUCTION

•

•

Plasma processing is an important step in manufacturing, and

is emerging as a means for controlling emissions and a method for

remediation. Plasma characterization (theoretical, computational,

and experimental) has progressed significantly in recent years. Pi­

lot plant facilities for treatment of gaseous emissions have been

built to test the scale-up, efficiency and reliability of certain de­

vices in the field. Yet, a significant limitation ta including plasma

technologies in environmental, safety, and health strategies is the

lack of a fundamental understanding of plasma chemistry and en­

gineering. As a consequence, there is an inability to predict the

performance and cast effectiveness of a given plasma reactor for

new applications [9].

This thesis reports on the development of a computational model for predict­

ing the physical structure of the gas discharge obtained between two conducting

parallel plates (electrodes) supporting an applied voltage difference. One of the

plates may be covered with a dielectric material. The model predicts the dis­

tribution of the electron and ion particle densities, electron energy, and electric

field strength. This is a self-consistent numerical model, in which the dielec­

tric properties of the dielectric material are included and the geometry of the

electrodes is taken into account, thus coupling the charged-particle transport

to the electric field.



1.1. DEFINITION OF NON-THERMAL PLASMAS

• 1.1 Definition of non-thermal plasmas

Il

•

•

We consider the formation of a plasma by ionization of agas by electron impact.

An applied electric field is used to accelerate free eleetrons between collisions

with the gas molecules; the electrons will ionize the neutral molecules when

their energy attained is greater than the ionization energy. Upon ionization,

one more free electron is released which will also gain energy from the field and

ionize additional moLecules. This is commonly termed a Townsend avalanche

and results in an exponential multiplication of the eurrent, see the textbook

of Kuffel and Abdullah [10]. If the energy of the electron is insufficient the

molecllie may transit to an excited state, if such astate exists, or break up may

occur to produce chemically active species (radicals). In turn, these excited

molecules and radicals will involve themselves in chemical reactions. These are

the only non-elastic pracesses considered in the mode!. AlI other collisions are

assumed ta be elastic and the gas behavior is assumed to be describable by the

Boltzmann transport equation, see chapter (2).

Since the mass of the ions is a few thousand times the mass of the electrons,

the electrons do not lose significant energy during elastic collisions. On the

other hand, the ions also gain energy from the applied electric field and trans­

fer energy during elastic collisions with the background gas, thereby increasing

the temperatllre of the gas. However, when the ions eollide with the gas mole­

cules they generally are unable to raise the molecules to an excited state and,

therefore, are incapable of promoting significant chemical reactions. Conse­

quently, the ion current does not contribute ta the ehemical reaction process,

but wastes power by heating the gas.

By considering the electrons and the ions as gases, one may define a temper­

ature indicating the mean kinetic energy of the electrons and mean total energy

of the ions. The average temperature of the electron gas may be as high as 10

thousand degrees Kelvin while the ions stay in thermal equilibrium with the

oeutral species which is close to room temperature. Therefore a gas discharge

process cao provide high-temperature chemistry at low gas temperature. This

feature yields the term non-thermal plasma induced chemistry.



The population of charged particles in the bulk space between the electrodes

will grow not only by ionization through direct electron impact, but also by

secondary electron emission at the cathode, or at the dielectric barrier covering

the cathode, due to ion impact. When an ion is accelerated by the electric field

and hits the cathode or the dielectric barrier with sufficient energy to extract

two electrons from the surface, one is used to neutralize the ion while the second

is released into the inter-electrode space. Rapidly the inter-electrode space can

be filled with ions and electrons wmch produce their own fields, which oppose

the applied electric field.

The plasma will stabilize when the field produced by the separation of

charges reaches the same magnitude as the applied field. At that moment,

the charges will begin ta move freely, which is a principal characteristic of a

plasma. One might think that aIl the ions and electrons will recombine in the

bulk space causing the plasma ta collapse. This is not the case because a posi­

tive ion is made up of a positive nucleus surrounded by a cloud of electrons. At

relatively larger distances, electrons see the net positive charge of the ions. As

an electron gets doser, it starts to distinguish the electron cloud which screens

the positive nucleus. Once close enough, the incoming electron will be repelled

by the electron doud. For recombination to occur in the bulk space, the in­

coming electron must have sufficient kinetic energy ta overcome the Coulomb

barrier. The minority of electrons having such energy are more likely to hit a

neutral molecule and ionize it, rather than encounter another minority species

such as a positive ion.

The ionization rate in the cathode sheath, where the applied electric field

exists, will compensate for the losses due to recombination and diffusion. The

electrons, having a much higher mobility than the ions, will diffuse out of the

bulk gas space before the ions, leaving them behind. This charge separation will

create a local electric field in the anode sheath which will retard the electron

diffusion while accelerating the ion diffusion. Ambipolar diffusion takes place

•

•

•

12 CHAPTER 1. INTRODUCTION



when both, electron and ion, diffuse at the same rate. Figure 1.1 shows the elec­

trode geometry considered in this thesis and the various regions characterizing

the plasma.

•
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Figure 1.1: Geometry of electrode system model and plasma regions: electrode
sheaths, ionization shock wave region, and plasma bulk. A typical electric field
distribution is drawn (magnitude only), note the discontinuity at the plasma­
dielectric barrier interface

1.1.1 Motivations and objectives of this thesis

The research reported in this thesis was motivated by the lack, in the open lit­

erature, of a self-consistent numerical model for dielectric barrier gas discharge

which integrates the effect of the dielectric barrier on the discharge character­

istics.

•
The principal component of the mathematical model consists of four cou­

pied equations: electron and ion (positively charged only) continuity equations,

Poisson's equation, and the electron energy equatioll. From a simultaneous so­

lution of these equations, subject to the appropriate boundary conditions at the



• Law pressure to medium pressure (below atmospheric) glow discharge for

material (polymer) surface alteration.

electrodes and interface conditions at the dielectric barrier, we obtain, respec­

tively, electron and ion densities, electric potential, and electron temperature.

Electric field strength, particle fluxes, surface charge accumulation on the sur­

face of the dielectric barrier, ionization and molecule dissociation rates, etc.,

can then be derived from the solution. These quantities can be determined

as functions of position in the discharge gap and, in the case of a periodic

discharge, as functions of time in the period.

The aim of this research was to develop the mathematical model~ and its

implementation in computer software, to be used as a design tool for parametric

studies leading to the development of energy efficient devices, and to optimize

desirable chemical processes induced by the discharge. Therefore, the emphasis

was on the "problem solving" aspect of the research rather than studying a

particular application. Applications of this model include:

•

•
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• At or near atmospheric dieleetrie barrier diseharge for air remediation.

Modeling the global plasma remediation reactor.

• Non-equilibrium fluid model for streamers, providing a self-consistent

coupling between the streamer and the dielectric barrier.

To our knowledge, the only dielectric barrier discharge that explicitly con­

siders the properties of the dielectric material is the model used by Eliasson and

Kogelschatz [11]. In their formulation they did not consider the iouie move­

ment and assumed the electron gas to be in local thermal equilibrium with

the eleetric field. Furthermore, their model addresses the formation of a single

streamer rather than being a global model for the device under study.

Other streamer-based models exist in the literature, however they do not

take into consideration the dieleetric barrier in a self-consistent fashion. Gentile

and Kushner [12] developed a plasma chemistry model that includes a dielectrie

barrier discharge module in which the coupling between the barrier and the



plasma is represented by a circuit mode!. Li, Sun, Pashaie, and Dhali [13]

developed a fluid model for dielectric barrier gas streamers assuming a very

high dielectric permittivity such that the potential drop in the dielectric is small

and therefore neglected altogether inside the dielectric. Other researchers have

done likewise, e.g., Guo and Wu [14] and Naidis [15].

It is weIl established that the dielectric barrier is key ta the proper function­

ing of the discharge and our results show that the effect of the dielectric barrier

on the electric field distribution in the cathode fail region is important, even for

the case when the potential drop is not significant in the barrier. In turn, this

results in a considerable effect on the ionization rate and, as a consequence, the

discharge behavior throughout the discharge space.

By its nature, dielectric barrier discharge is inhomogeneous due ta the for­

mation of many random micro-discharges. Ta this extent, the barrier has two

functions: it limits the amount of charge transported by a single discharge, and

evenly distributes the micro-discharges over the entire electrode area. When

the discharge is in steady state, the discharge volume is occupied evenly by the

streamers. Since at near atmospheric pressure there is no significant radial dif­

fusion of the streamers, we assume that no important mechanism is neglected

by considering a one-dimensional model and representing the discharge as a

homogeneous plasma.

Naidis [15] developed a model for streamer propagation in a wire-plate con­

figuration for pulse corona discharge that considers the interaction between

streamers propagating simultaneously. The results obtained taking streamer

interaction into account are in better accordance with experimental data than

the values calculated in the single-streamer case. However, the calculated val­

ues of the streamer velocities are two or three time greater than those obtained

experimentaIly. Therefore, it is not clear whether or not streamer interaction

plays a significant raIe in streamer dynamics.

The assumptions made in the development of the mathematical model pre­

sented in this thesis are:

•

•

•
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• Gas is weakly ionized. Only collisions between charged particles and

neutral molecules are considered.

• Heavy ions and background gas are at room temperature. The

ions are in thermal equilibrium with the background gas by elastic colli­

sion.

• Charged particles are treated collectively as a fiuid. The gas

pressure is sufficiently high ta treat the electrons and the ions as two

distinct fiuids.

• Electron has a near Maxwellian distribution function. The elec­

tron rnean free path is smaU enough compared to the device size to smooth

out the anisotropy in the velocity distribution. A small mean free path

permits the use of a continuum description for the electrons. In the cath­

ode faU region it is expected that the electron distribution function will

not be Maxwellian. To remedy to this shortcoming the model can be cou­

pIed to a Boltzmann solver to compute kinetic coefficients as functions of

electron temperature.

• The only external force is the electric field. No magnetic field is

considered in the Lorentz force.

• The dielectric barrier is a dielectric of class A. we consider the

permittivity to be constant and uniform. However, the numerical methods

used permit spatially inhomogeneous and field-dependent permittivities.

• Assume uniform discharge. Assume the discharge is uniform in the

plane parallel to the electrodes. This allows a spatially one-dimensional

formulation. We developed a finite element formulation using universal

matrices such that the expressions for the residuals are independent of

element dimensionality and order. Therefore it should be straightforward

to extend the model to two and three spatial dimensions.



1.1.2 Contributions ofthis thesis ta advancement ofknowl­
edge•
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The contributions of this thesis ta advancement of knowledge are:

• Finite element formulation using universal matrices. New uni­

versaI matrices for non-linear problems were developed.

• Self-consistent dielectric barrier discharge mode!. A fundamental

understanding of the role of the dielectric barrier in the discbarge process

was developed. A self-consistent formulation that integrates the dielectric

properties of the barrier into a fiuid model that predicts charged parti­

cIe densities, electric potential, and electron temperature was developed.

New results showing the regulating effect of the dielectric barrier on the

discharge process were established.

• Improved boundary conditions for the electron gas at anode.

Most similar models in the literature use incorrect boundary conditions

for the electron gas. Solutions obtained with the new boundary conditions

do not exhibit the otherwise observed non-physical behavior reported in

the literature.

• Complete geometric model of the plasma device. Provided a

macroscopic analysis of the device under study based on a siffiultaneous

solution of the model's equations (in opposition ta an iterative decoupled

solution).

1.2 Modeling non-thermal plasmas

A complete description of the physical processes involved in a partially ionized

gas plasma would require the solution to the Boltzmann transport equation

for each species of particles and the rvIaxwell equations for the applied and

self-consistent electric and magnetic fields. Using sncb a model would be a

formidable task and may exceed today's computer power when it is necessary



to include sufficient geometrical details to give useful information for plasma

device design improvements.

Assumptions and simplifications must to be made in arder to obtain a model

for practical use. Three options are presented ta the researcher. One consists

of keeping a kinetic description for one particle species, generally the electron,

while assuming a given distribution function for the other species. Further,

the region containing the plasma is traditionally divided into three regions:

the anode and cathode sheaths, and the bulk region. The modeling is often

restricted in one of the regions. These models are reviewed in section 1.2.l.

Another option consists of simulating a representative ensemble of particles

of each species to obtain their distribution functions under given conditions.

This approach is reviewed in section 1.2.2.

Finally, the continuum models, reviewed in section 1.2.3, use a semi­

phenomenological description of the particles' interactions to obtain global

plasma properties. Such maeroseopic roodels may be tailored to support the

model's equations for the properties of interest.

In a recent analysis, Verboncoeur, Parker, Penetrante, and Morgan [16}

compared eleetron-neutral collision rates obtained from simulation methods

and from solving the Boltzmann cquation. They report good agreement be­

tween the two methods over a wide range of parameters of interest in discharge

physics.

•
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1.2.1 Kinetic models

Kinetic models consist of solving the Boltzmann equation, see section 2.1, for

the particle species of interest, in general the electron. The nature of this

approach is microscopie; the spaee and time scale of a collision process, as weIl

as distribution funetion relaxation length and time, are mueh smaller than the

characteristie spatial and temporal scales defined by the smaller of the plasma

size and the inhomogeneity seale of the field, and by the driving frequency of

the field.



Rockwood [17J developed a time-dependent numerical technique ta solve

the DC Boltzmann equation to compute the electron distribution function in

a partly ionized gas under a given reduced field E IN. The electron velocity

distribution function is expanded using the first two terms of a spherical har­

monie expansion to account for a small anisotropy. This technique is commonly

used to compute electron transport coefficients and electron impact collision

reaction rates for the bulk region of the plasma from cross section data. The

cross section data are known more or less precisely because of the presence of

numerieal or experimental errors. Esposito, Colonna, Longo, and Capitelli [18J

developed a sensitivity analysis of the Boltzmann equation in the two-term

approximation on changes in the cross section data.

Thompson, Smith and Davies [19] developed the BOLTZ computer code

implementing a time-independent version of the Rockwood's technique to com­

pute electron transport coefficients and electron vibrational excitation rates of

CO2 • The obtained coefficients and rates were used as input data for a kinetic

code of a CO2 laser-produced plasma.

Morgan and Penetrante [20] have implemented the fully time-dependent

Rockwood's technique in a computer program called ELENDIF. The computer

progra.m computes the time evolution of a given initial electron distribution

function under constant electric field. Using the computed distribution function

for the electron, the program computes the electron mean energy, drift velocity,

diffusion coefficient transverse to the electric field, and rate coefficients. Feok­

tistov, Popov, Popovieheva, Rakhimov, Rakhimova, and Volkova [21] solved

the Boltzmann equation in the two-term expansion approximation to obtain

the electron transport coefficients for discharge in He, and then used these

coefficients in continuity equations for the electron and ion particle distribu­

tions in conjunction with the Poisson equation for the self-consistent electric

field. A similar approach was used by Ferreira, Alves, Pinheiro, and Sa [22] to

model low-pressure microwave discharge in Ar, He, and O2, and by Capitelli,

Colonna, Hassouni, and Gicquel [23] for discharge in a H2/H/CH4 gas mixture

for diamond film deposition.

•

•
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Capriati, Colonna, Gorse, and Capitelli [24J solved the Boltzmann trans­

port equation using the same approximation to 0 btain analytical expressions

for macroscopic electron parameters (rate coefficients, mobility and diffusion

coefficients, and mean energy) as functions of the reduced field, metastable

concentration, and degree of ionization. These relations were used in a fiuid

model by Capriati, Boeuf, and Capitelli [25] assuming that the electrons were

in local thermal equilibrium with the electric field. However, one mayexpress

the macroscopic parameters as functions of the electron mean energy rather

than the redllced field ànd drop the local equilibrium approximation.

The above mentioned approach assumed uniformity in the electric field,

implying that the gas discharge properties can be determined llsing the lo­

cal electric field. This local field approximation is not valid in the cathode

sheath region due to the non-uniformity in the electric field. Aleksandrovand

Kochetov [26J extended the two-term expansion of the electron distribution

function method to solve the Boltzmann equation for a non-uniform electric

field based on perturbation theory (for small non-uniformity).

An extensive analysis by Kushner [27J of the plasma-etching process of sil­

icon and silicone oxide in CnFrn/H2 and CnFm/02 plasmas was done using

calculated electron-impact reaction rates from the electron distribution func­

tion solution of the Boltzmann equation in a two-term approximation. These

rates and neutral gas-phase reaction rates were used in kinetic rate equations

and time-integrated from an initial gas mixture until a steady-state solution was

reached. Gordiets, et al [28J used the same approach to model low pressure

N2-02 glow discharge.

Dielectric barrier discharge was modeled by Gentile and Kushner for the

destruction of NxO y [12J and of perchloroethylene [29J from a gas stream. The

model consisted of a circuit model to compute the (constant) reduced field, the

Boltzmann equation ta determine the electron distribution function given the

reduced field, and a plasma chemistry mode!.

The two-term expansion of the distribution function is not valid in plasma

sheaths, in particular in the cathode sheath, where a large reduced field and

•

•
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gradients exist. In the cathode sheath the electrons emitted by ion impact attain

a large velocity and collisional equilibrium in the presence of the electric field is

never reached. These electrons play an important raIe in the discharge process

since the CUITent resulting from collisional ionization of the gas eventually grows

exponentially with distance.

These fast secondary electrons can be viewed as an electron beam entering

the plasma bulle Phelps, Jelenkovie, and Pitchford [30] investigated anisotropy

effects in the cathode fall region by using, for the electron, a distribution func­

tion of a mono-energetic beam moving in the direction of the acceleration. This

parametrized distribution function is substituted into the Boltzmann equation

and the first three velocity moments over the velocity space are taken. The

obtained equations are similar to the fiuid equations with the difference that

the peculiar velocity is negligible compared to the fiuid mean velocity. This

is valid only at very high reduced field. From these equations excitation and

ionization rates are obtained from the cross section data.

Anisotropy effects in the cathode falI region, resulting from high EIN, can

be considered by using more than two terms in the spherical harmonie expan­

sion of the distribution function. Shankar and Jensen [31] use an expansion of

the form

•
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1.0

fCx, vJj, t) = L, Pk (cos 8)fk(X, v, t)
k=l

where Pk (cos B) is the Legendre polynomial of order k, see the textbook of Math-

ews and Walker [32], and cos e= vxlv is the direction cosine of anisotropy. The

directions of the position coordinate x and velocity coordinate V:r; are aligned

with the direction of the electric field. The Boltzmann equation is solved,

using the above expansion of the distribution function, through an implicit up­

winding Galerkin finite element method for two case studies, a collision-Iess

electron beam and a cathode falI region of low pressure De glow discharge

in He assuming a known electric field distribution. The weighted average of

the spherical harmonie expansion coefficients, using the obtained distribution

functions as weight functions, was used as a measure of the anisotropy in the

system. The evaluation of the first 10 averaged coefficients demonstrated that



the electron distribution functions are very anisotropie in the regions close to

the boundary, corresponding to 10% of the discharge space.

In a recent study, Loflhagen, Winkler, and Braglia [33] compared the elec­

tron distribution function obtained by solving the Boltzmann equation in a

two-term and a eight-term expansion of the distribution function, and by a

Monte Carlo simulation. Their results showed very good agreement between

the eight-term Boltzmann approach and the Monte Carlo simulation.

A.nother approach to solving the Boltzmann equation is the so-called "con­

vective scheme" of Sommerer, Hitchon, and Lawler [34], which is based on a

propagator or Green's function method. In this method the integro-differential

Boltzmann equation is replaced by an integral equation by the use of a prop­

agator that advances the distribution funetion at time t + ~t knowing the dis­

tribution function at time t. The method is described in the paper by Adams

and Hitchon [35J. This convective scheme was used ta obtain a self-consistent

kinetic model of RF discharge in He by Sommerer et al [36]. The electron and

ion distribution functions were obtained with a self-consistent electric field.

The results yielded a low average electron energy in the bulk region, approxi­

mately O.BeV, compared to the often assumed value of,....., 1 eV in models which

neglect the energy balance or continuity equation.

Uhrlandt and Winkler [37] investigated the radial structure of the elec­

tron kinetics in the DC column plasma (streamer). Their method consisted

of solving the Boltzmann equation in the two-term approximation for a radi­

ally inhomogeneous electric field. This approach takes ioto consideration the

non-local dependence of the electron kinetics on the electric field without the

restriction of small non-uniformity required for the approach based on the the­

ory of perturbations of Aleksandrov and Kochetov [26], and is computationaUy

less demanding than the convective scheme, which is not based on a two-term

expansion of the electron distribution function.

•
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1.2.2 Monte Carlo and PIC/CIC simulation methods
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Simulation methods place emphasis on the physical processes, at the particle

level, involved in the plasma, such as particle collisions. These methods are

based on simulating a representative ensemble of particles by successive inte­

grations of their equations of motion (free flight under local resultant forces) l

following a collision. Particle collisions may be of two kinds: elastic and in­

elastic. Elastic collisions are simple in principle, but inelastic collisions open

the door to many possibilities: composite incoming particles may leave the

regjon of interaction in an excited state, break up may occur, or transition ta

a rnetastable state is possible.

The Monte Carlo method is based on simulating the stochastic movement

of a particle in a gas by simulating collision events using a sequence of random

nurnbers ta determine the position and nature of each collision and the change

in velocity due to the collision. The probability of a given collision type to occur

is weighted according to its cross section relative to the total cross section of

aIl processes. The Monte Carlo method applied to gas discharge is presented

in the paper of Boeuf and Marode [38].

Tran, Marode, and Johnson [39] performed a Monte Carlo simulation of

the electron behavior in the cathode fall region of a glow discharge in He.

They studied in particular the ionization avalanche due to secondary electrons

emitted by ion impacts assuming a linear relationship for the electric field.

Their collision processes considered forward scattering only which reduced their

analysis to a one-dimensional moder. Angular scattering was included in a

three-dimensional Monte Carlo simulation by Boeuf and Marode [38]. In these

simulations the motion of the electrons leaving the cathode and their progenies

were followed in the gap until their absorption by one of the electrodes.

Charged particle simulations consist of counting the number of particles

between grid points and assigning the corresponding density to the cell center,

sorne weighting function may be used, see the survey of Eastwood [40]. AlI

the particles in a given cell are assigned the same resulting force, thus the

name particle-in-cell (PIC). The particles can now be viewed as having a finite



size, corresponding to the cell size, hence the name cloud-in-cell (CIC). Once

the particle density is determined, integration of the Maxwell equations on the

mesh yields the electromagnetic field in each cell. Given the new field values

at the mesh nodes, the Lorentz force on aIl particles are computed. Integration

of the equations of motion for a time step ôt, for each cell, gives a new density

distribution. This process is iterated until a steady state is reached.

The PIC/CIC simulations are deterministic and valid for collision-less plasma.

However, combining this technique with the Monte Carlo method to simulate

statistical collisions between electrons or ions with the background gas to allow

ionization and other processes yields a very powerful simulation method. See

the review paper of Birdsall [41] and the monograph of Hockney and East­

wood [42].

Kushner [43] analyzed the electron properties in RF discharge in a parallel

plate geometry using the Monte Carlo simulation method. In order to reduce

the required number of simulated electrons the electric field was assumed to

be known in the cathode sheath region. The results indicated that the elec­

tron distribution function has a low thermal energy group, corresponding to

the electrons in the plasma bulk, and a high energy group resulting from the

secondary electron emission from the cathode.

Vender and Boswell [44, 45] analyzed a similar discharge reactor using the

PIC simulation technique. Their simulation computed the self-consistent elec­

tric field, however secondary electron emission was not included. The inclusion

of secondary electron emission is problematic for simulation methods when the

self-consistent electric field is computed. One needs to simulate a very large

number of electrons to have an adequate estimation of the field in the sheath.

Vender and Boswell [44] used 2 000 ion and electron pairs in their simulation

while Surendra and Graves [46] used 12 000 to 400000 pairs of particles to simu­

late a RF glow discharge with secondary electron emission and a self-consistent

electric field .

The analysis of Surendra and Graves [46] investigated the differences be­

tween discharges sustained without secondary electron emission and discharge

•
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sustained by secondary electron emission. In the former case the discharge

sustaining mechanism is sheath oscillation heating. Their results indicate that

the average electron energy is nearly independent of the applied voltage for a

given discharge condition, but increases sharply in the sheaths when secondary

electron emission is significant.

Hybrid models may be used ta overcome the difliculty of particle statistics

when computing self-consistent fields for discharge with emitting electrodes.

Sommerer and Kushner [47] developed a hybrid model incorporating a kinetic

description of the electron distribution function, a self-consistent fluid descrip­

tion of the charge densities, and a neutral gas phase chemistry model to predict

discharge by-products. In their formulation the electron distribution function

is computed using a Monte Carlo simulation for a given electric field distri­

bution. Electron transport coefficients and electron impact reaction rates as

functions of the reduced electric field are then computed. These coefficients

and rates are used in a fluid mode! which includes electron and positive ion

continuity equations together with Poisson's equation for the electric field. The

electrons are assumed to be in local equilihrium with the electric field. The

computed electric field is to he used in the next run of the Monte Carlo sim­

ulation. The last module is the gas phase chemistry model wIDch comprises

the time-independent continuity equations for the chemical species of interest.

The electron impact reaction rates obtained from the Monte Carlo simulation

module are period-averaged since the transport of neutral particles has time

scales that span many RF periods.

Wu, Li, Tsai, and Young [48] developed a hyhrid model for RF discharge

which computes the electron distribution function by solving the Boltzmann

equation in which the collision term is modeled by the Monte Carlo flux method

of Schaefer and Hui [49]. The transport coefficients and reaction rates are

computed from the distribution function and used in a fluid model to compute

the heavy ion and electric distributions, given the electron distribution obtained

by the first moment of the electron distribution function. This model provides

•
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a temporal, spatially two-dimensional, and two-dimensional velocity resolution

of the discharge.

The use of hybrid approaches permits partially decoupled modeling of the

discharge process by using loosely coupled modules having very different char­

acteristic space and time scales. This decomposition can provide an economical

computation time for each module since the level of sophistication per module

is reduced. However, by placing important nonlinear feedback mechanisms,

such as the computation of the electric field distribution and the computation

of the electron thermal energy, in different modules, one can considerably re­

duce the convergence rate towards a self-consistent solution. Further, a small

error in the electric field distribution will produce a greater error in the electron

kinetic energy, especially in the cathode sheath, which in turn will produce a

much greater error in the reaction rates as a consequence of the exponential

dependence of the reaction rate on the electron kinetic energy.

Other hybrid models are reviewed in the next section.

•
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1.2.3 Continuum models

Continuum modeIs use a semi-phenomenological approach in which the interac­

tions are model dependent and not expressed in terms of the basic cross section

of the underlying microscopie collision processes. Global plasma properties are

obtained by averaging over the microscopie details of the particIe interactions.

Rather than computing spectral distribution functions for each particle species,

which contain far more information than may be required, macroscopic models

are tailored 50 that the model's equations target the properties of interest. The

equations are in terms of the averaged plasma's constituent dynamics. The

work of this thesis is in keeping with this approach.

The analysis of Ward [50, 51] on the cathode fall in gas discharge between

parallel plates is one of the first analyses that computes the self-consistent

electric field and particle distribution. In his analysis, particle diffusion is

neglected and the electrons are assumed to be in thermal equilibrium with the

electric field. The model is based on Townsend's basic ionization equation and



Poisson 's equation. The Townsend theory of CUITent multiplication is described

in the monograph of Kuffel and Abdullah [10]. The ionization coefficients

for discharge in various ideal gases, the so-called Townsend's first ionization

coefficients, are expressed as analytical relations fitted to match experimental

data.

Wardlaw and Cohen [52] analyzed the photoionization chamber using a

continuum analysis based on the first moment of the Boltzmann equation for

both the electron and ion gases, together with the Poisson equation for the self­

consistent electric field. The photoionization chamber consists of a test gas

confined by parallel conducting plates and ionized by means of UV radiation.

The discharge process is not self-sustained by electron impact, therefore the

assumption of a constant and uniform temperature for the electrons is not

severe. In their analysis, the particle diffusion and the drift under the effect of

the electric force is retained. Their results, obtained by a semi-analytic method,

are reproduced in section 4.1. Recently, Pai, Guo, and Zhou [53] obtained an

analytical solution in closed form to a similar continuum model describing a

self-sustained glow discharge.

The study of the properties of the Langmuir probes yield a similar analy­

sis of the electrical characteristics of the discharge process in weakly ionized

gases. However the discharge sustaining mechanism is electron impact in the

shock-Iayer formed near the conducting probe (the cathode fall region). Chung

analyzed [54, 55] the non-equilibrium electron temperature in the shock layer

and demonstrated that: according to kinetic theory, the electrons are completely

out of equilibrium in the region near an absorbing surface.

A similar shock wave structure is observed in high voltage breakdown

streamers. Albright and Tidman [56] analyzed the ionization shock wave for­

mation in the breakdown of a dense gas in a strong electric field. This shock

wave formation is analyzed in section 4.2.1. Their analysis is based on fiuid

equations for the electron gas, and the ionizing shock wave of the streamer is

assumed to travel 50 rapidly that ions and neutrals do not have time ta be

heated before the wavefront has passed on. As a consequence, the ions are

•
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"frozen" in the background t and only the motion of the electrons is considered.

They assumed the electron gas to be in thermal equilibrium with the electric

field and a constant electron temperature was taken throughout the shock wave

to obtain their numerical results.

Klingbeil, Tidman, and Fernsler [57] extended the analysis to include pho..

toionization occurring at the streamer's head due to atomic excitation of the

background gas to drop the constant electron temperature assumption. Graph­

ical solutions of the equations are presented.

Abbas and Bayle [581 studied the ionizing shock wave formation and prop­

agation using a fluid model for the electron and ion gases. They have shown,

by studying the evolution of electron germ impulses, that the occurrence of

a shock zone head associated with the discharge plasma is unavoidable. They

report that the existence of this zonet defined by the presence of large gradients

in particle densities and electric field distributions, results in a situation where

the electron gas is out of equilibrium with respect to the electric field. Abbas

and Bayle [58] and Bayle and Cornebois [59] obtained a numerical solution of a

hydrodynamic model describing the propagation and evolution of a streamer's

head. Their model consists of the particle number continuity equations for the

electron and ion gases, Poisson's equation for the electric field, and the electron

kinetic energy continuity equation. The numerical solution is obtained accord­

ing to the following scheme. The initial electron and ion particle distributions

and the electron temperature are assumed to be known (ne, niont and Te). The

electric field distribution is computed by solving the Poisson equation and the

resulting electron velocity is obtained (E and v e ). The time-evolution of the

system is computed by updating alternatively ne, nion, and Te after a time step

assl:lIIling E and V e are unchanged and then using the new values of net nion,

and Te ta find better E and V e estimates after the next time step.

This study of the transition between the insulating state of a gas to a con­

ducting state by electrical breakdown is of practical interest for gas-filled voids

or cavities found within solid insulators or in narrow slits between an insulator

and a conductor. Novak and Bartnikas [60 t 61, 62] studied such breakdown

•
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in narrow gaps using a two-dimensional fluid model in cylindrical coordinates

which includes electrons, ions and metastable molecule particle continuity equa­

tions together \Vith Poisson 7s equation. They computed the time evolution of

an initial "burst" of electrons following an algorithm similar to the algorithm

of Bayle and Cornebois [59] described above.

The applications of plasma chemistry in the microelectronics industry, for

the deposition and etching of thin film 7 created a new fervor for the model­

ing of gas discharge devices of large scale compared to the shock wave region.

Boeuf [63] analyzed the RF discharge occurrïng in a plasma reactor focusing

on the physical aspect of the discharge. The model consisted of the continuity

equations for the positive and negative ion and electron densities and the Pois­

son equation. The electrons were assumed to be in thermal equilibrium with

the electric field which avoided the need for an energy continuity equation for

the electron gas. The transport coefficients together with the ionization and

recombination rates were functions of the local value of the electric field. The

analytical relations obtained by Ward [50, 51] were used for the ions and the

electrons.

To account for the non-equilibrium electron kinetics Graves and Jensen [64]

and Park and Economou [65] added an electron temperature continuity equa­

tion to the particle number continuity equation and Poisson equation descrip­

tion of the plasma. This resulted in a self-consistent model of the discharge

mechanism sustaining the plasma, however the electron and ion fluxes were

modeled by the so-called drift-diffusion model which includes a field-driven

term plus a gradient-driven term. As a result the stiffness of the model's equa­

tions is greatly increased 7 see section 4.2.1. To reduce the equations7 stiffness

Graves [66] used a constant and uniform electron temperature in the ioniza­

tion term of the particle number continuity equations. However, the electron

temperature continuity equation was retained in the model in order to resolve

the distribution of the rate of molecule excitation by electron impact in the

inter-electrode space. The well-posedness of Graves boundary conditions for

the electron temperature continuity equation was questioned by Wilcoxson and

•

•

•

1.2. MODELING NON-THERMAL PLASMAS 29



Manousiouthakis [67]; in this regard, new boundary conditions for the electron

number and electron temperature continuity equation are presented in sec­

tion 2.2.3.

Barnes, Cotler, and Elta [68] and Meyyappan and Kreskovsky [69], and re­

cently Meyyappan, Govindan, and Kreskovsky [70] for two spatial dimensions,

retained the first three moments of the Boltzmann equation for the electron gas

description, which includes mass, momentuID, and energy continuity equations.

Gnly a mass continuity equation was used by Barnes et al for the ions with a

drift-diffusion ion flux. Young and Wu [71] also analyzed the RF discharge us­

ing a three-moment fluid model for the electron gas in spatial two dimensions.

Very few models in the literature actually simultaneously solve for the electron

density, velocity, and temperature. In general the drift-diffusion model is used

for the electron and ion fluxes.

As it will be discussed in section 2.2.1 we use the electron-impact ionization

rate of Park and Economou [72], which is expressed as function of the elec­

tron temperature. The expression is a fit ta the rate obtained by solving the

Boltzmann equation. Many hybrid models were developed in which the elec­

tron transport coefficients and reaction rates are computed using a microscopie

model, such as Monte Carlo or PIC simulations, or by solving the Boltzmann

equation. The coefficients and rates obtained are used as input to fluid models

to obtain a macroscopic description. These hybrid models are DOW reviewed.

Surendra, Graves, and Jellum [73] analyzed OC discharge with explicit

treatment of the fast electrons in the cathode fail region. They used two ap­

proaches. One consisted of considering the fast electrons as a mono-energetic

beam, and parametrized their distribution function as a delta function imposing

the same velocity, at any given position, ta aU fast electrons. When the kinetic

energy of the fast electron group drops below a threshold value in the plasma

bulk they are shifted into the slow electron group. Belenguer and Boeuf [74]

used this approach to analyze the RF discharge. Recently Bradley [75] de­

veloped a three fiuid model for the cathode shock wave region in which the

electrons, the ions, and the beam-like electrons are treated as separate fluids.

•
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The second approach consists of a Monte Carlo simulation of the cathode faH

region. Again, when the kinetic energy of the tracked electron drops below

a threshold value the electron is transfered into the slow electron group. The

slow electron group and the ion gas are modeled by mass conservation equations

together with Poisson7s equation.

Alternatively Pirooz, Ramachandran, and Abraham-Shrauner [76] and Nitschke

and Graves [77] developed a hybrid model which decomposes the plasma reactor

into two regions: the sheaths and the plasma bulk regions. Rethfeld, Wendel­

storf, Klein, and Simon [78] also developed a similar model for the cathode faIl

region of an electric arc using three regions. The aim of this approach is to

reduce the computational resources required to analyze a particular discbarge

condition. The structure of the plasma sheath, in particular the lack of electron

equilihrium with respect to the electric field, has an important impact on the

dynamics of the discharge throughout the plasma. This will he seen in chap­

ter 4. The danger of such hybrid models is that important details may be lost

in oversimplifying the coupling, or feedhack, mechanism between the structure

of the sheaths and the macroscopic properties of the plasma.

A hybrid Monte-Carlo and two-fiuid model was used by Boeuf and Pitch­

ford [79] for pseudospark discharge, which is a gas discharge mode charac­

terized by an extremely rapid transition to a relatively high CUITent density

(arc mode). This approach was also used by Huang and Kushner [80] for DC

discharge in N2 and He/N2' A Monte-Carlo simulation computes the electron

and ion distribution functions from which transport coefficients and reaction

rates are computed. These coefficients and rates are used in single-moment

fiuid models that compute electron and ion particle number densities and the

electric field distribution.

•
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Chapter 2

The equations of the model

A complete description of a plasma lies in the kinetic theory of matter. Ta

develop a kinetic theory of matter, each particle species is described in terms

of a distribution function f (r, v, t) in a 6-dimensional phase space (r, v).

The meaning of the distribution function is such that f(r, v, t)drdv repre­

sents the probability of finding particles in the physical space defined by r ± dr

having velocity v ±dv at time t. For the sake of generalization, one may speak

of a fluid rather than a plasma, where the fiuid is made of a collection of parti­

des of different species. A plasma may be considered as a special fiuid in which

charged particles exist and move freely, i.e., the average electric and magnetic

fields vanish in the plasma. However, localized fields due to charge separation

over short distances may occur; but the charge separation may not he greater

than a Debye's length.

For a more detailed description, the reader is referred to the textbooks of

Boyd and Sanderson [81), Jancel and Kahan [82], or Shkarofsky and John­

ston [83J.

Various physical characteristics of the plasma, or the fluid, are obtained

through varions velocity moments of the distribution function:

particIe density: n(r, t) = I~: f(r, v, t)dv, zeroth arder moment
momentum density: p(r, t) = I~~ mvf(r~ v, t)dv, first arder moment
energy density: ê(r, t) = I~: ~mv2 f(r, v, t)dv, second arder moment
and sa on ...

33



To lighten the notation the distribution function will simply be written as

f. We may define the average velocity u(r,t), which is useful for determining
•
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macroscopic characteristics, as

fvfdv
uer, t) = f fdv

for the particle species described by the distribution function f.

2.1 The Boltzmann equation

(2.1)

The Liouville theorem stipulates that the distribution function is stationary in

the phase space along the particle trajectory:

The variation in f due ta force, external and self-consistent, acting on the

particle from the variation due to particle collision is treated separately;•
!5
!5t f (r, v, t) = o.

(d!) (dl) = o.
dt F + dt c

The first term may be expanded to yield:

af 1 (dl)at + v . V ri + m F . V fJ f = dt c

(2.2)

(2.3)

(2.4)

•

where Fis, in general, the Lorentz force F = q(E+vxB) acting on the particle

of charge q. The fields E(r,t) and B(r,t) are the electric and magnetic fields

in the plasma respectively. This is known as the Boltzmann equation. The

collision term, on the right-hand-side of equation (2.4), includes aIl elastic and

inelastic collisions. In general, only a two-body term is retained, i.e., collisions

involving only a pair of partic1es (of same species or not). The probability of

three-body and higher-order collisions is much less. When no collision term is

considered, equation (2.4) is known as Vlasov's equation.
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2.1.1 Hydrodynamic equations
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The Boltzmann equation is a 7-dimensional integro-differential equation. The

solution of the Boltzmann equation specifies the distribution function of a par­

ticle species and is a microscopie description of the plasma. However, one can

tailor a less accurate but simpler description of the plasma in terms of macro­

scopie quantities of interest such as particle number density, temperature and

average velocity distribution in spatial coordinates and time. This description

is known as the hydrodynamic equations of the plasma. Hydrodynamic equa­

tions are obtained for each particle species of a plasma by evaluating moments

of the Boltzmann equation with respect ta velocity v.

If we define the weighted average of an arbitrary function ifJ(r , v, t) over the

velocity space as

Then, taking the moment of the Boltzmann equation, equation (2.4), with

a function 'lj;(v) we get:•
(<p) = / ) JifJ(r, v, t) fdv.n r,t

(2.5)

(2.6)

where we have interchanged the order of the differentiation and integration

operators. Note that the force F is assumed ta not depend on velocity (or

at least F·ei does not depend on v·et, ei being the coordinate unit vector

in direction i in v-space), and integration-by-parts was performed on the last

term on the left-hand-side followed by the use the divergence theorem assuming

f -7 0 as v -7 00.

The particle number continuity equation is obtained by taking 'l/J = 1 in

equation (2.6):

•
an (dn)8t + V r · (nu) = dt c'

Taking'lj; = mv we get the momentum density continuity equation:

m~ (nu) + mV,." (n(vv)) - Fn = (m:t (nu)) c·

(2.7)

(2.8)



It is convenient to express the tensor (vv) as a combination of terms involving

the local mean velocity u and the so-called peculiar velocity w, which is defined

as the velocity relative to u due to random motion, W = v - u:

•
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There are no cross terms since (w) = (v - u) = o.
The pressure tensor may he defined in terms of the peculiar velocity:

(2.9)

•

The elements of P, ~j 1 represent the force per unit area in the direction i

on a plane normal ta the direction j. The diagonal elements represent the

normal force per unit area or the normal pressure on planes parallel to the

coordinate system. The off-diagonal elements represent the shear forces on

the same planes. The pressure exerted on the surface having normal S is

PN = S . P. The SUffi of normal pressures at a point is Li Pii = nm(w2 ).

The mean normal pressure acting on the three orthogonal planes parallel to the

coordinate system is:

1,,", 1 23~ Pii = 3nm(w ) =per, t)
t

(2.10)

which is called the hydrostatic pressure at point (r,t). We consider the velocity

distribution function to be isotropie in v, this is the case for a Maxwellian

distribution function. In such cases the off-diagonal elements of P vanish, i.e.,

the pressure vector P N is normal to the surface. Also, all diagonal elements are

equal to the hydrostatic pressure p, therefore

•

P=pI

where l is the identity tensor.

Therefore, equation (2.8) may be recast as

(2.11)

(2.12)



Note that equation (2.7) is used when the total number of particles of the

species is conserved. The operator :t + u . Vr is the convective derivative: the

first term is the explicit variation in time while the second is the change due ta

the movement of the fluide

The kinetic energy cantinuity equation is obtained by setting ?j; = ~mv2 in

equation (2.6):

~ Gnm(v2}) + V~· Gnm(v2v») - nF· u= (~ Gnm(v2}) ) c. (2.13)

•
2.1. THE BOLTZMANN EQUATION 37

The temperature of a particle species may be defined as the kinetic energy due

to peculiar motion:

where k is the Boltzmann constant. The hydrostatic pressure, defined byequa­

tion (2.10), is

•
p = nkT.

Further, the heat flux due to peculiar motion may he expressed as:

(2.14)

(2.15)

(2.16)

•

1 2
q = '2nm(w w).

Therefore, by definitions (2.14) and (2.16):

131
'2nm(v2) = '2nkT + '2nmu2, and (2.17)

151
2"nm(v2v) = q + 2"nkTu + 2nmu2u, (2.18)

whereby, substitution of (2.17) and (2.18) into (2.13) yields:

~ GnkT + ~nmu2) + V~· (q + GnkT + ~nmu2) u) =

nF . u + (:t Gnm(v2}) ) c . (2.19)

This equation shows that the change of energy density, which includes the

thermal kinetic energy due to peculiar motion, 3/2 nkT, and the kinetic en­

ergy of hydrodynamical motion, 1/2 nmu2 , is caused by the enthalpy flux,

(5/2 nkT + 1/2 nmu2 )u and the heat flux q. The terms on the right-hand-side,



the power associated with the force density, nF· u, and the collision term, act

as a source or drain.

Equations (2.7), (2.12), and (2.19) are the hydrodynamic equations of a

plasma for a single particle species. A corresponding set of equations exists for

each particle species making up the plasma. However, these sets of equations

are Dot closed because the three components of the heat flux vector q remain

unknown, since they are determined by the next order moment of the Boltz­

mann equation. Assumptions have to be made ta close these sets of equations.

This will be the abject of the next section.

•
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2.2 Two-fluid model equations

A two-fluid model has been developed for gas discharge. In this model the

plasma is represented as a mixture of an ionie and an electronic fiuid. Since

the model is developed for discharge near atmospheric pressure, the effects

due to the peculiar velocity in the collision term of the rnomentum continuity

equation, equation (2.12), may be neglected as the collisions tend to smooth out

aIl anisotropy. Therefore, sorne terms in (2.12) may he replaced with the use of

macroscopic kinetic coefficients, such as the diffusion and mobility coefficients

of the particles. This simplification is weIl justified in the bulk of the plasma,

but ignores the boundary effects in the momentum distribution.

2.2.1 Transport coefficients

The plasma is sustained by the application of a radio-frequency (RF) time­

varying voltage at the electrodes, no magnetie field is applied. The Lorentz

force reduces to F = qE, where q is the charge of the particle.

Since the level of ionization is low, the collision process is dominated by the

two body electron-neutral collisions. Assuming that the collisions occur within

infinitesimally small periods of time compared to any other macroscopic change

in the plasma, we may write the momentum transfer between the electron and
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the heavy neutral molecule as:
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(2.20)

where me and M are the masses of the electron and the neutral molecule respec­

tively; U e and UM are the electron and the neutral molecule mean velocities.

The collision frequency is V e • Since the background gas is assumed to be static

and uniform, Ufl;f = O. Therefore, the momentum continuity equation for the

electron fluid, (2.12), may be recast as:

where the convective derivative was dropped since the collisions are singular

events in time and the driving frequency of the applied potential is negligible

compared to V e • Equation (2.21) defines the electron particle flux. The electron

mobility is defined as• e
Ile = --.

Verne

(2.21)

(2.22)

The electron diffusion coefficient, De, is defined as the particle flux caused by

a unit density gradient. If the temperature is constant one may write

(2.23)

The electron particle flux, equation (2.21), is now

From equations (2.22) and (2.23) we have

De kTe
-=-
Ile e

(2.24)

(2.25)

•
which is known as the Einstein relation. A similar expression is obtained for

the ion particle flux density:

(2.26)



The electron heat flux density due to peculiar motion, qœ' is taken to have

the following phenomenological expression:
•
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qœ = -KVrTe· (2.27)

(2.28)

•

•

An expression for the thermal heat conductivity, K, can be obtained from the

so-called r-approximation. In this approximation the distribution function has

a small deviation from the Maxwellian distribution, and the integral defining

q, equation (2.16), cao be evaluated to yield:

K
_ 5nk2T
- 2 T,me

where T is the characteristic collision time (live above), which corresponds

ta the relaxation time for thermal equilibrium. Details of the derivation of

equation (2.28) can be found in the textbook by Sitenko and MaInev [84]. By

comparison with equation (2.23), we define the electron thermal conductivity

as:

(2.29)

where the constant temperature assumption in equation (2.23) is not main­

tained, and Teav is the average electron temperature (scaling factor).

As discussed in section 1.1.1, the ions are assumed to be in thermal equilib­

rium with the background gas. Therefore the kinetic energy continuity equation

for the ionie fluid, (2.19), is not considered.

'-IVe now need expressions for the collision terms for the particle number

continuity equation, (2.7), and for the electron kinetic energy continuity equa­

tian.

The collision term for the particle continuity equation takes into considera­

tion the creation and loss of particles of the given species by inelastic collision.

We consider the ionization process given by electron impact on neutral mole­

cules (background gas). In this process one electron and one positive ion are

created, therefore the same collision integral will appear in both the electron

and positive ion continuity equations. Since the ionization level of the gas is

generally low, on the arder of 10-6 , other processes such as double ionization



and recombination processes do not play an important role. The collision in­

tegral for a binary collision between an electron and a neutral molecule at rest

is given by:

•
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(2.30)

(2.31)

•

where ai is the ionization cross section, and subscripts e and M indicate quan­

tities referring to the electron and neutral molecule respectively. This equation

is known as the Boltzmann collision integral. Since the neutral molecules are

at rest, by assuming their velocity distribution to be Maxwellian, it may be

reduced to:

(~n c = Naive!.(r,v.,t).

The electron impact ionization rate is given by integrating over the electron

velocity:

(2.32)

We may assume the electron distribution function to also be Maxwellian, use

the experimentally determined cross section, and integrate numerically to ob­

tain the rate constant §z:

(2.33)

The results presented by Graves and Jensen [64] were obtained by assuming

an analytical approximation to Sz in the form of

where E is the ionization energy and the factor kz is a constant. A better esti­

mation of the ionization rate can be obtained by taking the electron distribution

function obtained from the numerical resolution of the Boltzmann equation. We

use an analytical approximation to the ionization rate in the farm of

• Nnekzo if Te < TL

Nnekz exp (r- +~+ ~ +~) if Te > TL
e e e e

(2.34)

(2.35)
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De

/-Le

Dion

/-Lion

kzo
TL
kz

Ë1

Ë2

Ë3

E4

Hz

Electron diffusion rate
Electron mobility
Ion diffusion rate
Ion mobility
Minimum electron impact inelastic collision frequency
Cut-off electron energy
Electron impact inelastic collision pre-exponential factor
Activation energy for inelastic process by electron impact
Activation energy for inelastic process by electron impact
Activation energy for inelastic process by electron impact
Activation energy for inelastic process by electron impact
Energy 105s per inelastic process by the electron fiuid

cm2 s-1

cm2 V-1 S-l

cm2 5-1

cm2 V-1 S-I

cm3 S-I

eV
cm3 5-1

eV
eV2

eV3
eV4
eV

•

Table 2.1: Plasma parameters for discharge space region with their units.

where k zo , k z , TL, È 1, Ë2 , Ë31 and Ë4 are constants. See Table 2.1 for their

units. Park and Economou [65] used a similar analytical approximation for RF

discharge in low pressure Ch.

The collision integral for the electron kinetic energy continuity equation

takes into account energy lasses by the electron fiuid due ta ionization and

excitation of the background gas. These losses are modeled as:

(2.36)

•

where ÏIzSz is the contribution for ionization process and E~~lHzSz repre­

sents contributions from other inelastic processes. The energy 10ss per ioniza­

tion is given by -Hz.

2.2·.2 Plasma model

The hydrodynamic equations can be closed to form a two-fiuid model of gas

discharge using the plasma kinetic parameters and transfer functions defined

in the previous section.

The particle number continuity equations for the electrons and positive ions
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8ne -
ât + V,.oJe = Sz, and (2.37)

anion --at + V,.-J ion = Sz (2.38)

where ne and nion are the electron and positive ion particle number densities.

The electron flux density, Je, and the ion flux density, J ion, are each defined

by a combination of a diffusion and a drift term:

The charge density is obtained by multiplying the particle number density by

the respective charge; -e for electron and +e for ion. The electric potential

distribution between the electrodes, <I>, taking into consideration the space

charge due to the particle distribution, is given by the Poisson equation:

where E is the electric permittivity. In the region without dielectric material

the permittivity is taken as Ea, the permittivity of free space. In the region

occupied by the dielectric barrier the permittivity is E = EQEr, see section 2.2.4.

As mentioned in the previous section, the ions are assumed to he in thermal

equilibrium with the background gas. The electrons are Dot in equilibrium with

the ions, but are assumed to be in equilibrium among themselves. The kinetic

energy continuity equation for the electrons, (2.19), can be simplified when

the transport energy of the particles is much less than their thermal energy

due to the peculiar motion. This can be argued physically for an electron gas

from the fact that the elastic collision cross section is much greater than the

inelastic collision cross section, which keeps their velocities randomized rather

than field directed. This assumption will be tested in section 4.2.1 once a

solution to the model's equations is obtained. Using the collision integral given

by equation (2.36), the electron temperature continuity equation is:

•

•

Je = -DeVrne + J1.ene Vr<P,

J ion = - Dion V,.nion - J1.ion nion Vr cp •

(2.39)

(2.40)

(2.41)

(2.42)



where qe is the electron heat flux that includes the enthalpy flux and the thermal

conductivity due to the peculiar motion of the electrons:
•
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5k -
qe = TTeJe - KeVrTe·

The electron thermal conductivity is:

- 5 Te
K e = -Dene-T '2 av

e

(2.43)

(2.44)

•

where Teav is an estimate of the average electron temperature. We use the

analytical approximation given by equation (2.35) for the inelastic collision

rates, Sz and Sz.
Ail the kinematic parameters of the plasma are grouped in Table 2.1.

2.2.3 Plasma-electrode boundary conditions

To uniquely specify the solutions of equations (2.37)-(2.42) each dependent

variable must have two boundary conditions in geometric space and one in

time. The boundary conditions are of the Dirichlet type or, more generally,

expressed as equations specifying the behavior of dependent variables at the

boundary.

At the plasma-electrode boundary the conditions for the electric potential

are, in geometric space, of the Dirichlet type:

(2.45)

The applied voltages at the anode and cathode are ~A(t) and q>c(t) respectively.

The frequency of the applied potential is too high for the ions to have time to

respond within each period. As a consequence, their density is practically

frozen, with a small diffusion at the electrodes. Therefore, the ion flux density

at the plasma-electrode boundary is

Secondary electron emission by ion impact on the cathode is considered. The

boundary condition for the electron density at the cathode is•
(2.46)

(2.47)



The factor ï represents the fraction of the ions with sufficient kinetic energy ta

expel an electron from the cathode.

Many authors, following Chung [55], considered the anode surface to be a

perfect conductor where the electrons and the ions recombine infinitely fast. In

this case, one would set ne=O at the anode. Graves [66] considers the electrons

to recombine at a finite rate, and writes the boundary condition for the electron

density at the anode as:

•
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(2.48)

•

where S is a unit normal vector directed outward from the plasma (pointing

into the anode surface). By comparing this equation with the definition of J el

equation (2.24), the electron recombination rate at the anode, kr , corresponds

to the velocity at which the electrons hit the anode. Therefore specifying the

rate at which the electrons recombine at the anode translates into specifying the

velocity of the electrons at the anode. Graves [66] and many authors following

him, such as Park and Economou [65], have taken the recombination rate kT

to be constant. This implicitly assumes a given electron temperature at the

anode surface since at a non-emitting surface the velocity distribution function

cannot be isotropie. Using equation (2.17) at the anode, taking velanode = kr

and assuming the transport energy of the particles to be negligible compared

to their thermal energy, we get:

(2.49)

By substituting this result in equation (2.48), the boundary condition for the

electron flux density at the anode becomes:

(2.50)

•
Lymberopoulos and Economou [85] used a similar boundary condition. How­

ever, their boundary condition for the electron temperature was incorrect, as

will he shown below.

The boundary condition for the electron temperature is not easy to specify

and remains an open question in the literature. Graves [66] derived an energy



equation boundary condition based on an energy balance equation at the sur­

face. Such a condition can be obtained only in the limit where the electron

temperature is in equilibrium with the field. However, this is not the case, par­

ticularly in the plasma sheaths, where the electrons are far from equilibrium.

In a recent analysis of polysilicon etching with chlorine by Lymberopoulos and

Economou (85], a similar boundary condition was used. This energy balance

boundary condition equates the electron heat flux at the surface to the net

balance between the absorption and emission of energy:

•
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where the energy lost by electrons being absorbed with temperature Te is given

by the first term on the right-hand-side, while the second term is the energy

gained by the electron fluid due to secondary emission of electrons at cathode

temperature T~. This energy balance equation can be expressed as an equation

for Te. Consider a non-emitting electrode, using equation (2.43) for qe we get:• 5k - - - 3kkr2 TeJe . S - KeS . VrTe = -2-neTe

then using equation (2.48) for Je· S yields after rearranging:

S .~ T. = 2kr Tau
r e 5D

e
e .

(2.51)

(2.52)

(2.53)

•

This implies that the temperature gradient at a non-emitting electrode is con­

stant, independent of the electric force acting on the electrons. This is phys­

ically incorrect. At the electrode the gradient of the electron temperature is

expected to depend on the electric field; if the electrons are going against the

field there should be a cooling of the electrons, while, if they drift toward the

electrode there should be a heating of the electrons. This was pointed out

by Wilcoxson and Manousiouthakis [67] without, however, explaining why the

energy balance boundary condition is incorrect. As mentioned before, this

boundary condition can only be derived if the electrons are in equilibrium with

the electric field. Wilcoxson and Manousiouthakis were not able to formu­

late the boundary condition for the electron temperature from first principles.



Since the electron-neutral molecule collision frequency is small, the electron

density continuity equation reduces to VroJe = 0, and therefore:

47

(2.54)
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Therefore, they fixed the electron temperature to a given value at both elec­

trodes. However, their numerical results still exhibited non-physical behavior

near the non-emitting electrode, the anode, regardless of the values used for

the electron temperature at the electrodes.

We can obtain a correct boundary condition for the electron temperature

based on physical considerations. Consider the region near the non-emitting,

absorbent surface. In this region the electron density is small compared to

that found over the bulk of the plasma. In the limit of small ne, the electron

thermal conductivity becomes negligible and the energy transport mechanism

is due to the enthalpy flux. Moreover, the electron-neutral molecule collisions

become negligible compared to the Joule heating term. Therefore, the electron

temperature equation reduces to:

5k
2"Vro (TeJe) = -eJe · E.

•

•
(2.55)

5k
TJe . VrTe = -eJe • E.

Assuming that the electron flux is not zero, and since the surface is absorbing

and non-emitting, in the limit of being sufficiently close to the surface, the

electron flux may be assumed to be in the direction of S. However, the electric

field is normal to the electrode in this region:

A 2e -
S· VrTe = - 5kS. E. (2.56)

•

This condition is consistent with the correct physical behavior. Consider the

caEe in which the electric field is directed toward the absorbing surface, which

yields S·E = E, and therefore a negative gradient for the electron temperature,

Le., a cooling of the electrons. This is physically correct sinee the force on the

electrons is -eE, i.e., to exert a force to push them away from the surface.

In summary, it has been shown that in the limit when the electrons are in

thermal equilibrium with the electric field, the gradient of the electron temper­

ature is independent of the electric field, by equation (2.53), which is physically



incorrect. However, a continuum analysis in the region close to the absorbing

surface gives the physically correct relationship between the gradient of the

electron temperature and the electric field, equation (2.56). Chung [55] showed

that a singularity exists for the electron temperature continuity equation at the

surface of a non-emitting conductor. Mathematically, this singularity was found

to be removable by using a boundary condition similar to equation (2.56). It

was argued by Chung that near the surface, in a region of few mean free paths,

the electron distribution function is completely out of equilibrium. This layer

is responsible for the s-iIrface electron temperature jump and affects the entire

electron temperature profile across the plasma. His analysis also considered

the case when the surface emits electrons. In this case he showed that fixing

the electron temperature to a given value was a correct boundary condition.

The boundary conditions used in this thesis for the electron flux density

and for the electron temperature at the anode are equations (2.50) and (2.56)

respectively. At the cathode the electron temperature is fixed to a given value:

•

•
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(2.57)

•

The results presented in section 4.2.2 will show that the boundary condition

given by equation (2.56) applied at the anode gives physically correct solutions,

and that fixing the electron temperature at the anode gives physically incorrect

solutions.

The applied potential at the electrode is periodic in time and acts as a

driving force for the system. When the plasma reaches steady state, all the

dependent variables must be periodic in time. Periodicity in the dependent

variables is the governing constraint in time.

2.2.4 Plasma-dielectric barrier boundary condition

We now consider the case where the electron emitting electrode is covered

with a dielectric material of a non-negligible thickness, compared to the inter­

electrode spacing. The gas discharge process in this configuration is called



silent discharge. The dielectric slab is often referred ta as the dielectric barrier.

The geometry of the electrode model is shawn in Figure 1.1.

There is no free charge inside the dielectric, i.e., ne = nion = o. Conse­

quently, the equations of the model, (2.37)-(2.42), simply reduce to the Laplace

equation for the electric potential in this region

•
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(2.58)

•

In this case, the interest lies at the plasma-dielectric interface, in particular,

how the discontinuity in the gradient of the electric potential and the charge

accumulation on the dielectric barrier affect the characteristics and response

behavior of the plasma ta the driving force. The normal component of the

electric displacement vector at the plasma-dielectric interface is discontinuous

by the amount of free charge deposited on the surface of the dielectric. See the

textbook of Lorrain and Corson [86], chapter 4. In terms of the unit vector

normal to the surface enclosing the plasma, 5, defined by Figure 2.1 a condition

on the normal components of the electric field on either side of the interface is

obtained according ta Gauss's law:

(2.59)

where we used the assumption that the dielectric barrier is a dielectric of class

A with f r the relative permittivity constant. In terms of the electric potential,

the condition becomes

(2.60)

•

We need a mechanism for charge accunlulation on the surface of the dielectric.

This will give boundary conditions at the plasma-dielectric interface for the

electrons and ions. If the net electron flux is directed toward the dielectric

barrier, i.e., Je· 5 > 0, then the electron attachment ta the dielectric surface

will occur at a given rate k:. The inverse mechanism, i.e., secondary emission

of electrons from the dielectric barrier iota the plasma due ta ion impact on the

barrier is considered if J ion ·5> o. These boundary conditions are similar ta



•
50 CHAPTER 2. THE EQUATIONS OF THE MODEL

plasma

•

Figure 2.1: Definition of the unit vector normal to the surface enclosing the
plasma.

those used at the electrodes; the dielectric barrier can he simultaneously both

an absorbing and an emitting surface. The boundary condition for the electron

density at the plasma-dielectric barrier interface is then

(2.61 )

where ltr is the electron secondary emission coefficient. The ion boundary

condition is the same as at the electrodes, see equation (2.46). The arguments

for using a drift only ion fiux at the dielectric barrier are the same as that used

for the electrodes. Furthermore, this condition gives good numerical stability-

Governing equations for the surface densities, Ue and Uion, are required to

complement the boundary equations. Continuity-type equations are fonnulated

for (je and Uion based on surface charge balance:

Using the boundary condition for ne given by equation (2.61) in equation (2.62),

followed by using E = - Vr <I> gives

•

and

BUe _ - tr
Bi - Je· S - kr U e (jion,

B(jion - tr
~ = J ion • S - kr O"e Uion'

BUe kU tr s- "r"7 l'li. ktrât = e ne + "Y /-Lion nion • v r '*' - r (je 0"ion'

(2.62)

(2.63)

(2.64)
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The first term on the right-hand-side is a source term for the surface charge that

exists if Je • S > 0; the second term is a loss term which exists if J ion . S > 0;

and, the last term is a loss term which represents electron-ion recombination at

the dielectric surface. Similarly using equation (2.46) in the governing equation

for O"ion, equation (2.63), gives:

(2.65)

•

•

The first term on the right-hand-side is the source term for the surface charge

that exists if J ion'S > 0 and the second term is the loss term due to electron-ion

recomhination.

The periodicity in time of the dependent variable may be broken due to

surface charge accumulation if recombination during one cycle does not equal

the amount of charges accumulated during that cycle.

AlI kinematic parameters of the plasma at the boundaries are gÏven in Ta­

ble 2.2.

Electron attachment rate at dielectric surface
Electron-ion recombination rate on dielectric surface
Secondary electron emission coefficient at cathode
Secondary electron emission coefficient at dielectric barrier
Dielectric barrier relative permittivity constant

Table 2.2: Plasma kinematic parameters at electrodes and dielectric barrier
boundaries with their units.

2.3 Non-dimensional form of the model's equa­
tions

The equations of the model must be put in a non-dimensional form to be

more tractable for obtaining numerical solutions. The scaling factors found

in Table 2.3 are used ta define the dimensionless variables of Table 2.4. The

scaling factors are chosen 50 as ta render the dimensionless variables in the

range of zero ta unity. The equations of the model, equations (2.37)-(2.42),
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N Background gas density cm-3

Na Average charge particle density cm-3

d Inter-electrodes gap length cm
v;, Electric potential scaling factor V
LI Frequency of applied voltage S-l

Tau Electron temperature scaling factor eVe

Table 2.3: Plasma scaling factors with their units.

may be recast using the dimensionless variables as:

•
8n+

f[3 Br + V·J+ = {3Sz

3 8 (n-T-) nz
;;f a + V-q- - JaJ- . VtjJ = -HzSz - L HzSz
~ T Z=l

V'2q'> + Q (n+ - n -) = 0

The corresponding dimensionless constitutive relations are

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)

(2.74)

•

The dimensionless ratios M-, M+, A z , and Az are aIl constants defined in Ta­

ble 2.5. Huang and Kushner [80] considered the electron distribution function

to be non-Maxwellian and computed the electron diffusion rate and mobility

as weIl as the energy transfer function to be functions of electron tempera­

ture using a Monte Carlo simulation technique. The calculated electron kinetic

coefficients were used in él: fiuid model to obtain the distribution of the self­

consistent electric field, the electron distribution, and the electron temperature
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Dimensionless spatial coordinate
Dimensionless time
Ion density
Electron temperature
Electric potential in discharge space
Electric potential in dielectric barrier
Electron surface density
Ion surface density

r/d
vt

nion/No
1', /TBVe e

q>/~

q>D/~

ae/(Nod)
aion/(No d)

•

Table 2.4: Dimensionless variables characterizing the plasma with their defini­
tians.

over geometric space. In this present work, only the energy transfer function

is considered to be significantly affected by the non-Maxwellian nature of the

electron distribution function. The dimensionless energy transfer function for

ionization and other inelastic collisions by electron impact on neutral mole­

cules, Fz and Fz respectively, are both approximated using a similar analytical

function:

Fzo ifT- < TL

exp (~ + (';~)2 + rf!fj + (.f!rl) if T- > TL
(2.75)

The dimensionless ratios used in the above equations are defined in Table 2.5.

Using the numerical method developed in the following chapter, it would be

straightforward to represent all the kinematic coefficients as functions of tem­

perature. Further, the kinematic coefficients for the ions could be represented

as functions of the electric field. The relative importance of each term is now

indicated by the dimensionless ratio. This will be discussed in section 4.2.1.

The equation for the electron temperature, equation (2.68), is manipulated to

remove the divergence of the electron density flux vector by using the equation

of motion for the electron density. The divergence of the electron heat flux is

• V·q- - V· (T-J- - KVT-)

- T-V·J- + J-. VT- - V· (KVT-).

(2.76)

(2.77)
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r
M­
M+

/3
Q
Jo
Az

A z
El
E2

E 3

E4

Hz
Hz

Electron characteristic diffusion time
Electron mobility to diffusivity ratio
Ion mobility to diffusivity ratio
Electron to ion diffusivity ratio
Characteristic electric field strength
Characteristic potential ta electron thermal energy ratio
Ionization coefficient
Inelastic process coefficient
A.ctivation energy to Teav ratio
Activation energy to Teav2 ratio
Activation energy to Teav3 ratio
Activation energy to Teav4 ratio
Energy loss to Teav ratio per ionization
Energy loss to Teav ratio per inelastic process

•
Table 2.5: Dimensionless ratios used in plasma equations with their definitions.

If the V·J- term is replaced using equation (2.66), then the divergence of the

electron heat flux becomes:

(2.78)

Substituting equation (2.78) into the governing equation for the electron tem­

perature~ equation (2.68), gives

3r ar- 2r 8n-
-n-- - -T-- +J-. (VT- - J. V4J) =
5 ~ 5 ~ 0

nz

V· (KVT-) - T-Sz - L HzSz .
Z=l

(2.79)

•

In this form the boundary condition at the anode for the electron temperature,

following the discussion of section 2.2.3, becomes evident.

2.3.1 Boundary conditions

The boundary conditions at the electrodes for the electric potential, as given

by equation (2.45), scale into the dimensionless farm,

(2.80)
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Similarly, the boundary condition for the ion density, equation (2.46), becomes

(2.81)

The boundary conditions for the electron density at the electrodes, as given by

equations (2.47) and (2.50), become:

(2.82)

at the cathode, and

(2.83)

at the anode. The electron temperature boundary condition at the cathode is

•
T- =T-c ,

and at the anode, using equation (2.56), is

(2.84)

(2.85)

Please see Table 2.6 for the definitions of the dimensionless ratios for the bound­

ary conditions.

kn
kC:
kR,
,a
€r
T-D/C

Electron recombination rate to De ratio at anode
Electron attachment rate to De ratio at dielectric surface
Electron-ion recombination rate to De ratio on dielectric
Secondary electron emission coefficient at cathode
Secondary electron emission at dieLectric barrier
DieLectric barrier relative permittivity constant
Electron temperature at dielectric/cathode surface

3rPTeav / (D~me)

k:d/De

Nok~d3/De

•

Table 2.6: Dimensionless ratios used for the boundary conditions with their
definitions.

At the plasma-dielectric interface, the boundary condition for the electric

potential, equation (2.60), becomes

(2.86)



The electron density boundary condition, equation (2.61), becomes•
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(2.87)

where the electron attachment to the dielectric surface term, k':. n - is considered

when the electron flu.x is directed towards the dielectric surface, i.e., J- .S > O.

The electron secondary emission term, -'YeTIt3 J+ . S, is considered when the

ion flux is directed towards the dielectric surface, i.e., J+ . S > O.

The ion density boundary condition at the dielectric surface is the same as

that at the electrode, which is given by equation (2.81). The electron temper­

ature at the dielectric surface is assumed to be known:

(2.88)

•
The equations of motion for the surface charge, equations (2.64) and (2.65),

described in terms of the dimensionless variables are

(2.89)

and

(2.90)

•

The electron attachment term, the second term of equation (2.89), is a source

term for a- and is considered if J- . S > O. The third term of equation (2.89)

is a sink term for (j-, which is taken into account if J+ . S > Q.

In the next chapter a finite element formulation is given to obtain an ap­

proximate solution to the two-fiuid model equations, given by (2.66), (2.67),

(2.69), and (2.79). The boundary conditions at the electrodes for the electric

potential, the ion and electron densities, and electron temperature are given by

the equations (2.80) to (2.85). At the plasma-dielectric interface, the bound­

ary conditions for the electric potential, the electron density, and the electron

temperature are given byequations (2.86), (2.87), and (2.88) respectively. The

equations of motion for the surface charge are (2.89) and (2.90).
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Chapter 3

Finite element formulation of the
III0 dei

In this chapter a finite element formulation is given to obtain an approximate

solution to the two-fluid model equations. The difIerentiai equations of the

model are recast into integral equations using a Galerkin weighted residual

method in section 3.1. To overcome the difficulties associated with the highly

non-linear nature of the equations, new Ulliversal matrices are developed in

section 3.2. This is an adaptation of a paper [87] presented at the Third inter­

national conference on computation in electromagnetics held at the University

of Bath, UK, April 1996.

In section 3.3 the procedure for assembling the contributions to the resid­

uais from each element iuto the global matrix is reduced to finding suros and

products of universal matrices in a manner independent of element shape, di­

mensionality, and arder. The solution in the time domain, which is also based

on the Galerkin method, is presented in section 3.4.

3.1 Weighted residuals of the model's equations

A solution to the governing equations of the model, equations (2.37)-(2.41), ta­

gether with the associated boundary conditions can be found numerically using

a classical finite difference scheme based on a discretization of the differential

operators %t and Vr . Such a direct method, sometimes called a strong for­

mulation, does not provide great fiexibility in mesh discretization, and more

57
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importantly for the present work, tends to complicate the inclusion of complex

boundary conditions. Another way to find a numerical solution to the gov­

erning equations is to use a weak formulation which consists of replacing the

differential equations, as in the weighted residual method, by integral equa­

tions. The finite element method consists of subdividing the domain of interest

into a set of subdomains, called finite elements, and applying a variational or

a weighted residual method over each finite element. We used the Galerkin

weighted residual method, which is widely used in engineering. The textbook

of Lapidus and Pinder [88] presents a thorough treatment with comparisons

to finite difference methods. Application of the finite element method in fLuid

dynamics is found in the textbook of Reddy and Gartling [89].

In this section we apply the Galerkin method to find an approximate solution

over the spatial domain only, the solution over time domain will be discussed

in section 3.4. The weighted residuals, for an element of volume V, of the

Poisson equation for the electric potential, and the electron, ion and electron

temperature continuity equations are:

(3.1)

(3.2)

(3.3)

•
(3.4)

respectively. For the case in which the element is inside the dielectric bar­

rier, the particle densities vanish and the electron temperature is set ta zero,

therefore the respective residuals are dropped.
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The weighted residuals of the equations of motion for the electron and ion

surface charge densities, equations (2:64) and (2.65), are:

R~- = No~.d hD [8~. - k:n. + "la J ion . S + k~U'Uion] W",dS, and (3.5)

R~+ = No~iondh
D

[8'::t
on

- J ion . S+ k';U'Uion] W",dS (3.6)

respectively, where SD is the area of the element on the plasma-dielectric sur­

face. The scaling factors multiplying the integrals in equatians (3.1) to (3.6)

scale the residuals ta dimensionless form. Using the dimensionless coordinate

system and dimensionless dependent variables, the residuals become:

(3.7)

•
[

8n- ]R~ = ln r aT + V·J- - Sz W ad11 , and (3.8)

Rt = .In [rp8;; + V·J+ - PS%] W",dl1 (3.9)

and the integral form of equation (2.79) for the dimensionless electron temper­

ature is:

=fn
(3.10)

•

The volume of the element in the dimensionless coordinate system is denated by

n. We remove the divergence terms in the above integrals by use of integratian­

by-parts followed by the divergence theorem. Performing integration-by-parts

on the first term of the residual for the electric potential, equation (3.7), gives

- ln V'2t/J Wadn - - ln [V· (t/J Wa) - V4>· VWa ] dn

- - 1 S. V4> WQdS + rVljJ· VWo:dn (3.11)!an ln

where the divergence theorem was used on the first term on the right-hand­

side. The surface which bounds the element of volume n is denoted by an.
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The sarne procedure is followed for the divergence terms V .J-, V .J+, and

V ·(K VT-) of equatians (3.8), (3.9), and (3.10) respectively:

R;; = ln [a;r- W" - r .VW" - SzW,,] an + in r .SW"dS (3.12)

R;; = ln [r,Ba;:w" - r· VW" - ,BSzW,,] an + fanr· SW"dS (3.13)

[
3rn- aT- ltv: _ 2rT- 8n- Ml: +
5 8T a 5 eT a

J-. (VT- - JoVifJ) Wa + KVT-· VWa +T-SzWa+

( HzSz + f HzSz ) Wa ] dO. - 1 K S . VT-WadS. (3.14)
Z=l hn

3.1.1 Surface terms of the residuals

Each adjacent element has the same surface contribution but with an oppo­

site sign, except at the plasma-dielectric boundary, due to the discontinuity in

the dependent variables, and at the electrodes since they represent the outer

boundary of the problem space. Therefore, the net contributions from all sur­

face integrals come from the surfaces at the plasma-dielectric interface and at

the electrodes.

Define R~ID and R~DID as the residuals associated with the cornmon edge

or face of two adjacent elernents, one just inside the plasma where the electric

potential is </J and the other just inside the dielectric barrier where the electric

potential is cPD. The net contribution R~·D + R~D1D is:

(3.15)

(3.16)•

where ~D is the common face of the two elements. As defined previously, S
is a unit vector normal ta the surface enclosing the plasma, c.f., Figure 2.L

Using the boundary condition for the electric potential at the plasrna-dielectric

boundary, equation (2.86), gives:

R~·D + R~DID = _ r [Er - 1sr. VifJ + Q(a+ - a-)] WadE.
}ED Er Er
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Define Rt.,E as an element's surface term for the ion density continuity equation

residual along the edge ~E on an electrode:

(3.17)

using the boundary condition given by equation (2.81) we get:

(3.18)

A similar expression is obtained for the residual at the surface of the plasma­

dielectric barrier. Define R~,E as the counterpart for the electron density:

(3.19)

•
Using the boundary condition for J- at the anode, equation (2.83), the residual

becomes:

(3.20)

At the cathode, the boundary condition for J-, equation (2.82), relates the

surface term of the residual for the electron density to the one for the ion

density:

(3.21)

Using the plasma-dielectric interface boundary condition for electron flux den­

sity, equation (2.61), the surface contribution ta the residual, equation (3.19),

is:

(3.22)

Aiso define RT,A as the surface term of the residual for the electron temperature

continuity equation for an element with the face E A on the anode:

Using the boundary condition given by equation (2.85) we obtain:

•
(3.23)

(3.24)
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The weighted residuals of the equations of motion for the electron and ion

surface charge densities, equations (3.5) and (3.6), expressed in terms of di­

mensionless ratios and dependent variables are:

- r [8a- 1'" ]R~ = JED r 8r - kc:..n- - "(U[3- M+n+S· V4J + k'R(j-a+ WadE, and

(3.25)

R:;.+ = hD [r,BÔ;; + M+n+S .V ri> + kR,Bu-u+] WacŒ. (3.26)

3.2 Universal matrices for an n-dimensional el­
ement

Many engineering problems, including gas discharge physics, using the finite el­

ement method require the integration of various combinations ofspace-dependent

functions, which indude the unknown fields. These integrals may be recast

into integrals over a generic element so that elemental integration matrices can

be computed once and for all. Methods for deriving such universal matrices

were presented by Silvester and Ferrari [90] and results were given for vari­

ous well-known matrices, induding the Dirichlet matrix and the metric matrix.

This section presents new universal matrices suited ta non-linear problems

and ta problems with material properties and source terms dependent on spa­

tial position, fields and their derivatives. Assembling the contributions to the

residual from each element into the global matrix can be reduced to finding

sums and products of universal matrices. This fOlmulation requires the use of

simplex elements with a single family of polynomial interpolation functions for

aIl quantities depending on space: source terms, material properties, and un­

known fields. The integrals contributing to the residual are most conveniently

computed in the local coordinates system (simplex coordinates) of the element.

The Jacobian of the transformation from the global geometric coordinates ta

simplex coordinates depends on the geometry of the element but not on the

coordinates. Therefore the J acobian, and aIl other quantities dependent on the

geometry, can be factored out of the integrals.
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Universal matrices are defined as functions of spatial dimensionality and the

polynomial order of the interpolation functions. The procedure of assembling

an element's contribution to the global matrix is then identical for any element

shape: line, triangle, rectangle, tetrahedron, etc. - even brick or hexahedron.

In the following section, universal matrices are presented for compu.ting inte­

grals involving integrands composed of multiple products of space-dependent

functions. These integrals are reduced to integrals of products of the polynomial

interpolation functions. Differentiation operators in the integrand are replaced

by differentiation matrices, another type of universal matrix, which are also

factored out of the integrals. Geometrie coefficients and node numbering for

the line, triangle, and tetrahedral elements are given.

3.2.1 Universal matrices

In the finite element formulation, the spatial domain of interest is subdivided

iota small elements of a given geometry. Each element has Nb nodes at which

the unknown fields, and aIl other quantities depending on spatial coordinates,

are either computed or known in advance. For simplex elements, the nodal

values are interpolated within the element using polynomial basis functions of

order Np, e.g.,

where n is the spatial dimensionality. The number of basis functions is Nb =
(Np + n)!/(n! Np!). The advantage of using the basic polynomials ROi (Np, Çi)

therefore in equation (3.27) ,pa is the value of function r/>(r) at node Q.

A typical member of the set of basis functions, Wa(r), can be written in

terms of a product of the basic polynomials Rai (Np, Çi) introduced by Silvester

and Ferrari [90]:

•

Nb

4J(r) = L Wa(r) 4Jo·
0=1

The basis functions Wa form an orthonormal basis,

n

Wa (ça ... çn) = II Rai (Np, çd,
i=O

(3.27)

(3.28)

(3.29)
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resides in the uniformity in the expression of the basis functions Wa(r) with

respect to spatial dimensionality.

Associated with each node of the element, denoted here by a, there is a set

of n + 1 indices Qi indicating the value of the simplex coordinate Çi at the node

(3.30)

•

The indices Qi can be generated automatically for a simplex element in an

n-dimensional space using the following pseudo-algorithm:

k=O

loop ka = lVp to 0, step -1

loop k i = Np - "-i-l to 0 1 step -1 (i = 1, n-2)

loop kn - 1 = Np - L?~a2 k l ta 0, step -1

k=k+l

Q=k

Qi = ki - 1 (i = 0, n)

Gn+l = Np - L:~o Qi

end loop

end laop

end loop

This pseudo-algorithm is easily implemented using a recursive function. Equa­

tion (3.29) has the following closure relations

•
n n

LOi = Np and LÇi = 1.
i=O i=O

The second closure relation is used in equation (3.29) to eliminate ço:

(3.31)

(3.32)
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Rm (N,ç) = { i/m ! II;;',,' (Nç - k) : >~ . (3.33)

Computing the contribution to the residual for a particular element gener­

ally consists of computing integrals of products of functions depending on space.

These functions are projected onto the basis functions1 as in equation (3.27)1

thereby reducing the integrand to a product of basis functions. The resulting

integrals are best computed in the local element coordinates. Figure 3.1 shows

the transformation of coordinates for the case of a triangular element. For

simplex elements the Jacobians :r depend on the geornetry of the element but

not on the coordinates. The J acobians are given by:

•
(3.34)

t

Figure 3.1: Transformation from global coordinate system ta local coordinate
system for triangular element.

A set of universal matrices can be defined for the integration of products of

two ta four basis functions. The double-product matrix is defined as

•
the triple-product matrix is defined as

QQ/3"Y - :r-1 lv WQWpW,. dV

ln WQ W/3 W,. dn1

(3.35)

(3.36)
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and the quadruple-product matrix is defined as

Here V is the element volume in geometric coordinates while n is the element

volume in simplex coordinates. Note that aIl the above matrices are symmet­

ric under the permutation of any index, therefore the number of independent

elements to compute per matrix is (Nb + Nw -l)!f(Nw ! (Nb - l)!), where NU}

is the number of basis functions in the integrand.

In the above integrals, derivatives of the space-dependent functions are often

found in the integrand. The derivatives with respect to spatial coordinates

operate on the basis functions: V4>(r) = E~l VWi(r) 4>i' Differentiation of

the basis functions of order Np will give polynomials of arder Np - 1. Since a

polynomial of order Np - 1 can be written in terms of aU the polynomials of

order Np, Silvester [91J introduced the differentiation matrices•

Vap-ycr :1-1i WaWpW-yWcr dV

- ln WaWpW..,ltVlTdn.

aWa Nb n .

-a = L LCij~{3Wt3.
X·

t P=l j=l

(3.37)

(3.38)

Using the orthonormal property of the basis functions and equation (3.28), the

différentiation matrices are given by

D~p = aWa
1 and Cij = açj.

86 node (3 aXi
(3.39)

•

From the construction of the basis polynomial function vVa , equation (3.32),

the derivative of W (r) with respect to Çi is

aWa = [R (N: C) aRai (Np, Ç,i) _ aRao (Np, ç) 1 R. (N, C.)].ac . Qo p, ~o ac . ac Ql p, ~1
~t ~t ~ ~~

n

II Rai (Np, çj) (3.40)
j=1
j#i

where ça = 1 - Ei=l Çi by the cIosure relation. Derivatives of the basic poly­

nomials RQi (lVp , Ç,i) are obtained by differentiation of equation (3.33):
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{

N/m! L~Ol II~~l (Nç - k) m > 1
8Rm (N, ç) k#;l

8ç = N/m! m=l .
o m=O

By substituting equation (3.40) into equation (3.39) and using equation (3.30)

to evaluate the simplex coordinates at nodes, the différentiation matrices be-

come:

D~~= aRQi(~p'Çi)1 ÎIRQj (Np,(3j/Np). (3.42)
âçt {i=:;l3i/N p j=O

j#i

For a given spatial dimensionality and polynomial order of the basis func-

tians, the differentiation matrices need only be computed once for aH the ele­

ments; they form a set of universal matrices. The particular geometry of an

element is taken into account by the J acobians and the Cïj coefficients when

any one particular element is formed. These are element specifie: they de­

pend on the geometry of the element and on the polynomial arder of the basis

funetions, but not on the coordinates. As a consequence, no element specifie

integrals need to be computed.

The transformation from global geometric coordinates ta simplex coordi­

nates and the set of {~, i = 0 ... n} for each node of the element is all that is

required to compute the above universal matrices and geometric coefficients (:7

and Cïj). Details are given in the following subsections for the line and triangle

elements.

Line element

The spatially one-dimensional case (n = 1) is the Hne element. Figure 3.2 illus­

trates a typical element. The transformation between the geometrie coordinates

ta the local coordinates is

(3.43)

•
The Jacobian of this transformation is the element length; :J = (al - ao). The

basis functions given by equation (3.29) are

(3.44)
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• •

•

----L----

Figure 3.2: Typical spatially one-dimensional element. The element size is L;
ao and al are the end points of the element; Xl and Çl are the geometric and
simplex coordinates respectively.

where the closure relation given byequation (3.31) has been used to eliminate

ça· Table 3.1 defines Go and al at each node. The number of basis functions is

Nb=Np+L

polynomial order
nodes Np = 1 Np = 2 Np = 3

a (ao, ad (aD, ad (ao, ad
1 1,0 2,0 3,0
2 0,1 1,1 2,1
3 0,2 1,2
4 0,3

Table 3.1: Node numbering for the Hne element. At each node a the pair
(ao, ad indicates the values of the simplex coordinates Ça and Çl respectively.

Triangle element

The triangle element is taken for the spatially two-dimensianal case (n = 2).

This element shape can be used ta decompase a polygon of any shape. Fig­

ure 3.3 il1ustrates a typical element. The transformation between the geometric

coordinates and the local coordinates is

• ( çl ) = :r-1 (YIO YII Y12) ( 1 )
çz Y20 Y21 Y22 ~~

(3.45)
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where
YIO = a2bo - aolht
Yu = b2 - bo, Yl2 = ao - a2,

Y20 = aOb l - albOt

Y21 = bo - hl, Y22 = al - ao·

The Jacobian of the transformation is twice the element area; J = 2A, which

Figure 3.3: Typical triangular element. The edges of the triangle are (ai, bi ),

(i=O to 2) in the geometric coordinates (Xl, X2)' Nodes are shown for the case
of interpolation polynomials of order 2 (Np = 2).

is computed as
1 ao bo

A =!.. 1 baIl·
2! 1 a2 b2

The basis functions given by equation (3.29), after using the closure relation

gÏven by equation (3.31) to eliminate ÇOl are

Wo (Çll Ç2) = Roo (Np, 1 - Çl - Ç2)

ROI (Np, çr) Ra2 (Np, Ç2) . (3.46)

•
The numher of basis functions is Nb = (Np + 1) (Np + 2)/2.

Table 3.2 defines ao, QI and a2 at each node. The differentiation matrix

D~{3 can he 0 btained from D~p by application of a permutation operator P

(3.47)
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polynomial order
nodes Np=l Np =2 Np =3

a (0'0, al, (2) (ao, ab 0'2) (0'0, al, 0:2)
1 1,0,0 2,0,0 3,0,0
2 0,1,0 1,1,0 2,1,0
3 0,0,1 1,0,1 2,0,1
4 0,2,0 1,2,0
5 0,1,1 1,1,1
6 0,0,2 1,0,2
7 0,3,0
8 0,2,1
9 0,1,2
10 0,0,3

Table 3.2: Node numbering for the triangular element. At each node a the
triple (ao, a17 a2) indicates the values of the simplex coordinates ço, Çl and Ç2
respectively.

Simplex elements possess topological symmetries that can he used to reduce

the number of matrices that must be computed, as identified hy Silvester [92].

The permutation operator transforms the node a(ao, al, Q"2) into the node

a'(aO I a21 ad corresponding to a "flipover" of the triangle shown in Figure 3.3.

The permutation operator P is black diagonal, each black being left-diagonal

of increasing size. The permutation matrix for basis functions of polynomial

order Np is the suh-matrix that comprises the first Nb rows and columns of the

permutation matrix for basis functions of polynomial order Np + 1. For basis

functions of polynomial order one and two, the permutation operators are

•
1

° 1
1 °

001

° 1 °100

(3.48)
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respectively. For polynomial order three, the permutation matrix is given by

1
0 1
1 a

0 0 1

p=
0 1 0

(3.49)
1 0 0

a 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

The multiple-product universal matrices for two dimensions are given by

11 11-';2
TO {3 = WaWp dÇ1dç2,

';2::=0 ';1::=0

and similarly for the QofJ-y and Vo,8'YCT matrices defined by equations (3.36) and

(3.37) respectively.

Tetrahedral element

The tetrahedral element is taken for the spatially three-dimensional case (n =
3). Figure 3.4 illustrates a typical element. The transformation between the

geometric coordinates and the local coordinates is

(3.50)

•

The matrix elements of the transformation matrix are:

YIO = (a3 b2 - a2b3)eo + (aob3 - a3bO)c2 + (a2bO- aO~)c3

Yu = (b3 - b2 )eo + (bo - b3)C2 + (b2 - bO)C3
Yl2 = (a2 - a3)eo + (a3 - aO)c2 + (ao - a2)c3
Y13 = (a3 - a2)bo + (ao - a3)b2+ (a2 - ao)b3

Y20 = (a l b3 - a3bdeo + (a3bO - aOb3)cl + (aOb1 - a1bo )c3
Y21 = (bl - b3 )co + (b3 - bO)C1 + (bo - bdc3

Y22 = (a3 - ar)co + (ao - a3)c1 + (al - aO)c3
Y23 = (al - a3)bo+ (a3 - ao)bl + (ao - ar)b3

Y30 = (a2bl - al~)Co + (aob2 - a2bO)cI + (a1bo - aobdc2
Y31 = (b2 - br)co + (bo - b2)CI + (bl - bO)C2
Y32 = (al - a2)eo + (a2 - ao)CI + (ao - ar)c2

Y33 = (a2 - ar)bo + (ao - a2)b1+ (al - ao)b2
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3

•

Figure 3.4: Typical tetrahedral element. The edges of the element are
(Cli, bi , Ci), (i=O to 3) in the geometric coordinates (Xl, X2, X3). Nades are shown
for the case of linear interpolation (Np = 1).

The Jacobian of the transformation is twice the element volume; :r = 2V,

which is

1 1 ao bo Co

V = 3~ 1 al bl Cl
1 a2 ~ C2

The basis functions, which are given by equation (3.29) using the closure rela­

tion given by equation (3.31) for eliminating ço, are

Wo: (Çl' Ç2' Ç3) = Rao (N'Jl 1 - Çl - Ç2 - Ç2) Ra1 (Np, çr)

R a2 (Np, Ç2) Ra3 (Np, Ç3) . (3.51)

•

The nurnber of basis functions is Nb = (Np + 1)(Np + 2)(Np+ 3)/6.

Table 3.3 defines ao, al, Q2 and Q3 at each node. The differentiation ma­

trices D~{j and D;{j can be obtained from D~{3 by application of permutation

operators p12 and pl3 respectively:

(3.52)
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•

nodes
C'l!

1
2
3
4
5
6
7
8
9
10
Il
12
13
14
15
16
17
18
19
20

Np = 1
(0'0, al, C'l!2, 0'3)

1,0,0,0
0,1,0,0
0,0,1,0
0,0,0,1

polynomial order
N p =2

(0'0, Qb 0'2, 03)

2,0,0,0
1,1,0,0
1,0,1,0
1,0,0,1
0,2,0,0
0,1,1,0
0,1,0,1
0,0,2,0
0,0,1,1
0,0,0,2

Np =3
(0'0, al, a2, 0'3)

3,0,0,0
2,1,0,0
2,0,1,0
2,0,0,1
1,2,0,0
1,1,1,0
1,1,0,1
1,0,2,0
1,0,1,1
1,0,0,2
0,3,0,0
0,2,1,0
0,2,0,1
0,1,2,0
0,1,1,1
0,1,0,2
0,0,3,0
0,0,2,1
0,0,1,2
0,0,0,3

•

Table 3.3: Node numbering for the tetrahedral element. At each nocle a the
quadruple (ao, al, a2, a3) indicates the value of the simplex coordinates ço, Çl,
Ç2 and Ç3 respectively.

The permutation operator p12 is defined ta transform the node a(ao, 0'1,02, Q!3)

into the node a'(ao, a2, ab 0'3), similarly the permutation operator p13 is de­

fined to transform the node a(ao, al, a2, 03) into the node (l(ao, a3, 0'2, ad·

The permutation operators are block diagonal, each black being of increasing

size.

As for the triangle element, the permutation matrix for the basis functions

of polynomial order Np is the suh-matrix made of the first Nb rows and columns

of the permutation matrix for basis functions of polYnomial order Np + 1. For

polynomial order up to three, the permutation matrix pl2 is given by
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•
1

0 1 0
1 0 0
0 0 1

0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 a
1 a a a a a
a a 1 a 0 a

pl2 = a 0 0 0 0 1
0 0 0 0 0 0 1 a 0 a
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 a 1 0 0
0 1 0 0 0 0 a a a 0
0 0 0 a 1 a a 0 a 0
0 a 0 a a a 0 a 1 a
1 0 0 0 0 0 0 0 0 0
0 0 1 a 0 a a a 0 a

• 0 0 0 a a 1 0 a 0 a
0 0 a a a 0 a a 0 1

(3.53)

3.2.2 IntegraIs on surfaces

An inherent strength of the finite element method is the simplicity and rigor

in the application of the boundary conditions. These are generally auxiliary

equations for the unknown fields at the surface enclosing the spatial domain of

the problem. The Ulliversal matrices defined in the previous section can be used

for the evaluation of the surface integrals arising in most weak formulations.

An important property of the simplex elements is that an element of spatial

dimensionality n has its boundary made of n + 1 elements of spatial dimen­

sionality n - 1. This property follows directly from the construction of the

polynomial basis functions WQ (r) chosen. Recall a typical member of the set

of basis functions, equation (3.29):

• n

WQ(~o, ... ,çn) = IIRQi (Np, Çi) .
i=O

(3.54)
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As shown in Figures 3.2 and 3.3, the simplex coordinate Çi corresponds ta the

distance from an internai point P ta the surface i of the element l. Define Li

as the surface i for which every point on that surface has Çi = o. The non-zero

basis functions on that surface are those having ~ = 0 since Rai (Np, 0) = c5"oiO

where 8o {:J is the Kronecker delta. As a resu1t, the member a of the basis

functions defined for the n-dimensional element evaluated on the surface Li of

the element is:

(3.55)

N p =l Np =2 Np =3
a on surface a on surface a on surface
Ea El E2 cl Ea El L;2 ci Eo L;l L;2 a'
2 1 1 1 4 1 1 1 7 1 1 1
3 3 2 2 5 3 2 2 8 3 2 2

6 6 4 3 9 6 4 3
10 10 7 4

n

Wol Ei = II Rai (Np, Çi) = W~~-l)
j=O
i#i

where W~~-l) is the member a' of the basis functions defined for the (n ­

1)-dimensional element. Lookup tables are defined in Tables 3.4 and 3.5 to

relate ci to a as functions of the surface L;i for the case n = 2 and n = 3

respectively. These tables are constructed by inspection of the node numbering

tables, Tables 3.1, 3.2, and 3.3, for the respective elements.

•
Table 3.4: Lookup tables for equation (3.55), they relate triangle element's
nodes a on faces :Ei , i = 0 to 2, to corresponding nodes cl of the line element.

Consider the integration of a product of two basis functions on a surface or

face E i of an n-dimensional element:

'7'-1 h T:fT W d~ -1 w(n-l)w(n-l) df"'\ - T(n-l)
v E l'y a tJ LJ - o.' ni ~,- al/J' •

1 Ei n ~ ~
(3.56)

•
Here Ei is the surface i of the n-dimensional element in geometric coordinates

while n is the volume of the (n -1 )-dimensional element in simplex coordinates.

1In this section, the terms surface and volume are used in a generalized sense. The volume
of a n-dimensional elements is the region delimited by the surfaces making the boundary of
the element.
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The relation between ci and ct, as weil {3' and {3, is given in Tables 3.4 and 3.5

as functions of the surface Ei . The matrix Tl~I3-;I) is the double-product matrix,

equation (3.35)! for the (n -l)-dimensional element. For the case where n = 1

the integral reduces trivially to Tl~ = 8a /3' The Jacobian :Til corresponds ta

the (generalized) area of the surface in the n-dimensional space.

•

Np = 1 N p =2 Np =3
ct on surface a on surface a on surface

La El L2 L3 a' Eo El L2 E3 cl LO LI E2 2:3 o.'
2 1 1 1 1 5 1 1 1 1 Il 1 1 1 1
3 3 2 2 2 6 3 2 2 2 12 3 2 2 2
4 4 4 3 3 7 4 4 3 3 13 4 4 3 3

8 8 5 5 4 14 8 5 5 4
9 9 7 6 5 15 9 7 6 5
10 10 10 8 6 16 10 10 8 6

17 17 Il Il 7
18 18 13 12 8
19 19 16 14 9
20 20 20 17 10

Table 3.5: Lookup tables for equation (3.55), they relate tetrahedral element's
nodes a on surfaces Li, i = 0 ta 2, to corresponding nodes Q' of the triangle
element.

Consider a parallelogram in three dimensional space having A and B as

coterminal sicles. Its area is given by liA x BII, writing

el al bl

AxB= e2 a2 ~

e3 a3 b3

where ei is the unit vector in the direction i in the geometric coordinate, A =

Er=l aiei, and B = Er=l biei- This can be generalized ta n dimensions. The

Jacobian is JE = (n-1)~An where the area An can he computed as the n-norm

of the vector:

(3.57)

an - l aO
1 - 1
~-l _ ag

el ai - a~

e2 a~ - ag1
A n =---

(n - l)!•
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where the surface is defined using n nodes each having n coordinates, e.g., node

i is defined with coordinates (ai, a~, ... , a~), i=O to n - l.

In practical applications, the surface integrals often involve the gradient nor­

mal to the surface of the unknown field. As an example, consider the following

surface integral:

on Ei nr S- W T;rT d~ - "'" ~ S- ni { (n-l)W(n-l) nJI _ . \l 0 YY {J LJ - :lEi L- L- iCijLrocf J~ l'VOl {J' d~{,
El cf i,j=1 n

(3.58)

•

where S is a unit vector normal to the surface pointing outward from the

enclosed element defined in the global coordinate system, its components are

defined as Si = S . €i. We used the differentiation matrices defined in equa­

tion (3.38). Using the double-product matrix for the (n - 1)-dimensional ele­

ment we get:

(3.59)

3.3 Weighted residuals using universal matrices

The spatial domain of the dependent variables is projected onto the polynomial

basis function of order Np (see section 3.2.1):

Nb

if>(x, r) = L Wo(x) cjJo(r) ,
0=1

Nb

n+(x, r) = L Wo(x) n~(r),
0=1
Nb

n-(x, r) = L ltVo(x) n~(r), and
0:=1

Nb

T-(x, r) = L Wo(x) T;(r),
0=1

(3.60)

•
where each spatial element has Nb nodes at which the unknown fields are com­

puted. Here the unknown fields are still time-dependent. To lighten the no­

tation we will use 4>0: to indicate the time-dependent unknown field ifJ(x, r) at

spatial node Cl!.



(3.61)

(3.64)

(3.65)

•
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The new expression for the electric potential residual R~, equation (3.IIL

after projection of dependent variables, is given by:

R~ = È[III. lnVW.· VW"dn - Q (nt - ni) ln W.W"dn] ,

where the surface integral has been omitted (the surface terms will be discussed

in the next section). Transforming the integral into the element's local coordi­

nate system and using the differentiation matrix for the derivative of the basis

functions as in equation (3.38), and using the double-product matrix defined

by the equations (3.35) gives:

~ n ~

R~ =:J L f/>d L CïjCik~11D~KT11" - :JQ L (nt - ni) Tdo.· (3.62)
5,11,11:=1 i,i,k=1 d=l

The same procedure is used for the residuals R~, R~, and R~, equations (3.12),

(3.13), and (3.14) respectively. Substituting the expression for the electron flux,

equation (2.70), into the residual R~, equation (3.12), we get:

R;; = ln [ra;;w" + (Vn- - M-n-VIII) . VWo - Azn-FzW.,] dn. (3.63)

We project the unknown fields, as in equation (3.60), and using the Ulliversal

matrices, the residual becomes:

Nb 8n- Nb n
~ 0 ~ -'" . kR~ = ft L- 8T Tdo. +:J L- n5 .!-- CijCik~11Do.KT11K-
5=1 0,11,11:=1 tJ,k=1

Nb n

:J L M-ni f/J'fJ L CijCïkD~KD~ÀQ 5K>" -
<5',11,,,,>"=1 i,j,k=1

Nb

:rAz L niF;Q5Tlo.-
d,Tl=1

The same procedure is repeated for the residual of the ion density continuity

equation, (3.13):

Nb 8n+ Nb n
5 ~ + . k

R~ = :rrf3 L 8T Too. +:J L- nô .~ CïjCik~11Do.KTTlK +
0=1 6,'fJ,II:=1 l,J,k=l

Nb n

J M+ L nt f/>'fJ :E CïjCik~KD~>.. Q OK>" -
O,Tl,II: ,>..=1 i,j,k=l

Nb

:rA z f3 L niF;QoT1Q'
<5',Tl=1
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Similarly for the electron temperature residual, equation (3.14), using equa­

tion (2.70) for the electron flux density, equation (2.73) for the electron thermal

conductivity, and equation (2.74) for the energy transfer function, residual Rr

becomes:

Nb (3 aT.- 2Bn- )RT = .:rr ~ -=n"i-TJ- - __0 T- Q5 Q -
Q L- 0 Br 5 8r TI TJ

0,1]=1

Nb n

:r L ni (T;; - JO <PK) L CïjCïk~71D:)..Q."ÀO: +
0,1] ,K,'>"=1 i,j,k=1

Nb n

.:rM- L ni 4>71 (T; - Jof/J>.) L CïjCïkDi."KD~pV5KpG: +
O,TJ,K,À,p=1 i,j,k=1

Nb n

:r L niTT/-T; L CïjCikD{I<;;D~pV51JICP +
O,1J,1Ç,À,p=1 i,j,k=l

Nb Nb nz
:rAz L niT;F;V51JI<;;Q + .:rAz L ni L HzF:QoT/Q, (3.66)

o,TJ,1\;=1 0,71=1 Z=1

where n is the spatial dimensionality and Nb is the number of basis functions:

Nb = (Np + n)V(n! Np!). The weighted residuals, equations (3.11), (3.13),

(3.12), and (3.14), are integrals of various products of space-dependent func­

tions. These integrals are replaced by SUffiS and products of matrices, as per

equations (3.62), (3.65), (3.64), and (3.66) respectively, without having to spec­

ify the element shape, dimensionality, or order. Therefore, mixing elements of

various shapes with the same order would be straightforward. The particular

geometry of an element is considered by the Jacobian, :r, and the coefficients

Cij, while the différentiation matrices D~tJ and the multiple-product matrices,

TQ{3, QQtJer, and Vo:tJerT are each universal for ail elements of a given shape and

order.

In the following section the surface terms of the residuals are expressed in

terms of the universal matrices.

3.3.1 Surface terms using universal matrices

The surface integrals are computed using the multiple-product universal matri­

ces for simplex elements of dimensionality n - 1 as presented in section 3.2.2.
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The surface tenns arising in the residuals R~ and R~D, equation (3.16L

projected on the polynomial basis functions with the integrals replaced by

universal matrices give:

Nb n

L 4J5 L SiCiiIYoT1T~na-;l)-
6.'1=1 i,j=l

(11 on Ek)

Q on E k

~ (+ _)T(n-1) (3.67)- LJ (J5 - Œ5 6'a' ,
Er 5

where: JEk is the Jacobian of the transformation between the global coordinates

and the local coordinates of the surface ~k; k is the face number of the surface;

and the lookup tables for 1]' = TJ'('Ek' TJ) (and all other indexes marked with

a prime) are given by Tables 3.4 and 3.5. The components of the projected

unit normal vector of the surface, 5, on the global coordinate i, are Si = S . ~.
Note that the normal vector to the surface is Si = JEkS .~, see section 3.2.2.

The surface terms of the residual of the ion continuity equation, equa­

tion (3.18), are given in terms of the universal matrices as:• Nb n

R a
+·E = - 'T~M+ ~ n+ '" ~ S- r· Di Q(n-l)

c.Jl.. L 5 \PTT L.- i...-ij flIC 5'K/ a"
6.J7.~=1 iJ=l

(5,K on E)

(3.68)

where ~ is a surface that encloses the plasma, including the electrodes and the

dielectric barrier interface.

The surface integral contribution to the electron continuity equation resid­

uaI, equation (3.20), is:

on EA 1/2

R- A ,..,. k ~ - (T-) Q(n-1)
a' = c.JEA R L n5 "( o'-ra'

5,"{

(3.69)

at the anode. At the cathode the surface integral R~'c, equation (3.21), re­

mains praportianal ta R~'c. At the dielectric barrier surface the integral R;·D,

equation (3.22), becames:

•
on Ev

R- D 'T.. kCT ~ -T(n-l)+
a' = c.JED - L.- n6 0'a'

o
Nb n

'7~D'VCTM+a-1 ""' +", ~ S~ ni Q(n-l)
c.Jl.. 1 fJ LJ no If/Tl L- iCij~/Ç O'K'Q"

cS.'1.~=l iJ=l
(o,/Ç on ED)

(3.70)



The electron attachment to the dielectric surface (term proportional to ka:..) is

considered when the electron flux is directed towards the dielectric surface, i.e.,

J- . S > 0, and the secondary electron detachment (term proportional to n +)

is considered when J+ . S > o.
The surface contribution to the residual of the electron temperature conti­

nuity equation, R~,A, given by equation (3.24), becomes:

•
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(3.71)

The residuals of the equatioDs of motion for the electron and ion surface charge

densities, R~- and R~+ respectively, are aIso written using the universal ma­

trices after projecting the dependent variables onto the polynomial basis:

•
'T.. r O~D Bai T(n-l) _ 'T.. k(T O~D -y(n-I)

- vED L a ô'0' vED - L n6 6'0' -
6 T 6

6,'7,11;=1
(Ô,x; on ED)

onED

'T.. kG" "'"" - +Q(n-l)
V ED R L...J a 6 a'7 6''7'0' .

6.'7

Similarly the integral R~+, equation (3.26), becomes:

(3.72)

(3.73)

•
3 .. 4 Time domain solution

A straightforward use of the universai matrices developed in section 3.2 to

obtain a finite element formulation in time and in geometric space, as developed

by Argyris and Schapf [93], was attempted without success. The stiffness of
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the two-fluid model equations is the cause of the failure, as is discussed in

more detail in section 4.2.1. The stiffness of the equations is mainly due to the

signmcantly different time scales of the ion and electron dynamics. An effective

approach ta avoid instability is to use independent basis functions in time and

in geometric space for the interpolation of nodal values within an element:

Np N;

4J(x, r) = L 2: Wi(x)Wk(r)<t>iik
i=l k=l

(3.74)

•

where the polynomial. basis function Wi of arder Np in geometric space and

of order N; in time are those defined in section 3.2. In this formulation the

geometric space and time domain, called space-time domain, is meshed using

rectangular elements as shawn in Figure 3.5. The Galerkin method can be

used with Wi (x) Wk (r) as weight functions_ This method was used by Yousfi,

Poinsignon, and Hamani [94] for linear interpolation in time and in geometric

space. Resolving the model's equations in the time domain can be treated

as a boundary value problem due ta the periodicity of the forcing functions.

However, in the present work, the restrictions on the time discretization are such

that one cannot, for practical purposes, mesh the whole space-time àomain at

once. Furthermore, the charge accumulation process on the dielectric barrier

breaks the periodicity in the dependent variable.

We adopt a scheme that integrates the solution in time from an initial con­

dition. The scheme is obtained from a space-time Galerkin formulation and is

based upon the work of Gardner, Gardner, and Zaki [95] for the solution of a

simplified Fokker-Plank equation.

We use a linear interpolation in time and write the interpolation of the

dependent variable q;, within a space-time element, as:

where 4Ji;k is the nodal value of 4> for node x = Xi at the time step k and

4>iik+1 - 4>iik is the accrued increment over a time step. Since the nodal values

4>ijk, i = 1 to Np, are determined by the previous time step, the unknowns are•
Np

4J(x, r) = 2: Wi(x) [4Ji;k + r (4)iik+l - 4Ji;k)]
i=l

(3.75)
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Xi+L

Figure 3.5: Space-time discretization, spatially one-dimensional case.
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•

the nodal values <Pi;k+l, i = 1 to Np. The space-time Galerkin method is used

to obtain an approximate solution with the Np weight functions Wi(x).

The computer memory required for this scheme corresponds to the resource

needed for the geometric space problem only. This permits mesh refinement

in the time demain without sacrificing mesh refinement in geometric space due

te memory restrictions. Furthermore the processing time grows linearly with

the number of time steps. This is significant since the number of time steps

cao he larger than the number of discretizatien points in geometric space by

an order of magnitude. Increasing the dimension in the geometric space is

straightforward when using the universal matrices. Figure 3.6 shows a typical

mesh for the case of two spatial dimensions using this scheme.
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tk6'----~---~---~---~

r·l

Figure 3.6: Space-time discretization for spatially two-dimensional case.

3.4.1 Validation of the method

The method was tested using the one-dimensional inhomogeneous heat equa­

tion:

(3.76)

in the finite interval 0 < x < 1, T > O. We assumed a homogeneous initial

condition T(x, 0) = 0 and the boundary conditions T(O, T) = T(l, T) = o.
The space-time Galerkin finite element method was used to obtain an ap­

proximate numerical solution to equation (3.76). The weighted residual of the

equation, amitting surface terms where the solution is constrained to be zero,

is:

1111 [~~a~ ]Ra = -aWo. + c2
-a -80. - sin(1rx)Wa dxdT. (3.77)

-r=O x=O T X x

Projecting the functions T(x, T) and sin(1rx) anto the polynomial basis func- .;

tians, as in equation (3.75), we get after integration:

Nb

Ra = L (Tp;k+l - T{j;k) T a8+ (3.78)
P=l

1 ~ ~

2~T L: (Tp;k+l + T8;k) D~")'D~uT'Y(T - ~TL: sin(7rx{j)To.p
P,'Y,u=l {j=l

where ~T is the time step and Ta;k is the nodal value of the dependent variable

u at node x = X a at time T = Tk. An analytical solution to equation (3.76) can



be obtained, see the textbook of Zauderer [96] p. 206. By applying Duhamel's

principle to the solution of the homogeneous heat equation, we get:
•
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(3.79)

•

The numerical solution obtained by minimization of the residual, equation (3.78),

is identical ta the analytical solution within numerical roundoff error.

3.4.2 Stability and convergence criteria

An important aspect of the discretization of the differentiaI operator is to assess

the stability of the scheme. Gardner, Gardner, and Zaki [95] performed a

stability analysis based on the Von Neumann theory. The discretization of the

time differentiation operator is a fully implicit backward difference which is

unconditionally stable.

Another important aspect is the condition required for the approximate

solution obtained from the numerical scheme to converge to the exact solution

of the differential equation as the mesh becomes increasingly refined. The

electrons, being much more mobile than the ions, limit the size of the time

step. The time step must be small enough to resolve the transit of the fast

electrons, present in the cathode sheath, across the discharge gap:

flt < d/ue (3.80)

•

where U e is the electron fiuid rnean velocity: U e = IJel/ne, and d is the dis­

charge gap. The criterion can he written using dimensionless ratios and vari­

ables:

(3.81)

Typically, a good criterion is to take the time step to be 1/10 of the smallest

value of the right-hand-side of the above equation, where n- and J- are taken

from a De converged solution.



Lo F(r)dr

l~o F(r)G(T) dT

l~o F(r)G(r)H(r) dr

•

•
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3.4.3 Space-time integration of the residuals

The residuals integrated in geometric space, given in section 3.3, now need

to be integrated in time following the example given for the validation case in

section 3.4.1.

The integration is carried out analytically using a linear interpolation in

time; the dependent variables are projected as shown in equation (3.75). The

resulting expressions for the residuais are too cumbersome to be given in detail.

Instead, we will give typical integrals involving functions dependent on time,

with and without differentiation with respect to time. These integrals are

implemented as functions in the computer program.

The time step, Llr, is taken to be constant. The integrations of one, the

product of two and three, time-dependent functions are:

l
- 2.6.T (Fk+ 1 + Fk ) ,

- ~Âr { Fk+1Gk+l + ~ (Fk+1Gk + FkGk+l) + FkGk } ,

- ~Âr { Fk+1Gk+lHk+l+

~ (Fk+lGk+lHk + Fk+lCkHk+l + FkGk+lHk+l+

FkGk+lHk+l + FkGk+1HIc + FkGkHk+1) +

FkGkHk} , (3.82)

where Fic = F(O) and FIc+1 = Fel) represent the function F at the begin­

ning and at the end of the kth. space-time element along the time axis. The

corresponding integrals involving differentiation with respect to time are:

•
I

I 8F(r) dT
.=0 eT

Lo a~r) G(r) dr -

Lo a~~r) G(r)H(r) dr -

(FIc+ 1 - Fk ) ,

12 (Fk +1 - Fk ) (Gk+1 + Ck ) , and

13 (Fk +1 - Fk ) (3.83)

{Gk+1Hk+l + i (Gk+lHk + GkHk+l) + GkHk} .
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3.4.4 Newton's method for nonlinear equations
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The residuaIs of the equations of the modeI, after discretization of the operators

and projection of the dependent variables ante the polynomial basis functions,

become a set of nonlinear algebraic equations which may be reduced to a set

of linear algebraic equations by the use of the Newton's iterative method. The

linearized equations can then be solved by the direct LV decomposition method.

This procedure is fairly standard for nonlinear problems and is discussed in

many textbooks, see for example the textbook of Reddy and Gartling [89].

To improve the efficiency of the LV decomposition, the nodes are numbered

using the reverse Cuthill-McKee ordering algorithm for profiled matrix storage,

developed by Liu and Sherman [97]. We used a LU decomposition Îor a profiled

matrix without pivoting. The algorithm was implemented from the pseudo­

algorithm given in Golub and Van Loan, §3.2.9, [98] for the full matrix.

The stiffness of the equations of the model is primarily due to two factors:

1. The large difference between the time-scales characterizing the electron

and ion dynamics.

2. The strong nonlinearities present in the inelastic collision terms.

As a consequence, first-order linearization methods, such as the Picard method,

generally exhibit a low rate of convergence. The advantage of Newton's method,

being a second-order scheme, is its fast rate of convergence compared to first­

order methods. However the radius of convergence is smaller for second-arder

methods than for first-order methods. Furthermore, as the stiffness of the equa­

tians increases, the radius of convergence decreases.

The most tedious part of this work was to obtain the first converged solution

of the model for the DC case (constant applied potential in time). The time­

dependent solution was obtained by marching forward in time to a converged

DC solution.

To obtain the solution for the De case it was necessary ta relax the New­

ton's method by retaining only a fraction of the suggested improvement to the
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solution obtained at each iteration. In sorne cases it was necessary to retain

only 1/1000 of the correction ta the solution and perform over two thousand

iterations before obtaining the full correction to the solution. Once inside the

radius of convergence, the residuals of the equations can be reduced by ten

orders of magnitude in about four to five full iterations.

In the next chapter, numerical solution of the two-fluid model equations

using the Galerkin method is presented. The weighted residuals are given by

equations (3.62), (3.64), (3.65), and (3.66) for Poisson's equation, the electron

and ion density continuity equations, and the electron temperature continuity

equation. The surface terms of the weighted residuals, where the boundary

conditions are used, are given by the equations (3.67) to (3.73). The equations

are integrated in time to obtain the solution for time-varying applied voltages

using an implicit scheme. The integration is carried out analytically using

linear interpolation as described in section 3.4.3.
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Chapter 4

Results

Low pressure gas discharges, typically below 5 Torr, are widely used in thin film

deposition and surface etching. So far, most of the continuum plasma models

have focused on modeling low pressure radio-frequency (RF) glow discharges,

due to the large application market in the manufacturing of microelectronics

devices and integrated circuits, and the various film deposition technologies

such as sputtering and plasma-enhanced chemical vapor deposition.

A landmark publication on low pressure continuum plasma models for DC

and RF discharge is the paper by Graves and Jensen [64]. To our knowledge, it

is the first model that self-consistently computes the electric potential distribu­

tion, electron and ion number densities, and electron temperature distribution

from a continuum model based on a boundary value problem in a bounded

region. Their formulation, like the one developed in this thesis., is based on

the formulation of Chung [54] for the study of Langmuir probe characteristics.

Wilcoxson and Manollsiouthakis [67] reviewed the formulation of Graves and

Jensen and reproduced a number of their results.

In section 4.1, the results of Wardlaw and Cohen [52] for the analysis of the

photoionization chamber are reproduced. The analysis of Wardlaw and Cohen,

being a simplified version of our model, can he reproduced while the simulation

results presented by Graves and Jensen [64] cannat he reproduced due to the

following shortcomings:

89
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1. No numerical value, or explicit relation in terms of known parameters, is

given for the electron thermal conductivity.

2. In [64], Table III presents the values of the dimensionless ratios used for

obtaining the Graves and Jensen results. These ratios, defined in Table II

of [64], can be calculated from the scaling parameters and gas parameters

used in the simulations given in Table IV of [64]. The characteristic

electric field strength, named Q in this thesis and r in [64], is calculated

to be 195.35 based on the physical parameters of Table IV, while their

numerical value is 488.9 in Table III. This is not consistent with the value

of the other dimensionless ratios. This means that one cannot change the

value of a physical parameter to match this value without causing other

dimensionless ratios to disagree.

3. The equation for the non-dimensional electron temperature, equation (17)

in [64], is missing a term proportional to the time derivative of the electron

density. Using the Graves and Jensen notation, the missing term is:

- ~T()ePe
5 Pe

(4.1)

•

where T is the characteristic electron diffusion time (named r in this

thesis), ()e and Pe are the dimensionless electron temperature and number

density respectively. Note that the first term in equation (17) of [64]

should be written using the dimensionless electron temperature, Be, rather

than using the (dimensional) electron enthalpy he. Furthermore, as seen

by the missing term above, their electron temperature equation is divided

by the electron density Pe. This is correct provided that Pe =1= O. Their

boundary condition for Pe at the anode is precisely Pe = O. Therefore their

dimensionless electron temperature equation is mathematically incorrect

and yields to an ill-posed problem. Therefore, one must assume that this

equation was not the one used in their computer program.
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Simulation results equivalent to the results of Graves and Jensen [64],

Graves [66], and Wilcoxson and Manousiouthakis [67] for a discharge geoœ­

etry without a dielectric barrier are reported in section 4.2. The identification

of the physically correct boundary conditions for the electron temperature and

number density at the anode is an important contribution to the research com­

munity. As a direct result, the electron temperature near the anode no longer

exhibits the non-physical behavior observed when the electron temperature is

assumed to be known at the anode.

In section 4.3 simulation results for discharge with a dielectric barrier cov­

ering the cathode are presented. No model in the literature has provided a

self-consistent coupling of the dielectric barrier and the plasma, as achieved in

this thesis. To understand the impact of the presence of the dielectric barrier,

the discharge conditions were kept identical to those of section 4.2. The results

illustrate the regulating mechanism of the barder on the discharge characteris­

tics.

The gas discharge conditions used in the simulations presented in this chap­

ter are given in Table 4.1. The only ïnelastic process used is ionization by elec­

tron impact on a neutral molecule. The parameters for the ionization rate were

taken from Park and Economou [72] for low pressure gas discharge in chIo­

rine. The parameters were obtained to equate the analytical approximation

to the ionization rate given by equation (2.35) with the rate constant calcu­

lated by solving the Boltzmann transport equation. The equation was solved

for different values of the reduced field, E/N, and the corresponding electron

distribution function was found. The rate constant was then calculated using

equation (2.32). Computer code for solving the Boltzmann transport equation

is readily available at the Computer Physics Communications Program Library

at Queen's University of Belfast. Morgan and Penetrante [20] developed a so­

called Boltzmann solver and made it available to the epe Program Library.
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De 1.81 X 106 em2 s-1

/-Le 3.62 X 105 cm2 V-1 S-l

Dion 400 em2 s-1

/-Lion 2000 em2 V-l S-1

kzo 8 X 10-15 cm3 S-1

TL 1.35 eV
kz 3.095 x 10-8 cm3 S-l

Ë1 -3.3403 eV
È2 -42.105 eV2

È3 81.313 eV3

E4 75.338 eV4

Hz lL5 eV
kr 107 or equation (2.49) ems-1

ka- 107 ems-1
e

ka- 100 em2 s-1
r

'Y 5% at electrodes, 1% at dielectric barrier
Er 5 and 50
<pA(t) 0 V
<pC -300 and -400 for De simulation V
<pC(t) -200 to -600, pulse and harmonie shape V

•

Table 4.1: Gas discharge parameters used to obtained simulation results.

The sealing parameters used are given in Table 4.2. The gas parameters

are defined in Table 2.1, while the scaling parameters are defined in Table 2.3.

4.1 Validation of the formulation

The aceuraey of the implementation of the model was validated by reprodue­

ing the results of Wardlaw and Cohen [52] for the continuum analysis of the

photoionization chamber.

The ionization mechanism that sustains the plasma is ionization by a light

source which photoionizes the eonfined gas. The analysis requires eomputing

the eleetron and positive ion density distributions which make up the plasma

and the electrie field distribution between the eleetrodes. The formulation of the
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N 1.78 X 1016 cm-J

No 4 X 109 cm-3

d 3 cm
~ 300 V
V 105 and 107 S-l

Tav 2 eVe

Table 4.2: Plasma scaling factors used to obtain simulation results.
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equations governing the continuum description of the photoionization chamber,

as given by Ward1aw and Cohen [52], is:

where N _ is the electron distribution, D_ and /-L- are the electron diffusion and

mobility coefficients respectively. The corresponding quantities for the ions are

N+, D+ 1 and J.L+. The electric charge is e, while E is the negative of the electric

field. The right-hand-side of both continuity equations for electrons and ions

represents the rates of charge particle production by photoionization; v is the

ionization rate per unit time and N n is the neutral particle density (background

gas).

In the V/ardlaw and Cohen formulation, recombination in the discharge

space as weIl as at the electrodes is neglected due to the low charge particle

densities that exist within a photoionization chamber. AIso, as with the model

presented in this thesis, the electrons and ions are assumed to have independent

temperatures, as denoted by Wardlaw and Cohen as T_ and T+ respectively.

The kinematic coefficients D± and !J.±, and the temperatures T±, are taken

to be constants throughout the chamber. As a consequence, the electrons are

in thermal equilibrium with the electric field while the ions are in thermal

equilibrium with the background gas. Furthermore D± and !J.± obey Einstein's

relation:

•

•

V-(-D_VN_+!J._N_E) =vNn

V· (-D+ V N+ - J.L+N+E) = vNn

V-E = -41re (N+ - N_),

-=--
!J.± e

(4.2)

(4.3)



To establish the boundary conditions, the electrodes are considered to be

perfectly absorbing: N_= lv+= 0 at the walls. Further, the electric potential

across the electrodes is prescribed by:

•
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I L E· dl = V
-L

(4.4)

where V is the potential difference between the anode and the cathode and L

is one-half the inter-electrode separation.

When the equations (4.2) are recast using dimensionless variables, following

Wardlaw and Cohen's notation, integrating the particle flux equations once

yields:

(4.5)

dn_ ~

dI - en_E - -a5 (x - 1 + J_) ,

dn+ ~
di; +n+E - -a5(x -1 + J+),

dÊ
dÎ

where J_ and J+ are integration constants and the dimensionless variables and

ratios are:
•

(4.6)

11 -
n±(±l) = 0, Edx = 'lj;.

-1
(4.7)

•

The solution to equations (4.5) together with the associated boundary condi­

tions, is greatly affected by the magnitude of the parameters a, é, 5, and 'lj;. It

is pertinent to examine their possible sizes.

In principle, the electron temperature can be equal to or greater than the

ion temperature, in practice it is much greater: 10-3 < e < 10-1
. Owing to

the great difference in the masses of the electron and the ion, 8 will he small:

8 ~ 10-4 . Although the applied voltage 'l/J can take on any value, for very large



voltages collisional ionization will occur and the formulation of equations (4.2)

will no longer be valid. The parameter Cl! is related to the photoionization

rate and the electrode separation length. For the ambipolar diffusion case, a

sufficiently high rate of ionization is required to form a quasi-neutral region at

the center of the cbamber. In this case Cl:: is usually greater than 104 •

The relations between Wardlaw and Cohen's dimensionless variables, de­

fined by equations (4.6) l and the dimensionless variables developed in this

thesis, are given by:

•
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QM+
Cl: = 14N A z /3,

+ 0

;y = Ql\1[ ± Eft = -!.M+E
1± 4 n, 2 '

Mm -1 + C
€ = M+' 6 = /3 ,and, 'if; = M </J .
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(4.8)

•

•

The left-hand-side of the above equations are the dimensionless ratios and vari­

ables used by Wardlaw and Cohen while the right-hand-sides are the corre­

sponding quantities used in this thesis. Our dimensionless constitutive equa­

tions can be recast in a form similar to equations (4.5) provided that:

Three simulations were presented by Wardlaw and Cohen [52] and are re­

produced here. Wardlawand Cohen's results were carefully estimated from

enlargements of their graphical plots. Figure 4.1 and Figure 4.2 correspond

to results presented by Wardlaw and Cohen in their Figures 7 and 8 respec­

tively. In these cases no potential is applied across the electrodes, and as a

consequence, the charged particles diffuse towards the electrodes and the distri­

butions of the particle densities are characterized by a plane of symmetry at the

center of the charnber, parallel to the electrodes. In the figures, the normalized

densities and the electric field are shown according to our norrnalization.

Figure 4.3 illustrates the photoionization case when a non-zero potential

difference is applied across the electrodes. This corresponds to Figure 9 of

Wardlaw and Cohen. The large electric field in the cathode region suppresses

the electron density in the vicinity due to the drift component of the particle



flux. As shawn in the nexll section, the electron temperature is no longer in

thermal equilibrium with the electric field.
•

•

•
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Electron and Ion Charge Densities

l0.80.4 0.6
Dimensionless Position

0.2
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• Electric Field
200
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0

-100

-200
0 0.2 0.4 0.6 0.8 l
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•

Figure 4.1: Charge densities (top) and electric field (bottom). Dimensionless
electron (solid bold Hne) and ion (solid line) densities. Dimensionless electric
field (solid line). Data points are estimates from Wardlaw and Cohen [52],
Figure 7. Solid lines are simulation results. a = 10\ € = 0.2, 'lj; = 0, and
8 = 4.48 X 10-4 •
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Electron and Ion Charge Densities
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Figure 4.2: Charge densities (top) and electric field (bottom). Dimensionless
electron (solid bold line) and ion (solid Hne) densities. Dimensionless electric
field (solid line). Data points are estimates from Wardlaw and Cohen [52],
Figure 8. Solid lines are simulation results. Q = 101 , E = 0.01, 'l/J = 0, and
8 = 10-4 •
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Figure 4.3: Charge densities (top) and electric field (bottom). Dimensionless
electron (solid bold line) and ion (solid line) densities. Dimensionless electric
field (solid line). Data points are estimates from Wardlaw and Cohen [52],
Figure 9. Solid Hnes are simulation results. Q = 104

, € = l,1/;= -30.2, and
8 = 10-3 .
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Geometry without dielectric barrier
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Simulation results for the geometry without a dielectric barrier are presented in

this section. Discharge for a constant applied voltage across the electrodes, the

sa called DC case, is presented in section 4.2.1. The boundary conditions for the

electron number density and temperature are those used in most publications,

i.e., assuming a pair of known electron temperatures at the electrodes and a

known electron mean velocity at the anode. In section 4.2.2, a doser look

at the electron temperature reveals the physically incorrect behavior near the

anode. Simulation with the new houndary conditions developed in section 2.2.3

results in the expected physical behavior. The time-dependent simulations

with applied voltages of the pulse and time-harmonic waveforms are presented

in section 4.2.3. In these simulations, only the physically correct houndary

conditions are used for ne and Te .

4.2.1 De solution

A simulation of the DC case without dielectric material in the discharge space

is presented in this section. The voltage applied at the cathode is -300 V while

the anode is grounded. The electron temperature is fixed to be 0.2 eV at the

anode and 1.0 eV at the cathode. The electron recombination rate at anode is

assumed to be kr = 107 cm/s. These parameters are typical for a low pressure

discharge of argon-like or chlorine-like gases.

The electron thermal conductivity coefficient is assumed to he independent

of the electron temperature: Ke = 5kDene /2. It will be shown in the next

section that if the electron thermal conductivity coefficient depends on temper­

ature (as it should), then the results will be incompatible with the boundary

condition for the electron temperature given by Graves [66], based on the heat

flux balance at the cathode.

The results for the electron and ion number densities are given in Figure 4.4.

As in aIl the figures that fol1ow, the abscissa is the dimensionless position

between the electrodes (when appropriate the dimensionless position within



the period), and the ordinate is the dimensional characteristic of the plasma.

The densities exhibit quasi-neutrality in the bulk region, and charge separation

occurs in the plasma sheath regions. The densities increase almost linearly from

the anode sheath ta their maxima located near x = 0.6, and then decrease more

rapidly approaching the cathode sheath. This is in contrast with the symmetric,

or near symmetric, beU shape obtained for the photoionization case.
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Figure 4.4: Electron (solid bold line) and ion (solid line) densities. Typical
solution for De case.

•

The corresponding electric potential and electric field are given in Fig­

ure 4.5. The electric field in the bulk region is very small which is characteristic

of a plasma. Most of the potential drop occurs in the cathode sheath which

corresponds a high electric field. Electrons emitted at the cathode by secondary

emission due to ion impact are accelerated by this large electric field. These

electrons attain a high temperature before entering the plasma region where

their temperature then drops as they approach thermal equilibrium with the

electron fluid. The electron temperature and ionization rate distribution are

shown in Figure 4.6. The ionization by electron impact rate exhibits a broad

peak, due to its linear dependence upon the electron density, followed by a high

narrow peak due to the rapid increase in electron temperature. The ionization
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Figure 4.5: Electric potential (top) and electric field (bottom). Typical solution
for De case. For convenience, the zero-value ordinate is plotted in each case.
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rate is then suppressed in the cathode sheath due to the small electron density

in that region. The ionization rate depends exponentially on the temperature,

which makes it very sensitive to temperature variation.
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Figure 4.6: Electron temperature and electron impact ionization rate. Typical
solution for De case.

•
The stiffness of the equations originates in the small region, called the cath­

ode pre-sheath, where the dependent variables experience large variations. In

this region, located approximately between 0.7 and 0.85, the electron density



decreases by more than 3 orders of magnitude, the electron temperature Ïn­

creases from 2 eV to 35 eV, and the electric field increases from 10 VIcm to

375 V/cm. In the same region the ion density decreases by only one order of

magnitude due to the low mobility of the ions. This behavior, observed in the

ionization shock wave present at the tip of the electron avalanche in overvolted

gaps, was studied by Albright and Tidman [56] with the simplifying assumption

that the electron temperature is constant throughout the shock zone. Abbas

and Bayle [99] extended this work by studying the variation of the electron

temperature over the whole shock zone with the assumption that the electron

gas is in local equilibrium with the electric field. The cathode pre-sheath, or

shock zone, is characterized by the transition between a region of relatively low

electric field, low electron temperature, and high plasma density (bulk space)

to a region of relatively high electric field, steep rise in electron temperature,

and low plasma density (sheath region) .

The dimensionless coefficient {3 corresponds to the ratio of the electron to

the ion diffusion coefficients. In the present simulations it is 104
• This yields a

strong feedback mechanism through the ionization source term of the ion par­

ticle continuity equation, right-hand-side of equation (2.67). A small variation

in the electron temperature will translate into, due to the exponential depen­

dence, a large variation in the ionization rate. This variation will be amplified

by the factor {3 in the ion continuity equation. The only feedback effect the

ions have on the ionization rate is through the Poisson equation. In response to

the change in the ionization rate, the correction in the ion density distribution

will affect the electric potential, which in turn will adjust the electric force ex­

erted on the electrons. As a consequence, the electron density and temperature

will be correeted. This indirect feedback meehanism, in addition to the phase

transition in the ionization shock zone, makes the two-fluid model very stiff.

The eleetron and ion contribution to the total eurrent density is shawn in

Figure 4.7. The total conduction eurrent is the SUffi of the electron and ion

CUITent densities. The eleetron eurrent density is the negative of the electron

•

•

•
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particle flux density, while the ion CUITent density corresponds to the ion par­

tiele flux density. This is due to the charge difference between the two species.

The ion flux density dominates in the cathode sheath where a small electron flux

density exists due to secondary electron emission. The electron flux density

dominates throughout the bulk of the plasma, as well as in the anode sheath,

due to the large diffusivity and mobility of the electrons.
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Figure 4.7: Electron (solid bold line) and ion (solid line) flux densities and
total conduction CUITent (dotted line). Typical solution for De case. For
convenience, the zero-value ordinate is plotted.

•

The diffusion and drift components of the electron and ion flux densities are

illustrated in Figure 4.8. The electron flux density results from the cancellation

of relatively large diffusion and drift terms, particularly in the shock zone. The

diffusion of the ions is a negligible contribution due ta their flux density. The

total cnrrent density is conserved, i.e., solenoidal. This is expected since the

charge creation mechanism creates an equal number of charges per event.

The electron thermal conduction and electron flux contributions to the heat

flux are shown in Figure 4.9. The thermal conduction dominates in the plasma

bulk region due ta the relatively large electron density. The contribution due

to the electron flux (enthalpy flux) dominates in the cathode sheath due ta the
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Figure 4.8: Drift (solid bold line) and diffusion (solid line) contributions to
electron (top) and ion (bottom) flux densities. Typical solution for De case.
For convenience 7 the zero-value ordinate is plotted in each case.
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high electron temperature and the nonzero electron particle flux caused by the

secondary electron emission.

The electron and ion Joule effects are shown in Figure 4.9. Most of the

discharge power is used for accelerating the ion gas in the cathode sheath. In

the shock zone the electrons drift toward the plasma bulk region while they

diffuse against the electric field. The net flux is directed toward the plasma

bulk region resulting in a net heating of the electron gas. At the anode the

electrons diffuse against the electric field, resulting in a cooling of the electron

gas. This will be analyzed further in the next section.
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•

4.2.2 Simulations with new boundary conditions at elec­
trodes

Simulation results based on different boundary conditions for the electron num­

ber density and temperature at the anode are compared.

Figure 4.10 shows the electron temperature near the anode for three sets

of boundary conditions. The boundary conditions developed in section 2.2.3,

which are:

•

Results obtained with these boundary conditions are referred to as "new

boundary conditions" in the figures of this section. Results were obtained with

the simpler boundary conditions, widely used in the literature, which assume

a known electron temperature and electron velocity at the anode:

Simulation results were obtained for kr = 107 cms-1 and Te
A = 0.2 eV, see

solid Hne in Figure 4.10. These are typical values for low pressure discharge.

We note that in this case the electron temperature becomes constant at the
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Figure 4.9: Electron thermal conduction (solid bold line) and electron flux
(solid line) contributions ta the electron heat flux term (dotted line) are shawn
in the upper plot. Electron (solid bold line) and ion (solid line) Joule heating
are shown in the lower plot. Typical solution for De case. For convenience,
the zero-value ordinate is plotted in each case.
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Figure 4.10: Electron temperature at anode, results using new boundary con­
ditions (solid bold line); Te fixed at 0.2 eV (solid line); and Te fixed at 0.05 eV
(dotted Hne).

anode, i.e., the electron fluid is not cooled in the small boundary layer as the

electrons diffuse toward the anode. This is clearly in contradiction with the

electric field obtained near the anode, see solid Hne of Figure 4.11. The field

gradient is at its highest value at the anode and decreases towards the bulk of

the plasma. Therefore the electron fiuid should experience greater cooling at

points doser to the anode. This is precisely the result obtained using the new

boundary conditions, see solid bold line of Figure 4.10.

In order to match the assumed electron temperature with the assumed elec­

tron velocity at the anode, T/ computed as:

TA = m ek2
e 3k r

yields Te
A ~ 0.05 eV for kr = 107 cm/s. Surprisingly many authors, such

as Park and Economou [72, 65], Graves and Jensen [64} , and Wilcoxson and

Manousiouthakis [67], do not use a constant Tt" and kr that satisfy the above

relation. The results obtained with matched Te
A and kr are improved, see

dotted line of Figure 4.10, however the non-physical behavior remains in a

small boundary layer near the anode.
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Figure 4.11: Electric Field at anode, results using new boundary conditions
(solid bold line); Te fixed at 0.2 eV (solid line).

It is important ta have physically correct boundary conditions due to the

strong nonlinearity of the equations of the mode!. The electric field in the

anode sheath is affected by the choice of boundary conditions for the electron

fluid as shawn in Figure 4.11. This in turn will affect the particle densities

distribution and electron temperature distribution throughout the plasma.

The importance of the electron thermal conductivity coefficient, Ke , and

its dependence on the electron temperature, is not studied in the literature.

Recalling the expression for Ke given by equation (2.29):

- 5k Te
K e = 2 Dene Tav'

e

Graves and Jensen [64] cansidered Ke ta be dependent on both the electron den­

sity and temperature, however in a following publication, Graves [66] drapped

the temperature dependence by using Te=Teav in Ke. This simplification was

not justified, however many authors, including Park and Economou [72] and

more recently Lymberopoulos and Economou [85}, followed this simplification.

Figure 4.12 shows the impact on the electron conductivity term of the heat

flux due to the temperature dependence of Ke . The thermal conductivity in the



bulk of the plasma is reduced when Ke is scaled using Te, indicating a lower

temperature in the bulk of the plasma than the average value expected using a

Maxwellian distribution fonction for the electrons. In the cathode region, the

electron conductivity becomes relatively important when Ke is scaled with Te

due to the high temperature. As a consequence, the heat flux in the cathode re­

gÏon is dominated by the electron conductivity, leading to a non-negligible heat

flux directed toward the anode from the plasma sheath as shown in Figure 4.13.
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Figure 4.12: Electron conductivity term: results using the electron conductivity
Ke dependent on ne and Te (solid bold line); and the case where Ke depends
on ne only (solid Hne). For convenience, the zero-value ordinate is plotted.

This is significant in terms of the boundary condition for the electron tem­

perature since the cathode is an electron emitting electrode. The flux balance

boundary condition for the electron temperature, used by Graves [66] and sub­

sequently by Lymberopoulos and Economou [85], given by equation (2.51),

reduces to

q• . S = -"(J.on • S Gkr;:)
for an emitting surface, which implies that the net heat flux at the cathode

is due to the secondary electrons emitted at temperature Tf by ion impact
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Figure 4.13: Electron heat flux at cathode: results using the electron conduc­
tivity Ke dependent on ne and Te (solid bold Hne); and the case where Ke

depends on ne only (solid tine). For convenience, the zero-value ordinate is
plotted.

on the electrode. This is in contradiction with the obtained results. It is

physically unjustifiable to assume a priori that the net heat flux at the electrode

will be dominated by the flow of particles, one has to keep in mind the fluid

nature of the model when considering the boundary conditions. As discussed

in section 2.2.3, we assume a known value for the electron temperature at the

emitting electrode.

4.2.3 Time-dependent discharge case

•

Simulation results are presented in this section for time-dependent discharge

over the geometry without a dielectric barrier. The applied voltage at the cath­

ode is shown in Figure 4.14; the anode is assumed to be grounded. Plasma

characteristics were studied as functions of the applied potential at the elec­

trodes. Time-harmonic and pulse-waveform applied voltages were used with a

frequency or repetition rate of 10 MHz. The results show that the plasma char­

acteristics, averaged over the period, are not significantly affected by the shape

of the applied voltage. This will no longer be the case for simulations involving



a geometry with a dielectric barrier. As expected, the plasma characteristics

depend significantly on the voltage difference between the anode and cathode.•
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Figure 4.14: Electric potential applied at the cathode: pulse-waveform cases
(solid bold, dotted, and light dotted lines) ; time-harmonic case (solid line) .
The time scale is normalized with respect ta the scaling period (l/v).

The conduction currents at the cathode for pulse discharge cases are shown

in Figure 4.15. Due to computer resource constraints, most of the simulations

were computed for only two complete periods. However stability analyses were

performed with a test case and showed good stability over 10 periods. The

results are not expected to be significantly affected by the fact that periodicity

was not obtained since the plasma characteristics vary much more within a

period than from period to periode

As expected, the conduction current increases as the voltage between the

electrodes increases.

•
CUITent Density at the Cathode
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The increase of the current is not linear, as
shawn in the figure at left. In this figure the
current density at the cathode is plotted as a
function of the applied voltage at time r = 0.4
for simulations with pulse-waveform applied
voltages.
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Figure 4.15: Total (electron plus ion) conduction CUITent density at the cathode.
The shape of the applied voltage is a pulse-waveform: from -400 V to -600 V
(solid bold line); from -300V ta -500V (dotted line); and from -200V ta
-300 V (solid line). The time scale is normalized with respect to the scaling
period (ljv) .

••

The electric field and electron temperature are shown at four times in the

period in Figure 4.16. The variation of the applied potential cause variations

in the dependent variables mainly in the cathode sheath. Note that when the

applied potential is maximum the electric field also reaches its maximum, as

shawn by the solid Hne in Figure 4.16, and the field in the anode sheath is at

a minimum. This is related to the ambipolar diffusion mechanism discussed

in section 1.1. The ion drift increases when the field increases in the cathode

sheath, consequently the electric field in the anode sheath is reduced to relax

the opposition of the field to the diffusion of the electrons in arder to keep the

plasma in quasi-neutrality.

The peak electron temperature in the cathode sheath varies considerably

due to the modulation of the applied voltage. However the electron density

is very small in that region, and overall, a small modulation of the electron

density near the plasma sheaths is incurred by the time-varying applied p~

tential. The ion density is practically not affected by the modulation of the
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Figure 4.16: Electric field (top) and electron temperature (bottom) at different
times in the period (T): 0.1 T (solid bold Hne); 0.4 T (solid Hne); 0.6 T (dotted
!ine); and 0.9 T (light dotted Hne). Solution for pulse case (-400 V to -600 V).
For convenience, the zero-value ordinate is plotted in the upper plot.



Electron Impact Ionization Rate

applied potential since it does not have time to respond at the 10 MHz fre­

quency. Note the symmetric bell shape of the electron temperature peak in

Figure 4.16, compared to the result obtained for the De case, shown in Fig­

ure 4.6. The difference is due to the different electron thermal conductivity

coefficients used, see section 4.2.2.

The electron impact ionization rate, shown in Figure 4.17, and the electron

flux density, shown in Figure 4.18, show considerable modulation due to the

time-varying applied voltage. Note that the electron flux is out-of-phase with

the applied voltage, which denotes the capacitive nature of the discharge. The

large modulation of the electron flux shows that the electrons move back and

forth in the discharge space at the applied frequency. This increases their prob­

ability to experience inelastic collisions with the background gas, and translates

in a greater ionization rate, by an order of magnitude, compared to the rate

obtained for the De case shown in Figure 4.6.

•

•
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Figure 4.17: Electron impact ionization rate at different times in the period
(T): 0.1 T (solid bold line); OAT (solid line); O.6T (dotted Hne); and 0.9T
(light datted Hne). Solution for pulse case (-400 V ta -600 V).

The period-averaged plasma characteristics show little difference between

the time-harmonic and pulse-waveform applied voltages. Figure 4.19 shows the
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Figure 4.18: Electron flux density at different times in the period (T): 0.1 T
(solid bold !ine); OAT (solid line); O.6T (dotted Hne); and O.9T (light dotted
!ine). Solution for pulse case (-400 V to -600V). For convenience, the zero­
value ordinate is plotted.

period-averaged eleetric field and period-integrated ionization rate obtained

from simulations using time-harmonic and pulse-waveform shape applied volt­

ages at the cathode. The other dependent variables also exhibit little difference.

The rise times of the harmonie wave is 2.5 times the rise time of the pulse as

seen in Figure 4.14. On one hand, the ions are not sensitive to the time-varying

voltage since they are too massive to respond. On the other hand, the electrons

are tao mobile to be affeeted by the difference in the rise times between the

harmonie wave and the pulse shape.

Figure 4.20 shows the period-averaged electric field and electron temper­

ature for two simulations having the same pulse shape, but different nominal

voltages. As expected, the electric field and electron temperature increase in

the cathode sheath as the nominal voltage increases. However, the thickness

of the plasma sheaths, the particle densities, the electric field, and the electron

temperature are not appreciably changed.

The ionization rate shown in Figure 4.21 exhibits, as expeeted, a higher

peak for the simulation having the greater applied potential at the electrodes.
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Figure 4.19: Period-averaged electric field (top) and period-integrated electron
impact ionization rate (bottom), for the pulse-waveform (solid bold line) and
time-harmonic (solid line) voltage cases. Solutions for applied voltage from
-400 V to -600 V. For convenience, the zero-value ordinate is plotted in the
upper plot.
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Figure 4.20: Period-averaged electric field (top) and electron temperature (bot­
tom). The applied voltage is a pulse-waveform: from -400 V to -600 V (solid
bold Hne); from -300 V ta -500 V (solid Hne). For convenience, the zero-value
ordinate is plotted in the upper plot.
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Figure 4.21: Period-integrated electron impact ionization rate. The applied
voltage is a pulse-waveform: from -400 V to -600 V (solid bold Une); from
-300 V to -500 V (soIid line) .

However the smaller peak near the anode, which exists only for the lower

applied voltage case, is less obvious. This secondary peak, located inside the

plasma bulk near the anode sheath, results from a local heating of the electron

fluid as seen by the electron Joule heating density in Figure 4.22. This region

of local heating is followed by a cooling of the electrons in the anode sheath.

The formation of the secondary peak results from the oscillatory motion of the

electrons in the plasma, as observed by the electron flux density in Figure 4.18.

The ionization mechanism, being a cumulative effect over the period, occurs

when the electrons drift with the electric field (dotted line in Figure 4.18). On

average, the electron flux density is dominated by the diffusion of the electrons

against the electric field in that region, as seen in Figure 4.23, which is a

cooling mechanism. However the modulation of the electron temperature is

such that the heating of the electrons during the part of the cycle when their

net motion is to drift with the electric field is more important than the cooling

experienced during the part of the cycle when their diffusion against the field

is the dominant transport mechanism.
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Figure 4.22: Period-averaged electron (top) and ion (bottom) Joule heating
densities. The applied voltage is a pulse-waveform: from -400 V to -600 V
(solid bold Hne); from -300 V to -500 V (solid Hne). For convenience, the
zero-value ordinate is plotted in the upper plot.



The period-averaged total conduction CUITent density is shown in Fig­

ure 4.23 for the two simulations with different nominal applied voltages. The

total conduction current is the sum of the electron and ion current densities.

The electron current density is the negative of the electron particle flux density,

while the ion CUITent density corresponds to the ion particle flux density. This

is due to the charge difference between the two species. The simulation with

the greater applied voltage differential across the electrodes exhibits a much

larger current throughout the discharge gap. This is consistent with the obser­

vations made at the beginning of this section regarding the conduction CUITent

obtained at the cathode.

The period-averaged electron and ion Joule heating densities are shown

in Figure 4.22 for two simulations obtained with different nominal applied

voltages. The ion Joule heating in the cathode region is three times greater

when the applied nominal voltage is increased by 33%. The applied voltage

directly contrais the ions' kinetic energy at the cathode, which is the desired

feature for thin film deposition and surface etching. The larger ion flux at

the cathode translates into a larger secondary electron emission as seen in the

electron Joule heating density.

The total conduction current density and displacement current density are

given at four times in the period in Figure 4.24. By its nature, the plasma

contains the conduction current with a negligible displacement current. The

displacement current is located in the plasma sheath. The total current density,

being the SUffi of the conduction plus the displacement current, is conserved at

all times in the period, as shown in Figure 4.25.

•

•

•
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Figure 4.23: Period-averaged electron flux density (top) and periad-averaged
total conduction CUITent density (bottom). The applied voltage is a pulse­
waveform: from -400 V ta -600 V (solid bold Hne); from -300 V ta -500 V
(salid line).
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Figure 4.24: Total (electron plus ion) conduction current density (top) and
displacement current density (bottom) at different times in the period (T): 0.1 T
(solid bold Une); QAT (solid Hne); 0.6T (dotted tine); and O.9T (light dotted
line). Solution for pulse-waveform case (-400 V to -600 V). For convenience,
the zero-value ordinate is plotted in each case.
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Figure 4.25: Total current density (total conduction plus displacement) at dif­
ferent times in the period CT): 0.1 T (solid bold line); 0.4 T (solid line); 0.6 T
(dotted line); and 0.9 T (light dotted Hne). Solution for pulse-waveform case
(-400 V to -600 V).
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The results from simulations for a discharge geometry with a 3 mm thick dielec­

tric barrier (representing 10% of the inter-electrode space) covering the surface

of the cathode are presented in this section.

A parametric study is performed to demonstrate and understand the reg­

ulating effect of the dielectric barrier on the discharge. Two permittivity con­

stants were used, f r =5 and f r =50; and the applied voltage was set in the range

of -300 to -600 V using both time-harmonic and pulse-waveform excitations.

The strong nonlinear response of the plasma to the discharge conditions re­

stricts us to vary only one parameter between simulations in order to clearly

understand the effect of that parameter.

Furthermore, results are obtained from simulations which assume a static

temperature for the electron fluid. Therefore, Te is taken to be constant and

uniform throughout the discharge space. As shown in section 4.2.1 this assump­

tion cannot he justified in the ionization shock wave. However, for the purpose

of this study, this assumption will permit us to focus on the effect of charge

accumulation on the surface of the dielectric barrier and to show that the regu­

lation mechanism of the barrier on the discharge originates in the modification

of the thicknesses of the cathode sheath and ionization shock wave regions.

In section 4.3.1, results are presented for simulations of DC discharge as­

suming no charge accumulation on the surface of the dielectric. Charge accu­

mulation is studied with a constant applied voltage: in section 4.3.2 assuming

a static electron temperature; and in section 4.3.3 for a self-consistent electron

temperature (full model).

Finally, discharge with a time-varying applied voltage is studied for the full

two-fluid plasma model in section 4.3.4.

4.3.1 De solution

Results from simulations for the DC case are presented in this section. The

cathode is covered hy a dielectric harrier occupying 10% of the discharge space.



Two permittivity constants for the dielectric material are considered, Er =5 and

Er =50. In the figures, the plasma-dielectric barrier boundary is marked by an

arrow (il).

Simulations were conducted for discharge conditions for both -300 V and

-400 V applied at the cathode (with respect to grounded anode). For simula­

tions assuming a static temperature for the electron fluid y a temperature of 1.6

eV is assumed. This constant electron temperature was used in the ionization

rate equation (2.35).

The electric potential distribution is shown in Figure 4.26. Inside the di­

eIectric barrier the potential is linear since no free charge exists. The potential

distribution from simulations with a barrier of different permittivity, with aIl

other parameters unchanged, exhibits a difference only at the piasma-dielectric

boundary and inside the barrier (dotted and light dotted lines).
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Figure 4.26: Electric potential when the cathode is covered with a dielectric
barrier of 3 mm thick (il). Full model case with Er=50 and -400 V applied
at the cathode (solid bold line); Er =5 and -300V applied at the cathode (solid
tine). Electron fluid with a static temperature case, Er =50, and -300 V applied
at the cathode (dotted Hne); Er =5 and -300 V applied at the cathode (light
dotted line). For convenience, the zero-value ordinate is plotted.

Results from simulations for the case with a static temperature for the



electron fluid compared to the case without that assumption (full model) show

a difference mainly in the cathode sheath (Figure 4.26, solid Hne and light dotted

Hne). The potential distribution is more sensitive to the applied potential at

the cathode than ta the permittivity of the dielectric barrier.

Simulation results for an applied voltage at the cathode of -400 V compared

to -300 V, using the full model, present differences not only in the dielectric

barrier but also in the whole cathode sheath and, more impartantly, yield dif­

ferent sheath thicknesses.

The electric field is shawn in Figures 4.27 and 4.28. In Figure 4.27 the

simulation results are shawn for cases with static electron temperature and

with different material permittivities (solid and dotted Hnes) . Note the larger

discontinuity in the electric field at the surface of the dielectric barrier for the

higher permittivity constant. For comparison, simulations using the full model

are also shown (solid bold line).

The electric field extends farther into the discharge space when the electron

temperature is computed self-consistently, indicating a thicker plasma sheath.

The plasma sheath increased further as the applied voltage was increased as

shown in Figure 4.28.

As it was observed for results obtained with a static electron temperature,

the electric field distribution in the plasma sheath is relatively unchanged when

a different material permittivity is used, compared to the change in the field

distribution when a different applied voltage is used. The plasma is confined in

a much reduced region when the applied voltage is increased. For the geometry

without a dielectric barrier, converged De solutions could not be obtained for

an applied voltage of -400 V, indicating a degeneration of the discharge towards

an uncontrolled breakdown.

The electron and ion densities obtained from simulations with static elec­

tron temperature, and from the full model are shown in Figure 4.29. The much

larger density distribution for the static electron temperature case is needed

ta sustain the discharge (the ionization rate depends linearly on the electron

•

•

•
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Figure 4.27: Electric field when the cathode is covered with a dielectric barrier
(n). Full model case with tr=5 (solid bold line). Electron fluid with static
temperature case, tr=5 (solid line); tr=SO (dotted line). The applied potential
at the cathode is -300 V. For convenience, the zero-value ordinate is plotted.
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Figure 4.28: Electric field when the cathode is covered with a dielectric barrier
(-0-). Full model case with tr=50 and -400 V applied at the cathode (solid bold
line); tr=5 and -400 V applied at the cathode (dotted line); tr=5 and -300 V
applied at the cathode (solid Hne). For convenience, the zero-value ordinate is
plotted.



number density). The sustaining mechanism in the full model is the high tem­

perature gradient in the ionization shock wave and the high value in the cathode

sheath, see Figure 4.30.
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Ion and Electron Densities

Figure 4.29: Electron and ion charge densities when the cathode is covered
with a dielectric barrier with Er =5 ("ft). Full model case (solid bold line). Static
electron temperature case (solid line). The applied potential at the cathode is
-300V.
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The electron temperature distribution is shown in Figure 4.30. As expected,

simulations \\ith a larger electric field in the cathode sheath give a larger elec­

tron temperature peak. The increased width of the electron temperature peak

is considerable when the applied voltage magnitude at the cathode is increased

from -300 V to -400 V. Surprisingly, this has the opposite effect on the ioniza­

tian rate as shawn in Figure 4.31 (salid bald [ine versus solid Hne). This is key

to the regulation mechanism of the dielectric barrier on the discharge process.

Note that the main effect of the material permittivity on the temperature dis­

tribution is on the height of the peak.

The ionization rate obtained from the simulation for a discharge without

a dielectric barrier (light dotted Hne) is shown in Figure 4.31, along with the

ionization rate obtained from a simulation with the same discharge conditions
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Figure 4.30: Electron temperature distribution when the cathode is covered
with a dielectric barrier (il). Full model case with é r =50 and -400 V applied
at the cathode (solid bold Hne); é r =5 and -400 V applied at the cathode (dotted
Hne); é r =5 and -300 V applied at the cathode (solid line). Simulation with sta­
tic electron temperature, Te=1.6 eV throughout the discharge gap (light dotted
line).

with the addition of a dielectric barrier having é r =5 (solid Hne). Obviously

the ionization rate is shifted inward in the discharge space due to the presence

of the barrier. However, which is perhaps less obvious, the ionization rate

is considerably reduced. Therefore the presence of the barrier "chokes" the

discharge, independent of the permittivity of the material.

Intuitively, one would imagine that by increasing the applied voltage, ln

order to compensate for the potential drop in the barrier, the ionization rate

would recover the level obtained when no dielectric barrier is present. This

is not the case, as seen by comparing the bold solid Hne to the solid line in

Figure 4.31.

The electron and ion flux densities are shawn in Figure 4.32. Note that

the simulation with a higher material permittivity gives a smaller particle flux.

Therefore, as it will he shown later, increasing the material permittivity does

contribute to limiting the discharge current. The advantage of a higher material
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Figure 4.31: Electron impact ionization rate. The cathode is covered with a
dielectric barrier (11): tr=SO and -400 V applied at the cathode (solid bold
line); cr=5 and -400 V applied at the cathode (dotted: tine); t r =5 and -300 V
applied at the cathode (solid Hne). System without dielectric barrier, using
-300 V applied at the cathode (light dotted line) .

•

permittivity will be more significant for time-dependent discharges.

Drift and diffusion contributions to the electron particle flux are shown in

Figure 4.33. The drift and diffusion fluxes are qualitatively similar to those

obtained without the dielectric barrier, Figure 4.8. Note, however, the increased

plasma sheath thickness when the barrier is present.

The total conduction current is shown in Figure 4.34 for various applied

voltages and material permittivity constants. Simulations with a static electron

temperature give a higher conduction current (solid bold line and dotted Hne).

Results obtained from simulations with the full modei give a Iower conduction

current for equivalent discharge conditions and material properties (solid line

versus solid boid line). Full model results for a higher applied voltage exhibit

a lower conduction cnrrent (light dotted line and spaced dotted Hne). Note

that one can increase the conduction current by using a material with a higher

permittivity (light dotted line versus spaced dotted line).
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Figure 4.32: Electron and ion flux densities when the cathode is covered with
a dielectric barrier (il). Full model case with Er=50: electron current densities
(solid bold line); and ion CUITent densities (line). Full model case with €r=5:
electron eurrent densities (dotted tine); and ion eurrent densities (light dotted
Une). The applied potential at the cathode is -400 V. For convenience, the
zero-value ordinate is plotted.

The electron thermal conduction and enthalpy flux contributions to the

electron heat flux are given in Figure 4.35 for discharge conditions with -300 V

applied at the cathode. Similar results are obtained with -400 V applied at

the cathode, however the heat flux peaks at -0.6 mA eV fcm2 •

Electron and ion Joule heating terms are given in Figure 4.36. The ion

Joule heating for discharge conditions with -300 V applied at the cathode has

a relatively high heating in the cathode sheath resulting in a considerable sec­

ondary electron emission as seen by the electron Joule heating terme These

eleetrons are responsible for the larger ionization rate in the cathode sheath

compared ta the result obtained with -400 V applied at the cathode, as shawn

in Figure 4.31.

•
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Figure 4.33: Drift and diffusion contributions to the electron flux when the
cathode is covered with a dielectric barrier (ft). Case é r =50, drift (solid bold
line) and diffusion (solid tine) contributions. Case é r =5, drift (dotted line) and
diffusion (light dotted line) contributions. The applied potential at the cathode
is -400 V. For convenience, the zero-value ordinate is plotted.

Total Conduction CUITent Density
••••••• _ • J _ •••••••••1. _ •••••• _ • L •• _ • _ •••• 1 •••• ,

0.12 r- -

-

0.04 - -

0.8 it0.4 0.6
Dimensionless Position

0.2

o L.....-.__----l' -.L' ----l..' --L..'_.......L._.....L

o

•
Figure 4.34: Total conduction current when the cathode is covered with a
dielectric barrier (ft). Static electron temperature case with -300 V applied at
the cathode, Er =5 (solid bold Hne) and Er =50 (dotted Hne). Full mode! case
with Er =5 and -300 Vat the cathode (soUd line). Full model case with -400 V
at the cathode, Er =5 (light dotted line) and Er =50 (spaced dotted Hne).
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Figure 4.35: Electron heat flux density when the cathode is covered with a
dielectric barrier, f r =5 (1t). Electron thermal conduction (solid bold Hne) and
electron flux (solid line) contributions to the electron heat flux term (dotted
line). Applied potential at the cathode is -300 V. For convenience, the zero­
value ordinate is plotted.
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Figure 4.36: Electron and ion Joule heating are shawn in the upper and lower
plots respectively, for discharge with the cathode covered with a dielectric bar­
rier (-0-). Case €r=50 and -400 V applied at the cathode (solid bold line). Case
Er=5 and -400 V applied at the cathode (dotted line); -300 V applied at the
cathode (solid lïne). For convenience, the zero-value ordinate is plotted in the
upper plot.



4.3.2 Charge accumulation on dielectric barrier for elec­
tron fluid with a static temperature case.•
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The charge accUlnulation on the surface of the dielectric barrier is a self-induced

time-dependent mechanism that leads to the extinction of the discharge. By its

nature, it is different from the external force driven time-dependent behavior

studied in section 4.2.3.

•

In this section we present results from simulations with the assumption of

a static temperature for the electron fluid. A virtual frequency of 1/ = 0.1 MHz

is taken to put the equations in a non-dimensional form. Time is denoted in

terms of periods of 10 p.s.

The applied voltage at the cathode is -300 V (with respect to grounded

anode), and constant in time. The electric field distribution is shown at three

times during the charge accumulation process in Figure 4.37. The initial electric

field corresponds to the De solution presented in the previous section.
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Figure 4.37: Electric field for charge accumulation on the dielectric barrier
having €r=5 (11). Initial electric field without surface charge (solid bold line);
after half period (dotted Hne); after five periods; steady-state configuration
(solid line). For convenience, the zero-value ordinate is plotted.



Initially the ions drift towards the barrier and accumulate on it. The self­

consistent field due to the surface charge density screens the applied field due

ta the electrodes. As seen in Figure 4.37, after five periods the surface charge

field practically screens the total applied field. As a result, a large electric field

exists in the harrier. One of the difficulties in making electrodes with dielectric

barriers for plasma air remediation is that the barrier must have sufficient

dielectric strength to avoid breakdown in the barrier.

A larger material permittivity for the barrier increases its capacity to ac­

cumulate surface charge as seen in Figure 4.38. A simple circuit analysis,

modeling the plasma as a resistor R and the dielectric barrier as a capacitor

e, yields the surface charge accumulation in time as:

•
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•

•

The characteristic time constant is TRC = Re, at which time the surface

charge density is a(TRc) ~ 0.632 amax • We have from Figure 4.38 that amax

is 2.31 cm-2 and 0.227 cm-2 for €r=50 and 5 respectively, which corroborate

the fact that a ID-fold increase in permittivity results in a 10-fold increase in

the "charge storage" capacity. The characteristic time constants are 2.6 and

0.45, in terms of the normalized time scale, for €r=50 and tr=5 respectively.

The ratio of the characteristic time constants is 5.7, i.e., the barder with tr=5

will saturate 5.7 times faster than the barrier with €r=50. This is in agreement

with the results shown in Figure 4.38.

Note the disappearance of the high electric field in the cathode sheath in

Figure 4.37 as the ions accumulate on the dielectric barrier. As a consequence,

the electrons are now able to diffuse and occupy the region close ta the barder

as shawn in Figure 4.39. Therefore, the electrons will start ta diffuse and stick

ta the surface of the barrier as shawn in Figure 4.40. Note that the electron

surface density is negligible compared to the ion surface density. This results

from the electron-ion recombination term in the surface charge density equation

of motion, as given by equations (2.62) and (2.63):
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Figure 4.38: Ion surface density accumulating on the dielectric barrier. Case
é r =50 (solid bold line); f r =5 (solid !ine). The time scale is normalized with
respect to the scaling period (1/v) .

. The process is as follows. The ions accumulate due to their drift motion

toward the barrier. As they accumulate they screen the applied field resulting

in the disappearance of the high field region.

When the field is sufficiently low1 the electrons are able to diffuse against the

field and start to accumulate on the barrier. Sïnce an ion density exists at the

surface when the first few electrons hit the barrier, most ofthem are recombined

with existing ions. Each time a recombination process occurs one electron and

one ion are removed from the dielectric surface. Figure 4.40 indicates that

the source of electrons at the barrier is greater than the sink resulting in a

net increase. When the electrans start to accumulate on the barrier, at time

T ~ l their rate of accumulation is maximum; the electron-ion recombination

is negligible since it is proportional to CIe.

Note that the peak electron density increases in Figure 4.39 as the charges

accumulate on the dielectric barrier. This is due to the artificially maintained

discharge due ta the assumed static electron temperature.

The ion particle flux density is shown in Figure 4.41. As expected, the ion
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Figure 4.39: Electron density as charges accumulate on the dielectric barder,
f r =50 case (11'). Initial density without surface charge (soUd bold line) , after
four periods (dotted line), after five periods (solid lille).
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Figure 4.40: Electron surface charge accumulation on the dielectric barder.
Case f r =50 (solid bold Hne); €r=5 (solid Hne). The time scale is normaHzed
with respect ta the scaling period (l/v) .



flux at the surface of the dielectric barrier is decreased as the surface charges

accumulate on the barrier.

The drift and diffusion components to the electron flux are shown in Fig­

ure 4.42. The electrons, being more mobile than the ions, are affected more

by the disappearance of the high field regÏon. This is accentuated by the fact

that the net electron flux results from a concurrence between diffusion and

drift, while in the case of the ions, the diffusion and drift components are both

directed toward the barrier.

The net electron flux and the total conduction current are shown in Fig­

ure 4.43. Note the current reversai after five periods, due to the dominant

process of electron diffusion.

The total conduction CUITent is conserved which indicates a negligible dis­

placement CUITent. This means that the time required to accumulate an amount

of charge sufficient to influence the plasma is much greater than the plasma re­

sponse time.

•

•
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4.3.3 Charge accumulation on dielectric barrier, full mode!.

The results from simulations studying the charge accumulation on the dielectric

barrier for a constant applied voltage of 300 V across the electrodes are pre­

sented in this section. The full model is used, i.e., the electron temperature is

self-consistent. A virtual frequency of v = 10 MHz is used to put the equations

in a non-dimensional forme

The inclusion of the electron temperature equation considerably increases

the stiffness of the equations of the mode!. This forces us to use much smaller

time steps compared to the case when the electrons are assumed to have a static

temperature. To make the simulations tractable, we used a driving frequency

of 10 MHz for the time-dependent applied voltage at the electrodes. This fre­

quency is in the range of frequencies used in thin film deposition and plasma

etching.
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Figure 4.41: Ion flux density as charges accumulate on the dielectric barrier,
fr=SO case (1f). Initial flux density without surface charge (solid bold line); af­
ter five periods (solid Hne). For convenience, the zero-value ordinate is plotted.
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Figure 4.42: Electron flux density as charges accumulate on the dielectric bar­
rier, case f r =50 (il). Drift component without surface charge (solid bold line);
after five periods (solid line). Diffusion component without surface charge (dot­
ted line); after five periods (light dotted Hne). For convenience, the zero-value
ordinate is plotted.
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Figure 4.43: Electron and total conduction CUITent densities as charges ac­
cumulate on the dielectric barrier, €r=50 case (11"). Total conduction current
density without surface charge (solid bold Hne); after five periods (dotted Hne).
Electron CUITent density without surface charge (solid line); after five periods
(light dotted line). For convenience, the zero-value ordinate is plotted.

•

The charge accumulation during one period is not appreciable due to two

factors: the discharge being at low pressure results in fewer charges that ac­

cumulate on the barrier, and the relatively high frequency, compared to the

frequencies used in high pressure discharge, does not gÏve much time for the

surface charge to accumulate.

However, studying the impact of surface charge accumulations during one

period will give clear indications that the discharge couId not be rnaintained.

The electric field distribution shows practically no change after one cycle

as shown in Figure 4.44. The ion accumulation is shown in Figure 4.45.

The electron temperature also shows little change after one cycle of charge

accumulation as shown in Figure 4.46. The only change is in the height of

the temperature peak in the cathode sheath. Surprisingly, in the same figure,

the ionization rate shows relatively important changes compared to the other

dependent variables. The main peak, which is responsible for sustaining the

discharge, is decreased. The decrease of the ionization rate is corroborated
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Figure 4.44: Electric field for charge accumulation on the dielectric barrier
having f r =5 ('If). Initial electric field without surface charge (solid bold line);
after one period (line). For convenience, the zero-value ordinate is plotted.• Ion Surface Charge Density
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Figure 4.45: Ion surface charge accumulation on the dielectric barrier having
f r =5 ('If). The time scale is normalized with respect ta the scaling period (l/v) .



with the lower electron Joule heating in the bulk of the plasma illustrated

by Figure 4.47. This is significant because the charge accumulation process,

which appears to be a small surface effect, actually influences important plasma

sustaining terms throughout the plasma.

The ion particIe flux term exhibits only very small changes in the high

electric field region and practically none elsewhere, as seen in Figure 4.48.

However, the electron particle flux, and consequently the total conduction cur­

rent, show a uniform decrease throughout the plasma in Figure 4.49. Unlike

the artificially sustained plasma, this will lead to the collapse of the discharge.

•

•

•
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Figure 4.46: Electron temperature (top) and electron impact ionization rate
(bottom) as charges accumulate on the dielectric barrier, case €r=5 Cil). Initial
distribution without surface charge (solid bold Hne); after one period (solid
line) .
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Figure 4.47: Electron heat flux density as charges accumulate on the dielectric
barrier, case €r=5 (ft). Initial distribution without surface charge (solid bold
Hne); after one period (solid line). For convenience, the zero-value ordinate is
plotted.
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Figure 4.48: Ion flux density as charges aecumulate on the dielectric barrier,
case t r =5 (11). Initial flux density without surface charge (solid bold Hne); after
one period (solid line). For convenience, the zero-value ordinate is plotted.
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Figure 4.49: Electron and total conduction enrrent densities as charges ac­
cumulate on the dielectric barrier, case €r=5 (11). Total conduction eurrent
without surface charge (solid bold line); after one period (dotted Une). Elec­
tron current density without surface charge (solid line); after one period (light
dotted lïne). For convenience, the zero-value ordinate is plotted.
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4.3.4 Time-dependent discharge case

149

The results from simulations using time-varying applied electrode voltages with

time-harmonic and pulse-waveform for the geometry having a dielectric barrier

covering the cathode are presented in this section. The discharge conditions,

including the applied voltages: are the same as used in section 4.2.3. The

applied voltages are described in Figure 4.14.

The electric field at four times in the pulse period is given in Figure 4.50.

The high field region near the dielectric barrier has increased considerably

compared to an equivalent simulation without the dielectric barrier, as shown

in Figure 4.16. Consequently, the region of plasma confinement is reduced.

The time-modulation of the field in the plasma is greater than it was for the

simulation without the barrier.

•
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Figure 4.50: Electric field at different times in the period (T), for the case with
a dielectric barrier, €r=5 ('fi). At 0.1 T (solid bold line); 0.4 T (solid Hne); 0.6 T
(dotted line); and 0.9T (light dotted Hne). Solution for the pulse-waveform case
(-400 V to -600 V). For convenience, the zero-value ordinate is plotted.

•
This allows a greater control of the driving voltage over the inelastic reaction

rates for the electron impact ionization rate as seen in Figure 4.51. Compared

to the result previously obtained from the simulation without the barrier, see



Figure 4.17, the reaction rate, and its time-modulation, are relatively important

throughout the plasma region.
•

150 CHAPTER 4. RESULTS

Electron Impact Ionization Rate

0.8 fl"0.4 0.6
Dimensionless Position

0.2
OL.-.-~IIIIi:::::.--JL-- __--I.__"":"":"'---l-=~_--I._-..L_--J.

o

l

Figure 4.51: Electron impact ionization rate at different times in the period
(T), for the case with a dielectric barrier, €r=5 (fl"). At 0.1 T (solid bold line);
OAT (solid line); O.6T (dotted line); and 0.9T (light dotted Hne). Solution for
the pulse-waveform case (-400 V to -600 V).

3

•

•

The electron temperature displays a much wider peak in the cathode sheath

when a dielectric barrier is present in the discharge space, as seen in Fig­

ure 4.52, when compared with Figure 4.16. This is consistent with the electric

field distribution. Note that the reaction rate is not important in the high

field region, indicating a low electron density distribution. However, secondary

electron emissions due to ion impact on the dielectric barrier are considered,

and those electrons will surely not have a Maxwellian distribution function. It

would not be appropriate to use constant kinematic coefficients for the electrons.

Instead, coefficients that are a function of temperature should be considered.

The coefficients can he obtained by solving the Boltzmann transport equation

for various values of the reduced field, as was done for the ionization rate.

Period-averaged quantities are computed to compare results from simu­

lations using both time-harmonie and pulse-waveform applied voltages. AlI
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Figure 4.52: Electron temperature at different times in the period CT), for
the case with a dielectric barrier, tr=5 (ît). At 0.1 T (solid bold line); DA T
(solid Hne); 0.6 T (dotted Hne); and 0.9 T (light dotted line). Solution for the
pulse-waveform case (-400 V ta -600 V) .

dependent variables, as shawn in Figure 4.53 for the electric field and the

electron temperature, exhibit little change due ta the different applied voltage

waveforms. This was also the case for simulations without the dielectric barrier.

However, a much higher period-integrated ionization rate was obtained from

the pulse-waveform simulation, compared ta the time-harmonic applied volt­

ages as shown in Figure 4.54. Such a difference was not observed for simulations

without the dielectric barrier.

•

The importance of this result is enhanced by the fact that the total con­

duction current is relatively unaffected by the shape of the applied voltage as

shawn in Figure 4.55, while the electron Joule heating is more important in

the plasma bulk for the simulation using the pulse-waveform applied voltages,

see Figure 4.56. Therefore, we obtain a greater reaction rate for an equivalent

conduction current, in a period-averaged sense, for discharges driven by pulse

shape applied voltages than for time-harmonic applied voltages.
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Figure 4.53: Period-averaged electric field (top) and electron temperature (bot­
tom), for geometry with a dielectric barrier, €r=5 (11'"). PuIse-waveform (solid
bold Hne) and time-harmonic (solid line) cases. Solutions with an applied volt­
age from -400 V ta -600 V. For convenience, the zero-value ordinate is plotted
in the upper plot.
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Figure 4.54: Period-integrated electron impact ionization rate, for geometry
with a dielectric barrier, tr=5 (ft). Pulse-waveform (solid bold line) and time­
harmonie (solid line) cases. Solutions for cases with an applied voltage of
-400 V to -600 V.

This result may be interpreted in the following manner. The inelastic elec­

tron impact collisions are characterized by threshold-like processes which are

dependent on the electrons' kinetic energy. The discharge obtained using an

applied voltage of pulse-waveforms with fiat tops brings the electrons' kinetic

energy ta a level favoring specifie inelastic processes for a period of time longer

than a similar discharge obtained with a time-harmonic applied voltage. In this

manner it is possible to select the right combination of dielectric barrier (in

terms of material permittivity and thickness) and shape of the applied voltage

(pulse width, pulse hight, and repetition rate) in order to favor specifie reaction

rates.

•
We will now study the discharge characteristics as functions of the voltage

applied across the electrodes for pulse-waveform case.

The period-averaged electric field and electron temperature obtained from

simulations using pulse-waveforms from -300 V to -500 V and from -400 V

to -600 V are cornpared in Figure 4.57.
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Figure 4.55: Period-averaged total current density, for geometry with a di­
electric barrier, é r =5 (11). Pulse-waveform (solid bold line) and time-harmonic
(solid line) cases. Solutions for cases with an applied voltage of -400 V ta
-600V.
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Figure 4.56: Period-averaged electron Joule heating density, for geometry with
a dielectric barrier, €r=5 (1f). Pulse-waveform (solid bold Hne) and time­
harmonie (solid Hne) cases. Solutions for cases with an applied voltage of
-400 V to -600 V. For convenience, the zero-value ordinate is plotted.
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Figure 4.57: Period-averaged electric field (top) and electron temperature (bot­
tom), for geometry with a dielectric barrier (ft). The applied voltage is a pulse­
waveform from -400V to -6DOV and f r =50 (solid bold Hne); Er=S (dotted
Hne). Pulse-waveform from -30DV ta -SOO V and Er =5 (solid Une). For con­
venience, the zero-value ordinate is plotted in the upper plot.



The results are more significantly different than those obtained without a

dielectric barrier, as shown in Figure 4.20, in two respects. First, the electron

temperature peak is higher for the case with higher applied voltage, as 0 btained

when no dielectric barrier is present. However, the maximum electric field is

smaller for the case with higher applied voltage. This shows clearly that the

electrons are not in thermal equilibrium with the electric field, not even locally.

Second, the effect of a higher applied voltage in the case of a dielectric barrier

discharge is to increase the thickness of the high electric field region (cathode

sheath), while for a disèharge without the dielectric barrier, the effect was only

to change the maximum values of the electric field and the electron temperature,

and not the cathode sheath thickness.

The consequences of these results are important. One can design the elec­

trodes in order ta maximize the rate of reactions while minimizing the electron

flux density, and consequently, the conduction current. Compare the period­

integrated ionization rates obtained from the simulations with different nominal

voltages, shawn in Figure 4.58, and the corresponding total conduction current

shown in Figure 4.59.

This is the most important result of this thesis; it shows the regulating

effect of the dielectric barrier, and also the ability ta increase the efficiency

of the plasma chemistry reactor by selecting the proper combination of the

dielectric barrier and applied voltage characteristics.

Before we close this section, it is of interest to compare the period-averaged

electron and ion Joule heating term obtained for a discharge with different

nominal voltages, as shown in Figure 4.60. The electron Joule effect is, in

general, relatively unchanged when different nominal voltage values are used.

However the ion Joule heating exhibits, contrary to what might be expected,

a considerably lower heating in the cathode sheath for the discharge with the

higher applied voltage. This is an important factor ta consider in the design

of electrodes having a dielectric barrier. The thermal stress experienced by

the barrier due to ion bombardment often causes the barrier to break down.

•

•

•
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Figure 4.58: Period-integrated electron impact ionization rate, for geometry
\vith a dielectric barrier (î1). The applied voltage is a pulse-waveform from
-400 V to -600 V and f r =50 (solid bold Hne); é r =5 (dotted line). Pulse­
waveform from -300 V ta -500 V and f r =5 (soLid Hne).
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Figure 4.59: Period-averaged total conduction cnrrent density, for geametry
with a dielectric barrier (1)"). The applied voltage is a pliise-waveform from
-400 V to -600 V and f r =50 (solid bold Hne); f r =5 (dotted Hne). Pulse­
waveform from -300 V to -500 V and f r =5 (solid Line) .



Therefore, the ability to attain higher reaction rates with lower thermal stress

for the dielectrie barrier is undoubtedly a desirable feature.

To close this chapter, we show that the two-fluid model ineorporating a

dielectric barrier in the diseharge spaee preserves the divergenee-Iess property

of the total cnrrent.

The total conduction and displacement CllITents at four times in the period

are shown in Figure 4.61. Note that the displacement enrrent is more important

for dielectric barrier discharge than it was for discharge without dielectrie.

Indeed, the displacement CUITent exists thronghollt the plasma, indicating a

more important modulation of the plasma due to the time variation of the

applied voltage.

The total enrrent, shawn in Figure 4.62, is conserved at all times in the

discharge periode

•

•

•
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Figure 4.60: Period-averaged electron (top) and ion (bottom) Joule heating
density, for geometry with a dielectric barder (il). The applied voltage is
a pulse-waveform from -400 V to -600 V and €r=50 (solid bold Hne); €r=5
(dotted line). Pulse-waveform from -300 V to -500 V and €r=5 (solid Hne).
For convenience, the zero-value ordinate is plotted in the upper plot .
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Figure 4.61: Total conduction (top) and displacement (bottom) current densi­
ties at different times in the period (T) for the case with a dielectric barrier~

€r=5 (11'). At 0.1 T (solid bold line); DA T (solid Hne); 0.6 T (dotted Hne); and
0.9 T (light dotted Hne). Solution for pulse-waveform case (-400 V to -600 V).
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Figure 4.62: Total current density (total conduction plus displacement) at dif­
ferent times in the period (T) for the case with a dielectric barrier, Er =5 (11).
At 0.1 T (solid bold Hne); 0.4 T (solid line); 0.6 T (dotted line); and 0.9 T (light
dotted line). Solution for pulse-waveform case (-400 V ta -600 V).

•



•

•

•

162 CHAPTER 4. RESULTS



•

•

•

Chapter 5

Conclusion and summary

In this thesis we reported on the development of a computational model for

predicting the physical structure of the gas discharge obtained between two

electredes, when one is covered with a dielectric material. The model repre­

sents the distribution of the electron and ion particle densities, electron energy,

and electric field strength. This is a self-consistent numerical model, in which

the dielectric properties of the dielectric material are included and the geome­

try of the electrodes is taken into account, thus coupling the charged-particle

transport to the electric field.

New boundary conditions were developed for the electron gas at the anode;

results presented in section 4.2.2 indicate that the cornmon boundary conditions

frequently used in the literature give solutions with non-physical behavior. The

new boundary conditions give solutions with the expected physical behavior.

We developed new universal matrices for the finite element method with

the ability te construct complex finite element matrices, replacing integrals by

matrix products, in a consistent and uniform manner independent of element

shape, dimension, and order.

Validation of the mathematical model was presented in section 4.1 where we

reproduced the results of Wardlaw and Cohen [52] for the continuum analysis

of the photoionization chamber.

Solutions for De and time-varying applied voltages across the electrodes,

using pulse-waveform and time-harmonic excitations, for the geometry with

and without a dielectric barrier, have been presented.
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In sections 4.3.2 and 4.3.3, we showed the regulating effect of the dielectric

barrier by a surface charge accumulation mechanism, for discharge with a con­

stant applied voltage assuming a static temperature for the electron gas, and

for the full self-consistent model, respectively.

In section 4.3.4, simulations of a dielectric barrier discharge driven by pulse­

waveform voltages were compared with simulations of discharge driven by time­

harmonie applied voltages. The results showed very similar period-averaged

electric fields, electron temperature profiles, charged particle densities, and to­

tal conduction CUITent densities. However, a much higher period-integrated

ionization rate was obtained from the pulse-waveform simulations, compared

to time-harmonic applied voltage cases. Therefore, we obtain a greater reac­

tian rate for an equivalent conduction CUITent, in a period-averaged sense, for

discharges driven by pulse-waveform applied voltages, than for time-harmonic

excitations. Such a difference was not observed for simulations without the

dielectric barrier.

The results indicate that the presence of the dielectric barrier not only

plays a raIe in the regulation of the discharge by limiting the conduction cur­

rent, but also by increasing the plasma response to the applied voltage. As

a consequence, one can increase the energy efficiency of a plasma reactor by

selecting the proper combination of a dielectric barrier and the applied voltage

characteristics.

The developed mathematical model also represents the electric and thermal

stresses experienced by the dielectric barrier, which are two important limiting

factors in the design of a particular reactor. No other model in the literature

provides snch design specifie information.

This physical model may be integrated into a complete plasma induced

chemistry reactor model, which would be very attractive for industrial plasma

chemistry applications. An example of the structure of such a model is shown in

Figure 5.1. It relies on a BoLtzmann code module for computing the transport

coefficients, electron kinetic energy, and electron impact reaction rates from

the cross section data, using the computed electron distribution function for

•

•

•

164 CHAPTER 5. CONCLUSION AND SUMMARY



•
165

a range of reduced electric fields. From this set of data one could relate, in

the form of an approximate analytical expression, the transport coefficients

and the electron impact reaction rates to the electron temperature. These

relations would then be used in the plasma fiuid model to obtain the space-time

distribution of the radical production rates from the electron number density

and temperature distribution. In this module many chemical species are not

discriminated and are aU considered to form a single species. From the radical

production rates, the chemistry model would then determine the contaminant

destruction rates and the composition of the gas exiting the reactor.

contaminant
destruction

rate

Chemistry lr- Madel

1 L....------I

Geometry )

electron distribution1 funetiOD

(

Plasma electron distribution
Fluid ~ and temperatu.rer- Model !

l '-----1

Input Gas )

Boltzmann
Code

(

•

Figure 5.1: Inclusion of the developed physical model into a plasma chemistry
model adding two modules, a Boltzmann code and a chemistry modeL

•
This three module decomposition of the plasma reactor permits processes

having very different space and time characteristics ta be modeled separately.

Such a decomposition of the non-equilibrium kinetics in RF discharge were

used by Capriati, Boeuf, and Capitelli [25]_ Sommerer and Kushner [47J devel­

oped a similar model in which they used a Monte Carlo simulation based on



the field distribution from the fiuid model solution rather than using a Boltz­

mann code. Recently, Mantzaris, Gogolides, and Boudouvis [100] developed a

consistent plasma chemistry model using a similar modular approach assuming

the electrons ta be in local thermal equilibrium with the electric field. None of

these sophisticated models consider the presence of a dielectric barrier in the

discharge space.

•

•
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