
Low-Latency BERT Inference for

Heterogeneous Multi-Processor Edge Devices

Murray Kornelsen

Department of Electrical & Computer Engineering

McGill University

Montréal, Québec, Canada

April 15, 2023

A thesis presented for the degree of Masters of Science

©2023 Murray Kornelsen

i

Abstract

Popular transformer-based Deep Neural Networks (DNNs) such as Bidirectional Encoder

Representations from Transformers (BERT) have achieved state-of-the-art accuracy in

Natural Language Processing (NLP) tasks. However, these models often have high

compute and memory requirements, resulting in high inference latency. This is especially

problematic when targeting edge deployment, as edge devices have limited computational

resources compared to cloud servers. Therefore, we aim to improve edge inference latency

of BERT and other DNNs, which may enable improved user experience in many Artificial

Intelligence (AI) enhanced applications.

In this work, we propose a heterogeneous mapping optimizer called DNN-Specific

Mapping Optimizer (DNN-SMO), with the goal of utilizing multiple Processing Elements

(PEs) in parallel to accelerate inference. This leads to the challenge of efficiently mapping

DNN operations to heterogeneous processing elements. For a large neural network, the

number of potential mappings of DNN operations to processing elements scales

exponentially, necessitating the use of heuristic algorithms. DNN-SMO is based on Genetic

Abstract ii

Algorithm (GA). Through intelligent initialization and a customized mutation operation,

DNN-SMO is able to evaluate 20x fewer generations while finding superior CPU-GPU

mapping configurations compared with a baseline GA. Using DNN-SMO, we find device

placement configurations that achieve 15%, 24%, and 31% inference speed-up for BERT,

SqueezeBERT, and InceptionV3, respectively compared to unpartitioned execution.

Furthermore, while DNN-SMO assumes 32-bit floating point data, we also propose a

second optimizer which optimizes both the mapping to processing elements and quantization

of DNN operations. Because quantization results in accuracy drops compared to fp32, this is

a multi-objective optimization problem, resulting in an accuracy-latency Pareto optimal set

of models, rather than a single optimal configuration. Using this method, we find that BERT

can be accelerated by over 60% compared to fp32 inference on the CPU. Furthermore, we

find up to 20% acceleration over int8 quantization while maintaining accuracy comparable

to fp32.

Additionally, due to limitations in existing edge inference frameworks, especially with

respect to quantization support, we developed a BERT implementation based on ARM

Compute Library (ARMCL), which we call ARMCL BERT. Using ARMCL BERT, we are

able to measure the performance and energy consumption of BERT models on different

ARM based edge devices, on both the CPU and GPU, and at fp32, fp16, and int8 precisions.

We also explore the performance of popular BERT variations, most importantly I-BERT.

However, the main point of developing ARMCL BERT is to enable the multi-objective

Abstract iii

optimization of both quantization and device assignment, which was not possible using

existing frameworks.

iv

Abrégé

Les réseaux de neurones profonds basés sur des transformateurs populaires tels que BERT

ont atteint une précision de pointe dans les tâches de traitement du langage naturel (NLP).

Cependant, ces modèles ont souvent des exigences de calcul et de mémoire élevées, ce qui

entrâıne une latence d’inférence élevée. Cela est particulièrement problématique lors du

ciblage du déploiement en périphérie, car les appareils en périphérie ont des ressources de

calcul limitées par rapport aux serveurs cloud. Par conséquent, nous visons à améliorer la

latence d’inférence de bord de BERT et d’autres DNN, ce qui peut permettre une expérience

utilisateur améliorée dans de nombreuses applications améliorées par l’IA.

Dans ce travail, nous proposons un optimiseur de cartographie hétérogène appelé

DNN-SMO, dans le but d’utiliser plusieurs éléments de traitement (PE) en parallèle pour

accélérer l’inférence. Cela conduit au défi de mapper efficacement les opérations DNN sur

des éléments de traitement hétérogènes. Pour un grand réseau de neurones, le nombre de

mappages potentiels d’opérations DNN sur des éléments de traitement évolue de manière

exponentielle, ce qui nécessite l’utilisation d’algorithmes heuristiques. DNN-SMO est basé

Abrégé v

sur des algorithmes génétiques (AG). Grâce à une initialisation intelligente et à une

opération de mutation personnalisée, DNN-SMO est capable d’évaluer 20 fois moins de

générations tout en trouvant des configurations de mappage CPU-GPU supérieures par

rapport à un AG de base. À l’aide de DNN-SMO, nous trouvons des configurations de

placement d’appareils qui atteignent une accélération de l’inférence de 15%, 24% et 31%

pour BERT, SqueezeBERT et InceptionV3, respectivement.

De plus, alors que DNN-SMO suppose des données à virgule flottante 32 bits, nous

proposons également un deuxième optimiseur qui optimise à la fois le mappage aux éléments

de traitement et la quantification des opérations DNN. Étant donné que la quantification

entrâıne des baisses de précision par rapport à fp32, il s’agit d’un problème d’optimisation

multi-objectifs, résultant en un ensemble optimal de modèles Pareto précision-latence, plutôt

qu’une seule configuration optimale. En utilisant cette méthode, nous constatons que BERT

peut être accéléré de plus de 60% par rapport à l’inférence en virgule flottante 32 bits sur le

CPU. De plus, nous trouvons jusqu’à 20% d’accélération sur la quantification int8 tout en

conservant une précision comparable à fp32.

De plus, en raison des limitations des cadres d’inférence de périphérie existants, en

particulier en ce qui concerne la prise en charge de la quantification, nous avons développé

une implémentation BERT basée sur ARM Compute Library (ARMCL), que nous

appelons ARMCL BERT. En utilisant ARMCL BERT, nous sommes en mesure de mesurer

les performances et la consommation d’énergie des modèles BERT sur différents appareils

Abrégé vi

périphériques basés sur ARM, à la fois sur le CPU et le GPU, et aux précisions fp32, fp16

et int8. Nous explorons également les performances des variantes BERT populaires,

notamment I-BERT. Cependant, le point principal du développement d’ARMCL BERT est

de permettre l’optimisation multi-objectifs de la quantification et de l’affectation des

appareils, ce qui n’était pas possible avec les cadres existants.

vii

Acknowledgements

First and foremost, I am grateful to my supervisor, Professor Warren Gross who accepted

me into this program and whose ideas and knowledge are the basis for my research. I am

thankful to you for giving me this opportunity and for believing in me. I am thankful for your

guidance throughout this whole journey. I would like to express my gratitude to Professor

Brett Meyer, Professor James Clark, and Dr. Seyyed Hasan Mozafari who have worked with

me throughout my research, and have provided invaluable assistance both with technical

work and with writing. I am deeply thankful for the time you have dedicated to helping me

and your feedback and ideas have helped me tremendously.

I would also like to express my appreciation for my colleagues. I especially thank Hung-

Yang Chang and Milad Ebrahimipour who discussed various ideas and approaches and gave

me feedback in our weekly meetings. I am also grateful for the assistance of Lily Li and

Negin Firouzian, who helped with setting up and operating the HiKey970 board which was

crucial for my research. I also thank Charles Le, who discussed various ideas with me and

inspired some of my ARM Compute Library developments.

Acknowledgements viii

I express my gratitude to my long-time friends Matthew McGregor and Andrew Mack,

whose friendship outside of work helped keep me sane. Finally, I would like to give my

sincere thanks to my family, who have always believed in me and supported me. It is only

your support and love that has allowed me to complete this journey.

ix

List of Figures

3.1 BERT Architecture . 20

3.2 BERT input representation [1] . 22

3.3 Scaled Dot-Product Attention and Multi-Head Attention, where Multi-Head

Attention combines several SDPA operations. The number of SDPA

operations is defined by H, the number of attention heads [2]. 24

3.4 A two-layer Feed Forward Network (FFN). Input with width H is projected

to width I and then down-projected back to H 26

4.1 The proposed DNN mapping optimization framework. 35

4.2 InceptionV3 Module Implemented in ARMCL for Latency Model Validation 39

4.3 Visualization of preprocessing to determine parallelizable nodes. 43

4.4 Visualization of custom mutation based on Figure 4.3. a) Gene structure.

b) Weighted mutation probability. c) Example of single-gene mutation. d)

Example of branch-level mutation. 44

x

5.1 An abstract block diagram of ARM big.LITTLE heterogeneous CPU clusters

in HiKey970 embedded platform. Note that we do not include GPU and NPU

of HiKey970 in this diagram. 53

6.1 Chart of generation vs fitness showing improved convergence with DNN-SMO.

In this example, the BERT configuration is hidden size 512, 2 attn. heads, 6

hidden layers. 58

6.2 Ablation study showing the impact on GA convergence for the individual

components of our optimizer: Custom Initialization, Weighted Mutation, and

Branch Mutation. We use InceptionV3 in this test. 61

6.3 Chart comparing the convergence of alternative heuristic optimizers. In this

example, the BERT configuration is hidden size 512, 2 attn. heads, 6 hidden

layers. 64

6.4 Example Pareto Front from NSGA-II Optimization 73

xi

List of Tables

4.1 Profiled BERT model parameters . 36

4.2 Operation-level Latency of InceptionV3 Module on CPU & GPU using ARMCL 38

4.3 Latency Model Prediction vs ARMCL Measurement for 4 Unique Device

Mapping Configurations . 40

6.1 Baseline GA vs DNN-SMO . 60

6.2 Latency model results for DNN models using heterogeneous CPU-GPU

execution. BERT configurations specified with hidden size, attention heads,

number of hidden layers. All BERT models have sequence length 128 and

feed-forward size = 4x hidden size. Also included are tests on popular CNN

models SqueezeBERT [3], InceptionV3 [4], and SqueezeNet [5]. 63

6.3 BERT-base Latency Measurements . 69

6.4 Latency of BERT Variants . 71

xii

List of Acronyms

AI Artificial Intelligence.

ARMCL ARM Compute Library.

BERT Bidirectional Encoder Representations from Transformers.

CNNs Convolutional Neural Networks.

CPU Central Processing Unit.

DNNs Deep Neural Networks.

DNN-SMO DNN-Specific Mapping Optimizer.

DSE Design Space Exploration.

FC Fully Connected.

FFN Feed Forward Network.

FLOP floating point operation.

FLOPS floating point operations per second.

GA Genetic Algorithm.

GELU Gaussian Error Linear Unit.

List of Acronyms xiii

GEMM General Matrix-Matrix Multiply.

GPU Graphical Processing Unit.

HMPSoCs Heterogeneous multi-processor systems-on-chips.

IoTs Internet of Things.

MHA Multi-head Attention.

ML Machine Learning.

NLP Natural Language Processing.

NN Neural Network.

PEs Processing Elements.

POF Pareto-optimal Front.

ReLU Rectified linear unit.

SDPA Scaled Dot-Product Attention.

SIMD Single Input Multiple Data.

SoCs Systems-On-Chips.

TFlite Tensorflow Lite.

1

Chapter 1

Introduction

1.1 Influence of Deep Neural Networks on AI

Deep Neural Networks (DNNs) are the backbone of many Artificial Intelligence (AI)

applications, and have been pushing the capabilities of AI in countless ways. For Natural

Language Processing (NLP) in particular, the transformer architecture [2] has taken over

for many real-world tasks. Bidirectional Encoder Representations from Transformers

(BERT) models [1], which are based on the transformer architecture, offer a pre-trained

generalizable language model which has been able to achieve state-of-the-art results on

many downstream tasks such as question answering, natural language inference,

information extraction, and semantic similarity. Moreover, BERT has been integrated into

systems such as the Google Search engine to better understand queries and generate

1. Introduction 2

higher-quality search results [6].

1.2 Importance of Edge Computing for AI

Currently, the number of edge devices is exploding, with the number of Internet of Things

(IoTs) devices expected to reach 30 billion by 2025 [7]. In many cases, the processing these

devices need to perform will be best handled by a DNN [8]. For example, voice assistants

such as Amazon Alexa [9] and Google Nest [10] may require heavy language processing using

DNNs. Currently, this processing would be performed by sending data to cloud servers [11].

However there are many benefits to performing the DNN computation directly on the device.

1.3 Benefits of Edge Computing

Some of the advantages that motivate research into edge computing, especially for DNNs,

are the following:

1. Privacy:

Because cloud computing requires that user data is sent to servers over the internet,

users have to trust that the service provider is protecting their data and using it

responsibly [12]. Edge computing, on the other hand, allows user data to remain

completely local.

1. Introduction 3

2. Network Dependency:

When a device or application depends on cloud computing to function, it may stop

working if a network goes down. This is of particular importance for safety critical

applications, such as medical devices [13].

3. Lower Latency:

Network operations can take a long time, depending on the amount of data sent, the

speed of the network, and the distance between the server and device. In many cases,

removing networking communication from a DNNs deployment can decrease latency,

leading to a better experience for the end-user [14].

4. Lower Energy Use:

Because edge devices often prioritize efficiency over computational power, moving

DNNs inference to the edge may save a huge amount of energy [15]. Furthermore,

sending data over the internet is another energy-intensive operation which may be

reduced by edge computing.

1.4 Challenges of Edge Computing

While edge computing has clear advantages, there are also two main challenges with its

implementation:

1. Memory Limitations:

1. Introduction 4

Modern DNNs may require gigabytes of memory [16]. For example, the BERT-base

model has 110 million parameters, requiring roughly 450 MB of memory [3].

Meanwhile, low-power Systems-On-Chips (SoCs) and modern embedded GPUs

typically contain 8KB-512MB of RAM [17, 18]. Smartphones may have multiple GB

of memory, but this memory may be shared between many applications running

concurrently [19]. These factors significantly limit DNNs execution on edge devices.

2. Low Computational Power:

In addition to large memory requirements, modern DNNs also require a huge number

of floating point operation (FLOP)s. For example, BERT-base has 110 million

parameters [1] and requires 21 GFLOPs [20] for inference. Additionally, research is

trending towards larger and computationally heavier networks [21]. In addition to

larger parameter counts, the complexity of operations in deep neural networks

(DNNs) is also growing, as operations such as multi-head attention [1, 2] are used in

addition to the classic convolution and fully-connected layers. On cloud servers,

DNNs can be massively accelerated by using GPUs, which are able to perform many

FLOPs in parallel. However, on edge devices, the maximum speed of math operations

will be much lower than a server processor, leading to much higher inference latency.

For example, [3] reports a 1.69 second latency for BERT-base on a Pixel 3

smartphone. For many applications, a high inference latency will severely degrade the

user experience.

1. Introduction 5

1.5 Heterogeneous Edge Computing

In order to facilitate the deployment of such large complex machine learning models to edge

devices, one approach is to utilize heterogeneous computing [22–26]. Modern edge devices are

usually equipped with a multi-core ARM CPU and mobile GPU [19]. For high-end systems,

an NPU (Neural Processing Unit) [19] may be included specifically for DNN acceleration.

These heterogeneous processing elements (PEs), such as CPU, GPU, and NPU, may be used

in parallel to accelerate DNN inference [27].

1.6 Challenge of Heterogeneous Mapping and

Scheduling

Unfortunately, finding the optimal mapping of DNN operations to available hardware is a

huge challenge, and current methods are extremely time consuming. To understand why, we

look to the computational graph of BERT. Using the TVM library [28], the BERT-base graph

contains ∼600 operations, where an operation usually represents a matrix multiplication or

tensor reshape. Assuming each of these operations may be assigned to one of two PEs (e.g.

CPU or GPU), there will be 2600 potential configurations. To find near-optimal configurations

in such a huge design space, we need to use heuristic methods such as reinforcement learning

[29], genetic algorithms [24], etc. [30]. The main drawback of these referenced methods is

that they are extremely slow (e.g. requiring 20+ hours on a large cluster [29]).

1. Introduction 6

1.7 Problem Statement

We aim to improve the latency of BERT inference on edge devices with heterogeneous

CPU-GPU systems, which is critical for providing the best user experience in soft real-time

applications. We also aim to perform this optimization as quickly as possible, enabling

faster development and deployment of edge inference applications.

1.8 Past Work and Limitations

Recent research has employed two different strategies for optimizing DNN latency on

heterogeneous embedded systems:

1.8.1 Mapping and Scheduling Optimization

Existing mapping and scheduling optimization methods can be divided into two main

categories:

Pipeline partitioning [22–24, 31]: In pipelining methods, the computation graph of a

DNN is partitioned into sub-graphs that are run sequentially on different PEs. Pipelining

aims to optimize for DNN throughput rather than single-inference latency, and is not the

focus of this work.

1. Introduction 7

Operation-wise partitioning [14, 24, 25, 29]: In these approaches, DNN operations are

partitioned such that heterogeneous PEs are used in parallel to process a single DNN input.

This can be done either by processing each operation on all PEs [25] or by processing parallel

branches of the computational graph on different PEs [24, 29]. These methods optimize for

inference latency, which is critical for a smooth user experience in many applications. They

also have the benefit of spreading a DNN across the memory of multiple processing elements,

which can enable larger DNNs to be deployed on memory-constrained embedded systems.

However, these methods are challenged by communication and synchronization costs between

Processing Elements (PEs), as well as the previously discussed cost of searching the operation

mapping massive design space.

1.8.2 Model Optimizations

There are many optimization techniques that aim to reduce model size while maintaining as

much accuracy as possible. These methods can be broadly categorized into:

Knowledge Distillation [3, 32, 33]: These methods aim to transfer the knowledge of a

large teacher network to a smaller student network which can have better inference latency.

Quantization [34–36] These methods utilize smaller datatypes, often integer types with

8 or fewer bits, instead of the 32 bit floating point type which is usually the default. This

results in a huge memory saving and, depending on the hardware, sometimes lower latency.

1. Introduction 8

There are multiple methods of converting full precision DNNs into quantized models, with

varying performance in terms of accuracy and latency.

Pruning [37–40] These methods aim to remove certain weights and activations from the

network which are deemed unnecessary for accurate inference. This results in sparse networks

which can save both memory and computation.

1.9 Thesis Objective and Contributions

The objective of this thesis is to show how inference latency of BERT models can be improved

through heterogeneous computing. We make the following contributions:

1. We develop and utilize latency models for DNNs on heterogeneous embedded systems,

which allow us to quickly evaluate mapping/scheduling decisions. We use the HiKey970

[41] in this work, as it is representative of modern edge hardware.

2. Based on a genetic algorithm, we develop a DNN-specific mapping optimizer (DNN-

SMO), which employs a customized initial population and mutation operation to (a)

find lower-latency PE assignments, and (b) converge over 20x faster than an unmodified

GA. While our DNN-Specific Mapping Optimizer (DNN-SMO) is optimized especially

for BERT models, it can also be applied to other architectures.

3. We utilize DNN-SMO to, for the first time, apply heterogeneous execution to BERT

1. Introduction 9

models on embedded hardware.

4. Using DNN-SMO, we find mappings with 15%, 24%, and 31% inference latency

reductions for BERT, SqueezeBERT, and InceptionV3, respectively (compared to

execution on a single processor). DNN-SMO finds these mappings using over 20x

fewer iterations than a baseline GA.

5. In addition to DNN-SMO, which performs a single-objective optimization for minimum

latency, we also build an NSGA-II based optimizer which incorporates quantization and

performs a multi-objective optimization for both accuracy and latency.

6. We implement a high performance BERT model for ARM CPU and GPU using

ARM Compute Library, which allows for performance measurement at fp32, fp16,

and int8 precisions. We utilize this BERT implementation to generate performance

measurements for the aforementioned multi-objective optimization.

1.10 Thesis Structure

This thesis is organized into seven chapters. Chapter 2 provides a comprehensive literature

review of existing methodologies, their limitations, and potential directions we could include

in future work. Chapter 3 reviews the BERT-base model and software frameworks we utilize,

such as ARMCL and TVM. Chapter 4 describes the proposed methodology, and Chapter 5

details the experimental setup, both hardware and software. Finally, Chapter 6 illustrates

1. Introduction 10

our experiments and results, and Chapter 7 closes with a conclusion and suggestions for

future work.

11

Chapter 2

Literature Review

There exists a large number of works with the goal of improving DNNs latency, accuracy,

and throughput. Past DNNs optimization work can be divided into two main categories:

mapping and scheduling optimization, and DNNs optimization.

2.1 DNN Mapping and Scheduling Optimization

Mapping and scheduling optimization focuses on maximizing the utilization of available

hardware resources. This can be accomplished in various ways, which we discuss below, but

the overall goal is usually to assign tasks to different processing elements to be executed in

parallel. Ideally, this enable a significant improvement in latency and/or throughput for a

computational task, such as a neural network.

2. Literature Review 12

2.1.1 General

The problem of scheduling acyclic task graphs on heterogeneous systems has been studied

for nearly two decades [42,43]. For instance, [43] explores different mapping and scheduling

alternatives and intelligently limits unfeasible solutions, while [42] ranks tasks based on

their average execution time on all processing elements (PE), attempting to start the

highest priority tasks as early as possible, using a greedy algorithm. To contrast, our

method utilizes a genetic algorithm for optimization, as well as taking DNN-specific

knowledge into account to improve the search process. More recent work [44] applies ideas

very similar to ours for scheduling generic tasks on a heterogeneous system. Generally,

they incorporate schedulability analysis and task latency information to build an improved

genetic algorithm (ImGA). Like us, [44] uses domain-specific information to guide the

genetic algorithm, however our work is the first to do so in the context of DNNs, leading to

fundamentally different modifications to the GA.

2.1.2 Layer-wise & Pipeline Partitioning

There is a large body of work [14, 22–24, 31] which looks at pipelining of multiple DNN

inferences: In these methods, a DNN computational graph is divided into sequential

sub-graphs, each of which can be assigned to the (available) PE that executes it fastest. In

some works [22, 23, 31], this is combined with pipelining to optimize processing element

utilization, leading to higher DNN throughput. This method is particularly useful when

2. Literature Review 13

memory constraints prevent an entire graph from fitting on a single PE. As a

representative example, [22] handles the common case of an ARM big.LITTLE SoC. They

break Convolutional Neural Networks (CNNs) into consecutive segments, enabling multiple

inferences to be pipelined between the two CPU clusters. As a result of reduced

inter-cluster communications, they achieve significant throughput improvements. However,

for single-inference latency (which is our focus in this work), the lack of parallelism

between PEs means latency improvements will be limited, especially on embedded systems

where CPU and GPU performance are similar [25].

2.1.3 Operation-wise Partitioning

There are also many works [24, 29, 45] which deal with single inference on heterogeneous

systems: In these methods, the DNN operations are individually assigned to heterogeneous

PEs, with the goal of parallelizing branches of the computational graph. Compared to

the low-level operator partitioning methods, this may decrease synchronization overhead,

as each processor is working on independent data. The work most similar to ours is [24],

which schedules DNNs on heterogeneous embedded systems at the operation level. They

use a genetic algorithm to optimize popular convolutional networks. However, their genetic

algorithm is not provided with any DNN-specific information. While we also use a genetic

algorithm for optimization, we demonstrate that search efficiency can be greatly improved

by intelligently guiding the optimizer.

2. Literature Review 14

2.1.4 Application/Task-level Parallelism

Lastly, there are many works [24, 26, 46] that deal with higher level parallelism, which we

call application-level or task-level: In these methods, the case of multiple DNN applications

running on the same (heterogeneous) system is considered. In this case, it may seem simplest

to assign each application to a single PE. However, if operations in the individual DNNs favor

different processors, it may be possible to share all PEs between applications. This requires

complex optimization methods, especially when strict timing deadlines are involved. For

a specific example, [26] considers multiple DNNs on a CPU/GPU system. They perform

layer-wise partitioning on all the networks, and then develop a method to assign layers to

processing elements to maximize schedulability. This level of parallelism is orthogonal to

our work.

2.2 DNNs Optimization

While mapping and scheduling optimization focuses on optimizing the utilization of

hardware resources, another approach is to modify DNNs to minimize memory

consumption and/or flops without a significant decrease in accuracy. These optimization

techniques can be categorized into: knowledge distillation, quantization, pruning, and

efficient neural architecture design. Here, we describe some previous works that have

applied these techniques to BERT and NLP models, but they apply equally to CNNs.

2. Literature Review 15

2.2.1 Knowledge Distillation

Knowledge distillation is the process of transferring knowledge from a larger teacher network

to a more efficient student network. In most works, the student network is similar in structure

to the teacher network but with smaller parameter count. The goal is to create a student

network that requires less memory and fewer flops while maintaining most of the teacher

network’s accuracy. As a result, the student network is able to have significantly lower

latency than the teacher, while the distillation process is more efficient that training from

scratch. Related works include SqueezeBERT [3], DistilBERT [32], MobileBERT [33], and

DynaBERT [47].

2.2.2 Efficient Neural Architectures

Another approach to reducing memory and floating point operations per second (FLOPS)

is to significantly modify the network’s structure for lower complexity and higher

computation efficiency. Some examples include SqueezeBERT [3] uses grouped operations

to replace default BERT operations, MobileBERT [33] which uses a bottleneck

architecture, and ALBERT [48] which uses parameter sharing.

2.2.3 Pruning

Pruning involves the introduction of sparsity into networks. This is accomplished by

removing certain connections of weights or activations, often by setting a weight to 0. One

2. Literature Review 16

technique is to remove values from the network which are below a certain threshold, which

results in a sparse model with fewer computations and less memory required to execute.

Some example pruning works are [37–40]

2.2.4 Quantization

Quantization is a technique in which the parameters of a neural network are converted to

a smaller data type. Currently, most DNNs utilize 32 bit floating point values during both

training and inference. However, experiments have found that DNN parameters can be

reduced in size, sometimes even to 1 bit, without losing much accuracy. By reducing the size

of DNN parameters, the memory required for inference is massively reduced. Additionally,

depending on hardware and software support, quantization can also significantly reduce

latency. However, most GPUs are optimized to perform floating point math, which can

limit quantization deployment. Example works include Q8BERT [49], I-BERT [34], and

Qualcomm’s Transformer Quantization [35]

2.3 Combining Mapping and Scheduling with DNN

Optimization

LaLaRAND [50] combines quantization with layer-level mapping and scheduling optimization

to improve the schedulability of real-time DNN tasks. LaLaRAND achieves on average 80%

2. Literature Review 17

higher schedulability ratio compared to vanilla PyTorch with GPU.

For single inference latency, one previous work is ulayer [27], which splits convolution

computation between the CPU and GPU by having each PE process a disjoint set of the

output channels. Additionally, they find that int8 is optimal for latency on the CPU while

fp16 is optimal on the GPU, and quantize layers accordingly for minimum total latency.

While this method avoids the problem of operation-level mapping optimization, it suffers

from high communication and synchronization costs, especially for fully-connected layers.

Additionally, by consuming both CPU and GPU for every operation, their method under-

utilizes operator-level parallelism, which is more efficient as it requires less synchronization.

For this reason, we focus on exploiting parallelism at the operator level.

18

Chapter 3

Background

3.1 BERT

BERT [1] is a pre-trained language model, meaning that it provides a general model that

can be quickly fine-tuned to perform specific NLP tasks. Essentially, by performing a vast

and expensive pre-training process, a huge amount of time is saved when generating models

for specific tasks. For BERT, the pre-training was done using BooksCorpus [51] and English

Wikipedia text. From the raw text data, the authors created two unsupervised tasks designed

to instill BERT with general language capabilities. They call these tasks masked language

model (MLM) and next sentence prediction (NSP). In MLM, random words are masked

out of an input sentence and the BERT model is trained to predict the missing word. In

NSP, BERT is provided with two sentences and must determine whether the second sentence

3. Background 19

followed the first. The exact methods of generating these training tasks are detailed in [1]. In

theory, the MLM task taught BERT how words are related to each other within a sentence,

while NSP taught it how two sentences could relate to each other. This combination resulted

in a model able to handle a wide variety of NLP tasks, such as those in the GLUE benchmark

(section 3.1.4).

To fine-tune the pre-trained BERT model, an output layer is appended which can be

trained on a much smaller dataset for the specific task. For example, a common task is

to determine if a sentence is linguistically acceptable or not (CoLA [52]). Since this task

has two output classes (acceptable / not acceptable), a linear layer will be appended to the

BERT model that brings its output down to a vector of length 2. This extra layer can then

be trained using a standard loss function (often cross-entropy loss). As a result of BERT’s

pre-training process, [1] found that they were able to achieve state of the art accuracy with

minimal fine-tuning time, even with small task-specific datasets.

BERT is an example of a transformer [2] architecture, consisting of an embedding layer

followed by a stack of transformer encoders. Each encoder consists of two main operations:

Multi-head Attention (MHA) and Feed Forward Network (FFN). The structure of these

encoders is illustrated in Figure 3.1a. While the FFN section is a straightforward sequence

of two linear layers, the MHA is more complicated and is illustrated in Figure 3.1b. Notably,

the encoders used in BERT differ slightly from the original transformer work, replacing the

Rectified linear unit (ReLU) activation function with Gaussian Error Linear Unit (GELU)

3. Background 20

Multi-Head
Attention

Add+Norm

Feed-Forward
(FFN)

Add+Norm

(a) Transformer Encoder

Linear Linear Linear

Q K V

Self-Attention

Concat+Linear

Split
(n_heads)

Split
(n_heads)

Split
(n_heads)

Self-Attention
Self-Attention

Self-Attention
n_heads

(b) Multi-head Attention

Figure 3.1: BERT Architecture

3. Background 21

[1, 53].

The common architectural parameters of BERT are as follows:

1. Sequence Length (S): The number of input samples that the model can process

simultaneously.

2. Hidden Size (H): The width of token embeddings and the size of encoder inputs and

outputs.

3. Intermediate Size (I): The width used between the two layers of the FFN.

4. Hidden Layers (L): The number of transformer blocks (encoders) in the model.

In BERT-base, there are 12 transformer encoders, each of which uses a hidden size of

768 and an intermediate size of 3072. While sequence length can be set depending on the

application, we utilize a common length of 128 for consistency.

3.1.1 Input Embedding Layer

The functionality of BERT is designed to handle a wide variety of downstream tasks. To

achieve this, its input representation is able to unambiguously represent both a single

sentence and a pair of sentences (e.g., question and answer) in one token sequence. Figure

3.2 visualizes BERT’s input embeddings, which are the sum of the token embeddings, the

segment embeddings and the position embeddings.

3. Background 22

Figure 3.2: BERT input representation [1]

Firstly, the input sequence is padded to a fixed sequence length S, and each word in an

input sequence is embedded into a token using WordPiece embeddings [54] with a 30k token

vocabulary, wherein the embedding size is denoted as H. Secondly, BERT utilizes segment

embedding to pack a single sentence or a pair of sentences (e.g., question, answer) together

as one token sequence. Segment embedding is a learned embedding that indicates whether

a token in the input sequence belongs to the first sentence or the second one. After segment

embedding, positional embedding is applied to encode the position of the token in the input

sequence.

The input to the encoder is thus the summation of the token, segment, and position

embeddings. Note that the dimensions of the output of the embedding block depend on the

embedding size H of a token and the number of tokens in sequence S.

3. Background 23

3.1.2 Multi-Head Attention (MHA)

Within the Transformer architecture of [2], the main innovation is the use of MHA.

Previously, sequence modeling problems had been dominated by recurrent neural networks.

These had a few disadvantages, mainly that they could not be parallelized effectively and

that relationships between distant tokens could be lost. By utilizing an attention function

and eliminating recurrence, [2] addressed both of these issues and their work revolutionized

NLP.

In general, an attention function defines a mapping between a query (Q) and a set of

key-value (K -V) pairs to an output, all of these being vectors. By drawing Q, K, and

V from the same input sequence, we create a special case called self-attention. The goal

of self-attention is to relate different positions of a single sequence, which is critical for

language comprehension tasks. [2] also extends simple attention to MHA, which computes

multiple self-attention functions on the token sequence, each of which may encode a different

relationship between tokens.

While many attention functions are possible, [2] introduces Scaled Dot-Product Attention

(SDPA), which uses a dot-product to measure the similarity between query (Q) and key (K).

MHA then utilizes multiple SDPA blocks, enabling different relationships between input

tokens to be encoded. The number of SDPA blocks is called the number of attention heads.

In more detail, each attention head determines how strongly each pair of tokens in an

input sequence are related to each other. This is determined by softmax-normalized dot

3. Background 24

Figure 3.3: Scaled Dot-Product Attention and Multi-Head Attention, where Multi-Head
Attention combines several SDPA operations. The number of SDPA operations is defined
by H, the number of attention heads [2].

products between the Q and K vectors. The softmax output is referred to as attention

weights, which represent how much a token attends to each token in the input sequence. The

output of an attention head is the a weighted sum of the V vectors, using the previously

computed attention weights. Attention can be expressed as follows:

Attention(Q, K, V) = softmax(QKT

√
dk

)V (3.1)

3. Background 25

where dk is the dimension of the keys and 1√
dk

acts as a scaling factor to counteract small

gradients in softmax function when dk is large.

While a single head is capable of generating the attention weights for each pair of tokens,

the transformer architecture [2] extends this to MHA because it allows the model to handle

information from different representation subspaces at different positions. MHA is defined

by concatenating the attention heads as in Equation 3.2:

MultiHead(Q, K, V) = Concat(head1, ..., headh)W O

where headi = Attention(QW Q
i , KW K

i , V W V
i)

where W Q
i ∈ Rdmodel×dq , W K

i ∈ Rdmodel×dk , W V
i ∈ Rdmodel×dv , W O ∈ Rdmodel×hdv

(3.2)

Note that there are four learnable weight matrices involved in MHA, denoted as

W Q
i , W K

i , W V
i , and W O

i . Additionally, observe in Figure 3.3 that there is no data

dependency between the linear and scaled dot-product attention layers of MHA. As such,

these can be calculated in parallel across the H attention heads.

3.1.3 Feed-Forward Network

The FFN consists of two position-wise Fully Connected (FC) layers as follows:

FFN(x) = max(0, xW1 + b1)W2 + b2 (3.3)

3. Background 26

Figure 3.4: A two-layer FFN. Input with width H is projected to width I and then down-
projected back to H

The first layer projects the input from the hidden size H to the intermediate size I,

and the second layer down-projects it back to H as depicted in Figure 3.4. After the first

projection, an activation function is applied. In Equation 3.3, the FFN is presented with the

ReLU activation function. However, this choice can vary, with works such as BERT choosing

to replace this with GELU for example.

To complete the transformer block, each of MHA and FFN has a residual connection

around it followed by a layer normalization. Finally, the classifier block is added after

the final transformer block and depends on the downstream NLP task. The pre-trained

3. Background 27

contextual representations that BERT offers are available at the output of the last encoder

which makes it relatively simple to train a classifier for a downstream (e.g. GLUE [52]) task.

3.1.4 Evaluation: GLUE Score

The GLUE benchmark [52] is an industry standard set of tests for natural language

understanding. GLUE consists of nine tasks which either evaluate a single sentence or the

relationship between a pair of sentences. For example, in a sentiment analysis task

(SST-2), a single sentence is determined to be either positive or negative. Alternately, in a

question answering task (QNLI), a pair of sentences is evaluated to determine whether the

second sentence answers the question posed by the first. Each task results in a percentage

score (0 to 100) which are often averaged to compute an overall ”GLUE score”. GLUE has

been used to evaluate many models, with the original paper [52] presenting results for a

few variants of BiLSTM [55] model. Importantly for our work, BERT and its subsequent

variants [1, 3, 35, 48, 56, 57] are all evaluated using the GLUE benchmark. Notably, while

the GLUE benchmark authors were only able to achieve an average score of 68.7 using

BiLSTM, the BERT model achieved a much higher 82.1.

3.2 Inference Frameworks

One challenge in moving BERT inference onto edge devices is a lack of support in popular

inference frameworks. Furthermore, in order to decrease latency and memory usage, fp16

3. Background 28

and quantized int8 operations are preferable. In this regard, we develop an ARMCL BERT

framework that runs on CPU and GPU and supports fp16 and int8 data types. To enable

this implementation and optimize latency, we extend ARMCL with new quantizable GELU

and LayerNorm implementations. ARMCL BERT will be detailed in chapter 4. However,

in the development of this work, we also worked with the existing frameworks TensorFlow

Lite and TVM.

3.2.1 TFLite

One of the most popular inference frameworks is Tensorflow Lite (TFlite) [58]. However,

we choose not to use TFLite due to multiple limitations. Firstly, we were unable to use

TFLite to run BERT models on an ARM GPU. This is due to a lack of operation support

specifically on the GPU side within TFLite. Additionally, TFLite proved to be difficult to

extract detailed profiling information. Finally, TFLite does not allow for low level control of

which operations are assigned to the CPU or the GPU.

3.2.2 TVM

TVM is an end-to-end compiler stack that provides optimization at different levels of

abstraction (e.g., at the graph- and tensor-level). The TVM front-end automatically

compiles DNNs computational graph into minimum deployable modules in the format of

high-level Relay intermediate representation (Relay IR). Relay IR is a purely functional

3. Background 29

language to represent DNNs operations like add, multiply, or layer normalization as a

data-dependency graph to balance efficient compilation, expressiveness, and portability.

We refer readers to [59] for more detail. Because TVM is able to target both CPU and

GPU processing elements, is is more generalizable that a framework such as TFLite. For

this reason, we utilize TVM to perform fp32 profiling of BERT models for DNN-SMO.

However, we were unable to profile lower precision BERT models using TVM. This task

required a library with much lower level control, for which we choose ARM Compute

Library (ARMCL).

3.2.3 ARM Compute Library

ARMCL [60] is a collection of highly optimized neural network operations targeting ARM

CPUs and GPUs. Most importantly for BERT, it provides assembly optimized General

Matrix-Matrix Multiply (GEMM) and GEMMLOWP (int8 GEMM) operations. However,

as of ARMCL v22.05, there are still missing operations required for BERT, including GELU

and an int8 quantized LayerNorm, for which we provide and verify our own implementations.

ARMCL has two main advantages over TVM and TFLite. Firstly, ARMCL provides

superior performance to other frameworks, as each operation is hand optimized. Secondly,

it is a much lower level library, which means it requires more effort to use but allows for

much finer control over which operations are executed and on which processor. This also

allows for optimal use of the shared memory between the CPU and GPU. Modern SoCs

3. Background 30

include hardware such as ARM CoreLink [61], which maintains cache coherency between

heterogeneous processors such as a CPU and GPU, enabling fast communication without

memory copies. For these reasons, we utilize ARMCL to generate profiling data for int8

quantized and fp16 BERT models on both ARM CPUs and GPUs.

3.3 Heuristic Optimization Methods

There are many search problems for which the search space is far to large to search

exhaustively. This includes games such as chess, the famous travelling salesman problem,

and our problem of mapping tasks onto heterogeneous systems [30]. In order to handle

problems of such magnitude, one approach is to utilize heuristic optimization methods.

These algorithms trade completeness for speed, enabling the exploration of large search

spaces with high effectiveness, though they may not find the global optimal solution. Two

successful heuristic optimizers which we utilize are genetic algorithms [62] and the Grey

Wolf algorithm [63].

3.3.1 Genetic Algorithm

Genetic algorithms are a form of evolutionary algorithm, meant to be analogous to biological

evolution [62, 64]. In general, a genetic algorithm operates on a population that represents

a set of solutions. Often, each solution consists of an array of numbers, which can be

called genes. Each member of the population is evaluated by a fitness function, which is

3. Background 31

analogous to the success of an organism in nature. At each iteration of a genetic algorithm,

the population is updated and reevaluated. The update process usually consists of selection,

crossover, and mutation, which each vary depending on the implementation and the problem

being solved. In general, the selection process decides which members of the population are

used to reproduce to create the next population. Commonly, the most fit members of the

current population are selected while the least fit can be discarded. In the crossover step,

selected solutions are mixed to create new solutions. Assuming each solution is an array

of numbers, this can be done by selecting two solutions and picking a random split point,

then concatenating the parts of different solutions to create two new ones. Finally, the

mutation process allows the genetic algorithm to explore solutions that don’t exist in the

original population. This is done by randomly changing a certain proportion of genes at each

iteration of the algorithm. Because the fitness function and gene structure used by a genetic

algorithm are arbitrary, GAs have been applied to countless problems, such as engineering

design and signal processing [65].

Multiobjective Genetic Algorithm: NSGA-II

While a standard genetic algorithm aims to optimize a single fitness function,

multi-objective algorithms have also been developed. Where the standard genetic algorithm

aims to find a single optimum in a search space, multi-objective GAs instead search for a

Pareto-optimal front. One of the most successful is NSGA-II [66]. The adaptation from a

3. Background 32

single objective to multi-objective algorithm is relatively straightforward. The standard

genetic algorithm operations of crossover and mutation are still used but other pieces of the

algorithm are modified to handle multiple fitness functions. The main issue with

multi-objective optimization is the balancing of different fitness functions and maintaining

diversity in the population. NSGA-II solves these problems by incorporating a

crowding-distance computation, which measures the distance between members of the

population (in terms of fitness values). This avoids the issue of requiring a manually

defined sharing function and allows NSGA-II to maintain variance in the population.

NSGA-II has been demonstrated to both converge better and find a superior Pareto front

compared to PAES and SPEA (two other multi-objective optimizers) [66].

3.3.2 Grey Wolf Algorithm

The Grey Wolf algorithm [63] is a highly successful heuristic optimizer inspired by the hunting

behavior of grey wolves. To do this, the algorithm considers a population of solutions to be

wolves of varying rank. The best three solutions (called alpha, beta, and delta) guide the

optimization process. Based on the positions of these top solutions in the search space, the

position of the optimum is estimated and the other solutions are placed to surround that

position, as wolves surround their prey. In order to balance exploration and exploitation

of the design space, the randomization of wolf positions around the estimated optimum is

carefully controlled. Over the course of the search, the wolves (solutions) transition from a

3. Background 33

wide range of random positioning to being placed much nearer to the estimated optimum. In

practice, the first half of the iterations of the algorithm are dedicated to exploration, covering

as much of the search space as possible. Then, based on the results of the exploration, the

remaining iterations aim to find the local optimum (prey). The Grey Wolf Algorithm was

benchmarked on a large number of test functions and compared to other heuristic optimizers,

including genetic algorithms. It compared favorably to other optimizers, which lead us to

test it in our design space.

34

Chapter 4

Proposed Methodology

4.1 DNN-SMO

Figure 4.1 gives an overview of our proposed framework for optimizing DNNs (e.g. BERT)

on heterogeneous processors. Our framework has two main components: a latency model

and the DNN-specific mapping optimizer (DNN-SMO). In the first component, we capture

the operation-level latency of a DNN, such as BERT, as well as communication costs on an

embedded system (HiKey970). Using this data, we build a latency model for heterogeneous

DNN execution. The latency model is used by DNN-SMO to optimize the PE mapping

configuration. DNN-SMO is based on a genetic algorithm, which we augment to better fit

the problem of heterogeneous DNN optimization. Note that while we build our

optimization system around BERT on the Hikey970, and use BERT as an example to

4. Proposed Methodology 35

DNN Latency Model
(Based on HiKey 970)

Profiled Computation Time
DNN/BERT models measured on both

CPU and GPU of HiKey970.

Profiled Communication Time
TVM device_copy operation profiled on

HiKey970.

Graph Predictor
Inputs: DNN computation graph, PE mapping.

Outputs: operation-level latency, overall latency

DNN-Specific Mapping Optimizer (DNN-SMO)

Preprocessing
Determine potential parallelism in the graph.
Use this data to guide the GA optimization.

Genetic Algorithm Optimizer

CPU

GPU

Op1 Op2

Op3 Op4

Op5

Figure 4.1: The proposed DNN mapping optimization framework.

4. Proposed Methodology 36

explain our methodology, our system can be applied to other types of DNNs deployable to

embedded CPU+GPU systems. We include a variety of BERT models and convolutional

networks in our results.

4.2 Profiling

4.2.1 Computation Profiling

Hidden Size 128, 256, 512, 768
Attention Heads 2, 8
Hidden Layers 2, 4, 6, 8, 10, 12

Table 4.1: Profiled BERT model parameters

In order to build a latency model for BERT, we first need to understand the operator-

level latency on both the CPU and GPU of an embedded system (HiKey970). We generate

the range of BERT models shown in Table 4.1, which is based on the models tested in the

original BERT paper [1]. We set the sequence length to 128 and the feed-forward size to

4x the hidden size, again based on the original work. Importantly, we include models that

match the computational cost and parameter count of edge-targeted BERT models such as

DistilBERT [32] and TinyBERT [67]. In order to ensure consistent latency, we set both the

CPU and GPU of the HiKey970 to their highest frequencies and ensured that the board was

properly cooled. Then, using TVM’s debugger, we extract operation-level timestamps which

we utilize to build our latency model.

4. Proposed Methodology 37

4.2.2 Communication Profiling

To build a heterogeneous inference latency model, we also need to understand the cost of

communication between the CPU and GPU. For this, we can again use TVM profiling,

specifically TVM’s device copy operation, which uses OpenCL memory copy operations

under the hood. In order to perform this profiling efficiently, we first identify the unique

intermediate tensor shapes in our set of BERT models. We observed that the number of

unique tensor sizes is relatively small (∼25 per BERT configuration). Additionally, many

sizes are reused between BERT models. For example, adding more encoder layers to a

BERT model does not add more unique intermediate tensors. Similarly, changing the

number of attention heads will affect a few intermediate tensors, but many remain

unchanged, especially in the feed-forward sections of the encoders. We perform

measurements for both CPU to GPU and GPU to CPU transfers.

4.3 Latency Modeling

In order to feasibly search the massive design space for operation-to-PE mapping, we utilize

a latency model. This allows us to save an enormous amount of time compared to profiling

each configuration on real hardware. In this work, we consider only two PEs (CPU and

GPU), though our model could extend to more, for example to include an NPU. We also

assume that each PE is fully dedicated to one operation at a time: we maximize data-level

4. Proposed Methodology 38

parallelism within each PE, while using task-level parallelism between the CPU and GPU.

To predict the latency of heterogeneous inference for a given BERT model and operation

to PE mapping, we emulate execution of the computational graph: we keep track of the

start time and completion time of each operation, with latency determined from our profiled

data. When an operation is placed on a different PE from its data dependency, we insert

delay based on profiled communication time. Once the graph is processed, we have both the

total latency and timing information for each individual operation.

Latency Model Validation

Operation CPU (ms) GPU (ms)
1x1 2.34 1.67

3x3 1 2.45 1.06
3x3 2 3.48 1.21
3x3 3 3.86 1.38
5x5 1 1.95 0.73
5x5 2 6.30 3.56

pooling 4.24 1.47
concat 1.38 0.68

Total Latency 26.04 11.79

Table 4.2: Operation-level Latency of InceptionV3 Module on CPU & GPU using ARMCL

Instead of TVM, which we use to implement BERT on CPU and GPU individually, we

utilize ARM Compute Library (ARMCL) [60] to validate our latency model. This is because

TVM does not support heterogeneous inference. ARMCL is able to support heterogeneous

computing, but it does not support BERT models. In order to validate our latency model, we

need a network both complex enough to benefit from CPU-GPU parallelism and supported

4. Proposed Methodology 39

Input
35x35x192

1x1
Convolution (1x1)

CPU - 2.08 ms

5x5_1
Convolution (1x1)

GPU - 0.74 ms

3x3_1
Convolution (1x1)

GPU - 1.05 ms

Pooling
AVG (3x3)

CPU 4.11 ms

5x5_2
Convolution (5x5)

GPU - 3.52 ms

3x3_2
Convolution (3x3)

GPU - 1.21 ms

3x3_3
Convolution (3x3)

GPU - 1.41 ms

Concatenate
Channel Dim

CPU - 1.63 ms

Figure 4.2: InceptionV3 Module Implemented in ARMCL for Latency Model Validation

by ARMCL. As such, we use InceptionV3 [4] as a test case. Specifically, we implement an

Inception module that includes parallel 1x1, 3x3, and 5x5 convolutions, visualized in Figure

4.2. To validate our latency model, we manually partitioned operations between CPU and

GPU. Figure 4.2 shows an example configuration where operations shown in orange are

placed on the CPU and blue on the GPU.

Since our latency model is based on separate CPU and GPU profiling, we also implement

single-device models in ARMCL, along with additional code that records the latency of

individual operations (at the granularity of Figure 4.2). Table 4.2 contains our operation-

4. Proposed Methodology 40

Measured Latency Predicted Latency % Error
Test 1 9.96 ms 10.44 ms 4.52%
Test 2 18.90 ms 18.55 ms 1.88%
Test 3 12.58 ms 12.12 ms 3.70%
Test 4 14.90 ms 16.35 ms 9.73%

Avg: 4.96 %

Table 4.3: Latency Model Prediction vs ARMCL Measurement for 4 Unique Device
Mapping Configurations

level profiling results. In order to profile communication, we time the calls to ARMCL

Tensor.map(), which is analogous to TVM’s device copy. For consistency, we run each

model configuration (CPU-only, GPU-only, heterogeneous) 10 times with 2 warm-up runs,

then take the average latency of the 10 runs. We repeated this experiment with a few unique

device mapping configurations. The resulting measurements and latency model predictions

are shown in Table 4.3 (Test 1 corresponds to the configuration shown in Figure 4.2). We

observe that our latency model predictions are within 10% of the measured values for a

variety of device mapping configurations, with an average error of 4.96%. As such, we are

confident that our latency model is representative of real heterogeneous DNN execution.

4.4 DNN Mapping Optimization with GA

We optimize the assignment of DNN graph operations to heterogeneous resources using a

genetic algorithm (GA). We implement our approach using the PyGAD library [68], which

includes standard selection, crossover, and mutation operations. For an overview of genetic

4. Proposed Methodology 41

algorithms, see [62].

4.4.1 Preliminaries

Genetic algorithms have a history of success in heterogeneous mapping problems [30, 44],

as well as in DNN operation mapping [24, 45]. For some intuition on why they work for

this problem, picture a set of random PE mappings. It is likely that some tasks will be

better optimized on some PEs than others in the set. Through selection and crossover, a

genetic algorithm is able to combine the best parts of the random configurations to generate

superior configurations. Furthermore, mutation allows for the discovery of configurations

not included in the initial population.

To adapt a genetic algorithm to the problem of DNN operation mapping, we define our

genome as a set of 0s and 1s, representing the mapping of each DNN operation to the CPU

or GPU respectively. Note that we could easily extend this to support more than two PEs by

expanding the gene value space. We then define our fitness function as 1/latency, using the

previously described latency model to evaluate each mapping configuration. This converts

the problem of latency minimization to fitness maximization, which is the goal of GAs in

general. For all GAs in this work, we use a population size of 50, as well as steady-state

selection and single-point crossover operations.

4. Proposed Methodology 42

4.4.2 Enhanced GA for DNN Mapping

In order to accelerate the mapping optimization process, we have enhanced the standard GA

by tailoring it to DNNs in general and BERT models specifically. Our new system, which

we call DNN-specific mapping optimizer (DNN-SMO), can be divided into two sections, as

in Figure 4.1: a preprocessing stage, and an enhanced genetic algorithm optimizer. We

have two overall goals in this approach. First, we focus the GA’s search effort on more

parallelizable regions of the computation graph, more quickly finding mappings that reduce

total latency. Second, we allow branch-level mutations which modify groups of DNN graph

nodes rather than one node at a time, resulting in mapping changes that benefit from reduced

communication overhead. To achieve these goals, we modify both the initial population of

the genetic algorithm and the search process itself.

Preprocessing

In order to implement our GA enhancements, we first add a preprocessing step, visualized

in Figure 4.3. Our goal is to both identify branches of sequential nodes and determine how

much latency can be reduced through parallelization. Preprocessing starts by selectively

collapsing branches of the computational graph into single nodes. Then, for each group of

parallel branches, we compute 1 − (longestBranch/sumOfBranches). This represents the

percentage of latency within a group of branches that could be reduced if all branches were

executed in parallel (as in Ahmdahl’s Law). In Figure 4.3, we give a simple example of the

4. Proposed Methodology 43

Original Network

1
25ms

2
10ms

5
40ms

3
10ms

4
10ms

6
20ms

7
15ms

Collapsed Network

1
25ms

2
50ms

3
40ms

7
30ms

8
15ms

Parallelizable

Sequential

Parallelism

Node 1: 0%
Node 2, 5: 44%
Node 3, 4, 6: 44%
Node 7, 8: 0%

Figure 4.3: Visualization of preprocessing to determine parallelizable nodes.

branch collapse and parallelism computation. In this example, there is one group of parallel

branches with a total computation time of 90ms. However, because the longest branch is

50ms, we can only cover 40ms or 44% of the computation time through parallelism. We

record this parallelism value for every (original graph) node in the parallel branches. We

will later use this value (0.44 in this example), to weight the search process of the GA.

4. Proposed Methodology 44

Gene Structure
Node 1
CPU

Node 2
GPU

Node 3
GPU

Node 4
CPU

Node 5
CPU

Node 6
GPU

Node 7
CPU

Node 8
CPU

Mutation Probability

Single Gene Mutation
Node 1
CPU

Node 2
GPU

Node 3
GPU

Node 4
CPU

Node 5
GPU

Node 6
GPU

Node 7
CPU

Node 8
CPU

Branch Mutation
Node 1
CPU

Node 2
GPU

Node 3
CPU

Node 4
CPU

Node 5
CPU

Node 6
CPU

Node 7
CPU

Node 8
CPU

a)

b)

c)

d)

Figure 4.4: Visualization of custom mutation based on Figure 4.3. a) Gene structure. b)
Weighted mutation probability. c) Example of single-gene mutation. d) Example of branch-
level mutation.

DNN-specific Mapping Optimizer

Leveraging the metadata built during preprocessing, we implement multiple improvements,

resulting in a DNN-specific mapping optimizer (DNN-SMO). First, we construct an initial

population that deterministically maps sequential (unparallelizable) graph nodes to the

fastest PE, minimizing communication costs on the critical path. We also improve the

search process, especially for large BERT models, by implementing a custom mutation

operation with three main features: gene reuse, weighted gene selection, and branch-level

mutations. By combining these techniques with our custom initial population, we are able

to massively decrease the number of generations required by the genetic algorithm.

Custom Initial Population: To generate a better initial population for the GA, our

4. Proposed Methodology 45

main goal is to keep critical path tasks on the fastest processor. This addresses the problem

with fully-random initialization, which results in poor latency and a poor starting point for

optimization. We utilize metadata from preprocessing to create a selectively random initial

population. For nodes that can be parallelized, mapping is randomized. However, nodes that

cannot be parallelized are assigned to the PE that executes the full set of sequential nodes

with the lowest latency. This can be seen in Figure 4.4a, in which nodes 1, 7, and 8 are placed

on the fastest PE (CPU in this example), while nodes 2-6 are randomized. This corresponds

to the structure of sequential and parallel nodes in the Figure 4.3 example. The logic behind

this method is that sequential nodes represent the critical path of the computation graph.

Mapping the sequential nodes to the fastest PE minimizes communication overheads, which

is critical for latency minimization, especially on embedded systems.

Gene reuse means that a single gene value may correspond to multiple computation

graph nodes. This is especially useful for BERT, which consists of a series of identical

transformer encoders. Instead of optimizing all genes individually, we decrease the genome

length and assign a single gene value for each set of repeated encoder operations. This

significantly shrinks the search space, enabling much faster convergence. For non-BERT

models or BERTs with varied encoder sizes [69], this feature can be disabled, though it may

be useful for other networks with repetitive computational graph structures.

Weighted gene selection increases the probability that parallelizable nodes are

selected for mutation. This guides the search process towards highly-parallel regions of the

4. Proposed Methodology 46

computation graph. In the preprocessing stage, we determined the amount of parallelism

available to each node. Now, we use that value to weight the mutation probabilities,

visualized in Figure 4.4b. Specifically, we give all nodes in the graph a base weight of 0.2

(this is a hyperparameter). For parallelizable nodes, we add the parallelism value (usually

0.2-0.6) to this weight. We then convert this to a probability distribution by dividing each

weight by the sum of weights (so that they add up to 1). This probability distribution is

then passed to the mutation function and used to select genes to mutate. Combined with

our custom initial population, we find that this allows the GA to find optimal

configurations much faster.

Branch-level mutation adds structured multi-gene mutations to the genetic algorithm.

By default, mutations only affect single nodes in the computational graph, as shown in figure

4.4c. However, we know that for a DNN graph, in order to minimize communication costs,

we should keep nodes with data dependencies on the same PE. As such, we add a 50% chance

of performing a branch-level mutation instead of single-node mutation. An example branch

mutation is shown in figure 4.4d, in which the branch 3-4-6 is selected and placed on the

CPU. This way, instead of depending on random mutations to coincidentally move a group

of nodes at the same time, we are able to intentionally mutate towards better configurations.

4. Proposed Methodology 47

4.5 ARMCL BERT

4.5.1 ARMCL Modifications

The first operation we added to ARMCL is the GELU activation function [53]:

GELU(x) = x ∗ 1
2 ∗

[
1 + erf(x√

2
)
]

For embedded GPUs, OpenCL provides erf as a standard math operation, so

implementation was straightforward. On the CPU, code must be explicitly vectorized using

ARM NEON instructions/intrinsics. While ARMCL already contains vectorized tanh and

exp implementations, we found that using them to approximate GELU [53] was slow, as

they are based on Taylor polynomials and require many instructions. In order to achieve

low latency on CPUs, we therefore needed to write our own vectorized erf. We used the

following approximation [70] due to its simplicity as well as its efficient mapping to

multiply-accumulate instructions:

erf(x) = 1 − 1
(1 + a1x + a2x2 + a3x3 + a4x4)4 , x ≥ 0

a1 = .278393, a2 = .230389, a3 = .000972, a4 = .078108

4. Proposed Methodology 48

Using this erf implementation, the GELU implementation using NEON intrinsics is

straightforward.

The second operation we added to ARMCL is int8 quantized LayerNorm:

LayerNorm(x) = x − Mean[x]√
V ar[x] + ϵ

∗ γ + β

We first tested the existing fp32 LayerNorm, inserting dequantization and quantization

operations as needed. However, this required extra intermediate tensors and additional

DRAM accesses. To avoid this cost, we add a new LayerNorm that operates directly on

int8 quantized tensors. Using ARM NEON intrinsics, we load vectors of 16x 8-bit values

and accumulate them using low bit integer arithmetic. The computation of the mean and

standard deviation, as well as the actual normalization, are performed using fp32. Finally,

the normalized values are requantized back to int8 and stored as vectors.

4.5.2 BERT Implementation

Using our augmented ARMCL, we implement BERT-base with fp32, fp16, and int8

datatypes. The embedding and FFN operations are implemented using gather and

GEMM/GEMMLOWP operations respectively.

The MHA operation is more complex, as it is usually implemented with transpose and

reshape operations. Instead, we use ARMCL’s SubTensor interface to divide the Q, K, and V

4. Proposed Methodology 49

tensors into sections corresponding to attention heads. We found this to significantly reduce

latency compared to ARMCL’s reshaping functions, as many memory copy operations are

eliminated.

For quantized operations, we apply asymmetric tensor quantization, meaning that each

tensor is assigned a scale and zero point that maps 8-bit integers to floating point values.

The scale and zero point are determined by first running the model in fp32 precision. For

each tensor, the min and max are used to determine the quantization parameters.

4.6 Quantization & Multi-objective Optimization

While DNN-SMO is able to perform optimize latency by partitioning a DNN between CPU

and GPU, it is limited to a single data type. Due to the rise of techniques such as quantization

[35,57,71], we also investigated the potential of quantizing specific operations in a network.

This necessitates a multi-objective optimization, as quantization is known to reduce accuracy

compared to full fp32 precision. In order to include accuracy in our process, we needed to

build an accuracy model for BERT which is able to handle models in which operations have

different quantization settings. The latency model is completely reused, though profiling

is performed using ARMCL BERT rather than TVM and extra parameters are added to

contain the quantization information.

For the optimizer, we then replace the Genetic Algorithm of DNN-SMO with

NSGA-II [66], which is a multi-objective variant. Since NSGA-II shares many

4. Proposed Methodology 50

characteristics with a standard Genetic Algorithm (GA), we are able to incorporate much

of the same domain-specific knowledge as before. In particular, the weighted mutation,

branch mutation, and custom initialization are all reused. Regarding gene reuse, we found

that sharing configurations across encoders was harmful to the optimization of

quantization, as it limited the search space in ways that resulted in worse accuracy/latency

trade offs. Overall, the structure of this new optimization system is extremely similar to

that of DNN-SMO shown in Figure 4.1.

4.6.1 Accuracy Model

In order to build an accuracy model, we first needed to measure the accuracy of BERT

models with various quantization configurations. To enable the measurement of a large

number of configurations, we chose the AdaQuant method [72], which performs post-training

quantization and requires relatively little calibration time. We also tested quantization-aware

training methods but found them to be too slow to be feasible. Based on previous works [35],

we choose the GLUE benchmark [52] as our dataset for accuracy measurement. We trained

five BERT-base models for each GLUE task, varying the random seed used for training,

as we found these to have significant impacts on accuracy. For each of these models, we

then generated a large set of random quantization configurations and calibrate them using

AdaQuant [72]. These configurations were generated by randomly setting the precision of

each layer to fp32, fp16, or int8. We then measured the accuracy of each of these on the

4. Proposed Methodology 51

GLUE tasks to create a large dataset.

For the accuracy modeling task, we utilize the Auto-Sklearn package [73], which is an

AutoML [74] method. We also tried using a neural network to predict accuracy, but we found

that Auto-Sklearn was more accurate when given enough training time, and much simpler

to develop. Using Auto-Sklearn, we are able to easily split the dataset into train and test

sets and the library then handles the training and hyperparameter optimization of various

ML methods. We trained a separate Auto-Sklearn model for each of the GLUE tasks, as we

observed different responses to quantization for each of them. The separate Auto-Sklearn

model predictions can then be averaged to predict an overall GLUE score. We found that

these predictions were extremely accurate, with less than 0.1% error.

52

Chapter 5

Experimental Setup

The goal of our experiment is to improve the latency of BERT on modern edge hardware. Due

to practical limitations, we ended up utilizing different hardware and software environments

for our experiments.

5.1 DNN-SMO

5.1.1 Hardware Platform: HiKey970

Our optimization framework is targeting heterogeneous embedded systems. The

HiKey970 [41] is a heterogeneous system containing a Mali-G72 MP12 GPU, four high

performance (big) A73 cores, and four lower performance (LITTLE) A53 cores. The

architecture and performance of the HiKey970 is representative of common mobile

5. Experimental Setup 53

ARM A73 core ARM A73 core

ARM A73 core ARM A73 core

128 KB L1 cache

2 MB L2 cache

big CPU cluster

ARM A53 core ARM A53 core

ARM A53 core ARM A53 core

64 KB L1 cache

1 MB L2 cache

LITTLE CPU cluster

Snoop filter CoreLink CCI-550 bus

DRAM

Figure 5.1: An abstract block diagram of ARM big.LITTLE heterogeneous CPU clusters
in HiKey970 embedded platform. Note that we do not include GPU and NPU of HiKey970
in this diagram.

hardware [19] and is visualized in figure 5.1. As such, our framework is expected to be

generalizable to a wide range of modern edge devices.

5.1.2 Software Platform: TVM

For the software implementation of BERT on the HiKey970, we use the TVM framework [28].

We chose TVM because, in our testing, it was the only framework that supported the

5. Experimental Setup 54

operations required by BERT on both CPU and GPU. Given a DNN computational graph,

TVM automatically generates code for both CPU and GPU targets. It uses LLVM to

generate CPU-targeted code and OpenCL for GPU-targeted code. Unfortunately, because

the code generation needs to generalize to any hardware, it does not match the performance

of a hand-optimized library. Fortunately, TVM provides auto-scheduling functionality [75],

which is able to optimize the generated code to the level of manual optimization. In order

to achieve strong performance on the HiKey970, we run TVM auto-scheduling until the

latency stabilizes. Note that TVM does not utilize the four LITTLE cores of the HiKey970,

as previous works [22] have shown that using only the big cores results in the lowest latency.

5.2 ARMCL BERT

Due to the versatility of ARMCL, we were able to perform measurements on an additional

hardware platform for our ARMCL BERT implementation, as well as the HiKey970.

5.2.1 Hardware Platform: Galaxy A52

The Galaxy A52 has an ARMv8.2-A SoC with 2 Cortex-A77 high performance cores, 6

Cortex-A55 efficiency cores and an Adreno 619 GPU. Notably, the ARMv8.2 CPU includes

fp16 compute operations absent in the v8 chip of the HiKey970. This enables additional

measurements of fp16 operation latencies on the CPU which are not possible on the

HiKey970.

5. Experimental Setup 55

5.2.2 Software Environments

In order to run our ARMCL BERT model on both the HiKey970 and the A52, we had to

compile the library slightly differently for the two devices. Firstly, the operating systems

differ, with the HiKey970 running a Linux OS and the A52 running Android, which is

Linux based but creates some challenges. Secondly, due to the differing CPU capabilities

mentioned above, the ARMCL compiled for the HiKey970 does not support the same set

of operations. For both devices, we compile ARMCL in release mode with all supported

compiler optimizations, as this makes a large difference in performance, especially for int8

operations.

Because ARMCL uses OpenCL to run GPU compute operations, it is important to note

that they depend on vendor specific GPU drivers. This is relevant due to the fact that the

HiKey970 has a Mali-G72 GPU while the A52 has a Qualcomm Adreno 619. As a result,

the GPU drivers were written by different manufacturers and their performance may differ.

In our experience, the Adreno driver seemed to have severe issues that were not present with

the Mali driver. Specifically, we observed severe performance degradation with large fp32

matrices on the Adreno 619. Additionally, the Adreno driver was unable to compile certain

compute kernels which were handled properly by the Mali driver.

5. Experimental Setup 56

5.3 Latency Measurements

In all cases, we apply standard techniques for measuring DNN execution time. For each

measurement, the model is executed at least 10 times. We then take the average runtime

excluding the first run (for warmup reasons). The inputs provided to the model are simply

random values, as they do not matter for latency measurement. Note that we observed

very high consistency in latency, meaning that the mean and median values were essentially

identical.

The APIs used to measure runtime depend on the software platform of the model. For

ARMCL measurements, we use the built in C++ time functions and for TVM, we use the

equivalent Python APIs. In either case, runtime is simply measured by fetching the time

before and after model execution and computing the difference.

5.4 Multi-objective Optimization

For the accuracy model used in the multi-objective version of our optimizer, we perform

accuracy measurements on server hardware running PyTorch. For the latency model, we

utilize our ARMCL BERT implementation on the HiKey970, as described above. Since the

HiKey970 supports fp32 & fp16 on the GPU and fp32 & int8 on the CPU, we perform latency

measurements for those configurations. Unfortunately, due to the aforementioned Adreno

driver issues, the A52 was deemed nonviable for this experiment.

57

Chapter 6

Results

Here, we discuss the results of the methods described in chapter 4. First, we detail the

performance of DNN-SMO, including comparisons to other optimization methods, an

ablation study of our modifications, and a review of inference latency improvements for

various models. Next, we discuss the performance of ARMCL BERT, with particularly

interesting results regarding different quantization levels and hardware platforms. We also

explore the impact of modifying the BERT model, again using ARMCL BERT for latency

measurement. Finally, we show the potential improvement from joint optimization of

quantization and heterogeneous computing using NSGA-II.

6. Results 58

Figure 6.1: Chart of generation vs fitness showing improved convergence with DNN-SMO.
In this example, the BERT configuration is hidden size 512, 2 attn. heads, 6 hidden layers.

6.1 DNN-SMO

6.1.1 Comparison to Baseline GA

Figure 6.1 shows the improvement in search time using our GA compared to baseline GAs.

This chart was generated by averaging three runs of each GA on a BERT model with

hidden size 512, 2 attn. heads, and 6 hidden layers. It shows the genetic algorithm fitness

(defined in section 4.4) vs generation for three optimizers. Firstly, we have the unmodified

(Fully Random) genetic algorithm, which uses a randomized initial population and no search

6. Results 59

guidance, as in [24]. Secondly, we have a version which uses an initial population where all

the nodes are placed on the overall fastest PE (i.e., best PE initialized). As we can see,

this results in a stronger initial population, but the subsequent improvements are roughly

identical. This makes sense, as a better initialization point alone does not help with avoiding

local minima. Finally, we have our method (DNN-SMO), which uses the semi-random initial

population as well as our custom mutation operation. As we can see, our method is able to

achieve much stronger fitness than the other approaches. Through our custom population

initialization, the GA is given an extremely strong starting point. Then, using the modified

mutation operation, improvements are found rapidly.

In order to numerically compare our method to the unguided GAs, we ran our GA for

1000 generations and the randomized GA for 3000 generations. We repeat this experiment

20 times on the same BERT model (hidden size 512, 2 attn. heads, 6 layers). We focus on

the (512, 2, 6) configuration as it is similar to DistilBERT [32] and therefore representative

of a likely edge BERT deployment. However, similar results were found for both smaller

(256, 2, 4) and larger (768, 8, 12) configurations. We find that on average, our GA was able

to improve latency 2.05x as much as the random GA (std. dev = 0.2). For larger BERT

models, this means our method results in ∼110ms latency reduction after 1000 generations,

while the baseline GA only manages ∼55ms after 3000 generations.

To further illustrate the acceleration in mapping optimization achieved by our

algorithm, we compare a baseline GA run for 20000 generations against DNN-SMO given

6. Results 60

Model Baseline GA DNN-SMO
20k Generations 1k Generations

BERT (256, 2, 6) 40.58 ms 36.00 ms
BERT (512, 8, 6) 137.84 ms 130.32 ms
BERT (768, 2, 4) 184.18 ms 181.84 ms
BERT (768, 8, 12) 653.70 ms 627.70 ms

SqueezeBERT 271.59 ms 242.79 ms
InceptionV3 217.51 ms 216.40 ms

Table 6.1: Baseline GA vs DNN-SMO

1000 generations. The resulting latencies are shown in Table 6.1. For each model,

DNN-SMO is able to achieve lower latency within 1000 generations compared to the

baseline GA after 20000. The InceptionV3 test here is especially important, as gene reuse

is not used for non-BERT architectures, so even with one optimization disabled, our

algorithm is still far superior to the baseline GA. To emphasize the importance of this

reduction in search time, consider performing this optimization with the baseline GA and

without a latency model. Without a latency model, each configuration needs to be profiled,

which in our experience takes ∼10s per configuration, as each model needs to be compiled

and then executed multiple times. Running for 20000 generations, each of which requires

50 model evaluations, results in an optimization time of 115 days. Meanwhile, running our

GA for 1000 generations with our latency model takes under an hour for the largest DNN

models, and likely finds stronger mapping configurations.

6. Results 61

Figure 6.2: Ablation study showing the impact on GA convergence for the individual
components of our optimizer: Custom Initialization, Weighted Mutation, and Branch
Mutation. We use InceptionV3 in this test.

6.1.2 Ablation Study

In addition to the search acceleration demonstrated on BERT, we present an ablation

study to show the contribution of each component of our optimization. To demonstrate the

versatility of DNN-SMO, we use InceptionV3 for this test, and exclude the gene reuse

component, as it is BERT-specific. We investigate the effect of custom initialization,

weighted mutation, and branch-level mutations, both individually and in combination with

each other. Again, we use the fully random and best PE GAs as baselines. The resulting

6. Results 62

fitness vs generation chart is shown in Figure 6.2. For comparison, we run all methods for

1000 generations and average over three runs. As we can see, the fully random and best PE

GAs perform similarly, as in the BERT experiment, resulting in 28.3% and 28.7% latency

reduction respectively. Interestingly, we find that our custom initialization alone is unable

to outperform these methods, with 28.0% latency reduction. Next, by using weighted

mutation alone, we are able to find a significant improvement over the basic methods, with

30.6% latency reduction. Furthermore, we observe that combining our weighted mutation

with custom initialization results in even better latency, with 30.9% reduction. This makes

sense, as these components are meant to synergize, with the custom initialization placing

the lower-weighted nodes near-optimally. Next, we find that branch-level mutations alone

result in a significant improvement of 30.8%, nearly matching the combination of custom

initial population and weighted mutation. Finally, as we would expect, the combination of

all components results in the best latency reduction, with 31.2% as reported in Table 6.2.

To compare the speed of convergence, we can take the fitness value achieved by our

best performing method at 200 generations and see how many additional generations were

required by the other methods to match it. We find that the fully random, best PE, and

custom initialization GAs are not able to achieve this value within 1000 generations, showing

the importance of our modifications to the mutation operation. With weighted mutation

only, it takes 849 generations to match the combined system 200 generation fitness. Branch-

level mutation and the combined custom initialization + weighted mutation algorithms are

6. Results 63

DNN BERT CNN

Hidden Size 128 256 512 768

Attn.Heads
Hidden layers

2
2

2
12

2
2

8
2

8
12

2
2

2
4

2
12

8
2

2
2

2
4

2
6

2
12

8
2

8
12

SqueezeBERT
[35]

InceptionV3
[31]

SqueezeNet
[36]

CPU(ms) 3.66 21.3 13.0 14.4 86.1 45.7 97.7 285.6 47.2 99.7 201.6 307.8 625.5 110.1 742.8 318.0 314.5 45.8

GPU(ms) 11.98 68.1 25.1 23.3 137.5 57.8 118.0 342.3 65.7 115.7 235.9 350.2 687.9 129.8 762.7 347.0 402.4 56.5

Hetero(ms) 3.66 21.3 12.1 13.4 80.2 41.8 87.0 256.6 43.1 90.0 181.8 276.6 551.0 97.5 630.6 242.7 217.3 56.5

Improv. (%) 0% 0% 7% 7% 7% 9% 11% 10% 9% 10% 10% 10% 12% 11% 15% 24% 31% 7%

Table 6.2: Latency model results for DNN models using heterogeneous CPU-GPU
execution. BERT configurations specified with hidden size, attention heads, number of
hidden layers. All BERT models have sequence length 128 and feed-forward size = 4x hidden
size. Also included are tests on popular CNN models SqueezeBERT [3], InceptionV3 [4], and
SqueezeNet [5].

similar by this metric, with 346 and 480 generations respectively.

6.1.3 Comparison to Non-GA Optimizers

To further illustrate the performance of DNN-SMO, we also perform a comparison to other

heuristic optimizers. The optimization methods we adapt are Grey Wolf (GWO) [63],

Harris Hawks (HHO) [76], and reinforcement learning [29]. Like the genetic algorithm,

GWO and HHO are nature-inspired optimization methods, but they use entirely different

mathematical models. The reinforcement learning method we implement is based on [29],

and uses an LSTM-based sequence-to-sequence model to learn to optimize device

placements. The resulting comparison is visualized in Figure 6.3. In this chart, the each

iteration corresponds to 50 evaluations of our latency model, so each method is given

roughly the same amount of search time. As we can see, the other optimizers are unable to

6. Results 64

Figure 6.3: Chart comparing the convergence of alternative heuristic optimizers. In this
example, the BERT configuration is hidden size 512, 2 attn. heads, 6 hidden layers.

match the performance of our customized genetic algorithm, even though both GWO and

HHO significantly outperform the baseline GA. In our experience, the RL algorithm would

learn to simply place operations on the fastest individual PE, rather than exploiting

parallelism, resulting in the worst latency results. For a more competitive comparison, we

also modified the GWO with both the custom initialization and gene reuse features. Even

when initialized identically, our GA is able to explore configurations that the GWO cannot,

resulting in a superior final latency. This also confirms the value of the branch-level

mutation and weighted gene selection features. As the GWO uses a different mathematical

6. Results 65

model, we were unable to replicate these features in the modified version.

6.1.4 Single-inference Latency Improvement

Table 6.2 shows our latency measurements for single-PE inference and the improvement

predicted by our latency model for heterogeneous execution. Interestingly, we found CPU

to be slightly faster than GPU for DNN execution on the HiKey970 when using TVM.

Previous works, such as [25], have shown that mobile CPUs can outperform mobile GPUs

for convolutional networks. This may be affected by many factors, especially the choice of

inference framework (we use TVM), and the particular hardware (HiKey970). Our

observation that the performance is similar between the CPU and GPU aligns with what

we know about DNN performance on common embedded hardware [19].

In our testing, we first recognize that the model architecture has a large impact on how

much parallelism can improve inference latency. In addition to BERT models, we also ran

tests on InceptionV3 [4], SqueezeBERT [3], and SqueezeNet [5], which are CNNs that

contain significant parallelism in their computational graphs. For BERT models, we are

able to achieve up to 15% inference latency improvement. However, for InceptionV3, we are

able to reach 31% improvement. Comparing the architectures of BERT and Inception, we

are able to see why this is the case. In BERT, we find that there is a lot of potential

parallelism in the multi-head attention layers, but not in the feed-forward layers. Because

the feed-forward layers represent roughly 2/3 of the computational cost of the model, our

6. Results 66

ability to improve performance through operator-level parallelism is limited. InceptionV3,

on the other hand, contains parallel convolution operations throughout the network, with

sequential sections only at the input and output [4]. SqueezeNet is an interesting case, as it

contains similar parallelism to the Inception model [5]. However, we observe that the

operations in SqueezeNet are quite small and the communication cost becomes significant,

leading to only 7% improvement from heterogeneous execution. SqueezeBERT [3] replaces

the fully-connected layers of BERT-base with convolutions. While a large amount of

computation is still dedicated to sequential operations, we find that the multi-head

attention layers constitute a larger portion of the total latency. As a result, we achieve

better latency improvement with SqueezeBERT than with the standard BERT models, up

to 24%.

For BERT models, we also observe some interesting trends relating the model size to

the potential latency improvement from heterogeneous execution. For the smallest BERT

models (hidden size 128), the CPU is significantly faster than the GPU. Previous works [77]

have shown kernel launch overheads are large for DNNs on mobile GPUs, accounting for this

performance gap. This means heterogeneous execution cannot improve the inference latency

for the smallest BERT models. For hidden size 256, we observe a modest 7% improvement

in latency. As the BERT model size increases, we receive larger latency improvement, with

around 10% and 12% improvement for hidden sizes 512 and 768, respectively.

We also observe that the percentage of time that can be reduced is mostly constant as the

6. Results 67

number of hidden layers is increased. For example, we see that for hidden size 768 and 2 attn.

heads, the latency improvement is consistently 10-12% regardless of number of hidden layers.

This makes sense, as transformer encoders in the BERT model are identical, meaning that

the ratio of time saved through heterogeneous execution should also be consistent. Finally,

we note that the number of attention heads does not significantly affect either the absolute

latency or the latency decrease from heterogeneous execution. This is reasonable, as the

structure of multi-head attention means that changing the number of attention heads does

not significantly change the number of FLOPs [2]. Additionally, since multi-head attention

accounts for roughly 1/3 of BERT execution time, the impact of changing the number of

attention heads is further limited.

6.1.5 Summary of Results

Firstly, we show that DNN-SMO is vastly superior to a baseline GA, finding lower latency

mappings within 1000 generations than a baseline GA given 20000 generations, across a

variety of DNN models. We use an ablation study to show that each of our modifications

(custom initialization, weighted mutation, branch-level mutation) contributes to this massive

improvement in search speed. We then compare to three other optimization methods found

in the literature: Grey Wolf [63], Harris Hawks [76], and reinforcement learning [29], finding

that DNN-SMO results in the best mapping configuration given the same number of model

evaluations. Finally, we show significant latency improvements of up to 15% for BERT, 24%

6. Results 68

for SqueezeBERT, and 31% for InceptionV3.

6.2 Validation of ARMCL Operations

To validate our GELU implementation, we generate test tensors and compare to reference

values computed using erf from the C++ stdlib. We fill tensors with random numbers in the

range (-4, 4), the same range as tested in [57]. On the GPU side, we found that the OpenCL

erf is near identical to the stdlib version, resulting in a maximum error of 2.3e-7. On the

CPU side, we find a maximum error of 0.0006, which is small enough to be insignificant based

on analysis from the I-BERT paper [57]. In I-BERT, a polynomial approximation of GELU

with an error of up to 0.018 is used with no accuracy penalty. Since our implementation is

well within this bound, it will not impact a BERT model’s accuracy.

For LayerNorm, we use the existing fp32 LayerNorm and quantize its output to generate

a baseline. Then, we quantize the input and apply the int8 LayerNorm. Dequantizing, we

find a maximum error of ∼0.003 per unit range, which is within the expected quantization

error [57].

6.3 ARMCL BERT Latency

We measure the latency of BERT on two hardware platforms, the HiKey970 and Samsung

Galaxy A52. The HiKey970 has an ARMv8-A SoC with 4 Cortex-A73 big cores, 4 Cortex-

6. Results 69

A53 LITTLE cores, and a Mali-G72 MP12 GPU. The A52 has an ARMv8.2-A SoC with 2

Cortex-A77 high performance cores, 6 Cortex-A55 efficiency cores and an Adreno 619 GPU.

Notably, the v8.2 CPU includes fp16 compute operations absent in the v8 chip.

Platform fp32 fp16 int8
A52 CPU 0.392 s 0.203 s 0.129 s
A52 GPU 132 s 0.791 s (*) N/A

HiKey970 CPU 0.563 s N/A 0.280 s
HiKey970 GPU 0.341 s 0.272 s N/A

Table 6.3: BERT-base Latency Measurements

Table 6.3 shows our latency measurements for BERT-base across tested hardware

platforms. Overall, our measurements are in line with previous works such as [27], which

measured the latency of quantized CNNs on mobile SoCs, though they did not test any

CPUs with fp16 support. Our first observation is that on the A52 with CPU fp16

computation, we find 49% latency improvement over fp32, while int8 achieves 67%

speedup. The CPU in the HiKey970 does not support fp16, but we find that int8 improves

latency by 50% over fp32. These measurements illustrate the potential benefits of

lower-precision inference for DNNs in general and BERT in particular. It is also interesting

to see that on the newer SoC, int8 achieves even greater speedup than on the older chip.

This shows that significant improvements have been made in the integer SIMD units in

newer devices. Meanwhile, our observation that fp16 halves latency makes this a strong

option, as conversion from fp32 to fp16 is much simpler than quantization.

On the embedded GPU side, the HiKey970 gives very strong results, with 40% latency

6. Results 70

reduction compared to the CPU in fp32. Converting from fp32 to fp16, a further 20% latency

reduction is observed, resulting in very fast BERT inference. The A52 GPU performs poorly

by comparison, taking over 2 minutes to execute in fp32 and suffering a kernel compilation

error in fp16. We believe this is a driver issue, as other benchmarks 1 show that the Adreno

619 and Mali-G72 MP12 should perform similarly. We were able to find a workaround for

the A52 GPU fp16 configuration, and report the resulting value, but it still performs poorly,

with over 2x the latency of the A52 CPU fp32 configuration.

Overall, our results indicate that mobile GPUs have great potential for fast and efficient

DNN inference, especially if fp16 compute is available. However, they are inconsistent, as

our experience with the A52 shows. For older CPUs, int8 quantization is the only option

and can achieve 50%+ speedup over fp32, while reducing memory usage by 4x. For newer

CPUs, fp16 quantization may be preferred, as it may achieve higher accuracy than int8 but

will only reduce memory usage by 2x. However, we do find that on the A52, int8 is still

faster than fp16, making this the best option if accuracy can be sacrificed.

6.3.1 ARMCL BERT Variants

In addition to the standard BERT implementation, we also test a couple variations, with

latency results shown in Table 6.4. The goal of these experiments is to understand more

about the latency behavior of BERT and especially how integer quantization can be used to
1https://www.notebookcheck.net/Adreno-619-vs-Mali-G72-MP12 10584 8138.247598.0.html

6. Results 71

accelerate it. Firstly, we test a simple variation related to MobileBERT [33], referred to as

”Simplified”. In particular, this variation replaces GELU with ReLU, replaces LayerNorm

with NoNorm, and uses a simple approximation for SoftMax. We test this variant at both

fp32 and int8 precisions on the CPU of both hardware platforms.

Secondly, we also implemented the operations of I-BERT [57]. This work utilizes

polynomial approximations for the nonlinear operations of BERT, requiring special

implementation in ARMCL. It is also important to note that I-BERT requires symmetric

quantization, while other methods [35] allow for the specification of arbitrary zero-points

for quantized values.

BERT Variant Platform fp32 Latency int8 Latency
BERT-base A52 CPU 0.396 s 0.137 s

HiKey970 CPU 0.616 s 0.285 s
Simplified A52 CPU 0.383 s 0.112 s

HiKey970 CPU 0.578 s 0.264 s
I-BERT A52 CPU N/A 0.118 s

HiKey970 CPU N/A 0.270 s

Table 6.4: Latency of BERT Variants

This information is somewhat orthogonal to the rest of our work, but contains some very

interesting results. Overall, we observe relatively small latency improvements comparing the

Simplified BERT to BERT-base, with around 5% improvement in fp32. Due to integer math

optimizations this implementation enables, the improvement is up to 18.5% in int8, but it is

clear that most computation time of all BERT models is dedicated to matrix multiplications.

Secondly, we find that I-BERT [57] is able to achieve nearly the same latency as the

6. Results 72

Simplified BERT. This is extremely important, as I-BERT utilizes very accurate polynomial

approximations, while this Simplified BERT (and MobileBERT [33]), replace operations

with entirely different ones. This means that I-BERT is more capable of maintaining the

accuracy of the full size BERT model. This also demonstrates the efficiency of integer-only

computation, as even complex nonlinear functions can be executed extremely quickly without

much accuracy degradation.

6.4 Quantization Optimization Results

Figure 6.4 shows an example Pareto front generated by the multi-objective version of our

optimizer. This result was generated using latency data from the HiKey970, and we present

the baseline GPU fp32 latency and accuracy for comparison. The genetic algorithm is

configured with a population of size 100, creating 20 offspring per iteration, and running for

50 generations. Overall, we find latency values in the range 0.227 s to 0.254 s, all of which

compare favorably to single device inference on the HiKey970. Considering the best found

latency of 0.227 s, this is a 60% reduction in latency compared to CPU fp32 inference and a

34% reduction compared to GPU fp32. Furthermore, it is also a reduction of 20% compared

to full int8 quantization on the CPU. Additionally, we found that even this minimum latency

configuration has higher accuracy than a fully int8 configuration, with an average GLUE

score of 82.56% vs 82.39%. However, we note that the accuracy of all configurations fall

within a narrow range due to the strong performance of the AdaQuant [72] method. As

6. Results 73

Figure 6.4: Example Pareto Front from NSGA-II Optimization

mentioned previously, the choice of this quantization method enabled us to generate a large

number of quantized models in relatively little time. In general, we observed fairly low

accuracy loss using this method, especially compared to simpler min-max quantization.

74

Chapter 7

Conclusion And Future Work

We introduced a genetic algorithm based DNN-specific mapping optimizer (DNN-SMO).

DNN-SMO is able to find superior mappings of DNN computation graph nodes to a

CPU+GPU heterogeneous system when compared with a standard genetic algorithm,

while running 20x fewer generations. This is achieved through modifications to the GA:

custom initialization, gene reuse, weighted mutation, and branch-level mutations. These

enhancements are powered by a deterministic preprocessing step, which extracts metadata

about parallelism available in the computation graph. From that information, our

modifications accelerate the GA search process by both providing a stronger initial

population and by generating mutations that are more likely to result in improvements.

We evaluated DNN-SMO mapping BERT, SqueezeBERT, and InceptionV3 models to the

HiKey970. We observed that our approach can improve inference latency by 15%, 24%,

7. Conclusion And Future Work 75

and 31% for BERT, SqueezeBERT, and InceptionV3 respectively. We also evaluate the

custom initial population, weighted mutation, and branch-level mutations individually

through an ablation study, showing that they each contribute to improving search speed.

Comparing DNN-SMO to other heuristic optimizers, we find that DNN-SMO finds the best

mapping given the same number of model evaluations. In the future, we may extend this

work to include other processing elements found in modern devices, such as DSP and NPU.

We may also incorporate quantization, which may enable larger improvements to latency

at the cost of model accuracy.

We extended ARMCL with low-latency GELU and LayerNorm operations used in BERT.

We implement an ARMCL BERT framework that runs on mobile CPU and GPU, and

supports fp32, fp16, and int8 data types. Measuring latency on the HiKey970 and Galaxy

A52, we show 50% improvement using fp16 CPU operations, and over 50% using embedded

GPU compared to CPU. We also show that int8 quantization can improve latency by up

to 67% depending on the hardware platform. Additionally, we test a couple variants of the

original BERT model, most notably I-BERT, finding that the integer arithmetic used in

I-BERT enables a further 14% speedup over a standard int8 BERT.

Using our ARMCL BERT implementation for latency measurement, we were able to

build a second optimizer that incorporates quantization with heterogeneous optimization. To

account for the accuracy loss caused by quantization, we build an AutoML-based accuracy

model, trained on data generated using AdaQuant [72]. To handle the new multi-objective

7. Conclusion And Future Work 76

optimization problem, we utilize a genetic algorithm variant called NSGA-II, which is able

to incorporate the optimizations of DNN-SMO. Using our NSGA-II based [66] optimizer, we

find that we are able to improve latency by 20% compared to full int8 quantization while

maintaining the accuracy of fp32 inference.

7.1 Future Work

Our work has shown encouraging results for acceleration of BERT inference using

heterogeneous computing. However, there are multiple directions for future work. Firstly,

we could include the usage of NPU hardware as well as the current CPU and GPU. This

would be interesting due to the increase in energy efficiency and compute performance

provided by NPUs. Secondly, we could investigate the usage of heterogeneous computing

within operations. Currently, we are only able to parallelize at the DNN computation

graph level. However, it may be possible to further improve latency if large operations such

as matrix multiplication, and LayerNorm could be parallelized across multiple processors.

Finally, due to time constraints, our experimentation with multi-objective optimization is

somewhat limited. It would be ideal to test various other optimization methods and find

new and better ways to enhance this implementation.

7. Conclusion And Future Work 77

7.2 Acknowledgement

This work was supported in part by Huawei Technologies Canada Inc. through the McGill

Edge Intelligence Lab.

78

Bibliography

[1] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep

bidirectional transformers for language understanding,” in Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN,

USA, June 2-7, 2019, Volume 1 (Long and Short Papers) (J. Burstein, C. Doran, and

T. Solorio, eds.), pp. 4171–4186, Association for Computational Linguistics, 2019.

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and

I. Polosukhin, “Attention is all you need,” in Advances in neural information processing

systems, pp. 5998–6008, 2017.

[3] F. N. Iandola, A. E. Shaw, R. Krishna, and K. Keutzer, “Squeezebert: What

can computer vision teach NLP about efficient neural networks?,” in Proceedings

of SustaiNLP: Workshop on Simple and Efficient Natural Language Processing,

SustaiNLP@EMNLP 2020, Online, November 20, 2020 (N. S. Moosavi, A. Fan,

Bibliography 79

V. Shwartz, G. Glavas, S. R. Joty, A. Wang, and T. Wolf, eds.), pp. 124–135, Association

for Computational Linguistics, 2020.

[4] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception

architecture for computer vision,” 2015.

[5] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,

“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and < 0.5 mb model

size,” arXiv preprint arXiv:1602.07360, 2016.

[6] Google, “Google translate.” https://ai.googleblog.com/2020/06/

recent-advances-in-google-translate.html Accessed: 2022-10-20.

[7] Statista, “Number of internet of things (iot) connected devices worldwide from 2019

to 2021, with forecasts from 2022 to 2030,” 2022. https://www.statista.com/

statistics/1183457/iot-connected-devices-worldwide/ Accessed: 2022-10-20.

[8] S. Dong, P. Wang, and K. Abbas, “A survey on deep learning and its applications,”

Computer Science Review, vol. 40, p. 100379, 2021.

[9] Amazon, “Amazon Alexa,” https://developer.amazon.com/en-US/alexa Accessed:

2022-10-20.

[10] Google, “Google Home Nest,” https://store.google.com/product/nest_hub_2nd_

gen?hl=en-GB Accessed: 2022-10-20.

https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://developer.amazon.com/en-US/alexa
https://store.google.com/product/nest_hub_2nd_gen?hl=en-GB
https://store.google.com/product/nest_hub_2nd_gen?hl=en-GB

Bibliography 80

[11] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,

S. Bhatia, N. Boden, A. Borchers, et al., “In-datacenter performance analysis of a

tensor processing unit,” in Proceedings of the 44th annual international symposium on

computer architecture, pp. 1–12, 2017.

[12] Z. Xiao and Y. Xiao, “Security and privacy in cloud computing,” IEEE Communications

Surveys Tutorials, vol. 15, no. 2, pp. 843–859, 2013.

[13] D. Kollias, A. Tagaris, A. Stafylopatis, S. Kollias, and G. Tagaris, “Deep neural

architectures for prediction in healthcare,” Complex & Intelligent Systems, vol. 4,

pp. 119–131, Jun 2018.

[14] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and

F. Kawsar, “Deepx: A software accelerator for low-power deep learning inference on

mobile devices,” in 2016 15th ACM/IEEE International Conference on Information

Processing in Sensor Networks (IPSN), pp. 1–12, 2016.

[15] T. Tambe, C. Hooper, L. Pentecost, E. Yang, M. Donato, V. Sanh, A. M. Rush,

D. Brooks, and G. Wei, “Edgebert: Optimizing on-chip inference for multi-task NLP,”

CoRR, vol. abs/2011.14203, 2020.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–

778, 2016.

Bibliography 81

[17] T. Instruments, “Msp430fr5994,” 2018. https://www.ti.com/product/MSP430FR5994

Accessed: 2022-10-20.

[18] Q. He, B. Segee, and V. Weaver, “Raspberry pi 2 b+ gpu power, performance, and

energy implications,” in 2016 International Conference on Computational Science and

Computational Intelligence (CSCI), pp. 163–167, IEEE, 2016.

[19] A. Ignatov, R. Timofte, A. Kulik, S. Yang, K. Wang, F. Baum, M. Wu, L. Xu, and

L. Van Gool, “Ai benchmark: All about deep learning on smartphones in 2019,” in

2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW),

pp. 3617–3635, 2019.

[20] W. Liu, P. Zhou, Z. Zhao, Z. Wang, H. Deng, and Q. Ju, “Fastbert: a self-distilling

BERT with adaptive inference time,” 2020.

[21] J. Hestness, S. Narang, N. Ardalani, G. F. Diamos, H. Jun, H. Kianinejad, M. M. A.

Patwary, Y. Yang, and Y. Zhou, “Deep learning scaling is predictable, empirically,”

2017.

[22] S. Wang, G. Ananthanarayanan, Y. Zeng, N. Goel, A. Pathania, and T. Mitra, “High-

throughput CNN inference on embedded ARM big.little multi-core processors,” CoRR,

vol. abs/1903.05898, 2019.

https://www.ti.com/product/MSP430FR5994

Bibliography 82

[23] J. Tarnawski, A. Phanishayee, N. R. Devanur, D. Mahajan, and F. N. Paravecino,

“Efficient algorithms for device placement of DNN graph operators,” CoRR,

vol. abs/2006.16423, 2020.

[24] D. Kang, J. Oh, J. Choi, Y. Yi, and S. Ha, “Scheduling of deep learning applications

onto heterogeneous processors in an embedded device,” IEEE Access, vol. 8, pp. 43980–

43991, 2020.

[25] Y. Kim, J. Kim, D. Chae, D. Kim, and J. Kim, “µlayer: Low latency on-device inference

using cooperative single-layer acceleration and processor-friendly quantization,” in

Proceedings of the Fourteenth EuroSys Conference 2019, pp. 1–15, 2019.

[26] W. Kang, K. Lee, J. Lee, I. Shin, and H. S. Chwa, “Lalarand: Flexible layer-by-

layer cpu/gpu scheduling for real-time dnn tasks,” in 2021 IEEE Real-Time Systems

Symposium (RTSS), pp. 329–341, 2021.

[27] Y. Kim, J. Kim, D. Chae, D. Kim, and J. Kim, “ulayer: Low latency on-

device inference using cooperative single-layer acceleration and processor-friendly

quantization,” EuroSys ’19, 2019.

[28] T. Chen, T. Moreau, Z. Jiang, H. Shen, E. Q. Yan, L. Wang, Y. Hu, L. Ceze, C. Guestrin,

and A. Krishnamurthy, “TVM: end-to-end optimization stack for deep learning,” CoRR,

vol. abs/1802.04799, 2018.

Bibliography 83

[29] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou, N. Kumar,

M. Norouzi, S. Bengio, and J. Dean, “Device placement optimization with reinforcement

learning,” in International Conference on Machine Learning, pp. 2430–2439, PMLR,

2017.

[30] T. Braun et al., “A comparison of eleven static heuristics for mapping a class of

independent tasks onto heterogeneous distributed computing systems,” Elsevier JPDC,

vol. 61, no. 6, pp. 810–837, 2001.

[31] E. Aghapour, A. Pathania, and G. Ananthanarayanan, “Integrated arm big.little-mali

pipeline for high-throughput cnn inference,” TechRxiv, Jul 2021.

[32] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a distilled version of

BERT: smaller, faster, cheaper and lighter,” arXiv preprint arXiv:1910.01108, 2019.

[33] Z. Sun, H. Yu, X. Song, R. Liu, Y. Yang, and D. Zhou, “Mobilebert: a compact task-

agnostic bert for resource-limited devices,” in Proceedings of the 58th Annual Meeting

of the Association for Computational Linguistics, pp. 2158–2170, 2020.

[34] S. Kim, A. Gholami, Z. Yao, M. W. Mahoney, and K. Keutzer, “I-BERT: Integer-only

BERT quantization,” pp. 5506–5518, 2021.

[35] Y. Bondarenko, M. Nagel, and T. Blankevoort, “Understanding and overcoming the

challenges of efficient transformer quantization,” in Proceedings of the 2021 Conference

Bibliography 84

on Empirical Methods in Natural Language Processing, (Online and Punta Cana,

Dominican Republic), pp. 7947–7969, Association for Computational Linguistics, Nov.

2021.

[36] A. Bhandare, V. Sripathi, D. Karkada, V. Menon, S. Choi, K. Datta, and V. Saletore,

“Efficient 8-bit quantization of transformer neural machine language translation model,”

arXiv preprint arXiv:1906.00532, 2019.

[37] M. A. Gordon, K. Duh, and N. Andrews, “Compressing BERT: Studying the effects of

weight pruning on transfer learning,” 2020.

[38] V. Sanh, T. Wolf, and A. Rush, “Movement pruning: Adaptive sparsity by fine-tuning,”

Advances in Neural Information Processing Systems, vol. 33, pp. 20378–20389, 2020.

[39] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural

network with pruning, trained quantization and huffman coding,” in 4th International

Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,

2016, Conference Track Proceedings (Y. Bengio and Y. LeCun, eds.), 2016.

[40] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convolutional neural

networks using energy-aware pruning,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 5687–5695, 2017.

Bibliography 85

[41] Huawei, “Hikey970,” 2018. https://www.96boards.org/product/hikey970/

Accessed: 2022-10-20.

[42] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and low-complexity

task scheduling for heterogeneous computing,” IEEE Transactions on Parallel and

Distributed Systems, vol. 13, no. 3, pp. 260–274, 2002.

[43] F. Ferrandi, P. L. Lanzi, C. Pilato, D. Sciuto, and A. Tumeo, “Ant colony heuristic

for mapping and scheduling tasks and communications on heterogeneous embedded

systems,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 29, no. 6, pp. 911–924, 2010.

[44] R. Ayari, I. Hafnaoui, G. Beltrame, and G. Nicolescu, “Imga: An improved genetic

algorithm for partitioned scheduling on heterogeneous multi-core systems,” DAES,

vol. 22, p. 183–197, jun 2018.

[45] A. Paliwal, F. Gimeno, V. Nair, Y. Li, M. Lubin, P. Kohli, and O. Vinyals, “Reinforced

genetic algorithm learning for optimizing computation graphs,” 2020.

[46] S.-h. Kang, D. Kang, H. Yang, and S. Ha, “Real-time co-scheduling of multiple dataflow

graphs on multi-processor systems,” in 2016 ACM/EDAC/IEEE DAC, pp. 1–6, 2016.

https://www.96boards.org/product/hikey970/

Bibliography 86

[47] L. Hou, Z. Huang, L. Shang, X. Jiang, X. Chen, and Q. Liu, “Dynabert: Dynamic bert

with adaptive width and depth,” Advances in Neural Information Processing Systems,

vol. 33, pp. 9782–9793, 2020.

[48] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “Albert:

A lite bert for self-supervised learning of language representations,” in International

Conference on Learning Representations, 2020.

[49] O. Zafrir, G. Boudoukh, P. Izsak, and M. Wasserblat, “Q8BERT: Quantized 8bit

BERT,” pp. 36–39, 2019.

[50] W. Kang, K. Lee, J. Lee, I. Shin, and H. S. Chwa, “LaLaRAND: Flexible layer-by-

layer cpu/gpu scheduling for real-time dnn tasks,” in 2021 IEEE Real-Time Systems

Symposium (RTSS), pp. 329–341, IEEE, 2021.

[51] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler,

“Aligning books and movies: Towards story-like visual explanations by watching movies

and reading books,” in Proceedings of the IEEE international conference on computer

vision, pp. 19–27, 2015.

[52] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman, “GLUE: A

multi-task benchmark and analysis platform for natural language understanding,” in

7th International Conference on Learning Representations, ICLR 2019, New Orleans,

LA, USA, May 6-9, 2019, OpenReview.net, 2019.

Bibliography 87

[53] D. Hendrycks and K. Gimpel, “Bridging nonlinearities and stochastic regularizers with

gaussian error linear units,” CoRR, vol. abs/1606.08415, 2016.

[54] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,

Q. Gao, K. Macherey, et al., “Google’s neural machine translation system: Bridging the

gap between human and machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[55] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes, “Supervised

learning of universal sentence representations from natural language inference data,”

in Proceedings of the 2017 Conference on Empirical Methods in Natural Language

Processing, (Copenhagen, Denmark), pp. 670–680, Association for Computational

Linguistics, Sept. 2017.

[56] O. Zafrir, G. Boudoukh, P. Izsak, and M. Wasserblat, “Q8bert: Quantized 8bit bert,” in

2019 Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing

- NeurIPS Edition (EMC2-NIPS), pp. 36–39, 2019.

[57] S. Kim, A. Gholami, Z. Yao, M. W. Mahoney, and K. Keutzer, “I-BERT: Integer-only

BERT quantization,” pp. 5506–5518, 2021.

[58] Tensorflow, “Tensorflow lite.” https://www.tensorflow.org/lite Accessed: 2022-10-

20.

https://www.tensorflow.org/lite

Bibliography 88

[59] J. Roesch, S. Lyubomirsky, L. Weber, J. Pollock, M. Kirisame, T. Chen, and Z. Tatlock,

“Relay: a new IR for machine learning frameworks,” in Proceedings of the 2nd ACM

SIGPLAN International Workshop on Machine Learning and Programming Languages,

2018.

[60] ARM, “Arm compute library,” 2017. https://www.arm.com/technologies/

compute-library.

[61] “Arm corelink cci-550.” https://developer.arm.com/Processors/CoreLink%

20CCI-550.

[62] S. Mirjalili, Genetic Algorithm, pp. 43–55. Cham: Springer International Publishing,

2019.

[63] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” 2014.

[64] J. H. Holland, “Genetic algorithms,” Scientific american, vol. 267, no. 1, pp. 66–73,

1992.

[65] K. Tang, K. Man, S. Kwong, and Q. He, “Genetic algorithms and their applications,”

IEEE Signal Processing Magazine, vol. 13, no. 6, pp. 22–37, 1996.

[66] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective

genetic algorithm: Nsga-ii,” IEEE transactions on evolutionary computation, vol. 6,

no. 2, pp. 182–197, 2002.

https://www.arm.com/technologies/compute-library
https://www.arm.com/technologies/compute-library
https://developer.arm.com/Processors/CoreLink%20CCI-550
https://developer.arm.com/Processors/CoreLink%20CCI-550

Bibliography 89

[67] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and Q. Liu, “Tinybert:

Distilling BERT for natural language understanding,” 2019.

[68] A. Gad, “Pygad: An intuitive genetic algorithm python library,” 2021.

[69] A. Khetan and Z. S. Karnin, “schubert: Optimizing elements of BERT,” CoRR,

vol. abs/2005.06628, 2020.

[70] M. Abramowitz, I. A. Stegun, and R. H. Romer, “Handbook of mathematical functions

with formulas, graphs, and mathematical tables,” 1988.

[71] D. Zhang, J. Yang, D. Ye, and G. Hua, “Lq-nets: Learned quantization for highly

accurate and compact deep neural networks,” in Proceedings of the European conference

on computer vision (ECCV), pp. 365–382, 2018.

[72] I. Hubara, Y. Nahshan, Y. Hanani, R. Banner, and D. Soudry, “Improving post

training neural quantization: Layer-wise calibration and integer programming,” CoRR,

vol. abs/2006.10518, 2020.

[73] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter,

“Efficient and robust automated machine learning,” Advances in neural information

processing systems, vol. 28, 2015.

[74] F. Hutter, L. Kotthoff, and J. Vanschoren, eds., Automated Machine Learning - Methods,

Systems, Challenges. Springer, 2019.

Bibliography 90

[75] L. Zheng and T. Chen, “Optimizing deep learning workloads on arm gpu with tvm,”

in Proceedings of the 1st on Reproducible Quality-Efficient Systems Tournament on

Co-Designing Pareto-Efficient Deep Learning, ReQuEST ’18, (New York, NY, USA),

Association for Computing Machinery, 2018.

[76] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen, “Harris hawks

optimization: Algorithm and applications,” Future Generation Computer Systems,

vol. 97, pp. 849–872, 2019.

[77] S. Kim, S. Oh, and Y. Yi, “Minimizing gpu kernel launch overhead in deep learning

inference on mobile gpus,” HotMobile ’21, (New York, NY, USA), p. 57–63, Association

for Computing Machinery, 2021.

	Introduction
	Influence of Deep Neural Networks on AI
	Importance of Edge Computing for AI
	Benefits of Edge Computing
	Challenges of Edge Computing
	Heterogeneous Edge Computing
	Challenge of Heterogeneous Mapping and Scheduling
	Problem Statement
	Past Work and Limitations
	Mapping and Scheduling Optimization
	Model Optimizations

	Thesis Objective and Contributions
	Thesis Structure

	Literature Review
	DNN Mapping and Scheduling Optimization
	General
	Layer-wise & Pipeline Partitioning
	Operation-wise Partitioning
	Application/Task-level Parallelism

	DNNs Optimization
	Knowledge Distillation
	Efficient Neural Architectures
	Pruning
	Quantization

	Combining Mapping and Scheduling with DNN Optimization

	Background
	BERT
	Input Embedding Layer
	Multi-Head Attention (MHA)
	Feed-Forward Network
	Evaluation: GLUE Score

	Inference Frameworks
	TFLite
	TVM
	ARM Compute Library

	Heuristic Optimization Methods
	Genetic Algorithm
	Grey Wolf Algorithm

	Proposed Methodology
	DNN-SMO
	Profiling
	Computation Profiling
	Communication Profiling

	Latency Modeling
	DNN Mapping Optimization with GA
	Preliminaries
	Enhanced GA for DNN Mapping

	ARMCL BERT
	ARMCL Modifications
	BERT Implementation

	Quantization & Multi-objective Optimization
	Accuracy Model

	Experimental Setup
	DNN-SMO
	Hardware Platform: HiKey970
	Software Platform: TVM

	ARMCL BERT
	Hardware Platform: Galaxy A52
	Software Environments

	Latency Measurements
	Multi-objective Optimization

	Results
	DNN-SMO
	Comparison to Baseline GA
	Ablation Study
	Comparison to Non-GA Optimizers
	Single-inference Latency Improvement
	Summary of Results

	Validation of ARMCL Operations
	ARMCL BERT Latency
	ARMCL BERT Variants

	Quantization Optimization Results

	Conclusion And Future Work
	Future Work
	Acknowledgement

