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Abstract

In this thesis, we will follow a paper by Bryant et al. in finding the necessary and

sufficient conditions for the existence of a Levi-Civita connection within a given

projective structure (︀Γ⌋︀ on a surface. We will give an explicit formulation of a

necessary condition, as an obstruction of order five in the Christoffel symbols of

an arbitrary element of (︀Γ⌋︀. Our approach in finding this obstruction allows us to

find sufficient conditions in the real analytic case as well. In terms of the Christoffel

symbols of an arbitrary element of (︀Γ⌋︀, the explicit forms of the sufficient conditions

are of order six in generic case, and of order eight in non-generic case. All the

formulations will be projectively invariant and will be expressed in point invariants

of the second-order ODE whose integral curves are geodesics of (︀Γ⌋︀. We will use

a machinery developed by Hitchin and LeBrun, that we call minitwistor theory, to

find the moduli space of these integral curves. Using this machinery and the notion

of densities on a manifold, we give geometric interpretations of the formulation of

the problem and derive a projective property of the space of metrics whose Levi-

Civita connections belong to (︀Γ⌋︀.

Abstrait

Dans cette thèse, nous analysons un travail de Bryant et al. portant sur l’obtention

de conditions nécessaires et suffisantes pour l’existence d’une connexion de Levi-

Civita au sein d’une structure projective (︀Γ⌋︀ sur une surface. Nous donnons une

formulation explicite d’une condition nécessaire sous la forme d’une obstruction

d’ordre cinq sur les coefficients de Christoffel d’un élément arbitraire de (︀Γ⌋︀. Dans

le cas analytique, notre approche nous permet d’obtenir des conditions suffisantes.

En termes des coefficients de Christoffel d’un élément arbitraire de (︀Γ⌋︀, ces condi-

tions suffisantes sont d’ordre six dans le cas générique et d’ordre huit dans le cas

non-générique. Toutes les formulations obtenues sont projectivement invariantes et

exprimées en termes d’invariants ponctuels des equations différentielles ordinaires

d’ordre deux dont les solutions les géodésiques de (︀Γ⌋︀. Nous utlisons une technique

développée par Hitchin et LeBrun, appelée théorie des mini-twisteurs, pour trouver

l’espace des modules de ces courbes intégrales. En utlisant cette technique et la

notion de densité sur une variété, nous donnons des interprétations géométriques de

la formulation du problème et dérivons une propriété projectivement invariante de

l’espace des métriques dont la connexion de Levi-Civita appartient a (︀Γ⌋︀.
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CHAPTER 1

Introduction

We being with a brief history motivating the problem that we will be dealing with

in this thesis. After this we will give a formal formulation of the problem and an

overview of the important results discussed in this thesis.

1.1 History and Motivation

The study of geometric structures on differentiable manifolds and fiber bundles, in

particular jet spaces, goes back to the work of Riemann and Christoffel and is one

of the main objectives of differential geometry and differential topology. There are

various ways to define a geometric structure on a manifold. One important method

is to define a geometric structure by a system of differential equations. The local

and global study of manifolds or of fibred spaces with structures that are generated

by a system of differential equations is what is called the geometry of differential

equations. This subject has a very long and distinguished history whose progress is

closely tied to development in Riemannian geometry, Finsler geometry, and Cartan

spaces combined with the various theories of connections in fibred spaces. The

survey [1] contains a great number of works on this topic and gives a good historical

background of the subject.

The origin of the geometry of differential equations dates back to the earliest

10



1.1 HISTORY AND MOTIVATION 11

systematic studies of differential equations and the work of Lie on the invariants

of differential equations. He investigated certain classes of equations relative to a

specified group and provided an effective geometric interpretation of his results.

What we mean by a group property of a system of differential equations is a prop-

erty of the system which remains unchanged when the dependent or independent

variables in the equation are subjected to a transformation belonging to a transfor-

mation group G. A system of differential equations is said to admit a group G if

such a group property holds for that system. One very important and commonly

investigated group property is the is the invariance of the solution of a differential

equation so that if a transformation g ∈ G acts on a solution of this system it will

give another solution of the same system. Such group properties can be used to give

a group classification of systems of differential equations, a subject first addressed

by Lie. The investigation of group properties of system of differential equations

was done in more generality by Cartan.

In this thesis we will be dealing with the geometrical study of a specific class of

second-order differential equations

d2y

dx2
= Λ(x, y, dy

dx
), (1.1)

in two variables and discuss the geometric structures that can be associated to it.

The first geometric structure that we will associate to this class of ODEs consists

of the geodesic lines on surfaces as one of the most important geometric structures

that contains many aspects of the local classical theory of the surfaces as well as

new approaches that are brought due to twistor theory. The notion of geodesic on

a surface can be locally defined using a second-order differential equation. On a

surface we can consider the class of all such second-order equations which result

in the same geodesic curves on the surface as unparametrized curves. Such a class

is called a projective structure (or projective connection) of the surface and can be

formulated as a second-order differential equation d2y
dx2 = Λ(x, y, dydx), where Λ is

cubic in y′. This is the form of the second-order ODEs that we consider in this

thesis.

Extensive geometric study of second-order differential equations was conducted

by Cartan, Eisenhart and Douglas and others in the 1920s. Eisenhart was primar-

ily interested in the case of equations that could be interpreted as describing the

geodesics of an affine connection of a manifold. A systematic investigation of such

single scalar second-order ODEs has been completed in the language of modern dif-
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ferential geometry and exterior differential systems in [18] and also in [3]. Cartan

realized that the second-order ODEs of the form (1.1) induce a natural projective

structure on their two dimensional solution space. In his paper [5] on projective

connections, Cartan used his own approach (which extends the idea of affine con-

nection as formulated by Levi-Civita and Weyl to a more general situation involving

projective frames) to study the theory of connection and equivalence of geometric

structures by means of G-structures. A modern interpretation of Cartan’s ideas can

be found in [27].

Around the time that Cartan published his paper on projective connections [5],

a somewhat different way of investigating the same problem was conducted by sev-

eral other authors, including Thomas [29] and Whitehead [35], using the language

that we will use in our formulation of projective structures. A comparison of the

two approaches is done in [7]. We use Thomas’s approach in the statement of the

problem. The generalization of the projective differential geometry of affine con-

nections was studied by Douglas [8] under the name of general geometry of paths.

A projective structure on an n-dimensional manifold M , in the sense explained

earlier, can be thought of as a local identification of M with RPn. There are many

interesting examples of manifold that carry a projective structure, however, the ex-

istence and classification of projective structures on n-dimensional manifolds is an

open problem for n ≥ 3. It has been conjectured that every three-dimensional man-

ifold can be equipped with a projective structure (c.f. [28]). This is a very difficult

problem and its positive solution would imply, in particular, the Poincaré conjec-

ture. A research report of the problem on compact surfaces can be found in [6].

Defining the projective equivalence relation between affine connections as above

results in equivalent classes of affine connections which have the same geodesics as

unparametrized curves. One can ask if there is a Levi-Civita connection in a given

equivalence class and, if so, one can try to determine the number of projectively

equivalent Levi-Civita connections as well as necessary and sufficient conditions

for the existence of metrics giving rise to those Levi-Civita connections. If such

a metric exists then the projective structure is called metrizable. The earliest at-

tempt to solve this problem of finding necessary and sufficient conditions for the

metrisability of a projective structure on a surface was first carried out by Roger

Liouville [24].

In this thesis we will provide the necessary and sufficient conditions to this
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problem and will discuss two geometric treatments of the problems using twistor

theory and density bundles as is done in [2].

1.2 Formulation and Results

In this section, we will give the formulation of the problem and state our results.

Suppose g = (gij) is a Riemannian metric on an open set U ⊆M with

g = g11dx
2
1 + 2g12dx1dx2 + g22dx

2
2

= E(x, y)dx2 + 2F (x, y)dxdy +G(x, y)dy2,
(1.2)

where (x, y) and (x1, x2) denote the same coordinates. We switch between the two

notations as is convenient in order to keep expressions as simple as possible. We

do the same for the components of the metric by letting g11 = E, g12 = F, g22 = G.

The Christoffel symbols of the associated Levi-Civita connection is

Γacb =
1

2
gad(∂gdb

∂xc
+ ∂gdc
∂xb

− ∂gbc
∂xd

), (1.3)

Considering a projective structure (︀Γ⌋︀, pick two elements Γ̃ijk, Γijk ∈ (︀Γ⌋︀. As

will be shown in Section 3.1, we should have

Γ̃ijk = Γijk +Υjδ
i
k +Υkδ

i
j. (1.4)

If there is a Levi-Civita connection in (︀Γ⌋︀ then it is projectively equivalent to Γijk.

Therefore, the following system has to be satisfied for some gij’s and Υk’s

Γijk +Υjδ
i
k +Υkδ

i
j =

1

2
gad(∂gdb

∂xc
+ ∂gdc
∂xb

− ∂gbc
∂xd

).

Because we deal with torsion-free affine connections, there are six Christoffel sym-

bols Γijk, so the system above consists of six equations. However there are three

metric components gij , as well as a one-form Υ = Υadxa, that are to be determined.

Therefore, the system is overdetermined. Another way of addressing the overdeter-

mined nature of the problem is by deriving the associated second-order ODE of the

projective structure as we mentioned in the previous section. In Section 3.1 we will

show that it has the form

d2y

dx2
= A3(

dy

dx
)3 +A2(

dy

dx
)2 +A1

dy

dx
+A0,
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where

A3 = Γ1
22, A2 = 2Γ1

12 − Γ2
22, A1 = Γ1

11 − 2Γ2
12, A0 = −Γ2

11, (1.5)

where Γijk is an arbitrary element of (︀Γ⌋︀. The second-order ODEs of this form

constitute the class of ODEs that we are considering in our geometrical study of

differential equations. It can be easily checked that the Ai’s are invariant under the

projective equivalence relation (1.4) meaning that replacing the Christoffel symbols

Γijk in equation (1.5) with Γ̃ijk such that relation (1.4) holds, does not change the

Ai’s. Therefore, in a given local coordinate, a projective structure can be repre-

sented by the Ai’s. Due to a result by Cartan in [5], any choice of the Ai’s in the

equation above also gives rise to a projective structure. As a result, in a given local

coordinate there is a one-to-one correspondence between the functions A0, ...,A3

and projective structures. If a projective structure is metrizable then we can sub-

stitute expression (1.3) for the Christoffel symbols in equation (1.5). It is straight-

forward to obtain the system

A0 =
1

2

E∂yF − 2E∂xF + F∂xE
EG − F 2

,

A1 =
1

2

3F∂yE +G∂xE − 2F∂xF − 2E∂xG

EG − F 2
,

A2 =
1

2

2F∂yF + 2G∂yE − 3F∂xG −E∂yG
EG − F 2

,

A3 =
1

2

2G∂yF −G∂xG − F∂yG
EG − F 2

.

(1.6)

In this system, we are given four functions A0, ...,A3 and want to find three func-

tions E, F, G such that (1.6) holds.

In order to state the first obstruction for metrizability of a projective structure,

we associate to a projective structure (︀Γ⌋︀ a 6 × 6 matrixℳ(︀Γ⌋︀ defined as

ℳ(︀Γ⌋︀ ∶= (𝒱 ,DaV,D(aDb)V) (1.7)

where the vector field V is given in (3.25) and depends on the Ai’s up to their

second derivatives. We have made use of abstract index notation in writingℳ(︀Γ⌋︀
where D(aDb)V ∶= 1

2(D(aDb)V + D(bDa)V) and DaV = ∂aV − V Ωa as will be

explained in Section 2.3 and Ωa’s are given by (C.1). We define DaDbDc⋯DdV

recursively to be ∂a(DbDc⋯DdV) − (DbDc⋯DdV)Ωa.

Theorem 1.2.1. If a projective structure (︀Γ⌋︀ is metrizable then

det(ℳ(︀Γ⌋︀) = 0. (1.8)
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The proof will be given in Section 3.4.

We will see that investigating the metrizability of a projective structure leads to

a first-order system of PDEs. Using the machinery of Section 2.3, we find the ob-

structions to the existence of a Levi-Civita connection in a projective structure (︀Γ⌋︀.
In this way we can also find the dimension of the space of metrics over a sufficiently

small open set of the surface of which the Levi-Civita connections belong to (︀Γ⌋︀.
The first obstruction was given in Theorem (1.2.1). We will translate our problem

to finding the dimension of the space of the parallel sections of a connection over a

rank six vector bundle on a surface. In this manner, the matrixℳ(︀Γ⌋︀ will be equiv-

alent to a matrix consisting of the curvature matrix and its covariant derivatives up

to degree two which is what we will also denote by ℱ2 in our general treatment of

first-order PDEs in Section 2.3 and is given by (2.25).

In Section 3.5, we first provide a sufficient condition for metrizability of a spe-

cial class of projective structures, called generic, in sufficiently small neighborhood

of certain points as follows:

Theorem 1.2.2. Given a real analytic projective structure (︀Γ⌋︀ over a surface with

associated coefficients Ai’s and det(ℳ(︀Γ⌋︀) = 0 such that rank(ℳ(︀Γ⌋︀) = 5 and

ker(ℳ(︀Γ⌋︀) = span{u} with u = (u1, ...,u6) and u1u3 − (u2)2 ≠ 0 at a point p, a

sufficient condition for the metrizability of (︀Γ⌋︀ in a sufficiently small neighborhood

of p is that the the rank of the 10 × 6 matrix with the rows

(V,DaV,D(aDb)V,D(aDbDc)V)

is equal to five. This condition holds if and only if two invariants E1,E2 defined

in terms of the Ai’s up to their sixth derivatives vanish. The expressions for these

invariants depend on the given projective structure.

The construction of E1 and E2 will be explained in Section 3.5. We will show

that for this specific choice of projective structures the fifth order equation (1.8)

and these two sixth order invariants guarantee the involutivity of the system of first-

order PDEs that constitute our problem and the general solution depends on three

functions of two variables.

If a real analytic projective structure (︀Γ⌋︀ satisfies the non-degeneracy condition

but not the other properties stated in Theorem (1.2.2), then we would obtain ob-

structions in terms of higher derivatives of the Ai’s that ensure the metrizability of

(︀Γ⌋︀. We will prove the theorem below in Section 3.5.
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Theorem 1.2.3. A real analytic projective structure (︀Γ⌋︀ over a surface U is metriz-

able in a sufficiently small neighborhood of a point p ∈ U if and only if the rank of

the 6 × 21 matrix with the rows

ℳmax ∶= (V,DaV,D(aDb)V,D(aDbDc)V,D(aDbDcDd)V,D(aDbDcDdDe)V)

is smaller than six and there exists a vector u ∈ ker(ℳmax) such that u1u3 − (u2)2

does not vanish at p.

The sufficient condition we derived for the metrizability of a projective structure

(︀Γ⌋︀ on a surface, may only hold in a sufficiently small open set of the surface. That

is, even if (︀Γ⌋︀ is metrizable around any point of the surface, a global metric may fail

to exist over the whole surface.

In Chapter 4 we will discuss a twistor version of the problem which we call the

minitwistor theory following [4]. This approach will relate a real analytic projec-

tive structure on a surface to a complex surface with a family of rational curves with

normal bundle of degree one, that we call minitwistor lines. This construction will

be used as a geometric interpretation for the linearisation of an ODE associated to

a projective structure to a system of linear first-order PDEs. Moreover, it allows

us to construct the moduli space of a projective structure. In other words, we can

construct the moduli space of the solutions of the second-order ODEs associated to

a projective structure. Finally, we will show some properties of the space of metrics

over a surface of which the Levi-Civita connections belongs to a given metrizable

projective structure using densities on manifold. We mention in closing that the cor-

respondence between local differential invariants of second-order ODEs defining a

projective connection and formal neighborhoods of rational curves in twistor space

has been explored in [16].



CHAPTER 2

Preliminaries

2.1 Density Bundles

In this chapter, we let M be an m-dimensional real manifold and V be a real vector

space. The complex version of the definitions and theorems are straightforward to

state. The material covered in this section is discussed in greater detail in [10], [25],

and [26].

Definition 2.1.1. We call f ∶ ΛmV ∗ Ð→ R an r-density over V if f(λu) = ⋃︀λ⋃︀rf(u)
for all λ ∈ R. The linear space of r-densities on V is denoted by ⋃︀Λ⋃︀r(V ). The

bundle of r-densities on a manifold M is obtained from TM by replacing each

tangent space TxM by the space of ⋃︀Λ⋃︀r(TxM) and is denoted by ⋃︀Λ⋃︀rM . For an

r-density we call r the weight of the density.

It is easy to show that the fibers of an r-density bundle are vector spaces. Since

we will also consider tensor densities, we may refer to a r-density defined in the

sense above, as a scalar r-density to avoid any confusion. Note that a scalar density

on M is a line bundle.

Let Q and Q̃ represent a scalar density of weight r in two coordinate systems

(xi)i and (x̃i)i on M . As we know, if an m-form u over Λm(T ∗M) transforms to

ũ via the change of coordinates (xi) → (x̃i(x)) then ũ = Ju where J = det( ∂x̃i∂xj
).

17



2.1 DENSITY BUNDLES 18

Thus, according to the definition we have

Qx(u) = Q̃x (
ũ

J
) = Q̃x

⋃︀Jr⋃︀ (u)Ô⇒ Q̃x = ⋃︀Jr⋃︀Qx. (2.1)

As an example, consider an open set U ⊆ M such that the canonical bundle (i.e.

the highest exterior power of the cotangent bundle) is trivialisable over it. We can

obtain a 1-density by first choosing a nonvanishing section u(x) ∈ Γ(Λm(T ∗M))
as a normalization and define

ω ∶ Λm(T ∗M)Ð→ R

v(x)z→ ⋃︀g(x)⋃︀.
(2.2)

where v(x) = g(x)u(x). We can easily verify that ω is a 1-density. So on a suffi-

ciently small open set of M , the density bundle we constructed above is identical to

the canonical bundle restricted to the set of charts on U with positive Jacobian. We

call a section η ∈ ⋃︀Λ⋃︀1M a volume form.

On any sufficiently small open set we can construct a positive 1-density, and

using the fact that 1-densities form a vector space at each point, with a choice of

partition of unity we obtain a 1-density over M . Having a 1-density over M at our

disposal, we can raise any of its sections to the power r to construct a section in

the r-density bundle as is clear from the definition. Therefore, it is clear that there

is a one-to-one correspondence between the sections in the 1-density bundle and

the r-density bundle. We can easily define the dual of an r-density of which the

elements act on an element f ∈ ⋃︀Λ⋃︀rM on each fiber and give a scalar that would be a

zero-density over M (the tensor product of any line bundle with its dual always has

weight zero), thus the weight of the dual of an r-density is −r.
We can easily generalize this definition to tensor bundles.

Definition 2.1.2. For tensor bundle 𝒯M on a manifold M , the associated tensor

density bundle of weight r has 𝒯M ⋃︀x ⊗ ⋃︀Λ⋃︀r(TxM) as its fibers at a point x and is

denoted by 𝒯M ⊗ ⋃︀Λ⋃︀rM

As an example, it is easy to see that the change in the representation of a (1,2)-
tensor density with a change of coordinate (xi)i → (x̃i)i is

T̃ abc = J3∂x̃
a

∂xi
∂x̃j

∂xb
∂x̃k

∂xc
T ijk.

The notion of covariant derivative can be extended to tensor densities as is done

in [26]. The covariant derivative of a scalar density Q of weight r on an open set U ,
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with respect to a connection with Christoffel symbols Γijk, is

∇aQ = ∂

∂xa
− rΓbbaQ. (2.3)

It is clear that the formulation for the covariant derivative of a 1-density is identical

to the covariant derivative of an n-form as expected by our construction in (2.2). As

a result, on an open set U over which our construction (2.2) of 1-densities hold, we

sometimes denote the volume form η by η(︀ab⋯c⌋︀ which is the abstract index notation

for differential forms of highest degree.

This easily gives the covariant derivative of a density tensor T̂ with weight r

and of order (p, q). In order to write the formula we do it for (p, q) = (1,2) and

the general case can be treated analogously. Notice that from the definition we have

T̂ = T ⊗Q were T is a (1,2) tensor andQ is a scalar density of weight r. Therefore,

we have

∇aT̂
i
jk = ∇a(T ijkQ) = (∇aT

i
jk)Q + T ijk∇aQ

= ∂

∂xa
T̂ ijk + (ΓiarT rjk − ΓrajT

r
rk − ΓrakT

r
jr)Q − T ijk(rΓrarQ)

= ∂

∂xa
T̂ ijk + ΓiarT̂

r
jk − ΓrajT̂

r
rk − ΓrakT̂

r
jr − rΓrarT̂ ijk

(2.4)

It is clear that the only difference between the covariant derivatives of T̂ and T is

the last term which involves −rΓrar.

2.2 Jet Bundles

The material of this section can be found in more detail in [9] and [19]. Throughout

the text we will make use of the abstract index notation in writing formulae and

multi-index notation for taking derivatives, unless otherwise stated.

Whenever we have a system of differential equations we can regard all deriva-

tives up to the highest degree appearing in the system as new variables and think

of it as a system of constraints over a jet space. This means that we regard these

derivatives as the local coordinates of the set of points in a fiber bundle called a jet

bundle. In this way a system of differential equations is a set of constraints that

define a submanifold of the jet bundle. In order to state the definition in a general

form, we consider a fiber bundle (E,M,π) having M as its m-dimensional base

manifold with N -dimensional fibers and π as the projection map. Let (xi, ua) with
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0 ≤ i ≤ m,0 ≤ a ≤ N , be a local trivialization for E⋃︀π−1(V ), V ⊆ M and consider

two local sections s ∶ V Ð→ E , s′ ∶ V ′ Ð→ E with V ∩ V ′ ≠ ∅. We define the

equivalence relation jp over V ∩ V ′ to be

jp(s) = jp(s′) ⇐⇒ ∂ ⋃︀I ⋃︀sa

∂xI
(x) = ∂

⋃︀I ⋃︀s′a

∂xI
(x) , ⋃︀I ⋃︀ = p , ∀x ∈ V ∩ V ′ (2.5)

where I is used for the multi-index notation.

We can define the vector space Jpx(E) to be the space of local sections of E

equivalent with respect to the relation jp. In other words, this space only contains

the derivatives of sections ofE up to degree p. Therefore, each element of this space

is defined by assigning N(m+p
p
) coordinates which is the number of derivatives of a

section up to order p, given the commutativity of partial derivatives. Define the pth-

jet bundle to be Jp(E) ∶= ⊔
x∈M

Jpx(E)⇑(︀jp⌋︀ with the equivalence relation jp defined

as above. Sometimes Jp(M,E) is used instead of Jp(E) to make clear what the

base manifold is.

It is clear that J0(E) = E and that Jp(E) has M as its base manifold with an

obvious projection πp0 ∶ Jp(E) Ð→ J0(E) ∶= E. There is also a natural projection

πpq ∶ Jp(E) Ð→ Jq(E) for p ≥ q which ignores the derivatives of degree more than

q. Any trivialization of E induces a trivialization of Jp(E).
Let φ ∶ Ṽ ∶= π−1(V )→ R(m+N) be a trivialization of E such that φ(x̃) = (xi, ua)

at x̃ = π−1(x). Then the induced chart on Jp(E) is:

φp ∶ Ṽ p ∶= (πp0)−1(Ṽ )Ð→ Rm+N(
m+p
p
)

φp(jps(x)) = (xi, ∂
⋃︀Iq ⋃︀ua

∂xIq
(x))

where 1 ≤ i ≤m, 1 ≤ q ≤ p, ⋃︀Iq ⋃︀ = q. We will denote ∂ ⋃︀I⋃︀
∂xI
ua(x) by uaI(x).

Suppose the system F consists of r PDEs Fs(xi, uaI) = 0, with 1 ≤ s ≤ r, ⋃︀I ⋃︀ ≤ p,

that are of order p for N real-valued functions (u1, ..., uN) over Rm. The proce-

dure explained above transforms F into a system of constraints in Jp(Rn,Rm).
This way all the derivatives in the equation become coordinates in Jp(Rn,Rm).
Comparing this example with the terminology of our discussion above, the fiber

bundle E is the trivial RN bundle over M = Rm. This system defines a submanifold

ℳ(0) ⊆ Jp(E) of codimension r as its zero locus called the equation manifold.

Let s(x) ∶ M → M × U ⊆ E be a local smooth solution of the system F then

jp(s) ∈ℳ(0) where jp is defined as in (2.5). We define 𝒮(p) ⊆ℳ(0) to be a man-

ifold generated by the p-jets of smooth local solutions s(x) of F for all choices of
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initial conditions (xi0, ua0). If 𝒮(p) =ℳ(0) then the system is called locally solvable.

The manifold ℳ(1) ⊆ J(p+1), called the first prolongation of ℳ(0), is defined by

both the original system F and its first derivatives which are total derivatives with

respect to the xi’s and contains 𝒮(p+1) which is the (p + 1)-jets of the smooth so-

lution sections of F . So ℳ(p+1) is the zero locus of the system of PDEs F (1) in

J(p+1)(E) defined as

Fs(xi, ua) = 0,
DFs
Dxi

= 0, (2.6)

where 1 ≤ i ≤ m, 1 ≤ a ≤ N, 1 ≤ s ≤ r. Because the prolonged system sat-

isfies the original system as well, we have πp+1
p ℳ1 ⊆ ℳ(0) as a submanifold. It

is important to note that we may have πp+1
p ℳ(1) as a submanifold of ℳ(0) with

nonzero codimension. This is because differentiating F and mixing the new equa-

tions with the old ones may lead to cancelation of derivatives of order p, and by

projecting the result to Jp(E) we obtain a non-regular equation which does not sur-

ject onto ℳ(0) but instead gives a submanifold of nonzero codimension. Also it

is easy to see that πp+1
p 𝒮(p+1) = 𝒮p. For instance over U ⊆ J1(R2,R) with coordi-

nate (x1, x2, u, u1, u2) consider the system of constraints F which determinesℳ(1)

defined as

F (xi, u, ui) =
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀

u1 = u + x1,

u2 = u2 + x2,
(2.7)

Therefore the first prolongation manifoldℳ(1), is determined by

F (xi, u, ui) and
D

Dxi
F (xi, u, ui) =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

u11 = u1 + 1,

u12 = u2,

u21 = 2uu1,

u22 = 2uu2 + 1.

(2.8)

Because u12 = u21, the second and third equation in (2.8) gives a new constrain on

the projection ofℳ(1) intoℳ(0) ⊆ J1(R2,R), namely u2 = 2uu1, and is indepen-

dent of the equations (2.7); thereforeℳ(1) does not surject toℳ(0).

As a result it is possible to have a system of p-th order PDEs such that the

solutions do not have a (p+r)-jet for some r ≥ 1 because the constraints introduced

by the prolongations may accumulate in such a way that the projection of some

ℳ(r) intoℳ(0) becomes empty. To put it differently, if we note that

𝒮(p) ⊆ℳ(0), 𝒮(p+1) ⊆ℳ(1), πp+1
p ℳ(1) ⊆ℳ(0), π

(p+1)
p 𝒮(p+1) = 𝒮(p) (2.9)
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then we can say that projecting the prolongation manifolds ℳ(r) to ℳ(0) as we

increase r takes us closer to 𝒮(p) ⊆ℳ(0) and we expect that if 𝒮(p) is empty there

for some r the projection ofℳ(r) toℳ(0) becomes empty for some r ≥ 1.

A natural question is to ask whether a system necessarily has a smooth solution

if differentiating it q times for some integer q, its zero locus (the prolongation man-

ifoldsℳ(q) ofℳ(0)) is observed to be not zero-dimensional. The general answer

to this question makes use of Cartan’s test which we will discuss briefly in the the

appendix. We will however, discuss the answer in the case where F is a first-order

system of PDEs in details in next section.

2.3 Involutivity of First-order PDEs

In this section, we state an important theorem concerning the integrability of a sys-

tem of first-order PDEs and the dimension of the solution space with geometric

interpretation of a system of PDEs that connects the system to the parallel sections

of a connection on a vector bundle. As we will define the notion of holonomy for

a connection, we will realize that the existence of a parallel section gives rise to a

restriction on the holonomy.

We assume that the system F has the following form over the fiber bundle E,

Fa(xi, ua, uai ) =
∂ua

∂xi
− ψai (x,u) = 0, (2.10)

where 1 ≤ i ≤m, 1 ≤ a ≤ N .

Definition 2.3.1. An r-dimensional distribution 𝒟 on M is an assignment of an r-

dimensional subspace 𝒟p ⊆ TpM at each point p ∈M such that 𝒟p varies smoothly

with respect to p, meaning that there exists a neighborhood U ⊆ M of each point

p ∈ M such that 𝒟q = span{X1(q), ...,Xr(q)} ∀q ∈ U , for a set of r vector fields

{X1, ...,Xr} defined over U . A submanifold N ⊆ M is called an integral manifold

of 𝒟 if TqN = 𝒟q ∀q ∈ N . The distribution 𝒟 is called completely integrable if

there exists a unique maximal integral manifold of 𝒟 at every point of M .

Assuming that the the equation manifold of the system (2.10) that we denote by

ℳ(0) ∈ J1(Rm,RN) exists and is r dimensional, it is easy to find an r-dimensional

distribution 𝒟r on E generating 𝒮(0) ⊆ E as its integral manifold. Recall that 𝒮(0)

is a submanifold of E that is generated by sections s(x) ⊆ E for which F (s) = 0
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hold. Using chain rule, the form of a vector field X tangent toℳ,with coordinates

(xi, ua), can be written as

X = Ai( ∂

∂xi
+ ∂u

a

∂xi
∂

∂ua
) (2.11)

Therefore the r-dimensional distribution 𝒟 generating 𝒮(0) is generated by the vec-

tors

Xi = ∂xi + ψai ∂ua , 1 ≤ i ≤m, 1 ≤ a ≤ N. (2.12)

Now we state the classic version of Frobenius theorem which involves the existence

of an integral manifold for a distribution. The proof can be found in [21].

Theorem 2.3.2 (Frobenius Theorem). Let 𝒟 be an r-dimensional distribution over

on E such that

(︀X,Y ⌋︀ ∈ 𝒟, ∀X,Y ∈ 𝒟.

Then 𝒟 is completely integrable.

To prove the existence of 𝒮(0) for the system (2.10), we look for the integral

manifold of the r-dimensional distribution 𝒟 we found in (2.12). It turns out that in

order to have (︀Xi,Xj⌋︀ ∈ 𝒟 for the vector fields Xi in (2.12), the ψai ’s have to satisfy

specific relations. Forming the commutator (︀Xi,Xj⌋︀, the only way that it can be

written as a linear combination of the Xi’s is when (︀Xi,Xj⌋︀ = 0, ∀i, j since any

linear combination of the Xi’s gives a nonzero coefficient for at least one vector ∂xi

for some i while the coefficients of the ∂xi’s for the commutators (︀Xi,Xj⌋︀ are zero.

This equality describes the equations that have to be satisfied by the functions ψai ’s

in order to guarantee the complete integrability of 𝒟. It is straightforward to derive

these equations which would be as stated in the following theorem.

Theorem 2.3.3. The system F defined in (2.10) has a unique smooth solution

u(x) = (u1(x), ..., ua(x)) for any choice of initial value u(x0) = u0 if and only

if the ψai ’s satisfy
∂ψai
∂xi

−
∂ψaj
∂xj

+ ∂ψ
a
i

∂ub
ψbj −

∂ψaj
∂ub

ψbi = 0 (2.13)

This theorem says that with the equalities above satisfied, the general solution of

the system F in (2.10) only depends on the initial value u0 meaning that it depends

on N arbitrary constants specifying u0 = (ua0)a.
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What if the relations in (2.13) are not satisfied? This means that the system F

may not have a solution for arbitrary initial values. But we can still try to find those

initial values for which a solution of F does exist. In other words, we are trying to

find the integral manifolds of the distribution 𝒟 generated by vector fields (2.12),

whose coordinate functions satisfy equation (2.13). If such manifolds does not exist

then it means that there is no sub-distribution of 𝒟 that is integrable and as a result,

for no choice of initial condition do we get a solution. Using ∂ua

∂xi
= ψai (x,u) to

substitute derivatives of the ua’s with the ψai ’s, we can look at the relations (2.13)

as a set of equations

F1(x,u) = 0 (2.14)

involving the functions ψai (x,u). These equations are satisfied over 𝒮(0) ⊆ E, as

they express locus of points satisfying F and the integrability condition (2.13)

simultaneously. We denote this locus by ℳ1. We can differentiate equations

F1(x,u) = 0 similarly and get new equations that form a new set of equations

F2(x,u) = 0.

Ifℳ1 is the equation manifold for the system F , namely 𝒮(0) =ℳ1 then the system

F2 = 0 has to be satisfied overℳ1 as they ensure that the locus of points 𝒮(0) is an

integral manifold. In other words,they say whether the distribution of 𝒟 generating

ℳ1 and found from the system F1 = 0, is closed under the Lie bracket. If it is

closed then we have found an integral manifold and we are done. If not then we

consider the new locus ℳ2 obtained from F2 = 0 and follow a similar procedure

by differentiating F2. In this way we get other sets of relations Fk = 0 with a

geometric interpretation similar to what we gave for F1 and F2. To summarize

what was done above, we can say that our first step was to find the locus of points

satisfying F1 = 0, denoted byℳ1, which is the intersection locus of the system F

and integrability condition (2.13). Then the second step checks whether the locus is

an integral manifold of F or not. If not we follow the same procedure for the locus

of points satisfying F2 = 0 denoted byℳ2 which is a subset ofℳ1. This procedure

can be continued for other Fk’s.

Now we are in a situation similar to the question we asked before. Recall that

we want to find initial values for which a solution u(x) exists. Therefore, if we

obtain more than N independent sets of equations Fi(x,u) then we have too many

constraints on the ua’s and no manifold 𝒮(1) ∈ J1(E) generated by 1-jets of smooth
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solution can exist. Thus, there exist K ≤ N such that FK+1 is a consequence of the

sets Fi = 0, 1 ≤ i ≤K. We have the following theorem from [30].

Theorem 2.3.4. The system F in (2.10) admits solution if and only if there exists

an integer K ≤ N such that the set of equations

F1 = F2 = ⋯ = FK = 0

is compatible for all x ∈ U ⊆ RN and the set of equations FK+1 = 0 is satisfied in

the region in which F1, ..., FK vanish. If q is the number of independent equations

in the first K sets of equations, then the general solution of the system depends on

N − q arbitrary constants.

Notice that these arbitrary constants specify the locus of the initial values that

give rise to a solution of the system. In other words,the solution space is an q-

codimensional submanifold of E. Our discussion above proves the forward impli-

cation of the theorem.

Proof. Assume that the first K independent sets impose q ≤ N independent condi-

tions

Gs(u,x) = 0, s = 1, ..., q. (2.15)

Therefore rank(∂Gs∂ua ) = q, and by the implicit function theorem the relations (2.15)

can be solved for say the first q functions u1, ..., uq. Therefore, we can write

uα = φα(uq+1, ..., uN , x), 1 ≤ α ≤ q. Differentiating φα’s and using (2.10) to elimi-

nate the derivatives ∂xiuα, we obtain

ψαi −
∂φα

∂uβ
ψβi −

∂φα

∂xi
= 0. (2.16)

where q ≤ β ≤ N . These equations belong to the set FK+1 = 0 so they hold by

assumption. By substituting ψαi = ∂xiuα in the equation (2.16) and subtracting the

result from (2.16) we get

∂uα

∂xi
− ψαi −

∂ψα

∂uβ
(∂u

β

∂xi
− ψβi ) = 0, (2.17)

So
∂uβ

∂xi
= ψ̄βi (uq+1, ..., uN , x), (2.18)

where β = q + 1, ...,N and ψ̄βi = ψβi ⋃︀uα=φα(uq+1,...,uN ,x). The system (2.18) is com-

pletely integrable as the consistency belongs to the set

F1 = ⋯ = FK = 0.
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Therefore, by the Frobenius Theorem (2.3.3) there is a solution which involves

(N − q) constants.

In our problem, the functions ψai ’s in the system (2.10) are linear in ua. So we

have

∂ua

∂xi
= ψab,i(x)ub.

We can write this as

Du ∶= du +Ωu = 0, (2.19)

where u = (u1, ..., uN)T is a column vector and

Ω = Ω1dx
1 +Ω2dx

2 = −ψab,i(x)dxi (2.20)

is an N × N matrix-valued one-form on U . In its rewritten form, the problem

becomes one of finding parallel sections of the connection D = d +Ω over a vector

bundle with N -dimensional fibers over U . Note that, as we assumed earlier, the

total space is Rm+N over U ⊆ Rm. Since our problem, explained in the next chapter,

involves a two-dimensional base manifold, we consider the case m = 2. The same

holds for other cases. Taking the exterior derivative of equation (2.19), we obtain

d(du +Ωu) = dΩu +Ω ∧ du = (dΩ +Ω ∧Ω)u = Fu = 0, (2.21)

where F is the curvature of the connection D. We have

F = dΩ +Ω ∧Ω = (∂1Ω2 − ∂2Ω1 + (︀Ω1,Ω2⌋︀)dx1 ∧ dx2 = Fdx1 ∧ dx2 (2.22)

where F is an N × N matrix. Note that this last equation has to be satisfied by

a solution of our system. This is actually F1 = 0, the first set of conditions we

mentioned in Theorem (2.3.4). In our case they are linear homogeneous equations.

If F = 0 then the connection is flat and the condition (2.13) in Theorem (2.3.3)

is satisfied and N independent parallel sections of the connection exist which is

equivalent to saying that the general solution of the system (2.19) depends on N

arbitrary constants. On the other hand, if detF ≠ 0 then the only parallel section is

the zero section.

To determine the dimension of the space of parallel sections of the connection

D, we follow the procedure explained earlier: differentiating the equation (2.22).

We obtain

0 = d(Fu) = dFu − FΩu = (︀(∂iF − FΩi)u⌋︀dxi. (2.23)
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Using Fu = 0 we get

(DiF )u = 0,

where DiF = ∂iF + (︀Ωi, F ⌋︀. We keep differentiating to obtain new sets of equation

as constraints on the equation manifold. Expressed in matrix form, these sets of

equations are denoted as

Fu = 0, (DiF )u = 0, (DiDjF )u = 0, ... (2.24)

The set of equations F1 = F2 = ⋯ = 0 stated in Theorem (2.3.4) are are identical to

matrix equations above. After K times differentiating we obtain

ℱKu = 0

where ℱK is a 2K ×N matrix is the matrix consisting of the sub-matrices

ℱK = (F, (DiF ), ..., (Di⋯DjF )) (2.25)

with ℱ0 = F . Theorem (2.3.4) tells us that this process eventually stops.

Theorem 2.3.5. Assume that the ranks of the matrices ℱK , K = 0, 1, 2, ..., are

maximal and constant. Let K0 be the smallest natural number such that

rank(ℱK0) = rank(ℱK0+1).

If K0 exists then rank(ℱK0) = rank(ℱK0+k) ∀k ∈ N and the space of parallel

sections of the connection D = d +Ω has dimension N − rank(ℱK0).

Note that in the theorem above, we asked for the local maximality of the rank

of a finite number of matrices in the sense that the rank of the matrices do not

decrease in an open set. This is always true for at least one sufficiently small open

neighborhood of a point in the domain essentially because of the continuity of the

determinant function on the space of matrices.

Our discussion shows that the existence of a non-trivial parallel section of the

connection ∇ over the rank six vector bundle E, induces a restriction on the what is

called the holonomy of ∇. In order to define the holonomy of a connection ∇ over

E at point x ∈M , denoted by Holx(∇), we use the parallel transport map

Pγ ∶ Ex → Ey
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where γ ∶ (︀0,1⌋︀ → E⌋︀ and γ(0) ∈ Ex and γ(1) ∈ Ey. It is clear that for such choice

of γ we have Pγ ∈ Hom(Ex,Ey). We define

Holx(∇) ∶= {Pγ ∶ γ a loop based at x} ⊆ GL(Ex).

It is not hard to see that if M is connected then the holonomy groups at dif-

ferent points of M are isomorphic by conjugation, so we can omit the label x

and therefore the holonomy group is a global invariant of the connection with

Hol(∇) ∈ GL(N,R). When the surface M is not simply connected it is easier

to consider the restricted holonomy group defined as

Hol0x(∇) ∶= {Pγ ∶ γ a null-homotopic loop based at x} ⊆ GL(Ex).

Similarly to our argument above, we can omit the label x and obtain that the holon-

omy group Hol0(∇) is a subgroup ofGL(N,R). Thus, we can define the holonomy

algebra hol(∇) to be the Lie algebra of Hol0(∇). It is a Lie subalgebra of gl(N,R)
defined up to the adjoint action of GL(N,R). Similarly, we have holx(∇) which is

the Lie algebra of Hol0x(∇).
In order to state the Ambrose-Singer Holonomy Theorem (c.f. [21]) we recall

that for a affine connection we have its curvature ℛ ∈ Γ(Λ2T ∗M ⊗End(E)) de-

fined as

ℛ(X,Y )s ∶= (∇X∇Y −∇Y∇X −∇(︀X,Y ⌋︀)s.

where X,Y ∈ TM and s is a section of E.

Theorem 2.3.6. Let M be a manifold, E a vector bundle over it with a choice of

connection, say ∇. Fix x ∈M so that holx(∇) is a Lie subgroup of End(Ex). Then

holx(∇) is the vector space of all elements ofEnd(Ex) of the form P −1
γ ℛ(X,Y )Pγ ,

where x ∈ M and γ ∶ (︀0,1⌋︀ → M is a piecewise smooth curve with γ(0) = x and

γ(1) = y, Pγ ∶ Ex → Ey is the parallel translation map and X,Y ∈ TyM .

This shows that the curvature ℛ determines hol(∇) and hence Hol0(∇). For

instance, if the connection is flat, so that ℛ = 0, then hol(∇) = 0 and therefore

Hol0(∇) is trivial.

Now according to our discussion following equation (2.22), we showed that

the existence of a non-trivial solution to a system of first-order PDEs at a point x,

forces the curvature tensor not to have a full-rank in a neighborhood of x, namely

det(F ) = 0. Therefore, if the curvature of (E,D), defined in (2.22), does not van-

ish, a non-trivial solution to the system of linear PDEs (2.10) exists, if the holonomy
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of D lies in some proper subgroup of GL(N,R). This is clear from the Ambrose-

Singer Theorem, as the holonomy would be generated by

P −1
γ F(X,Y )Pγ = (P −1

γ FPγ)(dx ∧ dy(X,Y )),

where X,Y ∈ TM and F is defined in (2.22).



CHAPTER 3

Necessary and Sufficient Conditions for
Metrizability

In this chapter, we want to find the necessary and sufficient conditions for the prob-

lem posed in the introduction. Our treatment of the problem is the same as that in

[2] and uses the material discussed in Section 2.3 and (2.2).

3.1 Projective Equivalence of Torsion-free Affine Con-

nections

A connection allows us to associate to any pair consisting of a point and a direction

in the tangent space of that point a unique maximal curve that is called a geodesic.

To describe it explicitly, we fix a point p in an m-dimensional manifold M and a

direction in TpM and pick any vector in that direction, say v ∈ TpM . Then finding

a curve such that the parallel transport of v along the curve remains tangent to it

amounts to solving ∇vv = 0. It is clear that scaling the vector by a scalar does not

affect the equation and the locus only depends on the direction. In local coordinates

(x1, ..., xm), if Γijk are the Christoffel symbols for ∇, then ∇v(t)v(t) = 0 gives

d2xi

dt2
− Γijk

dxj

dt

dxk

dt
= 0, (3.1)

30
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along the geodesic γ(t) = (x1(t), ..., xm(t))where v(t) = γ̇(t) = (dx1

dt (t), ..., dx
m

dt (t)).
Here we assume M is a surface with a local trivialization (x, y), which we

sometimes denote by (x1, x2), over an open set U . To eliminate the parameter t in

(3.1), assuming dy
dx ≠ 0, we obtain a second-order ODE

d2y

dx2
= d

dx
( ẏ
ẋ
) = d

dt
( ẏ
ẋ
)1

ẋ
= ÿ

ẋ2
− ẏẍ
ẋ3

= −Γ2
11 − 2Γ2

12

ẏ

ẋ
− Γ2

22(
ẏ

ẋ
)2 + Γ1

11

ẏ

ẋ
+ 2Γ1

12(
ẏ

ẋ
)2 + Γ1

22(
ẏ

ẋ
)3

= Γ1
22(

dy

dx
)3 + (2Γ1

12 − Γ2
22)(

dy

dx
)2 + (Γ1

11 − 2Γ2
12)

dy

dx
− Γ2

11

(3.2)

We can write this as
d2y

dx2
= A3(

dy

dx
)3 +A2(

dy

dx
)2 +A1

dy

dx
+A0 (3.3)

where

A3 = Γ1
22, A2 = 2Γ1

12 − Γ2
22, A1 = Γ1

11 − 2Γ2
12, A0 = −Γ2

11. (3.4)

In this way we can associate to any affine connection, a second-order ODE.

We can look at this ODE in another way. A pair of a point and a direction in its

tangent space, correspond to only one maximal geodesic. Therefore, we can think

of the initial values of the system of ODEs in (3.1) to be a point in P(TM). For a

manifold M , P(TM) is simply the fiber bundle obtained from TM by taking the

quotient of each tangent space by scalar multiplication in order to obtain projective

spaces as the fibers. Due to Picard’s theorem, the solutions of an ODE depend

smoothly on the initial conditions. Knowing that there is unique lift of a curve in

M to P(TM), we expect that the lift of geodesics, as the solutions of (3.1), give

a foliation of P(TM). In order to determine this foliation, we convert the second-

order system (3.1) into a system of first-order ODEs by introducing new variables

(y1, y2) as

yi(t) = dx
i

dt
(t)

dyi

dt
(t) = −Γijky

j(t)yk(t).
(3.5)

Now we find the vector field that is tangent to the integral curves of (3.5). This

vector field usually called the characteristic vector field of the system. An integral

curve of (3.5), say γ(t) = (xi(t), yi(t)), lies in TM . Its tangent vector has the form

γ̇(t) = ẋi(t) ∂

∂xi
+ ẏi(t) ∂

∂yi

= yi ∂
∂xi

− Γijky
jyk

∂

∂yi
.

(3.6)
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This vector field is also called the geodesic flow or the geodesic spray as its integral

curves are geodesics. Because the geodesic equation is invariant under scalar mul-

tiplication, the characteristic vector field is homogeneous of order one with respect

to coordinates of the tangent bundle, so it also defines a vector field over P(TM).

Definition 3.1.1. Two connections Γ and Γ̃ are projectively equivalent if they have

identical geodesics as unparametrized curves. The set of all connections projec-

tively equivalent to Γ is called the projective structure defined by Γ and is denoted

by (︀Γ⌋︀.

One way to derive an expression for two projectively equivalent connections is

to make use of geodesic spray as is done in [14]. Two alternative procedures ways

are discussed in [10] and [12]. The fact that any point in P(TM) determines only

one maximal geodesic suggests that if we have two projectively equivalent connec-

tions with the same geodesics as unparametrized curves, the foliation of P(TM)
by the integral curves of their geodesic spray is identical. This is essentially due to

the fact that projecting the geodesic flows to P(TM) normalizes the tangent vectors

of the geodesics. Let V and Ṽ ∈ Γ(TTM) be geodesic sprays that correspond to

projectively equivalent connections Γ and Γ̃. Using the map π ∶ TM → P(TM) and

(3.6), at a point p we easily obtain

π∗(V ) = π∗(yi
∂

∂xi
− Γijky

jyk
∂

∂yi
)

= ∂

∂x
+ ζ ∂

∂y
+ (A0 +A1ζ +A2ζ

2 +A3ζ
3) ∂
∂ζ

(3.7)

where ζ = y2
y1

is an affine coordinate for the fiber P(TpM) and Ai’s are given in

(3.4). Now if the integral curves of π∗(V ) and π(Ṽ ) were identical, we would have

π∗(V (p)) = c ⋅ π∗(Ṽ (p))

for some number c. Comparing the expressions using (3.7), we get c = 1. This

indicates that V and Ṽ differ in the radial part meaning as follows. The projection

π∗ ∶ TTM → T (P(TM)) is an R∗ action. We can find the vector field over TM

that generates this action which is not hard to see is yi ∂∂yi . This implies there exists

a function f ∈ C∞(TM) linear in yi’s, such that

V (x, y) − Ṽ (x, y) = f(x, y)yi
∂

∂yi
. (3.8)
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Comparing the coefficients of ∂
∂yi

, we obtain

Γ̃ijky
jyk − Γijky

jyk = fyiÔ⇒ giky
k = fyi,

where gik(x, y) = (Γ̃ijk − Γijk)yj . Therefore, if i ≠ k then gik = 0 and

gik(x, y) = δikΥjy
j = (Γ̃iji − Γiji)yj.

Since we are dealing with torsion-free connections we have Γijk = Γikj and we

similarly obtain

δijΥky
k = (Γ̃iji − Γiji)yk.

Thus the formulation for projectively equivalence of two connections is

Γ̃ijk = Γijk +Υjδ
i
k +Υkδ

i
j. (3.9)

3.2 Linearizing the System

Let g = (gij) be a Riemannian metric over an open set U ⊆M of a surface. We use

the notation given by (1.2), and denote the inverse matrix of gij by gij . Assume that

the Levi-Civita connection of this metric belongs to a projective structures (︀Γ⌋︀ with

A0, ...,A3 as the coefficients of its associated second-order equation (3.2). From

equation (3.4) where the Ai’s are expressed as linear combination of Christoffel

symbols, we realize that the Ai’s form an affine space at each point of the surface.

On the other hand, as we said in the introduction, any choice of smooth coefficients

in equation (3.2) results in a projective structure, a result which is due to Cartan [5].

Thus, the set of all possible values of the Ai’s at a point is an affine space which

forms the fibers of a rank 4 vector bundle over U and a section of this vector bundle

represent Ai’s over U . We denote this vector bundle by Pr(U).
As we saw earlier, in equation (3.2) the Ai’s are expressed invariantly in terms

of Christoffel symbols of any element of the projective class (︀Γ⌋︀. According to (1.3)

Christoffel symbols are functions of the metric components and their first deriva-

tives and thus the same holds for Ai’s as linear functions of Christoffel symbols.

Therefore, from (1.6) we have an operator

σ0 ∶ J1(S2(T ∗U))Ð→ J0(Pr(U)) (3.10)

where S2(T ∗U) is the space of symmetric bilinear forms, which contains the metric

g. Equation (1.6) indicates that σ0 is homogeneous of degree zero because multi-

plying by any nonzero constant does not affect the Ai’s.
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We want to use equation (1.6) to express the gij’s in terms of the Ai’s. The non-

degeneracy condition on the metric, forces the condition EG − F 2 ⇑= 0. In order to

include this condition, when we are expressing gij in terms of Ai’s, we express the

gij’s in the form

gij =
σij
∆2

and ∆ = det(σ), (3.11)

with σ a symmetric 2 × 2 matrix. We will also denote σ11, σ12, and σ22 by ψ1, ψ2,

and ψ3 respectively. By the above substitution of variables, it is straightforward to

obtain the following set of equations from (1.6).

∂ψ1

∂x
= 2

3
A1ψ1 − 2A0ψ2,

∂ψ3

∂y
= 2A3ψ2 −

2

3
A2ψ3,

∂ψ1

∂y
+ 2

∂ψ2

∂x
= 4

3
A2ψ1 −

2

3
A1ψ2 − 2A0ψ3,

∂ψ3

∂x
+ 2

∂ψ2

∂y
= 2A3ψ1 −

4

3
A1ψ3 +

2

3
A2ψ2.

(3.12)

In the substitution, we introduced a new metric tensor σij which satisfies (3.12).

The equations above are equivalent to

∇Π
(aσbc) = 0, (3.13)

where we have used abstract index notation and ∇Π is an affine connection with

Πa
bc as its Christoffel symbols and

Π1
11 =

1

3
A1, Π2

11 = −A0, Π1
12 =

1

3
A2,

Π2
12 = −

1

3
A1, Π1

22 = A3, Π2
22 = −

1

3
A2.

(3.14)

Recall that σ is a symmetric (2,0)-tensor. As an example, we have

∇Π
1 σ12 = ∂1σ12 −Πa

11σa2 −Πa
12σ1a

⇒ ∇Π
(1σ12) = 1

6
(2∇Π

1 σ12 + 2∇Π
1 σ21 + 2∇Π

2 σ11)

= 1

3
(︀2(∂1ψ2 + (Π1

11 −Π2
12)ψ2 −Π2

11ψ3 −Π1
12ψ1)

+ (∂2ψ1 − 2Π1
21ψ1 − 2Π2

11ψ2)⌋︀

= 1

3
(2∂1ψ2 + ∂2ψ1 − 4Π1

21ψ1 − (4Π2
21 + 2Π1

11)ψ2 − 2Π2
11ψ3),

which gives the third equation in the system (3.12).
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The connection∇Π also belongs to the projective structure that is represented by

the Ai’s. The relation between Πa
bc and an element Γabc of the projective structure

(︀Γ⌋︀, satisfying (3.4), can be easily derived to be

Πa
bc = Γabc −

1

3
Γddcδ

a
b −

1

3
Γddbδ

a
c . (3.15)

It is clear from above that Πa
bc and Γabc satisfy equation (3.9) and therefore are

projectively equivalent. The connection ∇Π with the Christoffel symbols Π as de-

fined above, is called the normal projective connection of a projective structure

represented by Ai’s. As is discussed in [20] these Christoffel symbols were first

defined by T. Y. Thomas in [29] and can be obtained via Cartan’s approach using

G-structures.

We can summarize the above discussion in the following theorem, originally

due to Roger Liouville.

Theorem 3.2.1 (Liouville [24]). A projective structure (︀Γ⌋︀ corresponding to the

second-order ODE (3.3) is metrizable on a neighborhood of a point p ∈ U , if and

only if there exists functions ψi(x, y),1 = 1,2,3 defined on a neighborhood of p

such that ψ1ψ3 − ψ2
2 does not vanish at p and the equations (3.12) hold on their

domain of definition.

3.2.1 Diffeomorphism Invariant Conditions of Projective Struc-
tures

The material of this section can be found in detail in [18]. Let U be an open set

equipped with local coordinates (x, y) and projective structure (︀Γ⌋︀. Any local dif-

feomorphism of an open set U is represented by a change of local coordinates

(x, y)Ð→ (x̃(x, y)), ỹ(x, y)).

A local invariant on such an open set is called a diffeomorphism invariant condition

if changing the local coordinates does not affect its vanishing points.

As an example, recall that the correspondence between projective structures and

second-order ODEs y′′ = Λ(x, y, y′) with Λ being at most cubic in y′, was explained

in Section 3.1. It gives a diffeomorphism invariant condition for a second-order

ODE that is associated to a projective structure as follows. Let us define

I0(Λ) =
∂4Λ

(∂y′)4
.
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If it vanishes for an ODE y′′ = Λ(x, y, y′), then Λ is at most cubic in y′ and there-

fore the ODE is associated to a projective structure. It is clear from the definition

of projective structure that acting a diffeomorphism Ψ on U gives rise to a new

projective structure which we denote by Ψ(︀Γ⌋︀. In other words, the space of projec-

tive structures on an open set U is closed under the action of diffeomorphisms on U .

Therefore, if we make a change of coordinates Ψ in an ODE that is associated to the

projective structure (︀Γ⌋︀, the resulted ODE is associated to the projective class Ψ(︀Γ⌋︀.
Therefore, the property of being cubic in y′ for ODEs of the form y′′ = Λ(x, y, y′)
remains invariant under the action of diffeomorphisms. As a result, the vanishing

points of I0, as points in the space of functions in y′, y, x, are invariant with respect

to diffeomorphisms of U , (x, y) → (x̃(x, y)), ỹ(x, y)). Thus, we say the vanishing

points of I0 are diffeomorphism invariant. It is not hard to show directly that the

condition I0 = 0 is invariant under coordinate transformation

(x, y)Ð→ (x̃(x, y)), ỹ(x, y)).

Note that the projective structure (︀Γ⌋︀ in a local coordinate (x, y) is represented

by unique set of Ai’s as was explained in Section 3.1. It is clear that changing

the local coordinates gives rise to a different set of Ai’s representing (︀Γ⌋︀. Thus,

one can look for the suitable local coordinate in which some of the coefficients Ai
vanish. For instance if curves with constant x are among the geodesics then A3 = 0.

Also A2 can be made to vanish by choosing polar coordinates as geodesics. In this

way the ODE (3.2) becomes second-order linear; however, since we are interested

in deriving metrizability conditions that are diffeomorphism invariant, we will not

make use of this freedom.

We have the following result, which will be useful later on, due to both Liouville

and Tresse.

Theorem 3.2.2 (Liouville [23], Tresse [31]). The ODE y′′ = Λ(y′, y, x) is equiva-

lent to y′′ = 0 by point transformation if and only if I0 = I1 = 0, where

I0(Λ) =
∂4Λ

(∂y′)4

I1(Λ) =D2
xΛ11 − 4DxΛ01 −Λ1DxΛ11 + 4Λ1Λ01 − 3Λ0Λ11 − 6A00,

(3.16)

and

Λ0 =
∂Λ

∂y
, Λ1 =

∂Λ

∂y′
, Dx =

∂

∂x
+ y′ ∂

∂y
+Λ

∂

∂y′
.
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Note that if I0(Λ) = 0 for a function Λ(y′, y, x) then Λ is cubic in y′ and has the

form

Λ(y′, y, x) = A3(x, y)(
dy

dx
)3 +A2(x, y)(

dy

dx
)2 +A1(x, y)

dy

dx
+A0(x, y).

As a result of Tresse, if I0(Λ) = 0, then I1 is linear in y′ and, by Liouville, takes the

form I1 = −6L1 − 6L2y′ where

L1 =
2

3

∂2A2

∂x∂y
− 1

3

∂2A2

∂x2
− ∂

2A2

∂y2
+A0

∂A2

∂y
+A2

∂A0

∂y
,

−A3
∂A0

∂x
− 2A0

∂A3

∂x
− 2

3
A1
∂A1

∂y
+ 1

3
A1
∂A2

∂x
,

L2 =
2

3

∂2A2

∂x∂y
− 1

3

∂2A1

∂y2
− ∂

2A3

∂x2
−A3

∂A1

∂x
−A1

∂A3

∂x
,

+A0
∂A3

∂y
+ 2A3

∂A0

∂y
+ 2

3
A2
∂A2

∂x
− 1

3
A2
∂A1

∂y
.

(3.17)

We can give a geometric interpretation of the vanishing points of both I0 and

I1, as functions in y′, y, x, which uses the result of the proof of the sufficiency

conditions of our problem in Section 3.5. We discussed earlier that if for a function

Λ(y′, y, x) we obtain I0(Λ) = 0 then the ODE y′′ = Λ(y′, y, x) is associated to a pro-

jective structure (︀Γ⌋︀. Moreover, if for such a function, Λ, we have I1(Λ) = 0 then the

space of metrics whose Levi-Civita connections belong to (︀Γ⌋︀ is six-dimensional.

This will be proved in Section 3.5. Now if a diffeomorphism Ψ acts on U then

the projective structure (︀Γ⌋︀ is sent to another projective structure Ψ(︀Γ⌋︀. Also each

metric g in the six-dimensional space of the metrics is sent to another metric Ψg. It

is easy to check that if the Levi-Civita connection of g belongs to (︀Γ⌋︀ then the Levi-

Civita connection of Ψg belongs to Ψ(︀Γ⌋︀. Therefore, the space of the metrics of

which the Levi-Civita connections belong to Ψ(︀Γ⌋︀ is six-dimensional. As a result,

the subspace of set of the functions Λ(y′, y, x) with I0(Λ) = I1(Λ) = 0 is closed

under diffeomorphisms of U . Note that whenever I0(Λ) = 0, we have I1(Λ) = 0 if

L1(Λ) = L2(Λ) = 0.

3.3 Prolonging the Linear System

As we explained in the introduction, our problem is overdetermined. In particular

the last system of PDEs (3.12) is overdetermined. Since the formulation of the prob-

lem in the form of the system (3.12) is a first-order system of PDEs, we may think
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that we can follow the procedure stated in section (2.3). The problem is that not

all of the first derivatives of the variables ψi are determined in the system. There-

fore, we introduce the undetermined derivatives as new variables and introduce a

procedure that will be called prolongation. It will turn out the that the second pro-

longation of the system gives us a system of the form used in Theorem (2.3.4).

Suppose that the system (3.12) has a solution which would be a graph 𝒮 ⊆ R5

given by

(x, y)↦ (x, y,ψ1, ψ2, ψ3). (3.18)

In order to find the tangent space at each point of this solution surface (if one exists),

we have to determine the first derivatives of the functions ψ1, ψ2, ψ3, introduced in

equation (3.11), at each point; Namely ∂xψi, ∂yψi,1 ≤ i ≤ 3. From equation (3.12)

we can obtain at most four of them. The difference between the dimension of the

tangent space at each point of the surface and the number of equations is 2 ⋅3−4 = 2.

Let ∂ψ1

∂x and ∂ψ2

∂x be the two that are not determined. We introduce two new variables

as follows:
1

2
µ(x, y) ∶= ∂ψ1

∂x
(x, y), 1

2
ν(x, y) ∶= ∂ψ1

∂y
(x, y). (3.19)

The integrability condition ∂x∂yψi = ∂y∂xψi gives three more equations as follows

∂µ

∂x
= P, ∂ν

∂y
= Q, ∂µ

∂y
− ∂ν
∂x

= 0, (3.20)

where P and Q can be obtained from (3.12) and are linear in the functions ψi,

µ, and ν with coefficients depending on the Ai’s and their derivatives up to the first

degree. Their exact expression is given in (C.3).

Introducing these two variables can be thought of as prolonging the surface 𝒮 ,

which we assumed to be in R5, to another surface 𝒮(1) ⊆ R7 given by

(x, y)↦ (x, y,ψ1, ψ2, ψ3, µ, ν).

This is what we referred to in Section 2.3 as prolongation of the equation manifold.

Similar to what we did for 𝒮 , we observe that while the system of nine equa-

tions from combining the systems (3.12), (3.19), and (3.20) is overdetermined for

the new set of variables ψ1, ψ2, ψ3, µ, ν, the difference between the number of first

derivatives which span the tangent space at every point of the surface 𝒮(1), and the

number of equations is 2⋅5−9 = 1, which is less than what we had before prolonging

the system. Therefore, it is likely that one more prolongation will result in enough
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equations to determine the tangent space at each point of the second prolongation

manifold 𝒮(2). If we let ρ to be

ρ(x, y) ∶= ∂µ
∂y
. (3.21)

then from equations (3.21) and (3.20) we obtain

∂ρ

∂x
= R, ∂ρ

∂y
= S, (3.22)

where R and S are given by (C.3). As functions of (x, y,ψi, µ, ν, ρ), R and S are

linear in terms of (ψi, µ, ν, ρ) because they form a first-order system of PDEs with

all of their derivatives being determined. Now we have six variables having twelve

first derivatives spanning the tangent space at each point of 𝒮(2) ⊆ R8, the second

prolongation of the surface 𝒮 , which is defined by

(x, y)↦ (x, y, ψ1, ψ2, ψ3, µ, ν, ρ).

All of the first derivatives of our variables are determined by the twelve equations

in (3.12), (3.19), (3.20), (3.21) and (3.22). The integrability condition, which is

∂x∂yρ = ∂y∂xρ, adds an extra linear equation among the first derivatives of our

variables. This is due to the fact that all the first derivatives of ψi, µ, ν, ρ are linear

in terms of ψi, µ, ν, ρ. Thus, ∂xρ is linear in the variables ψi, µ, ν, ρ and so is ∂y∂xρ.

The same is true for ∂x∂yρ. Therefore, we have

∂x∂yρ − ∂y∂xρ =
∂R

∂y
− ∂S
∂x

+ S∂R
∂ρ

−R∂S
∂ρ

= 0. (3.23)

As this equation is linear in (ψi, µ, ν, ρ) we get

Vu = 0, (3.24)

where u ∶= (ψ1, ψ2, ψ3, µ, ν, ρ)T ∈ R6 and V = (V1, ..., V6) is given by

V1 = 2
∂L2

∂y
+ 4A2L2 + 8A3L1, V2 = −2

∂L1

∂x
− 2

∂L2

∂x
− 4

3
A1L2 +

4

3
A2L1,

V3 = 2
∂L1

∂x
− 8A0L2 − 4A1L1, V4 = −5L2, V5 = −5L1, V0 = 0.

Here L1, L2 are given by equations (3.2.2). This integrability condition determines

whether the solution obtained by prolongation exists or not. This is actually the

first obstruction F1 in (2.14) following the procedure we explained in Section 2.3.

According to our construction in Section 2.3, V has to be the only non-zero row

of the curvature F of the connection associated to our prolonged system and is

therefore equivalent to equation (2.21).
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3.4 Necessary Conditions

According to Section 2.3, all the first-order relations that we obtained throughout

our prolongation should lead to a specific choice of connection on a rank six vector

bundle. The vector u, as defined above, is obtained from a trivialization of that

vector bundle over the surface 𝒮 (if it exists). Hence a solution u is a parallel

section of the vector bundle and we would have

du +Ωu = 0. (3.25)

As we stated in Theorem (2.3.5), the obstructions to have a nonzero parallel section

of this bundle involves the rank of the covariant derivatives of the curvature. For

instance

rank(ℱ6) ≤ 5,

where ℱ6 consists of 6 × 6 sub-matrices F

(F, DaF ..., (Da1 ...Da6)F ), (3.26)

with F being defined in (2.22) and is given by (C.2). Because the only non-zero row

of the curvature is V, we can replace F in the expression above with V. Clearly,

ℱ2 is a submatrix of ℱ6 and cannot have full rank. It is equivalent to the matrix

consisting of the rows V, DaV and DaDbV. We note that

DaDbV ∶=Da(∂aV −VΩa),

= ∂a∂bV − (∂bV)Ωa − (∂aV)Ωb −V(∂bΩa −ΩaΩb).
(3.27)

Also from (2.22) we have

Fu = 0⇒ (∂aΩb − ∂bΩa + (︀Ωa,Ωb⌋︀)u

=(∂aΩb − ∂bΩa +ΩaΩb −ΩbΩa)u = 0

⇒ (∂aΩb −ΩbΩa)u = (∂bΩa +ΩaΩb)u.

Using the equation obtained above, we realize that the expression for DaDbV is

symmetric in its indices, and therefore DaDbV =DbDaV. As a result, ℱ2 is equiv-

alent to a 6 × 6 matrix consisting of V, DaV and D(aDb)V which is ℳ((︀Γ⌋︀).
Therefore det(ℳ(︀Γ⌋︀) = 0 is the necessary condition stated in Theorem (1.2.1).

We can also obtain the equation det(ℳ(︀Γ⌋︀) = 0 directly by taking the covariant

derivative of (3.24) and realizing the symmetry of second covariant derivatives of

V which results in (ℳ(︀Γ⌋︀)u = 0. This completes the proof of Theorem (1.2.1).
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As the Vi’s are expressed in terms of the third derivatives of Ai’s, the expres-

sion (1.8) involves the Ai’s up to their fifth derivatives. It does not vanish on a

projective structure in general, but vanishes on metrizable ones.

3.5 Sufficient Conditions

In this section, we apply Theorem (2.3.5) to the connection D, we defined in (3.25),

in order to obtain the sufficient conditions of our problem. Motivated by (3.27), for

this connection we can derive a symmetric property of covariant derivatives of any

given degree d ≥ 2 modulo lower degrees. Given W ∶ U Ð→ R6, similar to what we

did in the calculation to obtain (3.27), we have

(︀Di,Dj⌋︀W = W(∂iΩj − ∂jΩi +ΩiΩj −ΩjΩi) = (WF )ηij =W6Vηij, (3.28)

where η11 = η00 = 0, η10 = −η01 = 1, and F is given by the curvature F = Fdx ∧ dy,

as in (2.22). The last equality holds since the only nonzero row of F is its sixth row

which is equal to V. Recalling that V6 = 0 from (3.25), we have:

DiDjV =D(iDj)V +D(︀iDj⌋︀V =D(iDj)V,

DiDjDkV =DiD(jDk)V + (DjD(iDk)V −DjDiDkV)

+ (DkD(iDj)V −DkDiDjV)

=DiD(jDk)V + (DjD(iDk)V −DiDjDkV + 2D(︀iDj⌋︀DkV)

+ (DkD(iDj)V −DiDkDjV + 2D(︀iDk⌋︀DjV)

=DiD(jDk)V + (DjD(iDk)V + 2D(︀iDj⌋︀DkV

+ (DkD(iDj)V + 2D(︀iDk⌋︀DjV)

− 2DiDjDkV

= 3D(iDjDk)V + 2(D(︀iDj⌋︀DkV +D(︀iDk⌋︀DjV) − 2DiDjDkV

⇒DiDjDkV =D(iDjDk)V + 2

3
(D(︀iDj⌋︀DkV +D(︀iDk⌋︀DjV)

=D(iDjDk)V + 2

3
((DkV)6ηij + (DjV)6ηik)V

In general we obtain

Da1Da2 ...DakV =D(a1
Da2 ...Dak)V +O(k − 2) (3.29)

where O(k − 2) involves derivatives of V up to order k − 2.
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This symmetry tells us that there are at most n(K) = 1 + 2 + ... +K linearly in-

dependent covariant derivatives of F of order less than K, namely the symmetrized

derivatives of the only nonzero column V. Therefore, as we did at the end of last

section, we replace the matrix F with V in our calculations.

Let ℱK denote the matrix consisting of covariant derivatives of F of order less

than or equal to K (see equation (2.25)). It is always possible to find a point p ∈ U ,

such that restricting F to a sufficiently small neighborhood around it, one can guar-

antee that the rank of the matrix ℱK does not decrease for all K = 0,1, ...,6. The

Frobenius Theorem (2.3.5) tells us the dimension of the space of parallel sections

in the rank six bundle over that neighborhood. As we saw earlier ℱ2 provides

the necessary condition of Theorem (1.2.1), which is that det(ℳ(︀Γ⌋︀) = 0 and

u1u3 − (u2)2 ≠ 0. This is equivalent to saying that rank(ℱ2) ≤ 5 and det(σij) ≠ 0.

Assuming the necessary conditions hold, we have at least one vector

u = (u1, ...,u6) ∈ ker(ℳ((︀Γ⌋︀)),

with the property that u1u3 − (u2)2 ≠ 0. This property implies nondegeneracy of

the form σ in (3.13). The first case we consider in order to derive the sufficient

conditions is when rank(ℱ2) = 5, that is the case for a generic projective structure.

Definition 3.5.1. We call a projective structure (︀Γ⌋︀ with det(ℳ(︀Γ⌋︀) = 0 generic in

a neighborhood U of a point p, if rank(ℳ(︀Γ⌋︀) = 5 in U and u1u3 − u2
2 ≠ 0 where

u ∈ ker(ℳ((︀Γ⌋︀)).

By the construction of Theorem (2.3.5), for a generic projective structure we

have 6 ≥ rank(ℱ3) ≥ rank(ℱ2) = 5. If rank(ℱ3) = 6 then, according to Theo-

rem (2.3.5), the number of parallel sections is zero. Therefore, in order to have

a nonzero solution we need to have rank(ℱ3) = 5 and there will be only a one-

dimensional space of parallel sections. We want to find the differential relations in

terms of the Ai’s that will guarantee the condition rank(ℱ3) = 5.

As for a generic projective structure rank(ℳ(︀Γ⌋︀) = 5 over U , it is obvious that

for a generic projective structure the vectors V,DaV must be linearly independent,

as otherwise rank(ℳ(︀Γ⌋︀) ≤ 3. Since ℳ(︀Γ⌋︀ is generic, it forces exactly two of

three vectors D(aDb)V to be independent. Similarly to what we did in (2.3.5), we

take the covariant derivative ofD(aDb)V one more time to obtain the system of four

equations (D(aDbDc)V)u = 0. Since we want rankℱ3 not to increase, these new

equations have to be identically satisfied. Note that all the entries of V and Ω are in
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𝑘 rank(𝐽k+1(𝑆2(𝑇 ∗𝑈))) rank(𝐽k(𝑃𝑟(𝑈))) rank(ker(𝜎k)) rank(coker(𝜎k))
-1 3 - - -

0 9 4 5 0

1 18 12 6 0

2 30 24 6 0

3 45 40 5 0

4 63 60 3 0

5 84 84 1 1=1

6 108 112 1 5=3+2

7 135 144 1 10=6+6-2

terms of the Ai’s up to their third derivatives. Therefore, asking for these four new

equations, which are the third covariant derivatives of V, to vanish is equivalent

to having four sixth order equations among the Ai’s. But, if we look more closely

we realize that not all of these four equations are new. Two of them are merely

first derivatives of the assumptions (1.8). In order to realize this fact, we make a

counting argument based on the dimensions of jet spaces.

Proof of Theorem (1.2.2). Prolong σ0 ∶ J1(S2(T ∗U)) → J0(Pr(U)) in (3.10) to

σk ∶ Jk+1(S2(T ∗U)) → Jk(Pr(U)) by differentiating the relations (1.6). The

operator σk is a homogeneous bundle map from (k + 1)-jets of metrics to k-jets

of a rank four vector bundle - the space of projective structures. It differentiates

the system (3.12) and gives the derivatives of the Ai’s in terms of derivatives of

the metric. Due to the homogeneity of the operator, its kernel contains at least a

one-dimensional fiber at each point i.e., dim(ker(σk)) ≥ 1, ∀k.

In the following table the bold numbers shows the number of obstructions which

have to be satisfied to ensure the existence of a Levi-Civita connection in (︀Γ⌋︀ as a

generic projective structure.

For k ≤ 4 there is no obstruction and the σk’s are surjective, since the highest

order derivatives of the metric components always show up in the numerator of the

expressions for all the derivatives of the Ai’s, and never cancel each other out. At

k = 5 we have rank(ker(σ5)) = 1. This is because rank(ker(σk)) ≥ 1 and none of

the 6th derivatives of the metrics is eliminated by σ5 as we discussed earlier in the

proof. Since all the σk’s with k ≤ 4 were surjective, we get rank(ker(σ5)) = 1. This

fact and that dim(J6(S2(T ∗U)) = dim(J5(Pr(U))) = 84 implies that the image
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of the map σ5 is 83-dimensional. Also the projective structures that correspond

to a metric, have to satisfy equation (1.8), meaning that they are on the zero level

set of det(ℳ(︀Γ⌋︀). Since rankℳ(︀Γ⌋︀ = 5 over U , this equation defines a smooth

variety in J5(Pr(U)) and thus the image of σ5, defined by (1.8), is smooth and

rank(coker(σ5)) = 1. The argument we made to show rank(ker(σ5)) = 1 implies

that rank(ker(σk)) = 1 as long as the dimension of the domain is less than the

dimension of the codomain.

Note that, as we said earlier, the entries of DaDbV are expressed in terms of the

Ai’s up to their fifth derivatives. The assumption that

rank(ℳ(︀Γ⌋︀) = 5

makes the fifth order PDE det(ℳ(︀Γ⌋︀) = 0 regular, meaning that it involves at least

one fifth derivative of the Ai’s. Therefore, it is a codimension one regular variety in

J5 and submerses onto lower jet spaces.

Considering the image of the map σ6, we are exactly in the same situation as

what we had in (2.6). The prolongations of the projective structures satisfying (1.8)

will have their 6-jets in J6(Pr(U)) constrained not only by equation (1.8), but

also, by its first derivatives. In general, the k-jets of the regular solutions to (1.8)

are constrained by det(ℳ(Γ)) = 0 and all its derivatives up to order (k − 5). As

a result, the first prolongation of the equation manifold of (1.8) is a regular smooth

variety of codimension 3 in J6(Pr(U)). Therefore, its dimension is 112 − 3 = 109.

Knowing that dimJ5(S2(T ∗U)) = 108, we get rank(img(σ6)) = 108 − 1 = 107.

This indicates that the set of images of regular metric structures, meaning those

with nonzero sixth order derivatives, has dimension 107 in J6(Pr(U)) and is of

codimension two in the space of projective structure that only satisfy the necessary

condition (1.8). This implies the existence of two extra sixth order obstructions for

a regular solution of (1.8) that corresponds to a metric structure. Let us denote these

two obstructions by

E1 = 0 , E2 = 0. (3.30)

Denoting the space of the 6-jets of projective structures coming from a metric

structure by 𝒩 , we know that it is of codimension five in J6(Pr(U)) with its con-

straints being equation (1.8) with its two first derivatives, and the constraints (3.30).

If we prove that there is no more constraint from the prolongation manifold

𝒩 (1) in J7(Pr(U)) and that all the constraints are simply among the derivatives
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of obstructions we already have, then by Theorem (2.3.5) and using the fact that

rank(ℱ3) = rank(ℱ2) = rank(ℱ1) = 5, we have a one-dimensional space of parallel

sections of our connection. For J7(Pr(U)), we can obtain twelve obstructions

exactly in the same way. six obstruction are (1.8), its two first derivatives and its

three second derivatives. The other six come from (3.30) and their first derivatives.

On the other hand, rank(J8(S2(U))) = 135 and rank(ker(σ7)) = 1. Therefore,

rank(img(σ7)) = 134, and not all of the twelve obstructions that we found on

the first prolongation of 𝒩 are independent. There are two relations between the

second derivatives of det(ℳ(Γ)) = 0 and first derivatives of E1 = 0,E2 = 0, as

these relations have appeared in the level of 7-jets. Thus, there cannot be any new

obstruction on the first prolongation of 𝒩 . Theorem (2.3.5) applies and the system

is involutive with a one-dimensional space of parallel sections.

In order to obtain a better picture of E1 and E2, assume that the equation

det(ℳ(Γ)) = 0 gives Vxy ∈ span{V,Vx,Vy,Vxx,Vyy} so that

Vxy = c1V + c2Vx + c3Vy + c4Vxx + c5Vyy

for some functions c1, ..., c5 on U . Using (3.28), the equalities Vxyy = Vyyx and

Vxyx = Vxxy hold modulo lower order terms. Therefore, both Vxyy and Vxxy be-

long to the span of {V, Vx, Vy, Vxx, Vyy, Vxxx, Vyyy}. The vectors Vxxx, Vyyy

can be obtained once we know the sixth order obstructions which are the ones we

found in our counting argument

E1 ∶= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

V

Vx

Vy

Vxx

Vyy

Vxxx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, E2 ∶= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

V

Vx

Vy

Vxx

Vyy

Vyyy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Our problem for the non-generic cases is more complicated. Since whenever

rank(ℳ(︀Γ⌋︀) ≤ 3, the PDE det(ℳ(Γ)) = 0 is not regular meaning that it no longer

defines a smooth codimension one variety in J5(Pr(U)), and the argument based

on the dimensions of the jet bundles does not work.

For a generic projective structure, the non-degeneracy of the quadratic form σ,

which is the solution of the system (3.12) obtained from a vector u ∈ ker(ℳ((︀Γ⌋︀)),
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follows directly from our assumptions that u1u3 − (u2)2 ≠ 0 and ker(ℳ((︀Γ⌋︀))
spanned by u. In the non-generic cases we have the following lemma in which

d((︀Γ⌋︀) is the dimension of the vector space of solutions of det(ℳ((︀Γ⌋︀) = 0.

Lemma 3.5.2. If d((︀Γ⌋︀) ≥ 2 then there are d((︀Γ⌋︀) independent non-degenerate

quadratic forms among the solutions of (1.8).

Proof. Let us assume that there is one degenerate quadratic form σ among solutions

of (1.8). Then we can construct a vector field V such that at each point x it gives a

null-vector of σ(x). In flow-box coordinates of this vector field, we can diagonalize

σ so that it takes the form σ = (ψ1 0

0 0
) . Therefore, in terms of ψ1, the coefficients

Ai’s are determined from (3.12) to be

A1 =
3

2

1

ψ1

∂ψ1

∂x
, A2 =

3

4

1

ψ1

∂ψ1

∂y
, A3 = 0,

with A0 unspecified. Thus, in these local coordinates, there is no other quadratic

form of the form σ = (ψ(x,y)ψ1 0

0 0
) among the solutions of (1.8) and the only freedom

is to rescale ψ1 by a scalar which gives a one-dimensional subspace. In other words,

no other possible degenerate solution of (1.8) independent of σ can have the same

form. Therefore, in these local coordinates all other possible degenerate solutions

have the form σ̃ = (ψ̃1 ψ̃2

ψ̃2 ψ̃3
) with either ψ̃3 ≠ 0 and ψ̃1 = ψ̃2 = 0 or ψ̃i ≠ 0 for

all i. However, in both cases the quadratic forms aσ + bσ̃ are non-degenerate for

almost all a, b ∈ R2. Hence the only case in which we cannot have as many non-

degenerate quadratic forms as the dimension of the solution space of (3.12) is when

d((︀Γ⌋︀) ≤ 1.

Proof of Theorem (1.2.3). We list different cases that can happen depending on

rank(ℳ((︀Γ⌋︀)).

• If rank(ℳ((︀Γ⌋︀)) ≤ 1 then the second-order ODE (3.2) is equivalent to y′′ = 0.

When rank(ℳ((︀Γ⌋︀)) = 0 then V = 0 and Theorem (2.3.5) implies that the

connection D is flat and the system is completely integrable. Hence the space

of parallel sections is 6-dimensional. This also implies that the invariants

L1 = L2 = 0 and by Theorem (3.2.2) the system is equivalent to y′′ = 0.

If rank(ℳ((︀Γ⌋︀)) = 1 then ∂aV − VΩa = Va = γaV. According to the

expression of V, we obtain

VΩa = (∗,∗,∗,∗,∗,5La) = 0.
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As V6 = 0, we obtain that the La’s vanish and Theorem (3.2.2) applies proving

that the system is equivalent to y′′ = 0 and completely integrable.

• If rank(ℳ((︀Γ⌋︀)) = 2 then

V + c1Vx + c2Vy = 0,

for functions c1, c2 at least one of which does not vanish. Based on our

assumption and the symmetry of Vab, we have Vab ∈ span{V, Va}. Thus,

further differentiation does not introduce any new obstructions and the system

is closed at the level of the first derivatives of V. Using (2.3.5), the solution

space has dimension four.

• If rank(ℳ((︀Γ⌋︀)) = 3, we have to consider two cases. The first one is when

the set {V, Vx, Vy} is linearly independent, in which case the argument is

exactly the same as the previous case. We realize that the system is closed

at that stage and the space of parallel sections is 3-dimensional. The second

case is when either the set {V, Vx, Vxx} or {V, Vy, Vyy} is linearly in-

dependent. We will assume the first set is linearly independent and the same

argument works for the second by interchanging x and y. It is obvious that y

derivatives do not add any new obstructions and that an obstruction only in-

volves x derivatives. Theorem (2.3.5) tells us that in order to have a solution

space of dimension one, the sixth obstruction, which in this case is Vxxxxx,

must be in terms of lower order obstructions. So if Vxxx and Vxxxx are new

obstruction then to have a nonzero solution space we must have

E ∶= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

V

Vx

Vxx

Vxxx

Vxxxx

Vxxxxx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 0.

If the matrix above has rank 3, 4 or 5 then the solution space has 3, 2 or 1

dimensions respectively.

• If rank(ℳ((︀Γ⌋︀)) = 4 then the vectors V, Vx, Vy have to be linearly inde-

pendent and the fourth vector has to be one of the second derivatives of V,
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say Vxx. Then the only higher order derivatives that may result in a new re-

lation are higher order x derivatives of V, for instance Vxxx. If Vxxx gives a

new relation then in order to obtain a nonzero solution from Theorem (2.3.5),

Vxxxx must be expressed in terms of lower order relations and we would have

E ∶= det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

V

Vx

Vy

Vxx

Vxxx

Vxxxx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 0,

and the solution space is one-dimensional. If Vxxx does not give any new

relation then the solution space is two-dimensional. It is clear that in all cases

the assumption in Theorem (1.2.3) together with previous lemma, ensure the

existence of non-degenerate metrics in the projective structure.

As a result of the proof above, we have the following theorem.

Theorem 3.5.3. The space of matrices compatible with a given projective structure

can have dimensions 0, 1, 2, 3, 4 or 6.



CHAPTER 4

Minitwistor Theory of Projective Structures

In this chapter, we discuss the minitwistor theory which originates from the twistor

theory developed by Roger Penrose. The twistorial treatment of our problem was

originally done in [14] by Hitchin via Kodaira’s deformation theory. In his work,

Hitchin describes how we can associate to a surface Z with a family of rational

curves with degree one normal bundle, the moduli space of its rational curves, de-

noted by X , which turns out to be a surface with a projective structure. The associ-

ation motivates a notion of duality between X and Z. As is explained in [22], Z is

the space of unparametrized geodesics of X . In other words, P(TX) has a double

fiberation over Z and X and for any open set U ⊂X we have

P(TU)

U
f

>

π

<
Z.

τ
>

(4.1)

Here, we will explain these construction and mention how the power of the

twistor approach is used in them. Finally, we will see how this approach gives a

geometric origin for the linearisation (3.12) of the non-linear system (3.3). We call

an element of the family of rational curves a minitwistor line, following [4].

49
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4.1 Minitwistor Correspondence

Suppose we have a rational curve Y in a complex surface Z with NY ≅ 𝒪(d).
Recall that dim(H0(CP1,𝒪(1))) = d + 1 and H1(CP1,𝒪(1)) = 0, as we saw

in Section A.We can apply the Kodaira Theorem (A.2.1) to get a complete fam-

ily of rational curves {Yx}x on Z containing Y with a complex surface X as its

parametrization space, such that the isomorphism TxX ≅H0(Yx,NYx) holds canon-

ically, so the dim(X) = d + 1. The manifold X is called the moduli space of the

family of minitwistor lines. Since any minitwistor line is represented by a point

x ∈ X and because TxX ≅ H0(Yx,NYx), knowing dim(X) = d + 1 implies that the

degree of the normal bundle of a minitwistor line Yx is d. Because we are dealing

with Riemann spheres, this is sufficient to have NYx ≅ 𝒪(d), ∀x ∈ X . In other

words, the degree of the normal bundles of the minitwistor lines in the family are

equal.

Suppose d = 0, meaning NY ≅ 𝒪. From the Kodaira Theorem, we obtain

dim(X) = 1. Also sections of the normal bundle of any minitwistor curve can-

not vanish. Thus, the partial derivative of the minitwistor map with respect to x,

introduced in Section A.2, cannot vanish since ∂
∂xf(y, x) with y ∈ Yx determines a

section of NYx . This means that the minitwistor lines never intersect. On the other

hand, they form a complete family of curves and cover a neighborhood around any

minitwistor line. Therefore, as an extension of the Kodaira Theorem, we can say

that on a surface a neighborhood of a Riemann sphere with trivial normal bundle is

biholomorphic to CP1 ×C.

In the case when d = 1, we have deg(NY ) = 1. Before going any further, we

explain a well-known construction used to lower the degree of the normal bundle.

We do this in order to be able to use the case d = 0 that we already considered.

It is well-known that deg(NY ) = Y ⋅ Y , where Y ⋅ Y is the self-intersection

number of the curve Y (c.f. [13]). A standard procedure for lowering the self-

intersection number of a curve, called blowing up a point of the curve, can thus be

used to reduce the degree of the normal bundle of a curve. By blowing up a point

y ∈ Y in a surface Z, we lift Y to a curve Ỹ in a surface Z̃ such that Ỹ and Z̃ are

diffeomorphic to Y andZ except at x . At the point x, we replace the point with

the exceptional divisor E ∶= CP1 in a consistent way. Another way of looking at

this procedure is to take a neighborhood around x and map it to C2 such that x goes

to the origin. Then using the natural projection π ∶ 𝒪(−1) → C2, we can replace
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that neighborhood with the corresponding open set in 𝒪(−1). Suppose two curves

Y and Y ′ intersect at p with intersection number one. Thus, they are transverse at

p. If we blow up the point p, the blow up of Y and Y ′ no longer intersect as their

only intersection point lifts to different points of E. The assumptions that the two

curves were transverse at their intersection point and that the surface and its blow

up are identical everywhere other than the point p were crucial. It is not difficult to

derive properties of blowing up a point (c.f. [32]), including the decrease of the self-

intersection number of a rational curve by one after blowing up one of its points.

Therefore, blowing up any point of a curve lowers the degree of its normal bundle

by one. In general, we can blow up a submanifold S ⊆M , where codim(S) ≥ 2, by

replacing it with the exceptional divisor E ∶= P(N(S)).
When d = 1, we have NY ≅ 𝒪(1) with H0(Y,NY ) = C2 and H1(Y,NY ) = 0.

Applying the Kodaira Theorem, we get a two-dimensional parametrizing space X .

Here, we make use of the canonical isomorphism TxX ≅ H0(Yx,NYx) in order

to study the differential geometry of X . We fix a point 0 ∈ X representing the

curve Y0 ⊆ Z and a one-dimensional subspace l ∈ T0X . This subspace corre-

sponds to a one-dimensional subspace l̂ ∈ H0(Y0,NY0). Remember that because

H1(Y,NY ) = 0 then H0(Y,NY ) coincides with the space of global sections of the

normal bundle of Y . Since NY ≅ 𝒪(1), we know from Section A that all the proper

subspaces of this vector space are of the form az0 + bz1, where (z0, z1) are homo-

geneous coordinates of CP1. Therefore, the one-dimensional subspace l ⊆ ToX can

be identified with the pair (b,−a), the homogeneous coordinates of the vanishing

point of its corresponding section l̂. We can then blow up this point of the curve

in order to lift Y to the curve Ỹ which has a trivial normal bundle. The Kodaira

Theorem applies to Ỹ ⊆ Z̃. From the case we considered earlier we get a one pa-

rameter family of rational curves in the blown up surface Z̃ parametrized by X̃ . We

know that E and Ỹ are transverse in Z̃, therefore any curve in a neighborhood of

Ỹ is transverse to E. Thus, rational curves belonging to the one parameter family

of minitwistor lines {Yt}t, which contains Ỹ and covers a neighborhood of it, is

transverse to E, as they cannot intersect each other. Projecting everything down to

Z, we obtain the diagram

TtX̃
≅ÐÐÐ→ H0(Ỹt,NỸt

)

φ
×××Ö

π∗
×××Ö

Tx(t)X
≅ÐÐÐ→ H0(Yx,NYx)
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where π∗ is the induced map from blow up on the sheaf of sections of normal

bundles (c.f. [13]). The map φ can be chosen uniquely such that the diagram com-

mutes, because by the completeness part of the Kodaira Theorem the projections of

all the deformations Ỹt ⊆ Z̃ to Yx(t) ⊆ Z belong to the family containing Y0. The

image of X̃(t) under the map φ gives a curve γ(t) ⊆ X such that γ(0) = 0 and

γ̇(0) = l where l is the one-dimensional subspace that we fixed at the beginning.

Also γ(t) parametrizes the one-parameter family of curves Yt ∶= π∗(Ỹt) containing

Y0 = π∗(Ỹ0). Since the exceptional divisor E maps to p and all Ỹt are transverse to

E, the curves Yt intersect Y0 at p.

Now we see that there is a notion of duality between the points in X and the

curves in Y and vice versa, in the sense that any point x ∈ X represents a curve

Yx ⊆ Z and any point y ∈ Yx represents a curve passing through x ∈ X which

parametrizes the one-parameter subset of the minitwistor lines that intersect Y at y.

In other words, we associate to a one-dimensional subspace l ⊆ TxX a point with

homogeneous coordinates (︀b ∶ −a⌋︀ ∈ Y ⊆ Z using the canonical isomorphism in the

Kodaira Theorem. Therefore, there is a one-to-one correspondence between points

of the fiber P(TxX) ⊆ P(TX) and points of the curve Yx ⊆ Z. The minitwistor

operator τ(y, x), defined in diagram (4.1), sends the fiber P(TxX) ⊆ P(TX) to the

rational curve Yx ⊆ Z.

Here we want to show that the curves inX , represented by points in Y , are com-

plex geodesics and constitute a projective structure. In order to verify this claim,

we make use of what we discussed earlier that for a projectively equivalent class of

connections (︀Γ⌋︀ the form of the geodesic spray of each element ∇ with Christoffel

symbols Γijk is given by (3.6) over TTX . The projection of the geodesic spray of

projectively equivalent connections to P(TX) are identical and is given by (3.7).

We also deduced that the geodesic spray of any two elements differ by a(x, y)yi ∂∂yi
with a(x, y) linear in y. In general, the notion of spray in differential geometry de-

fines a spray to be a vector field of the form V = yi ∂
∂xi

−Gi(x, y) ∂
∂yi

on the tangent

bundle with yi’s as the fiber coordinates, where the functions Gi(x, y) are homoge-

nous of degree two in y. If Gi(x, y) is quadratic in y then the spray defines an affine

connection.

On X we have associated to any pair (x, l) such that x ∈ X and l is a one-

dimensional subspace of TxX , a curve γ(t) passing through xwith γ̇(x) ∈ l. There-

fore, we have a well-defined lift of this foliation to P(TX). Following [22], we
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define a holomorphic projective structure similar to what we have in real case.

Definition 4.1.1. On an n-dimensional complex manifold X , we call a system ℒ of

complex curves which are inextensible immersed connected one-dimensional com-

plex manifolds, a holomorphic projective structure if there is a unique association

between curves in ℒ and any holomorphic direction (i.e. to any element of the

projectivized holomorphic tangent bundle P(TX)) such that the curve varies holo-

morphically with the initial direction. In other words, the lift of the elements of the

system ℒ, which is given by

l̂ ∶= {(x,Txl)⋃︀x ∈ l,

for all l ∈ ℒ, foliates P(TX) holomorphically. We call the curves of ℒ geodesics.

In the case d = 1, we have a holomorphic projective structure on the surface X .

Comparing the definition above with our discussion in Section 3.1, the reason that

the elements of ℒ are called geodesics becomes apparent with the lemma below.

Theorem 4.1.2. Let X be a complex n-dimensional manifold with a holomorphic

projective structure ℒ. For a choice of coordinate chart over U ⊆ X , there exists a

unique set of trace-free Christoffel symbols Γijk ∈ 𝒪U (i.e Γijk = 0 for j = i) such

that each element of the system ℒ is a geodesic with respect to the affine connection

defined by the Christoffel symbols over U .

We adopt the proof given in [14] only for a surface (which can also be applied

to the general form of the theorem).

Proof. The theorem follows if we find a vector field over TU that generates the

curves in ℒ and has the form of the geodesic spray of an affine connection, namely

(3.6). Since we have a foliation of P(TU), we also have a vector field Ṽ over

P(TU) ≅ P1×U that generats the foliation. We can choose an open cover {Wa}a ⊆ P1

such that Ṽ can be trivialized to Ṽa over Wa×U . Using the map π ∶ TU → P(TU),
we obtain their pull-backs π∗(Ṽa) which are a family of vector fields of the form

Va(x, y) ∶= yi
∂

∂xi
+ f ia(x, y)

∂

∂yi
+ ga(x, y)yi

∂

∂yi
,

where the second term comes from the projection map π, as in (3.8). Because

multiplying the tangent vector (y1, y2) by a scalar will not change the foliation

of P(TU), we obtain v(x, ry) = rv(x, r), r ∈ C. Therefore, the functions f ia are
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quadratic in the yi’s and ga is linear in the yi’s, as we knew. Suppose Wa ∩Wb ≠ ∅;

then on the intersection for each i we have f ia = f ib , as they are determined by the

vector field over P(TM). Therefore,

va − vb = (ga(x, y) − gb(x, y))yi
∂

∂yi
= hab(x, y)yi

∂

∂yi
,

where hab(x, y) is linear in y. We can conclude that the va’s can be glued together

if and only if the transition maps hab’s do not impose any obstruction. From Sec-

tion A.1, we know thatH1(CP1,𝒪(1)) = 0, meaning that there is no obstruction for

the existence of a global sections in 𝒪(1) once the local trivializations are known.

Therefore, for any choice of the functions ga’s we obtain a geodesic spray over

CP1 ×U .

Among the sprays that we obtain from different choices of ga’s over each Wa,

there is a special subset of the ga’s that gives rise to the connection with trace-free

Christoffel symbols. As fa is quadratic in y and ga is linear, over any Wa × U we

have

f ia(x, y)
∂

∂yi
+ ga(x, y)yi

∂

∂yi
= Γ̃ijk(x)ykyj

∂

∂yi
+ (Λjy

j(x))yi ∂
∂yi

.

Now we set Λj = −Γiij , where again the repeated indices do not denote summation.

In this way we obtain

Va = yi
∂

∂xi
+ Γijk(x)ykyj

∂

∂yi
,

where Γijk = 0 for j = i. once we know trivializations of a spray, we can find the

transition maps over subsets (Wa ∩Wb) ×U , which in this case are

Va − Vb = habyi
∂

∂yi
.

However, from our construction of the Va’s, we know that they have no component

of the form yi ∂
∂yi

. Therefore, hab = 0 and we obtain the unique set of trace-free

Christoffel symbols mentioned in the theorem, which are Γijk = Γ̃ijk for j, k ≠ i and

zero otherwise.

The procedure described above can be reversed in the sense that we can take the

quotient of the projectivized tangent bundle of a surface over the one-dimensional

foliation given by geodesics. It turns out that the quotient space is a two-dimensional

complex manifold together with a family of rational curves with degree one normal
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bundle which are the projection of the fibers of the projectivized tangent bundle.

The construction is discussed in generality and detail in [22].

When the canonical bundle of Z is restricted to a minitwistor line, the definition

of normal bundle gives the exact sequence 0 → TY (p) → TZ ⋃︀Y (p) → NY (p) → 0

on each fiber, in which case the associated dual spaces satisfy the exact sequence

0→ N∗
Y (p)→ ΩZ ⋃︀Y (p)→ ΩY (p)→ 0, where ΩZ is the cotangent bundle of Z.

We know that if 0 → V1 → V → V2 → 0 is an exact sequence of vector spaces

V1, V and V2 with dimensions r1, r and r2 then there is a natural isomorphism

ΛrV ≅ Λr1V1 ⊗Λr2V2.

Thus, we have

KZ ⋃︀Y ≅ ΩY ⊗N∗
Y . (4.2)

As we obtained in Section A.1, the dual of the tangent space of the Riemann

sphere is of degree −2. We also have NY ≅ 𝒪(1), and therefore N∗(P1) ≅ 𝒪(−1).
As a result, we have

KZ ⋃︀Y ≅ ΩY ⊗N∗
Y ≅ 𝒪(−2)⊗𝒪(−1) ≅ 𝒪(−3).

Knowing that the restriction of the canonical bundle of Z to a minitwistor line

KZ ⋃︀Y is isomorphic to 𝒪(−3), we obtain K−2
Z ⋃︀Y ≅ KZ ⋃︀−2

Y ≅ 𝒪(6) and consequently

K
− 2

3

Z ⋃︀Y ≅ 𝒪(2), where Kα
Z is a scalar density of weight α, as we defined in Sec-

tion 2.1.

4.2 Alternative Derivations

According to the paper [4], if U is metrizable then the densityK−2⇑3
Z admits a global

section. Given a global section of this line bundle, say s ∈ K−2⇑3
Z , its restriction

to a minitwistor line Y can be expresses as a quadratic polynomial in homoge-

neous coordinates, say s = σ̃ij z̃iz̃j with a symmetric matrix σ̃ij . Using the map

τ ∶ P(TU) → Z in diagram (4.1), we can pull-back the restriction of this section

over a minitwistor line Y to the corresponding fiber of P(TU). Recall that P(TU)
fibers over Z and the preimage of any minitwistor line is a fiber of P(TU) i.e.

P(TxU) = τ−1(Yx). Therefore, 𝒪(2)(P(TxU)) ∋ τ∗s = σijzizj where coordinates

zi = τ∗(z̃i) are the homogeneous coordinates of the fiber P(TxM) and σij = τ∗(σ̃ij)
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is a symmetric 2-tensor. Let D ∈ X(P(TU)) be the geodesic spray of U defined by

Christoffel symbols Πi
jk in (3.14), namely

Dx = za
∂

∂xa
−Πa

bcz
bzc

∂

∂za
. (4.3)

Recall that the quadratic form σ̃ over Z is obtained due to the existence of a metric

whose Levi-Civita connection is projectively equivalent to the affine connection

with Christoffel symbols Πi
jk.

Since the minitwistor map sends each geodesic to a point in Z, as explained in

the construction of Z in last section, the push-forward of this vector field to Z at

any point is zero and we have Dx(τ∗(s)) = τ∗(Dx)s = 0. Expanding this equation

gives the linear system of ODEs (3.12):

Dx(σijzizj) = zazizj
∂

∂xa
σij(x) −Πa

bcσijz
bzc

∂

∂za
zizj

= zazizj ∂

∂xa
σij(x) −Πa

bcσijz
bzc(δiazj + δjazi)

= zazizj ∂

∂xa
σij(x) − zjzbzcΠi

bcσij − zizbzcΠj
bcσij

= zazizj( ∂

∂xa
σij(x) −Πb

ijσab −Πb
ijσab)

= zizjzk∇Π
(iσjk) = 0,

(4.4)

where in the last term repeated indices again do not denote summation. This system

is therefore equivalent to equation (3.13). Also we can use the projective coordinate

ζ = z1

z2 to get another form for the geodesic spray as in (3.7), which is

D = ∂

∂x
+ ζ ∂

∂y
+ (A0 +A1ζ +A2ζ

2 +A3ζ
3) ∂
∂ζ
,

Using this form, we get

Dx(σijzizj) =Dx(ψ1 + 2ψ2ζ + ψ3ζ
2) = 0.

which gives the system (3.12) directly.

This was a geometric interpretation of the way the nonlinear equation (3.2)

could be written as a system of linear PDEs. The geodesic flow annihilates the

pull-back of a global section in the anti-canonical divisor K−2⇑3
Z of the minitwistor

space Z and it certainly results in a linear system of equations. The section could

be constructed due to metrizability of U . Recall that we used the coefficients of the
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Christoffel symbols of the projective connection to express the geodesic flow. As a

result σab satisfies assumptions in Liouville lemma (3.2.1) and σab
(detσ)2 is the metric

we were looking for. All our discussion in this section involved complex surfaces.

Suppose that the maps in diagram (4.1) are invariant under an anti-holomorphic in-

volution Ψ of Z with coordinates (z1, z2), meaning that ∂Ψ
∂z̃i

= 0. Then f−1 ○Ψ ○ f
would be an anti-holomorphic involution of U , since

∂

∂zi
(f−1 ○Ψ ○ f(z)) = ∂(f

−1 ○Ψ ○ f)
∂((Ψ ○ f)k) ⋅ ∂(Ψ ○ f)k

∂(f j) ⋅ ∂f
j

∂zi
,

and because Ψ is invariant under f we get

∂(Ψ ○ f)k
∂f j

= ∂Ψk

∂z̃j
= 0.

Consequently, we recover a real structure on U which would be U ∩Ψ(U).
Note that in our construction we made use of global structure of CP1 to derive

local properties of X , using the notion of duality explained between points and

curves. The power of the twistorial approach is that the lines are constrained only

by complex geometry and no differential geometry of Z is involved. The only

information we needed to describe the differential geometry of X was the degree of

the normal bundle of the rational curves.

We can use the notion of densities to derive the linear system (3.12) from another

perspective and say more about its solutions. In a class of projectively equivalent

torsion-free affine connections (︀Γ⌋︀ over a surface, if ∇̃, ∇ ∈ (︀Γ⌋︀ satisfy (3.9) then

using equation (2.3), for a section h ∈ ⋃︀Λ⋃︀rM we obtain

∇̃jh −∇jh = (−rΓ̃iij + rΓiij)h = −r3Υjh. (4.5)

We introduce the terminology projective density of weight ω for sections of the

density bundle ⋃︀Λ⋃︀−
ω
n+1

M . Using equation (4.5), for a section of this bundle we have

∇̃h = ∇h + ωΥh, (4.6)

where the 1-form Υ is given by Υ = Υjdxj. We denote the density bundles of

projective weight ω by ℰ(ω) and we have ℰ(ω) ≅ ⋃︀Λ⋃︀−
ω
n+1

M . Therefore, a volume

form has projective weight −3 as it is a 1-density so r = 1 in equation (4.6).

Let us restrict ourselves to a sufficiently small open setU ⊆M such that ∇̃η = θη
for a 1-form θ = θidxi and η ∈ ⋃︀Λ⋃︀1M . First, we change the projective representative

from ∇̃ to ∇ so that

Γijk = Γ̃ijk +
θj
3
δik +

θk
3
δij.
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Then, using (4.6), we obtain

∇η = ∇̃η − 3 ⋅ θ
3
η = 0.

Therefore η is parallel with respect to∇. If we changed the volume form by η̂ = e3fη

then for a projective representative ∇̂ related to∇ by Υ = ∇f through equation (3.9),

we would have

∇̂η̂ = ∇(e3fη) − 3∇fη = 0. (4.7)

This example provides a way of determining the projective weight of a scalar

density over U . As we said earlier, the sections of any scalar density are in cor-

respondence with volume forms in ℰ(−3). For a volume form η ∈ ℰ(−3), parallel

with respect to ∇, the corresponding section h ∈ ℰ(ω) is also parallel with respect

to ∇. This is because h ∈ ⋃︀Λ⋃︀−
ω
3

M so that h = η−ω3 and we have

∇ah = ∇aη
−ω

3 = −ω
3
η−1−ω

3 ∂aη +
ω

3
(Γiia)η−

ω
3

= −ω
3
η−1−ω

3 (∂aη − Γiiaη)

= −ω
3
η−1−ω

3∇aη = 0

(4.8)

Suppose we have a line bundle with a choice of parallel section h, namely

∇h = 0. Given a real valued function f ∈ C∞(M), let ∇̂ be a projective repre-

sentative related to ∇ via equation (3.9) and Υ = ∇f . If ĥ = e−ωfh satisfies ∇̂ĥ = 0

then h ∈ ℰ(ω). In other words, if being parallel with respect to ∇ remains invariant

under the transformation

h↦ ĥ = e−ωfh

for projective representative ∇̂ then the line bundle has projective weight ω and the

line bundle is a scalar density bundle of weight − ω
n+1 . As the initial parallel section

h comes from a parallel volume form, the transformation h ↦ ĥ = e−ωf is induced

by the transformation of volume forms η ↦ η̂ = e3fη.

The solution for the system of ODEs (3.12) was equivalent to a quadratic form

satisfying the equation ∇Π
(i
σjk) = 0, where the Π’s are the Christoffel symbols of the

projective connection of (︀Γ⌋︀ in that local chart defined in (3.14). In this section, we

want to relate this solution to the solution of ∇(iσjk) for an arbitrary element of (︀Γ⌋︀
which is not necessarily Π. First let us find the projective weight of quadratic forms

satisfying Dx(σ) = 0. Let D̂ and D represent the geodesic spray of ∇̂ and ∇, with
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Christoffel symbols Γ̂ and Γ respectively, satisfying equation (3.9) with Υ = ∇f .

As we did in (4.4) we can write this equation as

D̂x(σjk) −Dx(σjk) = zizjzk(︀−(Γ̂rij − Γrij)σ̂rk − (Γ̂rik − Γrik)σ̂jr⌋︀

= zizjzk(︀−(Υjδ
r
i +Υiδ

r
j )σ̂rk − (Υiδ

r
k +Υkδ

r
i )σ̂jr⌋︀

= zizjzk(︀−(Υjσ̂ik +Υiσ̂jk) − (Υiσ̂jk +Υkσ̂ji)⌋︀

= zizjzk(−4Υ(iσjk))

(4.9)

where in the last term, repeated indices do not account for summation. We the make

the transformation

σ Ð→ σ̂ = e−ωfσ (4.10)

We obtain

D̂x(σ̂jk) =Dx(e−ωfσjk) + zizjzk(−4Υ(ie
−ωfσjk))

= e−ωfDx(σjk) + zizjzk(−ωσ(jk∇i)fe
−ωf − 4Υ(iσ̂jk))

= e−ωfDx(σjk) + (−ω − 4)zizjzkΥ(iσ̂jk)

(4.11)

Assume that Dx(σjk) = 0, then in order to have D̂x(σ̂jk) = 0 with the transforma-

tion (4.10), we get ω = −4. This implies that the linear operator

σij Ð→ ∇(iσjk)

which is equivalent to σij Ð→ Dx(σij), is projectively invariant on symmetric two-

tensors of projective weight ω = −4.

Now suppose we have an kernel σ for this operator. Let η be the volume form

parallel with respect to the connection ∇ as assumed earlier. Define σij = ηiaηjbσab,
which belongs to S2(TU) ⊗ ℰ(2) since ηab ∈ ℰ(3) and σab ∈ ℰ(−4). In order to

write down the covariant derivative of the σab’s with respect to the connection ∇ for

which equation (3.13) holds, we use the fact that the volume form ηab and its dual

ηab are parallel and obtain

∇(1σ12) = 0 = 1

3
(2∇1σ12 +∇2σ11)

⇒ 0 = η21η12(2∇1σ12 +∇2σ11)

= (2∇1(η21η12σ12) +∇2(η21η12σ11))

= 2∇1σ
21 −∇2σ

22

⇒ ∇2σ22 = 2∇1σ
21.

(4.12)
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We can similarly consider other cases and obtain

∇aσ
bc = δbaµc + δcaµb. (4.13)

where µa is some smooth function.

Now we want to see whether the projective structure containing ∇ with ∇a(σbc)
having the form above, is metrizable or not. Note that in deriving the above equa-

tion we made use of the equation ∇(iσjk) = 0 and not the equation ∇Π
(i
σjk) from

which the Liouville theorem gives the metrizability of the projective structure. The

following theorem from [11] provides the answer.

Theorem 4.2.1. Suppose ∇ ∈ (︀Γ⌋︀ admits a parallel volume form η and there is

metric tensor such that

∇aσ
bc = δbaµc + δcaµb

for some function µb ∈ C∞(U), then (︀Γ⌋︀ is metrizable.

Proof. The projective equivalence relation (3.9) gives the following relation be-

tween the covariant derivative of a vector with respect to ∇̂,∇ ∈ (︀Γ⌋︀:

∇̂aX
b = ∂aXb + Γ̂baiX

i = ∇aX
b + (Υaδ

b
i +Υiδ

b
a)X i

= ∇aX
b +ΥaX

b + δbaΥiX
i.

(4.14)

where Υ = ∇f for some function f ∈ C∞(M). As we showed above, σab has

projective weight 2, thus the equation (4.13) remains unchanged if we change ∇
to ∇̂ such that relation (3.9) holds for Υ = ∇f and also make the transformation

σ̂ab = e−2fσab. This becomes more clear if we compute ∇̂aσ̂bc) using (4.14), which

gives

∇̂a(σ̂bc) = ∇̂a(e−2fσbc)

= e−2f (−2Υaσ
bc +∇aσ

bc + 2Υaσ
bc + δbaΥdσ

dc + δcaΥdσ
bd)

= e−2f (δbaµc + δcaµb + δbaΥdσ
dc + δcaΥdσ

bd)

This can be written as

∇̂aσ̂
bc = δbaµ̂c + δcaµ̂b where µ̂a = e−2f (µa +Υbσ

ab) .

As we discussed earlier, the transformation σ̂ab = e−2fσab induces a change of vol-

ume form as η̂ = e3fη. Set η to be the parallel volume form with respect to ∇, which
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is assumed to exist, then η̂ is a parallel volume form with respect to ∇̂ as we showed

in (4.7). Define

det(σ) = ηabηcdσacσbd, (4.15)

and we obtain,

d̂et(σ̂) = η̂abη̂cdσ̂acσ̂bd

= e6fe−4fηabηcdσ
acσbd = e2f det(σ).

Now if we put f = −1
2 log det(σ), then d̂et(σ̂) = 1. This means that the volume

form η̂ which is parallel with respect to ∇̂, is the volume form of the metric tensor

σ̂ab. Now the we can use lemma below which applies to this situation and conclude

that ∇̂ is the Levi-Civita connection for the metric σ̂ab Because ∇ is projectively

equivalent to ∇̂, we conclude that the projective structure containing∇ is metrizable

and contains the Levi-Civita connection of the metric σ̂ab = (detσ)σab. Note that

the Levi-Civita connection of σab may not be contained in this projective structure.

Lemma 4.2.2. A torsion-free connection∇ is the Levi-Civita connection of a metric

gab if ∇agbc = δbaµc+δcaµb and ∇ηbc = 0 where ηab is the volume for of the metric gab.

Proof. LetD denote the Levi-Civita connection of the metric gab. As we are dealing

with torsion-free affine connections we obtain

∇aωb =Daωb − Γcabωc, (4.16)

for any 1-form ω, with Γabc = Γacb.

As any metric is parallel with respect to its Levi-Civita connection we have

∇agbc = Γbadg
dc + Γcadg

bd. Therefore, according to the assumptions we have

Γbadg
dc + Γcadg

bd = δbaµc + δcaµb (4.17)

We can contract both sides of the above equation by multiplying gbc to get

Γbadg
dcgbc + Γcadg

bdgbc = 2Γbadδ
d
b + 2Γcadδ

d
c = 4Γbab

= 2δbaµb + 2δcaµc = 4µa

and thus Γbab = µa where µa = gabµb. Now using the assumption that the volume

form ηab is parallel with respect to ∇ we obtain

∇aηbc = −Γbabηbc = 0.
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Thus Γbab = µa = 0 and ∇agbc = 0. Knowing this and ∇a(gdbgbc) = 0, we obtain

0 = gdb∇agbc = −gdb (Γeabgec + Γeacgbe) = −gdb (Γabc + Γacb)

where Γabc = Γeabgec. Contracting the equation by gfd gives

Γafc + Γacf = 0. (4.18)

Since the connection is torsion-free we have Γabc = Γacb and therefore Γafc = Γfac.

Combining this with (4.18), gives Γabc = 0. Thus, Γabc = 0 and from (4.16) we obtain

∇ =D.

An easy corollary of what we discussed above is the as below.

Theorem 4.2.3. There is a one-to-one correspondence between metric tensors sat-

isfying ∇aσbc = δbaµc + δcaµb, for some function µa, and metric connections that are

projectively equivalent to ∇.

Another way of addressing this theorem is by using Theorem (3.2.1). The proof

is easy if we recall that ∇ and ∇Π are projectively equivalent and relation (3.9)

holds for some 1-form Υ. If we restrict ourselves to a sufficiently small open set

such that Υ = ∇f then we obtain ∇Π
a σ̂

bc = δbaµ̂c + δcaµ̂b, where σ̂bc = e−2fσab and

µ̂a = e−2f (µa +Υbσab). Recall that if a metric σab satisfies ∇aσbc = δbaµc+δcaµb then

∇(aσbc) = 0. Therefore, ∇Π
(a
σ̂bc) = 0 and Theorem (3.2.1) guarantees the metriz-

ability of the projective structure (︀Γ⌋︀ containing ∇Π. As ∇Π and ∇ are projectively

equivalent, we have ∇ ∈ (︀Γ⌋︀. As we said the metrics would be gab = det(σ)σab. By

the definition of det(σ) in (4.15), it has projective weight -2. Also, as we discussed

earlier, σab has projective weight 2. Therefore, the projective weight of the metric

is gab is zero as is required. Note that the expression (4.13) is the first prolongation

of the linear system (3.13).



APPENDIX A

Complex Geometry

In this section, we state some definitions and theorems in complex geometry that

mainly deal with holomorphic line bundles which are used in the construction of

minitwistors in Chapter 4. The material discussed here can be found in more detail

in [15], [32] and [34].

A.1 Holomorphic Line Bundles

Let Z be a complex manifold. On any embedded submanifold Y ⊆ Z we can

associate a vector bundle called the normal bundle. The fibers of this bundle at each

point p ∈ Y are the quotient vector space obtained from the exact sequence

0Ð→ TY (p)Ð→ TZ ⋃︀Y (p)Ð→ NY (p)Ð→ 0, (A.1)

where TY is the tangent bundle of Y and TZ ⋃︀Y is the restriction of the tangent bundle

of Z to Y . It is clear that rank(N) = rank(Z) − rank(Y ). We are interested in the

case in which the submanifold Y is a rational curve, meaning that it is an embedding

of the Riemann sphere i.e., CP1, and the manifold Z is a complex surface. In

this case NY has rank one, and is thus a line bundle. Line bundles defined over a

Riemann sphere have many interesting properties. In order to state them we first

need to give some definitions and theorems. As the construction of vector bundles
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suggests, any vector bundle is defined by its transition function on the intersections

of its domain of trivializations. For instance we can define a line bundle over a

Riemann sphere by choosing two points pand q ∈ CP1 and considering open sets

U0 = CP1/{q}andU1 = CP1/{p}. From our choice of U0 and U1 we obtain a chart

for CP1 via stereographic projection to the complex plane. Suppose z and z̃ are

the local coordinates for U and Ũ respectively with z(p) = 0. The line bundle

Lp is defined if the transition function for trivializations over U0 andU1 is g01 = z
where z is the coordinate of U0 and g01 is a map from U1 to U0. This bundle has a

canonical section sp such that sp⋃︀U1 = 0 and sp⋃︀U0 = z, and therefore sp(p) = 0. It

would appear that this construction of Lp depends on the choices of p and q, but it

turns out for any choice of p and q of we get isomorphic line bundles as the lemma

below implies.

Lemma A.1.1. Given any two pair of points (p, q), (p′, q′) ∈ CP1 the exist a holo-

morphic diffeomorphism Ψ such that Ψ(p) = p′ and Ψ(q) = q′.

The prove easily follows if we note that CP1/{p} ≅ C and we can construct

a holomorphic diffeomorphism Ψ1 such that Ψ1(p) = p and Ψ1(q) = q′, using

stereographic projection and a translation. Similarly we have a holomorphic diffeo-

morphism Ψ2 such that Ψ1(p) = p′ and Ψ1(q′) = q′. Thus, Ψ = Ψ2 ○Ψ1 is the map

stated in the theorem. We denote the isomorphic class of line bundles Lp by 𝒪(1).
We can change the transition function to g01 = zn, and proceed similarly to

obtain an isomorphic class of line bundles which we denote by 𝒪(n). When we

regard𝒪(n) as a line bundle we mean an arbitrary line bundle that belongs to𝒪(n).
In this way, it is easy to define the notion of degree for these types of bundles. First

we choose a section s of the line bundle 𝒪(n). Suppose the trivializations of the

section over U0 and U1 is s0 and s1 respectively. Writing the power series of these

two sections, we obtain

∑amz
m and ∑ ãmz̃

m.

This is due to the fact that the trivialized section, say s0, can be regarded as a

complex valued function over U0, and as all functions are holomorphic we can write

its power series in terms of z, the coordinate of the base open set U0. Over U0 ∩U1

we have z = 1
z̃ and therefore

s0 = zns1 Ô⇒∑amz
m = zn∑amz

−m (A.2)

⇒ am = 0 ∀m ≥ n and ã0 = an−1, ãn−1 = a0, ⋯. (A.3)
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We call n the degree of 𝒪(n) since all the sections of this line bundle can be pre-

sented by polynomials of degree n. Thinking of z as the homogeneous coordinate

arising from embedding of CP1 in C2, the global expression for s as a global sec-

tion of 𝒪(n) would be s = aiz(n−i)1 zi2 with 0 ≤ i ≤ n and (zi, z2) the homogeneous

coordinate for CP1 usually denoted by (︀z1 ∶ z2⌋︀. It is obvious that any global section

of 𝒪(n) vanishes at n points. We note that 𝒪 ≅ 𝒪(0) where 𝒪 denotes the trivial

line bundle. this notation makes sense if we note that 𝒪 is simply the sheaf of holo-

morphic functions over the Riemann sphere and so according to Theorem (A.1.2)

stated below, its global sections are constant functions over CP1.

Theorem A.1.2. On a connected and compact complex surface, the only holomor-

phic functions are the constants.

The proof follows if we realize that the compactness of the manifold M implies

that the modulus of any function f is maximum at some point p ∈M . But then in a

coordinate chart φ around p the module of the function f ○ φ−1 attains a maximum

at an interior point of an open set of C which cannot be true unless f is constant.

Using connectedness, f has to be constant over M . As sections of 𝒪 are constants

according to the theorem above, equation (A.3) implies that it is isomorphic to𝒪. It

is easy to see that if a line bundle has a nonvanishing global section then the section

itself gives an isomorphism between the line bundle and 𝒪.

Recall that Hp(M,V ) is the pth cohomology space of the sheaf of germs of

sections of the vector bundle V . For p = 0 it is the space of global sections of V

if H1(M,V ) = 0. So we have dim(H0(CP1,𝒪(n))) = n + 1, because any global

section of 𝒪(n) is identified by the coefficients ai which are n-tuples as showed in

(A.3). Here, we identify a line bundle with its sheaf of sections by abuse of notation.

The sheaf 𝒪∗ denotes the group sheaf of nonzero holomorphic functions under

multiplication. The elements of H1(Z,𝒪∗) represent the isomorphism classes of

holomorphic line bundles on Z (c.f. [13]). In other words,each element of this

bundle represents a class of isomorphic line bundles and is also called the Picard

group of Z, denoted by Pic(Z). Now we can define the degree of any isomorphic

class of line bundles by considering the exact sequence

0Ð→ ZÐ→ 𝒪 exp(2πif)ÐÐÐÐÐ→ 𝒪∗ Ð→ 1, (A.4)

The exactness of the sequence (A.4) is due to the fact that every nonzero holomor-

phic function can be expressed locally by the exponential of a holomorphic function.
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Note that the image of the sheaf 𝒪 under the exponential map is a presheaf and not

necessarily a sheaf, and its associated sheaf is 𝒪∗. The Mayer-Vietoris sequence

gives the exact sequence below for corresponding cohomologies.

0→H0(CP1,Z)→H0(CP1,𝒪)→H0(CP1,𝒪∗)

→H1(CP1,Z)→H1(CP1,𝒪)→H1(CP1,𝒪∗)
c1((︀L⌋︀)ÐÐÐ→H2(CP1,Z)→H2(CP1,𝒪)→H2(CP1,𝒪∗)→ 0.

(A.5)

In order to simplify the exact sequence above, we need to state an important theorem

in complex geometry.

Theorem A.1.3 (c.f. Voisin [32]). IfX is a Kähler manifold thenHp,q(X) is canon-

ically isomorphic to Hq(X,Ωp
X).

In the above theorem the term Kähler manifold refers to a complex manifold

with a choice of Hermitian metric such that the imaginary part of the metric is a

closed two-form. All complex projective spaces are Kähler. Because the isomor-

phism is canonical it is independent of the choice of the metric. The vector space

Hp,q(X) is the de Rham cohomology class which is represented by a closed form

of type (p, q) on the complex manifold and Hq(X,Ωp
X) is the qth Dolbeault coho-

mology of the vector bundle ⋀p ΩX , where ΩX is the cotangent bundle of X . Using

this theorem we have

H2(CP1,𝒪) ≅H2(CP1,Ω0
X) ≅H(0,2)(CP1) = 0. (A.6)

Thus (A.5) becomes

0→ H1(CP1,𝒪)
H1(CP1,Z) →H1(CP1,𝒪∗) c1((︀L⌋︀)ÐÐÐ→H2(CP1,Z)→ 0 (A.7)

We call c1((︀L⌋︀) ∈ H2(CP1,Z), which appears in (A.7), the degree of the class of

line bundles (︀L⌋︀. We know from topology that H2
sing(CP1) = Z and due to the

fact that all the cohomology theories with the same coefficients are isomorphic (c.f.

[33]), we have the same result for cohomology of the constant sheaf of integers, that

is H2(CP1,Z) = Z. Therefore, c1((︀L⌋︀) ∈ Z.

The degree map c1 is a homomorphism with respect to the tensor product of line

bundles in H1(CP1,𝒪∗) since 𝒪∗ is a multiplication group. As a result

deg(L⊗L′) = deg(L) + deg(L′) and deg(L∗) = −deg(L). (A.8)
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where L∗ is the dual line bundle of L. In the last equality we used the fact that the

endomorphism Hom(L,L) = L⊗L∗ is canonically trivial since the only homomor-

phism from a one-dimensional vector space to itself is multiplication by scalars.

Because of this L∗ is usually denoted by L−1 and

0 = c1(Hom(L,L)) = c1(L⊗L∗) = c1(L) − c1(L∗).

Using this homomorphism we can prove that the degree of any line bundle over a

CP1 is the number of zeros of an arbitrary section of the line bundle, which im-

plies that all the sections have the same number of zeros. To do this, choose a

section s ∈ L that vanishes at p in which case the section s ⊗ s∗p ∈ L ⊗ L∗p is non-

vanishing where sp is the canonical section of Lp. Therefore, we have L ⊗ L∗p ≅ 𝒪
because of existence of a nonvanishing section. If c1((︀Lp⌋︀) = 1 then using (A.8),

we get that c1((︀L⌋︀) = 1. In general, for a section s in a line bundle L̃ vanishing

at m points p1, ..., pm counting multiplicities, we can make similar argument for

s ⊗mi=1 s
∗
pi
∈ L̃ ⊗mi=1 L

∗
pi

to show that c1((︀L̃⌋︀) = m. The choice of the degree of Lp
is essentially a normalization. There is no line bundle with a positive degree less

than Lp as it cannot vanish anywhere and is therefore trivial. An obvious corollary

is that global sections of line bundles with negative degree never vanish. Actually

there is no global section in a negative degree line bundle because if one were to

exist it would have to be nonvanishing and thus would give an isomorphism to the

trivial line bundle which is impossible as they have different degrees.

It is easy to see that the cotangent bundle of a Riemann sphere, also called its

canonical bundle, denoted by K, is isomorphic to 𝒪(−2). In order to determine its

degree, we only need to consider one section and find the degree of the transition

function. As before, let us work in a charts U0, U1 with local coordinates z, and z̃.

Since the coordinate on U1 is z̃ = 1
z , this section will have the form d(1

z̃) = −z̃−2dz̃

on U1. Therefore,

dz = −z̃−2dz̃ Ô⇒ g01(z) = −z−2

Ô⇒KCP1 ∶= T ∗CP1 ≅ 𝒪(−2). (A.9)

Another consequence of Theorem (A.1.3) is Serre duality, which is stated below.

Theorem A.1.4 (Serre Duality). If E is a line bundle on an n-dimensional compact

complex manifold Z, then

Hp(Z,E) ≅H(n−p)(Z,KZ ⊗E∗)∗.
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Recall that KZ is the sheaf of sections of the canonical line bundle. Using

Serre duality, we can simplify the exact sequence (A.7) in the case M is a Riemann

sphere. For n = 1 we have

H1(M,𝒪) ≅H0(CP1,𝒪 ⊗KCP1) ≅H0(CP1,𝒪 ⊗𝒪(−2)) ≅H0(CP1,𝒪(−2)).

Since 𝒪(−2) has no global section due to its negative degree, H1(M,𝒪) must van-

ish. Therefore, the sequence (A.7) simplifies to

0→H1(CP1,𝒪∗) c1((︀L⌋︀)ÐÐÐ→ Z→ 0. (A.10)

As a result of the isomorphism between H1(CP1,𝒪∗) and Z the degree of a

line bundle, identifies isomorphism class to which the line bundle belongs. Thus,

all line bundles with the same degree are isomorphic. Using the relation (A.8)

we conclude that 𝒪(1) generates all the line bundles with positive degree through

tensor products; its dual, 𝒪(−1) ∶= 𝒪∗(1), generates all those with negative degree.

For instance, 𝒪(n) = ⊗ni=1𝒪(1). Therefore, any line bundle L on a Riemann sphere

is isomorphic to 𝒪(n) for n = deg(L). This is the special case of the Birkhoff-

Grothendieck Theorem.

Theorem A.1.5. A rank k-holomorphic vector bundle E Ð→ CP1 is isomorphic to

a direct sum of line bundles 𝒪(m1)⊕⋯⊕𝒪(mk) for some integers mi.

We can get a better geometric image of 𝒪(−1) by constructing an example of a

degree minus one line bundle called the tautological line bundle.

Example (tautological line bundle). Consider the Riemann sphere with the coordi-

nate patches z and z̃ for U0, and U1 that we defined previously. Then

𝒪(−1) ≅ {(p, (Z0, Z1)) ∈ CP1 ×C2⋃︀p = (︀Z0 ∶ Z1⌋︀} (A.11)

According to (A.1.5) if we can show that the transition function is g01(z) = z−1

for the line bundle on the right hand side, then we are done. Consider the projection

π ∶ C2 → CP1. The fiber above a point (︀Z0 ∶ Z1⌋︀ is

π−1((︀Z0 ∶ Z1⌋︀) = c(Z0, Z1) ∶= c(Z0, Z1)⋃︀c ∈ C.

Since Zi does not vanish over Ui we can define the following trivializations:

φ0((︀Z0 ∶ Z1⌋︀, c(Z0, Z1)) = (z, cZ0) ⊆ U0 ×C and z = Z
1

Z0

φ1((︀Z0 ∶ Z1⌋︀, c(Z0, Z1)) = (z̃, cZ1) ⊆ U1 ×C and z̃ = Z
0

Z1
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Thus we would have

g01(z)cZ1 = cZ0 Ô⇒ g01(z) =
Z0

Z1
= z−1.

A.2 Deformation Theory

Consider a complex surface Z which contains a family of rational curves, i.e. em-

beddings of the Riemann sphere. The normal bundle of a rational curve in this case

is a line bundle over a Riemann sphere, so we only need to know the degree of the

normal bundle in order to know its isomorphism class. Conversely, knowing the

isomorphism class of the normal bundle is sufficient to know how the rational curve

is embedded in Z. The following theorem is due to Kodaira.

Theorem A.2.1 (c.f. [14]). If Y ⊆ Z is a compact submanifold with H1(Y,NY ) = 0

then Y belongs to a locally complete family {Yx ∶ x ∈ X} for some complex mani-

fold X , and there is a canonical isomorphism between TxX and H0(Yx,NYx).

In the statement of the theorem we are given global information about the com-

plex surface Z as it contains a family of rational curve with degree one normal

bundles. The theorem allows us to investigate the local geometry of the space

parametrizing the family of rational curves. The parametrizing space and the canon-

ical isomorphism can be geometrically interpreted. Any submanifold Y ⊆ Z is

represented by a point x0 ∈ X . Let us denote it by Yx0 . There exists a function

f(y, x) ∶ Yx0 ×X Ð→ Z that we call a minitwistor map such that f(Yx0 , x) is an

embedding of CP1, for all x ∈X . In other words,the vector field ∂
∂xf(y, x)⋃︀x0 gives

a global section of the normal bundle over Yx0 . Also as will be explained later each

normal bundle ‘close enough’ to the zero section, represents another curve close to

Yx0 and conversely, each curve ‘close enough’ to Yx0 represents a section of the nor-

mal bundle. The completeness part of the theorem formally defined below, which

may be found in [9], says in informal language that any rational curve close enough

to Yx0 is contained in the family.

Definition A.2.2. A pair (ℱ ,X) is called a d-dimensional complete analytic family

of compact submanifolds of an d + r-dimensional complex manifold Z if

• ℱ is a complex analytic submanifold of Z × X of codimension r with the

property that for each x ∈ X the intersection Yx × x ∶= ℱ ∩ (Z × x) is a

compact submanifold of Z × x of dimension d.
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• There exists an isomorphism

TxX ≅H0(Yx,NYx)

where Yx ⊆ Z.



APPENDIX B

Cartan’s Test

In this appendix, we will discuss Cartan’s test as a tool for finding the degree of

generality of the set of solutions of an involutive analytic system of PDEs. The

material covered in this section is discussed in greater detail in [9] and [17]. In

order to state Cartan’s test, we need to give some definitions as below in which M

is a smooth m-dimensional manifold.

Definition B.0.3. A graded differential ideal ℐ ⊆ Ω∗(M) over M is a set of differ-

ential forms that are closed under exterior differentiation and wedge product, i.e.

for all θ in ℐ
dθ, θ ∧ η ∈ ℐ,

where η is an arbitrary differential form on M . We denoted the set of k-forms of ℐ
by ℐk ∶= ℐ ∩Ωk.

A differential ideal can be defined by its generators. For instance we can write

ℐ =< θ1, ..., θn >diff which means that ℐ consists of differential forms θi, dθi and

their wedge product with all the differential forms in Ω∗(M). As we will see in an

example, a system of PDEs can be represented with its associated differential ideal.

Definition B.0.4. An exterior differential system (EDS) is a pair (M,ℐ) where ℐ is

a graded differential ideal over M .
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Definition B.0.5. An integral manifold of an EDS (M,ℐ) is a submanifold S of M

such that ℐ ⋃︀TS = 0, i.e. for any integer k ≥ 1,

θ(v1, ..., vk) = 0,

where θ ∈ ℐk and v1, ..., vk ∈ TS.

Similarly we can define an integral element of an EDS.

Definition B.0.6. A k-dimensional subspace E ⊆ TxM is an integral element of ℐ
if θ(v1, ..., vk) = 0, where θ ∈ ℐk and v1, ..., vk ∈ E. The set of all k-dimensional

integral elements of (M,ℐ) is denoted by Vk(ℐ).

The set Vk(ℐ) is clearly a submanifold of the Grassmanian of all k-planes in

TM , namely Grk(TM).
A question similar to what we asked before would be whether for a set of k-

dimensional integral elements of ℐ there exists a k-dimensional integral manifold

of ℐ to which the integral elements are tangent.

The restriction of an integral element of ℐ is an integral element meaning that

is if G is a p-dimensional subspace of E ∈ Vk(ℐ) then G ∈ Vp(ℐ). The converse is

not be true meaning that if E ∈ Vk(ℐ) and G ∈ Vp(ℐ) then E ⊕G may not belong to

Vp+k(ℐ).

Definition B.0.7. LetE ∈ Vk(ℐ) ⊆ TxM be spanned by {e1, ..., ek}. The polar space

of E is

H(E) ∶= {v ∈ TxM ⋃︀ θ(v, e1, ..., ek) = 0,∀θ ∈ ℐk+1} ⊆ TxM.

It is clear that E is contained in H(E). However, H(E) is not necessarily an

integral element. An integral element that is a one-dimensional extension of E can

be obtained from H(E) and is equal to E ⊕ {v} for some v ∈H(E) and v ∉ E.

An integral element E is called regular if the dimension of H(E) is constant in

a neighborhood of E in Vk(ℐ). Moreover, E is called ordinary of the intersection

of Vk(ℐ) with an open neighborhood of E is a smooth submanifold of Grk(TM).
The dimension of the set of all (k+1)-dimensional integral elements that contain

E would be dim(H(E)) − k. Define

r(E) ∶= dim(H(E)) − k − 1.

If no such an extension exist then r(E) = −1.
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An integral manifold of ℐ , say S ⊆ M , is called ordinary (regular) if all of

its tangent spaces are ordinary (regular) integral elements. For a regular integral

manifold we define r(S) ∶= r(TxS) for some x ∈ S.

Theorem B.0.8 (Cartan-Kähler Theorem). Let Σ ⊆ M be an n-dimensional an-

alytic submanifold whose tangent spaces are regular integral elements for a real

analytic EDS (M,ℐ), such that dim(H(TxΣ)) = n + 1. Then there exists an open

neighborhood of x ∈ Σ and a unique (n + 1)-dimensional integral manifold S ⊆M
containing Σ ∩U .

The fact that dim(H(E)) = n + 1 provides the uniqueness part of the theorem.

Otherwise, if dim(H(E)) = n+r+1 with r ≠ 0, we consider a submanifoldR ⊆M ,

called restraining manifold, such that R is of codimension r in M and Σ ⊆ R and

at each point p ∈ Σ the tangent space TpR intersects H(TpΣ) transversally and as a

result, the theorem above holds in R and we have a unique extension of Σ in R.

Using the Cartan-Kähler Theorem, we can successively construct the integral

manifold of a differential ideal with a choice of restraining manifolds at each step.

Therefore, for a given integral element E ∈ Vn(ℐ) at point p, we obtain an n-

dimensional integral manifold N with TpN = E. In order to address this construc-

tion, we define a regular flag of integral elements at a point p ∈ M to be a set of n

integral elements

(0) = E0 ⊂ E1 ⊂ ⋯ ⊂ En = E ⊂ TpM

such that Ei ∈ Vi(ℐ) and E1, ...,En−1 are regular. Such a flag is called a regular

flag for the integral element E. Given an integral element E ∈ Vn(ℐ) at point p,

in order to use the Cartan-Kähler Theorem to investigate whether there exist an

integral manifold N ⊆M such that TpN = E, we only need to find a regular flag of

E. Then by applying the Cartan-Kähler Theorem to each Ei in the flag we get the

sufficient condition for the existence of N .

Practically speaking, our discussion above is not of great significance as finding

a regular flag of E may not be straightforward. Also at point p, it is possible that

the tangent space of not all of the integral manifolds have a regular flag.

Cartan’s test helps to get around with this difficulty. For a flag ℱ of E , not

necessarily regular, set

c(Ei) ∶= dim(TpM) − dim(H(Ei)) i = 0, ..., n.

where Ei’s are the elements of the flag.
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Theorem B.0.9 (Cartan’s test). For an EDS (M,ℐ) let ℱ = (E0, ...,En) be an

integral flag of E ∈ Vn(ℐ) and E ⊆ TpM . Then

codim(Vn(ℐ)) ≥ c(ℱ) ∶= c(E0) +⋯ + c(En−1)

in the Grassmannian Grn(TM) at E. Moreover, Vn(ℐ) is a smooth submanifold of

Grn(TM) at E of codimension c(ℱ) is and only if the flag ℱ is regular.

With Cartan’s test at our disposal, for a quasi-linear system of PDEs with a given

flag of an integral element, it is a matter of linear algebra to look for the existence

of integral manifolds for it. If the equality holds for a flag of E then we say that

the flag has passed the test and therefore is regular. As a result of our previous

discussion, if we can find a flag of E that passes Cartan’s test then E is an ordinary

integral element and the Cartan-Kähler Theorem guarantees the existence of at least

one real-analytic n-manifold manifold N ⊆M such that TpN = E.

Example. The second-order PDEs of the form

Auxx + 2Buxy +Cuyy +D +E(uxxuyy − u2
xy) = 0,

where A, B, C, D, E are functions of x, y, u, ux, uy are called the Monge-

Ampère equations. The 1-jet of solutions u(x, y) define 𝒮(1) ⊆ J1(R2,R). We also

want the variables x and y to be independent which gives the condition dx ∧ dy ≠ 0

over 𝒮(1). With this condition 𝒮(1) will be a submanifold of the integral manifold

of the 1-form θ1 = du − pdx − qdy with p = ux and q = uy. Thus, assuming that

dx∧dy ≠ 0 holds everywhere in 𝒮(1), a function u(x, y) satisfies the Monge-Ampère

equation if and only if the first prolongation of the surface it spans, namely 𝒮(1), is

an integral manifold of θ1 and

θ2 = Adp ∧ dy +B(dq ∧ dy − dp ∧ ddx) −Cdq ∧ dx +Ddx ∧ dy +Edp ∧ dq.

Knowing that J1(R2,R) ≅ R5 with coordinates (x, y, u, p, q), we consider the EDS

(R5,ℐ), where ℐ =< θ1, θ2 >diff, to find 𝒮(1) and the general solution to the Monge-

Ampère equation.

We consider the case A = B = C = 0 and D = E = 1. It is clear that

V1(ℐ) = {θ1}⊥ and thus it is spanned by the integral elements ∂p, ∂q, ∂x + p∂u and

∂y + q∂u. Let E1 = ∂p be the first integral element of the flag. The two-forms of the

ideal are of the form θ2, dθ1, θ1 ∧ γ ,where γ is an arbitrary one-form. Thus the
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vectors annihilating the one-forms ∂p⌟θ2, ∂p⌟dθ1 and θ1 determineH(E1). There-

fore, we have H(E1) = {dq, dx.θ1}⊥ = {∂p, ∂y +q∂u}. As E1 has a one-dimensional

extension, E2 is uniquely determined and is equal to H(E1). It is easy to see that

H(E2) = E2 and there is not extension of E2. Now with our choices of E1 and E2

we have a flag ℱ ∶ {0} ⊂ E1 ⊂ E2 = E ⊂ TxR5. According to our discussion above,

we have c(E0) = 5 − 4 = 1 and c(E1) = 5 − 2 = 3 and c(E2) = 5 − 2 = 3 which

gives c(ℱ) = c(E0) + c(E1) = 4. In order to see if this flag passes the Cartan’s test

we need to compute the codimension of V2(ℐ) in Gr2(TR5). In a sufficiently small

neighborhood of E2 ∈ V2(ℐ) the two-planes are spanned by the vectors

v1 = ∂p + a(∂x + p∂u) + b∂q + c∂u and v2 = ∂y + q∂u + d(∂x + p∂u) + e∂q + f∂u

for some (a, b, ..., f). The conditions

θ1(v1) = θ1(v2) = 0, dθ1(v1, v2) = θ2(v1, v2) = 0

give c = f = e − a = b + d = 0. Therefore, the fiber codimension of V2(I) at E2 is

four, as it is determined by knowing b and e, which is equal to c(ℱ). Therefore,

the flag has passed the Cartan’s test and the general solution of the Monge-Ampère

equation depends on two function of one variable.



APPENDIX C

Long Formulae of Chapter 3

Recall that we considered the connectionD = d+Ω1dx+Ω2dy in (2.20). In our anal-

ysis in Section 3.4, we consider such a connection over the rank six we considered

defined in (3.25). In this case the expressions for Ω1 and Ω2 are as below.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2
3A1 2A0 0 0 0 0

0 0 0 −1
2 0 0

−2A3 −2
3A2

4
3A1 0 1 0

(Ω1)41 (Ω1)42 (Ω1)43 −1
3A1 −3A0 0

0 0 0 0 0 −1

(Ω1)61 (Ω1)62 (Ω1)63 (Ω1)64 (Ω1)65 (Ω1)66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2
3A1 2A0 0 0 0 0

0 0 0 −1
2 0 0

−2A3 −2
3A2

4
3A1 0 1 0

(Ω1)41 (Ω1)42 (Ω1)43 −1
3A1 −3A0 0

0 0 0 0 0 −1

(Ω1)61 (Ω1)62 (Ω1)63 (Ω1)64 (Ω1)65 (Ω1)66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

(C.1)
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with entries (Ωi)ab being as below:

(Ω1)41 = − 4

3
∂xA2 + 4A0A3 +

2

3
∂yA1,

Ω1)42 = − 2∂yA0 +
2

3
∂xA1 + 4A2A0 −

4

9
(A1)2,

(Ω1)43 = 2∂xA0 − 4A0A1,

(Ω1)61 = − 4

3
∂x∂yA2 −

20

3
A0A2A3 +

2

3
∂2
xA1 + 4A3∂yA0 − 2A0∂yA3

− 16

9
A2∂xA2 +

8

9
A2∂yA1,

(Ω1)62 = 2

3
∂x∂yA1 −

4

3
A1∂yA1 + 2A0∂yA2 − 2∂2

yA0 + 4A2∂yA0 + 4A3∂xA0

+ 6A0∂xA3 +
8

9
A1∂xA2 +

4

3
A0A1A3A2 −

4

3
A0(A2)2,

(Ω1)63 = 2∂x∂yA0 +
2

3
A0∂xA2 −

4

3
A2∂xA0 − 4A1∂yA0 −

4

3
A0∂yA1

+ 8

3
A0A1A2 + 4A3(A0)2,

(Ω1)64 = 4

3
∂xA2 − ∂yA1 + 5A0A3,

(Ω1)65 = 1

3
∂xA1 − 4∂yA0 + 3A2A0 −

2

9
(A1)2,

(Ω1)66 = 1

3
A1,

(Ω2)51 = − 2∂yA3 − 4A3A2,

(Ω2)52 = 2∂xA3 −
2

3
∂yA2 + 4A1A3 −

4

9
(A2)2,

(Ω2)53 = 4

3
∂yA1 −

2

3
∂xA2 + 4A0A3,

(Ω2)61 = − 2∂x∂yA3 − 4A2∂xA3 −
4

3
A3∂xA2 +

2

3
A3∂yA1 +

4

3
A1∂yA3

− 4A0(A3)2 − 8

3
A1A2A3,

(Ω2)62 = 2∂2
xA3 −

4

3
A2∂xA2 −

4

3
A0A2A3 −

2

3
∂x∂yA2 + 4A1∂xA3 + 4A0∂yA3

+ 6A3∂yA0 +
4

3
A3(A1)2 + 2A3∂xA1 +

8

9
A2∂yA1,

(Ω2)63 = − 2

3
∂2
xA2 +

8

9
A1∂xA2 + 4A0∂xA3 − 2A3∂xA0 −

16

9
A1∂yA1

+ 4

3
∂x∂yA1 +

20

3
A0A1A3,

(Ω2)64 = 4∂xA3 −
1

3
∂yA2 + 3A1A3 −

2

9
(A2)2,

(Ω2)65 = ∂xA2 −
4

3
∂yA1 + 5A0A3,

(Ω2)66 = 1

3
A2,



78

The expression for the curvature F of this connection as was defined in (2.22)

is

F = dΩ +Ω ∧Ω = Fdx ∧ dy =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

V1 V2 V3 V4 V5 V6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

dx ∧ dy, (C.2)

where the V1, ..., V6 are given in (3.25).

In the prolongation process in Section 3.3 we defined the variables P,Q,R,S

which have the following expressions.

P = − (Ω1)41ψ1 − (Ω1)42ψ2 − (Ω1)43ψ3 − (Ω1)44µ − (Ω1)45ν,

Q = − (Ω1)51ψ1 − (Ω1)52ψ2 − (Ω1)53ψ3 − (Ω1)54µ − (Ω1)55ν,

R = − (Ω1)61ψ1 − (Ω1)62ψ2 − (Ω1)63ψ3 − (Ω1)64µ − (Ω1)65ν − (Ω1)66ρ,

S = − (Ω2)61ψ1 − (Ω2)62ψ2 − (Ω2)63ψ3 − (Ω1)64µ − (Ω1)65ν − (Ω1)66ρ.
(C.3)
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