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Abstract

In statistical applications of hidden Markov models (HMMs), one may have no knowledge
of the number of hidden states (or order) of the model needed to be able to accurately
represent the underlying process of the data. The problem of estimating the number of
states of the HMM is thus a task of major importance. We begin with a literature review of
the major developments in the problem of order estimation for HMMs. We then propose a
new penalized quasi-likelihood method for estimating the number of hidden states, which
makes use of the fact that the marginal distribution of the HMM observations is a finite
mixture model. Starting with a HMM with a large number of states, the method obtains
a model of lower order by clustering and merging similar states of the model through two
penalty functions. We study some of the asymptotic properties of the proposed method
and present a numerical procedure for its implementation. The performance of the new
method is assessed via extensive simulation studies for normal and Poisson HMMs. The
new method is more computationally efficient than existing methods, such as AIC and
BIC, as the order of the model is determined in a single optimization. We conclude with
applications of the method to two real data sets.
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Résumé

Dans les applications des chaînes de Markov cachées (CMC), il se peut que les statisti-
ciens n’aient pas l’information sur le nombre d’états (ou ordre) nécessaires pour représen-
ter le processus. Le problème d’estimer le nombre d’états du CMC est ainsi une tâche
d’importance majeure. Nous commençons avec une revue de littérature des développe-
ments majeurs dans le problème d’estimation de l’ordre d’un CMC. Nous proposons alors
une nouvelle méthode de la quasi-vraisemblance pénalisée pour estimer l’ordre dans des
CMC. Cette méthode utilise le fait que la distribution marginale des observations CMC
est un mélange fini. La méthode débute avec un CMC avec un grand nombre d’états et
obtient un modèle d’ordre inférieur en regroupant et fusionnant les états à l’aide de deux
fonctions de pénalité. Nous étudions certaines propriétés asymptotiques de la méthode
proposée et présentons une procédure numérique pour sa mise en œuvre. La performance
est évaluée via des simulations extensives. La nouvelle méthode est plus efficace qu’autres
méthodes, comme CIA et CIB, comme l’ordre du modèle est déterminé dans une seule
optimisation. Nous concluons avec l’application de la méthode à deux vrais jeux de don-
nées.
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Chapter 1

Introduction

A hidden Markov model (HMM) is a doubly stochastic process, consisting of an observed
process and an unobserved or “hidden” process that is used for modeling dependent data.
It can be viewed as a generalization of a finite mixture model, where the hidden states
are assumed to be Markov-dependent, rather than independent. More specifically, the
observations are conditionally independent given the hidden states with the conditional
distribution of the observation at time t depending only on the hidden state at this
time. HMMs thus provide a method for dealing with unobserved sources of heterogeneity.
However, unlike observations arising from a finite mixture model, HMM observations are
dependent.

HMMs have been widely applied in fields such as engineering, biology, medicine and
finance. For example, Churchill (1989) used HMMs to analyze DNA sequences due to
their ability to capture the different patterns of base composition and dependence be-
tween adjacent bases on a DNA molecule. Levinson, Rabiner and Sondhi (1983) used
HMMs for the purposes of prediction in speech recognition. Rydén, Teräsvirta and Ås-
brink (1998) fit zero-mean normal state-dependent distributions to series of log-returns of
daily values of the Standard & Poor’s (S&P) 500 index.

HMMs are often used for the analysis of overdispersed series of count data. As we will
see in Chapter 3, Leroux and Puterman (1992) fit a series of Poisson HMMs to a data
set of movement counts by fetal lambs observed through ultrasound. The distribution of
each observation is assumed to depend on the lamb’s physiological state. Albert (1991)
proposed a two-state Poisson HMM for a series of daily counts of epileptic seizures in one
patient. He found that the model was able to adequately capture the apparent switching
between states of high and low seizure frequency over time.

While in some applications, such as the modeling of epileptic seizure counts found in
Albert (1991), the number of states (or order) of the HMM to be fitted is clear from
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the background of the problem, our scientific knowledge may not always be enough to
determine the number of hidden states. This is the case for the application to the lamb
data presented in Leroux and Puterman (1992). The order estimation problem in HMMs
is thus the focus of this thesis.

In Chapter 2, we formally define a HMM and highlight some of its key properties.
We discuss model identifiability, maximum likelihood estimation via the expectation-
maximization (EM) algorithm (Dempster et al., 1977) and direct numerical maximization
as well as the asymptotic properties of the maximum likelihood estimators (MLEs).

In Chapter 3, we address the statistical task of estimating the number of states in a
HMM. The order estimation methods that have been proposed thus far in the HMM con-
text have utilized either the full-model likelihood or a so-called quasi-likelihood, which is
based on the finite mixture marginal distributions. We first provide a literature review
of these existing methods in Sections 3.1-3.3, including the Akaike information criterion
(AIC; Akaike, 1973) and the Bayesian information criterion (BIC; Schwarz, 1978), hy-
pothesis testing-based methods as well as penalized minimum-distance approaches. We
also discuss a Bayesian approach in Section 3.4. We then present our proposed method
in Section 3.5, which is a penalized quasi-likelihood approach that is an extension of
the modified smoothly clipped absolute deviation (MSCAD) method of Chen and Khalili
(2008) for estimating the number of components in a finite mixture model. Some asymp-
totic properties of the penalized quasi-likelihood estimator of the order are discussed as
well as the implementation of the proposed method and the selection of the tuning pa-
rameters used in the penalty functions. In Section 3.6, we evaluate the performance of the
proposed method against AIC and BIC, based on both the full-model likelihood and the
quasi-likelihood. The method is found to be an appealing alternative to the information
criteria, especially when the true order of the model is high. We then demonstrate the
use of the method with an analysis of two famous data sets.

We conclude with Chapter 4, where we summarize the work in this thesis and discuss
future work relating to the proposed method. In particular, we highlight the need for the
development of new procedures for choosing the tuning parameters used in the penalty
functions. We also discuss possible extensions of the proposed method.
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Chapter 2

Hidden Markov Models

In this chapter, we provide the mathematical definition of a HMM and highlight some of
its key properties. The primary purpose of this chapter is to discuss statistical inference
for HMMs when the number of hidden states is known.

2.1 Basic Definition

A hidden Markov model (HMM) is a doubly stochastic process (Yt, Zt), where (Yt) is
an observed process and (Zt) is an unobserved process, which satisfy the following two
properties.

• The unobserved process (Zt) follows a Markov chain with discrete state space
{1, 2, ..., K}, transition probabilities

p
(t)
ij = P (Zt = j | Zt−1 = i) for t = 2, ..., n and i, j = 1, 2, ..., K,

and vector of initial probabilities π(1) = (π
(1)
1 , π

(1)
2 , ..., π

(1)
K ), where π(1)

k = P (Z1 = k)

for k = 1, 2, ..., K.

• Given (Zt), the sequence of random variables (Yt) are conditionally independent
with the conditional distribution of Yt depending only on Zt.

For parametric HMMs, the conditional density function of Yt | Zt = k is denoted by
f(yt; θk), belonging to some parametric family {f( · ; θ) : θ ∈ Θ} for Θ ⊆ Rd, d ≥ 1. The
conditional distributions of Yt given Zt are called state-dependent distributions. Note
that while the results in this chapter are applicable to the case where the state-dependent
parameters θ are multi-dimensional, we will restrict ourselves to the one-dimensional set-
ting in Chapter 3.
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We let Φ = (π1, π2, ..., πK ,P, θ1, θ2, ..., θK) denote the vector of all parameters in the
K-state HMM for K ≥ 1, which belongs to the parameter space

Ω =

{
Φ :

K∑
k=1

πk = 1, πk ≥ 0, θk ∈ Θ,
K∑
j=1

pij = 1, 0 ≤ pij ≤ 1, i, j, k = 1, 2, ..., K

}
.

Note that for K = 1, (Yt) are independent and identically distributed from f(y; θ).

In this chapter, we make the following three assumptions.

Assumption 1. The transition probabilities are homogenous; that is,

pij = P (Zt = j | Zt−1 = i) = P (Z2 = j | Z1 = i)

for all i, j = 1, 2, ..., K.

Assumption 2. The unobserved Markov process (Zt) is stationary.

Assumption 3. The number of states K is known and finite.

Remark. Assumption 1 is assumed throughout most of the HMM literature. Results
on the asymptotic properties of non-homogeneous HMMs have yet to be established. As-
sumption 2 implies that the random variables (Yt) are identically distributed, which, as
pointed out by MacKay (2003), is a property that sometimes allows existing theory for
independent and identically distributed random variables to be extended to the HMM
context.

Under the stationarity assumption, for k = 1, 2, ..., K, πk = P (Zt = k) for all t = 1, 2, ..., n

and the vector of πk’s is uniquely determined from the transition matrix P through the
equation π = πP. Furthermore, under the stationarity assumption, the marginal distri-
bution of Yt is a finite mixture with density given by

f(yt; Ψ) =
K∑
k=1

πkf(yt; θk),

where Ψ = (π1, π2, ..., πK , θ1, θ2, ..., θK). In contrast to the case of a finite mixture model,
Y1, Y2, ..., Yn are marginally dependent. Thus, a HMM can be viewed as a generalization
of a finite mixture model.

2.1.1 HMM Moments

Consider a K-state HMM (Yt, Zt), where Yt is observed and Zt is a stationary unobserved
Markov chain with transition matrix P and stationary distribution π = (π1, π2, ..., πK),
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and having (univariate) state-dependent distributions f(y; θk).

Let µk and σ2
k denote the mean and variance of the state-dependent distribution, D =

diag (µ1, µ2, ..., µK), and µ = (µ1, µ2, ..., µK).

Then

E(Yt) =
K∑
k=1

E(Yt | Zt = k)P (Zt = k) =
K∑
k=1

πkµk = πµT ,

E(Y 2
t ) =

K∑
k=1

E(Y 2
t | Zt = k)P (Zt = k) =

K∑
k=1

πk(σ
2
k + µ2

k),

V ar(Yt) =
K∑
k=1

πk(σ
2
k + µ2

k)− (πµT )2.

To obtain the autocorrelation function of a K-state HMM, we need to evaluate

E(YtYt+h) =
K∑

k,l=1

E(YtYt+h | Zt = k, Zt+h = l)P (Zt = k, Zt+h = l)

=
K∑

k,l=1

E(Yt | Zt = k)E(Yt+h | Zt+h = l)p
(h)
kl πk

=
K∑

k,l=1

πkµkp
(h)
kl µl

=
K∑
k=1

πkµk

(
K∑
l=1

p
(h)
kl µl

)
= πDPhµT

for positive integer h. Therefore, the autocorrelation function of a K-state HMM is given
by

ρ(h) = Corr(Yt, Yt+h)

=
E(YtYt+h)− {E(Yt)}2

V ar(Yt)

=
πDPhµT − (πµT )2

K∑
k=1

πk(σ2
k + µ2

k)− (πµT )2
.
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2.2 Identifiability

Before discussing parameter estimation in HMMs, we first address the issue of model
identifiability. In general, a parametric model is said to be identifiable if different values
of the parameter generate different probability distributions. As in Rydén (1995), we
assume that the true order K0 is minimal, that is, there does not exist a parameter under
the model with K < K0 states that induces the same probability distribution for (Yt) as
the parameter under the model with K0 states. Model identifiability is important since
parameters that are not identifiable cannot be consistently estimated. In what follows,
we present the conditions that we assume to ensure the identifiability of a HMM.

Condition 1. The transition probability matrix of (Zt) is ergodic (that is, irreducible
and aperiodic).

Condition 2. The family of finite mixtures of {f(y; θ) : θ ∈ Θ} is identifiable, that is,
equality of the density functions

K∑
k=1

πkf(y; θk) =
K′∑
k=1

π′kf(y; θ′k)

implies that K = K ′, πk = π′k and θk = θ′k for each k = 1, 2, ..., K up to a permu-
tation of the labels of the hidden states, where θk, θ′k ∈ Θ and 0 < πk, π

′
k < 1, with

K∑
k=1

πk =
K′∑
k=1

π′k = 1.

Condition 3. The parameters of the state-dependent distributions θk are distinct.

Remark. Condition 1 ensures the existence and uniqueness of the stationary distri-
bution of the hidden process (Zt), and that the true mixing proportions π0k are positive
for all k = 1, 2, ..., K. It also implies that the observed process (Yt) is stationary and
ergodic (Bickel et al., 1998 and references therein). Condition 2 is satisfied for various
families of distributions, such as normal, Poisson, binomial and exponential mixtures.
Condition 3 ensures that the distributions of the hidden states are distinct.

2.3 The Likelihood of a Hidden Markov Model

Unlike the case of a finite mixture model, the likelihood of a hidden Markov model is not
simply the product of the marginal distributions of the observations. It does, however,
factor neatly into a product of matrices. Given the number of states K, we will formulate
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the likelihood for Φ from the observed data y = (y1, y2, ..., yn). The observed data y will
be referred to as the incomplete data and (y, z) the complete data, where z = (z1, z2, ..., zn)

are the hidden states. We present the likelihood in the case of discrete observations. The
joint probability mass function of (Y ,Z) is given by

P (Y = y,Z = z) = P (Y = y | Z = z)P (Z = z)

= P (Z1 = z1)
n∏
t=2

P (Zt = zt | Zt−1 = zt−1)
n∏
t=1

P (Yt = yt | Zt = zt)

= πz1

n∏
t=2

pzt−1,zt

n∏
t=1

f(yt; θzt).

Thus, the likelihood function is

Ln(Φ;y) = P (Y = y)

=
K∑

z1,...,zn=1

P (Y = y,Z = z)

=
K∑

z1,...,zn=1

πz1f(y1; θz1)pz1,z2f(y2; θz2) · · · pzn−1,znf(yn; θzn)

=
K∑

z1=1

πz1f(y1; θz1)
K∑

z2=1

pz1,z2f(y2; θz2) · · ·
K∑

zn=1

pzn−1,znf(yn; θzn).

The computation of the likelihood is on the order of nKn since it involves the summation
of Kn terms, each being a product of 2n factors. Now if we let B(yt) denote the K ×
K diagonal matrix with kth diagonal element f(yt; θk), then as shown in Zucchini and
MacDonald (2009), the likelihood can be written as a product of matrices:

Ln(Φ;y) = πB(y1)PB(y2) · · ·PB(yn)1′, (2.1)

where 1 is the K-dimensional row vector of ones.

2.3.1 Forward and Backward Probabilities

The evaluation of the likelihood can be made computationally less expensive through the
use of the so-called forward and backward probabilities (Rabiner and Juang, 1986). In
order to set up the likelihood computation in the form of an algorithm, Zucchini and
MacDonald (2009) suggest defining the 1×K vector

αt = πB(y1)PB(y2)PB(y3) · · ·PB(yt) = πB(y1)
t∏

s=2

PB(ys)
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with the convention that the empty product is the identity matrix. The likelihood can
thus be computed as Ln(Φ;y) = αn1

′. To compute αn, we will use the recursion

α1 = πB(y1) and αt = αt−1PB(yt) for t = 2, ..., n.

In scalar form, we have for j = 1, 2, ..., K,

α1(j) = πjf(y1; θj) and αt(j) =

{
K∑
i=1

αt−1(i) pij

}
f(yt; θj) for t = 2, ..., n.

In this form, the complexity of the likelihood computation is O(nK2), which is far more
efficient than the O(nKn) complexity of the likelihood computation previously defined.
For each t = 1, 2, ..., n, there are K elements of αt to be computed, each being a sum of
K products.

In the following proposition, we will show that the components of αt are indeed proba-
bilities, which are called forward probabilities.

Proposition 2.3.1. For t = 1, 2, ..., n and j = 1, 2, ..., K,
αt(j) = P (Y1 = y1, ..., Yt = yt, Zt = j).

Proof. See Appendix A.

We also define the vector of backward probabilities, βt, where for i = 1, 2, ..., K,

βt(i) =
K∑
j=1

pijf(yt+1; θj)βt+1(j) for t = 1, ..., n− 1 and βn(i) = 1.

The components of vector βt can be computed with the matrices

β′t = PB(yt+1)PB(yt+2) · · ·PB(yn)1′ =

{
n∏

s=t+1

PB(ys)

}
1′

for t = 1, 2, ..., n, where it follows that β′t = PB(yt+1)β
′
t+1 for t = 1, 2, ..., n − 1 and

βn = 1. We show that the backward probabilities are indeed probabilities in the following
proposition.

Proposition 2.3.2. For t = 1, 2, ..., n− 1,
βt(i) = P (Yt+1 = yt+1, ..., Yn = yn | Zt = i).

Proof. See Appendix A.

While the likelihood may be computed from the forward probabilities alone, it may also
be computed as

Ln(Φ;y) =
K∑
i=1

αt(i)βt(i) =
K∑
i=1

K∑
j=1

αt(i)pijf(yt+1; θj)βt+1(j),

8



which will be shown in Appendix A. Finally, we present two more results needed in the
formulation of the EM algorithm in the next section.

Proposition 2.3.3. For t = 2, ..., n and i, j = 1, 2, ..., K,

(1) P (Zt = i | Y1, ..., Yn) =
αt(i)βt(i)
K∑
i=1

αt(i)βt(i)

and

(2) P (Zt−1 = i, Zt = j | Y1, ..., Yn) =
αt−1(i)pijf(yt; θj)βt(j)

K∑
i=1

K∑
j=1

αt−1(i)pijf(yt; θj)βt(j)

.

Proof. See Appendix A.

2.4 Maximum Likelihood Estimation

The most common approach for estimating the parameters in a HMM is to use maximum
likelihood estimation. In general, suppose that we have a sample y1, y2, ..., yn drawn from
some distribution with likelihood function Ln(Φ;y). The maximum likelihood estimator
(MLE) of the parameter Φ is defined as

Φ̂n = arg max
Φ∈Ω

Ln(Φ;y).

In the case of a stationary HMM where the hidden process has a finite number of states,
the strong consistency of the resulting MLE was proven by Leroux (1992a) and the asymp-
totic normality of the MLE was proven by Bickel et al. (1998) under mild conditions.
Bickel et al. (1998) also showed that the observed information matrix converges in prob-
ability to the Fisher information matrix. In what follows, we present two methods for
finding the maximum likelihood estimators of HMM parameters, namely the expectation-
maximization (EM) algorithm (Dempster et al., 1977) and direct numerical maximization
of the likelihood.

2.4.1 The EM Algorithm

We will now introduce the EM algorithm for the maximum likelihood fitting of a K-state
hidden Markov model. In the HMM context, the EM algorithm is also known as the
Baum-Welch algorithm (Baum et al., 1970). The EM algorithm is a two-step iterative
procedure for estimating the MLE when dealing with latent variables. An EM iteration
consists of an expectation step, known as the E-step, and a maximization step, known as
the M-step.

9



To formulate the EM algorithm, we need the complete-data likelihood, given by

LCn (Φ;y, z) = P (Y = y,Z = z) = πz1

n∏
t=2

pzt−1,zt

n∏
t=1

f(yt; θzt).

We also need to define the indicator variables

Utj =

{
1 if Zt = j

0 otherwise

for t = 1, 2, ..., n as well as

Vtij =

{
1 if Zt−1 = i and Zt = j

0 otherwise

for t = 2, ..., n.

The complete-data likelihood then becomes

LCn (Φ;y, z) =
K∏
i=1

πi
u1i

n∏
t=2

K∏
i=1

K∏
j=1

pij
vtij

n∏
t=1

K∏
i=1

{f(yt; θi)}uti

and thus the complete-data log-likelihood is given by

`Cn (Φ;y, z) =
K∑
i=1

u1i log πi +
n∑
t=2

K∑
i=1

K∑
j=1

vtij log pij +
n∑
t=1

K∑
i=1

uti log f(yt; θi).

E-step: The E-step takes the conditional expectation of the complete-data log-likelihood
`Cn (Φ;y, z) given the observed data y and the current parameter estimate Φ(m) to obtain

Q(Φ; Φ(m)) = E
[
`Cn (Φ;Y ,Z) | Y ,Φ(m)

]
=

K∑
i=1

E
[
U1i | Y ,Φ(m)

]
log πi +

n∑
t=2

K∑
i=1

K∑
j=1

E
[
Vtij | Y ,Φ(m)

]
log pij

+
n∑
t=1

K∑
i=1

E
[
Uti | Y ,Φ(m)

]
log f(yt; θi).

Now let us evaluate E
[
Uti | Y ,Φ(m)

]
and E

[
Vtij | Y ,Φ(m)

]
. We have

û
(m)
ti = E

[
Uti | Y ,Φ(m)

]
= P (Zt = i | Y = y,Φ(m)) =

α
(m)
t (i)β

(m)
t (i)

K∑
i=1

α
(m)
t (i)β

(m)
t (i)
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and

v̂
(m)
tij = E

[
Vtij | Y ,Φ(m)

]
= P (Zt−1 = i, Zt = j | Y = y,Φ(m))

=
α
(m)
t−1(i)p

(m)
ij f (m)(yt; θj)β

(m)
t (j)

K∑
i=1

K∑
j=1

α
(m)
t−1(i)p

(m)
ij f (m)(yt; θj)β

(m)
t (j)

,

which were derived in Proposition 2.3.3.

Now the function Q(Φ; Φ(m)) becomes

Q(Φ; Φ(m)) =
K∑
i=1

û
(m)
1i log πi +

n∑
t=2

K∑
i=1

K∑
j=1

v̂
(m)
tij log pij +

n∑
t=1

K∑
i=1

û
(m)
ti log f(yt; θi).

M-step: The M-step consists of the maximization of Q(Φ; Φ(m)) with respect to the
parameter Φ, that is, it consists of finding

Φ(m+1) = arg max
Φ

Q(Φ; Φ(m)).

This maximization neatly separates into three maximizations since the first summand of
Q(Φ; Φ(m)) depends only on the initial distribution π, the second summand on the tran-
sition probabilities pij, and the last summand on the parameters of the state-dependent
distributions θi.

Now we will perform the M-step to obtain the update equations for the initial distri-
bution π and the transition probabilities pij. We have that for m = 0, 1, 2, ...,

π
(m+1)
i = û

(m)
1i for i = 1, 2, ..., K and

p
(m+1)
ij =

n∑
t=2

v̂
(m)
tij

K∑
j=1

n∑
t=2

v̂
(m)
tij

for i, j = 1, 2, ..., K.

To obtain the update equations for the state-dependent parameters θi, we must solve

∂Q(Φ; Φ(m))

∂θi
=

∂

∂θi

{
n∑
t=1

û
(m)
ti log f(yt; θi)

}
= 0

for i = 1, 2, ..., K.
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Baum et al. (1970) show that the sequence of HMM parameter estimates {Φ(m)} have
non-decreasing likelihood values, that is,

Ln(Φ(m+1)) ≥ Ln(Φ(m)) for m = 0, 1, 2, ....

Thus, since the sequence of likelihood values {Ln(Φ(m))} is bounded above, it must con-
verge. Starting from an initial value Φ(0), the E and M steps are iterated until

|Ln(Φ(m+1))− Ln(Φ(m))| < δ

for a pre-specified value δ > 0. One may also use the convergence criterion

‖Φ(m+1) −Φ(m)‖ < ε

for a pre-specified value ε > 0, where ‖ · ‖ is the Euclidean distance.

In the following two examples, we obtain the update equations for the parameters of
K-state Poisson and normal HMMs.

Example 2.4.1. Now let us consider a Poisson HMM with means λi; that is, f(yt;λi) =
e−λiλyti
yt!

. Then the update equation for λi is given by

λ
(m+1)
i =

n∑
t=1

ytû
(m)
ti

n∑
t=1

û
(m)
ti

for m = 0, 1, 2, ... and i = 1, 2, ..., K.

Example 2.4.2. For a normal HMM with state-dependent parameters (µi, σ
2
i ), the up-

date equation for state mean µi is given by

µ
(m+1)
i =

n∑
t=1

ytû
(m)
ti

n∑
t=1

û
(m)
ti

for i = 1, 2, ..., K

and the update equation for state variance σ2
i is

σ2
i

(m+1)
=

n∑
t=1

(yt − µ(m)
i )

2
û
(m)
ti

n∑
t=1

û
(m)
ti

for i = 1, 2, ..., K.

Note that in our presentation of the EM algorithm, no assumption of stationarity is
made. The algorithm is used to estimate parameters of homogenous, but not necessarily
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stationary, HMMs. When the additional constraint π = πP is imposed on the initial
distribution π and the transition matrix P, the M-step of the algorithm becomes more
challenging.

2.4.2 The EM Algorithm for Stationary HMMs

Recall the objection function of the EM algorithm

Q(Φ; Φ(m)) =
K∑
j=1

û
(m)
1j log πj +

n∑
t=2

K∑
i=1

K∑
j=1

v̂
(m)
tij log pij +

n∑
t=1

K∑
j=1

û
(m)
tj log f(yt; θj).

Under the stationarity assumption, the first summand of Q(Φ; Φ(m)) also depends on

the transition probabilities pij since πj =
K∑
i=1

πipij for j = 1, 2, ..., K. However, the

maximization of the objective function subject to this constraint as well as the constraint
K∑
j=1

pij = 1 for i = 1, 2, ..., K cannot be performed without resorting to numerical methods.

2.4.3 Direct Numerical Maximization

Another means of estimating the parameters of a HMM is through direct numerical max-
imization of the likelihood. To implement this method, the parameters of the Markov
chain must first be transformed in order to deal with the parameter constraints. For any
HMM, the rows of the transition matrix P must sum to 1 and all the parameters pij must
be non-negative. To meet these constraints, we will reparametrize the transition matrix
P by defining the matrix Γ = {γij} and then setting

pij =



1

1 +
K∑
l=2

exp(γil)

if i = j

exp(γij)

1 +
K∑
l=2

exp(γil)

if i 6= j

for i, j = 1, 2, ..., K. If constraints are also imposed on the state-dependent parameters θk,
we will let ξk = g(θk) denote the transformed θk for some one-to-one mapping g : Θ→ R.
Thus, to estimate the constrained parameters P and θ, we first maximize the likelihood
with respect to the unconstrained parameters Γ and ξ. Then once the estimates of Γ and
ξ are obtained, we transform them to estimates of P and θ.

When maximizing the likelihood numerically in order to estimate parameters, we run
into the problem of numerical underflow. Recall from Section 2.3 that the likelihood
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computation requires the calculation of the forward probabilities αt(j) for j = 1, 2, ..., K.
Since each αt(j) is a product of the probabilities pij, αt−1(i), and f(yt; θj), it becomes
progressively smaller as t increases and is eventually rounded to zero. In order to avoid
this problem, Zucchini and MacDonald (2009) suggest a scaling of the likelihood. Since
the EM algorithm also requires the computation of the forward and backward probabil-
ities, it is not immune to numerical underflow and a scaling of the computation of the
logarithms of these probabilities should also be used.

2.4.4 Estimation of the Initial Distribution

When no assumption of stationarity of the hidden Markov process is made, Cappé et al.
(2005) point out that the initial distribution π cannot be estimated consistently since
“there is only one random variable...(that is not even observed!) drawn from [the distri-
bution]”. In fact, as stated in Levinson, Rabiner and Sondhi (1983), at a maximum of
the likelihood, the sequence of estimates {π(m)} will approach one of the K unit vectors.
Therefore, if the constraint π = πP is not placed on π, the maximum likelihood estimate
of the entire vector of parameters Φ = (π,P, θ) will be inconsistent. Nevertheless, as
noted by Leroux (1992a), the consistency of the MLE of (P, θ) does not depend on the
initial distribution.

One approach for handling the initial distribution π would be to assume that it is known.
However, this approach may not be reasonable if no prior information of the population
being sampled is available.

A more widely used approach throughout the HMM literature would be to assume sta-
tionarity of the hidden Markov process. In this case, since the initial distribution π is
dependent on the transition matrix P through the equation π = πP, π is no longer a
parameter to be estimated, but is rather a solution to a system of K linear equations.
At each iteration of the maximization procedure, the updated initial distribution π(m+1)

can be found by solving the equation π(m+1)(IK − P(m+1) + O) = 1, which is shown to
be equivalent to the stationarity condition π(m+1) = π(m+1)P(m+1) in Appendix A, and
where IK is the K ×K identity matrix, P(m+1) is the updated transition matrix, O is the
K ×K matrix of ones and 1 is the K-dimensional row vector of ones.

Therefore, when it comes to fitting a HMM to a given data set, assuming stationarity
of the hidden Markov process provides the analyst the opportunity to obtain meaningful
and interpretable results for the initial distribution. For illustrative purposes, we provide
two examples, demonstrating the convergence of the sequence of estimates {π(m)} to one
of the K unit vectors when using the EM algorithm without the stationarity assumption.
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We also provide the parameter estimates obtained using direct numerical maximization
of the likelihood with the stationarity assumption.

Example 2.4.3. We consider a sample of 200 observations generated from the 2-
state Poisson HMM fitted to the series of annual counts of major earthquakes from
1900 to 2006 provided in Zucchini and MacDonald (2009). The model is λ = (15, 26),
π = (0.661, 0.339), with transition matrix

P =

(
0.934 0.066

0.129 0.871

)
.

With starting values λ(0) = (12, 20), π(0) = (0.50, 0.50) and

P(0) =

(
0.50 0.50

0.50 0.50

)
,

we obtain the results displayed in Table 2.1.

Parameter Non-Stationary Model - Stationary Model -
EM Algorithm Direct Numerical

Maximization
(λ1, λ2) (14.497, 26.290) (14.498, 26.305)
(π1, π2) (0, 1) (0.675, 0.325)
p12 0.057 0.062
p21 0.135 0.130

Negative Log-likelihood 603.788 604.727
No. of Iterations Until Convergence 19 22

Table 2.1: Results of the EM algorithm and direct numerical maximization, assuming stationar-
ity, applied to a sample of 200 observations, generated from a 2-state Poisson HMM.

Example 2.4.4. Now we consider a sample of 200 observations generated from the 3-state
Poisson HMM also fitted to the earthquake data provided in Zucchini and MacDonald
(2009). The model is λ = (13, 19, 29), π = (0.3254, 0.4890, 0.1856), with transition matrix

P =

 0.9393 0.0321 0.0286

0.0404 0.9064 0.0532

0 0.1903 0.8097

 .
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With starting values λ(0) = (10, 15, 25), π(0) = (1
3
, 1
3
, 1
3
) and

P(0) =


1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

 ,

we obtain the results displayed in Table 2.2.

Parameter Non-Stationary Model - Stationary Model -
EM Algorithm Direct Numerical

Maximization
(λ1, λ2, λ3) (12.994, 18.486, 29.667) (13.037, 18.508, 29.676)
(π1, π2, π3) (1, 0, 0) (0.389, 0.466, 0.145)

p12 0.079 0.069
p13 0 0
p21 0.051 0.058
p23 0.039 0.038
p31 0 0
p32 0.118 0.122

Negative Log-likelihood 596.121 597.112
No. of Iterations Until Convergence 44 78

Table 2.2: Results of the EM algorithm and direct numerical maximization, assuming stationar-
ity, applied to a sample of 200 observations, generated from a 3-state Poisson HMM.

2.4.5 A Comparison of the EM Algorithm and Direct Numerical

Maximization

When hidden Markov models were first introduced, the EM algorithm was largely pre-
ferred by researchers and analysts for performing maximum likelihood estimation. There
are likely three main reasons for its popularity. Firstly, for homogeneous HMMs, at each
iteration of the EM algorithm, there are simple, closed-form expressions for the update
equations of the parameter estimates. The code for the EM algorithm can also be easily
altered for different parametric families of state-dependent distributions. Secondly, the
EM does not require the supply of derivatives of HMM likelihoods, which are often difficult
to compute (MacKay, 2003). Lastly, the EM algorithm deals with parameter constraints
implicitly.

However, the EM algorithm is slow to converge. Furthermore, it does not readily produce
standard errors of parameter estimates (Cappé et al., 2005). As a result, direct numerical
maximization has recently been favoured for performing maximum likelihood estimation
of HMMs since it is typically much more efficient (MacKay, 2003 and references therein).
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In this case, parameter constraints must be dealt with explicitly either through trans-
formations or using constrained optimization procedures. Built-in optimizers from the
statistical software R, such as nlm, optim or constrOptim, do not even require the speci-
fication of derivatives. Once code for the transformation of parameters and computation
of the likelihood is written, very little programming effort is required to code the maxi-
mization of the likelihood. Furthermore, the EM algorithm requires the computation of
both the forward and backward probabilities for the update equations of the parameter
estimates, while direct numerical maximization need only the forward probabilities for
the computation of the likelihood.

In Altman and Petkau (2005), direct maximization of the likelihood based on a quasi-
Newton routine applied to a data set of lesion counts in multiple sclerosis patients per-
formed much faster than the EM algorithm in finding the MLEs. Turner (2008) also found
that direct maximization by the Levenberg-Marquardt algorithm converged in fewer steps
than the EM for two examples. Furthermore, the Levenberg-Marquardt algorithm pro-
vides an estimate of the covariance matrix of the parameter estimates and thus estimates
of their precision.

Starting values of both iterative procedures are important since HMM likelihoods tend
to have multiple local maxima. Both procedures may converge to local maxima, sad-
dle points or the global maximum depending on the starting value Φ(0). One way of
dealing with this dependence on the starting value is to run the numerical maximization
procedure over a range of starting values in the parameter space Ω and selecting the esti-
mated parameter that has the highest likelihood. Direct numerical maximization is more
sensitive to starting values than the EM. However, performing a grid search over a vari-
ety of possible starting values will increase the chances of identifying the global maximum.

2.5 Summary

In this chapter, we discussed key features of HMMs and compared two methods for per-
forming maximum likelihood estimation in the HMM context, namely the EM algorithm
(or Baum-Welch algorithm), and direct numerical maximization of the likelihood. While
the EM algorithm has been traditionally applied in the HMM literature due to its relative
simplicity, direct numerical maximization of the likelihood is also an appealing option for
finding the MLEs of HMM parameters. In fact, for the case of a stationary HMM when
the estimation of the initial distribution is of particular interest, direct maximization of
the likelihood should be preferred since the optimization of the objective function in the
M-step of the EM algorithm cannot be performed without resorting to numerical methods.
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Chapter 3

Order Estimation in Hidden Markov
Models

The methods discussed in Chapter 2 for estimating the parameters of a hidden Markov
model assume that the number of states (or order) is known. However, when fitting a
HMM to a given data set, a researcher or practitioner may have no knowledge of the num-
ber of states needed in the model in order to be able to adequately describe the data. For
example, in Section 3.7 we consider the problem of estimating the number of physiological
states of a fetal lamb, which is important when it comes to modeling its breathing and
body movements during gestation. While more complex models are likely to provide more
adequate fits to the data, they are not often favoured in applications since a large number
of parameters can lead to high variance in parameter estimates and overfitting. More-
over, simple models are preferable over complex models in terms of model interpretability.
Thus, order estimation is a task of major importance.

Several statistical methods have been proposed to estimate the number of states in a
HMM. Since the likelihood increases as the number of states increases, maximum likeli-
hood estimation is not a reasonable approach for this estimation problem. Information-
theoretic approaches, such as the Akaike information criterion (AIC; Akaike, 1973) and
the Bayesian information criterion (BIC; Schwarz, 1978), are often used. Another method
for estimating the number of states is by minimizing some distance measure between the
empirical distribution function of the observed data and the fitted cumulative distribution
function. One may also consider this problem from the point of view of hypothesis-testing
on the order of a HMM.

While all of the methods are advantageous in certain aspects, it is important to note
that none of the methods are optimal. Some methods might have computational advan-
tages, while others might have a higher probability of selecting the most suitable model.
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In this chapter, we propose a new order estimation procedure that extends to HMMs the
MSCAD method of Chen and Khalili (2008) for estimating the number of components in
a finite mixture. Starting with a HMM with a large number of states, the method seeks
to cluster and then merge similar states of the model through two penalty functions. Our
simulation results reveal that the proposed method is a viable alternative to existing order
estimation procedures in the HMM context. The advantage of this method is that it does
not involve the comparison of all the candidate models. With the selection of an appro-
priate tuning parameter, the method is able to obtain the order in a single optimization.

In what follows, we first review some of the existing methods in the HMM literature
for order estimation.

3.1 Information-Based Methods

The two main information-theoretic approaches for estimating the true number of states
are Akaike’s information criterion (AIC; Akaike, 1973) and Bayesian information criterion
(BIC; Schwarz, 1978). AIC and BIC are both based on the penalization of the likelihood
according to model complexity. While they differ only in the penalty term, their mo-
tivations have different origins. AIC selects the model which minimizes an estimate of
the Kullback-Leibler distance between the true distribution and the distribution of the
candidate models. BIC, on the other hand, was derived within a Bayesian framework. It
selects the model which is a posteriori most probable among all candidate models.

For independent mixture distributions, the theoretical justification for the use of these
information criteria is provided in Leroux (1992b), in which he proved that under mild
regularity conditions the estimated number of components selected using AIC and BIC is
at least as large as the true number K0, asymptotically. This was shown for both finite
and infinite mixtures. Keribin (2000) proved that under certain regularity conditions BIC
provides a consistent estimator of the true number of components.

We will consider these information criteria in the HMM context. Recall from Section
2.3 that the likelihood function for a k-state HMM is given by

Ln(Φk) =
k∑

z1=1

πz1f(y1; θz1)
k∑

z2=1

pz1,z2f(y2; θz2) · · ·
k∑

zn=1

pzn−1,znf(yn; θzn),

where Φk = (π1, ..., πk,P, θ1, ..., θk) ∈ Ωk and Ωk denotes the parameter space of a k-state
HMM. The log-likelihood function is thus `n(Φk) = logLn(Φk).
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Assuming an upper bound K on the true number of states K0, AIC selects the value
of k that minimizes the criterion

AIC(k) = −2`n(Φ̂k) + 2dk, (3.1)

over all k = 1, 2, ..., K, whereas BIC selects the value of k that minimizes the criterion

BIC(k) = −2`n(Φ̂k) + dk log n, (3.2)

over all k = 1, 2, ..., K, where dk is the number of unknown parameters for the HMM of
order k, n is the sample size and Φ̂k is the maximum likelihood estimator of Φk for the
HMM of order k.

For both AIC and BIC, the greater the number of states, the more heavily the log-
likelihood is penalized. In this way, these information criteria attempt to control the
estimated number of states directly. In Equation (3.2), we see that the penalty term for
BIC depends not only on the number of states k, but also on the sample size n. If n ≥ 8,
which holds in most situations, then dk log(n) > 2dk so that BIC will penalize complex
models more heavily than AIC. Thus, AIC has the potential of overfitting. Note that for
a k-state Poisson HMM, dk = k2 +k−1 and for a k-state normal HMM, dk = k2 + 2k−1.
In the stationary case, these models will have k − 1 fewer parameters to be estimated
since the initial distribution π can be determined from the transition matrix P.

While theoretical justification for the use of AIC and BIC has been provided by Leroux
(1998b) for independent mixtures, it has yet to be provided for HMMs (MacKay, 2003).
Nevertheless, AIC and BIC have been considered by most authors applying HMMs, in-
cluding Leroux and Puterman (1992), Rydén (1995), and Zucchini and MacDonald (2009).
Rydén (1995) shows that a class of penalized likelihood estimators, including AIC and
BIC, in the limit never underestimate the true order K0.

Poskitt and Zhang (2005) use AIC and BIC based on the quasi-log-likelihood

`Qn (Ψk) =
n∑
t=1

log f(yt; Ψk) =
n∑
t=1

log

{
k∑
i=1

πif(yt; θi)

}

as methods for selecting the order of a HMM. In other words, they reduce the problem to
selecting the number of components in the marginal mixture distribution of the observed
process (Yt) by replacing the maximized log-likelihood `n(Φ̂k) in Equations (3.1) and (3.2)
by the maximized quasi-log-likelihood `Qn (Ψ̂k), where Ψ̂k is the maximum quasi-likelihood
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estimator (MQLE) of Ψk. They show that BIC based on quasi-likelihood inference pro-
vides a consistent estimator of K0.

3.2 Hypothesis Testing-Based Methods

Tests of hypothesis on the order K of a HMM may also be viewed as order selection
procedures. For testing K = 1 against K ≥ 2, Gassiat and Keribin (2000) show that the
likelihood ratio test (LRT) statistic tends to ∞ in probability as the number of observa-
tions increases. Note that a HMM with K = 2 states is the simplest nontrivial HMM
since for K = 1, (Yt) are independent and identically distributed from f(y; θ). Therefore,
the test of K = 2 against K ≥ 3 states is the basic testing problem for HMMs.

Since the marginal distribution of the observations of a stationary HMM is a finite mix-
ture, the tests proposed in the literature thus far estimate the number of states in a HMM
by determining the number of components in the marginal mixture distribution. Dan-
nemann and Holzmann (2008) proposed testing the hypothesis K = 2 by extending to
HMMs the modified likelihood ratio (MLR) test of Chen, Chen and Kalbfleisch (2004) for
testing two states in a finite mixture.

The MLR test of Chen, Chen and Kalbfleisch (2004) had been proposed in order to over-
come the complications of the asymptotic null distribution of the LR statistic in finite
mixture models. A classic result of Wilks (1938) states that if standard regularity con-
ditions hold, minus twice the logarithm of the LR statistic is asymptotically chi-squared
distributed under the null hypothesis. However, in the finite mixture setting, the null
hypothesis lies on the boundary of the parameter space rather than in the interior and
the null distribution is not identifiable. Therefore, Wilks’ result is not applicable since
the standard regularity conditions are not satisfied.

In what follows, we outline the modified LRT for K = 2 against K ≥ 3 states in a HMM,
proposed by Dannemann and Holzmann (2008). First we introduce some notation. We
write the marginal distribution of the HMM observations (Yt) as

f(yt;G) =
K∑
k=1

πkf(yt; θk),

where G(θ), called the mixing distribution, is a discrete cumulative distribution function
with a finite number of support points θ1, ..., θK ∈ Θ and corresponding weights π1, ..., πK

that satisfy πk ≥ 0 and
K∑
k=1

πk = 1. Now let
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MK =

{
G(θ) =

K∑
k=1

πkI(θk ≤ θ) : θ1 ≤ ... ≤ θK ,
K∑
k=1

πk = 1, πk > 0

}
denote the set of all finite mixing distributions with at most K support points, where
I(·) is an indicator function. Also letM = ∪K≥2MK . Therefore, letting G0 denote the
true mixing distribution of the marginal distribution, Dannemann and Holzmann (2008)
proposed a test for

H0 : G0 ∈M2 against H1 : G0 ∈M\M2

Under H0, the true mixing distribution of the marginal distribution is then

G0(θ) = π01I(θ01 ≤ θ) + (1− π01)I(θ02 ≤ θ),

where θ01 < θ02 are distinct points of the interior of Θ and 0 < π01 < 1.

Dannemann and Holzmann (2008) then define the modified quasi-log-likelihood function
as

˜̀Q(K)
n (G) =

n∑
t=1

log f(yt;G) + CK

K∑
k=1

log πk,

where CK is a positive constant. The penalty on the mixing proportions πk prevents the
estimates of πk from being too close to 0. The amount of penalty is determined by the
constant CK , which is chosen to reflect the size of Θ. See Chen, Chen and Kalbfleisch
(2004) and references therein for further details on the choice of CK . As we will see in
Section 3.5, the penalty on the mixing proportions also plays an important role in our
new method for order selection. There we discuss the role of this penalty in our proposed
method and provide a more in-depth discussion of the choice of CK .

The test statistic for the modified quasi-likelihood ratio test for two components is given
by

Tmodn = 2
{
`
Q(K)
n (ĜK)− `Q(2)

n (Ĝ2)
}
,

where ĜK results from the maximization of ˜̀Q(K)
n (·) and is called a modified maximum

quasi-likelihood estimate and `Q(K)
n (·) is the unpenalized quasi-log-likelihood function.

Dannemann and Holzmann (2008) show that the modified LRT statistic Tmodn has the
same limit distribution as for independent mixtures. In particular, the asymptotic distri-
bution of Tmodn is that of the mixture

(1
2
− ρ)χ2

0 + 1
2
χ2
1 + ρχ2

2,
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where ρ is specified in Dannemann and Holzmann (2008) and χ2
0 is the distribution with

unit mass at 0.

Dannemann and Holzmann (2008) investigated the finite-sample performance of the mod-
ified LRT for K = 2 against K ≥ 3 for HMMs with state-dependent Poisson distributions
as well as with state-dependent normal distributions. As expected from their asymptotic
theory, the finite-sample performance is hardly affected when the transition matrices are
altered and the stationary distribution is kept the same, provided the diagonal entries of
the transition matrices are not too close to 0 or 1. Furthermore, their simulation studies
show that one should only expect a slight loss of power when introducing dependence
through the transition matrix P.

3.3 Penalized Minimum-Distance Approaches

MacKay (2002) extends the penalized minimum-distance method of Chen and Kalbfleisch
(1996) for estimating the number of hidden states in a HMM. She estimates K0 by mini-
mizing the penalized distance function

D(F̄n, F ) = d(F̄n, F )− cn
K∑
k=1

log πk,

over all F , where F is a finite mixing distribution with K components, F̄n is the em-
pirical distribution function of Yt, (cn) is a sequence of positive constants, and d is the
Kolmogorov-Smirnov distance:

d(F1, F2) = sup
y
|F1(y)− F2(y)|

for distribution functions F1 and F2. The method incorporates a penalty term which
penalizes models with states that have small values of πk. In this way, the method is
indirectly controlling the number of states K.

As pointed out by MacKay (2002), locating the global minimum of the penalized distance
function is often challenging since the objective function has many local minima. Running
the algorithm for a wide variety of initial values may help in locating the global minimum,
but at the expense of greater computational effort. Furthermore, with cn = Cn−1/2 log n

for some C > 0, the choice of C was found to have a considerable effect on the estimate
of the true number of states K0 in the simulations of MacKay (2002).

The performance of this method may improve if different distance functions are used.
For example, the Cramér-von Mises distance
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d(F1, F2) =

∫
{F1(y)− F2(y)}2 d {F1(y) + F2(y)}

may also be considered.

3.4 A Bayesian Approach

A Bayesian approach for estimating the number of hidden states of a HMM compares
marginal likelihoods. To decide between two competing models K = k1 and K = k2, one
computes the ratio of the model probabilities:

p(K = k2|y)

p(K = k1|y)
=
p(y|K = k2)

p(y|K = k1)

p(K = k2)

p(K = k1)
,

where p can be a probability mass function or density function and p(y|K) is the marginal
likelihood, which is also called the integrated likelihood. It is given by

p(y|K) =

∫
p(ΦK ,y|K) dΦK =

∫
p(y|K,ΦK)p(ΦK |K) dΦK ,

where ΦK is the parameter of the K-state HMM.

The term
p(y|K = k2)

p(y|K = k1)
is called the Bayes factor, which represents the factor of increase

in posterior probability for the model K = k2 over that of model K = k1. Therefore, to
decide between J competing models k1, k2, ..., kJ , one selects the model with the highest
marginal likelihood.

The marginal likelihood, however, is generally difficult to compute. Methods that use
Markov Chain Monte Carlo (MCMC) output, such as the harmonic mean estimator (Zuc-
chini and MacDonald, 2009 and references therein) or Chib’s approach (1995), have been
considered. For the lamb data application from Leroux and Puterman (1992), Frühwirth-
Schnatter (2006) uses bridge sampling and importance sampling to calculate marginal
likelihoods and estimate the number of hidden states.

3.5 A New Order Estimation Method

We now propose a new method for order estimation in hidden Markov models, which
makes use of the fact that under the assumption of stationarity of the hidden Markov
chain, the marginal distribution of the HMM observations is a finite mixture. The new
method is an extension to the HMM context of the modified smoothly clipped absolute
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deviation (MSCAD) procedure of Chen and Khalili (2008) for estimating the number
of components in a finite mixture model. Their procedure is based on the maximiza-
tion of a penalized likelihood, which incorporates the penalty function from the penalized
minimum-distance method of Chen and Kalbfleisch (1996) as well as the smoothly clipped
absolute deviation (SCAD) penalty proposed by Fan and Li (2001).

Recall that the marginal distribution of the HMM observations (Yt) is given by

f(yt; Ψ) =
K∑
k=1

πkf(yt; θk),

where θk ∈ Θ and π = (π1, π2, ..., πK) is the vector of stationary mixing proportions. We
will assume that θ1 ≤ θ2 ≤ ... ≤ θK and set ηk = θk+1 − θk for k = 1, 2, ..., K − 1.

We let K0 denote the true number of states. Our aim is to estimate K0 using the following
quasi-likelihood function

LQn (Ψ) =
n∏
t=1

f(yt; Ψ),

or, equivalently, the quasi-log-likelihood function

`Qn (Ψ) =
n∑
t=1

log f(yt; Ψ)

based on the finite mixture marginal distributions.

Inference in HMMs based on the marginal mixture distribution is not uncommon. Under
mild regularity conditions, Lindgren (1978) showed that the maximum quasi-likelihood
estimator is consistent and asymptotically normal. To initialize iterative procedures for
obtaining the exact maximum likelihood estimates of a HMM, Leroux and Puterman
(1992) suggest using the parameter estimates obtained from fitting a finite mixture model.
Furthermore, as we saw in Sections 3.1 and 3.2, the marginal mixture distribution has not
only been considered for estimation of HMM parameters, but also for estimation of the
order. Dannemann and Holzmann (2008) proposed to do hypothesis-testing on the order
via a modified quasi-likelihood ratio, and Poskitt and Zhang (2005) considered AIC and
BIC based on the quasi-likehood.

One of the advantages of using the quasi-likelihood function is that it simplifies the opti-
mization problem since the objective function does not involve the transition probabilities
pij. Furthermore, there are computational gains that arise from using the quasi-likelihood.
As we saw in Section 2.3, the complexity of the efficient evaluation of the likelihood is
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O(nK2), whereas that of the quasi-likelihood is O(nK).

By maximizing the quasi-log-likelihood, the resulting fitted model may overfit the data
with two types of overfitting. For the first type of overfitting, the estimated values of πk
may be close to 0 and for the second type of overfitting, the state-dependent densities
may be close to one another. To prevent these two types of overfitting, we maximize
an objective function that incorporates a penalty on the mixing proportions πk as well
as a penalty on the differences in atoms ηk of the mixing distribution of the marginal
distribution.

Our proposed method estimates the number of states by maximizing the penalized quasi-
log-likelihood function

˜̀Q
n (Ψ) = `Qn (Ψ) + CK

K∑
k=1

log πk −
K−1∑
k=1

pn(ηk)

for some K > K0. Here we assume that some information is available on an upper bound
K on the true number of states. The constant CK > 0 is chosen as in Chen, Chen and
Kalbfleisch (2004). We provide a discussion of the selection of CK in Section 3.5.3.

The first penalty was used in the finite mixture setting by a few authors, including Chen
and Kalbfleisch (1996) in their penalized minimum-distance method for estimating the
number of components in a finite mixture as well as Chen, Chen and Kalbfleisch (2004)
in their modified likelihood ratio test. It forces the estimated values of πk away from the
boundary point 0 to prevent the first type of overfitting.

The second penalty is the SCAD penalty, developed by Fan and Li (2001), in the context
of variable selection in regression. It is defined through its derivative

p′n(η) = γn
√
nI{
√
n|η| ≤ γn}+

√
n(aγn −

√
n|η|)+

(a− 1)
I(
√
n|η| > γn)

for some a > 2, where (·)+ denotes the positive part of a quantity. Figure 3.1 shows a
plot of the SCAD penalty with n = 100 and γn = n1/4 log n.

Note that

pn(η) =


γn
√
n|η| if

√
n|η| ≤ γn

2γn
√
n|η|(a− 1)− (

√
n|η| − γn)2

2(a− 1)
if γn <

√
n|η| ≤ aγn

γ2n(a+ 1)

2
if
√
n|η| > aγn
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Figure 3.1: Plot of the SCAD penalty function.

so that the SCAD penalty function pn(η) is constant when |η| > an−1/2γn. The SCAD
penalty is chosen since it shrinks values of η that are close to 0 to exactly 0 with
positive probability, preventing the second type of overfitting. The L1-norm penalty
pn(η) = γn

√
n|η| had also been considered. For small values of |η|, the L1-norm penalty

has the same behaviour as the SCAD penalty. However, in the development of the asymp-
totic theory of this method, we require that the penalty function be constant for suffi-
ciently large values of |η|. Since the L1-norm penalty increases linearly with |η|, the SCAD
penalty is used in this method instead. A discussion of the selection of the tuning param-
eters a and γn can be found in Section 3.5.3.

The roles of the penalty functions can therefore be summarized as follows. By keeping
the estimated values of πk away from 0, the first penalty clusters the atoms θk around the
atoms of the true mixing distribution of the marginal distribution. The SCAD penalty
then merges each cluster into a single atom, obtaining the estimated order in a single
maximization procedure.

3.5.1 Some Asymptotic Properties of the Maximum Penalized

Quasi-Likelihood Estimator

We now study some asymptotic properties of the maximum penalized quasi-likelihood
estimator. Recall that the mixing distribution G of the marginal distribution of Yt is
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given by

G(θ) =
K∑
k=1

πkI(θk ≤ θ),

where I(·) is an indicator function, θ1, θ2, ..., θK ∈ Θ, and π1, π2, ..., πK satisfy πk > 0 and
K∑
k=1

πk = 1.

Let the class of all finite mixing distributions with at most K support points be given by

MK =

{
G(θ) =

K∑
k=1

πkI(θk ≤ θ) : θ1 ≤ θ2 ≤ ... ≤ θK ,
K∑
k=1

πk = 1, πk > 0

}
.

Note that M1 ⊆ M2 ⊆ ... ⊆ MK−1 ⊆ MK since the atoms θk are allowed to be equal
with positive mixing proportions.

Let K0 be the true number of support points of the finite mixing distribution G. The
true mixing distribution G0 is given by

G0(θ) =

K0∑
k=1

π0kI(θ0k ≤ θ),

where θ01 < θ02 < ... < θ0K0 are K0 distinct interior points of Θ and (π01, π02, ..., π0K0)

are the true stationary mixing proportions.

Denote the maximizer of the penalized quasi-log-likelihood ˜̀Q
n (G) by Ĝn, which we refer

to as the maximum penalized quasi-likelihood estimator (MPQLE) of G. To study some
of the asymptotic properties of the MPQLE Ĝn, we must first define some notation.

We let Ĝn =
K∑
j=1

π̂jI(θ̂j ≤ θ). Following Chen and Khalili (2008), we then define

Ik = {j : θ0,k−1 + θ0,k < 2θ̂j ≤ θ0,k + θ0,k+1} for k = 1, 2, ..., K0 with θ0,0 = −∞ and
θ0,K0+1 =∞, and

Ĥk =

∑
j∈Ik

π̂jI(θ̂j ≤ θ)∑
j∈Ik

π̂j

so that with α̂k =
∑
j∈Ik

π̂j,

Ĝn(θ) =

K0∑
k=1

α̂kĤk(θ).
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Note that α̂1 is the probability assigned to the support points θ̂j ≤ (θ01 + θ02)/2, α̂2 is
the probability assigned to the support points (θ01+θ02)/2 < θ̂j ≤ (θ02+θ03)/2, and so on.

The aim of our proposed method is to cluster the atoms of Ĥk into a small neighbourhood
of θ0k using the penalty on the mixing proportions πk and then to merge the cluster of
atoms into a single atom using the SCAD penalty.

In Lemma 3.1, we show that the MPQLE Ĝn satisfies 0 < π̂k < 1 for k = 1, 2, ..., K

in probability as n → ∞. We use similar proof techniques to those in Chen and Khalili
(2008).

Lemma 3.1. Let Y1, Y2, ..., Yn be a sample from a homogeneous and stationary HMM
satisfying Conditions 1 to 3 in Section 2.2 and Assumptions 1 to 6 in Appendix B. Let
f(y;G0) denote the true density function of the marginal mixture distribution of Yt. Then
the MPQLE Ĝn has the property

K∑
k=1

log π̂k = Op(1)

as n→∞.

Proof. In what follows, the expectations are taken with respect to the true marginal
mixture distribution G0. Note that by Jensen’s inequality,

E
[
− log

{
f(Y ;G)

f(Y ;G0)

}]
≥ − log

{
E
[
f(Y ;G)

f(Y ;G0)

]}
= − log 1 = 0

under Assumption 1 for the existence of the expectation and Condition 2 for identifiability.
Therefore, for any G 6= G0, we have that

E [log f(Y ;G)]− E [log f(Y ;G0)] < 0. (3.3)

Now, as shown by Poskitt and Zhang (2005), since Yt is stationary and ergodic from
Condition 1,

1

n
`Qn (G)

a.s.→ E [log f(Y ;G)] as n→∞.

Therefore,

lim
n→∞

{
1

n
`Qn (G)− 1

n
`Qn (G0)

}
= E [log f(Y ;G)]− E [log f(Y ;G0)] (3.4)

almost surely. Poskitt and Zhang (2005) and references therein also show that this con-
vergence is uniform.
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Now combining results (3.3) and (3.4), we obtain

`Qn (G)− `Qn (G0) < −Cn

almost surely for any G 6= G0 with some C > 0. Due to the compactness of the space of
G from Assumption 1, we can use a finite open coverage result in topology to strengthen
the inequality to

sup
G∈N

{
`Qn (G)− `Qn (G0)

}
< −Cn

for any compact neighbourhood N not containing G0. In other words, the difference
`Qn (G) − `Qn (G0) is negative in the order of n, uniformly for any G outside a neighbour-
hood of G0.

Now when γn = n1/4 log n, the SCAD penalty pn(·) for any a > 2 becomes

pn(η) =


n3/4 log n|η| if |η| ≤ n−1/4 log n

2n3/4 log n|η|(a− 1)−
√
n(n1/4|η| − log n)2

2(a− 1)
if n−1/4 log n < |η| ≤ an−1/4 log n

√
n(log n)2(a+ 1)

2
if |η| > an−1/4 log n

and it is straightforward to check that lim
n→∞

pn(η)
n

= 0. Due to this property when γn =

n1/4 log n, the SCAD penalty pn(·) for any a > 2 satisfies

K−1∑
k=1

pn(ηk)−
K0−1∑
k=1

pn(η0k) = o(n).

Therefore, since the addition of the SCAD penalty to `Qn (G) does not change the order

assessment and the term CK
K∑
k=1

log πk − CK0

K0∑
k=1

log π0k is constant with respect to n, we

have that

sup
G∈N

{
˜̀Q
n (G)− ˜̀Q

n (G0)
}
≤ −Cn.

Thus, since Ĝn is the maximizer of ˜̀Q
n (G), it must be in a small neighbourhood of G0.

That is, Ĝn
P→ G0 and so it has at least K0 distinct support points.

Since each η0k is positive and approximated by one of the estimated differences in atoms
η̂k, we must have that pn(η̂k) = pn(η0k) in probability due to the fact that the SCAD
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penalty is constant outside a neighbourhood of 0. Therefore,

K−1∑
k=1

pn(η̂k)−
K0−1∑
k=1

pn(η0k) ≥ 0

in probability.

Now let Ḡn be the maximum quasi-likelihood estimator (MQLE) of G0 so that Ḡn has at
most K support points. Then, by definition,

0 ≤ ˜̀Q
n (Ĝn)− ˜̀Q

n (G0)

=
{
`Qn (Ĝn)− `Qn (G0)

}
−

{
K−1∑
k=1

pn(η̂k)−
K0−1∑
k=1

pn(η0k)

}

+

{
CK

K∑
k=1

log π̂k − CK0

K0∑
k=1

log π0k

}

≤
{
`Qn (Ĝn)− `Qn (G0)

}
+

{
CK

K∑
k=1

log π̂k − CK0

K0∑
k=1

log π0k

}

≤
{
`Qn (Ḡn)− `Qn (G0)

}
+

{
CK

K∑
k=1

log π̂k − CK0

K0∑
k=1

log π0k

}
.

Now from Holzmann and Schwaiger (2012), who establish the asymptotic distribution of
the quasi-likelihood ratio test statistic under the assumptions of stationarity and ergod-
icity of Yt,

`Qn (Ḡn)− `Qn (G0) = Op(1).

In addition, since the quantity CK0

K0∑
k=1

log π0k is constant with respect to n, we have that

CK

K∑
k=1

log π̂k ≥ −
{
`Qn (Ḡn)− `Qn (G0)

}
+ CK0

K0∑
k=1

log π0k = Op(1).

In Theorem 3.1, we show that the MPQLE Ĝn is a consistent estimator of the true mixing
distribution G0 of the marginal distribution. We use similar proof techniques to those in
Khalili (2005).

Theorem 3.1. Let Y1, Y2, ..., Yn be a sample from a homogeneous and stationary HMM
satisfying Conditions 1 to 3 in Section 2.2 and Assumptions 1 to 6 in Appendix B. Let
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f(y;G0) denote the true density function of the marginal mixture distribution of Yt. Sup-
pose that we apply the SCAD penalty with γn = n1/4 log n. Then

(a) Ĝn is a consistent estimator of G0

(b) all support points of Ĥk converge in probability to θ0k for each k = 1, 2, ..., K0.

Proof of (a). Let ‖H1 − H2‖ = sup
θ
|H1(θ)−H2(θ)|. We will show the following two re-

sults:

(i) for k = 1, 2, ..., K0, α̂k = π0k + op(1),

(ii) for k = 1, 2, ..., K0, ‖Ĥk −H0k‖ = op(1), where H0k = I(θ0k ≤ θ).

In what follows, the expectations are taken with respect to the true mixing distribution
G0. From Lemma 3.1, we saw that

1

n

{
`Qn (G)− `Qn (G0)

}
→ E [log f(Y ;G)]− E [log f(Y ;G0)]

as n → ∞ almost surely and uniformly over the compact space of G. Now since

lim
n→∞

1
n

{
CK

K∑
k=1

log πk − CK0

K0∑
k=1

log π0k

}
= 0 and the SCAD penalty pn(η) with γn =

n1/4 log n and a > 2 satisfies lim
n→∞

pn(η)
n

= 0, we have that

1

n

{
˜̀Q
n (G)− ˜̀Q

n (G0)
}
→ E [log f(Y ;G)]− E [log f(Y ;G0)] (3.5)

as n→∞ almost surely and uniformly over the compact space of G.

Now suppose for the sake of contradiction that parts (i) and (ii) do not hold and consider
the set

A = {G ∈MK : ‖Hk −H0k‖ > ε1, |αk − π0k| > ε2, 1 ≤ k ≤ K0, πl ∈ [δ1l, δ2l], 1 ≤ l ≤ K}

for some ε1, ε2 > 0 and 0 < δ1l, δ2l < 1. Then due to the compactness of the parameter
space Θ and the results of Lemma 3.1, there must exist a subsequence Ĝns of Ĝn satisfying
P (Ĝns ∈ A) > ε for some ε > 0 and sufficiently large ns. This implies that

P

{
1

ns

[
˜̀Q
ns

(Ĝns)− ˜̀Q
ns

(G0)
]

= sup
G∈A

1

ns

[
˜̀Q
ns

(G)− ˜̀Q
ns

(G0)
]}

> ε

for all nj. On the other hand, E [log f(Y ;G)]− E [log f(Y ;G0)] < 0 for any G ∈ A under
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Condition 2 for identifiability. Then from Equation (3.5),

P

{
1

ns

[
˜̀Q
ns

(G)− ˜̀Q
ns

(G0)
]
< 0

}
> ε (3.6)

for sufficiently large ns. This, however, contradicts the fact that Ĝns is the maximizer of
the penalized quasi-likelihood ˜̀Q

n (G). Therefore, the result of part (a) must hold.

Proof of (b). In Lemma 3.1, we had shown that the mixing proportion on each atom of
Ĝn is positive in probability. On the other hand, from part (a)-(i), we obtained the result

‖Ĥk −H0k‖ = sup
θ

∣∣∣Ĥk(θ)−H0k(θ)
∣∣∣ = sup

θ

∣∣∣Ĥk(θ)− I(θ0k ≤ θ)
∣∣∣ = op(1).

This means that for all θ ∈ Θ,

Ĥk(θ) =

 1 if θ ≥ θ0k

0 if θ < θ0k

for sufficiently large n in probability. Thus, we must have that the atoms of Ĥk converge
to the true atom θ0k in probability for each k = 1, 2, ..., K0.

Note that we have not yet shown that the MPQLE is consistent in estimating the true
order K0. From Theorem 3.1, the order may still be overestimated if any Ĥk has more
than one atom. Due to the more complex structure of a HMM, we have yet to be able
to extend the consistency of MSCAD in estimating the true order in the finite mixture
setting to the HMM context, and must therefore defer this task to future work.

3.5.2 Numerical Computation

Let Y1, Y2, ..., Yn be a sample from a homogeneous, stationary K-state HMM, where the
marginal distribution of (Yt) is given by the finite mixture

f(yt; Ψ) =
K∑
k=1

πkf(yt; θk),

with vector of parameters Ψ = (π1, π2, ..., πK−1, θ1, θ2, ..., θK). The quasi-log-likelihood
function of Ψ based on the above sample is given by

`Qn (Ψ) =
n∑
t=1

log f(yt; Ψ).

Our goal is to maximize the penalized quasi-log-likelihood function

˜̀Q
n (Ψ) = `Qn (Ψ) + CK

K∑
k=1

log πk −
K−1∑
k=1

pn(ηk)
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over the spaceMK for a pre-specified K, where ηk = θk+1− θk for k = 1, 2, ..., K − 1 and
CK > 0.

Since the SCAD penalty function pn(η) is singular at η = 0 and does not have continuous
second order derivatives, we follow the suggestion of Fan and Li (2001) of replacing pn(η)

by a local quadratic approximation (LQA) in a neighbourhood of η0, given by

pn(η) ' pn(η0) +
p′n(η0)

2η0
(η2 − η20).

In the context of variable selection in regression, a local linear approximation (LLA; Zou
and Li, 2008) of pn(η) for η ≈ η0 was also proposed:

pn(η) ' pn(η0) + p′n(η0)(η − η0).

We consider this approximation and discuss its performance in simulation studies later
on in this section.

To perform the maximization of the penalized quasi-log-likelihood, we use a revised EM
algorithm (Dempster et al., 1977) as follows.

First we define the unobserved indicator variables

utk =

{
1 if Zt = k

0 otherwise
,

which denote the state membership of the observation yt in the HMM. Using the complete
data (y1,u1), ..., (yn,un), where ut = (ut1, ut2, ..., utK)T , the complete quasi-likelihood
function is defined as

LQ(C)
n (Ψ) =

n∏
t=1

K∏
k=1

{πkf(yt; θk)}utk

so that the complete quasi-log-likelihood function is

`Q(C)
n (Ψ) =

n∑
t=1

K∑
k=1

utk {log πk + log f(yt; θk)}.

The penalized complete quasi-log-likelihood function is then

˜̀Q(C)
n (Ψ) = `

Q(C)
n (Ψ) + CK

K∑
k=1

log πk −
K−1∑
k=1

pn(ηk).

The EM algorithm maximizes ˜̀Q(C)
n (Ψ) by repeatedly alternating between two steps: the

E-step and the M-step.

34



E-step: The E-step consists of computing the conditional expectation of ˜̀Q(C)
n (Ψ) with

respect to utk, given the observed data y and the current parameter estimate Ψ(m):

Q(Ψ; Ψ(m)) = E
[
˜̀Q(C)
n (Ψ) | y,Ψ(m)

]
=

n∑
t=1

K∑
k=1

{
w

(m)
tk +

CK
n

}
log πk +

n∑
t=1

K∑
k=1

w
(m)
tk log f(yt; θk)−

K−1∑
k=1

pn(ηk),

where, for k = 1, 2, ..., K,

w
(m)
tk = E

[
utk | yt,Ψ(m)

]
= P (Zt = k | Yt = yt,Ψ

(m)) =
π
(m)
k f(yt; θ

(m)
k )

K∑
l=1

π
(m)
l f(yt; θ

(m)
l )

is the conditional expectation of utk given the observation yt and the current parameter
estimate Ψ(m).

M-step: The M-step consists of maximizing Q(Ψ; Ψ(m)) with respect to Ψ on the
(m+ 1)th iteration. That is, we need to find

Ψ(m+1) = arg max
Ψ

Q(Ψ; Ψ(m)).

By maximizing Q(Ψ; Ψ(m)) with respect to the mixing proportion πk, we obtain

π
(m+1)
k =

n∑
t=1

w
(m)
tk + CK

n+KCK
for k = 1, 2, ..., K

as the updated estimate of πk.

To maximize Q(Ψ; Ψ(m)) with respect to θk, we replace the penalty pn(ηk) by

p̃n(ηk; η
(m)
k ) = pn(η

(m)
k ) +

p′n(η
(m)
k )

2η
(m)
k

(η2k − η
(m)2
k )

and solve the following system of equations

n∑
t=1

w
(m)
t1

∂

∂θ1
{log f(yt; θ1)}+

∂p̃n(η1; η
(m)
1 )

∂θ1
= 0,

n∑
t=1

w
(m)
tk

∂

∂θk
{log f(yt; θk)} −

∂p̃n(ηk−1; η
(m)
k−1)

∂θk
+
∂p̃n(ηk; η

(m)
k )

∂θk
= 0, k = 2, 3, ..., K − 1,

n∑
t=1

w
(m)
tK

∂

∂θK
{log f(yt; θK)} −

∂p̃n(ηK−1; η
(m)
K−1)

∂θK
= 0

to obtain the update equations of the state-dependent parameters θk.

Starting from an initial value Ψ(0), the E and M steps are iterated until some conver-
gence criterion is met. We use the convergence criterion
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‖Ψ(m+1) −Ψ(m)‖ < ε

for some pre-specified value ε > 0. We take the initial value of θk to be the 100(k −
1/2)/K% sample quantile and the initial value of πk to be 1/K for each k = 1, 2, ..., K.

For Poisson state-dependent distributions with mean parameters λk, the system of equa-
tions presented above do not yield closed-form update equations for λk. We considered
two possible ways of addressing this issue. The first approach is to use the following
quadratic approximation of log f(y;λk) in the function Q(Ψ; Ψ(m)) defined in the E-step:

log f(y;λk) = log

{
e−λkλyk
y!

}
= −λk + y log λk − log y!

≈ −λk + y

{
(λk − 1)− (λk − 1)2

2

}
− log y!

= λk(y − 1)− y(λk − 1)2

2
− log y!− y.

For the second approach, we considered the reparametrization

λ1 = θ

λ2 = θ + η1
...

λK = θ + η1 + ...+ ηK−1

as well as replacing the penalty function by a LLA of pn(η) in a neighbourhood of η0.

In our simulation studies with Poisson HMMs, presented in Section 3.6, we use the first
approach to obtain closed-form update equations for λk. We also assessed the performance
of the second approach via simulation and found that using the local linear approximation
of the penalty along with the reparametrization does not have a considerable effect on the
success rate of the method compared to when using the local quadratic approximation.

3.5.3 Tuning Parameter Selection

In many penalized likelihood or regularization methods, the performance of the method
depends strongly on the tuning parameter controlling the extent of penalization. Our
proposed method requires the selection of three tuning parameters, γn and a from the
SCAD penalty as well as CK from the penalty on the mixing proportions πk. Accord-
ing to Fan and Li (2001), one may do a two-dimensional grid search to find the optimal
pair (λn, a), where λn = γn/

√
n, based on cross-validation (Stone, 1974) or generalized

36



cross-validation (Craven and Wahba, 1979). However, this can be computationally ex-
pensive. As another approach for selecting the tuning parameter a, Fan and Li (2001)
use Bayesian risk analysis. They find that certain Bayes risk criteria are minimized at
a ≈ 3.7 and therefore take a = 3.7. This value of a was found to perform suitably for
many variable selection problems. Thus, in our simulation studies, we also take a = 3.7.
As for the constant CK , Chen, Chen and Kalbfleisch (2001) suggest using CK = logM if
the parameters θk are restricted to [−M,M ] for largeM . Therefore, we take CK = log 20.

For the selection of the tuning parameter γn, we use cross-validation. Cross-validation
(CV) consists of the repeated partition of the data into two parts, where the first part is
used to fit the model and the second part is used to evaluate the fitted model. The tuning
parameter γn is chosen so that the prediction error is minimized.

To use cross-validation, we first partition the data into N equal parts with each part
referred to as the test data set since it is used to evaluate the fitted model. For each
i = 1, 2, ..., N , the ith part is then removed from the data and the set of remaining ob-
servations, which is referred to as the training data set, is used to fit the model. Let
us consider this procedure in the context of our problem. Let Ψ̂n,−i be the MPQLE of
Ψ based on the training set. Further, let `Qn,i(Ψ̂n,−i) be the quasi-log-likelihood function
evaluated on the test set using the MPQLE Ψ̂n,−i for i = 1, 2, ..., N . The cross-validation
criterion is given by

CV (γn) =
1

N

N∑
i=1

`Qn,i(Ψ̂n,−i).

We select the value of γn that minimizes CV (γn). This procedure is called N -fold cross-
validation. When N = n, we obtain what is called leave-one-out cross-validation. When
the sample size n is large, the computational burden associated with the leave-one-out
CV criterion can be considerable. In this case, one may want to consider 5-fold or 10-fold
CV.
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3.6 Simulation Studies

In this section, the performance of the proposed order selection method for HMMs as well
as the two information criteria AIC and BIC, based on both the full-model likelihood and
quasi-likelihood, are studied via simulation.

We focus on the problem of order selection in normal and Poisson HMMs. We report
the percentage of times out of 500 replications that the estimated order equals a given
value of K with sample sizes n = 100, 400. To select the tuning parameter γn, we use
cross-validation for samples of size n = 100 and 5-fold cross-validation for samples of
size n = 400. As in Chen and Khalili (2008), we take [0.2, 1.5] as the range of γn/

√
n

for the normal HMMs and [0.4, 1.6] for the Poisson HMMs. These ranges meet the con-
ditions stipulated in the theory on the order of γn for the sample sizes under consideration.

The performance of the methods are assessed for HMMs of order 2, 3, 4 and 6 with
the dependence structures S1-S13 displayed in Tables 3.1, 3.2, and 3.3. Notice that from
S1 to S3 in Table 3.1, the stationary distribution π is the same, but the transition matrices
P are different. For the 2-state HMM with dependence structure S1, there is no expected
correlation between the observations. For the 2-state HMM with dependence structure
S2, negative and positive correlation are expected between the observations, while positive
correlation is expected for the model with dependence structure S3. Therefore, we will be
able to observe the influence of the different dependence structures on the performance
of the methods under study. In Figure 3.2, we plot the theoretical ACF for the normal
HMMs.

Example 3.6.1. For the normal HMMs under consideration, the marginal distribution
of the observations is given by the finite mixture

f(y; Ψ) =
K∑
k=1

πk
σ

Φ

(
y − θk
σ

)
,

where Ψ = (θ1, θ2, ..., θK , σ, π1, π2, ....πK−1) and Φ(·) is the standard normal density func-
tion. We set the upper bound K = 15 for all models in this study.

We simulated data from four 2-state normal HMMs with θ = (0, 3), σ = (1, 1), and
dependence structures S1-S4, displayed in Table 3.1. The parameters of the marginal
mixture distributions are the same as those in the simulation studies of Ishwaran et al.
(2001) for 2-component normal mixtures.

The results can be found in Tables 3.4 and 3.5. For sample size n = 100, MSCAD
based on the quasi-likelihood performs reasonably well. It outperformed AIC based on
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the full-model likelihood and BIC based on the quasi-likelihood in all cases. It also ap-
pears that the performance of MSCADQ is not significantly affected by the dependence
structure. Once dependence within the observations was introduced, the number of times
MSCADQ selected the correct order decreased, but only slightly. For sample size n = 400,
both BIC and BICQ performed very well. When AIC and AICQ did not select the correct
order, they overfit the data. MSCADQ was not the best, but it did outperform AIC based
on the full likelihood in all cases.

Now let us consider the 3-state normal HMMs with θ = (0, 3, 6), σ = (1, 1, 1), and
dependence structures S5-S7 in Table 3.1. The results can be found in Tables 3.6 and 3.7.
For sample size n = 100, MSCADQ outperformed the other methods in all three cases.
BIC and BICQ had the tendency to underfit. For sample size n = 400, BIC based on the
full-model likelihood was the best in two out of three cases. MSCADQ was on par with
the other methods.

The 4-state normal HMMs under consideration have dependence structures S8-S10 (see
Table 3.2), θ = (0, 3, 6, 9) and standard deviation σ = 1 across all states. In Table 3.8,
MSCADQ was indisputably the best for sample size n = 100. BIC and BICQ both had
the tendency to underfit, often selecting models of order 2. For sample size n = 400 (see
Table 3.9), MSCADQ outperformed the other methods in two out of three cases. AIC
and AICQ also performed reasonably well.

The final normal HMMs under consideration are of order 6 with θ = (0, 3, 6, 9, 12, 15),
common standard deviation σ = 1 and dependence structures S11-S13 in Table 3.3. The
results are displayed in Table 3.10. AIC, AICQ and MSCADQ all performed reasonably
well. Both BIC and BICQ had the tendency to underfit.
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Structure P π

S1
(
0.50 0.50
0.50 0.50

)
(0.50, 0.50)

S2
(
0.25 0.75
0.75 0.25

)
(0.50, 0.50)

S3
(
0.75 0.25
0.25 0.75

)
(0.50, 0.50)

S4
(
0.20 0.80
0.40 0.60

)
(13 ,

2
3)

S5

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

 (13 ,
1
3 ,

1
3)

S6

0.70 0.20 0.10
0.20 0.60 0.20
0.10 0.10 0.80

 ≈ (0.316, 0.263, 0.421)

S7

0.10 0.20 0.70
0.20 0.60 0.20
0.80 0.10 0.10

 ≈ (0.374, 0.275, 0.352)

Table 3.1: Transition matrices and corresponding stationary distributions in simulation studies
for 2-state and 3-state HMMs (S1-S7).
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Structure P π

S8


1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

 (1
4
, 1
4
, 1
4
, 1
4
)

S9


0.70 0 0.10 0.20

0 0.80 0.20 0
0.10 0 0.70 0.20
0.10 0.10 0 0.80

 (0.20, 0.20, 0.20, 0.40)

S10


0.10 0.10 0.40 0.40
0.30 0.10 0.50 0.10
0.10 0.60 0.10 0.20
0.40 0.10 0.20 0.30

 ≈ (0.222, 0.244, 0.289, 0.244)

Table 3.2: Transition matrices and corresponding stationary distributions in simulation studies
for 4-state HMMs (S8-S10).
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Structure P π

S11



1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

1
6

 (1
6
, 1
6
, 1
6
, 1
6
, 1
6
, 1
6
)

S12


0.2 0.4 0.1 0.1 0.1 0.1
0.1 0.4 0.1 0.1 0.2 0.1
0.2 0.2 0.1 0.1 0.2 0.2
0.1 0.2 0.1 0.2 0.1 0.3
0.1 0.2 0.1 0.2 0.3 0.1
0.1 0.2 0.1 0.2 0.1 0.3

 ≈ (0.122, 0.281, 0.100, 0.150, 0.173, 0.175)

S13


0.1 0.2 0.1 0.1 0.1 0.4
0.1 0.2 0.1 0.1 0.4 0.1
0.2 0.1 0.1 0.4 0.1 0.1
0.1 0.1 0.4 0.1 0.1 0.2
0.1 0.4 0.1 0.1 0.2 0.1
0.4 0.2 0.1 0.1 0.1 0.1

 ≈ (0.163, 0.208, 0.143, 0.143, 0.180, 0.163)

Table 3.3: Transition matrices and corresponding stationary distributions in simulation studies
for 6-state HMMs (S11-S13).
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Model K0 K̂0 AIC BIC AICQ BICQ MSCADQ

1 2 1 0.048 0.410 0.018 0.198 0.062
2 0.792 0.586 0.928 0.802 0.934
3 0.122 0.004 0.054 0.000 0.004
4 0.038 0.000 0.000 0.000 0.000

2 2 1 0.002 0.032 0.026 0.220 0.052
2 0.878 0.966 0.904 0.768 0.898
3 0.090 0.002 0.070 0.012 0.048
4 0.003 0.000 0.000 0.000 0.002

3 2 1 0.000 0.038 0.028 0.204 0.042
2 0.892 0.962 0.908 0.792 0.906
3 0.082 0.000 0.060 0.004 0.052
4 0.026 0.000 0.004 0.000 0.000

4 2 1 0.014 0.272 0.012 0.186 0.024
2 0.860 0.728 0.946 0.806 0.918
3 0.110 0.000 0.042 0.008 0.054
4 0.016 0.000 0.000 0.000 0.004

Table 3.4: Simulation results for 2-state normal HMMs: the percentage of times in which order
K0 was estimated by each method (n=100).

Model K0 K̂0 AIC BIC AICQ BICQ MSCADQ

1 2 1 0.000 0.000 0.000 0.000 0.028
2 0.830 1.000 0.952 1.000 0.940
3 0.120 0.000 0.048 0.000 0.032
4 0.050 0.000 0.000 0.000 0.000

2 2 1 0.000 0.000 0.000 0.000 0.016
2 0.892 1.000 0.954 1.000 0.952
3 0.078 0.000 0.046 0.000 0.032
4 0.030 0.000 0.000 0.000 0.000

3 2 1 0.000 0.000 0.000 0.000 0.006
2 0.876 1.000 0.940 1.000 0.974
3 0.094 0.000 0.060 0.000 0.020
4 0.030 0.000 0.000 0.000 0.000

4 2 1 0.000 0.000 0.004 0.006 0.006
2 0.874 1.000 0.936 0.994 0.954
3 0.104 0.000 0.060 0.000 0.040
4 0.022 0.000 0.000 0.000 0.000

Table 3.5: Simulation results for 2-state normal HMMs: the percentage of times in which order
K0 was estimated by each method (n=400).
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Model K0 K̂0 AIC BIC AICQ BICQ MSCADQ

5 3 1 0.010 0.432 0.004 0.164 0.000
2 0.310 0.530 0.136 0.400 0.004
3 0.580 0.038 0.800 0.436 0.836
4 0.100 0.000 0.060 0.000 0.160

6 3 1 0.000 0.000 0.002 0.052 0.000
2 0.178 0.976 0.210 0.574 0.012
3 0.000 0.000 0.666 0.366 0.820
4 0.822 0.024 0.114 0.008 0.166
5 0.000 0.000 0.008 0.000 0.002

7 3 1 0.000 0.002 0.008 0.082 0.000
2 0.024 0.418 0.136 0.404 0.018
3 0.500 0.286 0.780 0.510 0.822
4 0.476 0.294 0.076 0.004 0.156
5 0.000 0.000 0.000 0.000 0.004

Table 3.6: Simulation results for 3-state normal HMMs: the percentage of times in which order
K0 was estimated by each method (n=100).

Model K0 K̂0 AIC BIC AICQ BICQ MSCADQ

5 3 1 0.000 0.000 0.000 0.000 0.000
2 0.000 0.434 0.000 0.026 0.002
3 0.866 0.566 0.950 0.974 0.982
4 0.096 0.000 0.048 0.000 0.016
5 0.038 0.000 0.002 0.000 0.000

6 3 1 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.060 0.028
3 0.924 1.000 0.850 0.928 0.970
4 0.068 0.000 0.144 0.012 0.002
5 0.008 0.000 0.006 0.000 0.000

7 3 1 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.022 0.002
3 0.914 1.000 0.964 0.978 0.972
4 0.072 0.000 0.036 0.000 0.026
5 0.014 0.000 0.000 0.000 0.000

Table 3.7: Simulation results for 3-state normal HMMs: the percentage of times in which order
K0 was estimated by each method (n=400).
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Model K0 K̂0 AIC BIC AICQ BICQ MSCADQ

8 4 1 0.008 0.336 0.000 0.086 0.000
2 0.404 0.648 0.128 0.622 0.000
3 0.234 0.016 0.180 0.132 0.024
4 0.302 0.000 0.624 0.158 0.704
5 0.028 0.000 0.060 0.002 0.264
6 0.024 0.000 0.008 0.000 0.008

9 4 1 0.000 0.000 0.002 0.034 0.000
2 0.000 0.050 0.134 0.522 0.000
3 0.178 0.484 0.344 0.326 0.024
4 0.670 0.466 0.378 0.110 0.672
5 0.132 0.000 0.120 0.008 0.292
6 0.020 0.000 0.022 0.000 0.012

10 4 1 0.002 0.218 0.020 0.282 0.000
2 0.048 0.626 0.176 0.492 0.000
3 0.030 0.040 0.160 0.090 0.100
4 0.820 0.116 0.586 0.132 0.832
5 0.090 0.090 0.052 0.004 0.068
6 0.020 0.000 0.006 0.000 0.000

Table 3.8: Simulation results for 4-state normal HMMs: the percentage of times in which order
K0 was estimated by each method (n=100).

Model K0 K̂0 AIC BIC AICQ BICQ MSCADQ

8 4 1 0.000 0.000 0.000 0.000 0.000
2 0.008 0.844 0.000 0.046 0.000
3 0.028 0.126 0.002 0.072 0.020
4 0.806 0.030 0.942 0.880 0.952
5 0.134 0.000 0.042 0.002 0.028
6 0.024 0.000 0.014 0.000 0.000

9 4 1 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.048 0.000
3 0.000 0.014 0.024 0.230 0.004
4 0.760 0.778 0.322 0.464 0.876
5 0.198 0.182 0.654 0.258 0.120
6 0.042 0.026 0.000 0.000 0.000

10 4 1 0.000 0.000 0.000 0.000 0.000
2 0.000 0.012 0.000 0.084 0.000
3 0.000 0.000 0.002 0.048 0.028
4 0.898 0.988 0.942 0.868 0.950
5 0.078 0.000 0.056 0.000 0.022
6 0.024 0.000 0.000 0.000 0.000

Table 3.9: Simulation results for 4-state normal HMMs: the percentage of times in which order
K0 was estimated by each method (n=400).
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Model K0 K̂0 AIC BIC AICQ BICQ MSCADQ

11 6 1 0.000 0.000 0.000 0.000 0.000
2 0.002 0.648 0.000 0.026 0.000
3 0.146 0.350 0.000 0.368 0.000
4 0.240 0.002 0.016 0.186 0.000
5 0.128 0.000 0.006 0.030 0.066
6 0.400 0.000 0.934 0.390 0.892
7 0.084 0.000 0.044 0.000 0.042

12 6 1 0.000 0.000 0.000 0.000 0.000
2 0.000 0.636 0.000 0.122 0.000
3 0.044 0.364 0.010 0.516 0.000
4 0.022 0.000 0.002 0.016 0.016
5 0.162 0.000 0.066 0.080 0.132
6 0.668 0.000 0.810 0.264 0.832
7 0.104 0.000 0.112 0.002 0.020

13 6 1 0.000 0.000 0.000 0.000 0.000
2 0.000 0.214 0.000 0.238 0.000
3 0.000 0.676 0.004 0.352 0.000
4 0.000 0.098 0.002 0.078 0.000
5 0.010 0.012 0.016 0.034 0.070
6 0.944 0.000 0.922 0.298 0.878
7 0.046 0.000 0.056 0.000 0.052

Table 3.10: Simulation results for 6-state normal HMMs: the percentage of times in which order
K0 was estimated by each method (n=400).
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Figure 3.2: Theoretical ACF for normal HMMs.
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Example 3.6.2. We then simulated data from Poisson HMMs. The marginal density of
the HMM observations is given by

f(y; Ψ) =
K∑
k=1

πk

(
e−θkθyk
y!

)
,

where Ψ = (θ1, θ2, ..., θK , π1, π2, ....πK−1). Again we set the upper bound K = 15.

For the 2-state Poisson HMMs under consideration, θ = (1, 9) with dependence struc-
tures S1-S4 shown in Table 3.1. The results are displayed in Tables 3.11 and 3.12. For
sample size n = 100, BIC performed the best and BICQ performed the second best in all
cases. MSCADQ performed better than AIC in all cases. For sample size n = 400, BIC,
BICQ and MSCADQ all performed well in detecting the true order. From these simula-
tions, it appears that the proposed method is not affected by the dependence structure.
In some cases, MSCADQ had a perfect success rate.

Now let us consider 3-state Poisson HMMs with θ = (1, 5, 10) and dependence struc-
tures S5-S7 from Table 3.1. For sample size n = 100 (see Table 3.13), MSCADQ was the
best in all three cases. Both BIC and BICQ had the tendency to underfit. For sample
size n = 400 (see Table 3.14), either AIC or AICQ was the best out of the three cases.
MSCADQ was on par with the other methods.

The 4-state Poisson HMMs have θ = (1, 5, 10, 15), and P and π shown in Table 3.2.
The results can be found in Tables 3.15 and 3.16. For sample size n = 100, MSCADQ was
indisputably the best. The other methods most often selected a model of order 3. For
sample size n = 400, the performance of AIC based on the full-model likelihood improved,
but MSCADQ was either the best or second best out of the three cases.

Finally, the 6-state Poisson HMMs under consideration have θ = (1, 5, 10, 15, 20, 25) and
dependence structures S11-S13, displayed in Table 3.3. For sample size n = 400 (see
Table 3.17), none of the methods performed well. In all three cases, both BIC and BICQ

never selected the correct order out of the 500 simulated data sets. MSCADQ, however,
provided an estimate closer to the true order most often. The poor performance by all
methods is likely due to the fact that the state means of the true models are relatively
close to each other for count data.
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Model K0 K̂0 AIC BIC AICQ BICQ MSCADQ

1 2 1 0.000 0.000 0.000 0.000 0.032
2 0.938 1.000 0.956 0.994 0.968
3 0.060 0.000 0.044 0.006 0.000
4 0.002 0.000 0.000 0.000 0.000

2 2 1 0.000 0.000 0.000 0.000 0.016
2 0.956 1.000 0.952 0.994 0.984
3 0.038 0.000 0.048 0.006 0.000
4 0.006 0.000 0.000 0.000 0.000

3 2 1 0.000 0.000 0.000 0.000 0.000
2 0.944 1.000 0.970 0.998 0.948
3 0.052 0.000 0.030 0.002 0.052
4 0.004 0.000 0.000 0.000 0.000

4 2 1 0.000 0.000 0.000 0.000 0.000
2 0.928 1.000 0.962 0.996 0.972
3 0.070 0.000 0.038 0.004 0.028
4 0.002 0.000 0.000 0.000 0.000

Table 3.11: Simulation results for 2-state Poisson-HMMs: the percentage of times in which order
K0 was estimated by each method (n=100).

Model K0 K̂0 AIC BIC AICQ BICQ MSCADQ

1 2 1 0.000 0.000 0.000 0.000 0.000
2 0.932 1.000 0.936 0.998 0.998
3 0.054 0.000 0.064 0.002 0.002
4 0.014 0.000 0.000 0.000 0.000

2 2 1 0.000 0.000 0.000 0.000 0.000
2 0.936 1.000 0.922 1.000 1.000
3 0.062 0.000 0.076 0.000 0.000
4 0.002 0.000 0.002 0.000 0.000

3 2 1 0.000 0.000 0.000 0.000 0.002
2 0.082 0.802 0.718 0.908 0.972
3 0.300 0.162 0.272 0.090 0.026
4 0.618 0.036 0.010 0.002 0.000

4 2 1 0.000 0.000 0.000 0.000 0.000
2 0.942 1.000 0.946 1.000 1.000
3 0.052 0.000 0.054 0.000 0.000
4 0.006 0.000 0.000 0.000 0.000

Table 3.12: Simulation results for 2-state Poisson-HMMs: the percentage of times in which order
K0 was estimated by each method (n=400).
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Model K0 K̂0 AIC BIC AICQ BICQ MSCADQ

5 3 1 0.000 0.000 0.000 0.000 0.000
2 0.440 0.962 0.314 0.690 0.028
3 0.530 0.038 0.684 0.308 0.752
4 0.030 0.000 0.002 0.002 0.212
5 0.000 0.000 0.000 0.000 0.008

6 3 1 0.000 0.000 0.000 0.000 0.000
2 0.290 0.878 0.424 0.806 0.060
3 0.700 0.120 0.576 0.194 0.766
4 0.010 0.002 0.000 0.000 0.172
5 0.000 0.000 0.000 0.000 0.002

7 3 1 0.000 0.000 0.000 0.000 0.000
2 0.328 0.886 0.394 0.792 0.244
3 0.660 0.114 0.604 0.208 0.738
4 0.012 0.000 0.002 0.000 0.018
5 0.000 0.000 0.000 0.000 0.000

Table 3.13: Simulation results for 3-state Poisson-HMMs: the percentage of times in which order
K0 was estimated by each method (n=100).

Model K0 K̂0 AIC BIC AICQ BICQ MSCADQ

5 3 1 0.000 0.000 0.000 0.000 0.000
2 0.008 0.574 0.006 0.076 0.014
3 0.890 0.426 0.970 0.924 0.942
4 0.096 0.000 0.024 0.000 0.044
5 0.006 0.000 0.000 0.000 0.000

6 3 1 0.000 0.000 0.000 0.000 0.000
2 0.002 0.080 0.018 0.190 0.060
3 0.966 0.920 0.956 0.810 0.902
4 0.032 0.000 0.026 0.000 0.038
5 0.000 0.000 0.000 0.000 0.000

7 3 1 0.000 0.000 0.000 0.000 0.000
2 0.000 0.048 0.008 0.156 0.050
3 0.932 0.952 0.960 0.844 0.908
4 0.068 0.000 0.032 0.000 0.042
5 0.000 0.000 0.000 0.000 0.000

Table 3.14: Simulation results for 3-state Poisson-HMMs: the percentage of times in which order
K0 was estimated by each method (n=400).
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Model K0 K̂0 AIC BIC AICQ BICQ MSCADQ

8 4 1 0.000 0.000 0.000 0.000 0.000
2 0.050 0.520 0.010 0.110 0.000
3 0.846 0.478 0.932 0.888 0.302
4 0.104 0.002 0.058 0.002 0.526
5 0.000 0.000 0.000 0.000 0.166
6 0.000 0.000 0.000 0.000 0.006

9 4 1 0.000 0.000 0.000 0.000 0.000
2 0.040 0.240 0.054 0.248 0.006
3 0.888 0.758 0.898 0.750 0.362
4 0.072 0.002 0.048 0.002 0.508
5 0.000 0.000 0.000 0.000 0.118
6 0.000 0.000 0.000 0.000 0.006

10 4 1 0.000 0.000 0.000 0.000 0.000
2 0.038 0.488 0.020 0.136 0.000
3 0.750 0.512 0.890 0.864 0.266
4 0.210 0.000 0.090 0.000 0.572
5 0.002 0.000 0.000 0.000 0.156
6 0.000 0.000 0.000 0.000 0.006

Table 3.15: Simulation results for 4-state Poisson-HMMs: the percentage of times in which order
K0 was estimated by each method (n=100).

Model K0 K̂0 AIC BIC AICQ BICQ MSCADQ

8 4 1 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000
3 0.736 1.000 0.652 0.978 0.082
4 0.258 0.000 0.348 0.022 0.610
5 0.006 0.000 0.000 0.000 0.262
6 0.000 0.000 0.000 0.000 0.046

9 4 1 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000
3 0.300 0.894 0.764 0.990 0.158
4 0.660 0.106 0.236 0.010 0.606
5 0.040 0.000 0.000 0.000 0.210
6 0.000 0.000 0.000 0.000 0.026

10 4 1 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000
3 0.134 0.976 0.640 0.984 0.070
4 0.846 0.024 0.360 0.016 0.654
5 0.020 0.000 0.000 0.000 0.240
6 0.000 0.000 0.000 0.000 0.034
7 0.000 0.000 0.000 0.000 0.002

Table 3.16: Simulation results for 4-state Poisson-HMMs: the percentage of times in which order
K0 was estimated by each method (n=400).

51



Model K0 K̂0 AIC BIC AICQ BICQ MSCADQ

11 6 1 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000
3 0.012 0.816 0.002 0.058 0.000
4 0.850 0.184 0.832 0.940 0.098
5 0.130 0.000 0.166 0.002 0.410
6 0.008 0.000 0.000 0.000 0.326
7 0.000 0.000 0.000 0.000 0.138

12 6 1 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000
3 0.012 0.632 0.000 0.038 0.000
4 0.876 0.368 0.870 0.958 0.132
5 0.110 0.000 0.130 0.004 0.436
6 0.002 0.000 0.000 0.000 0.312
7 0.000 0.000 0.000 0.000 0.100

13 6 1 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000
3 0.006 0.482 0.002 0.046 0.000
4 0.708 0.518 0.834 0.952 0.098
5 0.280 0.000 0.162 0.002 0.452
6 0.006 0.000 0.002 0.000 0.272
7 0.000 0.000 0.000 0.000 0.152

Table 3.17: Simulation results for 6-state Poisson HMMs: the percentage of times in which order
K0 was estimated by each method (n=400).
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To summarize, our simulation studies demonstrate that MSCAD based on the quasi-
likelihood is an appealing alternative to the information criteria AIC and BIC, based on
both the full-model likelihood and the quasi-likelihood. While BIC and BICQ performed
very well in detecting the true order when it was low, that is, K0 = 2, they had strong
tendencies to underfit models of higher order, that is, K0 = 3, 4 and 6. MSCADQ, on the
other hand, had higher success rates than the other methods when the true order was
high, especially when K0 = 4 and K0 = 6. Furthermore, MSCADQ is computationally
more efficient than the information criteria under consideration as it does not require K
separate model fittings. Starting with a large number of states, the method is able to
obtain a model of lower order in a single optimization procedure through the clustering
and merging of states. Another advantage of MSCADQ is that it does not require the
estimation of the transition matrix P, as is the case for the information criteria based on
the full-model likelihood.

Now let us compare the time taken by MSCADQ and the information criteria to com-
plete the analysis of 500 simulated data sets for the most difficult normal HMM with
6 states and sample size n = 400. On a typical Unix machine, MSCADQ with 5-fold
cross-validation to select the tuning parameter took about 13 minutes. The computa-
tion of AIC and BIC values for models of order 1 to 7, on the other hand, took over 2
hours. We had used the R code provided in Zucchini and MacDonald (2009) for fitting
a stationary HMM by direct numerical maximization of the likelihood function. Their
program is for the case of state-dependent Poisson distributions, but can be easily altered
for the case of state-dependent normal distributions. While our code for the computation
of AICQ and BICQ values for models of order 1 to 9 took only about 2 minutes to run,
one should also consider that time is taken to modify the code after every model fit. The
maximum quasi-likelihood estimators were obtained using the EM algorithm. Therefore,
it is clear that using a quasi-likelihood instead of the full-model likelihood greatly reduces
the computational effort in estimating the order.

3.7 Applications

3.7.1 Poisson HMMs for Movement Counts by Fetal Lambs

We consider a time series of overdispersed count data, originally analyzed in Leroux and
Puterman (1992). The data set consists of the numbers of movements by a fetal lamb
observed through ultrasound in 240 consecutive 5-second intervals. We plot the data in
Figure 3.3.

Let y1, y2, ..., y240 denote the observations. Leroux and Puterman (1992) suggest fitting
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Figure 3.3: Number of movements by a fetal lamb in one of 240 consecutive 5-second intervals.

Poisson HMMs to this data for two reasons. The first reason is to accommodate the
overdispersion that is present (the sample variance s2 = 0.658 is larger than the sample
mean ȳ = 0.358). The second reason is to capture the serial dependence in the observa-
tions, which can be seen from the sample autocorrelation function found in Figure 3.4.
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Figure 3.4: Sample ACF for the fetal lamb movement count data.

To select the number of states of the Poisson HMM, Leroux and Puterman (1992) had
used the information criteria AIC and BIC based on the full likelihood. They found that
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K Log-likelihood AIC BIC Quasi-log-likelihood AICQ BICQ
1 -201.044 404.087 407.568 -201.044 404.087 407.568
2 -177.519 363.038 376.960 -186.990 379.979 390.421
3 -166.488 350.976 382.302 -185.796 381.592 398.995
4 -164.297 360.594 416.285 -185.793 385.587 409.951
5 -164.255 378.511 465.527 -185.790 389.581 420.907

Table 3.18: AIC and BIC values, based on both the full likelihood and quasi-likelihood, for the
fetal lamb movement count data.

AIC selects a model of 3 states, whereas BIC selects a model of 2 states. In Table 3.18,
we present the AIC and BIC values based on the quasi-likelihood, and for completeness,
we also present the AIC and BIC values based on the full likelihood. Note that our log-
likelihood values differ from those in Leroux and Puterman (1992) since all terms that do
not depend on the parameters of interest were dropped in their computation.

Frühwirth-Schnatter (2006) had used a Bayesian approach to select the number of states.
Through a comparison of marginal likelihoods, she had found that the 3-state model was
favoured over the 2-state model.

We apply our proposed method to this data set. Starting from K = 8 states, we found
that MSCAD based on the quasi-likelihood, using CV, AIC and BIC to select the tuning
parameter, all favour a 2-state model.

In Table 3.19, we present the maximum likelihood estimates for models of order 2 and
3 obtained using direct numerical maximization of the likelihood. While the 2-state and
3-state models both provide adequate fits, the 2-state model has the additional advantage
of being easily interpreted. As pointed out by Leroux and Puterman (1992), the states
may correspond to a relaxed state with regular levels of fetal activity and an excited state
with higher levels of fetal activity, which are possibly triggered by physical factors such
as the development of the central nervous system or empty space within the uterus. The
relaxed state has an estimated movement rate λ̂1 = 0.2564 and the excited state has an
estimated movement rate λ̂2 = 3.1148. The fetus occupies an excited state only about
3.5% of the time. Furthermore, it appears that the number of movement counts in any
time interval depends strongly on the number of movement counts in the previous time
interval. If the fetus is in a relaxed state, it remains in this state with a high probability
(p̂11 = 0.989) and if the fetus is in an excited state, it is more likely to remain in that
state in the next time interval (p̂22 = 0.690).

To assess the marginal properties of both the 2-state and 3-state models, we compare
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K λ̂ P̂ π̂

2 (0.256, 3.115)
(

0.989 0.011
0.310 0.690

)
(0.965, 0.035)

3 (0.041, 0.495, 3.413)

0.950 0.040 0.010
0.041 0.959 0
0.188 0 0.812

 (0.490, 0.483, 0.027)

Table 3.19: Parameter estimates for Poisson HMMs of order 2 and 3 fitted to the movement
count data in fetal lambs.

the observed numbers of movement counts to those expected under each of the models,
which are displayed in Table 3.20. As a measure of the goodness-of-fit, we use Pearson’s
chi-squared test statistic

χ2 =
N∑
i=1

(Oi − Ei)2

Ei
,

where Oi is the observed frequency, Ei is the expected frequency and N = 8. The test
statistic is asymptotically chi-squared distributed with N − p − 1 degrees of freedom,
where p is the number of parameters estimated from the data. We find χ2 = 7.796 and
χ2 = 4.965 for models of order 2 and 3, respectively. Using the 0.05 level of significance,
the critical values are χ2

0.95,4 = 9.488 for the 2-state model and χ2
0.95,2 = 5.991 for the

3-state model. Since in both cases the test statistic is smaller than the critical value, it
appears that both models fit the data well.

# of Movements Observed Frequency Expected Frequency
K = 2 K = 3

0 182 179.587 183.911
1 41 47.108 40.292
2 12 7.702 9.969
3 2 2.385 2.814
4 2 1.497 1.358
5 0 0.914 0.823
6 0 0.474 0.460
7 1 0.211 0.224

Table 3.20: Observed numbers of movement counts, compared with those expected under models
of order 2 and 3.
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3.7.2 Normal HMMs for Waiting Times of the Old Faithful Geyser

We consider a time series relating to eruptions of the Old Faithful geyser in Yellowstone
National Park in the U.S. state of Wyoming. The data set, which was originally presented
in Azzalini and Bowman (1990), consists of 299 observations of continuous measurement
from August 1st to August 15th, 1985. The observations are times between the starts of
successive eruptions. From the sample autocorrelation function displayed in Figure 3.5,
we see that there is strong serial dependence in the behaviour of the geyser.
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Figure 3.5: Sample ACF for the waiting times of the Old Faithful geyser.

This data set has been previously analyzed by Zucchini and MacDonald (2009), who fit
a series of normal HMMs to this data set with unequal variances. Since the variances for
their final 3-state model do not differ substantially across states, we decided to fit a series
of normal HMMs with equal variances and consider the problem of estimating the number
of states. In Table 3.21, we compare models of order 1 to 5 on the basis of AIC and BIC,
based on both the full-model likelihood and the quasi-likelihood. We see that AIC selects
a 4-state model, while its quasi-likelihood counterpart selects a 3-state model. We also see
that BIC selects a 3-state model, while the quasi-likelihood counterpart selects a 2-state
model.

We then apply our proposed method, starting with an upper bound K = 15. For the
tuning parameter γn/

√
n, we considered the range [0.40, 1.75]. MSCADQ, using CV and

BIC to select the tuning parameter, decided on a 3-state model. With AIC as the method
for tuning parameter selection, however, a 6-state model was chosen by MSCADQ. This
example highlights the importance of choosing an appropriate tuning parameter.
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K Log-likelihood AIC BIC Quasi-log-likelihood AICQ BICQ
1 -1210.488 2424.977 2432.378 -1210.488 2424.977 2432.378
2 -1099.632 2209.264 2227.766 -1161.709 2331.419 2346.220
3 -1053.391 2126.783 2163.787 -1158.522 2329.044 2351.246
4 -1046.130 2126.261 2189.169 -1157.288 2330.575 2360.179
5 -1034.787 2121.574 2217.786 -1157.288 2330.575 2360.179

Table 3.21: AIC and BIC values, based on both the full likelihood and quasi-likelihood, for the
Old Faithful waiting times.

The parameter estimates for models of order 2, 3 and 4 are displayed in Table 3.22.
They were obtained using direct numerical maximization of the likelihood. In the left
panel of Figure 3.6, we plot the fitted densities of models with 2, 3 and 4 states on the
histogram of waiting times. We also plot the density of the fitted normal HMMs with
unequal variances in the right panel of Figure 3.6. From the left panel of Figure 3.6, it
appears that the 4-state model does not result in a substantial improvement in fit over
the 3-state model. Our preference is thus with the normal HMM of order 3. We also
see that the models with unequal variances provide slightly better fits than the models
with equal variances. This is expected since, in general, the addition of more parameters
should improve the overall fit of the model.

K 2 3 4

µ̂ (57.206, 81.921) (54.764, 75.414, 85.091) (53.168, 62.544, 75.978, 85.091)

σ̂ 6.867 5.287 4.933

P̂
(
0.000 1.000
0.638 0.362

) 0.000 0.000 1.000
0.251 0.635 0.114
0.667 0.296 0.037



0.000 0.000 0.000 1.000
0.000 0.000 0.000 1.000
0.105 0.235 0.621 0.039
0.605 0.072 0.280 0.043


π̂ (0.390, 0.610) (0.325, 0.302, 0.373) (0.256, 0.092, 0.277, 0.375)

Table 3.22: Parameter estimates for normal HMMs of order 3 and 4 fitted to the waiting times
of the Old Faithful geyser.
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Figure 3.6: Normal HMMs of order 2, 3 and 4 with equal variances (left) and unequal variances
(right) fitted to the waiting times of the Old Faithful geyser.

3.8 Discussion

In this chapter, we considered the problem of estimating the number of states in a sta-
tionary HMM. We reviewed existing order estimation procedures, such as AIC and BIC,
based on both the full-model likelihood and the quasi-likelihood. We then proposed a
new method to deal with this order estimation problem.

Theoretically we showed that the maximum penalized quasi-likelihood estimator Ĝn is
a consistent estimator of the true mixing distribution G0. However, this result does not
give us consistency in estimating the true order K0 since Ĝn may have more than K0 sup-
port points. It remains to show that Ĝn is consistent in estimating K0. We will continue
to work on this problem following the completion of this thesis.

The implementation of this method was then discussed. We presented a revised EM
algorithm for performing the maximization of the penalized quasi-likelihood. We also in-
troduced likelihood-based cross-validation for selecting the tuning parameter used in the
SCAD penalty.

We next evaluated the performance of the proposed method through simulation, com-
paring it to the performance of the information criteria, based on both the full-model
likelihood and the quasi-likelihood. Our simulation results indicate that when K0 is
small, MSCADQ is on par with these methods, but when K0 is large, its success rates
in detecting the true order are generally higher than those of the information criteria.
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We also demonstrated the method by analyzing two well-known data sets in the HMM
literature.

One of the main advantages of this method is that it only requires the fitting of one
model. Starting with a HMM with a large number of states, the two penalty functions
work simultaneously to cluster and merge states so that a model with the proper order is
obtained in a single optimization procedure. This is not the case for AIC and BIC, which
must fit all the candidate models in order to select the best one.
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Chapter 4

Conclusion

The focus of this thesis was to consider the problem of order estimation in stationary
hidden Markov models. We proposed a new method for order estimation that is based on
the penalization of a so-called quasi-likelihood, which is constructed from the marginal
mixture distributions of the HMM observations. We now summarize this thesis and look
towards future work, both on the proposed method itself as well as on possible extensions
of this work.

In Chapter 2, we formally introduced HMMs and discussed the estimation of HMM pa-
rameters in the case where the order is known. We focused on the the most common
approach in the HMM literature for estimating model parameters, which is to perform
maximum likelihood estimation. In particular, we compared two methods for finding the
maximum likelihood estimators of HMM parameters, namely the EM algorithm and di-
rect numerical maximization.

In Chapter 3, we presented our penalized quasi-likelihood method, MSCADQ, for esti-
mating the number of hidden states. We investigated some of the asymptotic properties
of the proposed method and assessed its performance via simulation. While MSCADQ

was found to perform well in simulation, there are a number of issues relating to this
method that require further investigation. Firstly, the asymptotic theory of this method
is incomplete. While the maximum penalized quasi-likelihood estimator was shown to
be a consistent estimator of the true mixing distribution, it remains to show that the
MPQLE is consistent in estimating the true order. Secondly, the method assumes that
there is an optimal range of the tuning parameter for detecting the true order. How to
select a suitable tuning parameter used in the SCAD penalty in a computationally effi-
cient manner is still unclear. Thirdly, the optimization of the penalized quasi-likelihood
is not trivial due to the singularity of the SCAD penalty at the origin. While the revised
EM algorithm, presented in Chapter 3, is relatively straightforward to implement, it does
not guarantee convergence to the global maximum of the objective function. Thus, the
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optimization of the penalized quasi-likelihood is worthy of further study.

One possible extension of this method would be to the case where the state-dependent
parameters θk are multi-dimensional, which is the subject of a future research project.
Our proposed method is limited to the one-dimensional setting.
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Appendix A: Proofs

In Proposition 2.3.1, we will show that the forward probabilities αt(j) are indeed proba-
bilities, but first we need the following lemma.

Lemma 2.3.1. For t = 1, 2, ..., n− 1 and i, j = 1, 2, ..., K,

P (Y1 = y1, ..., Yt+1 = yt+1, Zt = i, Zt+1 = j) =

P (Zt+1 = j | Zt = i)P (Yt+1 = yt+1 | Zt+1 = j)P (Y1 = y1, ..., Yt = yt, Zt = i).

Proof. Note that

P (Y1, ..., Yt+1, Z1, ..., Zt+1) = P (Z1)
t+1∏
s=2

P (Zs | Zs−1)
t+1∏
s=1

P (Ys | Zs)

= P (Zt+1 | Zt)P (Yt+1 | Zt+1)P (Y1, ..., Yt, Z1, ..., Zt).

Now summing over Z1, ..., Zt−1, the result follows.

Proposition 2.3.1. For t = 1, 2, ..., n and j = 1, 2, ..., K,
αt(j) = P (Y1 = y1, ..., Yt = yt, Zt = j).

Proof. By induction. For t = 1:

α1(j) = πjf(y1; θj)

= P (Z1 = j)P (Y1 = y1 | Z1 = j)

= P (Y1 = y1, Z1 = j).
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Now suppose the claim holds for some t ≥ 1. Then

αt+1(j) =

{
K∑
i=1

αt(i) pij

}
f(yt+1; θj)

=
K∑
i=1

P (Y1 = y1, ..., Yt = yt, Zt = i)P (Zt+1 = j | Zt = i)P (Yt+1 = yt+1 | Zt+1 = j)

=
K∑
i=1

P (Y1 = y1, ..., Yt+1 = yt+1, Zt = i, Zt+1 = j)

= P (Y1 = y1, ..., Yt+1 = yt+1, Zt+1 = j),

where the second to last equality follows from Lemma 2.3.1.

In Proposition 2.3.2, we also verify that the backward probabilities are indeed probabili-
ties. First, we must present the following lemma.

Lemma 2.3.2. For t = 1, 2, ..., n− 1,

(1)P (Yt+1, ..., Yn | Zt+1) = P (Yt+1 | Zt+1)P (Yt+2, ..., Yn | Zt+1)

(2)P (Yt+1, ..., Yn | Zt+1) = P (Yt+1, ..., Yn | Zt, Zt+1).

Proof of (1). Note that

P (Yt+1, ..., Yn, Zt+2, ..., Zn | Zt+1)P (Zt+1)

= P (Yt+1, ..., Yn | Zt+1, ..., Zn)P (Zt+1, ..., Zn)

= P (Yt+1 | Zt+1)

{
P (Zt+1)

n∏
s=t+2

P (Zs | Zs−1)
n∏

s=t+2

P (Ys | Zs)

}
= P (Yt+1 | Zt+1)P (Yt+2, ..., Yn, Zt+1, ..., Zn)

and summing over Zt+2, ..., Zn and dividing by P (Zt+1) , we obtain the result.
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Proof of (2). We have that

P (Yt+1, ..., Yn | Zt, Zt+1) =
P (Yt+1, ..., Yn, Zt, Zt+1)

P (Zt, Zt+1)

=
1

P (Zt, Zt+1)

∑
Zt+2,...,Zn

P (Yt+1, ..., Yn, Zt, ..., Zn)

=
1

P (Zt, Zt+1)

∑
Zt+2,...,Zn

P (Zt, ..., Zn)P (Yt+1, ..., Yn | Zt, ..., Zn)

=
P (Zt)

P (Zt, Zt+1)

∑
Zt+2,...,Zn

n∏
s=t+1

P (Zs | Zs−1)
n∏

s=t+1

P (Ys | Zs)

=
∑

Zt+2,...,Zn

n∏
s=t+2

P (Zs | Zs−1)
n∏

s=t+1

P (Ys | Zs)

=
1

P (Zt+1)

∑
Zt+2,...,Zn

P (Yt+1, ..., Yn, Zt+1, ..., Zn)

= P (Yt+1, ..., Yn | Zt+1).

Proposition 2.3.2. For t = 1, 2, ..., n− 1,

βt(i) = P (Yt+1 = yt+1, ..., Yn = yn | Zt = i).

Proof. By induction. For t = n− 1:

βn−1(i) =
K∑
j=1

pijf(yn; θj)βn(j)

=
K∑
j=1

P (Zn = j | Zn−1 = i)P (Yn = yn | Zn = j)

=
K∑
j=1

P (Zn = j | Zn−1 = i)P (Yn = yn | Zn = j, Zn−1 = i)

=
K∑
j=1

P (Yn = yn, Zn = j | Zn−1 = i)

= P (Yn = yn | Zn−1 = i),

where the third equality follows from Lemma 2.3.2 (2).

65



Now assume the result holds for some t+ 1. Then we have that

βt(i) =
K∑
j=1

pijf(yt+1; θj)βt+1(j)

=
K∑
j=1

P (Zt+1 = j | Zt = i)P (Yt+1 | Zt+1 = j)P (Yt+2, ..., Yn | Zt+1 = j)

=
K∑
j=1

P (Zt+1 = j | Zt = i)P (Yt+1, ..., Yn | Zt+1 = j)

=
K∑
j=1

P (Zt+1 = j | Zt = i)P (Yt+1, ..., Yn | Zt+1 = j, Zt = i)

=
K∑
j=1

P (Yt+1, ..., Yn, Zt+1 = j | Zt = i) = P (Yt+1, ..., Yn | Zt = i),

where the third and fourth equalities follow from Lemma 2.3.2 (1) and Lemma 2.3.2 (2),
respectively.

Lemma 2.3.3. For t = 1, 2, ..., n− 1,
P (Y1, ..., Yn | Zt) = P (Y1, ..., Yt | Zt)P (Yt+1, ..., Yn | Zt).

Proof. First note that

P (Y1, ..., Yn, Z1, ..., Zn) = P (Z1)
n∏
s=2

P (Zs | Zs−1)
n∏
s=1

P (Ys | Zs)

= P (Y1, ..., Yt, Z1, ..., Zt)
n∏

s=t+1

P (Zs | Zs−1)
n∏

s=t+1

P (Ys | Zs)

= P (Y1, ..., Yt, Z1, ..., Zt)
P (Yt+1, ..., Yn, Zt, ..., Zn)

P (Zt)
.

Now summing over Z1, ..., Zt−1 and Zt+1, ..., Zn, we obtain

P (Y1, ..., Yn, Zt) = P (Y1, ..., Yt, Zt)
P (Yt+1, ..., Yn, Zt)

P (Zt)

and dividing by P (Zt), the result follows.

Proposition 2.3.3. For t = 2, ..., n and i, j = 1, 2, ..., K,

(1) P (Zt = i | Y1, ..., Yn) =
αt(i)βt(i)
K∑
i=1

αt(i)βt(i)

and

(2) P (Zt−1 = i, Zt = j | Y1, ..., Yn) =
αt−1(i)pijf(yt; θj)βt(j)

K∑
i=1

K∑
j=1

αt−1(i)pijf(yt; θj)βt(j)

.
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Proof of (1). From Lemma 2.3.3, we obtained the result

P (Y1, ..., Yn | Zt = i) = P (Y1, ..., Yt | Zt = i)P (Yt+1, ..., Yn | Zt = i)

and thus multiplying both sides by P (Zt = i), we have that

P (Y1, ..., Yn, Zt = i) = P (Y1, ..., Yt, Zt = i)P (Yt+1, ..., Yn | Zt = i) = αt(i)βt(i).

Dividing P (Y1, ..., Yn, Zt = i) by P (Y1, ..., Yn) =
K∑
i=1

αt(i)βt(i), the result follows.

Proof of (2). First note that

P (Y1, ..., Yn, Z1, ..., Zn)

= P (Y1, ..., Yt−1, Z1, ..., Zt−1)P (Zt | Zt−1)
n∏

s=t+1

P (Zs | Zs−1)
n∏
s=t

P (Ys | Zs)

= P (Y1, ..., Yt−1, Z1, ..., Zt−1)P (Zt | Zt−1)
P (Yt, ..., Yn, Zt, ..., Zn)

P (Zt)

= P (Y1, ..., Yt−1, Z1, ..., Zt−1)P (Zt | Zt−1)P (Yt, ..., Yn, Zt+1, ..., Zn | Zt)

Now summing over Z1, ..., Zt−2 and Zt+1, ..., Zn, we obtain

P (Y1, ..., Yn, Zt−1, Zt) = P (Y1, ..., Yt−1, Zt−1)P (Zt | Zt−1)P (Yt, ..., Yn | Zt)

= αt−1(i)pijf(yt; θj)βt(j)

since P (Yt, ..., Yn | Zt) = P (Yt | Zt)P (Yt+1, ..., Yn | Zt) from Lemma 2.3.2 (1). Dividing

P (Y1, ..., Yn, Zt−1, Zt) by P (Y1, ..., Yn) =
K∑
i=1

K∑
j=1

αt−1(i)pijf(yt; θj)βt(j), the result follows.
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Proposition 2.4.1: The initial distribution π is a stationary distribution if and only if
π(IK − P+O) = 1, where Ik is the K ×K identity matrix, P is the transition matrix, O
is the K ×K matrix of ones and 1 is the K-dimensional row vector of ones.

Proof. Suppose that π(IK − P +O) = 1. Then we have that

π(IK +O)− 1 = πP (4.1)

and evaluating the left-hand side of Equation (4.1) gives us

(π1π2 . . . πK)


2 1 ... 1

1 2 ... 1
...

... . . . ...
1 1 ... 2

− (11 . . . 1)

= (2π1 + π2 + ...+ πK , π1 + 2π2 + ...+ πK , ..., π1 + π2 + ...+ 2πK)− (1, 1, . . . , 1)

= (π1 + 1, π2 + 1, ..., πK + 1)− (1, 1, . . . , 1) since
K∑
j=1

πj = 1

= (π1, π2, ..., πK).

Thus, equating the left-hand side and right-hand side of Equation (4.1) gives us π = πP.

Now suppose that π is a stationary distribution, that is, π = πP, then reversing the
argument as follows

πP = π = π(IK +O)− 1

will give us that π(IK − P +O) = 1.
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Appendix B: Regularity Conditions

In what follows, the expectations are under the true mixing distribution G0. Assump-
tions 3 to 6 correspond to those in Poskitt and Zhang (2005), who show that the sequence
1
n
`Qn (G) converges to E [log f(Y ;G)] almost surely and uniformly over the compact space

of G.

Assumption 1. The parameter space Θ is compact. Furthermore, the following two
conditions hold.

(i) E [|log f(Y1; θ)|] <∞ ∀θ ∈ Θ.

(ii) There exists ε > 0 such that for each θ ∈ Θ, f(y; θ) is measurable and E [| log f(Y1; θ, ε)|] <
∞, where f(y; θ, ε) = 1 + sup

|θ−θ′|≤ε
f(y; θ′).

Assumption 2. The family {f(y; θ); θ ∈ Θ} is strongly identifiable in the sense that
for K distinct θ1, θ2, ..., θK ,

K∑
j=1

{ajf(y; θj) + bjf
′(y; θj) + cjf

′′(y; θj)} = 0

for all y implies that aj = bj = cj = 0 for j = 1, 2, ..., K.

Assumption 3. The density f(y; θ) is differentiable with respect to θ ∈ Θ and y,
and three times continuously differentiable with respect to θ.

Assumption 4. There exists a continuous function h(y) such that f(y; θ) ≤ h(y) and
E [| log h(y)|] <∞.

Assumption 5. First- and second-order partial derivatives of log f(y; θ) satisfy∣∣∣∣∂ log f(y; θ)

∂θu

∣∣∣∣ < hu(y),

∣∣∣∣∂ log f(y; θ)

∂θu∂θv

∣∣∣∣ < hu,v(y),

where E [h(y)] <∞ and E [hu,v(y)] <∞.
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Assumption 6. There exists δ > 0 such that
∫
‖y‖2+δf(y; θ) dy < ∞ for all θ ∈ Θ,

where ‖ · ‖ is Euclidean distance.

Further, in addition to the identifiability of the marginal finite mixture model, Lind-
gren (1978) had shown that under the following conditions the maximum quasi-likelihood
estimator is consistent and asymptotically normal.

Assumption 7: There exists a neighbourhood S of θ0 such that

(i) E
[
sup
θ∈S
|log f(Y1; θ)|

]
<∞,

(ii)
∫

sup
θ∈S

∣∣∣∣∂f(y; θ)

∂θi

∣∣∣∣ dy <∞,

(iii)
∫

sup
θ∈S

∣∣∣∣∂2f(y; θ)

∂θi∂θj

∣∣∣∣ dy <∞,

(iv) E
[
sup
θ∈S

∣∣∣∣ ∂3f(y; θ)

∂θi∂θj∂θk

∣∣∣∣] <∞,

(v) For some δ > 0, E

[∣∣∣∣∂ log f(Y1; θ0)

∂θi

∣∣∣∣2+δ
]
<∞.
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