.) (. rgx v

' ~ : .
M * ° Y -:‘:3' \

' 3
. <€ :
T L
-r) 9 “ ‘ : 1 I
* ' A MACHINE INDEPENDENT
. APPROAGH TO

e

" Al /
AUTOMATIC CODE ssnzsarrdx
- * , h

VAN A\
o : - .
» | .
Y. Looa
. ' . : by ‘
' * andrc& $cheunemann
]]
- 1
It - t,
.) 4
;,f : , *
; Lo
. . A thesits submitted in coﬁfornity
‘ ' with the¥ ‘requirements fdr the
] dejree of Master of -Scieance

in the School of Computer Science
' McGill University
June 1982 GD RN

-

-
r

- ;\

x

¢ -
.)tthesis presents a table driven approach to the automatic ;

- <
d -

Abstract °

1
"

 There has been exteasive research into the automatic

7

, ﬁgeneratibﬂ of compilers. This resa%;ch has largely automated
}{the generation of the analysis pbase. Less frogress has been

: made, however, on the less formal code generaticn phase. This

gendration of code. An automatic method for selecting and

-
1

oining code templates so as to produce near-oftimal code has

b
been developed. The basic approach is quite independent of

the target machine architecture. .Retargeting ‘the code

generator for a new machine requires 1little nore than
providing newv tables for the algoriﬁhﬁ. This approach is very - i
practical as a coaplete code 'generator for the Fascal language

has been ilplementea and is cutrqntlj used for the IBM 370. To _
demonstrate thé applicability of our method to different
machines, additional melenentaiions for the EDP-11 and-the

‘YAX-11 are also diécussed.

-4

(i\ -
/
.

Abrégt . "

"
I1 y a eu d'amples recherches sur 1la -~génération

aui:onatfque des compilatefirs. Cette recherche a 1largement

it ARRATE

’ automatisé la génbration de la phase analytigue. Moins de

progrés ont &te& "faits cependant, sur la phase moins formelle

de la géntration de code. Cette thése prééente une approche a‘~

la génération autona}:ique de code, fonction¥ht 2 Iaide de
tables. on a développé une méthode automatique pour i
o s&lectionner et joindre des séquencés de code in\di‘vi‘auelle_ de/
] fagon.a produire du code gquasi optimal. «L'app:oche de basSe
jst tout a fait indépendante de 1'architecture de la machine &

L 4

pour laguélle le cbde doit 8tre généré. changer le g@nérateur ~_. 1

TN

de code de fagon A produire du code pour une nou\velle machine,
ne requiert gque- le changement des tables- ﬁtilisé_es par
1'algorithae.® NOtrc;‘ ;ypcoche est trds ratique car un
géngrateur de code pour 1é"la;n/gnage Pascal a ét; implanté et
L \ est présenteneﬁt ntilisé sur le I.Bn 3:)07 Eour dé&montrer
l'adaptation de notre sé&thode a d'autres machines, des

implantations additionnelles sont aussi présentées pour 1le

PDP-11 et le VAX-11.

iii

o¥ (4
2 - ’ ' ’ -() ‘ §: - * '
D R Ackpovledgements ‘o
N v P
.. . -
T . AT A i B I . . ‘ .
- I yish ' to express sy gratitude to all the people vho
|- ;‘." LS L7 . e N S c“ -

ake -this thesié‘

{ﬂ
niversity - vho provided the academic enviroument and
. ’ [rl '_' - ~‘ .

a” yeality. The facqlgi menbers of

background ;eqﬁiﬁfd .for such an endeavér. My friends, o]

relatives and fellow graduate rst%de ts who xprovided ;

encouragéuent and® hélp. I an éspecialbx ‘grateful to my
o .

advisor, Professor "Niggl Horspool, for/ his invaluable

guidance, criticisns, technical discussions \ané many insights

into the problem which this thesis treats. I would alﬁbllike
to thank nry parents " for encouraging me ip ay acadenic

persuits. ’ o - R
The financial support of ' the Natural Sgiences and

fngineeting—Reseérch Council of Canada is alsc appreciated.

> v -

& ’ . N - ¢ «

iv

- 3 .) v . -
Q 1 l * . /
- PR .
\ i —~ * *
. . g h I e NN
e \“fz:‘ ‘v . ° * ‘ - N ' Y .
- }' i '
! * TABLE. GF CONTENTS -,
'l‘ ‘ | ; L4 . 2)
. ‘ .
Chapter 1: Introduction'and Prévious Research . « « = . - . 1 3
1.1 Overview of the Compilation Process « o+ « oo @ 4 « « 1 3
1.2 Previous Research.. . ¢ « « « ¢ o ¢ ¢ o ¢ o o v e'e =« 3
«2.1 Theoretical Code Generation . « ¢ ¢ « ¢ o« ¢ = « 3
1.2.2 Procedural Code Generation .« o + o ¢ = ¢ o o, 4
. 1.2.3 Code G%petation by Semantic Description . + . . 7
B1.3 This 'ord - "X - .' - L] .‘.“' < - L] - L - - - o' @ - L] - 13
Chapter 2: €ode Generation Princifles « <« « o« o = o o & o o 14
' Chapter 3: Practical Isplementation for the ® b 360,370 . . 23
Chapter 4: Other Implementations o ¢ o « o o « « 38 f
, u‘dDI PDP-11 Ilpleﬂentatiﬂ\n - * = - @ - - ., & & L - .\ - - 38 B N ﬂ
S B.2 VAX-11 Inplenentation ¢« o« ¢ ¢ o o oo « ¢ o o o o » o 44
: / * 4.3 Other Implementations . . - . < =« ca =« ¢ o ¢ o o = « U9
| g . Chapter 5: Practical ResultsS . « o o = « & & e e e ee e 50

~
‘ ?

Chapter 6: conclusions . © * e e s 2.8 o4 @ a e s o v e o 67 .
: . Bibliography L:. e e oo o ot eaaae aa e
“' Appendix i: Meanings of ;-operations‘Used in Examglesf:z
'lppendix B:‘IBH 360/370 Code Templates for P-cperations . . 76
Appendix C: PDP-11 Code Templates for P-operations 57

Appendix D: VAX-11 Code Templates for P-operaticas °.’ . « .l7é

L4 ‘ ‘.

P T

'

- T P nsuz’zlzs(o

11 Logical Conpilation Phases and their Namés

2.1 Sample Bxpressxon Tree»for a Pascal Statement

2.2 Labelled Expression Tre€ . . « o« o« = o
-2.3 A Better Tree Labelling . . « « o « &

‘2.4 Labelled Tree vxth Short—clrcult Booléans -

. 3.1 Expression ‘Tree Labelleﬂ vith IBH' 360,370 -Storage
3.2 Labelled Expression Tree with Explicit Conversion

-’

A
‘

L
é

.
-
b
-

3.3 sample Operation of the Code Temprlate Selection .
3.4 sample Operation of the Codée Template Selection' .

3.5 Code Generation Modules o« « « ¢« « o o'w

§.1 Expre551on Tree Labelled with PDP-11 Stor

4.2 Solution Tree for Pascal Statement ... ©

8

.IBM 370 Assembly Code for READN Routines

o7 VAX-11 Assepbly Code: . <« ¢ « & o « = &

a

pal

TABifS

n

-

-
'

4 2 e 0 3
RS

5 & o @

ge Classes
e PDP-11

.3 Solution Tree for Pascal Statement %.. on§3§3’711—11
Pascal Routines Used for Code Comparisons .

1

2 IBN 370 Assenbly Code, Produced by our Code Generator
3 IBM 370 Assembly Code, Produced by Glanville's
4,
.5

PDP-11 Assembly Code for READN Routines . .
«6 PDP-11 Assenbly Code for MATRIXMOLT Routine

3.1 1BM 360/370 storage Classes and Elenmentary

3.2 Information Contained in a Cost Table Entry
\@ 3 Cost Table Entries Bequltegjhy Algorithna

»

»

L

8.2 Cost Table Entries Required by Code Template

8.3 YAX-11 Storage Classes and Conversion Tenmflates
8.4 Cost Table Entries Required by Code Template .

S.1 IBN 370 Code Genefation Table Sizes . .

vi

s 0+ o' s

L

4.1 pDp-11 Storage Classes and Conversion Tewmflates

+ ¢ 8 3

-9

¢ 4 o @
a

-

« » 9 3

v s 8

4« 3 8 s
“

27

PO

é,- ?
15 . .

217

19
22

28
29
31
32
37

41
43,
48

53

.58

59
60
63
64
65

36 .

41
4y
45
47

52

L

x.

s Evot B

Y e i o e

"

. o :
&
» -
A Y ” @ T !
. '
/j ' ‘(°
) Chapter 1 - .
3 9 .
- . - N 1 -
Introduction and Previous Research
i ' -
ng -
1.1 oOverview of the Compilation Process ¢ .
4 - ‘

A compiler is a program that translates -other programs

d -

-

written in a'hiéh-lérel language into executatle code for a
specific target uachine‘[1,2,3]: The transld@ion process is
often performed as two sepataté'majér phases. 7The first pha;;
is that of translating thelprogranl vritten in a particular
high-level language into an intermediate %angn&ge. This phase
s further subdivided into several modules each performing a-
s‘ cific task. These - modules incluée: lexical Analysis,
Syatax Analysis, Semantic Analysis ahd optionally an
optimization module., A schematic diagram of this phase of a
coapiler can be found in Fjqure 1.1a. The second phase,vuhich
‘'is called code generation, then converts the intermediate

language generated by the first phase into machine code for a

specific target coaputer. This phase includes operations such

et i e g o o o e
f

LTI TR ATRAT m S ST T TN T TR

” J

i

Introduction and Previous Research

/

Page 2

as Code Template Selection, Register Alldcationm, Code Enissidn

~

and probably Peephole Optimization [4,5]. Figure 1.1b gives a

schematic viev of the code generation phase of a compiler.

Source Progran

Translation

Lexical
Analysis

)

Syntax
Analysis

v

Semantic

Analysis

\4

Optimization

Vv

Intermediate Language:

a) Translation Phase

]

A

Intermediate Language

v

-

k]

Code Generation

"[code Termplate]
Selection

v

3

Register
Allocation

¢

Code
Emiscsion ¢

v

Peephole
Optimization

V.

Object Code
>

9

b) Code Generat}on Phase

Figure 1.1. Logical Compilation Phases and their Names.
) .

Bast bt o

o e o it

S AT TTRAT Y RS i

4

- . ’ { N
Introduction and Previous Research . _ Page 3

.

1.2 Previous Research))

@

Most research done on coupilers in the past bas been

)

coacentrated on the translatzon phase and this process is now.

-

vell Wnderstopd. Several tools exist to make the process of
vriting these translation modules more automatic. It is also
possible'.for ‘the fJ:.l.‘St phase of aocoupiler to be largely
na;:hine independent. The translation phase of such a compller
needs little or no change when the conpiler is rétargeted to a

different machine. This is achieved primarily by using a

machine-independent intermediate language. It is only in the

last few lyears, however, that nmuch fesearch has been fperformed
on code generation itself, and it is not yet clear vhich is
the best approach to the problen.

1.2.1 Theoretical Code Generation -

Past research in code generation can be divided into
three main Eategqroiés- 'ghere vas research that dealt with
code generation from a theoretical vievwpoint [6,7,8] and was
mainly oriented towards the optimality of the code generated.
Usually, only hypothetical, vell-behaved, instrnctio/n sets
vere cons:.delied {i.e. instruction sets vhere all registers are
equivalent, where all addressmq modes can be used with every
instruction and where there are no specialized instructions

that cotrespond‘ to exceptional cases of other instructions).

The methods developed by these people did not, in most cases,

-5

G o S AN S| T

e AT s

[— -
M s s

T e s g, A A TN S et i o T

.

-
o
o

-

’ Introduction and Previous Research " Page 4

-

take into account ‘the problems involved «with retargeting the

code generator..

E) o

o -

1.2.2 _Procedural Code Generation v

s

The other two categories of reoséarch vere more pra}:tical
approaches to code generation and dealt with existing computer
architectures. The second class of research involved sethods

of providing information about a target computer in a

i pf:ocedural way using special purpose code generation languages

and interpreters. This approach was taken by Elson and Rake

[9] vho developed a high-level definition languvage which was

used to define macros for each possible node that could appear

in the syntax tree, produced by the: parser, repreéenting the'

conpiled progranm. 'Each of these macros included all the Iogic
. :

that was needed for optimization, error detection and code

generation. AR interpreter would then be used ‘to execiite the

macros as the corresponding nodes occurred in the progran

tree. The generated code vas optimized, as each special case

in the language could be separately handled’inm these macros.
The quality of the code, however, was obtained at the expense

of tramsportability since each macro had nov become much more

machine dependent. This =method also has the di sadvantage that - -

~
all these code generation nacwt be \u\:itten by the
compiler implementor.and ~ thus strongly depend cn bis ability

to design and debug them.

hl

o A VA i o e s,

 instructions for

-

Introduction and Previous Research Page 5

L]
<

A similar approach vas also taken by Wilcox {10]). The

&
analysis phase of his coapiler first consttgcted a tree
representation of the progras. This tree wvas then

transformed, amsing a translator, into "a segquence of
%

hypothetical machine tased on the

operations .of the sougce languége: the machine was calied
Source Language Machine .or SLN. K The choice of SLM
instructions vas nmade so as to facilitate optizization a;)
bility. The way in which the program tree was

#

vhich ultimately transformed each operator node of‘ the tree
into a sequence of SLM instructions. The next phas;, called
the coger, would then translate the SLM representation of the
‘program into object code fo; a specific machine. For each SLM
instruction, the <compiler writer provided a rcutine, written
in a special coding language (ginilar to an assembler
la_mgnage),~ specifically designgd for a particular object
machine, To retarget the compiler, this special coding
language vould have to be totally redesigned and tﬁen, using
this nevvigpgqage, all the code generatiocn rootines revritten,
The work involved is clearly no small task and onc; again
depends heavily on the implementor's ability to design and
debug the code generatiom routises.

The approach taken by Domegan {11] vas again very similar

in that it used a code generation preprocessor language, CGPL.

The routines used to deteraine which code sequences were to be

—~

into SLM instructions was\hetgrnined by a mapping

= e e 0 3 N

A e o i e e s

i

e b i e W

C

e

Introduction and Previous Research , Page 6
generated for the nodes in the expression trees, would then be
translated, by the CGPL, into P;./L As in the case of HWilcox
{10], these routines had to be vritten for each different\
oi»eraior that could appear 1in the tfees, but umnlike the
special language he uéed for this purpese, the CGPL used by
Donegan wvas a high-level language vwhich made the process of
¥riting these code generation ,routin'es' eauch s=impler. This
method (is different from the others as the pperafxd storége
location (register, menmory, .condition code) for a given
operator, determined the state in vhich the cc;der:_ vas in.
This feature sade the code generation process a little more
automatic, The guality of the code generated was similar to
that of the code produced by Vilcox's method. One of the
major problems with Donegan®s method as well as wuith the
others, is that operators were translated individvally after

all operands had been evaluated and vithout regard to the

requirements of subsequent operators.

While code generation languages are great improvements
over the nethod of vr‘iting a code generator im a normal high
level language, they still 1leave us vith several frobleas,
particularly vhen retargeting the code generator is a pajor
concern. In addition, these languages \still ’leave'nos‘t of the
lov level decisions 'up to the inmplementor. Certain
improvements over these methods wvould be desirable. First of

all, retargeting the code generator should be simpler, thus

i‘ednci.ng the amount of work that aust Le done by the

[

.:C)

Introduction and Previous Research Page 7

¥
implesentor and at the same time proktably increasing the

rreliability/and gquality of the code gemerator. In a sense,

the code generatignm prycess should be made mcre autonatic.

Ideally, one wishes‘only| to—specify the characteristics of the

machine, and have a systew_vhich automatically produces a code
generator tailored to the specific machine. In addition, it
is important to maintain a high standard in the quality of the

-

generated code.

1.2.3 Code Generation by Semantic Description
The third class. of research, vas an atteept to provide the

target machine informidtion in a table format, data base or

other descriptive fors. This inforeation wvas. analyzed,

possibly transformed and thex/ used in the code generation

process. The method presented here would fit into this last
¥

category. Some of the first work done in this area was t%y

Miller [12]). #His approach consisted in converting the program

to be compiled jnto a sequence of msachine independent macros. -

o

Ae then would provide a description of the target machine in

wvhich all operators that, appeared in the Racros vere °

assocliated wig.h a8 sequen of instructions to implexent each
operator on the target /aachine. Auto;atic conversion froa one
E ‘ “+

storage type to another was provided'for cgses vhere certain

macros could only be applied to operands of specific storage

types. A major problem with u!‘liller's vork is that nmany

simplifying assumptions were made about the target machine
4

architectures.

O

Introduction and Previous Besearch Page 8~

kN

Weingdart’s {[13] approach wvas quite diQFengnt' froa
aillgt's in that the conpiled'.progtal vas translated into a
lov~level intermediate language. This %anguage was _cloée
enough to the target machine language to make code generation
possible siaply by comparing partial parse . trees with the
target machine instructions, vhich were also represented as
parse trees im the intermediate 1languaye. Automatic
conversions from storage to fegister and vice-versa vere

provided when these actions would allow a match between part

‘of ‘the tree and an instruction. One disadvantage with

Weingart®s approach is that the intermediate language 1is too
heavily dependent on the target nmachine's instruction set.
Thus even machines with qull differences in instruction sets
or addressing modes may require that the intefmediate language
be changed. Also the exfression trees must be optimized to
ensure high gquality code as vell as efficiency of the code

generation albotithl. The m®main advantage is that his method

of describing an instructiof set is easier to use and less

error ‘prone than other methods which involved writing code

i P S PR SR R S R . ST AR T

geneéation toﬁtines Or Bacros.
} ’ . e
The work done by Nevcomer [14] involved a machine
descriptive language, ADL, which was speéifically designed for
the gemeration of machine code for a given language. Code
telplate;\VezeT—p;ndpced from a machine de§;2§ption in #®DL.
Unlike Qt?et approacheé, ope of Nevcomer's lajér goals was to.

produce highly optinized code. His code generator was heavily

L s S e DS

4 e e

Introduction and Previous Research Page 9

influ®nced by previous 'work- done on the ELISS conpiler
[15,169. His code generator functioned in a similar vay to
Weingart's [13]. It searched éqt tenplatss} that would
eveluate expression trees produced by a previbus phase of the
compiler. However, unlike Weingart's method which found any
possible code sequence for an expression tree,P Newcomers's
pethod wvould find the best code sequence (according to soae
criteria such as space, execution time or some cosbination of
both) for the entire tree. Needless to say, the quality of
the " generated code was gquite superior .to hat pad been
previously achieved using this type of code generator. On the
other hand, a lot of extra vork was done t;yi%g to optimize
the program before the actual code generation phase. The most
iaportant problem with Nevcomer's method is frcbably that the
search technique used to find the optimal codgcsﬁquence for an
efpf%ssion tree is very simple as it siaply enumerates all
possible code sequences and then simply picks the _best one.
This approach is not as efficient as }E should te.
This brings us to the vwork done by Fraser {17]). It
essentiafly involved a .systel called XGEN that produced code
by analyzing a sachine description. The descrip{ion vas
provided using a special purpose language .called ISP. It not
only - described the instruction set but also all possible
storage locations including memory, registers, condition cgdes
etc. rirsg of all, the compiler transformed the'progral into

an intermediate 1language called XL. _.XGEN would then expand

o oy,

.
e i T AT MU -

R AR AL 1t S

- [

)

3

]
8

¢

Introduction apd Previous Research ‘ page 10

*

‘ - these XL instructions using machine 1independent. macros,

revriting thea in terms of fhe ISP of the target machine.
Subsequeutly, using a specific set of rules, it would *generate
the actual assembly code for the specific target machine.
Using this system, the generation of code for a different
'machine would require that a descr;ption of the new machine be

given in teras: of the ISP7 and possibly also reguire the

addition of nev rules to the XGEN program.

Glanville;s approach [18] vas similar to that of Weingart
[13]. Pirst a program vas translated into a very loudleyel
machine independent intermediate code. Then a speétal pard&er
would convert the internediate‘code into the target nachihe's}‘ ’
code using standard SLR(1)! parse tables and a series of
production rules that described the tar@et" nmaching's
instruction set. This code generation method would choose the
best available machine instructions .to i;}écute a given)
sequence of intermediate language instruct‘ons. Specialized
machine instructions were used - vhenever possible. Several
algorithas vere developed for building the parsing tables,

° detecting possible %?ops and ‘for guaranteeing that correct

a
¢

t Although the SLR(1) parse tables are standard, the table
construction algorithm will accept any context free grammar,
not necessarily dnambiquous. 'In the general <case the
language accepted by the resulting parser is not guaranteed
to be the same langnage defined by the grammar.. If the
grammar satisfies certain sufficient conditions, then the
tables are built in such a wvay that the language accepted by
the ‘parser is the same as that defined by the grammar.

g

Introduction and Previous Research Page 11

’

-

changing the,ptoduétion rules Fo reflect the ingtruc§ioq set
of the néu machine. Fron) this description the} SLR (1) parse
tables” are generated .without amy ‘intervention froa the
impleaentor. Of all the nethods discussed so fa£ this 1is
surely the most poverful and also the easiest to retargetJ

One of the mnicest features of Glanville’s method is that the

code generated is guaranteed to be correct as' long as thg

machine description éccurately conveys the <compater’s
architecture.

5
o

Cattell (19], 1in h;s work on a production quality
co-piler; developed a method by vhich he vould generate a set
of tables from a- machine descgiption and an intér-ediate
language called TCOL. <These tables contained a mapping from
TCOL operators to machine operators. Once these takles vere
created, the code generator si-éiy traversed the prograsm tree,
expressed in terms of the TCOL operators, comparing parts. of
it against patterns on the left bhand sides of the prc&nctiéns
in the tabbg;\i, When a patternm was found to nqtch, the right
hand side of the production would rﬁpecify the code to be
generated as well as spepcial-compiler actioas (such as storage
allocation) and further matches to be recursively perforaed.

Cattell's method is also very automated as retargeting siaply

requires the nev machine description and the gener?ticn of new

LY

tables. ' ' L ‘

code vould be generated. Retargeting vas easily achieved by ’
.\‘

PR

Q)

Q

Introduction and Previous.Research "~ | page 12

H
'

Code generation from a semantic machine description is‘ a
promising area in compiler resegrch. Its main goal is to free
the coapiler writer from having to an;lyse nunerous special
cases when choosing code seguences and allovws the entire code
generation process to be vieved fron a lugher, ‘more abstract,
level. In this vay, =more of the ' 1np1enentor's time can be
spent studying the ' problem rather than searching for poSsible
solutions., The fact that a %code generator can, be
automatically created provides }he possibility of ﬁritigg a
practiﬁca s €asily retarqetahlg compiler, that will not require

years f“developneint time, This is becoming increasingly

fsportant wvith the growing number of computers that are -

"availa?le today.

[y

As is apparxent from the past'reseatch in this a:ea’, there
are tvo ways of genmerating ecod_e from the semantic description
of an instrycdtion set. One'vay is to have an intermediate
language that is fairly hlgh-level and to otktain code

seguences for each operator in tln.s internediate language in

-terms of the target machinme's 1nstruction set. These code

sequences are then emitted for each corresponding intermediate

language operator that is encountered. The other way, is to
use a very low-level intermediate langnage.and them to expreés
the target lachlin:;'s instruction set in terms of this
internediate language. 1A process similar to pattern matching
is .then used to nmap target gachine instructions onto\ the

intermediate code,

*®

0

a

e s e e M

T sk e i B T oo mare e e =+
\

BN

@

: . .
>’ Introduction and Previous Research .- Page 13

N A

& . .
1.3 This Work

»

. The approacm presented in this paper is similar to the

fornet one in that the intet!edxate language is not low-level.

This approach.is vell snited for generating high gquality code,
and at the samse time, facilitates retargeting of ;he code
generator. An:autolatic aethod for selecting and joining code
templates’ so as to produce pear-optimal code has b;en
developed. The basic aprroach is quite independent of the
target nachine atchitéﬁture.\ Retargeting the co-pilfr for a
nev machine requires little more than providing new tables for
the algorithm, As Wulf [20j points out, ‘a code generator must
essentially enumerate all the plausible code sequences and
pick the most suitable, The sethod presented here is
certainly enumerative, mnséx several techniques have been

incorporated to keep the enuseration under control.

()

ik

Chapter 2

r

Code Generation Principles

Internédiate code in a compiler can take many forms, such
as triples, indireét ﬂtriplég, quadrugples or code for a
hypothetical stack nachine [3]. let us assume that the
intermediate code has the form of a generalized expression
tree. The nodes of the tree correspond to operations of a
stack computer. As an ongoing example, considefr the Pascal
statement: .

if ((a+20) <= (‘B*C)) amd (FLAG or (D>0)) then goto 10

wvhich could be translated to “the intermediate code shown ih
Figure 2.1. The operations that appear in the tree are (or
are similar to) Pascal P-code instructions [25]. The meanings

of the p-operations used in the figure are suamarized in

Appendix A. P-code operations represent instructions for a

J

hypothetical stack machine called the P-machine. Each
- . . }

P-instruction can be classified into one of three groups.

First there are instructions that do 1not operate on any data.

.0

|

|

AN

(W

Code Generation Principles Page 15

9

- A‘
For example, LDC and LOD represent such: P-instructions. They

are mainly used in settinq up data for subsegquent
instructions, When executed in the P—nachin;, they push data
onto the séack. If p-instructions are structured into an
expression tree, they represent the 1leaf nodes. Then there
are single operand instructions such as NOT and PJR. When
executed, they take\ their operand from the top of the stack.
In a tree representation, the operand corresponds to the
sub-tree "of that node (PJP or NOT). Finally, there are
instrucﬁioné; such as ADI, EQU and OR that cperate on two
operand; located on top of the stacke. In the ' tree
representation, they are the nodes with two sul-trees. Since
other intermediate code forms are eésily convertible to
expression tree form, there is little or no lcss of generality

in considering expression trees.,

Figure 2.1. Sample Expression Tree for a Pascal Statement.

<

BT —————— - —

-

Code Generation Principles Page 16

Before conside;}gg t{:nslation of. the intermediate code

into wmachine code, it shohld.be pointed out that various
ﬁﬁzchine—independent optimizations can be applied to the
, expression¥trees. Some obvious optimizations, sucﬂ as folding
of constant expressions, should definitely be applied because
they also te;d to reduce the complexity of the subsequent code
generation procéss. Some other optimizations, such as findigg
conmoﬁ subexpressions, make the code generation process msore
complex. (Common subexpression elimination nmay destroy the
tree structure, transforsming it into a DAG.) Ig is also
useful to break up certain P-instructions into others - that
already exist, but that are_sinpler orynore general. In doihg

< 4
so,—-one reduces the nnber of P-instructions that must be

s]

considered by the code generator, thus reducing its size and
N .

complexity.

Vhen the intermediate code is translated, the expression
tree gets mapped into a corresponding computation on the
target coaputer. The ;apping process to perform this
translation can be very complicated but, in its sinplest form,

each subexpression in the tree is translated into code that

vill generate the value of that subexpression. The place

vhere that value will reside in the target computer depends on

the possibilities of fered by the machine architecture and on
the selections made by the code generator. For a . typical
computer, the choices inglude: menory, register,

condition-code register (which often represents a Boolean

e s g v

e et e e om st DY e e

f
s e 5 i o

e A e

e waT wn

e sy

P

-
Code Generation Principles Page 17

N

o st

C) *\\(\Zalue), and program counter (which can isplicitly encode

information, as will be seen later). Once these choices are
made, the codé generation process is gilite ,_tfightly

constrained. i

Figure 2.2. Labelled Expression Tree.

Let us nov return to the tree of Figure 2.1. A plausible
labelling for the- IBM 360/370 series of computers that shovs
vhere ‘the values of subexpressions could reside, 1is given in
Figure 2.2. (This is not an optimal 1abeilin§.) Given this

o

particular labelling, the code generator is constrained to

)
(o produce code along the following lines:

e e e ——— R

-

-

The code generation process can

LA
A

L

|
CR
LA
BLE
SR
SR
IC
SR
C
LA
BLT.
SR
OR
NR
BYNZ

>

Code Generation

B1,20
R 1 " l
R2,B
R2,C
R1,R3
5101
*+6
B1,R1
R2,R2
B2, PLAG
R3,R3
R3,D
B3, 1
*+H
B3,R3
B2 ,R3
R1,R2
L10

|

main steps:

every #sieaningful
provided.

usage of some pachine resources inm the target

1. Label the

. -
PrincipL;L) Page 18

LDC 1,20 pj% into gpr 1}

e i n AL etk = e e e e
-

{Result of

{Result of apI1 put into gpr 1} v -
{Result of LOD I,B put into gpr 2}

{Result -of NPI created in.gpr 3}

{Result of LEQ tenmporarily in the

condition code, but is ccnverted

to a0 s 1 value in gpr 1 .)i

(Result of LOD B,PLAG put into gpr 2J

{Result of LDC X,0
{Result of GRBRT temporarily in the
condition~cpde, but is ccanverted
toad /1

(Result of OR is 0/1 value in gpr 2} '\
(Result of AND is im ‘condition code }
{(Effect of NOT and FJP L10 conmbined }

expression tree with

used for holding values

The labelling should correspond to an

pattern for the target computer.

2.

teaplates") that

Traverse the tree, éelecting code segquences

it ST, e

put into gpr 3} Do

alue in gpr 3 }

é

into two

thus be decomfposed

storage classes to be
of the various subexpressions.

Y

efficient code

{or Ycode

accept operands‘hnd“‘generate results '

in the specified storage classes.

4

combination

In principle, code templates for every P—code operation“using

of storage classes could be

Hovever, the semantics of P-code and the permitted

many coabinations meaningless.,

not provided.

computer make

Such tesplates, therefore, are

Each template cian be associated with a cost.

L4

Code Generation Principles Page 19

”

This cost might, for exanmple, be'the estimated execution time

fbr the code sequence, or the length of the code seguence, or
some combinpation of the two. The cost of a non-existent

teaplate is implicitly infinite.

Figure 2.3. A Better Tree Labelling.

L

In theory, all meaningful labellings of the expression
tﬂpﬁ could be enumerated and then the labelling that has the
lovest total cost selected._ Producing machine code that
conforms to this labelling will give us optimal code for the
‘entire é:p:essipn tree. As an exawple, consider the labelling
for the tree of Figure ?.3. The tree is the s&ne as the one-

of rigure 2.2 but the labelling is different. With this

¢

s s tak e

Code Generation Principles - Page 20

v

labelling certain features of the IBM 360/37C instruction set
(sach as the use of condition codes set by arithaetic

instructions) are taken advantage of to produce the following

code:

LA R1,20 " {Result of LDC I,20 put into gpr 1} ¢
A R1,A {Result of ADI put into gpr 1}
L R2,B (Result of LOD I,B put into gpr 2}
.| R2,C {Result of MPI created in gpr 3}
CR R1,R3 {Result of LEQ teamporarily in the

LA R1,1 condition code, but is ccnverted
BLE #+6 to a 0 /1 value in gpr 1 }
SR R1,R1 .

SR R2,R2 {Result of LOD B,FLAG put into gpr 2}
IC R2,FLAG

L R3,D {Result of LOD I,C put into gpr 3}
LTR BR3,R3 {Result of GRT temporarily in the’
‘BLE *+6 condition code }
LA R2,1 {Set true value in gpr 2 }
NR R1,R2 {Result of AND is in condition code }
BEZ L10 {Effect of NOT and FJP L10 combined }

The code sequencé“above is 2 instructions shorter than the one
for the tree of Figure 2.2. Using the number of instructions
per code seg¥ence as a criterion, one can say that the
labelling of Figure 2.3 is setter than the one of Figure 2.2.
In fact this ‘code sequence is the best possible one that can
be achie7ed using"the storage classes Qiscussed so far. &
better code sequence is still possible using an additional
storage class as will be deronstrated further on in this
chapter. ©Note that the labelling given in Figure 2.3 is only

valid for a left to right evaluation of the expression tree as

the condition code can only hold a value temporarily. Since

many machine instructions will alter the condition code, it

can only be used in a restricted manner. It may not always be °

possible to précisely determine in advance the cost of a
kS

s vk

o A T ol

. s

————— T s e ————rr s e e b i . -t g e =
- v -7 “ *

! Code Generation Principles Page 21

} :
1: | S)

+ +template. Por this reason, optisal code generation will not

>

l alvays be possible. Howgver, in most cases, the rachine code
. \ gentrated vill be the Dbest possible withcut performing
| \ sophisticated optimizationms.) .

@

\ ' . .-
R Of course, a storage class label does not provide
co;blete information by itself. Along iﬁ@h the label, vwe
¢

\ should associate addjtional information such as the number of
a register or the address of a nmemory locaticen to be used.
\ Hovever, this information can usually be added after the

- labelling of" the tree has been performed and after all code

s

teaplates have been selected.

The concept of a. storage class cas be <tsed in a very

‘general vay. For exanple; short-circuit evalvation of Boolean
expressiéns {1] can be h?ndled by adding a SCB ("Sho;t-circuit

Boolean") storage class. ~S&g£;-circuit €valuation ‘is

. sopetimes referred to as "AcCarthy Evaluation"” (from the COND
function in LISP). Treating SCB as ao‘stOtage class in the

same way as the other storage classes, vili give us the

labelling of the saaple expiessiod*frge tpaf is shoin ia

) ' Figur; 2.8. This tree vould then be translated to IBN 360/370
-code-similar to the following:

LA R1,20 - s BNZ L10

A Ri,2 . S8 R1,B1
L R2,B € R1,D .
’ B B2,C] BLT .L10 b
() CR R1,R2 FALSE . , ‘
BH FPALSE . - -

~ T® Xx'01',FLAG) ‘ .

O

Code Generation' Principles Page 22
/s

o« P
-

The booléan value corresponding to a SCB sicrage class is
actually enéodéd in the program counter vhen the code is
exeéuted. Hovever, this does not prevent us frca treating SCB
as a storage class. Associated with the SCE labgl,
inforsation about the "true" and "false®" exits out of a block
of code (but only when the code is actually generated) would
be needed, A code template for a P-code operation such as
WAND" with SCB operands ﬂ;uld nerély~reguire bock-keeping work,
on the information and would not usually require any machine

instructions to be generated.

e PR

M e

¥

e e et e 2
.

Chapter 3

Practical Inplementation for the IBN 3€0/370

L 3

The basic method of Chapter 2 bas tvo prain drawvbacks.
rirst, the nuaber of ‘code templates would be’ excessive.
second, the storage classes need further refirement if high
quality code is vanted. In this chaptefive will now shov how
the method cam be evolved to solve both problenms.

The number of: tenplatgs can be greatly reduced by a
factorization process. Consider, for exaléle, the P-code

—
operation ADI to add tvo integers. A suitakle tearlate for

ADI vhen both operands and the result have the "memory"

&

storag; class and vhen the target machine|is the IBN 330/370

”

is: (*‘: i »
L Rt1,A {Load first operand into register 1} v
A R1,B {Add the second operand *
ST Bt,T [Store result into temporary meamory)

Hovever, this code is similar to the tesplate needed for,

" adding a "register™ operand to a "memory” operand leaving the

AN

—— " et st o w e e e e e =
TR ~ 5 ~

S ——

t

» Practical Isplementation for the IBA 360/370 Page 24
g

)

(~) result in a "register®" operand. The difference is that the
template is surrounded by load- and store ins}ructions. fhe
load essentially converts from the "register” class to ihe
"aemory" class and tbhe store implements the opposite
conversion}/’f
By having implicit, automatic, conversions between
storage classes vhenever convenient, the nuaber of elenmentary
ténplates needed for the ADI operation 1is reduced to
approximately the number of suitable machine instructions for
integer addition. With the IBM 360/370 architecture one might
need only templates corresponding to the AR (add register) and
A (add memory to register) instructions. All of the P-code
() operations are amenable to this factorizaticn into basic
' / tesplates plus conversions. All that is needed is an
Qadditional ‘group of templates vwhich are hsea only for
performing c;nversions from one storage class tc another.
One also notes thgt gsany P-code operations, such as ADI,
are commutative and the encoding schenme for templates can take
advantage of this to reduce the storage oxcupied by template

-
tables even further.

s /“\r, -
To demonstrate hov refinement of the storage classes is

useful for generating good code, a practical example will be

}.
provided. The exanple deals with the IBM 360,370 series of
computers [22]. With this architecture, most instructions
() that access aemory (RX format instructions) use an address

composed from a base register, an index register and a fixed

/

it b e ke WS

e, Sl

(3

N\

/J

<

Practical Implementation for the IBN 360/370¥ Page 25

s

displacenent. Hovever, many other instructioans (RS and SS

fof-at instructions) access memory vith am address coaposed

~from only a base register and a displacement. If the c;a?\

.

generator can discriminate betveen the twvo address formats, it
vill be steered tovards using the most appropriate ihstruction
sequences. Thus memory storage classes XBD and BD are
introduced to correspond to these two cases. In addition, a
distinction must be made betveen a menory location and the

address of that 1location. Thus, tvwo nev storage classes are

introduced to correspond to a memory address. Since they are

of the”Pame format as a memory location, they are referred to
as the ¥xBDA and BDA storage classes. The difference between
the XBD and XBDA storage classes 1is that the XED class refers

to a menory locatio that holds a value which is directly

accessible and whkich can be used as an operand for all RX

forsat instructions while the XBbA class represents an adfiress
iBD

in zemory where ta objects reside. 1In the case of th

" class, the data item that is referenced can bhave a paxijoun

length of 8 bytes, as this is the size of the largest(dat
type that-can be directly used as an operand in an RX forma
instruction, vhile there is no restriction on the 1length of
the odata object referré{ to using the IXBLA class as any
ope;ation performed on this objecg vill be carried out using
its address. ks an example, the value of a variable in memory
would have the XBD storage class while the base¢ address of an
array used as am operand in the calculation of an eleaent

address vwould be referenced vith the XBDA class. Further

o

b i R e

.,- WM‘?.W._.@M«W‘_ e
T

L4

Practical Implementation for the IBN 360/370 Page 20

storage class refinements can be applied to improve on the
quality of the code th§t can be‘pto?uced. One such refinemeant
could be thé subdivision of the "register” class - into three
sub-classes referred té as the "even register® class, the "odd
register® class and the "double Ategister" classs This
subdivision will permit better usage of the w®ultiply and
divide instructions as vell as the registers themselves (since
unnecessary loads betwéen évgn and o0dd registers will be
a;oided). Considering the heavy usage of theﬂ multiply

instriuction in typical prog}ans, this simpPe refinement can

/‘

improve the overall guality of the generated code
significantly. ' A list of suitable storage classes and a
sumaary of possible conversion templates is given in
Table.3.1. Note that many other conversions can be
synthesized by concatenating ¢tvo or more tasic ccaversion
teaplates., It should also be noted that the Iist of storage
classes provideg here can be foyther refined to take advantage
of other features of the insfruction set. In general, the
more storage classes that are used, the better the quality of
V4 ode that can be produéed {but at the expense of requiring
more templates, more conversions, and auch larger tables and

7 thegé;ore a slover algorithm for selecting the right

teaplates).

.

[

i

f
i
i
!
1
i

O

e by e 7S A 124 e A Ao, et ey .

Practical Implementation for the IBM 360,370 Page 27

-

GPR - General Purpose Register
e EVR < Even Register
Recomsended ODR -~ 044 Register
. DOR - Double Register (Even-0dd pair)
Storage FPR - Floating Point Fegister

XBD ~ Memory (Index/Basg/Displacenent)

Classes for - BD - HMemory {(Base/Displacenment)
XBDA - Address Constant (XBD format)

IBX 360/370 BDA - Address Constant (BD format)
cc -~ Condition code
SCB - Short-Circuit Boolean
GPR - --> EVER { No code generated }

° GPR --> ODR { No code generated }

EVR -—=> GPR { No code generated }
ODR --> GPR { No code generated }
DOR --> ODR { No code generated }
GPR --> BDA { No code generated }

Elenentary BD -=-> XBD { No code generated }
BDA -=> XBDA { No code generated:}
IBD -—> GPR { L instruction }
IBDA -—> GPR { LA instruction }

Conversion) ccC -=-> GPR { LA,BC,SE segquence }
SCB -=> GPR { LA,BC,5E sequence }
ODR -=> EVR { LR instruction)
EVR —--Y ODR { LR instruction }

Templates BVR -—> DOR { SRDA instruction }
ODR --> DOR { LR, SRLA segquence |}
XBD ~~> FPR { LD instruction .)
-XBD -=> BD { AR instruction }
GPR --> CC { LTR ipstructicn)}
BD --> CC { TH instruction }
cc --> SCB { BC Anstruction }

“

<
Table 3.1. IBN 360/370 Storage Classes
. and Elementary Conversions.

A sample expression tree labelled witk IBM 360/370

storage classes is given in Pigure 3.1. The arcs between the

nodes of the tree are each 1labelled with two storage classes.

One of them represents the result storage class of, the

sub-tree belowv and the other represents the storage class

required as the operand for the next operator ntde. A storage

!

\

[

Sttt . N s i et

e e s St b I, b At

-

)

o

Practical Ispleaentation for the IBN 360/370q Pagg 28

IR

o ¥

conversion is required vhenever these two stor§ge classes are

different. FPigure 3.2 shows tle same expression tree vith the /

addition of explicit conversion operatot _nodes. Note that

some of these conversions are free and do not require any code

L] a— -

to be generated vhile others are not necessarily elementary
conversions, as can be seen from Table 3.1, and that they may

require the expansion of several code tegpl;tes.

)

FPigure 3.1. Bxpression Tree Labelled with
IBM 360/370 Storage Classes.

%

-

e

Practical Inplementation for the IBN 360,370 Page 29

E3

(:) ’ G s@b

gpr

()

Figure 3.2. Labelled Bxpressigh Tree with
Explicit Conversion Operators.

:
~e (e

fhe process of finding the best seguence of code °
" templates (i.e. best. tree labelling) for a given expression
(f} tree is handled by an algorithm that essentially perforlslén

exhaustive search ‘for the best sequence over all plausible

s

Practical Impleasentation for the IBN 360/370 Page 30
L . . T
(,) template sequences. The conplete algorithm is detailed, using
a mixture of English and Fascal, as follows:
procedure BUILD SOLUTION LIST(EXPRESSION TREE, RESULT)j
begin -
if EXPRESSION TREE is leaf node then -
RESULT := list of sinqle node trees where each node is a template
, that implements this (elementary) expression
. elseb egin)
T RESULT := (empty list);
BUILD__SOLUTION__LIST(LEFT sub-tree of EXPRESSION TREE, LEFT LIST - Vs
BUILD_SOLUTION LIST(RIGHT sub-tree of EXPRESSION TREE, RIGHT LIST);,
for TEMPLATE := each tempIgte for the current P-code instruction do
for LT := each tree in LEFT LIS? do
for RT := each tree in RIGHT LIS'r do
if there exist converaions from the resulting storage classes
of LT and RT to the storage classes required as operands
- by TEMPLATE then P
() . begin .
) STOR_CLASS := resulting storage class of TEMPLATE;
i COST := cost of using TEMPLATE plus costs of evaluating
and converting operand sub-trees;
“ for T := each tree in RESULT do
if cost of T + cost of conversion from result storage '
class of T to STOR (CLASS <= COST then
goto EXIT LOOP; ?
for T := each tree in RESULT do
if conversion cost from STOR (R CLASS to resulting storage
class of T (= cost of T then
remove T from RESULT; .
& concatenate the tree formed witK TEMPLATE as its root
and LT, RT as operand sub-trees onto the end of RESULT;
EXIT_LOOP: end) -
v end » N
, end BUILD SOLUTION LIST .
(L\ Fignres 3.3 and 3.4 shov an expression -tree along with their

' solutionltrees as they would be generated by the algoritha.

L i

- - T ey e e e e S S g e K:»—:;r___...w..__m__, -

o e

i
PR

. practical Implementation for the IEM 360/370 . PRage 31 :
C> The rectangles in the figures hold the folloving information: ;
‘ <storage class ; co5t table entry # >. s
’ STR I, s
! \ ' - 0 1
e T SEEEs m——————
fgpr 14} costw16
70 g . ‘

byl

)

S

rigure 3.3. Sample Operationm of the Code O

Teaplate Selection Algorithm.

bl 1"
. . i
A\
t
L) ,5
| §
i
. f
{
’ 1
‘ ;
s
4 !
i 5
' i
. i
F
* Indicates solution traas that '
are dropped begausa batter or .)
aqually good solutions have !
been praviously generated. b
{
. , i
‘ ’i
S R P R A T

At s i

@

-
s ° .
Practical Implementation,for the IBN 360/370 Page 32
b - s N
- | ‘)
"""""""" -y
L -
scb 2 cost=20
uch
*|lseb_7
:cc 61 ’ gcc 17:\
L - Y
--------- h] [A | Firm = = cee = - -y N N
1] 1 * [1 [} A
\%&__‘_i@ costw26 conte20 ﬂc\m-zo
/ N
p lggr z] ce 17 Eb 7 lcm
{bd 10] r 2] (bd 10] {cc
*
-
T
.) * indicates solution trees that
. are dropped because better or
equally good solutions have '
been previously generated,
‘ rignte 3.4. - Sample Operation of the Code
' . Tesplate Selection Algorita,
) ,\4 >
) _ e b3
PR o ~ a ™ i e Sy ’
T , o * R

O

\ N

Practical Implementation for the IBM 360,370 Page 33

The algorithm relies heavily on the use of tvo tables.
The first table holds the information about the use of all
possible tesplates for all P-code operations. Each entry in
this table holds the infﬁtnation described in Table 3. 2. The
cost table entries required by the algoritham for the
expression trees of Figures 3.3 and 3.4 are givean inm Table
3.3. In this table, the 1left and right storage classes
appearing in the RESULT colusn refer to the storage classes of
the left and right opefands respectively. The ¥-- potation
indicates an item of information thal is not :egnirgd by the
table entry. The TEST field is used in the case o} the CNV
operation to distinguish betveen the load of an integer and a

boolean. The :‘‘template numbers refer to the follcving code

Template 11 ST R,D(X,B)

sequences:
Template O : No code
Template 1 : LA B,D (X,B) N
Template 2 : L B,D{X,B)
Template 3 : SR R, ; IC R,D(X,B)
Template 4 : LA E,1; BC mask,**6 ; SR B1,R
Template 5 : LTR B,R
Template 6 : ™ D{B),X*01®
Template 7 : BC mask,??
Teaplate 8 : SLL R,2
Template 9 : AR R,R
Teaplate 10 : A R,D(X,B)

Template 12 : CR BR,R

Template 13 : C BR,D(X,B)

Template 18 : OR R,R

Template 15 BC mask,*+8 ; LA R, 1

-

The second table that is used by ‘the algoriths is the one that
holds all the storage conversion costs and the conversion
templates, A third table is }egnired, but it is not directly

used by the algorithm. This table comes into use in the final

y

—— b 2

O)

Practical Implementation for the IBN 360/370 Page 34

code generation phase and holds the.code sequences for each
temaplate. A schematic view of the entire code generation phase

is given in Figure 3.5.

After the code tenplates have been selected (i.e. the
best tree labelling has been ,determined), egister
allocation alyorithm traverses the expression tree) and
attaches register numbers to all the uses ¢f a register
stor:ge class, such as GPR, EVR, ODR or DOR. If the
expression tree makes use of the EVR, ODR cr DOR storage
classes (i.e. the IBN multiply or divide instructions are
nsed)”then the algorithm should replace all ;lses of thewcPB
storage class by either the EVR or ODR storage classes. This
substitution is made in order to avoid subsegqguent unnecessary
transfers betveen registers as .a result of using an even
register when an odd one vwould be @wmore appropriate or
vice—-versa. If the senmantics of the source language perait,
the algoritha may rearrange the order of conputat‘ion of
expressions so as to minimize register usage. In the unlikely

event that there are insuféicient registers, the algorithm

vill modify the tree labelling by replacing a register storage

class wvith a teaporary memory class. The choice of which

sub-expression to force into memory is determined by the

"distance to next use™ heuristic [23] im our imrlemefitation.

PO

e

P

el o, A FRER

Practical Il’i:lenentation for the IBN 360/370 Page 35

The actual code generation process has nov become very
sisple. At this point, the modes in the exgression tree .hold
all the inforeation (such as vhich template tc generate and

which registers are to be used in each template) needed to

~generate the code. This makes the code genmeraticn . process

little more than 'a simnple tree traversal. It should be noted
that the traversal does not force the postfix code generation
property [1]. oOur ne.th% of code gener.ation provides the
capability of genmerating code in a prefix or infix manner too.

-

The ability to generate prefix code can be useful. Fonsider,
for exanmple, the following Pascal statement: ’

A = (B >0D) orPF
If one is constrained to use the postfix ccde generation

approach, the code would normally be as follows:

4
L R1,C SR R1,R1
C R1,D B %48
BH TROUE TROE LA R1,1 \
T X'01',F ST R1,A
BNZ TRUE B

Using prefix code generation as vell, the code sequence can be

improved to:

LA R1,1 TE X'01°',F
1L R2,C BNZ TRUE

C BR2,D SR B1,R1
BHE TRUE TRUE ST Ri,A

As can be seen, the second instruction sequence generated is
shorter by oné instruction than the code generated in the

strict post-order format.

i
[

AL b . AL AN IS TS o

e n T e tm— . &

[

—

Practical Implementation for the IBH 3€0/370

OPERATION.

L EFT_STOR_CLASS
RIGHT STOB_CLASS
RESULT_STOR_CLASS

' COMMUTATIVE

cosT

TENPLATE_NO

SPECIAL_TEST

-

Table 3.2.

L
®

*
"o

1 CNV .
2 CNV
3 CNV
4 CNV
5 CNV
6 - CNV
7 CNV
8 IXA
9 © LDA
10 LOD
1 - IND
12 IND
13 ADI
14 ADI
15 STR
16 GRT
17 GRT
18 OR
19 OR
20 OR
1 OR
22 FJP
Table 3.3.

Y

40 00 88 00 20 0 B0 00

[T Y

s

Page 36

p-code operation being iamplemented
Storage class of left operand
Storage class of right operand
Storade class of result

Indicates coaautativity of

left / right operands '

. Cost of using this tesplate

Index into table of templates
vhere machine code is listed
Indicates special tes'ts for
applicability are needed

El

Information Contajned in a Cost Table Entry.

xbda
xbd
xbd
cc
gpr
b
cc

bda

“bda
xbda
gpr
gpr
gpr
gpr
gpr
gpr
gpr .
gpr
scb
sch

Y]

S e e e b gt
Y

’

N
¢

b

ce
scb

[}

¢

ENT. % OPER. LEFT RIGHT .RESULT COMMUT. COST TEMP.# TEST
N "s ~ 4

. -

gpr no 4 1 \==
gpr no 4 2 integer
gpr " no 6 3 boolean
dpr no 10 \ 4 -
cc no 2 5 -
cc no 4 6 -
scb no 4 7. -
xbda no 4 8 -
bda no -’ 0 - 0 -

‘dd - no] 0 -
bd no 0 0 -
xbd no * 0 0 -
left "no - 2 9 -
left yes 4 10 -
hem no 4 11 -
cec ' no 2 12 -
ce yes 4 13 - o
left no 2 14 -
cc "no 2 14 -
left ~ no & 8 15 -

- gcb no 0 0 -
——— no) 0 -

. 3 . ’
Cost Table Entries Required by Algoritha.

e

e T RTTETR AR T TETATEEE TR A e . W

O

ol

Practical Isplguentation for the IBN 360/370 '

Construct
Expression Tree

Perform Basic
optinizations

Traverse Tree
Finding Optimal
Labellings

.

Perforna
Register
Allocation

Traverse Tree
Generating Code

rigure 3.5.

S et v s <

Code Generation MNodules.

-

Page 37

oy

v,

PO

()

[P N
h
——

Chapter &
\

Other Implementations

In this chapter ve vill describe two other projecied
ilplen;ntations. One of them is for thé PDP-11 and the other
one deals vith the VAX~-11., HWHe have chosen these machines for
tvo reasons. First, the PDP-11 is very different froa the
IBA 360/350 and thus poses several problems that must be dealt
vith., The VAX-11 is also gquite different 3s its architecture
posesses features that are absent on both other machines. The
second reason for choosing the PDP-11 and the VAX-11 is that
they are both widely used an&>”it therefore makes sense to

demonstrate our code generation method for these machines.

8.1 PDP-11 Implementation.

>

As a second inplenentationmée chose the PpP-11 {2&4]. oOf
all the addressing .modes available for accessing main merory

on the PDP-11, 6nly three are used by the code generator.

”

e o sl bt i

S A e e i s —————

ortos

N
«.-\1

S ‘Other Isplementations ' ' Page 19

[l

-

Addressing modes such as autoincrement and autodecrement are
not needed by the code genera.tor as there are no P-code
operations , that, taken individually, corresgond to these
addressing nodes combined with another P-oferation snch_\es
add, subtract, etc. In our code generator mcdel, it is up to
the peep'hole optimizer to introduce uses of the’ autoincrement
or autodecrerent modes between code teaplates vhenever
possible, These addressing modes are used within some code
teaplates, hovever, (mainly for certain P-operations on sets
or for some move operations) - The storage classes se}ected to
repres:nt the three addressing modes are IR for "Indirect
Register™®, RX for "Indexed Register" and IEX for *Indirect

Indexed Register™. A sumsary of the possible storage classes

and conversion templates is given in Table 4.1.

The PDPJ1 has two important differences from the
IBN 360/37Q. he first is that wost instructions have a
tvo-address format and therefore destroy the value held in one
of the operands. With the IBHN 360/370, the cperand destroyed
is almost alvays held 1in a register and it wvas dismplicitly
assumed in 7our compiler model that registers are used only as
teaporaries and could therefore be reused. With the PDP-11 the
operand could be either register or asemory. If it is nemory,
ve insist (unless opéi-ization analysis iu:oves ctherwise) that
this memory be a temporary location generated by the. co;piler.

rhetefore, a new storage class, THEN, vhick refers to a

temporary memory location and vhick can be frovided as' an

pe——

T e o by T

o F DA Ssa ke pa A

v ot

- .
"Other Isplementatiois Page 40

input stotage' class to destructive instlgucticns, is required.
Since the use of a register il -loré efficient than the use of
a aemory location, the ‘rHEllua:istorage class vill gererally only
be used when there are mo available registers. Another use of
the memory class as a destination operand could arise vhen the
destination operand is one of the source operands. Consider
for example the Pascal statement A := A ¢ B, In this
statement, it is more efficient to add the «contents of B
directly to the contents of A in memory rather than to use a
register, Although, in this case, A does nct tep_x:esent a
temporary memory location but rather a memory location that
has been determined to Le reusable, for the furfose of the
code generator it can be treated as such. The information
indicating that a nmemory locationm is reusatle sl;ould be
supplied to the code genmeration_phase by a pricr optimization
analysis phase. Since the TNEM storage class is to be
exclusively used in the tvo cases mentioned above (i.e. it

will never be obtained from the code template selection

“algorithm or from cost table entries), there is no provision

for converting from another storage class to the TMEN class.
A sample expression tree using the THEN storage class is given
in Pigure 4.1. Care aust be taken, however, in the way the
THEN storage class is used. In the following statement

A :=A ¢+ (A + B), one aust be careful not to assign the result

of A+ B to the THNEA class that corresponds to the storage \>

location for A (as was done in the previous exaaple) because

the value of A is still needed in the expressior.

— -~ o S S st i

s et e e

Other Implementations Page 41

REG - General Register (EO—R5)

PPR -~ Ploatimg Point BRegister

IR - HNenory (Indirect Addressing Mode)
- RX - HMerory (Indexed Addressing Mode)
Recommended IRX - Mesmory (Indirect Indexed Mode)

Storage INN -~ Imnediate Constant
Classes for . OPND - Operand (RBG/IR/BX/IRx/IBu class)
PDP-11 ccC -~ Condition Code

SCB - Short-Circuit Boolean

THEN - Temporary Memory Location

RXA - Address Constant (EX format)

REG --> OPND { No code generated }

IR --> OPND No code generated }

RX -~> OPKD } No code generated }
Eleaentary IRX --> OPHND { No code generated }

Inn -=> OPND { No code generated }
Conversion OPED ~--> REG { BOV instruction }

TNEM --> REG { MOV instruction }
Teaplates cC -=> REG { MOV, EBR, MOV sequence }

SCB --> REG { MOV,BE,EOV seguence }

cc -=> SCB { BGE,-.. instructijion }

OPND --> CC { TST instruction 1

. i

Table 4.1. PDP-11 Storage Classes and Conversion Tenmplates.

STR B,FLAG

tmen

rigure 4.1. Expression Tree Labelled with PDF-11 Storage
Classes for Pascal Statement FLAG := (A > B) and FLAG.

o

-

e oo, LR

hudatnalialood) / ‘\‘M.uv—

Other Implementations Pagje 42

The second difference involving the PDP-11 is that most

instrﬁctions accebt operands that can have any addresking

mode. Since different storage classes were allocated to

s

different addressing modes, the inmplication is that distinct \\“/);

tenplates are n 4 for one instruction operéting on
different:storage classes. Yet all the templates for ‘the ADI
P-code operation, _say, vould generate the same PDP-11
instruction, ADD. To eliminate the obvious redundancy, one

»

sore storage class OPND, wvhich denotes an oferand vith an

arbitrary storage class (out of those suitable for direct use’//

in a éDP-11 instruction), is added. conversions from REG, IR,
BRX, etc. to OPED (which do not actually generate code) are
provided, With this technique, the number of templates for
addition is greatly reduced. However, this also nmeans that

different costs cannot be attached to the different uses of

the ADD instruction (i.e. the cost of using ADD on a mepory
operand as opposed to a register operand must be the sinme).
Instead, the costs of using a particular kind of addressing
mode must be attached to the appropriate template that
provides the comversion to the OPND class. ﬂeiﬁ is a summary
of all the templates that would be needed for integer

addition, ADI:

BREG <+ TNER --> REG {Comnutati ve}

OPND + REG --> BREG {Comamutative}

OPND ¢ TNEN --> THMEN {Ccamutati ve}
Since conversions between REG, THEN and CPHND are all
available, this completes the set of templates. Figure 4.2

shovs’a saaple tree along;vith its solutions as produced by

\

N e

O

e iy 35

L TR -

()

the code template selection algoriths.

T

4

Other Ilplenentatisgs

required for this tree are given in Table 8.2.

b o o - -

M

=

ke e e - - - -_-----g

cost=]
tmem 9| [reg 5

i TR ,—--—-.. ----.-.-1

R]

13

. ew e m

T page 43

The cost table entries

cost=9 }Ej\ cost=10
{tmea 9]

L)

!tme:n 7? cout-lo

|t¢§ 2]

tmem 9] ,opnd 1 [omd 1|
[=x_ 8]

{ex fopnd 1} [ex_ 8 [opnd 1}

== G

poreemc et s .-y

-]

(:;Eg:@ cost=y
g 2 g 2

* Indicates solution trees that
are dropped because better or
equally good solutions have
been previously geng¢rated.

i

Pigure 8.2. Solution Tree for Pascal Stateaent

2

A :=A ¢ (A ¢+ B) on the PPP-11.

opngd |
ﬁ

et

ke s g

Other Implementations ‘Page. 44

- ENT.# OPER. LEPT RIGHT RESULT COMMUT. COST TEMP.# TEST

1 CRV rx Lem opnd no 3 0 -
2 CNV opnd — reg ’ - no, 2 o -
3 CNV tmen e reg no 4 1 -
4 ADD reg reg' left - no 3 2 -
5 ADD opnd reg right yes 2 2 -
6 ADD reg tmem left yes .4 2 -
7 , ADD reqg tmen right yes 5 2 -
8 LOD -— - rx no 0 0 -
9 LOD —— —— tmem no o 0 reusable
10 STR req —— - no 3 1 -
11 STR tmem « --- - no 0 0 tmem= dest
s 1 tmenJest

12 STR tmemn —— - no

Table 4.2. Cost Table Entries Required by Code
Teaplate— Selection Algorithm for the PDP-11,

8.2 VAX-11 Imsplementation.

The third implementation deals with the VAX-11 [25])
Among the addressing modes available for accessing main aem9ry
on the VAX-11, ten are used by our ‘dede 'getieratot. éhe
storage classes, selected to represent these addressing modes
are BRD for "Register Deferred", BDX for :'Registet Deferred
Indexed®*, BD, BDX, BDD, and BDDX for "_B‘yte Displaceaent®™,
"Byte Displacement Indexed®, "Byte Displaceasent Deferred® and
#Byte Displacel'ent Deferred)In(e_!ed", ‘tespectively. In
addition the WD, WDX, WDD and WDDX storage classes represent
the word displacement eguivalents of the BD, BLX BDD and BDDX

classes. 4 summary of the possible storage clésses . and

conversions templates for this machine is given in Table 4.3.

L

i

D e

P

WIS
r—

-

Recormended’

Storage

Classes Jor

VAX-11

.ﬂ\ IP’."

Blelentan}

Conversion

Tenmplates

Table 0.35

Other Ilyletentation%

REG
RD
BRDX

"BDIX
BDD

~BDDX
wD
WDX
WDD
WDDX

Inn .

OPED
TREG
cC
SCB
THEM
RDA
BDA
WDA

REG
RD
RDIX

BDX. -

BDD
BDDX
WD

WX -

wDD
¥DDX
KN
TREG
TREG
OPXD
THEN
cc
sScB
cc
OPHD

VAX-11 Storage Classes and

LI O R T O T A O N O O :\\LJ.II (]

Paée 45

General Register (50-R13)
{Register Deferred)
(Register Def. Ind.)

Memory
Memory
Memory
nesory
Henory
Mewmory
Memory
Nenmory
Memory
Nemory

(Byte
{Byte
{Byte
{Byte
(Word
(Word
(word
{(Vord

Imnediate Constant
operand (REG/BD/.../IMM clqss)
Temporary Internal Register

Condition Code

Disglacenent) .
Disp. Indexed)
Disp. Deferred)
Disp. Def. Ind.)
Displacenent)
Disp. Indexed)
Disp. Deffered)
Disp. Def. Ind.)

Short-Circuit Boolean
Temporary Memory Lccation
Address Constant (ED format)
Address Constant (BD format)
Address Constant (WD format)

OPND
OPND
OoPHD
OPND
OPND
OPND
OPND
OoPY)
OPND
OPRND
OPND
oPXND
BEG
THEA
REG
REG
REG
REG
SCB
cC

No
No
No
Ho
No
No
Ho
No
NoO
No
No
No
No
No

;
A PO, ity By gt (O G P g PO, Pl i, i, P i, PO, pi, P, piey, gy

code

code-

code
code
code
code
code
code
code
code
code
code
code
code

generated
generated
generated
generated
generated
generated
generated
generated
generated
generated
generated
generated
generated
generated

MOY instruction
BOV instructiomn
HGY , BB, BOV segquence
BOV , BB, HOY sequence -}
BGE ... instruction }
TST instruction

Con version Templates.

¥

}
]
}
)
}
}
3
)
}
}
}
}
)
}
}
}
}

-

}

@

53

e s b g s B e I

Other Iaplementations : Page 46 _

1

The VAX-11 is similar to the PDP-11in that it can
nodify operands held in memory. For this reason, a temporary
memory class is also ‘reguired for this machine. The THEM
storage class is used in the sane wayas with the PDP-11.
Here agaim a general storage cluass, OPND, is used to denot'e
an operand with an arbitrary storage class. One important
difference from the PDP-11 and the IBN 3607370 is that
certain jnstructions on the VAx-11 allow ‘a destination
operand that is different from either of its scurce operands.
Th‘at is, it has some three adgﬁre‘ss formnmat ins,trulq&ti‘ons [26].
In the case of the PDP or vthe IBN, the result of ‘an
instruction is almost always‘ placed at the same location as
one of its source operinds. The destination operand can be
taken advantage of to conbine the effects of a P-code
operatiofi“ folloved by a conversion from the resulting storage
class to the class reguired as an operand for‘\a\ _;,uhseqnént
operation. The destination opetan:i is handled by a new
storage class called TREG for "tenporary register®. The TREG
classe can be viewed as an internal register used to kold the
result of an ins:trnction until the destinaticn operand hals
been determined. Conversions are provided from the TREG
class to all other sforage classes. This chiiity can
greatly reduce the nunber of convérsions, beti;eetf storage
classes, that are normally required for both the IBN and the
PDP. The dest_i_gation operand provides a great mechanisa for

chaining instructions together to obtain a code sequence for

an entire expression tree. It can ‘also b'e used to combine

TE

¢

N

~

At e B i st §

)

~the effects of a P-code operation followed by

Other Implementations

Page 47

fstore

+ P~instruction”, A sample expression tree is given in Figure

4.3. The cost table entries required for this tree are given

in Table 4.4,

ENT.# OPER. LEFT
1 CNV bd
2 CNV reg
3 CNV opnd
4 CNV treg
5 ADI reg
6 ADI opnd
7 MPI reg
8 MPIX opnd
9 LOD —-_——
10 STR reg
11 STR treqg
Table 4.4,

opnd
opnd

" reg

reg

left
treg
left
treg

RESULT COMMUT.

no
no
no
no
yes
no
yes
no
no
no
no

Cost Table Entries Required Ly Code
Template Selection Algorithm for the VvaAI-11.

COST TEMP.#

O= QD UdWNO-=-00

Nbo—l-ﬂd—l—ll\)—‘w

W

@

w

Other Implementations

-

opn

......... 1 ’.____.

rigure

*

'._--__--_---_- -1

m cost=]l
reg

tbd 9] lopnd 1] [opnd 1]
1

E

[bd 9] [bd 9]

;}Eg cost=9

[Gpad 1] [wpnd)

bd__9] [B4_9 [d

9] [®d__ 9

.

[reg 5] coat-7 m ost-7 [treg 6] cost=S
Teg opud

9 ISd gl ¢ .

[}
1
| ©
N =
o
-
i -

g
i

Indicates solution trees that
are dropped because better or
equally good solutions have
been previously generated.

-

.

8.3. Solution Tree for Pascal statenént
D s= A * (B + C) on the vaxr-11.

/\

t

o TR A TR TR T T R R TR TR R TR T ME e TR e R T T ey

Other Implementations Page 49

’

4.3 Other Implementations.

It is quite certain that other cosputer architectures
vill require different storage classes. But, as it has been
demonstrated in this chapter and the previous one, these
storage classes are generally easy to obtain from the machine
architecture? Por this reason the selecticn of storage
classes and the " construction of the cost taltle should not
require a great asount of vork. This will be especially true
if gables already exist for a different machine as they will
remain .similar féo- one implementation to another. The code
template selection algérithl does not require any chhnges for
either of the two implementations discussed in this chapter:
It is possible, hovever, that for certain lachiné
architectures the algoritbhm might , require scme minor changes.
As an example consider a machine with very few registers.
Such naéhines quite connonw vhen one ‘comnsiders
licro-processors:ifz:nce there are few registg;s(_jt ¥ill not
be uncomsmon to run out of registers durin k the register
allocation phase of the compiler. Pdf this rgason, it may be
od idea to treat each register as a separate storage, class.
(//::e code template selection algoritha should then be changed

to ieject tree labellings with tvo concurrently active uses of

the same register class.

e R TR SR T R TETEEEA VTR TRAe e o e e
N ~

O

LN\

Chapter 5

Practical Results

The theory and notation developed in the previous
chapters vas used to construct a code generator for the Pascal
language. The target machine selected vwas the IBM 370. The

IBN computer was +picked for the trial ilpienentation because

of its general availability and the author's familiarity with

. it. Pascal vasﬁgsed for the source language ltecause of its

relatively clean design, increasing_ popnl§&ity "and the
existence of Pascal compilers locally. ' The code generator
contains several major cosponents: a tree construction
coamponent which bdiids expression trees from the P-code
operations read in; an optimizer which pefforns sinple
optimizations such as constant folding; the code teaplate
selection algoritha coaponent vwhich finds the best code
sequence for an entire expression tree; a éeéister allocation

coapopnent; and <finally the code generation ccmponent. Each

component perforas only the task it is assigned and all

» -

et A m e mmr o ————————S sy v s mohms i e th £ A B

& i ——

Rt

e

A i € M - ewreww X Stn REm AR etdh v mraw p Mmoo RSP ~ o eme

Practical Results Page 51

components are independent from each other. The only 1link
betveen them is the expression tree .uhich is ;uccessively
passed from one component to the other. In order to produce
code=8f a better quality, the register allocation algoritha
used 1is somewhat more complex tham the one discussed in
Chapter 3. Tt renembers the contents of registers within
"giasic blocks, thus avoiding subsequent unnecessary loads [27].
~

Yhen the implementation wvas first started, one of our
major concerns vas the eventual size of the tables used by the
code template selection algori;hg. JAs it turns out, however,
the amount of storage required for the tables is small in
comparison to the storage used by the eguivalent.source level
routines. The table sizes are given in Table S.1. Tvo tables
provide cross references between the major tables. The size
of the tenplaté tablé/ could be reéuqed tky a considerable
amount if special data structures vere used to take advantage
of duplicated code segquences occuring in teamplates. But,
since the total anonné of storage required for the tables is
just over 5K bytes there is no need to use complex data
$ttnctures. Note that, unlike other experimental
implenentations vhich only deal with arithmetic operaéions.
our implementation accepts the complete Pascal language
including all the set operatioas. The table sizes would
increase slightly if new templates vere added to improve on
the quality of the code generated. ;s it stands now, the

quality of the code generated is comparable to that of a

e

R

Practical Results Page 52

production guality code generator im a non-optirizing compiler
and just as good as the code produced by other automatic code

generation methods (as will be demonstrated later).

p
Table Name Entries Size of Entry | Total Bytes
Cost Table 258 10 bytes 2580
Conversion Table 144 4 bytes 576
Tenplate Table 180 10 bytes 1800
Cross Reference 1 80 2 bytes 160
Cross Reference 2 180 2 bytes 360
Total Size: P 5476

Table 5,1. IBN 370 Code Generator Table Sizes.

“Another concern of ours vas the amount of processing that
vould be required to deternine the best code sequence. We

have found that the average number of templates for any single

node is about 1.25. The maximum nunber of templates, which

occurs in the case of the AND and OR operations, is 4.
Measurements shpv that the innermost looB of the template
selection algorithm is executed 1.32 times on average per
recursive call to thedalgorithl. The nualter of recursive
calls ?epends solely onizié\“COnplexity of the expression, but
the average nusber is quite small for typical programs. The
net: result is that the amount of processing réqnired to
detérnine the best code, sequence is not as great as vwas

anticipated and is a small price to pay for good gquality code.

AR =

o

e W et —

e e m————

Practical Besults ' Pa\?e 53

(Pascal Progran }
const MAXINDEX = 9;
Ltype MATBRIX = array [0..NAXINDEX] of
» afgay [0..BAXINDEX]) of integer;
procedure MATRIXMULT (var A,B,C = HATEIX);

var I, J, K, SUM : integer;

»

begin
for I := 0 to BAXINDEX do
for J := 0 to MAXINDEX do begin
SuM := 03
for K := 0 to NATINDER do
SUR := SON + A[I,K] * B[K,J];
Cc[I,J] := SUN;
end;
end; { BATRIXBULT)}

{ Pascal Program)
var CH : char;
function READN : integei;

var LVAL, BASE : integer;

A

B
¥hile cH = ' * do read (CH);
if (CH <= '9') and (CH >= *0') thep p

e
if CH = *0* then BASE := 8
else BASE := 10;
\ - LVAL := 0; :
[-]

LVAL := LYAL * BASE + ord (CH) - ord('0*);

read (CH) ;
uatil (CH < '0') or (ord (CH) - ord ('0') >= BASE) ;"
READN := LYAL;

els iEADI = ~-13
s-:gg:; { -READY)

Figure 5.1. Pascal Rontinés Used for Code Ccmparisons.

~

e i n

D

S .wx S ——
\

N

i Practical Results Page 54

In the remainder of this chapter ve vill ccapare the code
generated by our method with tye code produced by Glanville's
nachiﬁe independent code generator [18). Por this purpose,
the same tvwo programs that vere used by Glanville vere ;lsu
used here. They appear in Figure 5.1. For comparison
purposes, the register allocation algorithm used by our code
generator was replaced by a simpler, more straightforward,
one. Only code for the body of the procedures is used in the
comparisons as was done by Glanville. The assembly code
produced by our code generator and by Glanville's: machine
independent code generator for the MATRIXMULT procedure is
shown in Pigures 5.2 and 5.3, respectively. Aside from sonme
obvious errors?! that are present in Glanville's code, the two
code sequences are quite siailar. The code produced by our
code generator consists of 53 imstructions occugying 198 bytes
plus 3 halfword constants for a total of 204 bytes of storage.
The equivalent code from Glanville's machine independent code
generator consists of 60 instructions and occupies 212 bytes.
The difference in size can be partly attributed to the poor
usage of the even/odd register pair by Glanville's code

generator that is wmade apparent by the use of an unnecessary

* The constants used by Glanville for the array component

lengths assume halfvord integers wvhille the array elemeats
are accessed using fullwvord instructions. Also, the result

of a multiply instruction is held in gister pair of
vhich only the o044 register is required for subseguent
operations (the even register normally only contains the
sign extension of the result) as opposed to the even
register as used by Glanville.

[P

Rl AN g

T

Practical Results - Page 55
LR instruction iefore each multiply instruction. bur code
generator avoided the problem by using the more efficient
multiply halfvord instruction. The even/odd register pair is
efficiently used in our code generator as demonstrated further
dowvn in the cade and in the code produced for the READN
procedure. It should be noted, however, that our register
allocation algorithm is partly responsible for this
improvement. |
The use of literal constants in our code is also an
improvement over the use of an LA instruction folloyed by a
register to register instruction, as produced by Glanville's
code generator. our code sequence requires a. 4 byte
instruction plus a 2 byte data constant, whereas Glaanville's
code reguires 6 bytes of instructions. Thus, cur apgroach is
more efficient in storage if the data constant is referenced
more than once (as it usually is). The difference .in
instruction timings is also negligible. The code issued by
our code generator for array indexing could be improved if the
indexing method imitated the one used by Glanville's code
generator. In so doing, 2 bytes would be saved for each array
reference thus reducing the size of the code by 6 bytes.
Hovever, the P-code operations used for arfay indexing in our
compiler “make it difficult (but not impossible) for us to

produce the same code sequence as Glanville's.

B o

2

s

™

Practical Results) Page 56

The assembly language ‘output for both BEADN routines
appears in Pigure 5.4. Our code generator produced 36
instructions (excluding the calls éo the read toqtine)
requiring a total of 132 bytes of storage. Glanville'’s code
generator produced 45 instructions requiring . 164 bytes of
memory. The difference stems from the fact that the global
character CH occupies a single byte in our compiler and can
thus be compared with constants without first being 1loaded
into a register (by making use of SI format instructionms).
The allocation qf a fullwvord to, a character value can provide

an advantage in Glanville®s code when this character is used

 in sonme kinds of computation. In this case the character can

be efficiently loaded into a register using an L iastruction
while in our case the less efficient SR and IC code seqguence
must be used. Since the use of characters in comfputations is
fairly restrained, it is usually more efficient to allocate a
single byté' per character. Note that in the code sequences
produced for both these routinés, additional code improvenments

-«

are possible by simply using a good peephole optiaizer.

Additional comparisons vere nade between the code
produced by our .code generator and the code generated by the
IBN " PASCAL/YS compiler. For these comparisons the full
capabilities of our register allocation algoritha were used as
it vas not knowa hov much optilizafioh is performed by the
PASCAL/VS compiler. Tvwo programs vwere selected for these

conpafisons. The first one is a simple tree traversal progras

' practical Results Page 57

consi;iihg of 118 lines of source code. The IBM compiler
generated 1436 bytes of code vh%le our code generator produced
1320 bytes. The second program is a sisple statistical
analysis program of 430 1lines. For this program the IBA
coapiler generated 9444 bytes of code while our code generator
produced 7316 bytes. The results obtained are very satisfying
as our code genecator performed extremely vell in the
coaparisons, especially since-.-IBM claias that their coapiler

perforas optimizations.

N

AN
ot

“t

L7:

SLA

BEQ

AH
ST

NH
AR

* SLA

ST

CH
BEQ

AR
ST

Practical Results

-

RB,R8

R8,Y (R13)
R8,R8

88,J (R13)
R8,R8
R8,SUN(R13)
Rr8,R8
R8,K{R13)
R8,A (R13)
R7,I(R13)
R7,=B%40"*
R7,R8
R6,K(R13)
B6,2

R7,0 (R6, R7)
RS,B (R13)
R4 K (B13)
R4 ,=H'40"*
R4 ,BS

23,J (R13)
3312 ?
B6,0 (R3,RY4)
R7,SUA(R13)
R7,SUN (R13)
RS ,K (R13)
R8,=H'9’
L7
8, K (R13)
R8,=H*'1?
R8,K (R13)
L6

B8,C (R13)
27,I(R13)
R7,=H'40"
R7,R8

R6,J (R13)
36'2—"’
R5,SOA(R13)
RS, 0 (86, R7)
B8, J (R13)
R4 ,=H'9?
LS

R3,J (813)
R3I,=H' 1!
B3,J (R13)
Ly

L5:

s

CH
BEQ

ST

* Page 58

R8,I (R13)
R8,=H'9? -
L3

B8, I(R13)
RE,=HY1' _
RE,I (R13)

L2

_,k

rigure 5.2. IBA 370 Assesmbly Code;.Produced by our

Code Generator, for the MATRIXHULT Routine.

g;
e

SR
ST
BC
SE
ST
SR
ST
BC
L5: 1la
LA
LR
N
A
HR
A
L
LA
LA
|
A
MR
A
L
LR
- MR
A
ST
LA
A
ST
L6: L
LA
CR
BC
LA

L1

*

L3

[1]

LA’

. LB
. |
A
HR
A
L

. ST
LA
A

- ST

Pigure 5.3.

k]
Practical Results

(1]

5 B2,R2) L4
R2,I(R18)
13,L2(R15)
R2,R2
R2,J(R13)
18,L4(R15)
BR2,R2
R2,SON(R14) . L2:
B2,R2
R2,K (R14)
14,L6 (B15)

R2,2
Rr3,10
RG,R3
R4,I{R14)
R4 ,K (R14)
R4,R2
B4, A (R1Y4)
R2,0(R4)
83'2

B4,10

R4 ,K(R143)
R4,J (R14)
RO ,R2
R4,B(R14)
B3,0 (R4)
BE&4,R3

R4 ,R2
RG,SUM (R14)
R4 ,SUN (R14)
R2,1

R2,K (R14)
R2,K (R14)
BR2,K (R14)
R3,9

R2,R3
12,L5(B15)
R2,2
B3,12
R8,R3 ™
B4, I (R18)
B4,J (R13)
R4,R2

RS ,C (R18)
BR2,SUN (B 14)
R2,0 (RY)
R2,1

B2,J (R14)
R2,J (R18)

L

CR

" .BC

LA
ST
LA

CR
BC

Page 59

B2 ,J.(R14)
53,9

: i
B2 ,83
12,L3(R15)
82,1
52,I(R14)

B2 ,I(R14)
R2,TI{R14)
83,9

82 ,R3
12,11 (R15)

IBE 370 Assefibly Code, Produced by Glanville's
Machine Independent €ode Generator, for BAIRIXNULT.

()

()

¥

L2:

Practical Results

(4

CLI CH(R12),Ct !
‘BNE L3
ee< BEAD(CH) ...
B 12 .
CLI CH(R12),C'9"
BH LY
CLI , CH(R12),C*0"’
BL L4 .
CLI CH(R12),C'0%,
BNE LS
LA R8,8
ST R8,BASE(R13)
B - 16)
LA §E8,10
ST BRB,BASE(R13)
SR BR8,R8
ST B8,LVAL(R13)
L R7,LVAL(R13)
. | R6,BASE(R13)
SR R8RS
IC BB,CH({R12)
AR R7,R8
SH R7,=AL2(C*0")
ST BR7,LVAL(R13)
eee READ(CH «..
CLI CH(R12),C*0?
BL L9 .
SR RB,R8
IC B8,CH(R12)
SH R8,=AL2(C*0")
c RS,BASE(R13)
BL L7
1 - BR8,LVAL(R13)
ST R8,READN {(R13)
B L8
SR R8,HSB
BCTR BS8,0
ST RB,READN (R13)
Our Code

L1s

122

b)

Pigure 5.4. 1IBA 370 lséelhly Code

"LA
CR
BC

f oo o

BC

LA
CR
BC

LA
CR
BC

LA
CR
BC
LA
ST
BC
LA
sT
SR
ST

LA
SR
ST

oe @

LA
CR
“BC

LA
SB

BC

ST
BC
I
iCR -
ST

bqqe 60

/

B2,CH(R13)
R3,C* !
B2,R3

6,12 (R15)
READ (CH) .o
14 ,L1(R15)
B2 ,CH(R13)
B37,C'9'

B2 ,R3 ’
R2,CH(R13)
B3,C*0'
52,R3

4,13 (R15)
B2,CH(R13)
B3,C*0*

32 'R3

6,15 (R15)
B2,8

B2 ,BASE(B14)
14,L6(R15)
B2,10

R2 ,BASE(R14)
E2,R2
B2,LVAL(R18)
82 ,BASE(R14)
B2,LVAL (R14)
R2,CH(R13)

" B3,C*0"

BR2,R3
R2,LVAL(RB14)
EEAD (CH) eee
R2,CH(R13)
R3,C'0?
F2,R3

4,18 {(R15)
B2,CH{R13)
B3 ,C10!?

B2, ,BASE(R14)
4,17 (R15)

_B2,LVAL(R14)

E2,READN (R14)
14,14 (R15)
B2,1
52,BREADN(R14)

Glanville's Code

for READE Boutines.

-

CINCINE SN LY R

EN T AP

.-

d

Practical Results Page 61
~ q
Other complete implementations for different nmachines
vere not done in order to keep the vork manageatle by a single

person. However, cost tables vere ceonstructed for ' both the

]

PDP-11 and the VAX-11 msing the étorage classes presented }n///

Chapter 4, Using these tables and the code temflate selection
algoritha, both sample prograas vere hand translated. The
code that was produced for the PDP-11 is shown in Figures 5.5
and 5.6 along{/;;;; the corresponding code produced by
Glanville's nachine independent code generator. Note that
here again the register pair is not properly useﬁ in the
lnltiply instruction. The code obtained for the READN
procedure, using our cost tables, is very siepilar to the code
produced by Glanville’s amachine independent‘code generator,
except for the use of byte instructions whenever the character
CH is used as an operand. In doing so, an additional
instruction vas required to convert from a byte to a word for
a subsequent addition. The code obtained for MATRIXMULT,
using the tables, requires 67 vwords of memory coampared to the
65 words required by Glanville's code generator. The
difference can be attributed to thé more efficient code that
is generated for array inde£ing in Glanville's code generator.
The intermediate language operations used for imndexing make it
difficult for us to produce the more efficient code pattern;
Bach array reference wggld rééuire an additiomal 2 vords if it
vere not for the use of the shift instruction to iaplement the
doubling ope:atioi. Using this imstruction, only 3 additional

vords dre requifed for all 3 array references. The resainder

PRCVERPI

S g

o

ot vy i ot >

S NPR AL e

RIS P SNV T TR M M S o v e AN 1t

. Practical Results) Page 62

of the code is very similar. Glanville also noted the

) +
p&'ssibility of using the shift instruction and sgbsequently
) L

provided am additional production to ptoduée that code .

pattern.

The branch instruction on the PDP-11 has a limited range
of 128 vord‘s‘ forvar& or backvard. Wwhenever the destipation of
a branch instruction is more than 128 words avay, the JHNP
instruction nust ’be used. In the code okttained for both
sanmple routine's, the .use of JBR, JNB; JGT, €tCaee, “tepresent
macro calls vhich expand to BNE or BEQ *+2 followed by JHMP,

for the BNE case, depending om how far avay the destination

is. In our sample utines, the JNP instruction is not

required as all branches are over short distances.

" Similarly, both test programs were hand translated using
the tables for the VAI-11. The code that was produceé appears
in FPigure 5.'}. The code for the MATRIXNULT procedure comsists
of 28 imstructions requiring 112 bytes of storage. Better
code conld\ be produced, particularly for array indexing, if
the ;'ntetledj.ate P-code was modified éo as to ‘be better able
to take advantiage of the sophisticated index}.ng instructions
available on thé 'VAI-—I 1. The code obtained for the READN
routine 13: siailar to the code 'prodnced for the PDP-11 except
tl;at three-address instructions vere used whepever possible.
The KEADN routine required 29 instructions for a total of 115

bytes of storage. Unfortunately, no VAX was readily available

_£¥

i S

T~

&

Practical Results N 7 Page 63

to coapare our code with the code produced-by one of their
compilers. However, vwe i.nclude the code for the VAX-11 to

shov the A7plicabx.li.ty of our code generator t¢ a vide range

of target ‘machines and té shov the ease of retargeting the

]

code generator.

<

L2: CMPB CH,#°* Li: CHP CH,$40 °
JNE 13 L¥E 12
JSR PC,GETCHAR , JSR PC,GETCHAR
JBR L2 JBR I
L3: CHNPB CH,#'9® L2: CmP CH,$71
JGT L4 Jer 13
CNPB CH,#'0° : CHP CH,$60
JLT L4 , JLT 13
CNPB CH,#'0! CMP CH,$60
JNE LS JNE 1S
ROV #8,4 (RS) MOV $10,—6 (RS)
JBR L6 JBR 16
L5: MOV #10, 4 (BS) L5: MOV $12,—6(R5)
L6: CLR 2(BS) - L6z CLR -4 (R5S)
L7: MOV 2(BS),Rt L7: MOV -6(R5),RO
NOL 4(RS), R} NOL -4 (RS),B0
MOVB CH,RO ADD CH,RO
ADD RO,R1 SUB $60,—14 (R5)
SUB #'0°,R1 MOV BO,- & (B5)
MOV B1,2 (BS) JSR PC,GETCHAR
JSR PC,GETCHAR MY _EO,CH
cup Scu,$60
JiT 18
MOV CH,RO -
SUB $60, RO
CEP B0,-6 (B5)
capP R1,% (RS) Jir 17
ar L7 L8: MOV -4 (RS),~2(R5)
19:- NOV 2 (BS),0(RS) JBR 14
JBR 18 ¢ L3z HOV $-1,—2(RS)
La: HNOV #-1,0(B5) L4z MOV -2(RS),RO
18: #®OV O (B5),RO
I
a) Our Code b) Glanville*s Code

rigure 5.5. PDP-11 Assembly Code for READN kontines.

? P

e e e s oo

Prgctical nesults‘

(.) . CLR 6 (BS)
~ L2: CLR B8 (RS)
L4: CLR 12(RS) L1:
- CLR 10(RS) '
L6: H0Y (BS) RO 13z
MOV 6 (B5) ,R1
NUL _#10,R1
ADD ~ (RO) ,R1 LS
. MOV 2 (B5),R2
ASL RO
ADD R1,RO
MOV . 2(RS5) ,R2
K0V 10 (R5) ,R1
* NUL #10,R1
ADD (R2) ,R1
’ B0V 8 (RS5), B2
ASL R2 g N
ADD R1,R2
TN sov (R2) ,R1
’ NUL (RO) ,R1
ADD R1,12(RB5)
CNP 10(RS) ,#9 L6
//x661" L?
INC 10(RS)
' JBR L6
() 17: MOV 4 (R5),RO
MOV 6 (B5) , R1
MUL #20,R1
ADD (RO) ,R1
MOV 8 (BS),RO
ASL RO Li:
. ADD R1,RO
HOV . 12(RS), (RO)
\ CHP B8(R5),%9 . 12:
JGT LS
\ INC 8 (BS) ,
\ JBR L4 :
‘ CEP 6 (B5),#9
Jer 13
INC 6 (BS)
JBR L2
(gﬂ
\
a) our Code - b)

\
Pigure 5.6. .

ClB
JBR
CIR
JBR
CLR
CLR
JBR
MoV
HMUL
ADD
NOL
ADD
" mav
NOL
ADD
MUL
ADD
HOV
NOUL
ADD
INC
cap
JLE
nov
MUL
ADD
BUL
ADD
Nev
INC
cHp
JLE
IXC
cup
JLE

Page 64

-2 (RS)

12

-4 (RS)

L4

=10(R5)

-6 (R5)

16)|
$12,R0

-2 (R5) (RO
-6 (BS) ,RO
$2,R0
-12(R5),B0
$12,R1

-6 (R5) ,R1
-4 (RS) ,B1
$2,R1

10 {B5) ,R1
(R1),,R1
(ROY ,R 1
R1,-10 (B5)
-6 (R5)

-6 (RS5) ,$11
LS

$12,R0

-2 (R5) ,RO
-4 (R5) , B0
$2,R0

-6 (RS5) ,R0
-10(R5) , (RO)
-4 (R5)

-4 (RS5) , $11
13

-2 (B5)
-2(R5) ,$11
L1

Glanville's Code

.

pDP-11 Assembly Code for MATRIXNULT Routines.

Practical Results Page 65
\
CLEV I (R13) L2: CMEB CH{R12) ,#' °*
L2: CLRY J(R13) BNEQ L3
L4: CLEV SOUM(R13) BSBW PC,GETCEHAR
CLER K (R13) ' NOYB RO,CH(R12)
L6: MULV3 #20,I(R13),R1 BRY L2 '
ADDN2 A(R13) ,R1 L3: CNPB CH(R12) ,4'9°
C MOVW K (R13),R2 BGTR L4
MULW3 #20,K(R13),R3 CHMPB CH(R12) ,$'0°"
ADDW2 B(R13),R3 - BLSS L4
. MOVE J(R13),R4 CMPB CH(R12) ,#'0°?
- MOLW3 (R1)[R2),(R3)[B4),R1, BNEQ 15
ADDN2 R1,50M (R13) MOVW #8,BASE (R13)
CHPW K(R13),49 BRW L6
BGTR ,L7 MOVE #10,BASE(R13)
INCH K (R13) L6: CLRE LVAL(R13)
BRW L6 L7: MULW3 LVAL(E13),BASE(R13),R1
L7: MULV3 #20,I(R13),R1 ADDB CH(R12) ,R1
ADDW2 C(R13) ,R1 SUBW3 #'0',R1,LVAL (R13)
MOVE J(R13),R2 BSBW PC,GETCHAR
. MOVE SUM(R13),(R1)[R2] . MOVB RO,CH (R12)
CHP¥ J(R13),#9 CHPB CH(R12) ,#'0°*
BGTR LS BLSS 19
INCW J(R13) SUBB3 #'0',CH (R12), R1
BRW L4 CNPW R1,LVAL (R13)
L5: CMPU I (R13),%9 19: MOVN BASE (R13),READN(R13)
BGTR L3 BRE 18
I INcE I(R13) L4: MOVH 4#-1,REALN(R13)
BR¥ L2 , MOVH READN (R13),RO
L8z
a) MATRIXMOULT Routine b) READN Routine

Figure 5.7. VAX-11 Asseably Code.

The code comparisons sﬂould have demonstrated not only
the effectiveness of our method of code generation, but also
the high guality code that is generated and the ease with
which this quality ~can be improved by adding additional code
tesplates or nev storage classes. In fact, in sost cases, the
addition of a new template simply consists of adding an extra

eatry to the cost table and inserting the actual template into

PO RNe S

Practical Results ' Page 66

the template table. The ease with vhich new templates were
added to our code gsnetator during the trial implementation

even surprised the aunthor.

s ART TR N W

Bt

VAR ey u e

Chapter 6

Conclusion

v

The code g¢generation asethod presented im this thesis
represents a step tovards automatic code generation. Pirst
the concept of a storage class vas presented. Then, using
this concept, an algoritha for selecting and joining code
templates so as to produce npear-optimal code was developed.
The basic approach was sho¥n to be quite machine independent.
The quality of the code produced by our method is at least as
good as, if not better than, what has been achieved by other

automatic code generation methods. The tables tsed are easily

constructed and their size is spall in corparison to the -

equivalent source level rontines. Furthermore, such a
description represents a major isprovement im clarity and
modifiability. The ease with which nev tables can be obtained
and substituted for the existing ov%es, thus creating a cross
compiler, is not present for standard code generation ﬂschenes

and represents a nmajor step tovards faci.\l@itating the

& %

(3

e i e e i vme— e h e e—— s w w

Conclusion Page 68

¥

retargeti ompilers. Similarly, it is straightforward to
add nev code teaplates to the .tables either tc¢ impleaent new
interseiiate language operators or to take advantage of new
instructions available on wupwvard compatible computers in a
computer series. The modularity of the code generator is also
an improvement over currently existing code generators. It
allows easy extensibility and modifiability, something that is
not true of most code generators. This modularity allows us
to treat register allocation as a totally independent phase
and, therefore, it simplifies our task of designing and
ilpl'enenting our register allocation algorithe. The use of
our register allocation algorithm provides a 15% reduction in
the size of the generated code over a simple register

allocation algorithm.

As with most code generatiom methods, this appa:ach does
not work too well with scme of the more awkward instruction
sets. Some computer architectures bhave tpo many exceptions
such as special functions associated wvith specific registers
of “inmstructions that ﬂazvre different ways of handling
addressing modes. Hovever, as vas demonstrated, our method is
very - flexible and can handle many intricacies that are present
in most a;:chitectures. As an example, our aethod had no
trouble in handling' the nsé of the even/odd registe} pair on

the IBN 360/370. 1In fact, our approach does seca to provide a

greater flexibility in dealing with these machine intricacies

I X ¥ R et

e e e tm

et

Conclusion » Page 69

than some of the other automatic code gemeration methods:
This is due to the ability ' of creating storage classes as

needed to represent machipe storage locations.

Several extensions to thﬂa research are pc¢ssible. First
the implementations for the 50?-11 and the VAX-11 should be
conpleted. These iamplementations vwould provide further
insight in our method of code gemeration and rossibly reveal
certain deficiencies or possible improvements that ténain as
yet unnoticed. Several enhancements have alreqdy been
conéideted. First, a sophisticated optiuiz;tion phase is
currently under development and will eventually precede our
code generation phase. Most of the standard optimizations are
planned and others that deal with the %gte exotic features of
the Pascal language, such as sets, are also ccnsidered {29].
The optimization phase might require changes in the
intermediate language to allow further machine independeace
and to facilitate certain optimizations [30]. The
intermediate language should definitely be modified to allow
the code generator to take advantage of scm€ of the more
sophisticated instructions now ‘;vailahle on the newer
coaputers, 1 prime example would be the use of the INDEX and
CASE iunstructions on the vax-11. Although already guite N
sophisticated, several ilprovelénts to our register allocation

algoritha are still possible. 111 these extensions will serve

to improve thé overall quality of the code generated and as

Conclusion Page 70

more and more system software is vritten in high level
languages, this can become a major criterion in the selection

of a language as a systems programming language.

None of the extensions mentioned so far will increase
machine independence. However, considerable research is also
possible in: that area. One of the ncre Fromising

possibilities is the automatic generation cf the tables

required by the code template selection algorithm from some

kind of 'machine description. The register allocation
algorithm could be nade suhstan:;;lly more machine
independent, In our current code generator the register
allocation routines vwere imposed over our code tenmplate
selection algorithm and thus are not very machine independent.
These enhancements would greatly reduce tkhe burden of
retafgeting the code generator. As nev picro-processors
become increasingly available, the ease with vhich a compiler
can be retargeted becomes a major factor im determining
whether it will be used or not.
e

Although much research remains to be done on automatic
code generation, this thesis represents a step in the right
direction. The approach taken in this thesis is significantly
different from other methods taken in the paste. Our method
ptgvides some distinct advantages. The two rost important

ones are the applicability of our approach tg\%~uiﬁgf;ange’of

computer architectures and the high gquality code that is

rd

Coanclusion Page 71

produced. This \:esenrch provides additional groundwork for
future research im this area.vhi.ch may sScme day lead to
totally automatic code gemeration. Any contribution in this
area shot;ld be useful as it is not yet clear which is the best

Y

approach to automatic code generation.

= ’ TV AR T eIy e e M T R R T

[91

(1]

(1]

(12]

BIBLIOGRAPBY

b
by
‘8

~

Aho, A.¥., and Ullman, J.D., Principles of Coampiler
Desiqgn, Addison Wesley, Reading, Bass., 1977.
)

Barrett, William ., and Couch, John D., Compiler
Construction: Theory and Practice, Computer Science
Series, 1979.

Gries, D., Compiler Construction for Digital Computers,
Wiley, New York, 1971. .

McKeeman, °‘W.M., Peephole Optimization, Conm. ACH 8,7,
(July 1965) , 443-144,

Davidson, J.¥%., PFPraser, Christopher ¥., ' The Design and
Application of a BRetargetable Peephole Cptimizer, ACH
Trans. on Programming Languages and Systeas, 2,2 (April
1980) , 19 1-202. Also see Corrigendum, 3,1 (January
1981) , 110.

Aho, A.Y. and Johmnson, S.C., Optimal Code Generation for

Expression Trees, Journal of ACHA 23,3, (July 197¢),

488-501. . \
\

Aho, A.V., Johnson, S.C. agd ~JUllaan, J.D., Code

Generation for Expressions with Comasn Subexpressions, J.

ACA 21,4, (January 1977), 186-160. '

Aho, A.V., Johmson, S.C. and Ullman, J.D., Code
Generation for Machinhes with Multiregister Operations,
Proc. Fourth ACM Sysmposium on Principles of Programming
Languages, (1977), 21-28.

Blson, K. and Rake, S.T., Code Gemeration Tec niqne for
Large language compilers, 'IBM Syst. Journal 9,3, (1970),
166-188.

Wilcox, T.R., Generating Bachine Code for High-Level
Programming languages, Ph.D. Thesis, Cornell University,
(Sept. . 1971).

Donegan, M.K., An Approach to the Automatic Generation of
Code Generators, Ph.D. Thesis, BRice University, Houston,
Texas, (Bay 1973) .

Biller, B.XK., Automatic Creation of a Code Generator froa
a Nachine Description, Technical Report HAC TR-85, H.I.T.
Canbridge MA, (May 1971).

~ B
-

€8 vt gt os Wl M s 5 b

™

[13]
[14]
[15]

16
[17]

[18]

[19]

[20]

[21]

[22)
[23]
[28)

[25]

[26]

[27]

Bibliography Page 73

Weingart, S.¥., An Efficient and Systematic Method of
Coapiler Code Generation, Ph.D. Thesis, Ccaputer Science
Department, JYale University, (1973). '

Newcomer, J.MN., Machine-Independent Generation of Optimal
Local Code, Ph.D. Thesis, Department of Cosxputer Science,
Carnegie-fellon Upniversity, (May 1975).

Wulf, W.A., et. al., BLISS: - A Basic Language .for
Isplementation of System Software for the PDP-10,
Carnegie-Nellon University CSD report, (1970).

Wulf, W.A., et. al., BLISS-11: Programmer®s MNanual,
Digital Equipment Corp., (1972).

Frasers, C.,¥., Automatic Generationm of Code Generators,
Ph.D.- Thesis, Yale University, (December 1977).

Glanville, R.S., A Nachine Independent Algorithm for Code
Generation and its use in Retargptable Ccmpilers, Ph.D.
Thesis, Computer Sciences Division, ©University of
California, Berkeley, (Noveaber 1977).

Cattell, R.G.G., Automatic Derivation of Code Generation
from Machine Descriptions, ACE Trans. c¢n Programming
Languages ang Systems 2,2, (April 1980). \
Wulf, W.A., Compilers and Computer Architecture.
Computer, 18,7, (July 1981), 41-48.

Hori, K., Anpan, U., Jensen, K., and Fagel, H., The
Pascal P Compiler = Implementation Notes. Berichte des
Tnstituts fur Informatik, E.T.H., Zurich (Lec. 1974).

IBN Systen/360 Principles of Operation, IBM Corporation
Manual (A22—-6821-3), Poughkeepsie, N.Y., (1966).

Harrison, William, A Class of Register Allocation
Algorithms, IBM Researc Report RC 5342, (March 1975).

PDP-11/45 Processor Handbook, Digital Equipment
Corporation, (1972). .

YAX-11/780 Architecture Handbook, Digital Equipment
Corporation, (1977-78). ’

Stone, Harold S., et. al., Introductiom to Coaputer
Architecture, Science Research Associates, Inc., (1975).

Beatty, J-C., Register Assignment Algoriths for
Generation of HRighly Optinized Object Code, IBHN Journal

of Reseqrcb and Development, 18 (1), (Janunary 1974),

20-39. .,

8

e,

7 RIS M n AR =

. [28]) kgresti, villiam | P Begister Assignment . ;'ln'

Bibliography | " Page 74

-]

Tree-structured Programs, Informatiom Sciences -‘Joursal,
18, (1979), 83-94. ‘

[29] norspool, x. Nigel, Dunkelnn, Laurence ., ZXnalysis and

Optimization of Set Expressions, The Coaputer Journal, to

appoar, (1982) .

'[30] Ganapathi, nahadevan, rischet, Charles N., Scalpone,

Stephen J., Thompson, Keith C., Linear 1Intermediate
Representation for Portable Code Generation, Coaputer

Sciences Technical Report #4835, University of Wisconsin:

Madison, (Septeaber 1981). .

v

N

N,

)

Append

fhere

S UMM

ix a:

ADI
ADR
SBI
SBR
BPX
'MPR
DYIX
DVR
#oD
§GI
NGR
ABI
ABR
NOT
AND
OR
IXA
IND
LDA
LOD
LDC
LcA
STR
STO
EQU
NEQ
LES
LEQ
"GRT
GRQ
rJp
‘oIP

44 00 s0 00

£

}\

88 08 50 05 00550 08 50 80 00 40 00 $0 04 o0 06 40 00 80 &5 26 00 00 00 60 08 00 o0 04 08 o8 W0

L J

Neanings of P-operations Used in

Integer Addition.

Beal Addition. .
Integer Subtraction.
Real Subtraction.
Integer Multiplication.
Real Multiplication.
Integer Division.

Real Division.
Remainder of Integer Division.
Integer Negation.

Real Negation.

Integer Absolute Value.

" Real Absolute Value.

Logical Negation. @#

Logical And.’

Logical or.

Array Indexing.‘?

Load Indirect. = 3

Load Address. ¢

Load Data Item. 2 ¢

Load Constant. 2

Load Constant Address. ™,

Store Data Item. 2 ¢ Q\

Store Indirect. 2
Comparison for Equal. 2

Comparison for Less. 2

Page 75

-

Exalgles.

A

Comparison for Not Equal., 2 \2
2 o

Comparison for Less or Equal.
Comparison for Greater. 2

Comparison for Greater or Equal. 2,

Jump if FPalse. &
Unconditional Jump.

rd

A

Akrray element length as an immediate operand.
Data type as an immsediate operand.
Offset as an immediate operand.

Lexic level and offset as immediate ‘operands.

T At e vy gl B e
Ny

X

I e T T T N
.

ADI:

HPI:

NGI:

. ADR:

NPR:

NGR:
AND:
NOT:
FJIP:

IXA:

CHY:

Page 76

" ‘ &
Appendix B: IBM 360/370 Code Templates for
‘ P-operations of Appendix A.
AR R,R . SBIz SR R,R
| R, D (X,B) s R,D (X, B)
AH RB,D(X,B) 'S R,D(X,B)
MR BR,R DVI, DR R4R
M ' R,D(X,B) MOD: D)b R,D(X,B)
ME R,D(X,B)
SLA R,D ' T\
LCR R,R ABI: 1PR R,R
ADR R,R SBR: SDR R,R
AD R,D(X,B) sb R,D(X,B)
MDR BR,R DYR: DDR R,R°
MD R,D(X,B) ' pp B,D(X,B)
LCDR R, R ABR: LPDR R,R
NB R,R OR: OF B&B,R
X R,=F'1?
BC nask, dest . gJP: BC 15,dest
. s
AR B,R sTr0: SIC R,D(X,B)
SLA BR,D . STH R,D(X,B)
K@ RBR,=F'k’ ST BR,D(X,B)
ST R,D(X,B)
SBE BR,R : ‘ EQU: CE BR,R
SR R,R; BCTR B,R° , ITR R,R
SR B,R; IC R,D(X,B) CH R,D(X,B)
LH R, D(X,B) C R,D (X, B)
L R, D (X,B) CLYI D{B),I
- LD BR,D(X,B) ’ CDR R,R
1A R,D(X,B) : cCb R,D(X,B)
1R R,R LIDE R,R
LTR R,R . CLC »(L,B) .D(B)
SBRDA R,32 : :
AR R,R ’
LA B, 1 BC mask,*+6; SE BR,R
T8 D{(B),!? ' '

BC mask,dest

()

Appendix C: PDP-11 Code Templates for
P-operations of Appendix A.

<
A

Page 77

ADI: ADD SRC,DST SBI: SUB SRC,DST
INC DST INC DST
. DEC DST DEC DST
MPI: NUL SRC,REG DvI,
ASH DST,nn . NOD: DIV SRC,REG
NGI: NEG DST
ABI: TST DST; BPL *+n; NEG DST
ADR: ADDD SRC : SBR: SUBD SRC
NPR: MULD SRC | DVR: DIVL SRC
‘1 NGR: NEGD SRC \ ABR: ABSD SEC
| AND: MOVB SBRC,REG; CCN REG;
b , BITB SRC,REG
| .
: (») OR: BIS SEBC,DS? NOT: COR DST
: BISB SRC,DST CCAB DST
} , FJP, Bxx dest
oJP: JuP dest
IXA: ADD REG,REG STO: MOV SBC,DST [
ASH REG,an : MCYB SRC,DST
HUL SRC,REG STD DST
CNV: CLR DST EQU:z CHP SRBC,SRC
: CLRB DST ~ - CMPE SBC,SRC
i CLRD DST ST -+ SRC
’ OV SRC,DST TSTPE SRC
| - HOYB SRC,DSYT CHPD SEC
(LDD SRC
| TSTB SBC :
L ROVB #1,BEG; Bcond #+42; CLRB REG
) ona ~
Where N
, SRC can be any addressing mode from amongst
; R, (B) s X(R),X(R), pud $n. t
() DST. cdh be any addressing mode from amongst
o B R, (B}, X(BR),X(B). | o

st s

()

~t?

ADI:

HPI:

ABI:
ADR:
NPR:
ABR:
AND:
HOT:

IXA:

'gnv:

Page 78

Appendix D: VAX-11 Code Templates for
P-operations of Appendix A.

ADDX2 SRC,DST SBI: SUBx2 SRC,DST
ADDx3 SRC,SBRC,DST SUBx3 SBC,SRC,DST
INCx DST : INCx [ST
DECX DST . . DECx [ST
NOLx2 SRC,DST DV, DIVx2 SRC,DST
MOLx3 SBC,SRC,DST MOD: DIVx3 SRC,SRC,DST
w ASHL nn,SRC,DST
TSTX DST; BGEQ *+n; NGI: MNEGx SRC,DST
MNEGX SRC,DST
ADDD2 SRC,DST SBR: SUBD2 SRC,DST
ADDD3 SBC,SRC,DST . SUBD3 SRC,SRBC,DST
NULD2 SRC,DST - . DVRB: DIVD2 SRC,DST
MULD3 SRC,SRC,DST DIVD3 SRC,SRC,DST
TSTD DST; BGEQ *+n: NGR: MNEGD SRC
MNEGD SRC,DST
i ’)
BCONMB SRC,REG; OBR: BISx2 SRC,DST
BITB2 SRC,DST BISx3 SRC,SRC,DST
‘SCONB SRC,DST FJP, Bxx dest
UJP: JBP dest
‘ADDX3 SRC,SRC,DST STO: MOVX SRC,DST
MULXx3 SRC,SRC,DST . MOVD SRC,DST
ASEL nn,SRC, DST
CLRXx DST o EQU: CHPx SRC,SEC
HOYX SBC,DST CHPDx SRC,SRC
BOYD SRC,DST 1STx SRC

Vhere
x

ST SEC ’ TSTD SRC
BBS nAa,SRC, dest .
BBC nn,SRC,dest

SO0VB $#1,REG; Bcond *+2; CLRB REG -

can be B, ¥, L, F, D depending on the data type.

SRC can be any addressing mode from amongst -

R, (®), (X)[R], BD(B), BD(R)[R],BD(R),BD(R)[R]),
VD(R), WD(R)[R], WD(B),WD(R)[R), #n. .

DST can be any addressing sode froa amongst

R, (B), (X)(R], BD(E), BD{R)[R],BD(R) .BD(R)[R].
“(R)c WD(R)[R), WD(R),WD(R)[R], #n.

""’W“T‘i v AR TTTTIT T T 7

s\.“?ﬂ T T

s 1Y
i

oy Mo b2 ¢ RS

e,

o

N
'
gy e
Lt t

