
Evaluating the PyTorch Compiler in the

Vision Domain

Aidan Goldfarb

Department of Computer Science

McGill University

Montréal, Québec, Canada

August 15, 2024

A thesis presented for the degree of

2

Computer Science

©2024 Aidan Goldfarb

ii

Contents

1 Introduction 1

1.1 Deep Learning in the Vision domain . 1

1.2 Contributions . 2

1.3 Thesis structure . 3

2 Background 4

2.1 Neural networks . 4

2.2 Modern workloads . 6

2.2.1 Matrix multiplication . 6

2.2.2 Convolutions . 6

2.2.3 Vision models . 8

2.3 Compilers . 9

2.3.1 AOT compilation . 10

2.3.2 JIT compilation . 10

Contents iii

2.4 Pytorch . 11

2.5 Compilers in Python . 13

2.5.1 The PyTorch compiler . 13

3 Related Work 20

3.1 ML in Python . 20

3.2 Compilers in Python . 21

3.2.1 TorchScript . 21

3.2.2 Lazy tensors . 22

3.2.3 Torch FX symbolic trace . 23

3.2.4 JAX . 24

3.3 Summary . 24

4 Methodology 25

4.1 Examination of core operations . 26

4.1.1 Matrix multiplication . 26

4.1.2 Convolutions . 26

4.1.3 Vision models . 28

4.2 Timing . 29

4.2.1 Matrix multiplication timing . 30

4.2.2 Convolution timing . 30

Contents iv

4.2.3 Vision model timing . 31

4.3 The oracle . 33

4.3.1 Construction of the theoretical oracles 33

4.3.2 Oracle implementation . 34

5 Evaluation 38

5.1 Research questions . 38

5.2 Experiment setup . 39

5.2.1 System configuration . 39

5.2.2 Experiment conditions . 39

5.3 Matrix multiplication . 40

5.4 Convolutions . 43

5.4.1 Different square kernels . 44

5.4.2 Convolutions of ResNet . 46

5.4.3 Convolution blocks . 47

5.5 Vision models . 49

5.5.1 E2E tests . 49

5.5.2 Timing validation . 51

5.5.3 Layer level timing . 53

5.5.4 Implementation of the oracle . 56

5.6 Summary . 60

Contents v

5.6.1 Matrix multiplication . 60

5.6.2 Convolutions . 61

5.6.3 Vision models . 61

6 Conclusion 63

6.1 Summary of contributions . 63

6.2 Analysis . 64

6.2.1 Choice of Domain . 64

6.2.2 Hardware selection . 65

6.3 Future Work . 65

6.3.1 Choice of Compiler . 65

6.3.2 Implementation of a hybrid compiler 65

6.3.3 Data movement analysis . 66

Appendices 73

vi

List of Figures

2.1 Convolution definition . 7

2.2 ResNet50 inference using PyTorch in Python 12

2.3 TorchDynamo overview of the execution of function foo(). Default Python

behavior on the left, and torch.compile(foo) on the right. All compilation

takes place on the CPU, although Triton operations are dispatched to the

GPU during execution. 17

4.1 Layer subtraction of a four layer (L0-L3) network. Estimated execution time

of L1 is {L0,L1} - {L0} . 32

4.2 Dynamic programming recurrence relation 36

4.3 Illustration of the optimal path for a four layer network via the DP algorithm

described in section 4.3.2 . 37

5.1 PyTorch matrix multiplication on 2D matrices. Interpreted and C++ are run

on the CPU, CUDA and Triton on the GPU. 41

List of Figures vii

5.2 Comparison of CUDA and Triton MM. 42

5.3 Single convolution speedup on the GPU, square kernel size vs the log of

speedup. Speedup values <1 indicates that compilation slows execution. . . . 44

5.4 Speedup achieved under compilation for all of the convolutions in ResNet.

Profiler data and E2E timing. There is no correlation between parameters

and speedup . 47

5.5 Speedup achieved under compilation for convolutions executed in blocks. The

number of convolutions in each block is the X axis. 48

5.6 End-to-end time for the six vision models. In each graph, the CUDA version

is on the left, and the Triton on the right. 50

5.7 AlexNet benchmark. Along the X axis, the different configurations of the

models are shown, as summarized in Table 4.1. The different bars, as per the

legend, describe the timing methods. 52

5.8 Frequency (density) plot of GoogLeNet’s layers. Layers to the right of 1.0

speedup are accelerated by compilation. 55

5.9 Layer timed oracle for different configurations of ResNet. Interpreted, C++,

CUDA, Triton, and theoretical oracle are shown. 57

5.10 SqueezeNet layer time by layer subtraction. Interpreted, compiled, and

custom configuration compared. Custom is the Layer Subtraction Oracle

implementation. 58

List of Figures viii

5.11 ResNet layer times, different devices and configurations. Final graph is all

curves overlapped. 62

1 CPU multiplication, with compilation time, for four different compile modes

in NumPy and PyTorch . 74

2 Density plots of all models on the GPU, measured with E2E timers 75

3 E2E runs of all models on the GPU . 76

4 DP oracle runs for each model, on the GPU. Compared to CUDA and Triton. 77

5 AlexNet, default compile mode, layer times with E2E timers. 78

6 DenseNet, default compile mode, layer times with E2E timers. 79

7 GoogLeNet, default compile mode, layer times with E2E timers. 80

8 MobileNetV2, default compile mode, layer times with E2E timers. 81

9 ResNet, default compile mode, layer times with E2E timers. 82

10 SqueezeNet, default compile mode, layer times with E2E timers. 83

11 AlexNet, timer verification. 84

12 DenseNet, timer verification. 84

13 GoogLeNet, timer verification. 85

14 MobileNetV2, timer verification. 85

15 ResNet, timer verification. 86

16 SqueezeNet, timer verification. 86

ix

List of Tables

2.1 Compilation modes . 15

2.2 Definitions of terms in Figure 2.3 . 19

4.1 Summary of Timing Methods . 33

5.1 Theoretical Model Speedups using the Best of Two Runs oracle. 58

x

Abstract

Machine learning (ML) is becoming pervasive, with applications spanning virtually every

domain of human activity, from art to autonomous driving. Several tools are available to

develop ML models, with Python being a popular choice due to its ease of use. As datasets

grow ever larger, the need for speed in processing and training models becomes more critical,

particularly in the context of vision models. These models, which include convolutional

neural networks (CNNs), are essential for tasks such as image recognition, object detection,

and autonomous driving. Training these models can take months on multiple GPUs, so even

minor speed improvements can significantly reduce overall computation time and energy cost.

Compilation is the natural solution to improving performance of long running programs.

Despite their flexibility and ease of use, in-Python compilers, which are designed to

speed execution time, can slow some operations. This thesis explores the performance of

the PyTorch compiler, TorchDynamo, starting with the fundamental operations of matrix

multiplication, then convolutions, and finally evaluating full vision models. It also has the

goal of understanding where and why the compiler excels or fails in optimizing performance.

Abstract xi

The primary objective of this thesis is to understand the behavior of the PyTorch

compiler in the context of vision models. These investigations aim to identify bottlenecks

and optimization opportunities, ultimately enhancing the efficiency of vision models in

practical applications. Specifically, six key vision model architectures are examined and

tested. Evaluating the PyTorch compiler’s performance on these models and their

fundamental operations, such as matrix multiplication and convolutions, provides insights

into its effectiveness as well as potential areas for improvement. By exploring these

building blocks, this thesis aims to contribute to the optimization of vision models,

augmenting their efficiency and applicability in real-world scenarios. Additionally, the

thesis explores potential paths for improving compiler performance, such as selective

compilation strategies.

xii

Abrégé

L’apprentissage machine (AM) devient omniprésent, avec des applications couvrant

pratiquement tous les domaines de l’activité humaine, de l’art à la conduite autonome.

Plusieurs outils sont disponibles pour développer des modèles d’apprentissage automatique,

Python étant un choix populaire en raison de sa facilité d’utilisation. Les ensembles de

données devenant de plus en plus volumineux, le besoin de rapidité dans le traitement et

l’entrâınement des modèles devient de plus en plus critique, en particulier dans le contexte

des modèles de vision. Ces modèles, qui comprennent les réseaux neuronaux convolutifs

(RNC), sont essentiels pour des tâches telles que la reconnaissance d’images, la détection

d’objets et la conduite autonome. L’entrâınement de ces modèles peut prendre des mois sur

plusieurs GPU, de sorte que même des améliorations mineures de la vitesse peuvent réduire

de manière significative le temps de calcul global et le coût énergétique. La compilation est

la solution naturelle pour améliorer les performances des programmes de longue durée.

Malgré leur flexibilité et leur facilité d’utilisation, les compilateurs in-Python, qui sont

conçus pour accélérer le temps d’exécution, peuvent ralentir certaines opérations. Cette thèse

Abrégé xiii

explore les performances du compilateur PyTorch, TorchDynamo, en commençant par les

opérations fondamentales de multiplication de matrices, en progressant vers les convolutions,

et enfin en évaluant des modèles de vision complets. Elle a aussi pour but de comprendre

où et pourquoi le compilateur excelle ou échoue dans l’optimisation des performances.

L’objectif principal de cette thèse est de comprendre le comportement du compilateur

PyTorch dans le contexte des modèles de vision. Ces recherches visent à identifier les

goulots d’étranglement et les opportunités d’optimisation, pour finalement améliorer

l’efficacité des modèles de vision dans les applications pratiques. Plus précisément, six

architectures clés de modèles de vision sont examinées et testées. L’évaluation des

performances du compilateur PyTorch sur ces modèles et leurs opérations fondamentales,

telles que la multiplication matricielle et les convolutions, fournit des indications sur son

efficacité ainsi que sur les domaines potentiels d’amélioration. En explorant ces blocs de

construction, cette thèse vise à contribuer à l’optimisation des modèles de vision, en

augmentant leur efficacité et leur applicabilité dans les scénarios du monde réel. En outre,

la thèse explore des voies potentielles pour améliorer la performance des compilateurs,

telles que les stratégies de compilation sélective.

xiv

Acknowledgements

I would like to express my deepest gratitude to those who have supported and guided me

throughout the journey of this thesis.

First and foremost, I am profoundly grateful to my advisors, Oana and Christophe, whose

insightful guidance, encouragement, and support have been instrumental in the completion

of this work.

I also wish to thank my labmates, Löıc and Sebastian, for their invaluable support and

guidance as I navigated a new department, city, and country.

To my friends, without you this thesis would not be possible. Brennan, your serious

dedication to LATEX has been a source of strength for me in my darkest moments. Arinze,

you always knew when to not take something too seriously. Nic, you were a good TA and a

better friend.

Most importantly, I owe an immeasurable debt of gratitude to my parents, and sister.

Your unwavering support, boundless encouragement, and steadfast belief in me have been

the foundation upon which this achievement is built. Thank you for always having my back.

1

Chapter 1

Introduction

1.1 Deep Learning in the Vision domain

Since 2010, the field of machine learning (ML) has seen a significant shift towards

deeper models, enabled by increased computing capabilities. However, the amount of data

needing to be processed is growing at a faster rate than available processors can handle.

This necessitates the use of parallelization and accelerators to maintain performance. This

is more evident in the computer vision field.

The vision field encompasses tasks for acquiring, processing, analyzing and understanding

digital images, and extraction of high-dimensional data from the real world to produce

numerical or symbolic information [1]. Data growth is particularly pronounced in this field,

driven by the proliferation of high-definition images and videos, which can now be easily

1. Introduction 2

produced and stored. Deep learning models in the vision field are traditionally implemented

in Python due to its ease of entry and extensive community development.

Python’s interpreted nature means it is easy to write and debug, but slow to execute.

Developers employ compilation to long running programs in hopes that the more efficient

machine code will offset the compilation time. With the growing size of datasets, this

translation from easy-to-write Python code to fast machine-executable code is becoming

the industry norm. PyTorch, a widely used framework in Python for ML and deep

learning, benefits from the contributions of a large community. This includes a

Just-in-Time (JIT) deep learning compiler, TorchDynamo, that accelerates Python code by

generating C++/OpenMP [2] code for the CPU and Triton code for the GPU. However,

this compiler is not always faster; in some cases, the generated machine code can be slower

than interpreted execution.

1.2 Contributions

This thesis explores the predictability and stability of Python’s state-of-the-art deep

learning compiler, TorchDynamo, on models in the vision domain. To this end, the building

blocks of these complex models are tested. Initially, an analysis of the compiler’s performance

on matrix multiplication (MM), the fundamental operation in almost all machine learning, is

conducted. Then convolutions, the building block of all image processing models, are tested.

Finally, a deep analysis of six vision models is done. Throughout, the methods for timing

1. Introduction 3

and evaluation are critically vetted, as timing both accelerated operations are non-trivial.

This thesis demonstrates:

• Examinations of the CUDA and Triton matrix multiplication algorithms.

• Which convolutions perform well under compilation, and the effectiveness of

convolutional fusion in the PyTorch compiler.

• Vision model features which perform well under compilation. Namely 1x1 dimension

reducing convolutions.

1.3 Thesis structure

The thesis is partitioned into six chapters. Following this introductory section,

Chapter 2 discusses the higher-level concepts required to understand the work done.

Chapter 3 introduces the relevant literature and work that has made this study possible.

Chapter 4 describes in detail the methodology of each of the experiments conducted. All

experiments and code can be reproduced with information in this section. Chapter 5

presents and discusses the results and implications of each of the experiments. Finally,

Chapter 6 provides a summary of contributions, a critical analysis of the work, and avenues

for future exploration and implementation.

4

Chapter 2

Background

2.1 Neural networks

Neural networks are a class of machine learning models based on the structure and

function of the human brain. They consist of interconnected layers of nodes–or neurons–

wherein each connection represents a weighted path through which data flows. The primary

utility of neural networks is their capacity to learn patterns from data. The learning is done

through a process called training. Most neural networks are trained with labeled data, data

which is tagged with identifying properties, enabling it to be compared to a “prediction”

made in the final layer of the network. During supervised training, the network passes

data forward through the network to generate predictions, a process called inference, or the

forward pass. The network adjusts the weights of its connections based on the input data

2. Background 5

and the error of its predictions through a process known as backwards propagation of errors,

backpropagation, or the backward pass. The diagram below represents a five layer neural

network. The forward pass consists of passing data from left to right along the edges and

through the nodes, and the backwards pass from right to left.

input

layer

hidden layer
output

layer

Five layer neural network

Backpropagation [3] involves the application of the chain rule to compute gradients in a

neural network. This is typically done using an optimization algorithm like gradient descent,

facilitated by a technique called auto-differentiation [4], which to automatically computes

gradients. Due to their ability to model non-linear relationships and capture intricate data

dependencies, neural networks have proven effective in various tasks, including image and

speech recognition, natural language processing, and game playing. Their versatility and

2. Background 6

pattern-finding ability make them an essential feature of modern artificial intelligence and

machine learning algorithms.

2.2 Modern workloads

Modern workloads in machine learning and artificial intelligence involve complex

operations and models. The experiments described in this thesis focus on vision models

and their principal components.

2.2.1 Matrix multiplication

Matrix multiplication is a core operation found in most vision models. It involves the

multiplication of two matrices to produce a third matrix. This operation is crucial for

various tasks, including neural network layer computations, and many other numerical

algorithms. Efficient execution of matrix multiplication can significantly impact the

performance of machine learning models, especially when dealing with large datasets and

high-dimensional data.

2.2.2 Convolutions

Convolutions are operations that are virtually always employed in the field of computer

vision and are the building blocks of Convolutional Neural Networks (CNNs). A convolution

2. Background 7

involves sliding a filter (kernel) over an input image or feature map to produce a new feature

map that captures specific patterns. The general formula for a convolution is described on

the following page, adapted from [5].

g(x, y) = ω ∗ f(x, y) =
a∑

i=−a

b∑
j=−b

ω(i, j)f(x − i, y − j)

g(x, y): The output image after applying the convolution.
ω: The convolution kernel or filter.

∗: The convolution operation.
f(x, y): The input image.

i, j: Indices that iterate over the kernel dimensions.
a, b: Half-width and half-height of the kernel.

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

f(x, y)

∗
1 0 1
0 1 0
1 0 1

ω

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

g(x, y)

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 2.1: Convolution definition

Convolutions help reduce the spatial dimensions of the data while preserving important

features needed for tasks like image classification, object detection, and segmentation. With

the growing size of datasets, optimizing convolution operations is crucial for improving the

efficiency and speed of CNNs.

2. Background 8

2.2.3 Vision models

Vision models, such as CNNs, are designed to process and analyze visual data, including

images and videos. These models have revolutionized the field of computer vision, enabling

significant advancements in areas like image recognition, facial detection, and autonomous

driving. Vision models typically consist of multiple layers, including convolutional, pooling,

and fully connected layers, all of which work together to extract and interpret visual features.

The performance of these models depends heavily on the efficiency of underlying operations,

such as matrix multiplication and convolutions. Enhancements in compilers and hardware

acceleration have been instrumental in scaling vision models to handle large and complex

datasets, making them more powerful and practical for real-world applications. An example

of a CNN is presented below, adapted from [5]. Like the five layer NN described above, the

forwards and backwards passes function with the same mechanics. This network contains

special convolutional nodes just after the input layer. The convolutional layers are generally

the computational bottleneck of the forwards and backwards passes.

2. Background 9

convolutional

layers

hidden

layers

input

layer

output

layer

Convolutional Neural Network

2.3 Compilers

A compiler is a computer program that functions effectively as a language translator.

In its most usual form, a compiler translates code written in a high-level language, such as

Python, into a set of machine instructions that can be understood by a CPU or a GPU. The

time required for this process is referred to as compilation time. Compilers come in several

flavors, the most common two being Ahead-of-Time (AOT) and Just-in-Time (JIT). In both

types of compilation, extensive code optimization is possible.

2. Background 10

2.3.1 AOT compilation

Ahead-of-Time (AOT) compilers translate code before the program is executed. This

process happens during the build or compile time, producing a binary executable that can be

run on the target machine. The primary advantage of AOT is rapid execution time. Once a

program has been compiled, the code being executed can run directly on the target platform,

whether it be a CPU or a GPU, whenever the user desires. However, AOT compilers are

known to face challenges with dynamic language features and runtime optimizations that

require knowledge of the program’s behavior during execution. These limitations can restrict

the flexibility and adaptability of the compiled code compared to code produced from Just-

in-Time (JIT) compilation.

2.3.2 JIT compilation

Just-in-Time (JIT) compilers compile code at runtime, translating high-level code into

machine code immediately before the program is executed on the target platform. This

approach allows the compiler to optimize the code based on runtime information. This can

lead to significant performance improvements for programs that benefit from dynamic

optimizations. JIT compilation provides greater flexibility, allowing for optimizations that

adapt to the program’s execution patterns, such as in-lining, frequently called functions or

optimizing hot paths. However, JIT compilers introduce additional overhead during

execution, which can lead to slower startup times and less predictable performance,

2. Background 11

especially for short-lived applications. Despite these trade-offs, JIT compilation is

particularly well-suited for environments where code needs to be highly dynamic, as in

Python environments. Specifically, CNNs stand to benefit heavily from JIT compilation.

This is due to optimizations such as convolutional fusion wherein the primary performance

bottleneck of vision models is improved. This optimization can only be maximized with

runtime information or a statically defined model, the latter being very unpythonic and not

preferred by Python developers.

2.4 Pytorch

PyTorch [6] is an open-source deep learning framework developed by Facebook’s AI

Research lab (FAIR). Introduced in 2016, PyTorch has become one of the most popular

tools for building and training neural networks due to its ease of use and flexibility. The

framework is designed to provide a seamless path from research prototyping to production

deployment, featuring a dynamic computation graph that allows developers to change

training and inference behavior through a variety of tools. These tools include JIT and

AOT compilers, custom backends, automatic differentiation, and a library of relevant linear

algebra implementations.

One of the standout features of PyTorch is its intuitive API, which readily integrates

with the Python programming language and its vast ecosystem of libraries. PyTorch

supports distributed training, enabling the scaling of model training across multiple GPUs

2. Background 12

and nodes. Additionally, PyTorch’s strong community support and documentation

facilitate collaboration and rapid development. The framework also offers interoperability

with other popular machine learning tools and libraries, such as NumPy [7] and

TensorFlow [8], further enhancing its versatility and ease of adoption for both academic

research and industry applications.

State of the art machine learning models can be executed in just a few lines of code:

1 import torch
2 import torchvision . models as models
3 input_data = torch.rand (1, 3, 224, 224) # random input data
4 model = models . resnet50 ()
5 output = model(input_data) # execute the forward pass (inference)

Figure 2.2: ResNet50 inference using PyTorch in Python

2. Background 13

2.5 Compilers in Python

Compilers in modern Python machine learning frameworks fall into one of two categories:

eager mode or graph mode. Eager mode frameworks are noted for their imperative define-

by-run methodology [9], where models are represented, like all other language features, in

code which is interpreted each run. On the other hand, graph mode frameworks use a define-

and-run [9], where a graph is constructed prior to execution and called each time the model

is invoked. Eager mode frameworks benefit from being easier to understand and debug.

Unfortunately, eager mode frameworks suffer from a lack of operation level optimization.

Optimizations such as operator fusion and scheduling are not possible with basic eager

mode frameworks. Advancements in eager mode frameworks [10, 11] have shown promise,

but at the cost of flexibility and ease of programming, a cornerstone of Python and a deal-

breaker for many developers. The Pytorch compiler is an extension to PyTorch which aims

to harness the flexibility of basic eager mode frameworks with the optimizations of graph

mode frameworks.

2.5.1 The PyTorch compiler

The Pytorch compile is engaged simply by wrapping any Python function with

torch.compile(), which incorporates two technologies, TorchDynamo and TorchInductor.

2. Background 14

Usage

The function signature of the torch compiler is:
1 def compile (model: Optional [Callable] = None , *,
2 fullgraph : builtins .bool = False ,
3 dynamic : Optional [builtins .bool] = None ,
4 backend : Union[str , Callable] = " inductor ",
5 mode: Union[str , None] = None ,
6 options : Optional [Dict[str , Union[str , builtins .int ,

builtins .bool]]] = None ,
7 disable : builtins .bool = False) -> Callable :

Model The function you wish to compile. This variable is optional due to the presence of

a function decorator mode, i.e. @torch.compile(...)

Fullgraph This flag disallows graph breaks or unsupported features. If enabled, it will

raise error alerts when it recognizes functions that cannot be captured in a single FX graph.

Dynamic This flag enables dynamic shape tracing. This is a feature that generates

maximally dynamic kernels, a feature that precludes recompilation. Recompilation may

occur when input sizes change, as is common in matrix multiplication for example.

Backend As described above, TorchDynamo requires backends to produce code from

captured FX graphs. The default ’inductor’ is designed to strike a balance between

performance and overhead.

2. Background 15

Mode Modes of compilation are described below:

Backend Description

Default The default mode, aimed to be a good balance between
performance and overhead.

Reduce-
overhead

Caches the workspace memory required for the
invocation so that it is not reallocated in subsequent
runs. This flag is ignored if the CUDA graphs
generated mutate input.

Max-autotune Leverages Triton based matrix multiplications and
convolutions It enables CUDA graphs by default.

Max-autotune-
no-cudagraphs

Same as above, without CUDA graphs.

Table 2.1: Compilation modes

Options Various other options, available only through invoking

torch. inductor.list options() or reading the source code found in [12].

Disable This feature disables all internal operations during testing.

Most simply, it can be invoked as:
1 import torch
2 def foo(a,b):
3 return a+b
4 foo_compiled = torch. compile (foo)
5 result = foo_compiled (5 ,6) # result will be an int of value 11

2. Background 16

TorchDynamo

TorchDynamo is a Python bytecode to Python bytecode JIT compiler. The details are

described precisely in Ansel et al. [13], but the basic concept is shown in Figure 2.3, from the

original paper. The figure compares the execution pipeline of a function foo() in default

Python and under compilation. The key concepts and terms are described in Table 2.2.

The default Python behavior consists of a function foo() being converted two Python

bytecode and then executed by the interpreter. In Figure 2.3, we see the bytecode

representation as PyCodeObject. The interpreter, PyEval EvalFrameDefault() uses this

bytecode, and stack frame information stored in the PyFrameObject to execute the code.

Code compiled by TorchDynamo has a similar execution pipeline. The function foo() is

converted into a PyFrameObject and a PyCodeObject. Instead of immediately executing the

bytecode using the frame data, TorchDynamo compiles the PyCodeObject. As we saw earlier,

TorchDynamo is a bytecode to bytecode compiler. In this compilation, dynamic analysis is

performed to extract FX graphs. This FX graph is then be passed into the backend of the

compiler, TorchInductor by default, which is described in the following section. This backend

performs graph level optimizations on the captured FX graphs. Finally, these changes are

patched into the original PyCodeObject and the FX graphs are cached in working memory,

as they may be called again. As these optimizations are happening during execution, there is

a chance that behavior of the function could change due to a new control flow branch being

taken. To ensure correct results, each function is protected by a guard. These guards verify

2. Background 17

Figure 2.3: TorchDynamo overview of the execution of function foo(). Default Python
behavior on the left, and torch.compile(foo) on the right. All compilation takes place on the
CPU, although Triton operations are dispatched to the GPU during execution.

the previously applied optimizations are still valid given the current execution path. The

now patched PyCodeObject can now be interpreted by the PyEval EvalFrameDefault(),

which makes calls to cached functions or artifacts.

TorchInductor

After the Python code has been captured by TorchDynamo and transformed into an FX

graph, a backend is needed to apply optimizations and generate fast code. TorchInductor is

2. Background 18

the primary backend to the torch compiler. More detailed information about TorchInductor

is provided by Ansel et al. [13], but it is effectively designed on four principles, PyTorch

Native, Python First, Breadth First, and Reuse State-Of-The-Art Languages.

PyTorch Native The principle of remaining faithful to the design choices of PyTorch,

such as in-place mutation of data and data structures. The designers emphasize that to

best represent Pytorch programs in optimized FX graphs, the backend must share as many

Pytorch abstractions as possible

Python First TorchInductor is written in Python. This choice more easily engages the

extensive Pytorch and Deep learning communities, a feature which enables more activism in

community driven development.

Breadth First TorchInductor is designed to be a general-purpose backend. Users wishing

to achieve high performance in a specific domain usually need to write their own backends.

Reuse State-Of-The-Art Languages Many high-performance applications are written

in domain specific languages (DSLs), such as Triton for the GPU and C++/OpenMP for the

CPU. Thus, the TorchInductor designers chose to leverage these DSLs as output languages

for many compiled artifacts.

2. Background 19

Term Definition
foo(...) The function being called.
PyFrameObject Represents the execution frame for the function call. It

includes local variables, the execution stack, and other
state information necessary for function execution.

PyCodeObject Represents the compiled bytecode for the function. It
is the lower-level representation of the function that can
be executed by the Python interpreter.

PyEval EvalFrameDefault() The core function of Python’s interpreter, responsible
for executing the bytecode contained in a
PyCodeObject. It manages the interpretation and
execution flow of Python code.

Guards Conditions or checks that ensure the validity of the
transformations applied by TorchDynamo. If the
guards are satisfied, the optimized execution proceeds;
otherwise, it falls back to the default execution.

Dynamic Bytecode Analysis The process performed by TorchDynamo to analyze the
bytecode dynamically and transform it for optimization,
particularly targeting PyTorch operations.

Transformed PyCodeObject The bytecode after it has been transformed by
TorchDynamo, excluding PyTorch-specific operations.
These non-PyTorch operations are modified for more
efficient execution.

FX Graphs A symbolic representation of the PyTorch operations
in the function. FX graphs [14] are used for further
analysis, transformation, and optimization by a user-
defined compiler.

User-defined Compiler A compiler or backend defined by the user that
takes FX graphs (containing PyTorch operations) and
further optimizes or compiles them for specific execution
backends, such as GPUs or other specialized hardware.

Compiled Function The final output of the TorchDynamo process. This
function is a compiled version of the original function,
incorporating all the optimizations, and can be executed
directly for improved performance.

Patched PyFrameObject The original PyFrameObject that has been modified to
include the transformed code. This patched frame can
then be executed by the Python interpreter.

Table 2.2: Definitions of terms in Figure 2.3

20

Chapter 3

Related Work

This chapter presents relevant research to this thesis. Initially, section 3.1 will introduce

how the field of machine learning has taken shape in the realm of Python. Then, section 3.2

will discuss the innovation to AOT and JIT compilation that have advanced in Python.

3.1 ML in Python

As of 2023, Python was by far the most popular language for ML development [15]. In

Python there exists several popular frameworks for programming in the ML space.

PyTorch [6] and Tensorflow [8] have emerged as the two most popular general-purpose

frameworks [16]. Since 2017, the Pytorch framework in Python has grown in complexity

and popularity [16]. The field has seen a growing demand for high performance machine

learning frameworks with the growing size of datasets and the increased use of accelerators

3. Related Work 21

in ML training. This has led to all popular frameworks to integrate accelerators, GPUs,

TPUs, FPGAs, to parallelize and improve training and inference performance. The

designers and maintainers of Pytorch have been responsive to these demands. The current

state of compilers in Python will be discussed in section 3.2.

3.2 Compilers in Python

Compilation from interpreted Python to an accelerator DSL is the most natural way to

achieve high performance computation from Python. As discussed in section 2.5, ML

compilers in Python are either eager-mode or graph-mode. Compilers of the latter mode are

better suited to high performance computing, as they enable a declarative style of model

construction in a DSL, followed by repeated model execution on an accelerator.

Unfortunately, the flexibility of Python and PyTorch does not translate well to fixed graph

constructions. Several attempts have been made to bridge this deficiency in translation,

described below.

3.2.1 TorchScript

TorchScript [10] is a framework that allows for the serialization and optimization of

models from PyTorch code into a standalone graph which can be executed on an accelerator.

TorchScript contains two technologies which can be used to accelerate Python code: Torch

JIT trace and Torch JIT script.

3. Related Work 22

Torch JIT trace

Torch JIT Trace is an approach where the PyTorch model is first run once with sample

inputs to record the operations executed. Subsequently, this trace is then converted into a

TorchScript graph that can be optimized and run on accelerators. While tracing captures

the dynamic nature of Python, it has limitations with control flow operations like loops and

conditionals, which can lead to incomplete or incorrect traces if the sample inputs do not

cover all execution paths.

Torch JIT script

Torch JIT Script allows for explicitly defining a model in a subset of Python that is

statically analyzable. This approach ensures that the entire model, including control flow

operations, is accurately captured in a TorchScript graph. However, it requires developers

to write their models in a more constrained, static manner, sacrificing some of the flexibility

and expressiveness of standard Python and Pytorch.

3.2.2 Lazy tensors

Lazy tensors [11], initially designed for Google TPUs, is a graph capturing mechanism

in C++. Lazy tensors delay computation, accumulating iterations a graph using the XLA

compiler [17]. This approach allows for optimization opportunities by analyzing the entire

computation graph before execution. However, lazy tensors incur a lot of superfluous data

3. Related Work 23

movement. Serialization and execution occur at different points, and both require prior

loading of the graph into the CPU. In practice, lazy tensors often incur noticeable

overheads due to recompilation as soon as guards fail. The benefits of lazy tensors,

including improved scheduling optimization due to delayed execution, have been included

in a backend of the Pytorch compiler studied in this thesis, in the form of a hybrid

eager/lazy backend to TorchDynamo.

3.2.3 Torch FX symbolic trace

Torch symbolic trace [14] is a technique whereby an FX graph is constructed symbolically

when the model is defined, rather than during execution. It uses similar tracing methods

to that which was described in section 3.2.1 above, except at the Python bytecode level, as

opposed to the Pytorch/C++ level. This approach manages dynamic control flow and is

more robust to changes in the model’s execution paths. It aims to combine the best aspects

of tracing and scripting but can still be unsound and can produce incorrect results, see the

example below from [13].
1 def example (x):
2 return torch.rand (10) + x

which when run through the torch.fx.symbolic trace() produces a graph equivalent to:
1 def example_incorrect_capture (x):
2 return _tensor_constant0 + x

The call to torch.rand() has been removed and replaced with tensor constant0. In the

3. Related Work 24

original code, each call to example() would result in a unique result due to the call to the

pseudo-random number generator (PRNG) torch.rand(). The replacement of a PRNG

with a constant is incorrect behavior.

3.2.4 JAX

JAX [18] is a machine learning framework developed by Google. It combines

NumPy-like syntax with automatic differentiation and GPU/TPU acceleration. It allows

for composable function transformations, including just-in-time (JIT) compilation,

automatic vectorization, and automatic differentiation. JAX’s approach is well-suited for

high performance computing, but it requires users to adopt its constrained programming

style. Just as TorchScript in subsection 3.2.1, JAX does not capture data dependent

control flow.

3.3 Summary

In this section we have seen an overview of the state of high-performance deep learning.

We have seen the various methods for improving performance of existing machine learning

code. These include both eager and graph mode compilers. These compilers make

concessions based on ease of use and performance. We can see the niche that

TorchDynamo fulfills, and how it strives to minimize these concessions.

25

Chapter 4

Methodology

The goal of thesis thesis is to examine the performance of the PyTorch compiler on

vision models. To this end, the building blocks of these models, matrix multiplication and

convolutions, are first examined. After this examination, theoretical and practical techniques

to optimize performance under compilation are proposed and tested.

The examination of runtime is not as simple as running a stopwatch alongside a program.

Although this timing method, described in detail in section 4.2.3, is the most important for

end users, it does not offer any granularity at the operation level. Without this level of timing,

bottlenecks and expensive features within models and operations cannot be pinpointed and

optimized. Therefore, a timing methodology encompassing multiple levels of granularity is

described and rigorously tested.

4. Methodology 26

4.1 Examination of core operations

The basic strategy was to divide complex operations into manageable pieces that could

be separately interrogated. Vision models, specifically convolutional neural networks, can be

separated into convolutions and pooling operations, the former being the computational and

data bottleneck. Convolutions can then in turn be broken down into matrix multiplications.

All three of these operations will be examined in detail in increasing complexity, with the

goal of understanding vision models in their entirety.

4.1.1 Matrix multiplication

Matrix multiplication is the most fundamental operation of vision models. Experiments

concerning this operation are sourced from the PyTorch and Numpy implementations. These

are the most popular and well optimized Python libraries for these operations. Matrix

multiplication is relatively efficient in the context of the operations in this thesis. Thus, a

large range of inputs can be explored, beyond sizes that commonly occur in vision models.

Square matrices up to size 17,500 are examined with the rapid increased scaling of data sets,

these ranges may become normal.

4.1.2 Convolutions

Convolutions, the core operations of vision models, are in practice a series of matrix

multiplication. Convolutions within vision models appear with a myriad of parameters.

4. Methodology 27

Thus, the experiments are designed to capture the variety of configurations of convolutions

found in real world models. For the analysis, the parameters that vary most frequently in

real vision models will be tested, include kernel size, stride, padding. These experiments are

sourced from the PyTorch neural network library [12].

Convolutional ablation For experiments altering convolutional parameters, the kernel

size, stride, and padding values are taken from sets [1,3,5], [1,2], and [1,2,3]. These values

are representative of convolutions parameters that occur in real vision models.

Convolution blocks Vision models rarely contain standalone convolutions. Instead,

multiple layers of convolutions are executed sequentially. To more accurately reflect

patterns found in full vision models, the compiler is benchmarked on convolutions in

blocks. A block is a series of convolutions, defined by size, i.e. the number of convolutions.

A simplified implementation of a convolution block is shown below.
1 def convblock (input: Tensor , conv: nn.Conv , size: int):
2 for _ in range(size):
3 _ = conv(input)

Listing 4.1: Python convolution block

4. Methodology 28

4.1.3 Vision models

The six vision models, AlexNet [19], ResNet50 [20], MobileNetV2 [21], GoogLeNet [22],

SqueezeNet1.1 [23], and DenseNet121 [24] are sourced from the Pytorch vision repository [12].

These models were selected to represent the breadth of the vision field.

AlexNet AlexNet is simple compared to the other five networks assessed in this study.

These other networks are based on AlexNet.

ResNet A key contribution to the vision domain, ResNet is the first successful application

of residual connections. This approach is selected in order to test the compiler on a relatively

simple network that includes a feature, residual connections, that is present in more complex

networks.

MobileNetV2 MobileNet was optimized by Google to be lightweight for mobile and

embedded environments. It is selected for study to test the Pytorch compiler on memory

focused optimizations, such as bottleneck layers and inverted residual structures.

GoogLeNet GoogLeNet is a network that has been optimized for increased depth at a

constant compute cost. This network tests the compiler on GPU compute optimizations and

the exploitation of the data parallelism of GPUs.

4. Methodology 29

SqueezeNet SqueezeNet aims to supplant AlexNet. It includes some

convolutional-specific operations mainly the 1x1 squeeze convolutions, which are readily

fusible and, as we will see later, optimized by the PyTorch compiler.

DenseNet DenseNet focuses on data reuse with its fully connected components. It tests

the compiler’s memory optimization on hot memory.

4.2 Timing

Quantifying timing and benchmarking of operations on the GPU is non-trivial [25]. GPUs

are inherently data parallel and present many opportunities for parallel and distributed

optimizations. These optimization may be prevented or disrupted by naive timing methods.

Careful examination of the effects of timers on these optimizations is presented in Figure 5.7.

Ultimately, the most important metric is end-to-end (E2E) time. That is, the time

between the start and end of the operation. Therefore, the important evaluation metric of

this thesis is the E2E timing of vision models. However, E2E timing offers no granularity

at the operation level. On the other hand, fine-grain timers, those surrounding each core

operation in a complex model, may pose issues for optimization and yield misleading timings.

Several timing methods are presented and analyzed in this thesis. The evaluation of several

different timing methods described below can be found in Figure 5.7, where techniques are

compared side-by-side for individual experiments.

4. Methodology 30

The timing methodology for all experiments is provided by either Python’s nanosecond

timer [26] or the Pytorch profiler [27]. The former is a simple timer that affords practical

advantages to understanding the compiler’s behavior. The latter is a context manager that

provides profiling at the operation level. Any timers used on the GPU, unless otherwise

specified, as in Figure 5.7, are executed with synchronization to ensure correctness. That is,

all timed operations are instructed to complete before the next one can begin.

4.2.1 Matrix multiplication timing

E2E timers are used exclusively for the simplest operations. As described later, many of

the optimizations discussed and proposed in this thesis are data-bound. A data movement

analysis of each of the operations, such as was done in Smith et al. [28] for matrix

multiplication, could be relevant to minimizing the overhead demonstrated in Figure 5.10.

4.2.2 Convolution timing

Like matrix multiplication, convolutions in this thesis are not timed at a granularity finer

than a full kernel pass, i.e. an E2E timing of the equation shown in Figure 2.1. The key

optimization for convolutional blocks, as described in section 4.1.2, is fusion. Therefore,

these blocks are timed with E2E timers without the presence of internal, fine-grain timers.

4. Methodology 31

4.2.3 Vision model timing

A single run consists of a single forward pass through a network, also known as inference.

The four timing methods used will be E2E, layer timing, layer subtraction, and profiler data.

End to end In E2E timing, a timer is started before the call to the forward pass of a

model and terminated upon its return. This is the most relevant benchmark for vision

practitioners, although it is of the coarsest granularity.

Layer timing Layer timing consists of placing timers on either side of each layer of a

network. These times may be summed, resulting in a metric referred to as Arr Sum. This

metric provides finer granularity but may interfere with inter-layer optimization.

Layer subtraction This timing method is used to capture data movement and operations

between layers, while estimating the duration of each layer. Its use may best leverage the

granularity of layer timing with the noninterference of E2E. It is performed by running an

E2E timer and halting the execution of the network at desired layers. The procedure used

to obtain the time for layer N is as follows: the network is timed until layer N-1 is complete,

then the execution is halted and the time recorded. The network is then rerun until layer

N is complete, and, as before, execution is halted and the time recorded. The difference

between the latter and the former yields an estimation of the duration of layer N.

4. Methodology 32

L0 L1 L2 L3

{L0} time
{L0,L1} time

Figure 4.1: Layer subtraction of a four layer (L0-L3) network. Estimated execution time
of L1 is {L0,L1} - {L0}

Profiler data Profiler data is the most fine-grained available method for assessing

performance. It is performed by running the operation in question inside of a context

manager, which allows every operation to be traced. Tracing profilers, which are different

from sampling profiles, allow finer grained details to be observed, albeit at the cost of

greater overhead due to program interrupts and data logging. The PyTorch profiler used

the Intel VTune [29] tracer under the hood.

Profiler data comes in three types: CUDA total, CUDA self, and CPU self. These

values are presented for each operation which appears in the context manager. CUDA total

represents the total time spent on GPU operations, including both kernel execution and

memory operations. CUDA Self measures the time spent on GPU operations excluding

time spent on nested operations. CPU Self indicates the time spent on CPU operations,

excluding the time consumed by any child operations or functions. These values may be

summed for a particular run to provide insight into the total time spent in a model’s

forward pass.

4. Methodology 33

Timing Method Description

End-to-end
(E2E)

A timer on either side of the operation or model call

Layer Timing
(arr sum)

Placing timers on either side of each layer in a network.

Profiler Data CUDA total, CUDA self, and CPU self.
Layer
Subtraction

Running an E2E timer, halting execution at desired
layers, and recording the time. The difference between
two successive timings provides an estimate of the
duration of the specified layer.

Table 4.1: Summary of Timing Methods

4.3 The oracle

After measurements are taken, an oracle, or a theoretic optimal runtime of a model, is

constructed. The basic idea is the selective compilation of layers. Compiling only layers in

which speedups were observed. The details are discussed below, with the implementation of

this theory described in subsection 4.3.2.

4.3.1 Construction of the theoretical oracles

Layer timed oracle

Construction of an oracle from a layer timed run is done with both naive layer timers

and layer subtraction. This construction is done by timing two configurations of each model,

one interpreted and one compiled. For a network of N layers, each run produces an N-sized

array of times. The oracle is constructed as follows:

4. Methodology 34

Given two arrays, a and b, of layer times for a network with n layers, a = [a1, a2, . . . , an]

and b = [b1, b2, . . . , bn], the oracle run time (ORT) is the sum of the minimum values for

each index is given by:

ORT =
n∑

i=1
min(ai, bi) (4.1)

Profile timed oracle

Construction of an oracle from a profiler-timed run is like that of a layer timed oracle.

Two configurations are run, one interpreted and the other compiled. The ORT is taken by

summing the operation times for each operation present in the profiler trace.

4.3.2 Oracle implementation

The implementation of an efficient configuration is nontrivial. Data movement and data

transformation between CUDA and Triton are not free and are not represented in the

theoretic runtime as described above. The technique of compiling some layers of a model

while leaving others untouched will be called selective compilation. A configuration with

selective compilation will be referred to as a custom configuration. Two different

approaches to custom configurations are considered and implemented.

4. Methodology 35

Best of two runs

In the best-of-two-runs (BTR) solution, the fastest choice is made for each layer from

two unique runs of a model. This avenue is the most direct implementation of the layer

timed oracle. This approach considers two runs of a layer-timed model, one interpreted

one compiled. For each layer, as in the theoretic layer-timed oracle, the fastest mode is

chosen. The forward pass of the model is modified such that layers that performed best

under compilation are compiled, and those who performed worse are left interpreted.

Dynamic programming

The best of two runs technique for oracle implementation does not consider the cost

of alternating between CUDA and Triton execution runtimes. To address this, a dynamic

programming solution is implemented that optimally decides which layers of a neural network

to compile, minimizing the total execution time.

A dynamic programming approach tracks the minimum execution times for both compiled

and non-compiled states of each layer. By maintaining an array of execution times and the

corresponding paths that lead to these times, an estimation of the optimal configuration of

compiled and non-compiled layers is found.

Let T (i) be the shortest time to run up to layer i, and let dp[i][0] and dp[i][1] represent

the minimum execution times up to layer i when the ith layer is not compiled and compiled,

respectively. The recurrence relations are defined as:

4. Methodology 36

T(i) = min(dp[i][0], dp[i][1])

dp[i][0] = min(dp[i − 1][0], dp[i − 1][1]) + time layer not compiled(i)
dp[i][1] = min(dp[i − 1][0], dp[i − 1][1]) + time layer compiled(i)

where:

• T (i) is the minimum execution time up to layer i.

• dp[i][0] is the minimum execution time up to layer i with the ith layer not compiled.

• dp[i][1] is the minimum execution time up to layer i with the ith layer compiled.

• time layer not compiled(i) is the execution time of layer i without compilation.

• time layer compiled(i) is the execution time of layer i with compilation.

Figure 4.2: Dynamic programming recurrence relation

This solution has a locality of one layer. That is, it considers the path to each of the

two previous nodes to be optimal, and such that a change to nodes more than one node

away from the current node will have no effect. An exhaustive solution to this problem was

explored but is intractable. Figure 4.3 on the following page shows walk-through of this

algorithm on a four layer network.

4. Methodology 37

Step 1: Initial test, no locality

L0

L0

L1

L1

L2

L2

L3

L3

Step 2: Path to layer one, locality of layer 0

L0

L0

L1

L1

L2

L2

L3

L3

Step 3: Fastest path to layer zero found

L0

L0

L1

L1

L2

L2

L3

L3

Step 4: Fastest path to layer one found

L0

L0

L1

L1

L2

L2

L3

L3

Step 5: Fastest path to layer two found.

L0

L0

L1

L1

L2

L2

L3

L3

Step 6: Optimal path through network

L0

L0

L1

L1

L2

L2

L3

L3

Finalized confirmed
Finalized ignored
Provisional taken:
Provisional ignored:
Being tested

Note that in step 3, L1 initially performs better when uncompiled. However, in step 4 we
see the fastest path to layer one is by compiling L1, minimizing data movement..

Figure 4.3: Illustration of the optimal path for a four layer network via the DP algorithm
described in section 4.3.2

38

Chapter 5

Evaluation

This chapter describes experiments designed to provide insights into the behavior of the

PyTorch compiler. Beginning with basic benchmarks and progressively moving to more

complex scenarios that evaluate performance in real-world models. The chapter is divided

into three sections: matrix multiplication, convolutions, and vision models.

5.1 Research questions

This evaluation aims to answer the following questions:

1. Are the timing techniques described in section 4.2 valid? Do they correctly capture

program behavior and can they be used as a performance measurement?

2. What does MM runtime look like under compilation? Are there speedups to be had

5. Evaluation 39

at this level of granularity?

3. How do convolutions perform under compilation? Do these results align with those

found for MM?

4. How do full vision models perform under compilation? Do these results align with

those found for both MM and convolutions?

5. Can runtime be optimized for vision models using selective compilation?

5.2 Experiment setup

This section contains the information to reproduce all experiments described in

section 5.3, section 5.4, and section 5.5.

5.2.1 System configuration

The system CPU is an Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz, with a 51200 KB

cache. The GPU is a NVIDIA Tesla V100-SXM2-32GB. Python 3.10.12 is used with Pytorch

2.3.0+cu121. There are no other intensive operations running during experimentation.

5.2.2 Experiment conditions

Unless stated, vision model experiments are run inside the PyTorch profiler’s context

manager. All data values are the medians of multiple runs. Multiple runs consist of twenty

5. Evaluation 40

runs, consisting of ten rounds of the target code segment, each executed twice. All timed

experiments run on the GPU are synchronized, that is, all scheduled operations are completed

and offloaded from the GPU before another run is initiated.

As no backpropagation is involved in any experiments, eval() mode [30] and torch

no grad() mode [31] are used wherever applicable.

Because this study is focused on Pytorch and its compiler, Pytorch libraries are selected

over competitors such as Tensorflow [8]. This includes convolutions and vision models.

5.3 Matrix multiplication

To begin we focus on evaluating PyTorch performance on the fundamental operation

of matrix multiplication (MM), the core operation in most machine learning models [32].

Understanding the compiler’s behavior on the simple operation establishes a foundation for

assessing behavior in more complex scenarios.

To this end, use the PyTorch implementation of MM. Although NumPy shows similar

results to PyTorch on the CPU, it does not support GPU execution and is therefore ignored

in this thesis.

These initial tests aim to determine if the compiler increases the operational speed of

simple algorithms. Thus, performance is initially tested on an extremely optimized

implementation; specifically, the most employed implementation of MM. Figure 5.1 shows

the performance of the PyTorch compiler on a simple PyTorch [6] dot product of 2D

5. Evaluation 41

100 101 102 103 104

Matrix size [NxN]

104

105

106

107

108

109
Ru

nt
im

e
[

s]

Interpreted
C++
CUDA
Triton

Figure 5.1: PyTorch matrix multiplication on 2D matrices. Interpreted and C++ are run
on the CPU, CUDA and Triton on the GPU.

arrays, compared against the uncompiled version, on the CPU and GPU. On both devices,

the uncompiled version (Interpreted and CUDA) slightly outperforms the compiled version

(C++ and Triton). For matrices smaller than 103, execution on the CPU is faster. On the

CPU, the conversion to C++ is simply another layer of abstraction to the same library

call. On the GPU, the overhead of constructing and launching of a custom Triton kernel is

not offset by any optimizations present. Examining the source code of PyTorch [6] and

Triton [33], the two different approaches to optimization can be seen. CUDA uses a

traditional scalar program with blocked threads model [34], while Triton blocks the

algorithm at the program level, using scalar threads [33]. An adaptation of the

implementation can be seen below in Figure 5.2. Per the Triton designers, this approach

allows for more data movement optimizations. Although the Triton version is slowing on

standalone MM, perhaps it will gain traction once data movement patterns become more

complicated.

5. Evaluation 42

1 # pragma parallel
2 for(int m = 0; m < M; m++)
3 # pragma parallel
4 for(int n = 0; n < N; n++){
5 float acc = 0;
6 for(int k = 0; k < K; k++)
7 acc += A[m, k] * B[k, n];
8 C[m, n] = acc;
9 }

(a) CUDA MM Model

1 # pragma parallel
2 for(int m = 0; m < M; m += MB)
3 # pragma parallel
4 for(int n = 0; n < N; n += NB){
5 float acc[MB , NB] = 0;
6 for(int k = 0; k < K; k += KB)
7 acc += A[m:m+MB , k:k+KB]
8 @ B[k:k+KB , n:n+NB];
9 C[m:m+MB , n:n+NB] = acc;

10 }

(b) Triton MM Model

Figure 5.2: Comparison of CUDA and Triton MM.

Takeaways The constant compilation overhead is expected, as the function body and input

type remain the same across different input sizes. If a guard [13] fails for something as simple

as a large input size, a single recompilation should suffice. A matrix multiplication may be

non-blocked or tiled for certain sizes, which should only incur a partial artifact substitution.

However, practitioners leveraging the PyTorch API for matrix multiplication have nothing

to gain from compilation and can avoid the compilation overhead altogether.

Now that it has been established that the compiler cannot improve optimized MM, we

5. Evaluation 43

extend the analysis by increasing the algorithm’s complexity in search of speedup.

5.4 Convolutions

The next set of experiments is the next natural step towards full vision models. The

direct application of the previous experiments, matrix multiplication, in vision models, is

the 2D convolution. The 2D convolution can be broken down into a series of matrix

multiplications transformation into the frequency domain via the convolutional

theorem [35]. CUDA and Triton libraries both perform this optimization, among many

others. A common and extremely beneficial convolutional optimization is fusion [36], which

can merge consecutive kernel operations into a single call. The high-performance library

BLAS [37], used under the hood of PyTorch, invests significant effort towards optimizing

convolutions in this way. These optimizations include a myriad of theoretical

optimizations, as described in the documentation [38], as well as architecture-specific,

handwritten assembly code. PyTorch defaults to CUDA implementations, while leveraging

the PyTorch compiler will yield Triton kernels. It remains to be seen whether the

compilation to Triton is fruitful.

Convolutions have been shown to be series of matrix multiplication, an operation which,

as seen in Figure 5.1, performed poorly on the CPU. Thus, for this section only convolutional

results on the GPU are presented.

5. Evaluation 44

2 4 6 8
Square kernel size

0.75

0.80

0.85

0.90

0.95

1.00

Lo
g

sp
ee

du
p

Figure 5.3: Single convolution speedup on the GPU, square kernel size vs the log of speedup.
Speedup values <1 indicates that compilation slows execution.

5.4.1 Different square kernels

Convolutions are found with a variety of parameters in real world vision models. The

practical aims of the model designer strongly influence both the shape and order of

convolutions. To learn how the compiler performs on a variety of different convolutions, an

ablation benchmark is run. Notable results are shown in Figure 5.3, which illustrates an

ablation study on kernel size. Here, all convolutions executed in isolation perform worse

under compilation. The 1x1 kernel convolution is the only kernel that achieves near

CUDA-level performance.

Takeaways The overall poor performance of convolutions in Triton compared to CUDA

can be attributed to, contrary to the results seen in section 5.3, to unbeatable

implementations and underdeveloped Triton optimizations. There have been several

5. Evaluation 45

investigations into the subject of Triton’s poor convolutional performance [39–41].

However, there is a remarkable drop-off in performance once the kernel size increased

beyond one. As we will see in section 5.5, Triton’s performance on the 1x1 convolution

contributes heavily to the overall runtime of vision models.

NVIDIA’s guide on optimizing convolutions [42] has several clues to explain the

performance of 1x1 convolutions compared to other kernel sizes. A major reason is memory

layout. High dimensional data, like images, are traditionally stored in two orders, NHWC

(Number of samples, height, width, channel) or NCHW (Number of samples, channel,

height, width). PyTorch tensors use the NCHW format. CUDA prefers the NHWC format.

As stated in their convolution guide [42], data given in NCHW format will have to undergo

one or more transposes during computation. Triton has a flag which enforces data format

throughout computation, which CUDA does not have. Triton is often able to avoid

multiple transposes on data.

Secondly, NVIDIA has optimized their implementation for larger kernels. Their

guide [42] presents several figures demonstrating the high performance of kernels larger

than 1x1. As a general-purpose library, the optimization of large kernels saves more

compute in more common cases, such as in graphics rendering and general algorithm

acceleration with their general purpose memory optimizations. On the other hand, Triton

is a DSL written exclusively for deep learning, where 1x1 convolutions are much more

common.

5. Evaluation 46

Finally, the fusion of 1x1 kernels is far less computationally expensive than the fusion of

larger kernels [36]. Having seen the performance of standalone convolutions, the focus can

now be shifted to a less contrived example, convolutions in a real vision model.

5.4.2 Convolutions of ResNet

We will look at replications of the convolutions in ResNet. Figure 5.4 presents the

convolutions of ResNet timed in two manners, using the PyTorch profiler and E2E timers.

The former involves monitoring and recording each convolutional operation under the run of

a forward pass of ResNet using the profiler. Multiple data points for each size of convolution

are seen due to identical convolutions being run multiple times in an execution of ResNet.

The latter involves duplicated each unique convolution of ResNet and running it with an E2E

timer. Timers were not inserted into ResNet for this experiment, only a single value is shown

for each size convolution, as each type of convolution was run in isolation. As shown, the

isolated convolutions, as in Figure 5.3, perform poorly. According to the PyTorch profiler,

the convolutions achieved noticeable speedup during the execution of the forward pass.

Takeaways These two results are somewhat conflicting. One one hand, this

demonstrates that Triton cannot cope with standalone convolutions, whether contrived or

ubiquitous. However, it demonstrates that, at least according to the profiler, convolutions

being executed in a model can be sped up. Although there is no linear pattern to be found

in this relationship, an MLP was trained to predict the speedups of a given convolution,

5. Evaluation 47

500 1000 1500 2000 2500 3000 3500 4000
Number of parameters

0.50
0.75
1.00
1.25
1.50
1.75
2.00

Sp
ee

du
p

CUDA Self
E2E

Figure 5.4: Speedup achieved under compilation for all of the convolutions in ResNet.
Profiler data and E2E timing. There is no correlation between parameters and speedup

within five percent, with 95% accuracy. This indicates that there is a quantifiable

relationship Further investigation is warranted into the difference between convolutions

executed in isolation and in series, or blocks, as described in section 4.1.2. The next section

explores this key difference by evaluated the compiler of convolutional blocks.

5.4.3 Convolution blocks

Although Figure 5.3 shows poor results, this scenario is artificial. In real vision models,

convolutions are not executed in isolation. Instead, they are chained and executed

consecutively. Thus, it is asked whether the compiler’s poor performance is limited to

single convolutions. Perhaps the compiler gains “traction” and fuse operations once longer

and still under-optimized workloads are executed. The complexity of convolutional

operations is further explored in Figure 5.5, where multiple convolutions are executed

5. Evaluation 48

0 10 20 30 40 50
Block Size

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sp
ee

du
p

Figure 5.5: Speedup achieved under compilation for convolutions executed in blocks. The
number of convolutions in each block is the X axis.

sequentially, as they would be in a real-world vision network. It can be seen that

performance converges to a speedup around 0.95. These results show that once sufficient

convolutions are present, the compiler can optimize to a near-CUDA level of performance.

Takeaways The speedup converges around a speedup of 0.95, so practitioners should still

avoid the compilation of convolutions, whether in isolation or in series. The strength of

Triton and its usage of CUDA graphs is its operation fusion and performance on small,

1x1 kernels. Although an individual convolutional kernel may not be sufficiently tuned to a

specific hardware device, convolutions executed in series are fused successfully.

As shown, the compiler does not improve the performance of the standalone

convolutions that are tested. However, the compiler’s performance improves when a more

realistic workload, involving consecutive convolutions, is tested. The foundation is now set

for the jump to full vision models. In these cases, Triton’s strengths, fusion and small

5. Evaluation 49

kernel optimization will be allowed to shine.

5.5 Vision models

Full vision models are now tackled, having established the performance of the compiler

on their building blocks, convolutions. Six architectures, MobileNetV2 [21], ResNet [20],

SqueezeNet [23], AlexNet [19], DenseNet [24], and GoogLeNet [22], are tested from the

Pytorch repository [12]. As full vision models are the most complex piece of code analysed

in this work, we briefly revisit the CPU in this section when comparing layer performance

across devices in section 5.5.3. CPU performance is considered in all optimal configuration

construction, as described in section 4.3 and tested in subsection 5.5.4.

5.5.1 E2E tests

Initially, the out-of-box performance of the compilation is questioned. If performances

like those seen in the previous two sections are observed, there is not much to be said.

Figure 5.6 shows the end-to-end results of each of the six models in Triton and CUDA.

GoogLeNet, MobileNetV2, and ResNet all exhibit significant speedups with compilation. In

contrast, DenseNet and SqueezeNet show minimal improvement, and AlexNet experiences a

noticeable slowdown. These experiments demonstrate the potential for substantial speedups

when running full vision models under compilation. Further investigation, as we will see in

this chapter, is warranted to optimize performance. It is essential to identify and mitigate

5. Evaluation 50

ResNet GoogLeNet DenseNet SqueezeNet AlexNet MobileNetV2
Model

0.0

0.5

1.0

1.5

2.0

Ex
ec

ut
io

n
tim

e
[n

s]

Interpreted
Compiled

Figure 5.6: End-to-end time for the six vision models. In each graph, the CUDA version
is on the left, and the Triton on the right.

the factors contributing to slowdowns while preserving the elements which perform well.

Takeaways GoogLeNet, MobileNetV2, and ResNet all benefit significantly from

out-of-the-box compilation, largely due to their extensive use of dimension-reducing 1x1

convolutions, which perform very well under Triton’s optimizations. All three of these

networks use these dimension reducing layers combined with dimension expanding layers,

as was innovated by ResNet [20]. This is done with a goal of reducing parameters prior to

expensive computation, such as 3x3 or 5x5 convolutions, and a restoration of data

following expensive operations.

In contrast, SqueezeNet and DenseNet see only marginal benefits. The SqueezeNet

designers formatted their architecture in accordance with the Caffe format [23]. Caffe

constraints [43] imposed by hardware limitations prevent the implementation of combined

5. Evaluation 51

1x1 and 3x3 convolutions in a single layer. This results in extraneous data movement

following each of the 1x1 dimension reducing convolutions. SqueezeNet does not see the

same quality of speedup as seen in other networks which performed well in Triton.

DenseNet’s performance is hindered by its memory-bound architecture, which restricts

the compiler’s ability to improve efficiency [44]. As we will see later, work [45–48] has been

done to mitigate this, but the current version PyTorch version has not resolved this issue.

AlexNet, being an older and smaller model, offers limited opportunities for optimization,

resulting in negligible speedups. The computation that exists is not shown to be data bound.

Simple compute bound programs are difficult to continue to optimize, as seen with the matrix

multiplication experiments in this thesis.

Before moving to more fine grain analyses of the model performance, it is necessary to

validate the timing methods described in section 4.2.

5.5.2 Timing validation

As discussed in the section 4.2, the various timing methods have potential side effects on

the performance, and in general are designed to capture different behaviors. To understand

the side effects of these modifications, the models are run with a variety of timers, as shown

for AlexNet in Figure 5.7. All runs are performed in either CUDA or Triton, as denoted by

the suffix on the Y axis labels. Pure refers to unmodified code, as the model will appear out of

the box to the user. There are no timers nor synchronization. Sync denote runs which contain

5. Evaluation 52

Figure 5.7: AlexNet benchmark. Along the X axis, the different configurations of the
models are shown, as summarized in Table 4.1. The different bars, as per the legend,
describe the timing methods.

only GPU synchronization, to demonstrate the effects of reduced GPU parallelism. Timed

runs timers on either side of each of the layers of the forward pass, exactly as described by

section 4.2.3. It follows that runs with timed sync contain both timers and synchronization.

The legend of Figure 5.7 contains the type of data being displayed as described in section 4.2.

Arrsum Unprof and E2E Unprof are the same as Arr Sum and E2E from section 4.2, except

they are unprofiled, run outside of the context of the Pytorch profiler.

Takeaways The most apparent takeaway from Figure 5.7 is the impact of the PyTorch

profiler. Experiments conducted within the profiler’s context manager experience a twofold

5. Evaluation 53

slowdown, as is expected with tracing profilers. However, this reduced performance

remains consistent across different configurations, as evidenced by the scaling of unprofiled

results. Comparing pure cuda, pure triton, and sync cuda, we observe that profiled E2E

times increase in line with unprofiled E2E times. Synchronization and timers have minimal

impact independently, as shown by the similar results between pure experiments and those

with timing and synchronization. The combination of timing and synchronization

(timed sync) results in a notable slowdown compared to timed experiments. In general,

CUDA generally suffers more from synchronization than Triton.

Combining the results from Figure 5.4 and Figure 5.7, the choice to abandon the PyTorch

profiler in favor of simple timers is made. The lack of correlation between the profiler figures

and the wall clock runtime make this an unreliable and deceptive metric for the goals of

this thesis. As it has been shown above that timers and synchronization have minimal and

consistent effects, all experiments from here, including the oracles described subsection 5.5.4,

will be using timers. The previous experiments run with the profiler demonstrate that the

profiler overhead is consistent within each experiment, even though the magnitude of the

overhead varies depending on program complexity.

5.5.3 Layer level timing

Now that it has been shown that timers have little impact on the performance of models,

layer level timing can be performed. Initially, an investigation across both the CPU and

5. Evaluation 54

GPU is conducted. Additionally, all four compilation modes are revisited for completeness,

although no differences are observed in section 5.3 or section 5.4.

Comparing layers across devices

Just as in matrix multiplication and convolutions, the compilation modes had almost

no effect on performance. A visualization of the layer timers under the different modes of

compilation for all six models can be found in the Appendix.

Figure 5.11 shows the four different configurations for ResNet in the default compilation

mode. By referring to the final graph of overlapping curves, strengths and weaknesses of

each configuration can be seen. On the CPU, the presence of green throughout shows the

poor performance of ResNet compiled for the CPU. CUDA (Red) performs poorly in the

first third of the network but is then roughly equivalent to Triton (Black). The weaknesses

in different parts of the models points towards the opportunity of an optimal combination

of Interpreted and C++ for the CPU and CUDA and Triton for the GPU.

Takeaways For all six models, there exist artifacts such as the ones seen at layer 50, 100,

and 175 of Figure 5.11. These artifacts show memory bottlenecks in the CUDA performance

early in the model’s execution. The presence of red in the final, overlapping, graph shows that

these slowdowns are uniquely present in the CUDA version. Previously, the Triton kernels

have shown superior ability to fuse similar operations. Now, they are showing their ability to

manage the loading of the large, unreduced (inputs are reduced by the 1x1 convolutions as

5. Evaluation 55

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Speedup

0.0
0.5
1.0
1.5
2.0
2.5

De
ns

ity

Figure 5.8: Frequency (density) plot of GoogLeNet’s layers. Layers to the right of 1.0
speedup are accelerated by compilation.

the data flows through the network) inputs onto the GPU more efficiently than CUDA. These

artifacts are more significant in the three accelerated models, GoogLeNet, MobileNetV2, and

ResNet. AlexNet, the only network significantly slowed by the compiler, shows very minor

artifacts of this nature, again due to its simplicity. The attention is now turned deeper to

the models, in search of optimal performance. First, it needs to be shown that speedups are

possible in each of these models.

Finding slow layers

We now turn our attention to the problem of finding the types who perform well under

compilation, and those which do not. An investigation into which models contained positively

affectable layers conducted by observing the density of sped-up layers. The ratio of layers

which performed better under compilation is shown in Figure 5.8 for GoogLeNet. The plot

5. Evaluation 56

for all six models can be found in the Appendix. The X axis is speedup, the runtime of

CUDA divided by the runtime of Triton, and the Y axis is the density. The red dashed

vertical line shows a speedup of 1, or unaffected by compilation.

Takeaways All models contain layers which fall on either side of the red line, meaning they

have both layers which were accelerated by compilation as well those whose performance

was reduced. It stands to reason that each of these models could benefit from selective

compilation. The next step, having established room for speedup with Figure 5.8, is to find

these speedups in practice. A technique for optimizing performance when slow layers are

present as described in section 4.3, selective compilation.

5.5.4 Implementation of the oracle

Two oracle implementations are described in subsection 4.3.2, a best of two runs solution

(BTR), and a DP solution. We first visit the BTR solution. It is the simplest, most agnostic

to data movement. Next, the DP solution, designed to account for data movement and

fusion optimizations tested.

The BTR oracle

Taking these results, it becomes possible to construct an Oracle. This Oracle represents

the theoretical optimal runtime of each model. This is done by taking the fastest layers from

each of the previous configurations. These theoretic results are shown alongside the practical

5. Evaluation 57

interp cpp cuda triton custom oracle
Config

0
50

100
150
200
250

Ru
nt

im
e

[
s]

Figure 5.9: Layer timed oracle for different configurations of ResNet. Interpreted, C++,
CUDA, Triton, and theoretical oracle are shown.

results in Figure 5.9 for ResNet. The remaining five models can be found in the Appendix.

Takeaways By construction, the theoretical oracle is always faster than either practical

implementation. The theoretical speedups are shown in the Table 5.1 below. This result

demonstrates that speedups are possible. Even marginal speedups will amortize greatly over

the lifetime of long-running operations. Although an interesting theoretical result, this oracle

construct is far from reality, assuming zero data movement and optimal communication and

translation between CUDA and Triton. We now move to a much more practical design using

layer subtraction, described in section 4.2.3.

The DP oracle

The implementation of the DP oracle, described as described insection 4.3.2, is tested and

evaluated. This timing method, which is not agnostic to data movement and optimizations

between layers, is shown in Figure 5.10 for SqueezeNet. Graphs for each of the six networks

5. Evaluation 58

Model Speedup
AlexNet 1.043
DenseNet 1.037
GoogleNet 1.021
MobileNet 1.045
ResNet 1.032
SqueezeNet 1.046

Table 5.1: Theoretical Model Speedups using the Best of Two Runs oracle.

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer

0

1

2

3

4

5

Ru
nt

im
e

[n
s]

Interpreted
Compiled
Custom

Figure 5.10: SqueezeNet layer time by layer subtraction. Interpreted, compiled, and
custom configuration compared. Custom is the Layer Subtraction Oracle implementation.

can be found in the Appendix. A custom configuration using dynamic programming, as

described in section 4.3.2, is shown in green.

Takeaways Overall, the hybrid compilation incurs too much data movement to

outperform compilation of the entire model. However, there are many instances of

improvements, demonstrating that hybrid compilation has potential.

5. Evaluation 59

SqueezeNet was a network that showed very marginal speedups in Triton. Although

designed to be used in computationally restricted environments, the Caffe format restrictions

prevent the implementation of a standalone dimension reducing layers. Consequently, we see

the so-called Fire [23] layers with marginal slowdowns from Triton.

AlexNet has slowdowns in layers four and nine, with marginal slowdowns in layer seven.

All three of these layers are large kernel (5x5, 3x3,3x3 respectively), dimension expanding

convolutions. As shown in Figure 5.3, these larger kernels do not perform well in Triton

DenseNet has been shown to be heavily data bound across all layers [44], has consistent

but not severe slowdowns at each of the denseblocks. Compiler struggles are not apparent

in the early convolutional layers, as their runtime pales in comparison to the time spent in

the denseblocks. Exploring optimized versions of DenseNet [44] would be a value extension

to this work.

GoogLeNet performed very well under compilation, seeing a speedup of 1.1 in the

compute intensive layers (nine-thirteen). These inception blocks contain, among other

things, dimension reducing components. As we have seen in Figure 5.3, these dimension

reducing components (1x1 convolutions) perform the best of any configuration.

MobileNetV2 is packed full of inverted residual layers, with 1x1 convolutions for

dimension reductions. Each of these layers performs well under compilation, leading to

5. Evaluation 60

significant model speedups with Triton.

ResNet was one of the first networks to employ 1x1 convolutions in layers. The simpler

architecture lends itself well to being compute bound, resulting in accelerated convolutions

benefiting the overall runtime greatly.

Small benefits can be seen from the custom configuration over the compiled version in

layers {0,3,4,5,7,8,10,12}. As seen in Figure 5.6, the Triton version performs better than the

CUDA version. These experiments further stress the presence of potential optimizations.

Layers {0,2,6,7,8,9,11,12} as perform best when uncompiled, and except for the very fast

layers {2,3,6,9}, and worst when compiled to CUDA. This means that if data movement can

be minimized, many parts of these vision models stand to gain performance.

5.6 Summary

This chapter has evaluated the PyTorch compiler on matrix multiplication (MM),

convolutions, and full vision models. The compiler shows poor performance on MM and

convolutions, but promising results for full vision models.

5.6.1 Matrix multiplication

NumPy matrix multiplication are explored in depth. Results are shown on the CPU

and GPU with E2E timers. Differences in the MM implementation between CUDA and

5. Evaluation 61

Triton are demonstrated. CUDA has been optimized for all round performance and has seen

more optimization and influence from state-of-the-art libraries such as BLAS [37]. Triton,

as an deep learning DSL, has been optimized for data movement in complex deep learning

scenarios. It’s advantages are not seen until more complex scenarios

5.6.2 Convolutions

Convolutions from the PyTorch library are tested. As a computationally intensive task,

only GPU results are presented. Square kernels of size one heavily outperform other shapes

and configurations under compilation. Convolutions replicated from ResNet show good

performance under the compiler, but poor performance with E2E timers. Under compilation,

convolutions executed in series are shown to outperform those executed in isolation.

5.6.3 Vision models

Full vision models from PyTorch and the timing methods from section 4.2 are

evaluated. E2E tests of models show the compiler can improve performance on some vision

models. Before diving deeper, timing methods are evaluated, and the results of the

PyTorch profiler [27] are no longer considered. Synchronized timers are shown to be

reliable tools for evaluation. An examination into each model shows that all models have

layers whose performance is improved and hindered by compilation. This sets the stage for

the optimal configurations, as described in section 4.3. Initially, theoretic speedups are

5. Evaluation 62

shown in the construction of theoretical oracles, as described in subsection 4.3.1. Practical

constructions of the oracle, as described in subsection 4.3.2 are not able to overcome the

side effects of data movement and language translation, but some optimal cases are shown

for certain layers. All models demonstrated, in the oracle configuration, speedups in certain

layers. SqueezeNet has four layers with >1NS saved per layer per forward pass.

R
un

tim
e

Interpreted
C++
CUDA
Triton

Layer

Figure 5.11: ResNet layer times, different devices and configurations. Final graph is all
curves overlapped.

63

Chapter 6

Conclusion

6.1 Summary of contributions

In this work, the behavior of the PyTorch compiler on six vision models and their

components was evaluated. Various timing methods, including wall clock timers and

profilers, were explored to assess their viability and correctness. The profiler examined was

shown to produce consistent results, however with a drastic impact on overall runtime. It

was shown that synchronization and inserted timers have minimal and consistent effects on

the overall runtime of programs on the GPU. The building blocks of vision models,

convolutions and matrix multiplication, were evaluated separately. Standalone matrix

multiplication was shown to not perform well with the Triton algorithm. Standalone

convolutions performed poorly. However, it was shown that standalone 1x1 convolutions

6. Conclusion 64

achieve near CUDA performance in Triton. This result paired with the exceptional ability

of the compiler to fuse consecutive operations, as shown in block convolution experiments,

explained the performance on vision models. Models that employed 1x1 convolutions as

dimension reduction operations just before more expensive convolutions saw dramatic

increases in performance in Triton. ResNet, GoogLeNet and MobileNetV2 are the three

networks which most heavily employed these 1x1 convolutions. Under Triton

out-of-the-box, ResNet saw a 1.61 speedup, GoogLeNet a 1.43, and MobileNetV2 1.63.

Under the custom oracle configuration, these speedups were to 1.23, 1.15, and 1.19.

6.2 Analysis

6.2.1 Choice of Domain

The execution and compilation of large deep learning models are resource-intensive

operations. To ensure the feasibility of this study, certain compromises were made. Six

vision models were selected to represent the current trends in the field. This selection

includes both older models that have defined key optimizations and newer models

optimized for various purposes. With additional resources, it would be worthwhile to

expand this research to include a broader range of models. Numerous vision models, as

well as models from other domains within deep learning, could provide valuable insights

into the field of deep learning acceleration.

6. Conclusion 65

6.2.2 Hardware selection

CUDA frameworks have been hand-tuned to achieve high performance on a wide variety

of systems and hardware. Triton is a more specialized DSL, and therefore will not achieve

competitive performance on as wide a variety of systems. The choice of hardware was kept

constant for this thesis, this may have been unfair to either CUDA or Triton. Providing

multiple hardware platforms for each test greatly increases the robustness of a study.

6.3 Future Work

6.3.1 Choice of Compiler

While PyTorch is a popular and widely used framework, it is not the only one available.

Other deep learning frameworks, such as TensorFlow [8], Caffe [43], and several others, also

offer unique compiler technologies. A comprehensive exploration of these compilers could

yield significant insights, particularly in selective compilation. Investigating the potential

synergy between the TensorFlow and PyTorch compilers, for example, might lead to optimal

performance results.

6.3.2 Implementation of a hybrid compiler

Although selective compilation was explored in this thesis, it was done via the

combination of the existing compiler and interpreter. A potentially fruitful avenue of

6. Conclusion 66

research would be a lower-level solution to the idea of mixing compilation and

interpretation. A lower-level solution would have more control over data movement and

transformation, the major pitfall of the techniques explored in this work.

6.3.3 Data movement analysis

Many of the advantage of the compilation of vision models are due to the Triton’s

optimization of data movement between layers. This data movement was not exclusively

quantified in this work. The analysis of these same models and building blocks using data

movement aware methods could lead to the development of a faster, hybrid compiler.

67

Bibliography

[1] R. Klette, Concise computer vision, vol. 233. Springer, 2014.

[2] R. Chandra, Parallel programming in OpenMP. Morgan kaufmann, 2001.

[3] S. Linnainmaa, The representation of the cumulative rounding error of an algorithm

as a Taylor expansion of the local rounding errors. PhD thesis, Master’s Thesis (in

Finnish), Univ. Helsinki, 1970.

[4] L. B. Rall, Automatic differentiation: Techniques and applications. Springer, 1981.

[5] TikZ, “Neural networks,” 2024.

[6] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style, high-performance deep

learning library,” Advances in neural information processing systems, vol. 32, 2019.

[7] C. contributors, “Numpy,” 2024.

Bibliography 68

[8] A. Mart́ın, B. Paul, C. Jianmin, C. Zhifeng, D. Andy, D. Jeffrey, D. Matthieu, G. Sanjay,

I. Geoffrey, I. Michael, et al., “Tensorflow: A system for large-scale machine learning,”

in 12th USENIX symposium on operating systems design and implementation (OSDI

16), pp. 265–283, 2016.

[9] S. Tokui, R. Okuta, T. Akiba, Y. Niitani, T. Ogawa, S. Saito, S. Suzuki, K. Uenishi,

B. Vogel, and H. Y. Vincent, “Chainer: A deep learning framework for accelerating the

research cycle,” 2019.

[10] Z. DeVito, “Torchscript: Optimized execution of pytorch programs,” Retrieved January,

2022.

[11] A. Suhan, D. Libenzi, A. Zhang, P. Schuh, B. Saeta, J. Y. Sohn, and D. Shabalin,

“Lazytensor: combining eager execution with domain-specific compilers,” arXiv preprint

arXiv:2102.13267, 2021.

[12] T. maintainers and contributors, “TorchVision: PyTorch’s Computer Vision library,”

Nov. 2016.

[13] J. Ansel, E. Yang, H. He, N. Gimelshein, A. Jain, M. Voznesensky, B. Bao, P. Bell,

D. Berard, E. Burovski, et al., “Pytorch 2: Faster machine learning through dynamic

python bytecode transformation and graph compilation,” in Proceedings of the 29th

ACM International Conference on Architectural Support for Programming Languages

and Operating Systems, Volume 2, pp. 929–947, 2024.

Bibliography 69

[14] J. Reed, Z. DeVito, H. He, A. Ussery, and J. Ansel, “torch. fx: Practical program capture

and transformation for deep learning in python,” Proceedings of Machine Learning and

Systems, vol. 4, pp. 638–651, 2022.

[15] O. Community, “State of machine learning survey results part one,” ODSC, 2023.

[16] H. He, “The state of machine learning frameworks in 2019,” The Gradient, 2019.

[17] A. Sabne, “Xla: Compiling machine learning for peak performance,” Google Res, 2020.

[18] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula,

A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang, “JAX: composable

transformations of Python+NumPy programs,” 2018.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” Advances in neural information processing systems,

vol. 25, 2012.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

2015.

[21] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted

residuals and linear bottlenecks,” 2019.

[22] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

and A. Rabinovich, “Going deeper with convolutions,” 2014.

Bibliography 70

[23] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,

“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and ¡0.5mb model size,”

2016.

[24] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected

convolutional networks,” 2018.

[25] L. Aceto, D. P. Attard, A. Francalanza, and A. Ingólfsdóttir, “On benchmarking

for concurrent runtime verification,” in International Conference on Fundamental

Approaches to Software Engineering, pp. 3–23, Springer International Publishing Cham,

2021.

[26] Python, “Python documentation, time,” 2024.

[27] Python, “Python documentation, profiler,” 2024.

[28] W. Smith, A. Goldfarb, and C. Ding, “Beyond time complexity: data movement

complexity analysis for matrix multiplication,” in Proceedings of the 36th ACM

International Conference on Supercomputing, ICS ’22, (New York, NY, USA),

Association for Computing Machinery, 2022.

[29] Intel, “Intel® vtune™ profiler release notes and new features,” 2024.

[30] PyTorch, “Pytorch module documentation,” 2024.

[31] PyTorch, “Pytorch documentation,” 2024.

Bibliography 71

[32] D. Blalock and J. Guttag, “Multiplying matrices without multiplying,” 2021.

[33] P. Tillet, H.-T. Kung, and D. Cox, “Triton: an intermediate language and compiler

for tiled neural network computations,” in Proceedings of the 3rd ACM SIGPLAN

International Workshop on Machine Learning and Programming Languages, pp. 10–19,

2019.

[34] M. Auguin and F. Larbey, “Opsila: an advanced simd for numerical analysis and signal

processing,” in Microcomputers: developments in industry, business, and education,

Ninth EUROMICRO Symposium on Microprocessing and Microprogramming, Madrid,

September 13, vol. 16, pp. 311–318, 1983.

[35] C. D. McGillem and G. R. Cooper, “Continuous and discrete signal and system

analysis,” (No Title), 1991.

[36] L. Mao, “Neural network 1 x 1 convolution horizontal fusion,” 2021.

[37] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley, J. Demmel,

J. Dongarra, I. Duff, S. Hammarling, G. Henry, et al., “An updated set of basic linear

algebra subprograms (blas),” ACM Transactions on Mathematical Software, vol. 28,

no. 2, pp. 135–151, 2002.

[38] C. contributors, “Blas (basic linear algebra subprograms),” 2022.

[39] RocBLAS, “Optimizing triton kernels,” 2024.

Bibliography 72

[40] TritonTeam, “Convolution sample 1,” 2022.

[41] TritonTeam, “Convolution sample 2,” 2023.

[42] NVIDIA Corporation, Optimizing Convolutional Layers User’s Guide. NVIDIA

Corporation, Feb. 2023. Version DU-09795-001 v001.

[43] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,

and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in

Proceedings of the 22nd ACM international conference on Multimedia, pp. 675–678,

2014.

[44] G. Pleiss, D. Chen, G. Huang, T. Li, L. van der Maaten, and K. Q. Weinberger,

“Memory-efficient implementation of densenets,” 2017.

[45] G. Pleiss, D. Chen, G. Huang, T. Li, L. van der Maaten, and K. Q. Weinberger,

“Memory-efficient implementation of densenets,” arXiv preprint arXiv:1707.06990,

2017.

[46] Z. Liu, “Memory efficient implementation of densenets,” 2018.

[47] J. Yearsley, “efficient densenet tensorflow,” 2019.

[48] T. Li, “Densenet space efficient implementation in caffe,” 2018.

73

Appendices

74

(a) NumPy CPU MM (b) PyTorch CPU MM

Figure 1: CPU multiplication, with compilation time, for four different compile modes in
NumPy and PyTorch

75

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Speedup

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

(a) AlexNet

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Speedup

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

De
ns

ity

(b) DenseNet

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Speedup

0.0
0.5
1.0
1.5
2.0
2.5

De
ns

ity

(c) GoogLeNet

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Speedup

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity

(d) MobileNetV2

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Speedup

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

(e) ResNet

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Speedup

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

(f) SqueezeNet

Figure 2: Density plots of all models on the GPU, measured with E2E timers

76

(a) AlexNet (b) DenseNet

(c) GoogLeNet (d) MobileNetV2

(e) ResNet (f) SqueezeNet

Figure 3: E2E runs of all models on the GPU

77

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ru
nt

im
e

[n
s]

×105

interpreted
compiled
custom

(a) AlexNet

0 1 2 3 4 5 6 7 8 9 10 11
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Ru
nt

im
e

[n
s]

×107

interpreted
compiled
custom

(b) DenseNet

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Ru
nt

im
e

[n
s]

×106

interpreted
compiled
custom

(c) GoogLeNet

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Layer

0

1

2

3

4

5

6

Ru
nt

im
e

[n
s]

×105

interpreted
compiled
custom

(d) MobileNetV2

0 1 2 3 4 5 6 7 8 9 10
Layer

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ru
nt

im
e

[n
s]

×106

interpreted
compiled
custom

(e) ResNet

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer

0

1

2

3

4

5

Ru
nt

im
e

[n
s]

Interpreted
Compiled
Custom

(f) SqueezeNet

Figure 4: DP oracle runs for each model, on the GPU. Compared to CUDA and Triton.

78

Figure 5: AlexNet, default compile mode, layer times with E2E timers.

79

Figure 6: DenseNet, default compile mode, layer times with E2E timers.

80

Figure 7: GoogLeNet, default compile mode, layer times with E2E timers.

81

Figure 8: MobileNetV2, default compile mode, layer times with E2E timers.

82

Figure 9: ResNet, default compile mode, layer times with E2E timers.

83

Figure 10: SqueezeNet, default compile mode, layer times with E2E timers.

84

Figure 11: AlexNet, timer verification.

Figure 12: DenseNet, timer verification.

85

Figure 13: GoogLeNet, timer verification.

Figure 14: MobileNetV2, timer verification.

86

Figure 15: ResNet, timer verification.

Figure 16: SqueezeNet, timer verification.

	Introduction
	Deep Learning in the Vision domain
	Contributions
	Thesis structure

	Background
	Neural networks
	Modern workloads
	Matrix multiplication
	Convolutions
	Vision models

	Compilers
	AOT compilation
	JIT compilation

	Pytorch
	Compilers in Python
	The PyTorch compiler

	Related Work
	ML in Python
	Compilers in Python
	TorchScript
	Lazy tensors
	Torch FX symbolic trace
	JAX

	Summary

	Methodology
	Examination of core operations
	Matrix multiplication
	Convolutions
	Vision models

	Timing
	Matrix multiplication timing
	Convolution timing
	Vision model timing

	The oracle
	Construction of the theoretical oracles
	Oracle implementation

	Evaluation
	Research questions
	Experiment setup
	System configuration
	Experiment conditions

	Matrix multiplication
	Convolutions
	Different square kernels
	Convolutions of ResNet
	Convolution blocks

	Vision models
	E2E tests
	Timing validation
	Layer level timing
	Implementation of the oracle

	Summary
	Matrix multiplication
	Convolutions
	Vision models

	Conclusion
	Summary of contributions
	Analysis
	Choice of Domain
	Hardware selection

	Future Work
	Choice of Compiler
	Implementation of a hybrid compiler
	Data movement analysis

	Appendices

