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ABSTRACT

In some applied areas such as the Global Positioning System (GPS) and

communications, etc., there is a linear model y = Ax+ v, where the unknown

parameter vector x is an integer vector and the noise vector v follows a normal

distribution N(0, σ2I). The typical methods for estimating x are the integer

rounding (IR), the Babai nearest plane (BNP), and the integer least squares

(ILS) methods. While IR and BNP are polynomial-time methods, the ILS

method solves an NP-hard problem. The most effective approach to validating

an integer estimator is to find its success rate, which is the probability of

correct integer estimation. It has been found in the literature that the ILS

estimator is optimal among all admissible integer estimators, including the IR

and BNP estimators, as it maximizes the success rate. In communications

applications, the integer parameter vector x is often constrained to a box.

In this thesis, we first extend the concept of success rates to box-constrained

versions of IR (BIR), BNP (BBNP), and ILS (BILS). We then extend some

results for the success rates of the corresponding unconstrained estimators to

these box-constrained estimators. In addition, we apply the success rate results

to improve the efficiency of the BILS estimation process. If some entries of the

integer estimator obtained by BBNP have high success rates, then we can fix

these entries and solve a smaller BILS problem. This may reduce the overall

computational time. Numerical simulations results are presented to support

our findings.
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ABRÉGÉ

Dans certains domaines appliqués comme la navigation utilisant le système

mondial de positionnement (GPS) et comme les communications, il y a un

modèle linéaire, y = Ax+v, où x est un vecteur de paramètres entiers à estimer

et v est un vecteur contenant le bruit et suivant une loi normale N(0, σ2I).

Les méthodes typiques pour estimer x sont l’algorithme d’arrondissement à

l’entier le plus proche (IR), l’algorithme de l’hyperplan le plus proche de Babai

(BNP) et l’algorithme des moindres carrés en nombres entiers (ILS). Tandis

que les algorithmes IR et BNP sont polynomiaux, la méthode ILS résout un

problème NP-difficile. L’approche la plus efficace pour valider un estimateur

entier est de trouver son taux de réussite, qui est la probabilité de trouver

la bonne estimation pour le vecteur de paramètres. Dans la littérature, il

s’avère que l’estimateur ILS est optimal parmi les estimateurs admissibles, y

compris les estimateurs IR et BNP, car il maximise le taux de réussite. Dans les

applications de communication, le vecteur de paramètres est souvent contraint

à une bôıte. Dans cette thèse, nous développons le concept de taux de réussite

pour les méthodes d’estimation avec contraintes de bôıtes (les méthodes BIR,

BBNP et BILS). Nous présentons aussi quelques résultats pour les taux de

réussite de ces estimateurs contraints à bôıtes. De plus, nous appliquons ces

résultats afin d’améliorer l’efficacité de l’algorithme BILS. Si certaines entrées

du vecteur obtenu par BILS ont des taux de réussite élevés, nous pouvons

les utiliser et résoudre un problème BILS de dimensions réduites. Cela peut

réduire le temps de calcul. Des résultats de simulations sont présentés à l’appui

de nos conclusions.
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ABRÉGÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF SYMBOLS AND ABBREVIATIONS . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Unconstrained Problems . . . . . . . . . . . . . . . . . . . . 2
1.3 Example Application: Global Positioning System (GPS) . . 5
1.4 Box-constrained Problems . . . . . . . . . . . . . . . . . . . 7
1.5 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . 8

2 Integer Parameter Estimation . . . . . . . . . . . . . . . . . . . . . 10

2.1 Reduced Integer Least Squares Problem . . . . . . . . . . . . 10
2.2 Integer Rounding (IR) Estimation . . . . . . . . . . . . . . . 11
2.3 Babai Nearest Plane (BNP) Estimation . . . . . . . . . . . . 13
2.4 Integer Least Squares (ILS) Estimation . . . . . . . . . . . . 15

2.4.1 Schnorr and Euchner Search . . . . . . . . . . . . . . 15
2.4.2 LLL Reduction . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Pull-in Regions . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.1 Integer Rounding Estimator . . . . . . . . . . . . . . 20
2.5.2 Babai Nearest Plane Estimator . . . . . . . . . . . . . 20
2.5.3 Integer Least Squares Estimator . . . . . . . . . . . . 21

3 Integer Estimator Validation Using Success Rates . . . . . . . . . . 23

3.1 Parameter Probability Distributions . . . . . . . . . . . . . . 23
3.2 Success Rates . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Success Rate of the Integer Rounding Estimator . . . . . . . 26
3.4 Success Rate of the Babai Nearest Plane Estimator . . . . . 27
3.5 Success Rate of the Integer Least Squares Estimator . . . . . 28

vi



3.5.1 BNP Based Lower Bound . . . . . . . . . . . . . . . . 29
3.5.2 ADOP Based Upper Bound . . . . . . . . . . . . . . . 30
3.5.3 Integration Region Based Bounds . . . . . . . . . . . 31

3.6 Partial Success Rates . . . . . . . . . . . . . . . . . . . . . . 31

4 Box-constrained Integer Parameter Estimation . . . . . . . . . . . . 35

4.1 Reduced Box-constrained Integer Least Squares Problem . . 35
4.2 Box-constrained Integer Rounding (BIR) Estimation . . . . . 36
4.3 Box-constrained Babai Nearest Plane (BBNP) Estimation . . 37
4.4 Box-constrained Integer Least Squares (BILS) Estimation . . 38

4.4.1 Search Strategies . . . . . . . . . . . . . . . . . . . . 39
4.4.2 V-BLAST Reduction . . . . . . . . . . . . . . . . . . 39
4.4.3 Sorted QR Decomposition . . . . . . . . . . . . . . . 40

4.5 Box-constrained Pull-in Regions . . . . . . . . . . . . . . . . 40
4.5.1 Box-constrained Integer Rounding Estimator . . . . . 43
4.5.2 Box-constrained Babai Nearest Plane Estimator . . . 45
4.5.3 Box-constrained Integer Least Squares Estimator . . . 47

5 Box-constrained Integer Estimator Validation Using Success Rates . 49

5.1 Parameter Probability Distributions . . . . . . . . . . . . . . 49
5.2 Box-constrained Success Rates . . . . . . . . . . . . . . . . . 52
5.3 Success Rate of the Box-constrained Integer Rounding

Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4 Success Rate of the Box-constrained Babai Nearest Plane

Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5 Success Rate of the Box-constrained Integer Least Squares

Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.6 Box-constrained Partial Success Rates . . . . . . . . . . . . . 60
5.7 Numerical Simulations . . . . . . . . . . . . . . . . . . . . . 62

6 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . 95

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

vii



LIST OF SYMBOLS AND ABBREVIATIONS

x̌ Integer Estimator

x̌C Box-constrained Integer Estimator

x̂ RLS Estimator

x̌R IR Estimator

x̌B BNP Estimator

x̌I ILS Estimator

x̌RC BIR Estimator

x̌BC BBNP Estimator

x̌IC BILS Estimator

PS Success Rate

PC
S Box-constrained Success Rate

PPS Partial Success Rate

PC
PS Box-constrained Partial Success Rate

PR
S IR Success Rate

PB
S BNP Success Rate

P I
S ILS Success Rate

PRC
S BIR Success Rate

PBC
S BBNP Success Rate

P IC
S BILS Success Rate

PB
PS Partial BNP Success Rate

PBC
PS Partial BBNP Success Rate

S Pull-in Region

SC Box-constrained Pull-in Region

viii



SR IR Pull-in Region

SB BNP Pull-in Region

SI ILS Pull-in Region

SRC BIR Pull-in Region

SBC BBNP Pull-in Region

SIC BILS Pull-in Region

Abbr Abbreviation

ADOP Ambiguity Dilution of Precision

BBNP Box-constrained Babai Nearest Plane

BILS Box-constrained Integer Least Squares

BIR Box-constrained Integer Rounding

BNP Babai Nearest Plane

CVP Closest Vector Problem

GPS Global Positioning System

ILS Integer Least Squares

IR Integer Rounding

LLL Lenstra-Lenstra-Lovász

PDF Probability Density Function

PMF Probability Mass Function

RLS Real Least Squares

SQRD Sorted QR Decomposition

V-BLAST Vertical Bell Labs Layered Space-Time

VC Variance Covariance

ix



LIST OF TABLES
Table page

5–1 Testing PBC
S : Case 1, σ = 0.05 . . . . . . . . . . . . . . . . . . . 71

5–2 Testing PBC
S : Case 1, σ = 0.10 . . . . . . . . . . . . . . . . . . . 71

5–3 Testing PBC
S : Case 1, σ = 0.25 . . . . . . . . . . . . . . . . . . . 72

5–4 Testing PBC
S : Case 1, σ = 0.50 . . . . . . . . . . . . . . . . . . . 72

5–5 Case 1, σ = 0.50 (continued) . . . . . . . . . . . . . . . . . . . . 73

5–6 Testing PBC
S : Case 2, σ = 0.05 . . . . . . . . . . . . . . . . . . . 73

5–7 Case 2, σ = 0.05 (continued) . . . . . . . . . . . . . . . . . . . . 74

5–8 Testing PBC
S : Case 2, σ = 0.10 . . . . . . . . . . . . . . . . . . . 74

5–9 Testing PBC
S : Case 2, σ = 0.25 . . . . . . . . . . . . . . . . . . . 75

5–10 Testing PBC
S : Case 2, σ = 0.50 . . . . . . . . . . . . . . . . . . . 75

5–11 Testing PBC
S : Case 3, σ = 0.05 . . . . . . . . . . . . . . . . . . . 76

5–12 Testing PBC
S : Case 3, σ = 0.10 . . . . . . . . . . . . . . . . . . . 76

5–13 Case 3, σ = 0.10 (continued) . . . . . . . . . . . . . . . . . . . . 77

5–14 Testing PBC
S : Case 3, σ = 0.25 . . . . . . . . . . . . . . . . . . . 77

5–15 Testing PBC
S : Case 3, σ = 0.50 . . . . . . . . . . . . . . . . . . . 77

5–16 Testing PBC
S : Case 4, σ = 0.05 . . . . . . . . . . . . . . . . . . . 78

5–17 Testing PBC
S : Case 4, σ = 0.10 . . . . . . . . . . . . . . . . . . . 78

5–18 Case 4, σ = 0.10 (continued) . . . . . . . . . . . . . . . . . . . . 79

5–19 Testing PBC
S : Case 4, σ = 0.25 . . . . . . . . . . . . . . . . . . . 79

5–20 Testing PBC
S : Case 4, σ = 0.50 . . . . . . . . . . . . . . . . . . . 79

5–21 Testing PBC
S : Case 5, σ = 0.05 . . . . . . . . . . . . . . . . . . . 80

5–22 Testing PBC
S : Case 5, σ = 0.10 . . . . . . . . . . . . . . . . . . . 80

5–23 Testing PBC
S : Case 5, σ = 0.25 . . . . . . . . . . . . . . . . . . . 81

x



5–24 Testing PBC
S : Case 5, σ = 0.50 . . . . . . . . . . . . . . . . . . . 81

5–25 Case 5, σ = 0.50 (continued) . . . . . . . . . . . . . . . . . . . . 82

5–26 Testing PBC
S and P IC

S . . . . . . . . . . . . . . . . . . . . . . . . 82

5–27 Testing PBC
S and P IC

S (continued) . . . . . . . . . . . . . . . . . 83

5–28 Testing PBC
S and P IC

S (continued) . . . . . . . . . . . . . . . . . 84

5–29 Testing PBC
S and P IC

S (continued) . . . . . . . . . . . . . . . . . 85

5–30 Testing PBC
S and P IC

S (continued) . . . . . . . . . . . . . . . . . 86

5–31 Testing PBC
PS : Case 1, σ = 0.10, cond(A) = 5.32e+01 . . . . . . . 86

5–32 Testing PBC
PS : Case 1, σ = 0.25, cond(A) = 2.44e+01 . . . . . . . 86

5–33 Case 1, σ = 0.25, cond(A) = 2.44e+01 (continued) . . . . . . . . 87

5–34 Testing PBC
PS : Case 2, σ = 0.10, cond(A) = 6.72e+05 . . . . . . 87

5–35 Testing PBC
PS : Case 2, σ = 0.25, cond(A) = 4.36e+06 . . . . . . . 88

5–36 Testing PBC
PS : Case 3, σ = 0.10, cond(A) = 1.12e+05 . . . . . . . 88

5–37 Testing PBC
PS : Case 3, σ = 0.25, cond(A) = 3.80e+04 . . . . . . . 89

5–38 Testing PBC
PS : Case 4, σ = 0.10, cond(A) = 3.46e+01 . . . . . . . 89

5–39 Case 4, σ = 0.10, cond(A) = 3.46e+01 (continued) . . . . . . . . 90

5–40 Testing PBC
PS : Case 4, σ = 0.25, cond(A) = 8.29e+00 . . . . . . . 90

5–41 Testing PBC
PS : Case 5, σ = 0.10, cond(A) = 1.02e+03 . . . . . . . 90

5–42 Testing PBC
PS : Case 5, σ = 0.25, cond(A) = 1.02e+03 . . . . . . . 91

5–43 Testing Partial Validation, with V-BLAST . . . . . . . . . . . . 91

5–44 Testing Partial Validation, with V-BLAST (continued) . . . . . . 92

5–45 Testing Partial Validation, with SQRD . . . . . . . . . . . . . . 93

5–46 Testing Partial Validation, with SQRD (continued) . . . . . . . . 94

xi



LIST OF FIGURES
Figure page

2–1 2D IR pull-in regions [30] . . . . . . . . . . . . . . . . . . . . . . 21

2–2 2D BNP pull-in regions [30] . . . . . . . . . . . . . . . . . . . . 22

2–3 2D ILS pull-in regions [30] . . . . . . . . . . . . . . . . . . . . . 22

4–1 2D BIR pull-in regions (based on [30]) . . . . . . . . . . . . . . 45

4–2 2D BBNP pull-in regions (based on [30]) . . . . . . . . . . . . . 47

4–3 2D BILS pull-in regions (based on [30]) . . . . . . . . . . . . . . 48

5–1 2D BBNP success rates . . . . . . . . . . . . . . . . . . . . . . . 57

xii



CHAPTER 1
Introduction

We first describe the notation used in this thesis. We then present the

general linear model with unknown integer parameter vector x and give an

overview of the typical methods for estimating x and for validating the corre-

sponding estimators. We also detail the contributions of this thesis.

1.1 Notation

The sets of all real and integer m × n matrices are denoted by Rm×n and

Zm×n, respectively. The set of real and integer n-vectors are denoted by Rn

and Zn, respectively. Upper case letters denote matrices and lower case letters

denote vectors (or scalars). We use ai to denote the ith entry of vector a, aij

the (i, j)th entry of matrix A = [aij] ∈ Rm×n. We use D = diag(d1, ..., dn)

to denote a diagonal matrix. The identity matrix is denoted by I and its

ith column is denoted by ei. The determinant of a matrix A is denoted by

det(A). In addition, ||a||2 = (aTa)
1
2 denotes the 2-norm (or Euclidean norm)

of vector a, ||a||Σ = (aTΣ−1a)
1
2 denotes the weighted norm of vector a, where

Σ is symmetric positive definite. For scalar α ∈ R, we use bαe to denote

rounding to its nearest integer, bαc to denote taking its floor, dαe to denote

taking its ceiling, |α| for its absolute value. For a random vector a ∈ Rn,

a ∼ N(0, σ2I) means that a follows a normal (Gaussian) distribution with

0 mean and variance-covariance (VC-) matrix of σ2I, a ∼ χ2(n, 0) means

that a follows a central Chi-squared distribution with n degrees of freedom;

the expected value of a is denoted by E{a} and its VC-matrix by cov{a}.

The gamma distribution is denoted by Γ, while the cumulative distribution

function of the standard normal distribution N(0, 1) is denoted by Φ(α) =

1



α∫
−∞

1√
2π

exp{−1

2
t2}dt. P(E) denotes the probability that an event E takes

place.

1.2 Unconstrained Problems

In many applications, we have the following linear model:

y = Ax+ v, v ∼ N(0, σ2I), (1.1)

where y ∈ Rm is called the measurement vector (or observed vector), A ∈ Rm×n

is called the design matrix (or observation or model matrix), x ∈ Zn is called

the integer parameter vector, containing unknown integer entries, and v ∈ Rm

is the measurement noise vector with known variance σ2. For the purposes of

this thesis we will consider deterministic matrix A with full column rank and

deterministic unknown vector x.

Our aim is to estimate the integer parameter vector x. This estima-

tion problem arises from many applications, including the Global Positioning

System (GPS), radar imaging, communications, cryptography, lattice design,

bioinformatics and finance (see, e.g., [1], [11]). Typical estimation methods

include integer rounding (which we refer to in this thesis as IR for simplicity),

the Babai nearest plane algorithm (which we refer to in this thesis as BNP),

and integer least squares (which we refer to as ILS). An “estimator” is random,

while an “estimate” is a realization of an estimator. For simplicity, we just use

the term “estimator” in this thesis.

Integer rounding (IR), as it is usually called in GPS literature (see, e.g.,

[11], [22]), involves computing the real least squares (RLS) estimator to x in

(1.1) by solving the following RLS problem:

min
x∈Rn

||y − Ax||22. (1.2)
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Here for simplicity we slightly abuse the notation, as x in (1.2) is a variable

while x in (1.1) is an integer parameter vector. By rounding each entry of the

RLS solution to the nearest integer, we can obtain an integer estimate to the

unknown x ∈ Zn in (1.1). In multi-input multi-output (MIMO) communica-

tions, this method is referred to as the linear zero-forcing (ZF) decoder, or the

ZF detector (see, e.g., [14], [16]).

The Babai nearest plane (BNP) algorithm given in [2] is a sequential in-

teger rounding process that finds the integer estimate of the ith entry of x,

for i from n to 1, by using the previously-obtained integer estimates for the

entries from i + 1 to n. The solution obtained by this method is called the

Babai point. In GPS literature, BNP is sometimes referred to as integer boot-

strapping [30]. In MIMO communications, the BNP estimator is called the

successive interference cancellation (SIC) decoder, which is also known as the

decision-feedback detector [14].

The third estimation method is the integer least squares (ILS), where in

order to estimate x, we solve the following ILS problem:

min
x∈Zn

||y − Ax||22. (1.3)

In lattice theory, A is referred to as the generator matrix of the lattice L(A) =

{Ax : x ∈ Zn}. The ILS problem (1.3) is also called the closest (or nearest)

vector problem (CVP) or the closest point problem (see, e.g., [1], [16]), since

we want to find the point in the lattice closest to the input vector y. In channel

coding, the ILS problem is referred to as (sphere) decoding, whereas in source

coding, it is called encoding [1].

Unlike the RLS problem, a general ILS problem is NP-hard [3] [15]. This

means that all known algorithms for solving (1.3) have exponential complex-

ity. However, as many applications require integer estimates in real-time, we

3



need to be able to solve ILS problems efficiently. A typical approach is the

discrete search approach, which involves a reduction phase and a search phase.

The main purpose of the reduction phase is to make the search phase more

efficient [5]. The Lenstra-Lenstra-Lovász (LLL) reduction strategy which was

first presented in [13], but has since been modified in a number of different

ways (see [1] and references therein), is very commonly used in practice. LLL

reduction may even be used to improve the performance of BNP and thereby

find a better Babai point (see, e.g., [14], [16]). As for the search phase, the

often used method is the Schnorr and Euchner search strategy [17], which is

substantially faster than other available search methods (for a survey of search

methods, refer to [1]). This search strategy involves recursively searching the

hyper-ellipsoid formed by the ILS problem, in order to find the optimal so-

lution. At each step of the process, the size of the ellipsoidal search space is

shrunk using the integer point found in the previous step, and a search for a

new integer point is carried out. Eventually, upon failing to find an integer

point in the reduced search space, the most recently found one is returned as

the optimal solution [5]. The first point generated by the Schnorr and Euchner

search is actually the Babai point [1], thus the BNP method is a part of the

Schnorr and Euchner search method for solving the ILS problem.

After obtaining an integer estimate of x in (1.1) through one of these meth-

ods, we may wish to evaluate its quality or reliability. This process is called

validation [20], or verification [11]. In applications like GPS, this validation

phase is crucial [20], as explained in the next section. One effective approach

to validating the integer estimator involves finding the success rate. The suc-

cess rate is the probability of correct integer estimation [11] [23], and can be

determined once the probability distribution of the corresponding estimator is

known [25]. Since it does not depend on the actual outcome of the estimator,

4



validation using success rates is sometimes referred to in the literature as a

model-driven approach [26]. If the success rate is higher than a user-defined

acceptability threshold, the integer estimator may be trusted and accepted as

correct. An important theorem given in [23] states that the ILS estimator is

optimal in the class of admissible integer estimators (defined in [23]), which

includes the IR and BNP estimators.

Sometimes it may not be possible to successfully resolve all entries of the

parameter vector x ∈ Zn [28]. This would require that the nth integer in the

estimate obtained coincides with the nth entry of x, that the (n−1)th estimate

coincides with the (n − 1)th entry, ..., and that the first estimate coincides

with the first entry of x. The probability of this simultaneous event tends to

decrease as n increases [28]. Hence, if an integer vector estimator has a high

success rate, then subsets of its integer entries have high success rates, but if

it has a low success rate, this does not necessarily imply that all subsets of

its entries have low success rates. The goal of partial validation is to identify

the subset that has the highest possible success rate [28]. If this success rate

is higher than the user-defined threshold, the entries in the subset are fixed

as integers. Estimates to the remaining entries are then obtained by solving

updated smaller-sized RLS or ILS problems (depending on the application).

1.3 Example Application: Global Positioning System (GPS)

GPS is a space-based navigation and positioning system that provides one-

way ranging from satellites with known positions in space to receivers with

unknown positions on land and sea, in air and space [33]. A number of GPS

applications require centimeter-level or millimeter-level accuracy in position-

ing. Examples include monitoring plate motion and crustal deformation for

the accurate prediction of earthquakes and volcanic activity (in geodesy or

geophysics), or monitoring deformation in large structures such as bridges,

5



towers and dams in real-time (in engineering) [35].

GPS satellites emit signals, which are complex modulated electromagnetic

waves containing data, that propagate through space to GPS receivers. The

receivers process the signals and measure the time delay, which is the time

taken for a signal to propagate from the satellite to the receiver. This is then

used to calculate positions. There are two main types of observations in GPS

[33]. The code or pseudorange is a coarse measure of the range or distance

between the satellite and the receiver antennae. A far more precise observable

is the carrier phase measurement. It is equal to the total number of full carrier

cycles and fractional cycles between the satellite signal generator at transmis-

sion time and the receiver signal correlator at reception time. Although it can

accurately measure the fractional phase difference, the GPS receiver cannot

distinguish one full carrier cycle from the next, the reason being that carri-

ers are pure sinusoidal waves and each cycle in a sinusoid looks just like the

next. The GPS integer ambiguity refers to this unknown integer number of

full cycles. Both of these measurements are biased by several factors including

atmospheric effects, clock errors and instrumental delays [33].

Any linearized GPS observation model can be written as [20]:

y = Aa+Bb+ v, (1.4)

where y ∈ Rm is the observation vector, a ∈ Zn is the vector of unknown car-

rier phase ambiguities, b ∈ Rp is the vector of unknown position coordinates,

A ∈ Rm×n and B ∈ Rm×p are the corresponding design matrices for a and b,

and v ∈ Rm is the noise vector.

In order to obtain high precision position estimates of centimeter-level ac-

curacy for parameter vector b, we must first estimate integer values for the

carrier phase ambiguities of parameter vector a. This is typically achieved by
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solving an ILS problem [20]. Since most GPS applications require real-time

fast positioning, we have to solve the ILS problem efficiently to estimate a.

This becomes even more challenging when GPS signals are combined with

signals from other satellite systems (like Galileo), thus resulting in larger ILS

problems.

A common GPS parameter estimation process found in the literature con-

sists of three steps [30]. First, we compute the RLS estimators â and b̂ of a and

b, respectively. In the second step, we compute the integer estimator ǎ using

IR, BNP or ILS, and finally, we correct the real estimate b̂ using the integer

vector ǎ, to obtain b̌. Therefore the position estimates are dependent on the

integer ambiguity estimates [20]. If the integers found are not correct, the po-

sition estimates will have large errors, and this may be dangerous for certain

applications like aircraft landing. Thus, GPS ambiguity resolution consists of

two subproblems: ambiguity estimation to compute ǎ, and ambiguity valida-

tion to evaluate its quality by finding the success rate. If this is higher than

the user-defined threshold, we may decide to accept ǎ and use it to improve

the precision of the position coordinates in b. Otherwise, we reject ǎ and use

the RLS estimator â instead in any further computations, as it would be less

harmful than using an incorrect integer estimator [26].

1.4 Box-constrained Problems

In some applications such as wireless communications (see, e.g., [9]), x in

the linear model (1.1) is subject to the box constraint:

B = {x ∈ Zn| l ≤ x ≤ u, l ∈ Zn, u ∈ Zn}. (1.5)

In order to estimate the box-constrained integer parameter vector x, we solve

the following box-constrained integer least squares (BILS) problem:

min
x∈B
||y − Ax||22. (1.6)
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A typical method for solving (1.6) also involves a reduction (or pre-processing)

phase and a search phase. The key part of a reduction algorithm is to reorder

the columns of A, as different column permutations may have significantly

different effects on the search speed [5]. The vertical Bell Labs layered space-

time (V-BLAST) optical detection ordering given in [10] was proposed as a

reduction strategy in [9]. The sorted QR decomposition (SQRD) is another re-

duction strategy proposed in [32] for decoding the same codes as those decoded

by V-BLAST algorithms. To solve the BILS problem, the box-constraints must

be considered during the search. There is more than one way to modify the

unconstrained search strategy to take the box-constraints into account (see,

e.g., [4], [5], [9]).

1.5 Thesis Contributions

In this research, we extend the theory of success rates to box-constrained

versions of the IR (BIR), BNP (BBNP) and ILS (BILS) estimators. We then

apply the extended success rate results to improve the efficiency of the BILS

estimation process. More specifically, if some entries of the integer estimate

obtained by BBNP have high success rates, then we can fix these entries and

solve a smaller-sized BILS problem to obtain better estimates for the remaining

entries. Since BBNP is a polynomial-time estimation method while BILS is

NP-hard, this partial fixing approach may reduce the overall computational

time. We consider the BIR estimator because it is a simple estimator.

This thesis is organized as follows. In chapter 2, we review the three integer

estimation methods, IR, BNP and ILS, which are typically used in practice to

estimate x in (1.1). We present the pull-in regions, also called Voronoi cells

(see, e.g., [11], [34]), of the corresponding estimators. A pull-in region is a

subset of Rn which contains all the real vectors that are mapped, differently

depending on the estimator used, to a particular integer vector [23]. In chapter
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3, we review the success rates of the IR, BNP and ILS estimators, which

are found using their respective pull-in regions and the parameter probability

distribution given in [25], and we present some success rate results found in the

literature, including the optimality property of the ILS estimator [23]. We also

discuss partial success rates. In chapter 4, we modify the integer estimation

methods to take the box constraints in B (1.5) into account when estimating

x in (1.1), to obtain box-constrained IR (BIR), BNP (BBNP) and ILS (BILS)

estimators. We also extend the concept of pull-in regions to the BIR, BBNP

and BILS estimators. In chapter 5, we extend the theory of success rates to

box-constrained estimators and consider the properties of the success rates

of the BIR, BBNP and BILS estimators. In particular, we give examples to

show that some properties, such as the optimality of the ILS estimator, which

hold in unconstrained problems, do not hold in box-constrained problems.

Furthermore, we apply extended partial success rate results in an attempt

to improve the efficiency of the BILS estimation process, thereby reducing

overall computational time. Numerical simulations results are presented to

support our findings. Finally, in chapter 6, we give some conclusions and

discuss possible future work.
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CHAPTER 2
Integer Parameter Estimation

We review the IR, BNP and ILS methods to estimate the integer parameter

vector in the linear model (1.1), and introduce the concept of pull-in regions.

2.1 Reduced Integer Least Squares Problem

The discrete search approach to solving an ILS problem involves two phases:

a reduction and a search, with the purpose of the reduction being to make the

search process more efficient. We can transform the original ILS problem

(1.3), min
x∈Zn

||y − Ax||22 where A has full column rank, into a new ILS problem

which can be solved more efficiently, by transforming matrix A into an upper

triangular matrix R which has some additional properties. This is achieved

through the QRZ factorization of A:

A = Q

R
0

Z−1 = [Q1, Q2]

R
0

Z−1 = Q1RZ
−1, (2.1)

where Q = [Q1, Q2] ∈ Rm×m is orthogonal, R ∈ Rn×n is nonsingular upper

triangular, and Z ∈ Zn×n is unimodular, i.e. | det(Z)| = 1, implying Z−1 is

also an integer matrix [8]. Then we have

||y − Ax||22 = ||QTy −QTAx||22 =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
QT

1 y

QT
2 y

−
RZ−1x

0


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

= ||QT
1 y −RZ−1x||22 + ||QT

2 y||22.

Define

ȳ , QT
1 y ∈ Rn, x̄ , Z−1x ∈ Zn.
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We obtain the following reduced ILS problem equivalent to (1.3):

min
x̄∈Zn

||ȳ −Rx̄||22. (2.2)

After the optimal solution ˇ̄x to (2.2) is found by the Schnorr and Euchner

search (see §2.4), we obtain the optimal solution x̌ to (1.3) by x̌ = Z ˇ̄x.

The process of transforming A to R is called a reduction. We initially

compute the QR factorization of A using Householder transformations, Givens

rotations or Gram-Schmidt orthogonalization, which makes Z equal to the

identity matrix I in (2.1). Then, we apply LLL reduction (see §2.4), updating

R by orthogonal transformations from the left, to keep the solution of (1.3)

unchanged, and unimodular transformations from the right, to keep the integer

nature of the unknown parameter vector x, to eventually obtain the desired

reduced upper triangular matrix R [8].

For simplicity of notation, we will use x rather than x̄ in (2.2), i.e.,

min
x∈Zn

||ȳ −Rx||22. (2.3)

It is therefore important to note that as a final step, the integer estimator

obtained by IR, BNP or ILS in the following sections must be left-multiplied

by Z to obtain the correct estimator to x in (1.3). We denote the RLS estimator

by x̂ and an integer estimator by x̌. Furthermore, we denote the IR estimator

by x̌R, the BNP estimator by x̌B, and the ILS estimator by x̌I .

2.2 Integer Rounding (IR) Estimation

The simplest integer estimator for x is obtained by the IR method, which

involves rounding the individual entries of the RLS solution of min
x∈Rn

||ȳ−Rx||22

to the nearest integers. The RLS estimator x̂ satisfies ȳ = Rx̂, and this upper

triangular system can be solved by back substitution, starting from the nth

equation to obtain x̂n =
ȳn
rnn

. We then choose x̌Rn = bx̂ne. Using the (n− 1)th
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equation, we find x̂n−1 =
ȳn−1 − rn−1,nx̂n

rn−1,n−1

, and x̌Rn−1 = bx̂n−1e. Continuing

thus, we solve for x̂n−2 to x̂1, rounding each respectively to obtain x̌Rn−2 to x̌R1 .

In general, the ith entries of x̂ and x̌R are computed by:

x̂i =

ȳi −
n∑

j=i+1

rijx̂j

rii
, x̌Ri = bx̂ie, for i = n, n− 1, ..., 1. (2.4)

The IR estimator is

x̌R = bx̂e = bR−1ȳe = [bx̂1e, · · · , bx̂n−1e, bx̂ne]T .

Since v ∼ N(0, σ2I) in (1.1), E{y} = Ax and cov{y} = σ2I. From ȳ =

QT
1 y, it follows that E{ȳ} = Rx and cov{ȳ} = σ2I. The RLS estimator

x̂ = R−1ȳ is also random, and we have

E{x̂} = R−1E{ȳ} = R−1Rx = x,

cov{x̂} = R−1cov{ȳ}R−T = R−1σ2IR−T = σ2(RTR)−1 , Σ, (2.5)

where Σ ∈ Rn×n is symmetric positive definite.

Mapping from the RLS Estimator. The pull-in region of an integer

estimator is used to find its corresponding success rate. It is defined as a

subset of Rn containing all the real vectors which are mapped to a particular

integer vector [23]. We can therefore consider the integer estimation process

as a mapping from the RLS solution x̂ ∈ Rn to an integer vector x̌ ∈ Zn, for

ease of understanding. Consequently, in a lot of the GPS literature (see, e.g.,

[20], [30]) the ILS problem (2.3) is found in its quadratic form, obtained from

x̂ = R−1ȳ:

||ȳ −Rx||22 = ||R(x̂− x)||22 = (x̂− x)TRTR(x̂− x).
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Since Σ = σ2(RTR)−1 from (2.5), we have the following minimization problem,

equivalent to (2.3):

min
x∈Zn

||x̂− x||2Σ, (2.6)

where ||a||2Σ = aTΣ−1a for a ∈ Rn.

2.3 Babai Nearest Plane (BNP) Estimation

Another simple integer estimator for x in (2.3), that gives the Babai point,

is obtained using the BNP method which, similarly to IR, involves solving an

upper triangular system by back substitution. Starting from the nth equation,

we obtain x̌Bn =

⌊
ȳn
rnn

⌉
and then use this integer in the (n − 1)th equation to

find x̌Bn−1 =

⌊
ȳn−1 − rn−1,nx̌

B
n

rn−1,n−1

⌉
. We continue thus to solve for x̌Bn−2 to x̌B1 , at

each step using the integer estimates found in the previous steps. In general,

the ith entry of x̌B is computed by the following:

wi ,

ȳi −
n∑

j=i+1

rijx̌
B
j

rii
, x̌Bi = bwie, for i = n, n− 1, ..., 1, (2.7)

with wi ∈ R. From this, the BNP estimator is

x̌B = [x̌B1 , · · · , x̌Bn−1, x̌
B
n ]T .

Given problem (2.6), we can obtain the BNP estimator similarly. The RLS

estimator x̂ satisfies ȳ = Rx̂. Thus we can rewrite wi in (2.7) as follows:

wi = x̂i +
n∑

j=i+1

rij
rii

(x̂j − x̌Bj ), for i = n, n− 1, ..., 1, (2.8)

or equivalently

w = x̌B +D−1
R R(x̂− x̌B), (2.9)

where DR = diag(r11, r22..., rnn). Equation (2.9) will be used later.

Another form of the BNP estimator commonly found in GPS literature
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(see, e.g., [20], [22], [30]) is in terms of conditional variances and covariances

obtained from the LDLT decomposition of the general form of the VC-matrix

Σ =



σ2
x̂1

· · · σx̂1x̂n−1 σx̂1x̂n
...

. . .
...

...

σx̂n−1x̂1 · · · σ2
x̂n−1

σx̂n−1x̂n

σx̂nx̂1 · · · σx̂nx̂n−1 σ2
x̂n


, (2.10)

where σ2
x̂i

denotes the variance of x̂i, and σx̂ix̂j denotes the covariance between

x̂i and x̂j. For consistency, we consider the LTDL decomposition instead, to

find Σ = LTDL where D is a diagonal matrix and L is unit lower triangular,

with entries

dii = σ2
x̂i|I

, σ2
x̂i
−

n∑
k=i+1

σ2
x̂k|Kx̂i

σ−2
x̂k|K

, (2.11)

lij = σx̂i|I x̂jσ
−2
x̂i|I

, (σx̂ix̂j −
n∑

k=i+1

σx̂k|Kx̂iσx̂k|Kx̂jσ
−2
x̂k|K

)σ−2
x̂i|I

,

for i > j, i = n, n− 1, ..., 1.

Here, I denotes the set of indices {i + 1, ..., n}, and K = {k + 1, ..., n}. We

can obtain the BNP estimator as follows. Let w − x , L−T (x̂− x), to have

||x̂− x||2Σ = (x̂− x)TL−1D−1L−T (x̂− x) = (w − x)TD−1(w − x)

=
n∑
i=1

σ−2
x̂i|I

(wi − xi)2. (2.12)

We solve the upper triangular system LT (w − x) = x̂ − x for w ∈ Rn using

back substitution, and find x̌B ∈ Zn that minimizes the sum in (2.12). Clearly,

this is achieved by choosing its entries x̌Bi = bwie if wi has been determined,

for i from n to 1. The nth entry of w is equal to wn = x̂n, and so x̌Bn = bwne.
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The ith entries of w and x̌B are taken as follows:

wi = x̂i −
n∑

k=i+1

σx̂k|Kx̂iσ
−2
x̂k|K

(wk − x̌Bk ), (2.13)

x̌Bi = bwie, for i = n, n− 1, ..., 1.

It can easily be proven that wi in (2.13) is equivalent to the wi in (2.7).

2.4 Integer Least Squares (ILS) Estimation

A typical approach to solving an ILS problem (2.3) involves two phases: a

reduction and a search [5]. The purpose of the reduction is to make the search

process more efficient. We first introduce the Schnorr and Euchner discrete

search strategy [17], in order to motivate the reduction phase, and then briefly

discuss the LLL reduction [13].

2.4.1 Schnorr and Euchner Search

Given (2.3), suppose that the optimal x satisfies the following bound [8]:

||ȳ −Rx||22 < β,

or
n∑
i=1

(ȳi −
n∑
j=i

rijxj)
2 < β, (2.14)

where β is a constant. This is a hyper-ellipsoid with center R−1ȳ. We search

this ellipsoid to find the optimal solution. Although there are several search

strategies, the most often used is the Schnorr and Euchner strategy [1]. First,

we define the following non-integer variables:

ci ,

ȳi −
n∑

j=i+1

rijxj

rii
, for i = n, n− 1, ..., 1. (2.15)

Then (2.14) can be rewritten as

n∑
i=1

r2
ii(xi − ci)2 < β. (2.16)
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This is equivalent to the following n inequalities:

level n: (xn − cn)2 <
1

r2
nn

β, (2.17)

level n− 1: (xn−1 − cn−1)2 <
1

r2
n−1,n−1

[β − r2
nn(xn − cn)2], (2.18)

...

level i: (xi − ci)2 <
1

r2
ii

[β −
n∑

j=i+1

r2
jj(xj − cj)2], (2.19)

...

level 1: (x1 − c1)2 <
1

r2
11

[β −
n∑
i=2

r2
ii(xi − ci)2]. (2.20)

Based on these bounds, a search procedure can be developed [8]. First, at

level n, we choose xn = bcne. If it does not satisfy bound (2.17), no integer

will, thus there is no integer point inside the ellipsoid. This can be avoided by

taking the initial β to be large enough. Next, at level n− 1, we compute cn−1

based on the chosen xn using (2.15) and then choose xn−1 to be the nearest

integer to cn−1, xn−1 = bcn−1e. If this xn−1 fails to satisfy bound (2.18), we go

back to level n and choose xn to be the second nearest integer to cn, and so

on. After choosing xn−1, we move to level n− 2. We continue this procedure

until we reach level 1. At this level, we compute c1 using (2.15) and choose x1

to be the nearest integer to c1. If this x1 fails to satisfy bound (2.20), we must

go back to level 2 and choose x2 to be the next nearest integer to c2 and so

on. Otherwise, with all xi satisfying bound (2.19) for i from n to 1, we obtain

an integer point x̌ in the ellipsoid [8].

The crucial next step is to shrink the ellipsoid for efficiency by taking a

new bound β = ||ȳ − Rx̌||22. We then search for a new integer point in the

ellipsoid by updating x̌. We go to level 2 to update x2 by choosing x2 to be

the next nearest integer to c2. If bound (2.18) is not satisfied with the new
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integer x2, we go to level 3 to update the value of x3 and so on. Otherwise,

we go to level 1 to update x1 and obtain a new integer point; then we update

the ellipsoid bound β and repeat the process. Finally, when we end up at level

n and fail to find a new integer for xn that satisfies bound (2.17), the most

recently found integer point x̌ is the optimal solution we seek [8]. This is a

depth-first tree search method.

We can set the initial bound β to be ∞, so that the first integer point

the search method finds is the Babai point. Alternatively, we can initially set

β = ||ȳ −Rx̌R||22 = ||ȳ −Rbx̂e||22. For more details, see [8].

2.4.2 LLL Reduction

It was found that the order of diagonal entries in R can greatly affect the

search speed. In particular, if we have very large |rii| for small i but very

small |rii| for large i, the so-called search halting problem will be significant.

Consider the case where n = 2 for simplicity, with |r22| � |r11|. This implies

that the bound (2.17) is loose and therefore quite a number of integers will

satisfy this bound. However, the bound (2.18) is very tight, and the likelihood

of not being able to find an integer that satisfies this bound is high, thereby

increasing the potential of halting. A reduction algorithm usually strives to

obtain |r11| ≤ |r22| ≤ · · · ≤ |rn−1,n−1| ≤ |rnn|, although this ordering may not

always be achievable [1].

The well-known LLL reduction requires that the upper triangular matrix

R obtained from A satisfies the following two criteria:

|ri−1,j| ≤
1

2
|ri−1,i−1|, |ri−1,i−1| ≤ δ

√
r2
i−1,i + r2

ii, (2.21)

for 1 ≤ δ < 2, j = i, ..., n, i = 2, ..., n,

where δ is a constant. Then this R is said to be LLL-reduced.

In [36], it was shown that LLL reduction can be cast as a QRZ factorization.
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The unimodular transformations in the QRZ factorization (2.1) include integer

Gauss transformations, which are used here to reduce the off-diagonal elements

ofR to meet the first LLL reduction criterion, and permutation matrices, which

are used here to reorder the columns of R to meet the second LLL reduction

criterion (see [8] for details). Note that the determinant of R, i.e. the product

|r11r22 · · · rnn|, remains a constant in the reduction process.

2.5 Pull-in Regions

We can partition the continuous space Rn into subsets, such that each

subset is assigned to a particular gridpoint of the discrete space Zn. We can

then consider the estimation process as choosing a particular gridpoint if the

RLS estimator lies in its subset. For each integer vector (or gridpoint) z ∈ Zn,

we assign a non-empty subset Sz ⊂ Rn that contains all the real vectors ξ ∈ Rn

which get mapped to the integer vector z [23]. This subset Sz is called the

pull-in region of z:

Sz = {ξ ∈ Rn| S(ξ) = z}, z ∈ Zn, (2.22)

where S : Rn → Zn is a many-to-one map (due to the natures of Rn and

Zn), meaning that different real vectors may be mapped to the same integer

vector. To check if an integer estimator x̌ obtained equals to the true vector

x, therefore, is equivalent to checking if the RLS estimator x̂ belongs to the

pull-in region of x, i.e. x̌ = x if and only if x̂ ∈ Sx.

An integer parameter estimator can be expressed as [23]:

x̌ =
∑
z∈Zn

zsz(x̂), where sz(x̂) =


1 if x̂ ∈ Sz,

0 otherwise,

(2.23)

and it is said to be admissible if the following three properties hold:
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1. Its pull-in regions cover Rn completely:

⋃
z∈Zn

Sz = Rn. (2.24)

2. Its pull-in regions do not overlap:

(interior of Sz) ∩ (interior of Sz̃) = ∅, ∀z, z̃ ∈ Zn, z 6= z̃. (2.25)

3. Its pull-in regions are translationally invariant:

Sz = z + S0, ∀z ∈ Zn, (2.26)

where S0 is the pull-in region of the origin of Zn.

These properties are motivated by the following reasons [23]. Since x̂ ∈ Rn,

the subsets should cover Rn completely to ensure that all real vectors will be

mapped to an integer vector. The interiors of these subsets should be disjoint

to ensure that the RLS solution is mapped uniquely to one single integer vector,

as required. The third property of translational invariance ensures that when

the real solution is perturbed by an integer vector, the corresponding integer

solution is perturbed by the same amount. In other words, S(ξ+z) = S(ξ)+z,

ξ ∈ Rn, z ∈ Zn. This allows application of the integer remove-restore property:

S(ξ − z) + z = S(ξ), thus enabling working with the fractional entries of ξ

when the complete entries of ξ are too large. This also implies that [23]

Sz+z̃ = {ξ ∈ Rn| S(ξ) = z + z̃} = {ξ ∈ Rn| S(ξ)− z̃ = z = S(ξ − z̃)}

= {ξ ∈ Rn| S(ζ) = z, ξ = ζ + z̃} = Sz + z̃. (2.27)

Pull-in regions therefore are translated copies of one another. This property

can be restated in terms of the pull-in region of the origin S0 (2.26).

Clearly, how a real vector will be mapped to an integer vector depends on

the estimation process used. For instance, using integer rounding in 1D, all
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real numbers ξ greater than or equal to z − 0.5 and less than z + 0.5 will get

mapped to the integer z, by the definition of rounding. We therefore have

different expressions to describe the pull-in regions of the IR, BNP and ILS

estimators.

2.5.1 Integer Rounding Estimator

Recall the IR estimator x̌R = [bx̂1e, · · · , bx̂n−1e, bx̂ne]T where x̂i is com-

puted by (2.4). The pull-in region of the integer estimator x̌R is

SRx̌R = {x̂ ∈ Rn| |x̂i − x̌Ri | ≤
1

2
, i = n, n− 1, ..., 1},

since each entry x̂i of the RLS solution is simply rounded to its nearest integer.

For each integer vector z ∈ Zn, we have the following IR pull-in region [23]:

SRz = {ξ ∈ Rn| |ξi − zi| ≤
1

2
, i = n, n− 1, ..., 1}. (2.28)

2.5.2 Babai Nearest Plane Estimator

Recall the BNP estimator x̌B = [bw1e, · · · , bwn−1e, bwne]T where wi is com-

puted by (2.7) or (2.8). The pull-in region of the integer estimator x̌B is

SBx̌B = {w ∈ Rn| |wi − x̌Bi | ≤
1

2
, i = n, n− 1, ..., 1},

since each entry wi is simply rounded to its nearest integer. However, w−x̌B =

D−1
R R(x̂− x̌B) so in terms of x̂ we have

SBx̌ = {x̂ ∈ Rn| |eTi D−1
R R(x̂− x̌B)| ≤ 1

2
, i = n, n− 1, ..., 1},

where ei denotes the ith column of I. More generally, if w− z , D−1
R R(ξ− z),

then for each integer vector z ∈ Zn,

SBz = {w ∈ Rn| |wi − zi| ≤
1

2
, i = n, n− 1, ..., 1}

= {ξ ∈ Rn| |eTi D−1
R R(ξ − z)| ≤ 1

2
, i = n, n− 1, ..., 1}. (2.29)
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Note that (2.29) is identical to (13) given in [23].

2.5.3 Integer Least Squares Estimator

For the optimal solution x to (2.6), ||x̂− x||2Σ ≤ ||x̂− x̃||2Σ, for all x̃ ∈ Zn.

Therefore, the pull-in region of each z ∈ Zn consists of the collection of all real

vectors ξ ∈ Rn that are closer to z (in terms of Σ) than to any other integer

gridpoint [30]. For each integer vector z ∈ Zn,

SIz = {ξ ∈ Rn| ||ξ − z||2Σ ≤ ||ξ − z̃||2Σ, ∀z̃ ∈ Zn}. (2.30)

Remarks. The following figures are 2D examples of pull-in regions, taken

directly from chapter 3 of [30], and included here to illustrate the different pull-

in regions.

Figure 2–1: 2D IR pull-in regions [30]
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Figure 2–2: 2D BNP pull-in regions [30]

Figure 2–3: 2D ILS pull-in regions [30]
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CHAPTER 3
Integer Estimator Validation Using Success Rates

We present the probability distribution of the integer parameter estimator

and review the success rates of the IR, BNP and ILS estimators. We also

present some success rate properties and results found in the literature. We

then discuss partial validation.

3.1 Parameter Probability Distributions

Given a linear model with normally distributed observation data, the linear

parameter estimators will also be normally distributed and their uncertainty

may be captured by the variance-covariance (VC-) matrix [25]. However, when

integer parameters are involved in the estimation process, we have non-normal

distributions. To find the uncertainty of the integer parameter estimators, we

must determine the parameter probability distributions [25].

Given the linear model (1.1), the RLS estimator x̂ of x is normally dis-

tributed, i.e. x̂ ∼ N(x,Σ), with mean x and VC-matrix Σ = σ2(RTR)−1, see

(2.5). The multivariate probability density function (PDF) of x̂ is

f(ξ) =
1√

det(Σ)(2π)n
exp{−1

2
||ξ − x||2Σ}, (3.1)

where ||a||2Σ = aTΣ−1a, for a ∈ Rn.

We can obtain the required distribution of the integer estimator x̌ from the

joint PDF of the real and integer parameters, which we denote as fx̂,x̌(ξ, z).

Theorem 3.1.1. The joint distribution of x̂ and x̌ is given as

fx̂,x̌(ξ, z) = f(ξ)sz(ξ), ξ ∈ Rn, z ∈ Zn, (3.2)
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where sz(ξ) is the indicator function of the pull-in region Sz ⊂ Rn:

sz(ξ) =


1 if ξ ∈ Sz,

0 otherwise.

(3.3)

See [25] for the proof of this theorem.

We can recover the marginal distributions of x̂ and x̌ from this joint dis-

tribution. The PDF of x̂ is

∑
z∈Zn

fx̂,x̌(ξ, z) =
∑
z∈Zn

f(ξ)sz(ξ) = f(ξ), (3.4)

since
∑
z∈Zn

sz(ξ) = 1 for all ξ ∈ Rn by the property that pull-in regions do

not overlap, which ensures that a RLS solution is mapped to a unique integer

vector. Furthermore, the probability mass function (PMF) of x̌ is∫
Rn

fx̂,x̌(ξ, z)dξ =

∫
Rn

f(ξ)sz(ξ)dξ =

∫
Sz

f(ξ)dξ. (3.5)

Since f(ξ) is the PDF of x̂, this integral is equal to the probability P (x̂ ∈ Sz).

Also, by the definition of pull-in regions, x̂ ∈ Sz is equivalent to x̌ = z, and

the following holds [24]:

P (x̂ ∈ Sz) = P (x̌ = z) =

∫
Sz

f(ξ)dξ. (3.6)

This is used to find the success rates. This PMF, sometimes referred to in the

literature as the integer normal distribution, satisfies the following three useful

properties [21] [30].

1. The first is that the distribution is symmetric about x for all admissible

integer estimators:

P (x̌ = x− z) = P (x̌ = x+ z), ∀z ∈ Zn. (3.7)
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The proof follows from the fact that the normal distribution is symmetric

about x, and can be found in [19] [21].

2. From this, it follows that all admissible estimators are unbiased:

E{x̌} =
∑
z∈Zn

zP (x̌ = z) = x. (3.8)

The proof is given in [19].

3. The third property states that for the ILS estimator, the probability

that the integer estimate x̌I coincides with the true but unknown integer

vector x is always larger than the probability that it is equal to any

other integer vector. In other words, the probability of correct integer

estimation is the largest:

P (x̌I = x) = max
z∈Zn

P (x̌I = z). (3.9)

The proof for the ILS estimator is given in [21].

3.2 Success Rates

The success rate, which we denote here by PS, is the probability of correct

integer estimation, i.e. the probability that x̌ coincides with the true x (see,

e.g., [11], [23], [24]). From the PMF of x̌ (3.6), it follows that the success rate

can be computed by taking the integral of f(ξ) over Sx, such that [24]:

PS = P (x̌ = x) =

∫
Sx

f(ξ)dξ, (3.10)

where f(ξ) is the PDF of x̂ (3.1). Note that the success rate depends on the

pull-in region of x, and the different estimators have different pull-in regions.

The success rate of the IR estimator is

PR
S = P (x̌R = x) =

∫
SRx

f(ξ)dξ,
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and the success rates of the BNP and ILS estimators are, correspondingly,

PB
S = P (x̌B = x) =

∫
SBx

f(ξ)dξ,

P I
S = P (x̌I = x) =

∫
SIx

f(ξ)dξ.

Teunissen proves in [23] that the ILS estimator is optimal among the class of

admissible integer estimators (which include the IR and BNP estimators).

Theorem 3.2.1. For any admissible integer estimator x̌:

P I
S = P (x̌I = x) ≥ P (x̌ = x) = PS. (3.11)

The proof is based on the definition of the ILS pull-in region. This theorem

is important for it justifies using the ILS estimator although it is computation-

ally more expensive than the IR and BNP estimators [23].

3.3 Success Rate of the Integer Rounding Estimator

The success rate PR
S of the IR estimator is obtained as follows [22]. The

pull-in region of x is SRx = {x̂ ∈ Rn| |x̂i − xi| ≤
1

2
, i = n, ..., 1} by (2.28).

For simplicity, we consider the 1D case, i.e. n = 1, first. In this case, the

VC-matrix of x̂ is Σ = σ2
x̂, and

PR
S = P (x̌R = x) =

∫
|x̂−x|≤ 1

2

1

σx̂
√

2π
exp{− 1

2σ2
x̂

(x̂− x)2}dx̂

=

1
2∫

− 1
2

1

σx̂
√

2π
exp{− 1

2σ2
x̂

t2}dt.

Denoting the cumulative distribution function of the standard normal distri-

bution N(0, 1) by Φ(α) =
α∫
−∞

1√
2π

exp{−1

2
t2}dt, we have

PR
S = Φ

(
1

2σx̂

)
− Φ

(
− 1

2σx̂

)
= 2Φ

(
1

2σx̂

)
− 1.
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Now consider the n dimensional case, with

PR
S = P (x̌R = x) = P (|x̂i − xi| ≤

1

2
, i = n, ..., 1).

By the Chain Rule of conditional probabilities, this equals

n∏
i=1

P

(
|x̂i − xi| ≤

1

2

∣∣∣∣ |x̂n − xn| ≤ 1

2
, ..., |x̂i+1 − xi+1| ≤

1

2

)
.

Since x̂ ∼ N(x,Σ), the parameter elements are correlated, making exact eval-

uation of this probability difficult [22]. In the simplest case, where Σ =

diag(σ2
x̂1
, σ2

x̂2
, ..., σ2

x̂n
) in (2.10), x̂j for j = n, ..., 1 are uncorrelated, and

PR
S =

n∏
i=1

P (|x̂i − xi| ≤
1

2
) =

n∏
i=1

(
2Φ

(
1

2σx̂i

)
− 1

)
.

The probability corresponding to the general correlated case is bounded from

below by this (see [22]), giving

PR
S = P (x̌R = x) ≥

n∏
i=1

(
2Φ

(
1

2σx̂i

)
− 1

)
. (3.12)

3.4 Success Rate of the Babai Nearest Plane Estimator

The success rate PB
s of the BNP estimator is obtained as follows [22]. From

the definition of the pull-in region SBx in (2.29), we have

PB
S = P (x̌B = x) = P (|wi − xi| ≤

1

2
, i = n, ..., 1).

By the Chain Rule of conditional probabilities,

PB
S =

n∏
i=1

P

(
|wi − xi| ≤

1

2

∣∣∣∣ |wn − xn| ≤ 1

2
, ..., |wi+1 − xi+1| ≤

1

2

)
.

From w − x = D−1
R R(x̂− x) in (2.9) and from (2.5), we find that

E{w − x} = D−1
R R E{x̂− x} = D−1

R R · 0 = 0,
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and also that

cov{w − x} = D−1
R R cov{x̂− x}(D−1

R R)T = σ2D−1
R RΣRTD−TR

= σ2D−2
R = diag

(
σ2

r2
11

,
σ2

r2
22

, ...,
σ2

r2
nn

)
. (3.13)

Since cov{w − x} = cov{w} is a diagonal matrix, the entries of w are not

correlated. Thus, we have

PB
S =

n∏
i=1

P (|wi − xi| ≤
1

2
) =

n∏
i=1

1
2∫

− 1
2

1
σ
|rii|

√
2π

exp{−1

2

t2

(σ
2

r2ii
)
}dt

=
n∏
i=1

(
Φ

(
|rii|
2σ

)
− Φ

(
−|rii|

2σ

))
=

n∏
i=1

(
2Φ

(
|rii|
2σ

)
− 1

)
. (3.14)

Comparing the Success Rates of the IR and BNP Estimators.

Unlike the IR estimator, the BNP estimator computes the ith element x̌Bi

using the integer estimates found in the previous steps of the process, i.e.

using x̌Bi+1, ..., x̌
B
n . We expect it to have a better success rate than the IR

estimator, which does not take any new information into consideration during

the estimation process to improve the final integer solution obtained. In fact,

Teunissen proved in [22] that

PB
S = P (x̌B = x) ≥ P (x̌R = x) = PR

S . (3.15)

3.5 Success Rate of the Integer Least Squares Estimator

Recall the ILS pull-in region of the true integer vector x:

SIx = {ξ ∈ Rn| ||ξ − x||2Σ ≤ ||ξ − z̃||2Σ, ∀z̃ ∈ Zn}.

The success rate integral in (3.10) is difficult to evaluate for the ILS estimator

due to this complex integration region [30]. For this reason, we look for lower

and upper bounds for P I
S instead, which would be simpler to evaluate.
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3.5.1 BNP Based Lower Bound

From Theorem 3.2.1 we know that the ILS estimator maximizes the success

rate [23]. We also know that the success rate of the BNP estimator is at least

as high as that of the IR estimator (3.15), and that it can be computed directly

and efficiently, as seen in §3.4. Therefore, we can use the BNP success rate as

a lower bound on the ILS success rate:

P I
S = P (x̌I = x) ≥

n∏
i=1

(
2Φ

(
|rii|
2σ

)
− 1

)
= P (x̌B = x) = PB

S . (3.16)

Remarks. Although the ILS estimator is optimal among the class of ad-

missible integer estimators, there are multiple reasons why we are interested

in the BNP estimator. First of all, the Babai point is the first point obtained

in the ILS search process, so it is computationally cheaper to find than the

ILS solution. Often in practice, the BNP algorithm actually finds the global

optimum solution, resulting in a Babai point which coincides with the ILS so-

lution [11]. Also, the BNP success rate can be evaluated exactly, unlike the ILS

success rate which requires integration over a complex region, and it provides

a good lower bound for the ILS success rate, as simulation results presented

in [30] show.

This can be quite useful in practice. As an example, assume the user-

defined success rate acceptability threshold is set to 0.85 for a certain appli-

cation. Before computing the ILS solution, we can first find the Babai point

through BNP, evaluate the BNP success rate, and if PB
S > 0.85, we can accept

the Babai point, trusting it to be a good enough estimate for the purposes of

this application. We can thereby reduce computation costs as there is no need

to find the ILS solution in this case.
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3.5.2 ADOP Based Upper Bound

We can derive an upper bound on the ILS success rate using a dilution of

precision (DOP) measure. DOP measures are simple functions of the appro-

priate VC-matrices [18]. The GPS ambiguity dilution of precision (ADOP) is

defined as a diagnostic that attempts to capture the main characteristics of

integer parameter precision [30]. It is defined as

ADOP =
(√

det(Σ)
) 1

n
=

n∏
i=1

σ
1
n
x̂i|I

. (3.17)

This can be obtained by the LTDL decomposition of the VC-matrix Σ, as in

(2.11). One important property of the ADOP is that it can be used to compute

the volume of the parameter search space. This volume is a good indicator of

the number of gridpoints in the ILS search space [27]. An upper bound for the

ILS success rate can be given based on the ADOP.

Theorem 3.5.1. The ILS success rate is bounded from above by

P I
S = P (x̌I = x) ≤ P

(
χ2(n, 0) ≤ cn

ADOP 2

)
, (3.18)

with cn =
(n

2
Γ(n

2
))

2
n

π
,

where χ2(n, 0) is the central Chi-square distribution with n degrees of freedom,

and Γ denotes the gamma function.

This theorem is stated and proved in [24]. The upper bound can be com-

puted using [12]:

P (χ2(n, 0) ≤ c) =


1− e− c

2

1
2

(n−2)∑
i=0

( c
2
)i

i!
if n is even,

2Φ(
√
c)− 1− e− c

2

1
2

(n−3)∑
i=0

( c
2
)(i+ 1

2
)

Γ(i+ 3
2
)

if n is odd,

where c =
cn

ADOP 2
here.
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3.5.3 Integration Region Based Bounds

We can also find lower and upper bounds for the ILS success rate by bound-

ing the integration region SIx. For a lower bound, we may replace SIx by a subset

Lx ⊂ SIx which is completely contained by the pull-in region. For an upper

bound, we may replace SIx by an enclosing set Ux ⊃ SIx which completely con-

tains the pull-in region. The ILS success rate will then lie in the following

interval:

P (x̂ ∈ Lx) ≤ P I
S = P (x̂ ∈ SIx) ≤ P (x̂ ∈ Ux). (3.19)

Both regions Lx and Ux are chosen by considering the geometry of SIx and

also such that they allow easy evaluation of the corresponding probabilities in

practice. Details can be found in [21].

Nevertheless, the BNP based lower bound and the ADOP based upper

bound are simpler to compute than the integration region based bounds [30].

In addition, they both perform well in most cases [30], providing sharp bounds

to the ILS success rate; therefore we focus on extending these particular bounds

to box-constrained problems in this thesis.

3.6 Partial Success Rates

We find an estimate x̌ ∈ Zn to the parameter vector x ∈ Zn using the

method of IR, BNP or ILS, and compute the corresponding success rate PS =

P (x̌ = x) to evaluate the quality of the integer estimate obtained. This is

the probability of a simultaneous event
n⋂
i=1

(x̌i = xi), and thereby it tends

to decrease as n increases [28]. Therefore it may not always be possible to

estimate all n entries of x with a high success rate. Given a success rate

acceptability threshold PT , the goal of partial validation is to find the largest

subvector whose success rate is not smaller than PT . When the overall success

rate is less than this threshold value, i.e. PS = P (x̌ = x) < PT , we may

compute partial success rates PPS of the entries and then fix as integers the
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largest subset which satisfies PPS ≥ PT .

As BNP is a polynomial-time integer estimation method with a success

rate PB
S which can be computed directly, we focus on the partial success rate

of the BNP estimator, denoted by PB
PS. Recall the BNP success rate given in

§3.4 as follows:

PB
S = P (x̌B = x) =

n∏
i=1

(
2Φ

(
|rii|
2σ

)
− 1

)
.

Note that the BNP estimation method finds the entries of x̌B sequentially,

from x̌Bn to x̌B1 . The probability that the subset of entries of x̌B consisting of

x̌Bj to x̌Bn , where i ≤ j ≤ n, coincides with the corresponding subset of entries

of the true x is obtained by

PB
PS,j = P ([x̌Bj , x̌

B
j+1, ..., x̌

B
n ]T = [xj, xj+1, ..., xn]T )

= P (|wk − xk| ≤
1

2
, k = n, ..., j)

=
n∏
k=j

P (|wk − xk| ≤
1

2

∣∣∣∣ |wn − xn| ≤ 1

2
, ..., |wk+1 − xk+1| ≤

1

2
).

See §3.4 for details. Like (3.14), we have

PB
PS,j =

n∏
k=j

P (|wk − xk| ≤
1

2
) =

n∏
k=j

(
2Φ

(
|rkk|
2σ

)
− 1

)
. (3.20)

How partial validation is used in practice depends on the application itself.

For instance, in GPS applications, if the integer ambiguity estimate x̌ has a

low success rate, it is rejected in favour of the RLS solution x̂ (2.4) to avoid

getting large errors in the position estimates which are dependent on these

integer ambiguities. We can use partial validation to find the largest possible

subset of x̌ such that PPS ≥ PT , and fix its entries as integers. We can

then solve an RLS problem to find real estimates to the remaining entries of

the estimate vector, which replace the integer estimates having low success
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rates. Let x̃ denote the mixed (real and integer) vector outcome of this partial

validation process, and let pi = 2Φ

(
|rii|
2σ

)
− 1, for simplicity of notation. We

find x̃ as follows. Initially, we find PB
PS = pn. If PB

PS < PT , we return the

original RLS solution x̃ = x̂ and stop here. If PB
PS ≥ PT , we fix x̃n = x̌Bn ,

and continue. We compute PB
PS = PB

PS · pn−1, and if PB
PS < PT , we solve

an updated RLS problem for x̃n−1, ..., x̃2, x̃1. If PB
PS ≥ PT , we fix x̃n−1 =

x̌Bn−1, and continue. Say that we find PB
PS = pn · pn−1 · · · pj ≥ PT but PB

PS =

pn · pn−1 · · · pj · pj−1 < PT . This means that we can successfully fix x̃(2) ≡

[x̃j, x̃j+1, ..., x̃n]T = [x̌Bj , x̌
B
j+1, ..., x̌

B
n ]T . This is the largest possible subset of

entries which have a partial success rate higher than the threshold value PT .

The remaining entries of x are computed as follows. Partition x into

x(1)

x̃(2)

,

where x(1) ∈ Rj−1 and x̃(2) ∈ Zn−j+1. Similarly, partition ȳ into

ȳ(1)

ȳ(2)

,

ȳ(1) ∈ Rj−1, ȳ(2) ∈ Rn−j+1 and R into

R1 R12

0 R2

 with R1 ∈ R(j−1)×(j−1),

R2 ∈ R(n−j+1)×(n−j+1), R12 ∈ R(j−1)×(n−j+1). We solve the RLS problem:

min
x(1)∈Rj−1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
ȳ(1)

ȳ(2)

−
R1 R12

0 R2


x(1)

x̃(2)


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

.

This is equivalent to solving

min
x(1)∈Rj−1

||(ȳ(1) −R12x̃
(2))−R1x

(1)||22. (3.21)

The RLS estimator is x̃(1) = R−1
1 (ȳ(1) −R12x̃

(2)).

Theorem 3.6.1. Let the parameter vector x in (1.1) have the partition

x(1)

x(2)

,

where x(1) ∈ Zj−1 and x(2) ∈ Zn−j+1 and let the RLS estimator x̂ have the
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partition

x̂(1)

x̂(2)

, where x̂(1) ∈ Rj−1 and x̂(2) ∈ Rn−j+1. Suppose x̃(2) ≡ x(2).

Then x̃(1) is a more efficient estimator of x(1) than x̂(1) in the sense that the

former has a smaller VC-matrix.

Proof. Note that

E{ȳ(1)} = R1x
(1) +R12x

(2).

Then

x̃(1) = R−1
1 (ȳ(1) −R12x̃

(2)) = R−1
1 (ȳ(1) −R12x

(2))

= R−1
1 (ȳ(1) − E{ȳ(1)}) + x(1).

Thus, E{x̃(1)} = x(1). So x̃(1) is an unbiased estimator of x(1). Also

cov{x̂} = cov


x̂(1)

x̂(2)


 = σ2(RTR)−1

= σ2

R−1
1 −R−1

1 R12R
−1
2

0 R−1
2


 R−T1 0

−(R−1
1 R12R

−1
2 )T R−T2

 .
Thus

cov{x̂(1)} = σ2(RT
1R1)−1 + (R−1

1 R12R2)(R−1
1 R12R2)T . (3.22)

But we have

cov{x̃(1)} = R−1
1 cov{ȳ(1)}R−T1 = R−1

1 σ2IR−T1 = σ2(RT
1R1)−1, (3.23)

therefore

cov{x̂(1)} − cov{x̃(1)} = (R−1
1 R12R2)(R−1

1 R12R2)T ,

which is symmetric semidefinite. So the conclusion holds.
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CHAPTER 4
Box-constrained Integer Parameter Estimation

We present the box-constrained versions of the IR (i.e. BIR), BNP (i.e.

BBNP), and ILS (i.e. BILS) methods of integer estimation and extend the

concept of pull-in regions to the corresponding box-constrained estimators.

4.1 Reduced Box-constrained Integer Least Squares Problem

We can transform the original BILS problem (1.6):

min
x∈B
||y − Ax||22, (4.1)

where A has full column rank and the unknown integer parameter vector x

is constrained to a box B (1.5), into a new BILS problem by transforming

matrix A into an upper triangular matrix R which has good properties that

make the search process more efficient [5]. This is accomplished by the QR

decomposition of A with column pivoting:

AP = Q

R
0

 = [Q1, Q2]

R
0

 = Q1R, (4.2)

where P ∈ Zn×n is a permutation matrix, Q = [Q1, Q2] ∈ Rm×m is orthogonal,

and R ∈ Rn×n is nonsingular upper triangular [5]. The QR decomposition

can be computed using Householder transformations or Givens rotations. The

main difference between different reduction strategies in the literature is the

permutation matrix P [5].

With the QR factorization (4.2), we have

||y − Ax||22 = ||QT
1 y −RP Tx||22 + ||QT

2 y||22.
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Define

ȳ , QT
1 y ∈ Rn, x̄ , P Tx, l̄ , P T l, ū , P Tu.

We obtain the following reduced BILS problem equivalent to (4.1):

min
x̄∈B̄
||ȳ −Rx̄||22, B̄ = {x̄ ∈ Zn| l̄ ≤ x̄ ≤ ū, l̄ ∈ Zn, ū ∈ Zn}. (4.3)

For simplicity of notation, we will consider the following problem instead of

(4.3) in this thesis:

min
x∈B
||ȳ −Rx||22, B = {x ∈ Zn| l ≤ x ≤ u, l ∈ Zn, u ∈ Zn}. (4.4)

As a final step, therefore, the integer estimators obtained by BIR, BBNP or

BILS in the following sections must be left-multiplied by P to obtain the

correct estimates to the original x in (4.1). We denote the unconstrained RLS

estimator by x̂ and a box-constrained integer estimator by x̌C . Furthermore,

we denote the BIR estimator by x̌RC , the BBNP estimator by x̌BC , and the

BILS estimator by x̌IC .

4.2 Box-constrained Integer Rounding (BIR) Estimation

The unconstrained RLS estimator x̂ satisfies ȳ = Rx̂, and this upper

triangular system can be solved by back substitution, starting from the nth

equation. See §2.2 for details. Unlike in unconstrained problems where upon

finding x̂n we choose x̌Rn = bx̂ne, in box-constrained problems we must take

the constraints ln and un into account, since we require ln ≤ x̌Cn ≤ un. If

ln ≤ bx̂ne ≤ un, we choose x̌RCn = bx̂ne. Otherwise, we choose x̌RCn to be the

nearest integer to bx̂ne which satisfies the constraints. Hence, if bx̂ne < ln, we

choose x̌RCn = ln and if bx̂ne > un, we choose x̌RCn = un. Similarly, upon find-

ing x̂n−1, we choose x̌RCn−1 to be the nearest integer to bx̂n−1e in the constrained

interval [ln−1, un−1]. Thus, we choose x̌RCn−1 = bx̂n−1e if ln−1 ≤ bx̂n−1e ≤ un−1,

x̌RCn−1 = ln−1 if bx̂n−1e < ln−1, and x̌RCn−1 = un−1 if bx̂n−1e > un−1. We continue
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thus, to find x̌RCn−2, ..., x̌
RC
1 .

In general, given x̂i for i = n, n − 1, ..., 1, as computed by (2.4), the ith entry

of x̌RC is obtained by:

x̌RCi =


bx̂ie if li < bx̂ie < ui,

li if bx̂ie ≤ li,

ui if bx̂ie ≥ ui.

(4.5)

From this, the BIR estimator is

x̌RC = [x̌RC1 , · · · , x̌RCn−1, x̌
RC
n ]T .

Mapping from the RLS Estimator. We can again consider the box-

constrained integer estimation process as a mapping from the RLS solution

x̂ ∈ Rn to an integer vector x̌C ∈ B ⊂ Zn. From x̂ = R−1ȳ, we have

||ȳ −Rx||22 = ||R(x̂− x)||22 = (x̂− x)TRTR(x̂− x).

Since x̂ ∼ N(x,Σ) with Σ = σ2(RTR)−1 by (2.5), we have the following

minimization problem, equivalent to (4.4):

min
x∈B
||x̂− x||2Σ, (4.6)

where ||a||2Σ = aTΣ−1a for a ∈ Rn. This form is often used in the GPS

literature (see, e.g., [11], [20], [30]).

4.3 Box-constrained Babai Nearest Plane (BBNP) Estimation

We similarly modify the BNP method given in §2.3 to take the box-

constraints l and u into account. Solving by back substitution starting from

the nth equation, define wn ,
ȳn
rnn

. We choose x̌BCn to be the nearest integer to

bwne in the constrained interval [ln, un], i.e. that satisfies ln ≤ x̌BCn ≤ un. We

then use this integer in the (n−1)th equation, where wn−1 ,
ȳn−1 − rn−1,nx̌

BC
n

rn−1,n−1

.
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Again, we choose x̌BCn−1 to be the nearest integer to bwn−1e in the constrained

interval [ln−1, un−1]. We continue thus to find x̌BCn−2, ..., x̌
BC
1 , at each step using

the integer estimates found in the previous steps. In general, the ith entry of

x̌BC is computed by the following:

wi ,

ȳi −
n∑

j=i+1

rijx̌
BC
j

rii
, for i = n, n− 1, ..., 1, (4.7)

and x̌BCi =


bwie if li < bwie < ui,

li if bwie ≤ li,

ui if bwie ≥ ui.

(4.8)

From this, the BBNP estimator is

x̌BC = [x̌BC1 , · · · , x̌BCn−1, x̌
BC
n ]T .

Given problem (4.6), we can obtain the BBNP estimator similarly. The

RLS estimator x̂ satisfies ȳ = Rx̂. Thus we can rewrite wi in (4.7) as follows:

wi = x̂i +
n∑

j=i+1

rij
rii

(x̂j − x̌BCj ), for i = n, n− 1, ..., 1, (4.9)

or equivalently

w = x̌BC +D−1
R R(x̂− x̌BC), (4.10)

where DR = diag(r11, r22, ..., rnn). We then use (4.8) as well, to obtain the

entries of x̌BC .

4.4 Box-constrained Integer Least Squares (BILS) Estimation

As with unconstrained (ordinary) ILS problems, solving BILS problems

involves a reduction phase and a search phase. To make the search process

more efficient, a reduction algorithm usually strives for the diagonal elements

of matrix R in (4.2) to satisfy |r11| ≤ |r22| ≤ · · · ≤ |rnn|, which may not always
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be achievable (see [1] for the justification of this ordering). We briefly discuss

the ideas of the search and introduce the V-BLAST and SQRD reduction

strategies. LLL reduction is usually not used for solving BILS problems as it

makes the box-constraint B very complicated [8].

4.4.1 Search Strategies

The ideas of the Schnorr and Euchner search algorithm for unconstrained

problems are described in §2.4. To solve the BILS problem (4.4), the box-

constraints must be considered during the search. Details on multiple ap-

proaches that modify the unconstrained search in order to take the box-

constraints into account can be found in [5]. One such search algorithm, re-

ferred to as DEC in [5], is presented in [9], while another search algorithm,

referred to as BGBF in [5], is proposed in [4]. Both the DEC and the BGBF

strategies are based on the Schnorr and Euchner search. In [5], a new search

algorithm, called SEARCH, is provided which uses the advantages of the two

algorithms but avoids their drawbacks.

4.4.2 V-BLAST Reduction

The V-BLAST permutation strategy determines the columns of the per-

muted matrix A from the last column to the first [9]. Let Jk denote the set of

column indices for the columns which have not yet been chosen when the kth

column of A is to be determined, for k = n, n− 1, ..., 1. This strategy chooses

the p(k)th column of the original matrix A as the kth column of the permuted

matrix A we seek:

p(k) = arg max
j∈Jk

aTj [I − Ak,j(ATk,jAk,j)−1ATk,j]aj, (4.11)

where aj is the jth column of A and Ak,j is the m× (k − 1) matrix formed by

the columns ai with i ∈ Jk − {j}.

We can easily show that aTj [I − Ak,j(A
T
k,jAk,j)

−1ATk,j]aj is the square of
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the Euclidean distance from aj to the space spanned by the columns of Ak,j

[5]. Note that in the QR decomposition (4.2), |rkk| is the orthogonal distance

from the kth column of AP to the space spanned by the first k − 1 columns

of AP . Thus ap(k) is the column which makes |rkk| maximum over all the

remaining columns when we determine the kth column of the permuted A for

k = m,m− 1, ..., 1 [5]. For an efficient algorithm implementing the V-BLAST

strategy, refer to [6].

4.4.3 Sorted QR Decomposition

The sorted QR decomposition (SQRD) algorithm, used to find a subop-

timal (Babai integer point) solution to the ILS problem, can also be used as

a reduction algorithm to speed up the BILS search process [32]. In contrast

to the V-BLAST strategy, SQRD determines the columns of the permuted A

we seek from the first column to the last, using the modified Gram-Schmidt

method [5]. In the kth step of the modified Gram-Schmidt method, the kth

column of A is chosen from the remaining n − k + 1 columns of A such that

rkk is smallest, for k = 1, 2, ..., n. See [5] for details.

Simulations given in [32] indicate that the Babai point as an estimate of

the integer parameter vector obtained by applying the SQRD reduction strat-

egy is slightly less accurate than the Babai point obtained by the V-BLAST

strategy. Therefore we expect it to have a lower success rate in general. How-

ever, SQRD is computationally more efficient than V-BLAST (see [5] and the

references therein).

4.5 Box-constrained Pull-in Regions

The results presented in this section are straightforward extensions of the

corresponding results presented in §2.5, found in e.g. [19], [23].

If we think of partitioning Rn into (different-sized) subsets, such that each

subset is assigned to a particular gridpoint of Zn that satisfies the box-
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constraints, we can consider the estimation process as choosing a specific grid-

point if the RLS estimator lies in its subset [19]. If the gridpoint itself lies

strictly inside the constraints, the corresponding subset is similar to that of

unconstrained problems. Subsets corresponding to gridpoints at the bound-

aries of the box-constraints are much larger in size, though, since they must

include the RLS estimators which would have otherwise (in unconstrained

problems) been mapped to gridpoints outside the box-constrained area.

There is an important distinction between the map S : Rn → Zn of un-

constrained problems and the map from the RLS solution to an integer vec-

tor in box-constrained problems. For obvious reasons, we require that the

box-constrained integer estimators always return integer solutions that sat-

isfy the box-constraints. If we denote this box-constrained map by SC , then

SC : Rn → B ⊂ Zn, where B is defined in (1.5) as B = {x ∈ Zn| l ≤ x ≤ u, l ∈

Zn, u ∈ Zn}. From this, it follows that SC(x̂) = x̌C , with l ≤ x̌C ≤ u. The

map SC is a many-to-one map, so different real vectors may be mapped to the

same integer vector.

For each integer vector z that satisfies the box-constraints, i.e. z ∈ B, we

can consider a non-empty subset SCz ⊂ Rn that contains all the real vectors

ξ ∈ Rn which get mapped to z. Moreover, no real vector will be mapped

to an integer vector outside the box-constraints. This subset SCz is called the

box-constrained pull-in region of z:

SCz =


{ξ ∈ Rn|SC(ξ) = z} if z ∈ B,

∅ if z /∈ B.
(4.12)

To check if an integer estimator x̌C obtained equals the true vector x, therefore,

is equivalent to checking if the RLS estimator x̂ belongs to the pull-in region

of x, i.e. x̌C = x if and only if x̂ ∈ SCx .
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A box-constrained integer parameter estimator can be expressed as:

x̌C =
∑
z∈B

zsCz (x̂), where sCz (x̂) =


1 if x̂ ∈ SCz

0 otherwise

(4.13)

For a box-constrained integer estimator to be admissible, its pull-in regions

must satisfy the following three properties:

1. Since x̂ ∈ Rn, the subsets should cover Rn completely, so that all real

vectors will be mapped to an integer vector:

⋃
z∈B

SCz = Rn (4.14)

2. The interiors of these subsets should be disjoint so that the real solution

is mapped to only one integer vector:

(interior of SCz ) ∩ (interior of SCz̃ ) = ∅, ∀z, z̃ ∈ Zn, z 6= z̃ (4.15)

3. Pull-in regions at the boundaries of the box-constraints are larger than

the pull-in regions inside the box-constraints. Therefore, only the pull-in

regions SCz that lie strictly inside the box-constraints are translationally

invariant. Thus, for l < z < u, we have

SCz+z̃ = SCz + z̃, ∀z̃ ∈ Zn such that l < z + z̃ < u (4.16)

Unlike (2.26), this cannot be rewritten in terms of S0, the pull-in re-

gion of the origin of Zn, because the origin might not satisfy the given

constraints.

As in the unconstrained case, we have different expressions to describe the

box-constrained pull-in regions of the BIR, BBNP and BILS estimators.
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4.5.1 Box-constrained Integer Rounding Estimator

Recall the BIR estimator x̌RC = [x̌RC1 , · · · , x̌RCn−1, x̌
RC
n ]T , where x̌RCi = bx̂ie

if li < bx̂ie < ui, x̌
RC
i = li if bx̂ie ≤ li, or x̌RCi = ui if bx̂ie ≥ ui, by (4.5). For

simplicity, consider the 1D case (i.e. n = 1) first. The pull-in region of the

integer estimate x̌RC , when l < x̌RC < u, is equal to

SRCx̌RC = {x̂ ∈ R| |x̂− x̌RC | ≤ 1

2
} = {x̂ ∈ R| x̂ ∈ [x̌RC − 1

2
, x̌RC +

1

2
)}.

If x̌RC = l, it is equal to

SRCl = {x̂ ∈ R| x̂ ∈ (−∞, l +
1

2
)},

and similarly, if x̌RC = u,

SRCu = {x̂ ∈ R| x̂ ∈ [u− 1

2
,∞)}.

In general, for each integer z ∈ Z, where z is obtained by rounding ξ ∈ R:

SRCz =



{ξ ∈ R| |ξ − z| ≤ 1
2
} if l < z < u,

{ξ ∈ R| ξ ∈ (−∞, l + 1
2
)} if z = l,

{ξ ∈ R| ξ ∈ [u− 1
2
,+∞)} if z = u,

∅ if z < l or z > u.

(4.17)

In other words, all the real numbers which would have been mapped to integers

smaller than the lower bound l are now mapped to l itself, while those which

would have been mapped to integers larger than the upper bound u are now

mapped to u itself. In addition, the pull-in region of any integer outside the

constraints is empty, since no real number will be mapped to an integer that

does not satisfy the box-constraints.

We can easily verify two of the properties of box-constrained pull-in regions.

For each z ∈ (l, u), we have ξ ∈ [z − 1
2
, z + 1

2
), therefore the union of pull-in
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regions over the area l < z < u is equal to [l + 1
2
, u− 1

2
). Taking the union of

this with the regions at l and u, we have

(−∞, l +
1

2
) ∪ [l +

1

2
, u− 1

2
) ∪ [u− 1

2
,+∞) = (−∞,+∞),

and so ⋃
z∈B

SRCz = R.

Also, it is clear that for any two distinct integers z and z̃, the interiors of SCz

and SCz̃ are disjoint (empty intersection).

Since the BIR estimator computes each element x̌RCi similarly, we can easily

obtain the general form of the BIR pull-in region in n dimensions from (4.17):

SRCz = {ξ ∈ Rn|


|ξi − zi| ≤ 1

2
if li < zi < ui,

ξi ∈ (−∞, li + 1
2
) if zi = li,

ξi ∈ [ui − 1
2
,+∞) if zi = ui,

for i = n, n− 1, ..., 1}. (4.18)

2D Example. We can illustrate this using a simple 2D example. If we let

box-constraints l = [l1, l2]T = [−1,−1]T and u = [u1, u2]T = [1, 1]T , then there

is a total of nine different pull-in regions corresponding to integer gridpoints

z = [z1, z2]T which satisfy these constraints. Figure 4–1 is based on that of 2D

IR pull-in regions in chapter 3 of [30]. Each pull-in region is colored differently

for clarity, and is numbered according to the cases below.

1. When z = [−1, 1]T , i.e. z1 = l1, z2 = u2, its pull-in region is:

Sz = {ξ ∈ R2| ξ1 ∈ (−∞, l1 + 1
2
), ξ2 ∈ [u2 − 1

2
,+∞)}

= {ξ ∈ R2| ξ1 ∈ (−∞,−1
2
), ξ2 ∈ [1

2
,+∞)}.

This means that any RLS solution ξ with ξ1 < −1
2

and ξ2 ≥ 1
2

will be
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Figure 4–1: 2D BIR pull-in regions (based on [30])

mapped to the integer point [−1, 1]T using BIR.

Similarly, the following statements hold.

2. When z = [−1, 0]T , Sz = {ξ ∈ R2| ξ1 ∈ (−∞,−1
2
), ξ2 ∈ [−1

2
, 1

2
)}.

3. When z = [−1,−1]T , Sz = {ξ ∈ R2| ξ1 ∈ (−∞,−1
2
), ξ2 ∈ (−∞,−1

2
)}.

4. When z = [0, 1]T , Sz = {ξ ∈ R2| ξ1 ∈ [−1
2
, 1

2
), ξ2 ∈ [1

2
,+∞)}.

5. When z = [0, 0]T , Sz = {ξ ∈ R2| ξ1 ∈ [−1
2
, 1

2
), ξ2 ∈ [−1

2
, 1

2
)}.

6. When z = [0,−1]T , Sz = {ξ ∈ R2| ξ1 ∈ [−1
2
, 1

2
), ξ2 ∈ (−∞, 1

2
)}.

7. When z = [1, 1]T , Sz = {ξ ∈ R2| ξ1 ∈ [1
2
,+∞), ξ2 ∈ [1

2
,+∞)}.

8. When z = [1, 0]T , Sz = {ξ ∈ R2| ξ1 ∈ [1
2
,+∞), ξ2 ∈ [−1

2
, 1

2
)}.

9. When z = [1,−1]T , Sz = {ξ ∈ R2| ξ1 ∈ [1
2
,+∞), ξ2 ∈ (−∞, 1

2
)}.

We can similarly derive pull-in regions for the BBNP and BILS estimators.

4.5.2 Box-constrained Babai Nearest Plane Estimator

Recall the BBNP estimator x̌BC = [x̌BC1 , · · · , x̌BCn−1, x̌
BC
n ]T , where x̌BCi =

bwie if li < bwie < ui, x̌
BC
i = li if bwie ≤ li, or x̌BCi = ui if bwie ≥ ui by

(4.8), and wi is computed by (4.7) or (4.9). The pull-in region of the integer
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estimate x̌BC is

SBCx̌BC = {w ∈ Rn|


|wi − x̌BCi | ≤ 1

2
if li < x̌BCi < ui,

wi ∈ (−∞, li + 1
2
) if x̌BCi = li,

wi ∈ [ui − 1
2
,+∞) if x̌BCi = ui,

for i = n, n− 1, ..., 1}. (4.19)

Since w = x̌BC +D−1
R R(x̂− x̌BC) from (4.10), we have

SBCx̌BC = {x̂ ∈ Rn|



|eTi D−1
R R(x̂− x̌BC)| ≤ 1

2
if li < x̌BCi < ui,

x̂i ∈ (−∞, li + 1
2
−

n∑
j=i+1

rij
rii

(x̂j − x̌BCj ) ) if x̌BCi = li,

x̂i ∈ [ui − 1
2
−

n∑
j=i+1

rij
rii

(x̂j − x̌BCj ),+∞) if x̌BCi = ui,

for i = n, n− 1, ..., 1}.

We want a general expression for each integer vector z ∈ Zn, so if w− z ,

D−1R(ξ− z), we have an expression like (4.19) for SBCz , from which we obtain

SBCz = {ξ ∈ Rn|



|eTi D−1
R R(ξ − z)| ≤ 1

2
if li < zi < ui,

ξi ∈ (−∞, li + 1
2
−

n∑
j=i+1

rij
rii

(ξj − zj) ) if zi = li,

ξi ∈ [ui − 1
2
−

n∑
j=i+1

rij
rii

(ξj − zj),+∞) if zi = ui,

for i = n, n− 1, ..., 1}. (4.20)

Figure 4–2 is a 2D example of BBNP pull-in regions with box-constraints

l = [−1,−1]T and u = [1, 1]T . It is based on that of 2D BNP pull-in regions

in chapter 3 of [30]. Each pull-in region is colored differently for clarity.
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Figure 4–2: 2D BBNP pull-in regions (based on [30])

4.5.3 Box-constrained Integer Least Squares Estimator

The general BILS pull-in region for z ∈ B is

SICz = {ξ ∈ Rn| ||ξ − z||2Σ ≤ ||ξ − z̃||2Σ, ∀z̃ ∈ B} (4.21)

Figure 4–3 is a 2D example of BILS pull-in regions with box-constraints l =

[−1,−1]T and u = [1, 1]T . It is based on that of 2D ILS pull-in regions in

chapter 3 of [30]. Each pull-in region is colored differently for clarity.
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Figure 4–3: 2D BILS pull-in regions (based on [30])
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CHAPTER 5
Box-constrained Integer Estimator Validation Using Success Rates

We extend the concept of success rates presented in chapter 3 to the BIR,

BBNP and BILS estimators, along with some success rate results. We then

apply the extended results, in particular for partial validation, to improve the

efficiency of the BILS estimation process. Numerical simulations results are

presented to support our findings.

5.1 Parameter Probability Distributions

Given the linear model (1.1), the RLS estimator x̂ of x is normally dis-

tributed, i.e. x̂ ∼ N(x,Σ), with mean x and VC-matrix Σ = σ2(RTR)−1, see

(2.5). The multivariate probability density function (PDF) of x̂ is:

f(ξ) =
1√

det(Σ)(2π)n
exp{−1

2
||ξ − x||2Σ}. (5.1)

We can obtain the required distribution of the box-constrained integer es-

timator x̌C from the joint PDF of the real and integer parameters, which we

denote here as fx̂,x̌C (ξ, z).

Theorem 5.1.1. The joint distribution of x̂ and x̌C is given as

fx̂,x̌C (ξ, z) = f(ξ)sCz (ξ), ξ ∈ Rn, z ∈ Zn, (5.2)

where sCz (ξ) is the indicator function of the pull-in region SCz ⊂ Rn:

sCz (ξ) =


1 if ξ ∈ SCz ,

0 otherwise.

(5.3)

This theorem is an extension of Theorem 3.1.1, and its proof is a simple ex-

tension of that theorem’s proof, given in [25].
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Proof. Let fx̂|x̌C (ξ|z) be the conditional distribution of x̂ given x̌C = z. Then,

for arbitrary Ω ⊂ Rn

P (x̂ ∈ Ω|x̌C = z) =

∫
Ω

fx̂|x̌C (ξ|z)dξ. (5.4)

On the other hand,

P (x̂ ∈ Ω|x̌C = z) = P (x̂ ∈ Ω|x̂ ∈ SCz ) =
P (x̂ ∈ Ω, x̂ ∈ SCz )

P (x̂ ∈ SCz )
,

since x̌C = z if and only if x̂ ∈ SCz . Moreover, P (x̂ ∈ Ω, x̂ ∈ SCz ) =
∫

Ω∩SCz

f(ξ)dξ,

so

P (x̂ ∈ Ω|x̌C = z) =

∫
Ω∩SCz

f(ξ)dξ

P (x̂ ∈ SCz )
=

∫
Ω

f(ξ)sCz (ξ)dξ

P (x̂ ∈ SCz )
. (5.5)

It therefore follows from (5.4) and (5.5) that

fx̂|x̌C (ξ|z)P (x̂ ∈ SCz ) = f(ξ)sCz (ξ) = fx̂,x̌C (ξ, z). (5.6)

We can recover the marginal distributions of x̂ and x̌C from this joint

distribution. The PDF of x̂ is

∑
z∈Zn

fx̂,x̌C (ξ, z) =
∑
z∈Zn

f(ξ)sCz (ξ) = f(ξ), (5.7)

since
∑
z∈Zn

sCz (ξ) = 1 for all ξ ∈ Rn by the property that box-constrained pull-

in regions do not overlap, which ensures that a RLS solution is mapped to a

unique integer vector (satisfying the box-constraints).

Furthermore, the probability mass function (PMF) of x̌C is∫
Rn

fx̂,x̌C (ξ, z)dξ =

∫
Rn

f(ξ)sCz (ξ)dξ =

∫
SCz

f(ξ)dξ = P (x̂ ∈ SCz ), (5.8)

and this is equal to the probability P (x̌C = z) by the equivalence of x̂ ∈

SCz and x̌C = z. In §3.1, we presented three properties which hold for the
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integer normal distribution (i.e. the PMF of x̌). We investigate whether these

properties also hold for the box-constrained distribution.

1. In the unconstrained case, the PMF of x̌ is symmetric about x for all

admissible integer estimators, i.e. P (x̌ = x−z) = P (x̌ = x+z), ∀z ∈ Zn.

Clearly this property will not always hold for the PMF of x̌C , due to the

box-constraints.

Example. Given true x ∈ Z, box-constraints l and u = l + 4, with

x = u, and z = 2, we have

0 <P (x̌C = x− z = l + 2 = u− 2) < 1,

P (x̌C = x+ z = u+ 2) = 0,

since l ≤ x̌C ≤ u.

2. In the unconstrained case, all admissible estimators are unbiased, i.e.

E{x̌} =
∑
z∈Zn

zP (x̌ = z) = x. However, the box-constrained integer

estimators are usually biased, given the fact that the PMF of x̌C is not

always symmetric about x, and that inequality-restricted real estimators

are generally biased [29].

3. In the unconstrained case, for the ILS estimator, the probability of cor-

rect estimation is the largest, i.e. P (x̌I = x) = max
z∈Zn

P (x̌I = z). In the

box-constrained case, we cannot get a similar result for the BILS esti-

mator. We give a counter example to illustrate this. Note that for this

counter example, we use the success rate of the BBNP estimator, which

in one dimension is the same as the success rate of the BILS estimator.

Details on the BBNP success rate are given in §5.4.

Example. Given the linear model

y =
1

2
x+ v,
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with v ∈ R following the normal distribution, i.e. v ∼ N(0, 1). Since

the VC-matrix Σ = σ2(ATA)−1 = 4, R = 1
2
. Given true x = 2, box-

constraints l = 1 and u = 3, and z = 1, we have

P (x̌IC = x) =

1
2∫

− 1
2

1

2
√

(2π)
exp{−1

8
t2}dt = 2Φ

(
1

4

)
− 1 = 0.1974126514,

P (x̌IC = z) =

3
2∫

−∞

1

2
√

(2π)
exp{−1

2

(t− 2)2

4
}dt = 0.4012936743,

by equation (5.11). Thus, in this example, P (x̌IC = x) < P (x̌IC = z).

5.2 Box-constrained Success Rates

The box-constrained success rate, which we denote here by PC
S , is the

probability that the box-constrained integer estimate x̌C obtained coincides

with the true integer vector x. From the PMF of x̌C (5.8), it follows that the

success rate can be computed by taking the integral of f(ξ), the PDF of the

RLS estimator x̂, over SCx , the box-constrained pull-in region of x:

PC
S = P (x̌C = x) =

∫
SCx

f(ξ)dξ. (5.9)

Since the success rate depends on the pull-in region of x, and the different

estimators have different pull-in regions, the success rates of the BIR, BBNP

and BILS estimators are, correspondingly,

PRC
S = P (x̌RC = x) =

∫
SRC
x

f(ξ)dξ,

PBC
S = P (x̌BC = x) =

∫
SBC
x

f(ξ)dξ,

P IC
S = P (x̌IC = x) =

∫
SICx

f(ξ)dξ.
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In the unconstrained case, Theorem 3.2.1 states that the ILS estimator is op-

timal among all admissible integer estimators, including the IR and BNP es-

timators. However, we cannot extend this result to box-constrained problems.

The BILS estimator cannot be shown to be optimal among all box-constrained

admissible estimators. We give a counter example to illustrate this.

Example. Let R =

0.3 −0.2

0 0.3

, true vector x =

2

2

, box-constraints

l =

1

1

 and u =

2

2

, and σ = 1.

By (4.20), the pull-in region of the BBNP estimator is

SBC = {ξ ∈ R2|ξ1 ≥
2

3
ξ2 +

1

6
, ξ2 ≥

3

2
}.

Note that ξ here is the RLS estimator. By (4.21), the pull-in region of the

BILS estimator is

SIC = {ξ ∈ R2|[0.3(ξ1 − 2)− 0.2(ξ2 − 2)]2 + 0.09(ξ2 − 2)2 ≤

[0.3(ξ1 − α)− 0.2(ξ2 − β)]2 + 0.09(ξ2 − β)2,∀α = 1, 2, β = 1, 2}

= {ξ ∈ R2|[3(ξ1 − 2)− 2(ξ2 − 2)]2 + 9(ξ2 − 2)2 ≤

[3(ξ1 − α)− 2(ξ2 − β)]2 + 9(ξ2 − β)2,∀α = 1, 2, β = 1, 2}.

Equivalently, ξ satisfies the following inequalities:

6(3α− 2β − 2)ξ1 + 2(−6α + 13β − 14)ξ2 ≤ (3α− 2β)2 + 9β2 − 40,

and for α = 1, β = 1, ξ1 ≥ 5− 7

3
ξ2,

for α = 1, β = 2, ξ1 ≥
1

6
+

2

3
ξ2,

for α = 2, β = 1, ξ1 ≤ −
5

4
+

13

6
ξ2,

for α = 2, β = 2, ξ ∈ R2.
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It is easy to verify that

SIC = {ξ ∈ R2|5− 7

3
ξ2 ≤ ξ1 ≤ −

5

4
+

13

6
ξ2,

25

18
≤ ξ2 ≤

29

18
}

∪ {ξ ∈ R2|1
6

+
2

3
ξ2 ≤ ξ1 ≤ −

5

4
+

13

6
ξ2, ξ2 ≥

29

18
}.

Since ξ ∼ N(x,Σ) with Σ = σ2(RTR)−1 by (2.5), we have

PBC
S =

∫
SBC

1√
det(Σ)(2π)2

exp{−1

2
[(0.3ξ1 − 0.2ξ2 − 0.2)2 + 0.09(ξ2 − 2)2)]}dξ

= 0.3131719615,

P IC
S =

∫
SIC

1√
det(Σ)(2π)2

exp{−1

2
[(0.3ξ1 − 0.2ξ2 − 0.2)2 + 0.09(ξ2 − 2)2)]}dξ

= 0.2268633995,

using equations (5.1) and (5.9). Thus, in this example, P IC
S < PBC

S .

5.3 Success Rate of the Box-constrained Integer Rounding
Estimator

The success rate PRC
S of the BIR estimator is obtained as follows. Define

Bi = {x̂i ∈ R| |x̂i − xi| ≤ 1
2

if li < xi < ui, x̂i ∈ (−∞, li + 1
2
) if xi = li, x̂i ∈

[ui − 1
2
,+∞) if xi = ui}. From (4.18), the box-constrained pull-in region of x

is SRCx = {x̂ ∈ Rn| x̂i ∈ Bi, for i = n, n− 1, ..., 1}. For simplicity, we consider

the 1D case, i.e. n = 1, first. In this case, the VC-matrix of x̂ is Σ = σ2
x̂. There

are three possible success rates, depending on the value of x with respect to

the constraints l and u. When l < x < u, we have

P (x̌RC = x|l < x < u) =

∫
|x̂−x|≤ 1

2

1

σx̂
√

2π
exp{− 1

2σ2
x̂

(x̂− x)2}dx̂

=

1
2∫

− 1
2

1

σx̂
√

2π
exp{− 1

2σ2
x̂

t2}dt = 2Φ

(
1

2σx̂

)
− 1,
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where Φ(α) =
α∫
−∞

1√
2π

exp{−1
2
t2}dt denotes the cumulative distribution func-

tion of the standard normal distribution N(0, 1). Similarly, if x = l, we have

P (x̌RC = x|x = l) =

l+ 1
2∫

−∞

1

σx̂
√

2π
exp{− 1

2σ2
x̂

(x̂− x)2}dx̂

=

1
2∫

−∞

1

σx̂
√

2π
exp{− 1

2σ2
x̂

t2}dt = Φ

(
1

2σx̂

)
,

and if x = u, we have

P (x̌RC = x|x = u) =

∞∫
u− 1

2

1

σx̂
√

2π
exp{− 1

2σ2
x̂

(x̂− x)2}dx̂

=

∞∫
− 1

2

1

σx̂
√

2π
exp{− 1

2σ2
x̂

t2}dt = Φ

(
1

2σx̂

)
.

Now consider the n dimensional case, with

PRC
S = P (x̌RC = x) = P (x̂i ∈ Bi, i = n, n− 1, ..., 1).

By the Chain Rule of conditional probabilities, this is equal to:

PRC
S =

n∏
i=1

P (x̂i ∈ Bi|x̂n ∈ Bn, ..., x̂i+1 ∈ Bi+1).

Since x̂ ∼ N(x,Σ), the parameter elements are correlated, making exact eval-

uation of this probability difficult [22]. In the simplest case, where Σ =

diag(σ2
x̂1
, σ2

x̂2
..., σ2

x̂n
) in (2.10), x̂j for j = n, ..., 1 are uncorrelated, and

PRC
S = P (x̌RC = x) =

n∏
i=1

P (x̂i ∈ Bi)

=
n∏
i=1


(

2Φ

(
1

2σx̂i

)
− 1

)
if li < xi < ui,

Φ

(
1

2σx̂i

)
if xi = li or xi = ui.

55



In the general correlated case, we have

PRC
S = P (x̌RC = x) =

∫
SRC
x

f(ξ)dξ (5.10)

=

∫
ξ1∈B1

· · ·
∫

ξn∈Bn

1√
det(Σ)(2π)n

exp{−1

2
||ξ − x||2Σ}dξn · · · dξ1.

5.4 Success Rate of the Box-constrained Babai Nearest Plane
Estimator

The success rate PBC
S of the BBNP estimator is obtained as follows. Define

Bi = {wi ∈ R| |wi − xi| ≤ 1
2

if li < xi < ui, wi ∈ (−∞, li + 1
2
) if xi = li, wi ∈

[ui − 1
2
,+∞) if xi = ui}. From (4.19), the box-constrained pull-in region of x

is SBCx = {w ∈ Rn| wi ∈ Bi, for i = n, n− 1, ..., 1}. Thus, we have

PBC
S = P (x̌BC = x) = P (wi ∈ Bi, i = n, n− 1, ..., 1).

By the Chain Rule of conditional probabilities, this is equal to

PBC
S =

n∏
i=1

P (wi ∈ Bi|wn ∈ Bn, ..., wi+1 ∈ Bi+1).

However, from (3.13) we have

cov{w} = cov{w − x} = σ2D−2
R = diag

(
σ2

r2
11

,
σ2

r2
22

, ...,
σ2

r2
nn

)
.

The diagonality of this VC-matrix implies that the entries of w are not corre-

lated, therefore

PBC
S = P (x̌BC = x) =

n∏
i=1

P (wi ∈ Bi)

=
n∏
i=1


(

2Φ

(
|rii|
2σ

)
− 1

)
if li < xi < ui,

Φ

(
|rii|
2σ

)
if xi = li or xi = ui.

(5.11)
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Remarks. By the definition of the cumulative distribution function, the

inequality 2Φ

(
|rii|
2σ

)
− 1 ≤ Φ

(
|rii|
2σ

)
holds for i = 1, ..., n. The probability

that estimate x̌BCi coincides with the true entry xi when li < xi < ui is always

less than or equal to that when true xi = li or xi = ui. Consider how the

BBNP estimator is obtained: its entries x̌BCi are chosen in the constrained

interval [li, ui]. When bwie is not in this interval, x̌BCi is set to either li or ui,

depending on which is closer to bwie, otherwise x̌BCi = bwie. Thus, the chance

of x̌BCi coinciding with xi is higher if xi itself is at li or ui.

The difficulty that arises for box-constrained problems is that since the

true integer vector x is unknown, we cannot compute the exact success rate of

the BBNP estimator. However, the BBNP success rate will always lie between

the following bounds:

n∏
i=1

(
2Φ

(
|rii|
2σ

)
− 1

)
≤ PBC

S ≤
n∏
i=1

Φ

(
|rii|
2σ

)
. (5.12)

Figure 5–1: 2D BBNP success rates
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2D Example. If we let box-constraints l = [l1, l2]T = [−1,−1]T and

u = [u1, u2]T = [1, 1]T , then there are four possible success rates depending

on what the integer vector x = [x1, x2]T is equal to. Each region with the

same success rate is shaded in the same color for clarity, and the four possible

cases are numbered according to the cases below. For simplicity, we define

p1,i = 2Φ

(
|rii|
2σ

)
− 1 and p2,i = Φ

(
|rii|
2σ

)
.

1. When x = [0, 0]T , i.e. l1 < x1 < u1 and l2 < x2 < u2,

the BBNP success rate is PBC
S = p1,1 · p1,2.

2. When x = [0,−1]T or x = [0, 1]T , PBC
S = p1,1 · p2,2.

3. When x = [−1, 0]T or x = [1, 0]T , PBC
S = p2,1 · p1,2.

4. When x = [−1,−1]T or x = [1,−1]T or x = [−1, 1]T or x = [1, 1]T ,

PBC
S = p2,1 · p2,2.

Comparing the Success Rates of the BIR and BBNP Estimators.

In [22], Teunissen showed that for unconstrained problems, the success rate of

the BNP estimator is always greater than or equal to the success rate of the

IR estimator, i.e. PB
S ≥ PR

S . In box-constrained problems, this result does not

hold, as it is not necessarily true that PBC
S ≥ PRC

S . We give a counter example

to illustrate this.

Example. Let R =

2 −1

0 1

, x =

x1

x2

 =

l1
l2

 = l, and σ = 1. We

have the following success rates:

PBC
S =

1∫
−∞

exp{−1

2
t2}dt

1
2∫

−∞

exp{−1

2
t2}dt = Φ (1) Φ

(
1

2

)
= 0.5817583089,

PRC
S =

1
2∫

−∞

1
2∫

−∞

1

π
exp(−1

2
‖Rξ‖2)dξ2dξ1 = 0.6191851371,

by (5.11) and (5.10) respectively. Clearly, PBC
S < PRC

S in this example.
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5.5 Success Rate of the Box-constrained Integer Least Squares
Estimator

The success rate of the BILS estimator is given by

P IC
S = P (x̌IC = x) =

∫
SICx

f(ξ)dξ, (5.13)

where SICx = {ξ ∈ Rn| ||ξ − x||2Σ ≤ ||ξ − z̃||2Σ, ∀z̃ ∈ B}. This probability is

difficult to evaluate due to the complex integration region.

In the unconstrained case, the ILS estimator was shown to be optimal

among all admissible integer estimators [23], which include the IR and BNP

estimators. Furthermore, it was shown in [22] that PB
S ≥ PR

S . From these

results, the success rate of the BNP estimator can be used as a lower bound

on the success rate of the ILS estimator, such that P I
S ≥ PB

S . However, we

cannot extend these results to box-constrained problems. We gave counter

examples in §5.2 and §5.4 to illustrate that, due to the box-constraints, we

may sometimes have PBC
S ≥ P IC

S , and we may sometimes have PRC
S ≥ PBC

S .

On the other hand, when the true parameter vector x is inside the box

B, i.e. l < x < u, the success rate probabilities of the BILS and BBNP

estimators are equal to the success rate probabilities of the ILS and BNP

estimators respectively, i.e. P IC
S = P I

S and PBC
S = PB

S , since SICx = SIx and

SBCx = SBx for l < x < u. See Figures 2-2, 2-3, 4-2 and 4-3 for examples.

Therefore, when l < x < u, we have the following lower bound on the BILS

success rate:

P IC
S = P (x̌IC = x) ≥ P (x̌BC = x) =

n∏
i=1

(
2Φ

(
|rii|
2σ

)
− 1

)
. (5.14)

Remarks on Upper Bounds. To derive an upper bound on the ILS

success rate, we need the volume of the parameter search space (which is a

hyper-ellipsoid), as well as the fact that the volume of any admissible pull-in
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region is equal to one. For details, see, e.g., [18] and [25]. The derivation itself is

given in [24]. When attempting to extend this upper bound to box-constrained

problems, therefore, difficulties arise due to this. To compute the volume of

the box-constrained search space, we must first find the intersection of the box

defined by the constraints with the ellipsoidal region, and then compute the

volume of this intersected region. This is complicated. In addition, not every

pull-in region has a volume equal to one. Only the regions that lie strictly

inside the constraints do, while the other regions may have larger volumes.

Thus we do not derive an upper bound on the BILS success rate in this thesis.

5.6 Box-constrained Partial Success Rates

The main ideas of partial validation for unconstrained problems are dis-

cussed in §3.6, and can easily be extended to box-constrained problems. In

box-constrained problems, we find an integer estimate x̌C ∈ B to the box-

constrained integer parameter vector x using the method of BIR, BBNP or

BILS. We may then compute the corresponding success rate PC
S = P (x̌C = x)

to evaluate the quality of the integer estimate obtained. This is the probability

of a simultaneous event
n⋂
i=1

(x̌Ci = xi), and thereby it tends to decrease as n

increases [28]. Therefore it may not always be possible to estimate all n entries

of x with a high success rate. Given a success rate acceptability threshold PT ,

the goal of partial validation is to find the largest subvector whose success rate

is not smaller than PT . When the overall success rate is less than this thresh-

old value, i.e. PC
S = P (x̌C = x) < PT , we may compute partial success rates

PC
PS of the entries and then fix as integers the largest subset which satisfies

PC
PS ≥ PT .

Our aim is to use partial validation in order to improve the efficiency of the

BILS estimation process. The BBNP estimation method is a polynomial-time

method that returns a Babai integer point solution satisfying the box
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constraints as an estimate of the unknown parameter vector x in (1.1). In fact,

this Babai point is the first point generated during the BILS search process

by the Schnorr and Euchner search. Furthermore, in theory, the BBNP suc-

cess rate PBC
S can be computed directly by (5.11), so we focus on the partial

success rate of the BBNP estimator, denoted by PBC
PS , in this research. Recall

the BBNP success rate given in §5.4:

PBC
S = P (x̌BC = x) =

n∏
i=1

pi,

where pi =


2Φ

(
|rii|
2σ

)
− 1 if li < xi < ui,

Φ

(
|rii|
2σ

)
if xi = li or xi = ui.

The probability that the subset of entries of x̌BC consisting of x̌BCj to x̌BCn ,

where i ≤ j ≤ n, coincides with the corresponding subset of entries of true x

is given by

PBC
PS,j = P ([x̌BCj , x̌BCj+1, ..., x̌

BC
n ]T = [xj, xj+1, ..., xn]T )

=
n∏
k=j

pi. (5.15)

See §5.4 for details.

We can use partial validation to find the largest possible subset of the

entries of the BBNP estimator x̌BC = [x̌BC1 , ..., x̌BCn−1, x̌
BC
n ]T , which has a high

partial success rate, or PBC
PS ≥ PT , and fix its entries as integers. We can then

solve an updated but smaller BILS problem in order to find more precise integer

solutions to the remaining entries of the estimate vector. Let x̃ denote the

integer vector outcome of this partial validation process. We find x̃ as follows.

Initially, we find PBC
PS = pn. If PBC

PS < PT , we reject the BBNP solution x̌BC

and solve the BILS problem instead, to obtain x̃ = x̌IC . If PBC
PS ≥ PT , we

fix x̃n = x̌BCn , and continue. We find PBC
PS = PBC

PS · pn−1, and if PBC
PS < PT ,
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we must solve an updated BILS problem for x̃n−1 to x̃1. If PBC
PS ≥ PT , we fix

x̃n−1 = x̌BCn−1, and continue. Say that we find PBC
PS = pn · pn−1 · ... · pj ≥ PT

but PBC
PS = pn · pn−1 · ... · pj · pj−1 < PT . This means that we can successfully

fix x̃(2) ≡ [x̃j, x̃j+1, ..., x̃n]T = [x̌BCj , x̌BCj+1, ..., x̌
BC
n ]T . This is the largest possible

subset of entries which have a partial success rate higher than the threshold

value PT . The remaining entries of x are computed as follows. Partition

x into

x(1)

x̃(2)

, where x(1) ∈ Zj−1 and x̃(2) ∈ Zn−j+1, with the entries of x̃2

fixed to the corresponding entries of x̌BC . Similarly, partition ȳ into

ȳ(1)

ȳ(2)

,

ȳ(1) ∈ Rj−1, ȳ(2) ∈ Rn−j+1 and R into

R1 R12

0 R2

 with R1 ∈ R(j−1)×(j−1),

R2 ∈ R(n−j+1)×(n−j+1), R12 ∈ R(j−1)×(n−j+1). We solve the BILS problem:

min
x(1)∈Zj−1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
ȳ(1)

ȳ(2)

−
R1 R12

0 R2


x(1)

x̃(2)


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

.

This is equivalent to solving

min
x(1)∈Zj−1

||(ȳ(1) −R12x̃
(2))−R1x

(1)||22. (5.16)

5.7 Numerical Simulations

All our computations were performed in MATLAB 7.9.0 (R2009b) on an

AMD Phenom II X3 720 2.80GHz processor with 8GB RAM running Windows

7 Professional. In this section, we test the performance of the BBNP success

rates as a measure for validating the integer estimators obtained by the BBNP

method. We also compare the BBNP and BILS methods by studying the suc-

cess rates of their corresponding estimators. We test the partial success rates of

the BBNP estimators, and compare the partial validation method discussed in
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the previous section with the original BILS estimation process to see whether

partial validation can improve the efficiency of BILS.

In our simulations the linear model y = Ax + v of (1.1), where x is con-

strained to box B in (1.5), was constructed as follows. Without loss of gener-

ality, we took generator matrix A ∈ Rn×n to be a square matrix, obtained by

one of the five following cases:

• Case 1. A = randn(n,n) where randn is a built-in MATLAB function

to generate an n × n matrix whose entries follow the standard normal

distribution N(0, 1).

Cases 2 and 3 are based on A = LT1DL2 where L1, L2 are unit lower triangular

matrices with entries lij (i > j) generated by randn and D is generated by:

• Case 2: D = diag(di), di = rand, where rand is a built-in MATLAB

function to generate uniformly distributed random numbers in (0, 1).

• Case 3: D = diag(1−1, 2−1, ..., (n− 1)−1, n−1).

The other two cases are based on A = UDV T where U, V are random or-

thogonal matrices obtained by the QR factorization of two different random

matrices generated by randn(n, n) and D is generated by:

• Case 4: D = diag(di), di = rand.

• Case 5: d1 = 2−
n
4 , dn = 2

n
4 , and the other diagonal elements of D are

randomly distributed between d1 and dn.

This allows us to test our findings on a variety of matrices with different

condition numbers [7]. The condition number of square matrix A is the factor

cond(A) = ||A|| · ||A−1||, and it measures the sensitivity of the solution of

a system of linear equations to errors in the data. See [31] for details. The

elements of the noise vector v ∈ Rn were generated randomly from N(0, σ2I),

and each entry of the integer parameter vector x was generated uniformly over

the closed interval [0, 3]. The entries of the box-constraints were set to be all
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0 and all 3 respectively, i.e. l = [0, ..., 0]T and u = [3, ..., 3]T .

The box-constrained success rates presented in this chapter were tested

as follows. For each of the five cases used to generate matrix A, we chose

different σ from 0.05, 0.10, 0.25 or 0.50, and different n from 5 to 30. We

tested three different measures: “true PC
S ”, “theor PC

S ” and “pract PC
S ”, which

are obtained as follows. For each matrix A and integer parameter vector x,

we generated N different noise vectors v according to N(0, σ2I) and updated

y at each run. We then solved to find x̌BC or x̌IC by either the BBNP or

the BILS estimation method. We recorded the number of times x̌BC or x̌IC ,

coincides with the true integer vector x, out of the N runs. This is what we

refer to as the true success rate: “true PBC
S ” or “true P IC

S ” in the Tables of

simulations results at the end of this section. We computed PBC
S , the success

rate of the BBNP estimator, by (5.11), using knowledge of true x with respect

to the box-constraints l and u. In other words, we computed the success rate

by checking if li < xi < ui or if xi = li or ui, and computing the product in

(5.11) respectively. We refer to this as “theor PBC
S ” in the Tables of results.

We also computed
n∏
i=1

(
2Φ

(
|rii|
2σ

)
− 1

)
, a lower bound on PBC

S which can be

obtained without using any knowledge of the entries of x in relation to the

entries of l and u. We refer to this lower bound as “pract PBC
S ” in the Tables.

Tests and Results. Table 5-1 to Table 5-25 show the results obtained

when testing the success rates of the BBNP estimator. We took σ = 0.05, 0.10,

0.25, 0.50, for n = 5, 6, ..., 29, 30 and N = 5000 runs. Note that not all results

are presented here. In each test, we applied both SQRD and V-BLAST reduc-

tions (see §4.4 for details) before computing the success rates and the integer

estimates, in order to compare the two reduction strategies through the BBNP

success rates.

When A is generated by Case 1, cond(A) is generally low and for small σ,
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i.e. σ = 0.05 or σ = 0.10, the success rates “true PBC
S ”, “theor PBC

S ” and

“pract PBC
S ” are close to one (see Tables 5-1 and 5-2). For σ = 0.25, the suc-

cess rates are also high (see Table 5-3), so it seems that the BBNP estimator

generally performs well in Case 1. More importantly, in Tables 5-1 to 5-5, we

observed that “theor PBC
S ” is very close to the “true PBC

S ” from 5000 runs,

thus indicating that finding the BBNP success rate (5.11) is a good approach

to validating the BBNP estimator. The lower bound “pract PBC
S ” also seems

to be a good bound in general. We also observed that, for e.g. σ = 0.50 (see

Tables 5-4 and 5-5), the V-BLAST reduction strategy seems to improve the

BBNP estimator, as the values of “true PBC
S ”, “theor PBC

S ” and “pract PBC
S ”

are higher than the corresponding values obtained after applying SQRD. For

instance, when n = 28, “theor PBC
S ” is approximately 0.400 with SQRD, while

it is approximately 0.845 with V-BLAST for the same linear model.

On the other hand, when A is generated by Case 2, cond(A) is very large

(we say A is ill-conditioned) and even for small σ and small n, the success

rate results are generally very low (see Table 5-6). Still, in Tables 5-6 to 5-10,

we observed that “theor PBC
S ” is close enough to the “true PBC

S ” from 5000

runs, although not as close as in Case 1. We also observed that the V-BLAST

reduction strategy seems to be worse than the SQRD strategy in many of the

results, as the values of “true PBC
S ”, “theor PBC

S ” and “pract PBC
S ” are lower

than the corresponding values obtained after applying SQRD. For instance,

when σ = 0.10 and n = 7 (see Table 5-8), “theor PBC
S ” is approximately 0.613

with SQRD, while it is approximately 0.399 with V-BLAST for the same linear

model.

When A is generated by Case 3, we have similar results, as A is ill-

conditioned. The success rates are close to zero as n increases for smaller
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σ, or as σ increases for smaller n. See Tables 5-11 to 5-15 for details. Nev-

ertheless, it seems “theor PBC
S ” is close to the “true PBC

S ” from 5000 runs

even in this case. When A is generated by Case 4, for σ = 0.05, the success

rates “true PBC
S ”, “theor PBC

S ” and “pract PBC
S ” are high (see Table 5-16),

so it seems that the BBNP estimator performs well for σ less than 0.10. The

V-BLAST reduction strategy seems to generally improve the BBNP success

rate results. However, as σ increases, the success rates decrease implying that

the BBNP estimator degenerates for large noise (see Tables 5-19, 5-20). When

A is generated by Case 5, even though cond(A) is quite large, the success rates

“true PBC
S ”, “theor PBC

S ” and “pract PBC
S ” are high (see Table 5-21 to 5-23),

so it seems that the BBNP estimator performs well in Case 5. The V-BLAST

reduction strategy seems to generally improve the BBNP success rate results.

In all these results, we observed that the “theor PBC
S ” and “true PBC

S ” are

close in value.

Table 5-26 to Table 5-30 show the results obtained when comparing the suc-

cess rates of the BBNP and the BILS estimators. We took σ = 0.05, 0.10, 0.25,

for n = 5, 6, ..., 8, 9 and N = 5000 runs. In each test, we applied both SQRD

(“SQ” in the Tables) and V-BLAST (“VB” in the Tables) reductions before

computing the success rates and the integer estimates, in order to compare

the two reduction strategies through the BBNP success rates. In these tests,

we found “true P IC
S ” by computing x̌IC through Algorithm SEARCH given in

[5] and then recording the number of times x̌IC = x out of the 5000 runs. We

compared “theor PBC
S ” and “pract PBC

S ” to “true P IC
S ” to see if “theor PBC

S ”

≥ P IC
S often in our results, since in §5.2 we gave a counter example showing

that the optimality result of the ILS estimator (see Theorem 3.2.1) cannot be

extended to the BILS estimator, and since we found that for l < x < u, “pract

PBC
S ” is a lower bound to the BILS success rate (5.14). Note that we do not

66



specifically generate x such that l < x < u as we wish to see if, generally,

the BBNP success rate is useful in any way for predicting the performance of

the BILS estimator. The true vector x is generated uniformly over the closed

interval [0, 3], with the entries of l set to 0 and the entries of u set to 1.

We observed that when A is generated by Case 1, for small σ, all values are

close to one (see Table 5-26). As σ increases, “true P IC
S ” remains higher than

the corresponding BBNP results. Also, it seems that the V-BLAST reduction

sharpens the lower bound “pract PBC
S ”, making it higher than “pract PBC

S ”

obtained after applying SQRD. However, we cannot observe this improvement

in the results of “theor PBC
S ” and “true PBC

S ”. When A is generated by Case 2,

even for small σ, “true P IC
S ” is generally much higher than the corresponding

BBNP success rate results. As σ increases, “true P IC
S ” starts to decrease (see

Table 5-27). With Case 3 we observed similar results. When A is generated by

Case 4, for σ = 0.10 or σ = 0.25, “true P IC
S ” seems to be closer to the BBNP

success rate results (see Table 5-29) than in Cases 2 and 3. With Case 5, we

observed high success rate results for the BBNP and the BILS estimator, in

particular for σ = 0.05 and σ = 0.10.

Table 5-31 to Table 5-42 show the results obtained when testing the partial

success rate of the BBNP estimator. In the Tables, “index” (j) refers to the

jth entry of the integer estimator x̌BC , and for each entry j from n = 20 to 1,

we compute PBC
PS,j by (5.15). This is referred to as “theor PBC

PS ” in the Tables.

The “true PBC
PS ” is found by recording the number of times, out of N = 5000

runs, that the subvector [x̌BCj , x̌BCj+1, ..., x̌
BC
n ]T coincides with [xj, xj+1, ..., xn]T

of the true vector x. We took σ = 0.10, 0.25, for n = 20.

We observed, once again, that in all 5 Cases of generating matrix A, and

for σ = 0.10 and σ = 0.25, the values of “theor PBC
PS ” are very close to the

corresponding values of “true PBC
PS ”, illustrating that the partial success rate
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of the BBNP estimator is a very good validation measure. We also observed

that in Case 1 and Case 5, the partial success rate does not vary by much

whenever another entry is considered in the product (5.15). See Tables 5-31

to 5-33, 5-41, 5-42. On the other hand, in Case 4 for example, there seems

to be a fairly big drop in the value of PBC
PS as more entries of x̌BC are consid-

ered. See Tables 5-38 to 5-40. In Cases 2 and 3, the partial success rate is low

from the beginning where “index” = j = 20, which leads us to believe that we

cannot effectively use partial validation in such cases as these, to improve the

efficiency of the BILS estimation process, as none of the entries of x̌BC can be

fixed, based on the results in Tables 5-34 to 5-37.

Finally, Table 5-43 to Table 5-46 show the results obtained when testing

if the method of partial validation could be used to improve the efficiency of

the BILS estimation process. We aim to use partial validation to fix the en-

tries of x̌BC which have a high partial success rate, and then solve a smaller

BILS problem to obtain integer estimates to the remaining entries of x. We

generated A, x, l and u as described previously. We took σ = 0.10, 0.50,

for n = 5, 10, 15, 20, 25, 30. We took the success rate acceptability threshold

PT = 0.80, and tried to find the largest subvector of x̌BC whose success rate

is not smaller than PT . In other words, we computed PBC
PS,j for j from n to 1,

stopping when PBC
PS,j ≥ PT but PBC

PS,j−1 < PT . We then set part of the integer

estimate to [x̌BCj , x̌BCj+1, ..., x̌
BC
n ]T , and solved the smaller BILS problem (5.16)

using Algorithm SEARCH given in [5]. See §5.6 for details. If j = n+ 1, this

means that PBC
PS,n < PT and so we must find x̌IC . If j = −1, this means that

we can use x̌BC and we do not need to solve the BILS problem to obtain x̌IC .

This j is included in the Tables of results. We used the MATLAB commands

tic and toc to measure the elapsed time, in seconds, of computing the partial

success rate PBC
PS,j starting from n, comparing it to PT at each step from j = n
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to 1 (until we find PBC
PS,j−1 < PT ), finding x̃ either by the BBNP estimation

method alone, or by BILS alone, or by using both methods. This measured

time is referred to as “PV time” (where PV refers to partial validation) in

Tables 5-43 to 5-46. We then compare this to the time taken to solve the BILS

problem (4.1) without having to compute any success rates. This is referred

to as “BILS time” in the Tables. For a more accurate measure of the elapsed

time, we took the average of the time found by tic and toc over 100 or 5 runs

(depending on the test cases). We performed similar tests using V-BLAST

and SQRD reduction to test if one reduction strategy is better than the other

in terms of giving higher partial success rates, which may affect the number

of entries of x̌BC that can be fixed.

In Table 5-43, when A is generated by Case 1 and σ = 0.10, we observed

that j = −1 for the different n, which means that no BILS search was needed.

The “PV time” is less than the “BILS time”. However, since σ is small here,

even the “BILS time” is small, so the time saved by using partial validation

seems to be negligible. On the other hand, when A is generated by Case 2

and σ = 0.10, we observed that j = n + 1 for the different n, which means

that PBC
PS,n < PT and a BILS search was required. In this case, it actually

took longer time to apply partial validation, since the BILS search was carried

out anyway and therefore the time taken to compute PBC
PS,n and compare it

to PT is pure overhead. We observed similar results for the other test cases

as well, with the difference in “PV time” and “BILS time” generally being

negligible, showing that partial validation is not helping in such cases. Similar

results with respect to the time difference between “PV time” and “BILS time”

were observed when SQRD reduction was applied rather than V-BLAST. We

cannot effectively compare the elapsed times when V-BLAST was applied to
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the elapsed times when SQRD was applied as different linear models were

generated to get two different sets of tests.

Tables. Table 5-1 to Table 5-46 display some results of these simulations

which were carried out in order to test the box-constrained success rates found

in this chapter.
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Table 5–1: Testing PBC
S : Case 1, σ = 0.05

Reduction SQRD V-BLAST

n cond(A) true PS theor PS pract PS true PS theor PS pract PS
5 1.10e+01 1.0000 1.000000 1.000000 1.0000 1.000000 1.000000

10 7.49e+01 0.9998 0.999048 0.999048 1.0000 1.000000 1.000000

15 9.70e+01 1.0000 1.000000 1.000000 1.0000 1.000000 1.000000

20 1.12e+02 1.0000 1.000000 1.000000 1.0000 1.000000 1.000000

25 4.77e+01 1.0000 1.000000 1.000000 1.0000 1.000000 1.000000

30 5.31e+01 1.0000 1.000000 1.000000 1.0000 1.000000 1.000000

Table 5–2: Testing PBC
S : Case 1, σ = 0.10

Reduction SQRD V-BLAST

n cond(A) true PS theor PS pract PS true PS theor PS pract PS
5 1.91e+01 1.0000 0.999980 0.999959 1.0000 0.999990 0.999979

6 6.44e+00 1.0000 1.000000 1.000000 1.0000 1.000000 1.000000

7 1.49e+01 0.9980 0.998127 0.996514 1.0000 0.999941 0.999941

8 2.35e+01 0.9946 0.994747 0.994747 0.9986 0.998406 0.998406

9 6.61e+02 0.5744 0.572823 0.572823 0.5744 0.572823 0.572823

10 1.36e+03 0.5436 0.553277 0.553277 0.5436 0.553277 0.553277

11 7.25e+00 1.0000 1.000000 1.000000 1.0000 1.000000 1.000000

12 6.01e+01 1.0000 1.000000 1.000000 1.0000 1.000000 1.000000

13 1.86e+01 0.9996 0.999916 0.999832 1.0000 1.000000 1.000000

14 1.02e+02 0.9970 0.996484 0.996480 1.0000 0.999999 0.999999

15 8.45e+01 1.0000 0.999998 0.999998 1.0000 0.999998 0.999998

16 4.82e+01 1.0000 1.000000 1.000000 1.0000 1.000000 1.000000

17 9.65e+01 1.0000 0.999999 0.999999 1.0000 1.000000 1.000000

18 1.63e+02 0.8928 0.888598 0.888598 1.0000 1.000000 1.000000

19 7.18e+01 1.0000 0.999996 0.999996 1.0000 1.000000 1.000000

20 2.08e+01 1.0000 1.000000 1.000000 1.0000 1.000000 1.000000

21 2.53e+01 1.0000 1.000000 1.000000 1.0000 1.000000 1.000000

22 2.75e+01 1.0000 1.000000 1.000000 1.0000 1.000000 1.000000

23 4.04e+01 1.0000 1.000000 1.000000 1.0000 1.000000 1.000000

24 6.05e+02 0.9896 0.991751 0.991663 0.9964 0.997109 0.994219

25 1.53e+02 0.9826 0.983484 0.983484 1.0000 1.000000 1.000000

26 5.75e+01 1.0000 1.000000 1.000000 1.0000 1.000000 1.000000

27 3.99e+01 1.0000 1.000000 1.000000 1.0000 1.000000 1.000000

28 1.96e+02 1.0000 0.999995 0.999995 1.0000 1.000000 1.000000

29 4.57e+02 0.6812 0.677856 0.355711 1.0000 0.999978 0.999957

30 1.97e+02 0.9506 0.950669 0.950669 1.0000 1.000000 1.000000
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Table 5–3: Testing PBC
S : Case 1, σ = 0.25

Reduction SQRD V-BLAST

n cond(A) true PS theor PS pract PS true PS theor PS pract PS
5 2.48e+00 0.9996 0.999570 0.999141 0.9996 0.999570 0.999141

6 4.90e+00 0.9918 0.991951 0.991624 0.9918 0.991951 0.991624

7 1.57e+01 0.9924 0.993199 0.987311 0.9924 0.993199 0.987311

8 5.14e+01 0.5484 0.541491 0.541348 0.5484 0.541491 0.541348

9 8.34e+00 0.9958 0.995791 0.995552 0.9958 0.995791 0.995552

10 1.05e+01 0.9992 0.998942 0.998360 0.9988 0.998984 0.998489

11 1.62e+01 0.9900 0.990059 0.989525 0.9980 0.997505 0.996905

12 3.91e+01 0.9416 0.940622 0.940621 0.9828 0.981368 0.981353

13 5.97e+01 0.8322 0.837915 0.676759 0.9748 0.970784 0.970323

14 4.35e+01 0.9914 0.991062 0.982525 0.9816 0.982857 0.982714

15 2.18e+01 0.9914 0.991151 0.987767 0.9980 0.998599 0.998379

16 6.56e+01 0.9318 0.928596 0.889876 0.9924 0.993171 0.993008

17 3.76e+02 0.7084 0.701715 0.404316 0.8842 0.883212 0.768283

18 5.88e+01 0.9820 0.981079 0.970012 0.9954 0.995020 0.994810

19 3.16e+01 0.9860 0.986557 0.973465 0.9998 0.999802 0.999713

20 3.12e+02 0.7004 0.705655 0.412889 0.6742 0.676758 0.674286

21 1.28e+02 0.7286 0.732417 0.732406 0.9720 0.976593 0.976589

22 1.09e+02 0.7660 0.764421 0.764085 0.9380 0.939837 0.934638

23 1.09e+02 0.9860 0.986913 0.977325 0.9960 0.996901 0.995964

24 2.49e+01 0.9986 0.998806 0.998768 0.9998 0.999860 0.999843

25 1.04e+02 0.9704 0.963942 0.963937 0.9918 0.989475 0.989448

26 5.63e+02 0.3774 0.382925 0.382921 0.8706 0.872103 0.753188

27 1.41e+02 0.9740 0.973048 0.946415 0.9814 0.977597 0.975619

28 8.28e+01 0.9992 0.999156 0.998351 1.0000 0.999878 0.999798

29 2.21e+02 0.8842 0.891965 0.864650 0.9666 0.970620 0.965263

30 4.69e+01 1.0000 0.999853 0.999833 1.0000 0.999957 0.999946

Table 5–4: Testing PBC
S : Case 1, σ = 0.50

Reduction SQRD V-BLAST

n cond(A) true PS theor PS pract PS true PS theor PS pract PS
5 1.34e+01 0.5570 0.562522 0.558757 0.6356 0.632592 0.629905

6 3.63e+01 0.2910 0.295807 0.295807 0.2910 0.295807 0.295807

7 2.41e+01 0.5482 0.543379 0.490010 0.5772 0.567706 0.486377

8 1.74e+01 0.5804 0.579312 0.517166 0.6000 0.602210 0.520957

9 1.67e+01 0.4384 0.434929 0.421719 0.4526 0.456382 0.443188

10 2.34e+02 0.3572 0.360608 0.127384 0.3402 0.338229 0.146676

11 2.22e+01 0.3656 0.357887 0.339051 0.3862 0.386746 0.374536

12 1.86e+01 0.6590 0.651394 0.639490 0.7128 0.702333 0.682181

13 2.71e+01 0.6340 0.638729 0.574603 0.6614 0.661274 0.622051

14 9.19e+02 0.0662 0.064046 0.062362 0.1510 0.157742 0.152568

15 1.84e+01 0.7334 0.744945 0.602371 0.6900 0.691182 0.618682
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Table 5–5: Case 1, σ = 0.50 (continued)

Reduction SQRD V-BLAST

n cond(A) true PS theor PS pract PS true PS theor PS pract PS
16 1.80e+01 0.7168 0.724260 0.717113 0.8264 0.834568 0.798712

17 2.68e+01 0.7008 0.706888 0.701318 0.7714 0.772719 0.758520

18 8.23e+01 0.3698 0.373965 0.341843 0.4986 0.493729 0.429827

19 2.66e+01 0.7864 0.783525 0.769685 0.8548 0.844831 0.830520

20 2.73e+03 0.0454 0.044923 0.027328 0.1832 0.179638 0.052817

21 5.49e+01 0.4198 0.433102 0.371794 0.5244 0.522333 0.457473

22 3.04e+01 0.8828 0.889816 0.869111 0.8932 0.895554 0.883229

23 2.80e+01 0.8740 0.869760 0.786783 0.9074 0.906422 0.867265

24 3.81e+01 0.8148 0.817324 0.801127 0.9272 0.928286 0.910652

25 4.57e+01 0.6282 0.625178 0.620988 0.7390 0.731067 0.694941

26 4.84e+01 0.8748 0.877660 0.864177 0.9080 0.903920 0.901117

27 5.03e+01 0.8242 0.824050 0.783063 0.8402 0.839989 0.808169

28 7.73e+01 0.4020 0.400059 0.395100 0.8494 0.845181 0.816128

29 1.04e+02 0.7240 0.733404 0.705868 0.7508 0.763023 0.741897

30 2.59e+01 0.9534 0.950719 0.947862 0.9662 0.965870 0.964974

Table 5–6: Testing PBC
S : Case 2, σ = 0.05

Reduction SQRD V-BLAST

n cond(A) true PS theor PS pract PS true PS theor PS pract PS
5 8.68e+01 0.2916 0.298549 0.298519 0.2916 0.298549 0.298519

6 1.37e+02 0.9184 0.914232 0.872547 0.9520 0.950845 0.950845

7 2.10e+02 0.7212 0.724484 0.724484 0.9646 0.966782 0.961361

8 1.65e+03 0.5492 0.551500 0.543992 0.9530 0.948855 0.920644

9 4.17e+02 0.4970 0.497915 0.162297 0.5462 0.532196 0.337299

10 2.32e+03 0.1130 0.112594 0.014391 0.0932 0.083104 0.014908

11 6.76e+03 0.0522 0.049131 0.011812 0.0932 0.084605 0.015346

12 2.34e+05 0.0000 0.000070 0.000070 0.0002 0.000610 0.000232

13 1.75e+04 0.1008 0.103933 0.036103 0.1684 0.168205 0.027296

14 2.68e+04 0.0426 0.041135 0.037421 0.3134 0.311156 0.127737

15 5.82e+04 0.0098 0.009875 0.009875 0.1300 0.130005 0.049560

16 1.54e+06 0.0170 0.017868 0.002769 0.0068 0.006329 0.003714

17 1.05e+07 0.0000 0.000094 0.000094 0.0000 0.000372 0.000256

18 8.37e+06 0.0000 0.000025 0.000025 0.0000 0.000051 0.000051

19 4.03e+07 0.0000 0.000006 0.000006 0.0002 0.000107 0.000012

20 4.95e+07 0.0002 0.000112 0.000002 0.0078 0.006733 0.000012

21 1.52e+07 0.0148 0.016890 0.000018 0.0792 0.079577 0.000090

22 4.83e+08 0.0000 0.000002 0.000002 0.0000 0.000189 0.000004

23 2.21e+06 0.0006 0.001488 0.000217 0.0004 0.000781 0.000294

24 1.65e+06 0.0000 0.000021 0.000012 0.0000 0.000022 0.000013

25 1.92e+07 0.0004 0.000330 0.000010 0.0038 0.003773 0.000043
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Table 5–7: Case 2, σ = 0.05 (continued)

Reduction SQRD V-BLAST

n cond(A) true PS theor PS pract PS true PS theor PS pract PS
26 8.10e+06 0.0000 0.000007 0.000000 0.0000 0.000000 0.000000

27 3.90e+07 0.0000 0.000001 0.000000 0.0000 0.000112 0.000000

28 1.70e+09 0.0000 0.000000 0.000000 0.0032 0.003432 0.000000

29 3.05e+08 0.0002 0.000086 0.000000 0.0000 0.000001 0.000000

30 3.85e+08 0.0000 0.000000 0.000000 0.0092 0.010364 0.000000

Table 5–8: Testing PBC
S : Case 2, σ = 0.10

Reduction SQRD V-BLAST

n cond(A) true PS theor PS pract PS true PS theor PS pract PS
5 4.52e+01 0.8078 0.808161 0.670334 0.7952 0.791628 0.664404

6 3.65e+01 0.6020 0.616167 0.581517 0.6020 0.616167 0.581517

7 2.01e+03 0.6116 0.612821 0.267007 0.3916 0.398580 0.164281

8 2.12e+02 0.6346 0.645211 0.517949 0.6450 0.653103 0.557647

9 4.31e+03 0.0556 0.059339 0.012381 0.1432 0.143373 0.039314

10 5.13e+02 0.0244 0.022588 0.022467 0.0542 0.056723 0.024474

11 5.27e+04 0.0014 0.002067 0.000829 0.0034 0.003887 0.001219

12 1.02e+04 0.0448 0.045065 0.007169 0.0122 0.015412 0.008066

13 2.91e+04 0.0030 0.003212 0.003212 0.0130 0.013836 0.013836

14 4.89e+04 0.0028 0.002847 0.000100 0.0002 0.000279 0.000278

15 9.80e+04 0.0034 0.003151 0.003123 0.0430 0.040607 0.002937

16 1.91e+05 0.0000 0.000047 0.000046 0.0000 0.000133 0.000131

17 3.32e+05 0.0054 0.005365 0.000097 0.0002 0.000374 0.000182

18 3.24e+06 0.0000 0.000093 0.000040 0.0036 0.002929 0.000052

19 1.28e+07 0.0320 0.031019 0.000013 0.0222 0.023774 0.000039

20 3.45e+06 0.0004 0.000085 0.000003 0.0008 0.001420 0.000003

21 5.10e+06 0.0002 0.000237 0.000004 0.0612 0.062575 0.000003

22 3.00e+06 0.0000 0.000004 0.000001 0.0000 0.000093 0.000002

23 2.64e+06 0.0000 0.000006 0.000000 0.0000 0.000000 0.000000

24 4.15e+07 0.0000 0.000007 0.000000 0.0002 0.000073 0.000000

25 2.18e+08 0.0002 0.000527 0.000000 0.0002 0.000427 0.000001

26 2.73e+07 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

27 7.06e+07 0.0000 0.000096 0.000000 0.0000 0.000003 0.000000

28 1.19e+09 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

29 6.25e+08 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

30 4.56e+09 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000
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Table 5–9: Testing PBC
S : Case 2, σ = 0.25

Reduction SQRD V-BLAST

n cond(A) true PS theor PS pract PS true PS theor PS pract PS
5 1.92e+02 0.1536 0.146788 0.032681 0.0288 0.027496 0.027235

6 7.04e+01 0.1948 0.188808 0.041983 0.1300 0.129048 0.031208

7 1.39e+02 0.0200 0.018945 0.012203 0.0296 0.033047 0.010828

8 2.75e+03 0.0160 0.013941 0.001050 0.0510 0.050603 0.001031

9 3.60e+03 0.0006 0.000682 0.000030 0.0000 0.000021 0.000020

10 5.86e+03 0.0002 0.000255 0.000120 0.0002 0.000275 0.000064

11 1.33e+04 0.0006 0.000374 0.000334 0.0074 0.006218 0.001318

12 9.48e+04 0.0000 0.000002 0.000000 0.0000 0.000000 0.000000

13 6.33e+03 0.0130 0.012045 0.000015 0.0000 0.000126 0.000019

14 1.21e+04 0.0052 0.004877 0.000177 0.0006 0.000211 0.000146

15 7.48e+04 0.0000 0.000348 0.000001 0.0362 0.034868 0.000008

16 5.19e+04 0.0006 0.001008 0.000001 0.0068 0.007209 0.000002

17 3.44e+04 0.0010 0.000569 0.000008 0.0024 0.001288 0.000007

18 4.04e+05 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

19 7.34e+05 0.0006 0.000372 0.000000 0.0002 0.000034 0.000000

20 1.16e+06 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

21 5.13e+08 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

22 1.82e+06 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

23 9.09e+05 0.0000 0.000024 0.000000 0.0000 0.000000 0.000000

24 1.81e+07 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

25 3.32e+07 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

26 6.72e+08 0.0000 0.000001 0.000000 0.0000 0.000001 0.000000

27 3.74e+08 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

28 6.88e+07 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

29 4.51e+09 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

30 8.64e+08 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

Table 5–10: Testing PBC
S : Case 2, σ = 0.50

Reduction SQRD V-BLAST

n cond(A) true PS theor PS pract PS true PS theor PS pract PS
5 1.74e+02 0.0048 0.005194 0.000648 0.0026 0.002569 0.000635

10 2.53e+03 0.0004 0.000212 0.000091 0.0000 0.000085 0.000050

15 2.38e+04 0.0000 0.000003 0.000000 0.0000 0.000000 0.000000

20 2.37e+06 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

25 3.05e+07 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

30 1.94e+10 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000
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Table 5–11: Testing PBC
S : Case 3, σ = 0.05

Reduction SQRD V-BLAST

n cond(A) true PS theor PS pract PS true PS theor PS pract PS
5 3.13e+01 0.9990 0.998918 0.998662 0.9990 0.998918 0.998662

6 6.11e+01 0.9162 0.913579 0.913539 0.9162 0.913579 0.913539

7 1.16e+02 0.3842 0.388325 0.388258 0.3928 0.396046 0.333390

8 1.58e+02 0.6086 0.608378 0.596273 0.6942 0.693298 0.620647

9 2.91e+02 0.6328 0.635702 0.478235 0.6150 0.612731 0.589765

10 1.38e+03 0.5850 0.586736 0.275784 0.5484 0.553813 0.370717

11 1.58e+03 0.2544 0.245573 0.180138 0.2334 0.225556 0.184844

12 8.03e+03 0.1296 0.133240 0.120382 0.1296 0.133240 0.120382

13 4.68e+03 0.2646 0.270893 0.033120 0.2694 0.272476 0.050634

14 7.25e+03 0.0652 0.072691 0.043257 0.0652 0.072691 0.043257

15 9.21e+03 0.0232 0.025088 0.014597 0.0274 0.029698 0.013326

16 6.20e+03 0.0184 0.016518 0.012293 0.0154 0.016603 0.008964

17 9.17e+03 0.0036 0.004300 0.001946 0.0026 0.002527 0.001543

18 1.47e+04 0.0222 0.020951 0.004328 0.0168 0.015804 0.004296

19 5.29e+05 0.0048 0.006403 0.000760 0.0044 0.005502 0.000664

20 1.78e+05 0.0228 0.022558 0.000254 0.0192 0.019445 0.000226

21 4.74e+06 0.0112 0.012092 0.000096 0.0096 0.010768 0.000080

22 1.41e+06 0.0002 0.000041 0.000037 0.0002 0.000041 0.000037

23 7.66e+05 0.0000 0.000346 0.000005 0.0000 0.000023 0.000005

24 6.31e+06 0.0000 0.000015 0.000002 0.0000 0.000007 0.000001

25 1.07e+06 0.0000 0.000003 0.000001 0.0000 0.000008 0.000000

26 8.22e+05 0.0002 0.000007 0.000000 0.0000 0.000006 0.000000

27 1.17e+07 0.0000 0.000001 0.000000 0.0000 0.000005 0.000000

28 1.16e+07 0.0000 0.000071 0.000000 0.0006 0.000456 0.000000

29 4.98e+07 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

30 1.12e+08 0.0000 0.000001 0.000000 0.0000 0.000001 0.000000

Table 5–12: Testing PBC
S : Case 3, σ = 0.10

Reduction SQRD V-BLAST

n cond(A) true PS theor PS pract PS true PS theor PS pract PS
5 2.34e+01 0.8058 0.803645 0.702696 0.8058 0.803645 0.702696

6 1.48e+02 0.4094 0.412321 0.410526 0.4094 0.412321 0.410526

7 1.12e+02 0.1938 0.201911 0.185062 0.1768 0.180254 0.177419

8 8.56e+01 0.2312 0.226452 0.143870 0.2062 0.198817 0.157482

9 1.09e+03 0.0456 0.046831 0.036673 0.0214 0.025868 0.020824

10 2.52e+03 0.1080 0.114019 0.029460 0.1036 0.111238 0.029426

11 6.54e+02 0.0084 0.009414 0.007406 0.0124 0.013905 0.006560

12 2.68e+03 0.0070 0.006898 0.002137 0.0118 0.012997 0.001895

13 2.41e+03 0.0014 0.001949 0.001104 0.0006 0.001361 0.000857

14 4.49e+03 0.0012 0.001002 0.000329 0.0012 0.001002 0.000329

15 8.12e+03 0.0004 0.000165 0.000049 0.0002 0.000157 0.000047
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Table 5–13: Case 3, σ = 0.10 (continued)

Reduction SQRD V-BLAST

n cond(A) true PS theor PS pract PS true PS theor PS pract PS
16 7.56e+03 0.0002 0.000110 0.000018 0.0002 0.000110 0.000018

17 3.17e+04 0.0000 0.000045 0.000005 0.0000 0.000122 0.000005

18 2.22e+04 0.0000 0.000005 0.000001 0.0000 0.000004 0.000001

19 3.83e+05 0.0000 0.000005 0.000000 0.0000 0.000001 0.000000

20 5.22e+06 0.0000 0.000002 0.000000 0.0000 0.000001 0.000000

21 4.35e+05 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

22 1.98e+05 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

23 6.36e+05 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

24 5.28e+06 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

25 3.01e+05 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

26 1.06e+08 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

27 3.34e+06 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

28 3.76e+07 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

29 2.40e+08 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

30 7.21e+09 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

Table 5–14: Testing PBC
S : Case 3, σ = 0.25

Reduction SQRD V-BLAST

n cond(A) true PS theor PS pract PS true PS theor PS pract PS
5 4.83e+01 0.1512 0.150818 0.052056 0.1512 0.150818 0.052056

6 5.54e+01 0.0800 0.074577 0.012236 0.0516 0.046629 0.012077

7 4.54e+02 0.0286 0.030063 0.003158 0.0286 0.030063 0.003158

8 7.78e+01 0.0008 0.001272 0.000665 0.0016 0.002101 0.000648

9 2.38e+03 0.0072 0.006316 0.000103 0.0072 0.006073 0.000103

10 1.29e+03 0.0006 0.001286 0.000016 0.0006 0.001273 0.000016

15 1.79e+04 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

20 1.47e+05 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

25 1.53e+07 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

30 3.18e+08 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

Table 5–15: Testing PBC
S : Case 3, σ = 0.50

Reduction SQRD V-BLAST

n cond(A) true PS theor PS pract PS true PS theor PS pract PS
5 4.62e+01 0.0248 0.024763 0.002360 0.0248 0.024763 0.002360

10 1.31e+03 0.0000 0.000013 0.000000 0.0000 0.000013 0.000000

15 7.52e+04 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

20 1.50e+06 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

25 1.92e+07 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

30 1.10e+07 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000
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Table 5–16: Testing PBC
S : Case 4, σ = 0.05

Reduction SQRD V-BLAST

n cond(A) true PS theor PS pract PS true PS theor PS pract PS
5 2.07e+00 1.0000 1.000000 1.000000 1.0000 1.000000 1.000000

6 8.86e+00 0.9860 0.987757 0.987756 0.9888 0.987903 0.987902

7 1.54e+01 0.9812 0.978656 0.958048 0.9818 0.978691 0.958187

8 3.36e+01 0.7446 0.739917 0.739892 0.7754 0.772000 0.771975

9 7.22e+01 0.3600 0.370090 0.189015 0.3966 0.394622 0.142467

10 1.70e+01 0.6606 0.666656 0.658501 0.6606 0.666656 0.658501

11 7.36e+01 0.3380 0.336105 0.333865 0.4722 0.477060 0.454245

12 8.87e+00 0.9948 0.995914 0.995892 0.9994 0.999595 0.999296

13 3.42e+01 0.8406 0.839540 0.838239 0.9506 0.954864 0.946625

14 3.68e+00 1.0000 0.999999 0.999999 1.0000 0.999999 0.999999

15 7.64e+01 0.7926 0.795035 0.794989 0.8442 0.848125 0.848039

16 2.31e+01 0.9720 0.971351 0.962558 0.9742 0.974928 0.973011

17 5.46e+01 0.2222 0.218643 0.210118 0.3064 0.305402 0.220064

18 1.21e+01 0.9996 0.999610 0.999608 1.0000 0.999864 0.999863

19 1.42e+01 0.9928 0.992864 0.992017 0.9922 0.992155 0.991502

20 1.46e+01 0.9856 0.985741 0.975498 0.9900 0.990815 0.987788

21 1.31e+01 0.9986 0.998671 0.998563 0.9980 0.998888 0.998666

22 3.36e+01 0.9962 0.997174 0.995736 0.9964 0.997317 0.996077

23 6.38e+01 0.9020 0.911503 0.910542 0.9928 0.993537 0.991062

24 9.15e+01 0.4286 0.426578 0.258264 0.4662 0.468565 0.404185

25 6.59e+01 0.9516 0.951014 0.942000 0.9868 0.984462 0.977138

26 2.58e+01 0.9998 0.999750 0.999724 0.9998 0.999857 0.999829

27 1.05e+01 1.0000 0.999312 0.999236 0.9998 0.999374 0.999301

28 1.23e+01 1.0000 0.999993 0.999991 1.0000 0.999994 0.999992

29 1.16e+01 0.9996 0.999387 0.999324 0.9996 0.999619 0.999607

30 3.11e+01 0.9676 0.969747 0.966673 0.9722 0.975113 0.973000

Table 5–17: Testing PBC
S : Case 4, σ = 0.10

Reduction SQRD V-BLAST

n cond(A) true PS theor PS pract PS true PS theor PS pract PS
5 4.20e+00 0.9372 0.937120 0.937120 0.9372 0.937120 0.937120

6 5.33e+01 0.4274 0.426823 0.342102 0.4274 0.426823 0.342102

7 9.01e+00 0.6334 0.635304 0.624753 0.6334 0.635304 0.624753

8 1.61e+01 0.7852 0.772679 0.739514 0.7852 0.772679 0.739514

9 8.96e+00 0.8204 0.817349 0.782773 0.8202 0.816648 0.785073

10 9.20e+00 0.9334 0.929558 0.920548 0.9502 0.944652 0.938717

11 2.41e+01 0.7680 0.770090 0.734707 0.7696 0.770374 0.734825

12 6.38e+00 0.7960 0.784189 0.774635 0.8344 0.825953 0.808405

13 7.61e+00 0.6768 0.671931 0.621646 0.6728 0.669971 0.618432

14 6.67e+00 0.8998 0.900267 0.845288 0.8992 0.900358 0.845463

15 1.05e+01 0.6762 0.689858 0.637488 0.6702 0.684243 0.636237
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Table 5–18: Case 4, σ = 0.10 (continued)

Reduction SQRD V-BLAST

n cond(A) true PS theor PS pract PS true PS theor PS pract PS
16 5.36e+01 0.4904 0.495121 0.402793 0.4614 0.470574 0.403883

17 5.19e+00 0.7750 0.778180 0.708807 0.7714 0.770770 0.710979

18 6.50e+00 0.6656 0.670777 0.633703 0.6608 0.670274 0.633381

19 9.47e+00 0.5228 0.507521 0.437080 0.5202 0.510621 0.444149

20 5.02e+01 0.2566 0.258450 0.124465 0.2328 0.236304 0.200564

21 1.09e+01 0.4712 0.475890 0.417370 0.5118 0.516077 0.432627

22 6.47e+00 0.2374 0.230463 0.188747 0.2332 0.225448 0.188262

23 3.12e+01 0.0460 0.044390 0.018813 0.0468 0.047351 0.019351

24 2.24e+01 0.4196 0.413026 0.376212 0.4308 0.432508 0.384616

25 3.53e+01 0.4648 0.464900 0.419065 0.4526 0.455392 0.424120

26 9.55e+00 0.6928 0.688107 0.638489 0.6966 0.694805 0.635961

27 2.99e+01 0.3842 0.390815 0.375746 0.4322 0.431953 0.414167

28 2.89e+01 0.0300 0.031954 0.023044 0.0300 0.031526 0.023153

29 3.00e+01 0.5564 0.546011 0.490661 0.5460 0.547695 0.492828

30 1.59e+01 0.1314 0.132843 0.089540 0.1342 0.138770 0.090262

Table 5–19: Testing PBC
S : Case 4, σ = 0.25

Reduction SQRD V-BLAST

n cond(A) true PS theor PS pract PS true PS theor PS pract PS
5 7.89e+00 0.0660 0.066348 0.041210 0.0660 0.066348 0.041210

6 3.50e+00 0.2116 0.208844 0.048993 0.2116 0.208844 0.048993

7 2.23e+01 0.0130 0.012443 0.001346 0.0046 0.004641 0.001382

8 5.39e+00 0.0370 0.038165 0.018509 0.0264 0.030435 0.018350

9 6.12e+00 0.0408 0.040888 0.016804 0.0394 0.040315 0.016833

10 4.56e+00 0.0820 0.076850 0.053611 0.0792 0.076664 0.053528

15 4.50e+00 0.0524 0.053746 0.014563 0.0528 0.053611 0.014564

20 1.21e+01 0.0018 0.001167 0.000509 0.0016 0.001166 0.000509

25 3.14e+01 0.0000 0.000005 0.000000 0.0000 0.000008 0.000000

30 2.90e+01 0.0000 0.000002 0.000000 0.0000 0.000002 0.000000

Table 5–20: Testing PBC
S : Case 4, σ = 0.50

Reduction SQRD V-BLAST

n cond(A) true PS theor PS pract PS true PS theor PS pract PS
5 9.56e+00 0.0058 0.006724 0.001216 0.0042 0.006690 0.001219

10 1.36e+01 0.0000 0.000007 0.000004 0.0000 0.000009 0.000004

15 1.83e+01 0.0000 0.000003 0.000000 0.0000 0.000002 0.000000

20 2.92e+01 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

25 2.08e+01 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000

30 1.28e+01 0.0000 0.000000 0.000000 0.0000 0.000000 0.000000
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Table 5–21: Testing PBC
S : Case 5, σ = 0.05

Reduction SQRD V-BLAST

n cond(A) true PS theor PS pract PS true PS theor PS pract PS
5 5.66e+00 1.0000 1.000000 1.000000 1.0000 1.000000 1.000000

10 3.20e+01 1.0000 1.000000 1.000000 1.0000 1.000000 1.000000

15 1.81e+02 1.0000 1.000000 1.000000 1.0000 1.000000 1.000000

20 1.02e+03 1.0000 1.000000 1.000000 1.0000 1.000000 1.000000

25 5.79e+03 0.9996 0.999816 0.999816 1.0000 1.000000 1.000000

30 3.28e+04 1.0000 0.999998 0.999998 1.0000 1.000000 1.000000

Table 5–22: Testing PBC
S : Case 5, σ = 0.10

Reduction SQRD V-BLAST

n cond(A) true PS theor PS pract PS true PS theor PS pract PS
5 5.66e+00 0.9998 0.999713 0.999713 0.9998 0.999713 0.999713

6 8.00e+00 0.9998 0.999771 0.999771 0.9998 0.999771 0.999771

7 1.13e+01 0.9994 0.999620 0.999618 0.9994 0.999620 0.999618

8 1.60e+01 0.9988 0.999069 0.999069 1.0000 1.000000 1.000000

9 2.26e+01 1.0000 0.999858 0.999749 0.9998 0.999815 0.999805

10 3.20e+01 0.9690 0.965406 0.965406 0.9986 0.998035 0.998035

11 4.53e+01 1.0000 0.999986 0.999986 1.0000 1.000000 1.000000

12 6.40e+01 1.0000 0.999982 0.999982 1.0000 1.000000 1.000000

13 9.05e+01 1.0000 1.000000 1.000000 1.0000 1.000000 1.000000

14 1.28e+02 1.0000 1.000000 1.000000 1.0000 1.000000 1.000000

15 1.81e+02 0.7000 0.694532 0.694532 1.0000 0.999982 0.999982

16 2.56e+02 1.0000 0.999999 0.999998 1.0000 1.000000 1.000000

17 3.62e+02 0.9962 0.996161 0.996161 1.0000 0.999971 0.999949

18 5.12e+02 1.0000 0.999853 0.999705 1.0000 1.000000 1.000000

19 7.24e+02 0.7140 0.715584 0.715584 0.9966 0.996907 0.996907

20 1.02e+03 0.7958 0.800463 0.600927 1.0000 0.999972 0.999972

21 1.45e+03 1.0000 0.999999 0.999999 1.0000 1.000000 1.000000

22 2.05e+03 0.9344 0.936551 0.936551 1.0000 0.999997 0.999997

23 2.90e+03 1.0000 0.999989 0.999989 1.0000 1.000000 1.000000

24 4.10e+03 0.8876 0.893528 0.893528 1.0000 1.000000 1.000000

25 5.79e+03 0.6542 0.655536 0.655536 1.0000 1.000000 1.000000

26 8.19e+03 0.6804 0.686439 0.686439 1.0000 1.000000 1.000000

27 1.16e+04 0.5522 0.555110 0.110221 0.9254 0.924663 0.854824

28 1.64e+04 0.7926 0.791691 0.583381 1.0000 1.000000 1.000000

29 2.32e+04 1.0000 1.000000 1.000000 1.0000 1.000000 1.000000

30 3.28e+04 1.0000 0.999957 0.999914 1.0000 0.999957 0.999914
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Table 5–23: Testing PBC
S : Case 5, σ = 0.25

Reduction SQRD V-BLAST

n cond(A) true PS theor PS pract PS true PS theor PS pract PS
5 5.66e+00 0.7472 0.748770 0.748770 0.7596 0.760499 0.760499

6 8.00e+00 0.7306 0.728878 0.727328 0.7306 0.728878 0.727328

7 1.13e+01 0.8446 0.834910 0.814303 0.8178 0.813719 0.766375

8 1.60e+01 0.9648 0.964975 0.938487 0.9616 0.961770 0.956317

9 2.26e+01 0.8338 0.833982 0.833981 0.9626 0.960292 0.959901

10 3.20e+01 0.9734 0.972587 0.945177 0.9976 0.998987 0.997975

11 4.53e+01 0.7928 0.800262 0.607669 0.9038 0.906047 0.890186

12 6.40e+01 0.9888 0.988990 0.980657 0.9896 0.990470 0.981904

13 9.05e+01 1.0000 1.000000 1.000000 1.0000 1.000000 1.000000

14 1.28e+02 0.9626 0.965955 0.965955 0.9952 0.996676 0.996314

15 1.81e+02 0.9676 0.971803 0.971802 0.9986 0.998814 0.998569

16 2.56e+02 0.9888 0.989570 0.989570 0.9962 0.996828 0.996828

17 3.62e+02 0.5760 0.572820 0.572820 0.9478 0.951904 0.951904

18 5.12e+02 0.9918 0.991734 0.991734 0.9984 0.998681 0.998681

19 7.24e+02 0.7566 0.757583 0.757583 0.9984 0.998823 0.997647

20 1.02e+03 0.5510 0.550879 0.161261 0.8090 0.805806 0.753146

21 1.45e+03 0.9930 0.990457 0.990457 0.9930 0.990457 0.990457

22 2.05e+03 0.8162 0.807606 0.615212 0.6812 0.667473 0.667473

23 2.90e+03 0.8008 0.793964 0.587928 0.9772 0.976251 0.952501

24 4.10e+03 0.5634 0.561808 0.123615 0.7818 0.778989 0.557978

25 5.79e+03 0.3330 0.324495 0.324495 0.9806 0.981772 0.981772

26 8.19e+03 0.6024 0.615620 0.615620 1.0000 0.999999 0.999999

27 1.16e+04 0.6362 0.634778 0.269557 1.0000 0.999955 0.999934

28 1.64e+04 0.5836 0.584234 0.168468 0.8084 0.806102 0.612204

29 2.32e+04 0.0850 0.084694 0.084694 0.9944 0.993499 0.993499

30 3.28e+04 0.8576 0.859293 0.859293 0.9976 0.998050 0.998050

Table 5–24: Testing PBC
S : Case 5, σ = 0.50

Reduction SQRD V-BLAST

n cond(A) true PS theor PS pract PS true PS theor PS pract PS
5 5.66e+00 0.4874 0.495229 0.464394 0.4874 0.495229 0.464394

6 8.00e+00 0.1736 0.167404 0.124077 0.1736 0.167404 0.124077

7 1.13e+01 0.1986 0.203488 0.203488 0.1954 0.200888 0.200888

8 1.60e+01 0.5468 0.551814 0.518207 0.5468 0.551814 0.518207

9 2.26e+01 0.4330 0.427574 0.381686 0.6098 0.598648 0.410104

10 3.20e+01 0.5100 0.520854 0.513496 0.6016 0.609008 0.526150

11 4.53e+01 0.2192 0.219897 0.202226 0.4556 0.444648 0.411144

12 6.40e+01 0.3692 0.374527 0.374388 0.7244 0.733675 0.731835

13 9.05e+01 0.6248 0.621561 0.621423 0.8992 0.901046 0.834522

14 1.28e+02 0.5700 0.585695 0.584131 0.5628 0.569919 0.569285

15 1.81e+02 0.4370 0.437457 0.437457 0.5932 0.594745 0.594745
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Table 5–25: Case 5, σ = 0.50 (continued)

Reduction SQRD V-BLAST

n cond(A) true PS theor PS pract PS true PS theor PS pract PS
16 2.56e+02 0.2516 0.255858 0.255858 0.9742 0.974375 0.974251

17 3.62e+02 0.3826 0.378654 0.225931 0.4068 0.407704 0.367072

18 5.12e+02 0.4406 0.434340 0.386486 0.9696 0.970081 0.968691

19 7.24e+02 0.7350 0.740255 0.481208 0.8082 0.809197 0.809197

20 1.02e+03 0.3070 0.312057 0.312057 0.5186 0.531398 0.531398

21 1.45e+03 0.2598 0.255350 0.255350 0.7622 0.758144 0.758144

22 2.05e+03 0.6750 0.672773 0.351541 0.7866 0.771456 0.657535

23 2.90e+03 0.5512 0.551011 0.102022 0.5010 0.506605 0.506605

24 4.10e+03 0.8810 0.881910 0.763820 0.9316 0.930187 0.930187

25 5.79e+03 0.6704 0.661343 0.514205 0.8010 0.800956 0.793431

26 8.19e+03 0.1210 0.111173 0.111173 0.9970 0.997169 0.997157

27 1.16e+04 0.0576 0.055924 0.055924 0.6336 0.633156 0.633156

28 1.64e+04 0.0536 0.054046 0.054046 0.2578 0.257591 0.257591

29 2.32e+04 0.2830 0.285204 0.285204 0.3660 0.366091 0.366091

30 3.28e+04 0.5700 0.567655 0.135310 0.9218 0.925458 0.850921

Table 5–26: Testing PBC
S and P IC

S

Case σ n cond(A) Red true PBCS theor PBCS pract PBCS true P ICS

1 0.05 5 1.68e+01
SQ 1.0000 1.000000 1.000000

1.0000
VB 1.0000 1.000000 1.000000

1 0.05 6 4.85e+01
SQ 1.0000 0.999998 0.999996

1.0000
VB 1.0000 0.999998 0.999996

1 0.05 7 1.17e+01
SQ 1.0000 1.000000 1.000000

1.0000
VB 1.0000 1.000000 1.000000

1 0.05 8 1.21e+02
SQ 0.8672 0.871017 0.742035

1.0000
VB 1.0000 1.000000 1.000000

1 0.05 9 2.81e+01
SQ 1.0000 1.000000 1.000000

1.0000
VB 1.0000 1.000000 1.000000

1 0.10 5 8.93e+01
SQ 0.9800 0.982198 0.964428

1.0000
VB 0.9800 0.982198 0.964428

1 0.10 6 4.40e+01
SQ 0.9982 0.997461 0.997459

1.0000
VB 0.9982 0.997461 0.997461

1 0.10 7 3.11e+01
SQ 1.0000 1.000000 1.000000

1.0000
VB 1.0000 1.000000 1.000000

1 0.10 8 1.01e+01
SQ 1.0000 1.000000 1.000000

1.0000
VB 1.0000 1.000000 1.000000

1 0.10 9 3.88e+01
SQ 1.0000 0.999999 0.999999

1.0000
VB 1.0000 0.999999 0.999999
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Table 5–27: Testing PBC
S and P IC

S (continued)

Case σ n cond(A) Red true PBCS theor PBCS pract PBCS true P ICS

1 0.25 5 2.21e+01
SQ 0.7952 0.793940 0.626595

0.8892
VB 0.6850 0.681232 0.662820

1 0.25 6 8.79e+00
SQ 0.9630 0.957143 0.957143

0.9824
VB 0.9578 0.957568 0.957568

1 0.25 7 2.08e+01
SQ 0.8782 0.879113 0.879113

0.9840
VB 0.9448 0.943617 0.943617

1 0.25 8 4.57e+01
SQ 0.9718 0.969537 0.941182

0.9972
VB 0.9378 0.937402 0.937389

1 0.25 9 1.69e+01
SQ 0.9184 0.911060 0.910899

0.9978
VB 0.9850 0.982930 0.974774

2 0.05 5 3.32e+01
SQ 0.9928 0.993067 0.986762

1.0000
VB 0.9938 0.994359 0.989445

2 0.05 6 1.04e+03
SQ 0.1918 0.191993 0.191993

1.0000
VB 0.5056 0.500560 0.461849

2 0.05 7 2.10e+03
SQ 0.1212 0.118179 0.111341

0.9428
VB 0.1430 0.138507 0.130493

2 0.05 8 1.63e+03
SQ 0.0878 0.088117 0.088117

0.9872
VB 0.4392 0.445787 0.445787

2 0.05 9 7.80e+02
SQ 0.1858 0.176643 0.037939

0.9988
VB 0.2134 0.207863 0.122965

2 0.10 5 2.13e+02
SQ 0.3764 0.369741 0.050094

0.9978
VB 0.2010 0.193567 0.069613

2 0.10 6 1.81e+03
SQ 0.5132 0.513781 0.041559

0.9946
VB 0.0638 0.067821 0.049177

2 0.10 7 3.11e+03
SQ 0.0134 0.011709 0.011709

0.9376
VB 0.0124 0.011696 0.011696

2 0.10 8 2.53e+03
SQ 0.4634 0.462587 0.206540

0.9998
VB 0.4634 0.462587 0.206540

2 0.10 9 3.64e+02
SQ 0.1594 0.163025 0.163025

1.0000
VB 0.3784 0.385667 0.385667

2 0.25 5 1.31e+02
SQ 0.0040 0.005008 0.003374

0.0130
VB 0.0040 0.005008 0.003374

2 0.25 6 1.63e+03
SQ 0.0180 0.020772 0.009793

0.7872
VB 0.0178 0.020483 0.009533

2 0.25 7 2.57e+02
SQ 0.0108 0.008976 0.007526

0.3700
VB 0.0336 0.033074 0.007558

2 0.25 8 2.59e+02
SQ 0.0132 0.013292 0.012097

0.4884
VB 0.0428 0.041441 0.012313

2 0.25 9 5.02e+03
SQ 0.0096 0.008038 0.000165

0.3516
VB 0.0006 0.000601 0.000221
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Table 5–28: Testing PBC
S and P IC

S (continued)

Case σ n cond(A) Red true PBCS theor PBCS pract PBCS true P ICS

3 0.05 5 1.29e+01
SQ 0.9944 0.994585 0.994524

0.9966
VB 0.9944 0.994584 0.994523

3 0.05 6 2.35e+02
SQ 0.9290 0.930308 0.930308

0.9772
VB 0.9530 0.952547 0.952547

3 0.05 7 1.36e+02
SQ 0.8734 0.875646 0.858106

1.0000
VB 0.8734 0.875646 0.858106

3 0.05 8 2.15e+02
SQ 0.7052 0.706130 0.696588

0.9960
VB 0.7018 0.701675 0.695695

3 0.05 9 3.60e+03
SQ 0.1404 0.142873 0.138014

0.9980
VB 0.1260 0.123684 0.122844

3 0.10 5 3.18e+01
SQ 0.5788 0.592081 0.544703

0.8890
VB 0.7408 0.748216 0.581470

3 0.10 6 8.93e+01
SQ 0.4500 0.447419 0.369374

0.8064
VB 0.4500 0.447419 0.369374

3 0.10 7 2.43e+02
SQ 0.2632 0.259893 0.251958

0.8828
VB 0.2632 0.259893 0.251958

3 0.10 8 1.62e+02
SQ 0.2910 0.283379 0.164676

0.5364
VB 0.2844 0.275989 0.160381

3 0.10 9 4.35e+02
SQ 0.1654 0.164607 0.039699

0.6586
VB 0.1790 0.179616 0.042228

3 0.25 5 4.53e+01
SQ 0.1008 0.104164 0.046244

0.5360
VB 0.0892 0.092559 0.044919

3 0.25 6 1.64e+01
SQ 0.0314 0.031015 0.014119

0.0432
VB 0.0314 0.031015 0.014119

3 0.25 7 1.13e+02
SQ 0.0278 0.030114 0.003234

0.1646
VB 0.0256 0.027488 0.003258

3 0.25 8 1.47e+01
SQ 0.0008 0.001196 0.000705

0.0038
VB 0.0014 0.001340 0.000712

3 0.25 9 6.39e+02
SQ 0.0004 0.000469 0.000125

0.0154
VB 0.0004 0.000469 0.000125

4 0.05 5 2.83e+00
SQ 1.0000 1.000000 1.000000

1.0000
VB 1.0000 1.000000 1.000000

4 0.05 6 4.98e+00
SQ 0.9986 0.999421 0.999232

0.9996
VB 0.9986 0.999421 0.999232

4 0.05 7 2.53e+00
SQ 1.0000 1.000000 1.000000

1.0000
VB 1.0000 1.000000 1.000000

4 0.05 8 5.15e+00
SQ 0.9998 0.999965 0.999932

1.0000
VB 1.0000 0.999949 0.999945

4 0.05 9 4.07e+00
SQ 1.0000 0.999956 0.999947

1.0000
VB 1.0000 0.999956 0.999947
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Table 5–29: Testing PBC
S and P IC

S (continued)

Case σ n cond(A) Red true PBCS theor PBCS pract PBCS true P ICS

4 0.10 5 2.31e+01
SQ 0.1308 0.122560 0.051629

0.2270
VB 0.1204 0.115184 0.053182

4 0.10 6 4.05e+00
SQ 0.7366 0.745636 0.733712

0.7854
VB 0.7696 0.770252 0.736285

4 0.10 7 1.08e+01
SQ 0.4226 0.413936 0.305742

0.5194
VB 0.4226 0.413936 0.305742

4 0.10 8 9.79e+00
SQ 0.6352 0.645671 0.640747

0.8450
VB 0.6352 0.645671 0.640747

4 0.10 9 5.81e+00
SQ 0.7546 0.753872 0.740870

0.8830
VB 0.7492 0.749772 0.740228

4 0.25 5 1.15e+01
SQ 0.0094 0.011524 0.011524

0.0194
VB 0.0094 0.011524 0.011524

4 0.25 6 6.93e+01
SQ 0.0102 0.012689 0.005293

0.3054
VB 0.0102 0.012689 0.005293

4 0.25 7 4.32e+01
SQ 0.0048 0.004967 0.000407

0.0718
VB 0.0064 0.005658 0.000407

4 0.25 8 1.81e+01
SQ 0.0058 0.007025 0.007025

0.0298
VB 0.0070 0.006261 0.006261

4 0.25 9 8.31e+00
SQ 0.0064 0.005069 0.001542

0.0102
VB 0.0070 0.005163 0.001542

5 0.05 5 5.66e+00
SQ 1.0000 1.000000 1.000000

1.0000
VB 1.0000 1.000000 1.000000

5 0.05 6 8.00e+00
SQ 1.0000 1.000000 1.000000

1.0000
VB 1.0000 1.000000 1.000000

5 0.05 7 1.13e+01
SQ 1.0000 1.000000 1.000000

1.0000
VB 1.0000 1.000000 1.000000

5 0.05 8 1.60e+01
SQ 1.0000 1.000000 1.000000

1.0000
VB 1.0000 1.000000 1.000000

5 0.05 9 2.26e+01
SQ 1.0000 1.000000 1.000000

1.0000
VB 1.0000 1.000000 1.000000

5 0.10 5 5.66e+00
SQRD 1.0000 0.999992 0.999985

1.0000
VB 1.0000 0.999992 0.999985

5 0.10 6 8.00e+00
SQ 1.0000 0.999900 0.999900

1.0000
VB 1.0000 0.999900 0.999900

5 0.10 7 1.13e+01
SQ 0.9966 0.997672 0.997672

1.0000
VB 1.0000 0.999947 0.999947

5 0.10 8 1.60e+01
SQ 1.0000 0.999998 0.999998

1.0000
VB 1.0000 0.999998 0.999998

5 0.10 9 2.26e+01
SQ 0.9954 0.995318 0.990636

1.0000
VB 1.0000 0.999937 0.999873

85



Table 5–30: Testing PBC
S and P IC

S (continued)

Case σ n cond(A) Red true PBCS theor PBCS pract PBCS true P ICS

5 0.25 5 5.66e+00
SQ 0.6526 0.650185 0.592070

0.7054
VB 0.6526 0.650185 0.592070

5 0.25 6 8.00e+00
SQ 0.9048 0.901362 0.896310

0.9478
VB 0.9048 0.901362 0.896310

5 0.25 7 1.13e+01
SQ 0.9810 0.982629 0.980163

0.9956
VB 0.9810 0.982629 0.980163

5 0.25 8 1.60e+01
SQ 0.9232 0.920710 0.841604

1.0000
VB 0.9978 0.997239 0.996233

5 0.25 9 2.26e+01
SQ 0.7116 0.709369 0.660841

0.8546
VB 0.6932 0.697386 0.649678

Table 5–31: Testing PBC
PS : Case 1, σ = 0.10, cond(A) = 5.32e+01

Red SQRD V-BLAST

index true PBCPS theor PBCPS true PBCPS theor PBCPS
20 1.0000 1.0000000000 1.0000 1.0000000000

19 1.0000 1.0000000000 1.0000 1.0000000000

18 1.0000 0.9999999992 1.0000 1.0000000000

17 1.0000 0.9999999990 1.0000 1.0000000000

16 1.0000 0.9999999990 1.0000 1.0000000000

15 1.0000 0.9999999990 1.0000 1.0000000000

10 1.0000 0.9999999990 1.0000 1.0000000000

5 1.0000 0.9999999990 1.0000 1.0000000000

1 1.0000 0.9999999990 1.0000 1.0000000000

Table 5–32: Testing PBC
PS : Case 1, σ = 0.25, cond(A) = 2.44e+01

Red SQRD V-BLAST

index true PBCPS theor PBCPS true PBCPS theor PBCPS
20 1.0000 0.9999997622 1.0000 0.9999997622

19 1.0000 0.9999919471 1.0000 0.9999919471

18 1.0000 0.9999862129 1.0000 0.9999862129

17 1.0000 0.9999748379 1.0000 0.9999820033

16 1.0000 0.9998597613 1.0000 0.9999814819

15 1.0000 0.9998597333 1.0000 0.9999789312

14 1.0000 0.9998596121 1.0000 0.9999685658

13 1.0000 0.9998591400 1.0000 0.9999626208

12 1.0000 0.9998591339 1.0000 0.9999594189

11 1.0000 0.9998591326 1.0000 0.9999561301

10 1.0000 0.9998591119 1.0000 0.9999561019
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Table 5–33: Case 1, σ = 0.25, cond(A) = 2.44e+01 (continued)

Red SQRD V-BLAST

index true PBCPS theor PBCPS true PBCPS theor PBCPS
9 1.0000 0.9998591091 1.0000 0.9999561013

8 1.0000 0.9998591080 1.0000 0.9999561012

7 1.0000 0.9998585984 1.0000 0.9999560982

6 1.0000 0.9998585979 1.0000 0.9999560978

5 1.0000 0.9998585979 1.0000 0.9999560968

4 1.0000 0.9998585979 1.0000 0.9999560968

3 1.0000 0.9998585970 1.0000 0.9999560968

2 1.0000 0.9998585970 1.0000 0.9999560968

1 1.0000 0.9998585969 1.0000 0.9999560967

Table 5–34: Testing PBC
PS : Case 2, σ = 0.10, cond(A) = 6.72e+05

Red SQRD V-BLAST

index true PBCPS theor PBCPS true PBCPS theor PBCPS
20 0.0394 0.0347659978 0.0394 0.0347659978

19 0.0000 0.0000279063 0.0214 0.0176629198

18 0.0000 0.0000162026 0.0038 0.0044392926

17 0.0000 0.0000060389 0.0012 0.0011225871

16 0.0000 0.0000060289 0.0006 0.0007847015

15 0.0000 0.0000060213 0.0004 0.0005860718

14 0.0000 0.0000060213 0.0004 0.0005860718

13 0.0000 0.0000060067 0.0004 0.0005860718

12 0.0000 0.0000060067 0.0004 0.0005859834

11 0.0000 0.0000060051 0.0004 0.0005857958

10 0.0000 0.0000060051 0.0004 0.0005857958

9 0.0000 0.0000060051 0.0004 0.0005857958

8 0.0000 0.0000060051 0.0004 0.0005857958

7 0.0000 0.0000055278 0.0004 0.0005392395

6 0.0000 0.0000055278 0.0004 0.0005392395

5 0.0000 0.0000028399 0.0004 0.0005390534

4 0.0000 0.0000028399 0.0004 0.0005378073

3 0.0000 0.0000028399 0.0004 0.0005313526

2 0.0000 0.0000028399 0.0004 0.0005313526

1 0.0000 0.0000028399 0.0004 0.0005313526
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Table 5–35: Testing PBC
PS : Case 2, σ = 0.25, cond(A) = 4.36e+06

Red SQRD V-BLAST

index true PBCPS theor PBCPS true PBCPS theor PBCPS
20 0.0012 0.0011729953 0.0012 0.0011729953

19 0.0000 0.0000087609 0.0000 0.0000102496

18 0.0000 0.0000057800 0.0000 0.0000021612

17 0.0000 0.0000016409 0.0000 0.0000014781

16 0.0000 0.0000007832 0.0000 0.0000007055

15 0.0000 0.0000004563 0.0000 0.0000004110

14 0.0000 0.0000004371 0.0000 0.0000003937

13 0.0000 0.0000003365 0.0000 0.0000003031

12 0.0000 0.0000000411 0.0000 0.0000002330

11 0.0000 0.0000000311 0.0000 0.0000001424

10 0.0000 0.0000000296 0.0000 0.0000000521

9 0.0000 0.0000000286 0.0000 0.0000000455

8 0.0000 0.0000000246 0.0000 0.0000000455

7 0.0000 0.0000000223 0.0000 0.0000000455

6 0.0000 0.0000000223 0.0000 0.0000000424

5 0.0000 0.0000000223 0.0000 0.0000000424

1 0.0000 0.0000000223 0.0000 0.0000000424

Table 5–36: Testing PBC
PS : Case 3, σ = 0.10, cond(A) = 1.12e+05

Red SQRD V-BLAST

index true PBCPS theor PBCPS true PBCPS theor PBCPS
20 0.0412 0.0390428341 0.0412 0.0390428341

19 0.0276 0.0256882268 0.0276 0.0256882268

18 0.0026 0.0025496961 0.0034 0.0027681289

17 0.0010 0.0009872550 0.0022 0.0018895751

16 0.0010 0.0005830963 0.0002 0.0003338426

15 0.0008 0.0003538300 0.0000 0.0001382319

14 0.0002 0.0000950513 0.0000 0.0001063779

13 0.0002 0.0000593970 0.0000 0.0000334818

12 0.0000 0.0000459035 0.0000 0.0000268870

11 0.0000 0.0000383183 0.0000 0.0000133902

10 0.0000 0.0000321528 0.0000 0.0000094915

9 0.0000 0.0000262554 0.0000 0.0000066762

8 0.0000 0.0000198439 0.0000 0.0000057162

7 0.0000 0.0000132564 0.0000 0.0000043915

6 0.0000 0.0000089750 0.0000 0.0000034191

5 0.0000 0.0000056961 0.0000 0.0000021700

4 0.0000 0.0000036903 0.0000 0.0000014059

3 0.0000 0.0000023050 0.0000 0.0000008781

2 0.0000 0.0000016225 0.0000 0.0000006181

1 0.0000 0.0000011215 0.0000 0.0000004272
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Table 5–37: Testing PBC
PS : Case 3, σ = 0.25, cond(A) = 3.80e+04

Red SQRD V-BLAST

index true PBCPS theor PBCPS true PBCPS theor PBCPS
20 0.0106 0.0115982849 0.0106 0.0115982849

19 0.0002 0.0001902891 0.0052 0.0061361408

18 0.0000 0.0001135186 0.0028 0.0031622679

17 0.0000 0.0000715025 0.0008 0.0003891998

16 0.0000 0.0000062061 0.0002 0.0002597755

15 0.0000 0.0000016344 0.0000 0.0000614324

14 0.0000 0.0000009430 0.0000 0.0000161786

13 0.0000 0.0000005690 0.0000 0.0000095935

12 0.0000 0.0000001791 0.0000 0.0000058316

11 0.0000 0.0000001155 0.0000 0.0000018441

10 0.0000 0.0000000283 0.0000 0.0000011896

9 0.0000 0.0000000103 0.0000 0.0000002941

8 0.0000 0.0000000069 0.0000 0.0000001143

7 0.0000 0.0000000044 0.0000 0.0000000739

6 0.0000 0.0000000012 0.0000 0.0000000196

5 0.0000 0.0000000007 0.0000 0.0000000124

4 0.0000 0.0000000002 0.0000 0.0000000033

3 0.0000 0.0000000001 0.0000 0.0000000009

2 0.0000 0.0000000000 0.0000 0.0000000006

1 0.0000 0.0000000000 0.0000 0.0000000002

Table 5–38: Testing PBC
PS : Case 4, σ = 0.10, cond(A) = 3.46e+01

Red SQRD V-BLAST

index true PBCPS theor PBCPS true PBCPS theor PBCPS
20 0.6384 0.6402729318 0.8728 0.8669283600

19 0.5362 0.5380359588 0.5574 0.5568362352

18 0.4592 0.4618373620 0.4702 0.4699938982

17 0.3236 0.3207814346 0.4064 0.4058696977

16 0.2490 0.2468222577 0.3022 0.2973078950

15 0.2264 0.2233662878 0.2274 0.2203527176

14 0.2088 0.2026114439 0.1642 0.1591214934

13 0.1592 0.1552988095 0.1352 0.1298702230

12 0.1230 0.1209137921 0.1284 0.1225204543

11 0.0884 0.0891829161 0.1010 0.0984671933

10 0.0758 0.0752539525 0.0842 0.0808210495

9 0.0732 0.0709131933 0.0794 0.0766770235

8 0.0698 0.0650474292 0.0716 0.0687125922

7 0.0642 0.0598143560 0.0630 0.0611369879

6 0.0604 0.0561444024 0.0538 0.0526175896

5 0.0556 0.0513618848 0.0516 0.0494086003
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Table 5–39: Case 4, σ = 0.10, cond(A) = 3.46e+01 (continued)

Red SQRD V-BLAST

index true PBCPS theor PBCPS true PBCPS theor PBCPS
4 0.0530 0.0495213279 0.0512 0.0487962775

3 0.0516 0.0477980211 0.0498 0.0473372497

2 0.0508 0.0470760245 0.0486 0.0460589733

1 0.0488 0.0443324618 0.0478 0.0433746836

Table 5–40: Testing PBC
PS : Case 4, σ = 0.25, cond(A) = 8.29e+00

Red SQRD V-BLAST

index true PBCPS theor PBCPS true PBCPS theor PBCPS
20 0.7846 0.7884627990 0.7846 0.7884627990

19 0.5426 0.5559414152 0.6778 0.6832245886

18 0.4766 0.4839950546 0.4774 0.4835594502

17 0.4116 0.4205050618 0.4186 0.4214498839

16 0.3090 0.3067072842 0.3134 0.3073964171

15 0.2250 0.2185349268 0.2274 0.2190259474

14 0.1506 0.1439331066 0.1518 0.1442565062

13 0.1266 0.1215797521 0.1284 0.1218529266

12 0.1080 0.1041501288 0.1088 0.1043841411

11 0.0894 0.0884803465 0.0896 0.0886791507

10 0.0652 0.0594023380 0.0618 0.0622139183

9 0.0564 0.0508332667 0.0516 0.0522681206

8 0.0404 0.0375569962 0.0388 0.0386707992

7 0.0340 0.0321249051 0.0330 0.0330776121

6 0.0244 0.0229662097 0.0234 0.0236473033

5 0.0192 0.0167993271 0.0184 0.0172975336

4 0.0132 0.0120184349 0.0140 0.0123748577

3 0.0104 0.0087573628 0.0106 0.0090170741

2 0.0086 0.0075864447 0.0086 0.0078114308

1 0.0068 0.0055397569 0.0068 0.0057040458

Table 5–41: Testing PBC
PS : Case 5, σ = 0.10, cond(A) = 1.02e+03

Red SQRD V-BLAST

index true PBCPS theor PBCPS true PBCPS theor PBCPS
20 1.0000 1.0000000000 1.0000 1.0000000000

19 0.9784 0.9755612100 1.0000 0.9999418768

18 0.9784 0.9755612100 1.0000 0.9999418768

17 0.9784 0.9755612100 1.0000 0.9999418768

16 0.9784 0.9755612100 1.0000 0.9999418768

15 0.9784 0.9755612100 1.0000 0.9999418768

10 0.9784 0.9755612100 1.0000 0.9999418768

5 0.9784 0.9755612100 1.0000 0.9999418768

1 0.9784 0.9755612100 1.0000 0.9999418768
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Table 5–42: Testing PBC
PS : Case 5, σ = 0.25, cond(A) = 1.02e+03

Red SQRD V-BLAST

index true PBCPS theor PBCPS true PBCPS theor PBCPS
20 0.5096 0.5155922694 0.7820 0.7799789954

19 0.5092 0.5147497709 0.7742 0.7700900797

18 0.5092 0.5147497709 0.7742 0.7700792617

17 0.5092 0.5147486653 0.7742 0.7700792617

16 0.5092 0.5147486653 0.7742 0.7700792617

15 0.5092 0.5147193225 0.7742 0.7700792617

14 0.5092 0.5147193225 0.7742 0.7700792617

13 0.5092 0.5147193225 0.7742 0.7700792617

12 0.5092 0.5147193225 0.7742 0.7700792617

11 0.5092 0.5147193225 0.7742 0.7700792617

10 0.5092 0.5147193225 0.7742 0.7700792617

5 0.5092 0.5147193225 0.7742 0.7700792617

1 0.5092 0.5147193225 0.7742 0.7700792617

Table 5–43: Testing Partial Validation, with V-BLAST

Case σ cond(A) n j PV time (seconds) BILS time (seconds)

1 0.10 1.68e+01 5 -1 0.000299 0.000320

1 0.10 6.92e+02 10 -1 0.000294 0.000343

1 0.10 1.18e+02 15 -1 0.000428 0.000511

1 0.10 2.53e+01 20 -1 0.000572 0.000693

1 0.10 4.08e+01 25 -1 0.000710 0.000863

1 0.10 4.83e+01 30 -1 0.000841 0.001049

1 0.50 1.53e+01 5 5 0.000250 0.000200

1 0.50 1.14e+01 10 6 0.000427 0.000597

1 0.50 1.13e+02 15 12 0.002586 0.003069

1 0.50 5.12e+01 20 21 0.001288 0.001099

1 0.50 3.15e+02 25 25 0.045641 0.045786

1 0.50 2.41e+02 30 31 0.576652 0.575157

2 0.10 1.52e+02 5 6 0.001126 0.000739

2 0.10 4.98e+02 10 11 0.002784 0.002675

2 0.10 8.87e+04 15 16 0.423797 0.425264

2 0.10 7.73e+05 20 21 3.512154 3.511518

2 0.10 4.19e+07 25 26 2736.456531 2737.545857

2 0.50 1.81e+02 5 6 0.000469 0.000399

2 0.50 8.66e+03 10 11 0.030135 0.029923

2 0.50 4.77e+05 15 16 21.879887 21.870041

2 0.50 3.18e+06 20 21 19.914085 19.927906

2 0.50 1.08e+07 25 26 3552.010936 3552.527851
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Table 5–44: Testing Partial Validation, with V-BLAST (continued)

Case σ cond(A) n j PV time (seconds) BILS time (seconds)

3 0.10 1.14e+02 5 5 0.000752 0.000597

3 0.10 3.12e+03 10 11 0.001258 0.001153

3 0.10 4.90e+04 15 16 0.195215 0.195138

3 0.10 5.22e+04 20 21 31.952989 31.949389

3 0.10 5.46e+05 25 26 55.823419 55.841507

3 0.10 2.58e+07 30 31 33037.186392 33036.531852

3 0.50 2.50e+01 5 6 0.000495 0.000426

3 0.50 4.59e+02 10 11 0.008374 0.008214

3 0.50 1.02e+04 15 16 0.173584 0.171770

3 0.50 7.21e+04 20 21 509.934067 509.903094

3 0.50 1.39e+06 25 26 1172.297615 1171.655575

3 0.50 1.84e+07 30 31 7526.823317 7525.267589

4 0.10 1.75e+01 5 5 0.000527 0.000260

4 0.10 4.18e+00 10 -1 0.000290 0.000341

4 0.10 4.34e+01 15 16 0.011302 0.011135

4 0.10 7.72e+01 20 21 0.008473 0.008285

4 0.10 2.52e+01 25 24 0.091388 0.104592

4 0.10 6.87e+01 30 31 0.937605 0.937842

4 0.50 4.06e+00 5 6 0.000241 0.000172

4 0.50 2.90e+01 10 11 0.013848 0.013736

4 0.50 7.91e+00 15 16 0.143757 0.143433

4 0.50 9.37e+01 20 21 0.044110 0.043811

4 0.50 1.59e+01 25 26 4.070929 4.096489

4 0.50 7.63e+01 30 31 53.046567 53.004471

5 0.10 5.66e+00 5 -1 0.000148 0.000171

5 0.10 3.20e+01 10 -1 0.000288 0.000340

5 0.10 1.81e+02 15 -1 0.000425 0.000511

5 0.10 1.02e+03 20 -1 0.000562 0.000686

5 0.10 5.79e+03 25 -1 0.000714 0.000884

5 0.10 3.28e+04 30 -1 0.000867 0.001044

5 0.50 5.66e+00 5 4 0.000237 0.000175

5 0.50 3.20e+01 10 10 0.001282 0.001222

5 0.50 1.81e+02 15 16 0.014658 0.014445

5 0.50 1.02e+03 20 -1 0.000565 0.000736

5 0.50 5.79e+03 25 -1 0.000705 0.000859

5 0.50 3.28e+04 30 30 0.001399 0.001129
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Table 5–45: Testing Partial Validation, with SQRD

Case σ cond(A) n j PV time (seconds) BILS time (seconds)

1 0.10 3.70e+01 5 -1 0.000150 0.000175

1 0.10 2.30e+02 10 11 0.001207 0.001108

1 0.10 2.70e+02 15 -1 0.000428 0.000512

1 0.10 2.45e+01 20 -1 0.000575 0.000684

1 0.10 6.87e+01 25 -1 0.000714 0.000867

1 0.10 7.81e+02 30 -1 0.000847 0.001087

1 0.50 1.98e+01 5 6 0.000523 0.000453

1 0.50 2.20e+01 10 10 0.000759 0.000987

1 0.50 3.43e+01 15 11 0.000600 0.000513

1 0.50 5.83e+02 20 21 7.493023 7.494661

1 0.50 5.88e+01 25 -1 0.000717 0.001143

1 0.50 4.27e+01 30 -1 0.000857 0.003543

2 0.10 3.73e+01 5 4 0.000266 0.000204

2 0.10 9.16e+03 10 11 0.008671 0.008532

2 0.10 1.04e+05 15 16 0.176747 0.175916

2 0.10 3.09e+07 20 21 4.094464 4.090744

2 0.10 2.09e+08 25 26 10.157302 10.146382

2 0.50 1.81e+02 5 6 0.000499 0.000428

2 0.50 3.23e+03 10 11 0.022505 0.022255

2 0.50 3.95e+05 15 16 0.102387 0.102209

2 0.50 5.58e+05 20 21 23.992044 24.006116

2 0.50 1.01e+10 25 26 32.696803 32.732611

3 0.10 7.20e+01 5 4 0.000266 0.000285

3 0.10 2.76e+02 10 11 0.014830 0.014662

3 0.10 9.96e+03 15 16 2.306317 2.310466

3 0.10 6.56e+05 20 21 38.304451 38.274589

3 0.10 1.33e+07 25 26 2622.926651 2621.117036

3 0.10 1.24e+07 30 31 223.104373 223.197020

3 0.50 6.45e+00 5 6 0.000835 0.000773

3 0.50 2.35e+03 10 11 0.032682 0.032497

3 0.50 6.68e+03 15 16 0.630040 0.630224

3 0.50 4.88e+04 20 21 3.524793 3.521879

3 0.50 9.73e+07 25 26 8400.725470 8397.624178

3 0.50 2.58e+07 30 31 19869.786378 19850.928084
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Table 5–46: Testing Partial Validation, with SQRD (continued)

Case σ cond(A) n j PV time (seconds) BILS time (seconds)

4 0.10 3.41e+01 5 5 0.000609 0.000230

4 0.10 5.19e+00 10 4 0.000380 0.000448

4 0.10 7.59e+01 15 16 0.031082 0.030810

4 0.10 9.32e+00 20 16 0.001072 0.001303

4 0.10 1.32e+01 25 24 0.008568 0.012787

4 0.10 7.39e+00 30 24 0.001213 0.002446

4 0.50 2.64e+01 5 6 0.000496 0.000429

4 0.50 1.74e+01 10 11 0.002808 0.002714

4 0.50 1.14e+01 15 16 0.026375 0.026122

4 0.50 1.86e+01 20 21 9.525524 9.524562

4 0.50 3.17e+01 25 26 0.422697 0.421923

4 0.50 4.36e+01 30 31 0.125745 0.125163

5 0.10 5.66e+00 5 -1 0.000152 0.000173

5 0.10 3.20e+01 10 -1 0.000287 0.000342

5 0.10 1.81e+02 15 -1 0.000429 0.000569

5 0.10 1.02e+03 20 21 0.035586 0.035202

5 0.10 5.79e+03 25 -1 0.000711 0.000866

5 0.10 3.28e+04 30 -1 0.000851 0.001042

5 0.50 5.66e+00 5 4 0.000235 0.000203

5 0.50 3.20e+01 10 -1 0.000291 0.000341

5 0.50 1.81e+02 15 -1 0.000430 0.000593

5 0.50 1.02e+03 20 20 0.046896 0.046231

5 0.50 5.79e+03 25 26 0.001172 0.000959

5 0.50 3.28e+04 30 31 0.515869 0.516052
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CHAPTER 6
Summary and Future Work

In this thesis, we extended the theory of success rates to box-constrained

linear models of the form:

y = Ax+ v, v ∼ N(0, σ2I),

where x is the unknown integer parameter vector to be estimated, and it is

subject to the box-constraint B = {x ∈ Zn| l ≤ x ≤ u, l ∈ Zn, u ∈ Zn}.

In chapter 2, we reviewed the typical methods for estimating x ∈ Zn, i.e.

in the unconstrained case, namely the integer rounding (IR), Babai nearest

plane (BNP) and integer least squares (ILS) estimation methods. The most

effective approach to validating an integer estimator is to find its success rate,

which is the probability of correct integer estimation. In chapter 3, we re-

viewed the success rates of the (unconstrained) IR, BNP and ILS estimators

and presented some of their properties which are given in GPS literature. One

such property is that the ILS estimator is optimal among all admissible integer

estimators, including the IR and BNP estimators. In chapter 4, we presented

the box-constrained integer rounding (BIR), box-constrained Babai nearest

plane (BBNP) and box-constrained integer least squares (BILS) methods of

estimating x ∈ B. In chapter 5, we extended the theory of success rates to the

BIR, BBNP and BILS estimators. In particular, we gave examples to show

that some properties of success rates, such as the optimality of the ILS esti-

mator, which hold in unconstrained problems, do not hold in box-constrained

problems. Furthermore, we extended the theory of partial validation to box-

constrained estimators, to investigate whether or not it could be applied to
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improve the efficiency of the BILS estimation process. In particular, if a sub-

vector of the Babai point estimate obtained by BBNP has a high partial success

rate, we wanted to see if we could fix these entries and then solve a smaller

BILS problem to get integer estimates to the remaining entries of x.

Numerical simulations results showed that even for box-constrained prob-

lems, the success rate of the BBNP estimator is a good measure of validating

the BBNP estimator. However, numerical simulations results also showed that

partial validation cannot as yet be effectively used to improve the efficiency of

the BILS estimation process. We observed only small differences in the time

taken to estimate x through partial validation and the time taken to estimate

x through BILS.

In the future, we would like to develop sharp lower bounds on the success

rate of the BILS estimator, which is equal to P IC
S =

∫
SICx

f(ξ)d(ξ), by bounding

this region of integration SICx . We would also like to further explore the possi-

bility of improving the efficiency of the BILS estimation process using the idea

of partial validation. In [5], a new reduction strategy was proposed and shown

to be more effective than the V-BLAST and SQRD reduction strategies that

we considered in this research. Furthermore, the Babai point obtained by this

reduction strategy is usually closer to the ILS solution than the Babai point

obtained by V-BLAST or SQRD [5]. However, this reduction uses the input

vector y as well as B. We would like to extend our success rates to be able

to efficiently validate the integer parameter estimator obtained through this

reduction strategy. We could then use partial success rates to fix more entries

of the integer estimate thus obtained, and as this will further reduce the size

of the BILS problem to be solved, perhaps it will give larger differences in the

computational time taken for applying the partial validation method and the

time taken to solve the original BILS problem.
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