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ABSTRACT

We prove two theorems regarding the algorithmic theory of groups. First, that

the compressed word problem in every finitely generated fully residually free group

can be decided in polynomial time. As a corollary, the word problem in the auto-

morphism group of such a group has a polynomial time solution. Second, for any

torsion-free hyperbolic group Γ and any group G that is finitely generated and fully

residually Γ, we construct a finite collection of homomorphisms, at least one of which

is injective, from G to groups obtained from Γ by extensions of centralizers. As corol-

laries, we obtain an effective embedding of any finitely generated residually Γ group

into a finite direct product of groups obtained from Γ by extensions of centralizers,

and we prove that the word problem in any finitely generated residually Γ group can

be decided in polynomial time.
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ABRÉGÉ

On prouve deux théorèmes dans le domaine de la théorie algorithmique des

groupes. D’abord on démontre que le problème de l’identité des mots compressés

est soluble en temps polynomial dans tout groupe de type fini et discriminé par

un groupe libre. Il s’en suit que le problème de l’identité de mots dans le groupe

d’automorphismes d’un tel groupe est soluble en temps polynomial. Ensuite, pour

tout groupe hyperbolique sans torsion Γ et tout groupe G de type fini qui est dis-

criminé par Γ, on construit une collection finie d’homomorphismes, au moins un

desquels est injective, entre G et des groupes obtenus de Γ par des extensions des

centralisateurs. De ce fait, on obtient une inclusion algorithmique de tout groupe

de type fini et séparé par Γ dans un produit direct fini de groupes obtenus de Γ par

extensions des centralisateurs et on démontre que le problème de l’identité dans tout

groupe de type fini et séparé par Γ est soluble en temps polynomial.
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CHAPTER 1
Introduction

A group G satisfies residual properties depending on whether or not any element,

or finite set of elements, of G can be preserved under a homomorphism to a particular

group Γ. The target Γ may be a fixed group or be allowed to range over a class of

groups: free groups, finite groups, solvable groups, or any other interesting class.

When Γ is allowed to be any free group, G is said to be fully residually free. The

theory of these groups has been particularly well-developed since the mid-1990s when

their connection with the famous Tarski problems on the elementary theory of free

groups arose. In O. Kharlampovich and A. Miasnikov’s solution to Tarski’s problems,

fully residually free groups appear in the context of algebraic geometry as coordinate

groups of irreducible affine varieties and in Z. Sela’s work on the Tarski problems

they appear as limit groups, quotients obtained from a sequence of homomorphisms

to free groups. Many equivalent characterizations of fully residually free groups are

now known, coming from different contexts. Much of the work on fully residually

free groups has also been generalized to the case when Γ is a fixed hyperbolic group,

in which case G is said to be fully residually Γ or a Γ-limit group. In particular,

many of the same characterizations apply.

Our work concerns algorithmic problems in limit groups and Γ-limit groups, and

we will prove two main results. Our first result, which we prove in Chapter 3, is a

polynomial time algorithm to solve the word problem in the automorphism group of
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a limit group. This problem was known to be decidable, but not in polynomial time.

Our solution uses the technique of compressed words employed by S. Schleimer to

solve the problem for the automorphism group of a free group.

Solutions to several algorithmic problems in limit groups, including the con-

jugacy problem, membership problem, and our own result in Chapter 3, make use

of the fact that every limit group embeds into a group obtained from a free group

by a series of extensions of centralizers and that this embedding can be computed

effectively. For a Γ-limit group G, an embedding into a group obtained from Γ by a

series of extensions of centralizers was known to exist, but its effective construction

was not known. Our second result is to effectively construct a finite collection of

homomorphisms, at least one of which must be an embedding, from G to groups

obtained from Γ by extensions of centralizers.

We will begin in Chapter 2 by providing some necessary background material.

We will focus on a discussing limit groups, as the general reader is expected to be

least familiar with this material.

1.1 Statement of originality

Chapter 2 consists entirely of previously known results. The results of Chap-

ter 3 and Chapter 4 are original, except where otherwise mentioned. Chapter 3 was

published by the author as [Mac10]. The presentation has been altered somewhat

to fit the thesis format and some of the proofs have been improved. Chapter 4 is

expected to form the basis of a future publication with O. Kharlampovich.

We use the terms ‘Theorem’ and ‘Corollary’ exclusively for the major original

results of this thesis. Results that we have cited from other works, usually without
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proof, are termed ‘Propositions’. The reader should be aware that some these propo-

sitions are deep theorems. In Chapter 2 we have decided to include proofs of a few

‘propositions’ for the reader’s benefit. All other results are labelled as ‘lemmas’ and

may contain both original and non-original material: we have indicated in the proof

when non-original material is used.
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CHAPTER 2
Background

2.1 Some notation

For elements g, h of a group G we denote by [g, h] the commutator g−1h−1gh.

The elements g and h commute if and only if [g, h] = 1. The conjugate g−1hg of h

by g is denoted hg. The image of g under a homomorphism φ is denoted gφ or φ(g).

We will usually describe groups in terms of presentations. For a set X we

denote by X∗ the set of finite words over X and by F (X) the free group on X. If

S ⊂ F (X), then 〈X | S〉 denotes the quotient group F (X)/ncl (S) where ncl (S) is

the normal closure of S. If G = 〈X | S〉 and R ⊂ F (X ∪ Y ) then we allow the

notation 〈G, Y |R〉 = 〈X ∪ Y | S ∪ R〉.

Every word w over the alphabet X± represents an element of G = 〈X | S〉, which

we may also refer to as w. As a word, w has a word length |g|, which is the number

of symbols in w, and as an element of G it has a geodesic length ‖w‖ defined by

‖w‖ = min{|u| | u ∈ F (X) and u = w in G}.

2.2 Algorithmic problems in groups

At present, there is considerable interest in the study of algorithmic problems in

groups. Many of the classical problems are decision problems, that is, problems that

admit a yes/no answer. A decision problem is said to be decidable if there exists an

algorithm that, on every (valid) input, terminates and outputs the correct answer.

4



From the point of view of combinatorial group theory, the most fundamental

decision problem is the word problem. Fix a group G generated by g1, . . . , gn. A

solution to the word problem for G is an algorithm that, given as input a word

w(g1, . . . , gn) over the generators, outputs ‘yes’ if and only if w represents the identity

element of G. One may also consider the group G to be part of the input, in which

case G is given by a finite presentation G = 〈X |S〉. Many such problems have been

studied. To name a few, the conjugacy problem asks whether two elements g and

h are conjugate, the power problem asks if g is a power of h, and the isomorphism

problem asks if two finitely presented input groups are isomorphic. In Chapter 3 we

study the word problem in the automorphism group of G, where G is any limit group

(defined in §2.5).

Many interesting problems are not decision problems, since the output must

consist of more than a simple yes/no answer. One may need to output a group

presentation, a homomorphism, a group element, et cetera. For example, the geodesic

problem for a group G = 〈g1, . . . , gn〉 asks to find, for a given word w(g1, . . . , gn), a

word u(g1, . . . , gn) of shortest word length such that w = u in G. When there exists

an algorithm to solve a given problem, we say that the problem has an effective or

algorithmic solution. The main result of Chapter 4 (Theorem 4.4.17) is an algorithm

of this type: it produces a finite set of homomorphisms from an input group, one of

which must be injective.

The study of an algorithmic problem often proceeds as follows: first, determine

whether or not there exists an algorithm that solves the problem and second, find the

most efficient algorithm for doing so. There are problems that cannot be solved: the
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most famous example in combinatorial group theory is the proof that there exists a

finitely presented group such that no algorithm can decide its word problem [Nov58],

[Boo59].

The efficiency of an algorithm is typically measured by its time complexity.1

One may always assume that the input of an algorithm consists of a finite string of

bits encoding the input. The length n of the bit string is the size of the input, though

any quantity that varies linearly with n may be regarded as the size of the input.

Then the (worst case) time complexity of an algorithm is the function T : N → N

such that T (n) is the maximum, over all inputs of size n, of the number of elementary

operations2 the algorithm performs before halting.

Time complexity functions are usually classed according to big-O notation. This

allows one to analyze algorithms independent of encoding and computation model

and in terms of asymptotic behaviour. For any function g : N→ N, we set

O(g(n)) = {f : N→ N | ∃N,m ∈ N ∀n > m, f(n) ≤ Ng(n)}.

An algorithm is said to run in polynomial time if T (n) ∈ O(nd) for some d ∈ N

and exponential time if T (n) ∈ O(cn) for some c ∈ N. Usually, polynomial time

algorithms are efficient enough to be useful in practice (at least for small values of d)

1 Space complexity may also be considered.

2 Exactly what constitutes an elementary operation depends on the model of com-
putation used. One should have in mind a single Turing machine transition or a single
CPU operation.
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while non-polynomial time algorithms are not. In real-world applications however,

big-O time complexity is only one factor in determining an algorithm’s feasibility.

2.3 Hyperbolic and relatively hyperbolic groups

The classes of hyperbolic and relatively hyperbolic groups have been very influ-

ential since being introduced by Gromov in [Gro87]. We provide a brief introduction

here.

Hyperbolic groups

Let G be a group generated by a finite set X and denote X−1 = {x−1 | x ∈ X}

and X± = X ∪X−1. The Cayley graph of G with respect to X, denoted Cay(G,X),

is the directed graph with vertex set G and edge set {(g, gx) | g ∈ G, x ∈ X±}.

Observe that if (g, gx) is an edge then (gx, g) is also an edge.

A metric space (Y, d) is called a geodesic metric space if for every x, y ∈ Y

there exists a geodesic arc [x, y] from x to y having length d(x, y). We may realize

Cay(G,X) as a geodesic metric space as follows: to each edge pair {(g, gx), (gx, g)}

we associate a copy of the unit interval [0, 1] and identify the endpoint 0 with one

of the vertices g and 1 with the other vertex gx (the choice here is arbitrary). The

resulting object inherits a metric d from the usual metric on [0, 1] and forms a geodesic

metric space which we may also refer to as the Cayley graph of G with respect to X.

Note that d also makes G into a metric space, with d(g, h) being the length of the

shortest word x in the generators X± such that gx = h. The geodesic length ‖g‖ of

g is precisely the distance d(g, 1) from g to the identity element.

Of course, the Cayley graph and resulting metric depend on the choice of gen-

erating set X. However, for any other finite generating set Z, one can show that
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the Cayley graphs with respect to Z and with respect to X are quasi-isometric3 as

metric spaces. Consequently, it is only the quasi-isometry invariant properties of the

Cayley graph that may give group theoretic information.

In a geodesic metric space (Y, d) a geodesic triangle defined by three points x, y, z

is the union of three geodesic arcs [x, y], [y, z], [z, x]. Such a triangle is said to be

δ-slim, for a non-negative real δ, if for every w1 ∈ [x, y] there exists w′1 ∈ [y, z]∪ [z, x]

such that

d(w1, w
′
1) ≤ δ,

and similarly for every w2 ∈ [y, z] and w3 ∈ [z, x]. The space (Y, d) is δ-hyperbolic if

every geodesic triangle is δ-slim.

Definition 2.3.1. A group G is called hyperbolic if there exists a finite

generating set X of G and a real number δ ≥ 0 such that the Cayley graph of G

with respect to X is a δ-hyperbolic metric space. �

The minimum δ such that Cay(G,X) is δ-hyperbolic is referred to as the hyper-

bolicity constant. Though this constant depends of the generating set X, hyperbol-

icity of the group G does not. Equivalent definitions of hyperbolicity may be found

in [Aea91].

Example 2.3.2. Every finitely generated free group F = 〈x1, . . . , xn | −〉 is

hyperbolic: since the Cayley graph with respect to {x1, . . . , xn} is a tree, geodesic

3 A map φ : X → Y between metric spaces is a quasi-isometry if there exist
constants λ ≥ 1, C ≥ 0, D ≥ 0 such that for all x, z ∈ X, 1

λ
d(x, z)−C ≤ d(xφ, zφ) ≤

λd(x, z) + C, and every point of Y is within distance D of a point of Xφ.
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triangles always take the degenerate form of ‘tripods’ and are 0-slim. The free abelian

groups Zn are not hyperbolic unless n = 1. Indeed, for Z2 = 〈a, b | [a, b]〉 the Cayley

graph with respect to {a, b} is a grid, and a square of side length m+ 1 is a geodesic

triangle for any three of its corners and is not m-slim. The fundamental group of a

surface with negative Euler characteristic is hyperbolic. �

Relatively hyperbolic groups

Relatively hyperbolic groups are a generalization of hyperbolic groups in which

controlled non-hyperbolicity is permitted. We review here the definition developed

in [Bow99] (see also [GM08]) stating that the coned-off Cayley graph should be

hyperbolic and fine. Equivalent definitions are given in [Gro87], [Osi06b], and [Far98].

Let G be generated by the finite set X and let H = {H1, . . . , Hk} be a collection

of finitely generated subgroups of G. For every i = 1, . . . , k and every coset gHi we

add to Cay(G,X) a vertex labelled by gHi and for each h ∈ gHi we add an edge

between h and gHi. This forms the coned-off Cayley graph of G with respect to H

and X.

A simple cycle in a directed graph is a sequence of vertices v1, . . . , vn such that

(vi, vi+1) is an edge for i = 1, . . . , n− 1 and all vi are distinct except v1 and vn which

coincide. A graph is said to be fine if for every edge e and integer L > 0 there are

only finitely many simple cycles of length L that contain e.

Definition 2.3.3. A finitely generated group G is said to be hyperbolic relative

to a finite collection H = {H1, . . . , Hk} of finitely generated subgroups if there exists

a finite generating set X of G and a real number δ such that the coned-off Cayley
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graph of G with respect to H and X is fine (as a graph) and δ-hyperbolic (as a metric

space). �

Example 2.3.4. The group Z ∗ Z2 is hyperbolic relative to Z2. The group

Z2 = 〈x, y | [x, y]〉 is not hyperbolic relative to Z = 〈x〉. Though the coned-off Cayley

graph is hyperbolic, it is not fine. �

The subgroups Hi, and their conjugates, are referred to as parabolic subgroups.

An element g ∈ G is called parabolic if it is an element of a parabolic subgroup,

otherwise it is hyperbolic.

The relatively hyperbolic groups appearing in this work have the property that

all parabolic subgroups are free abelian groups.

Definition 2.3.5. A group G is called toral relatively hyperbolic if G is torsion-

free and hyperbolic relative to a collection H of (free) abelian proper subgroups of

G. �

If G is toral relatively hyperbolic, then for each maximal abelian non-cyclic

subgroup M ≤ G, the collection H must include exactly one subgroup conjugate

to M , and must not include any proper non-trivial subgroup of any conjugate of

M . Indeed, one can show that including in H two conjugates of M , or including a

proper subgroup of a conjugate, leads to non-fineness of the coned-off Cayley graph.

Excluding all conjugates of M leads to non-hyperbolicity.
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Properties of relatively hyperbolic groups

A group G is called a CSA group4 if every maximal abelian subgroup M of G is

malnormal, meaning M g ∩M = 1 for all g ∈ G \M . Torsion-free hyperbolic groups

are CSA (see Proposition 12 of [MR96]), and in fact all toral relatively hyperbolic

groups are CSA (see 1.4 of [KM09] or Lemma 2.5 of [Gro09]). CSA groups play an

important role in algebraic geometry over groups, as we will see shortly. They have

the useful property that commutation is a transitive (binary) relation on the set of

non-trivial elements, i.e. for every triple of non-trivial elements x, y, z if [x, y] = 1

and [y, z] = 1 then [x, z] = 1. Details on CSA groups can be read in [MR96].

Much work has been done on algorithmic problems in relatively hyperbolic

groups. We take note of the following for later use.

Lemma 2.3.6. Let G be a toral relatively hyperbolic group. The following hold.

(1) The conjugacy problem in G, and hence the word problem, is decidable.

(2) If G is non-abelian then we may effectively construct two non-commuting ele-

ments of.

(3) If g ∈ Γ is a hyperbolic element, then the centralizer C(g) of g is an infinite

cyclic group. Further, a generator for C(g) can be effectively constructed.

Proof. The first statement is the main theorem of [Bum04]. For the second, we need

only enumerate pairs (g, h) ∈ G×G until we find a pair with [g, h] 6= 1.

4 CSA stands for ‘conjugately separated maximal abelian’.
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For the third statement, let g ∈ Γ be a hyperbolic element. Theorem 4.3 of

[Osi06a] shows that the subgroup

E(g) = {h ∈ Γ | ∃ n ∈ N : h−1gnh = gn}

has a cyclic subgroup of finite index. Since Γ is torsion-free, E(g) must be infinite

cyclic (see for example the proof of Proposition 12 of [MR96]). Clearly C(g) ≤ E(g),

hence C(g) is infinite cyclic.

To construct a generator for C(g), consider the following results of D. Osin in

[Osi06a] (see Lemma 5.16 and the proof of Theorem 5.17):

(i) there exists a constant N , which depends on Γ and |g| and can be computed,

such that if g = fn for some f ∈ Γ and n ∈ Z then n ≤ N ;

(ii) there is a computable function β : N → N such that if f is an element of Γ

with fn = g for some n ∈ N, then f is conjugate to some element f0 satisfying

|f0| ≤ β(|g|).

We proceed as follows. For every element f in the ball of radius β(|g|) in Cay(Γ, A),

check whether or not fn is conjugate to g for any 1 ≤ n ≤ N . Of these, choose f

with n maximum and find a conjugating element h (we may do so by enumerating

elements of Γ until a conjugating element is found). Let g be a generator of C(g).

We claim that h−1fh = g or h−1fh = g−1. Indeed, h−1fh commutes with g, hence

h−1fh = gk for some k and so

g = (h−1fh)n = gkn. (2.1)
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Suppose k > 0. Since gkn = g, (ii) implies that g is conjugate to some element g0 in

the ball of radius β(|g|), hence gkn0 is conjugate to g. By maximality of n, k must be

1 and h−1fh = g. If k < 0, we see that h−1fh = g−1.

2.4 Algebraic geometry over groups

Following [BMR99] and [KM98a] we introduce some basic notions of algebraic

geometry over groups.

Basic definitions

Let Γ be a group generated by a finite set A and F (X) the free group with basis

X = {x1, x2, . . . xn}. In analogy with the polynomial ring R[X] we define

Γ[X] = Γ ∗ F (X),

where ∗ denotes the free product. For an element s of Γ[X], the expression

s = 1

is called an equation over Γ. As an element of the free product, s can be written

as a product of elements from X±, which we call variables, and elements from A±,

which we call constants. To emphasize this we sometimes write s(X,A) = 1 or

s(x1, . . . , xn) = 1. Every subset S ⊂ Γ[X] corresponds to the system of equations

{s = 1 | s ∈ S}, which we denote simply by S, or by S = 1 for emphasis. A solution

of the system S over a group Γ is a tuple of elements g1, . . . , gn ∈ Γ such that after

replacement of each xi by gi the left hand side of every equation in S(X,A) = 1

represents the trivial element of Γ, i.e. s(g1, . . . , gn) = 1 in G for all s ∈ S.
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To study equations over a fixed group Γ it is convenient to consider the category

of Γ-groups. These are groups which contain Γ as a distinguished subgroup, i.e. an

object is a group H together with a monomorphism Γ ↪→ H. A morphism from H

to K is a Γ-homomorphism, which is a homomorphism φ : H → K such that gφ = g

for every g ∈ Γ. We always assume that a homomorphism between two Γ groups is

a Γ-homomorphism, and we denote by HomΓ(H,K) the set of all Γ-homomorphisms

from H to K. The group Γ[X] is a Γ-group5 .

A solution to the system S over Γ can be described as a Γ-homomorphism

φ : Γ[X]→ Γ such that sφ = 1 for all s ∈ S. Let ncl (S) be the normal closure of S

in Γ[X] and

ΓS = Γ[X]/ncl (S) .

Then every solution of S in Γ gives rise to a Γ-homomorphism ΓS → Γ, and vice

versa. We use the notation ḡ = (g1, . . . , gn) for elements of Γn and write S(ḡ) = 1 if

ḡ is a solution to S. The set of all solutions in Γ of the system S = 1 is called the

algebraic variety defined by S and is denoted VΓ(S) or V (S). To VΓ(S), or rather to

S, we associate a normal subgroup RΓ(S) (or R(S)) of Γ[X] called the radical of S

and defined by

RΓ(S) = {T (x) ∈ Γ[X] | ∀ ḡ ∈ Γn (S(ḡ) = 1 =⇒ T (ḡ) = 1)}.

5 Further, it is a free object in the category of Γ-groups.
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Equivalently, RΓ(S) is the intersection of the kernels of all φ ∈ Hom(ΓS,Γ). Note

that ncl (S) ⊂ RΓ(S). The quotient of Γ[X] by RΓ(S) is called the coordinate group

of the algebraic variety VΓ(S) (or of S) and denoted

ΓRΓ(S) = Γ[X]/RΓ(S).

Again, every solution of S in Γ can be described as a Γ-homomorphism ΓRΓ(S) → Γ.

Example 2.4.1. Let Γ be any torsion-free group and consider the system of

equations (corresponding to) S = {x2}. If x → g is any solution to S over Γ, then

g2 = 1 hence g = 1. Consequently, x ∈ RΓ(S) so ΓR(S) = 〈Γ, x |x〉 ' Γ whereas

ΓS = 〈Γ, x |x2 = 1〉 ' Γ ∗ Z2. �

Systems without coefficients

When a system of equations S is a subset of the free subgroup F (X) of Γ[X]

we say that S is a system without coefficients. In this case, we may choose to work

in the category of groups rather that Γ-groups. The radical R(S) is then defined as

a subset of F (X) and the coordinate group is defined as F (X)/R(S).

Systems of equations without coefficients arise naturally in the study of the set of

homomorphisms Hom(G,Γ) from an arbitrary finitely presented group G = 〈X |S〉

to a fixed group Γ. We may think of the relators S as a system of equations, without

coefficients. The set of solutions to S over Γ is precisely Hom(G,Γ). Notice that

since the inclusion ncl (S) ⊂ R(S) may be proper, the coordinate group F (X)/R(S)

may be a proper quotient of G = F (X)/ncl (S).
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In the same manner, a system of equations S(X,A) = 1 with coefficients corre-

sponds to the presentation 〈X,A |S,R〉 of the Γ-group ΓS, where Γ = 〈A|R〉. Again,

the coordinate group may be a proper quotient of ΓS.

Zariski topology and equational Noetherian property

Let Γ be a non-abelian CSA group. We define the Zariski topology on Γn by

taking algebraic varieties as the collection of closed sets. The entire space Γn is closed

since V (∅) = Γn, and the empty set is closed since V ({xg−1, xh−1}) = ∅ for g, h ∈ Γ

with g 6= h. If S and T are systems of equations, then V (S) ∩ V (T ) = V (S ∪ T )

and it follows that arbitrary intersections of algebraic sets are algebraic. The CSA

property is needed to prove that union of two algebraic sets is algebraic6 : if g and

h are non-commuting elements of Γ the system

{[s, t] = 1, [s, tg] = 1, [s, th] = 1, | s ∈ S, t ∈ T}

defines the same variety as V (S) ∪ V (T ).

We say that two systems of equations S, T ⊂ Γ[X] are equivalent (over Γ)

if V (S) = V (T ). A group Γ is called equationally Noetherian if every system of

equations S over Γ is equivalent to a finite subsystem S0 ⊂ S.

When Γ is equationally Noetherian, the Zariski topology on Γn (for any n ∈ N)

is Noetherian, i.e. every properly descending chain of closed (algebraic) subsets is

finite. An algebraic variety is irreducible if it is irreducible in the Zariski topology,

6 If Γ is not CSA, one may take algebraic varieties as a sub-basis for the closed
sets and obtain a topology.
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i.e. it cannot be written as the union of two proper non-empty algebraic varieties. In

a Noetherian topology, every closed set V may be decomposed uniquely as a union

of finitely many irreducible varieties, which are called the irreducible components of

V .

Equationally Noetherian groups are abundant, and include all of the following:

linear groups ([Bry77], [BMR99]), in particular finite rank free groups [Gub86]; hy-

perbolic groups, both torsion-free [Sel09] and with torsion [RW10]; toral relatively

hyperbolic groups [Gro05].

2.5 Limit groups

Our results are primarily concerned with the class of groups known as Γ-limit

groups, where Γ is any torsion-free hyperbolic group. The case when Γ is a free

group F has been widely studied, and these groups are simply called limit groups.

Chapter 3 is concerned with limit groups, and Chapter 4 with Γ-limit groups. We

discuss the theory of limit groups in this section, and postpone discussion of the

general case of Γ-limit groups until Chapter 4. Much of the material here is based

on the presentation given in [KM10].

Limit groups have appeared in a variety of contexts, and as such have several

(equivalent) definitions. We give four of these in the Propositions 2.5.1 and 2.5.2,

the terminology of which will be explained, and proof given, in the following sections

as we explore the related theory. Limit groups may be defined both in the category

of groups and the category of F -groups, so we have two sets of definitions.

Proposition 2.5.1 (definitions of limit groups, category of groups). Let G be a

finitely generated group. Then the statements below are equivalent.
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1. G is a non-abelian limit group.

2. G is non-abelian and fully residually free.

3. Th∃(G) = Th∃(F2) in the language of group theory without constants.

4. There exists a system of equations S, without coefficients, over F such that

V (S) is irreducible and G ' F (X)/R(S).

Proof. See below.

Proposition 2.5.2 (definitions of limit groups, category of F -groups). Let F be a

non-abelian free group and G be a finitely generated F -group. Then the statements

below are equivalent.

1. G is a non-abelian limit group, in the category of F -groups (‘restricted limit

group’).

2. G is a non-abelian fully residually free (in the category of F -groups).

3. Th∃(G) = Th∃(F ) in the language of group theory with constants from F .

4. There exists a system of equations S (possibly with coefficients) over F such

that V (S) is irreducible and G ' FR(S).

Proof. See below.

Limit groups may also be described as topological limits of marked groups in the

Gromov-Hausdorff topology, as groups which embed in ultrapowers of free groups, and

as finitely generated subgroups of Lyndon’s groups FZ[t]. We will not discuss the first

and second description, referring the reader instead to [CG05],[KM10]. Subgroups

of Lyndon’s group will be discussed in Chapter 3. We list below some properties of

limit groups.
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Proposition 2.5.3. Let G be a limit group, either in the category of groups or F -

groups, for a non-abelian free group F . Then the following statements are true.

1. G is torsion-free.

2. Every subgroup of G is a limit group.

3. For all g, h ∈ G the subgroup 〈g, h〉 is either free of rank two or abelian.

4. G has the CSA property.

5. G is toral relatively hyperbolic.

Proof. Items (1), (2), and (3) are not hard to prove, as we will see shortly. Item (4)

is proved in [MR96] and (5) is proved in [Ali05] and [Dah03].

Fully residually free groups

The study of residual properties in groups dates back at least to Marshall Hall,

Jr. [Hal59]. Let Γ be any group.

Definition 2.5.4. A group G is fully residually Γ, or Γ-discriminated, if for

every finite subset {g1, . . . , gn} of non-trivial elements of G there exists a homomor-

phism φ : G → Γ such that gφi 6= 1 for all i. Equivalently, for every finite subset F

of G there is a homomorphism from G to Γ that is injective on F . �

If the homomorphism φ can always be chosen from a set of homomorphisms Φ

then we say that Φ discriminates G into Γ. If the definition is only known to hold for

n = 1 then we say that G is residually Γ or Γ-separated. When Γ is a free group we

say that G is fully residually free. In this case, we may assume that Γ is a free group

two generators F2. Indeed, Γ need not be infinite rank since in any finite collection

of elements of Γ only a finite number m of generators appear hence we may take

F = Fm. Since Fm is a subgroup of F2, we may take F = F2. We may consider fully
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residually Γ groups in the category of Γ-groups, interpreting ‘homomorphism’ in the

definition as ‘Γ-homomorphism’.

Example 2.5.5. The free abelian groups Zn are fully residually free. For Z2,

suppose we are given a finite subset {(ai, bi)}mi=1 ⊂ Z2 of non-zero elements. Then

for any N > maxi{|bi|}, the homomorphism φ : Z2 → Z defined by φ(1, 0) = N ,

φ(0, 1) = 1 meets the requirements since φ(ai, bi) = Nai + bi 6= 0. �

We can easily prove items (1), (2), and (3) of Proposition 2.5.3. Let G be

residually free. Then G is torsion-free since for any non-trivial g ∈ G, any map

φ : G → F with gφ 6= 1 will fail to be a homomorphism if gn = 1 for some n 6= 0.

Property (2) is immediate.

For (3), let g, h ∈ G and assume 〈g, h〉 is not abelian. Then [g, h] 6= 1 and

there exists a homomorphism φ : G → F that does not send any element of the set

{g, h, [g, h]} to 1. Consider the subgroup H = 〈gφ, hφ〉 ≤ F . Since [gφ, hφ] 6= 1, H

is not cyclic hence is free on {gφ, hφ}. If 〈g, h〉 is not free of rank 2, then there is

a non-trivial word w(g, h) in generators g, h that represents the identity of G. But

then

1 = w(g, h)φ = w(gφ, hφ),

which contradicts the fact that H is a free group on {gφ, hφ}.

Elementary theory of groups

A first order sentence in the language of group theory is a (well-formed) formula

in first order logic without free variables and using a binary function symbol ‘·’, a
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unary function symbol ‘ −1’, and a constant ‘1’. For example, the expression

∀x∀y (x−1y−1xy = 1) (2.2)

is a first order sentence (we have omitted the binary function symbol ‘·’). A sentence

may be interpreted in a group G in the obvious way: ‘1’ is interpreted as the group

identity, ‘·’ as group multiplication, ‘ −1’ as group inversion, and the quantifiers range

over elements of G. Consequently, the sentence above is assigned the value ‘true’ if

and only if G is abelian. We say the sentence is true in G.

Definition 2.5.6. The elementary theory of a group G is the set of first order

sentences that are true in G, and is denoted Th(G). The existential theory of G is

the set of sentences of the form ‘∃x1∃x2 . . . ∃xm S’ that are true in G, where S is

any quantifier-free formula, and is denoted Th∃(G). The universal theory is defined

analogously. �

In the category of Γ-groups, where Γ is generated by a set A, we allow symbols

from A to appear in sentences as constant symbols. In this case, we refer to Th(G)

as the elementary theory of G with constants.

Note that two groups have the same existential theory if and only if they have

the universal theory, since the negation of the existential sentence ‘∃x1∃x2 . . . ∃xm S’

is the universal sentence ‘∀x1∀x2 . . . ∀xm ¬S’.

Example 2.5.7. The existence of torsion in a group is encoded in its existential

theory. The group G has torsion if and only if for some n ≥ 2 the sentence

∃x (x 6= 1) ∧ (

n︷ ︸︸ ︷
x · x · · · · · x = 1)
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is in Th∃(G). �

Example 2.5.8. The free abelian groups Z and Z2 do not have the same

elementary theory. For every three integers, two must have the same parity, hence

the sentence

∀x∀y∀z∃w
(
(xy = w2) ∨ (xz = w2) ∨ (yz = w2)

)
is in Th(Z). This sentence is not true in Z2, though a similar sentence regarding any

set of 5 elements serves to distinguish Th(Z2) from Th(Z3). �

Two questions posed by Alfred Tarski around 1945 provided motivation for

studying the elementary theory of groups:

1. Do all finite-rank non-abelian free groups have the same elementary theory?

2. Is the elementary theory of a finite-rank free group decidable?

A theory T is decidable if there exists an algorithm that determines, for any sentence

s, whether or not s ∈ T . The abelian free group Z is excluded from the first question

since being abelian is determined by the universal theory, hence Z has a distinct

theory. Both questions have been answered in the affirmative by Kharlampovich

and Myasnikov [KM06], and the first question also by Sela [Sel06]. The authors

described the class of finitely generated groups with the same elementary theory

as F2 as coordinate groups of regular NTQ systems (or hyperbolic ω-residually free

towers in Sela’s description). We will discuss NTQ systems in Chapter 4.

The same questions may be asked of the existential theory of non-abelian free

groups. We will prove the equivalence (3) ⇐⇒ (2) of Proposition 2.5.1, showing

that the non-abelian group with the same existential theory of F2 are precisely the

non-abelian fully residually free groups. Note that since Fn ↪→ F2 ↪→ Fn (for n ≥ 2),
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any existential sentence which holds in Fn must also hold in F2, and conversely, hence

all non-abelian free groups have the same existential theory.

Let G be non-abelian and fully residually free. By Proposition 2.5.3 (3), there

exist g, h ∈ G such that 〈g, h〉 ' F2. Any existential sentence that holds in F2 also

holds in G, so Th∃(F2) ⊂ Th∃(G).

Now take any sentence ∃z1 . . . ∃zm S(z̄) in Th∃(G), where S(z̄) is a formula

without quantifiers and z̄ = (z1, . . . , zm). We may assume that S(z̄) is written in

disjunctive normal form. Then there exists a (conjunctive) clause

(s1(z̄) = 1) ∧ . . . ∧ (sk(z̄) = 1) ∧ (t1(z̄) 6= 1) ∧ . . . ∧ (tl(z̄) 6= 1)

in S(z̄) and an m-tuple ḡ = (g1, . . . , gm) ∈ Gm satisfying the clause. Since the words

t1(ḡ), . . . , tl(ḡ) represent non-trivial elements of G, there exists a homomorphism

φ : G→ F2 such that

ti(ḡ)φ = ti(g
φ
1 , . . . , g

φ
m) 6= 1

for i = 1, . . . , l. Since φ is a homomorphism, we also have sj(g
φ
1 , . . . , g

φ
m) = 1

for j = 1, . . . , k. Consequently, the sentence ∃z1 . . . ∃zm S(z̄) is satisfied by ḡφ =

(gφ1 , . . . , g
φ
m) ∈ Fm

2 hence is in Th∃(F2).

Conversely, suppose Th∃(G) = Th∃(F2) and let {g1, . . . , gn} be a set of non-

trivial elements of G. Since G is finitely generated, it has a presentation G = 〈X |S〉,

with S possibly infinite. Consider S as a system of equations over F2 (without

coefficiets). Since F2 is equationally Noetherian, there exists a finite subsystem

T = {t1, . . . , tk} ⊂ S such that VF2(S) = VF2(T ). Express each gi as a word wi(x̄) in
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generators x̄ = (x1, . . . , xm) of X and consider the sentence

σ : ∃z1 . . . ∃zm(w1(z̄) 6= 1) ∧ . . . ∧ (wn(z̄) 6= 1) ∧ (t1(z̄) = 1) ∧ . . . ∧ (tk(z̄) = 1).

Then σ ∈ Th∃(G), witnessed by z̄ = x̄, since all gi are non-trivial and T ⊂ S. Hence

σ ∈ Th∃(F2), so there exists ā = (a1, . . . , an) ∈ F n
2 such that wi(ā) 6= 1 and tj(ā) = 1

for all i, j. Since ā is a solution to T and V (S) = V (T ), it is also a solution to

S and the corresponding map φ : G → F2, i.e. the map defined by gφi = ai, is a

homomorphism. Since wi(ā) = wi(x̄)φ the image of each gi under φ is non-trivial

and G is fully residually free.

Makanin proved that the existential theory of non-abelian free groups is decid-

able [Mak84]. An existential sentence

∃z̄
n∨
i=1

((si1(z̄) = 1) ∧ . . . ∧ (sili(z̄) = 1) ∧ (ti1(z̄) 6= 1) ∧ . . . ∧ (timi(z̄) 6= 1))

is true in a group Γ if and only if one of the system of equations and inequations

{si1(z̄) = 1, . . . , sili(z̄) = 1, ti1(z̄) 6= 1, . . . , timi(z̄) 6= 1}

has a solution in Γ. Makanin described an algorithm that decides if a given system

of equations has a solution in a free group F . Razborov showed that one can find

all of the solutions, giving an algorithm that produces a diagram that ‘encodes’ all

solutions [Raz84]. These are now known as Makanin-Razborov diagrams and we will

discuss them in Chapter 4. An extension of this algorithm by Kharlampovich and

Miasnikov, which they call an elimination process [KM98b], plays an essential role

in the solution to Tarski’s second question.
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Makanin’s result on decidability of existential theory was extended to the case

of torsion-free hyperbolic groups by Sela, and to relatively hyperbolic groups by

Dahmani.

Proposition 2.5.9 ([Sel09], [Dah09]). The existential theory, with constants, of

every toral relatively hyperbolic group is decidable.

Coordinate groups of algebraic varieties

Coordinate groups of algebraic varieties over Γ have a major role in algebraic

geometry over Γ, and appear in the construction of Makanin-Razborov diagrams.

They also completely describe the class of groups that are residually Γ and fully

residually Γ.

Proposition 2.5.10. Let Γ = 〈A|R〉 be an equationally Noetherian group generated

by the finite set A and let G be a finitely generated Γ-group. Then

1. G is residually Γ if and only if G is isomorphic to the coordinate group an

algebraic variety over Γ, and

2. G is fully residually Γ if and only if G is isomorphic to the coordinate group of

an irreducible algebraic variety over Γ.

Proof. Let G be presented by 〈X,A |S〉. Since G is a Γ-group, we may assume

R ⊂ S. Considering S as a system of equations over Γ, we have G ' ΓS.

An important fact, which we will use often in Chapter 4, is that

ncl (S) = R(S) ⇐⇒ ΓS is residually Γ,

which proves statement (1). To prove this fact, suppose there exists w ∈ R(S) \

ncl (S). Then w 6= 1 in ΓS, but for every solution φ of S we have wφ = 1, hence ΓS is
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not residually Γ. Conversely, if ΓS is not residually Γ then some non-trivial element

w ∈ ΓS is sent to 1 under every solution of S hence is in R(S) \ ncl (S).

Now assume that G is fully residually Γ, so in particular G is residually Γ and

G ' ΓR(S). Suppose, for contradiction, that V (S) is reducible. Since Γ is equationally

Noetherian, closed set are algebraic so there exist systems S1, S2 such that

V (S) = V (S1) ∪ V (S2) (2.3)

with V (S1) and V (S2) both proper subsets of V (S). It follows that neither R(S1)

nor R(S2) is a subset of the other. Indeed, if say R(S1) ⊂ R(S2), then any solution

of S2 would also be a solution of S1 and we would have V (S2) ⊂ V (S1). Hence there

exist w1 ∈ R(S1) \ R(S2) and w2 ∈ R(S2) \ R(S1). But then every homomorphism

φ : ΓR(S) → Γ is, by (2.3), either a solution to S1, in which case wφ1 = 1, or a solution

to S2, in which case wφ2 = 1. So the set {w1, w2} witnesses the fact that ΓR(S) is not

fully residually Γ, a contradiction.

Conversely, suppose that G ' ΓR(S) such that V (S) is irreducible. Suppose, for

contradiction, that there exists a finite subset {w1, . . . , wm} ⊂ ΓR(S) of non-trivial

elements such that for every homomorphism φ : ΓR(S) → Γ there exists a j such that

wφj = 1. Every solution of the system S is a homomorphism from ΓR(S) to Γ, hence

is a solution to one of the systems S ∪ {w1}, . . . , S ∪ {wm}. Consequently,

V (S) =
m⋃
i=1

V (S ∪ {wi}).
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For every i, wi /∈ R(S) so the system S has a solution that does not solve wi. Hence

each V (S ∪ {wi}) is a proper subset and V (S) is reducible, which is a contradiction.

The above lemma also holds in the category of groups, with a similar proof.

Limit groups

In his solution to Tarksi’s first question, Sela constructed [Sel01], for any finitely

presented group G, an action of G on an R-tree7 . The quotient of G by the kernel of

this action was termed a limit group. We present a reformulation of this definition,

given in [BF09].

Definition 2.5.11. Let G and Γ be finitely generated groups, and {φn : G→

Γ}∞n=1 a sequence of homomorphisms. The stable kernel of {φn}∞n=1 is defined as

Ker−−→(φn) = {g ∈ G | g ∈ ker(φn) for all but finitely many n}.

The sequence {φn}∞n=1 is called stable if for all g ∈ G there exists N ∈ N such that

for all n > N , gφn = 1, or for all n > N , gφn 6= 1. �

Since the stable kernel is a normal subgroup of G, we may make the following

definition.

Definition 2.5.12. A finitely generated group G is a Γ-limit group if there

exists a finitely generated group H and a stable sequence of homomorphisms {φn :

7 An R-tree is a 0-hyperbolic geodesic space.
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H → Γ}∞n=1 such that

G ' H/Ker−−→(φn).

Limit groups are precisely F -limit groups, where F is any finite-rank free group. �

We may now prove the equivalence (2) ⇐⇒ (1) of Proposition 2.5.1. Assume G

is fully residually free and let Bn be the ball of radius n in the Cayley graph of G with

respect to a (finite) generating set X. Since Bn is finite, there is a homomorphism

φn : G→ F2 that is injective on Bn. Any element g ∈ G is in Bn for all n ≥ ‖g‖, so

the sequence {φn}∞n=1 is stable with Ker−−→(φn) = 1, hence

G/Ker−−→(φn) ' G

and G is a limit group.

Conversely, assume that G = H/Ker−−→(φn) is a limit group and let {h1, . . . , hm}

be a set elements of H not in Ker−−→(φn). For each hi, there exists an integer ni such

that hφki 6= 1 for all k ≥ ni. Set N = max{ni | i = 1, . . . ,m}. Then hφNi 6= 1 for all i

hence G is fully residually free.

In the category of Γ-groups, we may make the same definitions. Note that if G is

a Γ-group and {φn} a stable sequence of Γ-homomorphisms, then Γ∩Ker−−→(φn) = 1 so

G/Ker−−→(φn) is again a Γ-group. Limit groups in the category of F -groups are referred

to as restricted limit groups in Sela’s work [Sel01].
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CHAPTER 3
Compressed words in limit groups

Let F be the free group on a finite set X. The word problem in F is easy to

solve: simply cancel all pairs of the form xx−1 and x−1x and check whether or not

the resulting word is empty. A naive implementation of this algorithm solves the

problem in time O(n2).

The word problem in the automorphism group Aut(F ) of F , however, presents

an interesting computational complexity problem. A classical result of Nielsen shows

that Aut(F ) is finitely generated, with the generators being described as word map-

pings X → (X±)∗ [Nie19]. Consequently, the word problem in Aut(F ) is easily seen

to be decidable: the composition of automorphisms φn . . . φ1 is the identity if and

only if it acts as the identity on each generator of X, so it suffices to check whether

or not φn . . . φ1(x) is equal to x, for every x ∈ X. Finding an efficient (polynomial

time) algorithm, however, is difficult since the word length of φn . . . φ1(x) may be

exponential in n, and was posed as an open problem in [KMSS03].

The problem remained open until Schleimer provided a solution in [Sch08], mak-

ing use of Plandowski’s technique of compressed words from computer science [Pla94].

Compressed words provide an efficient encoding of certain long words with regular

structure, and Plandowski’s key result is a method to check equality of two such
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words by examining their encodings. They have now been studied in several con-

texts in group theory, including partially commutative groups, free products, certain

group extensions, and HNN-extensions [LS07], [HL08], [HLM10].

In this chapter we prove that the compressed word problem in limit groups (de-

fined below) is decidable in polynomial time and consequently the word problem in

the autmorphism group of a limit group is also decidable in polynomial time.

3.1 The compressed word problem

A straight-line program (SLP) is a tuple A = (X,A, An,P) consisting of a finite

alphabet A = {An, . . . , A1} of non-terminal symbols, a finite alphabet X of terminal

symbols, a root non-terminal An ∈ A, and a set of productions

P = {Ai → Wi | 1 ≤ i ≤ n}

where Wi ∈ {Aj | j < i}∗∪X∪{φ}, where φ represents the empty word. Straight-line

programs are a type of context-free grammar. We ‘run’ the program A by starting

with the one-letter word An and replacing each non-terminal Ai by Wi and continuing

this replacement procedure until only terminal symbols remain. The condition j < i

ensures that the program terminates. The resulting word is denoted wA, and we

denote by wAi the result of running the same program starting with Ai instead of

the root An. We say that Ai produces wAi , or that wAi is the expansion of Ai. The

SLP A (and, abusing language, wA) is also called a compressed word over X. The

reader may consult [Sch08] for a more detailed introduction to compressed words.

The size |A| of an SLP is the sum
∑n

i=1 |Wi|, where |·| denotes word length.

We will be interested in analyzing the time complexity of algorithms taking as input
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SLPs. For our purposes, it will always be the case that there exists an integer M

such that |Wi| ≤M for all i. Therefore |A| is linear in the number n of non-terminal

symbols, so for time complexity analysis we may simply assume that |A| = n. An

SLP with n non-terminal symbols can encode a word wA of length at most Mn, and

this bound is attainable.

Example 3.1.1. Consider the SLP with X = {a, b}, A = {Ai | i = 0, . . . , 10},

root non-terminal A10 and production rules A0 → a, A1 → b, and

A4n−2 → A4n−4A4n−3,

A4n−1 → A4n−3,

A4n → A4n−2,

A4n+1 → A4n−1A4n,

for n ≥ 1. We run the program as follows:

A10 → A8A9 → A6A7A8 → A4A5A5A6 → A2A3A4A3A4A4A5

→ A0A1A1A2A1A2A2A3A4 → abbA0A1bA0A1A0A1A1A2

→ abbabbababbA0A1 → abbabbababbab,

hence wA10 = abbabbababbab. �

Remark 3.1.2. We may use any finite linear ordered set instead of {An, . . . , A1} for

the set of non-terminal symbols. As the linear order only serves to ensure that the

program terminates, we will not mention it.

Any algorithm that takes as input a word over the alphabet X can be applied

to compressed words over X by simply running the algorithm on the expansion wA,
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but this converts a time T (n) algorithm to one that runs in time O(T (M |A|)). In

order to obtain polynomial time algorithms, we need to work directly with the SLP

without expanding it. A fundamental result of W. Plandowski allows us to compare

compressed words without computing their expansions.

Proposition 3.1.3 ([Pla94]). There is a polynomial time algorithm which, given

straight-line programs A and B over an alphabet X, decides whether or not wA and

wB are the same words, character-for-character.

In the context of group theory, character-for-character inequality does not imply

that the words represent different group elements. For a group G generated by

g1, . . . , gm, we define the compressed word problem for G as the following: given an

SLP A over {g±1
1 , . . . , g±1

m } decide whether or not wA represents the identity element

of G. For free groups, the compressed word problem has a polynomial time solution.

Proposition 3.1.4 ([Loh04]). There is a polynomial time algorithm which, given a

straight-line program A over the alphabet X±, decides whether or not wA represents

the identity element of the free group on X.

The reader may consult [Sch08] for highly accessible proofs of Propositions 3.1.3

and 3.1.4.

3.2 Extensions of centralizers and Lyndon’s group FZ[t]

In order to study limit groups computationally, we make use of an embedding

of limit groups into groups obtained from free groups by extensions of centralizers

(Proposition 3.2.2). Extensions of centralizers give another equivalent characteriza-

tion of limit groups (see Proposition 2.5.1).
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Let G be a group, g ∈ G, and let C(g) be the centralizer of g in G. The free

rank m extension of the centralizer of g is the group presented by

G′ = 〈G, t1, . . . , tm | [ti, C(g)], [ti, tj], 1 ≤ i, j ≤ m〉.

Under certain conditions, G′ is fully residuallyG. A detailed study of these conditions

is given in [BMR02], but we will only be interested here in the case of free groups

and in Chapter 4 in the case of toral relatively hyperbolic groups.

Proposition 3.2.1. Let H be a toral relatively hyperbolic group, and consider a

sequence of groups

H = G0 < G1 < . . . < Gn

where Gi is obtained from Gi−1 by a free extension of the centralizer of some element

of Gi−1. Then Gn is fully residually H.

Proof. Follows immediately from the results of §5 of [BMR02] and Proposition 1.1

of [KM09].

In studying equations over free groups, R. Lyndon defined a group FZ[t] that

is central to the theory of limit groups and to our present purpose [Lyn60]. While

Lyndon defined FZ[t] in terms of ‘parametric words’, it is more useful for us to use a

definition in terms of extensions of centralizers, given in [MR96].

For a group G, let R(G) be a subset of G such that no two elements of R(G)

are conjugate, and that if g ∈ G and CG(g) = 〈g〉 then there exists u ∈ R(G) and

h ∈ G such that CG(g) = h−1CG(u)h. The extension of (all) cyclic centralizers of G
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is the group with presentation

〈G, tu,i (u ∈ R(G), i ∈ N) | [tu,i, u], [tu,i, tu,j], (u ∈ R(G), i, j ∈ N)〉. (3.1)

Let F be a free group of rank at least two. Then Lyndon’s group FZ[t] is the direct

limit (‘union’) of the infinite chain of groups

F = H0 < H1 < H2 < . . . (3.2)

where Hi+1 is obtained from Hi by extension of all cyclic centralizers.

Lyndon proved that FZ[t] is fully residually free [Lyn60], hence so are all of its

subgroups. Conversely, Kharlampovich and Miasnikov proved that every coordinate

group of an irreducible affine variety over a free group embeds in FZ[t], and that the

embedding can be effectively constructed [KM98b],[KM99]. Recalling the equivalent

definitions of limit groups given in Proposition 2.5.1, we have the following important

result.

Proposition 3.2.2 ([Lyn60],[KM98b],[KM99]). Let G be a finitely generated group.

Then G is fully residually free if and only if G embeds into FZ[t]. Further, there exists

an algorithm that, given a presentation of a fully residually free group G, computes

an embedding of G into FZ[t].

In [MRS05], the authors gave a construction of FZ[t] using infinite words and

using this were able to prove decidability of the conjugacy and power problems in

FZ[t]. We will use two results from this construction: normal forms, which we discuss

in detail in the next section, and a Lyndon length function on FZ[t].
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Let l be a function l : G → A, where A is an ordered abelian group and let

g1, g2, g3 ∈ G. Define the length of the maximum common prefix of g1 and g2 as

cp(g1, g2) =
1

2

(
l(g1) + l(g2)− l(g−1

1 g2)
)

and define ◦ by

g1 = g2 ◦ g3 ⇐⇒ (g1 = g2g3 and l(g1) = l(g2) + l(g3)) .

The function l is a regular free Lyndon length function on G if it satisfies the following

axioms:

(i) ∀ g ∈ G : l(g) ≥ 0 and l(1) = 0,

(ii) ∀ g ∈ G : l(g) = l(g−1),

(iii) ∀ g ∈ G : g 6= 1 =⇒ l(g2) > l(g),

(iv) ∀ g1, g2 ∈ G : cp(g1, g2) ∈ A,

(v) ∀ g1, g2, g3 ∈ G : cp(g1, g2) > cp(g1, g3) =⇒ cp(g1, g3) = cp(g2, g3) , and

(vi) ∀ g1, g2 ∈ G ∃h, g′1, g′2 ∈ G such that l(h) = cp(g1, g2) and g1 = h ◦ g′1 and

g2 = h ◦ g′2.

For elements g, h ∈ G we say that h is a prefix of g if there exists g′ ∈ G such that

g = h ◦ g′. It easily follows from the axioms that if l(g) > 0 then g 6= 1.

We consider the polynomial ring Z[t] as an ordered abelian group via the right

lexicographic order induced by the direct sum decomposition Z[t] = ⊕∞m=0〈tm〉. We

will use the natural isomorphism Z[t] ' Z∞ implicity, e.g. (1, 2,−3) = 1 + 2t− 3t2.

Using infinite words, [MRS05] proved that FZ[t] admits a regular free Lyndon length
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function l : FZ[t] → Z[t]. Though we will not need to know how l is constructed, we

give a brief example below to give the reader some intuition.

Example 3.2.3. Let F = F (a, b) be the free group on generators a, b. We

will describe a Lyndon length function l : G → Z2 on the extension of centralizer

G = 〈a, b, t | [ab, t]〉. The general construction, with proof, can be found in [KM05a]

and [MRS05]. Let w be a word over G. Since G is an HNN-extension of F , w may

be written in reduced form as

w = g1t
a1g2t

a2 · · · gmtamgm+1,

where gi ∈ F for all i and [gi, t] 6= 1 for i = 2, . . . ,m+ 1. For any M ∈ Z set

l1(w,M) = ‖(g1(ab)ε1Mg2 · · · gm(ab)εmMgm+1‖ −m‖(ab)M‖

where εi = sgn(ai) and ‖·‖ denotes geodesic length. There exists (see [MRS05]) a

positive integer M0 such that for any M > M0, l1(w,M0) = l1(w,M). Then set the

Lyndon length of w to be

l(w) =

(
l1(w,M0),

m∑
i=1

|ai|

)
.

For example, the word w = a(ab)11t−1aaba−1t (which is in reduced form as written)

has word length |w| = 29. For its Lyndon length, use M = 30 and compute

l1(w, 30) = ‖a(ab)11(ab)−30aaba−1(ab)30‖ − 2‖(ab)30‖ = −21.

Hence w has Lyndon length l(w) = (−21, 2). �
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3.3 Normal forms for finitely generated subgroups of FZ[t]

Consider a chain of subgroups

F = G0 < G1 < . . . < Gn, (3.3)

where each Gk is a subgroup of the group Hk from (3.2) and is obtained from Gk−1 by

free finite rank extensions of finitely many centralizers. Any such chain is specified

by finite subsets R(Gk) ⊂ R(Hk) and Tk = {tu,i | u ∈ R(Gk), 1 ≤ i ≤ Nk(u)}, for

k ≤ n, such that

Gk = 〈Gk−1, Tk | [u, tu,j], [tu,i, tu,j]
(
u ∈ R(Gk−1), 1 ≤ i, j ≤ Nk(u)

)
〉. (3.4)

Any finitely generated subgroup of FZ[t] is a subgroup of a group Gn of this form.

Let X0 be a generating set of F and set Xk = X0 ∪
⋃k
i=1 Ti. The set Xk generates

Gk. We will assume that each element u ∈
⋃n
k=1R(Gk) is given as a word in the

alphabet X±n such that |u| = ‖u‖. Since the word problem in FZ[t] is decidable1 , we

may find such representatives effectively using an exhaustive search.

In this section we define a normal form for elements of Gn. It is based on the

normal form for elements of FZ[t], expressed as infinite words, given in [MRS05].

For β = (β0, β1, . . .) ∈ Z[t], let σ(β) = sgn(βd) where d = deg(β). A word w

over X±0 is declared to be in normal form if and only if it is freely reduced. A word

1 The conjugacy problem is decidable, hence so is the word problem since g = 1 if
and only if g is conjugate to 1.
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w over X±k is in normal form if and only if w is written as

w = g1u
c1
1 τ

α1
1 . . . gmu

cm
m ταmm gm+1, (3.5)

where ci are integers, αi = (αi1, . . . , αiNk(ui)) ∈ ZNk(ui), ui ∈ R(Gk−1), ταii =

tαi1ui,1
tαi2ui,2
· · · tαiNk(ui)

ui,Nk(ui)
and

(I) for all i, αi 6= 0,

(II) for all i, gi is a word over X±k−1,

(III) for every i = 1, . . . ,m, either [ui, ui+1] 6= 1 or [ui, gi+1] 6= 1,

(IV) for any integers qi 6= 0 with sgn(qi) = σ(αi) we have

g1u
q1
1 g2 . . . gmu

qm
m gm+1 = g1 ◦ uq11 ◦ g2 ◦ . . . ◦ gm ◦ uqmm ◦ gm+1.

It is instructive to think of ταii as a very large power of ui. Note that that we do

not require the gi to be written in normal form for Gk−1. We call m the number of

syllables of w.

Lemma 3.3.1. Let L = max{|u| | u ∈
⋃n
i=0R(Gi)}. For every word w over X±n there

is a word NF(w) in normal form such that w = NF(w) in Gn and |NF(w)| ≤ 10L|w|.

Further, the number of syllables of NF(w) is at most |w|.

Proof. In [MRS05], a similar normal form is constructed for elements of FZ[t], viewed

as infinite words. We need only make a few modifications to their result, to ensure

that the bound on |NF(g)| is achieved.

Proceed by induction on n. For the base case, we have that G0 is a free group

and the free reduction of w is a normal form of length at most |w|. We may define
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the number of syllables of every element of G0 to be 1. Assume now that the theorem

holds for Gn−1.

Since Gn has the commutation relations [u, tu,i] = [tu,i, tu,j] = 1, there exists a

word w′ of the form

w′ = h1τ
α1
1 h2 . . . hmτ

αm
m hm+1, (3.6)

where

(i) ταii = tαi1ui,1
tαi2ui,2
· · · tαiNk(ui)

ui,Nk(ui)
and αi 6= 0 for all i,

(ii) each hi is a word over X±n−1,

(iii) for every i = 1, . . . ,m either [ui, ui+1] 6= 1 or [ui, hi+1] 6= 1,

(iv) |w′| ≤ |w|.

We now construct a normal form from w′. The key fact we need is the following:

for any word g over X±n−1, any u ∈ R(Gn−1), and any r > |g|,

ur+1g = u ◦ (urg) and gur+1 = (gur) ◦ u. (3.7)

From the proof of Lemma 7.1 of [MRS05], it follows that (3.7) holds as long as r is

greater than the number of syllables in a normal form of g. Since g ∈ Gn−1, we have

by induction that g has a normal form with at most |g| syllables.

Using this fact, it follows from the proof of Lemma 6.9 of [MRS05] that for

r = |hi|+ 1 we have that

(v) h1u
σ(α1)(r1+1) =

(
h1u

σ(α1)r1
)
◦ uσ(α1),

(vi) for i = 2, . . . ,m,

u
σ(αi−1)(ri−1+1)
i−1 hiu

σ(αi)(ri+1)
i = u

σ(αi−1)
i−1 ◦

(
u
σ(αi−1)ri−1

i−1 hiu
σ(αi)ri
i

)
◦ uσ(αi)

i ,
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and

(vii) uσ(αm)(rm+1)hm+1 = uσ(αm) ◦
(
uσ(αm)rmhm+1

)
.

Now consider the word

w′′ = g1u
c1
1 τ

α1
1 . . . gmu

cm
m ταmm gm+1,

where g1 = h1u
σ(α1)r1
1 , gi = u

σ(αi−1)ri−1

i−1 hiu
σ(αi)ri
i for i = 2, . . . ,m and ci = −σ(αi)(ri+

ri+1) for i = 1, . . . ,m, and gm+1 = u
σ(αm)rm
m hm+1.

We claim that w′′ is a normal form for w. Clearly w′′ = w in Gn. Property (I)

of normal forms is immediate from (i), and (II) holds since all ui and hi are words

over X±n−1. For (III), let i ∈ {1, . . . ,m} and assume that [ui, ui+1] = 1. Then

[ui, gi+1] = [ui, u
σ(αi)ri
i hi+1u

σ(αi+1)ri+1

i+1 ] = u
−σ(αi+1)ri+1

i+1 [ui, hi+1]u
σ(αi+1)ri+1

i+1 ,

and from (iii) we know that [ui, hi+1] 6= 1, hence [ui, gi+1] 6= 1. Property (IV) follows

from (v), (vi), and (vii). Set NF(w) = w′′.

The number m of syllables of NF(w) is equal to the number of syllables in w′,

which is bounded above by |w′|, hence m ≤ |w|. For the bound on |NF(w)|, we have

|NF(w′)| =
m∑
i=1

|ταii |+
m+1∑
i=1

|gi|+
m∑
i=1

|ci||ui|

≤
m∑
i=1

|ταii |+

(
m+1∑
i=1

|hi|+
m+1∑
i=1

2riL

)
+

m∑
i=1

(ri + ri+1)L

≤ |w′|+ 3L
m+1∑
i=1

ri

≤ |w′|+ 3L|w′|+ 3L(m+ 1) ≤ 10L|w|

as required.
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Example 3.3.2. Consider again the word w = a(ab)11t−1aaba−1t from Exam-

ple 3.2.3. A normal form for w is given by

a
(
(ab)12

)
t−1(b−1a−1aaba−1ab)

(
(ab)−1

)
t

where g1 = a, c1 = 12, g2 = b−1a−1aaba−1ab, c2 = −1. It is not necessray to freely

reduce g2, though we may do so if desired. Notice that for any q1 < 0 and q2 > 0,

a(ab)q1(b−1a−1aaba−1ab)(ab)q2 = a ◦ (ab)q1 ◦ (b−1a−1aaba−1ab) ◦ (ab)q2 ,

satisfying (IV). �

3.4 Algorithm for the compressed word problem

Let Gn be a obtained from F by a finite sequence of finite rank free extension

of centralizers, as in (3.3). Recalling from (3.4) that Nk(u) is the number of distinct

letters tu,i for a given u ∈ R(Gk), set

N = 1 + max{Nk(u) | k ∈ {0, . . . , n− 1}, u ∈ R(Gk)}.

Definition 3.4.1. For any P ∈ N and k ≤ n define a function ϕ(k,P ) : X∗k →

X∗k−1 by ϕ(k,P )(w) = w for g ∈ X∗k−1 and

ϕ(k,P )(tu,i) = uP
i

and define Φ(n,P ) : X∗n → X∗0 by the composition

Φ(n,P ) = ϕ(1,PNn−1 )ϕ(2,PNn−2 ) · · ·ϕ(n−1,PN )ϕ(n,P ).

�
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Obverse that ϕ(k,P ) is a homomorphism since, for every i, j,

[u, ϕ(k,P )(tu,i)] = [u, uP
i

] = 1 = [uP
i

, uP
j

] = [ϕ(k,P )(tu,i), ϕ(k,P )(tu,j)].

Consequently, ϕ(k,P ) and Φ(n,P ) induce homomorphisms ϕ(k,P ) : Gk → Gk−1 and

Φ(n,P ) : Gn → F . We will use Φ(n,P ) to reduce the word problem in Gn to the word

problem in F .

Theorem 3.4.2. Let Gn be obtained from F by a finite sequence of free finite rank

extensions of centralizers as in (3.3) and let w be a word over X±n . Then for any

P > 10L|w|,

Φ(n,P )(w) = 1 in F ⇐⇒ w = 1 in Gn.

Proof. Since Φ(n,P ) is a homomorphism, if w = 1 in Gn then Φ(n,P )(w) = 1 in F . It

remains to show that for any P > 10L|w|,

w 6= 1 in Gn =⇒ Φ(n,P )(w) 6= 1 in F .

We proceed by induction on n. Letting Φ(0,P ) : F → F be the identity map, there is

nothing to prove in the base case n = 0. Assume the theorem holds up to n− 1 and

let w 6= 1 in Gn and P > 10L|w|. By Lemma 3.3.1, w has a normal form

NF(w) = g1u
c1
1 τ

α1
1 g2 . . . gmu

cm
m ταmm gm+1

with |NF(w)| ≤ 10L|w|.

If no letter tu,i appears in NF(w), then w ∈ X∗n−1 and Φ(n,P )(w) = Φ(n−1,PN )(w).

Since

PN > 10L|w| ≥ |NF(w)|
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the induction assumption applies hence Φ(n,P )(w) = Φ(n−1),PN )(w) 6= 1 in F . Other-

wise, at least one tu,i appears with a non-zero power so we may assume that m ≥ 1

and α1 6= 0.

We claim that ϕ(n,P )(u
ci
i τ

αi
i ) is a non-zero power of ui of sign σ(αi), for all i. We

simplify notation by setting u = ui, a = αi, and d = Nn−1(u). We have that

ϕ(n,P )(τ
αi
i ) = ϕ(n,P )(t

a1
u,1 · · · t

ad
u,d) = uadP

d+ad−1P
d−1+...+a1P .

We will give a lower bound of the magnitude of the exponent of u. Since, for all s,

|as| ≤ |NF(w)| ≤ 10L|w| ≤ P − 1,

we have that
d−1∑
s=1

|as|P s ≤
d−1∑
s=1

(P − 1)P s = P d − P.

Consequently |adP d| − |ad−1P
d−1 + . . .+ a1P | ≥ P , and so

adP
d + ad−1P

d−1 + . . .+ a1P = Ci

where |Ci| ≥ P and sgn(Ci) = sgn(ad) = σ(a). Then

ϕ(n,P )(u
ci
i τ

αi
i ) = uCi+ci

with Ci + ci 6= 0 (since |ci| ≤ |NF(w)| < P ) and sgn(Ci + ci) = σ(αi), which proves

the claim.
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Since ϕ(n,P ) is the identity on Gn−1, we have, using property (IV) of normal

forms,

ϕ(n,P )(w) = ϕ(n,P )(NF(w)) = g1 ◦ uC1+c1
1 ◦ g2 ◦ · · · ◦ gm ◦ uCm+cm

m ◦ gm+1.

In particular, the above has Lyndon length

l(ϕ(n,P )(NF(w))) ≥ l(uC1+c1
1 ) > 0

hence ϕ(n,P )(w) 6= 1 in Gn−1.

Now ϕ(n,P )(NF(w)) is a word over X∗n−1 and we will show that |ϕ(n,P )(NF(w))| <

PN . In the worst case, w = tu,itu,i . . . tu,i where |u| = L and i = N − 1. Note that w

is already a normal form. Then

|ϕ(n,P )(NF(w))| = |uPN−1|w|| = |w|PN−1L < PN ,

as required.

We may now apply the induction hypothesis to ϕ(n,P )(NF(w)) to obtain

Φ(n,P )(w) = Φ(n−1,PN )(ϕ(n,P )(NF(w))) 6= 1

in the free group F .

We can use Theorem 3.4.2 to solve the word problem in Gn by setting P =

10L|w| + 1 and checking whether or not Φ(n,P )(w) is trivial in F . Notice that the

length of Φ(n,P )(w) is bounded above by PNn
.

We use this reduction to solve the compressed word problem in Gn.

44



Theorem 3.4.3. Let Gn be a group obtained from a free group by a finite sequence

of free finite rank extensions of centralizers as in (3.3). There is an algorithm that

decides the compressed word problem for Gn in polynomial time.

Proof. First, let us see that for any word w and any q ∈ Z we can write a straight-

line program W q of size 2|w|+ log2 |q| producing wq. We set the root production to

be W q → W q/2W q/2, where the non-terminal W q/2 produces wq/2, and we continue

by induction (making the appropriate adjustments when q is odd). We create at

most log2 |q| non-terminals of the form W p. We can obtain the program W 1, which

produces w and has size 2|w|, by successively dividing w in half. Similarly, we can

obtain W−1.

Now let A be a compressed word over X±n . For each u ∈ ∪ni=1R(Gi) and q ∈ Z,

we can construct, by the remarks above, an SLP with root U q producing uq and

having size 2|u|+ log2 |q|.

Let P = Pn = 10L|wA| + 1 and Pk = PNn−k
. We build an SLP An by replacing

every production of A of the form

A→ tεu,i,

where tu,i ∈ Tn and ε = ±1, by

A→ U εP i .

Notice that wAn = ϕ(n,Pn)(wA) in Gn−1. Repeat this process for An, replacing A →

tεu,i, where tu,i ∈ Tn−1, by A → U εP in−1 , to produce An−1. Continue inductively until

we obtain A1, which is an SLP producing Φ(n,P )(wA). By Theorem 3.4.2, wA1 = 1 in
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F if and only if wA = 1 in Gn so we now apply Lohrey’s algorithm (Proposition 3.1.4)

to decide whether or not wA1 = 1 in F .

We need to show that the size of A1 is polynomial in the size of A. For each

program Ak, we need, for each u ∈ R(Gk), programs U±P
1
k , U±P

2
k , . . . , U±P

Nk(u)

k . Re-

calling that N = 1 + max{Nk(u) | k ∈ {0, . . . , n − 1}, u ∈ R(Gk)}, each new UP ik

adds less than

2|u|+ log2 |P i
k| ≤ 2L+ log2(PN

k )

new non-terminals to Ak. Letting M = maxk{|R(Gk)|}, the program Ak introduces

less than

4LMN + 2N2M log2(Pk)

new non-terminals. In total, over all n levels, the number of new non-terminals is

bounded by

4LMNn+ 2N2M
n−1∑
i=0

log2(Pn−i).

Noting that L,M,N , and n are constants (i.e. they depend on Gn, not on w) and

that Pn−i = PN i
, we have that the number of new non-terminals is in

O

(
n−1∑
i=0

log(Pn−i)

)
= O

(
n−1∑
i=0

N i log(P )

)
= O(log(P ))

= O
(
log(10L · 2|A| + 1)

)
= O(|A|).

Therefore |A1| ∈ O(|A|) and since Lohrey’s algorithm runs in polynomial time in |A1|

we have a polynomial time algorithm for the compressed word problem in Gn.

Theorem 3.4.4. Let G be a limit group. The compressed word problem for G is

decidable in polynomial time.
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Proof. Let G be generated by X. By Proposition 3.2.2, we can effectively construct

an embedding φ : G → FZ[t]. Since G is finitely generated, Gφ is a subgroup of

some group Gn as described in (3.3). In the construction of φ, the group Gn is also

constructed (see [KM98a]).

Now let A be an SLP over X±. For each y ∈ X± introduce a non-terminal Y φ

that produces yφ. Note that maxy∈X±{|yφ|} depends only on G and φ, so is constant

with respect to the input A. Replace each production of the form A→ y by A→ Y φ

to form an SLP A
′. Then wA′ = φ(wA), so it suffices to solve the compressed word

problem in Gn, which we have done in Theorem 3.4.3 in polynomial time.

3.5 Word problem in the automorphism group of a limit group

In this section we prove that the word problem in the automorphism group of

any limit group is decidable in polynomial time. In any group G, a polynomial time

solution to the compressed word problem in G yields a polynomial time solution to

the word problem in any finitely generated subgroup of Aut(G).

Proposition 3.5.1 ([Sch08],[LS07]). Let G be a finitely generated group and H a

finitely generated subgroup of Aut(G). Then the word problem in H reduces in loga-

rithmic space to the compressed word problem in G.

Let us review briefly how this reduction works, following [Sch08]. First, one

needs the generators of H to be described by their action on generators of G. That

is, if G = 〈g1, . . . , gn〉 then each φi ∈ H must be described by

φi(gj) = wij(g1, . . . , gn), (3.8)
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where wij(g1, . . . , gn) is a word over the alphabet {g1 . . . , gn}±1. Now suppose H =

〈φ1, . . . , φk〉 and we want to decide whether or not a word φi1 . . . φim represents the

trivial element of H. Build a set of non-terminals {Aj,p, Aj,p}, where j ∈ {1, . . . , n}

and p ∈ {1, . . . ,m}, with productions

Aj,0 → gj,

Aj,0 → g−1
j ,

Aj,p → wipj(A1,p−1, . . . , An,p−1), p ≥ 1,

Aj,p → (wipj(A1,p−1, . . . , An,p−1))−1, p ≥ 1,

where wipj(A1,p−1, . . . , An,p−1) is the word wipj with every instance of gi replaced by

Ai,p−1 and every instance of g−1
i replaced by Ai,p−1. One may check that

wAj,m = φi1 . . . φim(gj).

Then the word problem in H reduces to checking that wAj,m = gj for all j, i.e. it

reduces to n instances of the compressed word problem in G. Note that the total

number of non-terminal symbols is linear in the length m of the input.

Our goal then is to prove that for any limit group G, we can find a presentation

for the automorphism group Aut(G).

Theorem 3.5.2. Let G = 〈X |R〉 be a limit group. Then Aut(G) is finitely generated

and one can construct a generating set in the form (3.8).

Proof. First, consider the case when G is a freely indecomposable limit group. The

structure of the automorphism group of any such G has been described in [BKM07]

using an Abelian JSJ-decomposition of G. It follows from the results in §5 of that
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paper that Aut(G) is finitely generated and the automorphisms can be described as

in (3.8). Note that constructing an Abelian JSJ-decomposition of a limit group is

effective (Theorem 13.1 of [KM05a]).

Now consider the case that G has a free decomposition. Then G has a Grushko

decomposition as a free product

G = G1 ∗ · · · ∗Gk ∗ Fr, (3.9)

where each Gi is a freely indecomposable non-cyclic group and Fr is a free group of

rank r. This decomposition is unique in the sense that any other such decomposition

has the same k and r and its freely indecompasable non-free factors are conjugate in

G to the factors G1, . . . , Gk. For limit groups, an algorithm for computing a Grushko

decomposition is given in [KM05a].

The automorphism group of any free product of the form (3.9) has been de-

scribed by Fouxe-Rabinovitch and Gilbert [Gil87] in terms of the automorphisms of

its factors. Aut(G) is generated by the following automorphisms.

(i) Permutation automorphisms. For each pair of isomorphic factors Gi ' Gj, fix

an automorhism φij. Choose φij such that the collection is compatible, that is

if Gi ' Gj and Gj ' Gk then φik = φjkφij.

(ii) Factor automorphisms. Each automorphism of Gi and of Fr induces an auto-

morphism of G by acting as the identity on all other factors. Any product of

such automorphisms is called a factor automorphism.

(iii) Whitehead automorphisms. Let S be a basis of Fr. An automorhpism of G is a

Whitehead automorphism if there is an element x in some Gi or in S such that
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each factor Gj is either conjugated by x of fixed pointwise, and each s ∈ S is

sent to one of s, sx, x−1s, x−1sx.

It follows from Theorem 4.13 of [BKM07] that we can construct a compatible

set of permutation automorphisms.

Since any subgroup of a limit group is again a limit group, each Gi is a freely

indecomposable limit group so we can construct a finite generating set for Aut(Gi)

by the remarks above. The automorphism group of a free group F (x1, . . . , xr) is

finitely generated by the Nielsen automorphisms,

αi(xk) =

 x−1
k k = i

xk k 6= i
, i ∈ {1, . . . , r}

βij(xk) =

 xkxj k = i

xk k 6= i
, i, j ∈ {1, . . . , r}, i 6= j.

Consequently, the factor automorphisms are finitely generated.

Since each Gi is finitely generated, as is Fr, the set of Whitehead automorphisms

is finitely generated. Hence Aut(G) is finitely generated, and it is clear that all

generators may be described as in (3.8).

Combining Theorem 3.4.4, Proposition 3.5.1, and Theorem 3.5.2 we obtain our

main result.

Theorem 3.5.3. Let G be a limit group. The word problem for Aut(G) is decidable

in polynomial time.
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CHAPTER 4
Embedding limit hyperbolic groups into extensions of centralizers

Recall that in Chapter 3 we made use of an effective embedding of limit groups

into groups obtained from a free group by iterated extensions of centralizers. Khar-

lampovich and Myasnikov have proved that, if Γ is any toral relatively hyperbolic

group and G any finitely generated fully residually Γ group, then there exists an

embedding of G into a group obtained from Γ by iterated extensions of centraliz-

ers [KM09]. The construction, however, is not effective. In this chapter we give

an algorithm that, for the case when Γ is torsion-free hyperbolic, produces finitely

many homomorphisms from G into groups obtained from Γ by iterated extensions of

centralizers, one of which is an embedding.

4.1 Γ-limit groups

Since (relatively) hyperbolic groups are a generalization of free groups, it is

natural to study elementary theory, algebraic geometry, and Γ-limit groups for any

relatively hyperbolic group Γ. There is considerable ongoing work in this area, and

we review a few results in this section. Many of the results concern the case when

Γ is torsion-free hyperbolic or toral relatively hyperbolic. As mentioned earlier,

toral relatively hyperbolic groups are equationally Noetherian [Gro05]. We have the

following characterization of Γ-limit groups.

Proposition 4.1.1. Let Γ be a toral relatively hyperbolic group and G a finitely

generated Γ-group. Then the following statements are equivalent.
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1. G is fully residually Γ.

2. G is a Γ-limit group.

3. Th∃(G) = Th∃(Γ) in the language of group theory with constants from Γ.

4. There exists a system of equations S (possibly with coefficients) over Γ such

that V (S) is irreducible and G ' ΓR(S).

5. G is isomorphic to a subgroup of the Lyndon completion ΓZ[t] of Γ.

Proof. The equivalence (1) ⇐⇒ (2) is Theorem 5.10 of [Gro05], (3) ⇐⇒ (5) is

Theorem C of [KM09], (3)⇐⇒ (4) is Theorem D3 of [BMR99] together with the fact

that toral relatively hyperbolic groups are equationally Noetherian, and (1)⇐⇒ (4)

was proved in Proposition 2.5.10.

In fact, items (1), (2), and (4) are equivalent when Γ is any equationally Noethe-

rian group, see Theorem A of [KM09].

4.2 Notation

Throughout this chapter we fix Γ = 〈A|R〉 a finitely presented torsion-free

hyperbolic group, F the free group on A, and π : F → Γ the canonical epimorphism.

The map π induces an epimorphism F [X] → Γ[X], also denoted π, by fixing

each x ∈ X. For a system of equations S over F , we will often consider the system

Sπ over Γ, which we may also denote simply by S. We will make other simplifications

in notation when the context is clear. For example, the radical of Sπ over Γ may be

denoted RΓ(Sπ), RΓ(S), or R(Sπ). Likewise, the coordinate group ΓRΓ(Sπ) may be

denoted simply ΓR(S). Notice that the relators R of Γ are in the radical RΓ(S) for
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every system of equations S, hence

FRΓ(S) = ΓR(S).

In denoting a coordinate group ΓR(S) = Γ[X]/R(S) we always assume that X is

precisely the set of variables appearing in S.

4.3 Effective description of all homomorphisms to Γ

A major accomplishment in the theory of equations over free groups was the

construction of Hom-diagrams (also called Makanin-Razborov diagrams). Such a

diagram encodes the set of all (usually infinitely many) solutions to a given system

of equations S(X,A) over a free group F , or equivalently, the set of homomorphisms

from a given group (or F -group) to F . We give a more precise description of Hom-

diagrams in §4.3.2.

In this section, we describe an algorithm that take as input a system of equations

S(Z,A) = 1 produces a diagram T that encodes the set HomΓ(ΓR(S),Γ). When S

is a system without coefficients, we interpret the input as the group presentation

G = 〈Z |S〉 and the diagram T encodes instead the set Hom(G,Γ). Though our

diagram T will encode HomΓ(ΓR(S),Γ), it is not a Makanin-Razborov diagram in the

usual sense. We will comment on this at the end of the section.

There are two ingredients in this construction: first, the reduction of the system

S over Γ to finitely many systems of equations over free groups, and second, the

construction of Hom-diagrams for systems of equations over free groups. For the

main result of this chapter, Theorem 4.4.17, we will need only the reduction to
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systems of equations over free groups. However, we feel that the description of the

diagram T is of sufficient interest to warrant the small detour.

Notation 4.3.1. We use the symbol to denote both canonical epimorphisms

F (Z,A) → ΓR(S) and F (Z) → G. For a homomorphism φ : F (Z,A) → K (or

φ : F (Z)→ K) we define φ : ΓR(S) → K (or φ : G→ K) by

φ
(
w
)

= φ(w),

where any preimage of w may be used. We will always ensure that φ is a well-defined

homomorphism.

4.3.1 Reduction to systems of equations over free groups

In [RS95], the problem of deciding whether or not a system of equations S over

a torsion-free hyperbolic group Γ has a solution was solved by constructing canonical

representatives for certain elements of Γ. This construction reduced the problem to

deciding the existence of solutions in finitely many systems of equations over free

groups, which had been previously solved. The reduction may also be used to find

all solutions to S over Γ, as described below.

Lemma 4.3.2. Let Γ = 〈A|R〉 be a torsion-free δ-hyperbolic group and π : F (A)→ Γ

the canonical epimorphism. There is an algorithm that, given a system S(Z,A) = 1

of equations over Γ, produces finitely many systems of equations

S1(X1, A) = 1, . . . , Sn(Xn, A) = 1 (4.1)

over F and homomorphisms ρi : F (Z,A)→ FR(Si) for i = 1, . . . , n such that
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(i) for every F -homomorphism φ : FR(Si) → F , the map ρiφπ : ΓR(S) → Γ is a

Γ-homomorphism, and

(ii) for every Γ-homomorphism ψ : ΓR(S) → Γ there is an integer i and an F -

homomorphism φ : FR(Si) → F (A) such that ρiφπ = ψ.

Further, if S(Z) = 1 is a system without coefficients, the above holds with G = 〈Z |S〉

in place of ΓR(S) and ‘homomorphism’ in place of ‘Γ-homomorphism’.

Proof. The result is an easy corollary of Theorem 4.5 of [RS95], but we will provide

a few details.

We may assume that the system S(Z,A), in variables z1, . . . , zl, consists of m

constant equations and q −m triangular equations, i.e.

S(Z,A) =

 zσ(j,1)zσ(j,2)zσ(j,3) = 1 j = 1, . . . , q −m

zs = as s = l −m+ 1, . . . , l

where σ(j, k) ∈ {1, . . . , l} and ai ∈ Γ. An algorithm is described in [RS95] which,

for every m ∈ N, assigns to each element g ∈ Γ a word θm(g) ∈ F satisfying

θm(g) = g in Γ

called its canonical representative. In general, θm(g) does not satisfy any “canonical”

properties. Useful properties are only satisfied for certain m and certain finite subsets

of Γ, as follows.
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Let1 L = q · 25050(δ+1)6(2|A|)2δ
. Suppose ψ : Z → Γ is a solution of S(Z,A) and

denote

ψ(zσ(j,k)) = gσ(j,k).

Then there exist h
(j)
k , c

(j)
k ∈ F (A) (for j = 1, . . . , q −m and k = 1, 2, 3) such that

(i) each c
(j)
k has length less than2 L (as a word in F ),

(ii) c
(j)
1 c

(j)
2 c

(j)
3 = 1 in Γ,

(iii) there exists m ≤ L such that the canonical representatives satisfy the following

equations in F :

θm(gσ(j,1)) = h
(j)
1 c

(j)
1

(
h

(j)
2

)−1

(4.2)

θm(gσ(j,2)) = h
(j)
2 c

(j)
2

(
h

(j)
3

)−1

(4.3)

θm(gσ(j,3)) = h
(j)
3 c

(j)
3

(
h

(j)
1

)−1

. (4.4)

In particular, when σ(j, k) = σ(j′, k′) (which corresponds to two occurrences in S of

the variable zσ(j,k)) we have

h
(j)
k c

(j)
k

(
h

(j)
k+1

)−1

= h
(j′)
k′ c

(j′)
k′

(
h

(j′)
k′+1

)−1

. (4.5)

1 The constant of hyperbolicity δ may be computed from a presentation using the
results of [EH01].

2 The bound of L here, and below, is extremely loose. Somewhat tighter, and
more intuitive, bounds are given in [RS95].
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Consequently, we construct the systems S(Xi, A) as follows. For every positive

integer m ≤ L and every choice of 3(q−m) elements c
(j)
1 , c

(j)
2 , c

(j)
3 ∈ F (j = 1, . . . , q−

m) satisfying (i) and (ii)3 we build a system S(Xi, A) consisting of the equations

x
(j)
k c

(j)
k

(
x

(j)
k+1

)−1

= x
(j′)
k′ c

(j′)
k′

(
x

(j′)
k′+1

)−1

(4.6)

x
(j)
k c

(j)
k

(
x

(j)
k+1

)−1

= θm(as) (4.7)

where an equation of type (4.6) is included whenever σ(j, k) = σ(j′, k′) and an

equation of type (4.7) is included whenever σ(j, k) = s ∈ {l − m + 1, . . . , l}. To

define ρi, set

ρi(zs) =

 x
(j)
k c

(j)
k

(
x

(j)
k+1

)−1

, 1 ≤ s ≤ l −m and s = σ(j, k)

θm(as), l −m+ 1 ≤ s ≤ l

where for 1 ≤ s ≤ l −m any j, k with σ(j, k) = s may be used.

If ψ : F (Z)→ Γ is any solution to S(Z,A) = 1, there is a system S(Xi, A) such

that θm(gσ(j,k)) satisfy (4.2)-(4.4). Then the required solution φ is given by

φ
(
x

(k)
j

)
= h

(k)
j .

Indeed, (iii) implies that φ is a solution to S(Xi, A) = 1. For s = σ(j, k) ∈ {1, . . . , l−

m},

zρiφs = h
(j)
k c

(j)
k

(
h

(j)
k+1

)−1

= θm(gσ(j,k))

and similarly for s ∈ {l −m+ 1, . . . , l}, hence ψ = ρiφπ.

3 The word problem in hyperbolic groups is decidable.
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Conversely, for any solution φ
(
x

(k)
j

)
= h

(k)
j of S(Xi) = 1 one sees that by (4.6),

zσ(j,1)zσ(j,2)zσ(j,3)
ρiφ7−−→ h

(j)
1 c

(j)
1 c

(j)
2 c

(j)
3

(
h

(j)
1

)−1

which maps to 1 under π by (ii), hence ρiφπ induces a homomorphism.

4.3.2 Encoding solutions with the tree T

An algorithm is described in §5.6 of [KM05b] which constructs, for a given

system of equations S(X,A) over the free group F , a diagram encoding the set of

solutions of S. The diagram consists of a directed finite rooted tree T with the

following properties. Let G = FR(S).

(i) Each vertex v of T is labelled by a pair (Gv, Qv) where Gv is an F -quotient of

G and Qv a finitely generated subgroup of AutF (Gv). The root v0 is labelled

by (G, 1) and every leaf is labelled by (F (Y ) ∗ F, 1) where Y is some finite set

(called free variables). Each Gv, except possibly Gv0 , is fully residually F .

(ii) Every (directed) edge v → v′ is labelled by a proper surjective F -homomorphism

π(v, v′) : Gv → Gv′ .

(iii) For every φ ∈ HomF (G,F ) there is a path p = v0v1 . . . vk where vk is a leaf

labelled by (F (Y ) ∗ F, 1), elements σi ∈ Qvi , and a F -homomorphism φ0 :

F (Y ) ∗ F → F such that

φ = π(v0, v1)σ1π(v1, v2)σ2 · · · π(vk−2, vk−1)σk−1π(vk−1, vk)φ0. (4.8)
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The algorithm gives for each Gv a finite presentation 〈Av|Rv〉, and for each Qv a

finite list of generators in the form of functions Av → (Av ∪ A−1
v )∗. Note that the

choices for φ0 are exactly parametrized by the set of functions from Y to F .

Let S(Z,A) = 1 be a system of equations over Γ. We will construct the diagram

T to encode the set of solutions of S(Z,A) = 1. Apply Lemma 4.3.2 to construct

the systems S1(X1, A), . . . , Sn(Xn, A). Create a root vertex v0 labelled by F (Z,A).

For each of the systems Si(Xi, A), let Ti be the tree constructed above. Build an

edge from v0 to the root of Ti labelled by the homomorphism ρiπSi , where πSi :

F (Xi, A) → FR(Si) is the canonical projection. For each leaf v of Ti, labelled by

F (Y ) ∗F , build a new vertex w labelled by F (Y ) ∗Γ and an edge v → w labelled by

the homomorphism πY : F (Y ) ∗ F → F (Y ) ∗ Γ which is induced from π : F → Γ by

acting as the identity on F (Y ).

Define a branch b of T to be a path b = v0v1 . . . vk from the root v0 to a leaf

vk. Let v1 be labelled by FR(Si) and vk by F (Y ) ∗ Γ. We associate to b the set Φb

consisting of all homomorphisms F (Z)→ Γ of the form

ρiπSiπ(v1, v2)σ2 · · · π(vk−2, vk−1)σk−1π(vk−1, vk)πY φ (4.9)

where σj ∈ Qvj and φ ∈ HomΓ(F (Y ) ∗Γ,Γ). Since HomΓ(F (Y ) ∗Γ,Γ) is in bijective

correspondence with the set of functions ΓY , all elements of Φb can be effectively

constructed. We have thus obtained the following theorem.

Theorem 4.3.3. There is an algorithm that, given a system S(Z,A) = 1 of equations

over Γ, produces a diagram encoding its set of solutions. Specifically,

Hom(ΓR(S),Γ) = {φ | φ ∈ Φb, b is a branch of T }

59



where T is the diagram described above. When the system is coefficient-free, then

the diagram encodes Hom(G,Γ) where G = 〈Z |S〉.

Let us remark here that in the diagram T , the groups Gv appearing at vertices

are not quotients of coordinate group ΓR(S) and that one only obtains a homomor-

phism from ΓR(S) to Γ by composing maps all the way down to the leaves of T . D.

Groves has shown, in [Gro05], that for any toral relatively hyperbolic group there

exist Hom-diagrams with the property that every group Gv is a quotient of ΓR(S) and

that every edge map π(v, v′) is a proper surjective homomorphism. Our diagram T is

not a Hom-diagram in this sense. The effective construction of these Hom-diagrams

remains an interesting open problem (even for the case of torsion-free hyperbolic

groups).

4.4 Embedding into extensions of centralizers

The proof given in [KM09] that Γ-limit groups embed into extensions of cen-

tralizers of Γ involves two steps: first, any Γ-limit group is shown to embed into

the coordinate groups of an NTQ system (see §4.4.1), and second, such groups are

shown to embed into extensions of centralizers of Γ. The first step relies on the

existence of so-called shortening quotients (see §5.3) for Γ-limit groups, which are

the essential step in constructing Hom-diagrams over Γ. Shortening quotients were

shown to exist in [Gro05], but their effective construction remains an open problem,

and consequently the embedding of Γ-limit groups into extensions of centralizers of

Γ described in [KM09] is not effective.

However, in the case of free groups, the embedding of a limit group into the

coordinate group of an NTQ system is effective [KM98b]. Our strategy is to reduce
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to the free group case, construct embeddings into NTQ systems over free groups, and

then ‘convert’ these into NTQ systems over Γ. First, we will need some background

on quadratic equations and NTQ systems.

4.4.1 Quadratic equations and NTQ systems

An equation s(X) ∈ G[X] over a group G is said to be (strictly) quadratic

if every variable appearing in s appears at most (exactly) twice, and a system of

equations S(X) ⊂ G[X] is (strictly) quadratic if every variable that appears in S

appears at most (exactly) twice. Here we count both x and x−1 as an appearance of

x. Constructing NTQ systems involves considerable analysis of quadratic equations,

and is aided by considering certain standard forms.

Definition 4.4.1. A standard quadratic equation over a group G is an equation

of one of the following forms, where ci and d are all nontrivial elements of G:

n∏
i=1

[xi, yi] = 1, n ≥ 1; (4.10)

n∏
i=1

[xi, yi]
m∏
i=1

z−1
i cizid = 1, n,m ≥ 0, n+m ≥ 1; (4.11)

n∏
i=1

x2
i = 1, n ≥ 1; (4.12)

n∏
i=1

x2
i

m∏
i=1

z−1
i cizid = 1, n,m ≥ 0, n+m ≥ 1. (4.13)

The left-hand sides of the above equations are the standard quadratic words. �

The following result allows us to assume that quadratic equations always appear in

standard form.
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Lemma 4.4.2. Let s(X) ∈ G[X] be a strictly quadratic word over a group G. Then

there is a G-automorphism φ such that sφ is a standard quadratic word over G.

Proof. Follows easily from §I.7 of [LS77].

To each quadratic equation we associate a punctured surface. To (4.10) we

associate the orientable surface of genus n and zero punctures, to (4.11) the orientable

surface of genus n with m+1 punctures, to (4.12) the non-orientable surface of genus

n, and to (4.13) the non-orientable surface of genus n with m + 1 punctures. For

a standard quadratic equation S, denote by χ(S) the Euler characteristic of the

corresponding surface.

Quadratic words of the form [x, y], x2, and z−1cz where c ∈ G, are called

atomic quadratic words or simply atoms. An atom [x, y] contributes −2 to the Euler

characteristic of S while x2 and z−1cz (as well as d) each contribute −1. A standard

quadratic equation S = 1 over G has the form

r1r2 . . . rkd = 1,

where ri are atoms and d ∈ G. We classify solutions to quadratic equations based

on the extent to which the images of the atoms commute, as follows.

Definition 4.4.3. Let S = 1 be a standard quadratic equation written in the

atomic form r1r2 . . . rkd = 1 with k ≥ 2. A solution φ : GR(S) → G of S = 1 is called

(i) degenerate, if rφi = 1 for some i, and non-degenerate otherwise;

(ii) commutative, if [rφi , r
φ
i+1] = 1 for all i = 1, . . . , k − 1, and non-commutative

otherwise;

(iii) in general position, if [rφi , r
φ
i+1] 6= 1 for all i = 1, . . . , k − 1,.
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When the group G is commutation transitive, a commutative solution satisfies

[rφi , r
φ
j ] = 1 for all i, j. We will only be interested in the case when G is toral relatively

hyperbolic, hence commutation transitive (recall §2.3). In this case, solutions also

have the following important property.

Lemma 4.4.4. Let S ∈ G[X] be a non-degenerate standard quadratic equation over

a toral relatively hyperbolic group G such that S has at least two atoms. Then either

(1) S has a solution in general position, or

(2) every solution of S is commutative.

Further, there is an algorithm that distinguishes the cases.

Proof. The dichotomy is true for all CSA groups, by Proposition 3 of [KM98a].

For the algorithm, let S has the atomic form r1r2 . . . rkd with variables x1, . . . , xn.

Consider the sentences

Si : ∃x1 . . . ∃xn (S = 1) ∧ ([ri, ri+1] 6= 1)

for i = 1, . . . , k − 1. Then all solutions of S = 1 are commutative if and only if

none of the sentences Si is true in G. Since every parabolic subgroup of G is a free

abelian group, and such groups have decidable existential theory. Then it follows

from [Dah09] that G has decidable existential theory, hence we can decide whether

or not each Si is true in G.
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Now we define NTQ systems. Let G be a group generated by A and let S(X,A)

be a system of equations and suppose S can be partitioned into subsystems

S1(X1, X2, . . . , Xn, A) = 1,

S2(X2, . . . , Xn, A) = 1,

. . .

Sn(Xn, A) = 1

where {X1, X2, . . . , Xn} is a partition of X. Define groups Gi for i = 1, . . . , n+ 1 by

Gn+1 = G

Gi = GR(Si,...,Sn).

We interpret Si as a subset of Gi−1 ∗ F (Xi), i.e. letters from Xi are considered

variables and letters from Xi+1∪ . . .∪Xn∪A are considered as constants from Gi. A

system S(X,A) = 1 is called triangular quasi-quadratic (TQ) if it can be partitioned

as above such that for each i one of the following holds:

(I) Si is quadratic in variables Xi;

(II) Si = {[x, y] = 1, [x, u] = 1 | x, y ∈ Xi, u ∈ Ui} where Ui is a finite subset of

Gi+1 such that 〈Ui〉 = CGi+1
(g) for some g ∈ Gi+1;

(III) Si = {[x, y] = 1 | x, y ∈ Xi};

(IV) Si is empty.

The system is called non-degenerate triangular quasi-quadratic (NTQ) is for every i

the system Si(Xi, . . . , Xn, A) has a solution in the coordinate group GR(Si+1,...,Sn).
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Definition 4.4.5. A group H is called a G-NTQ group if there is a NTQ

system S over G such that H ' GR(S). �

For any quadratic system S over G one can, by eliminating linear variables, find

a strictly quadratic system S ′ over G such that every variable occurs in exactly one

equation and GS ' GS′ . Consequently, if H is an NTQ group with H ' GR(S) then

we may assume that every system Si of S that has the form (I) consists of a single

quadratic equation in standard form.

In order to study NTQ groups by induction on the height n of the NTQ system,

we will need the following lemma.

Lemma 4.4.6. Let S(X,A) and T (Y,A) be systems of equations over a group G

with X ∩ Y = ∅ and let G1 = G[X]/RG(S). Then

GR(S∪T ) ' G1[Y ]/RG1(T ).

Proof. Let X = {x1, . . . , xn}, Y = {y1, . . . , ym}, u = u(x1, . . . , xn, y1, . . . , ym) ∈

G[X ∪ Y ]. We will show that the natural map, which sends u to the element repre-

sented by u in G1[Y ]/RG1(T ), is an isomorphism.

To see that the map is well-defined, suppose u ∈ RG(S ∪ T ). It suffices to

show that u ∈ RG1(T ). Let ϕ : Y → G1 be any solution of T over G1 and denote

yϕj = wj(x1, . . . , xn). We need to show that uϕ = 1 in G1, i.e. uϕ ∈ RG(S). Let

ψ : X → G be any solution of S over G, and denote xψi = gi. Consider the map

α : X ∪ Y → G defined by

xi → gi,

yj → wj(g1, . . . , gn),
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for i = 1, . . . , n and j = 1, . . . ,m. The map α is a solution to S ∪T . Indeed, if s ∈ S

then sα = sψ, and ψ is a solution to S so sψ = 1. If t ∈ T then

tα = t(w1(g1, . . . , gn), . . . , wm(g1, . . . , gn)) = (tϕ)ψ .

Since ϕ is a solution to T over G1, we have that tϕ ∈ RG(S) and since ψ is a solution

to S over G we have that (tϕ)ψ = 1 in G, proving that α is a solution to S∪T . Since

u ∈ RG(S ∪ T ), uα = 1 hence

1 = uα = (uϕ)ψ

so uϕ ∈ RG(S) as required.

The fact that the natural map is surjective is trivial, so it remains to prove

injectivity. Let u ∈ G[X ∪ Y ] with u 6∈ RG(S ∪ T ). We must show that u 6∈ RG1(T ).

Since u 6∈ RG(S ∪ T ), there exists a solution α : X ∪ Y → G of S ∪ T such that

uα 6= 1. The restriction α|Y of α to Y is a solution to T over G1. Indeed, if t ∈ T

then variables of X do not occur in t, so

tα|Y = tα = 1

in G, hence tα|Y = 1 in G1 as well. Since α|X is a solution to S over G and

(
uα|Y

)α|X
= uα 6= 1

we conclude that uα|Y is non-trivial in G1 hence u is not in RG1(T ), as required.

It follows from the lemma that for every i = 1, . . . , n,

Gi ' Gi+1[Xi]/RGi+1
(Si). (4.14)
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Note that this isomorphism holds for any system of equations that can be partitioned

in triangular form, not just for NTQ systems. It is essential to observe that when

RGi+1
(Si) = nclGi+1

(Si), Gi admits the presentation

Gi = 〈Gi+1, Xi |Si〉.

In this case, Gi has a graph of groups decomposition of one of the following four

types, according to the form of Si:

(I) as a graph of groups with vertices v1, v2 where Gv1 = Gi−1 and Gv2 is a QH-

subgroup;

(II) as a graph of groups with vertices v1, v2 where Gv1 = Gi−1, Gv2 is a free abelian

group of rank m and the edge groups generate a maximal abelian subgroup of

Gv1 (‘rank m extension of centralizer’);

(III) as a free product with a finite rank free abelian group;

(IV) as a free product with a finitely generated free group.

A frequently used method of proving that RGi+1
(Si) = nclGi+1

(Si) is the following

well-known fact.

Lemma 4.4.7. Let S(X) be a system of equations over a group G. If GS is residually

G, then RG(S) = nclG (S). In particular,

GR(S) = GS.

Proof. It is always the case that nclG (S) ⊂ RG(S), so assume for contradiction that

there exists w ∈ RG(S)\nclG (S). Then w 6= 1 inGS, so there exists a homomorphism

φ : GS → G such that wφ 6= 1. But φ is a solution to S and w ∈ RG(S) so wφ = 1.
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For NTQ systems over toral relatively hyperbolic groups, [KM09] has shown

that the condition RGi+1
(Si) = nclGi+1

(Si) holds except in some exceptional cases.

We recall the relevant definitions from [KM09].

Definition 4.4.8. A standard quadratic equation S = 1 over a group G is

said to be regular if either χ(S) ≤ −2 and S has a non-commutative solution over

G, or S = 1 is an equation of the form [x, y]d = 1 or [x1, y1][x2, y2] = 1. An NTQ

system is called regular if every quadratic equation appearing in case (I) is regular.

�

Proposition 4.4.9 ([KM09]). Let G be a toral relatively hyperbolic group and S =

S1 ∪ . . . ∪ Sn a regular NTQ system over G. Then for all i = 1, . . . , n,

RGi+1
(Si) = nclGi+1

(Si) .

The condition RGi+1
(Si) = nclGi+1

(Si) allows us to use the graph of groups

decomposition of Gi to derive properties of NTQ groups inductively. In particular,

we have the following.

Lemma 4.4.10. Let Γ = 〈A|R〉 be a toral relatively hyperbolic group and G a Γ-

NTQ group such that RGi+1
(Si) = nclGi+1

(Si) for all i = 1, . . . , n. Then G is toral

relatively hyperbolic and fully residually Γ.

Proof. The second statement is proved in [KM09]. For the first, we proceed by

induction on the height of the NTQ system. The base Γ is toral relatively hyperbolic.

Now assume that Gn−1 is toral relatively hyperoblic. We will show that Gn is toral

relatively hyperbolic by applying Theorem 0.1 of [Dah03] (‘Combination theorerm’)

to the four possible decompositions of Gi described above.
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Cases (IV) and (III) follow from Theorem 0.1 parts (3) and (2), respectively,

by amalgamating over the trivial subgroup. Note that to use Theorem 0.1 (2) we

need the fact that if G is hyperbolic relative to the collection of subgroups H then

it is also hyperbolic relative to H ∪ {1}. Case (II) follows from Theorem 0.1 (2) by

amalgamating over P = 〈Ui〉, which is maximal abelian in Gi−1.

For case (I), consider first the case when the surface corresponding to the

quadratic equation has punctures. In this case we form Gi by amalgamating Gi−1

with a free group over a Z subgroup, followed HNN-extensions over Z subgroups. It

follows from the results of [Osi06b] that these Z subgroups are maximal parabolic

subgroups, hence we may apply Theorem 0.1 (3), (3’).

Remark 4.4.11. From the Combination Theorem it follows that G has finitely many

maximal non-cyclic abelian subgroups up to conjugation, and we can construct, by

induction, the list of them along with a finite generating set for each. In the base

group Γ this is possible using the results of [Dah08].

NTQ groups over free groups played a central role in the solution to Tarski’s

problems by Kharlampovich-Miasnikov and Sela. In Sela’s work, they are called

ω-residually free towers [Sel01].

4.4.2 Embedding into extensions of centralizers

Let G = 〈Z |S〉 be a finitely presented fully residually Γ group. We consider S

as a (coefficient-free) system of equations over Γ. The results of this section also hold

in the category of Γ-groups, i.e. when G = 〈Z,A |S(Z,A), R〉 is fully residually Γ.

Recall that Γ is presented by 〈A|R〉.
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For a system of equations over free groups, Kharlampovich and Miasnikov proved

that every solution factors through one of finitely many NTQ groups, which can be

effectively constructed.

Proposition 4.4.12. [KM98b] There is an algorithm that, given a system of equa-

tions T (X,A) = 1 over a free group, produces finitely many F -NTQ systems

T1(X1, A) = 1, T2(X2, A) = 1, . . . , Tn(Xn, A) = 1

and homomorphisms

µi : F (X)→ FR(Ti)

such that for every homomorphism ψ : FR(T ) → F there is an integer i and a homo-

morphism φ : FR(Ti) → F such that

ψ = µiφ.

Given this result, we may assume that the systems S1(X1, A), . . . , Sn(Xn, A)

constructed in Lemma 4.3.2 are in fact NTQ systems. For each of these systems Si

we consider the system Sπi over Γ. In the following lemma, we construct homomor-

phisms from G to the coordinate groups ΓR(Si), one of which must be an embedding.

However, the systems Sπi need not be NTQ systems over Γ. Properties (I), (III),

and (IV) of NTQ systems as well as non-degeneracy, but property (II) need not hold

since Uπ
i might not generate a complete centralizer.

Lemma 4.4.13. There is an algorithm that, given a finitely presented group G =

〈Z |S〉, produces

(i) finitely many F -NTQ systems S1(X1, A), . . . , Sm(Xm, A), and
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(ii) homomorphisms αi : G→ ΓR(Si)

such that

(1) if G is fully residually Γ, then there exists i ∈ {1, . . . ,m} such that αi is

injective, and

(2) if G is residually Γ, then for every g ∈ G there exists i ∈ {1, . . . ,m} such that

gαi 6= 1.

Proof. Refer to Figure 4–1 for a diagram of the maps constructed in this proof.

Construct the F -NTQ systems S1(X1, A), . . . , Sn(Xn, A) and the homomorphisms

F (Z)

||yy
yy

yy
yy

y
ρi

$$IIIIIIIII

G

ρiφπ

##HHHHHHHHHHHHHHHHHHHHHHHHH
αi // ΓRΓ(Si) FR(Si)γi

oooo

φ

��
F (A)

π

��
Γ

Figure 4–1: Commutative diagram for Lemma 4.4.13.

ρi : F (Z) → FR(Si) from Lemma 4.3.2. Let γi : FR(Si) → ΓR(Si) be the canonical

epimorphism and set αi = ρiγi. That is, for any u ∈ G,

uαi = uρiγi .

Since ρi is given as a word mapping, so is αi.
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To check that αi is well-defined, let u ∈ F (Z) with u = 1 (in G). Since u ∈

nclF (Z) (S), there exist sj ∈ S and wj ∈ F (Z) such that u =
∏n

j=1 s
wj
j hence

uρiγi =
m∏
j=1

(sρiγij )w
ρiγi
j .

Recall from the description of canonical representatives in Lemma 4.3.2 that sj has

the form sj = z1z2z3 and hence sρij has the form

sρij = (x1c1x
−1
2 )(x2c2x

−1
3 )(x3c3x

−1
1 )

where c1c2c3 = 1 in Γ and x1, x2, x3 ∈ Xi. Hence

sρij = (c1c2c3)x1 .

Since the relators of Γ are elements of RΓ(Si) we have that sρiγij = 1 in ΓR(Si) hence

uρiγi = 1 and αi is well-defined.

Suppose now that G is fully residually Γ. For each i ∈ {1, . . . , n} set

Φi = {ρiφπ | φ ∈ Hom(FR(Si), F )}.

From Lemma 4.3.2 we know that

Hom(G,Γ) =
n⋃
i=1

Φi.

Since G is fully residually Γ, there exists i such that Φi is a discriminating family of

homomorphisms. Indeed, if no Φi discriminates G, then for each i there is a finite

subset Wi ≤ G such that every φ ∈ Φi is not injective on Wi. Then
⋃m
i=1Wi is a

finite subset that is not discriminated by
⋃m
i=1 Φi.
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Let i be such that Φi is a discriminating family and let u be any non-trivial

element of G. Then there exists ρiφπ ∈ Φi with uρiφπ 6= 1. The homomorphism

φπ : FR(Si) → Γ is a solution to Si over Γ. Since (uρi)φπ 6= 1, uρi is not in RΓ(Si).

Hence

uαi = (uρi)γi 6= 1

so αi is injective.

Now suppose that G is residually Γ and let u ∈ G. Since Hom(G,Γ) =
⋃n
i=1 Φi,

there exists i and ρiφπ ∈ Φi such that uρiφπ 6= 1. As above, this implies uαi 6= 1.

Remark 4.4.14. Though at least one of the homomorphisms αi must be injective,

we are not aware of a method for determining which one (there may be several). We

will comment on this further in Chapter 5.

Our objective now is to construct an effective embedding of each coordinate

group ΓR(Si) into a group obtained from Γ by a series of extensions of centralizers.

We will need the following lemma in order to argue by induction.

Lemma 4.4.15. Let H ≤ G be any torsion-free groups and let S be a system of

equations over H such that S has one of the NTQ forms (I)–(IV). Then the canonical

homomorphism HS → GS is an embedding.

Proof. The case when S is a standard quadratic equation is Proposition 2 of [KM98a],

the case when S is an extension of a centralizer follows immediately from the theory

of normal forms for HNN-extensions, and the cases of a free product with a free

group or free abelian group are obvious.
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Lemma 4.4.16. Let Γ = 〈A|R〉 a finitely presented torsion-free hyperbolic group.

There exists an algorithm that, given an NTQ system S(X,A) over the free group F ,

constructs a group H obtained from Γ by a series of extensions of centralizers and

an embedding

β : ΓR(S) ↪→ H.

Further, both groups ΓR(S) and H are toral relatively hyperbolic and a generating set

for any maximal abelian subgroup can be effectively constructed.

Proof. Let S(X,A) be partitioned as an NTQ system as S1, . . . , Sn. Consider S as

a system of equations over Γ, with Gn+1 = Γ and

Gi = Gi+1[Xi]/RGi+1
(Si).

Note that ΓR(S) = G1.

We proceed by induction on n. For the base case n = 0 there are no equations or

variables in S so ΓR(S) = Γ so we may take H = Γ and β the identity. Now assume the

theorem holds up to n−1. That is, assume we have constructed a group H ′ obtained

by extensions of centralizers of Γ and as an embedding β′ : G2 → H ′. We argue based

of the form (I)–(IV) of the system of equations S1(X1, A). In the following we will

frequently use without mention Lemma 4.4.7 to obtain a presentation of G1, and

Lemma 4.4.10 and Remark 4.4.11 to show that G1 is toral relatively hyperbolic with

a finite collection of maximal abelian subgroups (up to conjugation), generating sets

of which can be effectively constructed.

Form (IV): Free product with a free group. Suppose S1 has the form (IV),

that is, S1 is empty. We will show that the group 〈G2, X1 | −〉 ' G2 ∗F (X1) embeds
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in a group obtained from G2 by extensions of centralizers . It will suffice to consider

the case of two variables, X1 = {x, y}. Let u, v ∈ G2 such that C(u)∩C(v) = 1, and

consider the sequence of extensions of centralizers

G′2 = 〈G2, t | [CG2(u), t]〉,

G′′2 = 〈G′2, s | [CG′2(v), s]〉,

G′′′2 = 〈G′′2, r | [CG′′2 (ust), r]〉.

One checks that CG′2(v) = CG2(v), that t and s generate a rank two free group in G′′′2 ,

that CG′′2 (ust)∩G2 = 1, and that CG′′2 (ust)∩〈t, s〉 = 1. Define φ : G2 ∗F (x, y)→ G′′′2

by xφ = tr, yφ = sr, and gφ = g for g ∈ G2. A non-trivial element w ∈ G2 ∗ F (x, y)

has reduced form

w = g1w1(x, y)g2w2(x, y) . . . gmwm(x, y)gm+1

and is sent under φ to

wφ = g1r
−1w1(t, s)rg2r

−1w2(t, s)r . . . gmr
−1wm(t, s)rgm+1.

This word has no reduction of the form rgir
−1 → gi, since CG′′2 (ust)∩G2 = 1, and no

reduction of the form r−1wi(t, s)r → wi(t, s), since CG′′2 (ust) ∩ 〈t, s〉 = 1 and 〈t, s〉 is

free of rank two. Hence wφ is reduced and therefore non-trivial by Britton’s Lemma,

so φ is injective.

We conclude that 〈G2, X1 | −〉 is residually G2, hence G1 = G1 ∗ F (x, y) and

G1 is toral relatively hyperbolic. By Lemma 4.4.15, G1 embeds canonically in H ′ ∗

F (x, y). Repeating the construction above with H ′ in place of G2 we may construct
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an embedding of H ′ ∗ F (x, y) into a group H obtained by extensions of centralizers

from H ′.

Form (III): Free product with a free abelian group. Suppose S1 has the

form (III). First, suppose that |X1| = 2, and so 〈G2, X1 |S1〉 ' G2 ∗ Z2. Lemma 16

of [KM98a] shows that G2 ∗ Z2 embeds in every non-trivial extension extension of

a centralizer of G2. Consequently, G2 ∗ Z2 is residually G2 so G1 ' G2 ∗ Z2 and is

toral relatively hyperbolic.

From Lemma 4.4.15, G1 embeds canonically in H ′ ∗ Z2. Apply Lemma 16 of

[KM98a] again to embed H ′ ∗Z2 in in an extension of centralizers H of H ′. It follows

immediately from the proof that the embedding is effective, provided we can produce

two non-commuting elements of H ′. This is possible by Lemma 2.3.6 since H ′ is toral

relatively hyperbolic.

If |X1| > 2, we partition S1 into two subsystems

S1,a = {[xi, xj] = 1, [xi, u] = 1, | i, j ∈ {3, . . . ,m}, u ∈ U1,a}

S1,b = {[x1, x2] = 1}

where X1 = {x1, . . . , xn} and U1,a = {x1, x2}. The system S1,b has the form (III)

with two variables, which we have dealt with above, and S1,a is an extension of the

centralizer CG1,b
(x1) = 〈x1, x2〉 in G1,b ' G2 ∗ 〈x1, x2〉, which we deal with in form

(II) below.

Form (II): Extension of a centralizer. Suppose S1 has the form (II). If U1

generates the trivial subgroup in G2, which we may check since the word problem in

G2 is decidable, then we have the form (III) and we may argue as above.
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Otherwise, let U ′ be the centralizer of U1 in G2. In general, 〈U1〉 is a proper

subgroup of U ′. We must construct a generating set u1, . . . , um for U ′. By induction,

G2 has, up to conjugation, finitely many parabolic (i.e. abelian of rank at least two)

subgroups P1, . . . , Pl and we have constructed a generating set for each one. The

centralizer U ′ is a maximal abelian subgroup of G2, hence is either conjugate to one

of the Pi or is cyclic.

It follows from [Bum04] and the fact that conjugacy in the abelian groups Pi

is decidable (see also Theorem 5.6 of [Osi06b]), that for any element g ∈ G2 and

parabolic subgroup Pi we can decide whether or not g is conjugate to an element of

Pi, and if so find a conjugating element. Applying this to any non-trivial element g

of U1, we either identify U ′ as a conjugate of one of the Pi and construct a generating

set by conjugating the generating set of Pi, or we determine that U ′ is in fact cyclic

and we find a generator using Lemma 2.3.6.

Now consider the system of equations

S ′1 = {[x, ui], [x, y] | x, y ∈ X1, i ∈ {1, . . . ,m}}

over G2. Since G2 is commutation-transitive, we know that if φ : X1 → G2 is

any solution to the system S1 then [xφ, ui] = 1 for all x ∈ X1 and i = 1, . . . ,m.

Consequently, [x, ui] ∈ RG2(S1) for all x ∈ X1 and i = 1, . . . ,m so S ′1 ⊂ RG2(S1).

The group 〈G2, X |S ′1〉 is an extension of a centralizer of G2, so by Proposition 3.2.1

is residually G2. Then by Lemma 4.4.7,

RG2(S1) = RG1(S ′1) = nclG2 (S ′1)

77



hence G1 = 〈G2, X1 |S ′1〉 and is toral relatively hyperbolic.

We need to show that G1 embeds in an extension of centralizer of H ′. By

induction, we may construct a finite generating set v1, . . . , vl for the maximal abelian

subgroup of H ′ that contains U ′. Consider the system of equations

T = {[x, vi], [x, y] | x, y ∈ X1, i ∈ {1, . . . , l}}.

and the group H = 〈H ′, X1 |T 〉, which is an extension of centralizer of H ′.

Define the map β : G1 → H by xβ = x for x ∈ X1 and gβ = gβ
′

for g ∈ G2. One

easily checks that β is a (well-defined) homomorphism. To show that β is injective,

let w ∈ G1 be non-trivial. Since G1 is residually G2, there is a function φ : X1 → G2

which is a solution to S ′1 and such that wφ is a non-trivial element of G2. We claim

that φβ′ : X1 → H ′ is a solution to T . For x, y ∈ X1 we have

[xφβ
′
, yφβ

′
] = [xφ, yφ]β

′
= 1β

′
= 1.

For x ∈ X and any ui we have that

[xφβ
′
, uβ

′

i ] = [xφ, ui]
β′ = 1β

′
= 1

so by commutation-transitivity [xφβ
′
, vj] = 1 for all j. Hence φβ′ is a solution as

required, and induces a homomorphism φβ′ : G1 → H ′. The image of wβ under this

homomorphism is

(wβ)φβ
′
= wφβ

′

and is non-trivial since wφ 6= 1 and β′ is injective. Consequently, wβ 6= 1 in H as

required.
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Form (I): Quadratic equation. Suppose that S1 is a quadratic equation.

Then S1 has one of the standard forms (4.10)–(4.13). The words ci and d in the

standard form are non-trivial in FR(S2∪...∪Sn), but may be trivial in G2. We can check

which are trivial by solving the word problem in G2. Form an equation S1,a by

(i) erasing from S1 each atom czii such that ci = 1 in G2, and

(ii) if d = 1 in G2, by erasing d and replacing the rightmost atom of the form czii

by ci.

Let Z be the set of variables of X1 not appearing in S1,a (i.e. the zi from the erased

atoms, as well as the rightmost zi if d = 1). Partition X into X \ Z and Z. The

system of equations S1(X1, A) is equivalent over G2 to the union of the systems

S1,b = ∅ in variables Z and S1,a in variables X1 \ Z, so we replace S1(X1, A) with

these two systems and apply case (IV) to S1,b.

The equation S1,a is a quadratic equation in standard form over G2. To simplify

notation, we rename S1,a to S1 and X1 \Z to X1. We study cases based on the Euler

characteristic χ(S1) of the surface associated with S1.

Case χ(S1) ≤ −2. Assume that χ(S1) ≤ −2. First, check using Lemma 4.4.4

whether or not S1 has a solution in general position over G2. If so, then S1 is regular.

Whenever S1 is regular and G2 is toral relatively hyperbolic, Theorem 4.1 of [KM09]

proves that the group 〈G2, X1 |S1〉 embeds into a group H obtained from G2 by a

series of extensions of centralizers. Consequently, this group is residually G2 hence

G1 = 〈G2, X1 |S1〉 and G1 is toral relatively hyperbolic. Embed G1 canonically into

〈H ′, X1 |S1〉, using Lemma 4.4.15.
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The equation S1 is regular over H ′, and H ′ is toral relatively hyperbolic, so

again applying Theorem 4.1 of [KM09] we obtain that 〈H ′, X1 |S1〉 embeds into a

group obtained from H ′ by a sequence of extensions of centralizers. It suffices to

show that this embedding is effective. The reader may verify that in order to obtain

an effective embedding from the proof given in [KM09], one must be able to solve the

following three problems: (a) solve the word problem in H ′, (b) decide whether or

not an quadratic equation over H ′ has a non-commutative solution, and (c) find such

a solution. We can solve (a) by Lemma 2.3.6 since H ′ is toral relatively hyperbolic,

(b) by Lemma 4.4.4, and (c) by enumerating all possible solutions until we find a

non-commutative one.

Now suppose that S1 does not have a solution in general position over G2. By

Lemma 4.4.4, all solutions are commutative. We consider cases based on the from of

S1.

Orientable forms. Suppose S1 contains a commutator. If S1 = [x1, y1][x2, y2],

then S1 is regular by definition and we may proceed as above. Otherwise, by Propo-

sition 4.3 of [KM09], S1 has a solution in general position in a group K obtained

from G2 ∗F , where F is a finite-rank free group, by a series of centralizer extensions.

Since K is discriminated by G2 (see form (IV)), it follows that S1 has a solution in

general position in G2, which contradicts the fact that all solutions are commutative.

Genus zero forms. Suppose that S1 has the form

cz11 . . . czkk d.
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Although χ(S1) ≤ −2 implies that k ≥ 3, we will assume only k ≥ 2. Since G2 has

the CSA property, we may apply Corollary 3 of [KM98a] to obtain that

RG2(S1) = ncl
({

[a−1
i zi, C], [a−1

i zi, a
−1
j zj] | i, j = 1 . . . k

})
where C = CG2(ca1

1 , . . . , c
am
m ) and zj → aj is a solution to S1. A solution must exist

since S1 has a solution over FR(S2∪...∪Sn), and G2 is a quotient of FR(S2∪...∪Sn). We

may find such a solution by enumerating all possible solutions.

Since G2 is CSA, the group C is precisely the maximal abelian subgroup which is

the centralizer of ca1
1 . By assumption, we may compute a generating set {u1, . . . , um}

for C. Then

G1 ' 〈G2, t1, . . . , tk | [ti, ul], [ti, tj], 1 ≤ i, j ≤ k, 1 ≤ l ≤ m〉

via the isomorphism ti → a−1
i zi. Since this is an extension of a centralizer, we

complete the argument by reasoning as in Case (II).

Non-orientable forms. Suppose that S1 corresponds to a non-orientable surface.

Suppose S1 has the form

x2
1 · · ·x2

p

where, by assumption, p ≥ 4. Then any two non-commuting elements g, h ∈ G2 yield

the non-commutative solution x1 → g, x2 → g−1, x3 → h, x4 → h−1, and xi → 1

for i ≥ 4. This contradicts the assumption that all solutions of S1 are commutative.

Suppose S1 has the form

x2
1 · · · x2

pd
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with d 6= 1 and p ≥ 3. For any commutative solution xi → si and any g 6∈ CG2(s1),

the function x1 → g, x2 → g−1, x3 → s1 · · · sp, and xi → 1 for i > 3 is a non-

commutative solution, which is a contradiction.

Suppose S1 has the form

x2
1 . . . x

2
pc
z1
1 · · · c

zk
k d.

with p ≥ 2. Though χ(S1) ≤ −2 implies k 6= 0, the following argument applies for

all k ≥ 0. Construct any (commutative) solution xi → si, zj → aj. From transitivity

of commutation, it follows that

[caii , c
aj
j ] = [caii , s1 . . . sp] = 1

for all i, j = 1, . . . , k. Let U = CG2(ca1
1 , . . . , c

ak
k , s1 . . . sp) and construct a generating

set {u1, . . . , um} for U . From the proof of Proposition 8 of [KM98a], which needs

only the fact that G2 is commutation-transitive and torsion-free, we see that G1 is

isomorphic to the group

〈G2, t1, . . . , tp+k−1 | [ul, tj], [ti, tj], 1 ≤ i, j ≤ p+ k − 1, 1 ≤ l ≤ m〉 ∗ 〈xp〉

via the isomorphism ti → a−1
i zi for i = 1, . . . , k and ti → xi for i = k+1, . . . , k+p−1.

This group is an extension of a centralizer followed by free product with Z, so we

proceed as in Case (II) and Case (IV).

Finally, suppose S1 has the form

x2
1c
z1
1 . . . czkk d.
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It is shown in the proof of Proposition 8 of [KM98a] that there exists s ∈ G2 such

that every solution of S1 sends x1 to s. Consequently, s−1x1 is in the radical of S1

over G2, hence

G1 ' G2[z1, . . . , zk]/RG2(cz11 . . . czkk d)

and we may argue as in the genus zero case above. Note that we may find s by

finding any solution.

Case χ(S1) > −2. Assume that χ(S1) > −2. We consider cases based on the

form of S1.

Orientable forms. There are two possible forms, [x, y]d and [x, y]. The form

[x, y]d is a regular quadratic equation (by definition), and the argument for regular

equations given at the beginning of the case χ(S1) ≤ −2 applies. For the form [x, y],

we apply Case (III).

Non-orientable forms. The possible forms are x2, x2d, x2y2, x2y2d, and x2y2z2.

For the form x2, x → 1 is the unique solution since G2 is torsion-free. Hence x ∈

RG2(S1) and G1 ' G2, so there is nothing further to prove.

For the form x2d, find a solution x → a. Note that d = a−2. Suppose, for

contradiction, that there exists a second solution x → b. Then since [a, a−2] = 1,

[b, b−2] = 1, and a−2 = b−2 we conclude [a, b] = 1 by transitivity of commutation.

Then

(ab−1)2 = a2b−2 = d−1d = 1

which implies a = b since G2 is torsion-free. Consequently, x → a is the unique

solution and xa−1 is in the radical of x2d over G2. Then 〈G2, x |xa−1, x2d〉 ' G2

hence RG2({x2d}) = nclG2 (xa−1) and G1 ' G2.
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For the form x2y2, the analysis is similar. First, check for the existence of a non-

trivial solution using Proposition 2.5.9. If all solutions are trivial, then G1 ' G2.

Otherwise, let x→ a, y → b be a non-trivial solution. Since [a, a2] = 1 and [b, b−2] =

1 we obtain [a, b] = 1 by transitivity of commutation. As above, (ab)2 = 1 implies

ab = 1 hence xy is in the radical of x2y2. The group 〈G2, x, y |xy, x2y2〉 ' G2 ∗ 〈x〉

is fully residually G2 hence RG2(x2y2) = nclG2 (xy) so

G1 ' G2 ∗ Z

and we may argue as in Case (IV).

For the form x2y2d, first we determine whether or not all solutions are com-

mutative, using Lemma 4.4.4. If all solutions are commutative, the proof given for

the case χ(S1) ≤ −2 and S1 = x2
1 . . . x

2
pc
z1
1 . . . cakk d with p ≥ 2 applies, since there

we allowed k = 0. Otherwise, find any (non-commutative) solution x → a, y → b.

Consider the series of extensions of centralizers

G′2 = 〈G2, t | [CG2(ab), t]〉,

G′′2 = 〈G′2, s | [CG′2(atat), s]〉,

G′′′2 = 〈G′′2, r | [CG′′2 (s−1atst−1b), r]〉,

and the map ψ : 〈G2, x, y |x2y2d〉 → G′′′2 given by

x → (at)sr

y → r−1t−1b.
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Since (x2y2d)ψ = 1, hence ψ defines a homomorphism. Using normal forms for

elements of HNN-extensions, we can show that ψ is injective (see for example §5 of

[KM98a]). Consequently, 〈G2, x, y |S1〉 is residually G2 hence G1 = 〈G2, x, y |S1〉.

By Lemma 4.4.15, G1 embeds canonically into 〈H ′, x, y |S1〉. We then apply the

construction above to 〈H ′, x, y |S1〉 to embed this group into a group H obtained

from H ′, hence from Γ, by extensions of centralizers.

For the form x2czd, first we determine whether or not all solutions are com-

mutative, using Lemma 4.4.4. Suppose all solutions are commutative. Find any

(commutative) solution x → a, z → b. Let x → a1, z → b1 be any other solution.

We have that d = (a2cb)−1 = (a2
1c
b1)−1 and [cb, d] = [cb1 , d] = 1 since both solutions

are commutative. By transitivity of commutation, [cb, cb1 ] = 1, and from the CSA

property it follows that [b1b
−1, c] = 1. This equation may be rewritten as cb = cb1 ,

and consequently a2
1 = a2. If a = 1, then a1 = 1 since G2 is torsion-free. If a 6= 1,

then by transitivity of commutation [a1, a] = 1 hence (a1a)2 = 1 so a1 = a. In either

case, xa−1 ∈ RG2(S1). Since

〈G2, x, z |xa−1, x2czd〉 ' 〈G2, z | czda2〉

we may apply the argument for the case S1 = czd, given below.

85



If not all solutions are commutative, find any (non-commutative) solution x→ a,

z → b. As was done in [KM98a], consider the sequence of extensions of centralizers

G′2 = 〈G2, t | [CG2(d), t]〉,

G′′2 = 〈G′2, s | [CG′2(cb), s]〉,

G′′′2 = 〈G′′2, r | [CG′′2 (cbt), r]〉,

and the map ψ : 〈G2, x, y |x2czd〉 → G′′′2 given by

x → at

y → bstr.

As in the previous case, (x2czd)ψ = 1 and we may prove using normal forms that ψ

is injective and complete the argument as above.

For the form x2y2z2, first we determine whether or not all solutions are commu-

tative, using Lemma 4.4.4. Suppose all solutions are commutative. It follows from

commutation-transitivity of G2 that [x, y], [x, z], [y, z] ∈ RG2(S1), and then from the

fact that G2 is torsion-free that xyz ∈ RG2(S1). Let S ′1 be the system of equations

{x2y2z2, [x, y], [x, z], [y, z], xyz}. Then

〈G2, x, y, z |S ′1〉 ' G2 ∗ Z2.

It follows from Case (III) that this group is fully residually G2 and hence

nclG2 (S ′1) = RG2(S ′1) = RG2(S1).

Then G1 = G2 ∗ Z2 and we may argue as in Case (III).
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Now find any solution x→ a, y → b, z → c of S1 in general position. Consider

the series of six extensions of centralizers

G
(1)
2 = 〈G2, s | [s, CG2(ab)]〉,

G
(2)
2 = 〈G(1)

2 , r | [r, C
G

(1)
2

(s−1bc)]〉,

G
(3)
2 = 〈G(2)

2 , v | [v, C
G

(2)
2

(abrs−1bc)]〉,

G
(4)
2 = 〈G(3)

2 , t | [t, CG3(vasvas)]〉,

G
(5)
2 = 〈G(4)

2 , u | [u,C
G

(4)
2

(s−1brs−1br)]〉,

G
(6)
2 = 〈G(5)

2 , w | [w,C
G

(5)
2

(r−1cv−1r−1cv−1)]〉,

and the map ψ : 〈G2, x, y, z |x2y2z2〉 → G
(6)
2 given by

x → (vas)t

y → (s−1br)u

z → (r−1cv−1)w.

As in the previous case, (x2y2z2)ψ = 1 and we may prove, with a lengthy argument

using normal forms, that ψ is injective and complete the argument as before.

Genus zero forms. The possible forms are czd and cz11 c
z2
2 d. The form cz11 c

z2
2 d was

covered under genus zero forms for χ(S1) ≤ −2, since the proof there needed only

k ≥ 2.

For the form czd, find a solution z → a and a generating set {u1, . . . , um} for

CG2(c). We claim that [za−1, ui] is in the radical of czd, for all i. Indeed, if z → b is
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any solution to czd = 1 over G2 then

[ba−1, c] = ab−1c−1ba−1c = ada−1c = c−1c = 1

and by transitivity of commutation we have [ba−1, ui] = 1, hence [za−1, ui] is in the

radical. Then

〈G2, z | [za−1, ui], i = 1, . . . ,m〉 ' 〈G2, t | [t, ui], i = 1, . . . ,m〉

is an extension of the centralizer of c, hence is residually G2. Consequently, G1 is

isomorphic to the extension of centralizer

G1 ' 〈G2, t | [t, ui], i = 1, . . . ,m〉

and we may argue as in Case (II).

All possible forms of S1 have been covered, so the proof is complete.

The main result of this chapter now follows from Lemmas 4.4.13 and 4.4.16.

Theorem 4.4.17. Let Γ be any torsion-free hyperbolic group. There is an algorithm

that, given a finitely presented group G that is fully residually Γ, constructs

(1) finitely many groups H1, . . . , Hn, each given as a sequence of extensions of

centralizers of Γ, and

(2) homomorphisms φi : G→ Hi,

such that at least one of the φi is injective. This also holds for G in the category of

Γ-groups.

Although the theorem does not produce a single map that is an embedding,

we can produce a single embedding of any residually-Γ group into a direct product
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of groups obtained from Γ by extensions of centralizers. Recall that every fully

residually Γ group is also residually Γ.

Corollary 4.4.18. Let Γ be a torsion-free hyperbolic group. Every finitely presented

residually Γ group G = 〈Z |S〉 embeds into a finite direct product H1 × . . . × Hn,

where each Hi is obtained from Γ by a finite sequence of extensions of centralizers.

Further, the embedding can be constructed effectively.

Proof. Construct the groups and homomorphisms φi : G → Hi. Since G is not

assumed to be fully residually Γ, it may be that no φi is injective, but the construction

may be carried out regardless. Let φ = φ1 × . . . × φn : G → H1 × . . . × Hn and

recall that φi = αiβi, where αi : G → ΓR(Si) is constructed in Lemma 4.4.13 and

βi : ΓR(Si) → Hi is constructed in Lemma 4.4.16. Let g be any non-trivial element of

G. By Lemma 4.4.13, there exists i such that gαi 6= 1, hence gαiβi 6= 1 and therefore

φ is injective.

We are also able to solve the word problem in any finitely presented residually

Γ group in polynomial time.

Corollary 4.4.19. Let Γ be a torsion-free hyperbolic group and G = 〈Z |S〉 any

finitely presented group that is known to be residually Γ. There is an algorithm that,

given a word w over the alphabet Z±, decides whether or not w = 1 in G in time

polynomial in |w|.

Proof. We compute in advance the embedding φ : G → H1 × . . . ×Hn from Corol-

lary 4.4.18. Given the input word w, we need only compute wφ and solve the word

problem in H1 × . . . ×Hn. There is a fixed constant L such that |πHi(wφ)| ≤ L|w|,
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where πHi is projection onto Hi, so we have a polynomial reduction to n word prob-

lems in the groups H1, . . . , Hn. It then suffices to show that each Hi has a polynomial

time word problem.

Let Hi be formed by a sequence of m extensions of centralizers and proceed

by induction. If m = 0, then Hi = Γ so the word problem in Hi is decidable in

polynomial time. Now assume that

Hi = 〈H ′i, t | [t, CH′i(u)]〉 (4.15)

where u ∈ H ′i andH ′i is formed from Γ by a sequence ofm−1 extensions of centralizers

and has a polynomial time word problem. Let w be a word in Hi. It suffices to

produce a reduced form for w as an element of the HNN-extension (4.15): if any t±1

appears in the reduced form then w 6= 1, and if no t±1 appears then w ∈ H ′i and we

check whether or not w = 1 using the word problem algorithm for H ′i.

We produce a reduced form for w by examining all subwords of the form tvt−1

and t−1vt where no t±1 appears in v, and making reductions

tvt−1 → v, t−1vt→ v

whenever v ∈ CH′i(u). The element v is in CH′i(u) if and only if [v, u] = 1 in H ′i,

which is an instance of the word problem in H ′i and so may be checked in polynomial

time. It is clear that we need only examine a polynomial number of subwords tvt−1

and t−1vt before reaching a reduced form.
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CHAPTER 5
Conclusions

In this concluding chapter we provide some commentary on our results and

discuss some unsolved problems to which they relate.

5.1 Compressed word problem in Γ-limit groups

The principal results of this work are Theorem 3.4.4 and Theorem 4.4.17. The-

orem 3.4.4 gave a polynomial time algorithm for the compressed word problem in

limit groups, and prompts the following question.

Question 5.1.1. Let Γ be a torsion-free hyperbolic group. Is there a polynomial time

algorithm for the compressed word problem in Γ-limit groups? In particular, is there

a polynomial time algorithm for the compressed word problem in Γ?

The answer is currently unknown, but Theorem 4.4.17 may be part of the solu-

tion. Recall that to prove Theorem 3.4.4, we required the following three components.

(1) An algorithm that embeds any F -limit group into a group obtained from F by

extensions of centralizers.

(2) A ‘big powers’ property for extensions of centralizers of limit groups: if G

is a limit group and H = 〈G, t | [C(g), t]〉 then the set of homomorphisms

{φn : t → gn | n ∈ N} discriminates H into G.1 Further, for any given

1 We did not mention this explicitly. It follows from the proof of Theorem 3.4.2,
and is a well-known fact.
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element of h ∈ H the minimum n such that hφn 6= 1 may be computed and is

polynomial in |h|.

(3) A polynomial time algorithm for the compressed word problem in F .

For the case of a Γ-limit group G, Theorem 4.4.17 provides the algorithm for (1).

The fact that the theorem does not produce a single embedding is not a limitation.

Suppose we can solve the compressed word problem in each Hi in polynomial time.

Then we may compute in advance the maps αi : G → Hi and the groups Hi,

independent of the compressed input word, and apply Corollary 4.4.19.

For item (2), Proposition 1.1 of [KM09] gives the required ‘big powers’ property.

However, it remains unclear how to obtain a bound on the minimum required value

of n. In the free group case, we used normal forms and a Lyndon length function on

FZ[t], ideas which were developed in [MRS05] using infinite words. Such ideas have

yet to be developed for the Lyndon completion ΓZ[t].

For hyperbolic groups, Item (3) remains an open problem.

5.2 Compressed word problem in FZ[t]

In Theorem 3.4.4, the limit group G is not included as a part of the input

(the algorithm is non-uniform). To produce a uniform algorithm would require that

the embedding used in Proposition 3.2.2 be computable in polynomial time. The

embedding uses Kharlampovich-Miasnikov’s Elimination Process, the running time

of which seems unlikely to be polynomial.

If we insist that the input group G be given as a sequence of extensions of

centralizers of Γ, the problem is approachable. This is essentially the same as asking

to solve the compressed word problem in FZ[t]. Our method does not immediately
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give a polynomial time algorithm to this problm: the degree of the polynomial in

Theorem 3.4.4 depends on the number extensions of centralizers, the degree of each

extension, and the word length of each element whose centralizer is extended, and

so increases with a ‘larger’ input group G. However, the ‘big powers’ P i that we

use in Theorem 3.4.2 are overestimates and needed only in the worst case of a word

consisting entirely of a power of a single stable letter tu,i. One can reduce the running

time by selecting the powers more carefully, though whether this would be enough

to obtain polynomial time (for the uniform algorithm) in unclear.

5.3 Comments on Chapter 4

In §4.3.2 we produced diagrams encoding the set of homomorphisms from a

finitely presented group G to Γ. As we noted there, these are not ‘Hom-digarams’

in the usual sense. Groves has proved that diagrams in which the vertex groups

are proper quotients of G do exists, but their effective construction remains an open

problem.

In our main result, Theorem 4.4.17, we are not able to determine which of the

homomorphisms φi is an embedding. It is possible that many of the homomorphisms

are embeddings: this prevents us from simply enumerating elements g of G and

computing their image under the φi until all but one of the φi fails to be injective.

We could avoid this problem by grouping the images Gφ of G into isomorphism

classes, since the images Gφi for injective φi will form a single class. However, it is

not clear how to solve this isomorphism problem (i.e. the isomorphism problem for

finitely generated subgroups of groups obtained from Γ by extensions of centralizers).
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We saw in Corollary 4.4.19 that despite not knowing which of the homomor-

phisms φi is injective, we could still use a solution to the word problem in the groups

Hi to solve the word problem in G. The same holds for some other interesting algo-

rithmic problems. The conjugacy problem in G reduces to checking that conjugacy

holds in Gφi for all i, and similarly for the membership problem. Though neither of

these problems has been solved in subgroups of groups obtained from Γ by extensions

of centralizers, solutions are known for the case when Γ is free.
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