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ABSTRACT 

 

The mechanical behaviour of a rubber-like elastic material is characterized by its 

strain energy function, which depends on the type of rubber, including its molecular 

structure and cross-linking.  This thesis presents the results of a series of uniaxial 

tests that were conducted on natural rubber samples, for the purpose of determining 

the form of its strain energy function. The simplest model that provides a good 

match with the stress-strain data is chosen to identify the strain energy function.  The 

validation of the model chosen is performed through an experiment involving fluid 

loading of a natural rubber membrane that is fixed along a circular boundary.  The 

experimental results of the deformation of the membrane are in good agreement with 

the values obtained from computational modelling.  The studies indicate that the 

Mooney-Rivlin form of the strain energy function can accurately predict the 

mechanical behaviour of natural rubber at moderately-large strains. 
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RÉSUMÉ 

 

Le comportement mécanique des matériaux élastiques comme le caoutchouc est 

caractérisé par sa fonction d'énergie de déformation, qui dépend du type de 

caoutchouc, y compris sa structure moléculaire et sa réticulation.  Cette thèse 

présente les résultats d'une série de tests uni-axiaux qui ont été réalisés sur des 

échantillons de caoutchouc naturel, afin de déterminer sa fonction d'énergie de 

déformation.  Le modèle qui correspond le plus précisément aux données contrainte-

déformation est utilisé pour prédire la fonction d’énergie de déformation.  La 

validation du modèle a été faite en réalisant des tests expérimentaux comportant le 

chargement liquide d’une membrane de caoutchouc naturel qui est fixée le long 

d’une frontière circulaire.  Les résultats expérimentaux de la déformation de la 

membrane sont en accord avec les valeurs obtenues par la simulation numérique.  

Les études indiquent que pour les déformations modérées, le modèle 

d’hyperélasticité Mooney-Rivlin peut prédire avec exactitude le comportement 

mécanique du caoutchouc naturel. 
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Chapter 1    

INTRODUCTION 

 

1.1    Rubber Materials 

 

Natural rubber is obtained via the extraction of latex from a cut made on the bark of a 

tree.  The most popular rubber tree used for commercial purposes is the Heavea 

Braziliensis, originates from South America (Müller and Strehlow (2004)).  Other flora 

species such as Ficus Elastica, Landophia and Castilla Elastica also contain latex, but in 

lesser quantities.  For a long time, natural rubber did not have any commercial potential 

until the discovery of vulcanization by Charles Goodyear in the 1830s.  Uncured natural 

rubber is sticky and extremely temperature dependent; it easily deforms when slightly 

heated, and becomes hard and brittle in cool environments. The process of vulcanization 

modifies the physical properties of the rubber via the cross-linking of the rubber 

molecules, thus making the material more durable, more resistant to heat and chemical 

attacks, while maintaining its elasticity at low temperatures.  In current usage, the terms 

rubber or rubber-like refer to any material that has properties similar to those of natural 

rubber.  The successful developments in this area have led manufacturing and 

construction industries to adopt rubber for a wide variety of engineering applications 

including tires, pipes, belts, matting, bridge bearing, inflatable vibration isolation devices, 

earthquake motion isolation, flood protection structures, biological tissues and landfill 

liners.   

 

1.2     Literature Review 

 

Problems involving elastic membranes undergoing large deformation have attracted 

considerable attention over the years.  The pioneering work in this area by R.S. Rivlin in 
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the 1940s has formed the basis for the scientific study and technological applications of 

the theory of hyperelastic materials (see for example the collected works of R.S. Rivlin 

edited by  Barenblatt and Joseph (1997)).  Since then, numerous studies have been 

conducted to validate Rivlin’s theory and apply it to a wide range of materials ranging 

from biological tissues to natural rubber.  A great deal of work in the literature is now 

available on the subject (Spencer (1970); Ogden (1984); Libai and Simmonds (1998); 

Selvadurai (2006)).  The scope of the present work focuses on the loading of a rubber 

membrane undergoing moderately-large deformations and moderately-large strains; 

therefore, only problems pertaining to this subject are discussed in more detail. 

 

Membrane loading problems in general are considered very useful in the field of 

nonlinear elasticity as they allow the development of constitutive equations that model 

the large deformation behaviour in rubber and elastomeric materials.  The first significant 

analytical study and application of the theory of finite elasticity on the deformation of 

elastic membranes was carried out by Adkins and Rivlin (1952), using the neo-Hookean 

and Mooney forms of the strain energy function.  These authors gave several 

mathematical solutions to different axially symmetric problems.   A summary of their 

work including more recent ones are given by Green and Adkins (1970).  The inflation of 

pre-stretched uniform circular rubber membranes was studied by Hart-Smith and Crisp 

(1967) and Klingbeil and Shield (1964).  Their experimental results were similar to 

Treloar’s results for large extensions obtained by using more complicated forms for the 

strain energy function.  Vaughan (1980) performed similar experiments where a finitely 

stretched circular membrane was inflated into a shallow bowl.  Kydoniefs and Spencer 

(1967; 1969), looked into the problem of slow inflation of a closed cylindrical membrane 

under internal pressure and obtained an exact solution for the Mooney material.  Dickey 

(1967; 1983) performed many experiments on circular membranes under normal pressure 

and found axisymmetric solutions for these problems using a numerical integration 

scheme.  He also derived an exact theory for the problem of a circular membrane 

subjected to a vertical pressure, confirming Föppl theory.  Alexander (1971) studied the 

effect of instability of an inflated cylindrical membrane under axial loading using a 

special form of strain energy function.  Wu (1971) investigated contact problems of 
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inflated cylindrical membranes with a life raft as an example.  Benedict et al. (1979) 

analyzed the simultaneous extension and inflation of membranes using an exponential 

form of a strain energy function.  Needleman (1977) examined the inflation of a slightly 

imperfect spherical rubber balloon, in which the axisymmetric equilibrium is determined 

using the Ritz-Galerkin procedure.  He quotes earlier works done by Feodosev (1968) 

and Shield (1972) who have used the same procedure to solve imperfect spherical 

balloons.  Haughton (1980) continued in this area and studied both perfect and imperfect 

cases of membrane inflation.  Feng and Yang (1970) examined several problems 

including the free and confined inflation of a flat circular membrane.  Using a strain 

energy function of the Mooney-Rivlin type, they provided numerical solutions to the 

inflation of a flat membrane, longitudinal stretching of a tube, and flattening of a 

hemispherical cap.  More experiments conducted by these authors on inflation and 

inflation-induced contact problems related to both circular and rectangular membranes 

are given by Feng and Yang (1970), Yang and Lu (1973), Feng et al. (1974), and Feng 

and Huang (1975).  Feng and Yang (1973) investigated gas-filled spherical membranes of 

Mooney material to which additional loads are applied.  One experiment consisted of 

compressing the inflated spherical membranes between two rigid plates and another 

indented by rigid disks.  Lardner and Pujara (1980) extended the experiments and 

analysis with liquid-filled membranes.  Wineman et al. (1979) performed membrane 

inflation experiments and showed how the measured profiles and stretch ratio distribution 

of a material can be used to determine the precise form of the strain energy function.  

Weinitschke (1980) extended his previous work (1970) on circular membranes and 

performed a series of experiments involving an annular membrane under normal pressure 

for different boundary conditions.  Weinitschke (1987) also provided detailed analyses of 

an annular elastic membrane under surface and edge loads.  Grabmüller and Weinitschke 

(1986) and Grabmüller and Novak (1988) examined similar problems and used integral 

equation methods to confirm Föppl and Reissener theories.  Matsikoudi-Iliopoulou and 

Lianis (1982) studied the asymmetric deformation of membranes with torsion and came 

up with analytical solutions for that problem.  Matsikoudi-Iliopoulou (1987) then 

combined his earlier findings to generate a solution for the deformation of a pressurized 

cylindrical membrane reinforced with one family of inextensible fibers.  Kelkar et al. 
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(1985) examined the problem of a circular membrane with fixed peripheral edges.  Using 

a finite difference technique, they studied the displacement and stresses in the material 

under three different loading conditions.  Beatty (1987) discussed several features for the 

inflation of a spherical balloon, including the non-uniqueness and instability of elastic 

membranes.  Khayat et al. (1992) and Khayat and Derdouri (1995) examined the inflation 

of neo-Hookean cylindrical membranes subjected to pressure and axial stretching.  Chen 

and Cheng (1996) looked into ponding problems where ponding pressures were acting on 

a circular membrane due to the weight of a liquid filling the area created by the deflection 

of the membrane.  They used an iterative technique to solve for the loaded and unloaded 

portions of the membrane.  Tuan (1998) also analysed ponding of circular membranes 

using a fourth-order Runge-Kutta method.  He found good agreement between his finite 

element simulations and his experimental results.  Verron et al. (1999) analysed the 

inflation of a spherical membrane under dynamic conditions using the neo-Hookean 

model.  Przybylo and Arruda (1998) and Li et al. (2001) worked on the inflation of 

circular membranes to determine properties of elastomers and polymeric materials, 

respectively.  The inflation of planar circular viscoelastic membranes has been studied by 

various authors: Wineman (1976) performed several inflation tests on styrene-butadiene 

rubber, Feng (1992) considered latex rubber membranes and Hassager et al. (1999) 

looked into the inflation and instability of a polymeric fluid membrane using the Doi-

Edwards and Tom-Pom models.  Wineman (1978) also developed a numerical program 

for the analysis of simultaneous axial stretching and inflation of a tubular membrane, 

using the BKZ model.  More recently, Wineman (2007) looked into the inflation of 

nonlinear viscoelastic circular membrane and the extension and inflation of a circular 

tube.  He presents his numerical solutions that combine nonlinear elasticity with Volterra 

integral equations.  Katsikadelis and Nerantzaki (2002; 2003) looked into the 

deformations of elastic and floating membranes of arbitrary shape under partial and full 

ponding loads.  Colombi (2006) investigated the ponding problem on flat steel roof grids.  

Nerantzaki and Kandilas (2007) analysed the deformation of membranes containing rigid 

inclusions for different loading pattern.  Liu and Rahn (2003) presented experimental 

results conducted on cylindrical elastic membranes under inner pressure and axial load 

for two families of inextensible fibers.  David and Humphrey (2004) and Mori et al. 
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(2005) have recently looked into the problem of circular holes in membranes for 

analysing the effects of cavities in thin tissues during clinical procedures.  Scott et al. 

(2004) used annular membrane models to perform spherical indentation tests on circular 

elastomeric films.  Begley and Mackin (2004) presented their experimental and numerical 

results of a spherical indentor on freestanding circular thin films.  Selby and Shannon 

(2009) looked into the problem of inflating a circular elastomeric membrane into a 

horizontally semi-infinite liquid reservoir. 

 

This overview is far from being complete; the review article by Beatty (1987) and the 

volumes by Green and Adkins (1970), Truesdell and Noll (1992) and Libai and 

Simmonds (1998) provide many references to topics of interest to the membrane 

problems. 

 

1.3    Objectives and Scope of Thesis 

 

The current work examines the mechanical behaviour of natural rubber at moderately-

large strain (0-100% engineering strain).  A series of uniaxial tests were performed on the 

rubber sample to determine what type of energy function can be used to describe its 

mechanical response.  Numerous strain energy functions exist; attention will be focused 

on Mooney-Rivlin, neo-Hookean and Ogden models.  The simplest model that provides 

the best match for the stress-strain data was chosen to model the mechanical behaviour of 

the natural rubber material.  The validation of the parameters was done through an 

experiment involving fluid loading on a gum rubber membrane that was fixed along a 

circular boundary.  The membranes used have diameters of 146 mm and thicknesses of 

0.794 mm and 1.588 mm.  The deflected profiles of the membrane at various pressures 

were recorded and the results compared with finite element simulations.  The finite 

element analysis software ABAQUS was used to perform the computational simulations.  

For the isothermal hyperelastic models considered, the material is assumed to be 

incompressible.  The mechanical behaviour of the natural rubber is elastic and strain-rate 

independent during quasi-static deformations.  Finally, a comparison of experimental and 
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numerical results of the response of the membrane under fluid loading was conducted to 

validate the choice of the hyperelastic model and its parameters. 

6 
 



Chapter 2    

MECHANICAL BEHAVIOUR OF RUBBER 

 

2.1    Non-Linear Elasticity 

 

According to ASTM D1566-06 (ASTM (2006)), rubber is defined as a material that is 

capable of recovering from large deformations quickly and forcibly, and can be, or 

already is, modified to a state in which it is essentially insoluble (but can swell) in boiling 

solvent.  Rubbers possess a number of unique material properties such as a low elastic 

modulus, a low thermal conductivity, little or no hysteresis, a high percentage of 

elongation (in the range of 500% to 1000% engineering strain) before fracture, and 

almost no volume change during deformation.  Rubber-like materials are characterized by 

hyperelastic deformability and exhibit a stress-strain curve in tension that is non-linear.  

Consequently, Hooke’s law is not applicable; it is not possible to assign a definite value 

to Young’s modulus except in the region of small strains, where the Young’s modulus is 

of the order of 1.0 MPa compared to typical hard solids where the Young’s modulus is in 

the region of 104-105 MPa and have a corresponding maximum elastic extensibility of 

less than 1.0%.  A typical stress-strain curve for a natural rubber is shown in Figure 2.1.  

 
Figure 2.1    The stress-strain curve of a typical incompressible hyperelastic material 

(Treloar, 1975) 
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2.2    Hysteresis and Mullins Effect 

 

Hysteresis occurs when the unloading path of the stress-strain curve differs from the 

loading path.  Very few elastomers, such as natural rubber and some grades of 

polyurethane, show hysteretic behaviour.  In the case of natural rubber, previous tests by 

Selvadurai (2006) showed that the loading and unloading paths are practically identical at 

low strains (Figure 2.2).  Hysteresis, however, becomes more apparent at large strains.  

For instance, in the case of geosynthetic materials, Yu (2005) showed that the loading 

stress-strain path differs significantly from its unloading path (Figure 2.3). 

 

Figure 2.3 shows that a strain-induced stress softening phenomenon is present.  This 

phenomenon, also called the Mullins effect, was named after L. Mullins for his numerous 

studies on the behaviour of unfilled and filled rubbers during the 1950s and 1960s 

(Mullins and Tobin (1957; 1965); Mullins (1969)).  The significant reduction in stress at 

a given strain level during unloading compared to the stress on initial loading on the first 

and successive cycles is characteristic of the Mullins effect.  Unfilled rubber generally 

exhibits stress-softening at high strains, while filled rubber demonstrates substantial 

stress-softening at relatively low strains.  

 

 
Figure 2.2    Stress-strain curve for a natural rubber specimen in uniaxial tension  

(Selvadurai, 2006) 
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Figure 2.3    Stress-strain curve for PVC geosynthetic specimen in uniaxial tension  

(Yu, 2005) 
 

2.3    Crystallization 

 

Unstrained vulcanized rubber is known to be amorphous at room temperature, but can 

produce immediate crystallization when subjected to rapid high extension.  A simple 

experiment conducted by Müller and Strehlow (2004) shows the crystallization 

phenomenon: a thin strap of natural rubber was rapidly stretched up to 8 times its original 

length.  Internal heating of the rubber made the temperature of the material rise from 

20oC to 45oC.  On unloading from the stretched state (before it had time to cool), the 

rubber specimen returned completely to its original condition.  However, when the rubber 

strap was held in its stretched state until it cooled down to 20oC before release, it 

remained stretched in a stress-free configuration; the rubber has undergone 

crystallization.  If the stretched sample is then heated to 45oC, it experiences a shape 

recovery and returns to its original state. 

 

In this work, the rubber experiences quasi-static loading, which is known to generate a 

negligible heat and stretching.  In this study, internal heating effects such as 

crystallization are disregarded. 

 

9 
 



2.4    Large Elastic Deformation and Stress-Strain Relation 

 
When a material body undergoes a deformation, the measurement of its displacement and 

deformation in space is of interest to continuum mechanics.  A large amount of literature 

is available on materials that undergo large deformation (e.g. Rivlin (1960); Green and 

Adkins (1970); Spencer (1970); Ogden (1984; 2004)) and only a summary on the relevant 

points will be given here.  For a material point, P, let )3,2,1( =AAX

(êA

 be the reference 

position vector with respect to the initial coordinate system , and  

 be the new position vector with respect to the deformed coordinate system, 

.  The new position of point P is now defined as P’ (

)3,2,1=A

)3,2,1( =iix

)3,2,1( =iêi Figure 2.4).   

 

 
Figure 2.4   Motion of a continuum body in space with displacement vector u  and  

position vectors  and , defining points X x P  and 'P , respectively 
 

The relationship between the reference position vector, X , and the new position vector 

corresponding to the deformed configuration, x , is given by the displacement vector, u , 

expressed as 

Ai Xxui −=  (2.1)

The constitutive equations which characterize the elastic solid as a material are presented 

below.  It is defined as a material in which its components of stress are single-valued 

functions of the deformation gradients, so that 
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)( RAijij fφσ =  (2.2)

where are components of the deformation gradient tensor RAf

ARRA Xxf ∂∂= /  (2.3)

Using matrix notation,  

σ  = |||| ijσ ,    F = ,   |||| RAf φ  = |||| ijφ , (2.4)

equation (2.2) takes the form 

σ  = φ (F). (2.5)

The right Cauchy-Green tensor, C, is obtained from the deformation gradient and has the 

following form 

C = FTF   ;   
j

R

i

R
RjRiij X

x
X
x

ffC
∂
∂

∂
∂

== . (2.6)

 

For isotropic elastic materials, the Cauchy stress tensor σ  only depends on the left 

Cauchy-Green strain tensor, B, given by 

B = FFT   ;  B =   ; |||| ijg
R

j

R

i
jRiRij X

x
X
x

ffg
∂

∂

∂
∂

== . (2.7)

 

The invariants of  B can be expressed in terms of the principal stretches )3,2,1( =iiλ  as 

follows 
2
3

2
2

2
11 λλλ ++== iigI   

2
1

2
3

2
3

2
2

2
2

2
1)2 (

2
1 λλλλλλ ++=−= ijifjjii ggggI  

2
3

2
2

2
13 λλλ=I   

(2.8)

It can be shown (Rivlin (1960); Spencer (1970)) that the constitutive relationship for an 

incompressible isotropic elastic material undergoing large strain can be represented in the 

generalized form  

  σ = -pI + 1φ B + 2φ B2  (2.9)
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where p is an arbitrary scalar pressure, I is the unit matrix and 1φ  and 2φ  are functions of 

the invariants  and .  If a strain energy function  exists, then 1I 2I )2I,( 1IW iφ  can be 

expressed in terms of W.  

 

2.5    Strain Energy Function 

 
The relationship that assumes the existence of a strain energy as a function of the 

invariants was first published by Mooney (1940) then confirmed by Rivlin (1948).  The 

strain energy function relates the energy stored in an elastic material to its strain or 

elongation components.  It is normally referred to as W and is expressed as an isotropic 

function of its three invariants of the principal stretches: 

),,( 321 IIIfW =  (2.10)

where  and  are related to the three principal stretch ratios 21 , II 3I 21 ,λλ  and 3λ  

(equation (2.8)) .  The values of iλ are given by )1( iε+ where iε  is the corresponding 

principal extension.  In the special case of the membrane material that was used in the 

research, it was found that 13 ≈I  (experimental data to support this will be presented in a 

subsequent chapter).  As a result, the third principal strain changes to the following when 

the strains of 1λ  and 2λ  are applied in the x1 and x2 directions of an incompressible 

material: 

21
3

1
λλ

λ = . (2.11)

The three invariants may therefore be expressed in terms of two principal stretch ratios, 
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and the strain energy density function is further reduced to a function of two variables, 

),( 21 IIfW = . (2.13)
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2.6    Constitutive Models 

 

Several constitutive models have been developed over the years to describe the 

hyperelastic response of rubber-like materials.  The pioneering work in this area by R.S. 

Rivlin in the 1940s has formed the basis for the scientific study and technological 

applications of the theory of hyperelastic materials (see for example Barenblatt and 

Joseph (1997)).  Treloar (1944) has made significant contributions to the study of 

hyperelastic materials with a number of important publications on experimental work on 

rubber-like materials.  He developed a model based on molecular theory, where the 

energy stored in the rubber takes the following form: 

)3(
2
13

2
1

1
2
3

2
2

2
1 −=−++= IG)λλG(λW , (2.14)

where G  is the linear elastic shear modulus.  Also G  can be expressed in the form of 

, where N  is the number of chains of molecules per unit volume, k  is 

Boltzmann’s constant ( ), 

NkTG =

KJ /10381.1 23−× T  is the absolute temperature and ,  and 

 are the principal stretch ratios.  This form of the energy function also referred to as the 

neo-Hookean model of hyperelasticity has been used extensively due to its simplicity, 

having only one independent material constant.   

1λ 2λ

3λ

 

The above form of energy function was based on a paper by Mooney (1940).  Mooney 

developed a phenomenological theory around the same time as the early development of 

the statistical theory.  He assumed the material to be homogeneous, isotropic, elastic, 

incompressible, and obeys Hooke’s Law in pure shear, which states that the shear strain 

is directly proportional to the shear stress.   Mooney provided a more complete molecular 

model that contained two material parameters (Mooney (1940)): 

∑ ∑
= =
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1
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2
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4 i i i

i
i

i
HGW

λ
λ

λ
λ . (2.15)

It can be seen that equation (2.14) is a special case of (2.15) and is obtained when H = 0.   
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A simpler form of energy function was later proposed by Rivlin, who performed many 

experimental and theoretical studies during the period from 1948 to 1955 based on 

Mooney’s model.  Rivlin’s general form of the strain energy function is given by  

j

ji

i
ij IICW )3()3( 2

0,
1 −−= ∑

∞

=

 (2.16)

where  are material constants and  and  are the principal strain invariants.  It is 

noted that when  , this generalized model gives the first-order Mooney-Rivlin 

model, where the first two terms are 

ijC 1I 2I

1== ji

 
)3()3( 2211 −+−= ICICW . (2.17)

Higher order strain energy functions exist, but they are not practical because the 

experimental evaluation of the large number of coefficients is difficult to achieve.  Yeoh 

(1997) and Gent (1997) observed that rubber-like materials are not sufficiently 

reproducible to accurately determine the higher order strain energy functions.  The 

Mooney-Rivlin model allows the constants to be determined experimentally, relatively 

conveniently.  As a result, the Mooney-Rivlin model has become the most widely used 

strain energy function for rubber-like materials undergoing moderately large strains 

(Selvadurai (2006)).  For the special case of uniaxial loading of a rubber specimen, using 

the Mooney-Rivlin model, the stress-strain equation can be expressed as  

⎟
⎠
⎞

⎜
⎝
⎛ −⎟
⎠

⎞
⎜
⎝

⎛ += 2
2

10
12
λ

λ
λ

σ
C

C  (2.18)

where the nominal stress, 0σ , defined as the load over the current area, is related to the 

uniaxial stretch in the test direction, λ .  Rearranging, (2.18) becomes 

λλλ
σ 2

12
0

)(2
CC +=

− − . (2.19)

The above equation, which can be plotted as  vs. , is referred to as a 

Mooney-plot. For a hyperelastic rubber material, the Mooney plot gives a straight line, 

with a slope of and the intercept (as 

)(2/ 2
0

−− λλσ

0→

1−λ

2C /1 λ ) gives the value of .  More details 

about the Mooney-plot and ways to obtain the coefficients are discussed in section 3.4.  

1C
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Many other hyperelastic models exist, with Ogden’s model being the second most widely 

used.  The model proposed by Ogden (1972; 1984) expresses the strain energy function in 

terms of the principal stretch ratios rather than the strain invariants.  Ogden (1972) used 

Treloar (1975) results to develop this model.  This model has shown good agreement with 

experimental results for large strains of the order of 300%, and can be used for both 

incompressible and compressible hyperelastic materials.  The form for the strain energy 

function proposed by Ogden (1972) is given by 

)3(
~2

3
1

212 −++=∑
=

iii

N

i i

iW ααα λλλ
α
μ

 (2.20)

where  (the linear elastic shear modulus) and ,∑
=

=
N

i
i G

1

~μ N iμ~  , iα  are the material 

parameters.  The result (2.20) reduces to the neo-Hookean model when , 1=N 21 =α  

and NkT=1μ .  Also, assigning 2=N , 21 =α , 12C1 =μ , 22 −=α , 22C2 =μ  to 

Ogden’s model, we obtain the first-order Mooney-Rivlin model (Equation (2.17)).  

 

The model developed by Yeoh (1993) represents the elastic properties of rubber by 

assuming that the strain energy function is independent of the second strain invariant, 

( )∑
=

−=
N

i

i
i ICW

1
1 3~ , (2.21)

where iC~ are constants.  In the special case where 1=N , the Yeoh model reduces to the 

neo-Hookean model. 

 

Many other constitutive models exist, including Blatz and Ko (1962), Hart-Smith (1966), 

Oden and Sato (1967), Christensen (1980), Flory and Erman (1982), Arruda and Boyce 

(1993) and Gent (1996).  In-depth reviews of these models can be found in Deam and 

Edwards (1976), Ogden (1982), Boyce and Arruda (2000), and Saccomandi and Ogden 

(2004).  Their applicability to rubber-like materials undergoing moderately-large strains 

was recently investigated by Selvadurai (2006). 
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Chapter 3    

UNIAXIAL TESTING OF NATURAL RUBBER 

 

3.1    Measurement of the Mechanical Properties 

 

The mechanical properties of vulcanized rubber were determined from uniaxial tensile 

tests.  The testing facility consisted of a servo-controlled MTS Machine equipped with a 

load cell with a capacity of 150 kN.  The Advantage™ Wedge Action Grips available in 

the Material Testing Laboratory of the Department of Civil Engineering and Applied 

Mechanics of McGill University were used for the experiment since they have knurled 

clamping plates that provide good fixity at the ends of the specimen.  The details of the 

experimental setup and of the grips are shown in Figure 3.1 and 3.2, respectively.  The 

tests involve the stretching a rubber strip specimen attached to the upper and lower set of 

grips.    The lower set of grips is fixed during testing while the upper set moves either 

upwards or downwards in a displacement-controlled mode.  The speed of movement of 

the cross-head during testing is controlled at a quasi-static strain rate of 20%/min.  A 

special highly sensitive low capacity load cell (2224 N (500 lbs)) was used in the testing 

machine since the forces measured during uniaxial testing were very small compared to 

the peak load capacity of the MTS machine.  Technical specifications of the load cell are 

presented in section 4.4.  Two special adaptors were added to the initial setup in order to 

effectively attach the load cell to the MTS Testing frame. 
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Figure 3.1    The test facility 
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(a) Upper set of grips 

 

 
(b) Lower set of grips 

 
Figure 3.2    Details of the set of grips 
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To prevent any slippage between the specimen and the plates of the Advantage™ Wedge 

Action Grips, an additional layer of gum rubber was bonded to each end of the test 

specimen, using a non-reactive Krazy Glue® instant adhesive (Figure 3.3).  This extra 

layer increased the thickness of the ends of the gum rubber specimen, which was then 

tightly clamped between the two knurled plates of the Wedge Action Grips.  It was 

observed previously that slippage occurred without this additional layer (Selvadurai 

(2006); Selvadurai and Yu (2006)).  Tests indicated that without the additional layer, 

slippage would be limited at small strains but become noticeable at moderate and large 

strains, primarily due to the progressive friction loss (associated with a Poisson-type 

contraction) between the membrane and the clamping system during stretching.  There is 

the possibility of chemical reaction between the instant adhesive and the rubber specimen 

if the testing takes place over a long period; however, since the tests on the rubber 

specimens were performed within one hour of the adhesive application, the effects of any 

chemical reaction were disregarded.  Six rubber specimens of two different thicknesses 

were tested.  All samples were cut from the same sheet to minimize any batch-to-batch 

variation.  The specimens used measured 150 mm x 30 mm in profile with an initial cross 

section of 30 mm x 0.794 mm and 30 mm x 1.588 mm.  A typical specimen is shown 

in Figure 3.4.  The stress-strain data collected from the experiments are presented in 

terms of engineering stress and engineering strain.  The engineering stress, S, is defined 

as the applied load, P, divided by the unstrained cross-sectional area, 0A .  The 

engineering strain, ε , is defined as the change in 0LL − length, ( L =Δ ), divided by the 

original length, 0L , and the extension or stretch ratio, λ , is the current length, L , divided 

by the original length. In the experiments performed, the original length was taken as the 

distance between two edges of the specimen ( =150 mm) as indicated in 0L Figure 3.4.  

The strain was calculated as the percentage change of the original length.  The results of 

the uniaxial tests conducted up to a strain of 100 % are presented in section 3.2.   

 

The experiments were conducted in the Materials Testing Laboratory where the room 

temperature was approximately 24oC.  The duration of each tensile test was 

approximately 35 minutes and during this period the temperature in the laboratory 
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fluctuated by less than 1oC.  It can be assumed that the temperature fluctuations had 

virtually no effect on the change in the mechanical properties of the natural rubber.   

 

 
Figure 3.3    Krazy Glue instant adhesive 

 

 
Figure 3.4    Specimen prepared for tensile testing 

 

 

3.2    Uniaxial Tests Results 

 

The results of the uniaxial tests conducted on natural gum rubber of thicknesses 0.793mm 

and 1.588 mm are shown in Figure 3.5.  The natural gum rubber undergoes moderate 

strains, i.e. up to 100% strain, during the tensile test.  Due to the height limitation of the 

MTS machine, the material could not be tested up to failure; however, natural rubber is 

known to fail at a strain in the range of 800% – 1000% (Treloar (1975)).  The results 

show good repeatability between each set of experiments, and within the range of 

accuracy of the tests.  From the loading-unloading stress-strain curves shown in Figure 

3.5, it can be observed that hysteresis was negligible, especially for the thinner specimen.  

The unloading behaviour of the gum rubber follows relatively closely the loading curve 

and the material does not display any significant irreversible deformation.  Other 

hyperelastic materials, such as PVC geosynthetic, exhibit creep and irreversible strains 
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during uniaxial testing (Yu (2005)).  Natural rubber also has the advantage of being 

strain-rate independent.  Results of uniaxial tests conducted at three different strain-rates, 

20%/min, 40%/min and 60%/min, indicated that the strain rate has no significant 

influence on the stress-strain behaviour of the material.   

 

 
Figure 3.5    Stress-strain response of a rubber strip to uniaxial stretching 

 

 

Additional strain data can be extracted from selected points in the continuous stress-strain 

curve shown in Figure 3.6a.  During tensile testing, the specimen should produce a 

homogeneous deformation.  The homogeneity of the deformation is a requirement for the 

data analysis procedures which rely on the appropriate measures of stress and 

homogeneous strain.  However, in reality, it is practically impossible to achieve perfect 

homogeneity of the specimen during stretching.  Since the ends are gripped, the 

prevention of lateral contraction leads to non-homogeneity in the strain field.  To 

examine the extent to which the end constraints influence the development of 

homogeneous straining, a comparison between the physical stretching of the specimen 
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and the relative extension of the grips was made.  The procedure used was identical to 

that given in Selvadurai (2006).  A grid was drawn on the rubber specimen using a fine 

black marker with spacings of 10 mm and 30 mm between gridlines.  As the sample 

stretched, the horizontal gridlines were used to calculate the real physical length for 

different sections on the rubber specimen (Figure 3.6b).  A 5 Megapixels digital camera 

captured the deformed configuration of the specimen at different strain ranges.  The 

distance between the horizontal gridlines was first measured in image pixels, and then 

calibrated against a known physical distance.  The known physical distance was chosen 

as the distance between the two grips.  The real distance at different extensions can then 

be obtained via a conversion between the image pixels and the known physical distance.  

Figure 3.6b shows the strains measured at different sections of the specimen.  Test results 

indicate that the effects of the fixity constraints give errors of 3.4%, 1.5% and 0.2% at 

average strains in the range of 0ε = 27%, 54% and 81%, respectively. 
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(a) Stress-strain curves 
 

               
(b)  Deformed shapes with strain measured at different sections of the specimen 

 
Figure 3.6    Tensile behaviour of natural rubber strips (membrane thickness: 1.588 mm) 
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3.3    Constitutive Modelling Results 

 

In this section we use the uniaxial test data to identify the parameters associated with the 

neo-Hookean, Mooney-Rivlin and Ogden models and proceed to choose the simplest 

model that provides the best match for the stress-strain data in the selected range of 

strains.  The easiest way to obtain the coefficients is to use the curve-fitting hyperelastic 

models supplied by most Finite Element Analysis (FEA) software.  In this study, the 

commercial FE software ABAQUS (ABAQUS/Standard (2008)) was used for both 

modelling and calculations.  ABAQUS contains a large library of hyperelastic models 

designed for rubber materials, namely: polynomial, Mooney-Rivlin, reduced polynomial, 

neo-Hookean, Yeoh, Arruda-Boyce, Ogden and Van der Waals.  The Mooney-Rivlin and 

reduced polynomial models are particular forms of the polynomial model.  The neo-

Hookean and Yeoh models are special cases of the reduced polynomial model.  

ABAQUS allows the evaluation the hyperelastic material behaviour by automatically 

creating response curves using selected strain energy potentials (Figure 3.7).  ABAQUS 

allows the input of either uniaxial tension data, or equi-biaxial extension data, or planar 

tension data, or any combination of these loading states to be used for parameter/ model 

identification.  Although the ABAQUS manuals suggest that the input of data obtained 

from multi-stress states will optimize the accuracy of hyperelastic model predictions, 

only uniaxial tension test data were used in this study to determine the material 

coefficients.  It was assumed that the planar and biaxial tension tests could be omitted 

without compromising accuracy.  Each parameter was determined using the least squares 

method.  Figure 3.8 shows a comparison of the modelling of the tensile behaviour of the 

natural rubber material obtained using different forms of the strain energy function.  It 

can be observed that the Mooney-Rivlin model provides the closest fit to the 

experimental data.  
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Figure 3.7    ABAQUS characterization of experimental data using different forms of 

strain energy function 
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(a)  Membrane thickness: 0.793 mm 

(b)  Membrane thickness: 1.588 mm 
 

Figure 3.8    Constitutive modelling of the stress-strain curve for natural rubber 
(corresponding to a loading rate of min/%20=ε ) using different forms of 
strain energy function – parameters determined from ABAQUS subroutine 
for material parameter identification for hyperelastic materials 
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3.4    The Mooney-Rivlin Parameters 

 

The Mooney-Rivlin strain energy function is the mostly commonly used hyperelastic 

model that describes the mechanical behaviour of natural rubber.  This model is known to 

give a simple representation of rubber-like solids and the simple way of determining the 

material parameters also makes it very convenient to use.  For the case of uniaxial tension 

of the Mooney-Rivlin material, the stress-strain equation (2.18) can be plotted as 

 vs. , as shown in )(2/ 2
0

−− λλσ 1−λ Figure 3.9.   

 

 
Figure 3.9    Mooney plot from uniaxial stretching of a rubber membrane with  

C1 = 0.153MPa and C2 = 0.216MPa 
 

The above figure is referred to as a Mooney-plot with a slope of C2 and an intercept C1 

(as 0/1 →λ ).  The data was obtained experimentally, during the uniaxial stretching of 

rubber specimens.  An important observation is that a true Mooney-Rivlin material would 

give a straight line and not a non-linear plot, as shown in Figure 3.9.  The linear fit is 

obtained using a least squares and regression analysis. 
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A number of methods can be used to determine the parameters of the Mooney-Rivlin 

model.  Since the Mooney-Rivlin model is a generalization of the neo-Hookean model, 

the strain energy function is related to the Cauchy-Green stress tensor through the shear 

modulus, G.  The linear elastic shear modulus is related to the material constants by  

)(2 21 CCG +=  (3.1)

For incompressible materials, the initial Young’s modulus is given by 

)(6 21 CCE += . (3.2)

Equation (3.2) is obtained from the relationship between the shear modulus and the 

modulus of elasticity for isotropic linear elastic materials, 

)1(2 ν+
=

EG . (3.3)

For incompressible materials, 5.0≈ν  and 

EG =3 . (3.4)

 

Table 3.1 presents the Mooney-Rivlin constants obtained in section 3.3 and their 

respective shear moduli.  The values of G for each thickness should theoretically be the 

same since both samples are from the same type of rubber.  It was found from the 

uniaxial test results that the Mooney-Rivlin constants can vary; a small range of Mooney-

Rivlin constants can exist for the material, as long as equation (3.1) is satisfied (Figure 

3.10). 

 

Table 3.1    The Mooney-Rivlin constants and the shear moduli 

Specimen thickness 
(mm) 

C1 
(MPa) 

C2 
(MPa) 

G 
(MPa) 

0.793 0.281 ± 0.02 0.075 ± 0.02 0.712 0.04 ±
1.588 0.153 ± 0.02 0.216 ± 0.02 0.738 0.04 ±
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(a) Membrane thickness: 0.793 mm 

 
(b) Membrane thickness: 1.588 mm 

 
Figure 3.10    Range for the Mooney-Rivlin constants 
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Chapter 4    

FLUID LOADING OF A RUBBER MEMBRANE 

 

4.1    Introduction 

 

To validate the results of the constitutive model development, a further experiment was 

conducted, where the rubber membrane was subjected to a multi-axial state of stress.  The 

specific problem chosen for the experimental study is that of a natural rubber membrane 

that was fixed along a circular boundary and subjected to a fluid load applied in the 

transverse direction (Figure 4.1).  The membrane loading was selected to induce strains in 

the same range as those applied to determine the constitutive properties of the rubber. 

 

 
Figure 4.1    Two-dimensional schematic view of the experiment 

 

4.2    The Test Facility 

 

Photographic and schematic views of the experimental facility used to conduct fluid 

loading of the rubber membrane are shown in Figures 4.2 and 4.3, respectively.  The 

apparatus consists of a series of precision manufactured glass cylinders of internal 

diameter 15 cm, length 61 cm and wall thickness of 0.50 cm that are connected to form a 

unidirectional column of height 260 cm.  This test facility was used by Dong (2006) and 
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Selvadurai and Dong (2006) in their studies dealing with advective transport of chemicals 

in porous media.  Smooth walled glass cylinders were used to provide a relatively 

distortion-free transparent surface for the observation of the fluid and to minimize any 

damage to the interior surface in cases where solid material might be added in subsequent 

experiments.  The fluid used in this experiment was tap water at approximately 24oC.  

The membrane testing set-up was adapted to apply fluid loading to a membrane that was 

fixed along a circular boundary.  The rubber membranes used were 146 mm in diameter 

with thicknesses of 0.794 mm and 1.588 mm.  A total of three experiments were 

performed for each thickness.  The fixed boundary condition was achieved by clamping 

the membrane between a plexiglass and an aluminum plate.  The boundaries of the 

plexiglass and aluminum plates were shaped to a circular cross section to minimize stress 

concentration along the clamped edge.  Careful placement of the membrane was 

necessary to prevent both leakage and slippage.  To prevent leakage between the glass 

column and the membrane, two rubber gaskets sandwiched the membrane and a thin 

aluminum plate was placed at the bottom; the membrane-plate assembly was secured 

with 8-32 screws.  The schematic view of the clamped assembly is shown in Figure 4.4a.  

Previous tests on a rubber membrane indicated that slippage occurred at the fixed end 

(Selvadurai and Yu (2006)).  To eliminate this effect, an additional layer of hard 

neoprene rubber was bonded on one side of the membrane, using a non-reactive adhesive 

– Lepage ® Pres-Tite Green contact cement (Figure 4.4b and c).  Observations indicated 

that this additional layer eliminated the slippage problem and prevented tearing of the 

rubber membrane at the clamping edge. Furthermore, since the preparation and 

experiment duration are relatively short (less than an hour), the possibility of any long-

term chemical reaction between the adhesive and the rubber membrane were neglected.   
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(1) Digital thermometer; (2) Digital camera;  
(3) Inlet/Outlet Valve; (4) Rubber membrane 

 
Figure 4.2    Photographic view of the experimental apparatus 
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(1) Digital camera; (2) Fluid columns; (3) Inlet/outlet valve; (4) Rubber membrane;  
(5) Plastic tube; (6) Digital thermometer; (7) Pump; (8) Water container 

 
Figure 4.3    Schematic view of the experimental apparatus 
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(a) Schematic view of the clamped assembly 
 

(b) Lepage Pres-Tite Green contact cement 
 

(c) Rubber membrane specimen with hard neoprene restraint 
 

Figure 4.4    Details of the rubber membrane 
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4.3    Experimental Results 

 

The measurement of the deflected shape of the rubber membrane for different pressures 

was the main focus of this experimental research, and results would then be validated 

using a finite element simulation.  The deflected profile was examined by applying a fluid 

load in an incremental manner until the rubber membrane reached a strain of 

approximately 100%.  The deflected profile was measured using an optical technique; 

using a high precision (5 Mega pixels) digital camera, a photographic record of the 

deflected profile was captured for each successive pressure increment.  The distance of 

the camera to the test specimen does not require a fixed location since the data extraction 

procedure of the visual images is related to a distance in image pixels rather than the 

actual physical distance.  However, the central optical axis of the camera must be aligned 

and normal to the datum of the object.  In the experiments, the datum was taken as the 

midpoint of the rubber membrane in its median plane.  The camera was positioned to 

capture a representative focused image through the plane of symmetry of the membrane.  

To obtain the deformation at the central deflection, the image pixels are calibrated against 

a known physical distance, which in this case is the diameter of the aluminum plate.  The 

physical deflection of the membrane can then be determined by converting between the 

image pixels and the known distance.  This method was found to minimize any parallax 

or barrel distortion.  The image resolution is an important factor for the accuracy of the 

data.  An image resolution of 2304 x 1728 pixels was used and proved to give accurate 

results.  During the experiment, the images of the deflected profile were recorded for 

different water heights.  A total of three experiments were performed for each rubber 

thickness.  Water was added to the column in an incremental manner of 10 cm up to a 

central maximum displacements of maxΔ = 63.9 mm and maxΔ = 51.5 mm for the 0.793 

mm and 1.588 mm thick rubber membranes, respectively.  The load-displacement 

response is shown in Figure 4.5.  The strain in the membrane at different pressures was 

measured using the same optical technique described earlier.  A uniform grid was drawn 

on the rubber membrane using a fine black marker with spacings of 10 mm between 

gridlines.  As the membrane stretched, the gridlines were used to calculate the strain at 

different pressures.  It was found that the central maximum displacement corresponds 
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approximately to an overall average strain of 113% and 70% in the radial direction for the 

0.793 mm and 1.588 mm thick rubber membranes, respectively.  The load-strain results 

are shown in Figure 4.6.  The results show a good repeatability between sets of 

experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36 
 



(a) Membrane thickness: 0.793 mm 
 

(b) Membrane thickness: 1.588 mm 
 
Figure 4.5    Load-displacement responses for the fluid loading experiment 
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Figure 4.6    Load-strain results for the fluid loading experiment 

 
 

4.4    Technical Specifications of Experiment Facility 

 

This section presents the technical specifications of the materials and components used in 

the experiments.  This information is provided for completeness and for future use. 

 

Natural gum rubber sheets  

• Thicknesses: 1/32 in (0.793 mm) and 1/16 in (1.588 mm) 

• Durometer 35 ShoreA 

• Temperature range: -20oF to 140 oF  (-28 oC to 60oC) 

• No oil resistance 

• Excellent acid resistance 

• Supplier: Murdock Industrial, Akron, USA 

38 
 



 

Neoprene sheets (black) 

• Thickness: 1/8 in (3.175 mm) 

• Durometer 70 ShoreA 

• Temperature range: -40oF to 275 oF  (-40 oC to 135oC) 

• Good oil resistance 

• Good ethanol resistance 

• Low acetone and chlorine resistance 

• Supplier: Johnston Industrial Plastics, Montreal, Canada 

 

MLP-500 Load cell  

• Sensor model: MLP-500 

• Serial number: 221356 

• Capacity range: 500 lbs (2224 N) 

• Accuracy: +/- 0.5 lbs (2.2 N) 

• Excitation: 10 VDC 

• Supplier: Transducer Techniques, Temecula, USA 

 

Glass tubes 

• Internal diameter: 15 cm 

• Outside diameter: 15.5cm 

• Simax heat resistant 

• Supplier: Kavalier, Sazava, Czech Republic 

 

Glass thermometer 

• Indoor and outdoor temperature reading 

• Temperature range: -35oC to 50oC 

• Accuracy: +/-1oC 

• Supplier: McMaster-Carr, Aurora, USA 
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Digital camera: Panasonic Lumix DMC-Z2 

 

Lepage ® Pres-Tite Green contact cement 

• Strong bond with plywood, metal, rubber, etc. 

• Excellent creep resistance 

• Purchased at RONA, Montreal, Canada 

  

Instant Krazy Glue ® pen 

• Strong bond with wood, rubber, glass, metal, plastic and ceramic 

• Purchased at Canadian Tire, Montreal, Canada 

 

Plastic tubing 

• Outside diameter: 1/2 in (12.7 mm) 

• Thickness: 3/8 in (9.5 mm) 

• Length: 20 feet (6.1 m) 

• Purchased at RONA, Montreal, Canada 

 

Submersible pump 

• Model: 4E-34NR 

• Horsepower 1/12 

• Flow 810 GPH (1066 LPH)  at 1 ft of head 

• 210 Watts 

• Thermal overload protection 

• Supplier: Little Giant Pump Company, Oklahoma City, USA 
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Chapter 5    

COMPUTATIONAL MODELLING OF FLUID LOADING OF 

RUBBER MEMBRANE 

 

5.1    Introduction 

 

This chapter describes the finite element modelling of the hyperelastic behaviour of the 

natural rubber membrane subjected to fluid pressure.  The modelling used the commercial 

finite element software ABAQUS (ABAQUS/Standard (2008)).  This code contains 

many features related to the modelling of large strain phenomena, including the 

possibility of implementing a chosen constitutive model into the computational 

algorithm.  This program is used extensively for the study of problems related to 

hyperelastic materials.  The objective here is to model a rubber membrane that is 

subjected to different pressures, observe its central deflection and to compare the 

computational predictions with experimental observations.  The Mooney-Rivlin 

constitutive model with the material parameters determined in Chapter 3 is used in the 

computational modelling.  

 

5.2    Rubber Membrane Model 

 

The circular rubber membrane was modelled as a three-dimensional structure.  Since the 

thickness of the specimen is small compared to its radius and since the fluid pressure 

loading transforms the flat membrane into a curved thin shell, a three-dimensional 

deformable shell element was used to create the model.  Although a two-dimensional 

model would also be applicable for this case, due to the symmetry of the structure, a 

three-dimensional model gives a better overall visual representation of the deformed 

shape at different pressures.  Also, since both the two-dimensional and the three-

dimensional models gave the same results for the deflected shape and since the mesh 
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generation and computing time had little effect on the overall analysis, the three-

dimensional option was chosen.   

 

5.3    Membrane Elements 

 

Membrane elements were chosen to model the circular rubber membrane.  The use of 

membrane elements is appropriate for non-linear analyses; these elements represent thin 

surfaces that transmit forces in its plane but have no bending stiffness.   ABAQUS offers 

a number of membrane elements in its element library, each of which is placed in three 

different categories:  general membrane elements (M3D3, M3D4, M3D4R, M3D6, 

M3D8, M3D8R, M3D9, M3D9R), which include both triangular and quadrilateral types 

of elements, cylindrical membrane elements (MCL6, MCL9) and axisymmetric 

membrane elements (MAX1, MAX2, MGAX1, MGAX2).   General membrane elements 

are used in most three-dimensional models in which the deformation of the structure can 

evolve in three dimensions.  Cylindrical membrane elements should be chosen for precise 

modeling of regions in a structure with circular geometry, such as tires.  It is useful when 

displacements along the circumferential direction need to be determined.  Axisymmetric 

membrane elements allow torsion loading and general material anisotropy.  The 

membrane model used in this research consists of M3D8R elements – quadrilateral, 8 

noded with reduced integration (Figure 5.1).  Each node has three displacement and three 

rotation degrees of freedom.  The choice of specific element type is explained below. 

    
Figure 5.1    Quadrilateral 8-node reduced integration element 

(ABAQUS, 2008) 
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Either triangular or quadrilateral elements could be used for the analysis of the 

membrane.  The choice depends upon the complexity of the structure, the mesh 

geometry, the size aspect ratio, the accuracy of the results required as well as minimizing 

computing time.  Since the membrane structure has a very simple geometry, it was found 

that the computing time was the same regardless of the choice of the element.  Therefore, 

quadrilateral elements were chosen over triangular elements since they have a better 

convergence rate and no sensitivity to mesh orientation.   

 

The second-order form of the quadrilateral elements was selected because it provides 

higher accuracy for problems that do not involve complex contact conditions or severe 

element distortions in the analysis.  Second order elements have extra mid-side nodes in 

each element making computation of small and finite deformations more effective.   

 

The reduced-integration option is preferred for quadratic elements because it uses a 

lower-order integration to produce the element stiffness and decreases the computing 

time of an analysis, especially in three dimensions.  Also, since the accuracy of the 

analysis is of prime importance, second-order reduced integration elements were chosen 

because this typically yields more accurate results than the first order elements.   

 

5.4    Alternative: Solid Elements 

 

Solid (continuum) elements could have also been used to model the rubber membrane.  

Numerical simulations indicated a less than 0.3% difference in the results for the 

maximum deflection of the rubber membrane if either the solid or membrane element 

type was chosen.  Solid elements have a hybrid incompressible formulation 

(ABAQUS/Standard (2008)) since they are intended primarily for use with 

incompressible and almost incompressible materials.  For nearly incompressible cases 

(where the Poisson’s ratio, ν , is greater than 0.4999999), the material will produce 

extremely large changes in pressure for a very small change in displacement.  Hybrid 

elements treat the isotropic pressure p  as an independently interpolated basic solution 
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variable and couple it to the displacement.  ABAQUS recommends the use of hybrid 

solid elements for hyperelastic materials. 

 

5.5    A Convergence Study 

 

A convergence study was conducted to determine if the uniform mesh size of the final 

model provided accurate results and whether or not there should be a mesh refinement or 

coarser meshes should be used to reduce the computing time during analysis.  The 

maximum deflection at the central point of the membrane was computed for different 

mesh sizes.  The number of elements used for the membrane ranged from 42 to 20, 266.  

The results of the convergence study are presented numerically in Table 5.1 and 

graphically in Figure 5.2.  Based upon the results, the model which consisted of 840 and 

2, 287 elements for the membranes of thickness 0.793mm and 1.588mm, respectively, 

provided satisfactory accuracy.   

 

 

Table 5.1    Results of a convergence study 
 

(a) Membrane thickness: 0.793mm (b) Membrane thickness: 1.588mm 

Number of 
membrane elements 

Maximum central 
deflection (mm) 

42 54.3435 
56 54.3430 
92 54.3408 
188 54.3394 
840 54.3391 
1300 54.3391 
2287 54.3391 
5315 54.3391 
20266 54.3387 

Number of 
membrane elements 

Maximum central 
deflection (mm) 

42 44.9697 
56 44.9703 
92 44.9691 
188 44.9678 
840 44.9675 
1300 44.9675 
2287 44.9669 
5315 44.9669 
20266 44.9669 
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(a) Membrane thickness: 0.793mm 

 
(b) Membrane thickness: 1.588mm 

 
Figure 5.2    Convergence analysis 
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5.6    Computational Results 

 

The schematic view of the rubber membrane problem under fluid loading is illustrated 

in Figure 5.3a.  The boundary conditions and finite element discretization used in the 

computational modelling are shown in Figure 5.3b.  The boundary condition of the 

membrane is fixed; i.e., neither a displacement nor a rotation is allowed.  Uniform 

pressure is applied on the membrane surface for pressures up to 13.7 kPa and 24.5 kPa 

for the membranes of thickness 0.793 mm and 1.588 mm, respectively.  The Mooney-

Rivlin material model is used for the rubber with the constants obtained from uniaxial 

tests: C1 = 0.281 MPa and C2 = 0.075 MPa for the thinnest membrane, and C1 = 0.153 

MPa and C2 = 0.216 MPa for the thicker membrane.  A constant pressure was assumed to 

act on the membrane (Figure 5.4).   It was found that the influence of the weight of the 

fluid in the deformed region can be neglected; the difference between the real and the 

assumed pressure corresponds to a discrepancy of approximately 2%, which falls within 

the range of accuracy of the tests.  Figure 5.5 and Table 5.2 show the comparison of the 

load-displacement responses between the computational predictions and the experimental 

results.  It can be seen that the computations are accurate for pressures below 12 kPa and 

22 kPa for the membranes of thickness 0.793 mm and 1.588 mm, respectively, but they 

under estimate the experimental results for higher pressures.  For purposes of 

comparison, Table 5.2 also presents the results for the unloading mode.  One can see that 

due to the presence of nominal hysteresis in the real membranes, the error between the 

computational and experimental results is increased for the unloading portion.  Overall, 

the computational results provide a comparable trend and a satisfactory prediction of the 

deflection of the membrane determined from the experiments. 
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(a) Fluid loading on rubber membrane 

 

 
(b) Mesh configuration and boundary conditions  

(total number of elements: 840 and 2287, for membranes of thickness  
0.793 mm and 1.588 mm, respectively) 

 
(c) Deformed shape under maximum loading  

( maxΔ = 63.9 mm and maxΔ = 51.5 mm for the 0.793 mm and 1.588 mm  
thick rubber membranes, respectively) 

 
Figure 5.3    Computational results for the deflection of the rubber membrane 
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(a) Assumed uniform pressure 

        
(b) Real (non-uniform) pressure 

Figure 5.4    Pressure of the fluid on the deformed membrane 
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(a) Membrane thickness: 0.793mm 
 

(b) Membrane thickness: 1.588mm 
 

Figure 5.5    Comparison of experimental results and computational predictions 
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Table 5.2    Experimental and computational comparison of load-displacement responses 
of the thin rubber membrane 

 
(a) Membrane thickness: 0.793 mm;  

Mooney Constants: 1C = 0.281 MPa ; 2C = 0.0075 MPa 

Experimental vs. Computational 
deflected profile 

Pressure
(kPa) %100

%

max

maxmax ×
Δ

Δ−Δ

=

Exp

CompExp

Error
 

LOADING 

2.0 5.3 

3.9 2.8 

5.9 2.7 

7.9 2.9 

9.8 3.5 

11.7 7.4 

13.7 15.0 
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(b) Membrane thickness: 0.793 mm;  

Mooney Constants: 1C = 0.281 MPa ; 2C = 0.0075 MPa 

Experimental vs. Computational 
deflected profile 

Pressure
(kPa) %100

%

max

maxmax ×
Δ

Δ−Δ

=

Exp

CompExp

Error
 

UNLOADING 

11.8 10.0 

9.8 6.5 

7.8 4.9 

5.9 5.7 

3.9 6.6 

2.0 7.6 
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Table 5.3    Experimental and computational comparison of load-displacement responses 
of the thick rubber membrane 

 

(a) Membrane thickness: 1.588mm;  

Mooney Constants: 1C = 0.153MPa ; 2C = 0.216MPa 

 

Experimental vs. Computational 
deflected profile 

Pressure 
(kPa) %100

%

max

maxmax ×
Δ

Δ−Δ

=

Exp

CompExp

Error
 

LOADING 

3.9 3.5 

7.8 5.5 

11.7 3.7 

 

15.6 1.1 

19.7 3.7 

23.4 10.6 

24.5 12.7 
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(b) Membrane thickness: 1.588mm;  

Mooney Constants: 1C = 0.153MPa ; 2C = 0.216MPa 

Experimental vs. Computational 
deflected profile 

Pressure 
(kPa) %100

%

max

maxmax ×
Δ

Δ−Δ

=

Exp

CompExp

Error
 

UNLOADING 

23.5 14.4 

19.6 13.2 

15.6 10.5 

11.7 8.8 

7.8 10.0 

3.9 14.7 
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Chapter 6    

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

WORK 

 

6.1    Summary and Conclusions 

 

In this thesis, the mechanical behaviour of natural gum rubber membranes of two 

different thicknesses was studied.  Several hyperelastic models have been developed to 

describe the behaviour of rubber for a large range of strains.  The objective of this work 

was to choose the simplest model that can provide the best match for the stress-strain data 

obtained from uniaxial tensile tests and validate the material parameters through 

membrane load tests and computational modelling.   

 

The membrane loading test can be regarded as a useful testing method for investigating 

hyperelastic rubber-like materials.  The application of fluid loading allows control over 

the deformation behaviour and the optical technique allows accurate measurement of the 

deflected profile at different pressures.  The experimental and computational results 

showed that the degree of correlation is consistent with that observed in the range of 

strains applicable to the model development.  The experimental results indicate that the 

Mooney-Rivlin form the strain energy function can adequately model the mechanical 

behaviour of the membrane at moderately-large strains (i.e. 0ε  < 65%).  The 

computational simulations indicate that the Mooney-Rivlin form of the strain energy 

function can adequately predict the experimental response of membranes that experience 

strains of up to 65% during fluid loading. 
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6.2    Recommendations for Future Work 

 

One natural extension of the current work would be to study the mechanical behaviour of 

natural rubber at higher strain levels.  It will be interesting to identify the strain energy 

functions associated with the new strain range and see which model provides a better 

match with the stress-strain experimental data.   

 

The validation of the model parameters can be done via pressurization or indentation 

experiments.   

 

One can also conduct fluid loading on natural rubber using a mixture of pure water and 

ballotini and observe the presence of any irreversible behaviour in the material after a 

certain period of time.   

 

Another area of interest would be to study the alteration in the mechanical behaviour of a 

natural rubber subjected to heat, oil, oxidation or ozone.  The long-term impact on the 

deformability, or embrittlement, and other physical and chemical transformations of the 

material can be interesting to analyze. 

 

A potential lead for future work also includes the observation of the molecular structure 

of the rubber for different cross-linking densities, chain lengths and initial pressures or 

stretches. 
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