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Abstract

In this thesis, we study amenability on various objects. We begin by studying amenable

groups: we prove a few useful characterizations of amenability and demonstrate the power

of the notion by proving that it yields several useful results. Of particular interest are the

stability theorems for approximate representations and the unitarizability theorem that we

prove: the existence of similar stability and unitarizability results for amenable objects is

a common theme throughout this thesis. We then consider the case of amenable Banach

algebras and prove that they admit a stability theorem for approximate representations. In

the next section, we prove that nuclear C*-algebras are amenable as Banach algebras and use

this to obtain a unitarizability result for nuclear C*-algebras. We also consider the notion

of strong amenability for C*-algebras. Finally, we introduce the notion of injectivity for

von Neumann algebras and show that the amenability of a group is characterized by the

injectivity of the group von Neumann algebra.
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Résumé

Dans cette thèse, nous étudions le propriété de la moyennabilité sur divers objets. Nous

commençons par étudier les groupes moyennables : nous prouvons quelques caractérisations

utiles de la moyennabilité et démontrons la puissance du concept en prouvant qu’il donne

plusieurs résultats utiles. Nous sommes particulièrement intéressés par les théorèmes de

stabilité pour les répresentations approximatives et par le théorème d’unitarisation que nous

démontrons : l’existence de résultats similaires de stabilité et d’unitarisation pour des objets

moyennables est un théme commun dans cette thèse. Nous considérons ensuite le cas des

algèbres de Banach moyennables et démontrons qu’elles admettent un théorème de stabilité

pour les répresentations approximatives. Dans la section suivante, nous démontrons que les

C*-algèbres nucléaires sont moyennables en tant ce que algèbres de Banach et utilisons ce fait

pour obtenir un résultat d’unitarisabilité pour les C*-algèbres nucléaires. Nous considérons

aussi le concept de moyennabilité forte pour les C*-algèbres. Enfin, nous introduisons le

concept d’injectivité pour les algèbres de von Neumann et prouvons que la moyennabilité

d’un groupe est caracterisée par l’injectivité de l’algèbre de von Neumann du groupe.
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Chapter 1

Introduction

The concept of amenability originated in 1929 when J. von Neumann observed that the

existence of a paradoxical decomposition of the unit ball in R3 and non-existence of such

a decomposition of the unit disk in R2 could be attributed to the fact that E(2) admits a

finitely additive left invariant probability measure, while E(3) does not. This led him to

define a discrete group as amenable if it admits a finitely additive left invariant probability

measure. The concept was later extended to Banach algebras by B. E. Johnson in 1972 (see

[Joh72]) and has since grown into a deep and fascinating area of research with applications

in diverse fields, such as abstract harmonic analysis, operator algebras, and ergodic theory.

One of the many applications of amenability is to the question of the unitarizability of

bounded representations. In 1950, M. M. Day and J. Dixmier proved (independently) that

uniformly bounded representations of amenable groups on Hilbert spaces are equivalent to

unitary representations (see [Day50] and [Dix50]). An analogous result for strongly amenable

C*-algebras was obtained by J. Bunce in 1972 (see [Bun72a], [Bun72b]), and U. Haagerup’s

proof that nuclear C*-algebras admit virtual diagonals belonging to a certain closed convex

hull (see [Haa83]) later permitted the extension of the result to nuclear C*-algebras.

Another useful application of amenability is to the question of the stability of certain

“approximate representations”. In 1982, D. Kazhdan proved that if ϕ : G→ U(H) is a map

of a discrete amenable group G into the unitary group U(H) of some Hilbert space H which

is “approximately” a representation in the sense that the operator norm of ϕ(xy)− ϕ(x)ϕ(y)

is small for all x, y ∈ G, then there exists some genuine unitary representation π : G→ U(H)
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such that ϕ(x) is close in operator norm to π(x) for all x ∈ G (see [Kaz82]). A few years

later, similar results were obtained for amenable Banach algebras by B. E. Johnson (see

[Joh88]). In the previous decade, there appears to have been a surge of renewed interest in

such stability theorems for approximate representations, with results of this type appearing

in (among others) [BOT13], [Sht13], [GH17], and [dCOT19].

In this thesis, we aim to introduce various notions of amenability for groups, Banach

algebras, C*-algebras, and von Neumann algebras and to prove some of the unitarizability

and stability results we have mentioned. We assume that the reader is familiar with the basic

theory of Banach algebras, C*-algebras, and von Neumann algebras and freely use results

from these areas without supplying proof or reference.
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Chapter 2

Amenable Groups

The primary references for this chapter are [Pie84] and [BO08].

2.1 Amenability

If H is a Hilbert space, then we let B(H) denote the *-algebra of bounded operators on H.

Definition 2.1.1. Let G be a group and H be a Hilbert space. A map ϕ : G→ B(H) is

uniformly bounded with respect to the operator norm on B(H) if

‖ϕ‖ = sup{‖ϕ(x)‖op : x ∈ G} <∞

If G is a group, H is a Hilbert space, and M⊆ B(H) is a von Neumann algebra, then

we let `∞(G,M) denote the space of uniformly bounded maps from G toM; whenM = C,

we usually write `∞(G) rather than `∞(G,C). For every bounded operator T ∈ B(H), we

let κT : G→ B(H) denote the map defined by κT (x) = T . If Ψ : `∞(G,M)→M is a linear

map, then we often employ the notation Ψx ϕ(x) = Ψ(ϕ).

Definition 2.1.2. Let G be a discrete group, H be a Hilbert space, and M⊆ B(H) be a

von Neumann algebra. An invariant mean on `∞(G,M) is a linear map E : `∞(G,M)→M

such that ‖E‖op = 1, E(κT ) = T for all T ∈M, and

Ex ϕ(sx) = Ex ϕ(x)

for all ϕ ∈ `∞(G,M) and s ∈ G.

3



Definition 2.1.3. A discrete group G is amenable if `∞(G) admits an invariant mean.

The following result is due to Tomiyama (see Theorem 1 in [Tom57]).

Proposition 2.1.4. Let A be a C*-algebra and B ⊆ A be a C*-subalgebra of A. If π : A → B

is a linear map such that ‖π‖op = 1 and π(x) = x for all x ∈ B, then π is positive and

π(axb) = a π(x) b

for all x ∈ A and a, b ∈ B.

Proof. By replacing π with π∗∗ : A∗∗ → B∗∗ if necessary, it may be assumed without loss of

generality thatA is unital and B is a W*-algebra. Let p ∈ B be a projection; then px ∈ B and

(1− p)x ∈ B for all x ∈ B, and thus π(p π(x)) = p π(x) and π((1− p) π(x)) = (1− p) π(x)

for all x ∈ A. It follows that

(1 + 2n+ n2) ‖(1− p)π(px)‖2 = ‖(1− p) π(px+ n (1− p) π(px))‖2

≤ ‖1− p‖2 ‖π‖2
op ‖px+ n (1− p) π(px)‖2

≤ ‖px+ n (1− p) π(px)‖2

≤ ‖px‖2 + n2 ‖(1− p)π(px)‖2

for all n ∈ N, so ‖(1− p) π(px)‖ = 0, which implies that (1− p) π(px) = 0. Let q = 1− p;

then q is a projection, so p π((1− p)x) = (1− q) π(qx) = 0, and thus it follows that

π(px) = p π(px) = p π(x)

for all x ∈ A and every projection p ∈ B. As B is a W*-algebra, it is the closed linear span

of its projections, so π(ax) = a π(x) for all x ∈ A and a ∈ B. As π is unital and ‖π‖op ≤ 1,

it follows that π is a positive map, so π(x∗) = π(x)∗ for all x ∈ A, which in turn implies that

π(xb) = π(x) b for all x ∈ A and b ∈ B.

Corollary 2.1.5. Let G be a discrete group, H be a Hilbert space, and M⊆ B(H) be a von

Neumann algebra. If E : `∞(G,M)→M is an invariant mean, then E is positive and

E(κSϕκT ) = S E(ϕ)T

for all S, T ∈M and ϕ ∈ `∞(G,M).
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Proof. Let ι :M ↪→ `∞(G,M) be the canonical inclusion map; then clearly ‖ι ◦ E‖op = 1

and (ι ◦ E)(κT ) = ι(T ) = κT for all T ∈ B(H), so it follows by Proposition 2.1.4 that

(ι ◦ E)(κSϕκT ) = κS (ι ◦ E)(ϕ)κT = ι(S) (ι ◦ E)(ϕ) ι(T ) = ι(S E(ϕ)T )

for all S, T ∈M and ϕ ∈ `∞(G,M); as ι is an embedding, this implies that

E(κSϕκT ) = S E(ϕ)T

for all S, T ∈M and ϕ ∈ `∞(G,M). Furthermore, as ι ◦ E is positive and ι is an isometric

*-homomorphism, it follows that E is positive.

If G is a discrete group, H is a Hilbert space, M⊆ B(H) is a von Neumann algebra,

and E is an invariant mean on `∞(G,M), then the bounded linear map Ψ : `∞(G,M)→M

defined by

Ψ(ϕ) = 1
2
Ex Ey (ϕ(xy−1) + ϕ(yx−1))

is an invariant mean on `∞(G,M) such that

Ψx ϕ(sx) = Ψx ϕ(xs) = Ψx ϕ(x−1) = Ψx ϕ(x)

for all ϕ ∈ `∞(G,M) and s ∈ G. Henceforth, we assume whenever it is convenient to do so

that the invariant mean we are working with satisfies this property.

We now demonstrate a simple, yet invaluable construction that allows us to extend an

invariant mean on `∞(G) to an invariant mean on `∞(G,M), for any Hilbert space H and

von Neumann algebra M⊆ B(H).

Proposition 2.1.6. Let G be a discrete amenable group and H be a Hilbert space. If

M⊆ B(H) is a von Neumann algebra, then there exists an invariant mean on `∞(G,M).

Proof. As G is amenable, there exists an invariant mean E ∈ `∞(G)∗. For every map

ϕ ∈ `∞(G,B(H)) and vector η ∈ H, define a bounded linear functional ψϕ,η ∈ H∗ by

ψϕ,η(ξ) = Ex 〈ξ, ϕ(x) η〉
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It follows by the Riesz representation theorem that a map E : `∞(G,B(H))→ B(H) can be

defined by

ψϕ,η(ξ) = 〈ξ, E(ϕ)(η)〉

It is easily verified that E defines an invariant mean on `∞(G,B(H)). Let ϕ ∈ `∞(G,M);

then it follows by Corollary 2.1.5 that

T E(ϕ) = E(κT ϕ) = E(ϕκT ) = E(ϕ)T

for all T ∈M′, which implies that E(ϕ) ∈M′′. Furthermore, as M is a von Neumann

algebra, it follows by the von Neumann bicommutant theorem thatM′′ =M, so E(ϕ) ∈M

for all ϕ ∈ `∞(G,M) and thus E|`∞(G,M) is an invariant mean on `∞(G,M).

Henceforth, every amenable group G will implicitly be equipped with an invariant mean

on `∞(G,M) for every Hilbert space H and von Neumann algebra M⊆ B(H); abusing

notation, we will write E for all such invariant means.

Remark 2.1.7. It follows by construction that the invariant mean E defined in Proposition

2.1.6 satisfies the following properties:

• Ex 〈ξ, ϕ(x) η〉 = 〈ξ, Ex ϕ(x) η〉

• Ex 〈ϕ(x) ξ, η〉 = 〈Ex ϕ(x) ξ, η〉

for all ϕ ∈ `∞(G,M) and ξ, η ∈ H; henceforth, we assume whenever it is convenient to do

so that the invariant mean we are working with satisfies this property.

The following result is a slight variation on Proposition 2.2 in [dCOT19].

Proposition 2.1.8. Let G be a discrete amenable group and H be a Hilbert space. If

ϕ : G→ B(H) is a uniformly bounded map such that ‖ϕ‖ ≤ 1, then the map ψ : G→ B(H)

defined by

ψ(x) = Ey ϕ(y)∗ ϕ(yx)

is positive definite and ‖ψ‖ ≤ 1. Furthermore, if ϕ is a unitary map, then ψ is unital.
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Proof. It follows by the right invariance, additivity, and positivity of E that

∑
x,y ∈F

〈ψ(x−1y) ξy, ξx〉 =
∑
x,y ∈F

Ez 〈ϕ(z)∗ ϕ(zx−1y) ξy, ξx〉

=
∑
x,y ∈F

Ez 〈ϕ(zx)∗ ϕ(zy) ξy, ξx〉

=
∑
x,y ∈F

Ez 〈ϕ(zy) ξy, ϕ(zx) ξx〉

= Ez 〈
∑
y ∈F

ϕ(zy) ξy,
∑
x∈F

ϕ(zx) ξx〉 ≥ 0

for every finite subset F ⊆ G and all ξx, ξy ∈ H.

2.2 The Følner and Reiter Conditions

In this section we prove a couple of useful characterizations of amenability.

Definition 2.2.1. Let G be a group. The left translation action of G on `∞(G) is the action

defined by

(s · f)(x) = f(s−1x)

We typically write sf rather than s · f , except where it might lead to confusion.

Definition 2.2.2. A countable discrete group G satisfies the Reiter condition if there exists

a net (µα) of nonnegative functions in `1(G) with unit norm such that ‖sµα − µα‖1 → 0 for

all s ∈ G.

If X is a set, then we let |X| denote the cardinality of X.

Definition 2.2.3. A discrete group G satisfies the Følner condition if there exists a sequence

(Fn) of finite subsets of G such that

|sFn4Fn|
|Fn|

→ 0

for all s ∈ G.
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If X is a nonempty countable set, then every absolutely summable function µ ∈ `1(X)

induces a bounded linear functional τµ ∈ `∞(X)∗ under the definition

τµ(f) =
∑
x∈X

µ(x) f(x)

If A is a C*-algebra, then we let St(A) denote the set of states on A.

Theorem 2.2.4. Let X be a nonempty countable set. The set W ⊆ St(`∞(X)) defined by

W = {τµ ∈ `∞(X)∗ : µ ≥ 0, ‖µ‖1 = 1}

is dense in St(`∞(X)) with respect to the weak-* topology.

Proof. Suppose that W is not dense in St(`∞(X)) with respect to the weak-* topology; then

there exists a state ψ ∈ St(`∞(X)) \W , where W denotes the closure of W with respect

to the weak-* topology, and it follows by the Hahn-Banach separation theorem that there

exists a function f0 ∈ `∞(X) and a real numbers α ∈ R such that

Re τ(f0) < α < Re ψ(f0)

for all τ ∈ W . Let f = f0 + f ∗0 + ‖f0 + f ∗0‖∞ χX and β = 2α + ‖f0 + f ∗0‖∞; then

τ(f) < β < ψ(f)

for all τ ∈ W and f is nonnegative. As f is nonnegative, there exists a sequence (xn) of

elements in X such that f(xn)→ ‖f‖∞. Let (µn) be the sequence of nonnegative functions

in `1(X) defined by µn = χ{xn}. Then τµn(f)→ ‖f‖∞ and τ(f) ≤ ‖f‖∞ for all τ ∈ W , so

‖f‖∞ = sup{τ(f) : τ ∈ W}. However, this is a contradiction, as

‖f‖∞ = sup{τ(f) : τ ∈ W} ≤ β < ψ(f) ≤ |ψ(f)| ≤ ‖ψ‖op ‖f‖∞ = ‖f‖∞

It thus follows that W is dense in St(`∞(X)) with respect to the weak-* topology.

Lemma 2.2.5. Let X be a nonempty countable set. If µ ∈ `1(X) is an absolutely summable

function, then

ψ(µ) = τµ(ψ ◦ χ{·})

for all ψ ∈ `1(X)∗.
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Proof. As X is a countable set, it is the limit of an ascending chain F1 ⊆ F2 ⊆ · · · ⊆ X of

finite subsets. Let (µn) be the sequence of finitely supported functions in `1(X) defined by

µn = µχFn . As µn is finitely supported for all n ∈ N, it follows by linearity that

ψ(µn) =
∑
x∈X

µn(x)ψ(χ{x}) = τµn(ψ ◦ χ{·})

for all ψ ∈ `1(X)∗ and n ∈ N; as ‖µn − µ‖1 → 0, it then follows by the continuity of ψ that

ψ(µ) = τµ(ψ ◦ χ{·}) for all ψ ∈ `1(X)∗.

Proposition 2.2.6. Let X be a nonempty countable set. If (µα) is a net in `1(X) such that

(τµα)→ τµ in the weak-* topology, then (µα)→ µ in the weak topology.

Proof. It follows by Lemma 2.2.5 that

ψ(µα) = τµα(ψ ◦ χ{·})→ τµ(ψ ◦ χ{·}) = ψ(µ)

for all ψ ∈ `1(X)∗, and thus (µα)→ µ in the weak topology.

Lemma 2.2.7. Let X be a countable set. If µ ∈ `1(X) and ν ∈ `1(X) are nonnegative

absolutely summable functions, then

‖µ− ν‖1 =

∫ ∞
0

|{x ∈ X : µ(x) > t}4{x ∈ X : ν(x) > t}| dt

Proof. As

|µ(x)− ν(x)| =
∫ ∞

0

|χ(0,µ(x))(t)− χ(0,ν(x))(t)| dt

for all x ∈ X and∑
x∈X

|χ(0,µ(x))(t)− χ(0,ν(x))(t)| = |{x ∈ X : µ(x) > t}4{x ∈ X : ν(x) > t}|

for all t ∈ [0,∞), it follows by Tonelli’s theorem that

‖µ− ν‖1 =
∑
x∈X

|µ(x)− ν(x)| =
∫ ∞

0

|{x ∈ X : µ(x) > t}4{x ∈ X : ν(x) > t}| dt

Theorem 2.2.8. Let G be a countable discrete group. The following are equivalent:

1. G is amenable
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2. G satisfies the Reiter condition

3. G satisfies the Følner condition

Proof. Suppose that G is amenable and let E ∈ `∞(G)∗ be an invariant mean. By Theorem

2.2.4, there exists a net (µα) of nonnegative functions in `1(G) with unit norm such that

(τµα)→ E in the weak-* topology. Let K = {s1, . . . , sk} ⊆ G be any finite subset of G. As

τsµα−µ(f) = τsµα(f)− τµ(f) = τµα(s−1f)− τµ(f)→ E(s−1f)− E(f) = 0

for all f ∈ `∞(G) and s ∈ G, it follows by Proposition 2.2.6 that (sµα − µ)→ 0 in the weak

topology for all s ∈ G, and thus in turn (s1µα − µα, . . . , skµα − µα)→ (0, . . . , 0) in the weak

topology on `1(G)⊕|K|. By Mazur’s lemma, there exists a sequence (νn) of finite convex

combinations of elements in {µα} such that∑
s∈K

‖sνn − νn‖1 = ‖(s1νn, . . . , skνn)‖`1(G)⊕|K| → 0

This implies that ‖sνn − νn‖1 → 0 for all s ∈ K, and thus for every ε > 0 and every finite

subset K ⊆ G there exists a nonnegative function νε,K ∈ `1(G) with unit norm such that

‖sνε,K − νε,K‖1 < ε for all s ∈ K. As G is countable, it is the limit of an ascending chain

F1 ⊆ F2 ⊆ · · · ⊆ G of finite subsets; it then follows that ‖sνn−1,Fn − νn−1,Fn‖1 → 0 for all

s ∈ G, and so the implication (1)⇒ (2) holds. Suppose that G satisfies the Reiter condition,

let K ⊆ G be any finite subset of G, let ε > 0, and let µ ∈ `1(G) be a nonnegative function

such that ‖µ‖1 = 1 and ‖sµ− µ‖1 < ε for all s ∈ K. For every real number t ∈ [0, 1), let

Ft = {x ∈ G : µ(x) > t}; then it follows by Lemma 2.2.7 that∫ 1

0

|sFt4Ft| dt = ‖sµ− µ‖1 < ε ‖µ‖1 = ε

∫ 1

0

|Ft| dt

so there exists some t ∈ [0, 1) such that |sFt4Ft| < ε |Ft|. As this holds for every finite

subset K ⊆ G and all ε > 0, it follows that G satisfies the Følner condition, and thus the

implication (2)⇒ (3) holds. Suppose now that G satisfies the Følner condition, let (Fn) be a

sequence of finite subsets of G witnessing the Følner condition, and let (µn) be the sequence

of nonnegative functions in `1(G) defined by µn = 1
|Fn|χFn . Then

‖sµn − µn‖1 =
1

|Fn|
∑
x∈G

|χsFn(x)− χFn(x)| = |sFn4Fn|
|Fn|

→ 0
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for all s ∈ G, and so the implication (3)⇒ (2) holds. Suppose now that G satisfies the Reiter

condition and let (µα) be a net in `1(G) indexed by a directed set I witnessing the Reiter

condition. As ‖τµα‖op ≤ ‖µα‖1 = 1 for all α ∈ I, it follows by the Banach-Alaoglu theorem

that (τµα) has a subnet (τµβ) converging to some bounded linear functional τ ∈ `∞(G)∗ such

that ‖τ‖op ≤ 1 with respect to the weak-* topology. As

τµα(χG) =
∑
x∈G

µα(x)χG(x) =
∑
x∈G

µα(x) =
∑
x∈G

|µα(x)| = ‖µα‖1 = 1

for all α ∈ I and τµβ(χG)→ τ(χG), in turn τ(χG) = 1, and thus τ is a state on `∞(G).

Furthermore, as |τµβ(s−1f)− τµβ(f)| → |τ(s−1f)− τ(f)| and

|τµα(s−1f)− τµα(f)| = |τsµα−µα(f)| ≤ ‖τsµα−µα‖op ‖f‖∞ ≤ ‖sµα − µα‖1 ‖f‖∞ → 0

for all f ∈ `∞(G) and s ∈ G, it follows that |τ(s−1f)− τ(f)| = 0 for all f ∈ `∞(G) and s ∈ G,

so τ is an invariant mean on `∞(G) and the implication (2)⇒ (1) holds.

2.3 Examples of Amenable Groups

Proposition 2.3.1. Let H ↪→ G� K be a short exact sequence of discrete groups. If H

and K are amenable, then G is amenable.

Proof. As H ↪→ G� K is a short exact sequence, there exists a normal subgroup N EG

such that H ∼= N and K ∼= G/N ; it thus suffices to show that if N EG is a normal subgroup

such that N and G/N are amenable, then G is amenable. Let τN and τG/N be invariant means

on `∞(N) and `∞(G/N), respectively. For every uniformly bounded function f ∈ `∞(G), let

gf ∈ `∞(G/N) be the uniformly bounded function defined by

gf (xN) = τN(x−1f)

As τN is an invariant mean, this is clearly well-defined. Now let τ ∈ St(`∞(G)) be the state

defined by

τ(f) = τG/N(gf )
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As

gsf (xN) = τN(x−1sf) = τN((s−1x)−1f) = gf (s
−1xN)

for all s, x ∈ G, it follows by the left invariance of τG/N that τ is an invariant mean on `∞(G),

and thus G is amenable.

Proposition 2.3.2. If G is a finite discrete group, then G is amenable.

Proof. It suffices to let E be the usual average defined by E(f) = |G|−1
∑

x∈G f(x).

Proposition 2.3.3. The discrete group (Z,+) is amenable.

Proof. For every n ∈ N, let Fn = {1, . . . , n}; then

|(m+ Fn)4Fn|
|Fn|

≤ 2m

n
→ 0

for all m ∈ Z, so (Fn) is a sequence of finite subsets witnessing the Følner condition for

(Z,+). It then follows by Theorem 2.2.8 that (Z,+) is amenable.

Proposition 2.3.4. Let G be a countable discrete group. If G is the limit of an ascending

chain F1 ⊆ F2 ⊆ · · · ⊆ G of discrete amenable subgroups, then G is amenable.

Proof. Let K ⊆ G be a finite subset and ε > 0; as K is finite, there exists some n ∈ N such

that K ⊆ Fn. As Fn is amenable, it follows by Theorem 2.2.8 that there exists a finite

subset F ⊆ G such that |sF 4F | < ε |F | for all s ∈ K; as there exists such a subset for

every finite subset K ⊆ G and all ε > 0, it follows that G satisfies the Følner condition, and

thus Theorem 2.2.8 implies that G is amenable.

Proposition 2.3.5. If G is a countable discrete abelian group, then G is amenable.

Proof. As G is countable and abelian, it is the limit of an ascending chain of finitely generated

abelian subgroups. It follows by Proposition 2.3.1, Proposition 2.3.2, and Proposition 2.3.3

that every finitely generated discrete abelian group is amenable, and thus Proposition 2.3.4

implies that G is amenable.
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2.4 Unitarizability of Bounded Representations

The following unitarizability result is due to Day (see [Day50]) and Dixmier (see [Dix50]).

Theorem 2.4.1 (Day-Dixmier Theorem). Let G be a discrete amenable group and H be

a Hilbert space. If π : G→ B(H) is a uniformly bounded representation, then there exists an

invertible operator V ∈ B(H) such that ‖V ‖op, ‖V −1‖op ≤ ‖π‖ and such that V −1 π( · )V is

a unitary representation on H.

Proof. Define a new inner product 〈·, ·〉U on H by

〈ξ, η〉U = Ey 〈π(y−1) ξ, π(y−1) η〉

Then ‖ξ‖U ≤ ‖π‖ ‖ξ‖ and ‖ξ‖ ≤ ‖π‖ ‖ξ‖U for all ξ ∈ H, so 〈·, ·〉 and 〈·, ·〉U are equivalent

inner products, and thus (H, 〈·, ·〉U) is also a Hilbert space. It follows by the left invariance

of the mean that

〈π(x) ξ, η〉U = Ey 〈π(y−1) π(x) ξ, π(y−1) η〉

= Ey 〈π(y−1x) ξ, π(y−1) η〉

= Ey 〈π(y−1) ξ, π(y−1x−1) η〉

= Ey 〈π(y−1) ξ, π(y−1) π(x−1) η〉

= 〈ξ, π(x−1) η〉U

for all x ∈ G and ξ, η ∈ H, so it follows that π is a unitary representation on (H, 〈·, ·〉U).

Let T : (H, 〈·, ·〉)→ (H, 〈·, ·〉U) be the identity operator defined by T (ξ) = ξ. Let T = V |T |

be the polar decomposition of T ; as T is invertible, V can be taken to be unitary. Then

V −1 π( · )V is a unitary representation on (H, 〈·, ·〉), and furthermore

‖V ξ‖ ≤ ‖π‖ ‖V ξ‖U = ‖π‖ ‖ξ‖

and

‖V −1ξ‖ = ‖ξ‖U ≤ ‖π‖ ‖ξ‖

for all ξ ∈ H, so ‖V ‖op, ‖V −1‖op ≤ ‖π‖.

It is an open question whether or not unitarizability of uniformly bounded representations

is equivalent to amenability for discrete groups.
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2.5 Unitarily Invariant Norms

If H is a Hilbert space, then we let U(H) denote the group of unitary operators on H;

similarly, if M⊆ B(H) is a von Neumann algebra, then we let U(M) denote the group of

unitary operators inM. Throughout the remainder of this chapter, we allow semi-norms to

take values in [0,∞].

Definition 2.5.1. Let H be a Hilbert space andM⊆ B(H) be a von Neumann algebra. A

semi-norm ‖ · ‖ on M is unitarily invariant if

‖UTV ‖ = ‖T‖

for all T ∈M and U, V ∈ U(M).

Examples of unitarily invariant semi-norms include the operator norm and, if M is

equipped with a tracial state τ , the Schatten p-norms arising from τ .

Proposition 2.5.2. Let H be a Hilbert space. If ‖ · ‖ is a unitarily invariant semi-norm on

B(H), then the following relations hold:

‖RTS‖ ≤ ‖R‖op ‖T‖ ‖S‖op

‖T‖ = ‖T ∗‖ = ‖|T |‖

‖T ∗T‖ = ‖TT ∗‖

0 ≤ R ≤ S =⇒ ‖R‖ ≤ ‖S‖

for all R, S, T ∈ B(H).

Proof. Suppose that ‖R‖op, ‖S‖op < 1; then by the Russo-Dye theorem there exist unitaries

U1, . . . , Un, V1, . . . , Vm ∈ U(H) and µ1, . . . , µn, ν1, . . . , νm ∈ [0, 1] such that R =
∑n

i= 1 µi Ui,

S =
∑m

j= 1 νj Vj, and
∑n

i= 1 µi =
∑m

j= 1 νj = 1. It thus follows by the triangle inequality and

the unitary invariance of the norm that

‖RTS‖ ≤
n∑

i= 1

m∑
j= 1

µiνj ‖UiTVj‖ =
n∑

i= 1

µi

m∑
j= 1

νi‖T‖ = ‖T‖

14



Now let R and S be arbitrary and let Rn = (‖R‖op + 1
n
)−1R and Sn = (‖S‖op + 1

n
)−1 S for

every n ∈ N. Then ‖Rn‖op, ‖Sn‖op < 1, so it follows that

‖RTS‖ = (‖R‖op + 1
n
) (‖S‖op + 1

n
) ‖RnTSn‖

≤ (‖R‖op + 1
n
) (‖S‖op + 1

n
) ‖T‖

→ ‖R‖op ‖T‖ ‖S‖op

and thus the first relation holds. Let T = U |T | be the polar decomposition of T ; then

‖T‖ = ‖U |T |‖ ≤ ‖U‖op ‖|T |‖ ≤ ‖|T |‖ = ‖U∗T‖ ≤ ‖U∗‖op ‖T‖ ≤ ‖T‖

so ‖T‖ = ‖|T |‖, and

‖T ∗‖ = ‖|T |U∗‖ ≤ ‖|T |‖ ‖U∗‖op ≤ ‖|T |‖ = ‖|T |∗‖ = ‖T ∗U‖ ≤ ‖T ∗‖ ‖U‖op ≤ ‖T ∗‖

so ‖T ∗‖ = ‖|T |‖. Furthermore,

‖T ∗T‖ = ‖|T |2‖ = ‖|T ||T |∗‖ = ‖U∗TT ∗U‖ ≤ ‖TT ∗‖ = ‖U |T ||T |U∗‖ ≤ ‖|T ||T |‖ = ‖T ∗T‖

so ‖T ∗T‖ = ‖TT ∗‖. For the final relation, R and S are positive operators, so R1/2 and

S1/2 are well-defined, and thus it follows by Douglas’ lemma that there exists a bounded

operator T ∈ B(H) such that ‖T‖op ≤ 1 and R1/2 = T ∗S1/2. Then R1/2 = (R1/2)∗ = S1/2T ,

so R = R1/2R1/2 = T ∗ST and

‖R‖ = ‖T ∗ST‖ ≤ ‖T ∗‖op ‖S‖ ‖T‖op = ‖T‖2
op ‖S‖ ≤ ‖S‖

Lemma 2.5.3. Let H and K be Hilbert spaces and ‖ · ‖ be a unitarily invariant semi-norm on

B(H). If S ∈ B(K) is a normal operator, T : H → K is a bounded operator, and f ∈ B(σ(S))

and g ∈ B(σ(S)) are Borel functions such that 0 ≤ f(t) ≤ g(t) for all t ∈ σ(S), then

‖T ∗ f(S)T‖ ≤ ‖T ∗ g(S)T‖

Proof. As 0 ≤ f(t) ≤ g(t) for all t ∈ σ(S), it follows that 0 ≤ f(S) ≤ g(S). Furthermore, if

R ∈ B(K) is a positive operator, then R1/2 is well-defined, so T ∗RT = T ∗R1/2R1/2T is also

positive; thus 0 ≤ T ∗ f(S)T ≤ T ∗ g(S)T , and it follows by Proposition 2.5.2 that

‖T ∗ f(S)T‖ ≤ ‖T ∗ g(S)T‖
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We will require a number of inequalities.

Proposition 2.5.4. Let H be a Hilbert space and ‖ · ‖ be a unitarily invariant semi-norm

on B(H). If T ∈ B(H) is a positive operator, then

‖IH − T‖ ≤ ‖IH − T 2‖

Proof. As |1− t| ≤ |1− t2| for all t ∈ [0,∞), it follows by Proposition 2.5.2 and Lemma 2.5.3

that

‖IH − T‖ = ‖|IH − T |‖ ≤ ‖|IH − T 2|‖ = ‖IH − T 2‖

Proposition 2.5.5. Let 0 < δ ≤ 1, H and K be Hilbert spaces, and ‖ · ‖ be a unitarily

invariant semi-norm on B(H). If S ∈ B(K) is a positive operator and T : H → K is a

bounded operator, then

‖T ∗ χ[δ,1](S)T‖ ≤ 1
δ
‖T ∗ST‖

Proof. As 0 ≤ χ[δ,1](t) ≤ 1
δ
t for all t ∈ [0,∞), the proposition follows by Lemma 2.5.3.

Proposition 2.5.6. Let H and K be Hilbert spaces and ‖ · ‖ be a unitarily invariant semi-

norm on B(H). If S ∈ B(K) is a positive contraction and T : H → K is a contraction,

then

‖T ∗ (IK − S)T‖ ≤ ‖IH − T ∗ST‖

Proof. As S and T ∗T are positive contractions, in turn IK − S and IH − T ∗T are positive

operators, so 0 ≤ T ∗ (IK − S)T ≤ IH − T ∗ST . The proposition then follows immediately by

Proposition 2.5.2.

Proposition 2.5.7. Let 0 ≤ δ < 1, H and K be Hilbert spaces, and ‖ · ‖ be a unitarily

invariant semi-norm on B(H). If S ∈ B(K) is a positive contraction and T : H → K is a

contraction, then

‖IH − T ∗ χ[δ,1](S)T‖ ≤ ‖IH − T ∗T‖+ 1
1−δ ‖IH − T

∗ST‖
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Proof. As 0 ≤ 1− χ[δ,1](t) ≤ 1
1−δ (1− t) for all t ∈ [0, 1], it follows by Lemma 2.5.3 and

Proposition 2.5.6 that

‖T ∗T − T ∗ χ[δ,1](S)T‖ = ‖T ∗ (IK − χ[δ,1](S))T‖

≤ 1
1−δ ‖T

∗ (IK − S)T‖

≤ 1
1−δ ‖IH − T

∗ST‖

It then follows by the triangle inequality that

‖IH − T ∗ χ[δ,1](S)T‖ ≤ ‖IH − T ∗T‖+ ‖T ∗T − χ[δ,1](S)T‖

≤ ‖IH − T ∗T‖+ 1
1−δ ‖IH − T

∗ST‖

Proposition 2.5.8. Let H and K be Hilbert spaces and ‖ · ‖ be a unitarily invariant semi-

norm on B(H). If S ∈ B(K) is a contraction and T : H → K is a bounded operator, then

‖T ∗ST‖ ≤ ‖T ∗T‖

Proof. As S∗S is positive and ‖S∗S‖op = ‖S‖2
op ≤ 1, it follows that IK − S∗S is positive, so

T ∗T − T ∗S∗ST is a positive operator. Let T ∗ST = U |T ∗ST | be the polar decomposition of

T ∗ST ; then

0 ≤ (TU − ST )∗(TU − ST ) = U∗T ∗TU − 2 |T ∗ST |+ T ∗S∗ST

It follows that 0 ≤ |T ∗ST | ≤ 1
2

(U∗T ∗TU + T ∗S∗ST ) ≤ 1
2

(U∗T ∗TU + T ∗T ), and thus

‖T ∗ST‖ = ‖|T ∗ST |‖

≤ 1
2
‖U∗T ∗TU + T ∗T‖

≤ 1
2

(
‖U∗T ∗TU‖+ ‖T ∗T‖

)
≤ ‖T ∗T‖

Proposition 2.5.9. Let H and K be Hilbert spaces and ‖ · ‖ be a unitarily invariant semi-

norm on B(H). If S ∈ B(K) is a positive contraction and T : H → K is a contraction,

then

‖IH − T ∗T‖ ≤ ‖IH − T ∗ST‖
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Proof. As S and T ∗T are positive contractions, IK − S and IH − T ∗T are positive operators,

which implies in turn that IH − T ∗ST − (IH − T ∗T ) = T ∗ (IK − S)T is a positive operator

and 0 ≤ IH − T ∗T ≤ IH − T ∗ST . The proposition then follows by Proposition 2.5.2.

If H is a separable Hilbert space, then every unitarily invariant semi-norm ‖ · ‖ on

B(`2(N)) induces a unitarily invariant semi-norm ‖ · ‖B(H) on B(H) in the following way:

fixing an isometry U : H → `2(N), let

‖T‖B(H) = ‖UTU∗‖

It is easily verified that this is indeed a unitarily invariant semi-norm. Let U : H → `2(N)

and V : H → `2(N) be isometries; then it follows by Theorem 2.5.2 that

‖UTU∗‖ = ‖UV ∗V TV ∗V U∗‖ ≤ ‖UV ∗‖op ‖V TV ∗‖ ‖V U∗‖op = ‖V TV ∗‖

for all T ∈ B(H), and swapping U and V shows that ‖UTU∗‖ = ‖V TV ∗‖ for all T ∈ B(H);

thus ‖ · ‖B(H) does not depend on the choice of isometry U : H → `2(N). Moreover, it can

easily be shown that if ‖ · ‖ is the operator norm on B(`2(N)), then ‖ · ‖B(H) is the operator

norm on B(H), and that if K is another separable Hilbert space, then

‖T ∗T‖B(H) = ‖TT ∗‖B(K)

for every bounded operator T : H → K.

The following result is a slight variation on Lemma 2.10 from [dCOT19].

Proposition 2.5.10. Let G be a countable discrete amenable group, H be a Hilbert space,

and ‖ · ‖ be a unitarily invariant semi-norm on B(H) which is lower semi-continuous in the

weak operator topology. If ϕ : G→ B(H) is a uniformly bounded map, then

‖Ex ϕ(x)‖ ≤ Ex ‖ϕ(x)‖

Proof. Let Φ : `1(G)→ B(H) be the bounded linear map defined by

Φ(µ) =
∑
x∈G

µ(x)ϕ(x)
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As this sum converges in operator norm, it also converges in the weak operator topology.

For any nonnegative function µ ∈ `1(G) and finite subset F ⊆ G, it follows by the triangle

inequality that

‖
∑
x∈F

µ(x)ϕ(x)‖ ≤
∑
x∈F

µ(x) ‖ϕ(x)‖ ≤
∑
x∈G

µ(x) ‖ϕ(x)‖ = τµ(‖ϕ( · )‖)

As G is countable, it is the limit of an ascending chain F1 ⊆ F2 ⊆ · · · ⊆ G of finite subsets.

As ‖ · ‖ is lower semi-continuous with respect to the weak operator topology, it follows that

‖Φ(µ)‖ = ‖
∑
x∈G

µ(x)ϕ(x)‖ ≤ lim inf
n→∞

‖
∑
x∈Fn

µ(x)ϕ(x)‖ ≤ τµ(‖ϕ( · )‖)

By Theorem 2.2.4, there exists a net (µα) of nonnegative functions in `1(G) with unit norm

such that (τµα) converges to E ∈ `∞(G)∗ in the weak-* topology on `∞(G)∗. It follows that

〈Φ(µα) ξ, η〉 = 〈
∑
x∈G

µα(x)ϕ(x) ξ, η〉

=
∑
x∈G

µα(x) 〈ϕ(x) ξ, η〉

= τµα(〈ϕ( · ) ξ, η〉)

→ Ex 〈ϕ(x) ξ, η〉

for all ξ, η ∈ H, so (Φ(µα))→ E(ϕ) in the weak operator topology, and thus

‖E(ϕ)‖ ≤ lim inf
α
‖Φ(µα)‖ ≤ lim inf

α
τµα(‖ϕ( · )‖) = Ex ‖ϕ(x)‖

Remark 2.5.11. The proof of the above proposition implies that E(ϕ) ∈ conv{ϕ(x) : x ∈ G},

where the closure is with respect to the weak operator topology.

2.6 Stability of Approximate Representations

In this section, we will prove that discrete amenable groups admit certain stability results

for approximate representations. We begin by specifying what we mean by an “approximate

representation”.
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Definition 2.6.1. LetG be a discrete group andH be a Hilbert space. A map ϕ : G→ B(H)

is an ε-representation with respect to a semi-norm ‖ · ‖ on B(H) if

‖ϕ(xy)− ϕ(x)ϕ(y)‖ ≤ ε

for all x, y ∈ G.

In order to prove the promised stability results, we will require the following version of

Stinespring’s dilation theorem.

Theorem 2.6.2 (Stinespring’s Dilation Theorem). Let G be a discrete group and H be

a Hilbert space. If ψ : G→ B(H) is a positive definite map, then there exists a Hilbert space

K, a bounded operator U : H → K, and a unitary representation π : G→ U(K) such that

ψ(x) = U∗ π(x)U

for all x ∈ G. Furthermore, if G is countable and H is separable, then K can be taken to be

separable.

Proof. Let Cfin(G,H) denote the vector space of finitely supported functions from G to H

and define a sesquilinear form on Cfin(G,H) by

(f1, f2)ψ =
∑
x,y ∈G

〈ψ(x−1y) f1(y), f2(x)〉H

As ψ is positive definite, (·, ·)ψ is positive semidefinite, so it follows by the Cauchy-Schwarz

inequality that N = {f : (f, f)ψ = 0} is a subspace of Cfin(G,H). Define an inner product

on Cfin(G,H)/N by

〈[f1], [f2]〉K = (f1, f2)ψ

where [f ] denotes the equivalence class of f in Cfin(G,H)/N . Let K be the completion

of Cfin(G,H)/N with respect to the inner product, let U : H → K be the linear operator

defined by

U(ξ) = [δe ξ]
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and let π : G→ U(K) be the left regular representation on Cfin(G,H)/N , where

(δx ξ)(y) =

ξ, y = x

0, y 6= x

Then

〈U∗ π(x)Uξ, η〉H = 〈π(x)Uξ, Uη〉K

= 〈π(x) [δe ξ], [δe η]〉K

= 〈[δx ξ], [δe η]〉K

=
∑
y,z ∈G

〈ψ(y−1z) (δx ξ)(z), (δe η)(y)〉H

= 〈ψ(x) ξ, η〉H

for all ξ, η ∈ H, so ψ(x) = U∗ π(x)U for all x ∈ G.

Remark 2.6.3. As U∗U = U∗ π(e)U = ψ(e), it follows that ‖U‖2
op = ‖ψ(e)‖op; furthermore,

if ψ is unital, then U is an isometry.

Corollary 2.6.4. Let G be a discrete group and H be a Hilbert space. If ψ : G→ B(H) is

a positive definite map, then ψ(x−1) = ψ(x)∗ for all x ∈ G.

The proof of the following theorem is based on that of Theorem 3.1 in [dCOT19].

Theorem 2.6.5. Let ε ≥ 0, G be a countable discrete amenable group, H be a separable

Hilbert space, and ‖ · ‖ be a unitarily invariant semi-norm on B(`2(N)) which is lower semi-

continuous in the weak operator topology. If ψ : G→ B(H) is a positive definite map such

that ‖ψ‖ ≤ 1 and Ex ‖IH − ψ(x)∗ ψ(x)‖ ≤ ε, then there exists a separable Hilbert space K, a

partial isometry U : H → K, and a unitary representation π : G→ U(K) such that

‖ψ(x)− U∗ π(x)U‖ ≤ 3 ‖IH − ψ(e)‖+ 4ε

for all x ∈ G and

‖IH − U∗U‖ ≤ ‖IH − ψ(e)‖+ 4
3
ε, ‖IK − UU∗‖ ≤ 4ε

where ‖ · ‖ is defined on B(H) and B(K) by fixing isometries H ↪→ `2(N) and K ↪→ `2(N).
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Proof. As ψ is positive definite and ‖ψ‖ ≤ 1, it follows by Stinespring’s dilation theorem

that there exists a separable Hilbert space K, a bounded operator U : H → K, and a unitary

representation π : G→ U(K) such that ψ(x) = U∗ π(x)U . Let T = Ex π(x)UU∗ π(x)∗ and

P = χ[1/4,1](T ). As ‖U‖2
op = ‖ψ(e)‖op ≤ 1, it follows by Proposition 2.5.7 and Proposition

2.5.10 that

‖IH − U∗PU‖ ≤ 4
3
‖IH − U∗TU‖+ ‖IH − U∗U‖

≤ 4
3
Ex ‖IH − U∗ π(x)UU∗ π(x)∗ U‖+ ‖IH − U∗U‖

= 4
3
Ex ‖IH − ψ(x)∗ ψ(x)‖+ ‖IH − ψ(e)‖

≤ ‖IH − ψ(e)‖+ 4
3
ε

Let S = PU and let S = V |S| be the polar decomposition of S. Then

‖IH − |S|2‖ = ‖IH − S∗S‖ = ‖IH − U∗PU‖ ≤ ‖IH − ψ(e)‖+ 4
3
ε

and as SS∗ is a positive operator and ‖SS∗‖op, ‖V ‖op ≤ 1, it follows by Proposition 2.5.9

that

‖IH − V ∗V ‖ ≤ ‖IH − V ∗SS∗V ‖ = ‖IH − |S||S|∗‖ = ‖IH − |S|2‖ ≤ ‖IH − ψ(e)‖+ 4
3
ε

As P is an orthogonal projection, PK is a closed subspace of K, therefore a Hilbert space.

As T ∈ π(G)′, in turn P ∈ π(G)′ as well; as P is an orthogonal projection, it is the identity

on PK. It follows that the map π0 : G→ U(PK) defined by π0(x) = P π(x)P is a unitary

representation on PK, and thus it follows by Proposition 2.5.8 and Proposition 2.5.6 that

‖ψ(x)− S∗ π0(x)S‖ = ‖ψ(x)− U∗ π0(x)U‖

= ‖U∗ π(x)U − U∗ π0(x)U‖

= ‖U∗P⊥ π(x)P⊥U‖

≤ ‖U∗P⊥P⊥U‖

= ‖U∗P⊥U‖

≤ ‖IH − U∗PU‖

≤ ‖IH − ψ(e)‖+ 4
3
ε
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for all x ∈ G, which implies by Proposition 2.5.2 and Proposition 2.5.4 that

‖ψ(x)− V ∗ π0(x)V ‖ ≤ ‖ψ(x)− S∗ π0(x)S‖+ ‖S∗ π0(x)S − S∗ π0(x)V ‖

+ ‖S∗ π0(x)V − V ∗ π0(s)V ‖

≤ ‖ψ(x)− S∗ π0(x)S‖+ ‖S∗ π0(x)V ‖op ‖|S| − IH‖

+ ‖|S| − IH‖ ‖V ∗ π0(x)V ‖op

≤ ‖ψ(x)− S∗ π0(x)S‖+ 2 ‖IH − |S|‖

≤ ‖ψ(x)− S∗ π0(x)S‖+ 2 ‖IH − |S|2‖

≤ ‖ψ(x)− S∗ π0(x)S‖+ 2 ‖IH − ψ(e)‖+ 8
3
ε

≤ 3 ‖IH − ψ(e)‖+ 4ε

for all x ∈ G. Furthermore, as |S||S| is a positive operator and ‖|S||S|‖op, ‖V ‖op ≤ 1, it

follows by Proposition 2.5.9, Proposition 2.5.2, Proposition 2.5.5, Proposition 2.5.10, and

Proposition 2.5.6 that

‖P − V V ∗‖ ≤ ‖P − V |S||S|V ∗‖

= ‖P − SS∗‖

= ‖P (IK − UU∗)P‖

= ‖P (IK − UU∗)1/2 (IK − UU∗)1/2 P‖

= ‖(IK − UU∗)1/2 P (IK − UU∗)1/2‖

≤ 4 ‖(IK − UU∗)1/2 T (IK − UU∗)1/2‖

≤ 4Ex ‖(IK − UU∗)1/2 π(x)UU∗ π(x)∗ (IK − UU∗)1/2‖

= 4Ex ‖U∗ π(x)∗ (IK − UU∗) π(x)U‖

≤ 4Ex ‖IH − U∗ π(x)∗ UU∗ π(x)U‖

= 4Ex ‖IH − ψ(x)∗ ψ(x)‖

≤ 4ε

The proof is then complete upon renaming V to U , PK to K, and π0 to π.

The following result is a slight variation on Theorem 5.2 in [dCOT19]; it is our first

example of a stability theorem for approximate representations of amenable groups.
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Theorem 2.6.6. Let ε ≥ 0, G be a countable discrete amenable group, H be a separable

Hilbert space, and ‖ · ‖ be a unitarily invariant semi-norm on B(`2(N)) which is lower semi-

continuous in the weak operator topology. If ϕ : G→ U(H) is an ε-representation with respect

to ‖ · ‖, then there exists a separable Hilbert space K, a partial isometry U : H → K, and a

unitary representation π : G→ U(K) such that

‖ϕ(x)− U∗ π(x)U‖ ≤ 9ε

for all x ∈ G and

‖IH − U∗U‖ ≤ 8
3
ε, ‖IK − UU∗‖ ≤ 8ε

where ‖ · ‖ is defined on B(H) and B(K) by fixing isometries H ↪→ `2(N) and K ↪→ `2(N).

Proof. Let ψ : G→ B(H) be the unital positive definite map defined by

ψ(x) = Ey ϕ(y)∗ (yx)

It then follows by Proposition 2.5.10 and the unitary invariance of ‖ · ‖ that

‖ϕ(x)− ψ(x)‖ = ‖ϕ(x)− Ey ϕ(y)∗ ϕ(yx)‖

≤ Ey ‖ϕ(x)− ϕ(y)∗ ϕ(yx)‖

= Ey ‖ϕ(y)ϕ(x)− ϕ(yx)‖ ≤ ε

for all x ∈ G. As ψ(x)∗ ψ(x) is a positive operator and ‖ψ(x)∗ ψ(x)‖op ≤ ‖ψ‖2 = 1 for all

x ∈ G, it follows that IH − ψ(x)∗ ψ(x) is a positive operator for all x ∈ G. Furthermore,

|ϕ(x)− ψ(x)|2 is also positive for all x ∈ G; as

IH − ψ(x)∗ ψ(x) + |ϕ(x)− ψ(x)|2 = Ey |ϕ(yx)− ϕ(y)ϕ(x)|2

for all x ∈ G, it follows that

0 ≤ IH − ψ(x)∗ ψ(x) ≤ Ey |ϕ(yx)− ϕ(y)ϕ(x)|2
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for all x ∈ G. This then implies by Proposition 2.5.2 and Proposition 2.5.10 that

‖IH − ψ(x)∗ ψ(x)‖ ≤ ‖Ey |ϕ(yx)− ϕ(y)ϕ(x)|2‖

≤ Ey ‖|ϕ(yx)− ϕ(y)ϕ(x)|2‖

≤ Ey ‖ϕ(yx)− ϕ(y)ϕ(x)‖ ‖ϕ(yx)− ϕ(y)ϕ(x)‖op

≤ Ey ‖ϕ(yx)− ϕ(y)ϕ(x)‖ (‖ϕ(yx)‖op + ‖ϕ(y)ϕ(x)‖op)

= 2Ey ‖ϕ(yx)− ϕ(y)ϕ(x)‖ ≤ 2ε

for all x ∈ G; the proposition then follows by Theorem 2.6.5.

Remark 2.6.7. If ‖ · ‖ is submultiplicative, then

‖IH − ψ(x)∗ ψ(x)‖ ≤ Ey ‖ϕ(yx)− ϕ(y)ϕ(x)‖2 ≤ ε2

for all x ∈ G, and the bounds can be improved to

‖ϕ(x)− U∗ π(x)U‖ ≤ ε+ 4ε2, ‖IH − U∗U‖ ≤ 4
3
ε2, ‖IK − UU∗‖ ≤ 4ε2

The following stability result is due to Kazhdan (see Theorem 1 in [Kaz82]), though his

original proof was very different from the one we have supplied.

Theorem 2.6.8. Let 0 < ε < 1
4
, G be a countable discrete amenable group, and H be a

separable Hilbert space. If ϕ : G→ U(H) is an ε-representation with respect to the operator

norm, then there exists a unitary representation π : G→ U(H) such that

‖ϕ(x)− π(x)‖op < 2ε

for all x ∈ G.

Proof. It follows by Theorem 2.6.6 and Remark 2.6.7 that there exists a separable Hilbert

space K, a partial isometry U : H → K, and a unitary representation π : G→ U(K) such

that

‖ϕ(x)− U∗ π(x)U‖op < 2ε

for all x ∈ G and

‖IH − U∗U‖op < 1, ‖IK − UU∗‖op < 1

It then follows that U is unitary, so U∗ π( · )U is a unitary representation on H.
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Chapter 3

Amenable Banach Algebras

The primary references for this chapter are [Joh72] and [Run02].

3.1 Amenability

Definition 3.1.1. Let A be a Banach algebra. A Banach space X is a Banach A-module if

it is a two-sided A-module and there exists a real number M > 0 such that

‖a · x‖ ≤M ‖a‖ ‖x‖, ‖x · a‖ ≤M ‖a‖ ‖x‖

for all a ∈ A and x ∈ X.

If A is a Banach algebra and X is a Banach A-module, then the dual space X∗ can be

made into a Banach A-module by equipping it with the actions defined by

(a · f)(x) = f(x · a), (f · a)(x) = f(a · x)

where a ∈ A, x ∈ X, and f ∈ X∗.

Definition 3.1.2. Let A be a Banach algebra and X be a Banach A-module. A bounded

linear map D : A → X is a derivation if

D(xy) = x ·D(y) +D(x) · y

for all x, y ∈ A.
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Definition 3.1.3. Let A be a Banach algebra and X be a Banach A-module. The inner

derivation induced by a bounded linear functional f ∈ X∗ is the derivation δ(f) : A → X∗

defined by

δ(f)(x) = x · f − f · x

Definition 3.1.4. A Banach algebra A is amenable if for every Banach A-module X and

every derivation D : A → X∗ there exists a bounded linear functional f ∈ X∗ such that

D = −δ(f).

If X and Y are Banach spaces, then we let X ⊗̂ Y denote the projective tensor product

of X and Y .

Definition 3.1.5. Let A be a Banach algebra. The multiplication map on A is the bounded

linear map π : A ⊗̂A → A defined by letting

π(x⊗ y) = xy

for x, y ∈ A and extending using the universal property.

We denote the natural embedding of a normed vector space X into its double dual by

ιX : X ↪→ X∗∗.

Definition 3.1.6. Let A be a Banach algebra and π : A ⊗̂A → A be the multiplication

map on A. A virtual diagonal for A is a bounded linear functional M ∈ (A ⊗̂A)∗∗ such that

1. x ·M = M · x

2. x · π∗∗(M) = ιA(x)

for all x ∈ A.

Definition 3.1.7. Let A be a Banach algebra and π : A ⊗̂A → A be the multiplication

map on A. An approximate diagonal for A is a bounded net (mα) in A ⊗̂A such that

1. (x ·mα −mα · x)→ 0 in the norm topology on A ⊗̂A

2. (x · π(mα))→ x in the norm topology on A
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for all x ∈ A.

Theorem 3.1.8. Let A be a unital Banach algebra. The following are equivalent:

1. A is amenable

2. A has a virtual diagonal

3. A has an approximate diagonal

Proof. Suppose that A is amenable; as δ(ιA ⊗̂A(1A ⊗̂A)) is a derivation and

π∗∗(δ(ιA ⊗̂A(1A ⊗̂A))(x))(f) = δ(ιA ⊗̂A(1A ⊗̂A))(x)(π∗(f))

= (x · ιA ⊗̂A(1A ⊗̂A)− ιA ⊗̂A(1A ⊗̂A) · x)(π∗(f))

= ιA ⊗̂A(1A ⊗̂A)(π∗(f) · x− x · π∗(f))

= (π∗(f) · x− x · π∗(f))(1A ⊗̂A)

= π∗(f)(x)− π∗(f)(x)

for all x ∈ A ⊗̂ A and f ∈ A∗, it follows that there exists a bounded linear functional

h ∈ kerπ∗∗ such that δ(ιA ⊗̂A(1A ⊗̂A)) = −δ(h). Let M = ιA ⊗̂A(1A ⊗̂A) + h; then

x ·M −M · x = δ(M)(x) = δ(ιA ⊗̂A(1A ⊗̂A) + h)(x) = δ(ιA ⊗̂A(1A ⊗̂A))(x) + δ(h)(x) = 0

for all x ∈ A and

(x · π∗∗(M))(f) = π∗∗(M)(f · x)

= π∗∗(ιA ⊗̂A(1A ⊗̂A))(f · x)

= ιA ⊗̂A(1A ⊗̂A)(π∗(f · x))

= π∗(f · x)(1A ⊗̂A)

= (f · x)(π(1A ⊗̂A))

= (f · x)(1A)

= f(x)

= ιA(x)(f)
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for all x ∈ A and f ∈ A∗, so x · π∗∗(M) = ιA(x) for all x ∈ A, which proves the implication

(1)⇒ (2). Suppose now that A has a virtual diagonal M ∈ (A ⊗̂A)∗∗. As ιA ⊗̂A(A ⊗̂A) is

dense in (A ⊗̂A)∗∗ with respect to the weak-* topology, there exists a bounded net (mα) in

A ⊗̂A such that (ιA ⊗̂A(mα))→M in the weak-* topology. In particular, this implies that

f(x ·mα −mα · x) = (f · x− x · f)(mα)

= ιA ⊗̂A(mα)(f · x− x · f)

→M(f · x− x · f)

= (x ·M −M · x)(f)

for all x ∈ A and f ∈ (A ⊗̂A)∗, and thus (x ·mα −mα · x)→ 0 in the weak topology for all

x ∈ A. Furthermore, as

f(x · π(mα)) = (f · x)(π(mα))

= π∗(f · x)(mα)

= ιA ⊗̂A(mα)(π∗(f · x))

→M(π∗(f · x))

= π∗∗(M)(f · x)

= (x · π∗∗(M))(f)

= ιA(x)(f)

= f(x)

for all x ∈ A and f ∈ A∗, it follows that (x · π(mα))→ x in the weak topology for all

x ∈ A. Passing to the product topology (which coincides with the weak topology on the

product space) and applying Mazur’s lemma then yields a bounded net (mβ) such that

(x ·mβ −mβ · x)→ 0 in the norm topology on A ⊗̂A and (x · π(mβ))→ x in the norm

topology on A for all x ∈ A; thus the implication (2)⇒ (3) holds. Suppose now that A has

an approximate diagonal (mα) indexed by a directed set I and let

mα =
∞∑
n= 1

xn,α ⊗ yn,α
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where
∑∞

n= 1‖xn,α‖ ‖yn,α‖ <∞ for all α ∈ I. Let X be an arbitrary Banach A-module and

let D : A → X∗ be an arbitrary derivation. Let (fα) be the net in X∗ defined by

fα = −
∞∑
n= 1

xn,α ·D(yn,α)

As (fα) is bounded, it follows by the Banach-Alaoglu theorem that it has a subnet (fβ)

converging to some bounded linear functional f ∈ X∗ in the weak-* topology. Then

D(a)(x · π(mβ)) = D(a)
(
x ·

∞∑
n= 1

xn,β yn,β

)
=

∞∑
n= 1

(xn,β yn,β ·D(a))(x)

=
∞∑
n= 1

(xn,β ·D(yn,β a)− xn,β ·D(yn,β) · a)(x)

= −
∞∑
n= 1

((xn,β ·D(yn,β)) · a− a · (xn,β ·D(yn,β)))(x)

= −
∞∑
n= 1

(xn,β ·D(yn,β))(a · x− x · a)

= fβ(a · x− x · a)

→ f(a · x− x · a)

= (f · a− a · f)(x)

= −δ(f)(a)(x)

for all a ∈ A, x ∈ X, and f ∈ X∗; as (mα) is an approximate diagonal, (x · π(mβ))→ x in

the norm topology for all x ∈ X, so in turn D(a)(x · π(mβ))→ D(a)(x) for all a ∈ A and

x ∈ X, and thus D = −δ(f), which proves the implication (3)⇒ (1).

3.2 Stability of Approximate Representations

As with groups, amenability for Banach algebras allows us to obtain stability theorems for

approximate representations. We begin by specifying what we mean by “ε-homomorphism”

in the case of Banach algebras.
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Definition 3.2.1. Let ε ≥ 0 and A and B be Banach algebras. A linear map ϕ : A → B is

an ε-homomorphism if

‖ϕ(xy)− ϕ(x)ϕ(y)‖ ≤ ε ‖x‖ ‖y‖

for all x, y ∈ A.

The following result is due to Johnson (see Theorem 3.1 in [Joh88]).

Theorem 3.2.2. Let A be an amenable Banach algebra and B be a Banach algebra with

a predual B∗. For every real number M > 0, there exist real numbers δ, κ > 0 such that if

ε ∈ (0, δ) and ϕ : A → B is a bounded ε-homomorphism with ‖ϕ‖op ≤M , then there exists

an algebra homomorphism π : A → B such that

‖ϕ− π‖op ≤ κε

Proof. It may be assumed without loss of generality that A, B, and ϕ are unital. Let (mα)

be an approximate diagonal for A indexed by a directed set I and let

mα =
∞∑
j= 1

xj,α ⊗ yj,α

where κ0 = sup{
∑∞

j= 1‖xj,α‖ ‖yj,α‖ : α ∈ I} <∞. Let δ = 1
4

(κ0 +M2κ2
0)−1 and κ = 5

3
Mκ0.

Let ψ0 = ϕ and for every n ∈ N, let ψn : A → B be the unital linear map defined by

ψn(x) = ψn−1(x) + σn(x)

where the sequence (σn) is as defined below. For every n ∈ N and α ∈ I, let σn,α : A → B

be the linear map defined by

σn,α(x) =
∞∑
j= 1

ψn−1(xj,α) (ψn−1(yj,αx)− ψn−1(yj,α)ψn−1(x))

Fix an isometric isomorphism Φ : B → (B∗)∗. It follows by the Banach-Alaoglu theorem

and Tychonoff’s theorem that (Φ ◦ σn,α) has a subnet (Φ ◦ σn,β) that converges in the

product topology induced by the weak-* topology on (B∗)∗ to some bounded linear map

ωn : A → (B∗)∗. For every n ∈ N, let σn : A → B be the linear map defined by

σn(x) = Φ−1(ωn(x))
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Let ε0 = ε and for every n ∈ N, let

εn = sup{‖ψn(xy)− ψn(x)ψn(y)‖ : ‖x‖ ≤ 1, ‖y‖ ≤ 1}

For every n ∈ N and α ∈ I, let Ψ1,n,α,Ψ2,n,α,Ψ3,n,α,Ψ4,n,α,Ψ5,n,α : A×A → B be the maps

defined by

Ψ1,n,α(x, y) =
(

1B −
∞∑
j= 1

ψn(xj,αyj,α)
)

(ψn(xy)− ψn(x)ψn(y))

Ψ2,n,α(x, y) =
( ∞∑
j= 1

(ψn(xj,αyj,α)− ψn(xj,α)ψn(yj,α))
)

(ψn(xy)− ψn(x)ψn(y))

Ψ3,n,α(x, y) =
∞∑
j= 1

(ψn(xxj,α)− ψn(x)ψn(xj,α))(ψn(yj,αy)− ψn(yj,α)ψn(y))

Ψ4,n,α(x, y) =
∞∑
j= 1

(ψn(xj,α)ψn(yj,αxy)− ψn(xxj,α)ψn(yj,αy))

Ψ5,n,α(x, y) =
∞∑
j= 1

(ψn(xxj,α)ψn(yj,α)− ψn(xj,α)ψn(yj,αx))ψn(y)

Let π : A ⊗̂A → A be the multiplication map; as A is unital and (mα) is an approximate

diagonal, it is clear that ‖1A − π(mα)‖ → 0, and thus

‖Ψ1,n,α(x, y)‖ ≤ εn ‖x‖ ‖y‖ ‖ψn‖op ‖1A − π(mα)‖ → 0

for all x, y ∈ A and n ∈ N. For every n ∈ N, let τn : A ⊗̂A → B be the linear map defined

by letting

τn(x⊗ y) = ψn(x)ψn(y)

for all x, y ∈ A and extending using the universal property; then

‖τn(mα · xy − x ·mα · y)‖ = ‖(y · τn)(mα · x− x ·mα)‖

≤ ‖y · τn‖op ‖mα · x− x ·mα‖ → 0

for all x, y ∈ A and n ∈ N, so

‖Ψ4,n,α(x, y)‖ = ‖τn(mα · xy − x ·mα · y)‖ → 0
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for all x, y ∈ A and n ∈ N, and

‖τn(x ·mα −mα · x)‖ ≤ ‖τn‖op ‖x ·mα −mα · x‖ → 0

for all x ∈ A and n ∈ N, so

‖Ψ5,n,α(x, y)‖ ≤ ‖τn(x ·mα −mα · x)‖ ‖ψn(y)‖ → 0

for all x, y ∈ A and n ∈ N. Furthermore, it follows that

‖σn,α(x)‖ ≤
∞∑
j= 1

‖ψn−1(xj,α)‖ ‖ψn−1(yj,αx)− ψn−1(yj,α)ψn−1(x)‖ ≤ κ0 ‖ψn−1‖op εn−1 ‖x‖

for all x ∈ A, n ∈ N, and α ∈ I, so

‖σn(x)‖ ≤ lim inf
β
‖σn,β(x)‖ ≤ κ0 ‖ψn−1‖op εn−1 ‖x‖

for all x ∈ A and n ∈ N, which implies that

‖σn(x)σn(y)‖ ≤ ‖σn(x)‖ ‖σn(y)‖ ≤ κ2
0 ‖ψn−1‖2

op ε
2
n−1 ‖x‖ ‖y‖

for all x, y ∈ A and n ∈ N. Moreover, as

‖ψn(xj,αyj,α)− ψn(xj,α)ψn(yj,α)‖ ≤ εn ‖xj,α‖ ‖yj,α‖

for all n ∈ N and α ∈ I, it follows that

‖Ψ2,n,α(x, y)‖ ≤ κ0 ε
2
n ‖x‖ ‖y‖

for all x, y ∈ A, n ∈ N, and α ∈ I, and as

‖(ψn(xxj,α)− ψn(x)ψn(xj,α))(ψn(yj,αy)− ψn(yj,α)ψn(y))‖ ≤ ε2
n ‖x‖ ‖y‖ ‖xj,α‖ ‖yj,α‖

for all x, y ∈ A, n ∈ N, and α ∈ I, it follows that

‖Ψ3,n,α(x, y)‖ ≤ κ0 ε
2
n ‖x‖ ‖y‖

for all x, y ∈ A, n ∈ N, and α ∈ I. As

5∑
j= 1

Ψj,n−1,α(x, y) = ψn−1(xy)− ψn−1(x)ψn−1(y) + σn,α(xy)

− σn,α(x)ψn−1(y)− ψn−1(x)σn,α(y)
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for all x, y ∈ A, n ∈ N, and α ∈ I, it follows that

‖ψn(xy)− ψn(x)ψn(y)‖ ≤ ‖σn(x)σn(y)‖+ lim inf
β

5∑
j= 1

‖Ψj,n−1,β(x, y)‖

for all x, y ∈ A and n ∈ N. As

‖ψn(x)‖ ≤ ‖ψn−1(x)‖+ ‖σn(x)‖ ≤ (1 + κ0 εn−1) ‖ψn−1‖op ‖x‖

for all x ∈ A and n ∈ N, it follows that ‖ψn‖op ≤ (1 + κ0 εn−1) ‖ψn−1‖op for all n ∈ N, and

furthermore

εn = sup{‖ψn(xy)− ψn(x)ψn(y)‖ : ‖x‖ ≤ 1, ‖y‖ ≤ 1} ≤ (2κ0 + κ2
0 ‖ψn−1‖2

op) ε2
n−1

for all n ∈ N. It follows by induction that ‖ψn‖op ≤ (2− 2−n) ‖ϕ‖op and εn ≤ 2−n ε for all

n ∈ N, so (εn)→ 0. As

‖ψn(x)− ψn−1(x)‖ = ‖σn(x)‖ ≤ 2−n (2− 2−n)κ0 ε ‖ϕ‖op ‖x‖

for all x ∈ A and n ∈ N, it follows that (ψn(x)) converges in norm for all x ∈ A. Let

π : A → B be the bounded linear map defined by

π(x) = lim
n→∞

ψn(x)

Then π is an algebra homomorphism and

‖ϕ(x)− π(x)‖ ≤
∞∑
n= 1

‖ψn(x)− ψn−1(x)‖

≤ κ0 ε ‖ϕ‖op ‖x‖
∞∑
n= 1

2−n (2− 2−n)

= 5
3
κ0 ε ‖ϕ‖op ‖x‖

≤ 5
3
Mκ0 ε ‖x‖

for all x ∈ A.

Remark 3.2.3. In particular, every von Neumann algebra admits a unique predual, so the

above theorem holds whenever B is a von Neumann algebra.
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Chapter 4

Nuclear and Strongly Amenable

C*-Algebras

Throughout this chapter we will make frequent reference to the notion of injectivity for von

Neumann algebras; we refer the reader to Chapter 5 for the definition.

4.1 Nuclearity

Definition 4.1.1. A C*-algebra A is nuclear if for every C*-algebra B there exists a unique

norm on A⊗B such that the completion of the tensor product with respect to the norm is

a C*-algebra.

The following inequality is due to Haagerup (see Theorem 1.1 in [Haa85]). The proof is

rather long (exceeding the total length of the remainder of this chapter), so it is with some

regret that we choose to omit it for the sake of keeping this thesis at a reasonable length.

Theorem 4.1.2. Let A and B be C*-algebras. If V : A× B → C is a bounded bilinear form,

then there exist states ϕ1, ϕ2 ∈ St(A) and states ψ1, ψ2 ∈ St(B) such that

|V (x, y)| ≤ ‖V ‖ (ϕ1(x∗x) + ϕ2(xx∗))1/2 (ψ1(y∗y) + ψ2(yy∗))1/2

for all x ∈ A and y ∈ B. Furthermore, if A and B are von Neumann algebras and V is

separately ultraweakly continuous, then the states can be taken to be normal.
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The following theorems are due to various results of Choi, Connes, Effros, Elliott, and

Lance (see Section 7 in [Con76], Corollary 3.2 in [CE76], Theorem 3 in [CE77], Theorem 6.4

in [EL77], and Theorem 4 in [Ell78]). The proofs are again quite long, so we omit them for

the same reason. Fortunately, these will be the last such omissions.

Theorem 4.1.3. Let H be a Hilbert space. A separable von Neumann algebra M⊆ B(H)

is injective if and only if there exists an ascending chain M1 ⊆M2 ⊆ · · · ⊆ M of finite

dimensional *-subalgebras of M such that M =
⋃∞
n= 1Mn, where the closure is with respect

to the ultraweak topology.

Theorem 4.1.4. Let H be a Hilbert space. A von Neumann algebraM⊆ B(H) is injective if

and only if it is generated by an increasing net of injective countably generated von Neumann

subalgebras of M.

Theorem 4.1.5. A C*-algebra A is nuclear if and only if A∗∗ is injective.

We take this opportunity to fix the notation that we will require throughout the remainder

of this section. If A is a C*-algebra, then we let Bil(A) denote the set of bounded bilinear

forms on A; furthermore, we let Φ : A× Bil(A)→ `∞(A) and Ψ : A× Bil(A)→ `∞(A) be

the maps defined by

Φ(a, V )(x) = V (ax∗, x), Ψ(a, V )(x) = V (x∗, xa)

and let Θ : Bil(A)→ `∞(A) be the map defined by

Θ(V )(x) = V (x∗, x)

We also let κ : (A ⊗̂A)∗ → Bil(A) and κop : (A ⊗̂A)∗ → Bil(A) be the maps defined by

κ(f)(x, y) = f(x⊗ y), κop(f)(x, y) = f(y ⊗ x)

Finally, if M is a von Neumann algebra, then we let Bilσ(M) denote the set of separately

ultraweakly continuous bilinear forms on M, let Z(M) denote the center of M, and let

I(M) denote the semigroup of isometries in M.

The following result is due to Haagerup (see Theorem 2.1 in [Haa83]).
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Theorem 4.1.6. Let H be a Hilbert space. If M⊆ B(H) is an injective von Neumann

algebra, then there exists a state m ∈ St(`∞(I(M))) such that

m(Φ(a, V )|I(M)) = m(Ψ(a, V )|I(M))

for all V ∈ Bilσ(M) and a ∈M.

We will require a few lemmas in order to prove the theorem; the following remark will

also be helpful.

Remark 4.1.7. If A is a C*-algebra and π : A ⊗̂A → A is the multiplication map, then

κ(π∗(ϕ))(x, y) = π∗(ϕ)(x⊗ y) = ϕ(π(x⊗ y)) = ϕ(xy)

for all x, y ∈ A and ϕ ∈ A∗.

Lemma 4.1.8. Let H be a Hilbert space, M⊆ B(H) be a von Neumann algebra, p ∈M be

the largest finite projection in Z(M), and π :M⊗̂M→M be the multiplication map. If

m ∈ St(`∞(I(M))) is a state such that

m(Θ(κop(π∗(ϕ)))|I(M)) = ϕ(p)

for every positive normal linear functional ϕ ∈M∗, then the linear functionals ω1, ω2 ∈M∗

defined by

ω1(a) = m(Φ(a, V )|I(M)), ω2(a) = m(Ψ(a, V )|I(M))

are ultraweakly continuous for every V ∈ Bilσ(M).

Proof. Let V ∈ Bilσ(M) be a bilinear form; then it follows by Theorem 4.1.2 that there exist

normal states ϕ1, ϕ2, ϕ3, ϕ4 ∈ St(M) such that

|V (x, y)| ≤ ‖V ‖ (ϕ1(x∗x) + ϕ2(xx∗))1/2 (ϕ3(y∗y) + ϕ4(yy∗))1/2

for all x, y ∈M. For n = 1, . . . , 4, let ψn ∈M∗ be the bounded linear functional defined by

ψn(a) = m(Φ(a, κop(π∗(ϕn)))|I(M))
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It follows that ψn|pM is normal for n = 1, . . . , 4, and Remark 4.1.7 implies that

κop(π∗(ϕ))(x, y) = κ(π∗(ϕ))(y, x) = ϕ(yx)

for all x, y ∈M and ϕ ∈M∗, so

Φ(a, κop(π∗(ϕn)))(x) = κop(π∗(ϕn))(ax∗, x)

= ϕn(xax∗)

= ϕn(axx∗)

= (ϕn · a)(xx∗)

= κop(π∗(ϕn · a))(x∗, x)

= Θ(κop(π∗(ϕn · a)))(x)

for all x ∈M, a ∈ Z(M), and n = 1, . . . , 4, and thus

ψn(1− p) = m(Φ(1− p, κop(π∗(ϕ)))|I(M))

= m(Θ(κop(π∗(ϕn · (1− p))))|I(M))

= (ϕn · (1− p))(p)

= ϕn(p− p2)

= 0

for n = 1, . . . , 4. As ψn vanishes on the properly infinite part of M, it follows that ψn is

normal for n = 1, . . . , 4. As

|V (au∗, u)| ≤ ‖V ‖ (ϕ1(ua∗au∗) + ϕ2(au∗ua∗))1/2 (ϕ3(u∗u) + ϕ4(uu∗))1/2

≤
√

2 ‖V ‖ (ϕ1(ua∗au∗) + ϕ2(aa∗))1/2

for all a ∈M and u ∈ I(M) and

|V (u∗, ua)| ≤ ‖V ‖ (ϕ1(uu∗) + ϕ2(u∗u))1/2 (ϕ3(a∗u∗ua) + ϕ4(uaa∗u∗))1/2

≤
√

2 ‖V ‖ (ϕ3(a∗a) + ϕ4(uaa∗u∗))1/2

for all a ∈M and u ∈ I(M), it follows that

|ω1(a)| ≤
√

2 ‖V ‖m((Φ(a∗a, κop(π∗(ϕ1))) + ϕ2(aa∗))1/2|I(M))

≤
√

2 ‖V ‖ (ψ1(a∗a) + ϕ2(aa∗))1/2
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for all a ∈M and

|ω2(a)| ≤
√

2 ‖V ‖m((ϕ3(a∗a) + Φ(aa∗, κop(π∗(ϕ4))))1/2|I(M))

≤
√

2 ‖V ‖ (ϕ3(a∗a) + ψ4(aa∗))1/2

for all a ∈M, so ω1 and ω2 are ultraweakly continuous.

Lemma 4.1.9. Let H be a Hilbert space, (Mα) be an increasing net of von Neumann algebras

acting on H indexed by a directed set I, and M =
⋃
α∈IMα, where the closure is with

respect to the ultraweak topology. If for every α ∈ I there exists a state mα ∈ St(`∞(I(Mα)))

witnessing the equality in Theorem 4.1.6 forMα, then there exists a state m ∈ St(`∞(I(M)))

witnessing the equality in Theorem 4.1.6 for M.

Proof. Let V ∈ Bilσ(M) be a bilinear form; then V |Mα×Mα ∈ Bilσ(Mα) for all α ∈ I. For

every α ∈ I, let τα ∈ St(`∞(I(M))) be the state defined by

τα(f) = mα(f |I(Mα))

It follows by the Banach-Alaoglu theorem that there exists a subnet (τβ) of (τα) converging

to some state τ ∈ St(`∞(I(M))) in the weak-* topology, and it is clear that

τ(Φ(a, V )|I(M)) = τ(Ψ(a, V )|I(M))

for all a ∈
⋃
α∈IMα. Let π :M⊗̂M→M be the multiplication map and suppose that

M is a finite von Neumann algebra; then it follows by Remark 4.1.7 that

Θ(κop(π∗(ϕ)))(u) = κop(π∗(ϕ))(u∗, u) = κ(π∗(ϕ))(u, u∗) = ϕ(uu∗) = ϕ(1M)

for all u ∈ I(M) and ϕ ∈M∗, so

τ(Θ(κop(π∗(ϕ)))|I(M)) = ϕ(1M)

for every positive normal linear functional ϕ ∈M∗ and it follows by Lemma 4.1.8 that

τ(Φ(a, V )|I(M)) = τ(Ψ(a, V )|I(M))

for all a ∈M, so it suffices to let m = τ . Suppose now thatM is not a finite von Neumann

algebra and let p ∈M be the largest finite projection in Z(M). As (1− p)M is properly
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infinite, there exists a sequence (un) of isometries in (1− p)M such that (u∗n)→ 0 in the

ultrastrong topology. Let (vn) be the sequence of isometries in I(M) defined by

vn = p+ un

For every n ∈ N, let ψn ∈ St(I(M)) be the state defined by

ψn(f) = τ((vn · f)|I(M))

where I(M) acts on `∞(I(M)) by left translation. It follows by the Banach-Alaoglu theorem

that (ψn) has a subnet (ψα) converging in the weak-* topology to some state m ∈ St(I(M)).

For every n ∈ N, let Vn ∈ Bσ(M) be the bilinear form defined by

Vn(x, y) = V (xv∗n, vny)

It follows from the first part of the proof that

ψn(Φ(a, V )|I(M)) = τ(Φ(a, Vn)|I(M)) = τ(Ψ(a, Vn)|I(M)) = ψn(Ψ(a, V )|I(M))

for all a ∈
⋃
α∈IMα and n ∈ N, which implies that

m(Φ(a, V )|I(M)) = m(Ψ(a, V )|I(M))

for all a ∈
⋃
α∈IMα. As p ≤ uu∗ for all u ∈ I(M), it follows that

ϕ(p) ≤ m(Θ(κop(π∗(ϕ)))|I(M))

for every positive normal linear functional ϕ ∈M∗; as (vn v
∗
n)→ p in the ultraweak topology,

it follows that

m(Θ(κop(π∗(ϕ)))|I(M)) ≤ lim sup
α

τ(vα ·Θ(κop(π∗(ϕ)))|I(M)) ≤ lim sup
α

ϕ(vα v
∗
α) = ϕ(p)

for every positive normal linear functional ϕ ∈M∗, which then implies by Lemma 4.1.8 that

m(Φ(a, V )|I(M)) = m(Ψ(a, V )|I(M))

for all a ∈M.

We can now prove Theorem 4.1.6.
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Proof of Theorem 4.1.6. Suppose thatM is finite dimensional; then the space of continuous

functions C(U(M)) on the unitary group U(M) admits a normalized Haar measure ν. Let

ψν ∈ C(U(M))∗ be the bounded linear functional defined by

ψν(f) =

∫
U(M)

f(u) dν(u)

It follows by the Hahn-Banach extension theorem that there exists a statem ∈ St(`∞(U(M)))

extending ψν . As m is right invariant on C(U(M)), it follows that

m(Φ(a, V )|U(M)) = m(Ψ(a, V )|U(M))

for all a ∈ U(M). AsM is finite dimensional, it follows that U(M) = I(M), and moreover

M = Span(U(M)), which proves the result when M is finite dimensional; it then follows

by Thereom 4.1.3 and Lemma 4.1.9 that the result holds when M is separable. If M is

countably generated, then it is a direct sum of injective separable von Neumann algebras,

and the result follows for the general case from Theorem 4.1.4.

The following result is due to Haagerup (see Theorem 3.1 in [Haa83]).

Theorem 4.1.10. Let A be a C*-algebra. If A is nuclear, then it has a virtual diagonal

belonging to conv{ιA ⊗̂A(x∗ ⊗ x) : ‖x‖ ≤ 1}, where the closure is with respect to the weak-*

topology; in particular, it is amenable as a Banach algebra.

Proof. As A is nuclear, it follows by Theorem 4.1.5 that A∗∗ is injective, so Theorem 4.1.6

implies that there exists a state m ∈ St(`∞(I(A∗∗))) such that

m(Φ(a, V )|I(A∗∗)) = m(Ψ(a, V )|I(A∗∗))

for all V ∈ Bilσ(A∗∗) and a ∈ A∗∗. If V ∈ Bil(A) is a bilinear form, then it has a unique

extension to a separately ultraweakly continuous bilinear form Vσ ∈ Bilσ(A∗∗). Now let

M ∈ (A ⊗̂A)∗∗ be the bounded linear functional defined by

M(f) = m(Θ(κ(f)σ)|I(A∗∗))

As

κ(a · f)(x, y) = (a · f)(x⊗ y) = f(x⊗ ya) = κ(f)(x, ya)
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and

κ(f · a)(x, y) = (f · a)(x⊗ y) = f(ax⊗ y) = κ(f)(ax, y)

for all a, x, y ∈ A and f ∈ (A ⊗̂A)∗, it follows that

(a ·M)(f) = M(f · a)

= m(Θ(κ(f · a)σ)|I(A∗∗))

= m(Φ(a, κ(f)σ)|I(A∗∗))

= m(Ψ(a, κ(f)σ)|I(A∗∗))

= m(Θ(κ(a · f)σ|I(A∗∗))

= M(a · f)

= (M · a)(f)

for all a ∈ A and f ∈ (A ⊗̂A)∗, so a ·M = M · a for all a ∈ A. Let π : A ⊗̂A → A be the

multiplication map; then it follows by Remark 4.1.7 that

κ(π∗(f · a))(x, y) = (f · a)(xy) = f(axy)

for all a, x, y ∈ A and f ∈ A∗, so

(a · π∗∗(M))(f) = π∗∗(M)(f · a)

= M(π∗(f · a))

= m(Θ(κ(π∗(f · a))σ)|I(A∗∗))

= f(a)

= ιA(a)(f)

for all a ∈ A and f ∈ A∗, which implies that M is a virtual diagonal for A. Suppose that

M /∈ conv{ιA ⊗̂A(x∗ ⊗ x) : ‖x‖ ≤ 1}; then it follows by the Hahn-Banach separation theorem

that there exists a linear functional f ∈ (A ⊗̂A)∗ and a real number β ∈ R such that

Re κ(f)(x∗, x) = Re f(x∗ ⊗ x) = Re ιA ⊗̂A(x∗ ⊗ x)(f) < β < Re M(f)

for all x ∈ A such that ‖x‖ ≤ 1. Let u ∈ I(A∗∗) be an arbitrary isometry; then it follows

by Kaplansky’s density theorem that there exists a net (xα) in the unit ball of A such
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that (ιA(xα))→ u in the ultrastrong* topology. However, κ(f)σ is separately ultrastrong*

continuous, so this implies that

Re κ(f)σ(u∗, u) ≤ β < Re M(f) = Re m(Θ(κ(f)σ)|I(A∗∗))

for all u ∈ I(A∗∗), which is a contradiction.

Remark 4.1.11. The above proof implies that M ∈ conv{f → κ(f)σ(u∗, u) : u ∈ I(A∗∗)},

where the closure is with respect to the weak-* topology.

4.2 Unitarizability of Bounded Representations

In Chapter 2, we proved that every uniformly bounded representation of an amenable group

on a Hilbert space is equivalent to a unitary representation; in this section, we prove an

analogous result for bounded representations of nuclear C*-algebras.

Lemma 4.2.1. Let A be a unital C*-algebra, H be a Hilbert space, and π : A → B(H)

be a bounded unital representation. If there exists a positive invertible operator T ∈ B(H)

such that T π(x) = π(x∗)∗ T for all x ∈ A, then there exists a positive invertible operator

V ∈ B(H) such that V −1 π( · )V is a unital *-representation.

Proof. As T is positive, the operator T 1/2 is well-defined; as T is invertible, T 1/2 is as well.

Let V = T−1/2; then

V −1 π(x)V = V T π(x)V = V π(x∗)∗ TV = V π(x∗)∗ V −1 = (V −1 π(x∗)V )∗

for all x ∈ A, so it follows that V −1 π( · )V is a *-representation.

Theorem 4.2.2. Let A be a nuclear C*-algebra and H be a Hilbert space. If π : A → B(H)

is a bounded unital representation, then there exists an invertible operator V ∈ B(H) such

that V −1 π( · )V is a unital *-representation.

Proof. As A is nuclear, it follows by Theorem 4.1.10 that it is amenable as a Banach algebra

and admits a virtual diagonal M ∈ conv{ιA ⊗̂A(x∗ ⊗ x) : ‖x‖ ≤ 1}, where the closure is with
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respect to the weak-* topology. For each ξ, η ∈ H, let ϕξ,η ∈ (A ⊗̂A)∗ be the bounded linear

functional defined by letting

ϕξ,η(x⊗ y) = 〈π(y) ξ, π(x∗) η〉

for x, y ∈ A and extending using the universal property. Let T ∈ B(H) be the bounded

operator defined by

〈Tξ, η〉 = M(ϕξ,η)

As

ϕπ(x) ξ,η(y ⊗ z) = 〈π(z) π(x) ξ, π(y∗) η〉

= 〈π(zx) ξ, π(y∗) η〉

= ϕξ,η(y ⊗ zx)

= (x · ϕξ,η)(y ⊗ z)

for all x, y, z ∈ A and ξ, η ∈ H, it follows that ϕπ(x) ξ,η = x · ϕξ,η for all x ∈ A and ξ, η ∈ H,

and similarly ϕξ,π(x∗) η = ϕξ,η · x for all x ∈ A and ξ, η ∈ H. This implies that

〈T π(x) ξ, η〉 = M(ϕπ(x) ξ,η)

= M(x · ϕξ,η)

= (M · x)(ϕξ,η)

= (x ·M)(ϕξ,η)

= M(ϕξ,η · x)

= M(ϕξ,π(x∗) η)

= 〈Tξ, π(x∗) η〉

= 〈π(x∗)∗ Tξ, η〉

for all x ∈ A and ξ, η ∈ H, and it follows that T π(x) = π(x∗)∗ T for all x ∈ A. If V ∈ Bil(A)

is a bilinear form, then it extends uniquely to a separately ultraweakly continuous bilinear

form Vσ ∈ Bilσ(A∗∗); similarly, if ψ : A → B(H) is a bounded representation, then it extends

to an ultraweakly continuous bounded representation ψσ : A∗∗ → B(H). Moreover, it follows
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by Remark 4.1.11 that M ∈ conv{f → κ(f)σ(u∗, u) : u ∈ I(A∗∗)}, where the closure is with

respect to the weak-* topology, so in turn 〈Tξ, η〉 ∈ conv{〈πσ(u)∗ πσ(u) ξ, η〉 : u ∈ I(A∗∗)} for

all ξ, η ∈ H. In particular, this implies that 〈Tξ, ξ〉 ∈ conv{〈πσ(u)∗ πσ(u) ξ, ξ〉 : u ∈ I(A∗∗)}

for all ξ ∈ H, and thus T is a positive operator. Furthermore, as

‖ξ‖ = ‖πσ(u∗u) ξ‖ = ‖πσ(u∗) πσ(u) ξ‖ ≤ ‖πσ‖op ‖πσ(u) ξ‖

for all u ∈ I(A∗∗) and ξ ∈ H, in turn

〈(πσ(u)∗ πσ(u)− ‖πσ‖−2
op IH) ξ, ξ〉 = ‖πσ(u) ξ‖2 − ‖πσ‖−2

op ‖ξ‖2 ≥ 0

for all u ∈ I(A∗∗) and ξ ∈ H, so ‖πσ‖−2
op IH ≤ πσ(u)∗ πσ(u) for all u ∈ I(A∗∗); this implies

that T is invertible, and thus the proposition follows by applying Lemma 4.2.1.

If A is a unital C*-algebra, then we let U(A) denote the group of unitary elements in A.

Definition 4.2.3. A unital C*-algebra A is strongly amenable if for every unital Banach

A-module X and every derivation D : A → X∗ there exists a bounded linear functional

f ∈ conv{D(u) · u∗ : u ∈ U(A)} such that D = −δ(f), where the closure is with respect to

the weak-* topology.

The next result follows immediately from the above definition.

Proposition 4.2.4. Let A be a unital C*-algebra. If A is strongly amenable, then A is

amenable as a Banach algebra.

When A is strongly amenable and not merely nuclear, there exist more elementary proofs

of Theorem 4.2.2 (see [Bun72a], [Bun72b]) that do not rely on Theorem 4.1.10. The proof

of the following theorem is essentially the method of [Bun72b].

If H is a Hilbert space, then we let C1(H) denote the ideal of trace class operators in

B(H) and let ΦTr : B(H)→ C1(H)∗ denote the isometric isomorphism defined by

ΦTr(S)(T ) = Tr(ST )

Theorem 4.2.5. Let A be a strongly amenable unital C*-algebra and H be a Hilbert space.

If π : A → B(H) is a bounded unital representation, then there exists a positive invertible

operator V ∈ B(H) such that V −1 π( · )V is a unital *-representation.
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Proof. Let C1(H) be equipped with the left and right actions defined by

x · T = π(x)T, T · x = T π(x∗)∗

for x ∈ A and T ∈ C1(H); then C1(H) is a Banach A-module. Let D : A → C1(H)∗ be the

bounded linear map defined by

D(x)(T ) = Tr(x · T − T · x)

Then

D(xy)(T ) = Tr(xy · T − T · xy)

= Tr(y · (T · x)− (T · x) · y) + Tr(x · (y · T )− (y · T ) · x)

= D(y)(T · x) +D(x)(y · T )

= (x ·D(y))(T ) + (D(x) · y)(T )

for all x, y ∈ A and T ∈ C1(H), and thus D is a derivation. As A is strongly amenable,

it follows that there exists some bounded linear functional f ∈ conv{D(u) · u∗ : u ∈ U(A)}

such that D = −δ(f), where the closure is with respect to the weak-* topology on C1(H)∗.

Let Sf = Φ−1
Tr (f). As

Tr(π(x)T − π(x∗)∗ T ) = Tr(π(x)T )− Tr(π(x∗)∗ T )

= Tr(π(x)T )− Tr(T π(x∗)∗)

= Tr(x · T )− Tr(T · x)

= Tr(x · T − T · x)

= D(x)(T )

for all x ∈ A and T ∈ C1(H) and

Tr(π(x∗)∗ Sf T )− Tr(Sf π(x)T ) = Tr(Sf T π(x∗)∗)− Tr(Sf π(x)T )

= ΦTr(Sf )(T · x)− ΦTr(Sf )(x · T )

= (x · ΦTr(Sf )− ΦTr(Sf ) · x)(T )

= (x · f − f · x)(T )

= δ(f)(x)(T )
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for all x ∈ A and T ∈ C1(H), in turn

ΦTr((IH − Sf ) π(x)− π(x∗)∗ (IH − Sf ))(T ) = Tr((IH − Sf ) π(x)T − π(x∗)∗ (IH − Sf )T )

= D(x)(T ) + δ(f)(x)(T )

for all x ∈ A and T ∈ C1(H). It follows that (IH − Sf ) π(x)− π(x∗)∗ (IH − Sf ) ∈ ker ΦTr for

all x ∈ A; as ΦTr is an embedding, this implies that (IH − Sf )π(x) = π(x∗)∗ (IH − Sf ) for

all x ∈ A. As

(D(u) · u∗)(T ) = D(u)(u∗ · T )

= Tr(uu∗ · T − u∗ · T · u)

= Tr(T − u∗ · T · u)

= Tr(T − π(u∗)T π(u∗)∗)

= Tr(T − π(u∗)∗ π(u∗)T )

= ΦTr(IH − π(u∗)∗ π(u∗))(T )

for all u ∈ U(A) and T ∈ C1(H), it follows that f ∈ conv{ΦTr(IH − π(u)∗ π(u)) : u ∈ U(A)},

where the closure is with respect to the weak-* topology on C1(H)∗, and thus in turn

IH − Sf ∈ conv{π(u)∗ π(u) : u ∈ U(A)}, where the closure is with respect to the ultraweak

topology on B(H). This implies that IH − Sf is a positive operator. Furthermore, as

‖ξ‖ = ‖π(u∗) π(u) ξ‖ ≤ ‖π‖op ‖π(u) ξ‖

for all u ∈ U(A) and ξ ∈ H, in turn

〈(π(u)∗ π(u)− ‖π‖−2
op IH) ξ, ξ〉 = ‖π(u) ξ‖2 − ‖π‖−2

op ‖ξ‖2 ≥ 0

for all u ∈ U(A) and ξ ∈ H, so ‖π‖−2
op IH ≤ π(u)∗ π(u) for all u ∈ U(A); this then implies

that IH − Sf is invertible, and thus the proposition follows by applying Lemma 4.2.1 with

T = IH − Sf .
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Chapter 5

Injective von Neumann Algebras

5.1 Injectivity

Definition 5.1.1. LetH be a Hilbert space. A von Neumann algebraM⊆ B(H) is injective

if every unital completely positive linear map from a closed unital *-subalgebra of a unital

C*-algebra A to M extends to a unital completely positive linear map from A to M.

Definition 5.1.2. Let H be a Hilbert space. A von Neumann algebra M⊆ B(H) has the

extension property if there exists a bounded linear map E : B(H)→M such that ‖E‖op = 1

and E|M is the identity map.

Loebl attributes the following result to Tomiyama (see [Loe74]).

Proposition 5.1.3. Let H be a Hilbert space. A von Neumann algebra M⊆ B(H) has the

extension property if and only if M′ has the extension property.

Proof. Suppose first that M has the extension property; then there exists a bounded linear

map E : B(H)→M such that ‖E‖op = 1 and E|M is the identity map. Let (M,H, J, P )

be a standard form of M and let Q : B(H)→M′ be the linear map defined by

Q(S) = J E(JSJ) J

Then

Q(Q(S)) = J E(J2E(JSJ) J2) J = J E(E(JSJ)) J = J E(JSJ) J = Q(S)
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for all S ∈ B(H) and ‖Q‖op = 1, so M′ has the extension property. To show the converse,

suppose now that M′ has the extension property; then it follows by the first part of the

proof that M′′ =M has the extension property.

The following theorem is due to Loebl (see [Loe74]).

Proposition 5.1.4. Let H be a Hilbert space. A von Neumann algebra M⊆ B(H) has the

extension property if and only if it is injective.

Proof. Suppose thatM has the extension property. Let A be a unital C*-algebra, B ⊆ A be

a closed unital *-subalgebra of A, and ϕ : B →M be a unital completely positive linear map.

Let ι :M ↪→ B(H) be the canonical inclusion map; then ι is unital and completely positive.

Let ψ = ι ◦ ϕ; then ψ is a composition of unital completely positive maps, therefore itself

unital and completely positive, and it follows by Arveson’s extension theorem that there

exists a unital completely positive map Ψ : A → B(H) such that Ψ|B = ψ. As M has the

extension property, there exists a bounded linear map E : B(H)→M such that ‖E‖op = 1

and E|M is the identity map; then E is completely positive, so in turn E ◦Ψ is a unital

completely positive linear map from A to M. As

(E ◦Ψ)|B = E ◦ ψ = E ◦ ι ◦ ϕ = ϕ

it then follows that M is injective. Conversely, suppose that M is injective. As M is

closed in the weak operator topology, it is closed in the norm topology; as the identity map

on M is a unital completely positive linear map, it then follows by injectivity that there

exists a unital completely positive map E : B(H)→M extending the identity map on M.

Furthermore, as E is unital and completely positive, it follows that ‖E‖op = 1.

Definition 5.1.5. Let H be a Hilbert space. A von Neumann algebra M⊆ B(H) has

Schwartz’s property (P ) if

M′ ∩ conv{uTu∗ : u ∈ U(M)} 6= ∅

for all T ∈ B(H), where the closure is with respect to the weak operator topology.

The following result is due to Schwartz (see Lemma 5 in [Sch63]).
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Proposition 5.1.6. Let H be a Hilbert space and M⊆ B(H) be a von Neumann algebra.

If M has property (P ), then M′ has the extension property.

Proof. For every T ∈ B(H), letW(T ) = conv{uTu∗ : u ∈ U(M)}, where the closure is with

respect to the weak operator topology. Let I be the set of linear maps ψ : B(H)→ B(H)

such that ‖ψ‖op = 1, ψ(x) = x for all x ∈M, and ψ(T ) ∈ W(T ) for all T ∈ B(H). As the

identity map belongs to I, it is nonempty. Define a partial order on I by letting ϕ ≤ ψ

if W(ψ(T )) ⊆ W(ϕ(T )) for all T ∈ B(H). Let {ψα : α ∈ J } be a chain in I; then taking

a Banach limit on J yields an upper bound for the chain. It follows by Zorn’s lemma

that I has a maximal element ψ ∈ I. Suppose that there exists some T ∈ B(H) such that

W(ψ(T )) contains at least two distinct elements. As M has property (P ), there exists a

net (µα) of finitely supported nonnegative functions on U(M) indexed by a directed set J

such that
∑

u∈U(M) µα(u) = 1 for all α ∈ J and (
∑

u∈U(M) µα(u)uψ(T )u∗) converges to an

element of M′ in the weak operator topology; taking a Banach limit on J then yields a

bounded linear map ϕ ∈ I such that ψ ≤ ϕ and ϕ(T ) ∈M′. As ϕ(T ) ∈M′, it follows that

W(ϕ(T )) = {ϕ(T )}, so W(ϕ(T )) is a proper subset of W(ψ(T )). However, this contradicts

the maximality of ψ, and it thus follows that W(ψ(T )) is a singleton for all T ∈ B(H). As

M′ ∩W(ψ(T )) 6= ∅ for all T ∈ B(H), this implies that ψ(B(H)) ⊆M′, and thus M′ has

the extension property.

Corollary 5.1.7. Let H be a Hilbert space and M⊆ B(H) be a von Neumann algebra. If

M has property (P ), then M is injective.

Proof. This follows from Proposition 5.1.6, Proposition 5.1.3, and Proposition 5.1.4.

5.2 Group von Neumann Algebras

Definition 5.2.1. Let G be a countable discrete group and λ : G→ U(`2(G)) be the left

regular representation. The group von Neumann algebra L(G) of G is the von Neumann

algebra defined by

L(G) = λ(G)′′
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Remark 5.2.2. There exists a canonical trace τ on L(G) defined by

τ(x) = 〈xχ{e}, χ{e}〉2

Theorem 5.2.3. Let G be a discrete group. The following are equivalent:

1. G is amenable

2. L(G) is injective

3. L(G) has property (P )

4. π(G)′′ has property (P ) for every Hilbert space H and every unitary representation

π : G→ U(H)

Proof. The implication (3)⇒ (2) follows from Corollary 5.1.7, so it suffices to show that the

implications (1)⇒ (4)⇒ (3) and (2)⇒ (1) hold. Suppose that G is amenable, let H be a

Hilbert space, let π : G→ U(H) be a unitary representation, and letM = π(G)′′. For every

bounded operator T ∈ B(H), let ST = Ex π(x)T π(x)∗; then

π(x)ST = Ey π(xy)T π(y)∗ = Ey π(y)T π(x−1y)∗ = ST π(x−1)∗ = ST π(x)

for all x ∈ G. As π(G)′ is a von Neumann algebra,M′ = π(G)′′′ = π(G)′, and thus ST ∈M′.

Furthermore, as π(G) ⊆M, it follows by Remark 2.5.11 that ST ∈ conv{uTu∗ : u ∈ U(M)},

where the closure is with respect to the weak operator topology; thus M = π(G)′′ has

property (P ). Suppose now that (4) holds, let H = `2(G), and let π : G→ U(`2(G)) be

the left regular representation; then L(G) = π(G)′′ has property (P ), so the implication

(4)⇒ (3) holds. Suppose now that L(G) is injective; then it follows by Proposition 5.1.4

that L(G) has the extension property, so by Proposition 2.1.4 there exists a bounded linear

map E : B(`2(G))→ L(G) such that ‖E‖op = 1 and E(xTy) = xE(T ) y for all x, y ∈ L(G)

and T ∈ B(`2(G)). For every f ∈ `∞(G), let Mf ∈ B(`2(G)) be the multiplication operator

associated to f ; then

λ(s)Mf λ(s−1) = Msf
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for all s ∈ G. Let τ ∈ St(L(G)) be the canonical trace on L(G) and let ψ ∈ `∞(G)∗ be the

bounded linear functional defined by

ψ(f) = (τ ◦ E)(Mf )

Then ψ(χG) = τ(E(I`2(G))) = τ(I`2(G)) = 1 and ‖ψ‖op = 1, and moreover

ψ(sf) = (τ ◦ E)(Msf )

= (τ ◦ E)(λ(s)Mf λ(s−1))

= τ(λ(s)E(Mf )λ(s−1))

= (τ ◦ E)(Mf )

= ψ(f)

for all f ∈ `∞(G) and s ∈ G, so ψ is an invariant mean on `∞(G).
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