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Abstract

Target tracking in over a small-scale area using wireless sensor networks (WSNs) is a tech-

nique that can be used in applications ranging from emergency rescue after an earthquake

to security protection in a building. Many target tracking systems rely on the presence of

an electric device which must be carried by the target in order to reports back its location

and status. This makes these systems unsuitable for many emergency applications; in such

applications device-free tracking systems that where no devices are attached to the targets

are needed. Radio-Frequency (RF) tomographic tracking is one such device-free tracking

technique. This system tracks moving targets by analyzing changes in attenuation in wire-

less transmissions. The target can be tracked within the sensor network area without being

required to carry an electric device.

Some previously-proposed device-free tracking approaches require a time-consuming

training phase before tracking can be carried out, which is time-consuming. Others per-

form tracking by sacrificing part of the estimation accuracy. In this thesis, we propose a

novel sequential Monte Carlo (SMC) algorithm for RF tomographic tracking. It can track a

single target moving in a wireless sensor network without the system needing to be trained.

The algorithm adopts a particle filtering method to estimate the target position and incor-

porates on-line Expectation Maximization (EM) to estimate model parameters. Based on

experimental measurements, the work also introduces a novel measurement model for the

attenuation caused by a target with the goal of improving estimation accuracy. The per-

formance of the algorithm is assessed through numerical simulations and field experiments

carried out with a wireless sensor network testbed. Both simulated and experimental results

demonstrate that our work outperforms previous RF tomographic tracking approaches for

single target tracking.
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Abrégé

Suivi de cible dans la zone petite chelle en utilisant les rseaux de capteurs sans fil est

une technique qui peut tre largement utilis dans des applications telles que le sauvetage

d’urgence aprs un tremblement de terre, ou la protection de la scurit dans un btiment.

Beaucoup de systmes de poursuite de cibles ncessitent un dispositif lectrique ralise par

l’objectif de faire rapport de ses localisation instantane et le statut. L’inconvnient rend

ces systmes ne conviennent pas pour des applications nombreuses interventions d’urgence,

em dispositif sans systmes de suivi qui ne les priphriques connects sur les objectifs sont

ncessaires. Radio-Frquence (RF) suivi tomographique est l’une des techniques dispositif de

suivi-libres. Il s’agit d’un processus de suivi des cibles mobiles en analysant l’volution de

l’attnuation dans les transmissions sans fil. La cible peut tre suivi dans la zone de rseau de

capteurs, tandis que les appareils lectriques ne doivent tre effectus. Cependant, certaines

approches prcdentes dispositif de suivi-libre ncessite une phase d’entranement avant de

suivi, ce qui prend beaucoup de temps. Autres effectuer un suivi par scarification partie

de prcision de l’estimation.

Dans cette thse, nous proposons une nouvelle Monte Carlo squentielles (SMC) algo-

rithme de suivi RF tomographique. Il peut suivre une cible unique sans formation du

systme dans un rseau de capteurs sans fil. L’algorithme de filtrage particulaire adopte la

mthode pour estimer la position cible et intgre en ligne Expectation Maximization (EM)

pour estimer les paramtres du modle. Sur la base de mesures exprimentales, le travail

introduit galement un modle de mesure de roman pour l’attnuation provoque par une cible

pour amliorer la prcision d’estimation. La performance de l’algorithme est value par des

simulations numriques et expriences sur le terrain avec un rseau de capteurs sans fil banc

d’essai. Les deux rsultats simuls et exprimentaux dmontrent que notre travail surpasse

prcdente approche RF suivi tomographique pour le suivi de cible unique.
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Chapter 1

Introduction

1.1 Motivation

A wireless sensor network (WSN) consists of several sensor nodes that can collect infor-

mation related to the surrounding environment such as pressure, temperature, humidity,

etc [3]. Sensors are able to communicate and cooperate with each other to finish their tasks

using wireless communication techniques. In a wireless sensor network, signal attenuation

occurs when a target moves between nodes in the network. For Radio-Frequency (RF)

links connecting different pairs of nodes, the amount of attenuation caused by the target

varies based on the proximity of the target to the links. These time-varying patterns of link

attenuation provide information about the target location, allowing the network to track

the target’s motion. This procedure is referred as RF tomography.

Many target tracking systems require that small electric devices be attached to the

tracked object. These devices are able to continuously communicate with the system and

to report on the status of the tracked object. However, this type of system cannot satisfy

the requirements of many applications (such as battlefield surveillance) where no devices

can be carried by the tracked objects. An alternative way to solve this problem is to use

RF tomography techniques.

RF tomography is a promising technique with many practical applications since it

doesn’t require that any electric devices be carried by the tracked target. For example,

it is often difficult for first-responders in a disaster situation, such as during a fire or after

an earthquake, to locate survivors. Quickly locating the survivors without rescuers needing

to manually enter any structures to look for them will save both time and, potentially, the
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survivors’ lives. It can also reduce the responders’ casualty rates. Similarly, RF tomog-

raphy can also be used for security and surveillance applications such as through-the-wall

imaging and perimeter monitoring. RF tomography could enable a smart home to control

lighting, heating, and air-conditioning in order to save power when there are no people in

a room. It can also be used by doctors to track elderly people and other patients remotely,

either at home or at a hospital, without violating their privacy, providing the patient with

comfortable and secure living conditions. Using wireless sensors also reduces the cost of

the system in practical deployments, especially in small scale target tracking scenarios,

since such a system only requires several low cost sensors and a laptop to process the data.

Furthermore, it only takes a few minutes to place sensors around the area that needs to

be monitored. The ability to easily and quickly deploy a network makes RF tomography

useful in the emergency response scenarios mentioned above.

1.2 Thesis Problem Statement

RF tomographic tracking techniques analyze changes in RF signals. However, the trans-

mission power of RF signals is restricted due to the limited battery power supply of sensor

nodes. Thus, it is a challenge to abstract useful information from the received RF signals

which are affected by background noise. Moreover, to avoid a time-consuming training

phase during network deploying period, the RF tomographic technique uses must use real-

time signals transmitted in the sensor network as the only reference source for tracking,

which makes it even harder to obtain accurate estimations.

Previous RF tomographic systems [84] only image signal changes in an environment and

identify peak points of the changes as the estimated locations of targets. These systems do

not track the targets. This approach suffers from both an estimation accuracy problem and

a robustness problem when the environment changes. Our goal is to find an RF tomography

approach that enables our system to perform tracking without a training phase and to

estimate target trajectories with high accuracy and robustness in various environments.

1.3 Thesis Contribution and Organization

Chapter 2 provides some background knowledge for readers to better understand the thesis

work. We first introduce wireless sensor networks and the TelosB hardware platform that
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we used in our field experiments. Afterwards, we summarize previous work related to

tracking systems, including both device-based systems and device-free systems. Finally, we

focus on the RF tomographic tracking systems that we will further explore in this thesis.

Chapter 3 proposes a novel algorithm for RF tomographic tracking. Unlike existing

RF tomography schemes, it adopts a Sequential Monte Carlo (SMC) approach to track

the motion of the target. In order to make the algorithm computationally efficient and to

improve tracking accuracy, we introduce a new measurement model for the algorithm. The

model is validated by experimental data. It does not quantize the region of interest into

pixels, in contrast to the measurement models of [83, 84]. Our algorithm incorporates an

on-line expectation maximization procedure to estimate unknown parameters of both the

dynamic model and the measurement model which are used in the particle filtering. These

parameters can vary significantly for different targets and environments, so the on-line

expectation maximization algorithm provides an important self-calibration mechanism.

Chapter 4 provides both simulation and experimental results to validate our approach.

The experiments are conducted with a wireless sensor network testbed set up on the McGill

campus. We also provide results using previous RF tomographic imaging method as a

comparison.

Chapter 5 summarizes the work and discusses potential future work.

1.4 Author’s Work

Two papers based on content presented in this thesis will be published in the following

international conference proceedings:

• Yunpeng Li*, Xi Chen*, Mark Coates, Bo Yang, “Sequential Monte Carlo Radio-

Frequency Tomographic Tracking,” in Proc. Intl. Conf. Acoustics, Speech, and

Signal Processing (ICASSP), to appear, May 2011. *Equal first-authors.

• Xi Chen, Andrea Edelstein, Yunpeng Li, Mark Coates, Michael Rabbat, Aidong Men,

“Sequential Monte Carlo for Simultaneous Passive Device-Free Tracking and Sensor

Localization Using Received Signal Strength Measurements,” in Proc. ACM/IEEE

Intl. Conf. Information Processing in Sensor Networks (IPSN), to appear, Apr.

2011.
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Chapter 2

Literature Review

In recent years, many different tracking algorithms based on wireless sensor networks have

been developed by researchers. Some of the applications such as human motion detection,

security in critical infrastructures, environmental and traffic monitoring have already been

implemented in practical environments. Radio-Frequency target tracking using wireless

sensor networks is one of the emerging technologies in the tracking research area. It utilizes

the attenuation characteristic of RF signals to locate the motion of moving targets [11,84].

This chapter provides background knowledge on wireless sensor networks and the hardware

platform we used in our experiments. Also, we review state-of-the-art research in the RF

tracking field. Section 2.1 introduces wireless sensor networks, and then focuses on the

TelosB sensor. Section 2.2 provides a more detailed discussion on the previous research

that addresses the target tracking problem with wireless sensor networks, emphasizing RF

tracking based on Received Signal Strength (RSS). It discusses the advantages and disad-

vantages of different tracking approaches. Section 2.3 introduces sequential Monte Carlo

(particle filtering) tracking algorithms and discusses the performances of them. Section 2.4

introduces static parameter estimation and focuses on a on-line Expectation and Maxi-

mization (EM) algorithm. Both particle filtering and on-line EM approaches are used in

our tracking algorithm.
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2.1 Wireless Sensor Networks

2.1.1 Overview

Wireless sensor networks are constructed using multiple sensor nodes capable of collect-

ing useful information from their surrounding environment [3]. In most cases, the nodes

have limited resources, especially computing and storage capabilities and power supply.

Networking a large number of wireless sensor nodes to collect, distribute and fuse infor-

mation for a specific objective in different environments is an emerging technique in recent

years [3, 53]. Rapid progress in the research of sensor networks has led to decreases in

the price and increases in the capabilities of the sensors, making deployment increasingly

practical. Nowadays, wireless sensor networks with low cost and high processing abilities

are being explored [9, 68]. The capability of a sensor node to exchange information with

its neighbor nodes and intelligently process the data makes sensor networks even more

useful in some critical environments not suitable for human beings such as volcanos and

earthquake sites [14, 52].

Sensor nodes can be roughly divided into two classes: passive sensors and active sen-

sors [53]. Passive sensors generate electrical signals in response to the information sensed

from the environment and they do not require additional power supply. Active sensors can

actively sense the environment with a relatively higher sensing frequency, but they require

continuous external power for their operation. A typical sensor node consists of four basic

components: (1) a power unit that supports the sensor to perform all operations; (2) a

transceiver unit that transmits and receives the data between itself and other sensor nodes;

(3) a sensing unit that collects environmental measurements and uses an Analog-to-Digital

Converter (ADC) that translate the analog signals into digital signals; and (4) a processing

unit that stores and pre-processes the raw data [3].

In wireless sensor networks, sensors are connected by a wireless medium such as radio or

infrared. Sensor network architectures can be broadly classified as centralized, distributed

and hierarchical architectures [74]. Centralized wireless sensor networks have a sink node,

also known as a data fusion center or root node. All pre-processed data from other sen-

sor nodes are sent and fused at this sink node. Therefore the sink node needs to be a

high performance computing unit and requires enhanced communication bandwidth and

robustness. Distributed wireless sensor networks do not have this centralized unit and all

the sensor nodes are capable of exchanging information locally with their neighbors and
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processing the data themselves. Such an architecture is more robust but all sensor nodes

need to have more computational capability to perform these sophisticated tasks. The

hierarchical wireless sensor network architecture integrates the former two architectures

together; it consists of several clusters of sensor nodes and each cluster has a local cluster

sink node. It operates as a centralized architecture within each cluster and as a distributed

architecture among different local sink nodes. This architecture is useful for large-scale

deployment applications in which it is necessary to collect and process a large amount of

information.

There are many applications for wireless sensor networks: battlefield surveillance [3,9],

habitat monitoring [13], medical care and in-home monitoring of elderly patients [58, 68],

highway automation [36] and infrastructure monitoring [86]. The purpose is to perform

distributed event detection, tracking, and information collection in different environments.

The limitations of battery power duration, computational and memory resources still are

the main challenges for practical deployment. Another challenge is robustness and the

adaptive capability of the sensor nodes; sensor nodes are easily lost, damaged or stolen,

resulting in dynamic network topologies.

Several deployments and experiments using wireless sensor networks have focused on

tracking applications. For example, in [33], He et al. described a large-scale sensor network

system (named VigilNet) that used 200 XSM sensor nodes to perform target tracking, de-

tection and classification. Wilson and Patwari used more than 30 TelosB nodes surrounding

an area to sense the motion of human beings [83, 84]. Ahmed et al. deployed a grid of

MicaZ nodes in a 2 meters × 3.5 meters small test environment for ground surveillance

application [1].

2.1.2 TelosB and TinyOS

The Crossbow TelosB is one of the RF wireless sensor nodes used in the experiments

described in this thesis (see Figure 2.1). The standards of TelosB we introduce in this

subsection are described in [18].

The TelosB is an open source platform which has an 8MHz MSP430 micro-controller

with 10kB RAM. Using a pair of AA batteries, its operating ambient temperature range is

-40 to 85 ◦C. There are 128 bytes in RAM for buffering the packets which need to be sent,

and an extra 128 bytes for those that have been recently received. In serial mode without
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buffering, the TelosB can transmit at a maximum data rate of 250 kbps. There are 8 steps

of transmission power level, ranging from 0 dBm to -24 dBm and the transmission data

latency is about 2 µs.

Fig. 2.1 TelosB Sensor Node

The TelosB mote conforms to the IEEE 802.15.4 [45] radio standard and operates in

a frequency range between 2.4 and 2.4835 GHz. There are 16 channels within this band

spaced in steps of 5 MHz. At the highest transmission power level, its claimed sensing

range is 75-100 meters. With a maximum 127 bytes packet length, a packet includes 9

bytes of header, 0-20 bytes of address information and a 2 byte frame check sequence. The

rest is frame payload.

The TelosB has a built-in RSSI (Received Signal Strength Indicator), which provides

a digital value that can be read in a form of 8 bit, signed complement value. This can be

converted into the corresponding decimal value RSSI VAL and the Radio-Frequency power

P in dBm can be calculated from the following equation: P = RSSI VAL + RSSI OFFSET,

where the RSSI OFFSET value is found empirically during system development. It has a

typical value of approximately -45 dBm. For example, if a value of -20 is read from the

RSSI register, the RF input power is approximately -65 dBm.

TelosB motes run TinyOS, an open source operating system designed for low-power

wireless devices, such as those used in sensor networks, ubiquitous computing, personal
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area networks, smart buildings, and smart meters [51]. It features a component-based

architecture which enables rapid innovation and implementation. TinyOS minimizes code

size as required by the severe memory constraints inherent in sensor networks. TinyOS’s

component library includes network protocols, distributed services, sensor drivers, and

data acquisition tools. It was originally developed as a research project at the University of

California Berkeley, but has since grown to have an international community of developers

and users.

The programs for the motes are written in a language called nesC, which is an extension

to programming language C, and is designed to embody the structuring concepts and

execution model of TinyOS [28].

2.2 Tracking Systems

2.2.1 Overview

Generally, a tracking system is used to monitor or observe targets such as people, animals

or vehicles by collecting and analyzing related information and display the motion of those

targets. Tracking systems can be classified either as ‘lag-time’ systems such as the bar-

code in the supermarket which requires a person to scan it, or ‘real-time’ systems such

as the widely used satellite-based Global Positioning System (GPS) [35]. Some ‘real-time’

tracking systems [2,11,79,80] use devices connected to local area networks or the Internet

to perform tracking in an indoor area such as the home or office. However, GPS does not

provide accurate estimates of location for indoor environments. Other tracking systems [14,

52,54,84,89] utilize data collected by pre-deployed wireless sensor networks to estimate the

motion of targets. Sensors are able to transmit and receive wireless radio signals that

can travel through the air. Their power strength is affected by transmission distance and

obstructions they travel through. Tracking systems can locate the moving target within

the network sensing area by calculating the angle or distance based on features of them.

Tracking systems mainly use the following two techniques to perform target tracking:

triangulation [34] and fingerprinting [72]. In two dimensions flat, triangulation technique

computes a target’s location by measuring its distance from at least three non-collinear

reference points. As shown in Figure 2.2, Point A, B and C are three reference points and

a target presents in the triangular area formed by these three points. Given the distance
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between the target and three reference points, we can easily determine where the target is.

There are three main schemes to calculate the distance in triangulation approaches [31,34]:

time of arrival, attenuation and angle of arrival. Time of arrival scheme uses the different

arrival times of sensor packets to calculate the distance between target and reference points.

The attenuation scheme calculates the distance by measuring signal strength of emitted sig-

nals. The power level of a signal decreases as the distance increases, therefore it is possible

to approximate the distance given a function by establishing a relation between distance

and attenuation level. The angle of arrival scheme calculates angles between target and

sensors to estimate target location. This scheme requires two angle measurements between

reference points and the target, and also one distance measurement among reference points.

Fingerprinting is a two-step process for tracking using 802.11 wireless local area network.

First, the RSS values of different locations are sensed and recorded during an off-line

calibration procedure. The ‘off-line’ calibration is a procedure to calibrate important signal

signatures of both sensed area and target to train the system. Second, these signatures

are stored in this off-line phase for further comparison in on-line tracking phase. Targets

may or may not carry a device to transmit signals; the signal patterns are recorded when

a target stands in different locations. In the tracking phase, the real-time received signal

strength are collected and compared with those stored signatures using a probabilistic

tracking algorithm to estimate current locations.

Fig. 2.2 Triangulation method in 2D tracking
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Tracking systems can be divided into two categories depending on whether the targets

carry tags or transceivers: device-based tracking systems and Device-Free Passive (DFP)

tracking systems. Device-based techniques such as the Infrared-based systems [2,80] Radio-

Frequency IDentification (RFID) detection system [79] and some RF-based systems [11],

require the tracked targets to cooperate and carry devices which can transmit or reflect

beacon signals. This approach is not applicable in many scenarios, e.g., emergency response

situations like earthquakes or fires. The term “device-free passive” was coined by Youssef,

Mah, and Agrawala [87] to describe tracking systems that do not require the target to

carry any devices, including passive tags. Device-free passive systems use images, sounds

or electric signals to detect and track targets moving through the sensing region.

2.2.2 Device-based Tracking Systems

A number of device-based systems have been developed. They can be classified according

to the sensors that are employed: infrared, ultrasound, radio-frequency, magnetic, audible

sound. The RF device-based systems can be further divided into RFID, Wireless Local

Area Network (WLAN) and Ultra-Wide Band (UWB) categories. Some sensors are used

in both device-based and device-free passive systems.

Infrared systems

Infrared tracking systems were one of the earliest tracking systems developed. Their per-

formance is limited by the restriction that infrared sensors can only provide Line-Of-Sight

(LOS) measurements. Early systems like Active Badge [80] can cover an area in a building

and provide position information by estimating the location of each active badge. Another

infrared indoor system, Scout [2], uses triangulation to calculate the location based on the

measurement of arrival angles. It supports the localization of multiple targets with tags

attached.

Infrared systems are easy to install and maintain, and the devices are cheap and well

developed. However, the performance can be greatly degraded by sunlight and obstructions

like walls and trees [26].
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Ultrasound systems

Ultrasound tracking systems work at frequencies beyond the audible range of the human

ear. They measure the changes of air pressure when there are obstructions present and

perform calculations to determine the positions of the obstructions [32]. Priyantha et al.

proposed Cricket, a location support system with ultrasound sensors installed on the wall or

ceiling in indoor environment and receivers attached to each target [63], . Cricket measures

the arrival times of two ultrasonic pulses from known beacons to calculate the location of

a target; this system has been further developed to determine the target’s orientation [64].

Ultrasound-based applications suffer a loss of coverage in Non-Line-Of-Sight (NLOS) sce-

narios; obstructions like walls can greatly attenuate the ultrasound signals [67].

Although there are other techniques that use similar air pressure measurements sim-

ilar to the ultrasound systems, such as acoustic and vibration sensor systems [27], their

performance is generally poorer. Environmental noise generated by machines such as fax

machines and air-conditioners can greatly disturb the accuracy of these systems.

RF systems

As radio waves can travel through obstructions including walls and human bodies, the

coverage of tracking systems using RF technology is less of a problem. RF systems often

possess a coverage range of more than 50 meters × 50 meters. This remarkable feature

makes RF a promising technology to be used in small-scale area tracking. We now introduce

four types of device-based systems that use RF technology.

RFID

RFID tag is a microchip combined with an antenna in a small compact tag that can store

identification information using electromagnetic techniques. RFID tracking systems are

commonly used in indoor scenarios. Passive RFID tags [16] only act as a receiver, while

active RFID tags [60] act as a transceiver. RFID systems were initially designed to replace

identification technologies such as barcodes, but they are now employed for a diverse range

of applications including animal tracking [78], indoor target tracking [31] and health-care

applications [78].

For example, the WhereNet system [31] is an RFID-based tracking systems that uses

a sophisticated differential time of arrival algorithm to calculate the locations of the tags

and achieve multi-target tracking. It can be used in both indoor and outdoor real-time
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tracking. The dimensions of the RFID tags in this system are 6.6 cm × 4.4 cm × 2.1 cm

while the weight is 53 g. The operating duration of a single tag is about 7 years depending

on the transmission rate of the RF signals which varies from every five seconds to every

hour. However, this system suffers from an estimation error of 2 m to 3 m when tracking

a target in indoor environment. Also, it requires a considerable number of components to

be installed before operation. Voulodimos et al. proposed a farm management system for

animal identification using RFID technology that can track animals and detect diseases [78]

. Wang et al. developed a health-care tracking system using RFID in a hospital [79], . The

system can help doctors track patients and improve the safety of a hospital.

WLAN

WLAN tracking systems intelligently utilize the existing WLAN infrastructures in indoor

environments, which greatly reduce the cost of deployment.

RADAR [11] is a WLAN tracking system developed by Microsoft Research for indoor

tracking. It is able to perform 2-D target tracking by using a triangulation location tech-

nique based on signal strength. RADAR is easy to deploy since it reuses the WLAN devices

already installed in an indoor environment. On the other hand, this can be a limitation –

the system can only be used in places where WLAN devices have been deployed.

COMPASS [44] is another WLAN tracking system that employs a location fingerprinting

technique, a probabilistic tracking algorithm and a digital compass to measure the target’s

orientation. The digital compass minimizes the negative influence on tracking performance

caused by the attenuation due to the human body.

The WLAN tracking systems are cost effective and reuse existing wireless devices. They

can also be integrated in mobile devices such as laptops and cell phones. However, the

complex environments consisting of different WLAN sources make the accuracy of WLAN

tracking systems worse than other tracking systems using RF technologies. Additionally,

the fingerprinting technique also needs a pre-training procedure that makes deployment of

some of the WLAN tracking systems time-consuming.

UWB

Ultra-WideBand (UWB) systems can improve the accuracy of tracking by reducing the

multi-path effects caused by obstructions. The Ubisense system [69] uses a triangulation

scheme to calculate the target’s position based on the difference of signals’ arrival time.

By measuring both the angles and arrival times of the signals, Ubisense has good perfor-

mance in complex indoor environments with an accuracy of the order of tens of centimeters.
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However, the Ubisense system needs a calibration procedure before running in a new envi-

ronment, which prevents application in emergency scenarios.

Jourdan et al. [39] proposed a tracking system that uses UWB and a particle filter.

The system collects the data using UWB with a bandwidth of 1 GHz. In the experiments

reported, their UWB tracking system shows good performance when tracking target walk-

ing at a constant speed of 1m/sec. The system achieves a reasonable good accuracy of

trajectory estimation in through-wall tracking scenario.

UWB signals exhibit low multi-path distortion and can penetrate through obstructions.

These features make UWB a good choice for indoor/through-wall tracking systems. Track-

ing systems using UWB have good performance in terms of accuracy and robustness.

RSS

Some tracking systems track targets by measuring received signal strength of the wireless

sensor nodes. Emitted signals are easily affected by obstructions and distances. Thus,

changes in received signal strength can be used to estimate target locations. It is an easy

and cheap way to perform target tracking in wireless sensor networks.

In [58], Lorincz and Welsh developed ‘MoteTrack’, a tracking system that used Mica2 [4]

sensor motes. Based on received signal strength, the system is able to track targets in a

large-scale deployment using reference signatures collected in an off-line process. MoteTrack

requires some beacon nodes to be fixed in known locations of the sensing area. Targets

with a mobile node walk within this area to acquire reference signature sets that represent

the target positions. These reference signatures are divided into subsets and distributed to

beacon nodes. To perform tracking, new received signal strength are compared with the

stored signatures to approximate the target location. Each beacon node only computes

data based on the signature subset they locally stored. In the experiment, the MoteTrack

system has been deployed in one floor of a building measuring approximately 1742 square

meters. The results show a relatively high estimation error: among 74 separate location

estimation experiments, only 20 percent of them achieve an error of less than 1 meter. The

rest of the experiments suffer from errors from 1 meter to 7 meters.

An et al. presented ‘Online Person Tracking’, an indoor tracking system using TelosB

sensor nodes in [5] . It has the same deployment procedure as MoteTrack; a calibration

step is performed using mobile node carried by a target to collect the signature of the

received signal strength. Target tracking is performed based on the reference signature

data. The experimental testbed is a 70m× 12m floor with a narrow corridor of 60m× 2m.



14 Literature Review

Over 30 independent experiments, 25 percent of them achieve an error of 0.6 meters and

75 percent of them had an error smaller than 1.7 meters.

In [85], Woyach et al. analyzed the physical phenomena like fading and shadowing

loss that may affect the strength of received signals in indoor environment when tracking

targets. They proposed a ‘sensorless sensing’ concept in which any wireless networks emit-

ting wireless signals can act as sensor networks for motion detection. They used Mica2

and MicaZ hardware platforms to validate their proposal through indoor experiments and

presented a velocity detection application. However, they only showed a simple experiment

in which a toy car carrying a Mica2 mote travels through a hallway. It is an interesting

idea to establish a relationship between received signal strength and the motion of a target

without using sensor nodes. However, signature patterns of the received signal strength

caused by different motions such as walk or run, and different obstructions such as walls

and trees should be further exploited.

2.2.3 Device-Free Passive Tracking Systems

In practice, many applications require tracking without active participation from the targets

(e.g. carrying tags) and with high privacy protection. Device-Free passive tracking systems

provide a promising solution to these challenges. It is not necessary for targets to carry any

devices to communicate with these systems and the targets being monitored may not even

be aware of the existence of the tracking system. Device-Free passive systems provide a

higher privacy protection since the systems can often detect and track a target but cannot

identify the target. Vision-based Device-free passive systems use cameras to capture images

of the target. Fingerprinting systems track targets by comparing initial training data and

real-time data. Signature-free systems can perform DFP target tracking without a training

phase.

Vision-based systems

The vision-based systems use multiple cameras to localize and track objects by processing

the video recorded by the cameras [48]. The cameras can record the clear motion and

detailed appearance of targets which is important for identification applications such as

distinguishing criminals. When perform tracking, the recorded images are compared to

images in a pre-installed database. The database contains images captured during an
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installation process. Based on the comparison, the vision-based device-free systems can

track the targets. Many vision-based tracking systems have been developed [37]. Both [55]

and [49] describe real-time tracking systems which can localize and track multiple targets

over a long period of time.

There are three main disadvantages of vision-based systems. First, they can only per-

form in line-of-sight scenarios since the camera cannot ‘see’ through opaque structures like

a wall. Second, they require good lighting conditions which make them useless in dim

or dark environments. Finally, vision-based systems are not suitable in applications that

require privacy protection since video records provide clear identification of individuals.

Fingerprinting systems

As mentioned in the previous subsection, the fingerprinting approaches [1, 59, 66, 76, 77]

require a significant initial training phase, with data gathered when there are targets at

known locations. It makes rapid deployment in, e.g., emergency response scenarios, much

more challenging.

In [1], Ahmed et al. proposed a tracking scheme using a particle filter and fingerprinting

method to track a single target. The experiment used MicaZ [15] nodes to sense acoustic

signals in a 2 meters × 3.5 meters very small test environment. After an off-line training

phase, the system tracked a electric toy car with a speed varying from 0.2 to 0.35 m/sec.

Although the particle filter method improves the accuracy of the tracking estimation, the

tracking system still has a mean error of about 0.2 meters in that small-scale area. Further

research in a larger scale experimental area is needed to access whether this approach has

any practical potential.

Moussa et al. describes a WLAN detection system that employs the time-windowed

average of the means and variances of RSS data to detect the motion of multiple targets [59].

During the off-line training, two distributions of received signal strength measurements are

established, one for a vacant network with no targets moving within the sensing area, and

one with a target moving inside. They also proposed an algorithm based on maximum

likelihood estimation to determine which state was most likely in on-line detecting phase.

However, this system can only detect moving targets; it cannot track targets.

The work in [59] was further extended by Seifeldin and Youssef in [66], they presented

Nuzzer: A large-scale tracking system for wireless environments. In off-line phase, Nuzzer
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measures a received signal strength histogram for each link with targets standing in different

locations inside the sensing area. During the on-line phase, new samples are compared

with stored received signal strength radio map to estimate target locations. In the field

experiment, Nuzzer was deployed in an office building with a floor of 1500 square meters.

Three existing Cisco Aironet 1130AG access points (APs) [17] and two laptops were used.

During the off-line phase, a person stood at 53 different locations and Nuzzer recorded

samples during 60 seconds for each location. Over measurements of 32 independent tests

in different locations, Nuzzer achieved a median distance error of 1.82 meters. However,

Nuzzer can only track a single target and the estimation accuracy still needs to be improved.

Viani et al. described a RSS tracking system using Support Vector Machine (SVM) [76,

77]. Support vector machines are a set of methods that analyze data and recognize patterns,

used for classification [71]. During the training phase, received signal strength data were

collected to train a support vector machine. The area of interest is divided into several

small squares. During the in on-line tracking phase, the support vector machine is used to

choose a small square based on new received signal strength measurements.

In device-free scenario, the major drawback of fingerprinting tracking systems is the

mandatory training phase before tracking. It is time-consuming for training the system

and the stored data is useless once the topology of the sensor network changes. Another

challenge relies on computational cost and hardware storage for multi-target tracking, since

the amount of data needed for training increases exponentially with the number of people.

These issues need to be solved before a real implementation of fingerprinting tracking

systems.

Signature-free systems

A number of other device-free passive tracking algorithms have been developed based on

models of received signal strength [42, 54, 73, 82–84, 89, 90]. These approaches eliminate

the need for extensive training. By analyzing the changes in RSS values, these algorithms

can track the targets as soon as they are deployed in a new environment. The Radio

Tomographic Imaging (RTI) system proposed by Wilson and Patwari [84] makes use of

image reconstruction methods to estimate a map of attenuation in the region of interest at

sequential points in time. This work was extended in [83] to use the empirical RSS variance

on each link, rather than the mean RSS, to determine the presence of the targets, and this
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promising approach has demonstrated the ability to track people through walls. The recent

thesis [82] by Wilson also describes a particle filter for RF tomographic tracking. The filter

employs sequential importance resampling, and model parameters such as noise variance,

attenuator parameters, and sensor locations are assumed known.

Tseng et al. proposed a protocol to perform signature-free DFP tracking by using

a ‘mobile agent’ when a target is detected [73]. A mobile agent can follow the path of

the target by hopping between sensor nodes, cooperating with nodes nearby the target

to choose the node closest to the target based on the RSS values. Thus an approximate

trajectory can be extracted from the path of the nodes traversed. However, the work does

not discuss the accuracy of target detection in practical experiment and it only reports

simulation results. This may cause problem when a target can not be properly detected.

Moreover, the accuracy of the estimation trajectory greatly depends on the topology of the

network and it requires an intensive sensor deployment to achieve a good tracking, which

is not practical.

Zhang et al. [89] use Mica2 sensors placed on the ceiling to localize a single target moving

below. They propose a dynamic model to capture the RSS changes; the variation of the RF

signals is used to determine the presence of the target. The experimental testbed comprised

a 44 RF-based grid array covering 36 square meters. Recently, in further research [90], they

proposed a new algorithm based on ‘dynamic clustering’ to address multi-target tracking.

The ‘dynamic clustering’ is a scheme that can automatically detects and groups sensor

nodes affected by targets. Each group is a cluster, the size and the number of nodes in a

cluster are dynamically changing depending on targets’ locations. The algorithm greatly

improves the estimation accuracy that the system achieves an accuracy of 0.2-0.85 meters

in a 36 square-meter area. However, the approach needs a calibration stage to set model

parameters and the coverage is limited (targets must be within 2 meters of a sensor node).

2.3 Sequential Monte Carlo Algorithms

The tracking problem can generally be considered a dynamic state estimation problem,

where the state represents the parameters of the target being tracked, such as its position

and velocity. The goal is to estimate the next state of the target over time based on its

previous states and the observation information collected by the sensors at each time step.

From a Bayesian point of view, the tracking problem is to calculate a posterior probability
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density function (pdf) of the target’s state and to derive an optimal solution of the state

based on the pdf, which contains all available information about the state [10].

For many problems, the state of the target can be accurately estimated by adopting

a linear model with Gaussian noise. The observation information can also be modeled

as a linear function of the state with additive Gaussian noise. For these linear/Gaussian

Bayesian tracking problems, the posterior distribution is a Gaussian distribution and it

can be parameterized by a mean and covariance. Both the Kalman Filter (KF) [41] and

grid-based filters [10] provide an analytical solution. However, in many other situations,

these assumptions do not hold, and approximations are needed for these nonlinear/non-

Gaussian Bayesian tracking problems. The extended Kalman filter [81] and unscented

Kalman filter [40] can approximate the optimal Bayesian solution.

The above methods fail when the problem is highly nonlinear and/or non-Gaussian. Se-

quential Monte Carlo methods, also known as particle filters, are able to perform better in

these situations. Sequential Monte Carlo methods are flexible simulation-based approaches

used for estimating the state in a Bayesian model in a sequential manner. There exists a

considerable number of particle filter algorithms. The basic sequential Monte Carlo meth-

ods based on Sequential Importance Sampling (SIS), were proposed in the 1950s [56], and

became more practical after a resampling stage was included in the algorithm in 1993 by

Gordon et al. [30]. Based on this new Sampling Importance Resampling (SIR) procedure,

more improvements were introduced and new sequential Monte Carlo algorithms were de-

veloped [12, 21, 57, 61, 75]. Among the different particle filtering algorithms, the Auxiliary

Particle Filter (APF) [38,61] performs better in environment with small process noise. The

auxiliary particle filter builds on sequential sampling importance resampling procedure,

it attempts to improve the performance by modifying the sampling step and minimizing

the variance. The details of these particle filtering methods are discussed in the following

section. We begin with the construction of state-space model.

2.3.1 Overview

In a general state-space model, we first consider a discrete-time Markov process {xk; k ∈ N}
where xk ∈ Rx. xk represents a state sequence of the system at time k, and the x in

Rx denotes the dimension of the state vector (we use similar notation for dimension in

this thesis). The transition probability is p(xk|xk−1) and the initial distribution of xk is
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p(x0). This process is unobserved(hidden), and we can only access another relative process

{yk; k ∈ N} where yk ∈ Ry. Given the states, observations are conditionally independent

with measurement distribution p(yk|xk). Therefore, a transition model and a measurement

model can be constructed. Both models may be nonlinear/non-Gaussian. The models can

be expressed as

xk = f (xk−1,vk−1) (2.1)

yk = h(xk, sk), (2.2)

where vk−1 ∈ Rv is the process noise and sk ∈ Rs is the measurement noise. The mapping

functions f : Rx×Rv → Rx and h : Rx×Rs → Ry represent the transition and measurement

models.

The posterior density p(x0:k|y1:k), where x0:k , {x0, . . . ,xk} and y1:k , {y1, . . . ,yk},
constitutes the complete solution to the sequential estimation problem. Thus, the goal is

to estimate the posterior density or its marginal distribution p(xk|y1:k).

In Monte Carlo simulation, a set of particle points xi0:k, i = 1, . . . , N , where N is the

total number of particles, are drawn from the posterior distribution mentioned above to

map integrals to discrete sums. For some function of interest Gk(.), any expectation of the

form

I(Gk) =

∫
Gk(x0:k)p(x0:k|y1:k) dx0:k, (2.3)

may be approximated by the following estimate

ÎN(Gk) =
1

N

N∑
i=1

Gk(x
(i)
0:k). (2.4)

According to the strong law of large numbers, ÎN(Gk)
a.s−−−→

N→∞
I(Gk) [29], where

a.s−−−→
N→∞

denotes almost sure convergence.

Bayesian Importance Sampling

However, it is always difficult to sample directly from the posterior density function itself.

An alternative way to avoid this problem is to sample from a known proposal distribution

(also known as importance distribution) π(x0:k|y1:k). According to the Bayesian Rule, we
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have

p(x0:k|y1:k) =
p(y1:k|x0:k)p(x0:k)

p(y1:k)
. (2.5)

Substitute it into equation (2.3) we can obtain

I(Gk) =

∫
Gk(x0:k)

ωk(x0:k)

p(y1:k)
π(x0:k|y1:k) dx0:k, (2.6)

where ωk is the unnormalized importance weight

ωk =
p(y1:k|x0:k)p(x0:k)

π(x0:k|y1:k)
. (2.7)

Then we can obtain

I(Gk) =

∫
Gk(x0:k)ωk(x0:k)π(x0:k|y1:k) dx0:k∫
p(y1:k|x0:k)p(x0:k)

π(x0:k|y1:k)
π(x0:k|y1:k)

dx0:k

(2.8)

=

∫
Gk(x0:k)ωk(x0:k)π(x0:k|y1:k) dx0:k∫

ωk(x0:k)π(x0:k|y1:k) dx0:k

. (2.9)

Therefore, the particle samples can be drawn from the importance distribution, and we can

then approximate the expectation of interest by

ÎN(Gk) =
1
N

∑N
i=1 Gk(x

(i)
0:k)ω

(i)
k

1
N

∑N
i=1 ω

(i)
k

=
N∑
i=1

Gk(x
(i)
0:k)ω̃

(i)
k , (2.10)

where the normalized importance weights ω̃
(i)
k are given by

ω̃
(i)
k =

ω
(i)
k∑N

i=1 ω
(i)
k

. (2.11)
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2.3.2 Sequential Importance Sampling (SIS)

In the sequential case of the previous method, we can adopt the following importance

distribution

π(x0:k|y1:k) = π(x0:k−1|y1:k−1)π(xk|x0:k−1,y1:k), (2.12)

to recursively compute the sequential estimate of the posterior distribution. Given that the

states are Markovian and the observations are conditionally independent, we can obtain

p(x0:k) = p(x0)
k∏
j=1

p(xj|xj−1) (2.13)

p(y1:k|x0:k) =
k∏
j=1

p(yj|xj). (2.14)

By substituting (2.12), (2.13) and (2.14) into (2.7), we can get the importance weight

ωk ∝
p(y1:k|x0:k)p(x0:k)

π(x0:k−1|y1:k−1)π(xk|x0:k−1,y1:k)
(2.15)

∝ ωk−1
p(y1:k|x0:k)p(x0:k)

p(y1:k−1|x0:k−1)p(x0:k−1)

1

π(xk|x0:k−1,y1:k)
(2.16)

∝ ωk−1
p(yk|xk)p(xk|xk−1)

π(xk|x0:k−1,y1:k)
. (2.17)

This relationship allows us to sequentially update the weights given the importance distri-

bution, π(xk|x0:k−1,y1:k). It is important to design the appropriate form of this importance

distribution to better assist sampling.

Choosing the Importance Distribution

In [21], Doucet discussed the choice of importance distribution. The principle is to choose

a distribution that minimizes the variance of the important weights. As explained in [88],
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the optimal choice is

π(xk|x0:k−1,y1:k)optimal = p(xk|xk−1,yk)

=
p(yk|xk,xk−1)p(xk|xk−1)

p(yk|xk−1)
. (2.18)

Substituting (2.18) into (2.17), we obtain:

ωk ∝ ωk−1p(yk|xk−1). (2.19)

However, it is often difficult to generate the analytical form of the solution when sam-

pling from p(xk|xk−1,yk). If xk is a member of a finite set, the integral can be calculated as

a sum of finite components [23]. Another case where an analytical solution can be obtained

is under the assumption of Gaussian state space model with non-linear transition model

and linear measurement model [21]. In practice, a common method is to choose the impor-

tance distribution as the prior distribution, which results in a simple sampling procedure

and weight updating procedure.

π(xk|x0:k−1,y1:k) = p(xk|xk−1) (2.20)

ωk ∝ ωk−1p(yk|xk). (2.21)

Although it results in important weights with higher variance than the optimal solution

(since it does not incorporate the most recent observations), it is usually easier for imple-

mentation [21,56].
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The Degeneracy Problem of SIS

The drawback of the SIS algorithm is the increasing variance of the importance weights

over time. To show this we can expand the importance weight:

ωk =
p(y1:k|x0:k)p(x0:k)

π(x0:k|y1:k)
(2.22)

=
p(y1:k,x0:k)

π(x0:k|y1:k)
(2.23)

∝ p(x0:k|y1:k)

π(x0:k|y1:k)
. (2.24)

(2.24) is the importance ratio, and it is shown in [22] that the variance increases over time.

The degeneracy problem is a result of this increasing variance. After multiple time

steps running the algorithm, the normalized weight of one particle may tend to 1, while

the normalized weights of the rest of particles tend to 0. This makes the algorithm discard

most of the particles, therefore, the degeneracy of particles will eventually cause a failure

of the particle filter estimation.

2.3.3 Sequential Importance-sampling Resampling (SIR)

Algorithm 1: Residual Resampling

1 Recalculate the weights

ω̄i =
Nωi − bNωic

N −R
, i = 1, . . . , N (2.25)

where N is the number of particles, b c denote the integer part, and

R =
∑N

i=1bNωic.
2 Calculate the deterministic component

N i
d = bNω̄ic. (2.26)

3 Calculate the multinomial component: {N i
m} are distributed according to the

multinomial distribution MULT (N −R; ω̄1, . . . , ω̄n).

4 N i = N i
d +N i

m , N i is the number of copies of particle x
(i)
k .
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In order to address this degeneracy problem, a resampling method [20] is adopted with

a basic aim of discarding the particles with lower weights and replacing them by particles

with higher weights. Douc described four popular resampling methods [20]: multinomial

resampling [30], residual resampling [57], stratified resampling [46] and systematic resam-

pling [46]. Since the choice of resampling scheme does not greatly affect the performance

of particle filter [20], here we only present the residual resampling scheme in Algorithm 1.

This scheme is shown in [20] to achieve weights with a lower conditional variance. To better

describe the algorithm, a SIR particle filter is described in Algorithm 2.

Algorithm 2: SIR Particle Filter

// Initialization at time k = 0

1 Sample the particles x
(i)
0 ∼ p(x0), (i = 1, . . . , N);

2 for k = 1, . . . , T do

3 • Sample x̃
(i)
k ∼ p(xk|x

(i)
k−1), (i = 1, . . . , N);

4 • Set weights: ω
(i)
k ∝ p(yk|x̃

(i)
k );

5 • Normalize weights: ω̃
(i)
k =

ω
(i)
k∑N

i=1 ω
(i)
k

;

// Resample

6 • Resample N particles (x
(i)
k ; i = 1, . . . , N) from the set (x̃

(i)
k ; i = 1, . . . , N) according

to the importance weights ω̃
(i)
k ;

7 end for

2.3.4 Auxiliary Particle Filter

A major problem of the SIR particle filter is the fact that if the samples xk at time step k

vary significantly from the previous samples xk−1, the variance of the weights will be too

high, which makes the SIR algorithm ineffective. The auxiliary particle filter, introduced

in [61], modifies the sampling step in an attempt to improve performance. The auxiliary

particle filter is a method that tries to make use of future information for prediction. At

time k, it will predict which particles will be located in regions of high probability masses

at time k + 1. The filter calculates a first-stage weight ρ
(i)
k for each particle based on how

well the particle can explain the observations yk. Ideally, this weight should be a good

approximation to the likelihood

p̂(yk|x(i)
k−1) =

∫
p(yk|xk)p(xk|x(i)

k−1) dxk, (2.27)



2.3 Sequential Monte Carlo Algorithms 25

i.e. ρ
(i)
k ≈ p(yk|x(i)

k−1).

Algorithm 3: Auxiliary Particle Filter

// Initialization at time k = 0

1 for i = 1, . . . , N do

2 Sample the particles x
(i)
0 ∼ p(x0);

3 Set weights ω
(i)
0 =

p(y1|x(i)
0 )p(x

(i)
0 )

π(x
(i)
0 )

;

4 end for

5 Normalize weights ω̃
(i)
0 =

ω
(i)
0∑N

i=1 ω
(i)
0

;

// For times k > 0

6 for k = 1, . . . , T do

// First-stage weights

7 for i = 1, . . . , N do

8 Sample ρ
(i)
k ∼ p(·);

9 Set weights W
(i)
k = ω̃

(i)
k−1 × ρ

(i)
k ;

10 end for

11 Normalize weights W̃
(i)
k =

W
(i)
k∑N

i=1W
(i)
k

;

// Resample

12 Resample from the set
{

x
(i)
k−1, W̃

(i)
k

}N
i=1

to obtain
{

x
′(i)
k−1,

1
N

}N
i=1

;

13 for i = 1, . . . , N do

14 Set x
(i)
1:k−1 = x

′(i)
1:k−1 and ρ

(i)
k = ρ

′(i)
k ;

15 Sample x
(i)
k ∼ π(xk|x

(i)
k−1);

16 Set weights ω
(i)
k =

p(zk|x
(i)
k )p(xk|x

(i)
k−1)

ρ
(i)
k π(xk|x

(i)
k−1)

;

17 end for

18 Normalize weights ω̃
(i)
k =

ω
(i)
k∑N

i=1 ω
(i)
k

;

// Optional second resample

19 Resample
{

x
(i)
1:k, ω̃

(i)
k

}N
i=1

to obtain
{

x
(i)
1:k,

1
N

}N
i=1

;

20 end for

The auxiliary particle filter then resamples the particles x
(i)
k−1 according to the first-

stage weights, this allows the auxiliary particle filter to be adapted in a more efficient

way. Here an auxiliary variable ′(i) is introduced to aid during the resampling step. After
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the resampling step, the particles are propagated according to an importance function

π(xk|x′(i)k−1), and here we set it as p(xk|x′(i)k−1) for simplicity consideration, and the new

weights ω can then be calculated. The original auxiliary particle filter in [61] includes two

stage resampling. The auxiliary particle filter algorithm is improved in [12] to perform

resampling once at each time step. This version of the auxiliary particle filter algorithm

reduces the variance of the particle estimations and is widely used.

The algorithm is described in Algorithm 3. Although it is not an ideal choice because

it can lead to unbounded variance in the estimates, it is not so sensitive to outliers as the

standard SIR filter [24]. In the algorithm, we use the following first-stage weights:

ρ
(i)
k = p(yk|µ(i)

k ), (2.28)

where µ
(i)
k is some characterization of xk given xik−1. In our algorithm, µ

(i)
k is the mean of

p(xk|x(i)
k−1). This is one of the suggested approaches in [61], and it achieves good perfor-

mance in practice for many tracking tasks.

2.4 Static Parameter Estimation

2.4.1 Overview

Sequential Monte Carlo approaches can only operate when all parameters in the general

state-space model are known. In this case, it is possible to use sequential Monte Carlo

methods to obtain solutions. These problems with known parameters are called optimal

filtering problem. However, in many practical applications, some critical parameters such

as process noise vk in transition model and measurement noise sk in measurement model at

time step k are unknown in prior. Therefore, we can group all these unknown parameters

as a set θ, and it is necessary for us to estimate θ before perform particle filtering [8].

Static parameter estimation technique tries to estimate the set θ. In the past few years,

many methods have been proposed. They can be classified into two classes [43]: Bayesian

approaches and Maximum Likelihood approaches. Both can be implemented in an on-line

or an off-line manner.

In the Bayesian realm, the parameter set θ is first assigned a proper prior distribution.

Then, using the observed data and a suitable prior density p(θ) for θ, the joint posterior

distribution p(x0:k, θ|y0:k) is characterized. Markov Chain Monte Carlo (MCMC) [6, 70] is



2.4 Static Parameter Estimation 27

considered as a standard approach to approximate this joint posterior distribution. How-

ever, in a general non-linear/non-Gaussian state space model, it is difficult to obtain the

distribution using a Markov chain Monte Carlo approach. A particle Markov Chain Monte

Carlo technique [7] is proposed to solve this problem by Andrieu et al.. It is an off-

line Bayesian method which combines Markov chain Monte Carlo and standard sequential

Monte Carlo method. The sequential Monte Carlo method is used to design efficient im-

portance distributions for Markov chain Monte Carlo algorithms. Unlike standard Markov

chain Monte Carlo, the particle MCMC method is not required to design complex proposals

for state x0:k, it only needs to design a distribution for the parameter set θ. This simpler

distribution is used to obtain a sequential Monte Carlo approximation of the unknown set

θ. More precisely, to obtain a proposal distribution that is an approximation of the ideal

joint posterior distribution p(x0:k, θ|y0:k). This method achieves good performance with

minimal tuning even when the transition density is used as the importance distribution

in the sequential Monte Carlo algorithm. However, its computational cost is high, it is

O(NT ) per MCMC step, where N is the number of particles in the sequential Monte Carlo

algorithm. Another ‘artificial dynamics method’ [47] adds random noise to the parameters,

thus making these parameters part of the state vector. However, it is difficult to tune the

newly introduced dynamics. There is a risk of changing the original problem setting. The

Resample-Move method [6, 43, 70] successfully avoids modification of the distribution, but

it also suffers from the degeneracy problem.

On the other hand, in Maximum Likelihood technique, the estimate of θ is the maxi-

mizing argument of the marginal likelihood of the observation. Consider the observation

vector y1:T where T is the total number of time steps over which filtering is performed.

Then the marginal likelihood l(θ) of the observation is:

l(θ) = log pθ(y1:T ), (2.29)

and the estimate of θ is:

θ̂ = arg max
θ∈Θ

l(θ). (2.30)

A commonly used method of Maximum Likelihood parameter estimation is gradient

approach [62]. Its drawback is the difficulty of tuning the step size. Another method is
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expectation maximization approach [19], which is more stable and typically more compu-

tationally efficient for a high dimensional parameter set θ.

The EM algorithm can be divided into two steps to maximize l(θ). First is the expecta-

tion step or E-step, which evaluates the posterior probabilities using the current estimated

values for the parameters. It computes:

Q(θ̂k, θ̂) =

∫
log pθ̂(x0:T ,y0:T )pθ̂k(x0:T ,y0:T )dx0:T , (2.31)

where θ̂k is the updated estimate set at time step k, and Q(·) function is used to denote

the integral function at the right side of the equation. The second step is the maximization

step or M-step, which uses the probabilities computed in the E-step to re-estimate the

parameter set θ̂k:

θ̂k+1 = arg max
θ
Q(θ̂k, θ̂), (2.32)

so that the results calculated by the EM method can satisfy: l(θ̂k+1) ≥ l(θ̂k). The EM ap-

proach outperforms the gradient approach when the M-step can be computed analytically.

2.4.2 On-line EM using Pseudo-Likelihood Function

When the amount of observation data to be processed is large, or the application has real-

time constraints, it will be difficult for the expectation maximization method to process

the batch data. An alternative is to use recursive processing so that the observation data

is processed sequentially. In other words, if we have an estimate for the first k time steps,

we only need to update the new estimate θ̂k+1 after receiving the new data yk+1. Based on

the EM approach, this is the so-called on-line EM algorithm.

On-line EM algorithm follows the same two step procedure as in the EM approach.

It has a computational cost of O(N2) per parameter update [43]. In addition, it requires

estimations of ‘sufficient statistics’ from joint posterior distribution p(x0:k, θ|y0:k). A suffi-

cient statistic describes a statistic that provides sufficient information to a statistical model

and its associated unknown parameters. In other words, no other statistic can offer any

additional information than a sufficient statistic based on the same samples. Similar to

sequential Monte Carlo technique, such an approach suffers from the problem that the

performance of estimation degrades as the number of time step T increases.
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To overcome this problem, an on-line EM approach incorporates a ‘pseudo-likelihood

function’ [8]. The pseudo-likelihood function [65] is an approximation to the likelihood

function based on observations. It can either simplify the problem for estimation or pro-

vide explicit estimates to unknown model parameters. To formulate the pseudo-likelihood

function, we first divide the whole observation data set y0:T into blocks. Each block contains

L measurements (or L time steps in this thesis). The block of both states and observations

can be define as

Xb , xbL+1:(b+1)L (2.33)

Yb , ybL+1:(b+1)L. (2.34)

where b is the index of the block.

The vectors {Xb, Yb} are identically distributed. Thus, we can obtain their common distri-

bution pθ̂(x,y) as follows

pθ̂(x,y) = πθ̂(xbL+1)hθ̂(ybL+1|xbL+1)

(b+1)L∏
k=bL+2

fθ̂(xk|xk−1)hθ̂(yk|xk), (2.35)

where πθ̂(.) is the importance distribution function, hθ̂(.) is the function of measurement

model and fθ̂(.) is the function of the transition model.

The likelihood of the observation pθ̂(Yb) at block b is

pθ̂(Yb) =

∫
XL

pθ̂(xb, Yb)dxb, (2.36)

where X is the space that process {xk} defined on, and X ⊆ Rx. If process {xk} is

stationary and ergodic, then it is shown in [8] that the average log pseudo-likelihood l(θ̂)

satisfies

l(θ̂) =

∫
Y L

log pθ̂(y)pθ(y)dy. (2.37)

We therefore apply on-line EM to recursively maximize l(θ̂) by updating the estimate θ̂ via

θ̂b = arg max
θ̂∈Θ

Q(θ̂b, θ̂), (2.38)
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where

Q(θ̂b, θ̂) =

∫
XL×Y L

log(pθ̂(x,y))pθ̂b(x|y)pθ(y)dxdy (2.39)

In a general state space model, it is impossible to directly compute Q(θ̂b, θ̂). This moti-

vate us to compute Q(·) via a set of sufficient statistics Ω(θ̂b, θ̂). We use θ̂b = Λ(Ω(θ̂b−1, θ̂))

as a mapping function from the sufficient statistics Ω(θ̂, θ̂) to θ̂ that maximizes Q(·).
The on-line pseudo-likelihood EM method has a computational cost of O(LN) per on-

line EM step, which is better then using the standard on-line EM approach. In addition,

it avoids the degeneracy problem when the block of time steps L is not large [50], such as

ranges from 10 to 20.
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Chapter 3

On-line Sequential Monte Carlo

Tracking in Wireless Sensor Networks

In this chapter, we formulate the RF tomographic tracking problem. Also, we propose a

novel measurement model to establish the relationship between RSS values collected from

the sensor data and the state vector of the tracked target. The aim is to avoid quantizing

the region of interest into pixels when modeling the effects of attenuating objects on a

given link. We also present a previously proposed pixelized measurement model [83,84] as

a comparison. The proposed pixel-free model, when incorporated in our tracking algorithm,

improves the algorithm computational efficiency and tracking accuracy.

We also propose a novel RF tomographic tracking algorithm by incorporating a auxil-

iary particle filtering approach with an on-line expectation maximization procedure. The

particle filter tracking method improves the accuracy of the estimation results and the

on-line EM algorithm is used to estimate the unknown parameters of the transition model

and measurement model. These parameters vary significantly for different targets and en-

vironments and remain unknown to our tracking system. For example, the noise level of

an outdoor grassy field is different from that of an indoor office. In this manner, while we

are tracking the target position, we simultaneously estimate unknown parameters such as

the noise variance and parameters in the target attenuation model.
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3.1 Problem Statement

Received signal strength measurements on Radio-Frequency signal links connecting nodes in

a sensor network reflect information about both (1) the pair-wise distances between sensor

nodes and (2) objects moving through the sensed region. In particular, obstructions inside

the area can absorb, scatter or reflect part of the signals. As the target moves, different

links will be affected, revealing information about the location of the target within the

region. The changes in mean attenuation of the signals transmitted between multiple pairs

of sensor nodes can be used to estimate the position of the moving target. Moreover, the

precise nature of the received signal strength measurements depends on a number of model

parameters which are generally not known a priori. Our goal is to use measurements of

received signal strength on the links between many pairs of nodes and over multiple time

steps to jointly track a target moving through the region of interest and estimate model

parameters such as the noise variance.

We consider a wireless sensor network of K nodes and M = K2−K
2

bidirectional links.

In each measurement interval, the K nodes successively broadcast packets and all neigh-

boring nodes measure the received signal strength. The received signal strength value of

bidirectional link j at time step k is denoted γj(k). We take γj(k) to be the average of the

received signal strength values along both the forward γFj (k) and reverse γR(j)(k) links

γj(k) =
1

2

(
γFj (k) + γRj (k)

)
. (3.1)

The precise measurement model for γj(k) is described in section 3.2 below. The average

two-way received signal strength values of a particular link γj(k) depends on

γj(k) = P0 + Pd + y
(j)
k + ζ

(j)
k , (3.2)

where P0 is the transmitted power in dB on the link, Pd represent the path loss in dB

within a large-scale area due to the distance between two nodes, y
(j)
k is the shadowing loss

in dB due to the moving target and ζ
(j)
k is the summation of the fading loss caused by the

interference of narrow-band signals in multi-path environments and the static losses from

distance, antenna behavior, etc, in dB.

We assume that there is a window where we can gather measurements on all links when
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no target is present, so this average received signal strength γ̄j on link j is

γ̄j = P0 + Pd + ζ̄(j), (3.3)

where ζ̄j is the average noise summation over time in dB. Nodes successively broadcast pack-

ets at relatively small time intervals (e.g., every 5 ms), gathering received signal strength

measurements which we can stack into the vector Γk at time step k and Γavg over the time

window when no target is present

Γk = [γ1(k), . . . , γj(k), . . . , γM(k)]T (3.4)

Γavg = [γ̄1, . . . , γ̄j, . . . , γ̄M ]T . (3.5)

This allow us to estimate y
(j)
k from later measurements by subtracting off γ̄j from γj(k).

We now can obtain the vector of received signal strength changes yk caused by the moving

target

yk + nk = Γk − Γavg, (3.6)

where nk is the noise vector after subtraction. Our goal is to track a single moving target

described by state xk, with motion specified by a Markovian dynamic model f(xk|xk−1). In

order to do this, we strive to maintain a particle approximation of the marginal posterior

p(xk|y1:k) and estimate the expected value of xk under this distribution. Simultaneously,

we seek to estimate measurement model parameters θ.

3.2 Measurement Models

The measurement model describes the relationship between the true state, the sensor loca-

tions and the measurement values. Wilson et al. proposed a pixelized measurement models

for RF tomography [83,84]. Since these were employed in an imaging framework, the mod-

els were pixelized, i.e. the area under surveillance was divided into fixed size pixels. Our

goal is tracking, not imaging, so there is no need to introduce pixels. Such an introduction

is undesirable because it necessarily leads to additional quantization error. We therefore

develop a pixel-free model that is better suited to the sequential Monte Carlo methods

we adopt, significantly enhancing the computational efficiency and leading to improved
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tracking accuracy. Both models are introduced as follows.

For the bidirectional link j between a node pair, consider an ellipse with foci at the

transmitter c and receiver e. Define

λ
(j)
k , dcj(xk) + dej(xk)− dj, (3.7)

where dcj(xk), d
e
j(xk) are the distances from the target’s position to the transmitter and

receiver, respectively. The parameter λ
(j)
k is equal to the major diameter of an ellipse

passing through xk with foci at the transmitter c and receiver e of the jth link, minus the

length of jth link, dj. Note that this quantity captures information about the position of

the target relative to link j at time step k.

3.2.1 Pixelized Model

As shown in Figure 3.1, the pixelized model [84] divides the sensed area into several small

square pixels with a pixel width ∆p. We define total number of pixels as A and index of

pixel as a. We then assign a weight u
(a)
k to each pixel, the weight equals to either 0 or 1

depending on the location of the target at time step k. For example, assume that there is a

target traveling within the sensor network. Some links are affected when the target stands

right on the links’ transmission path or within their ellipse sensing areas. Thus it causes

changes on the received signal strength of those affected links. Pixels within the ellipses

of these affected links are assigned a weight 1, otherwise assigned 0. Obviously, each pixel

belongs to more than one ellipse, these ellipses represent links that are formed by different

node pairs. The weight u
(a)
k of a pixel a is assigned to 1 when one or more of its links are

affected by the motion of the target. The weight, which depends on the presence of the

target, is defined as

u
(a)
k =

1, if motion of target affects pixel’s related links.

0, otherwise.
(3.8)

And a pixel weight vector uk is defined as

uk ,
[
u1
k . . . u

(a)
k . . . uAk

]T
. (3.9)
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Since the location of the target at time k is described by the state vector xk, we can also

define a ‘convert function’ η(·) for simulation such that uk = η(xk). The function converts

target status to a binary weight matrix that identifies the pixels affected by the target at

time step k.

Fig. 3.1 An example for pixelized model: 24 nodes are deployed around a

square layout. The area is pixelized into smaller pixel squares. Each node pair

forms an ellipse sensing area, the RSS value of a link is affected if a target

presents within the elliptical area.
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The pixelized model for the attenuation caused by an object can be expressed as follows:

yk = φΥuk + sk (3.10)

= φΥuk + σsSk, (3.11)

here yk is a M × 1 vector represents measurement values. φ is the (modeled) value of

mean attenuation at λ = 0 (i.e., when the target is directly obstructing the link), and

Sk ∼ N (0, IM×1) is additive white Gaussian noise. The parameter σs is the standard

deviation that captures the variance of the noise, which is modeled as independent of λ.

Υ is an M × A matrix that describes how much a pixel is affected by the object. It is

constructed using the elliptical model in equation (3.7). For a unique link j of a node pair

and a square pixel a, the component Υja of Υ is

Υja =
1√
dj

1, if dcja + deja < dj + λ(j)

0, otherwise,
(3.12)

where dj is the distance between two nodes, dcja and deja are the distances from the center

of pixel a to the two node locations on link j. Similar to λ
(j)
k in equation (3.7), λ(j) equals

to the major diameter of an ellipse passing through pixel a with foci at nodes c and e of

the jth link, minus dj.

3.2.2 Pixel-free Model

The form of the proposed pixel-free model is motivated by experimental data recorded in a

sensor network deployed in multiple outside environments with relatively few obstructions

(some trees and a statue). The experiments involved a human walking around a region

surrounded by sensor nodes (see Chapter 4 for more details of the sensor deployment).

For every measurement set, we calculated λ(j) for all links and measured the correspond-

ing attenuation y(j) on the jth link (the measured received signal strength value minus the

background mean, determined from a set of measurements conducted when the monitored

area was empty). Figure ?? shows these attenuation values as a function of λ. Also shown

are the mean attenuation (calculated over all points within bins of λ-range 0.01) and our

proposed model, detailed below. The model involves three parameters (in the graph, these

have been determined by using straightforward regression to minimize the mean-squared



3.2 Measurement Models 37

error).

Figure 3.2 suggests that the mean attenuation level decays approximately following

an exponential decreasing function with respect to the ellipse parameter λ, which details

below.

Fig. 3.2 Attenuation level versus λ for the proposed pixel-free model (a

comparison between the model and experimental measurements.)

The pixel-free model for the attenuation caused by an object can then be described as

follows:

yk = φgk + σsSk. (3.13)

again, here φ is the (modeled) value of mean attenuation at λ = 0. The M × 1 vector gk

is defined as

gk ,
[
g1
k . . . g

(j)
k . . . gMk

]T
. (3.14)
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and

g
(j)
k , exp{−λ

(j)
k

2σλ
}. (3.15)
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Fig. 3.3 Histogram and QQ plot of experimental data

The parameter σλ controls the rate of decay of the mean attenuation with respect

to λ for link j at time step k. Once given the target state xk, λ can be calculated by

equation (3.7). In equation (3.13), σs and Sk represent the measurement ”noise” when we

calculate the attenuation levels for different λ.

To examine the statistics of the noise for pixel-free model, we first calculate the modeled-

mean through equation (3.15). By subtracting the modeled-mean from the individual atten-

uation level, we convert the scatter plot of “Experimental attenuation level” in Figure 3.2

to “Histogram of experimental data” in Figure 3.3(a). The histogram curve shows the

Modeled-Mean-Removed attenuation level while the dashed curve is the best-fit Gaussian

model based on the measurement data. Figure 3.3(b) is a quantile-quantile plot also com-

paring the mean-removed attenuation level with a Gaussian distribution N (0, σ2
g), where

σg is the standard deviation of experimental data. It is clear that the experimental noise

distribution has more mass near the mean and lighter tails than the best fit Gaussian, but

the distribution is approximately symmetric about the mean. An additive noise model (in

the decibel domain) appears to be an appropriate choice. In filtering problems, tracking

performance is often improved if the adopted noise model has slightly heavier tails than
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the true noise distribution. For this reason, and because it reduces the computational com-

plexity, we adopt a Gaussian model for the observation noise. Thus, in equation (3.13),

Sk ∼ N (0, IM×1); the parameter σs is the standard deviation of the noise independent of

λ.

As a result, a relationship between the target state xk and the measurement yk is

established by pixel-free model. The proposed attenuation measurement model has three

unknown parameters, φ, σλ, and σs. After conducting multiple experiments, we have

concluded that the value of σλ that provides the best fit to the observed data varies little

for different (human) targets and surveillance environments. We have observed considerably

more variation in the best-fit values of φ and σs.

3.3 On-line Sequential Monte Carlo Algorithm

We adopt a Sequential Monte Carlo (particle filtering) framework to perform the tracking

and use an on-line EM approach to sequentially update the estimates of unknown static

parameters. These include noise standard deviation and model parameter of measurement

model, σs and φ respectively, and one parameter that represents the noise standard devi-

ation of the transition model, σv. The parameter in the measurement model, σλ, which

controls the decay rate of the mean attenuation is set to a constant empirical value, ac-

cording to the experimental data. Therefore, we can denote the static parameters θ as

θ = [σv, σs, φ]. (3.16)

The transition model we use is a one-tap autoregressive (AR-1) Gaussian model:

xk+1 = f(xk,vk) (3.17)

= axk + σvVk. (3.18)

where xk is the state vector of a target in the 2D plane, xk = [αk, βk]
T . Vk ∼ N (0, I2×1),

and σv is assigned a initial value and estimated by on-line EM. The constant a < 1 models

a (small) drift towards the center of the surveillance region; we choose a as a constant that

is close to 1, so that the drift is very small.

There are two main motivations for the adoption of this model: (i) it assumes little
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knowledge about the nature of the motion; (ii) the on-line EM methodology we adopt

requires that the target process is stationary and ergodic (which eliminates a pure random

walk process).

The principal measurement model we use in the on-line sequential Monte Carlo algo-

rithm is the pixel-free model:

yk = h(xk, sk) (3.19)

= φgk + σsSk. (3.20)

At time step k, the state xk determines the elliptical parameter λ
(j)
k which we described

in section 3.2, and thus gk describes the influence of target state xk on M links (j =

1, · · · ,M). For example, if the location of the object xk is far away from the link j, it

results in a large λ
(j)
k value, and an associated small attenuation level. In other words, the

greater the distance between the target location and the principal line of ellipse on link j,

the smaller the attenuation that is assigned via gk.

Both yk and gk have dimension M × 1 in our simulation, which depends on the link

number M in sensor network at time step k.

3.3.1 Auxiliary Particle Filtering

We apply auxiliary particle filtering to track the marginal posterior distribution pθ(xk|y1:k).

As we mentioned in section 2.3, we suppose that samples {x(i)
0:k; i = 1, · · · , N} are drawn

independently from an importance distribution. The auxiliary particle filter, which builds

on the SIR particle filter, outperforms the standard particle filter, especially in noisy envi-

ronments.

Based on the chosen state dynamics and measurement functions f(·) and h(·), we can

perform pointwise evaluation of the likelihood functions p(y1:k|x1:k) given the true obser-

vation y1:k. The particle filter strives to calculate at each time step k a weighted particle

approximation {x(i)
1:k, ω

(i)
k }Ni=1 to the posterior of interest p(x1:k|y1:k). In our algorithm, the

importance density π(xk|x0:k−1,y1:k) is chosen to be the prior distribution for simplicity

(as explained in section 2.3):

π(xk|x0:k−1,y1:k) = p(xk|xk−1). (3.21)
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Given this choice, the weights of particles can be obtained

ω
(i)
k ∝ ω

(i)
k−1p(yk|x

(i)
k ). (3.22)

A resampling procedure is then applied in every time step. It replicates particles with

high weights and eliminates those with low weights. A comparison in [20] shows that the

residual resampling method, which we discussed in section 2.3, has a better performance

with particle weights exhibiting lower conditional variance in general. Thus we apply the

residual resampling method in our algorithm. After the resampling performed at each time

step, we have ω
(i)
k−1 = 1/N .

Particle filter can perform poorly if the importance function π(·) does not adequately

take into account the information available in the observation y1:k. Therefore, the filtering

can be inefficient and the robustness to outliers will be weak. In addition, the resampling

procedure in such a case makes a quick loss of diversity of the particles and will results in

the degeneracy problem.

The auxiliary particle filter algorithm is first initialized at time step k = 0 with samples

x
(i)
0 drawn from distribution p(x0). It then modifies the sampling step in an attempt to

improve performance. After the initialization, the auxiliary particle filter additionally cal-

culates the first-stage weights ρ
(i)
k for each particle, it will be used as a ‘reference’ afterwards

to evaluate how well each particle can represent the observations y1:k. Thus we have

ρ
(i)
k = p(yk|µ(i)

k ). (3.23)

as mentioned in section 2.3, the µ
(i)
k is some characterization of xk given xik−1. In our

tracking algorithm, µ
(i)
k = E[xk|x(i)

k−1]. Based on ρ
(i)
k , normalized weights W̃

(i)
k can then be

obtained. The weighted particles are resampled in the residual resampling step, a auxiliary

variable ′(i) is introduced in this phase. We then update the states x
(i)
1:k−1 and the first-

stage weights ρ
(i)
k according to new index ′(i). Eventually, new particle weights ω

(i)
k can

be calculated using both likelihood distribution p(yk|x(i)
k ) and the first-stage weights. The

auxiliary particle filter algorithm then recursively approximates the samples, we calculate

the mean value over these samples at each time step to obtain an estimated target states.

The auxiliary particle filter is specified in Algorithm 4.
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Algorithm 4: Auxiliary Particle Filter

// Initialization at time k = 0

1 for i = 1, . . . , N do

2 Sample the particles x
(i)
0 ∼ p(x0);

3 Set weights ω
(i)
0 = p(y1|x(i)

0 );

4 end for

5 Normalize weights ω̃
(i)
0 =

ω
(i)
0∑N

i=1 ω
(i)
0

;

// For times k > 0

6 for k = 1, . . . , T do

// First-stage weights

7 for i = 1, . . . , N do

8 Calculate µ
(i)
k = E[xk|x

(i)
k−1];

9 Sample ρ
(i)
k ∼ p(yk|µ

(i)
k );

10 Set weights W
(i)
k = ω̃

(i)
k−1 × ρ

(i)
k ;

11 end for

12 Normalize weights W̃
(i)
k =

W
(i)
k∑N

i=1W
(i)
k

;

// Residual Resampling

13 Resample from the set
{

x
(i)
k−1, W̃

(i)
k

}N
i=1

to obtain
{

x
′(i)
k−1,

1
N

}N
i=1

;

14 for i = 1, . . . , N do

15 Set x
(i)
1:k−1 = x

′(i)
1:k−1 and ρ

(i)
k = ρ

′(i)
k ;

16 Sample x
(i)
k ∼ p(xk|x

(i)
k−1);

17 Set weights ω
(i)
k =

p(yk|x
(i)
k )

p(yk|µ
(i)
k )

;

18 end for

19 Normalize weights ω̃
(i)
k =

ω
(i)
k∑N

i=1 ω
(i)
k

;

// Optional second resample

20 Resample
{

x
(i)
1:k, ω̃

(i)
k

}N
i=1

to obtain
{

x
(i)
1:k,

1
N

}N
i=1

;

21 end for
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3.3.2 On-line EM

The unknown parameter vector θ in the auxiliary particle filter needs to be initialized and

estimated before running the auxiliary particle filter algorithm. Since we do not have knowl-

edge of the parameters, we need to estimate them on-line while tracking the target. We

use an on-line EM algorithm described in section 2.4 to form estimates of the parameters.

The on-line EM algorithm maximizes a pseudo-likelihood function in order to form

point estimates of the parameters θ. Recursive maximization of the likelihood functions

themselves, p(y1:k|θ), would require estimation of statistics based on probability distribu-

tions whose dimension is growing in time. The substitution of the pseudo-likelihood leads

to calculations in a fixed dimension.

The on-line EM algorithm updates the parameters every L time steps. We define

Xb , xbL+1:(b+1)L and Yb , ybL+1:(b+1)L, where b is the index of the block. The log pseudo-

likelihood function employed in [8] is defined, for m blocks, as

l(θ̂) =
m∑
b=1

log pθ̂(Yb), (3.24)

where

pθ̂(Yb) =

∫
pθ̂(x,Yb)dx, (3.25)

If the process xk is stationary and ergodic, the average log pseudo-likelihood satisfies

l(θ̂) =

∫
log pθ̂(y)pθ(y)dy, (3.26)

where θ̂ is the estimate value of θ [8]. Rydén showed in [65] that an algorithm which can

maximize l(θ̂) will identify the true value of θ. We therefore apply on-line EM to recursively

maximize l(θ̂) by updating the estimate of θ via

θ̂b = arg max
θ∈Θ

Q(θ, θ̂b−1), (3.27)
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where

Q(θ, θ̂b−1) =

∫
log(pθ̂(x,y))pθ̂b−1

(x|y)pθ(y)dxdy (3.28)

The direct computation of Q cannot be performed, but we can replace (3.27) by the

update θ̂b = Λ(Ω(θ̂b−1, θ)), where Ω(θ̂b, θ) is a set of sufficient statistics and Λ is a mapping

function from the sufficient statistics Ω(θ̂, θ) to the θ̂ that maximizes Q.

Four sufficient statistics are required for the three parameters φ, σs, and σv. These are

of the form

Ω(θ̂b−1, θ) = [z1, z2, z3, z4]

= Eθ̂b−1,θ
[ψ1, ψ2, ψ3, ψ4]. (3.29)

The expectation is with respect to pθ̂b−1
(x|y)pθ(y) and

ψ1(Xb,Yb) =

(b+1)L∑
k=bL+2

((xk − xk−1)T (xk − xk−1)) (3.30)

ψ2(Xb,Yb) =

(b+1)L∑
k=bL+1

((yk − φgk)
T (yk − φgk)). (3.31)

ψ3(Xb,Yb) =

(b+1)L∑
k=bL+1

(yTk gk) (3.32)

ψ4(Xb,Yb) =

(b+1)L∑
k=bL+1

||gk||22. (3.33)

The maximization function Λ is defined as

σvb =

√
z1(θ̂b−1, θ)

2(L− 1)
(3.34)

σsb =

√
z2(θ̂b−1, θ)

ML
(3.35)

φb =
z3(θ̂b−1, θ)

z4(θ̂b−1, θ)
. (3.36)



3.3 On-line Sequential Monte Carlo Algorithm 45

The expectations cannot be computed, because they are with respect to a measure that

involves the unknown true value θ. But the sufficient statistics can be recursively estimated.

The ergodicity and stationarity assumptions for the process imply that the blocks Yb are

samples from pθ(y) and they can therefore be used for Monte Carlo integration. We can

thus form the following update of the statistics

Ω̂b = (1− αb)Ω̂b−1 + αbE(Φ(X,Yb)|Yb) (3.37)

where the expectation is with respect to pθ̂b−1
(x|Yb). We then substitute Ω̂b−1 for Ω(θ̂b, θ)

and obtain θ̂b = Λ(Ω̂b). Setting θ̂b to a constant value and αb = 1/b, Ω̂b will simply compute

the arithmetic average of E(Φ(X,Yb)|Yb), this ensures convergence of Ω̂b to Ω(θ̂b, θ) [8].

The maximization step then becomes θ̂b = Λ(Ω̂b).

As one final approximation, since E(Φ(X,Yb)|Yb) does not have an analytical solution,

we can use importance sampling, using the particle tracks and weights calculated by the

auxiliary particle filter

Ω̂b = (1− αb)Ω̂b−1 + αb

K∑
m=1

ω
(m)
b ψ(X

(m)
b ,Yb). (3.38)

3.3.3 On-line Sequential Monte Carlo Algorithm

The complete algorithm, combining the auxiliary particle filter and the on-line EM, is

described in Algorithm 5 below.

The computational cost consist of two parts: auxiliary particle filtering and on-line EM.

The complexity of the particle filter tracking algorithm is O(MN) per time step, where M

is the number of links and N is the number of particles used for tracking. To specify, the

number of operations per auxiliary particle filtering step is 36MN , including particle ap-

proximation using measurement model (26MN) and calculation of particle weights (6MN).

The on-line EM algorithm, which is only executed every L time-steps, has a complexity of

O(LMN), the number of operations per on-line EM step is 4MNL. In other words, the

per time-step complexity of on-line EM algorithm is O(MN). In our typical experimental

setting, the block length to execute on-line EM is L = 10 time steps, link number M = 276

(using 24 sensor nodes) and we use N = 1000 particles per time step. The computational

cost is sufficiently small that the tracking system can collect the data packets and to per-
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form real-time tracking using a standard laptop (CPU: Core 2 Duo T5670 1.8GHz, RAM

1GB in our experiment).

Algorithm 5: SMC RF Tomographic Tracking

// Initialization at time k = 0

1 Initialize θ0 and set b = 1;

2 for i = 1, . . . , N do

3 Sample the particles x
(i)
0 ∼ p(x0);

4 Set weights ω
(i)
0 = p(y1|x(i)

0 );

5 end for

6 Normalize weights ω̃
(i)
0 =

ω
(i)
0∑N

i=1 ω
(i)
0

;

7 for k = 1, 2, . . . , T do

// Auxiliary Particle Filtering

8 for i = 1, . . . , N do

9 {x(i)
k , ω

(i)
k } = APF ({x(i)

k−1, ω
(i)
k−1});

10 end for

// On-line EM

11 if k mod L = 0 then

// E-step

12 for i = 1, . . . , N do

13 Calculate ω
(i)
b =

pθb−1
(X

(i)
b |Yb)

πθb−1
(X

(i)
b |Yb)

;

14 end for

15 Normalize weights {ω(i)
b } such that

∑N
i=1 ω

(i)
b = 1;

16 Update Ω̂b = (1− αb)Ω̂b−1 + αb
∑N

m=1 ω
(m)
b ψ(X

(m)
b ,Yb);

// M-step

17 Set θb = Λ(Ω̂b) and b = b+ 1;

18 end if

19 end for
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Chapter 4

Simulations and Experiments

In this chapter we present the results of both simulations and experiments conducted to

explore the performance of the proposed algorithm. First, we simulated different sensor

network layouts in Matlab including a square, a circle and an irregularly shaped layout.

In each case, we had a single target walking one of two trajectories (a square route or

a zigzag route). Based on the simulated data sets, estimated trajectories were generated

and compared with the ground-truth. Numerical evaluations of tracking performance are

provided and a comparison with the previous RF tomographic method from [84] under the

same setting is also presented. Second, in the experimental section, we provide a description

of the field experiments conducted in outdoor fields, both with and without obstructions

(trees). The experimental sensor network layouts and the target walking paths are similar

to those in simulation. We present both graphical and numerical evaluations of tracking

performance based on experimental data sets. The on-line SMC algorithm operates in

Matlab for both simulation and experiment data.
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4.1 Simulations

The Matlab simulation mimics a wireless sensor network with 24 nodes, similar to the one

that we have used for experiments. All sensor nodes are able to transmit and receive data

packets. There exists a node No.25 attached to the processing center (a laptop computer).

This acts as a master node (or sink node). This master node receives all the data packets

sent by the rest of the nodes, collecting them for further processing. It also broadcasts the

commands from the controller to the sensor network, such as reset or launch. An example

layout is shown in Figure 4.1. This example shows a person walking clockwise along a

specified square route (the blue dashed line with solid circles) starting from the bottom left

corner.

Fig. 4.1 Scenario example: 24 nodes are placed around the square area, a

single target follows a square trajectory (dashed arrows with circles) clockwise

with a square sensor network layout. The trajectory starts from the bottom

left corner and ends at the same point after one cycle.
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The ground-truth target trajectory and the unknown parameters in set θ are set before

the tracking in run. When the target walks across the ellipse link area of a pair of nodes

at time step k, an attenuation occurs on its received signal strength and the numerical

changes of the signal strength are calculated according to the measurement model. In each

scenario, we generated 100 realizations for 3 different measurement noise standard devia-

tions, with these noise values being set according to data from real outdoor experiments.

Every set of measurements in our simulation was recorded once per second (i.e, each time

step corresponded to one second).

In the rest of this section, we will show our results including tracking results, parameter

estimation and the Root Mean Square Error (RMSE) of the example scenario in Figure 4.1.

We will also compare the numerical RMSE values access varying noise levels and square

sensor networks dimensions. To demonstrate the advantage of our method, we then com-

pare our performance with that of tracking using the previous proposed imaging method

and the pixelized measurement model [84]. Afterwards, we present results from a zigzag

trajectory in the same square layout and also from other scenarios including a circular

layout and an irregular layout with both square and zigzag trajectories. Numerical RMSE

values of different scenarios are presented in tables for comparison. We simulated all the

above scenarios using the proposed pixel-free measurement model and tracked the target

using the on-line sequential Monte Carlo algorithm.

All the simulations mentioned above assume that the node positions are known to the

tracking system. However, sometimes the node positions may not be known or may only be

partially known in emergency applications or in large-scale sensor deployment, where people

may only have a short time to deploy the sensors in a new environment. This requires a

robustness in the tracking system so that the target trajectory can still be estimated with

reasonable accuracy when the positions of most nodes are not known accurately. Therefore,

at the end of the simulation section, we present the performance of the on-line sequential

Monte Carlo algorithm in target tracking when noise is added to the positions of the sensor

nodes.

4.1.1 Square Trajectory in a Square

As a basic example, we first simulate sensor nodes that deployed in a 7m × 7m square

with a spacing of 1 metre. A person walked clockwise within the network area along the
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square route specified in Figure 4.1 with a speed of 0.5m/sec . We set the bottom left

corner point of the square as the origin of the 2-D coordinate system, so the person started

walking from point (1,1) follows a square trajectory, and stopped at the same point after

one cycle. Since we know in prior the exact locations of the object at each time step, the

square trajectory is set as ‘ground-truth’ trajectory in this simulation scenario.
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(a) Perfect tracking
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(b) Correct tracking after the first 5 steps
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(c) Correct tracking after the first 15 steps
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(d) Lost track

Fig. 4.2 Simulation examples: On-line SMC estimation of a square target

trajectory in a 7m × 7m square sensor network layout with σs = 1, σv = 0.3

and φ = 5.
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Given this ground-truth trajectory, observation data for 100 realizations were generated

from each of the various measurement noise levels: σs = 0.5, 1, 2,
√

5, using the pixel-free

model. Other parameters are set as: σv = 0.3 in the transition model, and σλ = 0.02 and

φ = 5 in the pixel-free model. These values were chosen because they provided a good fit to

our experimental data when a real person walked at a speed 0.5m/sec in an outdoor field.

In the sequential Monte Carlo algorithm, we used 1000 particles. The unknown parameter

values in the on-line EM algorithm were initialized by drawing from the following uniform

distributions: σs ∼ U(0,
√

5], φ ∼ U(0, 10] and σv ∼ U(0, 1].

Four examples of the SMC-estimated trajectory for the case σs = 1 are shown in

Figure 4.2. Depending on the initial guess and the initial particle distribution, correct

tracking may start at different time steps. Figure 4.2 shows selected results (from (a) to

(d)) from the best case to the worst case. With the initial guess of both θ and particle

samples drawn from different uniform distributions, the on-line sequential Monte Carlo

algorithm is able to track the target in the vast majority of realizations, with only 1 lost

track occurring in the 100 realizations. We define ‘lost track’ as having occurred when the

average square error after the 60th time step is larger than 1m. For example, if there is a

total of 120 time steps, we calculate the average square error from the 60th time step to the

120th time step to determine whether a lost track has occurred. Under the same parameter

settings, we generated simulated observations for 100 times, the trajectories were estimated

using on-line sequential Monte Carlo algorithm. Over all these realizations, the lost track

rate is 2%. It is clear that, under this setting, most tracks provide accurate approximations

of the ground-truth trajectory.

For almost all the tracks, the on-line EM succeeds in providing acceptably accurate

estimates of the unknown parameters, leading to improved performance over time. Fig-

ure 4.3 shows the evolution of the estimates of φ and σs over the same simulated set of data

with σs = 1 in the 7m × 7m square. Initialized with different values draw from uniform

distributions σs ∼ U(0,
√

5] and φ ∼ U(0, 10], almost all estimates converge to values close

to the true value after 50-60 seconds (5-6 update steps in on-line EM). The triangle dashed

lines in each sub-figure of Figure 4.3 denote the estimates which came from the lost track.

This illustrates the performance of the on-line EM and sequential Monte Carlo tracking

algorithm depend on each other.
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(a) Estimation of φ(ground-truth φ = 5)
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Fig. 4.3 Behaviour of the parameter estimation of phi and σs for the square

target trajectory in a 7m × 7m square sensor network layout in the On-line

SMC estimation. The triangle dashed lines in both figures indicate the failure

of parameter estimation in the lost track realization.
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(a) RMSE of On-line SMC algorithm
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(b) RMSE of imaging algorithm

Fig. 4.4 RMSE of (a) On-line SMC estimation, (b) imaging plus Kalman

filter estimation, for the square target trajectory in a 7m× 7m square sensor

network layout with σs = 1. The boxes range from the 25th to 75th quantiles,

the whiskers extend 3 times the interquartile range, the median is marked as

a line within the box, and the pluses indicate outliers.
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Figure 4.4(a) shows a box-and-whisker plot of the RMSE for a set of 99 realizations (the

same set of 100 realizations with the lost track eliminated). The RMSE decreases rapidly

after the first 10 time steps and stays at a constant low level with a median value ranges

from 0.02 to 0.05 metres in the 7m× 7m square area.

Comparison between On-line SMC and Imaging

We compare the performance of the sequential Monte Carlo algorithm with that of the imag-

ing plus Kalman filter algorithm of [83]. Under the same scenario (target speed 0.5m/sec

in a 7m × 7m square with σs = 1, σv = 0.3 and φ = 5), we implemented the imaging

plus Kalman filter method and the pixelized model. For the pixelized model, pixel width

∆p = 0.15m, λ = 0.02 , and φ = 15 (again these values provide a good fit to experimental

data). In the imaging plus Kalman filter algorithm, the regularization parameter α is set to

200. The transition noise σv for the Kalman filter is also set to 0.3. Figure 4.4(b) shows the

RMSE performance of imaging estimation. Compared with RMSE of tracking estimation

in Figure 4.4(a), we can observe that imaging has a relatively constant RMSE level, at

approximately 0.8 m, throughout the whole estimation process.

Tables 4.1 and 4.2 compare the RMSE of the sequential Monte Carlo and the imaging

plus Kalman filter algorithms using the data generated from the pixelized model and the

pixel-free model, respectively. When perform target estimation, the on-line sequential

Monte Carlo algorithm operates with the pixel-free model and the imaging plus Kalman

filter algorithm operates with the pixelized model. The measurement noise level varies from

0.5 to
√

5. At a given noise level, the RMSE values of sequential Monte Carlo algorithm

are much lower (7 or 8 times) than those of the imaging plus Kalman filter algorithm in

both tables.

Noise Std. Dev. SMC (m) Imaging (m)

0.5 0.0927 0.7852

1 0.0964 0.7852

2 0.1015 0.8033
√

5 0.1257 0.8152

Table 4.1 RMSE comparison between SMC and imaging algorithms using

data from pixelized model
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When data is generated from the pixelized model, we can observe that the RMSE

values of both algorithms increase more slowly than those based on data from the pixel-

free model. Even using data from the pixelized model, the sequential Monte Carlo algorithm

still significantly outperforms the imaging plus Kalman filter algorithm.

Noise Std. Dev. SMC (m) Imaging (m)

0.5 0.0316 0.3071

1 0.0436 0.6993

2 0.0988 1.1451
√

5 0.1664 1.4848

Table 4.2 RMSE comparison between SMC and imaging algorithms using

data from pixel-free model

RMSE Performance With Varying Noise Levels and Network Dimensions

To further evaluate the performance of the algorithm, we varied both the measurement

noise levels and the network dimensions and calculated the average RMSE for the target

estimation. The noise standard deviation ranged from 0.5 to 3, and the network dimensions

ranges from 7m×7m to 35m×35m. The other parameters and settings were the same as in

subsection 4.1.1, and data was generated from the pixel-free model. We ran 100 realizations

for each. To calculate the RMSE value, we first calculated the mean RMSE over all time

steps in each realization, then we identified the realizations for which the tracker lost the

target trajectory, as we described in the previous subsection. The final average RMSE was

calculated based on the mean RMSE of all realizations excluding the lost tracks.

RMSE of tracking estimation using On-line SMC algorithm for a zigzag trajectory in

various (a square, a circle and a irregular shape) layouts of roughly 50m2 each and a square

trajectory in a 7m× 7m square layout, with varying noise level σs. The legend follows the

form “Trajectory/Node Layout”.

Figure 4.5 shows the trend of the RMSE performance over varying noise levels and

network dimensions. As measurement noise σs increases, the RMSE values under the same

network dimension increase as well. Increasing the network dimensions while keep the total

number of nodes the same leads to an increase in distance between each pair of nodes and a

decrease in node density. The attenuation is inversely proportional to the distance between
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Fig. 4.5 RMSE of tracking estimation using On-line SMC algorithm for a
square trajectory in a 7m×7m square layout, with varying noise levels σs and
network dimensions.

the sensors, so the λ will grow larger as the network size increases, thus the attenuation

caused by a target in a particular link will decrease. Therefore the signal to noise ratio

decreases, leading to higher errors.

However, although the target estimation is poorer with lower node density, the RMSE

values still show that we are providing a good approximation of the ground-truth trajectory.

The error of the target trajectory is relatively low compared to the network size. Most

estimated trajectories are able to follow the ground-truth trajectory when the target moves

in straight lines, even with a high noise standard deviation of σs = 3, and the RMSE

remains at an acceptable 0.7 m for the 35m× 35m network dimension.

Over 100 realizations for each of the setting, the lost track ratio increases when either

noise level increases or network dimension increases. For a same 7m × 7m network di-

mension, the lost track ratio increases from 1% to 4% when the noise level increase from

σs = 0.5 to σs =
√

5, and it has a considerable increase to 10% when σs = 3. On the other

hand, when we fix the noise level at σs = 0.5, the lost track ratio has a slightly increase from
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1% to 2% when the network dimension increases from 7m×7m to 35m×35m. Fortunately,

the true noise level in our experiments hovers around 2 in the outdoor fields, which means

that the algorithm can still achieve good performance in practical cases.

4.1.2 Various Layouts and Trajectories

In addition to the square trajectory in the square layout scenario that we showed before,

several other scenarios were simulated under different measurement noise levels. Figure 4.6

and Figure 4.7 show three samples with different layouts and trajectories. Figure 4.6 (a)

and (b) present a zigzag route within both square and circular network layouts, with a

target speed of 0.5m/sec. Figure 4.7 shows a scenario in which a target follows a square

route in an irregular network deployment. This irregular layout we present here is generated

from a standard 7m × 7m square layout by slightly perturbing some of the nodes 1 or 2

metres from their original positions, with a purpose of mimicking the irregular deployment

which would be necessary in a practical office or home. Therefore, we known exactly the

ground-truth node location of the irregular sensor layout, and the layout is approximately

50m2. In this thesis, we only examine square and zigzag trajectories for these layouts. This

is done because these trajectories are capable of representing most walking behaviors of

human beings including both walks in a straight line and frequently turning, and because

it is easier to obtain a ground-truth trajectory for structured (as opposed to random) paths

in field experiments.

One of the initial purposes of designing the proposed pixel-free model was to address the

irregular sensor layout, since the original pixelized model better suits a regularly shaped

layout. In an arbitrary sensor layout, the pixelized model cannot divide the edges of

the network area into perfect pixels, therefore it needs to sacrifice part of the estimation

accuracy to track the target at the edges of the network area. The pixel-free model does

not suffer from this problem. Figure 4.8 shows the performance for the zigzag trajectory in

three different layouts: square, circular and irregularly shaped. In addition, we show the

performance of the square trajectory in the square layout scenario for comparison. All four

data sets are generated using the pixel-free model, and the network size is about 50m2 for

all of the scenarios (to be precise, the network dimensions are 7m× 7m for square layout,

7m diameter for circular layout, and approximately 50m2 for the irregular layout).
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(a) Zigzag trajectory in a square node layout
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(b) Zigzag trajectory in a circular node layout

Fig. 4.6 Simulation examples: tracking estimation using On-line SMC al-

gorithm for (a) a zigzag trajectory in a 7m × 7m square layout, (b) a zigzag

trajectory in a circular layout with 7m diameter, with σs = 2. A target follows

a ground-truth zigzag trajectory starts from point (1.5, 1.5) and stops at point

(5.5, 5.5) with a speed of 0.5m/sec.
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Fig. 4.7 Simulation example: tracking estimation using On-line SMC algo-

rithm for a square trajectory in an irregular shape layout with σs = 2. The

network covers an approximately 50m2 area. A target follows a ground-truth

square trajectory starts from point (1, 1) and stops at the same point after

one cycle with a speed of 0.5m/sec.

In Figure 4.8, we can clearly observe that the average RMSE value for the zigzag

trajectory in the square layout is significantly higher than that for the square trajectory in

the square layout. This is caused by the property of the transition model we use. An abrupt

turn is a much less likely event in the AR-1 model employed by the on-line sequential Monte

Carlo algorithm, so fewer particles are able to track the trajectory at the time step when

the target changes direction at the corners. Therefore a higher estimation error occurs at

the corner segments of the trajectory, which leads to a higher RMSE when doing zigzag

trajectory estimation. Comparing the same zigzag trajectory in three different layouts, we

find that the RMSE in the circle is the largest, followed by that in the irregularly shaped



60 Simulations and Experiments

0.25 1 4 5 9

0

0.2

0.4

0.6

0.8

1

Variance of Measurement Noise s
2

R
M

S
E

, m

 

 

Zigzag/Circle
Zigzag/Irregular
Zigzag/Square
Square/Square

Fig. 4.8 RMSE of tracking estimation using On-line SMC algorithm for a
zigzag trajectory in various (a square, a circle and a irregular shape) layouts
of roughly 50m2 each and a square trajectory in a 7m × 7m square layout,
with varying noise level σs. The legend follows the form “Trajectory/Node
Layout”.

layout, with the RMSE in the square layout being the smallest. In general, all the RMSE

values stay below 1 m in the 7m× 7m network area. The lost track ratio follows the same

trend over 100 realizations for each of the noise levels. With fixed σs = 0.5, the lost tracks

ratio of square layout is 1%, while the ratio are 3% and 4% for circle layout and irregular

layout respectively.

4.1.3 Tracking with Uncertain Node Locations

In practical applications, especially in emergency scenarios, it is often difficult to know

the exact locations of most sensor nodes. For example, when deploying a sensor network

around a building of size 100m × 100m, workers may drop sensors one by one along each

side of the building in approximately the right position instead of measuring the accurate

locations. In this case, sensors will not be positioned exactly as planned, although we can
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assume they are deployed close to the planned location. The tracking system should be

robust enough to perform reasonably well when given only the approximate locations of

the sensor nodes. Alternatively, we may also be ignorant of the nodes locations, relying

on them to employ a node localization algorithm that can autonomously determine the

actual sensor locations to some imperfect degree of accuracy while simultaneously tracking

the target, based on the real-time data collected by sensors. In this subsection, we will

first test the robustness of our on-line sequential Monte Carlo algorithm to uncertainties

in the node locations, afterwards, we will incorporate a node localization algorithm to see

tracking performance in this scenario.

Tracking without Node Localization

To simulate the uncertain locations of the sensor network, we added Gaussian noise to

the planned node locations when generating the simulated data. In our simulations, we

employ independent distributions for the node locations, each being a two dimensional

circularly-symmetric Gaussian with mean equal to the planned node location and standard

deviation σp. This noise standard deviation was varied from 0.1 to 1 with all simulations

being carried out in the 7m× 7m square layout scenario. When tracking, the system used

the planned node locations. 10 sets of 100 realizations were run (totally 1000 realizations)

for each noise level in order to get an average lost track ratio.

Noise Std. Dev. σp RMSE (m) Lost Track Ratio

0.1 0.3511 0.5%

0.2 0.4933 0.6%

0.3 0.6263 0.9%

0.4 0.6967 0.9%

0.5 0.8722 1.4%

0.7 1.1530 3.2%

1 1.6897 52.6%

Table 4.3 RMSE and lost track ratio comparison for On-line SMC tracking,

a person follows a square trajectory in a 7m× 7m square layout with varying

noise standard deviation σp added on planned node locations.

In Table 4.3, we show the RMSE and lost track ratio as a function of the standard
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deviation of the noise added to all node locations. In practice, we sample noise from a

Gaussian distribution with zero mean and a given noise standard deviation σp. According

to Gaussian distribution, about 95 percent of the sampled noisy distances, which will be

added to planned node locations, range between −2σp and 2σp. Our tracking system

exhibits a reasonably good performance for target estimation when the prior noise σp stays

below 0.5. Figure 4.9 shows one realization of the tracking result under with σp = 0.5.
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Fig. 4.9 Simulation example: tracking estimation using On-line SMC al-

gorithm for a square trajectory in a 7m × 7m square layout with a noise

(standard deviation σp = 0.5) added onto node locations. A target follows a

ground-truth square trajectory with a speed of 0.5m/sec.

Although the accuracy of the tracking is worse than that with perfect node location,

especially at the corners of the target trajectory, the tracking is still acceptable; the esti-

mated trajectory generally follows the ground-truth trajectory. When the noise increases

to 0.7, the lost track ratio doubles from that seen at σp = 0.5. We also see an increase of



4.1 Simulations 63

the average RMSE to above 1 m. When σp rises to 1, the tracking algorithm in half of the

realizations is broken. This means the proposed algorithm can not perform tracking when

95% of the nodes moves within 2 metres. We observed that in the successful realizations,

tracking only tends to find the right track after 60 time steps (out of 120 time steps). Note

that under the scenario with perfect location knowledge, most realizations find the right

track at 20 to 30 time steps and the unknown parameter estimation converges at 50 ∼ 60

time steps.

To summarize, the proposed tracking algorithm is sufficiently robust to obtain accept-

able estimation results when a small noise is added to the planned node locations, but the

tracking system fails to track when a relatively high noise is added.

Tracking with Node Localization

In order to see how our algorithm might function in a case where node locations are not

accurately recorded by a human but rather determined autonomously by a node localization

algorithm, we incorporated the algorithm proposed in [25] with our on-line sequential Monte

Carlo tracking algorithm. To test the tracking performance, we used our square trajectory

in a square layout scenario, varying the dimensions of the square. The target moved at a

speed of 0.5 m/s and one complete set of measurements (all 24 sensors) was recorded every

120 ms. The particle filter used 1000 particles and the unknown parameters were initialized

by drawing from the previously mentioned uniform distributions; i.e., σs ∼ U(0,
√

5], φ ∼
U(0, 10] and σv ∼ U(0, 1]. Other parameters remained the same as in section 4.1.1.

The selected node localization algorithm requires that the location of a small number of

nodes must be known before the tracking commences. These are the ‘anchor nodes’. The

locations of the rest of the nodes remain unknown. The four corner nodes (nodes 1, 7, 13, 19

in Figure 4.1) in our sensor network served as the anchor nodes. For the non-anchor sensor

nodes, we also add a noise on their planned locations, the noise standard deviation σp varies

depending on the dimension of the square layout. With increasing network dimension, the

proportion of noisy distance decreases. Therefore we increase σ2
p from 1 to 5 when the

network dimension increases from 7m× 7m to 35m× 35m.

In Figure 4.10, we show the RMSE of the target tracking algorithm in the square layout

for the square target trajectory example, averaged over 100 realizations with noise standard

deviation σp = 2. This RMSE stays quite low (about 0.3 m) throughout most of the target’s
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route in the 28 m × 28 m square.
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Fig. 4.10 RMSE of On-line SMC tracking estimation for a simulated target

moving in a square trajectory within a 28 m × 28 m square with a noise

(standard deviation σp = 2) added onto node locations. The boxes range from

the 25th to 75th quantiles, the whiskers extend 3 times the interquartile range,

the median is marked as a line within the box.

Using the aforementioned parameters for the measurement and dynamic models, we

simulated different square layouts (ranging from 7 m × 7 m to 35 m × 35 m). The initial

uncertainty in the node locations, governed by the value σp, was scaled in accordance with

the area of the square. Tables 4.4 shows the RMSE of the target tracking in these different

scenarios. As expected, the error increases slightly as the network size increases (i.e., as the

density of the sensor nodes decreases). The accuracy is acceptable in all cases, however,

with an average tracking RMSE of approximately 1m in the case of a 35 m × 35 m network.

In Table 4.5, we see how the sequential Monte Carlo tracking with integrated node-

localization compares to tracking carried out with perfect a priori knowledge of the node

locations. As expected, there is a clear performance penalty when the node locations are

initially unknown: The RMSE values seen with unknown node locations are 6-7 times

higher than those with known node locations. However, the estimation error experienced

when node locations are unknown is still acceptable (with a median error of 1 m for a
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Network σp 1st step Final step RMSE
size RMSE Average RMSE

7 m × 7 m 1 0.5828 0.0860 0.2830

14 m × 14 m
√

2 1.0107 0.3175 0.5722

21 m × 21 m
√

3 1.3734 0.3621 0.6774
28 m × 28 m 2 1.9778 0.4538 0.8472

35 m × 35 m
√

5 2.7020 0.3980 1.0028

Table 4.4 RMSE (in m) of SMC tracking between the first and final step.
The RMSE over time represents an average of the RMSEs over all 161 time
steps.

Network size σp RMSE with RMSE with initially
known node unknown node

locations locations
7 m × 7 m 1 0.0436 0.2830

14 m × 14 m
√

2 0.0728 0.5722

21 m × 21 m
√

3 0.0975 0.6774
28 m × 28 m 2 0.1233 0.8472

35 m × 35 m
√

5 0.1732 1.0028

Table 4.5 Comparison of the tracking RMSE (in m) averaged over all 161
time steps when node locations are known vs. when they are initially unknown.

relatively large network). Note that we refer here to the average RMSE over all time

steps. The average error towards the end of the trajectory, when node location and model

parameter estimates are more accurate, is significantly smaller (with a median error of 0.4

m).
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4.2 Experiments

This section presents an evaluation of the proposed algorithm using measurements from

a wireless sensor network test bed. We conducted a measurement campaign by collecting

received signal strength measurements with a set of 24 sensor nodes. As shown in Fig-

ure 4.12(b), 24 sensor nodes were used to construct the sensor network and to measure

received signal strength data. We used another node (node 25) which performed as a sink

node (or master node) to collect the data packets. Node 25 was connected to a laptop

through a USB port in order to send the data back and to receive orders. The laptop was

responsible for processing the received data packets. The master node was placed within

the transmission range of the other sensors in order to collect their data packets and convey

them to the laptop.

(a) Sensor node (b) Setting up an experiment in Field 2

(c) Grassy Field 1

Fig. 4.11 Experiment photos taken in McGill campus outdoor fields.
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In the experiment, each sensor was equipped with a plastic stand as shown in Fig-

ure 4.12(a). All the nodes were Crossbow TelosB motes running TinyOS and using the

IEEE 802.15.4 standard for communication in the 2.4 GHz frequency band. A simple

token-ring transmission protocol was developed using nesC and each node was assigned a

fixed node ID at compile time. Data packets broadcast by each node contain this node ID

along with the time of transmission and the measured inter-node received signal strength

values which were received by that node from other nodes in the network. Since the nodes

transmit in a strictly increasing order. Based on node ID, whenever a node received a

broadcast from another node, it checked the ID of the sender to see whether it was slated

to broadcast during the next transmission slot. The interval between each transmission

was set to 20 ms. Since we had 25 sensor nodes in the network, so it took about 0.5 second

to collect a complete data set from all nodes. Therefore, 50 samples (or 2 complete sets)

were recorded every second.
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Fig. 4.12 Experimental example: tracking estimation using On-line SMC

algorithm for a square trajectory in a 7 m × 7 m square layout in Field 1. A

target follows a marked square trajectory with a speed of 0.5m/sec.
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The sensor network itself was set up in an outdoor field with a tree in the center of it

(Field 1) as shown in Figure 4.12(c). The sensors were all placed on stands so that they

were 1 m off the ground as shown in Figure 4.12(a), and these stands were placed in a 7

m × 7 m square, mimicking the network we had heretofore been simulating. Markers were

placed at 20 positions within the square so that the person walking through the network

would be aware of—and be able to follow—the predetermined ground-truth path. Before

a person was brought into the network, however, the system sensed the vacant network

area for roughly 3 minutes in order to generate the average received signal strength vector

γavg. After this data had been collected, a person walked through the network following the

ground-truth path while the sensors collected more received signal strength measurements.

Algorithm RMSE for RMSE for

Field 1 (m) Field 2 (m)

SMC 0.4905 0.3214

Imaging with KF 0.8566 0.6404

Table 4.6 RMSE values for different algorithms run on the experimental

results obtained in a 7 m × 7 m square area with a tree in the center.

Figure 4.12 shows the experimental result of tracking a target walked in a 7m×7m square

sensor layout in Field 1. The target started from a calibrated point (1, 1) and stopped at the

same point after one cycle, following a marked square trajectory with a speed of 0.5m/sec.

25 identical experiments were repeated. We compare the performance of the proposed

on-line sequential Monte Carlo algorithm to the imagining plus Kalman filter approach

described in [84]. The RMSE of both algorithms are shown in Figure 4.13. The RMSE of

both algorithms remains stable during the experiments. As shown in Figure 4.13(a), the

tracking RMSE stays at about 0.3 m. Meanwhile, using the imaging with KF algorithm,

the tracking RMSE in Figure 4.13(b) is about 0.6 m under the same condition.
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(a) Target tracking RMSE using the On-line SMC algorithm.
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(b) Target tracking RMSE using the imaging with KF algorithm.

Fig. 4.13 Box-and-whisker plot of RMSE as a function of time for the track-

ing of a real target moving in a square trajectory within a 7 m × 7 m square

in Field 1 using both (a) the On-line SMC algorithm and (b) the imaging with

Kalman filter algorithm. The boxes range from the 25th to 75th quantiles,

the whiskers extend 3 times the interquartile range, the median is marked as

a line within the box.
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We also carried out a similar tracking experiment for the same scenario in another

field which had no tree in it (Field 2), again having a target walk 25 times following

a marked square trajectory with a speed of 0.5m/sec. A numerical comparison of the

tracking performance between Field 1 and Field 2 can be seen in Table 4.6. We observe

that both algorithms perform better when there are no additional obstructions besides the

one we are tracking and that on-line sequential Monte Carlo outperforms imaging with KF

in both scenarios.

Parameter Field 1 (value with st.d.) Field 2 (value with st.d.)

φ 4.0394 ± 0.0476 6.1413 ± 0.0985

σv 0.3588 ± 0.0524 0.2021 ± 0.0058

σw 2.3109 ± 0.0393 2.0029 ± 0.0092

Table 4.7 Estimated unknown parameters with their standard deviation

over 25 identical experiments, obtained in a 7 m × 7 m square in both Field

1 and Field 2 .
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Fig. 4.14 Experimental example of target tracking for a zigzag trajectory

in a 7 m diameter circle.

In Table 4.7, we shows estimated values of unknown parameter set θ in both Field
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1 and Field 2. Standard deviation values of the estimated parameters are also reported

over 25 identical experiments. We can see that the average attenuation level parameter

of the pixel-free model φ takes a higher value when there is a tree within the network

area. This makes sense as the presence of this obstruction leads to smaller changes in the

received signal strength when a person moves across a link. We also observe that with an

approximate walking speed of 0.5m/sec, the average transition noise standard deviation σv

is 0.2 in Field 2 and 0.35 in Field 1. The average measurement noise σw is approximately

2.

In addition to the square trajectory scenario, we also ran an experiment where the

target moved along a zigzag trajectory with the sensors arranged in a circular pattern with

a 7 m diameter, as shown in Figure 4.14. In this case, the average tracking RMSE is

0.2112 m when using on-line sequential Monte Carlo and 0.4670 m when using the imaging

with Kalman filtering method. Both Figure 4.12 and Figure 4.14 demonstrate that the

proposed on-line sequential Monte Carlo algorithm using the pixel-free model achieves good

trajectory estimates in different scenarios with experimental data and that this algorithm

is capable of handling different sensor deployments.
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Chapter 5

Conclusion

5.1 Summary and Discussion

In this thesis, we have reviewed and analyzed tracking techniques that can be used to per-

form Radio-Frequency tomographic tracking in wireless sensor networks. The work focused

on the design of an efficient on-line tracking algorithm for device-free passive tracking sys-

tems with the aim of achieving high estimation accuracy with low computational cost in

practical deployments.

In Chapter 2, we first described wireless sensor networks, networks that consists of

numerous wireless sensor nodes used to monitor environmental conditions. We then in-

troduced the different architectures in which a wireless sensor network can be deployed,

i.e., centralized, distributed and hierarchical architectures. (Recall that in our field ex-

periments, we built a wireless sensor network using a centralized architecture, in which a

‘master’ node was responsible for collecting data from other nodes and broadcasting control

messages.) We also described some application scenarios for wireless networks, including

battlefield surveillance, medical care in hospitals and habitat monitoring. Afterwards, we

emphasized a specific hardware platform—Crossbow TelosB sensor nodes–which we used

in our real experiments.

We then proceeded to an introduction of tracking systems. These were classified as

device-based systems and device-free systems depending on whether a tracked object needed

to carry devices or not. Recall that device-based systems use various communication tech-

niques to detect and track targets including infrared, ultrasound and Radio-Frequency

techniques. All of these methods require a target to carry electronic devices that can co-
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operate with the systems, such as an RFID tag, a cell phone or a mobile sensor node.

Device-based systems provide relatively high estimation accuracy since they can adjust the

estimation based on reference information from the attached devices. However, their initial

deployment is time-consuming since all the components of a device-based system need to

be pre-installed at fixed locations. In addition, device-based tracking fails in some emer-

gency applications such as earthquake-survivor rescue and in privacy-protection-oriented

applications such as medical monitoring for elderly people. Device-free systems have the

advantage in these applications. Some of these systems require a training phase before

tracking, during which time they record and store signal patterns that are captured by

the system when a target is present in different positions within the sensed area. They

then perform tracking by comparing real-time signals with the stored data and estimating

target locations by determining which of those stored signals share similar features with the

current one. Although these systems are device-free, it takes time to train fingerprinting

systems and the stored data needs to be calibrated again when the environment changes.

Other systems track targets in a signature-free manner so that no training phases are re-

quired during the deployment period. The RF tomographic tracking systems which we

explored in this thesis belong to this category.

The second half of Chapter 2 focused on the basic sequential Monte Carlo (SMC) al-

gorithms (particle filtering) and static parameter estimation methods that we adopted in

our approach. Particle filtering refers to several different simulation-based approaches that

can be used to estimate a hidden state in a Bayesian model (e.g., the location of an object

which is being tracked) given observations of that state. It outperforms other approaches

such as the Kalman filter when the problem is highly nonlinear/non-Gaussian. We then

presented the sequential importance sampling (SIS) particle filter and introduced the de-

generacy problem from which it suffers. A resampling procedure was proposed to address

this problem, creating the sampling importance resampling (SIR) method. Eventually, we

introduced an auxiliary particle filter (APF) based on the sampling importance resam-

pling method. The auxiliary particle filter performs better in environments with small

process noise, which was suitable for our tracking scenario. Afterwards, we introduced

static parameter estimation which can be used to estimate the unknown model parameters

in particle filtering. Both Bayesian and maximum likelihood approaches were introduced,

and we focused on the on-line expectation maximization (EM) algorithm, which belongs

to the family of maximum likelihood approaches. Among the different static parameter
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estimation approaches, on-line EM was more stable and computationally efficient for a

high-dimensional unknown model parameter set. The on-line EM also suffered from a de-

generacy problem, so a pseudo-likelihood function was introduced and incorporated into

on-line EM to address this problem and to improve computational efficiency.

Chapter 3 first formulated the device-free tracking problem we were going to solve

and presented an introduction to our measurement models. Since the previously-proposed

pixelized model suffers from a quantizing problem whereby it sacrifices part of estimation

accuracy, we proposed a novel pixel-free model that succeeded in addressing this problem

by establishing a scale relationship that connects attenuation level and distance between

a target and a link. The rest of this chapter described an on-line sequential Monte Carlo

algorithm that uses an auxiliary particle filter to approximate the target’s location while

simultaneously estimating unknown parameters. During the tracking period, the particle

filter estimates the target’s location at every time step while on-line EM is executed every

L time steps. Unknown parameter estimation is based on both observation data and on

the estimated location given by particle filter; new updated parameters are then used in

the next particle filtering iteration to iteratively improve the tracking performance.

We validated our algorithm in Chapter 4 through both simulation and field experiments.

In simulation, we first introduced a square trajectory in a square sensor layout scenario,

which we used as a “basic example” throughout our simulations and experiments. The

root mean square error (RMSE) of the location estimation, the lost track ratio, and the

unknown parameter behavior were reported for more than 100 repeated realizations. We

than tested performance of both the on-line sequential Monte Carlo algorithm and the

previously proposed imaging plus Kalman filter algorithm by varying measurement noise

levels and sensor network dimensions. Under the same “basic example” scenario, our ap-

proach achieved a much better RMSE performance than that of the imaging algorithm.

For example, when the noise level was set at σs = 2, the RMSE of our algorithm was

0.0988m while the RMSE of the imaging algorithm was 1.1451m. We observed that the

RMSE increased when either the noise level or the network dimensions increase. We also

evaluated the performance of our algorithm under different combinations of target trajec-

tories and network layouts. The estimated distance error was significantly higher in the

zigzag trajectory compared to the square trajectory, e.g., over 100 realizations for each

trajectory, the average zigzag RMSE was 0.8m while the average square trajectory RMSE

was 0.12m under a 7m× 7m square layout. Finally, we presented tracking performance in
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scenarios where the node locations were uncertain. Under the same basic example setting,

the RMSE the and number of lost tracks increased rapidly when σp was larger than 0.7

(where σp is the standard deviation of the noise added to the node locations). Over 1000

realizations, the RMSE was 0.6263m and the lost track ratio was 0.9% when σp = 0.3, while

the RMSE was 1.6897m and the lost track ratio was 52.6% when σp = 1. As a comparison,

we also reported tracking performance under the same setting when our algorithm was

incorporated with a node localization algorithm. The sequential Monte Carlo approach

then achieved a reasonable RMSE performance under different settings. For example, with

a network dimension of 21m×21m in a square sensor layout and with σp =
√

3, the RMSE

of our particle filtering approach with node localization algorithm was 0.6774m over 100

realizations. The second part of Chapter 4 focused on outdoor field experiments we did

in the McGill lower campus. We compared the performance for both the Field 1 and the

Field 2 experimental scenarios over 25 experiments. The on-line sequential Monte Carlo

algorithm outperformed the imaging plus Kalman filter algorithm in both outdoor settings

for single target tracking. Based on data collected from an experiment in Field 2 which

followed the “basic example” scenario, our approach achieved a RMSE of 0.3214m while the

RMSE of the imaging approach was 0.6404m. Both simulation and experimental results

demonstrated that our on-line sequential Monte Carlo approach achieves reasonably good

performance under a single target tracking scenario.

5.2 Future Work

Although we achieved expected good tracking performance using the proposed on-line se-

quential Monte Carlo algorithm, we only focused on single target tracking in an outdoor

environment. Practical implementation may require a system to track multiple targets in a

complex scenario or inside a building (through-wall tracking). Therefore, three main issues

need to be addressed in our research: testing the tracking performance when other static

objects (such as rocks, metal pieces, woods) are placed within the sensor network, estab-

lishing an indoor/through-wall measurement model and realizing multiple targets tracking.

The experiments with different static objects will firstly be done in outdoor fields,

objects will be placed on a link between a single pair of nodes to examine their effect to the

link. Afterwards, objects will be placed within a sensor network with 24 nodes; a person

will follow markers in the sensor network to check the behaviors of each link. We will
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also repeat the experiments in indoor areas to obtain features of RF signals in complex

scenarios.

Indoor/through-wall environments exhibit a much more complex Radio-Frequency sig-

nal pattern. Compared with outdoor environments, multipath effects in indoor scenarios

are significantly higher, while obstructions such as walls, tables and computers will greatly

increase the background noise level. Thus the proposed pixel-free measurement model needs

to be modified. We plan to first explore features of a single link in indoor environments.

Different types of obstructions, such as a wooden box and a metal plate will be placed

on the link or nearby the link while a person stands in different positions to test how

obstructions interact with the presence of a person in indoor environments. Afterwards

we will examine multiple links in at least 24 nodes deployment and try to obtain a new,

computationally efficient indoor measurement model.

There are two difficulties of multiple target tracking: the first is to determine the number

of moving targets within the sensed area and the second is to distinguish targets using a

single data set. Targets may happen to stand close to each other, stand still at one position,

or leave the network sensing area, so it is a challenging task for a tracking system to detect

these movements and track them. The computational cost may also increase rapidly with

an increasing number of moving targets.

To reiterate, we will examine human spatial characteristics in indoor wireless sensor

networks to achieve higher tracking accuracy and robustness, and we will also augment

our tracking algorithm so that it can distinguish different targets. We will also further

examine the Radio-Frequency signals transmitted by the TelosB sensor nodes as well as

the features of the adaptive environmental parameters, and we will work on improving the

sensing mechanisms of wireless sensor networks in field experiments in order to make our

system more robust in different environments.
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Appendix A

A.1 Software Description

The on-line SMC tracking system operates in Matlab and consists of 7 Matlab files. We

now briefly describe each function and present in Figure A.1, a flowchart depicting their

interactions. The source code is provided in Section A.2.

• Main.m, is the m-file that execute the complete algorithm, it calls function

getTrueTrajectory to generate target trajectory and function simData to generate

RSS data. Afterwards it calls function particleF ilter to track target position and

function onlineEM to estimate unknown model parameters.

• getTrueTrajectory.m, is the function to generate simulated target trajectory.

• simData.m, is the function to generate simulated RSS values.

• particleFilter.m, is the function to track target locations using RSS values, it also

draws the tracked trajectory every loop. It also calls function multinomialR to do

resampling.

• onlineEM.m, is the function to estimate unknown model parameters, it executes

every L particle filtering runs.

• multinomialR.m, is the function to finish resampling procedure in particle filtering.

• L2distance.m, is the function to calculate link distance between two nodes.
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Fig. A.1 Matlab simulation software flowchart

A.2 Matlab Source Code

A.2.1 Main.m

c l c

c l e a r a l l ;

c l o s e a l l ;

%% Basic s e t t i n g
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numNodes = 24 ; %Number o f nodes

linkNum = numNodes ∗ (numNodes−1)/2; %Number o f l i n k s

s ideLength = 7 ; %Length o f the square i s 21 f e e t .

deltaP = 0 . 1 ; %Pixe l width o f image

numReal ization = 1 ; %Number o f i d e n t i c a l s imu la t i on s

stateDimens ion = 2 ; %State dimension f o r dynamic model

sigma = 0 . 0 2 ; % \ sigma lambda to c o n t r o l the curve

% Set ground−t ruth parameters ’ va lues , generate RSS

p h i t r u e = 5 ;

s i gma v t rue = 0 . 3 ;

s igma w true = 0 . 5 ;

T i n t e r v a l = 0 . 2 4 ; %Simulated time i n t e r v a l per s en s ing loop

blockLength = T i n t e r v a l ∗ 50 ; %Data block to proce s s in a run

% C i r c l e layout , l i n k order i s node 1 to node 2 , node 1 to 3 , . . .

% node 1 to node 24 , node 2 to node 3 , . . .

ac tua lLocs ( 1 , : ) = s ideLength / 2 ∗(1 + . . .

cos (2∗ pi /numNodes ∗ [ 0 : numNodes−1 ] ) ) ;

ac tua lLocs ( 2 , : ) = s ideLength / 2 ∗(1 + . . .

s i n (2∗ pi /numNodes ∗ [ 0 : numNodes−1 ] ) ) ;

temp = actua lLocs ( : , 1 9 : 2 4 ) ;

ac tua lLocs ( : , 7 : 2 4 ) = actua lLocs ( : , 1 : 1 8 ) ;

ac tua lLocs ( : , 1 : 6 ) = temp ;

% Store the s enso r l o c a t i o n s correspond to t h i s l i n k

l i nkLoc s = ze ro s (4 , linkNum ) ;

l i n k s D i s t a n c e s = ze ro s ( linkNum , 1 ) ;

l i nk Index = 1 ;

f o r i = 1 : numNodes

f o r j = i +1:numNodes
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l i nkLoc s ( 1 : 2 , l i nk Index ) = actua lLocs ( : , i ) ;

l i nkLoc s ( 3 : 4 , l i nk Index ) = actua lLocs ( : , j ) ;

l i n k s D i s t a n c e s ( l inkIndex , : ) = . . .

L2di s tance ( actua lLocs ( : , i ) , ac tua lLocs ( : , j ) ) ;

l i nk Index = l ink Index + 1 ;

end

end

% Generate the z i g zag t r a j e c t o r y

targetTruePos = getTrueTrajectory ( s ideLength , numNodes ) ;

% Generate the attenuated RSS data

attenuationCausedByMoving = p h i t r u e ∗ simData ( . . .

targetTruePos , l inkLocs , l i nk sD i s t anc e s , sigma ) ;

% Store p a r t i c l e s f o r l a t e r use , s t o r e ground−t ruth l o c a t i o n s

e s t imat edPos i t i on s = ze ro s (2 , s i z e ( targetTruePos , 2 ) , numReal ization ) ;

t r u e P o s i t i o n s = ze ro s ( s i z e ( targetTruePos , 1 ) , . . .

s i z e ( targetTruePos , 2 ) , numReal ization ) ;

f o r i = 1 : numReal ization

t r u e P o s i t i o n s ( : , : , i ) = targetTruePos ;

end

%% Main algor i thm

f o r rea l i zat ionForOneTrack = 1 : numReal ization

% I n i t i a l i z e the unknown parameters

phi = normrnd ( 0 , 5 ) ; % \phi in measurement model

s igma v = normrnd ( 0 , 1 ) ; % no i s e \ s igma v in dynamic model

sigma w = normrnd (0 ,1) ;% no i s e \ s igma s in measurement model

deltaYMat ( : , : ) = attenuationCausedByMoving + . . .

s igma w true ∗ randn ( s i z e ( attenuationCausedByMoving ) ) ;
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counter = 0 ;

N = 1000 ; % Number o f p a r t i c l e s

L = 10 ; % Length o f one o n l i n e EM run

% Algorithm parameter s e t t i n g

psiVec = ze ro s ( 1 , 4 ) ; % Store the unknown parameters

de l taYBuf fe r = ze ro s (L , s i z e ( deltaYMat , 1 ) ) ;

xParticlesInOneEMRun = ze ro s ( stateDimension ,N, L ) ;

xPart ic lesPrev iousRound = ze ro s ( stateDimension ,N) ;

xPart ic lesPrev iousRound ( 1 : 2 , : ) = s ideLength ∗ rand (2 ,N) ;

weightsCurrent = ones (1 ,N) ;

d i f f V ec = [ ] ;

mseResultVec = [ ] ;

pathDistanceFromSide = 1 ;

targetPosVec = ze ro s ( 2 , 2 2 ) ;

phiVec = [ phi ] ;

sigmavVec = [ sigma v ] ;

sigmawVec = [ sigma w ] ;

phiLength = f l o o r ( s i z e ( deltaYMat , 2 ) / L ) ;

whi l e t rue

counter = counter + 1 ;

i f counter > s i z e ( deltaYMat , 2 )

break

end

% P a r t i c l e f i l t e r i n g

deltaY = deltaYMat ( : , counter ) ;

[ xPart ic lesThisRound , weightsCurrent ] = . . .
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p a r t i c l e F i l t e r ( xPart ic lesPreviousRound , deltaY , . . .

phi , sigma v , sigma w ,N, s ideLength , . . .

weightsCurrent , l inkLocs , l i nk sD i s t anc e s , sigma ) ;

% Get the est imated t a r g e t p o s i t i o n

targetPos = mean( xPartic lesThisRound , 2 ) ;

e s t imat edPos i t i on s ( : , counter , rea l i zat ionForOneTrack ) . . .

= targetPos ( : ) ;

%Buf f e r the number o f p a r t i c l e f i l t e r i n g runs

indexWithinOneEMRun = mod( counter , L ) ;

%Online EM when b u f f e r L i s f u l l

i f indexWithinOneEMRun

de l taYBuf fe r ( indexWithinOneEMRun , : ) = deltaY ;

xParticlesInOneEMRun ( 1 : 2 , : , indexWithinOneEMRun ) . . .

= xPart ic lesThisRound ;

e l s e

de l taYBuf fe r (L , : ) = deltaY ;

xParticlesInOneEMRun ( 1 : 2 , : , L) = xPart ic lesThisRound ;

%Compute the s u f f i c i e n t s t a t i s t i c s ,

%update the unknown model parameter .

[ phi , sigma v , sigma w , psiVec , phiVec , sigmavVec , . . .

sigmawVec ] = onlineEM ( phi , . . .

psiVec , xParticlesInOneEMRun , deltaYBuffer , . . .

l inkLocs , l i nk sD i s t anc e s , counter , . . .

phiVec , sigmavVec , sigmawVec , sigma ) ;

end

%Update the p a r t i c l e s

xPart ic l esPrev iousRound = xPart ic lesThisRound ;

end



A.2 Matlab Source Code 83

phi s ( : , r ea l i zat ionForOneTrack ) = phiVec ( : ) ;

s igmavs ( : , rea l i zat ionForOneTrack ) = sigmavVec ;

sigmaws ( : , rea l i zat ionForOneTrack ) = sigmawVec ;

end

%% Save the tracked r e s u l t s

save ( ’ e s t imat edPos i t i on s . mat ’ , ’ e s t imatedPos i t i ons ’ ) ;

save ( ’ t r u e P o s i t i o n s . mat ’ , ’ t ru ePos i t i on s ’ ) ;

save ( ’ ph i s . mat ’ , ’ phis ’ ) ;

save ( ’ sigmavs . mat ’ , ’ sigmavs ’ ) ;

save ( ’ sigmaws . mat ’ , ’ sigmaws ’ ) ;

A.2.2 getTrueTrajectory.m

%% Generate ground−t ruth z i g zag t r a j e c t o r y

func t i on targetTruePos = getTrueTrajectory ( s ideLength , numNodes )

sepa = sideLength /(numNodes/4+1);

targetTruePos = . . .

[ 1 . 5 ∗ sepa 1 .5∗ sepa ; 1 .5∗ sepa 2 .5∗ sepa ; 1 .5∗ sepa 3 .5∗ sepa ;

1 .5∗ sepa 4 .5∗ sepa ; 1 .5∗ sepa 5 .5∗ sepa ;

2 .5∗ sepa 5 .5∗ sepa ; 2 .5∗ sepa 4 .5∗ sepa ; 2 .5∗ sepa 3 .5∗ sepa ;

2 .5∗ sepa 2 .5∗ sepa ; 2 .5∗ sepa 1 .5∗ sepa ;

3 .5∗ sepa 1 .5∗ sepa ; 3 .5∗ sepa 2 .5∗ sepa ; 3 .5∗ sepa 3 .5∗ sepa ;

3 .5∗ sepa 4 .5∗ sepa ; 3 .5∗ sepa 5 .5∗ sepa ;

4 .5∗ sepa 5 .5∗ sepa ; 4 .5∗ sepa 4 .5∗ sepa ; 4 .5∗ sepa 3 .5∗ sepa ;

4 .5∗ sepa 2 .5∗ sepa ; 4 .5∗ sepa 1 .5∗ sepa ;

5 .5∗ sepa 1 .5∗ sepa ; 5 .5∗ sepa 2 .5∗ sepa ; 5 .5∗ sepa 3 .5∗ sepa ;

5 .5∗ sepa 4 .5∗ sepa ; 5 .5∗ sepa 5 .5∗ sepa ;

4 .5∗ sepa 5 .5∗ sepa ; 4 .5∗ sepa 4 .5∗ sepa ; 4 .5∗ sepa 3 .5∗ sepa ;

4 .5∗ sepa 2 .5∗ sepa ; 4 .5∗ sepa 1 .5∗ sepa ;

3 .5∗ sepa 1 .5∗ sepa ; 3 .5∗ sepa 2 .5∗ sepa ; 3 .5∗ sepa 3 .5∗ sepa ;
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3 .5∗ sepa 4 .5∗ sepa ; 3 .5∗ sepa 5 .5∗ sepa ;

2 .5∗ sepa 5 .5∗ sepa ; 2 .5∗ sepa 4 .5∗ sepa ; 2 .5∗ sepa 3 .5∗ sepa ;

2 .5∗ sepa 2 .5∗ sepa ; 2 .5∗ sepa 1 .5∗ sepa ] ’ ;

end

A.2.3 simData.m

%% Generate the attenuated RSS data

func t i on YPartic lesWithoutPhi = simData ( . . .

x Pa r t i c l e s , l i nk sLoca t i on s , l i nk sD i s tance , sigma )

% Calcu la te the l i n k d i s t anc e

distanceBetweenPart ic lesToA = L2distance ( . . .

l i n k s L o c a t i o n s ( 1 : 2 , : ) , x P a r t i c l e s ) ;

d i stanceBetweenPart ic lesToB = L2distance ( . . .

l i n k s L o c a t i o n s ( 3 : 4 , : ) , x P a r t i c l e s ) ;

lambdaVector = distanceBetweenPart ic lesToA + . . .

d i stanceBetweenPart ic lesToB − l i n k s D i s t a n c e ∗ . . .

ones (1 , s i z e ( x Pa r t i c l e s , 2 ) ) ;

% Generate RSS data through measurement model

YPartic lesWithoutPhi = exp(− lambdaVector / (2∗ sigma ) ) ;

end

A.2.4 particleFilter.m

%% Auxi l i a ry p a r t i c l e f i l t e r

func t i on [ xAPFParticles , weightsCurrent ] = p a r t i c l e F i l t e r ( . . .

xPart ic lesPreviousRound , deltaY , phi , sigma v , sigma w , N , . . .

s ideLength , weightsPrevious , l i nk sLoca t i on s , l i nk sD i s t anc e s , sigma )

%%

%Target motion dynamics

xPart ic lesThisRound = xPart ic lesPrev iousRound + sigma v ∗ . . .

randn ( s i z e ( xPart ic l esPrev iousRound ) ) ;

%Generate approximat measurement \y
y P a r t i c l e s = phi ∗ simData ( xPart ic lesThisRound , . . .

l i nk sLoca t i on s , l i nk sD i s t anc e s , sigma ) ;
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%Calcu la te weights

we ight ings = normpdf ( y P ar t i c l e s , deltaY∗ones (1 ,N) , sigma w ) + 1e−8;

logWeights= sum( log ( we ight ings ) ) ;

logWeights = logWeights − max( logWeights ) ;

weightsCurrent = weightsPrev ious .∗ exp ( logWeights ) ;

%Normalized the weights

weightsCurrent = weightsCurrent /sum( weightsCurrent ) ;

%Multinomial Resampling Process

outIndex = multinomialR ( 1 :N, weightsCurrent ’ ) ;

%% Aux i l i a ry part

xAPFParticles ( : , : ) = xPart ic lesThisRound ( : , outIndex ) ;

yNewAPFParticles ( : , : ) = y P a r t i c l e s ( : , outIndex ) ;

yAPFParticles = phi ∗ simData ( xAPFParticles , . . .

l i nk sLoca t i on s , l i nk sD i s t anc e s , sigma ) ;

% Calcu la te the f i n a l weights

valueMat = normpdf ( yAPFParticles , deltaY ∗ ones (1 ,N) , sigma w ) ;

logValueVec = sum( log ( valueMat ) ) ;

maxLogValueVec = max( logValueVec ) ;

logValueVec = logValueVec − maxLogValueVec ;

valueMatNew = normpdf ( yNewAPFParticles , deltaY ∗ ones (1 ,N) , sigma w ) ;

logValueVecNew = sum( log ( valueMatNew ) ) ;

maxLogValueVecNew = max( logValueVecNew ) ;

logValueVecNew = logValueVecNew − maxLogValueVecNew ;

l i k e l i h o o d = exp ( logValueVec ) ;

l ike l ihoodNew = exp ( logValueVecNew ) ;

weightsCurrent = l i k e l i h o o d . / l ike l ihoodNew ;

%Normalize the weights

weightsCurrent = weightsCurrent / sum( weightsCurrent ) ;

%% Draw the dynamic t ra ck ing r e s u l t s
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numPixelRow = 100 ;

numPixelCol = 100 ;

xShow = ze ro s ( numPixelRow , numPixelCol ) ;

f o r i = 1 :N

xPos = round ( xAPFParticles (1 , i )/ s ideLength ∗ numPixelCol ) ;

yPos = round ( xAPFParticles (2 , i )/ s ideLength ∗ numPixelRow ) ;

i f xPos > numPixelCol

xPos = numPixelCol ;

end

i f xPos < 1

xPos = 1 ;

end

i f yPos > numPixelRow

yPos = numPixelCol ;

end

i f yPos < 1

yPos = 1 ;

end

xShow( numPixelRow + 1 − yPos , xPos ) = xShow ( . . .

numPixelRow + 1 − yPos , xPos ) + 1 ;

end

f i g u r e (11)

movegui ( ’ northwest ’ ) ;

colormap coo l ;

s e t ( gca , ’ un i t s ’ , ’ po ints ’ ) ;

imagesc (xShow ) ;

c o l o rba r ;

A.2.5 multinomialR.m

f unc t i on outIndex = multinomialR ( inIndex , q )

% PURPOSE : Performs the resampl ing s tage o f the SIR
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% in order ( number o f samples ) s t ep s .

% INPUTS : − inIndex = Input p a r t i c l e i n d i c e s .

% − q = Normalised importance r a t i o s .

% OUTPUTS : − outIndex = Resampled i n d i c e s .

% AUTHORS : Arnaud Doucet and Nando de F r e i t a s

% DATE : 08−09−98

i f narg in < 2 , e r r o r ( ’ Not enough input arguments . ’ ) ; end

[ S , arb ] = s i z e ( q ) ; % S = Number o f p a r t i c l e s .

% MULTINOMIAL SAMPLING:

% =====================

N babies= ze ro s (1 , S ) ;

cumDist= cumsum(q ’ ) ;

% generate S ordered random v a r i a b l e s uni formly d i s t r i b u t e d in [ 0 , 1 ]

% high speed N i c l a s Bergman Procedure

u = f l i p l r ( cumprod ( rand (1 , S ) . ˆ ( 1 . / ( S : − 1 : 1 ) ) ) ) ;

j =1;

f o r i =1:S

whi l e (u (1 , i )>cumDist (1 , j ) )

j=j +1;

end

N babies (1 , j )=N babies (1 , j )+1;

end ;

% COPY RESAMPLED TRAJECTORIES:

% ============================

index =1;

f o r i =1:S

i f ( N babies (1 , i )>0)

f o r j=index : index+N babies (1 , i )−1

outIndex ( j ) = inIndex ( i ) ;
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end ;

end ;

index= index+N babies (1 , i ) ;

end

A.2.6 L2distance.m

f unc t i on d = L2dis tance ( a , b , df )

% L2 DISTANCE − computes Eucl idean d i s t anc e matrix

%

% E = L2 d i s tance (A,B)

%

% A − (DxM) matrix

% B − (DxN) matrix

% df = 1 , f o r c e d i agona l s to be zero ; 0 ( d e f a u l t ) , do not f o r c e

%

% Returns :

% E − (MxN) Eucl idean d i s t a n c e s between vec to r s in A and B

%

%

% Desc r ip t i on :

% This f u l l y v e c t o r i z e d (VERY FAST! ) m− f i l e computes the

% Eucl idean d i s t anc e between two vec to r s by :

%

% | |A−B | | = s q r t ( | |A | | ˆ 2 + | |B | | ˆ 2 − 2∗A.B )

%

% Example :

% A = rand (400 , 100 ) ; B = rand (400 , 200 ) ;

% d = d i s t ance (A,B) ;

% Author : Roland Bunschoten

% Unive r s i ty o f Amsterdam

% I n t e l l i g e n t Autonomous Systems ( IAS ) group

% Kruis laan 403 1098 SJ Amsterdam
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% t e l .(+31)20−5257524

% bunschot@wins . uva . n l

% Last Rev : Wed Oct 20 08 : 58 : 08 MET DST 1999

% Tested : PC Matlab v5 . 2 and S o l a r i s Matlab v5 . 3

% Copyright n o t i c e : You are f r e e to modify , extend and d i s t r i b u t e

% t h i s code granted that the author o f the o r i g i n a l code i s

% mentioned as the o r i g i n a l author o f the code .

% Fixed by JBT (3/18/00) to work f o r 1−dimens iona l v e c t o r s

% and to warn f o r imaginary numbers . Also ensure s that

% output i s a l l r ea l , and a l l ows the opt ion o f f o r c i n g d iagona l s to

% be zero .

i f ( narg in < 2)

e r r o r ( ’ Not enough input arguments ’ ) ;

end

i f ( narg in < 3)

df = 0 ; % by de fau l t , do not f o r c e 0 on the d iagona l

end

i f ( s i z e ( a , 1 ) ˜= s i z e (b , 1 ) )

e r r o r ( ’A and B should be o f same d imens iona l i ty ’ ) ;

end

i f ˜( i s r e a l ( a )∗ i s r e a l (b ) )

d i sp ( ’ Warning : Resu l t s may be o f f . ’ ) ;

end

i f ( s i z e ( a , 1 ) == 1)

a = [ a ; z e r o s (1 , s i z e ( a , 2 ) ) ] ;

b = [ b ; z e r o s (1 , s i z e (b , 2 ) ) ] ;
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end

aa=sum( a .∗ a ) ; bb=sum(b .∗b ) ; ab=a ’∗b ;

d = s q r t ( repmat ( aa ’ , [ 1 s i z e (bb , 2 ) ] ) + . . .

repmat (bb , [ s i z e ( aa , 2 ) 1 ] ) − 2∗ab ) ;

% make sure r e s u l t i s a l l r e a l

d = r e a l (d ) ;

% f o r c e 0 on the d iagona l ?

i f ( df==1)

d = d.∗(1− eye ( s i z e (d ) ) ) ;

end

A.2.7 onlineEM.m

f unc t i on [ phi , sigma v , sigma w , psiVec , phiNewVec , . . .

sigmavNewVec , sigmawNewVec ] = onlineEM ( . . .

phi , psiVec , xBuffer , de ltaYBuffer , l i nk sLoca t i on s , . . .

l i nk sD i s t anc e s , counter , phiVec , sigmavVec , sigmawVec , sigma )

%Online EM to c a l c u l a t e the s u f f i c i e n t s t a t i s t i c s and update

%the unknown model parameters

%1s t dimension denotes d i f f e r e n t t e s t s , 2nd dimension

%i s d i f f e r e n t t a r g e t s / p a r t i c l e s , in s i n g l e target ’ s case ,

%3rd dimension i s the c a r t e s i o n coo rd ina t e s )

L = s i z e ( xBuffer , 3 ) ;

N = s i z e ( xBuffer , 2 ) ;

gamma = s q r t (L/ counter ) ;

psiNewVec = ze ro s (N, 4 ) ;

%loop on d i f f e r e n t ins tance , 1 :N

f o r i = 1 :N

%compute s u f f i c i e n t s t a t s i t c s
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xBuf ferOneInstance ( : , : ) = xBuf fe r ( 1 : 2 , i , : ) ;

xD i f f = xBuf ferOneInstance ( : , 2 : end ) − xBuf ferOneInstance ( : , 1 : end−1);

YPartic lesWithoutPhi = simData ( . . .

xBufferOneInstance , l i nk sLoca t i on s , l i nk sD i s t anc e s , sigma ) ;

%Calcu la te s u f f i c i e n t s t a t i s t i c s

psiNewVec ( i , 1 ) = (norm( xDi f f , 2 ) ) ˆ 2 ;

psiNewVec ( i , 2 ) = (norm( deltaYBuffer ’ − phi ∗ . . .

YPartic lesWithoutPhi , ’ f ro ’ ) ) ˆ 2 ;

psiNewVec ( i , 3 ) = sum(sum ( ( YPart ic lesWithoutPhi . ∗ ( de ltaYBuffer ’ ) ) ) ) ;

psiNewVec ( i , 4 ) = (norm( YPartic lesWithoutPhi , ’ f ro ’ ) ) ˆ 2 ;

end

i f nnz ( psiNewVec ( : , 4 ) ) ˜= 0

psiVec = (1−gamma) ∗ psiVec + gamma ∗ 1/N ∗ sum( psiNewVec ) ;

phi = psiVec (3 ) / psiVec ( 4 ) ;

e l s e

psiVec ( : , 1 : 2 ) = (1−gamma) ∗ psiVec ( : , 1 : 2 ) + . . .

gamma ∗ 1/N ∗ sum( psiNewVec ( : , 1 : 2 ) ) ;

end

sigma v = s q r t ( psiVec (1 ) / (2∗ (L−1)) ) ;

i f s igma v == 0

sigma v = eps ;

end

numLink = s i z e ( de ltaYBuffer , 2 ) ;

sigma w = s q r t ( psiVec (2 ) / (numLink ∗ L ) ) ;

phiNewVec = ze ro s (1 , s i z e ( phiVec , 2 )+1) ;

phiNewVec ( 1 : end−1) = phiVec ;

phiNewVec ( end ) = phi ;
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sigmavNewVec = ze ro s (1 , s i z e ( sigmavVec , 2 )+1) ;

sigmavNewVec ( 1 : end−1) = sigmavVec ;

sigmavNewVec ( end ) = sigma v ;

sigmawNewVec = ze ro s (1 , s i z e ( sigmawVec , 2 )+1) ;

sigmawNewVec ( 1 : end−1) = sigmawVec ;

sigmawNewVec ( end ) = sigma w ;

i t e r a t i o n = 1/gammaˆ2

true ;
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