
EFFICIENT JIT COMPILATION OF MATLAB LOOPS

by

Matthieu Dubet

School of Computer Science

McGill University, Montréal

Sunday, April 13th 2014

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

Copyright c© 2014 Matthieu Dubet

Abstract

MATLAB R© is a dynamic numerical scripting language widely used by scientists, engi-

neers and students. It is praised because it allows fast prototyping, especially for numerical

programs which manipulate matrices. However, numerical software can be computation-

ally heavy, and MATLAB, as most interpreted languages, suffers from slow performance

as compared to traditionally compiled languages such as FORTRAN or C++ . One way to

provide better performance for interpreted languages is through just-in-time compilation,

where the program (or part of the program) is compiled at run-time.

In this thesis, we introduce SJIT, a just-in-time compiler for MATLAB which focuses

on providing good performance while keeping the compilation time extremely small. It

is designed to integrate easily and transparently into an existing interpreter for MATLAB

named McVM, and generates highly efficient assembly code intensive parts of the program,

namely loops. In addition to its use for accelerating whole MATLAB programs, it is also

suitable for accelerating the execution of fragments of MATLAB code inside an interactive

environment such as a read-eval-print loop.

In addition to the SJIT compiler, this thesis also contributes an efficient framework to

develop static dataflow analyses, and a type inference analysis implemented within this

framework.

The SJIT compiler has been evaluated, both in terms of compilation time and execution

time, on a collection of MATLAB benchmarks using traditional features such as matrices

and structures. The results show that: (1) the achieved performance is several times faster

than the original MATLAB implementation, and (2) that the compilation time is very rea-

sonable, taking only a small fraction of the overall time.

i

ii

Résumé

MATLAB R© est un langage de calcul numérique utilisé par des ingénieurs, scientifiques,

et étudiants à travers le monde. Il est apprécié pour faire du prototypage rapide, particuliè-

rement pour les programmes de calcul numérique manipulant des matrices. Cependant, les

programmes de calcul numérique peuvent être exigeant en termes de puissance de calcul, et

MATLAB, comme la plupart des langages interprétés, souffrent de mauvaises performances

comparativement au langages compilés traditionels comme FORTRAN ou C++ .

Dans cette thèse, nous présentons SJIT, un compilateur just-in-time pour MATLAB qui

porte son attention à procurer de bonne performance tout en gardant un temps de compi-

lation extrémement réduit. Il est concu pour s’intégrer facilement et de manière transpa-

rente dans un interpréteur déjà éxistant pour MATLAB appelé McVM, et génère du code

assembleur très performant pour les parties du programme lourde en quantité de calcul :

les boucles. En plus de son usage pour accélérer des programmes MATLAB complet, il

fonctionne aussi pour accélérer l’éxécution de fragments de code MATLAB à l’intérieur

d’environments interactifs, comme une boucle d’évaluation read-eval-print.

En plus du compilateur SJIT, cette thèse fournit aussi un outil performant pour le dé-

veloppement d’analyses statiques de dataflow, ainsi qu’une analyse d’inférence de type

implémentée avec cet outil.

Le compilateur SJIT a été évalué, à la fois en temps de compilation et en temps d’éxé-

cution, sur une collection de programmes MATLAB qui utilisent des fonctionnalités clas-

siques, telles que les matrices et les structures. Les résultats montrent que : (1) la perfor-

mance atteinte est bien supérieure à celle de l’implémentation originelle de MATLAB, et

que (2) le temps de compilation est très raisonnable, puisqu’il correspond seulement à une

faible fraction du temps globale.

iii

iv

Acknowledgements

I would like to thank all the persons who made these two years a nice experience, and

thus helped me to make this thesis:

• My family in Canada for their dedication in making my life in Montreal nicer.

• My family in France for their long-distance support, from video calls to handwritten

letters.

• The members of the Sable lab, for the lunchs in Chinatown.

• My supervisor, Laurie, for dealing nicely with me.

v

vi

Table of Contents

Abstract i

Résumé iii

Acknowledgements v

Table of Contents vii

List of Figures xi

List of Tables xiii

List of listings xv

1 Introduction 1
1.1 Contributions . 2

1.2 Thesis Outline . 2

2 Background and Related Work 3
2.1 The MATLAB language . 3

2.1.1 Execution model . 3

2.1.2 Dynamic type system . 4

2.1.3 Typical MATLAB programs . 4

2.2 Related work . 5

2.2.1 Static approach to MATLAB execution 6

vii

2.2.2 McJIT . 6

2.2.3 Old research projects about MATLAB 7

2.2.4 TraceMonkey . 7

3 Dataflow Analysis Framework 9
3.1 Description of the design . 10

3.1.1 Mc IR . 10

3.1.2 Definition of an analysis . 11

3.2 Provided components . 12

3.2.1 Flow sensitive base . 12

3.2.2 Sequence of statements . 14

3.2.3 Loop . 14

3.2.4 Conditional . 17

3.2.5 Function call expression . 20

3.2.6 Flow insensitive . 21

3.2.7 Helper components . 22

3.3 Implementation . 25

3.4 Example of a reaching definition analysis implementation 27

3.5 Summary . 30

4 Type Inference Analysis 31
4.1 Description of the algorithm . 31

4.2 Domain . 32

4.3 Rules . 35

4.3.1 Expression . 35

4.3.2 Assignment statement . 36

4.3.3 Control-Flow statements . 39

4.3.4 Merge operation . 40

4.3.5 Recursion . 41

4.4 Value analysis . 42

viii

5 Simple Just-In-Time Compiler 45
5.1 Design of SJIT compiler . 45

5.1.1 The McVM interpreter . 45

5.1.2 Performance troubles . 47

5.1.3 Execution model . 50

5.2 Code Generation . 56

5.2.1 LLVM IR . 56

5.2.2 Type-specialized block . 56

5.2.3 If-Else statement . 59

5.2.4 Loop, Continue and Break statements 59

5.2.5 Matrix and structure access . 60

5.2.6 Array Bound Checking . 63

5.3 Summary . 65

6 Performance Evaluation 67
6.1 Benchmarks . 67

6.2 Performance results . 69

6.2.1 Array-bound checking performance 72

6.3 Overhead of just-in-time compilation . 72

6.3.1 Compilation and analysis time . 72

6.3.2 Cached analysis time . 73

7 Conclusions and Future Work 75
7.1 Future Work . 76

Appendices 77

A Statement dispatcher code 79

B Merger code 83

C Reaching definition analysis code 85

ix

D RGB2HSV benchmark 89

E Example of LLVM IR generated by the SJIT 93

Bibliography 95

x

List of Figures

3.1 Mc IR Nodes . 10

3.2 Mc IR Statements . 11

3.3 Iterative fixpoint dataflow behavior on a loop 16

3.4 Flow sensitive, path insensitive conditional component dataflow 19

3.5 Graphical explanation of the T merger(std::vector<T>) function 23

4.1 Domain of the type inference analysis . 33

5.1 An environment containing two variables: a which is a matrix [1.0 2.2 ; 3.8

4.34] and b which is a matrix [8.09] . 47

5.2 Execution of a loop in McVM enhanced with the SJIT 52

5.3 The names correspond to the line number of the loop in Listing 30 52

5.4 Control Flow Graph representing the LLVM code (basicblock and branch-

ing) for an If-Else statement . 60

5.5 Memory representation of a 2×2 structarray with fields r, g and b suitable

for LLVM . 62

xi

xii

List of Tables

3.1 Mandatory functions to compose an intraprocedural analysis 13

3.2 Mandatory functions to analyze a function call expression 21

6.1 Performance results (in seconds) . 70

6.2 Compilation time (in seconds) . 73

xiii

xiv

List of listings

1 Implementation of component flow_sensitive_base 14

2 Implementation of component sequence 15

3 Implementation of component forward and backward 15

4 Implementation of component loop_fixpoint 18

5 Implementation of component ifelse_sensitive 19

6 MATLABcode showing function calls . 20

7 Example of MATLAB recursive functions 20

8 Implementation of component function_simple 22

9 Implementation of component function_fixpoint 23

10 Implementation of flow_insensitive_base 24

11 Description of CRTP . 25

12 Example from the type inference analysis described in Chapter 4 26

13 Resulting assembly code compiled with GCC 4.8.2 -O3 26

14 Domain for the reaching definitions analysis 27

15 Semantic of the merging function for the reaching definitions analysis . . . 28

16 Declaration of the reaching definition analyzer 29

17 Implementation of the analyze_assign() function for the reaching definition

analysis . 29

18 MATLAB code fragment example to illustrate the root of an expression . . . 37

19 MATLAB code fragment example to illustrate inclusion between types . . . 37

20 Example part 1 . 38

21 Example part 2 . 38

22 Merging two structures with different fields 41

xv

23 A user-defined factorial function in MATLAB 42

24 MATLABcode fragment example which might use array-growth 43

25 Definition of a for loop . 43

26 Example of the analysis running on two nested for loops 44

27 Example of a MATLAB session which demonstrates that structarrays are

weakly typed: the field id_like_a_double_field contains an empty

double matrix, a chararray and a double matrix 46

28 Loop to compute the sum of all the matrix elements in MATLAB 48

29 Generated code by the SJIT for the statement in Listing 28 49

30 Structure of a MATLAB program with nested loops 51

31 The type inference weeder determines that the variable a is of type > in

this program fragment . 54

32 The type inference weeder determines that the variable a is of type struct

with fields a of base type double and b of type double in this program

fragment . 54

33 MATLAB code with a loop inside an uncompilable loop 55

34 Pseudocode for the is_compilable function with cache 55

35 Example of a loop compilation . 57

36 The environment variables are passed as arguments to the LLVM function,

cast to their inferred type (double for a, i1 for b, i64 for c, and copied

(except a which is too big). 58

37 Loop compilation within an environment which contains variables only a

before, but also val and mymatrix after. 59

38 Simple example of an If-Else statement in MATLAB 59

39 Assembly code for an If-Else statement in LLVM 61

40 Assembly code for a matrix access in LLVM IR 61

41 Assembly code for a structarray access in LLVM IR 63

42 Bound check generated when the size of the accessed object is known at

compile-time (10) but the index isn’t. 64

43 MATLAB code to show when a runtime boundcheck is generated 65

xvi

44 Pseudocode for the capr benchmark. Three dots are representing instruc-

tions. 71

45 Implementation of the statement_dispatcher component (1/2) 80

46 Implementation of the statement_dispatcher component (2/2) 81

47 Implementation of the merger component 83

48 reachdef.h . 86

49 reachdef.cpp . 87

50 MATLAB implementation of a conversion between an RGB and an HSV

image representation (1/2) . 90

51 MATLAB implementation of a conversion between an RGB and an HSV

image representation (2/2) . 91

52 LLVM IR generated by the SJIT compiler for part of the bubl benchmark . 94

xvii

Chapter 1

Introduction

MATLAB is a popular numeric programming language, used by millions of scientists,

engineers and students worldwide[1]. MATLAB programmers appreciate the high-level ma-

trix operators, dynamic typing, the large number of library functions, and the interactive

style of program development available with interpreter-style read-eval-print loop. How-

ever, even though MATLAB programmers appreciate all of the features that enable rapid

prototyping, they often have other ultimate goals. Frequently their programs are quite

computationally intensive and they really want an efficient implementation.

Providing efficient implementation for a dynamic language is still an ongoing effort in

the compiler world. For MATLAB specifically, the main implementations are:

• the MATHWORKS reference implementation, which is efficient thanks to its just-in-

time compiler, but is neither free nor open source.[2]

• the GNU OCTAVE implementation[3], which is an almost complete implementation

in terms of semantics, but performs poorly because its default implementation is an

interpreter.

• McVM, implemented by the Sable research group at McGill university, which pro-

vides an interpreter for a subset of MATLAB and a just-in-time compiler to improve

the performance by some orders of magnitude, but not enough to compete with the

Mathworks implementation.

This thesis aims to provide a highly efficient just-in-time compiler for MATLAB, by

taking into account some common properties of numerical software and taking advantage of

1

Introduction

those. The results are very encouraging, being on some benchmarks within a factor of two

in terms of execution time compared to a highly-efficient FORTRAN implementation[4],

while preserving the dynamic behaviour of the program if necessary.

1.1 Contributions

The main contributions of this thesis are as follows.

• We provide a very efficient just-in-time compiler for McVM. We discuss different

fundamental architectural choices, and also provide overall performance results, as

well as more detailed results on the cost of bound-checking.

• We describe a precise type inference analysis for a significant subset of the MAT-

LAB language. In particular, we can handle different data types, such as numerical

matrices and array of structures.

• We present a dataflow analysis framework that allows faster and safer development

for compiler analysis developers.

1.2 Thesis Outline

This thesis is divided into 7 chapters, including this one, which are structured as follows.

Chapter 2 introduces key MATLAB features, showing some of the challenges of compila-

tion. It also discusses the current ongoing work to efficiently execute dynamic languages.

Chapter 3 presents our dataflow analysis framework, and describes the different compo-

nents contributed by this thesis. Chapter 4 explains our type inference analysis. Chapter 5

presents our just-in-time compiler, its implementation and its specificities. Chapter 6 dis-

cusses the performance results of our compiler and Chapter 7 concludes.

2

Chapter 2

Background and Related Work

In this chapter, we present background information helpful to understand this thesis.

We begin with a brief presentation of the MATLAB language, and its properties which are

of interest for this thesis.

Then, we describe the research which has already be done in the fields of optimization

of dynamic languages and numerical languages.

2.1 The MATLAB language

MATLAB is a closed sourced, proprietary programming environment. It was originally de-

signed in the 1970s as an easier approach to numerical computation than FORTRAN[5]. To

achieve this goal of friendliness for the programmer, it has been designed as a procedural,

dynamically-typed, weakly-typed array-based programming language.

2.1.1 Execution model

The MATLAB execution model is quite different from other programming languages, due

to the existence of two units of reusable code: functions and scripts. Variables exist in

an environment: a map from variable name to value. There is a global (shared by any

code in a given MATLAB session) environment called the workspace. Functions can have

multiple input and output parameters, and have a local environment where variables are

3

Background and Related Work

stored and read. Scripts on the other hand only have access to the global workspace. Also,

the interactive mode (the prompt >>) is implicitly accessing the global workspace. If a

symbol is evaluated and is not bound to a local variable, the interpreter tries to resolve it

with a function or script lookup. MATLAB function or script lookup resolving is based

on an interpreter setting which indicates the current directory on the filesystem in which

functions or scripts will be located. This setting can be change dynamically with the cd

function which takes a string representing the target directory path as an input. The cd

function thus allows the programmer to change the lookup behavior at runtime.

2.1.2 Dynamic type system

As we said, MATLAB is dynamically-typed. It supports several primitives types, such as

integers of different precisions (int8, int32, int64), floating-point numbers (single,

double), boolean (logical) and character (character). It also contains an aggregate

type inspirated by C structures called struct. It allows the creation of values with named

fields.

All those types are implicity treated as if they were matrices:

• A scalar value is actually a 1×1 matrix.

• A structure with a field f is actually a structarray of size 1×1 with a field f.

• A string like ‘hi’ is actually a 1×2 character matrix.

Also, MATLAB provides the function handle type which combined with anonymous

function expression provides some support for functional programming. More recently,

support for object-oriented programming with classes has been available.

2.1.3 Typical MATLAB programs

MATLAB programs are quite different from the expected programs in general-purpose pro-

gramming language such as Java or Python. Its numerical computing roots, the fact that

most of its users are not programmers but scientists, and some specifc properties of the

language itself are the main reasons for this uniqueness.

4

2.2. Related work

Thanks to the MCBENCH tool[6], which allows running queries over the structure of a

huge number of MATLAB benchmarks at once, and to our manual observations of programs

from various sources, we got some insights about general properties of MATLAB programs.

Functions in MATLAB are not as ubiquitous as in other languages: the combination of

interactive development within the MATLAB IDE and the existence of scripts make func-

tions less used. Related, the usage of recursion in MATLAB is low (around 5% of the

benchmarks contains one or more recursive functions).

Being an array-based language, the vast majority of MATLAB programs are mainly

iterations and computations over matrices: while the official documentation advises to use

vector operation and ranges, inexperienced programmers find loops more intuitive.

The usage of structures in MATLAB is significant, about 30% of the benchmarks take

advatange of them, but the usage of structarrays is much less frequent, at only 7%. Arrays

of structures are however useful in many programs1, and we suspect their lack of usage

in MATLAB to the well-known performance trouble of the MathWorks implementation

when it comes to structarrays[7]. Enabling the usage of structarrays without a performance

penalty would be useful in our opinion.

Finally, we found that the various dynamic features provided by MATLAB are being

used quite heavily in real-world programs. For example, a simple query about the usage

of the functions cd, eval, feval, load, save, exist, assignin, clear returns more than 25% of

MCBENCH benchmark set.

2.2 Related work

MATLAB, as most dynamic language implementations, is run in an execution environment

called a Virtual Machine (VM). A VM for a language X is a program that is designed

specifically to execute programs written in the language X. The fact that the execution of

a program is done by another program, instead of directly by the processor, introduces a

performance penalty compared to the same program executed directly by the processor (so-

called compiled program). Unfortunately, implementing a compiler for a dynamic language

1Imagine a language where only primitive types could compose a vector

5

Background and Related Work

is in general not possible, because of the dynamism of those programs such as non constant

variable type, ability to load code at run-time with construct like eval, dynamic lookup

semantics with cd and complex reflection features. As a result, most dynamic languages

have an interpreter as their reference implementation such as Python (CPython[8]) and

Ruby (YARV[9]).

This section explores differents approaches which have been tried to provide efficient

implementation of MATLAB or other dynamic languages.

2.2.1 Static approach to MATLAB execution

McFOR[4] and Matlab Coder[10] are compilers for MATLAB to respectively FORTRAN

and C++ . Both offer really high performance for the generated code, but don’t support

MATLAB dynamic features, thus are not valid for a general usage. However, they could

be useful for projects with specific requirement which are developed in the supported static

subset of MATLAB. The cumulative work of the McSAF to Mc2 FOR project is able to com-

pile enough of MATLAB to support real-world programs, but the amount of work necessary

to achieve that has been tremendous.

2.2.2 McJIT

The only existing open source implementation of a just-in-time compiler for MATLAB is

McJIT[11], the MathWorks implementation being closed-source. McJIT is a function-

based type specializing JIT compiler: it compiles functions at run-time (on top of the inter-

preter) based on the type of the function arguments. This has proven to be a performance

improvement over the interpreter, however the execution model and the compilation phase

is fairly complex, because of the constant interaction between a compiled function and the

interpreter. The just-in-time compiler implemented as a contribution of this thesis takes

a different approach: lower-level, smaller and more focused, with the hope of providing

better performance.

6

2.2. Related work

2.2.3 Old research projects about MATLAB

Although we were not able to find publicly available versions, which is not surprising

considering that those projects have been done more than 10 years ago, there have been

several previous research projects on MATLAB:

• MAGICA[12] is a type inference engine written in Mathematica, which is very precise

(but costly). It has been used for the ahead-of-time compiler MAT2C[13].

• FALCON[14] is a static MATLAB to FORTRAN translator with a sophisticated type

inference algorithms.

• MaJIC[15] is a MATLAB just-in-time compiler patterned after FALCON with simpli-

fied analysis to fit the just-in-time context. While interesting at the time, the perfor-

mances are not on par with what we would expect nowdays.

2.2.4 TraceMonkey

Recently, thanks to the emergence of the web and JavaScript, a lot of efforts both in the

research and the industry communities have been spent to improve the speed of dynamic

languages by the usage of just-in-time compilers.

The TraceMonkey VM[16] for the JavaScript language is based on a fast bytecode

interpreter that can identify frequently executed bytecode sequences (traces), records them,

and compiles them to fast native code. The TraceMonkey JIT compiler is loop-based and

assume hot loops to be mostly type-stable, meaning that the types of variables are invariants

through the loop. Their results show that this assumption is reasonable. This idea is a direct

inspiration for the SJIT compiler contributed by this thesis, and we actually think that type-

stabilty is even more common in a numerical language like MATLAB than in a prototype-

based language such as JavaScript, so this approach might make even more sense in the

context of MATLAB.

7

Background and Related Work

8

Chapter 3

Dataflow Analysis Framework

An effective JIT compiler is based on the knowledge acquired by analyses such as

reaching definitions, live variables and type inference. These analyses can have different

properties and definitions, but they often require the same functionalities. For example,

all analyses require a way to traverse the program representation. This kind of common

functionality should not be rewritten for each analysis.

One contribution of this thesis is the design and the implementation of a framework to

make the development of static analysis easier. It does this by providing an implementation

for well-known kind of analysis, specifically flow-sensitive and flow-insensitive analyses.

The primary goals of the analysis framework are:

Generic
The framework shouldn’t make any assumptions about the underlying analysis and

the computed abstract values. For example, it should support set-based abstract val-

ues such as set of definition points in a reaching definition analysis, or integer ranges

in an shape analysis.

Effective
The framework should make the development of analyses easier, faster and safer, by

providing the foundations to write an analysis on Mc IR.

Flexible
One should be able to use small parts of the framework, if necessary (thus enabling

9

Dataflow Analysis Framework

its uses in non standard analysis for example). It should provide different common

behaviours, which can be used interchangeably.

Efficient
The framework should introduce no overhead compared to the same hand-written

analysis.

3.1 Description of the design

In this section, we describe the design of the framework, first by a brief overview of the

program representation on which it operates, Mc IR, then with the description of an analysis

in the context of the framework, and finally by a technical chapter about the C++ features

used to implement it.

3.1.1 Mc IR

The framework has been developed to operate on the Mc IR program representation. Mc IR

is an AST-based representation of a MATLAB program[17]. It is a high-level representation,

and the control flow is implicit: it is contained inside some nodes such as IfElseStatement

and LoopStatement, contrary the a control-flow graph (CFG) based IR, where as the name

implies, the control-flow is explicit. It is built on top of two base classes: node and state-

ment, with their subclasses respectively listed in Figure 3.1 and Figure 3.2.

IRNode

Function Statement Sequence Expression

Figure 3.1 Mc IR Nodes

10

3.1. Description of the design

Statement

If-Else Loop Break Continue Return Assign Expr

Figure 3.2 Mc IR Statements

3.1.2 Definition of an analysis

An analysis is, in essence, the association of a domain of abstract values, and rules which

define how those abstract values are computed over the program representation.

Analysis Domain

The framework is completely domain-agnostic. While some frameworks try to enforce

domain properties (such as being set-based, or map-based), the one developed for this thesis

does not: it allows the domain of integers, for example. This gives complete freedom to the

analysis writer about the underlying representation of the domain. However, a valid domain

needs to have at least two operations defined on it (T being an element of the domain):

• A merge operation, with a signature T merge(T,T).

• An equality operation, with a signature bool ==(T,T).

Analysis Rules

The second part of the definition of an analysis is the definition of the analysis rules, one for

each program construct in program representation (Mc IR). To be valid, an analysis needs

to be defined over the entire program representation. We enforce during the compilation of

the analysis that all runtimes behavior has been defined. Thus, an analysis is implemented

as a C++ class to ensure that it contains a definition for at least the functions described

in Table 3.1. Those functions correspond exactly to the different subclasses of the class

Statement in Mc IR.

The design of the framework is component based. A component (also known as a mixin

in the programming community)[18] represents a fragment of code which implement a

11

Dataflow Analysis Framework

defined functionality while respecting a common interface. By definition, a component

should be interchangeable with another one implementing the same interface. As a contri-

bution of this thesis, we provide different components. Each one implements one or more

of the functions required for an analysis. They are described individually in Section 3.2.

3.2 Provided components

In this section, we describe the different components which have been implemented as a

contribution of this thesis. We will use the following definitions to describe them:

Flow insensitive
A flow insensitive analysis computes facts that holds for all statements in the pro-

gram, and thus doesn’t take into account the order of execution of the statements[19].

Flow sensitive
A flow sensitive analysis is sensitive to the flow of the data: it takes into account

the order of statements in a program. Thus, it records facts on a per-statement basis,

and consider all paths in the program as executable, whatever the predicates at the

conditional for this path might be[20].

Path sensitive
A path-sensitive analysis computes facts which are dependent on the predicates at

conditional branch instructions[21].

3.2.1 Flow sensitive base

This component is the basis for a flow sensitive analysis.

As a flow-sensitive analysis, results are computed on a per-statement basis: it is rep-

resented in this component by the data member variable in Listing 1, which associates at

each node in the program the resulting abstract value. Note that the implementation uses a

function call statement_dispatch described in Subsection 3.2.7.

12

3.2. Provided components

Name Signature Description
analyze_statement (T,Statement)−→ T Defines the analysis rule of a State-

ment node, in most analysis, this
should forward the computation to the
actual Statement subclass, (with the
statement_dispatch function de-
scribed in Subection 3.2.7).

analyze_assign (T,AssignStmt)−→ T Defines the analysis rule of an assign-
ment statement. This behavior is en-
tirely analysis-specific, thus we don’t
provide any component which imple-
ments this function.

analyze_exprstmt (T,ExprStmt)−→ T Defines the analysis rule of an expres-
sion statement such as disp(). Again
this behavior is entirely analysis-
specific and thus we don’t provide any
component which implements this
function.

analyze_sequence (T,Sequence)−→ T Defines the analysis rule of a se-
quence of statements. We provide
three components which implements
this function which should corre-
spond to the behavior of most analy-
sis.

analyze_ifelse (T, I f ElseStmt)−→ T Defines the analysis rule of an
IfElseStmt node. We provide one
component which implements this
function on top of the merge function.

analyze_loop (T,LoopStmt)−→ T Defines the analysis rule of a Loop
node. We provide one component
which implements this function.

analyze_continue T −→ T Defines the analysis rule of a continue
statement. It is closely related to the
behavior of a loop and we provide
an implementation for this function in
the loop_fixpoint component.

analyze_break T −→ T Same as the analyze_continue but for
a break statement.

Table 3.1 Mandatory functions to compose an intraprocedural analysis

13

Dataflow Analysis Framework

#define BASE static_cast<derived*>(this)
template <typename derived, typename T>
struct flow_sensitive_base :
public framework::statement_dispatcher<derived,T>
{

// at each statement, we have a dataflow result
std::unordered_map<Node*,T> data ;

T analyze_statement(Statement st, T in) {
// use helper component
auto dataflow = BASE->statement_dispatch(st,in);
// save the analysis result at each statement
data[st] = dataflow;
// return the analysis result for this statement
return dataflow;

}
}

Listing 1 Implementation of component flow_sensitive_base

3.2.2 Sequence of statements

A very common requirement of an analysis is the ability to traverse a sequence of state-

ments in the program representation. This component implements this behaviour in two

different flavours: in the forward direction (top to bottom), or in the backward direction

(from bottom to top). To avoid code duplication, the difference between those two re-

ally close traversal methods is handled with a compile-time boolean value backward in

Listing 2, thus introducing no runtime overhead compared to an hand-written statement

sequence component.

For convenience, we provide two components in Listing 3 with straightforward name

for analysis writer, respectively named forward and backward.

3.2.3 Loop

A loop in Mc IR is a statement which is executed multiple times, while a specified condition

stays true. It is actually the underlying representation in Mc IR for both the while and for

construct in the MATLAB language.

A loop is difficult to abstract in a static fashion, considering that the condition is in the

general case not evaluable statically, thus the number of iterations is unknown. A flow-

sensitive analysis, whose result depends on the flow of the program by definition, needs to

14

3.2. Provided components

#define BASE static_cast<derived*>(this)
template <typename derived, typename T, bool backward>
struct sequence
{

T analyze_sequence(StmtSequence seq, T in)
{

auto current = in ;
auto stmtsequence = seq->getStatements() ;

// Handle the backward case with a
// compile time boolean parameter
if (backward)

std::reverse (
std::begin(stmtsequence),
std::end(stmtsequence));

// Iterate through all statements
for (auto st: stmtsequence) {

current = BASE->analyze(
st,
current);

}
return current;

}
};

Listing 2 Implementation of component sequence

template <typename derived, typename T>
using forward = sequence<derived,T,false>;

template <typename derived, typename T>
using backward = sequence<derived,T,true>;

Listing 3 Implementation of component forward and backward

approximate the behaviour of the loop statically.

We provide a component which implements a standard method of doing an iterative

fixpoint over the loop.

Fixed-point iterative solver

The flow of data is described in Figure 3.3, and the C++ implementation is in Listing 4. The

described loop contains severals statements, and also a continue and a break statement.

The fixed-point algorithm is: the computation operates by storing the previous result

of analyzing the body, and comparing it with the new result. If they are equal in terms of

15

Dataflow Analysis Framework

Previous statement

statements

continue

statements

break

statements

continue

statements

break

statements

Next statement

on

on

Fixpoint?

IN

T

IN

T

T

T

T

OUT

Iteration result

New iteration

Fixpoint result

Figure 3.3 Iterative fixpoint dataflow behavior on a loop

16

3.2. Provided components

abstracted values then a fixed-point is reached and the computation is done for this loop,

else another iteration of the fixed-point computation is executed.

Also, special attention is given to break and continue statements:

• whenever a break statement is encountered, we merge the current dataflow with the

breaks dataflow, which will eventually be merged with the end result at the exit of

the loop.

• whenerver a continue statement is encountered, we merge the current dataflow with

a continues dataflow, which will eventually be merged with the result of the analysis

at the current iteration.

This component is path insensitive, as it doesn’t take into account the conditional of the

loop. It would be possible to implement another component which is path sensitive.

3.2.4 Conditional

A conditional statement is a statement which, depending on a conditional, will execute one

path or another. It is common in imperative languages and is represented as if(cond) then

S1 else S2, where cond is a boolean expression and S1 and S2 are statements. Depending

on the properties on the analysis (flow sensitivity, path sensitivity,. . .), the analysis rule for

such a statement will vary.

We provide a flow-sensitive, path-insensitive component for the IfElseStatement con-

struct in Mc IR.

The dataflow for this component is described in Figure 3.4, and its code is in Listing 5.

Its behavior is straighforward: it analyzes the two different paths independently (given

them an input dataflow from the previous statement), and merges the two results into a

single dataflow result.

We acknowledge that path-sensitivity could be useful for several analysis, such as range

analysis. Future work would be to implement such a component.

17

Dataflow Analysis Framework

#define BASE static_cast<derived*>(this)
template <typename derived, typename T>
struct loop_fixpoint
{

T analyze_loop(LoopStmt loop, T in)
{

// for the first iteration, we just define
// the previous dataflow result to be the input dataflow
T old = in;
// loop until a fixpoint is reached
while (true)
{

// analyze the body of the loop with
// the result of the previous iteration
// as the input dataflow
T end_body= analyze_sequence(loop.body, old);
// use the merger helper to merge all the dataflow results
// at each continue statement into one
T continues_merged = merger(continues) ;
// merge all the continue statements result
// with the end of the body result at this iteration
T end_iteration = merge(end_body,continues_merged);
// We have reached a fixpoint
if (old == end_iteration)
{

// use the merger helper to merge all the dataflow results
// at each break statement into one
T breaks_merged = merger(breaks);
// merge all the break statements results
// with the result at the end of the fixpoint and return.
return merge(end_iteration,breaks_merged);

} else {
// the continue statements results are cleaned at
// each iteration
continues.clear();
// store the result for this iteration
old = end_iteration;

}
}

}

T analyze_continue(T in)
{

continues.push_back(in);
return in;

}

T analyze_break(T in)
{

breaks.push_back(in);
return in;

}

// store the dataflow result at each continue statement
std::vector<T> continues;
// store the dataflow result at each break statement
std::vector<T> breaks;

};

Listing 4 Implementation of component loop_fixpoint

18

3.2. Provided components

Previous statement

Statement for I f Statement for Else

on

Next statement

IN IN

OUT_ELSEOUT_IF

OUT

Figure 3.4 Flow sensitive, path insensitive conditional component dataflow

#define BASE static_cast<derived*>(this)
template <typename derived, typename T>
struct ifelse_sensitive
{

T analyze_ifelse(IfElseStatement ifelse, T in)
{

T end_if = BASE->analyze_sequence(
ifelse->getIfBranch(),
in);

T end_else = BASE->analyze_sequence(
ifelse->getElseBranch(),
in);

return BASE->merge(end_if,end_else);
}

};

Listing 5 Implementation of component ifelse_sensitive

19

Dataflow Analysis Framework

3.2.5 Function call expression

A function call is nothing but an expression in MATLAB: it can happen either inside an

assignment statement, like myfunc(param) in Listing 6, or in an expression statement,

like disp(a) in the same listing.

param = 1;
a = myfunc(param);
disp(a);

Listing 6 MATLABcode showing function calls

We haven’t discussed how to analyze expressions in the framework, because there is no

general semantic, it’s entirely analysis-specific.

However, we found that for function calls, we could provide a component with a be-

havior which would help analysis writer to handle something hard: recursion. In MATLAB,

functions can be self recursive (call itself), or mutually recursive (call others functions

which again call it), such as the examples in Listing 7.

function [res] = fib(n)
if fib < 2

res = 1;
else

res = fib(n-1) + fib(n-2) ;

function [res] = odd(n)
if n == 1

res = true;
elseif n == 0

res = false;
else

res = even(n-1);

function [res] = even(n)
if n == 0

res = true;
elseif n == 1

res = false;
else

res = odd(n-1);

Listing 7 Example of MATLAB recursive functions

20

3.2. Provided components

Analyzing a function call expression thus requires to analyze itself recursively. As we

saw for loops, an interesting behavior is to compute this result with an iterative fixpoint

solver.

We provide two components to handle functions in Mc IR, one supporting function

recursion and the other not. Both of them implement the methods described in Table 3.2.

Name Signature Description
analyze_function (T,Function)−→ T Defines the analysis rule for a function

call expression.
analyze_return T −→ T Defines the analysis rule for a return

statement.

Table 3.2 Mandatory functions to analyze a function call expression

The first one, without support for recursion, will do a simple call to the analyze_sequence

function of the analysis, and returns the result after having dealt with the possible multiple

return statements inside the body. The code is showed in Listing 8.

The more interesting component is the one with included support for recursive function.

In terms of dataflow, a function being recursive means that the dataflow result for a function

call actually depends on itself, in the same way that with a loop (see Subsection 3.2.3).

We dealt with this problem by using partial result of function analysis: every time a

recursion is identified (because the function currently analyzed is already in the call stack),

we store partial result for each function currently being analyzed in the call stack. Then, we

do a fixpoint iteration until the result for all the functions in the call stack doesn’t change.

3.2.6 Flow insensitive

A flow insensitive analysis is an analysis which doesn’t take the control flow into account

to compute its result. Such an analysis just does some traversal of the program statements

and computes a single result for the whole program. We provide a simple component which

handles that by doing a top-down traversal of the program.

21

Dataflow Analysis Framework

#define BASE static_cast<derived*>(this)
template <typename derived, typename T>
struct function_simple :
public framework::merger<derived,T>
{

// analyze a function call expression
T analyze_function(Function f, T in)
{

// analyze the body of the function
T result = BASE->analyze_sequence(f->getBody(),in);

// use the merger helper to merge all the dataflow result
// at each return statement together
T returns_merged = BASE->merger(returns);

// merge the result at the end of the body with all the results
// at each return statement
return merge(result,returns_merged);

}

T analyze_return(T in)
{

returns.push_back(in);
return in;

}

// set of dataflow result
std::vector<T> returns ;

};

Listing 8 Implementation of component function_simple

3.2.7 Helper components

Those components implement functions which are provided to help with common opera-

tions an analysis writer might find useful. We provide three helper components:

• a statement dispatcher function (called in Listing 1 and Listing 10) which takes an

object of superclass Statement and dispatches a call to its runtime subclass, such as

AssignStmt or LoopStmt. This is part of the necessary double dispatching used by the

Visitor pattern[22], which the framework derived from. The complete code of this

component is listed in appendix A.

• a merger function, which takes a list of dataflow results, and merge them together

one-by-one. Of course, it uses the T merge(T,T) function which is analysis specific,

and thus should be implemented inside the analyzer class. Figure 3.5 explains how it

works graphically. The complete code of this component is listed in appendix B.

22

3.2. Provided components

#define BASE static_cast<derived*>(this)
template <typename derived, typename T>
struct function_fixpoint
{

T analyze_function(Function f, T in)
{

partial_result[f] = {} ;

while (true)
{
T result = BASE->analyze_sequence(f->getBody(),in);
T returns_merged = BASE->merger(returns);
T final = BASE->merge(result,returns_merged);

// we have reached a fixpoint
if (final == partial_result[f])

return final;

// we continue the analysis
partial_result[f] = final ;
}

}

T analyze_return(T in)
{

returns.push_back(in);
return in;

}

// set of dataflow result
std::vector<T> returns ;

// map to store partial dataflow results
std::map<function,T> partial_results ;

};

Listing 9 Implementation of component function_fixpoint

T1 T2 T3 . . . Tn

on

on

on

on T

. . .

. . .

OUT

Figure 3.5 Graphical explanation of the T merger(std::vector<T>) function

23

Dataflow Analysis Framework

#define BASE static_cast<derived*>(this)
template <typename derived, typename T>
struct flow_insensitive_base :
public framework::statement_dispatcher<derived,T>,
public framework::forward<derived,T>
{

T analyze_statement(
const Statement* st,
const T& in)

{
T dataflow = BASE->statement_dispatch(st,in);
return dataflow;

}

T analyze_ifelse(
const IfElseStmt* ifelse,
const T& in)

{
T end_if = BASE->analyze_sequence(

ifelse->getIfBranch(),
in);

T end_else = BASE->analyze_sequence(
ifelse->getElseBranch(),
end_if);

return end_else;
}

T analyze_loop(
const LoopStmt* loop,
const T& in)

{
return BASE->analyze_sequence(

loop->getBody(),
in);

}

T analyze_break(const T& in)
{

return in;
}

T analyze_continue(const T& in)
{

return in;
}

}

Listing 10 Implementation of flow_insensitive_base

24

3.3. Implementation

3.3 Implementation

The implementation of the framework requires a way to select between different algo-

rithm’s behavior (also known as the Strategy pattern). A classical implementation of this

pattern would use the inheritance mechanism and the virtual method call dispatching mech-

anism available in object-oriented language to resolve that[17]. However, two problems

would arise with this approach:

• the C++ language doesn’t allow virtual generic function.

• this would means that every dispatch call in the framework will have the overhead

of a virtual method call (which has been evaluate to be non negligable performance-

wise[23][24]).

We decided here to take advantage of C++ template programming functionalities to allow

a generic and modular implementation, without any runtime overhead. This programming

idiom is called Curiously Recursive Template Pattern[25]. The definition of this idiom is

that a class Derived derives from a class template instantiation using Derived itself as

template argument of the base class.

// The Curiously Recurring Template Pattern (CRTP)
template<class Derived>
class Base
{
// methods within Base can use template
// to access members of Derived
};
class Derived : public Base<Derived>
{
// ...
};

Listing 11 Description of CRTP

The trick here is that the code in the class Base can access any member in Derived, by

doing a cast to the type parameter Derived. Thus, you just have to know which method

signature and properties are available in Derived, but not the actual implementation.

For a flow-sensitive forward analysis named analyzer with fixpoint solver, we could

inherit from all the components we need taking care to pass the class analyzer itself as

25

Dataflow Analysis Framework

the Derived template parameter.

A real-world example is Listing 12, which is taken directly from the implementation of

the type inference analysis described in the next chapter.

struct analyzer:
// analyzer is passed itself as the
// derived template parameter
public framework::flow_sensitive_base <analyzer,I> ,
public framework::forward <analyzer,I> ,
public framework::loop_fixpoint <analyzer,I> ,
public framework::function_fixpoint <analyzer,I>
{

// ...
}

Listing 12 Example from the type inference analysis described in Chapter 4

By analyzing the resulting assembly code in Listing 13, we see that (as expected) it

only contains static calls, which are much faster than dynamic calls (because of branch

prediction and pipelining issue). This is fairly impressive considering that the call to

analyze_sequence might be a user defined function, or one of the functions provided

by the framework. This idiom is thus often called static polymorphism or static mixin be-

cause it provides an efficient way to plug a functionality inside a class statically and without

any overhead.

fw_ifelse.h * auto info_else =
fw_ifelse.h * static_cast<derived*>(this)->analyze_sequence(
fw_ifelse.h * static_cast<StmtSequence*>(stmt_else),
fw_ifelse.h * in);
leaq 368(%rsp), %rdi
movq %rbx, %rcx
movq %r14, %rdx
movq %r12, %rsi
call _ZN4mcvm8analysis9framework8sequenceINS0_13...

...typeinference8analyzerENS3_1IELb0EE16analyze_seque

Listing 13 Resulting assembly code compiled with GCC 4.8.2 -O3

26

3.4. Example of a reaching definition analysis implementation

3.4 Example of a reaching definition analysis imple-

mentation

To demonstrate the process of creating an analysis, we present an example analysis and

step through the process. The example being implemented is the well-known reaching

definitions analysis.

A definition is an assignment of a value to a variable. A definition d : x = E reaches a

program point p (equivalently, d is a reaching definition at p) if there is a control flow path

from d to p such that x is not redefined anywhere along that path.

In order to implement this analysis, we will complete the following tasks:

• Define the type which represents the domain T.

• Define a merging function over the domain: T merge(T,T).

• Define a equality comparison function over the domain: bool ==(T,T).

• Define the analyzer class by either including components or writing the required

functions manually.

Based on the description of the analysis, we define our dataflow domain as a mapping

from variable names to sets of assignments statements.

using ReachDefDomain =
std::map<std::string,std::set<AssignStmt>>;

Listing 14 Domain for the reaching definitions analysis

The next step is to implement the merging function over the domain defined in List-

ing 14. The semantics of the merging operation is entirely analysis-specific, thus the frame-

work doesn’t try to provide any component for this. For the reaching definition analysis, the

merge function is implemented in Listing 15. We define the merge of a and b as follows:

• if neither a nor b have a definition for variable v, then the resulting abstract value

doesn’t have a reaching definitions set for variable v.

• if only one of a and b has a reaching definitions set for variable v, then the resulting

abstract value has the same set of reaching definitions for variable v as this one.

27

Dataflow Analysis Framework

• if both input abstract values a and b have a reaching definitions set for variable v, then

the resulting abstract value has the reaching definitions set resulting from the union

between the set of reaching definitions for variable v in a and the set of reaching

definitions for variable v in b for variable v.

ReachDefDomain merge (ReachingDefDomain a, ReachDefDomain b)
{

ReachDefDomain out = a;
for (auto pair: b)
{

auto itr = out.find (pair.first);
if (itr != std::end(out))
{

// union the sets
out[pair.first].insert (

pair.second.begin(),
pair.second.end());

} else
{

// simply add the reaching definition
// in b for this symbol
out[pair.first] = pair.second;

}
}

}

Listing 15 Semantic of the merging function for the reaching definitions analysis

Then, we need to implement the equality comparison operator over the domain which

is defined as: two reaching definitions abstract values are equal if they contains the same

set of reaching definitions for every variables. This is actually the exact behavior of the

standard C++equality operator, thus we don’t have to define it by ourself.

At that point, we have defined a dataflow domain and the necessary functions to operate

over it.

A reaching definition analysis is a flow-sensitive, forward, may analysis. We will take

advantage of the framework to traverse the program representation, while respecting those

properties.

We start by defining the analysis class in Listing 16, and we inherit from the components

we need: forward, flow_sensitive_base, loop_fixpoint and ifelse_sensitive.

To be complete, an analysis requires a definition for at least each of the functions described

28

3.4. Example of a reaching definition analysis implementation

in Table 3.1. With the already inherited components, only the analyzer_assign() func-

tion isn’t defined yet.

class ReachDefAnalyzer:
public framework::forward

<ReachDefAnalyzer,ReachDefDomain>,
public framework::flow_sensitive_base

<ReachDefAnayzer,ReachDefDomain>,
public framework::loop_fixpoint

<ReachDefAnalyzer,ReachDefDomain>,
public framework::ifelse_sensitive

<ReachDefAnalyzer,ReachDefDomain>
{
};

Listing 16 Declaration of the reaching definition analyzer

ReachDefDomain ReachDefAnalyzer::analyze_assign (
AssignStmt* stmt,
ReachDefDomain in)

{
std::string x = stmt->getLeftHandSide() ;

if (in.contains(x))
in.remove(x) ;

in.add(x,stmt) ;
return in ;

}

Listing 17 Implementation of the analyze_assign() function for the reaching definition analysis

The implementation of the analyze_assign() function is straightforward as shown in

Listing 17 (however it doesn’t respect the complete semantic of MATLABwith constructs

such as eval; supporting that is beyond the scope of this chapter). For an assignment x =

E, the function verifies if x already has one or more reaching definitions in the entry set in.

If there is, it removes them and add the current assignment statement to the set of reaching

definition, else, it simply adds it.

Our reaching definition analysis is now complete. The full code of the analysis is given

in appendix C.

29

Dataflow Analysis Framework

3.5 Summary

In this section, we have presented our dataflow analysis framework. By using advanced

programming techniques such as CRTP and by providing useful components such as the

iterative fixpoint solver for the loop statement, the framework should allow future analysis

writers to develop analysis more easily and faster, without sacrifing the performance over

the convenience.

30

Chapter 4

Type Inference Analysis

In this chapter, we explain in detail the type inference analysis used by the just-in-

time compiler described in Chapter 5. We begin with a simple textual description of the

analysis, its roots in abstract interpretation and its domain. This is followed by a complete

explanation of the inference rules used by the analysis. Finally, we describe the value

analysis which has been developed to improve the type inference in specific cases.

4.1 Description of the algorithm

The type inference analysis described in this thesis is a forward, flow-sensitive analysis. It

determines at each program point, a type (in the domain described in Section 4.2) to each

variable in the program. Because it is used in the context of a just-in-time compiler, it aims

at being simple and thus fast to execute. It is designed with the precise requirements of our

compiler in mind, and doesn’t try to be as complete and extensive as it could be.

By being based on the analysis framework described in Chapter 3, it supports any entry

point in the program: it takes an entry abstract value and infers the types for every variable

at every program point reachable from entry.

This analysis is based on abstract interpretation[26]. It propagates a type for each vari-

able through all possible branches of a given program fragment. At each statement, it

simulates the effect that these statements would have on the type of each variables. It

does that in a conservative way, thus the result is always valid (but sometimes not precise

31

Type Inference Analysis

enough to be of any subsequent interest). The inference follows a set of rules described in

Section 4.3.

This dataflow analysis approach to type inference is well suited for dynamic languages,

while statically typed languages such as OCaml generally use a type inference derived from

the Hindley-Milner algorithm[27, 28]. Our forward iterative approach allows us to work

on small code fragment. Also, it works even if a portion of the code fragment is invalid

code: the computed abstract value will still be correct (but conservative).

4.2 Domain

Abstract interpretation is a way to simulate the execution of programs over an abstract

domain. In MATLAB, being a dynamically typed language, variables are not associated

with types but with values. Our abstract domain is a mapping of variables to types, the set

of possible types being described in Figure 4.1. This set has important properties:

• it is partially ordered.

• every two elements have a supremum (also called a least upper bound or join), and

an infimum (also called a greatest lower bound or meet).

• it has a finite height.

Those properties ensure that the number of iterations needed to find a fixpoint during the

computation of the abstract result is finite, thus the algorithm will end eventually. By being

a must analysis, we assure certainty of the result. At each program point, each variable

is mapped to one precise type of the domain. In the case where multiple types could be

possible at run-time, we just assume pessimistic knowledge (>).

The domain illustrated in Figure 4.1 represents the subset of MATLAB we aim to com-

pile: it focus on data structures which are frequently used in loops (iteration over matrices

of double, the default type for numbers in MATLAB, and over structarrays), and logical for

loop condition.

It contains tree branches, each of them having an associated base type:

• on the left, the double base type.

32

4.2. Domain

⊥

Scalar (matrix of
integer of size < 1,1 >)

Matrix of double of size
< s1,s2, . . . ,sn >

Matrix of double
of unknown size

Struct with fields < f1, f2, . . . , fn >
of respective type < t1, t2, . . . , tn >

and of size < s1,s2, . . . ,sm >

Struct with fields < f1, f2, . . . , fn >
of respective type < t1, t2, . . . , tn >

and of unknown size

Struct of unknown fields

Logical value
(1x1)

>

Figure 4.1 Domain of the type inference analysis

• on the middle, the logical base type.

• on the right, the struct base type.

Knowing only the basic type (such as double or struct) is not enough to build a truly ef-

ficient just-in-time compiler. The type inference analysis described in this thesis approxi-

mates, not only the base type but also other interesting properties about the variable. Thus,

the domain is actually more complicated than only those three base type

The double branch: This branch of the domain contains 3 differents elements:

• the most precise result we can get is when we are able to determinate that a double

matrix is actually a scalar number (remember that in MATLAB, a scalar number such

as 1 is actually considered as a double matrix of size 1x1). In loops, the increment is

almost always done on an integer number (such as for i=1:10), and generating code

33

Type Inference Analysis

which works with integer numbers instead of floating-point numbers allows better

performance.

• another possible result is when the analysis determines the size of the matrix but don’t

infer that this is a scalar. The result type is a double matrix of size < s1,s2, . . . ,sm >.

Knowing the size of the matrix will help to generate faster code by removing some

boundchecking which would have happen at run-time without this information.

• when the analysis can’t infer the size, it just infers that the result type is a double

matrix of unknown size. This is the least precise result for the double branch.

The struct branch: A structure in MATLAB is a multi-dimensional value which contains

several named fields, each one holding a value. Thus, the domain contains 3 differents

members for the struct branch, depending on the knowledge of:

• the name of each field composing that structure.

• the type of each field composing that structure.

• the size of the structure.

To efficiently compile structure-based MATLAB code, we need to know its memory repre-

sentation (the same kind of information that a C compiler knows about struct): this means

that we have to know the number of fields and recursively the in-memory representation of

each field. Thus, our type inference analysis can output:

• a structure with all fields and their respective types known, and the size of the struct

known (remember that any struct is actually a structarray). This is the most precise

result, and the size information might help to avoid runtime array-bound check (see

Subsection 5.2.6).

• the same but without the size information.

• a structure with unknown fields. We could be more fine grained for this case by keep-

ing the fields that certainly exist, but not knowing a single field is enough to prevent

compilation anyway, so we decided to keep the domain simple by just considering

that all the fields should be known.

34

4.3. Rules

The logical branch: This branch contains a single element: our domain only considers

logical as a single value, while MATLAB consider all logicals as a matrix of logical actu-

ally. This is because the usage of logical inside loops is the vast majority of the time a

single value and not a matrix. Matrices of logical are not considered by our type inference

analysis.

4.3 Rules

To simulate the effect of a program over our domain, we need to define a type inference

rule for all possible nodes in the program representation.

Besides the statements which are dedicated to controlling the flow of the code, for

which rules are described in Subsection 4.3.3, and expression statements which have the

identity rule (except for edge cases, such as eval1), the core of the analysis is the assignment

statement, described in Subsection 4.3.2.

4.3.1 Expression

The first step is to define the rules for expressions. The rules are straighforward. For each

kind of expression in Mc IR, we give them a specific type, for example:

• if expr is a symbol expression e, its type is the type Te in the input type inference

map.

• if expr is a dot expression x.y: if the type of x is struct, and x contains a field y of

type t, then the infered type for expr is t, else it is >
• if expr is a matrix expression [1 2 ; 3 4], its type is a double of size <2,2>.

• if expr is an integer constant, for example 2, its type is the scalar type (in the double

branch).

• if expr is a floating point constant, for example 2.34, its type is a double of size

<1,1>.

• if expr is a binary operation expression x OP y, the type rule is specific to each OP

in MATLAB: for example, the result of a binary addition (+) between x and y both
1Which are easy to handle correctly with a > result, but not of any interest for this thesis

35

Type Inference Analysis

being the scalar type is the scalar type, but it’s a double if the binary operation is a

division between those two.

• if expr is a call to a library function provided by MATLAB, the result is again specific

to each specific function. For example, the floor builtin function returns a type double

with the scalar property, but the abs doesn’t.

• if expr is a call to a user-provided function, its type is the type of the returned value

by analyzing this function. The special case of recursion is described in Subsec-

tion 4.3.5.

MATLAB is well known for its extensive set of operators, each one applicable to several

different types and resulting in different results, and its huge number of builtin functions.

Providing a type rule for each of them would be a tremendous engineering task, thus we

focus on supporting the most frequently used operators and builtin functions.

4.3.2 Assignment statement

Assignment statements are the essential part of our analysis: without considering the corner

cases introduced by MATLAB dynamic features (such as eval), those are the only kind of

statement which can define a variable, and thus a type in our analysis.

We need to introduce several terms which are part of the rule 2 before giving the actual

rule.

First, the root of an expression is (recursively) defined as the left-most symbol:

• for a symbol expression such as a, the root is a itself.

• for a parameterized expression such as a(b), the root is the root of a.

• for a dot expression such as a.b, the root is the root of a.

The set of variables in a program is the set of roots of all the assigned expressions in the

program. For example, in the program described in Listing 18, the set of variables is the

singleton {a}.
Another term introduced in the rule 2 is the inclusion of one type into another. Let’s

see an example to understand why it is necessary to introduce this operation: At the end of

Listing 19, the inferred types are:

36

4.3. Rules

1 a = 1 ;
2 a.b = 1 ;
3 a(x).c.d = 2 ;
4 a(a(1).c.d) = 1 ;

Listing 18 MATLAB code fragment example to illustrate the root of an expression

1 a = 1.1;
2 a = true;
3

4 b = 1.1;
5 b.c = 1.1;
6

7 d.e = 1.1;
8 d.f = 1.1;

Listing 19 MATLAB code fragment example to illustrate inclusion between types

• a of base type logical.

• b of base type struct, with field c of type double.

• d of base type struct, with field e of type double and field f of type double.

We see that the assignment in line 1 has been overriden by the assignment in line 2 because

they were both assigning to the same variable a, that the assignment in line 4 has been

overriden by the assignment in line 5 because they were both assigning to the same variable

b, but that the assignment in line 7 has not been overriden by the assignment in line 8, even

if they were both assigning to the same variable d. Thus, we define the notion of inclusion:

Rule 1. The inclusion of a type a into a type b, written include(a,b), is a type defined as:

• if a and b don’t have the same base type, then the result is b.

• if their base type is struct, then the result contains all the fields in a which don’t

exist in b with their respective type in a, all the fields in b which don’t exist in a with

their respective type in b, and for each field f which exists in both a with type Ta and

in b with type Tb, the result has a field f with its type being defined recursively has

include(Ta,Tb)

With those definitions, the rule for the assignment statement is defined as follows:

37

Type Inference Analysis

Rule 2. Consider an assignment statement s of the form lhs = rhs, where lhs and rhs are

expressions, and a type inference mapping before this statement T .

Then the type inference map after this statement, T ′, is the same as T except for the vari-

able root(lhs), which have type: T ′root(lhs) = include(Troot(lhs),assign(lhs,type_expr(rhs)))

The function assign(lhs,type) returns a type, and is defined as:

• if lhs is a symbol expression, then it returns type.

• if lhs is a dot expression X.Y, then it returns assign(X,temp) where temp is of base

type struct with a field y of type type.

• if lhs is a parameterized expression X(index), then it returns assign(X,temp) where

temp is the same as type except for the size2.

We illustrate the assignment rule by inferring the type of a program using structures

step-by-step, from Listing 20 to Listing 21. We assume the entry inference map is the

empty set /0.

1 a.a = 1.1;
2 a.b = true;
3 a.c.a = 1.1;

Listing 20 Example part 1

The type is straighforward in line 1,2 and 3. The inferred type Ta for variable a after

line 3 is a struct with fields:

• a of type double

• b of type logical

• c of type struct with a field a of type double.

4 a.c.d = a.c.a;

Listing 21 Example part 2

2The exact algorithm to calculate the new size is not complex but too long to explain here because of the
weird MATLAB indexing possibilities.

38

4.3. Rules

Let’s explain the assignment rule at line 4: we start by figuring the type of the right

hand side expression, here a.c.a. Thanks to the entry type inference map at this line, we

know that this expression is of type double. Then we apply the recursive assignment rule:

a.c.d is a dot expression, thus we start by constructing temp which is a struct with a field

d of type double. We apply the recursion, and a.c is a dot expression, thus we again have

to construct a temp with a field c of type the previous temp: a struct with a field d of type

double. We apply the recursion again, and a is a symbol expression, so we have to do the

inclusion of Ta into the most recent temp type. Ta is of type struct, and temp is too, thus we

include the field a and b from Ta into our result type. For the field c, we apply the inclusion

rule recursively thus the field c is of type struct with fields a and c.

4.3.3 Control-Flow statements

Our type inference analysis is a forward analysis: we iterate through every statement in

a sequence in execution order (first to last). It is implemented by inheriting the forward

component from the analysis framework described in Subsection 3.2.2. Our type inference

analysis is flow-sensitive, which means it takes into account the different possible runtime

paths followed by the program execution. However, the only nodes which has an effect in

the program are the assignment statements, as described before. Expressions which are not

part of an assignment, such as the condition for an if-else statement or a loop statement,

are meaningless in the context of the type inference analysis. Thus, the control flow nodes

have been implemented as:

• the if-else statement doesn’t consider the condition, and simply runs the analysis in

each branch, then merges the two results (see Subsection 4.3.4 for the merge defini-

tion).

• the loop statement doesn’t consider the condition either, so it could be seen as sim-

ply running the analysis through the body of the loop until a fixed point is reached.

Note that the real-world implementation is more complex because of the continue

and break statements. We implemented this behaviour with the loop_fixpoint

component available in the analysis framework (see Subsection 3.2.3 for the exact

description of its behaviour).

39

Type Inference Analysis

4.3.4 Merge operation

Our analysis being flow-sensitive, it requires a merge operator to implement some control

flow statements. The merge operation used in this type inference analysis can again be seen

as sound, as it ensures correctness of the result, by being conservative if needed.

The merge operation for the base type is fairly straighforward, and we will explain it in

prose:

• merging any abstract base type with > outputs >.

• merging any abstract base type v with ⊥ outputs v.

• merging any abstract base type v with another abstract base type w and v being not

equal to w, outputs >.

• merging any abstract base type v with another abstract base type w and v being equal

to w, outputs the abstract type v.

In terms of the domain described in Figure 4.1, it means that merging elements from dif-

ferent branches outputs >, which is obvious graphically.

In the case where the base type are the same (which means we are merging types of the

same branch in the domain), we need to merge between the different possibles types in this

specific branch.

For the double branch:

• if both are scalar types, the result is scalar type.

• if one is scalar type, and the other is double type with size 1×1, the result is double

type with size 1×1.

• if both are double with the same size S, the result is double with size S.

• in any other cases, the result is double of unknown size.

For the struct branch:

• merging a struct of unknown fields with any other struct outputs a struct of unknown

fields.

• merging a struct a with fields < f1, f2, . . . , fn > of respective type < t1, t2, . . . , tn >,

and a struct b with fields < f ′1, f ′2, . . . , f ′n′ > of respective type < t ′1, t
′
2, . . . , tn′ >, out-

puts:

40

4.3. Rules

– if n == n′ and ∀x ∈ [1 : n], fx == f ′x, a struct with fields < f1, f2, . . . , fn > of

respective type < merge(t1, t ′1),merge(t2, t ′2), . . . ,merge(tn, t ′n) >. If both a and

b have size S, the size of the outputed struct is S, else its size is unknown.

– else a struct of unknown fields.

For example, in Listing 22, we are merging two types for variable a. Assuming the entry

map is ⊥ before line 1, a being a struct on both branches, the result is a struct. However,

because the fields are not same, the variable a after line 7 is a struct with unknown fields.

1 if true
2 a.c = 1.1;
3 % end of if
4 else
5 a.a = 1.1;
6 % end of else
7 end

Listing 22 Merging two structures with different fields

4.3.5 Recursion

Recursion has been showed to be fairly rare in MATLAB program, and actually doesn’t

happen in our set of benchmarks. However, for the purpose of correctness of the analysis,

we developed a simple strategy to support it. Thanks to the analysis framework, most

of the support is already done by just using the adequate component, the function fixpoint,

described in Subsection 3.2.5. The problem lies is the function call expression typing (when

its calling the current function): because the analysis is not over yet, we only have a partial

(uncomplete) result for the type returned by this function. Thus, a function call expression

is typed as, assuming there is a map from the functions currently in the call stack and the

type of their input parameters to the (partial) returned type:

• if the callee function is not in the map, then the callee is simply analyzed.

• if the callee function is in the map (and the input parameters are of the same type as

the current ones), we are in a recursion, thus we return the last result for this function

if it exists.

41

Type Inference Analysis

• if there is no last result for this entry in the map, it returns ⊥.

We illustrate this behaviour with the factorial function described in Listing 23. The function

1 function res = factorial(n)
2 if n < 2
3 res = 1;
4 else
5 res = n * factorial(n-1);
6 end

Listing 23 A user-defined factorial function in MATLAB

is called with as a parameter an integer number (factorial(5) for example). On the if

branch, the variable res is of type double<1,1>(scalar). On the else branch, however, its

type depends on the type of the recursive call. Because we don’t have a partial result yet,

the inferred type is ⊥, and the multiplication operator with operands of type double and

⊥ returns ⊥. We merge the double<1,1>(scalar) and ⊥ at the end of the if-else statement,

which gives the partial result that the variable res is of type double<1,1>(double).

On the second iteration, the result for the if branch is the same. For the else branch how-

ever, we use the partial result of last iteration for the returned type of factorial(double<1,1>(scalar)),

which was double<1,1> (scalar). The type of variable res is the same on both branches, the

merge thus gives a result of double<1,1> (scalar).

The result being the same on two consecutive iteration, the result will not evolve again,

thus the analysis is done and the final inferred type for res is double<1,1> (scalar) when the

function factorial is called with an integer parameter.

We don’t show a trace but the inference also works for mutually recursive functions.

4.4 Value analysis

We found that the type inference analysis was sometimes unable to determine the size of

double matrices and structarrays, because real-world MATLAB program uses the array-

growth feature of MATLAB. For example, the code pattern in Listing 24 is frequent, and

because of the array-growth feature, the size of the variable a, which depends on the runtime

value of variable i, is unknown during and after the loop, whatever it was before. This lack

42

4.4. Value analysis

for i=1:100
a(i) = i ;

end

Listing 24 MATLABcode fragment example which might use array-growth

of information might induce some performance cost for the JIT compiler as explained in

Chapter 5. We implemented a small value analysis to statically determine the size of some

variables in simple cases, such as the one is Listing 24.

We designed a small maximum value analysis. It approximates the maximum integer

value of each variable at each program point, to be able to determine more often the size of

matrices and structures in the program.

It is a must, flow-sensitive and forward dataflow analysis over the domain is the integer

numbers (N).

We only consider integer values (because array indexing variable have to be integer),

and we don’t compute any binary operation on it (to keep the analysis simple and fast). Re-

member that the use case is really specific, it doesn’t try to be a partial evaluation analysis.

Assignment statements are straighforward, control-flow is using the framework with

the appropriate component (forward, flow sensitive). One difficult part of this analysis is

the treatment of for loops. In Listing 25:

previous
for i=start:stop

body
end
next

Listing 25 Definition of a for loop

• the body of the loop is analyzed with its entry information being the output of the

previous statement, except for variable i which has integer value stop.

• then, next statement is analyzed with its entry information being the output of the

body statement.

This particular rule is because of the specific semantic of a for loop in MATLAB.

We illustrate the analysis and the behaviour of MATLAB in Listing 26:

43

Type Inference Analysis

• after line 1, the variable i has maximum value 100.

• after line 2, the variable i has maximum value 100 and the variable j has maximum

value 30.

• after line 3, the variable i has maximum value 100 and the variable j has maximum

value 2.

• next lines (4,5 and 6) don’t change the maximum value of variables i and j.

Also, to ensure correctness of our analysis, we do a simple structural analysis on every for

loop: a depth first search traversal of the body of the for loop to verify that there is no break

or continue statements inside: this asserts that the for loop will be executed exactly for the

specified range. Combining the maximum value analysis and the type inference analysis

1 for i=1:100
2 for j=1:30
3 j = 2;
4 b(i,j) = 1.1;
5 end
6 end

Listing 26 Example of the analysis running on two nested for loops

allows us to statically determine that after line 6, the variable b is of type double and has

size <100,2>.

This is a simple range analysis, tailored to our specific use case. It would be possible to

use other more sophisticated range analysis[29, 30].

44

Chapter 5

Simple Just-In-Time Compiler

This chapter describes our Simple just-in-time (SJIT) compiler, written as a contribu-

tion of this thesis. The SJIT is completely independent and fundamentally different from

the already existing just-in-time compiler for McVM named McJIT[11], which has been

described in Chapter 2. We will compare their performances in Chapter 6.

We begin this chapter by analyzing how the McVM interpreter works, and how it is

extended by the SJIT compiler. Then, we describe how the SJIT works internally: the

compilation strategy, the architectural choices we made, and the reasons for those choices.

Finally, we explain how each supported language construct in Mc IR is implemented in our

target language, LLVM IR.

5.1 Design of SJIT compiler

5.1.1 The McVM interpreter

McVM is an interpreter for the MATLAB language: it interprets the program at run-time.

It is also highly interactive, which is praised by MATLAB users: it provides an interface

where commands can be typed at the prompt, commonly called an Read-Eval-Print-Loop

(REPL).

To understand how our SJIT interact with the interpreter, we first describe how the

McVM interpreter is designed. Whenever a code fragment has to be interpreted, a fron-

45

Simple Just-In-Time Compiler

tend called McLAB parses it and outputs an untyped high-level abstract syntax tree, Mc IR.

Then, the actual interpretation of the program happens: each statement is decoded, ex-

ecuted, until the program terminates. During the interpretation process, the interpreter

maintains an environment: a map from variable names to pointers in the heap representing

the data processed by the program. As described in Figure 5.1, data is handled with boxed

objects which wraps the actual values:

• A matrix of double is represented by an object which has several attributes, such as

the current size of the matrix and a pointer to the actual content of the matrix, which

is stored contiguously in a row-major order in the heap. The same representation is

used for logicals.

• Structarrays in MATLAB are highly dynamic, fields can be added on the fly and the

fields in a structarray can have different types at different positions in the array.

This is illustrated in Listing 27: we start by assigning a double value in the field

id_like_a_double_field on the 4th element of the structarray a, then we assign a string

value in the same field but on the 3rd element of the structarray. We print the same

field on line 3, and we see that it contains value of different types, and even empty

matrices.

To represent this behavior, McVM represents a structarray as a matrix of map from

field name to boxed object pointer.

>> a(4).id_like_a_double_field = 1.0 ;
>> a(3).id_like_a_double_field = ’hi’ ;
>> a.id_like_a_double_field
ans =

[]
ans =

[]
ans =
hi
ans =

1

Listing 27 Example of a MATLAB session which demonstrates that structarrays are weakly
typed: the field id_like_a_double_field contains an empty double matrix, a
chararray and a double matrix

46

5.1. Design of SJIT compiler

<2,2>

“a” *

“b” *

*

1.0

2.2

3.8

4.34

8.09

<1,1>

*

size

data pointer

data for
“a”

data for
“b”

size

data pointer

Figure 5.1 An environment containing two variables: a which is a matrix [1.0 2.2 ; 3.8 4.34] and
b which is a matrix [8.09]

5.1.2 Performance troubles

It is well-known that interpreting programs is extremely costly in terms of performance,

compared to running an already compiled program[31, 11].

For example, Listing 28 shows a MATLAB code fragment which computes the sum of

all the elements in a vector of size 100. For each iteration of the loop, the interpreter has

to:

• decode the statement: it is an assignment statement.

47

Simple Just-In-Time Compiler

for i=1:100
sum = sum + mymatrix(i);

end

Listing 28 Loop to compute the sum of all the matrix elements in MATLAB

• decode the rhs expression sum + mymatrix(i): this is a binary operation.

• decode which binary operation expression: this is an addition operation.

• decode the lhs sum of the binary expression this is a symbol expression.

• get the pointer from the environment to the sum object.

• get the pointer to the raw data for the sum matrix (which is a 1x1 here).

• load the actual value from that pointer.

• decode the rhs mymatrix(i) of the binary expression: this is a matrix indexing

expression.

• decode the indexing expression i: this is a symbol expression.

• get the pointer from the environment to the i object.

• get the pointer to the raw data for the i matrix (which is a 1x1 here).

• load the actual value from that pointer.

• decode the lhs mymatrix of the matrix indexing expression: this is a symbol expres-

sion.

• get the pointer from the environment to the mymatrix object.

• get the pointer to the raw data for the mymatrix matrix

• load the value at the correct offset (the indexing value computed before).

• compute the addition.

• decode the lhs sum expression of the statement: this is a symbol expression.

• get the pointer from the environment to the sum object.

• get the pointer to the raw data for the sum matrix (which is a 1x1 here).

• store the computed result at the pointed address.

While the cost those operations is acceptable with modern processors, running all those

steps inside a potentially long loop isn’t.

Out of those operations, several of them are interpreter-overhead, and some of them

are boxed-value overhead. The advantage of compiled program is that they remove both,

48

5.1. Design of SJIT compiler

thus performing only the mandatory operations, by moving some of those operations from

run-time to compile time, for example, Listing 29 shows the generated code by the SJIT for

the sum = sum + mymatrix(i) statement, which has many fewer operations to perform

than the interpreter.

"mysum = (mysum + mymatrix(i))":
; preds = %"i = temp_0"

%60 = load double* %mysum
%62 = load i32* %i
%63 = getelementptr double* %mymatrix, i32 %62
%64 = load double* %63
%65 = fadd double %60, %64
store double %65, double* %mysum

Listing 29 Generated code by the SJIT for the statement in Listing 28

Compiling MATLAB has already been tried (as explained in Chapter 2), and some

projects have been really efficient in terms of performance[4]. However, those approachs

don’t support some real-world MATLAB programs which use dynamic features. By looking

at real-world MATLAB programs, we realize that most of them use the same pattern:

• load and initialize the data (with functions such as load, ones, and zeros), ask user

for input values.

• compute the result, mostly with long running numerical loops accessing (read and

write) data.

• do something with the result (disp, plot, save).

Supporting this with a static approach requires complex and heavy analysis (only determin-

ing the call-graph statically is already extremely complex[32]), which are not suitable for a

JIT compiler. Also, we are not aware of any static approach which supports common MAT-

LAB features such as save, load,cd and eval and we suspect that there is not easy solution

to this problem.

Thus, we decided to take a completely different approach in the design of the SJIT

compiler. It should:

Be fast and simple
MATLAB is a complicated language, with a lot of idiosyncrasies and complex dy-

namic features. Supporting all of them in a compiler would range from hard to

49

Simple Just-In-Time Compiler

impossible. In the case where supporting them is possible, it would make the com-

piler require expensive analysis, which is not affordable in a JIT compiler. The SJIT

should focus on compiling code which is responsible of the core of the computation,

which is generally quite simple.

Produce very efficient code
However, we want to produce really fast code when the SJIT is triggered. To achieve

that goal, we ensure that the SJIT produces idiomatic LLVM code, and then rely on

the powerful LLVM JIT compiler to apply state-of-the-art optimizations.

Support useful data structures
The C language, for example, demonstrates that you can have very efficient and

useful C-struct and C-array, which would translate in MATLAB with matrices and

structarrays. The SJIT should support those.

To achieve all those goals at the same time, we decided to make the SJIT loop-based.

This choice has a lot of advantages:

• loops are small compared to a whole program or a whole function, which makes

analysis and compilation time small.

• in MATLAB, loops are the main reason for the huge interpreter overhead, as we saw

with Listing 28 and Chapter 2. By compiling loops, which are computational inten-

sive block of code, we get great performance improvement.

• loops rarely contains complex dynamic code such as load or save, which makes static

analysis possible and fairly easy.

• loops have the same environment has their surrounding function in MATLAB, which

makes interacting with the environment straighforward.

5.1.3 Execution model

Simply, our SJIT compiler is designed to replace the interpreter at executing loops, while

working on the same data. Its execution mode is simple: everytime a loop has to be ex-

ecuted by the interpreter, the interpreter asks if the current loop is compilable within the

current environment. If it is, it tells the SJIT to execute the loop within the current envi-

50

5.1. Design of SJIT compiler

ronment, if it’s not, the interpreter executes the loop itself. This behavior is illustrated in

Figure 5.2.

Thus, the SJIT compiler consists of only two public methods:

• bool sjit::is_compilable (LoopStmt, Environment);

This function takes as an input the loop statement to be executed and the current en-

vironment, and returns a boolean value to tell wether or not this loop can be handled

by the SJIT compiler.

• void sjit::run (LoopStmt, Environment);

This function takes an an input the loop statement to be executed and the current

environment, and executes the loop.

Both of those functions pass as arguments the loop to be executed, and the environment.

The environment is a mapping from all the currently existing program variables to a pointer

for their boxed value. Whether the loop is executed by the interpreter or by the SJIT

compiler has the same effect on the data (those in the given environment) at the end of the

loop, this is illustrated in Figure 5.2.

The loop compilation produces a completely standalone loop, without any call back to

the interpreter until the end of the loop. This means that if a loop is compilable, every code

underneath (function call included) are compilable. In Figure 5.3, we represent loops in the

program in Listing 30: the circles represent the ones which are compiled, and the squares

are interpreted. The important point of the picture is to realize that whenever a loop is

compiled, every nested loop is compiled too.

1 for
2 for
3 for
4 for
5 for
6 for
7 for
8 for
9 for

Listing 30 Structure of a MATLAB program with nested loops

51

Simple Just-In-Time Compiler

?

Before loop

After loop

DataSJIT Interpret

Figure 5.2 Execution of a loop in McVM enhanced with the SJIT

1

2 6 9

3 4 7 10 11

Figure 5.3 The names correspond to the line number of the loop in Listing 30

Determining if a loop is compilable

The first part of the SJIT compiler is to determine whether or not a loop is compilable to

assembly code. As explained before, there are many choices of what is and is not compiled,

which is a tradeoff between the complexity involved, both in terms of engineering but also

in terms of speed of the SJIT compiler, and the number of real-world features which are

highly optimizable.

To determine if this loop is compilable by our system, we run three analyses.

52

5.1. Design of SJIT compiler

Structural analysis: This verifies that the loop uses only the feature-set which is the most

optimizable and the most frequent in numerical programs: vectors, matrices, structures

manipulation (read/write). This analysis only depends on the structure (the AST) of the

loop statement.

Type inference analysis: This is the type inference analysis as described in Chapter 4.

We give as an entry map the current type environment, by first converting each variable

value in the given environment to a variable type.

This conversion is straighforward for matrices because all the elements inside a matrix

have the same type. However, it is most difficult for structarrays because they are weakly

type as we explained in Listing 27. Because fields with the same name can have different

types inside a structarray, and those are unsupported by the SJIT compiler (because we

could not use LLVM builtin instructions for structures), we need to verify that a field is

always used with the same type through the structarray. It means that, for example with a

structarray of size 10×10 with fields a and b, we need to iterate 100 times to verify that all

the fields a store the same variable type, and again 100 times for field b. This can be quite

costly if the structarray is big or has a lot of fields and it might have some negative impact

in terms of time spent to compute the initial entry map for the type inference analysis.

Type inference weeder: To simplify the code generation, we also run another analysis

on top of the type inference result to exclude loops where variables have different types at

different program points inside the loop. In practice, it rarely happens because using the

same variable with different types is generally consider a bad programming practice[33].

We name this analysis the type inference weeder, because it weeds out from compilation

programs which use the same variable with different types.

The type inference weeder analysis is flow-insensitive: it computes a single result (a

mapping from variable name to type) which is valid at each statement in the program frag-

ment it analyzes. The goal of this algorithm is twofold:

• to identify usage of the same variable name with different base types inside the loop.

In Listing 31, the type inference analysis result after line 1 says that the variable a

has base type double, but that it has base type logical after line 2. The type inference

53

Simple Just-In-Time Compiler

weeder analysis rejects those cases, thus determine that the variable a has unknown

type (>).

• for variables which are used with a single base type inside the loop, determine the

other attributes (size, fields,. . .). This simplifies the code generation and also im-

proves the performance, by avoiding multiple memory reallocations. In Listing 32,

we see that the type inference weeder determines that for this whole code fragment,

we should consider the variable a as a struct with fields a and b, even if the field b

doesn’t actually exist after line 1. Intuitively, it always tries to construct the biggest

possible structure. For size, we use the same "take the biggest possible" size. The

idea is described more precisely in the Subsection 5.2.6, which discusses the code

generation for the array bound checks and the potential difficulties introduced by this

simplication.

1 a = 1.1;
2 a = true;

Listing 31 The type inference weeder determines that the variable a is of type> in this program
fragment

1 a.a = 1.1;
2 a.b = 1.2;

Listing 32 The type inference weeder determines that the variable a is of type struct with fields
a of base type double and b of type double in this program fragment

Caching results

By design, the interpreter always asks the SJIT to execute a loop, and if not possible exe-

cutes it itself. In the case where the loop is compilable, this is a gain. However, one of the

analysis may determine that a loop is not compilable. In this case, there is an overhead for

the interpreter, compared to directly interpreting the loop: we run some analyses but can’t

take advantage of them. The time of analysis is negligible compared to the gain when the

loop is compiled, but the overhead might be costly when analyses are run too often.

54

5.1. Design of SJIT compiler

An example of a problematic case is given in Listing 33: because the outer loop (the

one from 1 to X) is not compilable, the inner loop (the one from 1 to Y) would be analyzed

X times, which correspond to the number of time this loop is encountered by the interpreter.

for i=1:X
for j=1:Y

body;
end

uncompilable_statement;
end

Listing 33 MATLAB code with a loop inside an uncompilable loop

A solution to this potential problem is to cache the results of the three analyses. Our

SJIT compiler maintains two different maps:

• one which is a map from loop to boolean (the result of the structural analysis).

• another which is a map from loop to type inference weeder result.

Everytime the interpreter asks if a loop is compilable, we first loop in the caching maps

and only if the result doesn’t exist yet, we actually perform the analyses. It is described in

pseudocode in Listing 34.

boolean function is_compiable (loop, environment)

if !structural_cache.contains(loop)
structural_cache[loop] = structural_analyze(loop)

if !structural_cache[loop]
return false;

env_type = construct_type_from_variables(environment)
key = make_pair(loop,env_type)

if !typeinferenceweeder_cache.contains(key)
typeinference_cache[key] =

typeinference_weeder_analyze(loop,env_type)

return typeinference_cache[key]

Listing 34 Pseudocode for the is_compilable function with cache

55

Simple Just-In-Time Compiler

5.2 Code Generation

This section explains how some interesting constructs in Mc IR, such as loop statement or

array access, are expressed in LLVM IR. We don’t describe obvious translations such as

sequence of statements and binary expressions.

5.2.1 LLVM IR

The LLVM project is a collection of modular and reusable compiler and toolchain tech-

nologies. It is widely used in both research and industy[34]. The LLVM IR is a powerful

intermediate repsentation for efficient compiler transformations and analysis. For this the-

sis, the important characteristics of the LLVM IR are:

Low-level instructions
It is designed at a level close to real assembly languages like X86 or ARM. It doesn’t

have high-level language constructs such as loops. Control-flow has to be expressed

with explicit constructs: branching, conditional branching or function call/return.

Higher-level typed data structures
It provides builtin support for C-style arrays and structures, and a powerful way to

access elements in them with the getelemptr instruction[35]. All the data structures

(scalar, matrices, structures) are typed to provide security and better opportunities for

optimization.

Efficient
It can be used as an in-memory representation, and the LLVM JIT compiler can

apply advanced optimizations on the IR such as constant propagation, vectorization

and scalar replacement of aggregates.

5.2.2 Type-specialized block

As we explained before, a compilation is loop-based, within a certain environment. It

means that the same loop might be compiled several times, because the compilation also

depends on the surrounding environment (because the type inference analysis depends itself

56

5.2. Code Generation

on the surrounding environment).

The code generation process, after having determined that the loop is compilable and

having gotten the results of the type inference weeding analysis, is:

• Create an LLVM function which takes as arguments pointers to each variable raw

data in the environment.

• Cast each variable to its inferred type.

• If the variable is a scalar (logical, integer or double), allocate a local copy of the

variable and store in the local copy the current value from the environment.

• Compile the actual loop statement.

• If the variable is a copy, store the result back into the environment.

Creating local variables instead of using the one from the environment directly, which

means loading their value at the beginning of the loop and storing them back at the end of

the loop, is necessary because several LLVM optimizations only works on local variables

(variables allocated inside the LLVM function with the alloca instructions). This is the

case of the crucial mem2reg pass which move local variables into registers and and is the

recommended way to generate LLVM IR[36].

1 a(10,10) = 1.1;
2 b = false;
3 c = 3;
4

5 % The compilation starts here
6 for cond
7 body
8 end

Listing 35 Example of a loop compilation

For example in Listing 35, the first three statements, from line 1 to 3, are interpreted

and at line 5, the loop is compiled within an environment which contains:

• a with a base type double.

• b with a base type logical.

• c with a base type scalar integer.

57

Simple Just-In-Time Compiler

define void @loop_ptr_35935600([6 x i64*]* %params_vec) {
entry:

; cast and load variable c
%0 = getelementptr [6 x i64*]* %params_vec, i64 0, i64 0
%1 = bitcast i64** %0 to double**
%c = load double** %1

; cast and load variable b
%2 = getelementptr [6 x i64*]* %params_vec, i64 0, i64 1
%3 = bitcast i64** %2 to i1**
%b = load i1** %3

; cast and load variable a
%4 = getelementptr [6 x i64*]* %params_vec, i64 0, i64 2
%5 = bitcast i64** %4 to double**
%a = load double** %5

; copy variable c
%c_copy = alloca i64
%12 = getelementptr double* %c, i64 0
%13 = load double* %12
%14 = fptosi double %13 to i64
%15 = getelementptr i64* %c_copy, i64 0
store i64 %14, i64* %15

; copy variable b
%b_copy = alloca i1
%16 = getelementptr i1* %b, i64 0
%17 = load i1* %16
%18 = getelementptr i1* %b_copy, i64 0
store i1 %17, i1* %18

; branch to the loop statement
br label %loop_init
...

Listing 36 The environment variables are passed as arguments to the LLVM function, cast to
their inferred type (double for a, i1 for b, i64 for c, and copied (except a which is
too big).

We compile the base loop as an LLVM function, taking as arguments pointers to each data

in the environment. Part of the resulting assembly code is in Listing 36.

Sometimes, data is created inside the loop, and thus isn’t contained in the initial en-

vironment. We need to take care of initializing an empty object of the correct type (the

inferred one) before compiling the loop. In Listing 37, this means that we initialize a dou-

ble matrix object (without any data inside) for variable a and for variable mymatrix and

we put those variables in the environment. Thus, they will be accessible by the interpreter

when it takes the control back (after the loop). If the size of the matrices a and mymatrix

58

5.2. Code Generation

at the end of the loop is inferred by the type inference analysis, we store it directly in the

object (for example, val is inferred to be of size 1x1), else it will be handle at run-time by

the SJIT (with a performance cost, see Subsection 5.2.6).

a = 1.1;
for i=1:100

val = a * i;
mymatrix(i) = 1;

end
disp(a);
disp(val);
disp(mymatrix);

Listing 37 Loop compilation within an environment which contains variables only a before, but
also val and mymatrix after.

5.2.3 If-Else statement

Like most assembly languages, the LLVM IR doesn’t provide a direct language construct

to express an If-Else statement from Mc IR. We implement this with named basic-blocks

(labels) and branching instruction (gotos).

The compilation is straightforward. We generate 4 basic blocks: the one where the

condition is evaluated (named cond_ifelse in Listing 39), one for the if body (sequence1),

one for the else body (sequence2) and one for the end of the statement (end_ifelse).

if a
b = 1;

else
b = 2;

end

Listing 38 Simple example of an If-Else statement in MATLAB

5.2.4 Loop, Continue and Break statements

Again, the LLVM IR doesn’t have a direct way to represent loop statements. The code

generation strategy is based on 3 blocks:

59

Simple Just-In-Time Compiler

previous statement

evaluate the condition

Sequence 1 Sequence 2

b = 1; b = 2;

end block

next statement

Figure 5.4 Control Flow Graph representing the LLVM code (basicblock and branching) for an
If-Else statement

• an end block, which branchs to the instruction after the loop statement.

• a body block, which branchs to the first instruction in the body of the loop.

• a condition block, which evaluates the condition of the loop and branchs to either the

end block or the body block.

Generating a continue statement is as simple as generating an LLVM branch instruction

to the condition block. Similarly, a break statement is translated to a branch instruction to

the end block.

5.2.5 Matrix and structure access

LLVM provides direct language support for C-style arrays and structures, and we take

advantage of that in the SJIT.

60

5.2. Code Generation

cond_ifelse:
; preds = %"i = temp_0"

%64 = load i1* %a_copy
br i1 %64, label %sequence1, label %sequence2

end_ifelse:
; preds = %"b = 2", %"b = 1"

br label %loop_incr

sequence1:
; preds = %cond_ifelse

br label %"b = 1"

"b = 1":
; preds = %sequence1

store i32 1, i32* %b_copy
br label %end_ifelse

sequence2:
; preds = %cond_ifelse

br label %"b = 2"

"b = 2":
; preds = %sequence2

store i32 2, i32* %b_copy
br label %end_ifelse

Listing 39 Assembly code for an If-Else statement in LLVM

Matrix

In LLVM IR, getelemptr is an instruction which takes a pointer to a data structure and

an integer which represents the offset, and returns a pointer to the element of that data

structure at the corresponding offset.

For example, in Listing 40, we store into the variable b the 33rd (MATLAB uses one

based indexing but LLVM uses zero based indexing) element of the mat matrix.

"b = mat(33)":
; preds = %"i = temp_0"
%60 = getelementptr double* %mat, i32 32
; %60 is a pointer to the element
%61 = load double* %60
; %61 is the element value

Listing 40 Assembly code for a matrix access in LLVM IR

61

Simple Just-In-Time Compiler

Structarray

For structarrays, the dynamic representation inside the interpreter is a map from field name

(a string) to pointer of data object. This representation isn’t suitable for LLVM structure

access instructions: they operate on a C-like representation (a contiguous region of memory

which contained each data field aligned). Our solution is to create an LLVM friendly

representation before executing the loop: we allocate a region of memory (with standard

malloc) of the current size of structarray (it can be extended after) by the size of each

field, and we put in each field a pointer to the actual variable in the dynamic representation.

This is illustrated in Figure 5.5 (note that we haven’t represented all the pointers to keep

the figure readable). With this representation, the LLVM getelemptr instruction works

correctly, and we get a pointer to a field of the structarray in the environment.

*r *g *b *r *g *b *r *g *b *r *g *b

Structarray

234 84

192

11

184

213

Figure 5.5 Memory representation of a 2×2 structarray with fields r, g and b suitable for LLVM

In Listing 41, we store into a structarray st at index <1,1> in the field a:

• At line 6, we get a pointer to the beginning of the structure at index <1,1> in the

62

5.2. Code Generation

1 "st(1, 1).a = 4.4":
2 %nbrows = load i64* bitcast (i64 40957360 to i64*)
3 %nbrcolumns = load i64* bitcast (i64 40957368 to i64*)
4 %55 = mul i64 0, %nbrows
5 %56 = add i64 0, %55
6 %57 = getelementptr %0* %st, i64 %56
7 %58 = getelementptr %0* %57, i32 0, i32 0
8 %ptr_to_elem = load double** %58
9 store double 0x40119999A0000000, double* %ptr_to_elem

Listing 41 Assembly code for a structarray access in LLVM IR

structarray.

• At line 7, we get a pointer to the element inside this structure. The offset is 0 because

the field a is the first one in this structure (and LLVM uses zero based indexing).

• As a result, at line 8, the variable %58 is a pointer to pointer of double. Thus, we

dereference it to get the actual pointer to the element (named %ptr_to_elem).

• Finally, at line 9, we can store the number 4.4 at the pointed address.

5.2.6 Array Bound Checking

As we explained in Chapter 2, MATLAB provides two fundamental features which are

appreciated by users:

• every read access to a matrix or a structure is bound checked: if the indices is bigger

than the actual size of the accessed object, MATLAB emits a warning and gratefully

prevents the operation (contrary to for example the C language which would crashes

the program with a segmentation fault).

• every write access to a matrix or a structure is also bound checked. However, MAT-

LAB has the rare feature of providing array-growth: the accessed object will be grown

transparently to the necessary size to make the write possible.

The SJIT compiler, being a proper MATLAB subset implementation, follows this behavior.

However, thanks to the type inference analysis, the code generation strategy emits the least

possible runtime checks, to provide better performance (the performance cost of bound

checking is described in detail in Chapter 6).

There are three different code generation strategies:

63

Simple Just-In-Time Compiler

• if we know the size of the accessed object at this statement thanks to the original (not

the weeded one) type inference analysis, and we also know the value of the index,

we can verify the validity of the read or write at compile time, and directly generate

either the error message or a call to the array growth function.

• if we know the size but not the index, like in Listing 42, we generate a single com-

parison instruction (on line 4) between the statically known size (10 in the example)

and the indexing value.

1 "x = a(i)":
2 ; preds = %"i = temp_0"
3 %60 = load i32* %i_copy
4 %abc_check = icmp slt i32 10, %60
5 br i1 %abc_check, label %throw_abc_exception,
6 label %"valid_abc_for_a(i)"
7

8 "valid_abc_for_a(i)":
9 ; preds = %throw_abc_exception, %"x = a(i)"

10 %61 = sub i32 %60, 1
11 %62 = getelementptr double* %a, i32 %61
12 %63 = load double* %62
13 store double %63, double* %x_copy
14 br label %loop_incr
15

16 throw_abc_exception:
17 ; preds = %"x = a(i)"
18 call void @static_throw_abc(i32 10, i32 %60)
19 br label %"valid_abc_for_a(i)"

Listing 42 Bound check generated when the size of the accessed object is known at compile-
time (10) but the index isn’t.

• if we don’t know the size of the accessed object at this statement, we generate a

runtime call to the get the size of the accessed object, and a runtime comparison to

the indexing value. This is the most frequent case in practice, and it’s the case with

the biggest runtime overhead: at each access, we need to load a value from memory

(the current size of the accessed object), and compare it to the index.

With the example given in Listing 43, the generated bound checking code at each line

would be, assuming a is of type double and of size <1x10> in the entry type inference map:

1. a has size 1x10, the assignment to a(10) is valid thus no array growth check is needed

here.

64

5.3. Summary

2. a has size 1x10, the matrix read a(8) is valid thus no boundcheck is generated here.

3. a has size 1x10, the matrix read a(x) with the value of x unknown requires a runtime

boundcheck which check if x is less or equal to 10.

4. a has size 1x10 before this statement, the matrix write a(20 is valid and is handled

by the type inference analysis, thus require no array growth check (it will be directly

initialized to the statically determined maximum size at the beginning of the compi-

lation).

5. a has size 1x20, the matrix read a(15) is valid thus no boundcheck is generated here.

6. the matrix write a(x) with the value of x unknown need a runtime array growth check.

7. a has unknown size now, thus any code after that accessing (read/write) the matrix a

will need boundcheking code.

1 a(10) = 1.1;
2 b = a(8);
3 c = a(x);
4 a(20) = 2.1;
5 d = a(15);
6 a(x) = 4.23;
7 e = a(200) ;

Listing 43 MATLAB code to show when a runtime boundcheck is generated

5.3 Summary

In this chapter, we described our SJIT compiler. Its core idea is to interact with the data

objects already existing in the environment, by first getting the data and adapting them in a

suitable way (by copying, casting and reorganizing the data if necessary). It then produces

straighforward LLVM IR code and thus benefits from robust LLVM optimizations. We

saw that there is a direct translation for regular data where MATLAB has some type con-

straints (such as double matrices, where all the elements has to be doubles), but for weakly

typed data such as structarrays in MATLAB, where each element can have the type of its

fields different from another element, the translation requires more complex analysis and

data transformation.

65

Simple Just-In-Time Compiler

66

Chapter 6

Performance Evaluation

In this chapter, we present the performance results of our SJIT compiler, compared to

previous dynamic implementations of the MATLAB language: McJIT, McVM, the refer-

ence MATHWORKS implementation, and OCTAVE. We start by describing the different

benchmarks which are used to validate the performance of our SJIT, we continue with the

actual results and some interpretation of them, and we finish with a discussion about the

compilation time introduced by the just-in-time compilers.

6.1 Benchmarks

In this section, we describe our benchmarks, which come from various sources such as

the FALCON project[14] and McGill numerical computation classes. They focus on the

numerical aspect of MATLAB: matrices and structures. They don’t use uncommon features

such as lambda functions or GUI librairies.

bubl is an implementation of the bubble sort algorithm in MATLAB. It uses a vector

of size 1×20000 filled with random numbers between 0 and 100. Its implementation is a

single function with takes the unsorted array an input and outputs a sorted one: this function

uses doubly nested loops.

67

Performance Evaluation

euler31 is an implementation of a solution for problem 31 of the Euler project[37]. It

uses a dynamic programming algorithm and store the results in a two-dimensional matrix

of size 9×100000.

fiff is part of the benchmark set used by the FALCON project. It is an implementation of

finite-difference solution to the wave equation. It performs scalar operations on a matrix of

size 10000×10000.

dich is an implementation of the Dirichlet solution to Laplace’s equation. It is a loop-

based program that performs scalar operations on a two-dimensional matrix of size 667×667.

It is from the FALCON project.

crni is an implementation of the Crank-Nicholson solution to the heat equation. It is a

loop-based program that performs scalar operations on a two-dimensional matrix of size

600×600. It is from the FALCON project.

capr is an implementation of the computation of the capacitance of a transmission line

using a finite difference and Gauss-Seidel method. It is a loop-based program that involves

two small matrices and performs scalar operations on them. It is from Chalmers University

of Technology[4].

clos calculates the transitive closure of a directed graph. Its execution time is for the vast

majority spent in a matrix multiplication between two matrices of size 2000×2000. It is a

benchmark from the OTTER project[38].

rgbneg performs a calculation of the negative of a small image represented in the RGB

color space[39], which is stored using a structarray of size 1024×1024 containing fields r

(red), g (green) and b (blue). We found this representation more intuitive than the three-

dimensional matrix used by MATLAB librairies to represent images.

68

6.2. Performance results

rgbtohsv performs a transformation of an RGB image (using a structarray of size 1024×1024

and fields r, g and b) to the same one using an HSV representation[40] (using a structar-

ray of size 1024×1024 and fields h, s and v). The MATLAB code for this algorithm is

given in appendix D. Interestingly, MATLAB provides a builtin function to do this conver-

sion (named rgb2hsv). It takes a three dimensional matrix has input and outputs a three

dimensional matrix: by using the exact same representation for two actually different im-

age representations, we believe that this is confusing for the user and error-prone. Using

structarrays would help make the code self-documenting and thus more explicit.

6.2 Performance results

We compare:

• our SJIT implementation (on top of the McVM interpreter).

• the SJIT with array-bound checking enabled (both for reads and writes).

• the previous McJIT implementation (on top of the McVM interpeter) without array-

bound checking.

• the reference MATHWORKS MATLAB implementation R2013a 64-bits.

• the McVM interpreter without any just-in-time compiler.

• OCTAVE 3.8 with the default compilation configuration.

The results are shown in Table 6.1. They have been run on an Intel Core i7-3517U with

10GB of memory, with the operating system being Arch Linux (kernel version 3.12.9).

Benchmarks bubl, euler31, fiff and dich have similar results: they generally show

that the SJIT is the fastest implementation, followed closely by McJIT. They are between 5

and 10 times faster than the MATHWORKS implementation. The interpreters are performing

poorly, but OCTAVE is particularly slow.

The clos benchmark has unique results because it is almost exclusively performing a

matrix multiplication, thus actually depends on the performance of the underlying matrix

multiplication implementation. The MATHWORKS implementation and the SJIT are the

fastest because they both use Intel Math Kernel Library[41] as their matrix multiplication

69

Performance Evaluation

SJIT SJIT (with ABC) McJIT MATLAB McVM OCTAVE

bubl 0.88 1.23 0.96 11.45 287 3484
euler31 0.74 0.73 0.71 2.45 167 1519

fiff 0.46 0.6 0.99 4.24 212 2187
dich 0.81 0.95 1.38 5.47 421 3373
clos 4.98 4.97 7.16 4.36 11.87 20.22
crni 0.41 0.41 2.59 0.09 4.25 20.24
capr 0.66 0.64 0.45 2.03 273 632

rgbneg 0.149 0.157 N/A 2.24 251 53
rgbtohsv 0.185 0.197 N/A 13.53 428 398

Table 6.1 Performance results (in seconds)

implementation, which is known to be very efficient. The other implementations are in the

same order of magnitude in terms of performance.

The crni benchmark is largely dominated by the MATHWORKS implementation, which

is about 4 times faster than SJIT (with or without array-bound checking), and more than

25 times faster than McJIT. This benchmark contains a long function (more than 20 in-

structions), which contains a small loop inside it of only 3 instructions: 2 functions calls

and 1 slice assignment. The SJIT doesn’t have support for slice operation yet, and thus

the loop is executed by the interpreter. McJIT is unable to fully compile this loop neither

and produces code which uses some level of interpretation. However, the MATHWORKS

implementation seems to compile it just fine. Note that the SJIT is still 5 times faster than

McJIT because the function calls contains inner loops, which are compiled by the SJIT

because it takes advantage of the state of the environment just before those loops.

The capr benchmark yields interesting results: it is the single benchmark where McJIT

performs better than the SJIT (but both run about 3 times faster than the MATHWORKS

implementation). This benchmark is made of a loop (running 100 times) containing 3

instructions, 2 of them being function calls and containing 5 inner loops inside them (which

are responsible for the main computation), and the last one being a library call (Listing 44

represents it in pseudocode). McJIT compiles the whole function and everything inside it

fine, however, the SJIT doesn’t compile the outer loop because we didn’t implement this

library call, thus this loop is given back to the interpreter. However, the interpreter tries to

70

6.2. Performance results

1 function capr
2 ...
3 outer_loop
4 inner_loop1
5 ...
6 end
7 inner_loop2
8 ...
9 end

10 inner_loop3
11 ...
12 end
13 inner_loop4
14 ...
15 end
16 inner_loop5
17 ...
18 end
19 library_function_call();
20 end
21 ...

Listing 44 Pseudocode for the capr benchmark. Three dots are representing instructions.

defer the execution of each inner loop to the SJIT (as explained in Subsection 5.1.3), which

works because those five inner loops are simple matrix iterating loops. Thus, the SJIT still

achieves good (but not optimal) performance because the instructions which would be at

lines 5, 8, 11, 14 and 17 are compiled. We believe that this is an example of the fact that

targeting loops allows the SJIT to be simple: even if it doesn’t support some library calls

yet, it always has good performance because at some point inside a program, the loops are

the vast majority of time really simple and thus handled by the SJIT.

For the rgbneg and the rgb2hsv benchmarks, the MATHWORKS implementation per-

formance is abysmal, which is expected considering that those benchmarks are extensively

using structarrays. The SJIT doesn’t suffer from the usage of structarrays, and by looking

at the just-in-time compiled assembly code, we see that using structures in LLVM only

add one instruction per access (the multiplication by the size of the structure to get the cor-

rect address) compared to accessing a double matrice, which is almost invisible in terms of

running time.

71

Performance Evaluation

6.2.1 Array-bound checking performance

The first observation made analysing the generated code is that eliminating array-bound

checking in MATLAB is difficult and would require a full-featured range analysis to be of

any use. This type inference doesn’t provide it, and thus the SJIT with array-bound check

enabled generates checks for all array reads and writes.

In terms of performances, we discover that the cost of array-bound checking in the

SJIT varies: it is negligible in most benchmarks (euler31, dich, crni. . .) but sometimes

yield some performance penalty (to a maximum of +40% in bubl). We suspect that this

behavior is related to branch prediction and caching, which sometimes makes the cost of

array-bound checking invisible.

In general, we see that the performance cost of array-bound checking in MATLAB is

fairly constrained (it stays in the same order of magnitude), compared to the cost of inter-

preting for example.

6.3 Overhead of just-in-time compilation

6.3.1 Compilation and analysis time

During this thesis, we have stated that the SJIT compiler, as the name implies, should

stay simple, and thus fast. The compilation time results show that our insights were valid,

and the SJIT is really fast in terms of compilation (analyses included) time: around 10

milliseconds on all benchmarks, depending on the size of the loops in terms of number of

statements.

In comparison, McJIT has much higer compilation time, because it always compiles a

lot more statements (complete function vs loop, which in the dich benchmark for example

means compiling 48 instructions but only 13 for the SJIT) and thus the analyses are much

more complex and time consuming.

One particular case where the compilation time is quite heavy in the SJIT is the presence

of structarrays (benchmarks rgbneg and rgbtohsv). As we explained in Section 5.2.5,

before the analysis starts, we need to verify that structarrays in the environment follows

72

6.3. Overhead of just-in-time compilation

certains properties (all structures in the structarray have the same fields with the same

types) which are not enforced by the MATLAB interpreter. For example, if we consider an

environment containing a structarray of size 1024×1024 with 3 fields, it means verifying

3145728 (1024×1024×3) the dynamic type of an element.

SJIT McVM
bubl 0.002 0.103

euler31 0.003 0.025
fiff 0.005 0.242

dich 0.010 0.337
crni 0.004 0.341
clos 0.008 0.133
capr 0.013 0.416

rgbneg 0.097 N/A
rgbtohsv 0.109 N/A

Table 6.2 Compilation time (in seconds)

6.3.2 Cached analysis time

By the design of our SJIT compiler, every time a loop is executed, the interpreter asks if this

loop is runnable by the SJIT. As already described, the crni benchmark contains an outter

loop which is not compiled by the SJIT, but executed 600 times. This loop containing 3

nested loops, everytime this loop is executed by the interpreter, it asks the SJIT compiler

1800 times if the inner loops are compilable (3 × 600). Thanks to the caching mechanism,

the cost of asking if some loops are compilable 1800 times results in an overhead of around

10ms, which is negligible compared to executing even a few instructions in the interpreter

anyway. Thus, the pure overhead introduced by the SJIT when it doesn’t compile (which

means running the analyses for no benefits) is extremely constrained.

73

Performance Evaluation

74

Chapter 7

Conclusions and Future Work

This thesis has introduced the SJIT compiler, an efficient just-in-time compiler for MAT-

LAB. It takes advantage of existing ideas (such as dataflow-based type inference, type

specialization, and loop-based compilation) and applies them on a widely used numerical

language, MATLAB. The performance results are impressive, being much faster than the

reference MATHWORKS implementation in most benchmarks.

The important points of this thesis are:

• Loop-based just-in-time compilation fits nicely with numerical programs, which are

often based around small computation kernels iterating over matrices.

• Targeting a well-known assembly language like LLVM allows the SJIT to benefit

from state-of-the-art optimizations.

• The essential analysis to be able to generate valid and efficient code is the type in-

ference analysis. Determining ranges for bound-checking optimization is minor in

comparison (while being actually harder).

• Just-in-time compilation allows us to keep the compiler simple compared to ahead-

of-time compilation for a dynamic language such as MATLAB, while still achieving

excellent performance. It also allows us the integrate it in interactive development

environment thanks to the extremly small compilation time.

75

Conclusions and Future Work

7.1 Future Work

The current SJIT focuses on the general usage of MATLAB: double matrices, logical and

structarrays. Future work should go toward supporting more MATLAB features such as:

• Complex numbers: some work has already been done in other projects[4].

• Cell arrays would be a good opportunity for optimization: its usage is quite important

in MATLAB and we suspect that even if MATLAB doesn’t put any type constraint

on it, most users use cell arrays as a structured data, sometimes in place of more

adequate data structures (such as structarrays or plain matrices).

• Function handles (which represent lambda functions in MATLAB) could benefit from

type inference to generate specialized (and thus optimized) functions on the type of

its arguments.

Aside from supporting more MATLAB features, we think that several ideas could be

explored to further improve performance:

• value-based specialization: our approach compiles a loop specialized on the current

type of the variables in the input environment (before the loop). One could imagine

a compilation strategy which compiles a loop specialized on the current value of the

variables in the input environment. This could yield great performance results in

some cases (thanks for example to constant propagation) but could also introduce

too many compilations.

• better memory usage: MATLAB, by being a copy-based language, creates many

memory allocations which could sometimes be avoid with dataflow analyses.

76

Appendices

77

Chapter A

Statement dispatcher code

79

Statement dispatcher code

#pragma once

#include "statements.h"
#include "assignstmt.h"
#include "ifelsestmt.h"
#include "loopstmts.h"
#include "exprstmt.h"
#include "stmtsequence.h"
#include "returnstmt.h"

#define BASE static_cast<derived*>(this)

namespace mcvm {
namespace analysis {
namespace framework {

template <typename derived, typename T>
struct statement_dispatcher {

T statement_dispatch (
const Statement* st,
const T& in) {

switch (st->getStmtType()) {
case Statement::ASSIGN:

return BASE->analyze_assign(
static_cast<const AssignStmt*>(st),
in) ;

case Statement::IF_ELSE:
return BASE->analyze_ifelse(

static_cast<const IfElseStmt*>(st),
in) ;

case Statement::LOOP:
return BASE->analyze_loop(

static_cast<const LoopStmt*>(st),
in);

Listing 45 Implementation of the statement_dispatcher component (1/2)

80

case Statement::BREAK:
return BASE->analyze_break(

static_cast<const BreakStmt*>(st),
in);

case Statement::CONTINUE:
return BASE->analyze_continue(

static_cast<const ContinueStmt*>(st),
in);

case Statement::RETURN:
return BASE->analyze_return(

static_cast<const ReturnStmt*>(st),
in);

case Statement::EXPR:
return BASE->analyze_exprstmt(

static_cast<const ExprStmt*>(st),
in) ;

}
}

};

}}}

Listing 46 Implementation of the statement_dispatcher component (2/2)

81

Statement dispatcher code

82

Chapter B

Merger code

#pragma once

#include <vector>

namespace mcvm {
namespace analysis {
namespace framework {

template <typename derived, typename T>
struct merger {

T merge_list(const std::vector<T>& infos) {
if (infos.empty())

return T{} ;

auto merged = infos.front() ;
for (auto& info : infos) {

merged = static_cast<derived&>(*this).merge
(info,merged) ;

}
return merged ;

}
};

}}}

Listing 47 Implementation of the merger component

83

Merger code

84

Chapter C

Reaching definition analysis code

85

Reaching definition analysis code

#pragma once

#include <unordered_map>
#include <set>

#include <analysis/framework/helper.h>
#include <analysis/framework/fw_sequence.h>
#include <analysis/framework/fw_ifelse.h>
#include <analysis/framework/fw_merger.h>
#include <analysis/framework/fw_flow_sensitive_base.h>
#include <analysis/framework/fw_loop_fixpoint.h>

namespace mcvm {
namespace analysis {
namespace reachdef {

using I = std::unordered_map<std::string,std::set<const AssignStmt*>> ;

struct analyzer :
public framework::flow_sensitive_base <analyzer,I>,
public framework::forward <analyzer,I>,
public framework::ifelse <analyzer,I>,
public framework::loop_fixpoint <analyzer,I> ,
public framework::merger <analyzer,I>
{

I merge(const I&a, const I&b) const ;
I analyze_assign(const AssignStmt* stmt, const I& in) ;
I analyze_exprstmt(const ExprStmt* stmt, const I& in) ;

};

}}}

Listing 48 reachdef.h

86

#include "reachdef.h"

namespace mcvm {
namespace analysis {
namespace reachdef {

I analyzer::merge(const I&a, const I&b) const {
I out = a ;
for (auto& pair:b)

out[pair.first].insert
(pair.second.begin(),pair.second.end());

return out;
}

I analyzer::analyze_assign(
const AssignStmt* stmt,
const I& in) {

auto left = stmt->getLeftExprs();
auto out = in ;
for (auto& id:left)

out[id->toString()] = {stmt};
return out;

}

I analyzer::analyze_exprstmt(
const ExprStmt* stmt,
const I& in) {

return in;
}

Listing 49 reachdef.cpp

87

Reaching definition analysis code

88

Chapter D

RGB2HSV benchmark

89

RGB2HSV benchmark

function hsv = rgbtohsv(rgb,x,y)

% Preallocation
hsv(x,y).hue = 0;
hsv(x,y).sat = 0;
hsv(x,y).val = 0;

for i=1:x
for j=1:y

% Calculate the max rgb
if rgb(i,j).r < rgb(i,j).g

if rgb(i,j).g < rgb(i,j).b
rgbmax = rgb(i,j).b;

else
rgbmax = rgb(i,j).g;

end
else

if rgb(i,j).r < rgb(i,j).b
rgbmax = rgb(i,j).b;

else
rgbmax = rgb(i,j).r;

end
end

% Calculate the min rgb
if rgb(i,j).r < rgb(i,j).b

if rgb(i,j).r < rgb(i,j).g
rgbmin = rgb(i,j).r;

else
rgbmin = rgb(i,j).g;

end
else

if rgb(i,j).b < rgb(i,j).g
rgbmin = rgb(i,j).b;

else
rgbmin = rgb(i,j).g;

end
end

% Calculate the value (V) is the maximum
% of the r, g and b
hsv(i,j).val = rgbmax;

% Normalize value to one
rgb(i,j).r = rgb(i,j).r / hsv(i,j).val;
rgb(i,j).g = rgb(i,j).g / hsv(i,j).val;
rgb(i,j).b = rgb(i,j).b / hsv(i,j).val;
rgbmin = rgbmin / hsv(i,j).val;
rgbmax = rgbmax / hsv(i,j).val;

% Calculate the saturation (S)
hsv(i,j).sat = rgbmax - rgbmin;

Listing 50 MATLAB implementation of a conversion between an RGB and an HSV image rep-
resentation (1/2)

90

% Normalize saturation to one
rgb(i,j).r = (rgb(i,j).r - rgbmin) / (rgbmax - rgbmin);
rgb(i,j).g = (rgb(i,j).g - rgbmin) / (rgbmax - rgbmin);
rgb(i,j).b = (rgb(i,j).b - rgbmin) / (rgbmax - rgbmin);

% Calculate the max rgb
if rgb(i,j).r < rgb(i,j).g

if rgb(i,j).g < rgb(i,j).b
rgbmax = rgb(i,j).b;

else
rgbmax = rgb(i,j).g;

end
else

if rgb(i,j).r < rgb(i,j).b
rgbmax = rgb(i,j).b;

else
rgbmax = rgb(i,j).r;

end
end

% Calculate the min rgb
if rgb(i,j).r < rgb(i,j).b

if rgb(i,j).r < rgb(i,j).g
rgbmin = rgb(i,j).r;

else
rgbmin = rgb(i,j).g;

end
else

if rgb(i,j).b < rgb(i,j).g
rgbmin = rgb(i,j).b;

else
rgbmin = rgb(i,j).g;

end
end

% Calculate the hue (H)
if rgbmax == rgb(i,j).r

hsv(i,j).hue = 0.0 + 60.0 * (rgb(i,j).g - rgb(i,j).b);
if hsv(i,j).hue < 0.0

hsv(i,j).hue = hsv(i,j).hue + 360.0;
end

elseif rgbmax == rgb(i,j).g
hsv(i,j).hue = 120.0 + 60.0 * (rgb(i,j).b - rgb(i,j).r);

else
hsv(i,j).hue = 240.0 + 60.0 * (rgb(i,j).r - rgb(i,j).g);

end

hsv(i,j).hue = hsv(i,j).hue / 360 ;

end
end

Listing 51 MATLAB implementation of a conversion between an RGB and an HSV image rep-
resentation (2/2)

91

RGB2HSV benchmark

92

Chapter E

Example of LLVM IR generated by the SJIT

93

Example of LLVM IR generated by the SJIT

cond_ifelse:
%111 = load i64* %i_copy
%112 = sub i64 %111, 1
%113 = getelementptr double* %A, i64 %112
%114 = load double* %113
%115 = load i64* %i_copy
%116 = add nuw nsw i64 %115, 1
%117 = sub i64 %116, 1
%118 = getelementptr double* %A, i64 %117
%119 = load double* %118
%120 = fcmp ogt double %114, %119
br i1 %120, label %sequence6, label %sequence7

sequence6:
br label %"swap_val = A(i)"

"swap_val = A(i)":
%121 = load i64* %i_copy
%122 = sub i64 %121, 1
%123 = getelementptr double* %A, i64 %122
%124 = load double* %123
store double %124, double* %swap_val_copy
br label %"A(i) = A((i + 1))"

"A(i) = A((i + 1))":
%125 = load i64* %i_copy
%126 = add nuw nsw i64 %125, 1
%127 = sub i64 %126, 1
%128 = getelementptr double* %A, i64 %127
%129 = load double* %128
%130 = load i64* %i_copy
%131 = sub i64 %130, 1
%132 = getelementptr double* %A, i64 %131
store double %129, double* %132
br label %"A((i + 1)) = swap_val"

"A((i + 1)) = swap_val":
%133 = load double* %swap_val_copy
%134 = load i64* %i_copy
%135 = add nuw nsw i64 %134, 1
%136 = sub i64 %135, 1
%137 = getelementptr double* %A, i64 %136
store double %133, double* %137
br label %end_ifelse

sequence7:
br label %end_ifelse

Listing 52 LLVM IR generated by the SJIT compiler for part of the bubl benchmark

94

Bibliography

[1] Cleve Moler. The Growth of MATLAB and The MathWorks over Two Decades.

http://www.mathworks.com/company/newsletters/

news_notes/clevescorner/jan06.pdf.

[2] MATLAB. version 7.10.0 (R2010a). Natick, Massachusetts: The MathWorks Inc.,

2010.

[3] Octave community. GNU Octave 3.8. 2014. URL: www . gnu . org / software /

octave/.

[4] Jun Li. “McFOR: A MATLAB to FORTRAN 95 Compiler”. MA thesis. Aug. 2009.

[5] Cleve Moler. The Origins of MATLAB. http://www.mathworks.com/company/

newsletters/

news_notes/clevescorner/dec04.html.

[6] Soroush Radpour. “UNDERSTANDING AND REFACTORING THE MATLAB

LANGUAGE”. MA thesis. Aug. 2012.

[7] MATLAB 55 times slower compared to C#. [Online; accessed 24-January-2014]. Jan.

2014. URL: http://www.mathworks.com/matlabcentral/newsreader/view_

thread/259806.

[8] Wikipedia. CPython — Wikipedia, The Free Encyclopedia. [Online; accessed 5-

February-2014]. 2014. URL: %5Curl%7Bhttp://en.wikipedia.org/w/index.

php?title=CPython&oldid=588973499%7D.

95

http://www.mathworks.com/company/newsletters/
news_notes/clevescorner/jan06.pdf
www.gnu.org/software/octave/
www.gnu.org/software/octave/
 http://www.mathworks.com/company/newsletters/
 http://www.mathworks.com/company/newsletters/
news_notes/clevescorner/dec04.html
http://www.mathworks.com/matlabcentral/newsreader/view_thread/259806
http://www.mathworks.com/matlabcentral/newsreader/view_thread/259806
%5Curl%7Bhttp://en.wikipedia.org/w/index.php?title=CPython&oldid=588973499%7D
%5Curl%7Bhttp://en.wikipedia.org/w/index.php?title=CPython&oldid=588973499%7D

Bibliography

[9] Koichi Sasada. “YARV: Yet Another RubyVM: Innovating the Ruby Interpreter”. In:

Companion to the 20th Annual ACM SIGPLAN Conference on Object-oriented Pro-

gramming, Systems, Languages, and Applications. OOPSLA ’05. San Diego, CA,

USA: ACM, 2005, pp. 158–159. ISBN: 1-59593-193-7. DOI: 10.1145/1094855.

1094912. URL: http://doi.acm.org/10.1145/1094855.1094912.

[10] MathWorks. MATLAB Coder.

http://www.mathworks.com/products/matlab-coder/.

[11] Maxime Chevalier-Boisvert. “McVM: an Optimizing Virtual Machine for the MAT-

LAB Programming Language”. MA thesis. Aug. 2009.

[12] Pramod G. Joisha and Prithviraj Banerjee. “Correctly Detecting Intrinsic Type Errors

in Typeless Languages Such As MATLAB”. In: Proceedings of the 2001 Conference

on APL: An Arrays Odyssey. APL ’01. New Haven, Connecticut: ACM, 2001, pp. 7–

21. ISBN: 1-58113-419-3. DOI: 10.1145/570407.570408. URL: http://doi.

acm.org/10.1145/570407.570408.

[13] Pramod G. Joisha and Prithviraj Banerjee. “A Translator System for the MATLAB

Language: Research Articles”. In: Softw. Pract. Exper. 37.5 (Apr. 2007), pp. 535–

578. ISSN: 0038-0644. DOI: 10.1002/spe.v37:5. URL: http://dx.doi.org/

10.1002/spe.v37:5.

[14] Luiz De Rose and David Padua. “A MATLAB to Fortran 90 Translator and Its Ef-

fectiveness”. In: Proceedings of the 10th International Conference on Supercomput-

ing. ICS ’96. Philadelphia, Pennsylvania, USA: ACM, 1996, pp. 309–316. ISBN:

0-89791-803-7. DOI: 10.1145/237578.237627. URL: http://doi.acm.org/10.

1145/237578.237627.

[15] George Almási and David Padua. “MaJIC: Compiling MATLAB for Speed and Re-

sponsiveness”. In: Proceedings of the ACM SIGPLAN 2002 Conference on Program-

ming Language Design and Implementation. PLDI ’02. Berlin, Germany: ACM,

2002, pp. 294–303. ISBN: 1-58113-463-0. DOI: 10.1145/512529.512564. URL:

http://doi.acm.org/10.1145/512529.512564.

96

http://dx.doi.org/10.1145/1094855.1094912
http://dx.doi.org/10.1145/1094855.1094912
http://doi.acm.org/10.1145/1094855.1094912
http://www.mathworks.com/products/matlab-coder/
http://dx.doi.org/10.1145/570407.570408
http://doi.acm.org/10.1145/570407.570408
http://doi.acm.org/10.1145/570407.570408
http://dx.doi.org/10.1002/spe.v37:5
http://dx.doi.org/10.1002/spe.v37:5
http://dx.doi.org/10.1002/spe.v37:5
http://dx.doi.org/10.1145/237578.237627
http://doi.acm.org/10.1145/237578.237627
http://doi.acm.org/10.1145/237578.237627
http://dx.doi.org/10.1145/512529.512564
http://doi.acm.org/10.1145/512529.512564

Bibliography

[16] Andreas Gal et al. “Trace-based Just-in-time Type Specialization for Dynamic Lan-

guages”. In: SIGPLAN Not. 44.6 (June 2009), pp. 465–478. ISSN: 0362-1340. DOI:

10.1145/1543135.1542528. URL: http://doi.acm.org/10.1145/1543135.

1542528.

[17] Jesse Doherty. “McSAF: An Extensible Static Analysis Framework for the MAT-

LAB Language”. MA thesis. McGill University, Dec. 2011.

[18] Wikipedia. Component-based software engineering — Wikipedia, The Free Ency-

clopedia. [Online; accessed 20-January-2014]. 2014. URL: %5Curl%7Bhttp://

en.wikipedia.org/w/index.php?title=Component- based_software_

engineering&oldid=590512677%7D.

[19] Manuvir Das. “Unification-based pointer analysis with directional assignments”. In:

PLDI. 2000, pp. 35–46.

[20] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-

niques, and Tools. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,

Inc., 1986. ISBN: 0-201-10088-6.

[21] Glenn Ammons and James R. Larus. “Improving Data-flow Analysis with Path Pro-

files”. In: PLDI. 1998, pp. 72–84.

[22] Wikipedia. Visitor pattern — Wikipedia, The Free Encyclopedia. [Online; accessed

24-January-2014]. 2014. URL: %5Curl%7Bhttp://en.wikipedia.org/w/index.

php?title=Visitor_pattern&oldid=589484391%7D.

[23] Karel Driesen and Urs Hölzle. “The direct cost of virtual function calls in C++”. In:

ACM Sigplan Notices. Vol. 31. 10. ACM. 1996, pp. 306–323.

[24] The cost of dynamic (virtual calls) vs. static (CRTP) dispatch in C++. 2013. URL:

http://eli.thegreenplace.net/2013/12/05/the-cost-of-dynamic-

virtual-calls-vs-static-crtp-dispatch-in-c/ (visited on 01/15/2014).

[25] James O. Coplien. “Curiously Recurring Template Patterns”. In: C++ Rep. 7.2 (Feb.

1995), pp. 24–27. ISSN: 1040-6042. URL: http://dl.acm.org/citation.cfm?

id=229227.229229.

97

http://dx.doi.org/10.1145/1543135.1542528
http://doi.acm.org/10.1145/1543135.1542528
http://doi.acm.org/10.1145/1543135.1542528
%5Curl%7Bhttp://en.wikipedia.org/w/index.php?title=Component-based_software_engineering&oldid=590512677%7D
%5Curl%7Bhttp://en.wikipedia.org/w/index.php?title=Component-based_software_engineering&oldid=590512677%7D
%5Curl%7Bhttp://en.wikipedia.org/w/index.php?title=Component-based_software_engineering&oldid=590512677%7D
%5Curl%7Bhttp://en.wikipedia.org/w/index.php?title=Visitor_pattern&oldid=589484391%7D
%5Curl%7Bhttp://en.wikipedia.org/w/index.php?title=Visitor_pattern&oldid=589484391%7D
http://eli.thegreenplace.net/2013/12/05/the-cost-of-dynamic-virtual-calls-vs-static-crtp-dispatch-in-c/
http://eli.thegreenplace.net/2013/12/05/the-cost-of-dynamic-virtual-calls-vs-static-crtp-dispatch-in-c/
http://dl.acm.org/citation.cfm?id=229227.229229
http://dl.acm.org/citation.cfm?id=229227.229229

Bibliography

[26] P. Cousot and R. Cousot. “Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints”. In: Confer-

ence Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Princi-

ples of Programming Languages. Los Angeles, California: ACM Press, New York,

NY, 1977, pp. 238–252.

[27] Luis Damas and Robin Milner. “Principal Type-schemes for Functional Programs”.

In: Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages. POPL ’82. Albuquerque, New Mexico: ACM, 1982, pp. 207–

212. ISBN: 0-89791-065-6. DOI: 10.1145/582153.582176. URL: http://doi.

acm.org/10.1145/582153.582176.

[28] StackOverflow. StackOverflow - Implementing type inference. [Online; accessed 24-

January-2014]. 2014. URL: %5Curl%7Bhttp://stackoverflow.com/questions/

415532/implementing-type-inference%7D.

[29] Rastislav Bodík, Rajiv Gupta, and Vivek Sarkar. “ABCD: Eliminating Array Bounds

Checks on Demand”. In: Proceedings of the ACM SIGPLAN 2000 Conference on

Programming Language Design and Implementation. PLDI ’00. Vancouver, British

Columbia, Canada: ACM, 2000, pp. 321–333. ISBN: 1-58113-199-2. DOI: 10.1145/

349299.349342. URL: http://doi.acm.org/10.1145/349299.349342.

[30] Clark Verbrugge, Phong Co, and Laurie Hendren. “Generalized Constant Propaga-

tion A Study in C”. In: In 6th Int. Conf. on Compiler Construction, volume 1060 of

Lec. Notes in Comp. Sci. Springer, 1996, pp. 74–90.

[31] Wikipedia. Interpreter (computing) — Wikipedia, The Free Encyclopedia. [Online;

accessed 29-January-2014]. 2014. URL: %5Curl%7Bhttp://en.wikipedia.org/

w/index.php?title=Interpreter_(computing)&oldid=592908221%7D.

[32] Anton Dubrau. “TAMING MATLAB”. MA thesis. Apr. 2012.

[33] Is changing the type of a variable partway through a procedure in a dynamically

typed language bad style? 2013. URL: http://programmers.stackexchange.

com/questions/187332/is-changing-the-type-of-a-variable-partway-

through-a-procedure-in-a-dynamically (visited on 01/15/2014).

98

http://dx.doi.org/10.1145/582153.582176
http://doi.acm.org/10.1145/582153.582176
http://doi.acm.org/10.1145/582153.582176
%5Curl%7Bhttp://stackoverflow.com/questions/415532/implementing-type-inference%7D
%5Curl%7Bhttp://stackoverflow.com/questions/415532/implementing-type-inference%7D
http://dx.doi.org/10.1145/349299.349342
http://dx.doi.org/10.1145/349299.349342
http://doi.acm.org/10.1145/349299.349342
%5Curl%7Bhttp://en.wikipedia.org/w/index.php?title=Interpreter_(computing)&oldid=592908221%7D
%5Curl%7Bhttp://en.wikipedia.org/w/index.php?title=Interpreter_(computing)&oldid=592908221%7D
http://programmers.stackexchange.com/questions/187332/is-changing-the-type-of-a-variable-partway-through-a-procedure-in-a-dynamically
http://programmers.stackexchange.com/questions/187332/is-changing-the-type-of-a-variable-partway-through-a-procedure-in-a-dynamically
http://programmers.stackexchange.com/questions/187332/is-changing-the-type-of-a-variable-partway-through-a-procedure-in-a-dynamically

Bibliography

[34] Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation”. In: Proceedings of the 2004 International

Symposium on Code Generation and Optimization (CGO’04). Palo Alto, California,

Mar. 2004.

[35] LLVM. The Often Misunderstood GEP Instruction. [Online; accessed 24-January-

2014]. Jan. 2014. URL: http://llvm.org/docs/GetElementPtr.html.

[36] LLVM. LLVM’s Analysis and Transform Passes. [Online; accessed 24-January-2014].

Jan. 2014. URL: http://llvm.org/docs/Passes.html.

[37] Project Euler. Project Euler: Coin Sums (Problem 31). [Online; accessed 24-January-

2014]. Jan. 2014. URL: http://projecteuler.net/index.php?section=

problems&id=31.

[38] “Results from a Parallel MATLAB Compiler”. In: Proceedings of the 12th. Inter-

national Parallel Processing Symposium on International Parallel Processing Sym-

posium. IPPS ’98. Washington, DC, USA: IEEE Computer Society, 1998, pp. 81–.

URL: http://dl.acm.org/citation.cfm?id=876880.879565.

[39] Wikipedia. RGB color model — Wikipedia, The Free Encyclopedia. [Online; ac-

cessed 10-February-2014]. 2014. URL: %5Curl%7Bhttp://en.wikipedia.org/

w/index.php?title=RGB_color_model&oldid=593781990%7D.

[40] Wikipedia. HSL and HSV — Wikipedia, The Free Encyclopedia. [Online; accessed

10-February-2014]. 2014. URL: %5Curl % 7Bhttp : / / en . wikipedia . org / w /

index.php?title=HSL_and_HSV&oldid=592589294%7D.

[41] Using Intel MKL with MATLAB. [Online; accessed 24-January-2014]. Jan. 2014.

URL: http://software.intel.com/en-us/articles/using-intel-mkl-

with-matlab.

99

http://llvm.org/docs/GetElementPtr.html
http://llvm.org/docs/Passes.html
http://projecteuler.net/index.php?section=problems&id=31
http://projecteuler.net/index.php?section=problems&id=31
http://dl.acm.org/citation.cfm?id=876880.879565
%5Curl%7Bhttp://en.wikipedia.org/w/index.php?title=RGB_color_model&oldid=593781990%7D
%5Curl%7Bhttp://en.wikipedia.org/w/index.php?title=RGB_color_model&oldid=593781990%7D
%5Curl%7Bhttp://en.wikipedia.org/w/index.php?title=HSL_and_HSV&oldid=592589294%7D
%5Curl%7Bhttp://en.wikipedia.org/w/index.php?title=HSL_and_HSV&oldid=592589294%7D
http://software.intel.com/en-us/articles/using-intel-mkl-with-matlab
http://software.intel.com/en-us/articles/using-intel-mkl-with-matlab

	Abstract
	Résumé
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of listings
	Introduction
	Contributions
	Thesis Outline

	Background and Related Work
	The Matlab language
	Execution model
	Dynamic type system
	Typical Matlab programs

	Related work
	Static approach to Matlab execution
	Mcjit
	Old research projects about Matlab
	TraceMonkey

	Dataflow Analysis Framework
	Description of the design
	Mcir
	Definition of an analysis

	Provided components
	Flow sensitive base
	Sequence of statements
	Loop
	Conditional
	Function call expression
	Flow insensitive
	Helper components

	Implementation
	Example of a reaching definition analysis implementation
	Summary

	Type Inference Analysis
	Description of the algorithm
	Domain
	Rules
	Expression
	Assignment statement
	Control-Flow statements
	Merge operation
	Recursion

	Value analysis

	Simple Just-In-Time Compiler
	Design of SJIT compiler
	The Mcvm interpreter
	Performance troubles
	Execution model

	Code Generation
	LLVM IR
	Type-specialized block
	If-Else statement
	Loop, Continue and Break statements
	Matrix and structure access
	Array Bound Checking

	Summary

	Performance Evaluation
	Benchmarks
	Performance results
	Array-bound checking performance

	Overhead of just-in-time compilation
	Compilation and analysis time
	Cached analysis time

	Conclusions and Future Work
	Future Work

	Appendices
	Statement dispatcher code
	Merger code
	Reaching definition analysis code
	RGB2HSV benchmark
	Example of LLVM IR generated by the Sjit
	Bibliography

