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Abstract 

 

Carbonaceous mesophases (CMs) obtained from petroleum pitches and 

naphthalene precursors are mixtures of discotic nematic liquid crystals 

(DNLCs) employed to produce high performance carbon fibers (CFs). Natural 

pitches are usually polydisperse while synthetic ones are currently produced 

with very narrow molecular weight distributions. 

To design and control the final structure and mechanical properties of CFs three 

key parameters have to be considered: (i) characteristics of the raw material 

including the molecular weight, molecular interactions and the concentration of 

each species, (ii) the processing temperature and (iii) the extensional flow 

applied in the fiber spinning process.  Experimental synthesis, processing, and 

characterization of CM materials are expensive due to the required equipment 

and operating conditions. Hence the computational modeling methodology 

adopted in this thesis is a cost effective tool for these novel materials.  

This thesis uses theory, mathematical modeling and computational simulations 

to characterize the effect of three above mentioned major factors on the 

orientational and molecular ordering behavior of a mixture of two 

monodisperse DNLCs, of relevance to the manufacturing of high performance 

CFs. 

The statistical mechanics Maier-Saupe model which effectively predicts the 

molecular ordering behavior of pure discotic systems is first extended to binary 

mixtures and then further extended to incorporate uniaxial extensional flow 

effects. Thermodynamic and thermo-rheological phase diagrams of binary 

lyotropic/thermotropic CM mixtures are predicted by this theory and partially 

validated by previous theoretical results and experimental observations. The 

generic thermo-rheological phase diagram which specifies the orientational 

structure of each component and their degree of molecular orientation under 

extensional spinning flow is obtained.  X-ray diffraction intensity and 

orientational specific heat are also simulated in the present thesis, verified by 
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available data and used as characterization tools for the orientation behavior of 

CM mixtures.  

In summary the thesis provides a new practical route for targeted structure-

property relations for high performance CFs, through the chemistry and 

composition of the precursors, thus extending the traditional routes based on 

modifications of operating conditions and process geometry.  At the 

fundamental level, the thesis presents the first dynamical model for DNLC 

mixtures.  The models and results of the thesis are also applicable to rod-like 

systems under biaxial extensional flow, and DNLC under magnetic and electric 

fields. 
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Résumé  

 

Les mésophases de carbone (CMs) obtenu à partir de précurseurs de bitume et 

de naphtalène sont des mélanges de cristaux liquides nématiques discotiques 

(DNLCs) utilisés pour produire les fibres de carbone (CF) à hautes 

performances. Le bitume naturel est généralement polydispersé tandis que celui 

qui est synthétique est présentement produit avec des distributions étroites du 

poids moléculaires. 

Afin de concevoir et de contrôler la structure finale et les propriétés mécaniques 

des CFs, trois paramètres importants doivent être pris en compte: (i) les 

caractéristiques de la matière première dont le poids moléculaire et les 

interactions moléculaires  (ii) la température du processus et (iii) l’écoulement 

extensionnel appliqué dans le processus de filage de la fibre. La synthèse 

expérimentale, le traitement et la caractérisation des matériaux CM sont chers 

en raison de l'équipement et des conditions d’opérations requises. C'est 

pourquoi la méthode de modélisation numérique adoptée dans cette thèse est un 

outil rentable pour l’étude ces nouveaux matériaux. 

Cette thèse s'appuie sur la théorie, la modélisation mathématique et des 

simulations numériques pour caractériser l'effet de chacun des trois facteurs 

principaux, mentionnés ci-dessus, sur le comportement et l'orientation  

moléculaires d'un mélange de deux DNLCs monodispersés, relevant pour la 

fabrication de CFs à hautes performances. 

Le modèle de mécanique statistique de Maier-Saupe qui prédit efficacement 

l’arrangement moléculaire des systèmes discotiques purs est d'abord étendu aux 

mélanges binaires puis étendu afin d’incorporer les effets d’écoulement 

extensionnel uniaxiaux. Les diagrammes de phases de thermodynamique et de 

thermo-rhéologie des mélanges binaires de CM lyotrope / thermotrope prédis 

par cette théorie et partialement validée par les résultats théoriques et les 

observations expérimentales précédentes. Le diagramme de phase de thermo-

rhéologie générique qui spécifie la structure d’orientation de chaque composant 

et leur degré d'orientation moléculaire sous extension est obtenu. L’intensité de 
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la diffraction à rayon X ainsi que la chaleur spécifique orientée sont également 

simulées dans la présente thèse, vérifié par les données disponibles et utilisés 

comme outils de caractérisation du comportement d'orientation des mélanges de 

CM. En résumé, la thèse propose une nouvelle démarche pratique pour les 

relations ciblées propriété-structure pour les CFs à haute performance, grâce à 

la chimie et la composition des précurseurs, ainsi étendant les démarches 

traditionnelles basées sur des modifications de conditions d'exploitation et de la 

géométrie des processus. Au niveau fondamental, la thèse présente le premier 

modèle dynamique pour les mélanges DNLC. Les modèles et les résultats de 

cette thèse sont aussi applicables aux systèmes allongés sous écoulements 

extensionnel biaxial et sous l’effet de champs électriques et magnétiques. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 XV 

 

Results Summary 

 

The major results of this thesis are summarized into two main parts: (1) 

Thermodynamic predictions (the effect of temperature on the orientational 

behavior of discotic nematic liquid crystalline (DNLC) mixtures) and (2) 

Thermo-rheological predictions (the simultaneous effects of temperature and 

flow on the orientational behavior of DNLC mixtures), as follows: 

1. Thermodynamics    

1.1.  Structural Predictions  

1.1.1. Thermal dependence of the order parameter of each discotic 

component within the mixture; 

1.1.2. Concentration, molecular weight  asymmetry and species’ 

interaction dependency of the order parameter of each discotic 

component within the mixture; 

1.1.3. Classification of the orientational behavior of mixtures into  

ideal and non-ideal based on their phase transition temperature 

trends; 

1.1.4. Model of critical composition determination  for minimal phase 

transition temperature in ideal mixtures; 

1.1.5. Derivation of a model to evaluate the interaction between the 

components through their orientational behavior. 

1-2. Development and Simulation of Characterization Methods 

 1.2.1. Derivation of the X-ray diffraction intensity to evaluate the 

ordering     behavior of   dicotic mixtures and to determine their 

type of behavior (ideal or non-ideal); 

1.2.2. Derivation of the orientational specific heat to determine the 

nematic 

        to isotropic transition temperature, TNI, of the mixture and to   

determine their type of behavior (ideal vs. non-ideal).  

2. Thermo-Rheology 
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 2.1. Structure Prediction 

  2.1.1. Obtaining the Mw dependency of the rotational diffusivity of 

discotic components within the mixture; 

2.1.2. Determination of the extensional flow intensity influence on the 

phase behavior of each discotic component within the mixture; 

  2.1.3. Evaluation the lyotropic / thermotropic competition/cooperation 

effects of   discotic mixtures under uniaxial extensional flow; 

  2.2.3. Determination of the influence of species’ concentration on the 

thermo-rheological phase diagram of the discotic mixtures. 

 2.2. Structural Characterization  

  2.2.1. Derivation of the X-ray diffraction intensity of discotic mixtures in 

the presence of the extensional flow as a tool to evaluate the level 

of biaxiality and structural ordering for each component. 
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1 General Introduction 
 

1.1 Organization 

This introductory chapter is organized as follows. Section 1.1 provides a short 

introduction to the classification of liquid crystals and carbonaceous mesophases 

(CM) emphasizing how and why these mesophases arise. Particular attention is 

placed on mixtures of discotic nematic liquid crystals, since CM precursors spun 

into high performance carbon fibres (CFs) are never monodisperse. Section 1.2 

introduces the different types of CFs with   emphasis on CM-based carbon fibres, 

their different structures and morphologies, their applications and the main fibre 

manufacturing steps. Particular attention is placed on the fibre spinning process 

which is the processing of transforming CM precursors into CFs and the key 

parameters that influence the   fibres’ structure and mechanical properties. Section 

1.3 provides an introduction to the computational material science of nematic CMs 

and its application to mesophase fiber spinning. This section introduces the 

theoretical concepts and the theoretical model used for the CM materials in the 

current work, modeling of the parameters involved in the theory and the 

computational methods used to solve the derived governing equations. It also 

introduces the characterization tools derived in this thesis to measure the ordering 

within the discotic nematic mixtures. Section 1.5 describes the need for mesophase 

mixture modeling and simulation. Section 1.6 specifies motivations and objectives 

of the thesis. Section 1.7 describes thesis scope and organization and section 1.8 

provides the references. 

1.2 Liquid crystals  

1.2.1 Liquid crystals overview 

Liquid crystals (LCs) or mesophases are anisotropic viscoelastic materials formed 

by anisodiametric molecules that possess orientational order and varying degrees of 

positional order.  Figure 1- 1 displays a comparison of the orientational and 

positional order of a rod-like nematic liquid crystalline phase with crystalline (C) 

solid and liquid (I) phases
1-4

. 
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Figure 1- 1. Liquid crystal (LC) phase ordering compared to a crystalline (C) solid and an 

isotropic (I) liquid. Liquic crystal shows a degree of ordering, both positional and 

translational, between the orientation of a perfect crystal and an isotropic liquid. n which is 

called the director is the vector which gives the average of molecular orientation in C and LC 

phases: in C phase all the molecules are aligned parallel to n, though in LC the average of all 

the molecular orientations is along n.  

 

The transition from isotropic liquid-liquid crystal-crystalline solid can be viewed as 

a sequence of symmetry breaking transitions, starting with orientation at the I/LC 

transition, followed by position at the LC/C . Mesophases can be classified 

according to (і) driving force (temperature and/or solvents) for symmetry breaking, 

(іі) average molecular order, (ііі) molecular shape and (іv) molecular weight. When 

the formation of mesophase occurs due to the temperature change, it is defined as a 

thermotropic liquid crystal and when the formation occurs due to the concentration 

effects it is known as lyotropic liquid crystal
5
. Liquid crystals which are formed due 

to the simultaneous effects of temperature and concentration are called 

thermotropic/lyotropic or amphotropic liquid crystals.   This thesis deals with 

amphotropic liquid crystals.  Depending on the average molecular order or 

orientation, these materials are classified into three phases known as nematics, 

cholesterics and smectics (see Figure 1-2). Nematic liquid crystals
6
 exhibits partial 

orientational order; in this phase the long molecular axes are preferably oriented 

along a particular direction called director n. In a cholesteric liquid crystal, the 

director rotates in a helical form about an axis perpendicular to the director. 

n 

Solid Liquid Crystal Liquid 



 

 3 

Smectic liquid crystals exhibit both partial orientational order and translational 

order which is one dimensional positional order along the vertical axis. In this case, 

the director n shows the average orientation of the long molecular axes in each 

layer. This thesis deals with nematic liquid crystals. 

 

Figure 1- 2 Classification of liquid crystals based on molecular order: nematic liquid crystals 

exhibits partial orientational order; smectic liquid crystals exhibit both partial orientational 

and translational order and in a cholesteric liquid crystal, the director rotates in a helical form 

about an axis perpendicular to the director. 

 

Based on molecular shape, liquid crystals can be classified as rodlike (calamitic) 

and disklike (discotic) as shown in Figure 1-3. The director is near parallel to the 

axis of rod like molecules but near perpendicular to the flat surface of the discotic 

molecules. This thesis focuses on disc-like molecules.
4
 Depending on the molecular 

packing, discotic liquid crystals are classified as nematic, columnar (smectic) and 

chiral nematic phases. In nematic phase there is only orientational order with no 

positional order. In columnar phases, in addition to the orientational order present 

in the nematic phase most of the molecules tend to position themselves in columns 

n 

Nematic Smectic 

Cholesteric 
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and form a set of stacked coins. In chiral
7
 nematic discotic liquid crystal the 

director rotates in a helical fashion throughout the sample, just as in the case of 

rodlike cholestric liquid crystals
2
.  This thesis concentrates on discotic nematic 

liquid crystals. 

 

Figure 1- 3. Classification of liquid crystals based on molecular shape. The director is parallel 

to the axis of the rod like molecules and perpendicular to the surface of the discotic molecules. 

 

From the molecular weight (Mw) point of view, these materials are classified into 

low molecular weight and polymeric liquid crystals. This thesis deals with 

oligomers with the Mw between the molecular weight of monomers and Mw of 

polymers. Their Mw ranges from 200 to 1400
8, 9

. 

1.2.2 Liquid crystalline mixtures 

Mixtures of liquid crystalline components with different molecular weights are 

widely used to optimize product and device performance.  For example the addition 

of a lower Mw component to a higher Mw material reduces the blend’s melting 

point and viscosity and makes the melt process easier and more economical. The 

presence of the higher Mw component, on the other hand, provides higher degree of 

orientation in the presence of electric or magnetic fields
2
; it also improves the 

mechanical properties of the final product. Mixing is also used to broaden the 

temperature range of liquid crystalinity
10

. These mixtures are employed for 

different applications such as liquid crystalline displays (LCDs)
11

, carbon-carbon 

(C/C) composites and carbon fibres
12

 (CFs) through the fibre spinning, film 

stretching and injection moulding processes.  

n 
n 
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1.3 Carbon fibres 

1.3.1 Introduction 

Liquid crystals are functional materials and precursors for high performance 

structural materials.  Examples of the former include display devices, optical 

filters
13

, thermal sensors
14

, lubricants
15

, reaction media
16

, and chemical sensors
11, 17

.  

Examples of the latter include high performance fibres
12, 18

, films
11, 19

, and 

composites
19

.   

Carbon materials are used as structural and functional materials. Examples of the 

former include carbon-carbon (C/C) composites and carbon fibres (CFs)
12

. 

Examples of the latter include carbon foams for heat transfer purposes, and as   

materials for purification and adsorption applications  like catalysts and catalyst 

supports
20

. In this thesis we focus on carbonaceous mesophases precursors for the 

production of structural materials and more specifically for the formation of carbon 

fibres using the melt fibre spinning process
12, 21

. Carbon fibre, alternatively graphite 

fibre consists of extremely thin fibres about 0.005-0.01 mm in diameter and mostly 

composed of carbon rings
22

. The strength and stiffness of these   fibres is superior 

to that of all other reinforcing fibres
12

 such as glass and aluminium. The unique 

properties of all carbon fibres can be directly attributed to the highly anisotropic 

nature of the graphite crystal. The graphite crystal is composed of stacks of multi-

pole sheet-like layers of carbon atoms. The crystal alignment makes the fibre very 

strong for its size. The density of carbon fibre is also considerably lower than the 

density of steel, making it ideal for applications requiring low weight
12

. The 

combination of these properties i.e. high modulus, high tensile strength, low 

weight, and low thermal expansion makes it highly usable in aerospace, civil 

engineering, military, and motor sports, along with other competition sports
23

. 

1.3.2 Carbon fibre routes 

Three types of precursors including rayon, Polyacrylonitrile (PAN) and pitch 

(anisotropic pitch is widely refered as carbonaceous mesophase) are mostly used to 

produce carbon fibres in commercial processes. While rayon is mostly used in 

common daily applications (e.g. apparel, filling in Zippo lighters, furnishings, 

medical surgery products and tire cord)
24

, PAN and pitch based carbon fibres are 
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mostly used in high tech industries because of their high mechanical performance. 

PAN fibre is used in industries where its strength and stiffness have enabled many 

low weight applications such as civil and military aircraft primary and secondary 

structures, solid propellant rocket motors, pressure vessels, fishing rods, tennis 

rackets, badminton rackets & high-tech bicycles
25

. In comparison to PAN, 

mesophase pitch-based carbon fibre has a higher Young modulus. As figure 1-4 

shows, the modulus of mesophase pitch can be twice the modulus of PAN. It also 

can be 20 times greater than the modulus of the isotropic pitch.  Mesophase pitch 

also exhibits lower to negative coefficient of thermal expansion, and higher thermal 

and electrical conductivity compared to PAN and hence is appropriate to be used in 

airplane and aerospace industries. Beside, among these three sources, yield of pitch 

precursor, a vital factor in both processing and the economics of commercial carbon 

fibres, is the highest one. A comparison of the process yield of these sources can be 

seen in Table 1-1. In this thesis we concentrate on pitch-based CFs. 
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Figure 1- 4. The effect of preferred orientation on the Young’s modulus of carbon fibers 

adapted from [12]. Anisotropic pitch exhibits the modulus about twice of the modulus of PAN 

and 20 times of the modulus of the isotropic pitch. Carbonaceous mesophase (CM) belongs to 
the anisotropic pitch category. 

 

Table 1- 1. Carbon Yield for various carbon fiber precursors adapted from [12] 

Precursor    Process yield 

Rayon 20-30 

PAN 45-50 

Pitch   75-90 

 

1.3.2.1 Pitch based carbon fibers 

Two types of pitch-based carbon fibres are commercially available: isotropic 

carbon fibre which is produced from an isotropic pitch precursor and anisotropic 

carbon fibre which is produced from an anisotropic, mesophase precursor or 

carbonaceous mesophase (CM). CM is a stack of graphite sheets (see Figure 1- 5) 

which form the discotic nematic liquid crystals (DNLCs), presented in Fig.1-3. It is 

 

  CM 
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Aromatic rings 

formed during the liquid phase pyrolysis of coal or petroleum pitches and exhibits 

very high Young’s modulus (210-620 Gpa), low to negative coefficient of thermal 

expansion, and high thermal and electrical conductivity. Hence, while isotropic 

pitch precursor is used as a catalyst or as catalyst supports only due to their 

functional groups
26

, CMs are used to produce high performance CFs employed in 

aerospace industries due to their preferred orientation and their extraordinary 

mechanical and thermal properties.
12, 20

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1- 5. CM as a stack of graphite sheets, adapted from [12] 

1.3.2.2 Manufacturing of mesophase carbon fibers - Fiber spinning process  

Mesophase carbon fibres are manufactured from mesophase pitches in mainly three 

steps: (і) melt spinning (іі) stabilization and (ііі) heat treatment. Figure 1-6 shows 

the schematic representation of these three steps. In the melt spinning step, the 

fibres are drawn using the molten mesophase pitch to achieve preferred orientation 

in the as-spun fibres
12

.  Typically the precursor is melted in an extruder, see Figure 

1-7, which then pumps the melt into the spin pack. The molten pitch is then filtered 

before being extruded through a multi-holes spinneret. The pitch is subjected to a 

high stress as it approaches and flows through the spinneret capillaries. The 

associated flow-induced torque tends to orient the disk-shaped molecules in a 

regular transverse pattern upon emerging from the spinneret capillaries
27

. The as-

spun fibres are drawn to have the improved axial orientation and are then collected 

on a wind-up device
21

. 
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In the second step, oxygen is used to prevent the fibre from melting during the 

subsequent carbonization process. This is done to “lock in” the structure developed 

during the extrusion process. 

Heat treatment or carbonization involves two steps; (і) around 1000
o
C to reduce the 

rate of gas evolution and (іі) in 1200-3000
 o

C depending on whether high strength 

(lower temperatures) or high modulus (higher temperatures) carbon fibre are 

required
28

. 

 

Figure 1- 6. Different steps of manufacturing of mesophase pitch-based carbon fibers, adapted 
from [12].  The molten pitch is spun in the fiber spinning process. It’s structure then is 

stabilized by oxygen and then is carbonized through heat treatment. 
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Figure 1- 7. Fiber Spinning Process. Adapted from [12] . The raw material, melt carbonaceous 

mesophase, is fed into the hopper, metered through the extruder and then is spun through the 

spinneret and collected on the wind-up device. The fiber experiences the extensional flow in 

the spinneret and exhibits an enhanced orientation in a regular transverse pattern.   

1.3.2.3 Structure and morphology of mesophase carbon fibers  

As anisotropic pitch-based carbon fibres are melt-spun from a liquid crystalline 

precursor (CM), a variety of microstructures with different mechanical properties 

can be produced merely by modifying the spinning conditions such as temperature 

of the spin, extensional flow intensity in the spinneret, the composition of the 

pitch
12

 (see Figure 1-7). Two types of common structures, planar polar, PP, and 

planar radial, PR
29

, with the corresponding mechanical properties reported in Table 

1-2 are shown in Figure 1-8.  

Previous  investigations have proven that depending on the temperature and size of 

the fibre one of the two is formed.
29

 As demonstrated in Table 1-2 different 

morphologies provide different mechanical properties making them appropriate for 

different applications. Hence, having a clear understanding of the physics and 

orientation behaviour of the CMs materials under the extensional flow and its 

control is very critical to tailor the CF for a specific application.  
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Figure 1- 8. Commercial pitch-based carbon fibers morphologies: Planar Polar structure (a) 

and Planar Radial structure (b) adapted from 12. By changing the characteristics and 

composition of the raw material (molecular weight of the components, their interaction and 

their concentrations) or the processing conditions (temperature, flow intensity) different 

morphologies can be achieved.  

 

Table 1- 2. Mechanical properties of two different morphologies of CFs adapted from [12] 
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1.3.2.4 Key parameters in the fiber structure formation 

As depicted in figure 1-7 and discussed in section (1.2.2.3) three major factors 

which determine the final structure of the fibre in fibre spinning process are:  

(i) characteristics of the CM as the mixture of discotic nematic liquid crystal 

including polydispersity of the feed, interaction between the component and 

concentration of each component in the mixture; 

(ii) spinning temperature which influences the phase state (nematic versus 

isotropic) and the orientation of the components within the mixture ; 

(iii) intensity of extensional flow which again influences the phase state and the 

molecular orientation of each component within the mixture.  

 The focus of this thesis is to elucidate the roles of precursor composition (i) and 

operating conditions (ii, iii) on the emergence of orientational order, since this 

order controls many of the end product properties. 

(a) (b) 

PP PR 
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1.4 Computational material science of nematic liquid crystals applicable to 

CMs  

1.4.1 Overview 

CMs currently used to produce CFs are polydisperse materials including monomer, 

diamer, trimer and tetramer of aromatic molecules
30

, as suggested in Figure 1-9. In 

previous research investigations, petroleum pitches have been used as precursors 

for the production of high-performance carbon materials
12

. In general, pitches of 

Mw, i.e., mesophase pitches, have been used for the production of high thermal 

conductivity carbon fibers
12

 and high thermal conductivity carbon–carbon (C/C) 

composites
31

; the mesophases with different Mws also exhibit different 

orientational behavior.  Pitches of low molecular weight, i.e., isotropic pitches, 

have been used as precursors for the production of general purpose carbon fibers, 

activated carbon fibers (ACF) with highly uniform surface characteristics
26

, and as 

a low-viscosity matrix in C/C composites. Thus, the molecular weight of petroleum 

pitches is known to play a key role in their suitability for a given carbon  

 

Figure 1- 9. Molecular weigh distribution of a CM sample with two typical molecules 
representing a trimer (Mw=600)  and a tetramer (Mw=1400), adapted from [30]. Molecular 

weights of the components is one of the key parameters influencing the final morphology of 

CM based CFs. 

(1) 

(2) 
(2): 600 

(1): 1400 
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application. However, a quantitative relationship between molecular weight and 

final product properties has yet to be clearly established. The separation of different 

Mws to obtain monodisperse samples and subsequent controlled blending to 

produce CFs with a set of specific thermo/mechanical properties is a topic of 

intense current work
30

.  However, the separation process to obtain different 

monodisperse samples is extremely expensive
30, 32

 . Preparing the mixtures with 

different concentrations and interactions, through surface modification for instance, 

followed by processing in different temperatures and under different flow 

conditions, as shown in figure 1-10, makes the process even more expensive.  

 

Figure 1- 10. The parameters influencing the mechanical properties of the advanced synthetic 

CF with a controlled design. Two monodisperse components are obtained through the 

separation process of the pitch and then are mixed with different concentration and are used 

as the raw material of the fiber spinning process.   Processing temperature and extensional 
flow in the spinneret influence the final structure and the mechanical properties of the fiber 

formed in the process.  

 

Hence to establish the link between precursor chemistry and composition with the 

final fibre structure (and corresponding properties) solely using experimental 
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approaches is very costly and inefficient. Computational simulation is a useful 

complement to experimental methodologies and allows the systematic study of the 

role of the relevant mixture variables (species’ molecular weight difference, 

composition) on the fibre structure. The effect of operating conditions (temperature 

and extensional flow intensity) on the orientational behaviour of the binary mixture 

can also be systematically investigated. This thesis used the standard computational 

material science and engineering methodology
33

 and includes: (i) development of 

thermodynamic and extensional flow theories for CM materials, (ii) modeling of 

the mixture’s thermodynamic (molecular weight-molecular size equation, 

molecular weight/transition temperature equation , concentration-dependent 

interaction parameter equations) and rheological properties (rotational diffusivity of 

a discotic component in a discotic mesophase mixture)  relevant to spinning 

processes, and (iii) accurate computational methods to solve the governing 

nonlinear equations obtained by integrating the theory (i) and modeling (ii) steps.  

1.4.2 Theory for nematic liquid crystals applicable to CMs 

1.4.2.1 Overview 

Theory and simulation of liquid crystalline materials are used to capture the 

molecular ordering and the orientational structure of these materials under different 

thermal and flow conditions. The theory is based on macroscopic and mesoscopic 

models
12

. Macroscopic models are based on the average orientation equations using 

linear momentum and torque balance equations. On the other hand, mesoscopic 

models are based on both the average orientation and molecular ordering of the 

components and are based on the second moment of the orientation distribution 

function to describe both micro and macro phenomena.  To review the theory 

employed in this thesis some concepts such as director field, scalar order parameter 

and quadrupolar tensor order parameter are explained in the next section.  

1.4.2.2 Theoretical concepts 

1.4.2.2.1 Director 

As shown in Figure 1.11 a dimensionless unit vector n called the director, is 

introduced to represent the direction of preferred orientation of mesogenic disc-like 

molecules, each having an orientation shown by the unit vector u. In discotic 
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nematic liquid crystals the director is in close alignment to the molecular unit 

normals.  

 

 

 

 

 

 

 

Figure 1- 11.  Director of a discotic system as an average of the orientation of disc-like 

molecules shown by u.  The population of the molecules oriented in a specific direction 

determines orientation distribution function, ODF. Scalar order parameter, S, expresses the 

probability of finding all the molecules parallel to the director n.  

 

1.4.2.2.2 Scalar order parameter  

The description of nematic liquid crystals involves the specification of orientational 

order. To make this quantitative, an orientational order parameter, S, is usually 

defined based on the average of the second Legendre Polynomial as follows: 

2 2
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where  θ is the angle between the axis of each molecule, u, and the director n ( see 

Figure 1-11) and ODF( )θ is the normalized orientation distribution function of the 

molecules. For a perfect orientation, S=1. On the other hand, for the isotropic state 

S=0. For nematic liquid crystals which exhibits partial orientation 0 1S< < . The 

temperature at which S shows transition from a non-zero (nematic) to zero 

(isotropic) value is called nematic-to-isotropic transition temperature, TNI.   

1.4.2.2.3 Tensor order parameter 

The microstructure of liquid crystal is characterized by a second order symmetric 

and traceless tensor, known as the tensor order parameter Q 
34

. 
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with 
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The orientation is completely defined by the orthogonal director trial (n, m, l). The 

magnitude of the uniaxial scalar order parameter S is a measure of the molecular 

alignment along the uniaxial director n, as discussed in the previous section, and 

the magnitude of the biaxial scalar order parameter P is a measure of the molecular 

alignment in a plane perpendicular to the direction of uniaxial director n (m-l) 

plane. 

On the principle axes, the tensor order parameter Q is represented as  

1/ 3( ) 0 0

0 1/ 3( ) 0                           (1.4)

0 0 2 / 3

S P

S P

S

− − 
 = − + 
  

Q w

ith  2 / 3
n

Sµ = ( ) / 3m P Sµ −=  ( ) / 3l P Sµ += −    being the eigenvalues of Q. The 

orientation variables describe micrometer scale phenomena   as in fibre textures and 

are slow variables. On the other hand the scalar order parameters describe nano-

scale phenomena as in interfaces and defects and are fast variables.  Hence in a 

process flow, increasing deformation rates will first ignite orientation modes and 

then the molecular order modes.  When studying isotropic/nematic phase transition 

the scalar order parameters S and P are the main variables that describe the 

symmetry breaking as a function of increasing temperature. If an external 

extensional flow is imposed the orientation of the directors (n, m, l) with respect to 

the extension axis and compression plane
35-38

 must also be considered.  

Typically, the director n is anywhere in the compression plane and this explains the 

widely observed 2D orientation patterns observed experimentally (see Fig 1-8 for 

example). 

1.4.2.3 Characterization of order: experimental methods 

There are several characterization methods to evaluate the nematic ordering in 

liquid crystalline materials including birefringence, diamagnetic susceptibility 
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measurements and NMR spectroscopy
39-42

. Differential scanning calorimetry 

(DSC) which measures the specific heat and entropy values is also a suitable 

method to measure the ordering as well as to distinguish the transition phenomenon 

like nematic to isotropic transition temperature, TNI 
43

. Scattering from an isotropic 

liquid by X-ray beam or X-ray scattering is another way of measuring the nematic 

ordering
40, 44

. In this thesis specific heat and X-ray intensity, as the methods to 

evaluate ordering, are determined computationally and can be used to compare with 

the experimental results. In the next section these two methods are briefly 

explained. 

1.4.2.3.1 X-ray diffraction intensity  

X-ray diffraction intensity is a method to measure the orientational order of an 

anisotropic liquid such as aligned nematic liquid crystal
43, 45-47

. Diffraction of an X-

ray beam striking a liquid crystalline sample occurs because the wavelength of the 

X -ray beam is similar to the spacing of atoms in the molecules.  When an X -ray 

beam encounters the regular arrangement of molecules most of the X -rays will 

destructively interfere with each other and cancel each other out, but in some 

specific directions they constructively interfere and reinforce one another.  It is 

these reinforced (diffracted) X -rays that produce the characteristic X-ray 

diffraction patterns which represents the orientation distribution function, ODF
48

 of 

the nematic molecules (see equation (1.1) ) 
49

. The scattered intensity can give the 

insight to the ordering status, uniaxiality vs. biaxiality, and ordering magnitude of 

the molecules. X-ray intensity has been calculated for the pure nematic liquid 

crystals
43

. However, in this thesis the intensity is extended to the mixture of 

monodisperse nematic liquid crystals to obtain the orientation magnitude and its 

status in the CM mixtures. The details of this theory and its extension to the 

mixtures and its application as the characterization tool are given in chapters 2 and 

4 of the thesis.   

1.4.2.3.2 Calorimetry - Orientational specific heat 

Specific heat calorimetry is another method to give an insight into the molecular 

orientation and thermal properties of the nematic liquid crystals
50

. It is the most 

reliable tool to detect the existence of a phase transition between the nematic and 
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isotropic states originating in the onset of a long range ordering. The most 

commonly used thermal technique for studying liquid crystals is differential 

scanning calorimetry (DSC)
50

. The phase sequence of a given substance is recorded 

by this method. The transition temperatures and qualitative enthalpy changes 

associated with the phase transitions are easily determined with commercially 

available techniques
50

.  Hence, specific heat can be employed to detect the 

transition temperature and to quantify the effect of molecular weights, 

concentration, and molecular interactions. In this thesis calorimetry has been used 

to quantify the thermal properties and entropic behaviour of different mixtures and 

to classify them based on their nematic/isotropic transition trends.  The details of 

calculating this thermodynamic quantity and its applications are given in chapter 3.    

1.4.2.4 Thermodynamic of nematic liquid crystals: Maier Saupe, MS, 

statistical mechanics theory for equilibrium binary mixtures 

The Maier Saupe theory is a statistical mechanics theory used to describe the 

thermodynamics of nematic liquid crystals at equilibrium, though the effect of 

extensional flow can also be incorporated in this model. In this theory the 

Helmholtz free energy per unit mole of the homogeneous mixture ( )1 2A ,Q Q is 

expressed as: 

( ) ( ) ( )( )1 2 A mix 1 2 1 2 B 1 2 1 2A , N E Mw , Mw , , m , m k T ln Z Mw ,Mw , ,m ,m  = − β + βQ Q    

 (1.5) 

where NA is Avogadro’s number, Emix is the internal energy of the mixture per 

molecule, kB is the Boltzman’s constant, T is the absolute temperature and Z is the 

partition function.  Both terms on the right hand side include the effect of molecular 

weights of the components, Mw1 and Mw2, their interaction, β, and their 

concentrations, m1 and m2. By minimizing the free energy with respect to each 

tensor order parameter, Qi, the stable orientation state for each component is 

achieved. Hence through this theory the effect of characteristics of CM mixtures on 

the orientation of the components within the mixture is obtained.  The Maier-Saupe 

theory has been explained in detail in chapters 2 and 4.  

1.4.2.5 Dynamic and rheology of nematic liquid crystals – Potential flow 
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A nematic liquid crystal flows in similar fashion to a conventional organic liquid 

with molecules of similar size. However, the flow regimes are more complex and 

more difficult to study than in isotropic liquids because the translational motions 

are coupled to inner, orientational motions of the molecules
41

; flow disturbs, 

enhances or induces the alignment. When the material is in the isotropic phase, 

flow induces orientation and produces flow-birefringence and the phase becomes 

paranematic
41, 51

. The paranematic phase is a non-equilibrium phase obtained when 

a mesogen at a temperature higher than the isotropic/nematic transition is subjected 

to an external field. Flow induced orientation and the formation of paranematic 

phase is investigated in this thesis.  

Integrating thermodynamics with extensional flow-induced orientation in binary 

mixtures of CMs under uniaxial extensional flow merges the interplay between 

equilibrium uniaxial ordering and flow-induced biaxiality (see eqn. (1-3), section 

(1.3.2.2.3)). This combination of thermo-rheological effects will be a function of 

the species molecular weight asymmetry (∆Mw), their molecular interaction (β), 

and the concentration (m1) (For a full discussion of the parameters see sections 

(1.3.2.4)).  Macroscopic nematodynamics will predict flow induced orientation, 

FIO, accurately, but for binary mixtures the macroscopic material parameters will 

be given by unknown functions of the molecular parameters (∆Mw, β, m1) and 

hence the most efficient way to include these important parameters is to use a 

molecular level description. For this purpose, the Maier-Saupe (MS) theory 

described in the previous section is extended to include the extensional flow in this 

thesis. In this formulation the extensional flow contributes to the partition function 

discussed in eqn. 1-5. The details of the extended Maier-Saupe theory with the 

implemented extensional flow effects to investigate the thermo-rheology of CM 

mixtures composing of two monodisperse components are given in chapter 4.  

1.4.3 Modeling 

The implementation of the Maier Saupe theory to describe orientation and order 

under extensional flow requires the formulation of an expression for the rotational 

diffusivity of the molecules.   The rotational diffusivity is inversely proportional to 

the rotational viscosity which defines the viscous torques that act on the molecules. 
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The rotational diffusivity has been already derived   for pure rod-like systems but 

no equivalent expression for discotic and discotic mixtures existed prior to this 

thesis. 

The details of these derivations are given in chapter 4 which discusses the effect of 

extensional flow on the orientational behaviour of the mixture. In that chapter, first 

rotational diffusivity of the pure discotic nematic is modeled and then it is extended 

to the diffusivity of each component within the mixture. The effect of Mw of each 

component and its concentration and also the effect of molecular orientation of 

each component on the rotational diffusivity of both components is discussed in 

chapter 4. 

1.4.4 Computation  

1.4.4.1 Governing equations: algebraic integral equations 

The expanded version of Maier Saupe equations (eqn. 1.5) used in this work is a set 

of the second type Fredholm non-linear algebraic integral equations with the 

following format: 

( ) ( ) ( ) ( ),

b

a

x f x K x t t dtϕ λ ϕ= + ∫                (1.6) 

In this type of algebraic integral equation the unknown function occurs both inside 

and outside of the integral. To solve this type of nonlinear equations first the 

integral term has to be calculated and then an iteration method to solve the 

nonlinear equation has to be employed. In this thesis adaptive Simson quadrature 

method is used for the integral evaluation and Newton-Raphson method is 

employed to solve the nonlinear equations. These two methods have been 

disscussed in detail in Appendix I. 

1.4.4.2 Visualization of tensor order parameter Q  

Visualization of tensor order parameter Q in terms of its eigenvalues is needed to 

characterize the structural orientation and to understand the physics behind the 

ordering of each species within the mixture, as mentioned in section (1.3.2.2.3). 

, &
n m l

µ µ µ  are the eigenvalues of Q and obey the following restrictions: 

0; 1/ 3 2 / 3
n m l i

µ µ µ µ+ + = − ≤ ≤ . To facilitate the visualization of the tensor Q 
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-l 

n 

m 

nM
µ

mM
µ

lM
µ

it is practical to use 
3

= +
I

M Q  such  that 1; 0 1
nM mM lM iM

µ µ µ µ+ + = ≤ ≤ .   The 

eigenvalues of M  ( , &
nM mM lM

µ µ µ ) are used to visualize Q, so that each 

eigenvalue, which is used to construct one axis of the ellipsoid, represents the 

extent of orientation of the molecules in the direction of its corresponding 

orientational axis i.e. n, m and l. Figure 1-12 shows the elliptical representation of 

the tensor order parameter. 

 

 

 

 

 

 

Figure 1- 12. Elliptical visualization of the tensor order parameter Q and its corresponding 
orientational triad system. Each dimension of the ellipsoid is composed by the eigenvalue of Q 

which correspond to one of its eigenvectors (n, m or l).   

 

 1.5 Need for Mesophase Mixture Modeling and Simulation 

It has been shown that the effect of extensional flow, temperature and size of the 

fibre influence the orientational behaviour of the nematic molecules and the 

structure of a model fibre made of a pure DNLC system
29, 35-37, 52-57

. However, in 

reality anisotropic pitch- based CFs are made of CMs which are mixtures of 

DNLCs. Hence, there is a knowledge gap between the orientational behaviour of 

the pure DNLC system and the fibre structure that they form under different fibre 

spinning conditions, such as temperature, flow condition, size of the holes of the 

spinneret, and the orientational structure and the morphology of the real high 

modulus carbon fibres based on CM materials. As CM materials are   mixtures of 

DNLCs, a clear understanding of the physics of discotic mixtures and their 

orientational behaviour at different processing conditions is essential. Figure1-15 

summarizes the steps which are essential to fill the  gap between the well 

understood system, pure DNLC, (the first circle) and the real fibre structure (final 

circle): (i) the thermodynamic model (Maier-Saupe model) of the pure DNLC has 

to be extended to the mixture to take into account the effect of temperature on the 
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orientational behaviour of the mixtures. (ii) In the next step the simultaneous effects 

of extensional flow and processing temperature on the orientational behaviour of 

the mixtures needs to be considered. (iii) Taking into account the simultaneous 

effects of temperature, flow intensity, the fibre radius and the interface between the 

fibre and the die mould on the orientaional behaviour of DNLC mixture is the last 

step to take to achieve the final structure of the fibre. This thesis focuses on the first 

two steps (steps (i) and (ii)), and its results can be used as the starting point for the 

third step (see section 6.4) .    

 

 

Figure 1- 13. The essential steps and parameters needed to be taken into account to describe 

the structure of a CM based CFs. The first circle (Pure DNLC) is well recognized and 
understood. The final circle (Fiber Structure) shows the final goal. The intermediate circles 

show the steps needed for consideration to fill this knowledge gap. 

 

1.6 Motivations and Objectives 

As mentioned in section (1.1.2) by mixing discotic liquid crystalline components 

different advantages to both the formation process and to the final application can 

be achieved. As mentioned in the previous section it has been proved that 

parameters such as temperature and extensional flow change the orientation of the 

pure nematic systems and influence the final structure of the fibres based on single 
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species precursors. However, in reality CMs are composed of   species with 

different molecular weights and concentrations. As explained in section (1.3.2.4) 

characteristics of these mixtures such as composition, polydispersity and molecular 

interaction along with the temperature and flow intensity are supposed to influence 

the final microstructure, final properties and final application of carbon fibres. 

Hence property optimization and cost reduction of high performance carbonaceous 

fibres require a better understanding of the thermodynamics, and thermorheology of 

CMs   consisting of a mixture of monodisperse disotic nematic liquid crystals. To 

meet these objectives this thesis concentrates on the thermodynamics of CM binary 

mixtures composed of two monodisperse components through the MS theory.  

It is also well known that the type and extent of any kind of nematic liquid crystals, 

NLCs, applications are mainly determined by their thermal properties and 

behaviour. Hence by use of thermodynamic approach in the current thesis the 

thermal behaviour of the system and the macroscopic energetic and/or entropic 

aspects of NLC mixtures are also revealed so that comprehensive understanding of 

materials can be achieved
43

. For this purpose calorimetry is computed and 

employed to detect the entropic behaviour of the mixture as well as its transition 

behaviour. By use of this quantity three fundamental thermodynamic values viz. 

enthalpy, entropy, and free energy can be obtained; as a result, it can give   insight 

into the microscopic and macroscopic thermodynamic aspects of the system.  

Characterization of the orientation in mixtures of NLCs needs to be further 

explored. As mentioned in section (1.4.2.3) characterization tools such as X-ray 

diffraction intensity are experimentally employed to detect the ordering behaviour 

and ordering magnitude. For the short range ordering the small beam size required 

for the experimental investigations to assess the orientational order makes the 

experiment unfeasible and expensive. In these cases, computational simulation of 

this characterization method can serve as a powerful tool to well characterize the 

ordering. In this thesis, theory and simulations of X-ray intensity has been 

performed to strengthen the link between simulation predictions and experimental 

observations.  
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Manufacturing and use of high performance liquid crystalline products and devices 

such as LCDs, C/C composites and CFs involves viscoelastic flows. For instance 

carbon fibre spinning process involves uniaxial extensional flow of liquid 

crystalline polydisperse CM precursors. Hence, this thesis seeks to extend the 

thermodynamics of carbonaceous mesophase binary mixtures with two 

monodisperse components to non-equilibrium states resulting from an imposed 

uniaxial extensional flow to investigate their thermorheological behaviour. 

Another issue that requires further investigation is the orientational behaviour, 

phase state and structural orientation (ODF) of the mixture’s components. As 

mentioned previously these mixtures are amphotropic (thermotropic/lyotropic) 

mixtures. In other words the orientational behaviour of the mixture is altered 

through the change in temperature and concentration. From point of view of 

application it is important to determine how each component behaves in the 

presence of the other at a specific temperature, concentration and flow intensity.   

In this thesis the effect of temperature, concentration and flow intensity on the 

orientational behaviour of each species and its contribution to the overall 

orientation of the amphotropic NLC binary mixture is also investigated. 

 Lastly the orientational behaviour of NLCs in the presence of electric, magnetic 

and extensional flow fields follow the same physics, the observation of the 

orientation of the system under the extensional flow in this thesis can be used to 

predict its orientational patterns in the presence of the magnetic or electric fields. 

The specific objectives of this thesis are: 

1. to develop and solve an equilibrium thermodynamic model for binary discotic 

nematogens mixture based on the MS model; this model is employed to 

characterize the effect of intrinsic properties (molecular weight asymmetry, and 

molecular interactions) and concentration, on the nematic local orientation and 

on its local structure; 

2. to extend the MS thermodynamic model to implement the extensional flow 

effects and then to evaluate the effect of the extensional flow on the 

orientational behaviour of CM binary mixtures with monodisperse components, 

on the phase status and on the transition behaviour  of the NLC mixture; 
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3. to construct the thermo-rheological phase diagram of the binary DNLC 

mixture that reveals  localized structure formation in the presence of flow; 

4. to model and compute the characterization tools such as X-ray diffraction 

intensity and heat capacity  to assess the orientational and thermo-rheological 

behaviour and to determine the phase diagrams of   binary NLC mixtures; 

5. to find, classify,  characterize  and explain the expected structural diversity that 

emerges in discotic mesogenic mixtures by regulating the 

thermotropic/lyotropic effects under the extensional flow of varying strength; 

6. to compare MS theory to the macroscopic NLC theory (Landau de Gennes) 

which are used for the fibre structure modeling. This will be the start point for 

the structural modeling and prediction of the mechanical performance of pitch 

based carbon fibres which are beyond the scope of the current thesis.  

 

1.7 Thesis Scope and Organization 

A detailed description of this thesis scope and organization is shown in figure 

1-14. 
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Figure 1- 14. Thesis summary and organization.  Maier-Saupe theory (MS) of the pure discotic 

nematic liquid crystalline (DNLC) system is extended to the binary mixture of these materials. 

The effect of the characteristics and composition of the mixture (Mw of the components, their 

interaction and their concentration) on the orientational behavior of the system is studied 

through the extended theory. Rotational diffusivity of each discotic component within the 

mixture is modeled. X-ray intensity and specific heat are modeled as the characterization tools 
of the ordering in the system. The theory is then extended to implement the flow effects on the 

orientational behavior of the mixture with a fixed set of characteristics. The X-ray intensity of 

the system in the presence of flow is also modeled. In the last step the simultaneous effects of 

temperature and flow on the orientational behavior of different mixtures with different 

characteristics and composition are investigated.   
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1.7.1 Chapter 2: Thermodynamic modeling of carbonaceous mesophase 

mixtures  

Chapter 2 studies thermodynamics of different CM binary mixtures with 

monodisperse components and determines how the difference between molecular 

weight of the components, their interaction and their concentration influence the 

orientational behaviour of the mixture. In this chapter MS theory which has been 

already used to explain and to predict the ordering behaviour and thermodynamics 

of the pure nematic liquid crystals
3
 is first described in details and then it is 

extended to binary mixtures with   components having different molecular weights. 

The extension of the theory is first validated with the observations of the pure 

material and then is employed to predict the thermodynamics and the equilibrium 

phase diagram of binary mixtures; to classify the types of the mixtures and to 

explain the orientational structure of the components based on their orientation 

distribution function, ODF, within the mixtures. X-ray diffraction intensity is also 

modeled and computed in this chapter as the characterization tool for the ordering 

behaviour of the mixture and for the verification of the derived model.  

1.7.2 Chapter 3: Entropic behaviour of binary carbonaceous mesophases 

Chapter 3 employs the MS theory derived in chapter 2 to calculate orientational 

entropy and orientational specific heat of the binary mixtures. These 

thermodynamic quantities are employed to characterize the type of the mixture as 

well as its characteristics such as nematic/isotropic transition temperature. Specific 

heat calculations provide a useful characterization tool to assess the molecular 

interaction, molecular weight differences and transition phenomena in the binary 

mixtures and are used as an appropriate verification criterion for the extended 

model.   

1.7.3 Chapter 4: Structure and phase transitions of carbonaceous mesophase 

binary mixtures under uniaxial extensional flow 

Chapter 4 incorporates    extensional flow effects in the MS theory for binary 

mixtures. The rotational diffusivity of each discotic component in the CM mixture 

as a function of Mw of the components and their concentration is derived in this 
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chapter. The thermorhological phase diagram of the binary mixture in terms of 

temperature and flow intensity is obtained; different transition lines and different 

regions are characterized. The structural orientation of both components in each of 

the phase regions are obtained;  the X-ray intensity expression derived in chapter 2 

is extended to implement the flow effects and is employed to characterize the phase 

state and structural   of the mixture for a given  temperature and flow intensity.  

1.7.4 Chapter 5: Structural modeling of carbonaceous mesophase amphotropic 

mixtures under uniaxial extensional flow 

The MS theory with the implemented flow effects is employed in this chapter to 

investigate the thermo-rheological phase diagram of the binary mixtures with 

varying concentration.  For these mixtures it is found that there is a dominant and a 

slave component, with the former dominating the mixture structure while the latter 

adapts its structure by balancing thermodynamic, flow, and viscoelastic effects.  It 

has been observed that the cooperation/competition of concentration/temperature 

effects single out the dominant component of the system. The most generic phase 

diagram in terms of temperature and flow intensity with twelve different phase 

regions is obtained. The structural orientation of both components in each region is 

characterized and can be employed to design specific orientational structure of the 

mixture by tuning the composition of the mixture, the temperature and the flow 

intensity.  

1.7.5 Chapter 6: General conclusions, validations and original contribution to 

knowledge  

Chapter 6 provides the main conclusions of the present thesis and summarizes the 

main accomplishments and contributions to knowledge. Validation of the models 

derived and the solution algorithm used in this thesis is also reviewed. 

Recommendations for future work are also suggested.  

1.7.6 Appendix I: Numerical methods 

The adaptive Simpson quadrature method to evaluate the integral terms and 

Newton-Raphson iteration method to solve the nonliner equation are described in 

detail in this appendix. 
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2 Thermodynamic modeling of carbonaceous mesophase mixtures  

 
 
2.1 Summary 

The Maier-Saupe model is extended to the binary mixtures of uniaxial discotic 

nematogens to compute the equilibrium phase diagrams of carbonaceous 

mesophases.  The ordering in the mixture is affected by temperature (thermotropic) 

and concentration (lyotropic).  The magnitude of molecular weight asymmetry of 

two nematogenes and the strength of molecular interaction control the type of 

mixture: (a) non-ideal mixtures arise under sufficiently weak interaction and lower 

molecular weight differences, and (b) ideal mixtures arise under stronger molecular 

interaction and higher molecular weight asymmetries. Ideal mixtures have clearing 

(transition) temperatures that change monotonically with concentration and the 

higher molecular weight component has higher order parameter. Non-ideal 

mixtures have a minimum in the clearing temperature at a critical concentration at 

which the binary mixture behaves like a pure nematogen and the ordering of two 

species are identical; for non-ideal mixtures the relative magnitude in the species’ 

ordering depends on the concentration; the species with lower molecular weight can 

have a higher order if its concentration is high enough.  Characterization protocols 

based on x-ray computations and direct methods are proposed to detect the type of 

mixture and the magnitude of molecular interaction.  The results provide new tools 

to design carbon fibers based on molecular properties. 

2. 2 Introduction and literature survey 

Carbonaceous mesophases (CMs), first reported by Brooks and Taylor
1
, are 

discotic nematic liquid crystalline (DNLC) mixtures obtained from petroleum 

pitches and synthetic naphthalene precursors
2
. The composition, polydispersity and 

molecular orientation of CMs play a significant role on the final properties of 

cokes
3
, carbon foams, carbon/carbon composites

4
 and carbon fibers

5-8
.  Property 

optimization and cost reduction of high performance carbonaceous materials 

require a better understanding of the thermodynamics, and dynamics of CMs 
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mixtures and their intrinsic properties.  For instance, it is known that the final 

structure of the fibers based on the pure liquid crystalline materials are influenced 

by the temperature
9
; however, in reality CMs are not pure LCs, they are composed 

of the species with different molecular weights and concentrations. Several 

theoretical and experimental studies have been carried out on binary nematic liquid 

crystalline (NLC) mixtures
8, 10-14

.   However, no systematic investigation has been 

performed to find out how the nature of the mixture and its composition control the 

final structure of the CM fibers and optimize product performance in structural and 

functional (thermal) applications.  To meet this objective this paper focuses on the 

equilibrium thermodynamics of CM binary mixtures.  As a starting point in this 

weakly explored area, we consider an athermal solution of two thermotropic 

uniaxial discotic nematogens that only differ in molecular weight thus precluding 

phase separation. It has been previously shown in the literature that phase 

separation does not play a significant role in the mixture of nematic liquid crystals 

differing in molecular weight. The components of some of the mixtures they have 

investigated also differ in the chemical structure [12, 15-17]. Based on available 

experimental data
10

 we choose representative   molecular weights of 200 to 1400. 

The theory derived in this work can also be used in other nematic liquid crystalline 

areas. For instance, mixtures of two or more mesogens are also important in LCD 

(liquid crystal display) applications, where composition of the mixture is used to 

overcome the restrictions due to thermal operating conditions and optimization of 

response time by calibration of viscoelastic properties. The Maier-Saupe (MS) 

theory is widely used to describe the thermodynamics of nematic liquid crystals
18

. 

This mean field theory gives the temperature-dependence of the molecular 

orientation in mesogenic materials. It predicts the values of the experimentally 

measured scalar order parameters
19

 very well and hence it has been applied to 

different nematic liquid crystalline systems and can be adjusted to their mixtures
12, 

20
.  In this paper we use the Maier-Saupe (MS) theory adjusted to binary uniaxial 

discotic nematogens.  
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The usual description of a single species discotic nematic liquid crystal
21

 is based 

on the normalized orientation distribution function ODF( )u , where u is the 

orientation of the disk normal, given by: 

2 2 4 4

o ij ij ij ij

1 3 5 3 5 7 9
ODF( ) f   Q  f Q  f  ....

2π 2π 2 2π 2 3 4

× × × ×
= + + +

× × × ×
u                        (2.1) 

where ,...f,f,f 4

ijkl

2

ijo  are orthogonal surface spherical harmonics and where the 

coefficients of the Fourier expansion, ,..., 42 QQ are symmetric and traceless tensors 

found using orthogonality.  The quadrupolar tensor order parameter Q
2
 used in the 

Landau-de Gennes viscoelastic model
22

 is: 

2 2

2 2f( )  dA f( ) -   dA -
3 3

 ≡ = = = 
 ∫ ∫

δ δ
Q Q u f u uu uu

� �

          (2.2) 

where 2�  
is half the unit sphere.  For uniaxial phases Q is given in terms of a 

temperature-dependent scalar order parameter s(T) and the average molecular 

orientation or director n: ( )s / 3= −Q nn I .  The possible states of uniaxial discs 

are: (i) isotropic (I):s=0 , and (ii) nematic s>0. For CMs at high temperatures the 

stable phase is isotropic and at sufficiently lower temperatures it is nematic; issues 

of stability of nematic phases in CMs are discussed in [23].   As shown in 

Appendix B (eqn.A2.16), for binary mixtures of uniaxial mesogens, a similar 

development leads to the mixture quadrupolar order parameter: 

 

mix 1 1 2 2m m≡ = +Q Q Q Q                                 (2.3) 

 

where mi is the mole fraction of i
th 

component. For binary discotic nematogens at 

equilibrium we find collinear directors ( )1 2=n n  and the mixture uniaxial scalar 

order parameter then is: mix 1 1 2 2s m s m s= + .  Nevertheless, since the ordering states 

of each species are coupled and are also dependent on temperature and dilution, we 

expect, based on the above observations, that binary mixture display three states: 

(i) isotropic (I) : s1=0, s2=0; 

(ii) nematic (N12) with s1≥s2; 

(iii) nematic (N21) with s1≤s2. 
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For the exceptional case when s1= s2, the nematic mixture behaves like a single 

component system.  Previous work
24

 on liquid crystalline mixtures of dissimilar 

mesogens focuses on phase separation effects while this paper focuses on similar 

mesogens under no phase separation.  Figure 2-1 shows an schematic of the 

possible equilibrium phase diagrams for binary CMs, in terms of temperature (T) as 

a function of composition (m1). The diagrams show the equilibrium phases that are 

possible for different degrees of interaction (β) and different degrees of molecular 

weight difference between the two components (∆Mw); in this example species “1” 

has higher molecular weight and hence NI transition temperature than species “2”. 

Figure 2-1a shows the thermodynamic phase diagram of a typical non-interacting 

(β=0) mixture.  The two full lines denote the NI transition for each species; the 

decreasing transition temperature as dilution increases is the typical lyotropic 

effect. As the two transition lines cross, four phase regions are possible: I1-I2, I1-N2, 

I2-N1, N1-N2, where the subscript (1, 2) denotes the species.   For example, when 

m1=0.6, quenching from a sufficiently high temperature leads to the following 

sequence: 

1 2 1 2 1 2I ,I N ,I N ,N→ →  

In the presence of molecular interaction (β>0), shown in figures 2-1b, 2-1c,  the 

crossing transition lines become a single continuous  isotropic-nematic transition 

curve , such that below (above) this curve the two species are in the nematic 

(isotropic) state.  Depending on the nature of the mixture (i..e. molecular weight 

difference ∆Mw and the interaction β between the components ) N21 can show up 

(figure 2-1c) or it can disappear (figure 2-1b). This fact is reflected in the 

temperature-concentration phase diagram of the mixtures (T, m1) which can be 

classified as follows: 

(i) The transition temperature, TNI, increases monotonically by increasing 

concentration; this type of behavior, which is called ideal, does not exhibit N21 

phase (figure 2-1.b). By decreasing the temperature the only possible transition 

when Mw1>Mw2 is: 

1 2 1 2I ,I N ,N→   



 

 37 

                            

 
 

 

 
                   

 

   

 
                                                                                         s2      s1                               s1      s2     

                               s1         s2                                                                                     

       

 
 
 

( )
*

*

Mw  Mw   

Mw







∆ > ∆

β > β ∆ ( )
*

*

Mw  Mw   

Mw







∆ < ∆

β <β ∆

m1c 

0β =

m1c 

 

Figure 2- 1. Schematics of the expected thermodynamic phase diagrams in terms of 

temperature as a function of composition: (a) for non-interacting mixtures (β=0) (b)  For 

sufficiently strongly interacting mixtures and /or sufficiently large molecular weight 

asymmetry (c) For weakly interacting mixtures and /or small molecular weight asymmetry. 
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with s1>s2.   The spheres below the diagram are schematics of the orientation 

distribution functions of the two components on the unit sphere, where the size of 

the white polar cap represents the degree of molecular order; since s1>s2 the white 

area of “1” is smaller than the one for “2”. 

(ii) The transition temperature exhibits a minimum by increasing the 

concentration. This type of behavior, shown in figure 2-1c is called non-ideal and 

allows the formation of the N21 mixture (s2>s1) even though Mw2<Mw1.  The N21 

and N12 areas are separated by a vertical line that defines the critical concentration 

(m1c) at which s1=s2 and the binary mixture behaves as single component 

nematogen. The critical mixture that emerges due to concentration effects is 

characterized by the minimum transition temperature in the temperature-

composition phase diagram (T, m1). These mixtures are formed at a specific 

concentration; we call it critical concentration, m1c. Depending on the concentration 

values two cases arise:   

(i) below the critical concentration, the low-molecular weight component which 

has higher concentration is more ordered and as a result, has a major contribution to 

the ordering of the mixture (lyotropic effect) so that s2>s1 (N21), as shown in the 

orientation distribution functions below the figure; 

(ii) for more concentrated systems (above critical concentration), the component 

with higher molecular weight makes the major ordering contribution to the mixture 

(Mw effect) so that s1>s2 (N12), as shown in the orientation distribution function 

below the figure. 

The specific objectives of this paper are: 

(i) to develop and solve an equilibrium thermodynamic model for binary discotic 

nematogens athermal mixture based on the MS model; 

(ii) to characterize the role of intrinsic properties (molecular weight asymmetry, 

and molecular interactions) and dilution, on the nematic structure; 

(iii) to characterize phase transition and critical concentration in binary discotic 

nematogenic mixtures; 

(iii) to derive an equation for the value of the interaction in the critical mixture; 
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(iv) to propose methods to assess the magnitude of the interaction parameter and 

classify mixtures. 

The main focus of the paper is to describe the effect of mixing, dilution, molecular 

weight asymmetry on the molecular order, and phase ordering and phase transition 

of the mixture.  Analysis of heat of transitions and related thermodynamic aspects 

of phase transitions are outside the scope of this paper. 

The organization of this paper is as follows.  Appendix A presents the single 

component MS model in a form compatible with the mixture model.  Appendix B 

derives the orientation distribution of a nematic mixture in terms of the single 

component distributions and derives the equation for the mixture quadrupolar order 

parameter Qmix.  Section 2.3 presents the MS binary mixture model; 

thermodynamic consistency and convergence to single component expression is 

proven.   The main parameters are identified and the numerical solution scheme is 

defined.  The thermotropic and lyotropic nature of these mixtures is discussed and 

the effect of molecular weight is established.    Section 2.4 presents the derivation 

of the equation used to characterize the interaction parameter β, as well as the 

derivation of the X-ray intensity to determine the type of the mixture as well as the 

value of the critical concentration. Section 2.5 presents the numerical results and 

discussion:  Section 2.5.1 discusses the effect of (i) the relative alignment of the 

components, (ii) the molecular weight asymmetry, (iii) dilution, and (iv) the 

interaction parameter on the molecular structure and ordering of the mixture. 

Section 2.5.2 discusses the effect of different parameters on the phase diagram of 

CM binary mixture; as mentioned above the intrinsic parameters are molecular 

weight asymmetry (∆Mw) and the interaction parameter (β) and the operating 

conditions are concentration (m1) and temperature (T).  Section 2.5.3 presents X-

ray intensity and the average ordering at transition as the tools to characterize the 

type of the mixture as well as the value of the critical concentration. Section 2.6.5 

provides the conclusions.  

2.3 Maier-Saupe Binary Mixture Model 

The Maier-Saupe model for a single component NLCs
25

 is briefly described in 

Appendix A and extended below to a binary mixture of two discotic nematogens.  
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For a homogeneous binary mixture, the internal energy E mix per molecule is given 

by the summation of three contributions:  

mix 11 22 12E =E +E +E              (2.4) 

due to self (1-1, 2-2) and cross (1-2) species interactions.  Figure 2-2 shows a 

schematic of the components in the binary mixture, where u1 and u2 are molecular 

unit normals and n1 and n2 are the corresponding directors with the relative 

alignment α. In view of eqn. (2.4), the internal energy of the mixture is (see 

Appendix A) generalized to: 

( )mix 11 1 1 22 2 2 12 1 2

3 3 3
E  W W W

4 4 2
= − − −Q Q : Q Q : Q Q : Q    (2.5) 

where the composition and molecular weight-dependent  interaction parameters 

{ }11 22 12W , W , W are: 

2
12 1 2 12ii i ii

i
ii ii

1 1 2 2

1 2
12 12

1 1 2 2

;  ;

;

   

W m U W m m U

Mw
U  = U  

m Mw m Mw

Mw Mw
U  = U

m Mw m Mw

= =

+

+

 

where Mwi denotes the molecular weight of the i
th

 component, mi its mole fraction,  

and { }11 22 12U , U , U are the bare interaction parameters.  Based on eqn.(2.5) and the 

MS model, the partial internal potentials ( 1Φ , 2Φ ) acting on each species are: 

 

Figure 2- 2. Schematic of molecular orientation (u1,u2) and directors (n1,n2) in binary discotic 

nematogens which form a single nematic phase.  The relative angle between the directors is α.   
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( )

( )

mix
1 1 1 11 1 12 2 1 1

1

mix
2 2 2 22 2 12 1 2 2

2

E 3
W W

3 2 3

E 3
W W

3 2 3

∂    Φ = − = − + −   ∂    

∂    Φ = − = − + −   ∂    

I I
: u u Q Q : u u

Q

I I
: u u Q Q : u u

Q

      (2.6) 

 

The Helmholtz free energy per unit mole of the homogeneous mixture 

( )1 2A ,Q Q is: 

( ) ( )1 2 A mix BA , N E k T ln Z = − +Q Q                      (2.7) 

where NA is Avogadros number and the mixture partition function Z is factorized : 

( ) ( )1 2
1 2 1 1 B 2 2 B

m m
m m /m k T /m k T

1 2 1 2Z Z Z e d e d−Φ −Φ= = ∫ ∫u u                                     (2.8) 

where Zi is the partition function of the i
th

 species. Equations (2.5, 2.7, 2.8) are 

consistent with the thermodynamics
26 

since they obey: 

A
mix mix

d A / N d ln Z
E E

d d

β
= = − −

β β
                                  (2.9)  

The ten equations of equilibrium are obtained by minimizing the free energy A 

(eqn.(2.7) ) with respect to ( )1 2,Q Q .   According to the disccusion regarding 

eqn.(2.3) , the binary mixture displays an isotropic state and unixial nematic states.  

Hence we can safely reduce the solution space (from ten equations to two 

equations) and parametric space as follows.  Scaling the Helmholtz free energy A 

with the bare interaction parameter 11U , minimizing the resulting dimensionless free 

energy with respect to Q1, Q2, and double-contracting the tensorial equations with 

n1n1 and n2n2, respectively, we find: 
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( )

1

1 2

2
2

1 1 1 1 2 1 2 2
1 1

2
2

1 2 1 2 1 2 2 2
1 2

3 1
cos 0

2 3

3 1
cos 0

2 3

i i
r

i i

i i
r

i i

m Z
m S m m S T

Z S

m Z
m m S m S T

Z S

=

=

 
℘  

 

 
℘ ℘ 

 

∂
ϕ + ϕ ϕ α − − =

∂

∂
ϕ ϕ α − + ϕ − =

∂

∑

∑

                    (2.10)                  

                      

where the partition functions Zi are defined in eqn.( 2.6, 2.8). The asymptotic limits 

of eqns.(2.10)  (m1=0,1) of this expression correspond to the pure NLC. As shown 
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below for the present CM case, the mixture is uniaxial and α=0.  The 

thermodynamic of the mixture is defined by the dimensionless temperature Tr and 

two effective mole fractions: 

 

B i i
r i

11 i i

k T m Mw
T ;     

U m Mw
= ϕ =

∑
                                     (2.11) 

 

The two material parameters of the model are: 

12 22
1 2

11 11

;℘ = ℘ =
U U

U U
                                                       (2.12) 

The material parameters ( 1 2,℘ ℘ ) are functions of the species’ molecular weights.  

To introduce the molecular weight dependence we use experimental data
19

 in 

conjunction with the well-known relation ii NIiU 4.542kT= , where the clearing 

temperature TNIi is a function of the molecular weight Mwi.  Experimental data on 

CMs suggest that this dependence is well fitted by a linear function: 

NIi ii iT =U /4.542k=a + b Mw                                   (2.13) 

where the parameters (a,b) , based on the data of [24] are chosen as: a=-150 and 

b=0.75.   

We choose component “1” as a representative component of a CM with Mw1 

=1400
10

 and vary the molecular weight Mw2 of the second component so that 

molecular weight asymmetry ∆Mw=Mw1-Mw2 changes.   Using eqns. (2.12, 2.13) 

and experimental data we find the following molecular weight dependence of 2℘ : 

( )
( )

NI2 222 2
2

11 NI1 1 1

4.542kT MwU c+dMw
= = =

U 4.542kT Mw c+dMw
℘               (2.14) 

where (c, d) are constants. Since the molecular weight dependence of 1℘  is not 

suggested by actual data, we use: 

1 2℘ = β℘                                                 (2.15) 

where β is a constant whose sign depends on the geometrical nature of the species: 

for the similar components, i.e. disks and disks or rods and rods, it is positive; 
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however, for dissimilar ones it is negative
27

. We note that takingβ  as another 

material parameter will not affect the essential nature of the results (i.e. presence of 

the ordering states (I, N)) but will only shift phase transition curves in the 

thermodynamic phase diagram. 

 The present thermodynamic model is given by the two nonlinear integral 

equations (eqns.(2.10)); the solution vector consists of the two scalar order 

parameters (s1,s2);  the two material parameters are β and ∆Mw;  the 

thermodynamic phase diagram is obtained by sweeping over temperature Tr and 

concentration m1. Equations (2.10) are solved by Newton-Raphson method, with an 

eight order Simpson integration method. Stability, accuracy, and convergence were 

ensured using standard methods.  For the higher values of the molecular weight 

asymmetry and the higher values of the interaction parameter the numerical 

algorithm exhibits multiple solutions in the vicinity of the transition temperature. 

Depending on the values of the initial guess, the final solution vector would be 

different.  Therefore, the values of the free energy are compared for different initial 

guesses and the one with the minimum energy is selected as the correct solution. 

Issues of metastability are not considered in this paper. 

2.4  Characterization Methods 

2.4.1 Computation of the Interaction Parameter for Critical Mixtures 

In this section we present tools to characterize non-ideal mixtures that exhibit a 

minimum in the NI transition temperature corresponding to a concentration at 

which the two species form a pseudo-pure component nematic.  Different 

experimental studies have reported a pronounced minimum in the transition 

temperature of the liquid crystalline mixtures as a function of the concentration
8, 28-

30
. However, theses studies have not addressed the effect of intrinsic parameters 

involved in the CM mixtures, the most important one being the molecular weight 

asymmetry.  The minimum in the phase diagram (see figure 2-1c) shows a weak 

interaction between the components. To calculate the values of the interaction 

parameter, β, of a given nematogen mixture with specific critical concentration and 

molecular weight asymmetry, we solve eqns.( 2.10) with s1=s2 and obtain:  
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( )

( )

r NI2
1c 1c

1 r NI1

r NI2
1c

1 r NI1

TMw
1 m 1 m

Mw T

TMw
1 2m 1

Mw T

  ∆
− − −  

  β =
  ∆

− −   
   

                   (2.16) 

Once we determine the value of the critical concentration (m1c) for a mixture with 

known molecular weights (Mw1,Mw2)and transition temperatures (TrNI1,TrNI2), the 

interaction parameter β  can be calculated by using eqn.( 2.16).  In section 4.3, we 

show how to determine the critical concentration and how to find the interaction 

parameter by using eqn.(2.16). 

2.4.2 X-Ray Intensity  

The solution vector (s1,s2) to eqns.( 2.10) is used to predict X-ray intensity using 

previously derived equations
26

.  The X-ray intensity I ( )θ
i

 of a single component 

NLC when assumed to follow the MS theory, is
31

:
 

( )
i

( ) /
I ( ) ODF ( )

2 ( ) /

−φ θπ
θ = θ

−φ θ

i i

i

i i

erf m kT

m kT
               (2.17) 

where the single species orientation distribution function is:   

( )iODF exp / /= −φi i im kT Z                                  (2.18) 

and erf is the error function.  Measuring I ( )θ
i

 is thus a useful way to determine the 

orientation distribution function 1ODF (θ) .  A review of application of eqn.( 2.17) in 

conjunction with the MS theory is given in [32].  For a uniaxial nematic mixture 

( =0α ; see figure 2-2) we can safely assume that equation (2.17) holds.  Using this 

assumption we find the mixture X-ray intensity mixI ( )θ  : 

( )mix

mix mix

mix

erf ( ) / kT
I ( ) ODF

2 ( ) / kT

−φ θπ
θ =

−φ θ
              (2.19) 

where the mixture orientation function mixODF  and the mixture Maier-Saupe mean 

field potential mixφ  are (see Appendix B):   

( )
( )( )

mix 1 1 2 2 mix mix

mix mix 1 1 2 2

ODF m ODF m ODF exp ( ) / kT / Z

( ) / kT ln Z m ODF m ODF

= + = −φ θ

−φ θ = +
                              (2.20) 
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In this work we solve eqns.( 2.10) for selected areas of the (Tr, m1) phase diagram, 

calculate the ODF  using eqn.(2.18, 2.20),  and then use the results in conjunction 

with eqn.(2.19) to compute mixI ( )θ . 

2.5 Results and Discussion 

2.5.1 Structure of the Nematic Phase 

2.5.1.1 Relative Alignment (α): 

The relative alignment α defines the nature of the nematic mixture: (i) uniaxial, 

α=0 and (ii) biaxial, 0α ≠ .  In the original tensorial formulation, minimizing A 

(eqn.(2.7)) with respect to (Q1,Q2) determines α.   For mixtures of uniaxial disks 

differing only in molecular weight, α is zero and the nematic mixture is therefore 

uniaxial. (figures 2-2, 2-3). Under external fields such as confinement, flow, 

magnetic and electrical fields α is an unknown
33-35

. 

 

Figure 2- 3. Schematic of a binary mixture of discotic nematogens , representative of a CM 
mixture. 

2.5.1.2 Effect of Molecular Weight Difference  

This section shows how the state (I, N) and the phase transition of the binary 

mixture depends on the molecular weight difference ∆Mw=1400-Mw2.   

Figure 2-4 shows the scalar order parameters s1, s2 and smix as a function of 

dimensionless temperature Tr, for m1=0.2, β= 0.1, ∆Mw=800 (a), and ∆Mw=400 

(b).  At sufficiently high ∆Mw (figure 2-4a), the lower molecular weight 

component has less ordering in spite of its higher concentration. At high enough 

temperatures a concavity is observed in its ordering trend. It emerges from the 

intrinsic tendency of the component with the lower molecular weight to be 

isotropic; however, due to the interaction (β) it is  

u1 u2 

n1 n2 
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Figure 2- 4. Scalar order parameters (s1, s2 and smix) as a function of reduced temperature for 

m1=0.2 and β=0.1, for ∆Mw=800 (Mw2=600) in (a) and ∆Mw=400 (Mw2=1000) in (b).  
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energetically preferable to be in the nematic state. The first order NI phase 

transition takes place at Tr=0.095.  At lower ∆Mw (figure 2-4b) the low melting 

component controls the ordering of the mixture due to its dominant concentration 

and the NI transition takes place at Tr=0.109.  

2.5.1.3  Dilution Effect (m1) 

Mesogenic mixtures exhibit both lyotropic and thermotropic behavior: si(T,m1), and 

dilution (changes in m1) drives the phase transition, as in other lyotropic liquid 

crystals
36

. 

Figure 2-5 shows the scalar order parameters s1 and s2 as a function of 

dimensionless temperature Tr, for β=0.1, ∆Mw=400, m1=0.2 (a), 0.31(b), and 

0.4(c).   In this case the minority component “1” has the higher molecular weight 

and higher TNI value, but dilution introduces the lyotropic effect.  At high dilution 

(figure 2-5a) as Tr increases the minority component has more tendency to convert 

to the isotropic phase. Transition takes place at Tr= 0.109. As the concentration 

increases (figure 2-5b) both the minority and the majority components, exhibit a 

similar ordering and the mixture behaves like a pure system. The transition takes 

place at Tr= 0.095 which shows a decrease compared to m1=0.2. We use the term 

‘critical mixture’ for this system and ‘critical concentration’ for the corresponding 

concentration (0.31 here). At m1=0.4 (figure 2-5c) the majority component has less 

ordering due to its lower Mw and tends to be in the isotropic state; in this case 

transition takes place at Tr= 0.108.  

 In partial summary, binary mixtures exhibit both lyotropic and thermotropic 

behavior. A minority component of relatively high MW at low temperatures may 

nevertheless exhibit low ordering due to the lyotropic effect. 
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Figure 2- 5. Scalar order parameters (s1, s2 and smix) as a function of dimensionless temperature, 

for β=0.1 and ∆Mw=1000 for m1: 0.2 (a), 0.31 (b), and 0.4 (c).   
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2.5.1.4 Effect of Interaction Parameter (β ) 

In the absence of interactions, 0β = , the mixture is ideal and the two mesogens are 

unaffected by each other and each undergoes the clearing transition independently. 

Figure 2-6 shows scalar order parameters s1, s2, and smix as a function of 

dimensionless temperature Tr for ∆Mw=400, m1=0.2 and β =0. However, when 

0β ≠  there is a single mixture clearing temperature.  Figure 2-7 shows the scalar 

order parameters s1, s2, and smix as a function of dimensionless temperature Tr for 

∆Mw=400, m1=0.2, β =0.1 (a), and 0.5(b).  The figure shows that for this weakly 

asymmetric mixture (∆Mw=400), weak coupling (figure 2-7a) leads to coexisting 

nematic phases with different ordering (s2>s1), but strong coupling (figure 2-7b) 

leads to a critical mixture.  Hence increasing the interaction enhances the effect of 

molecular weight asymmetry. 

 

 

Figure 2- 6. Scalar order parameters (s1, s2 and smix) as a function of dimensionless 

temperature, for m1=0.2, and ∆Mw=400 and β=0 (no interaction).  
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Figure 2- 7. Scalar order parameters (s1, s2 and smix) as a function of dimensionless 

temperature, for m1=0.2, and ∆Mw=400 for two different interaction parameters β=0.1 (a), 

and β=0.5 (b). For highly interacting mixtures the contribution of the higher molecular weight 

component “1” to the ordering becomes enhanced so that s1=s2, though m1<<m2. 
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2.5.2 Phase Diagrams 

In this section we use eqn.( 2.16) to classify the T-m phase diagrams.   Figure 2-8 

shows the classification of the mixtures in terms of molecular weight asymmetry 

and interaction parameter, showing the property envelopes for ideal and non-ideal 

mixtures. The coefficients a and b applied in eqn.( 2.13) restricts the minimum 

value of Mw2 as 200.  Therefore, the horizontal dashed line shows the limit of 

∆Mw which is physically meaningful within the model (1400-200=1200). The solid 

curve that separates ideal from non-ideal behavior is a plot eqn.( 2.16) with m1c=0.   

The other distinguishing features of figure 2-8 are: (i) for equal molecular weight, 

non-ideality arises only under weaker interaction, (ii) as the Mw asymmetry 

increases, ideal behavior arises with weaker interaction. 

 

 

Figure 2- 8. Classification of the mixtures into two types; type A with the non-ideal behavior 

and type B with ideal behavior, based on their intrinsic properties: Mw asymmetry ∆Mw and 

the interaction parameter β. For weakly interacting mixtures and /or small molecular weight 

asymmetry the NI transition line exhibits a minimum by increasing the concentration (region 
A); however, for sufficiently strongly interacting mixtures and /or sufficiently large molecular 

weight asymmetry the NI transition line is monotonic (region B). 
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Figure 2-9 shows the phase diagram of two mixtures, representing the two regions 

in figure 2-8, A and B.  (i)  the mixture in the region (A) behaves non-ideally and 

exhibits a minimum in its phase diagram; the mixture with the minimum transition 

temperature TNI is the critical mixture where s1=s2 (figure 2-9a).(ii) the mixture in 

the region (B) which has large molecular weight asymmetry and large interaction 

parameter behaves ideally and shows a monotonic increase in the transition 

temperature TNI as a function of the concentration (figure 2-9b); as a result, critical 

mixture can not be obtained from this region. 

Figure 2-10 shows the critical concentration as a function of ∆Mw and β, using 

eqn.(2.16).  As the interaction β increases the concentration needed to obtain the 

critical mixture with a specific ∆Mw decreases. In other words, the larger value of 

β enhances the effect of the component with higher molecular weight. Therefore, it 

controls the overall order parameter of the mixture, even at a lower concentration, 

contrary to the system with a smaller β.  All the graphs reach the zero critical 

concentration. In the case of the zero critical concentration the critical mixture 

forms at m1=0. In other words the first component (with the higher molecular 

weight) always controls the overall orientation of the mixture. In the other words, s1 

is always greater than s2. The second component can control the overall orientation, 

only when m1=0.   
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Figure 2- 9. Temperature-composition thermodynamic phase diagram for two different types 

of mixtures: non-ideal (with ∆Mw=600 and β=0.1) (a), and ideal (with ∆Mw=800 and β=1) (b).  
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Figures 2-11 shows the effect of β on the temperature-composition thermodynamic 

phase diagram for ∆Mw= 400 and β=0 (no interaction) (a); β=0.1, 0.2, and 0.5 (b); 

Ii denotes isotropic and Ni denotes nematic. Under no interaction, (figure 2-11a) 

there are two clearing transition lines and in the region below the transition lines, 

coexisting nematic and nematic-isotropic phases are observed. As the interaction 

increases (β↑) the crossing transition lines merge (figure 2-11b) to define the 

mixture isotropic-nematic transition line.  The nematic region contains two parts: 

N21 with s2>s1 for the left part and N12 with s1>s2 for the right part. The boundary 

between these two regions corresponds to the critical concentration which makes 

critical mixture, where s1=s2 and where the transition temperature has the minimum. 

By increasing the interaction parameter, β, the tendency of the component with the 

lower Mw to remain nematic increases; as a result, transition to the isotropic phase 

shifts to higher temperatures. 

 

Figure 2- 10. Critical concentration as a function of the intrinsic properties: molecular weight 

asymmetry and the interaction parameter. 
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2.5.3 Critical Concentration Detection 

As mentioned above, the ordering of CM mixtures are affected by the lyotropic and 

thermotropic effects. Concentration can shift the phase transition and any related 

phenomena of the mixture along the temperature axis. For instance, the final 

structure of the CM based fibers which is dictated by the temperature effect
21

 is 

influenced by concentration values. Therefore, it is of key importance to determine 

whether a specific mixture can produce a non-ideal behavior and if it can reach a 

minimum transition temperature. It is also crucial to detect the critical 

concentration of the mixture, if it exists. In the following section, we propose 

predictive tools to detect the critical concentration. 

2.5.3.1 X-Ray Intensity 

Here we present the X-ray intensity Imix calculations of the mixture using 

eqns.(2.19, 2.20).  Figure 2-12 shows the values of the intensity parallel to the 

director θ=0 (maximum intensity) as a function of concentration m1, at a constant 

temperature T=320K for β=0.1 and molecular weight asymmetry ∆Mw= 400 (a), 

and β=1 and molecular weight asymmetry ∆Mw= 800 (b).  The intrinsic properties 

for figure 2-12a correspond to the non-ideal region in figure 2.8. The minimum 

value of the intensity corresponds to the most uniform distribution function which 

represents the least order state. This phenomenon takes place in the vicinity of the 

critical concentration. Therefore, we can significantly decrease the range of the 

concentration in which the critical concentration exists.  Figure 2-12b show the 

corresponding predictions for an ideal mixture   and agrees with the expectation of 

a monotonic increase. Therefore by using X-ray intensity we can: (i) determine the 

mixture type and hence whether a critical concentration exists or not; (ii) estimate a 

range of the concentration (for non-ideal mixtures) in which the critical 

concentration  
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Figure 2- 11. Temperature-composition thermodynamic phase diagram for ∆Mw= 400 and 

ββββ=0 (no interaction) (a), ββββ=0.1, 0.2, and 0.5 (b). Two transition lines in the non-interaction case 

(11a) converts to angle nematic to isotropic transition line for the interacting cases (11b). 
Strong interaction results in the higher NI transition temperature. 
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exists.  This narrowed concentration range can then be used more effectively to 

determine the exact value of the critical concentration, using direct methods that we 

mention next. 

2.5.3.2 Direct Methods 

Here we discuss methods that can be used to determine the critical concentration 

based on direct measurements of the scalar order parameter.  

Figure 2-13 shows the average ordering, smix, at the transition mix TNI
 s , as the 

ordering criterion, as a function of concentration for two types of behavior 

corresponding to figure 2-12. Figure 2-13a depicts the typical ordering trend of the 

mixture which behaves non-ideally. Two local minima and a local maximum are 

observed here. There are three regions in this graph: 
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Figure 2- 12. The maximum value of the X-ray intensity as a function of the concentration at 

T=320K for ∆Mw=400, ββββ=0.1 (non-ideal) (a), and ∆Mw=800, ββββ=1 (ideal) (b).  
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Figure 2- 13. Scalar order parameter of the mixture at the transition temperature mix TNI
 s  as a 

function of concentration for ∆Mw=400, ββββ=0.1(non-ideal) (a), and ∆Mw=800, ββββ=1 (ideal) (b). 
Maximum ordering at transition is observed at the critical concentration for the non-ideal 

type. No maximum is observed for the ideal case.  
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(i) below m1c, s2>>s1 (which corresponds to N21): In this section smix decreases by 

increasing concentration (as s2 decreases); (ii) above m1c, s1>>s2 (which 

corresponds to N12): In this section s1 and smix increase as concentration 

increases;(iii) in the vicinity of m1c, s1≈s2 (which corresponds to the transition 

region): In this section the controlling component is changing and as a result, a 

maximum which takes place at the critical concentration appears in the graph. 

However, for the ideal case (figure 2-13b.), a single minimum is observed. This 

figure shows the typical ordering trend of the mixture which behaves ideally. In this 

case the maximum corresponding to the non-ideal trend moves to lower 

concentrations and then disappears, resulting in an ideal behavior. There is no 

critical concentration in this case and the component with higher molecular weight 

always controls the overall ordering. Therefore, experimental methods such as 

NMR, diamagnetic anisotropy, refractive indices which measure scalar order 

parameters of the mixture and its individual components
13, 19, 37, 38

 can be used to 

detect the type of the mixture as well as the value of the critical concentration.  

2.6 Conclusions  

This paper extends the Maier-Saupe model to binary mixtures of discotic 

nematogenes.  The thermotropic and lyotropic behavior of the mixtures are 

demonstrated by phase transitions induced by temperature and concentration 

changes.  Based on the molecular weight asymmetry and the interaction parameter, 

mixtures are classified as ideal and non-ideal. Each type exhibits a distinguished 

temperature-concentration phase behavior, as well as a specific ordering trend: (i) 

non-ideal mixtures with non-monotonic NI transition temperatures and reversal of 

ordering ( 1 2 2 1s s s s> >� ) due to the concentration effect; the value of the 

concentration at which this transition takes place is the critical concentration. The 

mixture exhibits the minimum value of the transition temperature at the critical 

concentration. The average ordering of this type of mixtures, at the NI transition, 

shows two minima and a local maximum corresponding to the critical 

concentration; this case is obtained for weakly interacting mixtures and its phase 

diagram shows lyotropic/thermotropic behavior; (ii) ideal mixtures correspond to 

the sufficiently  strong interaction and highly asymmetric molecular weights; for 
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this case the NI transition temperature monotonically changes by increasing the 

concentration. The mixture behaves ideally and a critical concentration with 

ordering reversal can not be obtained.  Its average ordering at the NI transition also 

changes monotonically with concentration.  The mixture type as well as the value 

of the critical concentration can be determined by X-ray intensity measurements. 

They also can be detected by any experimental method which measures scalar order 

parameters.  

In summary, the MS mixture model is a predictive tool that can be used to assess 

the nematic ordering of the mixture in response to the combined lyotropic and 

thermotropic effects and to control the NI transition using molecular weight 

asymmetry and molecular interaction as parameters. 

 2.7 Appendices 

2.7.1  Appendix A: Maier-Saupe Model 

In this section we briefly sketch the Maier-Saupe model for a single component 

NLCs, necessary to develop the binary mixture model. According to the Doi-Maier-

Saupe model the internal potential ( )Φ u acting on a molecule of orientation u in a 

single component LC is given by the following expression: 

( ) 3

2 3
 U

 Φ = − − 
 

I
u Q : uu                 (A2.1) 

This potential is derived from an internal energy E(Q)  as follow:  

( ) 3

3 2 3

E
U

∂    Φ = − = − −   ∂    

Q I I
: uu Q : uu

Q
              (A2.2) 

where U has units of energy per unit volume.  The entropy per molecule S is: 

3
ln 2 ln

2
TS U kT Z E kT Z= − + = +Q : Q                (A2.3) 

where the  partition function Z is: 

/ Bk T
Z e d

−Φ= ∫ u                 (A2.4) 

Using eqns.( 2.2) and (2.3), the molar free energy A of the system is found to be: 

3
ln ln

4

A
A A B A B

N
A N E N k T Z U N k T Z= − − = −Q : Q              (A2.5) 
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Now we check for the thermodynamic consistency. According to thermodynamics 

the relation between the internal energy E and the free energy A is given by the 

following expression: 

( ) d A
E  

d

β
=

β
Q                     (A2.6) 

where 1/ Bk Tβ = .Using equations (2.5) and (2.6) we find the consistent result: 

( ) ( ) 1
ln 2AN dd A dZ

E  E Z E E E
d d Z d

 β
= = −β − = − − = − + β β β 

Q              (A2.7) 

To find Q we must minimize A.  By minimizing the free energy we get: 

3 1
0

2
A A B

dA dZ
 UN N k T

d Z d
= − =Q

Q Q
             (A2.8)   

which yields the self-consistent relation: 

/1

3
Bk T

e d
Z

−Φ = − 
 ∫

I
Q uu u                (A2.9) 

For a unixial LC  ( ( )/ 3S= −Q nn I ) , contracting eqn.( 2.9) with nn yields: 

( )2 /1 3 1

2 3
Bk T

S e d
Z

−Φ = ⋅ − 
 ∫ u n u             (A2.10) 

 

2.7.2 Appendix B: Orientation Distribution Function and Order Parameter for 

a Binary Mixture 

 In this Appendix we derive the orientation distribution function ODFmix for a 

binary mixture of two discotic nematogens in terms of the single component 

distribution functions ODF.  The orientation distribution functions and order 

parameter of a single component NLC were introduced in eqns.(2.1 , 2.2).   Using a 

mass balance we find that normalized species orientation distribution functions 

ODFmix are given by: 

( ) ( ) ( ) ( )1 2

1 2

1 2

;     ODF ODF= =
u u

u u
ρ ρ

ρ ρ
                                            (A2.11) 

where u is the unit normal to a molecular disk, (ρ1, ρ2) are the molar densities, and 

(ρ1(u), ρ2(u)) are the molar densities at orientation u.  Introducing the mole fraction 



 

 63 

of the two components: 1 1 2 2m , mρ = ρ ρ = ρ , where ρ is molar density of the 

mixture,  eqns.(A2.11) become: 

( ) ( ) ( ) ( )1 2

1 2

1 1

;
(1- )

= =
u u

u uODF         ODF
m m

ρ ρ

ρ ρ
                     (A2.12) 

Using a mass balance, the normalized orientation distribution function of the 

mixture is: 

( ) ( ) ( ) ( )1 2+
= =

u u u
u

mix
ODF

ρ ρ ρ
ρ ρ

                                                              (A2.13) 

where we used the molar density of the mixture with orientation 

u: ( ) ( ) ( )1 2= +u u uρ ρ ρ .  Combining eqns.( A2.12, A2.13) we find that the ODFmix  

is a linear function of the species  

( ) ( ) ( )1 1 2 2m= +u u umixODF ODF m ODF                       (A2 .14) 

 Next we define the tensor order parameter of a binary mixture Qmix.  We have 

explained the nature, origin, and physical significance of the tensor order parameter 

Q of a single component NLC in the introduction (eqn.(2.2)).  Multiplying eqn.( 

A2.14)  with -
3

 
 
 

δ
uu  and integrating on the unit sphere we find: 

( ) ( ) ( )2 2 2

1 1 2 2mixODF - d m ODF - d m ODF - d
3 3 3

     = +     
     ∫ ∫ ∫

δ δ δ
u uu u u uu u u uu u  

                 (A2.15) 

Using eqns.(2.2, A2.15) we finally arrive at Qmix. 

1 1 2 2= +Q Q Qmix m m                            (A2.16) 
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3. Entropic Behavior of Binary Carbonaceous Mesophases 

 
3.1  Summary 

The Maier-Saupe model for binary mixtures of uniaxial discotic nematogens, 

formulated in a previous study
1
, is used to compute and characterize orientational 

entropy
2
 and orientational specific heat. These thermodynamic quantities are used 

to determine mixture type (ideal or non-ideal) which arise due to their different 

intrinsic properties, determined by the molecular weight asymmetry ∆Mw and the 

molecular interaction parameter β. These molecular properties are also used to 

characterize the critical concentration where the mixture behaves like a single 

component system and exhibits the minimum nematic to isotropic (NI) transition 

temperature (pseudo-pure mixture). A transition within the nematic phase takes 

place at this specific concentration. According to the Maier-Saupe model, in a 

single mesogen, entropy at NI transition is a universal value; in this work we 

quantify the mixing effect on this universal property. The results and analysis 

provide a new tool to characterize molecular interaction and molecular weight 

differences in mesogenic mixtures using standard calorimetric measurements. 

3.2 Introduction 

An ideal crystalline solid (Figure 3.1a) has (i) perfect orientational order as well as 

(ii) perfect positional order. On the other hand, an isotropic liquid (Figure 3.1c) 

lacks any kind of ordering, either orientational or positional. Between these two 

extremes lies a nematic liquid crystal that has a partially orientational order without 

any positional order (Figure 3.1b)
3
. 

In nematic liquid crystals
4
 (NLCs), the long molecular axes (u direction in Figure 

3.2) are preferably oriented along a particular direction called the director n (Figure 

3.2). In discotic nematic liquid crystals (DNLCs) the director n is perpendicular to 

the long axis of discotic molecules (Figure 3-2). In rod-like nematic liquid crystals 

(RNLCs) n is parallel to the long axis of the molecules (Figure 3.2). Carbonaceous 

mesophases (CMs), first reported by Brooks and Taylor
5
, are DNLC mixtures 

obtained from petroleum pitches and synthetic naphthalene precursors
6
. The 

composition, polydispersity, and molecular orientation of CMs play a significant 
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role on the final properties of cokes
7
, carbon foams, carbon/carbon composites

8
, 

and carbon fibers
9-12

.  

 

 

 

          (a)     (b)     (c) 

 

Figure 3- 1. The comparison of three states of the material: a perfect crystalline solid with 

positional and orientational order (a), a liquid crystal with positional disorder and partial 

orientational order (b) and an isotropic liquid with positional and orientational disorder (c).  

n

u

θ

n

u

Discotic Nematic Liquid Crystal

(DNLC)

Rod-like Nematic Liquid Crystal

(RNLC)
 

Figure 3- 2. Schematic of nematic liquid crystals (NLCs), the director n is the average of the 

molecular orientation u, and its classification into discotic and rod-like molecules. In discotic 

nematic liquid crystals the director n (average orientation) is perpendicular to the long axis of 

the molecules; however, in rod-like nematic liquid crystals the director n is parallel to the long 

axis of the molecules. 

 

The type and extent of NLC applications
13

 are mainly determined by their thermal 

properties. For instance, it is known that the final structure of the fibers based on 

the pure liquid crystalline materials is influenced by the temperature
14-17

. The 

results of our previous study
1
 shows that the structure of the fibers based on the real 



 

 69 

CMs which are composed of DNLC species with different molecular weights and 

concentrations are also influenced by the thermal effect.  

By the use of thermodynamics, microscopic structure as well as macroscopic 

energetic and/or entropic aspects is revealed, so that comprehensive understanding 

of materials can be achieved
18

. One of the methods mostly used for this purpose is 

calorimetry. Calorimetric measurements are best suited for the recognition of phase 

transitions and the determination of their transition temperature. Specific heat, 

which can be measured by calorimetry, is one of the most useful quantities to 

investigate the thermal properties of LCs
18

. By use of this quantity three 

fundamental thermodynamic values viz. enthalpy, entropy, and free energy can be 

obtained; as a result, it can give an insight into the microscopic and macroscopic 

aspects of the system.  

Theoretically, the entropic behavior and specific heat of pure NLCs are well 

understood by the Maier-Saupe theory
2
. For instance, this theory predicts a 

universal entropy value at nematic to isotropic (NI) transition for single component 

nematics
19

. But there is no systematic study to investigate how the composition 

changes the entropic value of NLC mixtures at NI transition. Experimental 

measurements of the entropic behavior are limited to specific nematic mixtures 

such as the mixtures of EPPV, PBPA and PBPA, EBBA
12, 20-22

. However, a 

systematic study which includes a broad range of materials and their intrinsic 

properties such as polydispersity and molecular interaction between the 

components has not been performed. Moreover, these studies are not directed to 

CMs which are a mixture of discotic nematogens formed by the species at a certain 

range of molecular weight. In this paper, we study the general thermodynamic 

behavior, the entropic behavior, and the characteristic features of specific heat of a 

mixture of two thermotropic uniaxial discotic nematogens which represents a CM 

that only differs in molecular weight, thus precluding phase separation. Based on 

our previous study
1
, depending on the intrinsic properties of the system, two types 

of mixtures arise: ideal and non-ideal (Figure 3.3). The ultimate objective of the 

current study is to use thermal properties and to determine the type of the mixture 
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as well as its concentration that corresponds to the minimum transition temperature, 

critical concentration
1
.  

Maier-Saupe (MS) theory is widely used to describe the thermodynamics of 

nematic liquid crystals
23-26

. This mean field theory gives the temperature-

dependence of the molecular orientation as well as macroscopic entropic aspects in 

mesogenic materials. It predicts the values of the experimentally measured scalar 

order parameters very well
24

, and hence has been applied to different nematic liquid 

crystalline systems and can be adjusted to their mixtures
25, 27-29

. In this paper, we 

use the Maier-Saupe (MS) theory generalized to binary uniaxial discotic 

nematogens. For binary mixtures of uniaxial mesogens the mixture quadrupolar 

order parameter is related to that of the individual components
1
:
 

mix 1 1 2 2m m≡ = +Q Q Q Q                   (3.1) 

where mi is the mole fraction of i
th 

component. For uniaxial phase Q is given in 

terms of a temperature-dependent scalar order parameter s(T) and the average 

molecular orientation or director n: ( )s / 3= −Q nn I , where I is the unit tensor. For 

binary discotic nematogens at equilibrium we find collinear directors ( )1 2=n n  and 

the mixture uniaxial scalar order parameter then is: 

mix 1 1 2 2s m s m s= +                    (3.2) 
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Figure 3- 3. Classification of the mixtures into two types; type A with the non-ideal behavior 

and type B with ideal behavior, based on their intrinsic properties: molecular weight 

asymmetry ∆Mw and molecular interaction parameter β. For weakly interacting mixtures and 

/or small molecular weight asymmetry the NI transition line exhibits a minimum by increasing 
the concentration (region A); however, for sufficiently strongly interacting mixtures and /or 

sufficiently large molecular weight asymmetry the NI transition line is monotonic (region B)1. 

 

Nevertheless since the ordering states of each species are coupled and are also 

dependent on temperature and dilution, we expect, based on the above 

observations, that a binary mixture displays three states: 

(i) isotropic (I) : s1=0, s2=0; 

(ii) nematic (N12) with s1≥s2; 

(iii) nematic (N21) with s1≤s2. 

Figure 3-4 shows the typical phase diagram of these mixtures. Two kinds of 

transition take place within mixtures: (i) Nematic to Isotropic (NI) transition due to 

the thermal effect , and (ii) N12 to N21 transition within the nematic phase due to the 

concentration effect. For the later case s1= s2 where N21 converts to N12; at this 

point nematic mixture behaves like a single component system, and the 

concentration corresponding to this transition is the critical concentration m1c at 

which the NI transition temperature is a minimum. The results of our previous 
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study
1
 show that depending on the molecular weight difference and the molecular 

interaction, two types of uniaxial nematic mixtures arise (Figure 3-3): (i) non-ideal 

mixtures; both kinds of transitions are observed within non-ideal mixtures, and (ii) 

ideal mixtures; only the NI transition takes place within this type of mixtures; N12 

exists for all range of concentration; as a result, N21 and the critical concentration 

do not appear in the ideal mixture. Ideal binary mixtures arise under sufficiently 

strong interaction and sufficiently high molecular weight differences, while non-

ideal mixtures arise under weak interaction and small molecular weight differences 

(asymmetries). As each carbonaceous mesophase mixture leads to different carbon 

fiber structure, it is of a great importance to be able to determine the type of the 

mixture. 

 

Figure 3- 4. Schematic of the phase diagram of the binary mixture which includes three states: 

(i) isotropic (I), (ii) nematic (N12) and, (iii) nematic (N21). In N12 (N21) the higher (lower) 

molecular weight species has a higher molecular order parameter than the lower (higher) 
molecular weight component: s1>s2 (s2>s1). Depending on the type of the mixture N21 can 

appear and the transition within the nematic phase between N21 and N12 takes place (for non-

ideal mixtures) or it can disappear (for ideal mixtures). The concentration which corresponds 

to the transition within the nematic phase is the critical concentration1. 

 

In previous work
1
 we used the values of the X-ray diffraction intensity and the 

average ordering to characterize the type of the mixture and its critical 
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concentration. In this paper we use specific heat and entropy, to characterize the 

binary mixtures. Figure (3-5) summarizes our objective schematically. It shows the 

schematic of the entropic values versus ordering for different concentration. Sr1(2) is 

the value of the entropy for a single component system. This value is universal at 

the NI transition. Our objective is to find out the effect of concentration, molecular 

weight asymmetry and the interaction between the components on the (i) entropic 

values and the entropic jump at transition and (ii) the rate of entropy change which 

is needed to calculate the values of the specific heat. 

The specific objectives of this paper are: 

(i) to determine the entropic behavior of ideal and non-ideal mixtures, 

(ii) to calculate heat capacities of the two types of mixtures, and 

(iii) to determine their entropic variation at transition. 

The organization of this paper is as follows: 

Section 3.3 presents the essential aspects of the MS binary mixture model. 

Orientational entropy of the binary mixture is also introduced in this section. The 

main parameters influencing the thermodynamics of the system are identified and 

the numerical solution scheme is defined. Section 3.4 presents the derivation of the 

orientational specific heat. This quantity is used to characterize the type of the 

mixture, ideal or non-ideal, as well as the critical concentration at which a non-ideal 

mixture behaves as a pure mesogen. Section 3.5 presents the numerical results and 

discussion: Section 3.5.1 presents entropic behavior of different types of mixtures 

for different concentrations. Section 3.5.2 discusses the specific heat of different 

ideal and non-ideal mixtures as a tool to characterize the type of mixture and its 

critical concentration. It also shows the effect of molecular weight asymmetry on 

specific heat values. Section 3.5.3 presents the effect of concentration on the 

entropy jump at NI transition for two types of mixtures: ideal and non-ideal. 

Finally, the conclusions are presented in section 3.6. 

3.3 Maier-Saupe Binary Mixture Model 

Details of the extension of Maier-Saupe model to a binary mixture of NLCs is 

given in our pervious study
1
. Here we briefly present the main features of the model 
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which are necessary to obtain the entropic behavior and equilibrium phase diagram. 

The Helmholtz free energy per unit mole of the homogeneous mixture A is: 

( ) ( ) ( )1 2 A mix mix A mix BA s ,s N E TS  N E k T ln Z = − = − +               (3.3) 

where NA, kB, T are the Avogadro’s number, Boltzmann’s constant and temperature 

respectively, and Emix, Smix, and Z are the internal energy , the orientational entropy, 

and the partition function of the mixture per molecule respectively. Emix is given by 

the summation of three contributions:  

( )mix 11 1 1 22 2 2 12 1 2

3 3 3
E  W W W

4 4 2
= − − −Q Q : Q Q : Q Q : Q                    (3.4) 

where { }11 22 12W , W , W are the composition and molecular weight-dependent 

parameters [1]. Smix as the entropy of mixing per molecule and is given by: 

mix
mix B

2E
S k ln Z 

T

 = + 
 

                             (3.5) 

and Z as the mixture partition function is factorized as: 

( ) ( )1 2
1 2 1 1 B 2 2 B

m m
m m / m k T / m k T

1 2 1 2Z Z Z e d e d−Φ −Φ= = ∫ ∫u u                                     (3.6) 

where Zi, iΦ  and mi are the partition function, the partial internal potentials, and 

the mole fraction (concentration) of the i
th

 species respectively.  

The two equations of equilibrium are obtained by minimizing the free energy A 

(eqn.(3.3) ) with respect to the species order parameters ( )1 2s ,s . Scaling the 

Helmholtz energy A with the bare interaction parameter 11U , minimizing the 

resulting dimensionless free energy with respect to s1, s2 we find:         

( )

( )

1

1 2

2
2

1 1 1 1 2 1 2 2
1 1

2
2

1 2 1 2 1 2 2 2
1 2

( ) :

3 1
( ) : cos 0

2 3

3 1
cos 0

2 3

=

=

 
℘  

 

 
℘ ℘ 

 

∂
ϕ + ϕ ϕ α − − =

∂

∂
ϕ ϕ α − + ϕ − =

∂

∑

∑

i i
r

i i

i i
r

i i

b

m Z
a m s m m s T

Z s

m Z
m m s m s T

Z s

                            (3.7)  

where ϕ
i
and℘

i
 are effective mole fraction and the energetic parameter of the 

component “i” respectively. α is the angle between the directors of two 

components. The asymptotic limits of eqns.(3.6) (m1=0,1) correspond to the pure 

NLC. As discussed in our pervious work [1] for the present CM case, the mixture is 
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uniaxial and hence the relative director aperture is α=0. The thermodynamics of the 

mixture is defined by the dimensionless temperature Tr and two effective mole 

fractions ( )i ;i 1,2ϕ = : 

B i i
r i

11 i i

k T m Mw
T ;                     

U m Mw
= ϕ =

∑
                                               (3.8) 

The two material parameters of the model are: 

12 22
1 2

11 11

;℘ = ℘ =
U U

U U
                                                                                 (3.9) 

which are functions of the molecular weights Mwi of the two components:  

( )
( )

( )
( )

B NI2 2 222
2

11 B NI1 1 1

4.542k T Mw a + b MwU
= = =

U 4.542k T Mw a + b Mw
℘              (3.10) 

where the parameters (a, b) , based on the data of
30

 are taken to be: a=-150 and 

b=0.75. Since the molecular weight dependence of 1℘  is not suggested by actual 

data, we use: 

1 2℘ = β℘                                  (3.11) 

where β is a constant whose sign depends on the geometrical nature of the species. 

For similar components, such disk/disk or rods/rod mixtures, it is positive; 

however, for dissimilar ones it is negative
31

. As CMs are mixtures of discotic 

molecules the interaction parameter is positive ( )0β > . We choose component “1” 

as a representative higher molecular weight component of a CM with Mw1 =1400
32

 

and vary the lower molecular weight of the second component, Mw2, so that the 

molecular weight asymmetry ∆Mw=Mw1-Mw2 > 0 changes.  

The present thermodynamic model is given by the two nonlinear integral equations 

(eqns.(3.7)); the solution vector consists of the two scalar order parameters (s1,s2); 

the two material parameters are β and ∆Mw; the thermodynamic phase diagram is 

obtained by sweeping over temperature Tr and concentration m1. Equations (3.7 

a&b) are solved by the Newton-Raphson method, using an eighth order Simpson 

integration method. Stability, accuracy, and convergence were ensured using 

standard methods
33

. In the discussion of results we use the following nomenclature 

for dimensionless (reduced) entropy: 
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r mix BS S / k=                                     (3.12) 

3.4 Specific Heat 

 The difference between dimensionless heat capacity of the nematic phase and that 

of the isotropic phase, prC∆ , can be obtained by the orientational entropy which 

results from the ordering of the mixture
34

: 

r
pr p A B r

r

S
C C N k T

T

 ∂
∆ = ∆ =  ∂ 

                 (3.13) 

As the isotropic entropy is assumed to be zero, the value given by eqn.3.13 is the 

orientational part of the specific heat. Therefore, prC∆ shows the difference 

between prC of the nematic phase and prC of the isotropic phase. According to this 

equation two terms have direct contributions in the value of the specific heat: 

temperature, rT , and the rate of entropy, r

r

S

T

 ∂
 ∂ 

. Depending on the trend of r

r

S

T

 ∂
 ∂ 

, 

the trend of prC∆ as a function of temperature changes. Once it increases 

monotonically, prC∆ increases; however, once it decreases prC∆  can either 

increases or decreases, depending the magnitude of each term, rT and r

r

S

T

 ∂
 ∂ 

. In this 

case, prC∆ does not behave monotonically and exhibits a local extremum. 

3.5 Results and Discussion 

The Maier-Saupe for pure mesogens, whose interaction parameter is W, predicts 

the following universal values: 

(i) NI transition temperature: B NIk T / W 0.22019=  

(ii) scalar order parameter in the N phase at transition: sNI=0.4289 

(iii) Latent heat at the NI transition: 
2

NI

B NI

Ws
0.417719

2k T
=  

Hence, deviations form these values will provide information on the mixture, as 

shown below. 

3.5.1 Entropic Behavior 
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Figure 3-5 shows the dimensionless entropy Sr as a function of ordering s, for a 

pure mesogen and an schematic for a generic mixture. As expected, entropy 

decreases with increase in ordering. At the NI transition the pure component 

displays the universal values (sNI=0.4289, rNIS 0.417719= − ), but for the generic 

mixture, the Figure shows a characteristic deviation for the universal transition 

values, which are discussed and quantified in detail in the rest of the paper. 

 

Figure 3- 5. Schematic of the effect of concentration m1, molecular weight asymmetry ∆Mw 

and the interaction parameter β on the type, entropy and ordering of the mixture. It shows the 

general trend of the dimensionless entropy Sr as a function of scalar order parameter smix. As 

ordering increases the entropy decreases. It also shows that diluting the pure system changes 

the ordering and the entropy at NI transition.  

Figure 3-6a shows the dimensionless entropy, Sr, as a function of temperature, for 

an ideal mixture with ∆Mw=800 and interaction β=1 (Figure 3-3); each curve 

shows the entropic trend for a specific concentration m1. The following features are 

observed in this figure: 

(i) for any given concentration, entropy increases monotonically with increasing 

temperature (Figure 3-5), 

(ii) for any given temperature, entropy increases with decreasing concentration: 

component “1” has higher Mw, so it is more ordered in the nematic range. 

Therefore, as the concentration m1 increases the mixture ordering increases and 

entropy decreases, 
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(iii) entropy jumps at the nematic-isotropic first order phase transition that sets in at 

temperature TNI (the entropy of the isotropic phase is assumed to be zero; as a 

result, this entropy represents the orientational entropy); the entropy jump value 

which is defined as (entropy of the isotropic phase) – (entropy of the nematic 

phase) at NI transition temperature for the almost pure mixtures (m1=0.001,0.999) 

are essentially the universal value rNIS 0.417719= , and mixing just decreases the 

magnitude of jump. 

(iv) depending on the relative population of two components there are three distinct 

concentration regions: (i) m1� [0-0.1], (ii) m1� [0.2-0.3], (iii) m1� [0.4-1]. The rate 

of entropy change r

r

S

T

 ∂
 ∂ 

which corresponds to the rate of ordering change in the 

mixture shows a rapid decrease in region (ii). Component “2” has lower Mw; as a 

result, it has a lower TNI (eqn.3.10). Therefore, while component “1” tends to 

remain nematic (N12 state), component “2” tends to transform to the isotropic (I) 

state and lose the ordering, though due to the interaction between the components it 

retains a low nematic ordering. As a result, when approaching the NI transition 

temperature of “2” the rate of ordering change in this component decreases and 

because of eqn.(3.2) the overall rate of change in the mixture decreases. The 

appearance of the inflection point in the graphs corresponds to this change in the 

rate of entropy trend. This phenomenon becomes enhanced when the relative 

concentrations of both components are significant (region (ii) m1� [0.2-0.3]) 

 Figure 3-6b shows the entropic behavior for ∆Mw=400 and interaction β=0.1 

which represents a non-ideal mixture (Figure 3-3); the concentration m1 is shown 

for each curve. The following features are observed in this Figure: 

(i) like the ideal case increasing the temperature decreases the ordering and 

increases the entropy (Figure 3-3) of all the mixtures, 

(ii) unlike the ideal case, the effect of concentration on the ordering and entropy is 

different at different temperatures, increasing concentration does not necessarily 

decreases the entropy. The following three distinctive dilution regions arise: (i) 

m1� [0-0.3], (ii) m1� [0.4-0.6], (iii) m1� [0.7-1] . Region (i) is located in N21 state 

(s2>s1) of the phase diagram (lower left region in Figure 3-3); in this region the 
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lower molecular weight species “2” is the majority component. Therefore, 

increasing m1, dilutes the mixture, decreases the ordering and increases the entropy 

(Figure 3-5). The second and the third regions, both are located in N12 state (s1>s2); 

therefore, the trend is opposite. As component “1” is dominant in this region, 

increasing its concentration makes the mixture more ordered and decreases the 

entropy, 

(iii) there is a difference between region (ii) and region (iii). Like the ideal case, the 

rate of entropy change r

r

S

T

 ∂
 ∂ 

in the mixture shows a rapid decrease in region (ii). 

When approaching the NI transition temperature of “2” the rate of ordering change 

in this component decreases; as a result, the overall rate of change in the mixture 

decreases (eqn.(3.2)). This phenomenon becomes enhanced in the region (ii), where 

m1= [0.4-0.6] and the concentration of both components is significant.  

(iv)  
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Figure 3- 6. Dimensionless entropy Sr as a function of dimensionless temperature Tr of ideal 

(with ∆Mw= 800 and β=1) (a) and a non-ideal (with ∆Mw= 400 and β=0.1) (b) mixtures for 
different concentrations, computed using eqns.(3.5, 3.12). Ideal mixtures show monotonic 

behavior with respect to dilution, while non-ideal mixtures show non-monotonicity due to the 

transition between N12 and N21. The entropy behavior reflects the scalar order parameters of 

the species and their relative concentration. 
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3.5.2 Specific Heat 

Figure 3-7a shows the value of the specific heat versus temperature for different 

concentration for the ideal case with ∆Mw=800 and β=1. The following significant 

features are observed:  

(i) at any given temperature, increasing the concentration decreases the ordering 

and increases the specific heat. 

(ii)  by sweeping over temperature, specific heat behaves differently for different 

concentrations. Depending on the concentration region ((i) m1� [0-0.1], (ii) 

m1� [0.2-0.3], (iii) m1� [0.4-1] , (see section 4.1) two different trends are observed 

in the specific heat values versus temperature: in region (i) and (iii), when the 

population of one of the components is insignificant, and r

r

S

T

 ∂
 ∂ 

changes 

monotonically, specific heat increases monotonically with temperature; however, in 

region (ii), where m1=[0.2-0.3], specific heat increases by increasing temperature 

and then it shows a decrease which is followed by another increase. As mentioned 

in section 3, the non-monotonicity of the specific heat is due to the direct 

contributions of the Tr and r

r

S

T

 ∂
 ∂ 

 to its value. According to section 4.1 r

r

S

T

 ∂
 ∂ 

in 

region (ii) shows a rapid decrease in the vicinity of TNI of component “2”; as a 

result, prC∆ decreases in this range. On the other hand, increasing temperature 

increases prC∆ ; as a result, a minimum appears in the prC∆  as a function of 

temperature.  

 Figure 3-7b shows the value of the specific heat versus temperature for different 

concentrations for the non-ideal case with ∆Mw= 400 and β=0.1 (Figure 3-3). The 

significant features observed are: 

(i) a transition is observed in prC∆ trend vs. concentration. This transition takes 

place at the critical concentration where N21→ N12. Region (i) is located in N21 

where increasing m1 decreases the ordering and increases prC∆ ; however, regions 
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(ii) and (iii) are both located in N12 where increasing m1 increases the ordering and 

decreases prC∆ .  

(ii) depending on the concentration region ((i) m1� [0-0.3], (ii) m1� [0.4-0.6], (iii) 

m1� [0.7-1] , (see section 4.1) two different trends are observed in the specific heat 

values versus temperature: in region (i) and (iii), when the effect of one of the 

components is weak, r

r

S

T

 ∂
 ∂ 

changes monotonically and specific heat increases 

monotonically with temperature; however, in region (ii), where m1=[0.4-0.6] and 

hence essentially no majority component, r

r

S

T

 ∂
 ∂ 

 changes non-monotonically 

(section 4.2). As r

r

S

T

 ∂
 ∂ 

 has a contribution to the specific heat values, prC∆ exhibits 

a minimum vs. temperature in this region (see section 3.3).  
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Figure 3- 7. Specific heat PrC∆  as a function of dimensionless temperature for ideal (with 

∆Mw= 800 and β=1) (a) and non-ideal (with ∆Mw= 400 and β=0.1) (b) mixtures for different 
concentrations. Ideal mixtures show monotonic behavior of specific heat while non-ideal 

mixtures display non-monotonicity with respect to dilution. Both cases show non-monotonicity 

with respect to temperature whenever the relative concnetration of the components is 

significant. 

 

To better understand the effect of species relative population on prC∆ values we 

investigate prC∆ for three mixtures with different molecular weight differences 
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(asymmetries) ∆Mw=400 (a), 600(b), and 800(c) for m1=0.2 and β=0.1. The results 

are shown in Figure 3-8. Based on Figure 3-3 all three mixtures belong to the non-

ideal type. The values of the critical concentration for these mixtures are: 0.31, 

0.205 and 0.11 respectively
1
. As a result, for mixtures (a) and (b) component “2” is 

the majority species, so they exhibit a monotonic prC∆ ; however, in mixture (c) 

there is no majority component and hence prC∆ exhibits an extremum. 

The interaction parameter, as another intrinsic property changes the type of the 

mixture and the critical concentration (Figure 3-3); as a result, it also affects the 

prC∆ values. For brevity the related graphs are not presented here.  

In partial summary, the higher Mw species always controls the overall ordering of 

the ideal mixture; as a result, the specific heat of ideal mixtures shows a decrease 

by increasing concentration at any given temperature; On the other hand, in non-

ideal mixtures of weakly interacting species a transition in the trend of prC∆ versus 

concentration is observed. This transition takes place within the nematic phase from 

N12 to the N12 state. For both ideal and non-ideal type, whenever there is no 

majority component in the mixture, the trend of specific heat versus temperature is 

non-monotonic because each component tends to show different ordering at 

different temperature range. 
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Figure 3- 8. Specific heat PrC∆  as a function of dimensionless temperature for m1=0.2 and 

β=0.1 for three different molecular weight asymmetries: ∆Mw= 400 (a), 600 (b), and 800(c). 

All three cases are non-ideal mixtures; in case (c) the relative concentration of the components 

is significant, so it shows a non-monotonic trend with respect to temperature. 

 

3.5.3 Entropy Jump at Transitions 

Figure 3-9a shows the entropy jump at the NI transition for an ideal case, 

∆Mw=800 and β=1. For the pure systems (two asymptotic limits m1=0, 1) the value 

of the entropy jump is the universal value 0.417
19

. On the other hand, diluting the 

system disturbs the orientation and increases the entropy. As a result, there is a 

concentration which corresponds to the minimum entropy jump at NI transition. 

This concentration depends on the intrinsic properties of the mixture and is about 

0.2 in the present case. Increasing dissimilarity of the components (larger ∆Mw) 

enhances the dominancy of component”1” and shifts the minimum into lower 

concentrations.  
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Figure 3- 9. Entropic variations at NI transition as a function of concentration for ideal (with 

∆Mw= 800 and β=1) (a) and non-ideal (with ∆Mw= 400 and β=0.1) (b) mixtures for different 

concentrations. Both pure and pseudo pure mixtures have the universal entropy at NI 

transition. A local minimum is observed for the ideal case, where there is only N12 state; 

however, two local minima (one in N21 and the other in N12) and a maximum (in N12→N21 
transition, which corresponds to the critical concentration) are observed for the non-ideal 

case.  

 

Figure 3-9b shows the values of the entropy jump at transition for a non-ideal case, 

∆Mw=400 and β=0.1. In this case a local maximum is observed in the graph. The 

concentration corresponding to the local maximum is the critical concentration 
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where the mixture behaves like a single component NLC (pseudo-pure mixture). 

Therefore, the value of the entropy for this concentration is the universal value 

0.417719 and identical to that of the pure systems. Like the ideal mixture, diluting 

the pure (or pseudo-pure) mixture increases the entropy. So, the first local 

minimum is observed between m1=0 (pure system) and m1c (pseudo-pure mixture) 

which is located in the N21 region and the second one is observed between m1= m1c 

(pseudo-pure mixture) and m1=1 (pure system) which is located in the N12 region.  

3.6 Conclusions  

 This paper uses the Maier-Saupe model for binary mixtures of discotic 

nematogenes to calculate the orientational entropy and orientational specific heat. 

These quantities are used to characterize the type of binary mixtures, ideal or non-

ideal, which arise due to different intrinsic parameters, Mw asymmetry ∆Mw and 

the interaction parameter β: (i) for ideal mixtures entropy and specific heat changes 

monotonically as a function of concentration at any given temperature. The 

entropic jump at NI transition exhibits a minimum for this kind of mixture. (ii) For 

non-ideal mixtures entropy and specific heat change non-monotonically as a 

function of concentration. A transition within the nematic phase from N21 to N12 is 

observed in this type of mixture. This transition takes place at the critical 

concentration and can be detected by the entropic and specific heat trend: the trend 

of these quantities in N21 is opposite to their trend in N12. The entropic jump at the 

NI transition exhibits two local minima; one located in the N21 region and the other 

in N12 region. It also has a local maximum between these two regions at critical 

concentration, where the mixture behaves like a single component system and 

shows the universal entropy jump at NI transition. For both type of mixtures 

whenever there is a distinct majority component, prC∆ and entropy behaves 

monotonically versus temperature; however, when there is no majority component 

prC∆ and entropic trends are non-monotonic with temperature.  

 In the summary, heat capacity and transition entropies are shown to be useful tools 

to characterize the type of the discotic nematic liquid crystal and carbonaceous 

mesophase mixtures, to determine nematic ordering and to asses the degree of 

molecular interaction and molecular weights using standard calorimetric methods. 
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4. Structure and Phase Transitions of Carbonaceous Mesophase 

Binary Mixtures Under Uniaxial Extensional Flow 

 

4.1 Summary 

The Maier-Saupe model for binary mixtures of uniaxial discotic nematogens, 

formulated in previous studies
1
, is extended to simulate the effect of uniaxial 

extensional flow on the phase behavior and structure.  The rotational diffusivity of 

each disk-like component in the mixture of a high molecular weight (Mw) and a 

low molecular weight species, is derived based on: (i) a power law that relates 

molecular size to molecular weight and (ii) the excluded volume of binary disc-like 

molecules.  The thermo-rheological phase diagram of a 50/50 mixture, given in 

terms of temperature (T) and Deborah (De) number show the existence of four T-

De regions and six solutions: oblate( ,⊥ � ) , prolate ( ,⊥ � )  and scalene( ,⊥ � ), where 

the symbols ( ,⊥ � ) indicate alignment of the tensor order ellipsoid with respect to 

the extension axis.   It is found that, with increasing T, the higher molecular weight 

component exhibits weak deviations from the well-known pure species response to 

uniaxial extensional 

flow ( )uniaxial nematic biaxial nematic uniaxial  paranematic⊥ → → � .  In 

contrast, the low molar mass component is always uniaxial and the orientation of 

the oblate or prolate states is dictated by the coupling effects emanating from the 

high molar mass component.  Analysis of the coupling effects reveals that the 

changes in conformation ( )oblate prolate� and orientation ( )  ⊥ � �  is effected 

through changes in pairs of eigenvalues.   At high temperature, extensional flow 

acting on an isotropic phase produces an oblate paranematic state in the high Mw 

species and a prolate paranematic state in the low Mw species. Finally we show that 

X-ray intensity calculations are able to detect the different regions of the thermo-

rheological phase diagram characterized by the presence of oblate, prolate, scalene 

nematic and paranematic states. 

4.2   Introduction 
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Carbonaceous mesophases (CMs), first reported by Brooks and Taylor
2
, are 

discotic nematic liquid crystalline (DNLC) mixtures obtained from petroleum 

pitches and synthetic naphthalene precursors
3
. Manufacturing of high performance 

carbon fibers by melt-spinning is one of the major applications of these precursor 

materials. Carbon fiber spinning process involves unixial extensional flow of liquid 

crystalline polydisperse CM precursors. As a result, the final structure of the fiber 

depends not only on the precursor chemistry, but also, on the uniaxial extensional 

flow which is applied during the process.  This paper seeks to extend the 

thermodynamics of carbonaceous mesophase binary mixtures
1
 to non-equilibrium 

states produced by an imposed uniaxial extensional flow. 

The thermodynamics of binary carbonaceous mesophase mixtures composed of two 

mono-disperse components was described in
1
 using the Maier-Saupe liquid crystal 

model adapted to discotic mesogens. Here we summarize the main findings
1, 4

 

relevant to the current paper.  Since the only difference between the mixture 

components is their molecular weight, phase separation does not have to be 

considered in this case. The state of the mesogenic mixture depends on the 

quadrupolar order parameters
5
 of the mixture. The mixture quadrupolar order 

parameter Qmix
1
 is: 

( )1 1 1 1 2
∆Mw,β, , (1 )

mix
m T m m= + −Q Q Q                 (4.1) 

where  
w1 w2

∆Mw=M -M  is molecular weight asymmetry given by the difference of the 

molecular weights of each component, β is the molecular interaction parameter , m1 

is the mole fraction of component “1”, and T is the temperature; Q1 and Q2 are the 

quadrupolar tensor order parameters of each component:  

( ) ( )1 2
1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2( ) , ( )

3 3 3 3

P P
S S= − + − = − + −

I I
Q n n m m l l Q n n m m l l          (4.2) 

where {Si ; i=1,2 and Pi ; i=1,2 } are the pure component scalar order parameters 

and  {ni ; i=1,2, mi ; i=1,2 and li ; i=1,2 } are the orientation unit vectors; each 

orientation triad is orthogonal: 1 1 1 1 2 2 2 2 0⋅ = ⋅ = ⋅ = ⋅ =n m n l n m n l .  Using 

eqns.(4.2) we find the scalar order parameters (Smix, Pmix) for the mixture: 

( ) ( ) ( )1 1 1 2 1 1 1 2

3 3
: (1 ) : ; (1 ) :

2 2
mix mix

S m m P m m= + − = + − −Q nn Q nn Q Q mm ll     (4.3) 
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where n, m and l form the director triads of the mixture. A binary mesogenic 

mixture is uniaxial only when P1=P2=0 or 3 ( 1& 2)  
i i

P S i= ± =   and 1 2= =n n n . 

Biaxiality then can arise through orientation differences ( 1 2≠n n ) or through single 

species biaxiality ( )1 20, 0 & 3 ( 1& 2)  i iP P P S i> > ≠ ± = . Under the uniaxial 

extensional flow it is shown below that the latter case takes place. 

When mixing mesogens, uniaxial or biaxial phases may arise, such as when mixing 

rods ( )1n  with disks ( )2n 6
, when the director are normal to each other: 1 2⊥n n .   In 

addition, mesogenic mixtures are simultaneously lyotropic and thermotropic 

(amphotropic materials)
7,1,4

, such that isotropic-nematic transitions can be affected 

by changes in temperature and concentration. For binary CMs at equilibrium we 

find collinear directors ( )1 2=n n , no biaxiality is observed and the mixture uniaxial 

scalar order parameter then is
1
: 

1 1 2 2mix
S m S m S= +                    (4.4) 

Nevertheless since the ordering states of each species are coupled and are also 

dependent on temperature and dilution, we find
1
, based on the above observations, 

that a binary mixture at equilibrium can display three possible states: 

(i) isotropic (I) : S1=0, S2=0; 

(ii) nematic (N12) with S1≥S2; 

(iii) nematic (N21) with S1≤S2. 

In our previous thermodynamic work
1
 two kinds of transitions take place within 

mixtures of two components with the first one being the higher molecular weight 

component and the second one being the lower molecular weight component: (i) 

Nematic to Isotropic (NI) transition due to the thermal (thermotropic) effect, and 

(ii) N12 to N21 transition within the nematic phase due to the concentration 

(lyotropic) effect. For the later case S1= S2 where N21 converts to N12; at this point a 

nematic mixture behaves like a single component system, and the concentration 

corresponding to this transition is the critical concentration  m1c at which the NI 

transition temperature is an absolute minimum. The results of our previous study
1
 

show that depending on the molecular weight difference and the molecular 

interaction, two types of uniaxial nematic mixtures arise: (i) non-ideal mixtures; 
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both kinds of transitions are observed within non-ideal mixtures, and (ii) ideal 

mixtures; only the NI transition takes place within this type of mixtures; N12 exists 

for all range of concentration and as a result N21 and the critical concentration do 

not appear in the ideal mixture. Ideal binary mixtures arise under sufficiently strong 

interaction and sufficiently high molecular weight differences, while non-ideal 

mixtures arise under weaker interaction and relatively smaller molecular weight 

differences (asymmetries). As each carbonaceous mesophase mixture leads to 

different carbon fiber structure, it is of a great importance to be able to determine 

the type of the mixture.   In this paper we show that under so called non-ideal 

mixture conditions, when the molecular weight asymmetry is ∆Mw=1200-

600=800, the interaction parameter is β=0.5  and the concentration is above the 

critical concentration m1c (m1=0.5 in this work), the high Mw species responds to 

extensional flow essentially as a pure mesogen, but the low Mw species, being 

subjected to strong enough coupling effects from the high Mw component, does 

not. The range of interaction parameter,β , which creates a non-ideal behavior out 

of this mixture (∆Mw=800, m1=0.5) is (0, 0.65). The effect of the interaction 

parameter on the ordering behavior is studied in the current work. The response of 

the mixture with the concentration below the critical concentration to the 

extensional flow, however, will be investigated in our future work.  

Nematodynamics of single component liquid crystals has been extensively studied 

at the macro, meso, and molecular level
8-11

.  Below we refer to order parameter and 

alignment interchangeably.  

When the material is in the isotropic phase, flow induced alignment, FIA, (see 

Appendix A) produces flow-birefringence and the phase is paranematic
5, 12

. The 

paranematic phase is a non-equilibrium phase obtained when a mesogen at a 

temperature higher than the isotropic/nematic transition is subjected to an external 

field; under uniaxial extensional flow the paranematic phase adopts a prolate state 

with its unique axis along the extension direction. In addition to flow-induced 

alignment, flow-induced orientation (FIO) arises through the action of viscous 

torques on the eigenvectors of Q.  
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For single component  discotic nematics under uniaxial extensional flow in the z-

direction, the result of dual FIO and FIA effects is a stationary Q-tensor that is 

biaxial
13

: 

( ) ( ) ( )( ) ;
3 3

z

P
S

ε
= ε − + − = −

I
Q nn mm ll l δ

�
�                  (4.5) 

where ( )ε� is the extension rate and the directors n and m are in the compression x-y 

plane.   The exact spatial distribution depends on the geometry and boundary                 

condition
14-17

.   The flow-induced biaxiality arises because the deformation rate on 

the plane normal to n (m-l plane) is anisotropic. The degree of biaxiality was found 

to increase with increasing ( )ε� .
13

  

A brief review of the macroscopic nematodynamics description of binary 

mesophases has been given in Appendix B. Through the review we can see that 

under uniaxial extensional flow both directors n1, n2 align in the compression plane 

and in the absence of gradient elasticity (spatially homogenous case) they will 

coincide: n1=n2.  (For the heterogeneous case one has to consider elasticity 

gradient, boundary conditions and possible defect formation
18-20

) 

Integrating the thermodynamics with the flow-induced orientation and flow-

induced alignment in binary mixtures of CMs under uniaxial extensional flow 

merges the interplay between equilibrium uniaxial ordering and flow-induced 

biaxiality, which will be a function of the species molecular weight asymmetry 

(∆Mw), their interaction (β), and concentration (m1).  Macroscopic 

nematodynamics (eqns.((A4.1-A4.4))) will predict FIO and FIA accurately, but for 

binary mixtures the macroscopic material tensors  ( see tensors (((( ))))21 22 31 33, , ,� � � �  

in Appendices B and C) will be given by unknown functions of the molecular 

parameters (∆Mw,β,m1) and hence the most efficient way to include these 

important parameters is to use a molecular level description.  

 The Maier-Saupe (MS) theory, the theory for the molecular level description, is 

widely used to describe the thermodynamics of nematic liquid crystals
1,21, 22

. It 

predicts the values of experimentally measured scalar order parameters
 
of a pure 

system very well
23

, and hence has been applied to different nematic liquid 
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crystalline systems and can be adjusted to model their mixtures
1
. In the presence of 

uniaxial extensional flow, both, the flow potential and the molecular potential 

contribute to the total potential, which is one of the key elements of the MS 

theory
24

. In   other words, the extensional flow effects can be implemented through 

a flow potential. The flow can be considered as   potential flow if the torque τ  can 

be expressed by the potential H(u) of an external field
25

: 

H= −τ Ω                                                      (4.6) 

where u is the unit molecular normal to the discs, Ω is the rotational operator and   

given by  

∂
= ×

∂
Ω u

u
                                                     (4.7) 

The details of this theory will be given in the next section.  When comparing the 

MS and Landau-de Gennes nematodynamics approaches, we see that eqn.(4.12) 

corresponds to eqns.((A4.1-A4.3)), as previously demonstrated
21

 and hence the 

predictions for single component CMs under extensional flow
26

 serve as guidance.   

Finally, since X-ray is a useful tool to determine the orientation distribution 

function
27

, and the latter is easily computed by the MS model
1
, the modeling results 

can be verified by experimental data and inversely, X-ray experimental data can be 

converted into useful nematic order information. 

The specific objectives of this work are: 

(i) to evaluate the effect of the extensional flow on biaxiality and on the 

orientational behavior of CM binary mixtures, 

(ii) to investigate the effect of extensional flow on the nematic to the 

paranematic/isotropic transition behavior of the NLC mixture; 

7. to evaluate the effect of extensional flow on the structure of  paranematic 

phase; 

8. to construct the thermo-rheological phase diagram of the binary DNLC 

mixture in the presence of flow; 

9. to use X-ray intensity calculations to determine the thermo-rheological phase 

diagram. 
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The organization of this paper is as follow.  Section 4.3 presents the MS binary 

mixture model; the flow effect is introduced through the flow potential; the 

rotational diffusivity is derived for discotic nematogens and then it is extended to 

binary mixtures; the numerical solution scheme is also defined.  Section 4.4 

presents the derivation of the orientation distribution function, ODF, and the X-ray 

intensity of the mixture with the flow effects. Section 4.5 presents the results. 

Section 4.5.1 classified the type of solutions obtained for the ordering and the 

structural behavior of the components within the mixture. Section 4.5.2 reports the 

orientational and structural behavior of the mixture under the flow and the 

temparature effects.  Section 4.5.3 shows the effect of flow and temperature on the 

X-ray intensity of the mixture as the characterization tool to asses its distribution 

function and nematic ordering. Section 4.5.4 discusses the effect of the interaction 

parameter between the components on their molecular ordering.  Section 4.6 

presents the conclusions.  Appendix A describes flow-induced orientation (FIO) 

and flow-induced alignment (FIA) which are the important issues relevant to fiber 

spinning and to this paper. Appendix B reviews the macroscopic nematodynamics 

description of binary mesophases briefly and Appendix C explains how the 

viscoelastic coupling between two components influences their orientation.  

4.3 Maier-Saupe Binary Mixture Model 

The Maier-Saupe model for a single component NLCs
22

 and its extension to model 

the binary mixture of two discotic nematogens has been described in our previous 

study
1, 4

. For a homogeneous binary mixture, the internal energy E mix per molecule, 

due to self (1-1, 2-2) and cross (1-2) species interactions, is given by the sum of 

three contributions:  

( ) 11 1 1 22 2 2 12 1 2

3 3 3
 

4 4 2
mix

E W W W= − − −Q Q : Q Q : Q Q : Q                           (4.8) 

The composition and molecular weight-dependent interaction parameters 

{ }11 22 12, ,W W W are as follows: 

2
12 1 2 12;  ;i=11,22= =ii i iiW m U W m m U                                        (4.9) 

where 
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12 12

1 1 2 2

; =   = i
ii ii

Mw
U U U U

m Mw m Mw+
             (4.10) 

and Mwi denotes the molecular weight of the i
th

 component, mi its mole fraction,  

and { }11 22 12, ,U U U are the bare interaction parameters.  Based on eqn.(4.8)  and the 

MS model, the partial internal molecular potentials ( 1Φ , 2Φ ) acting on each species 

are: 

( )

( )

1 1 1 11 1 12 2 1 1

1

2 2 2 22 2 12 1 2 2

2

3

3 2 3

3

3 2 3

mix

mix

E
W W

E
W W

∂    Φ = − = − + −   ∂    

∂    Φ = − = − + −   ∂    

I I
: u u Q Q : u u

Q

I I
: u u Q Q : u u

Q

           (4.11) 

where u1 and u2 are the molecular unit normal vectors of the two disc-like 

components as shown in Figure 4-1.  

 

Figure 4- 1.  Schematic of the molecular orientation u and the directors (n, m and l) for 

discotic nematogens.    The extension direction is always along the l eigenvector of Q (see 

eqn.(4.8)).  In general, imposition of extensional flow tends to increase φ and orient the 

molecules in the compression n-m plane. 

 

The Helmholtz free energy per unit mole of the homogeneous mixture is: 

( ) ( )1 2, ln  A mix BA N E k T Z= − +Q Q                (4.12) 

where NA is the Avogadros number and the mixture partition function Z is 

factorized as: 

( ) ( )1 2
1 2 1 2/ /

1 2 1 2
B B

m m
m m J k T J k T

Z Z Z e d e d
− −= = ∫ ∫u u                                                (4.13) 

n 

u 

Θ 

m φ 

-l: extension 

    direction 
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where Zi is the partition function of the i
th

 species. In the absence of any external 

potential, such as flow, the total potential J contains only the internal potential Φ 

accounting for the molecular interactions. In the presence of any external field like 

electric field or magnetic field or a potential flow (such as a steady uniaxial 

extensional flow) the field or the flow potential also contributes to the total 

potential. As a result, the partition function (eqn. (4.13)) is expressed as: 

( ) ( )1 2
1 2 1 1 1 2 2 2/ / / /

1 2 1 2
B B B B

m m
m m m k T H k T m k T H k T

Z Z Z e d e d
−Φ − −Φ −= = ∫ ∫u u              (4.14) 

where the dimensionless flow potential /i BH k T is given by 
24

: 

( )23i

B ri

H
R

k T 4D

ε
= − zu.e

�
                                                   (4.15) 

where ε�  is the steady rate of uniaxial extension, 
ri

D  is the rotational diffusivity of 

the i
th

 component, u is the molecular unit normal, ez the flow (extension) direction, 

and R is the rheological effective shape factor which is negative for disk-like 

molecules
10

. From eqn.(4.15) it is seen that the flow potential is proportional to R , 

but in contrast to shear  flow , there are no stability issues if R 1<  since 

extensional flow is irrotational
10

. The relationship between the rotational diffusivity 

and the Mw of a system containing a single species of rod like molecules is known 

to be
28

: 

∼ a

r
D Mw                        (4.16) 

0 a < and depends on the concentration regime ( -9a � for the concentrated 

solutions where liquid crystals can exist).  However, such a relationship for 

mixtures of discotic molecules needs to be derived. Using the generalized 

expression for the rotational diffusivity
25

  we find: 

2

0

1
r r

exc

D D
Vν

 
 
 

∼                                                              (4.17) 

where Dr0 is the rotational diffusivity in the dilute media,  ν is the number density 

and Vexc is the excluded volume. For a single discotic species of molecular diameter 

D,  it is known
29, 30

.that  3

exc
V D∼ and  3

0r
D D

−∼ 29, 30
. Using these results we 

expect that the expression of Dr for a single species is: 
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2 9

1
∼

r
D

Dν
                                 (4.18) 

Next we extend the diffusivity expression (18) to binary mixtures in terms of 

concentration and molecular weights.  To find the relationship between the Mw and 

its diameter D we have used a model discotic molecule of the chemical compound 

circumcircumcoronene
31

, shown in figure 4-2.    

2D

1D

2D

 

Figure 4- 2. The aromatic molecule, circumcircumcoronene, used to derive (eqn.(4.24)) the 

relationship between the rotational diffusivity Dr of  each species  and its corresponding Mw.  

As in rod-like nematics Dr is a strong function of Mw.   A topological calculation gives a power 

law expression (eqn.(4.24)) in agreement with experiments29. 

 

By using this representative molecular structure we obtain the following power law 

between molecular weight and diameter: 

1

1.65

1wM D∼  ,     

1.65

1 1

2 2

w

w

M D

M D

 
=  
 

                                      (4.19) 

To obtain the relationship between the molecular weight Mw and the diameter D 

the layers are added to the core molecule and the Mw of the carbon atoms of the 

overall structure is calculated (the Mw of the hydrogen atoms are insignificant). In 

other words, the core molecule (benzene molecule) has the diameter 1D with six 

carbon atoms. When the first layer is added up to the core a molecule with 3D in 

diameter and 24 carbon atoms forms. Addition of the second layer to the core forms 
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a molecule with a diameter 5D and 54 carbon atoms, and so on. We then plotted the 

molecular weight Mw as a function of the diameter D in the logarithmic scale and 

measure the slope. This power law relationship between molecular weight and 

diameter agrees very well with the data available for the circumcoronene and 

circumcircumcoronene molecules
29

.  As the starting point of the derivation of the 

rotational diffusivity of the discotic mixtures we assume that it follows a similar 

relationship as equation (4.17). The excluded volume of the i
th

 component with 

diameter Di in a binary mixture of discotic nematogens is given as follows
32

:  

( )
3

2
exc i i i j

i j

i j
V m D D

D D
D m

+
+∼                (4.20) 

Using eqns.(4.18 to 4.20), the rotational diffusivity of  the i
th

 component in the 

binary mixture is found to be:  

1 2

2
1 1

3 1 12 3

1 1 2 2 2
; 1.65

−

−
−

+

+

  
       = =   +   
 
 

w w

wi wi wjwi

p p

p p p

r i i j

pi

M M

D m M m M M
m

C M p
m Mw m Mw

 

                       (4.21) 

where ( )
9

2 1 1 is the correlation coefficient with  units of / PC Kgmole Kg S K
− − − .  

Figure 4-3 shows the effect of m1 on Dr1/C. As component “1” has a higher 

molecular weight than “2”, increasing its concentration decreases the ability of the 

molecules to rotationally diffusivity within the mixture.  The function is well fitted 

in the double logarithmic scales with a line of slope m= -1.94.   Eqn. (4.21) defines 

Dr as a function of the Mw and concentration in isotropic media. To include the 

effect of anisotropic media we use the correction factor
33

:  

2
3

1
2

−
 − 
 

mix mixQ : Q                                                            (4.22) 

The complete rotational diffusivity of each component in the anisotropic media 

now reads: 
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Figure 4- 3. Effect of concentation on the normalized rotational diffusivity of the high 

molecular weight species. The diffussivity is well fitted with ( ) 1log / -1.94logDr C m= . See 

eqn.(4.26).   

 

 

1 2

2
1 1

3 1 12 3 2

1 1 2 2
2

3
1

2

w w

i wi wi wj

p p

p p p

r i i j

pi

M M

D m M m M M
m

C Mw
m Mw m Mw

−

− −
−

+

+= −
+

   
   

     
          

 

mix mix
Q : Q

                   (4.23) 

By replacing Dr in eqn. (4.23) by its expression in eqn. (4.15) we obtain the flow 

potential (of the first component) as  
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( ) ( )

( )

( )

1

1

1 2

1 1 2

1 2

1 1 2

2

2

31

2 1 1 2 21

2 3

1

1 1 2 2

2
1 1

3 1 1

1 1

1 1

3 1 1

1 1

3
1 :

2

m m3

4

m m

1
2

1

mix mix

B

w

w

w w

w w w

w w

w w w

p

p

refref

p p

p p p

p p

p p p

m

MMw MwH
RDe

k T
m M

Mw Mw

M M

m M m M M

M M

m M m M M

−

 
 + = −

          +    

  
 +    + − 
 
 
 

 
+ 

 + −

z Q Qu.e

2

2

ref

  
  

  
  
  
     

       (4.24) 

where De is the dimensionless Deborah number given by : 

( )

1

1 2

1 1 2

2
3

1

1 1 2 2

2
1 1

3 1 1

1 1

m m

1
2

w

w w

w w w

p

ref ref ref

p p

p p p

ref

ref

m
De M

CkT Mw Mw

M M

m M m M M

Dr

    ε
 = = ×     +    

   
  +     + −  
  
     

ε ��

           (4.25) 

The expression for 2

B

H

k T
 is found by using the same steps.  Finally replacing 

eqns.(4.24) into eqn.(4.12) we find the extended free energy  for a binary CM 

mixture under steady uniaxial extensional flow in the “z” direction.  The ten steady 

state governing equations for the binary mixture are obtained by minimizing the 

extended free energy A (eqn.(4.12) ) with respect to ( )1 2,Q Q .   According to the 

discussion regarding eqn. (4.3), the binary mixture displays isotropic, uniaxial and 

biaxial nematic states.  Hence we can safely reduce the solution space (from ten 

equations (in terms of tensor order parameters) to four scalar equations) and 

parametric space as follows.  According to the discussion of FIO in the introduction 
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and in appendix A, for steady uniaxial extensional flow along the “z” direction, the 

two director triads are proved to be congruent (see Appendix B),  

n=n1=n2, m=m1 = m2, δδδδz =-l1 = -l2                  (4.26) 

where δδδδz  is the unit vector along “z” (extension axis).  In the computations 

described below we fixed the orientation triad as per eqn. (4.26).  Since the 

compression plane normal to the stretching direction is isotropic the orientation of 

the n-m axes within this plane is irrelevant. Scaling the extended Helmholtz free 

energy A (eqn.(4.12)) with the bare interaction parameter 11U , minimizing the 

resulting dimensionless free energy with respect to Q1, Q2, and double-contracting 

the tensorial equations with nn and mm we find the governing equations for the 

scalar order parameters S1,S2,P1,P2: 

1 1 1 1 1 2 2 1 2

1

2 2 2 2 1 1 2 2 1 1

2

2
1 1 1 1 1 2 2 1

1

1
2 2 2 2 1 1 2 2 1

2

0

0

1
0

3 3

1
0

3 3

∂
ϕ + ϕ ϕ − =

∂

∂
ϕ + ϕ ϕ − =

∂

∂
ϕ + ϕ ϕ − =

∂

∂
ϕ + ϕ ϕ − =

∂

∑

∑

∑

∑

i i
r

i

i i
r

i

i i
r

i

i i
r

i

m Z
m S m m L S T

Z S

m Z
m L S m m L S T

Z S

m ZP
m P m m L T

Z P

m ZP
m L P m m L T

Z P

                     (4.27) 

where the partition functions Zi are given in eqn.(4.13). The asymptotic limits of 

eqns.(4.27)  (m1=0,1) correspond to the pure NLC, and in the absence of flow 

eqns.(4.27) reduce to the equilibrium thermodynamics case
1
.   The thermodynamics 

of the mixture is defined by the dimensionless temperature Tr and two effective 

mole fractions as follows: 

11

;     i iB
r i

i i

m Mwk T
T

U m Mw
= ϕ =

∑
                      (4.28) 

The two material parameters of the model are: 

12 22
1 2

11 11

;
U U

L L
U U

= =                                     (4.29) 

The material parameters ( 1 2,L L ) are functions of the species’ molecular weights.  

To approximate real CMs we fix the Mw of the first and the second species as 1400 
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and 600, respectively
34

. The concentration m1 and m2 are also fixed as 0.5. By 

using the molecular weight dependency of the transition temperatures and the 

material parameter L2 
1, 4

, we obtain TN1, TN2 and L2 as 900 K, 300 K and 0.3333. 

Since the molecular weight dependency of 1L  is not suggested by actual data
1
, we 

use: 

1 2L L= β                                         (4.30) 

where β is the interaction coefficient and is positive for  mixtures of  similar 

molecules (disk/disk). In this study we fix β as 0.5. 

The present model is given by the four nonlinear integral equations (eqns.(4.27)); 

the solution vector consists of four scalar order parameters (S1,S2, P1,P2);  The flow 

effect is obtained by changing the De number and the phase ordering effect  by 

sweeping over  temperature Tr . The equations are solved using Newton-Raphson 

method, with an eight order Simpson integration method. Stability, accuracy, and 

convergence were ensured using standard methods.  Issues of multistability and 

bifurcations are not considered in this paper. Numerical accuracy was established 

using the known pure component limits. 

We use the results given by eqns. (4.27) to construct an atlas of orientation states in 

the scalar order parameter P-S triangle, similar to the one reported by
35

. The atlas, 

given in figure 4-4, is used to describe the orientational behavior of each 

component in the mixture.  It defines the nomenclature of various steady state 

solutions presented in the next section, and indicates the sign of the corresponding 

eigenvalues
35

.   

To better understand the results in terms of the orientational structures we have also 

illustrated the orientation of the discotic molecules with respect to the major 

director of the system (n) (4-5.a) and the biaxial directors (m and l) for the uniaxial 

(4-5.b) and biaxial (4-5.c) cases in figure 4-5. In figure (4-5.b), the uniaxial case, 

the orientation distribution of the molecules in m-l plane (perpendicular to the 

major director) is isotropic and the projection of the oriented discs on m-l plane is a 

circle with two identical eigenvalues. On the other hand in figure (4-5.c), biaxial 

case, the orientation distribution of the molecules in m-l plane is anisotropic and  
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Figure 4- 4. Atlas of the orientation in terms of the scalar order parameters S and P and their 

corresponding eigenvalues, adapted from35.   The dashed lines denote uniaxial states.  

Changing the temperature and/or extensional flow rate produces a trajectory in the (S, P) 

phase plane, usually across the biaxial regions. In the present model, the low molar mass 
component is always confined to the P=0 (uniaxial line) while the state of high Mw species, 

under continuous increase in temperature, moves from the P=0 line across the upper biaxial 

region to end up in the P=3S uniaxial line. See   Figure 4-7 for exact details.  

 

the projection of the oriented discs on m-l plane is an ellipsoid with two distinct 

eigenvalues.  

4.4 Characterization Method: X-ray Intensity 

The angular dependence of the X-ray intensity 
i

I ( )θ  of a binary nematic mixture 

in the absence of flow has been already derived in previous work
1
. Here we extend 

the calculation to take flow into account and find: 
 

( )( ) /
I ( )

2 ( ) /

i

i i

i

erf J kT
ODF

J kT

−π
α =

−

n

n
                         (4.31) 

where the single species orientation distribution function is: 
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Figure 4- 5. Orientation of the discotic molecules with respect to the major director of the 

system (n) (5.a) and the biaxial directors (m and l) for the uniaxial (5.b) and biaxial (5.c) cases. 

In the uniaxial case, the projection of the orientation distribution of the molecules on m-l plane 

is a circle with two identical eigenvalues. On the other hand in the biaxial case, the projection 

of the orientation distribution of the molecules on m-l plane is an ellipsoid with two distinct 
eigenvalues.  

( )

/

( , ) exp ( , ) / / , ( , ) ,

i B

i
i i B i i i

i

J k T

i i

ODF J k T Z J H
m

Z e d
−

 Φ
= − = + 

 

= Ω∫

n m n m n m
          (4.32) 

and erf is the error function.  Measuring ,
i

I ( )θ ϕ  is thus a useful way to determine 

the orientation distribution function ,
1

ODF ( )θ ϕ  and the ordering magnitude.  For a 

nematic mixture where the intermolecular angles are zero ( , & =0α β γ ; see figure 

4-6) we can safely assume that equation (4.31) holds.  Using this assumption we 

find the mixture X-ray intensity ( ),mixI θ ϕ : 

-l 

n

m

l 

m 
n 

l 

m 
n 

(b) Uniaxial: 

(c) Biaxial: n m l
> >µ µ µ

n m l
> =µ µ µ

l
µ

mµ

mµ
l

µ

(a) 
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Figure 4- 6. Orientation coordinates of the two (“1” and “2”) components. The angles between the 

two coordinate systems,
, andα β γ

, are assumed to be zero.   

 

( )
( )( )

( )
mix B

mix mix

mix B

erf -J , / k T
I , = ODF

2 -J , / k T

π
θ ϕ

n m

n m
             (4.33) 

where the mixture orientation function 
mix

ODF  and the mixture Maier-Saupe mean 

field potential 
mix

J  are   

( )( )
( ) ( )( )

,

,

mix 1 1 2 2

mix B mix

mix mix 1 1 2 2

ODF = m ODF + m ODF

           = exp -J / k T / Z

-J / kT = ln Z m ODF +m ODF

θ ϕ

θ ϕ

             (4.34) 

Below we use eqn.(4.33) to predict the mixture structure using X-ray 

measurements. 

4.5 Results and Discussion 

4.5.1 Solution Classification 

Table 4-1 presents the six classes of steady state solutions to equations (4.27) using 

the sign and the ordering of the eigenvalues of Q1 and Q2 and the orientation of the 

dominant eigenvector with respect to the extension direction.   Although stability 

was not investigated, the correspondence of these solutions with the well-known 

stable solutions to the single component case provides indirect evidence of their 

stability. 

 

 

 

α

β

γ

n2 

n1 

m1 

l2 

m2 

l1 
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Table 4- 1. Solution Classification 

Solution    Solution      Sign of          Sign of          Sign of          Eigenvalues   Corresponding 

symbol      symmetry  2 / 3
n

Sµ = ( ) / 3
m

P Sµ −=  ( ) / 3
l

P Sµ += −    ordering             structures 

U
N

+
 

Uniaxial 

Nematic 
+ - - n l m

µ µ µ> =
 

 

U
N

−
 

Uniaxial 

Nematic 
- + + n l m

µ µ µ< =
 

 

B
N

+
 

Biaxial 

Nematic 
+ - - n m l

µ µ µ〉 〉  

 

U
PN

+
 

Uniaxial 

Paranematic 
+ - - n l m

µ µ µ> =
 

 

U
PN

−
 

Uniaxial 

Paranematic 
+ - + l n m

µ µ µ< =
 

 

B
PN

−
 

Biaxial 

Paranematic 
+ - or + - l m n

µ µ µ< <
 

 

 

The first two columns give  the symbols and names of the solution, the 3
th

-5
th

 

column give  the sign of the three eignevalues, the 6
th

 the ordering, and the 7
th

 the 

visualization of the tensor ellipsoid using the usual Q+I/3 unit trace quadrupolar 

tensor, i.e. each axis of the ellipsoid corresponds to one eigenvalue of the tensor 

Q+I/3 (see figure 4-5); the symbols ,⊥ �  denote perpendicular or parallel alignment 

of the unique axis of the tensor order parameter ellipsoid or the axis which 

Oblate ⊥   

 Oblate �  

Prolate ⊥  

Prolate ⊥  

Scalene ⊥   

Scalene �   
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corresponds to the eigenvalue with the largest absolute value with respect to the 

extension axis, which is always along the l eigenvector.   These six solutions are 

:  Uniaxial Nematic with            

:  Uniaxial Nematic with           

:  Biaxial Nematic with                 

:  Uniaxial Paranematic with  

:  Uniaxial Par

+

−

+

+

−

> =

< =

〉 〉

> =

U n l m

U n l m

B n m l

U n l m

U

N

N

N

PN

PN

µ µ µ

µ µ µ

µ µ µ

µ µ µ

anematic with   

:  Biaxial Paranematic with    −

< =

〉 〉

l n m

B n m l
PN

µ µ µ

µ µ µ

 

where the superscripts refer to the sign of the largest absolute eigenvalue  and the 

subscript refers to the state (U: uniaxial, B: biaxial) . If there are two identical 

eigenvalues the state is uniaxial, otherwise it is biaxial. The corresponding 

ellipsoidal structures are prolate, oblate and scalene. Each radii of the ellipsoid 

refers to one eigenvalue. We use standard nomenclature: prolate is a rugby ball 

shaped ellipsoid with two identical eigenvalues; oblate is a disk-shaped ellipsoid 

with two identical eigenvalues and a scalene ellipsoid represents a structure with 

three different eigenvalues.   

4.5.2  Orientational and Structural Behavior  

Figure 4-7 shows the phase diagram of the binary system obtained as the solutions 

to equations (4.27). The lower Mw component (“2”) is always uniaxial while the 

high Mw component “1” may be uniaxial or biaxial; below when referring to 

biaxial state it is understood to refer to the higher Mw component “1”. The phase 

diagram contains four regions separated by four distinct transition lines. Each  
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Figure 4- 7. Thermo-rheological phase diagram of the binary mixture in terms of 

dimensionless temperature Tr and Deborah (De) number.  The phase diagram is vided into 
four regions and the state of each species is defined by the Q+I/3 tensor ellipsoid. The 

corresponding orientational/order parameter structures: region A with 1 2and 
U U

N N
+ +

, region 

B with 1B
N

+
 and 2U

N
−

, region C with 1B
PN

−
 and 2U

PN
+

 and region D with 1U
PN

−
 and 2U

PN
+

, 

where the symbols are defined in  Table (4-1).  The temperatures in the y-axis are used in 

Fig.4-13 to 4-15.    The De number in the x-axis are used in Figs.(4-8, 4-9). 

 

region is characterized by a phase and a structural state of the two components. In 

each region, the structure on the left corresponds to the first component and the one 

on the right corresponds to the second component.  The regions are:  

 

 

 

 

where the subscript i=1, 2 refers to the component number.  The low temperature 

nematic region A contains two prolate ⊥  states; in both components the director n 

1 2

1 2

1 2

1 2

Region : /  /  

Region : /   /  

Region : /  /  

Region : /  /  

+ +

+ −

− +

− +

⇒ ⊥ ⊥

⇒ ⊥ ⊥

⇒ ⊥

⇒ ⊥

�

�

U U

B U

B U

U U

A N N prolate prolate

B N N scalene oblate

C PN PN scalene prolate

D PN PN oblate prolate

extension 

direction 
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is normal to the extension direction.   The high temperature paranematic region D 

contains the oblate � and prolate ⊥  states.  Transitional regions B and C contain 

mixed states in terms ordering: scalene /oblate ⊥  and scalene/prolate ⊥ , 

respectively. The four transition lines that define the four regions are:  

,(1) :  Nematic Uniaxial-Biaxial and Prolate-Oblate transition line which separates 

                   region  from region  (horizintal dashed line)

(2) : Discontinous Nematic Paranemtaic tran

UB PO
N

A B

DNPN − sition line which separates regions 

                    and  from regions  and  (dotted  and full line with superposed dotts)

(3) :  Nematic Paranemtaic transition line which separates region  f

A B C D

NPN B− rom region 

                  (full line)

(4) :   Paranematic Biaxial-Uniaxial transition line which separates region  from

                   region (dashed line)

BU

C

PN C

D

The DNPN line that describes the discontinuous transition between nematic and 

paranematic states is itself divided into two segments:  

(i) 0 0.3−< < =
c

De De  : here the discontinuous transition is between uniaxial 

nematic/ uniaxial nematic (A) and uniaxial paranematic/uniaxial paranematic (D) or 

biaxial paranematic/uniaxial paranematic (C). 

(ii) 0.3 1.3− += < < =
c c

De De De  : here the discontinuous transition is between 

biaxial  nematic (B) and biaxial paranematic/uniaxial paranematic  (C). 

For 1.3+> =
c

De De  the nematic/paranematic transition (full line) is always 

continuous. 

Next we discuss the phase and structural behavior of the component within the 

mixture by imposing the extensional flow on the homogeneous mixture and by 

increasing the dimensionless temperature Tr at three different constant De numbers 

as follows (see labels on y and x axes of Fig.4-7): 

1

2

3

0.1 0.3

0.3 1 1.3

1.3

−

− +

+

= < =

= < = <

>

�

�

c

c c

c

De De

De De De

De De

 

and then (Figs.4-13 to 4-15) we discuss the X-ray intensity profile of the mixture at 

different De numbers at three temperatures Tr1, Tr2 and Tr3. 
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Figure 4- 8 shows the components and mixture scalar order parameters 

1 2 mix, 1 2 mix(S ,S ,S P ,P ,P )  and the corresponding components’ eigenvalues n m l( , , )µ µ µ as 

a function of dimensionless temperature, for 1 0.1
c

De De −= < , corresponding to the  

discontinuous nematic/paranematic transition.   

Figure 4- 8.  Scalar order parameters (S and P) (a,b) and the eigenvalues ( , &
n m l

µ µ µ ) (c,d) 

of the components as a function of dimensionless temperature for De=De1=0.1. As temperature 

increases at this De, regions A and D of the phase diagram (Fig.4-7) are traversed.  

 

By increasing the dimensionless temperature two regions A and then D emerge. In 

region A, the stable phases are uniaxial nematic,
U

N
+ , for both components, the 

scalar order parameters are positive and the biaxial order parameters are negligible. 

For each component, there are two identical eigenvalues,
n l m

µ µ µ> = , and the 

unique value,
n

µ , is positive. Hence, the corresponding structures are both 
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prolate ⊥ .  By increasing temperature at this De a discontinuous transition from 

nematic to paranematic phase takes place and region D is reached.  This region is 

paranematic which is obtained by subjecting the isotropic phase to a uniaxial 

extension. In region D the stable phases are both uniaxial paranematic with positive 

scalar order parameters and negligible biaxiality. The stable phase is 1U
PN

−  for the 

first component with two identical eigenvalues, 1 1 1l n m
µ µ µ< = , composing a 

parallel oblate. For the second component however, the stable phase is 2U
PN

+  again 

with two identical egienvalues, but this time 2 2 2n l m
µ µ µ> = , composing a 

perpendicular prolate.  At sufficiently low De, then the main effect of temperature 

is to transform prolate/prolate nematic state into an oblate/prolate paranematic state. 

Figure 4-9 shows the scalar order parameters 1 2 mix, 1 2 mix(S ,S ,S P ,P ,P )  and the 

corresponding components’ eigenvalues n m l( , , )µ µ µ  

for 20.3 1 1.3
c c

De De De− += < = < � , corresponding to discontinuous transition 

between nematic and paranematic states. By increasing the dimensionless 

temperature from zero four regions A, B, C and D appear. In region A, (like in the 

pervious case, Fig.4-8) the stable phases are both uniaxial nematic,
U

N
+ , and the 

corresponding structures are both prolate ⊥ .  By increasing temperature at this De, 

a transition within the nematic phase takes place and region B is reached. In region 

B the stable phase for the first component is biaxial nemtaic, 1B
N

+ , its scalar order 

parameter is positive and its biaxiality is significant. There are three distinct 

eigenvalues, 1 1 1n m l
µ µ µ〉 〉  with 1n

µ  being positive and the largest value; the 

corresponding structure is scalene ⊥ . For the second component, however, the 

stable phase is uniaxial nemtic, 2U
N

− , with negative scalar order parameter and two 

identical eigenvalues, 2 2 2n l m
µ µ µ< = , which denote a perpendicular oblate state. 

By further increasing the temperature, a nematic to paranematic discontinuous  
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Figure 4- 9. S calar order parameters (S and P) (a,b) and the eigenvalues ( , &
n m l

µ µ µ ) (c,d) 

of the components  as a function of dimensionless temperature for De=De2=1. As temperature 

increases at this De, regions A, B, C and D of the phase diagram are traversed. 

 

transition takes place and region C emerges. In region C the stable phase for the 

first component is uniaxial paranematic, 1U
PN

− , its scalar order parameter is positive 

and its biaxiality is significant. There are three distinct eigenvalues, 1 1 1n m l
µ µ µ> >  

with 1lµ  being negative and of largest value, and the corresponding structure is the 

parallel scalene. For the second component, however, the phase is uniaxial 

paranematic, 2U
PN

+ , with two identical eigenvalues, 2 2 2n l m
µ µ µ> = , denoting a 

prolate ⊥ . By increasing temperature in the paranematic phase at this De a 

continuous transition within the paranematic phase takes place and region D is 

reached. In region D the stable phases are uniaxial paranematic, 1U
PN

− , for the first 

component and uniaxial paranematic, 2U
PN

+ , for the second component. The 
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corresponding structures are a oblate // and prolate ⊥ , respectively.  For 

3 1.3
c

De De +> �  the phase and structural transitions of the component are identical 

to the second case, 0.3 1 1.3
c c

De De De− += < = < � , the only difference is the 

continuous nematic to paranematic transition which takes place at De3. In the other 

words the DeC+ is the last point of the DNPN transition line in the phase diagram 

(figure 4-7).   

To better understand the phase and structural behavior of our discotic mixture we 

have also reproduced orientational behavior
36

 and the phase diagram of the pure 

system (figure 4-10). The phase diagram has three regions: (i)   unxial nematic 

( UN
+ ), (ii) biaixial nematic ( BN

+ ) and (iii) uniaxial paranematic ( )U
PN − .  There are 

three transition lines: NUB, DNPN and NPN. The transition lines emerge 

at 0.22
r

T � , De=0. (i) continuous uniaxial nematic(
U

N
+ )/biaxial nematic(

B
N

+ )  

(NUB: dashed line) , (ii) nematic biaxial(
B

N
+ ) /uniaxial paranematic (

U
PN

+ ); for 

0 0.55
c

De De< < �  the transition is discontinuous (DNPN : dotted line) and when 

0.55
c

De De> =  the transition is continuous. 

At low temperatures (region UN+ ) there is thermodynamic and flow cooperation. 

Thermodynamics favors the uniaxial orientation UN+  while extensional flow also 

favors orientation along n with n along the compression plane and hence there is no 

competing effect.  At higher temperatures and higher De, the thermodynamic 

uniaxial alignment along n now competes with the biaxial flow alignment   

producing the biaxial nematic state (region
B

N
+ ) with n along the compression 

plane. Further temperature increase eventually leads to the biaxial nematic/ uniaxial 

paranematic transition. In the paranematic state (region
B

PN
− ) the oblate state has 

the unique axis (l vector) along the extension direction; here the competition of 

thermodynamics that prefers an isotropic state and the flow effect that seeks 

molecular alignment along the compression plane results in the oblate state. A 

simple first order estimate that captures the competition is  
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Figure 4- 10. Thermo-rheological phase diagram of a single discotic nematogen with its 

corresponding orientational/order parameter structures:
U

N
+

 at low temperatures, 
B

N
+

 at 

medium temperatures and De numbers and 
B

PN
−

 at high temperatures.  Comparing Figs. 4-7 

and 4-10 we see that the high Mw species follows essentially the pure species response but that 
low molar mass component exhibits new behavior. 

 

1

/ 2 0 0

0 / 2 0

0 0

−ε 
 = α −ε 
 ε 

Q

�

�

�

                (4.35) 

where 1α  is a ratio of viscosity to thermodynamic coefficients or relaxation time. 

The resulting eigenvalues of Q 

1 1
1; ;

2 2
n m l

α ε α ε
µ = µ = µ = −α ε

� �
�                                       (4.36) 

capture the oblate BPN−  state (see Fig.4-10).  

According to Figures (4-7 to 4-9) the dominant component (“1”) in the mixture 

essentially follows the standard behavior of the pure mesophase (Fig.4-10) with a 

small perturbation which is the formation of the biaxial paranematic ( 1B
PN

− , region 

extension 

direction 
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C).  The second low molar mass component, however, behaves differently. 

Although at low temperatures it shows the standard phase state which is uniaxial 

nematic 2U
N

+ , at medium and high temperatures and also at high De numbers (B, C 

and D regions) it adopts different orientational and structural states. Extension 

affects the molecules of the second low molar mass component differently. For 

instance, in region D, flow tends to align the molecules of species “1” in the 

compression (n-m) plane to form a parallel oblate but it aligns the molecules of the 

second component in a prolate ⊥  structure. This phenomenon is due to the coupled 

viscoelastic forces generated within the mixture, as illustrated in Fig.4-11 and 

discussed in the introduction.  

 Figure 4-11 shows an input (temperature (T), Deborah number (De))-output (tensor 

order parameters Q1, Q2, Qmix) model of the mixture’s nemato-rheology.  The 

viscoelastic coupling VE indicates how the nematodynamics of the high Mw (“1”) 

and low Mw (“2”) components are mutually affected by viscoelastic (VE) effects. 

In what follows we concentrate on elastic (E) effects since they explain the 

observed results (Figs. 4-7 to 4-9)). 

 

Figure 4- 11.  Block diagram of coupled nematodynamics.  The thermo-rheological input (T, 
De) results in a tensor order parameter output (Q1, Q2, Qmix) under action of the 

nematodynamics and viescoleastic (VE) coupling effects (see eqns.(4.35) ).  The model is used 

to explain the deviations of the low Mw species from the standard behaviour (Fig.4-10); see 

upper and lower right schematics.  In region D, the high Mw species adopts the usual oblate �  

state (upper schematic) under the balance between viscous (V1) and thermodynamic (E1) and 

weak coupling (E21) effects. The low molar mass species meanwhile adopts a prolate ⊥  state 

under viscous (V2), thermodynamic (E2) and strong coupling (E12).   See text for details. 
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To explain the complex structures found in Region D (oblate parallel for “1” and 

prolate perpendicular for “2”) we need to consider two factors: (i) the molecular 

weight asymmetry leads to asymmetric coupling effect, such that the influence of 

“1” on “2” is significant but the influence of “2” on “1” is insignificant; (ii) 

coupling effects from “1” on “2” change the usual structures of pure mesogens 

shown in Fig.(4-10).  The terminology of the schematics on the right Fig.4-11 is: 

(A) Vi: viscous effect, Ei: elastic effect, Eij: elastic coupling effect of “i” on “j”, 

(B) up-ward arrow ( )↑ indicates that the effect tends to align the unit normals along 

the extension axis, down-ward arrow ( )↓ indicates that the effect tends to align the 

unit normals along the compression plan; at steady state all the effects must 

balance. First we note  (downward arrow in upper right Fig.4-11) that the 

extensional force within nematodynamics “1”, V1, aligns the molecules of 

component 1 preferentially in the compression (n-m) plane, reduces 1lµ  and forms 

the parallel oblate, as predicted in eqn.(4.36) . At steady state this force is balanced 

with an elastic force, E1, which tends to align the molecular unit normals back to 

the extension direction (upward arrow in upper right Fig. 4-11). The viscoelastic 

coupling effect of the low Mw component “2” on “1”, denoted E21, sensed by the 

high molecular weight component, #1, is not significant due to the molecular weigh 

asymmetry. However, the low molar mass component #2 is significantly affected 

by “1”. The viscoelastic force generated by “2”, V2, (downward arrow in lower 

right Fig. 4-11) tends to align its director to the compression plane and to 

reduce 2l
µ    like the standard (pure or component 1) case. However, the coupling 

effect which tends to align the director to the extension direction, E21 (upward 

arrow in upper right Fig.4-11) is large enough to orient the molecules of “2” back 

to the extension direction and to increase 2l
µ .  As the relationship 

2 2 2 0
n m l

µ µ µ+ + =  has to be satisfied,  2 2n m
µ µ+  has to decrease to compensate for 

the increase of 2l
µ .  The decrease in 2 2n m

µ µ+  can be achieved in several ways (i.e 

both decrease, one increases and the other decreases, and so on).  The self-selected 

approach observed in Fig.4-7 is to pick the solution with the minimum number of 
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eigenvalues exchanges such that 2n
µ  remains almost constant and 2m

µ  decreases to 

compensate for the 2l
µ  increment.  The net result is that 2 2 20, 0= < >

l m n
µ µ µ  

and a prolate ⊥  forms.  The formation of different structures in regions B and C 

follows the same physics.  

4.5.3  Effect of Flow (De) on the ODF and X-ray Intensity 

In this section we present the simultaneous effect of thermodynamic, temperature, 

and   De number, on the molecular alignment of our mixture in terms of   X-ray 

intensity, Imix, computed using eqn.(4.33). As the second term in eqn. (4.33) is a 

weak function of the polar angle θ and of the azimutual angle φ, the shape of X-ray 

intensity and ODF are essentially the same.  Hence, for brevity, we only report the 

X-ray intensity plot and not the ODF. As the ODF is a representative of the 

uniaxial and biaxial ordering within the system, to better understand what X-ray 

intensity characterizes we first present the effect of De number on the ordering of 

the system as temperature increases. Figure 4-12 shows the effect of De on the 

scalar order parameters of the first component, S1 and P1 as the representative of the 

system. The parabola formed in figure (4-12.a) is similar to the one exhibited by 

single component mesogens subjected to a magnetic field
37

 or an external stress
38

 

which have the similar effect as that of the uniaxial extensional flow. This result is 

also a validation for our computations. Likewise in Fig.4-12b a tilted parabola is 

well fitted to the P1 values, a result that appears to be observed for the first time. 

The vertexes of both parabolas denote the critical point at which discontinuous and 

continuous transitions meet. Increasing De at a constant temperature, enhances the 

uniaxial ordering S   which is due to their orientation along n (polar angle θ 

=90; 0 180θ≤ ≤ ) and also the asymmetry of their orientation in the m-l plane 

(along azimuthal angle φ; 0 360ϕ≤ ≤ ) so that greater P ( )3 / 2 m lµ µ= −  values are 

obtained. ODF and X-ray characterize these orderings, they characterize 

distribution of the molecular (unit normals) orientation with respect to the major 

director n through the polar angle θ and the asymmetry of their orientation in the 

m-l plane through the azimuthal angle φ. Figure 4-13 shows the X-ray intensity 

versus θ and φ for low temperature T1=200K (Tr1=0.0489 see figure 4-7),   
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Figure 4- 12. Uniaxial and biaxial order parameters of the first component (S1, P1) as a 

function of the reduced temperature in a narrower range of De numbers (from 0.1 to 1).  Fig. 

4-12a shows that the nematic/paranematic transition is discontinuous for low De but becomes 
continuous at Dec+=1.3.  The transition coordinates describe a parabola whose vertex denote 

the critical point at which discontinuous and continuous transitions meet.  Likewise Fig.4-12b 

shows that the transition coordinates forming a   tilted parabola whose vertex again denote the 

critical point at which discontinuous and continuous transitions meet.; the tilted P-parabola is 

an additional way to characterize the change  between continuous and discontinuous 

nematic/paranematic transitions. 
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corresponding to region A of Fig.4-7.   Regardless of the De number, the X-ray 

intensity values are identical. They show a bell shape distribution along the polar 

angle θ and a constant value along the azimuthal angle φ. In the other words, at low 

enough temperatures thermodynamic effects always dictates the orientation and 

yields 
U

N
+  with the standard bell shape X-ray intensity (along θ) and no asymmetry 

(no variation along φ)in the m-l plane.  

 

Figure 4- 13. The effect of De number on the X-ray intensity of the mixture, Imix, at low 

temperatures, T=T1=200K (Tr1=0.0489) corresponding to Region A in Fig.4-7.    Regardless of 

the De number the X-ray intensity follows the same forms of the standard pure
U

N
+

. 

 

Figure 4-14 shows the X-ray intensity   at intermediate temperature T2=600K 

(Tr2=0.1467 see figure 4-7) for different De numbers, corresponding to a trajectory 

across regions A and B of Fig.4-7.  The intensity surfaces start to peel off; there is 

still no significant asymmetry in the m-l plane (no significant change along the 

azimuthal angle φ) but De changes the intensity along the polar angle θ. At this 

temperature, low De numbers generate a broad bell shape distribution (standard 

shape). But as De increases the uniaxial ordering increases and ODF and X-ray 
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intensity profiles become narrower. It is noted that at this T, the transition between 

regions A and B at 0.6De �  is detected by the X-ray signal since the surface shows 

distinct separation sensitivity for 0.6De > .   

 

Figure 4- 14. The effect of De number on the X-ray intensity of the mixture, Imix, at medium 

temperature, T= T2=600K (Tr2=0.1467); as De increase regions A and B are traversed in Fig.4-
7.  The intensity surfaces start to peel off; there is still no significant asymmetry in the m-l 

plane (along φ direction) but as De increases the intensity along the polar angle θ becomes 

narrower.  

At high temperatures (T3=1000K, Tr3=0.2445 see figure 4-7)  , corresponding to a 

trajectory across regions D and C of Fig.4-7,  there is a significant change along 

both axes; the surfaces separate and oscillate and the X-ray intensity profile 

becomes narrower along θ as De increases (figure 4-15). A significant asymmetry 

in the m-l plane is also formed in the system; this can be observed through the non-

constant values of the intensity along the azimuthal angle φ. It is noted that at this 

T, the transition between regions D and C occurs at 5.3De � and that the shape of 

the X-ray surface clearly detects this transition. 
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Figure 4- 15. The effect of De number on the X-ray intensity of the mixture, Imix, at high 

temperature, T= T3=1000K (Tr3=0.2445); as De increases regions D and C are traversed in 

Fig.4-7.   There is a significant change along both axes for this case; the surfaces separate and 
oscillate and the X-ray intensity profile becomes narrower along θ as De increases. A 

significant asymmetry in the m-l plane (along φ direction) is also observed.  

 

4.5.4 Effect of Interaction Parameter on Molecular Ordering 

In this work we study a representative non-ideal mixture. For the specific molecular 

weight asymmetry (∆Mw=800) and the concentration m1=0.5 of the mixture β  has 

to be in the range of (0, 0.65) to keep the non-ideality (see figure 4-16). We 

characterize the effect of β in this range on the species’ order parameters (see the 

following figure) for De=1. The results of the simulations shown in Fig. 4-16   

indicate:  

1. increasing β closes the order parameter gap (i.e difference between the order 

parameters of the two components ) in the nematic phase;  

2. increasing β opens the order parameter gap in the paranematic phase; 

3. increasing β increases the Nematic to Isotropic transition temperature, TNI. 
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Our coupled nematodynamic model explains these features. In the nematic phase, 

with thermodynamic/flow cooperation, increasing β closes the order parameter gap. 

In the paranematic phase, with thermodynamic/flow competition, Q1 exerts a 

substantial thermodynamic force on Q2 opening the order parameter gap. 

 

 

 
 

  

Figure 4- 16. Efffect of interaction parameter, β, on the uniaxial order parameter of the two 

components (S1, S2) as a function of the reduced temperature. The mixtures with the selected 

βs (0.3, 0.5 and 0.65) all behave non-ideally [1].  The insert in this figure shows 1 2S S−−−−  as a 

function of the reduced temperature for the same β values. In the nematic phase increasing β, 
narrows the difference between the two order parameters. However, in the paranematic 

phase, increasing β increases difference between the two order parameters.   At low 

temperatures, thermodynamic and flow cooperate and increasing interactions leads to the 

closer values of the order parameters.  At high temperatures in the isotropic state, imposed 

flow creates flow-induced birefringence that competes with the thermodynamically preferred 

random order; hence increasing interaction leads to a strong thermodynamic effect that 
increases the difference between order parameters of the two species.    

 

At low β the order parameter gap is in the nematic phase but there is no gap in the 

paranematic phase. At high β there is no gap in nematic phase, but a large order 
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parameter gap in the paranematic phase. In partial summary, under 

thermodynamic/flow cooperation (nematic phase) increasing β closes order 

parameter gap, under thermodynamic/flow competition (paranematic phase) 

increasing β opens the order parameter gap. The intermediate NI transition region 

interpolates between these two effects. 

4.6 Conclusions  

This paper uses the extended Maier-Saupe model for binary mixtures of discotic 

nematogenes to investigate the effect of steady uniaxial extensional flow on the 

orientational structure and molecular order of carbonaceous mesophase mixtures. 

The flow contribution is incorporated through a flow potential term. The 

concentration and molecular weight dependence of the rotational diffusivity of each 

component in a mixture is formulated using the excluded volume of discotics in a 

binary mixture (eqns.(4.17, 4.20)) and a novel power law scaling relation between 

molecular size and molecular weight (eqn.(4.19)).   This work shows that mixing 

high and lower molecular weight nematogenic species introduces asymmetric 

coupling effects, such that the higher molecular weight component changes the 

flow-induced structures of the lower molecular weight component, but that the 

converse is not true. Comparing the thermo-rheological phase diagram of single 

component (Fig.4-10) with the binary one (Fig.4-7) results in the following 

observations: 

1. Increasing the temperature in the high molecular weight species results in the 

following structure/orientation sequences (Fig.4-7): 

discont0 De 0.3 : N prolate PN oblate< < ⊥ → �  

cont discont cont0.1 De 1.3 : N prolate N scalene PN scalene

PN oblate

< < ⊥ → ⊥ → →�

�
 

cont cont contDe 1.3 : N prolate N scalene PN scalene

PN oblate

> ⊥ → ⊥ → →�

�
 

where the text over the arrows refer to the continuous or discontinuous nature of the 

transition, and�  ( )⊥ denotes parallel to the extension axis.  The main difference 

with the flow-response of the pure system is the presence of a direct uniaxial 
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nematic/paranematic transition for 0<De<0.3 and the presence of temperature/De 

region with a biaxial paranematic state (Region C in Fig.4-7).   The 

thermorheological behaviour of the low molecular weight component in a binary 

mixture is starkly different than for the pure system. Increasing the temperature in 

the low molecular weight species results in the following structure/orientation 

sequences (Fig.4-7): 

discont0 De 0.3 : N prolate PN prolate< < ⊥ → ⊥  

cont discont cont0.1 De 1.3 : N prolate N oblate PN prolate

PN prolate

< < ⊥ → ⊥ → ⊥ →

⊥
cont cont contDe 1.3 : N prolate N oblate PN prolate PN prolate> ⊥ → ⊥ → ⊥ → ⊥  

The deviations from the pure species response to extensional flow are due to 

coupling effects (Fig.4-11).  New expressions for ODF and X-ray intensity in 

binary mesogenic mixtures are derived (eqns.4.32 to 4.34)) and used (Figs.4-13 to 

4-15) to map the different regions of the thermo-rheological phase diagram (Fig.4-

7)).  It is shown (Figs. 4-13 to 4-15) that X-ray intensity clearly detects the different 

paranematic states found at higher temperatures and varying Deborah numbers as 

well as the various oblate and prolate nematic states found at lower temperatures.  

The present work provides a foundation in mixing to manipulate extensional flow-

induced structures in carbon fiber-forming processes. 

4.7 Appendices 

4.7.1 Appendix A  

One of the important issues relevant to fiber spinning and this paper is flow-

induced orientation (FIO) and flow-induced alignment (FIA), which can be gleaned 

by considering the dissipation function D
12, 39

: 

�

[ ]

iscous flow

Elastic term

:v

:

:

s

s

V

E

A
D

ψψψψ
ψψψψ

δδδδ    
= −= −= −= −     δδδδ    

o

T F : Q
Q

	
�
�

    ,    
d

dt
= + ⋅ − ⋅

o Q
Q W Q Q W               (A4.1) 

where sT  is the symmetric extra stress tensor,  F  is the rate of deformation tensor, 

(((( ))))[ ]
/

s
A Qδ δδ δδ δδ δ  is the symmetric traceless variational derivative, A is the Helmholtz 

free energy, 
o

Q  is  Zaremba-Jaumann co-rotational derivative and W is the vorticity 
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tensor. The linear expansion of the fluxes (T
s
,

o

Q ) in terms of forces (F, A− δ δ− δ δ− δ δ− δ δQ ) 

gives  

1 2

3 4
s A

              
     ====          − δ δ− δ δ− δ δ− δ δ                 

o

FQ

QT

� �

� �
                                      (A4.2) 

From eqn. (A4.2) the kinetics of Q is: 

[ ]

1 2: :

s

A    δδδδ    
= −= −= −= −        δδδδ        

o

Q F
Q

� �               (A4.3) 

where [s] denotes symmetric traceless,  (((( ))))1 2,� � are Q and I-dependent fourth 

order tensors, and the first term is the flow-induced orientation; I is the 3x3 unit 

tensor.  From eqns. (A4.1) and (A4.3) we find that the flow-induced orientation 

(FIO) and flow-induced alignment (FIA)
40

: 

� �1 1

viscous torque

: : , :

V V

FIO n mΓ F n n Γ F m m� �

	
�
�
ψ ψψ ψψ ψψ ψ

            
            = ⋅ × = ⋅ ×= ⋅ × = ⋅ ×= ⋅ × = ⋅ ×= ⋅ × = ⋅ ×                        
            

            

(((( )))) (((( )))) (((( ))))1 1: : : ,   : :
s p

V V

FIA � �
	
�
� 	
�
�

F nn F mm - ll

ψ ψψ ψψ ψψ ψ

ℑ = ℑ =ℑ = ℑ =ℑ = ℑ =ℑ = ℑ =            (A4.4) 

where (((( )))),n mΓ Γ are the flow torques acting on n and m,  and (((( ))))s p,ℑ ℑℑ ℑℑ ℑℑ ℑ are the flow 

potentials acting on S and P.  Since the directors are the slow variables and the 

scalar order parameters are the fast ones, increasing flow intensity will first modify 

orientation and then order.  

4.7.2 Appendix B   

The macroscopic nematodynamics of binary mesophases has been studied at the 

director level in the absence of elasticity gradient, and mainly under shear flows
12

.  

Again, the FIO and FIA for the two director (n1, n2) model can be gleaned from the 

dissipation function D:  

1 1 1 1 1 2 2 2

1 2

: ( ) (1 )( )s A A
D m mT F I n n N I n n N

n n

            δ δδ δδ δδ δ
= − − ⋅ ⋅ − − − ⋅ ⋅= − − ⋅ ⋅ − − − ⋅ ⋅= − − ⋅ ⋅ − − − ⋅ ⋅= − − ⋅ ⋅ − − − ⋅ ⋅            δ δδ δδ δδ δ            

               (A4.5)     
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where 1 2,N N are the Zaremba-Jaumann co-rotational derivative vectors for n1 and 

n2
41

.  Again linear expansion of the fluxes (T
s
, 1 2,N N ) in terms of forces 

(F, 1 1 1 2 2 2( ) , ( )A A− − ⋅ δ δ − − ⋅ δ δ− − ⋅ δ δ − − ⋅ δ δ− − ⋅ δ δ − − ⋅ δ δ− − ⋅ δ δ − − ⋅ δ δI n n n I n n n ) gives
11, 12, 39

:   

11 12 13

21 22

1 1 1

131 33
2

2 2

2

0 ( )

0

( )

s

A

A

F
T

N I n n
n

N

I n n
n

� � �

� �

� �

    
    
                          δδδδ         = − − ⋅= − − ⋅= − − ⋅= − − ⋅              δδδδ                                   δδδδ    − − ⋅− − ⋅− − ⋅− − ⋅         δδδδ        

           (A4.6) 

Using eqn. (A4.6)  1 2,N N  are found to be 

(((( )))) (((( ))))21 22

1 1 1 2 2 2

1 2

elasticity gradien elasticity gradien

31 33
  ,

i ijk jk ij jk j k i j k

k k

ijk jk ij jk
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n n

δ δδ δδ δδ δ
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δ δδ δδ δδ δ
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� � � �

	�� 	��

 

                  (A4.7)  

Since the third order tensors 21 31,� � are different, shear flow leads to 

biaxiality 1 2n n≠≠≠≠ 40
.  On the other hand under uniaxial extensional flow 

( 1 2 0= == == == =N N ) both directors n1, n2 align in the compression plane and in the 

absence of gradient elasticity (we are considering the spatially homogenous case; 

for heterogeneity one has to consider gradient elasticity, boundary conditions and 

possible defect formation.
18-20

) they will coincide: n1=n2
12,39

.  Hence under spatially 

homogenous conditions, biaxiality in CM mixtures under uniaxial extensional flow 

arises from FIA generated by the anisotropy in the deformation rate in the plane 

containing the stretching direction (l-m plane); in a cylindrical (((( ))))r, , zϕϕϕϕ  coordinate 

system with stretching along z, the deformation rate anisotropy in the (((( )))), zϕϕϕϕ plane 

produces biaxiality. 

4.7.3 Appendix C  

Another important aspect of flow of mixtures is viscoelastic coupling
39

.  

Considering the tensor order parameter steady state version of the second eqn. 

(A4.6) we write:  
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(((( )))) (((( )))) (((( )))) (((( )))){{{{ }}}}
[ ]

11 2 33 31

1 2 1 2

2

,
, : , :

sA Q Q
Q Q Q Q F

Q
� �

−−−−δδδδ
====

δδδδ
                                       (A4.8) 

where we indicate the tensor (((( ))))1 2,Q Q  dependencies explicitly.  Hence to 

characterize the response of species “2” to flow and temperature changes we have 

to consider the thermodynamic and viscous effects of component “1” on “2” that 

appear in (((( ))))31 33, ,A � � .     For example, whenever extensional flow ( )ε�  changes an 

eigenvalue, such as ( ) ( )l1 l1 0µ ε < µ ε =� � ,  there will be an additional  thermodynamic 

force from species “1” onto species “2” along the l direction that changes the 

balance between flow and thermodynamics effects of a pure “2” species in that 

direction.  In general this coupling effect is asymmetric and significant when 

considering the effect of the higher molecular weight component on the lower 

molecular weight component, since within relevant temperature intervals, 

mesophase ordering increases with increasing molecular weight. 
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5.  Structural Modeling of Carbonaceous Mesophase Amphotropic 

Mixtures under Uniaxial Extensional Flow 

 

5.1 Summary  

The extended Maier-Saupe model for binary mixtures of model carbonaceous 

mesophases (uniaxial discotic nematogens) under externally imposed flow, 

formulated in previous studies
1, 2

, is used to characterize the effect of uniaxial 

extensional flow and concentration on phase behavior and structure of these 

mesogenic blends. The generic thermo-rheological phase diagram of the single-

phase binary mixture, given in terms of temperature (T) and Deborah (De) number 

shows the existence of four T-De transition lines that define regions that correspond 

to the following quadrupolar tensor order parameter structures:(i) oblate( ,⊥ � ) , (ii) 

prolate ( ,⊥ � ),  (iii) scalene O( ,⊥ � ) and (iv) scalene P( ,⊥ � ), where the symbols 

( ,⊥ � ) indicate alignment of the tensor order ellipsoid with respect to the extension 

axis.  It is found that with increasing T the dominant component of the mixture 

exhibits weak deviations from the well-known pure species response to uniaxial 

extensional 

flow ( )uniaxial nematic biaxial nematic uniaxial  paranematic⊥ → → � .  In 

contrast, the slaved component shows a strong deviation from the pure species 

response. This deviation is dictated by the asymmetric viscoelastic coupling effects 

emanating from the dominant component. Changes in conformation 

( )oblate prolate� and orientation ( )  ⊥ � �  are affected through changes in 

pairs of eigenvalues of the quadrupolar tensor order parameter.  The complexity of 

the structural sensitivity to temperature and extensional flow is a reflection of the 

dual lyotropic/thermotropic nature (amphotropic nature) of the mixture and their 

cooperation/competition. The analysis demonstrates that the simple structures 

(biaxial nematic and uniaxial paranematic) observed in pure discotic mesogens 

under uniaxial extensional flow are significantly enriched by the interaction of the 

lyotropic/thermotropic competition with the binary molecular architectures and 

with the quadrupolar nature of the flow. 
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Key Words: discotic nematic liquid crystals, carbonaceous mesophases, 

thermodynamics of mesophase mixtures, uniaxial extensional flow, binary 

mesogenic mixtures, thermo-rheological phase diagram, concentration, 

amphotropic, lyotropic, thermotropic.  

5.2 Introduction 

Carbonaceous mesophases
3
 (CMs) are discotic nematic liquid crystalline (DNLC)

4
 

mixtures obtained from petroleum pitches and synthetic naphthalene precursors
5
. 

The thermodynamics of binary carbonaceous mesophase mixtures composed of two 

mono-disperse components was previously described
1
 using the Maier-Saupe liquid 

crystal model
6
 adapted to discotic mesogens. Since the only difference between the 

mixture components is their molecular weight, phase separation does not have to be 

considered in this case. For binary CMs at equilibrium it was found that the 

ordering states of each species is the result of thermotropic, lyotropic, and coupling 

effects. We found
1
, based on the above observations, that a binary mixture at 

equilibrium can display three possible states: 

(i) isotropic (I) : S1=0, S2=0; 

(ii) nematic (N12) with S1≥S2; 

(iii) nematic (N21) with S1≤S2. 

with Si being the scalar order parameter of the i
th

 component, where  the first 

component (“1”) has the higher molecular weight (MW). In our thermodynamic 

study
1
 two kinds of transitions take place within mixtures of two components: (i) 

Nematic-to-Isotropic (NI) transition due to the thermal (thermotropic) effect, and 

(ii) N12 to N21 transition within the nematic phase due to the concentration 

(lyotropic) effect. In the later transition, where N21 converts to N12, S1= S2, and at 

this point a nematic mixture behaves like a single component system; the 

concentration corresponding to this transition is the critical concentration m1c at 

which the NI transition temperature is an absolute minimum.
1
  

At higher concentrations of the higher Mw (first) component (m1>0.5) thermotropic 

and lyotropic effects
7, 8

 cooperate and ensure that the higher Mw component 

controls the overall orientation of the system and becomes the dominant 

component. At low concentrations (m1<m1c), on the other hand, lyotropic effects 
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are dominant and promote the lower Mw species to become the dominant 

component. In the intermediate regime, though, thermotropic and lyotropic effects 

compete and the dominant effect determines the dominant component; if 

temperature effects overcome dilution effects the high Mw component becomes 

dominant, otherwise the one with lower Mw becomes dominant.  It will be 

demonstrated below that the dominant component of a binary mesogenic mixture 

follows closely the behavior of a single species mesophase under external flows, 

and that the slaved component adapts by displaying a rich set of orientation and 

ordering states, according to the prevailing dilution and temperature conditions. 

Uniaxial extensional flow of carbonaceous mesophases is used for the formation of 

carbon fiber precursors and due to the molecular discotic shape and the uniaxial 

quadrupolar nature of the flow results in structures different than those observed in 

rod-like nematics.  Figure 5-1 summarizes structural transformations of discotic 

mesogens under uniaxial extensional flow above the isotropic/nematic transition 

temperature TNI (top) and below TNI (bottom).  The mesogenic discs are subjected 

to uniaxial extensional flow that contains a stretching axis (vertical) and a planar 

compression plane (horizontal plane).  The ellipsoids represent
9
 the nematic 

quadrupolar tensor order parameter Q plus the dyadic I/3. The full-line arrows are 

the flow deformations (axial stretching and planar compression), the dashed arrows 

denote the effect of flow on the quadrupolar tensor ellipsoids, and the double-line 

arrows denote the unique axis of the ellipsoids.  Above TNI extensional flow 

transforms the isotropic state into a paranematic uniaxial state through an axial 

compression of the tensor ellipsoid, with its unique axis along the vertical 

stretching direction.   The stable state is a balance between compression flow 

effects and thermodynamic resistance along the stretching axis of the flow. Below 

TNI extensional flow transforms the uniaxial nematic state into a biaxial nematic 

state through anisotropic compression and re-orients the director n towards the 

compression plane; the cross-section of the ellipsoid is subjected to a flow-

compression along the stretching direction and hence there is a thermodynamic 

response along this direction.  In this paper we seek to extend the basic 

understanding of these viscoelastic processes for a binary mixture, and determine if  
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Figure 5-1. Schematic of structural transformation of single component discotic mesogens 

under a uniaxial extensional flow above the nematic/isotropic transition temperatute TNI (top) 
and below TNI (below). Above TNI  extensional flow transforms the isotropic state into a 

paranematic uniaxial state with its unique axis along the stretching direction.  Below TNI  

extensional flow transforms the uniaxial nematic state into a biaxial nematic state through 
anisotropic compression and re-orients the director n towards the compression plane.  The 

full-line arrows are the flow deformations (axial stretching and planar compression), the 

dashed arrows denote the effect of flow on the quadrupolar tensor ellipsoids, and the double-
line arrows denote the unique axis of the ellipsoids. 

 

the basic structures (paranematic and biaxial nematic) are enriched through 

lyotropic effects and cross-couplings.  

Integrating the thermodynamics with flow-induced orientation and flow-induced 

alignment in binary mixtures of CMs under uniaxial extensional flow merges the 

interplay between equilibrium uniaxial ordering and flow-induced biaxiality, which 

will be a function of the species molecular weight asymmetry (∆Mw), their 

interaction (β), and concentration (m1).  Macroscopic nematodynamics will predict 

flow induced orientation and flow induced alignment
9-12

 accurately, but for binary 

mixtures the macroscopic material tensors that form part of the formulation will be 

given by unknown functions of the molecular parameters (∆Mw,β,m1)
9, 13-16

 and 

hence the most efficient way to include these important parameters is to use a 

molecular level description. For this purpose, the Maier-Saupe (MS) theory is 

n

uniaxial  

nematic 

 

nbiaxial  

nematic 

 

above TNI 

paranematic isotropic 

 

below  TNI 

axial compression 

 anisotropic 

compression 



 

 136 

extended to incorporate the flow effects; in the presence of uniaxial extensional 

flow (a potential flow) both the flow potential and the molecular potential 

contribute to the total MS potential and make it appropriate to describe the non-

equilibrium thermodynamics of different nematic liquid crystalline systems
1, 9, 17

.  

In this work we use the extended MS theory with the implemented flow effects to 

investigate the thermorheological phase diagram of the binary mixture (ordering 

and structuring as functions of temperature and Deborah number, De).  

The specific objectives of this paper are: (i)  to find, classify,  characterize  and 

explain the expected structural diversity that emerges in discotic mesogenic 

mixtures by regulating the thermotropic/lyotropic effects under a uniaxial 

quadrupolar extensional flow of varying strength; (ii) to present thermo-rheological 

phase diagrams that reveal  localized structure formation through anisotropic 

viscoelasticity; (iii) to extend the basic understanding of flow induced structures 

shown in Figure 5-1 to mesogenic mixtures.   Since uniaxial extensional flow of 

discs is equivalent to biaxial extensional flow of rods, the results of this work are 

applicable to these systems as well
18

. 

The organization of this paper is as follow.  Section 5.3 presents the extended MS 

binary mixture model with the implemented uniaxial extensional flow obtained in 

our pervious work
9
; the numerical solution scheme is also defined in this section. 

Section 5.4 presents the results. Section 5.4.1 classifies the type of solutions 

obtained for the ordering and the structural behavior of the components within the 

mixture. Section 5.4.2 reports the orientational and structural behavior of the 

mixture under flow and the temperature effects. Section 5.4.3 presents the effect of 

concentration on the phase diagram. Section 5.5 presents the conclusions.   

5.3 Maier-Saupe Binary Mixture Model 

Details of the extension of Maier-Saupe model to a binary mixture of NLCs under 

the uniaxial extentional flow is given in our pervious studies
1, 2, 9

.  The discotic 

nematic mixture is characterized by the usual quadrupolar tensor order parameters:
1
 

( ) ( )i
i i i i i i i i mix i i

i 1

P
S / 3 ;i 1, 2; m

3
  

=

= − + − = =∑Q n n I m m l l Q Q                            (5-1) 
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where ( )i iS , P  are the uniaxial and biaxial molecular order parameters, 

( )i i i, ,n m l are the directors, mi are the species’ mole fractions and Qmix is the 

quadrupolar order parameter of the mixture. In this paper the biaxial directors il  are 

along the extensional flow direction (“z”) and the directors i i,n m  are always in the 

compression plane (“x-y”).  The rate of deformation tensor A for uniaxial 

extensional flow and corresponding Qi are: 

i

i i

i

/ 2 0 0 0 0

0 / 2 0 0 0

0 0 0 0

  ,   

−ε µ   
   = −ε = µ   
   ε µ   

n

m

l

A Q

�

�

�

              (5-2) 

with ε�  being the rate of deformation and iµ s the eigenvalues of the tensor order 

parameter Qi. Equations (5.2) indicate the correspondence between stretching 

direction/compression plane and orientation. For this particular flow and mixture it 

has been shown that the two director triads are congruent
9
 and hence only equations 

for the scalar order parameters Si, Pi are needed. The governing equations for the 

scalar order parameters S1, S2, P1, P2 are
1
:  

1 1 1 1 1 2 2 1 2

1

2 2 2 2 1 1 2 2 1 1

2

2
1 1 1 1 1 2 2 1

1

1
2 2 2 2 1 1 2 2 1

2

0

0

1
0

3 3

1
0

3 3

∂
ϕ + ϕ ϕ − =

∂

∂
ϕ + ϕ ϕ − =

∂

∂
ϕ + ϕ ϕ − =

∂

∂
ϕ + ϕ ϕ − =

∂

∑

∑

∑

∑

i i
r

i

i i
r

i

i i
r

i

i i
r

i

m Z
m S m m L S T

Z S

m Z
m L S m m L S T

Z S

m ZP
m P m m L T

Z P

m ZP
m L P m m L T

Z P

               (5-3) 

where i i
i

i i

m Mw

m Mw
ϕ =

∑
 is the effective mole fraction of the i

th
 component, Tr is 

the dimensionless temperature, L1 and L2 are the material parameters give by the 

following expressions: 

12 22
1 2 1 2

11 11

; ;
U U

L L L L
U U

= = = β                                       (5-4) 
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where 11 22 12, andU U U are the interaction parameters between the pair of (1,1), 

(2,2) and (1,2) molecules, β is the interaction coefficient and is positive for  

mixtures of  similar molecules (disk/disk); in this study we fix β as 0.1 and Zi, is the 

partition function of the i
th

 component  given  by the following expression
10

: 

( )/ /i i B i Bm k T H k T

i iZ e d
−Φ −= ∫ u                   (5-5) 

with 
i

Φ being the molecular potential of the i
th

 component given by the following 

expressions: 

( )

( )

( )

2 2 2 21
1 1 1

1

2 2 2 21 1 2
1 1 2 2 1 2

2 2 2 22
2 2 2 2

2

22 2

1 1 2 2 1 1

1
( )

3 31 3

2 1
( )

3 3

1
( )

3 31 3

2 1
(

3

B r

r

P
m S Cos Sin Sin Cos

m k T m T P
m m L S Cos Sin Sin Cos

P
m L S Cos Sin Sin Cos

m kT m T
m m L S Cos

  ϕ θ − + θ µ − µ  Φ   = −
  + ϕ ϕ θ − + θ µ − µ  

  

 ϕ θ − + θ µ − µ 
Φ  

= −

+ ϕ ϕ θ − ( )2 2 21)
3

P
Sin Sin Cos

 
 
 
  + θ µ − µ  

  

 

      (5-6) 

where θ and µ are the polar and azhimutal angles in the director n-m-l triad system 

and Hi   the flow potential of the i
th 

component :  

   ( ) ( )1 2 1 2

2

1 2 1 2, , ,
3

, , ,,i

B

S S P P
H

De R m m Mw Mw
k T 4

f
ε

= − zu.e
�

    

                                                     (5-7) 

where u is the molecular unit normal, ez is the flow (extension) direction, R is the 

rheological effective shape factor and f is a complex function of ordering, 

molecular weight and concentration of the components given in [9] .  The Deborah 

number De appearing in eqn.(5.7) is : 

ref

De
D

ε
=
�

                    (5-8) 

where ε� is the steady rate of uniaxial extension rate, 
ref

D  is the rotational 

diffusivity of the discotic higher molecular weight component at a reference 

temperature
9
.  To approximate the present model to real CMs we take the Mw of 
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the first and the second species to be 1400 and 1000, respectively
1, 9, 19

.  The 

interaction parameter β is also fixed as 0.1
1
.  

The present model is given by the four nonlinear integral equations (eqns.( 5.3)); 

the solution vector consists of four scalar order parameters (S1,S2,P1,P2).  The 

relative thermo-rheological effects are calibrated as follows: (i) the flow effect is 

modified by changing the De number, (ii) the phase ordering is affected by 

sweeping over temperature Tr and (iii) the extent of mutual coupling by sweeping 

over concentration of the first component, m1. The equations are solved using the 

Newton-Raphson method, with an eight order Simpson integration method. 

Stability, accuracy, and convergence were ensured using standard methods.  Issues 

of multistability and bifurcations are not considered in this paper. Numerical 

accuracy was established using the known pure component limits
1
.  Next we 

present the possible ordering states (Fig. 5-2, 5-3) based on the system phase space 

that is needed to classify the solutions (see Tables 5-1, 5-2). 

We use the results given by eqns. (5.3) to construct an atlas of ordering states in the 

scalar order parameter P-S triangle, similar to the one reported by [18, 20]. The 

phase space given in Fig. 5-2 is used to describe the ordering behavior of each 

component in the mixture, to define the nomenclature of various steady state 

solutions presented in the next section, and to indicate the sign of the corresponding 

eigenvalues
9
.  The unit sphere description of the director triad (n, m, l) in this 

figure is used to explain the alignment characteristics at different limiting points on 

the alignment phase plane.  The dashed lines denote the uniaxial states and it starts 

at a corner with perfect ordering along one of the eigenvectors (n,m,l) and ends 

with a planar state at the midpoint of each triangle side.  The table indicates 

transitions and regions defined in Fig. 5-3.  Changes in temperature or extension 

rate define a trajectory in this phase space that may cross the transition lines (α,γ,ξ).  

Figure 5-3 shows the orientation of the discotic molecules with respect to the 

dominant director of the system (n) (5-3a) and the biaxial directors (m and l) and 

the corresponding eigenvalues of the tensor order parameters of the first and second 

component (Q1 and Q2) for the uniaxial (Fig. 5-3b), degenerated uniaxial (Fig. 5-

3c) and biaxial (Fig. 5-3d) states; as noted above l is along the extension direction  
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Figure 5- 2. Atlas of the orientation in terms of the scalar order parameters S and P and their 
corresponding eigenvalues, adapted from [9, 18]. The unit sphere description of the director 

triad (n, m, l) is used to explain the alignment characteristics at different limiting points on the 

alignment phase plane. The dashed lines denote uniaxial states.  Changing the temperature 

and/or extensional flow rate produces a trajectory in the (S, P) phase plane, usually across the 

biaxial regions. Under continuous increase in temperature, the change from uniaxial to biaxial 

state takes place by moving from the P=0 line across the upper biaxial region to end up in the 
P=3S uniaxial line. The table summarizes the transition lines, regions, and orientation states 

given in terms of eigenvalues. See   figure (5-4) for terminology of the various nematic (N) and 

paranematic (PN) states. 
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Figure 5- 3. Orientation of   discotic molecules with respect to the dominant director of the 

system (n) (a) and the biaxial directors (m and l) for the uniaxial, prolate (b), degenerated 

uniaxial, oblate (c) and biaxial, scalene P (d) cases. In the uniaxial case, the projection of the 
orientation distribution of the molecules on m-l plane is a circle with two identical eigenvalues. 

On the other hand in the biaxial case, the projection of the orientation distribution of the 

molecules on m-l plane is an ellipsoid (or an ellipsoid with corners) with two distinct 

eigenvalues.   
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and n-m are anywhere in the compression plane.  In Fig.5-3b the uniaxial case, the 

orientation distribution of the molecules in m-l plane (perpendicular to the 

dominant director) is isotropic and the projection of the oriented discs on m-l plane 

is a circle with two identical eigenvalues. On the other hand in Fig.5-3c a 

degenerate case, the orientation distribution of the molecules is isotropic in n-m 

plane but it composes a shape similar to an ellipsoid with the added corners in m-l 

plane; this generates a result similar to the occurrence of compression in the flow 

(l) direction.  In Fig. 5-3d biaxial case, the orientation distribution of the molecules 

in m-l plane is anisotropic and the projection of the oriented discs on m-l plane is 

an ellipsoid with two distinct eigenvalues. Other structures are also made based on 

the eigenvalues in the three directions.  

5.4 Results and Discussion 

5.4.1  Solution Classification 

Table 5-1 presents the ten steady state solutions to equations (5.3) using the sign 

and the ordering of the eigenvalues of tensor order parameters (Q1 and Q2) of the 

components #1 and #2 and the orientation of the dominant eigenvector with respect 

to the extension direction
9
.   Although stability was not investigated, the 

correspondence of these solutions with the well-known stable solutions to the single 

component case provides indirect evidence of their stability. 

 

Table 5-  1. Solution Classification 

Solution    Solution      Sign of          Sign of          Sign of          Eigenvalues   Corresponding 

symbol      symmetry  2 / 3
n

Sµ = ( ) / 3
m

P Sµ −=  ( ) / 3
l

P Sµ += −    ordering             structures 

U
N

+
 

Uniaxial 

Nematic 
+ - - n l m

µ µ µ> =
 

 

U
N

−
 

Uniaxial 

Nematic 
- + + n l m

µ µ µ< =
 

 

Oblate ⊥   

Prolate ⊥  
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B
N

+
 

Biaxial 

Nematic 
+ - - n m l

µ µ µ〉 〉  

 

B
N

−
 

Biaxial 

Nematic 
- + + l m n

〉 〉µ µ µ  

 

B
PN

+
 

Biaxial 

Nematic 
+ - - n m l

µ µ µ〉 〉  

 

U
PN

+
 

Uniaxial 

Paranematic 
+ - - n l m

µ µ µ> =

 

 

U
PN

−
⊥

 

Uniaxial 

Nematic 
- + + n l m

µ µ µ< =

 

 

UPN
−
�  

Uniaxial 

Paranematic 
+ + - l n m

µ µ µ< =

 

 

B
PN

−
⊥

 

Biaxial 

Nematic 
- + + l m n

〉 〉µ µ µ  

 

BPN
−
�  

Biaxial 

Paranematic 
+ -  - l m n

µ µ µ< <

 

 

The first two columns of Table 5-1 give  the symbols and names of the solution, the 

3
th

-5
th

 column give the sign of the three eignevalues, the 6
th

 the ordering, and the 7
th

 

the visualization of the tensor ellipsoid using the usual Q+I/3  unit trace 

quadrupolar tensor
9
 (see figures (5-2) and (5-3)); the symbols ,⊥ �  denote 

 Oblate �  

Prolate ⊥  

ScaleneP ⊥   

ScaleneO �   

ScaleneO ⊥   

ScaleneP ⊥   

Oblate ⊥   

ScaleneO ⊥   
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perpendicular or parallel alignment of the unique axis of the tensor order parameter 

ellipsoid or the axis which corresponds to the eigenvalue with the largest absolute 

value with respect to the extension axis, which is always along the l eigenvector.   

These ten solutions are 

:

:

:

:

U n l m

U n l m

B n m l

B l

N  Uniaxial Nematic with                 

N  Uniaxial Nematic with                

N  Biaxial Nematic with                   

N  Biaxial Nematic with                  

+

−

+

−

> =

< =

〉 〉

〉

µ µ µ

µ µ µ

µ µ µ

µ µ

:

:

:

:

:

m n

B n m l

U n l m

U n l m

U l n m

B

PN  Biaxial Nematic with                

PN  Uniaxial Paranematic with     

PN  Uniaxial Paranematic with    

PN  Uniaxial Paranematic with     

PN  Biaxia

+

+

−
⊥

−

−
⊥

〉

〉 〉

> =

< =

< =�

µ

µ µ µ

µ µ µ

µ µ µ

µ µ µ

:

l m n

B l m n

l Paranematic with      

PN  Biaxial Paranematic with     
−

〉 〉

< <�

µ µ µ

µ µ µ

 

where the superscripts refer to the sign of the largest absolute eigenvalue and the 

subscripts refer to the state (U: uniaxial, B: biaxial). If there are two identical 

eigenvalues the state is uniaxial, otherwise it is biaxial. The corresponding 

ellipsoidal structures are prolate, oblate and scalene.  It is seen from Table 5-1 that 

sweeping over temperature and concentration, leads to trajectories that sample 

regions β, δ, and η in Fig.5-2. 

5.4.2 Orientational and Structural Behavior 

Figure (5-4) shows a schematic of the generic phase diagram of the binary system 

by solving eqn. (5.3) and by sweeping over De, T and m1. The phase diagram 

contains twelve regions separated by four distinct transition lines. Each region is 

characterized by a phase and a structural state of the two components. Table 5-2 

summarizes the salient characteristics of each region.  
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Figure 5- 4.Schematic of a generic thermo-rheological phase diagram of the binary mixture in 

terms of dimensionless temperature Tr and Deborah De number.  The phase diagram is 

divided into twelve regions by four transition lines (DNPN-NPN, UBD, UBS and PNSS); the 
state of each species (see Table 5-2) is defined by the Q+I/3 tensor ellipsoid. The behavior of 

the mixture is explained at the De numbers indicated on the x-axis of the figure. 
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Table 5-  2. Characteristics of the Regions of Phase Diagram 

                Solution            Solution       Corresponding                                 

Region    Symbol of the               Symbol of the                Transition                        

           Dominant Component   Slaved  Component           Lines    

I 
U

N

Prolate

+

⊥
 U

N

Prolate

+

⊥
 

NPN, UBD & 

PNSS  

II 
B

N

ScaleneP

+

⊥
 U

N

Prolate

+

⊥
 

UBD,  NPN, 

UBS  & PNSS 

III 
B

N

ScaleneP

+

⊥
 B

N

ScaleneP

+

⊥
 

UBS,  NPN & 

PNSS 

IV 
B

N

ScaleneP

+

⊥
 U

N

Oblate

−

⊥
 

PNSS, UBS & 

UBD  

V 
U

N

Prolate

+

⊥
 U

N

Oblate

−

⊥
 PNSS & UBD 

VI 
B

N

ScaleneP

+

⊥
 B

N

ScaleneO

−

⊥
 

PNS, NPN & 

UBS 

VII 
B

PN

ScaleneP

+

⊥
 B

PN

ScaleneO

−
⊥

⊥
 

PNSS, UBS  & 

NPN 
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VIII 
B

PN

ScaleneP

+

⊥
 U

PN

Oblate

−
⊥

⊥
 

PNSS, UBD  & 

UBS 

IX 
U

PN

Prolate

+

⊥
 U

PN

Oblate

−
⊥

⊥
 PNSS, & UBD   

X 
 

U
PN

Oblate

−
�

�
 U

PN

Prolate

+

⊥
 

NPN, UBD  & 

PNSS 

XI 
 

B
PN

ScalaneO

−
�

�
 U

PN

Prolate

+

⊥
 

UBD, PNSS,  

NPN & UBS 

XII 
B

PN

ScalaneP

+

⊥
 B

PN

ScalaneP

+

⊥
 

UBS, NPN & 

PNSS 

 

The first column of Table 5-2 gives the numbers associated with each region, the 

2
nd

 and 3
rd

 columns give the names of the solution and the corresponding ellipsoidal 

structures and the 4
th

 column gives the transition lines which marks the basin of 

each region.  These transition lines are:  

(1, 2) , UB :
D S

UB uniaxial-biaxial transition lines (of the dominant and slaved 

components) which are structural (uniaxial vs. biaxial) transition lines; 

(3) : DNPN-NPN discontinuous-continuous Nematic-Paranematic transition line 

which is a phase transition line;  

(4) :  SNSP positive to negative ordering transition line of the slaved component 

which  is a structure transition line. 
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The DNPN-NPN line which separates nematic from paranematic phase is the phase 

transition line; in the first section (lower De numbers) a discontinuous transition 

takes place, however in the second section (higher De numbers) a continuous 

transition takes place. The remaining three lines are structural transition lines which 

define the formation/disappearance of biaxiality in the dominant (UBD uniaxial-

biaxial transition in the dominant component) and slaved (UBS uniaxial-biaxial 

transition in the slaved component) components and the formation of the 

degenerated phase with a negative ordering in the slaved component (PNSS: 

positive to negative ordering transition in the slaved component).  

We study the phase diagram at five fixed different De numbers and increase T, and 

observe  the following transformations ( see schematic in Fig. 5-4): 

(i) By increasing temperature at De=De1 region I and region X emerge. In region I, 

the stable phases are uniaxial nematic,
U

N
+ , for both components, meaning that the 

scalar order parameters are positive and the biaxial order parameters are negligible. 

For each component, there are two identical eigenvalues,
n l m

µ µ µ> = , and the 

unique value,
n

µ , is positive. Hence, the corresponding structures are both 

prolate ⊥ .  By increasing temperature at this De, the nematic to paranematic phase 

transition takes place and region X is reached.  This region is paranematic which is 

obtained by subjecting the isotropic phase to a uniaxial extension. In region X the 

stable phases are both uniaxial paranematic with positive scalar order parameters 

and negligible biaxiality. The stable phase is U DPN
−
�  for the dominant component 

with two identical eigenvalues,
lD nD mD

< =µ µ µ , composing a parallel oblate. For 

the slaved component however, the stable phase is 
US

PN
+  again with two identical 

egienvalues, but this time
nS lS mS

> =µ µ µ , resulting in a perpendicular prolate.  At 

sufficiently low De, hence the main effect of temperature is: 

prolate/prolate nematic state�oblate/prolate paranematic state 

(ii) By increasing the dimensionless temperature at De=De2 five regions I, II, XI, 

VIII and IX appear. In region I, like the pervious case, the stable phases are both 

uniaxial nematic,
U

N
+ , and the corresponding structures are both prolate ⊥ .  By 
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increasing temperature at this De, a transition within the nematic phase takes place 

and region II is reached. In region II the stable phase for the dominant component is 

biaxial nemtaic,
BD

N
+ , its scalar order parameter is positive and its biaxiality is 

significant. There are three distinct eigenvalues, 
nD mD lD
〉 〉µ µ µ  with

nD
µ  being 

positive and the largest value; the corresponding structure is scalene P ⊥ . For the 

slaved component, however, the stable phase is still uniaxial nematic,
US

N
+ , with a 

perpendicular prolate structure. By further increasing the temperature, a nematic-to-

paranematic transition takes place and region XI emerges. In region XI the stable 

phase for the dominant component is biaxial paranematic, B DPN
−
� , its scalar order 

parameter is positive and its biaxiality is significant. There are three distinct 

eigenvalues,
nD mD lD

> >µ µ µ  with 
lD

µ  being negative and of largest value, and the 

corresponding structure is the parallel scalene O. For the slaved component, 

however, the phase is uniaxial paranematic,
US

PN
+ , with two identical eigenvalues, 

nS lS mS
> =µ µ µ , denoting a prolate ⊥ . By increasing temperature in the 

paranematic phase at this De a continuous transition within the paranematic phase 

takes place and region VIII is reached. In region VIII the stable phase for the 

dominant component is biaxial paranematic,
BD

PN
+ , its scalar order parameter is 

positive and its biaxiality is significant. There are three distinct eigenvalues, 

nD mD lD
> >µ µ µ  with 

nD
µ  being positive and of largest value, and the 

corresponding structure is the scaleneP ⊥ . For the slaved component, however, the 

phase is uniaxial paranematic,
U S

PN
−

⊥ , with two identical eigenvalues, 

nS lS mS
< =µ µ µ , and a negative scalar order parameter denoting an oblate ⊥ . By 

increasing temperature even more, region IX is reached. The stable phases in this 

region are 
UD

PN
+  for the dominant component and U S

PN
−

⊥  for the slaved component 

and the corresponding structures are prolate ⊥  and oblate ⊥  respectively. Hence at 

this De, the effect of temperature is not only to transform nematic state into the 

paranematic state but it is also to induce biaxiality in the dominant component and 

a degenerated phase (negative ordering /oblate structure ) in the slaved component. 
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(iii) By increasing the dimensionless temperature at De=De3 seven regions I, II, III, 

XII, VII, VIII and IX appear. The new regions appearing here are regions III and 

XII. In region III the stable phases for both of the components are biaxial 

nemtaics,
B

N
+ , and the corresponding structures are scalene P ⊥ . In region XII, 

similar to region III, the structures are scalene P ⊥ but the stable phases are biaxial 

paranematics,
B

PN
+ . A temperature increase transforms the nematic phase in region 

III to the paranematic phase in region XII.  The overall effect of increasing 

temperature increase at this De is the following sequence: 

inducing biaxiality in the dominant  component� inducing biaxiality in the slaved 

component� transforming the nematic phase to the paranematic phase�  forming 

the degenerated phase (negative ordering) in the slaved component �  

reconverting the slaved  and then dominant component to the uniaxial structure 

(iv) By increasing the dimensionless temperature at De=De4 seven regions I, II, III, 

VI, VII, VIII and IX appear. The new region appearing in this case is region VI. In 

this region the stable phase for the dominant component is biaxial nemtaic,
BD

N
+ , 

and its corresponding structure is scaleneP ⊥ . For the slaved component, the stable 

phase is biaxial nemtic,
BS

N
− , with negative scalar order parameter, 

lS mS nS
〉 〉µ µ µ , 

which denote a scalaneO ⊥ . So the overall effect of the temperature increase at this 

De is:  

inducing biaxiality in the dominant component � inducing biaxiality in the slaved 

component� forming  the degenerated phase (negative ordering) in the slaved 

component�  transforming  the nematic phase to the paranematic phase � 

reconverting  the slaved  and then dominant  component to the uniaxial structure 

(v) By increasing the dimensionless temperature at De=De5 seven regions I, V, IV, 

VI, VII, VIII and IX appear. The new region appearing in this case is region V.  In 

this region the stable phase for the dominant component is uniaxial nematic,
UD

N
+ , 

and its corresponding structure is Prolate ⊥ . For the slaved component, the stable 

phase is uniaxial nematic,
US

N
− , with negative scalar order parameter, 
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nS lS mS
< =µ µ µ , which denote an oblate ⊥ . So the overall effect of the temperature 

increase at this De is: 

 forming the degenerated phase (negative ordering) in the slaved component � 

inducing biaxiality in the dominant component� inducing biaxiality in the slaved 

component�  transforming  the nematic phase to the paranematic phase � 

reconverting  the slaved  and then dominant  component to the uniaxial structure.  

To better understand the phase and structural behavior of our discotic mixture we 

also report the computed orientational behavior and the phase diagram (Figure 5-5) 

of the pure system reproduced in our previous work
9
. 

 

 

Figure 5- 5.Thermo-rheological phase diagram of a single discotic nematogen with its 

corresponding orientational/order parameter structures:
U

N
+

 at low temperatures, 
B

N
+

 at 

medium temperatures and De numbers and 
B

PN
−

 at high temperatures adapted from [9].  

Comparing Figs. (5-4) and (5-5) we see that the dominant component follows essentially the 

pure species response but that other component exhibits starkly new behavior. 

 

 

extension 

direction 
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 The phase diagram (Figure 5-5) of a pure mesogen has three regions: (i)   uniaxial 

nematic (
U

N
+ ), (ii) biaixial nematic (

B
N

+ ) and (iii) uniaxial paranematic ( )U
PN − .  

There are two dominant transition lines: NUB, and DNPN-NPN; these two transition 

lines emerge at 0.22
r

T � , De=0. (i) NUB   (dashed line) is the continuous uniaxial 

nematic(
U

N
+ )/biaxial nematic(

B
N

+ ) transition , and (ii) DNPN-NPN (  dotted line) is 

the nematic biaxial(
B

N
+ ) /uniaxial paranematic (

U
PN

+ ) transition; for 

0 0.55cDe De< < �  the transition is discontinuous and when 0.55cDe De> =  the 

transition is continuous. At low temperatures (region +

UN ) there is thermodynamic 

and flow cooperation. Thermodynamics favors the uniaxial orientation +

UN  while 

extensional flow also favors orientation along n with n along the compression plane 

and hence there is no competing effect.  At higher temperatures and higher De, the 

thermodynamic uniaxial alignment along n now competes with the biaxial flow 

alignment producing the biaxial nematic state (region BN
+ ) with n along the 

compression plane. Further temperature increase eventually leads to the biaxial 

nematic/ uniaxial paranematic transition. In the paranematic state (region BPN
− ) the 

oblate state has the unique axis (l vector) along the extension direction; here the 

competition of thermodynamics that prefers an isotropic state and the flow effect 

that seeks molecular alignment along the compression plane results in the oblate 

state. Referring to figure (5-2) it is observed that the responses of the pure system 

to extensional flow are always along the line α, in the region β or along the line γ of 

the P-S triangle.  Below we refer to a component of a mixture that closely follows 

the pure species as “dominant” and the other as “slaved”, as explained in what 

follows. 

Comparing  Figs. (5-4) and (5-5) it follows that the dominant component in the 

binary mixture essentially follows the standard behavior of the pure mesophase 

with a small perturbation, which is the formation of the biaxial paranematic 

( B DPN
−
� , region XI) and uniaxial paranematic (

UD
PN

+ , region IX), region . Hence, it 

shows the additional responses in the region δ of the P-S triangle (figure (5-2)). The 

slaved component, however behaves starkly differently. Although at low 
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temperatures and low De values it shows the standard phase state which is uniaxial 

nematic
US

N
+ , at moderate and high temperatures and also at high De values (regions 

IV to XII) it adopts different orientational and structural states. Extension affects the 

molecules of the second (slaved) component differently. For instance, in region X, 

flow tends to align the molecules of the dominant species in the compression (n-m) 

plane to form a parallel oblate but it aligns the molecules of the slaved component 

in a prolate ⊥  structure. Hence, the slaved component responses to the flow with 

the structures along the line α, in the region β, along the line ζ or in the region η of 

the P-S triangle (figure (5-2)). This phenomenon is due to the coupled viscoelastic 

forces generated within the mixture, as illustrated in figure (5-6) (adapted from [9]). 

Figure 5-6 shows an input (temperature (T), Deborah number (De))-output (tensor 

order parameters QD, QS, Qmix) model of the mixture’s nemato-rheology.  The 

viscoelastic coupling VE indicates how the nematodyanmics of the dominant and 

slaved components are mutually affected by viscoelastic (VE) effects. In the 

following we concentrate on elastic (E) effects since they explain the observed 

results in the phase diagram.  

 

Figure 5- 6. Block diagram of coupled nematodynamics adopted from [9].  The thermo-
rheological input (T, De) results in a tensor order parameter output (Q1, Q2, Qmix) under action 

of the nematodynamics and viescoleastic (VE) coupling effects.  The model is used to explain 

the deviations of the slaved species from the standard behavior (Fig.( 5-5)); see upper and 

lower right schematics.  In region X, the dominant component adopts the usual oblate �  state 

(upper schematic) under the balance between viscous (VD) and thermodynamic (ED) and weak 

coupling (ES-D effects. The slaved component meanwhile adopts a prolate ⊥  state under 

viscous (VS), thermodynamic (ES) and strong coupling (ED-S).   See text for details. 
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To explain the complex structures found in Region X (oblate parallel for the 

dominant component and prolate perpendicular for the slaved one) we need to 

consider two factors: (i) the combination of the molecular weight asymmetry ∆Mw 

and dilution effects lead to asymmetric coupling effects, such that the influence of 

the dominant component on the slaved one is significant while the converse effect 

is much weaker. The result of lyothropic-thermotropic cooperation/competition 

singles out the dominant that behaves essentially as the pure mesogen and delegates 

the other component to the slaved state. Figure (5-7) shows an schematic of the  

 

Figure 5- 7. Schematic of thermotropic and lyotropic effects on the dominant and slaved 

components in terms of concentration m1 and molecular weight asymmetry ∆Mw. The arrows 
connecting the boxes denote the coupling effects between the individual nematodynamics 

(square boxes).  The full and dashed lines represent the typical biaxiality regions for the 

higher Mw (first) and lower Mw (second) components respectively.  The plot has three 

regions. In region C (m1>0.5) thermotropic and lyotropic effects cooperate and make the 

higher Mw component controls the overall orientation of the system and it becomes the 

dominant (master) component. In region A (0<m1<m1c) dilution effects is always dominant 
which makes the lower Mw species dominant. In region B (m1c<m1<0.5) temperature effects 

and dilution effects compete and the prevailing effect determines the dominant component.   
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lyotropic/thermotropic cooperation/competition that exists in coupled 

nematodynamics, in terms of concentration and molecular asymmetry. 

The full (dashed) line represents the typical boundary of the biaxial region of the 

component with the higher Mw (lower Mw).   The dotted line m1c defines the 

critical line for lowest possible NI transition. The small square boxes represent the 

two nematodynamic processes and the vertical arrow(s) indicate   how couplings 

operate in the three regions of the  phase diagram; the top (bottom) box correspond  

to the higher (lower) molecular weight species. At higher concentrations of the 

higher Mw (first) component (region C: m1>0.5) thermotropic and lyotropic effects 

cooperate and ensure that the higher Mw component controls the overall orientation 

of the system and it becomes the dominant component (downward arrow). At low 

concentrations (m1< m1c : region A), on the other hand, the dilution effects are 

dominant and lytropicity elevates the lower Mw component to the dominant status 

(up-ward arrow). In the intermediate regimes (m1c<m1<0.5: region B), however, 

thermotropic and lyotropic effects compete and the controlling effect determines 

the dominant (major)  component (up/down arrows) ; if temperature effects 

overcome dilution effects the high Mw component becomes dominant  otherwise  

the lower Mw becomes dominant;  

(ii) the second factor is that the coupling effects from “dominant” on “slaved” 

change the usual structures of pure mesogens shown in figure (5-5).  The 

terminology of the schematics on the right Fig.( 5-6) is: (A) Vi: viscous effect, Ei: 

elastic effect, Eij: elastic coupling effect of “i” on “j”, (B) up-ward arrow 

( )↑ indicates that the effect tends to align the unit normals to the disks along the 

extension (l) axis, the down-ward arrow ( )↓ indicates that the effect tends to align 

the unit normals along the compression (n-m) plane; at steady state all the effects 

must balance. First we note (downward arrow in upper right Fig. (5-6)) that the 

extensional force within nematodynamics of the dominant component VD aligns the 

molecules of the this component preferentially in the compression (n-m) plane, 

reduces
lD

µ  and forms the well-known parallel oblate state, as predicted in 

eqn.(5.3). At steady state this force is balanced with an elastic force, ED, which 
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tends to align the molecular unit normals back to the extension direction (upward 

arrow in upper right Fig. (5-6)). The viscoelastic coupling effect of the “slaved” 

component on the “dominant” component, denoted ES-D, sensed by dominant 

component, D, is not as significant as the converse effect. However, the slaved 

component is significantly affected.  The viscoelastic force generated by “slaved” 

species, VS, (downward arrow in lower right Fig. (5-6)) tends to align its director to 

the compression plane and to reduce
lS

µ    like the standard (pure or dominant 

component) case. However, the coupling effect which tends to align the director to 

the extension direction, ES-D (upward arrow in upper right Fig. (5-6)) is large 

enough to orient the molecules of “slaved” species back to the extension direction 

and to increase
lS

µ .  As the relationship 0
nS mS lS

+ + =µ µ µ  has to be always be 

satisfied,  
nS mS

+µ µ  has to decrease to compensate for the increase of
lS

µ .  The 

decrease in 
nS mS

+µ µ  can be achieved in several ways (i.e both decrease, one 

increases and the other decreases, etc.).  The self-selected approach observed in 

Fig. (5-4) is to pick the solution with the minimum number of eigenvalues 

exchanges such that 
nS

µ  remains almost constant and 
mS

µ  decreases to compensate 

for the 
lS

µ  increment (see fig. (5-2)). The net result is that 0, 0
lS mS nS

= < >µ µ µ  

and a prolate ⊥  forms.  The formation of different structures in the other regions 

follows the same physics.  

5.4.3  Effect of Concentration on the Phase Diagram 

To show how the dilution and thermotropic effects choose the dominant component 

and influence the phase diagram we present the thermorheological behavior at three 

specific concentrations: (i) at critical concentration m1=m1c, (ii) below critical 

concentration m1<m1c, region A and (iii) above critical concentration m1>m1c, 

region C. The intermediate region, region B, exhibits the behavior between the 

region A and C with more complex behavior. The investigation of this region is 

beyond the scope of this work. We recall that m1c=0.308 is the critical 

concentration with the lowest nematic/isotropic phase transition. 

Figure (5-8) shows the phase diagram at the concentration below critical 

concentration m1=0.1<m1c representing regime (A) in figure 5-7.  Only regions I, 
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IV, V, VI, VII, IX and XI of the generic phase diagram (see Fig. 5-4) appear in this 

phase diagram. At this concentration, the dilution effect overcomes the thrmotropic 

effect and turns the second component with the lower Mw (but higher 

concentration: m2=0.9) into the dominant species. As a result weak flows induce 

biaxiality only in the second component and it aligns the molecules of the first 

(slaved) component preferentially in the compression (n-m) plane to form a 

perpendicular oblate (negative ordering) even at low temperatures. As mentioned 

above this effect corresponds to the asymmetric viscoelastic coupling effect.     

 

Figure 5- 8. Thermo-rheological phase diagram of the binary mixture at m1=0.1<m1c in terms 

of dimensionless temperature Tr and Deborah (De) number.  Dilution effect overcomes the 

thermotropic effect at this concentration and makes the second component with lower Mw and 

higher concentration (m2=0.9) the dominant component of the system.  

 

Figure (5-9) shows the phase diagram at m1=m1c =0.308 representing line m1=m1c 

in figure (5-7). At this concentration the strengths of the dilution and the 

thermotropic effects are very close and as a consequence more regions of the 

VII 

VI 

IV 

I 

V 

IX 
XI 
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generic phase diagram (Regions I, II, III, VI, VII, VIII, X, XI, and XII) appear in this 

phase diagram. Still the dilution effect is more significant and favors the second 

component to be dominant. As a result weak flows induce biaxiality only in the 

second component but slightly stronger flows induce biaxiality in the first (slaved) 

one. There is a mutual viscoelastic coupling effect, though it is still asymmetric and 

as a result the second component aligns the molecules of the first (slaved) 

component back to the extension direction and forms a prolate. Another important 

observation is that by increasing concentration UBD and PNSS move toward each 

other.   

 

 

I 

II 

III 

VI 

VII VIII 
X 

XI 

XII 

 

Figure 5- 9. Thermo-rheological phase diagram of the binary mixture at m1=0.308=m1c 

representing the line m1=m1c of figure (5-7) in terms of dimensionless temperature Tr and 

Deborah (De) number.  Dilution effect and thermotropic effect have almost similar 

contributions and a mutual viscoelastic coupling effect exists in this case, though the dilution 
effect is still dominant and makes the lower Mw component the dominant one.  
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Figure (5-10) shows the phase diagram at m1=0.7>m1c representing regime (C) of 

figure (5-7).   

 

 

 

I 
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Figure 5- 10. Thermo-rheological phase diagram of the binary mixture at m1=0.7>m1c 
representing region C of figure (5-7) in terms of dimensionless temperature Tr and Deborah 

(De) number.  Dilution effect and thermotropic effect both promote the dominancy of the 

higher Mw component. Viscoelastic coupling effect is strongly asymmetric so that first 

component influences the structure of the second one but the converse effect is insignificant. 

Due to the strong asymmetric coupling effect only regions I, IV, X and XI appear in this phase 

diagram.  

  

At this concentration both the lyotropic and thermotropic effects cooperate   and 

dominant component of the system is the majority high molecular weight species. 

The viscoelastic coupling effect is almost one way i.e. only the dominant 

component influences the slaved one and the converse is not true.  So only four 

regions appear in this phase diagram; UBS line of the generic phase diagram (figure 
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(5-4)) which shows the formation of biaxiality in the slaved component moves to 

much stronger flow intensities to the right side of the diagram so that the slaved 

component is always uniaxial for the range of De investigated. UBD and PNSS in 

this phase diagram have also merged.  

5.5  Conclusions  

This paper uses the extended Maier-Saupe model for binary mixtures of discotic 

nematogenes to investigate the effect of steady uniaxial extensional flow and 

concentration of the components on the orientational structure and molecular order 

of carbonaceous mesophase mixtures. Through solving the governing equations 

obtained in our previous work
9
 a generic thermo-rheological phase diagram 

containing four transition lines and twelve orientational and structural regions are 

obtained (Figs. 5-4, 5-8 to 5-10, Tables 5-1 and 5-2). The computational results 

show that depending on the concentration of the system an asymmetric viscoelastic 

coupling is generated between the components such that the dominant component 

changes the flow-induced structures of the slaved component, but that the converse 

is not very significant. Comparing the thermo-rheological phase diagram of single 

component (Fig. 5-5) with the binary one (Fig. 5-4) shows that the flow-response of 

the dominant component is close to the pure system but the behavior of the slaved 

one is very different. The deviations from the pure species response to extensional 

flow are due to coupling effects (Fig. 5-6). The dominant component is selected by 

the combination of thermotropic and lyotropic (dilution) effects (Fig. 5-7). At high 

concentration of the higher Mw component (m1) thermotropic and lyotropic effects 

cooperate and make the higher Mw component the dominant one. At low m1s, the 

dilution effects overcome and make the lower Mw component the dominant one. In 

the intermediate regimes, however, thermotropic and dilution effects compete and 

the controlling effect determines the dominant component. When thermotropic 

effects are controlling the higher Mw component becomes dominant otherwise the 

overcoming dilution effect makes the lower Mw component dominant.  Depending 

on the relative concentrations of the component the viscoelastic coupling effects 

shown in figure (5-6) can be absolutely one way (for a large difference between the 

concentrations) and results in the formation of only uniaxial slaved structure or it 
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can be mutual (for the smaller concentration differences) and allows biaxiality be 

induced in both components. The present work provides a foundation in mixing to 

tune   extensional flow strength and concentration to achieve tailored induced 

structures in carbon fiber-forming processes that are dominated by extensional 

deformation.  Finally, the results can also be applied to rod-like nematics
15

, fiber 

dispersions, and main-chain liquid crystal polymers under biaxial compressional 

flow. 
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6. Conclusions and Contributions to Original Knowledge 

 

6.1 General Conclusions 

6.1.1    Overview 

Bridging the gap between the current knowledge on the ordering behavior of pure 

DNLCs and the morphology and mechanical properties of carbon fibers based on 

CMs requires a fundamental understanding of the orientational behavior of DNLC 

mixtures under varying temperatures and extensional flow rates. The present thesis 

models the thermodynamics and thermo-rheological behavior of DNLCs binary 

mixtures by using a statistical mechanics approach. It investigates the effect of 

characteristics of the mixture i.e. molecular weight of each component, their 

interaction and concentration as well as the effect of processing conditions i.e. 

temperature and flow intensity on the molecular orientation and order of each 

component within the mixture. It also formulates and solves X-ray diffraction 

intensity and specific heat models to assess the degree of ordering and the level of 

biaxiality within the mixture. These structural characterization tools are also 

employed to validate the modeling algorithm as well as the structural predictions of 

the thesis. The key findings of the thermodynamics, thermo-rheology and 

characterization predictions are summarized in the following subsections: 

6.1.2 Thermodynamic modeling of carbonaceous mesophase mixtures  

(Chapter 2) 

The Maier-Saupe thermodynamic model which predicts the orientational behavior 

and phase diagram of pure DNLCs is extended to binary mixtures of discotic 

nematogenes as representative of CMs formed by pure mesogens.  The dual 

thermotropic and lyotropic behavior of the mixtures are demonstrated by phase 

transitions induced by temperature and concentration changes.  Based on the 

intrinsic properties of the mixture, i.e. molecular weight asymmetry and the 

interaction between the components, two classes of mixtures are predicted: ideal 

and non-ideal. Each type exhibits a distinguished temperature-concentration phase 

behavior, NI transition temperature trend as well as a specific ordering trend: (i) 
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non-ideal mixtures with non-monotonic NI transition temperatures and reversal of 

component ordering ( 1 2 2 1s s s s> >� ) due to the concentration effect; the value of 

the concentration at which this transition takes place is a critical concentration. The 

mixture exhibits the minimum value of the transition temperature at the critical 

concentration; this case is obtained for weakly interacting mixtures and its phase 

diagram shows lyotropic/thermotropic behavior; (ii) ideal mixtures correspond to 

the sufficiently strong interaction and highly asymmetric molecular weights; for 

this case the NI transition temperature monotonically changes by increasing the 

concentration. The mixture behaves ideally and a critical concentration with 

ordering reversal can not be obtained.  The mixture type as well as the value of the 

critical concentration can be determined by X-ray intensity measurements and can 

be also predicted by this characterization tool which is derived mathematically in 

our work. Experimentally, they also can be detected by any experimental method 

which measures scalar order parameters.  

6.1.3 Entropic Behavior of Binary Carbonaceous Mesophases (Chapter 3) 

The extended Maier-Saupe model for binary mixtures of discotic nematogenes is 

used to calculate the orientational entropy and orientational specific heat. These 

quantities are shown to be useful tools to characterize the type of the discotic 

nematic liquid crystal and carbonaceous mesophase mixtures, ideal or non-ideal, 

and to determine nematic ordering and to asses the degree of molecular interaction 

and molecular weights using standard calorimetric methods: (i) for ideal mixtures 

entropy and specific heat changes monotonically as a function of concentration at 

any given temperature. (ii) For non-ideal mixtures entropy and specific heat change 

non-monotonically as a function of concentration. The critical concentration can be 

detected by the entropic and specific heat trend: the trends of these quantities before 

and after this concentration are opposite. For both type of mixtures whenever there 

is a distinct majority component, orientational specific heat, prC∆ , and entropy 

behaves monotonically versus temperature; however, when there is no majority 

component prC∆ and entropic trends are non-monotonic with temperature.  
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6.1.4 Structure and Phase Transitions of Carbonaceous Mesophase Binary 

Mixtures Under Uniaxial Extensional Flow (Chapter 4) 

The extended Maier-Saupe model for binary mixtures of discotic nematogenes 

incorporates the effect of steady uniaxial extensional flow on the orientational 

structure and molecular order of carbonaceous mesophase mixtures. The 

concentration and molecular weight dependence of the rotational diffusivity of each 

component in a mixture, which has a contribution to the flow term, is formulated 

using the excluded volume of discotics in a binary mixture and a novel power law 

scaling relation between molecular size and molecular weight. The thermo-

rheological phase diagram of each component within the mixture is obtained and 

indicates that mixing high and lower molecular weight nematogenic species 

introduces asymmetric coupling effects, such that the higher molecular weight 

component changes the flow-induced structures of the lower molecular weight 

component, but that the converse is not true. Comparing the thermo-rheological 

phase diagram of single component with the binary one shows that the behavior of 

high molecular weight component is close to the pure system. However, the 

thermorheological behavior of the low molecular weight component is starkly 

different than for the pure system. The deviations from the pure species response to 

extensional flow are due to viscoelastic coupling effects.  New expressions for 

ODF and X-ray intensity in binary mesogenic mixtures are also derived and are 

used to map the different regions of the thermo-rheological phase diagram. The 

results provide a foundation in mixing to manipulate extensional flow-induced 

structures in carbon fiber-forming processes. 

6.1.5 Structural Modeling of Carbonaceous Mesophase Amphotropic Mixtures 

under Uniaxial Extensional Flow (Chapter 5) 

The extended Maier-Saupe model for binary mixtures of discotic nematogenes is 

used to investigate the effect of steady uniaxial extensional flow and concentration 

of the components on the orientational structure and molecular order of 

carbonaceous mesophase mixtures. Through solving the governing equations 

obtained in this work a generic thermo-rheological phase diagram containing four 

transition lines and twelve orientational and structural regions are obtained. The 
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computational results show that depending on the concentration of the system an 

asymmetric viscoelastic coupling is generated between the components such that 

the dominant component changes the flow-induced structures of the slaved 

component, but that the converse is not very significant. Comparing the thermo-

rheological phase diagram of single component with the binary one shows that the 

flow-response of the dominant component is close to the pure system but the 

behavior of the slaved one is very different. The deviations from the pure species 

response to extensional flow are due to coupling effects. The dominant component 

is selected by the combination of thermotropic and lyotropic (dilution) effects. The 

present work provides a rational approach to tune extensional flow strength and 

concentration to achieve tailored induced structures in carbon fiber-forming 

processes. 

     6.2 Contributions to Original Knowledge 

1. The statistical mechanics-based Maier-Saupe model was extended to the binary 

DNLC mixtures. 

2. The effect of molecular weight, molecular interaction and composition of carbon 

fiber precursors on structural order has been characterized;  

3. The presence of ideal and non-ideal binary mixtures has been identified and 

explained in terms of molecular interaction and molecular weight asymmetry.  

4. The critical concentration corresponding to the minimum transition temperature 

for each ideal mixture is reported. 

5. The mathematical model to evaluate the molecular interaction between the 

components is derived.  

6. The model of X-ray diffraction intensity as a function of the orientation 

distribution function is derived and used to assess orientation and order in the 

mixture.  

7. The equations of orientational specific heat and entropic behavior of DNLC 

mixtures are derived. These quantities are used to evaluate the transition 

temperature of each mixture and to determine the type of mixture behavior (ideal 

and non-ideal). 
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8. The molecular weight dependency of the rotational diffusivity of   discotic 

mesogens within the mixture through the excluded volume of each component is 

derived.  

9. The thermodynamic Maier-Saupe mixture model is extended to incorporate 

uniaxial extensional flow.  The extended model is used to construct thermo-

rheological phase diagrams that predict the structural features of a mesogenic 

mixture at given temperatures and extension rates. 

10. X-ray diffraction intensity of each component in the presence of extensional 

flow is modeled; this quantity is then employed to evaluate the degree of biaxiality 

and the ordering structure of each component at different temperatures and flow 

intensities.  

11. Thermotropic/lyotropic cooperation/competition effects of the DNLC mixture 

at different temperatures and flow intensities are evaluated.  

12. The effect of concentration on the thermo-rheological phase diagram of each 

component within the mixture is investigated; the generic thermo-rheological phase 

diagram which can serve as the orientational map of the binary mixture to select the 

proper raw material, processing temperature and flow conditions for a specific 

application is obtained.  

6.3 Validations  

The derived theoretical models, the solution algorithm and some of the 

computational predictions of this work are validated by theoretical, numerical and 

experimental observations previously reported in the literature. The validations 

include the following predictions:  

• The thermodynamic behavior of the pure system (in terms of  S-Tr) obtained in 

chapter 2 (Figure 2-6) agrees quantitatively with both numerical
1, 2

 and 

experimental
1-3

 observations. 

• The nematic/isotropic transition temperature ( TNI ) depression due to the 

mixing effect predicted for non-ideal mixtures  in chapter 2 (Figures 2-8 and 2-

9), is qualitatively consistent with both numerical 
2, 4

 and experimental
2
 

observations. 
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• The X-ray intensity-based  prediction of the ODF reported in chapter 2 (Figure 

2-12) is quantitatively verified by both numerical
5
 and experimental

5, 6
 X-ray 

trends.  

• Heat capacity trends predicted in chapter 3 (Figure 3-7) are qualitatively 

validated with experimental observations
7-9

.  

• The Mw dependency of the rotational diffusivity of the discotic components 

reported in chapter 4 is validated qualitatively with experimental observations
10

. 

• The formation of the field-induced paranematic phases reported in chapter 4 (in 

Figure 4-8 for instance) is validated qualitatively with both numerical
11-18

 and 

experimental
12

 results.  

• The ordering trend in the vicinity of the transition temperature and the 

formation of the characteristic parabola composed of  phase transition points for 

different field intensities reported in chapter 4 (Figure 4-12a) is validated with 

the numerical
11, 12, 14

 and experimental
12

 observations. 

•  The formation of the uniaxial oblate structure in the paranematic phase under  

extensional flow effects observed in chapters 4 and 5 (in Figure 4-7 and 4-10 

for instance) is validated by the formation of the oblate structure under the 

extensional and compressional flow in pure discotic systems reported
19

 and 

agrees with random planar structure observed in CM based CFs
20

.  

• The fact that the director n is restricted to the compression plane, reported in 

chapters 4 and 5, is validated with the reported numerical results
21

 and agrees 

with the 2D orientation patterns in CM based CFs observed experimentally
9, 22

. 

• The X-ray intensity observation, as the representation of ODF, in the presence 

of external field reported in chapter 4 (Figures 4-13 to 4-15) is quantitatively 

verified by both numerical investigation of ODF of the pure system under the 

electric field
23

 and experimental
24

 X-ray trends. 

6.4 Recommendations for future work 

1. The thermo-rheological behavior of DNLC mixtures in the intermediate 

concentration region can be studied. Competitive ordering structures are expected 

to be observed in this region.  
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2. To achieve the final structure of carbon fibers in the fiber spinning process 

mesoscopic theories such as Landau de Gennes theory
1, 25

  have to be employed. 

Mesoscopic theories have parameters that are difficult to measure. The Maier Saupe 

model used in this thesis can be used to predict these model parameters. 

3. Thermodynamic and thermo-rheology investigations of the mixture of dissimilar 

molecules (discs and rods) can be investigated by the present Maier-Saupe theory. 

Mixtures of rods and disks can represent carbon nanotube/liquid crystalline 

composites. The current model can be used to describes rod/disc mixtures with the 

following changes : (i) a negative interaction parameter has to be used as β (see 

chapter 2, section 2.2), (ii) the rheological shape factor of rods is positive (see chapter 

4, section 4.3), and (iii) in the excluded volume of each component in the mixture of 

dissimilar molecules in the rotational diffusivity model  a new expression for the 

excluded volume of each component has to be derived (see chapter 4, section 4.3).  

4. The molecular dynamic, stress tensor and rheological behavior 
26

 of DNLC 

mixtures can be obtained by using the orientation distribution function (see chapter 2, 

section 2.4.2 and section 2.7.2 and chapter 4, section 4.4), tensor order parameter (see 

chapter 4, section 4.2) and nematic potentials (see chapter 4, section 4.3) obtained in 

the present thesis.   
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A. Appendix I: Numerical methods 

 

A1.1 Integral evaluation (Simson Quadrature)  

In numerical analysis, Simpson's rule is a method for numerical integration, the 

numerical approximation of definite integrals. Specifically, it is the following 

approximation: 

( ) ( ) ( )4
6 2

b

a

b a a b
f x dx f a f f b

−  +  ≈ + +  
  

∫               (A.1) 

Figure A-1 shows the integrand f(x) which is approximated by the quadratic 

interpolant P(x), [a, b] as the interval and m the mid point of this interval. 

 

 

Figure A- 1.  Simpson's rule can be derived by approximating the integrand f (x) by the 

quadratic interpolant P(x) [1]. 

If the interval of integration [a, b]  is in some sense "small", then Simpson's rule 

will provide an adequate approximation to the exact integral. By small, what we 

really mean is that the function being integrated is relatively smooth over the 

interval [a, b]. For such a function, a smooth quadratic interpolant like the one 

used in Simpson's rule will give good results. However, it is often the case that the 

function we are trying to integrate is not smooth over the interval. Typically, this 

means that either the function is highly oscillatory, or it lacks derivatives at 

certain points. In these cases, Simpson's rule may give very poor results. One 

common way of handling this problem is by breaking up the interval [a, b] into a 
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number of small subintervals. Simpson's rule is then applied to each subinterval, 

with the results being summed to produce an approximation for the integral over 

the entire interval. This sort of approach is termed the composite Simpson's rule. 

Suppose that the interval [a, b] is split up in n subintervals, with n an even 

number. Then, the composite Simpson's rule is given by 

( ) ( ) ( ) ( ) ( )
/2 1 /2

0 2 2 1

1 1

2 4
3

b n n

j j n

j ja

h
f x dx f x f x f x f x

−

−
= =

 
≈ + + + 

 
∑ ∑∫            (A.2) 

where h is the interval between each two xj and xj+1 points. This method has been 

employed for the integral evaluation in this thesis
1
.  

A.2 Newton-Raphson as an iteration method to solve nonlinear equations 

Newton-Raphson iterative method is considered as a very powerful method with 

fast convergence, yet not fool-proof
2
 to solve non-linear equations. Here this 

method is explained. For a single equation: 

 f(x)=0 

the problem is to find α=x  such that 0)( =αf . Assume that a Taylor series 

expansion of f(x) follows: (the function is regular at α=x ) 

   ( ) ( ) ( ) ( )
...

2

f x
f x f x f xδ δ δ

′′
′+ = + + +               (A.3) 

For small values of δ  and for well behaved functions, the terms beyond linear are 

not important, hence ( ) 0=+ δxf  implies 

( )
( )xf

xf
'

−
=δ                     (A.4) 

so the recursion relation is 
( )
( )1 '

i

i i

i

f x
x x

f x
+ − = −  with i being the iteration number and 

the new iteration becomes 
( )
( )1 '

i

i i

i

f x
x x

f x
+ = − .  

For a system of non-linear equations: 
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                 (A.5) 

 

or ( ) 0=xf   

or ( ) 0=ji xf       i, j=1,2,….n 

 

To apply Newton-Raphson we expand  f  around the thK  iterative  
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∂
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where 
( ) ( )i j j i ji

j j

f x x f xf

x x

+ ∆ −∂
=

∂ ∆
 is the numerical differentiation and is called the 

Jacobian Matrix, 
j

i

ij
x

f
J

∂

∂
= . To find the solution: 

∑
=

−+ −=
n

j
x

ji

k

j

K

j K
Jxx

1

11    ( )k

ji xf        

fJxx
KK

.
11 −+ −=                  (A.7) 

To check the convergence the value of f  and the difference between successive 

values of x  are used: 

ε<−+ 21 ii xx  is the convergence criterion where  610~ −ε  is usually assumed.  

The algorithm of this method is given in Figure A-2. 
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Figure A- 2. Newton-Raphson Algorithm. 

 
The Newton-Raphson method has been used in this thesis to solve nonlinear 

algebraic equations. At a specific temperature, an initial guess is assumed and fed 
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to the integral term. The integral term is then evaluated by the Simpson method and 

then the equation is solved by the Newton-Raphson algorithm, as in figure A-2. The 

zeroth order continuation method is employed to obtain the initial guess at a 

specific temperature. For the first temperature, an initial guess is assumed but for 

the next ones the solution achieved at T0 is used as the initial guess for the next 

temperature T1. Simply        

( ) ( ) ( ) ( )
0

1 0 1 0

T

d
T T T T T HOT

dT
= = + − +initial

u
u u u                                           (A.8) 

So in the zeroth order continuation: 
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1 1 0 10
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u
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