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Abstract

Background: Current stroke prediction models, relying solely on traditional medical data,

overlook the role of Social Determinants of Health (SDoH) like socioeconomic status and

education. This narrow focus can lead to inaccurate predictions, potentially exacerbating

healthcare disparities and hindering the development of effective preventive measures. This

work investigates the role of SDoH in stroke and how incorporating SDoH data into AI

models can improve stroke prediction, ultimately empowering healthcare providers with a

more holistic view of patient risk for better decision-making and equitable healthcare delivery.

Research Objectives:

1. To improve the performance of stroke prediction AI models by integrating SDoH into

these models.

2. To ensure transparency and interpretability in stroke prediction through the

application of explainable AI (XAI) methodologies.

Method: The study employs datasets from the Institut de la statistique du Québec
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that include both clinical indicators (e.g. diabetes, heart disease, weight) and SDoH

(e.g.economic, neighbourhood conditions). We applied seven machine learning models

(Random Forest), Gradient Boosting Machine (GBM), CatBoost (CB), XGBoost (XGB),

Light Gradient Boosting Machine (LGBM), Neural Networks (NN), and K-Nearest

Neighbors (KNN) alongside XAI techniques to investigate the role SDoH plays in the

models’ predictive performances. XAI methods such as SHAP (SHapley Additive

exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) were

implemented, shedding light on the influence of SDoH in the algorithms’ predictions.

Performance of models was evaluated using standard metrics such as accuracy, precision,

recall, F1 score and AUC (Area under the curve).

Results: Our study investigated the impact of incorporating SDoH data into stroke

prediction models. SDoH data variably improved performance depending on the model and

specific SDoH factors incorporated, illustrating its important role alongside traditional

medical data in assessing stroke risk. Our LGBM model showed maximum improvement on

incorporation of SDoH features where its accuracy improved by 11.2% (from 65.9% to

77.1%). The inclusion of demographic, economic, and personal SDoH factors were the most

influential. XAI methods revealed self-perceived health and stress levels as key factors for

stroke prediction, emphasizing the importance of personal well-being in stroke assessment.

Notably, the Light Gradient Boosting Machine (LGBM) model achieved the best

performance, demonstrating an Area Under the Curve (AUC) of 81%. This translates to
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accuracy of 77.6%, precision of 78.6%, recall of 75.5%, and F1 score of 77.0%, showcasing

LGBM’s proficiency in handling the complex relationships within SDoH data. These

findings suggest the importance and potential of SDoH-integrated AI models for improved

stroke prediction.

Conclusion: Our findings highlight the role of SDoH data in building accurate and

equitable healthcare models. Integrating SDoH factors improve stroke prediction accuracy by

1% to 3%, and foster fairer and more comprehensive patient risk assessments by considering

the broader social and environmental influences on health. Furthermore, XAI techniques

provide deeper insights into how SDoH and other factors contribute to predictions, promoting

transparency and interpretability in these AI-driven solutions. This transparency is essential

for building trust and ensuring ethically sound decision-making in healthcare.
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Abrégé

Contexte: Les modèles actuels de prédiction des AVC, qui reposent uniquement sur des

données médicales traditionnelles, négligent le rôle des déterminants sociaux de la santé

(DSS) tels que le statut socioéconomique et l’éducation. Cette focalisation étroite peut

entraîner des prédictions inexactes, potentiellement exacerber les disparités en matière de

santé et entraver le développement de mesures préventives efficaces. Ce travail examine le

rôle des DSS dans les AVC et comment l’intégration des données DSS dans les modèles d’IA

peut améliorer la prédiction des AVC, en donnant aux prestataires de soins de santé une vue

plus holistique du risque des patients pour une meilleure prise de décision et une prestation

de soins plus équitable.

Objectifs de recherche:

1. Améliorer la performance des modèles d’IA de prédiction des AVC en intégrant les

DSS dans ces modèles.

2. Assurer la transparence et l’interprétabilité de la prédiction des AVC par l’application

de méthodologies d’IA explicable (XAI).
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Méthode: L’étude utilise des ensembles de données de l’Institut de la statistique du

Québec incluant à la fois des indicateurs cliniques (par exemple, diabète, maladies

cardiaques, poids) et des DSS (par exemple, conditions économiques et de voisinage). Nous

avons appliqué sept modèles d’apprentissage automatique (Random Forest, Gradient

Boosting Machine (GBM), CatBoost (CB), XGBoost (XGB), Light Gradient Boosting

Machine (LGBM), réseaux de neurones (NN) et K-Nearest Neighbors (KNN) ainsi que des

techniques XAI pour examiner le rôle des DSS dans les performances prédictives des

modèles. Les méthodes XAI telles que SHAP (SHapley Additive exPlanations) et LIME

(Local Interpretable Model-agnostic Explanations) ont été mises en œuvre, éclairant

l’influence des DSS dans les prédictions des algorithmes. La performance des modèles a été

évaluée en utilisant des métriques standard telles que la précision, la sensibilité, la

spécificité, le score F1 et l’AUC (aire sous la courbe).

Résultats: Notre étude a examiné l’impact de l’intégration des données DSS dans les

modèles de prédiction des AVC. Les données DSS ont amélioré les performances de manière

variable en fonction du modèle et des facteurs DSS spécifiques incorporés, illustrant leur

rôle important aux côtés des données médicales traditionnelles dans l’évaluation du risque

d’AVC. Notre modèle LGBM a montré une amélioration maximale avec l’incorporation des

caractéristiques DSS, où sa précision a augmenté de 11,2 % (de 65,9 % à 77,1 %). L’inclusion

de facteurs DSS démographiques, économiques et personnels a été la plus influente. Les

méthodes XAI ont révélé que la santé perçue et les niveaux de stress étaient des facteurs clés



Abrégé vi

pour la prédiction des AVC, soulignant l’importance du bien-être personnel dans l’évaluation

des AVC. Notamment, le modèle Light Gradient Boosting Machine (LGBM) a obtenu la

meilleure performance, démontrant une aire sous la courbe (AUC) de 81 %. Cela se traduit

par une précision de 77,6 %, une sensibilité de 75,5 %, une spécificité de 78,6 % et un score

F1 de 77,0 %, montrant la capacité du LGBM à gérer les relations complexes au sein des

données DSS. Ces résultats suggèrent l’importance et le potentiel des modèles d’IA intégrant

les DSS pour une meilleure prédiction des AVC.

Conclusion: Nos résultats soulignent le rôle des données DSS dans la construction de

modèles de santé précis et équitables. L’intégration des facteurs DSS améliore la précision

de la prédiction des AVC de 1 % à 3 % et favorise des évaluations des risques des patients

plus justes et plus complètes en tenant compte des influences sociales et environnementales

sur la santé. De plus, les techniques XAI fournissent des informations plus approfondies sur

la contribution des DSS et d’autres facteurs aux prédictions, favorisant la transparence et

l’interprétabilité de ces solutions pilotées par l’IA. Cette transparence est essentielle pour

instaurer la confiance et garantir une prise de décision éthique en matière de soins de santé.
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Chapter 1

Introduction

1.1 Current Challenges in AI for Healthcare

Stroke, an event where blood flow to the brain is disrupted, remains a global health threat.

It’s the second leading cause of death worldwide [1], and each year, millions experience

strokes, with many facing long-term impairments [2]. However, the risk of stroke isn’t

equally distributed. Social determinants of health (SDoH) – the social and economic factors

where we live, work, and age – significantly influence stroke risk [3, 4]. Studies have shown

that factors like low income, lack of access to healthy food and quality education, and

inadequate housing are linked to a higher risk of stroke [5]. This increased risk underscores

the need for healthcare interventions that address these underlying social inequities. This

research explores the considerations surrounding the use of artificial intelligence (AI) in
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stroke prediction, with a specific focus on integrating SDoH data into these models. By

incorporating this crucial information, the research aims to promote fairness and equity in

healthcare decision-making related to stroke prevention and treatment.

In recent years, AI and data-driven technologies have proliferated across various sectors,

including healthcare, promising to revolutionize disease diagnosis, drug development and

healthcare [6, 7]. For example, DeepMind’s AI has shown application for early detection of

eye diseases thus improving diagnostic accuracy and patient outcomes [8]; IBM Watson’s

oncology support system provides evidence-based treatment options, showcasing how AI

can assist in complex treatment planning [9]. These advancements underscore AI’s

transformative impact on healthcare, offering new avenues for enhancing patient care [7]

and operational efficiency [10]. However, the rapid advancement of AI in healthcare has

raised significant ethical concerns such as fairness, transparency and privacy of AI tools,

informed consent, and the potential for increased healthcare disparities [11].

The healthcare sector is increasingly reliant on AI for complex tasks like early disease

prediction and risk assessment. This growing dependence necessitates thorough ethical

considerations throughout the development and deployment of AI-powered healthcare

technologies [12]. The recent global health crises have shone a harsh light on pre-existing

healthcare disparities, often linked to the SDoH [13]. These disparities highlight the need

for equitable healthcare interventions that ensure everyone has a fair and just opportunity

to achieve their full health potential [14].
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Research suggests that an equitable healthcare system would strive to eliminate these

disparities by focusing on several key areas. First, it would prioritize accessibility.

Everyone, regardless of income, geographic location, race, ethnicity, or other social factors,

should have affordable and timely access to high-quality preventive, diagnostic, and

treatment services [15]. This might involve implementing universal health coverage or

subsidized insurance plans for low-income individuals, alongside geographically accessible

clinics and hospitals [16].

Second, an equitable system would ensure quality of care for all. This means delivering

evidence-based, culturally competent, and patient-centered care to every individual [17].

In Canada, this includes integrating Indigenous health practices and perspectives into the

healthcare system and ensuring universal access to healthcare regardless of immigration

status [18]. This could involve diversifying the healthcare workforce to better reflect the

communities served, and ensuring language accessibility for patients with limited English

proficiency [17].

Finally, an equitable system wouldn’t just treat illness, it would address the root causes

of health disparities. This necessitates a focus on the SDoH, such as safe housing, quality

education, and healthy food options [19]. Collaboration between healthcare providers and

social service organizations, or policies promoting income security and affordable housing,

could be key strategies in achieving this [3]. By prioritizing these core principles, a healthcare

system can move towards ensuring everyone has the chance to live a healthy life.
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This work utilizes AI to enable equitable healthcare, focusing on stroke prediction. We

employ a diverse range of machine learning models – Random Forest (RF) [20], Gradient

Boosting Machines (GBM) [21], K-Nearest Neighbors (KNN), Neural Network (NN) [22],

LightGBM (LGBM) [23], CatBoost (CB) [24], and XGBoost (XGB) [25], each chosen for

their effectiveness in binary classification tasks and their ability to capture complicated

relationships within the data. The study aims to shed light on potential disparities in

healthcare outcomes by integrating SDoH factors into AI models, thereby contributing to a

more equitable healthcare system. It emphasizes the ethical imperative of fairness,

transparency and equity by identifying systemic inequalities that contribute to disparate

health outcomes among different populations.

In essence, this research is a response to the growing global need for equitable healthcare

access and delivery of health-related services. The research aims to explore if the inclusion

of SDoH factors into AI models improves the accuracy of stroke prediction and which SDoH

factors contribute most to the prediction task by using explainable AI (XAI) techniques.

1.2 Research Questions & Objectives

The research is guided by the following key questions:

1. Does the inclusion of SDoH factors improve prediction of stroke?

2. Which specific SDoH factors are especially pertinent in the prediction of stroke?
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This study aims to refine stroke prediction by incorporating SDoH into ML models,

focusing on accuracy enhancement and leveraging XAI techniques to identify the most

impactful SDoH factors. This dual approach seeks to improve model accuracy while

ensuring transparency and explainability in predictions.

• Objective 1: Enhance Stroke Prediction Accuracy by Incorporating SDoH

The first objective focuses on improving the accuracy of stroke risk predictions by

incorporating SDoH factors—such as socioeconomic status, education, and

environmental conditions—into ML models. These factors are recognized for their

significant influence on health outcomes and are expected to contribute to more

precise predictive analytics.

• Objective 2: Identify Impactful SDoH Factors Using XAI Techniques

The second objective aims to leverage XAI techniques alongside our ML models to

pinpoint which SDoH factors affect stroke the most. This approach is designed to

enhance the explainability and transparency of our predictive models, providing clear

insights into how specific social determinants influence stroke predictions.

By addressing these objectives, we aim to contribute to the fields of healthcare equity,

AI ethics, and predictive modeling.
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1.3 Contribution of Thesis

This thesis presents two contributions towards more equitable and ethically advanced

healthcare practices.

• Advancing Healthcare Equity:

A significant motivation behind this research is its prospective contribution to

healthcare equity. In numerous regions globally, the quality of healthcare access is

uneven, often swayed by SDoH like income, education, and environmental factors.

The stroke prediction model in this work integrates these determinants and provides

a clearer understanding of healthcare disparities. By identifying these disparities

through AI models, there is potential to inform strategies that mitigate healthcare

outcome inequities. Consequently, this could facilitate more equitable healthcare

provision for individuals from underserved communities, taking a step towards

reducing global health disparities.

• Explainable AI in Healthcare:

In today’s landscape, being able to explain meaningful patterns behind AI outcomes in

healthcare is crucial. This research explores fairness and transparency considerations

through post-hoc XAI techniques. By employing XAI, this research contributes to

an environment where AI technologies in healthcare are grounded on a strong ethical

foundation, by showcasing the importance of explainability in AI-driven healthcare
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decisions.

1.4 Thesis Organization

The thesis examines the use of AI in predicting strokes, with focus on SDoH. Chapter 1

introduces the topic, underscoring the relevance of incorporating SDoH in AI models for

predicting strokes and highlighting the ethical implications. In Chapter 2, the thesis

reviews existing literature on stroke and SDoH, explores their interplay, and delves into the

challenges and ethical considerations associated with using ML for health predictions with

a focus on stroke. This sets a foundation for the methodology described in Chapter 3,

which details the preparation of datasets, development of models, and use of XAI

techniques. Chapter 4 presents the findings, including the performance of AI models and

insights from XAI techniques such as SHAP (SHapley Additive exPlanations) [26] and

LIME (local interpretable model-agnostic explanations) [27], underscoring the significance

of understanding how features influence model decisions. Chapter 5 discusses these results,

particularly the ethical implications of incorporating SDoH in healthcare. This chapter also

outlines the limitations of the study and potential future directions. The thesis concludes

with Chapter 6, summarizing the key insights and reinforcing the importance of SDoH in

the use of AI in healthcare, especially for stroke prediction.
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Chapter 2

Background

In this chapter, we explore stroke, the role of SDoH, and how ML can help in healthcare,

especially with cardiovascular diseases. We outline the significance of stroke and the

multifaceted risk factors associated with it. This is followed by a discussion on SDoH,

emphasizing their role in influencing stroke incidence and outcomes. We further discuss

how SDoH and stroke are related, explaining how people’s living conditions can change

their risk of having a stroke. Next, we delve into the integration of SDoH within ML

models for cardiovascular diseases, including stroke, highlighting the potential for these

technologies to enhance predictive accuracy and treatment personalization. Finally, we

address the incorporation of XAI in this context, underscoring the idea for equity,

transparency, and fairness in deploying AI to combat health inequalities.
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2.1 SDoH in Stroke: Definitions, Impact, and Roles

Stroke, a severe medical condition marked by the sudden interruption of blood supply to the

brain, represents a substantial challenge to global healthcare systems [28]. The World Health

Organization (WHO) defines stroke as “the rapid onset of clinical symptoms indicative of

localized or sometimes widespread disruption of cerebral function, enduring for more than

24 hours or leading to fatality, with no discernible cause other than vascular origin” [29].

Despite healthcare improvements, stroke remains a major health issue worldwide, being

the second top cause of death and the third leading cause of death and disability [30]. The

economic impact of stroke is substantial, with an estimated global cost surpassing US$721

billion, equivalent to 0.66% of the total global GDP [31]. In Canada, the impact of stroke

is significant, affecting approximately 878,500 adults over 20 years of age, including 438,700

men and 439,800 women (2017–18) [32, 33]. Notably, one-quarter of Canadians struggling

with stroke, fall below the age of 65, highlighting the alarming trend of stroke risk escalating

significantly beyond the age of 55 [34]. The prevalence of stroke in Canada underscores the

urgent need for improved predictive models that can accurately identify individuals at high

risk of stroke.

Recent efforts to mitigate persistent health disparities have sparked a growing interest in

investigating the underlying causes of risk factors associated with stroke, often referred to as

the ‘causes of the causes [3].’ These factors include SDoH, which are central to our research

goals. Social determinants of health (SDoH), as defined by the World Health Organization
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(WHO) [35], constitutes non-medical factors with a substantial influence on health outcomes.

These determinants encompass the multifaceted conditions under which individuals are born,

flourish, engage in livelihoods, and age [35]. At their core, they are fundamentally influenced

by the distribution of financial resources, power dynamics, and access to essential assets [36].

These dynamics operate across global, national, and local scales, playing an important role in

perpetuating health disparities within and between nations [35]. These social determinants,

along with the healthcare system, are widely recognized as playing a significant role in

maintaining health inequities [37].

The term ‘SDoH’ refers to the strong influence that a person’s socioeconomic

environment has on their health. The concept of SDoH, as described by Wilkinson and

Marmot (2003) [38], highlights how the community and conditions in which people live can

significantly affect their health. Historical research has demonstrated the interplay between

economic development, social structures, and their profound implications for public

health [39]. As the global prevalence of cardiovascular risk factors, such as obesity,

hypertension, and diabetes, continues to surge [39–41], there exists an imperative to turn

our attention towards the SDoH. This knowledge is crucial as we aim to narrow the gap in

healthcare equality. [42].

The influence of SDoH on health outcomes is substantial, particularly concerning health

disparities—inequitable differences in health status observed both within and between

countries. Health outcomes worsen as socioeconomic status decreases, affecting those in
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lower socioeconomic positions more severely [35]. Recognizing the crucial role of SDoH

components, such as income and education, as strong predictors of adverse health

outcomes is vital [3]. Research indicates that social factors often influence health more

than access to healthcare or individual lifestyle choices [43, 44]. SDoH may account for

anywhere from 30% to 55% of health outcomes [35]. Addressing SDoH is important for

improving population health and ameliorating long-standing health disparities [35]. These

determinants also exhibit an association with an elevated risk of stroke incidence [45].

Cardiovascular disease is linked with SDoH [42]. Approximately 80% of an individual’s

health is influenced by factors beyond clinical care, including their physical environment,

social determinants, and behavioral choices such as exercise and smoking [46]. The impact

of social determinants on cardiovascular disease outcomes underscores the importance of

integrating these factors into ML models for more accurate and fair predictions [47, 48].

SDoH factors often exist beyond the direct control of healthcare providers, presenting unique

challenges in patient care [49]. Healthcare professionals, by understanding the significant

influence of social factors, can better tailor their care for patients at higher stroke risk [49].

This insight emphasizes the importance of integrating SDoH considerations into our study.

Exploring the SDoH and its impact on stroke incidents necessitate a review of prior

research that highlight the influence of socioeconomic status (SES) on cardiovascular

health, especially in affluent nations [50]. Schultz et al. also shed light on four key

components of SES: income, educational achievement, employment status, and
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environmental factors [50]. They describe how each impacts cardiovascular disease risk by

influencing access to healthcare, health-related behaviors, and exposure to chronic

stressors.

There is a need to understand disparities in stroke-related mortality, for example,

younger black adults have a high mortality rate due to stroke, which contributes to overall

healthcare disparities [51, 52]. Despite the identification of well-established medical factors,

hypertension, diabetes mellitus, left ventricular hypertrophy, atrial fibrillation, cigarette

smoking, and a history of heart disease account only about 50% of the elevated stroke risk

observed in black populations [53, 54]. The remaining 50% suggests the presence of other

significant determinants, likely associated with SDoH, highlighting the necessity for deeper

investigation into their impact.

Moreover, we must acknowledge the substantial influence of geographic location on an

individual’s health, operating through both direct and indirect mechanisms. A study by

Gabb et al. [55] showed that people in remote areas experience higher cardiovascular disease

rates due to less frequent doctor visits, reduced cholesterol testing, poor blood pressure

management, and older adults with diabetes receiving fewer statins. Multiple obstacles

hinder access to healthcare in rural areas, such as inadequate public transportation to medical

facilities [56]. Australia in particular exhibits geographic differences in cardiovascular disease

prevalence, showing elevated rates in rural, regional, and remote locations [57]. Elements

such as access to fresh fruits and vegetables at a geographic location also contribute to stroke
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incidence [58].

The accessibility of healthcare services impacts the frequency of health screenings and the

prescription of necessary medications. For instance, a 2017 study focusing on cardiovascular

health revealed that individuals with indications for statin medications received disparate

levels of care based on their SDoH status [59]. Notably, only 45% of those with four or

more SDoH indicators were prescribed statins, in contrast, 65% of individuals did not face

barriers related to SDoH when accessing care [59]. Incorporating SDoH highlights disparities

in stroke risk assessments, but solving healthcare inequities requires tackling systemic issues,

shown by differences in statin prescriptions due to SDoH barriers.

Recent progress in making neighborhood data more accessible and the ability to add

this data into Electronic Health Records (EHR) have sparked new interest in studying how

neighborhood factors affect health of individuals [60]. The link between neighborhoods and

health outcomes is influenced by factors such as heightened stress levels [61], reduced

physical activity [62], and suboptimal dietary choices [63], all of which, affect both

immediate risk factors like blood pressure, diabetes management, and inflammation, as well

as more distal health outcomes such as cardiovascular diseases [64]. A study by Diez

Roux [65] highlighted that neighborhoods affect the well-being of their residents by

influencing both physical and social aspects of their environments. This research explored

how geographical areas, defined by various socioeconomic and demographic characteristics,

can impact health outcomes through complex interactions between the environment and
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individual behaviors [65].

Interestingly, current research has predominantly focused on incorporating specific SDoH

factors, with an emphasis on socioeconomic aspects [66]. However, there remains a notable

research gap in comprehensively examining how the coexistence of various SDoH within the

same individual contributes to stroke incidence.

2.2 SDoH & Explainability in Machine Learning for

Cardiovascular Disease

Zhao et al [48]’s study provides crucial insights into the field of ML for stroke prediction

and the inclusion of SDoH factors. They reveal that out of 48 studies reviewed, only three

compared the effectiveness of models with and without SDoH factors. Remarkably, all

three studies found that adding SDoH data significantly improved prediction accuracy.

Additionally, two of these studies highlighted the benefits of including gender and race

information in the models [67, 68].

ML promises to address ethical challenges in SDoH research, particularly with regard to

ensuring fairness in algorithms [69]. This is crucial as researchers delve into whether ML

inadvertently introduces bias into SDoH findings, potentially impacting health policy

recommendations [70]. The study of algorithmic fairness is therefore important, aiming at

both comprehending and mitigating biases within SDoH [69]. Techniques to train ML



2. Background 15

algorithms to detect biases in health records [71, 72] are part of this effort to ensure

equitable analysis. Other research works explore the relationships between health policies,

their outcomes, and the blend of fairness in algorithms with ML methods [70]. For

instance, Daoud et al. [73] combine causal inference with fairness, illustrating how

algorithmic strategies can support decisions balancing economic and health impacts

equitably.

Kino et al.’s scoping review [69] shows that in ML research related to SDoH, only five

studies out of 82 focused on integrating SDoH factors for prediction task. In these predictive

models, SDoH features were integrated alongside various other predictors. However, these

inclusions were often lacking a coherent rationale to explain how the addition of SDoH

features would yield improvement in predictive performance. [69]. While a few studies [74–76]

evaluated the advantages and challenges of using ML to explore SDoH, such evaluations were

rare. Although SDoH features are being incorporated, a thorough analysis of their impact

on improving prediction accuracy is still in its early stages [69].

The application of ML models raises legitimate concerns regarding their interpretability

and the potential pitfall of overfitting to the dataset [77]. Surprisingly, a comprehensive

discourse on these concerns was absent in most of the literature reviewed by us. Few studies

explored methods to evaluate the significance of each variable in NN [78], yet in many

instances, the selection of features for models relied on their established medical importance.

This indicates that model’s ability to predict was often based on factors known to be related
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to cardiovascular disease, even though the significance of each variable wasn’t fully evaluated.

This absence of understanding on model interpretability calls for a more deliberate approach

to model design and analysis in healthcare applications.

The "black box" nature of many ML algorithms is a challenge, obscuring the

decision-making process and thus highlighting the need for interpretability [79, 80]. This

opacity is problematic, especially given the ethical and societal stakes involved in

healthcare AI applications [81]. Transparency, interpretability, and explainability, although

often used interchangeably, hold distinct meanings. Interpretability concerns the degree to

which a model’s processes can be understood [82], often overlapping with the concept of

explainability [83]. Transparency, on the other hand, seeks to elucidate the model’s internal

mechanics [84]. In this work, we use XAI techniques to more delibrately analyze the

impact of SDoH factors on stroke prediction task.

Fellous et al. [85] demonstrate how applying XAI principles can clarify complex

domains and improve understanding of underlying mechanisms, particularly in areas where

the decision-making process of AI systems needs to be transparent. Acknowledging that

ML can inadvertently reinforce societal biases is crucial, as this contrasts with the goals of

SDoH research, which focus on uncovering and addressing social inequities [81]. Research

in algorithmic fairness frequently uncovers the difficult trade-offs between predictive

accuracy,interpretability and fairness, underscoring the necessity for thoughtful model

design in healthcare AI [86,87].
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Implementing XAI techniques into ML models for predicting cardiovascular disease can

help explain the influence of various factors on health outcomes. This makes the decision-

making process more transparent and informative, thereby improving the understanding

of model output for healthcare professionals and patients and enabling a more integrated

view of health outcomes [88–90]. This contributes to the responsible development of AI

technology by enhancing interpretability and transparency, crucial for meaningful insights

and actionable healthcare decisions.
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Chapter 3

Methodology

Following the exploration of stroke, SDoH, and the potential of ML in healthcare (Chapters 1

& 2), this chapter delves into the methodological foundation of our research. We begin by

outlining the data acquisition process, specifically the utilization of survey data from the

Institut de la statistique du Québec (ISQ). This data underwent preprocessing to select

features relevant to stroke prediction, including both traditional health factors and SDoH

features. We addressed missing values and data imbalances to ensure model robustness.

Next, we describe the selection and evaluation of our machine learning models. We

employed a diverse range of models, including Random Forest (RF), Gradient Boosting

Machine (GBM), K-Nearest Neighbors (KNN), Neural Networks (NN), Light Gradient

Boosting Machine (LGBM), CatBoost (CB), and XGBoost (XGB). These models were

evaluated using a comprehensive set of metrics including accuracy, precision, recall, F1
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score, and ROC-AUC, enabling a robust assessment of their performance in stroke

prediction.

Finally, recognizing the importance of interpretability and fairness in AI-driven

healthcare solutions, we incorporated XAI techniques into our study. LIME, SHAP, and

feature importance analysis were employed to gain deeper insights into model predictions

and understand the impact of SDoH factors on stroke risk assessment. This multifaceted

approach strengthens the foundation of our research and paves the way for responsible and

transparent AI development in healthcare.

The source code can be found here: https://github.com/gsharma15/sdoh_stroke_

predicton

3.1 Dataset

The dataset used for this research was obtained from the Institut de la statistique du

Québec (ISQ) [91]. ISQ is the provincial statistical agency responsible for producing,

analyzing, and disseminating official statistics in Quebec. The Québec government

commissioned the ISQ to facilitate access to specific information held by public institutions

for research purposes [92]. The dataset comprises designated survey data collected by

various government bodies, including the Ministère de la Santé et des Services sociaux.

The survey dataset is comprised of raw, non-aggregated and self-reported responses,

meaning the information is presented in its original, unprocessed state. The surveys

https://github.com/gsharma15/sdoh_stroke_predicton
https://github.com/gsharma15/sdoh_stroke_predicton
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comprising the dataset include responses to questions posed in custom-designed

questionnaires, often conducted by the Institut de la statistique du Québec and Statistics

Canada. For our research, we specifically requested surveys containing cardiovascular

diseases. The data acquisition process resulted in the inclusion of 7 surveys previously

conducted between the years 2007 and 2019 for Quebec population.

The final dataset comprised 27,236 rows and 69 columns. Each row represents a patient

whereas each column highlights their corresponding SDoH and stroke-related features. The

mean age is 52, whereas the median age is 56, in the dataset. The number of biological male

and female participants is 12,741 and 14,495 respectively.

We examined the statistical distribution of biological sex, race, and ethnicity to identify

any existing healthcare disparities or anomalies. Our analysis showed that among

individuals who experienced a stroke, 48.44% were women and 51.56% were men

(Figure 3.1). Additionally, we conducted a race-based analysis to investigate the

relationship between race and stroke incidence, evaluating how stroke rates vary among

different racial groups (Figure 3.2a). Finally, an ethnicity-focused assessment was carried

out to uncover any disparities in stroke prevalence. The stroke percentage data revealed

notable disparities when compared to the demographic distribution of the population.

Certain ethnicities such as Canadian, English, German, Scottish, and Irish exhibited higher

rate of stroke (Figure 3.3a) than their respective population representations, suggesting

potential health disparities or data collection biases. Conversely, the Chinese group showed



3. Methodology 21

a lower stroke percentage relative to their demographic presence, indicating either a lower

risk or potential underreporting. These patterns highlight the need for a detailed

investigation into the socioeconomic, healthcare access, genetic, and lifestyle factors that

may contribute to these observations, as well as a review of the data collection

methodologies to ensure accurate representation and reporting.

Sex: Sex refers to the biological and physiological characteristics that distinguish

individuals as male or female [93]. We divided the dataset into individuals who suffered

from stroke and those who had not. Subsequently, sex distribution and stroke incidence

rates for both men and women were calculated and compared. This analysis aimed to

reveal any notable sex-related patterns in stroke occurrences.

(a) Overall stroke distribution in the dataset (b) Stroke distribution in different sex

Figure 3.1: Sex Differences in Stroke Incidence

Race: Race is a social construct that categorizes individuals based on shared physical

characteristics and geographical ancestry [94]. We identified specific racial categories within
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the dataset and examined the prevalence of strokes within each category (Figure 3.2a).

Examining race reveals stroke risk disparities. While West Asians have the highest stroke

prevalence (2.0%), Filipinos, Japanese, and Koreans show none (though this might be due to

small sample sizes). White, South-East Asian, and South Asian populations have moderate

stroke rates (1.2% - 1.96%), while Latin American, Arab, and Black populations have a lower

prevalence (0.18% - 0.32%).

(a) Stroke Distribution in Individual Race Groups

Ethnicity: Ethnicity refers to an individual’s cultural identity, including shared

language, customs, traditions, and values [95]. Similar to the race analysis, the

ethnicity-based investigation explored the potential link between ethnicity and strokes. We

identified different ethnic groups within the dataset and calculated the percentage of
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individuals within each group who had experienced strokes (Figure 3.3a). This analysis

aimed to shed light on any potential disparities in stroke prevalence among different ethnic

backgrounds. Canadians (2.24%), French (1.91%), English (2.28%), Scottish (2.19%), Irish

(2.18%), Italians (1.61%), Portuguese (1.63%), Metis (1.72%), and Jews (1.27%) showed

moderate prevalence. Notably, Ukrainians, Dutch, South Asians, Norwegians, Swedes, and

Welsh had a 0% prevalence, though this might be due to small sample sizes. The "Other"

category had a prevalence of 1.09%.

(a) Stroke Distribution in Individual Ethnic Groups
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3.2 Data Preprocessing

Our data preprocessing steps include data cleaning, handling missing data, and data

normalization to ensure the dataset’s quality and uniformity.

3.2.1 Feature Selection

Feature selection is a step in model development, making sure only relevant information is

used for predictions. A list of features selected can be found in Appendix A in table A.1.

Data preprocessing involved selecting appropriate surveys and identifying features relevant

to the research question from these surveys, a crucial step in refining the dataset to include

only necessary information for meeting research goals.

• Selection of Surveys: This involves identifying a set of surveys that housed the

pertinent data for our research question. The selected surveys represented diverse

data obtained over different timeframes (2007-2019), encompassing a wide range of

demographics and including specific stroke-related data. A total of 5 surveys from ISQ

were included out of 7.

• Selection of Features: Not all features in the original surveys were relevant to the

research objectives, either due to missing data or because they were not related to

stroke, SDoH or traditional stroke risk factors. Relevance of features was determined

based on whether existing literature in cardiovascular diseases considered them.
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Typically, these selected columns pertained to features such as demographic

attributes (e.g. age, sex) , health indicators (e.g. presence of diabetes, stroke), and

SDoH (e.g. access to food, education level).

• Mapping Column Names: To facilitate the mapping of features across different

surveys, we adopted a strategy to maintain consistency in feature naming, prioritizing

the nomenclature from the first survey in which each feature appeared. For example,

the marital status feature, which appeared as ‘DHH_MS’ in surveys before 2015 and

was shortened to ‘MS’ in subsequent surveys, was labeled as ‘DHH_MS’ in our analysis.

This simplification aimed to maintain a clear and consistent framework for all features,

facilitating easier cross-survey comparisons and analysis.

Moreover, we undertook the task of renaming certain features to enhance clarity and

comprehension. For example, the variable ‘SDC_020B’, which represented the South

Asian race across all surveys, was renamed to ‘South_Asian’. This renaming strategy

was applied judiciously to various features, with the aim of making the dataset more

accessible and intuitive for researchers, thereby facilitating a more efficient data

analysis process.

This process helped refine our dataset, including only essential features for analysis and

reducing interpretation errors during our analysis. The distribution of features across

categories is as follows: 18 in traditional, 3 in demographic, 3 in economic, 2 in
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neighbourhood, 5 in personal, 4 in social, 3 in mental health, 12 in race, and 20 in

ethnicity. A list of these features can be found in Appendix A in table A.1.

3.2.2 Data Linkage

We integrated data from various survey years by standardizing the names for similar features

across datasets. This process ensured that the features were consistent, making it easier to

analyze the impact of SDoH on health outcomes by ensuring that all data points were

comparable. In the previous sub-section 3.2.1, we discussed how features were extracted

and mapped for individual surveys selected for this research. This section explains how we

combined different surveys into a single dataset. This merged dataset was key in analyzing

how SDoH affect cardiovascular diseases.

Given the substantial volume of data at our disposal and the constraints of the

computational resources available at ISQ, we adopted a strategic chunked processing

approach [96] for merging the data from surveys. This approach offered several

advantages, including enhanced efficiency, minimized memory usage, and preservation of

data.

(a) Determining Chunk Size: The process starts by deciding on a chunk (batch) size of

1000 rows. This means that for every survey file processed, up to 1000 rows are handled

at a time. We decided a batch size of 1000 to strike a balance between efficiency and

system resource utilization. It allowed for processing substantial data volumes without
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overwhelming memory, ensuring smooth and manageable data handling.

(b) Setting Up for Data Aggregation: An empty space, or "container", is prepared for

collecting the data. As surveys are processed in batches, this container will hold the

accumulated data.

(c) Processing Surveys in Batches: The approach involves going through the survey files

in batches, each time taking a set that corresponds to the batch size of 1000 rows.

(d) Extracting and Merging Data: Within each batch, the surveys are opened, and data

is extracted. This data is then merged into a single collection, making it a unified

structure of information. This step consolidates the data from multiple surveys,

simplifying further analysis.

(e) Compiling the Data: After processing a batch of surveys and merging their data, this

combined information is added to the prepared container. This process is repeated for

each batch until all surveys have been processed.

(f) Completing the Dataset: Through repeating this batch process for all survey files, a

final, combined dataset is formed. This dataset comprises merged data from all the

processed surveys, ready for analysis or further processing.

The merged dataset prior to further preprocessing had 57,131 individuals and 69 features.

The data merging process created a unified and detailed dataset by combining features from
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various surveys. This ensured that each variable was consistently represented, setting a solid

foundation for our further analysis.

Using this dataset, we proceeded to address missing data, conduct exploratory data

analysis, build ML models, and examine aspects related to our research goals.

3.2.3 Missing Data Handling & Data Transformation

The process of preparing the dataset for analysis involved two crucial aspects: handling

missing data and data transformation.

Handling Missing Data

Missing data can arise due to various reasons, including survey non-responses or data

recording errors. In this research, the following strategies were employed to address missing

data:

• Replacement of Missing Values: Initially, missing values, represented as NaN (Not

a Number), in the dataset were systematically replaced with zero (0). This replacement

was necessary to enable mathematical operations and ensure the dataset’s suitability

for modeling and analysis.

• Imputation with Median Values: For remaining missing values, a median

imputation strategy was employed. Median imputation involves calculating the

median value for each respective column. This approach ensured that the imputed
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values retained the statistical characteristics of the original data. Furthermore, the

imputed median values were rounded to the nearest integer to maintain data

uniformity.

Data Transformation

Data transformation steps were executed to enhance the quality and relevance of the dataset:

• Removal of Unwanted Survey Responses: Many survey datasets contain

responses that are not applicable to the research objectives or contain responses like

"didn’t report" or "don’t know." 62 features had such responses. To focus the analysis

on meaningful survey data, these unwanted responses were identified based on their

specific response codes. Corresponding rows containing such responses were

systematically removed from the dataset.

• Data Type Conversion: The survey responses, originally integers, were represented

as decimals in the dataset, for instance, 1 was shown as 1.0. To streamline subsequent

analyses and maintain consistency within the dataset, all column data types were

converted to integers (int). This transformation ensured that all values in the dataset

were whole numbers, simplifying the modeling process.

• Verification of Removal: To ensure the effective removal of unwanted responses, a

validation step was implemented. A count of unique values in the specific columns was
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performed to confirm that rows containing unwanted responses had been successfully

excluded from the dataset.

After handling missing data, the cleaned dataset was saved to a new file. This cleaned

dataset was used for further analysis and modeling. The cleaned dataset had 27,236

individuals and 69 features.

3.2.4 Handling Class Imbalance

Class imbalance is a common challenge in healthcare datasets, as certain health conditions,

such as strokes, are relatively rare compared to non-stroke cases. In our analysis, we

encountered a substantial class imbalance with 512 stroke cases and 26,724 non-stroke

cases. This significant disproportion can lead to models that are biased towards predicting

the majority class (non-stroke), as they tend to optimize overall accuracy by favoring the

more prevalent class. This results in poor predictive performance for the minority class

(stroke). To address this issue and ensure that our predictive models are robust and

effective, we employed Under-Sampling [97] technique for our problem. This approach is

justified for the following reasons:

1. Enhancing Model Sensitivity to Stroke Cases: Given the nature of accurately

identifying stroke cases, undersampling the non-stroke cases to balance the dataset can

increase the model’s sensitivity to the stroke class.
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2. Mitigating Model Bias: The dataset’s imbalance heavily biases prediction towards

the majority class (non-stroke). By undersampling, we reduce this bias, enabling the

model to learn a more balanced decision boundary that improves its ability to

distinguish between stroke and non-stroke cases.

3. Computational Efficiency: Owing to the limitation of computational resources,

undersampling was the optimal method to enhance model efficiency and focus on

accurately detecting stroke cases.

Undersampling was chosen over oversampling or SMOTE [98] as it avoids the

computational burden and potential overfitting associated with increasing the dataset size

through synthetic data generation or duplication.

Figure 3.4: Dataset Imbalance - Overall stroke distribution in the dataset
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Under-Sampling

Under-sampling, seeks to balance the class distribution by reducing the number of majority

class instances. Specifically, we randomly selected a subset of majority class instances to

match the number of minority class instances. The goal of random under-sampling is to

create a balanced dataset, but it comes with the trade-off of reducing the overall dataset

size. Mathematically, we ensured that the number of majority class instances (M) equaled

the number of minority class instances (N):

M = N

While random under-sampling can balance the dataset, it may lead to a loss of valuable

information from the majority class.

We applied NearMiss version 3 [99] for undersampling to consider equity by ensuring

balanced representation between the majority and minority classes. This method selects

majority class instances based on their proximity to the minority class, aiming to preserve

the most informative and challenging examples to maintain a meaningful decision boundary.

By matching the number of instances between classes, it seeks to reduce bias and ensure

that both stroke and non-stroke cases are equally represented and learned by the model.
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3.3 Model Development

Data Splitting

To evaluate the predictive capabilities of various ML models, we divided the dataset into

training (80%) and test sets (20%).

3.3.1 Model Selection

We employed a diverse set of ML algorithms, each with its own strengths and characteristics,

to predict stroke occurrences. The selected models included Random Forest (RF) [20],

Gradient Boosting Machines (GBM) [21], K-Nearest Neighbors (KNN), Neural Network

(NN) [22], LightGBM (LGBM) [23], CatBoost (CB ) [24], and XGBoost (XGB) [25].

3.3.2 Model Evaluation

In the evaluation process, each model was assessed on the test dataset to generate predictions,

based on performance metrics like accuracy, precision, recall, and F1 score. Additionally,

model performance was assessed across various feature subsets (demographic, economic,

ethnicity, race, social factors, neighbourhood, personal factors and mental health) to identify

the impact of different feature combinations on model accuracy and other key metrics. This

evaluation aimed to uncover potential variations in model’s accuracy and effectiveness using

different SDoH.
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3.3.3 Model Tuning

In our study, we utilized GridSearchCV [100] for thorough hyperparameter tuning across

various ML algorithms to develop predictive models for stroke. This method enabled us to

systematically explore and optimize hyperparameters, focusing on performance

enhancement, complexity management, and overfitting prevention, all while maintaining

computational efficiency. Such adjustment of parameters like the number of estimators and

learning rates was important for building models capable of accurately predicting stroke

occurrences. The details on the specific hyperparameters can be found in table 3.1.

3.3.4 Explainable Artificial Intelligence (XAI)

In our study, we integrated different XAI techniques, particularly feature importance,

LIME [27], and SHAP [26], to interpret the predictive models and understand the impact

of SDoH on stroke prediction.

Feature Importance The feature importance method, which ranks and visualizes the

top most influential features, was used to highlight the key features driving predictions

across different models. We identified top 15 features, to allow for a focused analysis on the

most impactful features, balancing detail with manageability in model interpretation and

visualization. This approach leveraged the feature_importances_ attribute of models to

rank features based on their impact on the model’s predictive accuracy. A bar chart ( 4.2.1)
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Model Parameters
Random Forest • n_estimators: [100, 200]

• max_depth: [10, 20]
• min_samples_split: [2, 5]
• min_samples_leaf: [1, 2]

Gradient Boosting Machine • n_estimators: [100, 200]
• learning_rate: [0.01, 0.05]
• max_depth: [3, 4]

KNN • n_neighbors: [3, 5]
• weights: [‘uniform’, ‘distance’]
• p: [1, 2]

Neural Network • hidden_layer_sizes: [(50, 50)]
• activation: [‘relu’]
• alpha: [0.0001, 0.001]
• learning_rate: [‘constant’]

LGBM • n_estimators: [100, 200]
• learning_rate: [0.01, 0.05]
• max_depth: [3, 4]

CatBoost • iterations: [500]
• learning_rate: [0.01, 0.05]

XGBoost • n_estimators: [100, 200]
• learning_rate: [0.01, 0.05]
• max_depth: [3, 4]

Table 3.1: Hyperparameters used for each machine learning model

visualization highlights the relative importance of these features. This process aids in model

interpretation and guides feature selection and model refinement, ensuring that the most

relevant features are considered in stroke prediction.

LIME LIME was applied for local interpretability of individual predictions. By generating

perturbations around a specific instance and observing the impact on the prediction, LIME

identifies relevant features. This instance-level explanation is useful for understanding model
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behavior on complex or borderline cases, offering detailed insights into the reasons behind a

model’s prediction. Through this method, we can communicate the rationale behind specific

predictions, enhancing trust and transparency in the model’s predictive output.

SHAP SHAP values were used to break down how each feature contributed to predictions.

This method offers a global and local understanding, meaning, it gives a broad overview of

which features are important overall (global), and also shows how each feature affects specific

predictions (local). By employing SHAP, we were able to generate summary plots illustrating

this information. This dual perspective of global and local interpretability makes SHAP an

invaluable tool for comprehensively understanding model predictions and the underlying

feature interactions.
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Chapter 4

Results

Building upon the foundations established in Chapter 3, this chapter presents our findings

on the impact of incorporating SDoH into stroke prediction models. We explore model

performance (4.1), different subsets of SDoH (4.1.2), and the role of SDoH factors in stroke

prediction (4.2). We utilize different evaluation metrics and the aforementioned XAI

techniques (Chapter 3) to understand the role of SDoH in stroke prediction.

4.1 Model Performance

As our research objective aims to examine how consideration for SDoH improves ML

prediction of stroke risk, we first examined ML models on the stroke risk prediction task

without any SDoH. We sought to verify that our models perform comparatively to existing

models in the literature. We examine various metrics to assess performance of our
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prediction models. This evaluation shows how well the models work and highlights the

effects of SDoH factors on stroke prediction. To evaluate the performance of all models, we

calculated key metrics including accuracy, precision, recall, and F1 score, in addition to

generating ROC-AUC curves (Figure 4.1). These measures provided an assessment of each

model’s ability to predict stroke occurrences. The ROC-AUC curve further offered insights

into the trade-off between true positive rates and false positive rates across various

threshold settings, improving our understanding of model effectiveness for different stroke

events.

Figure 4.1: ROC-AUC Curve for Stroke Prediction

Figure 4.1 displays an ROC curve for models that incorporated all features, including both

traditional and all SDOH categories.. The diagonal dashed line represents a random classifier

that serves as a baseline. An effective model’s ROC curve should significantly deviate from

this line. Ideally, the curve should rise sharply towards the top left corner, indicating the

model accurately identifies individuals with stroke (true positives) with minimal false alarms
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(incorrectly classifying healthy people as having a stroke). By analyzing the location and

shape of a model’s ROC curve in Figure 4.1 compared to the baseline, we can assess its

effectiveness in differentiating between those at high and low risk of stroke.

4.1.1 Insights from Models

1. LGBM: Demonstrating the highest AUC of 81%, the LGBM model is the top

performer among all the models. This implies that LGBM offers the most significant

discriminative power in identifying potential stroke cases in our dataset.

2. XGB: XGB demonstrated an AUC of 80%, highlighting its effectiveness in predicting

stroke with high accuracy.

3. Ensemble Methods - RF , GBM, and CatBoost: Interestingly each of the

ensemble methods displayed an AUC of 79%. Their similar performance necessitates

further investigation to understand differences in their predictions.

4. KNN: With an AUC of 74%, KNN, doesn’t match the predictive capabilities of the

aforementioned ensemble methods in this context.

5. NN: Surprisingly, the NN model registered the lowest AUC of 65% among the models.

The model’s lower AUC, compared to other models, suggests it might not have captured

the complex relationships in the data as effectively, possibly due to insufficient training

data, or a need for more sophisticated architecture adjustments. This underlines the
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notion that complex models like NN are not always superior.

Table 4.1: Performance metrics for all models (in percentage)

Model Accuracy Precision Recall F1 Score
RF 77.10 77.80 75.50 76.60
GBM 73.20 72.80 73.50 73.20
KNN 69.80 71.30 65.70 68.40
NN 62.90 62.00 65.70 63.80
LGBM 77.60 78.60 75.50 77.00
CB 75.10 76.80 71.60 74.10
XGB 74.10 75.30 71.60 73.40

The results from Table 4.1 highlight the performance of various ML models in stroke

prediction. These metrics collectively provide insight into the models’ predictive capabilities,

balancing the identification of true stroke cases against the minimization of false positives

and false negatives. Detailed results can be found in Appendix B.

• RF has shown a balanced performance with an accuracy of 77.10%, precision of 77.80%,

recall of 75.50%, and an F1 score of 76.60%. High recall indicates the model’s strength

in identifying a high proportion of actual stroke cases, making it particularly valuable

in medical settings where missing a stroke case could have dire consequences. The

precision score reflects its relative success in minimizing false positives, while the F1

score suggests a balanced trade-off between precision and recall.

• GBM achieves an accuracy of 73.20%, precision of 72.80%, recall of 73.50%, and an

F1 score of 73.20%. Its superior recall suggests it’s good at detecting stroke cases,
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crucial for early intervention and treatment. The high precision indicates fewer false

positives, but the F1 score is slightly lower than LGBM.

• KNN exhibits a higher precision of 71.30% but a lower recall of 65.7%, resulting in

an F1 score of 68.40%. The higher precision means the model is effective at correctly

identifying stroke cases when it predicts one, though the lower recall points to a

potential limitation in capturing all true stroke cases.

• NN shows the lowest performance, with an accuracy of 62.90%, precision of 62.00%,

recall of 65.70%, and an F1 score of 63.80%. The lower values across these metrics

indicate challenges in both identifying true stroke cases and in avoiding false stroke

predictions, suggesting that this model might be less suitable for applications where

both accurate detection and minimization of false alerts are important.

• LGBM outperforms other models with an accuracy of 77.60%, precision of 78.60%,

recall of 75.50%, and an F1 score of 77.00%. The high recall rates are indicative of its

capability to identify most true stroke cases, the precision scores reflect its effectiveness

in minimizing false positives and the F1 scores indicate a strong balance between

precision and recall, making them highly suitable for stroke prediction in healthcare

contexts.

• CB achieves similar results to LGBM with an accuracy of 75.10%, precision of 76.80%,

recall of 71.60%, and an F1 score of 74.10%. The high recall rates makes it a valuable
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tool in stroke prediction. Their high recall rates are indicative of their capability to

identify most true stroke cases, which is essential for preventing missed diagnoses.

• XGB displays a balance with an accuracy of 74.10%, precision of 75.30%, recall of

71.60%, and an F1 score of 73.40%. Like CB and LGBM, XGB’s high recall rate

makes it a valuable tool in stroke prediction for its ability to catch a high number of

stroke cases, with its F1 score affirming a favorable balance between identifying true

cases and minimizing false diagnoses

Figure 4.2: Accuracy Comparison Based on Traditional vs Traditional & SDoH features

When SDoH data is included alongside traditional features (Figure 4.2), we see an

improvement in the accuracy of many prediction models. This emphasizes the importance

of using a wider range of data to improve predictions. Models like RF and LGBM jump in
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accuracy (from 65.90% to 77.10% and 74.60% to 77.60%, respectively) when SDoH features

are included. These improvements highlight that SDoH data, which includes economic

factors, social aspects, demographics, and personal information, captures crucial details

missed by medical indicators alone. However, it is important to note that not all models

demonstrate improvement upon the inclusion of SDoH data, underscoring the complexity

and variability in how these factors interact with health outcomes. The results partially

support the research hypothesis, indicating that incorporating SDoH data can enhance

prediction models, though the impact varies, reflecting the complex relationship of these

factors in determining health outcomes.

4.1.2 SDoH

In this section, we evaluate how different subsets of SDoH factors such as demographic,

socioeconomic, and personal characteristics affect the performance of our prediction models.

By examining these subsets individually, we gain insights into how specific groups of SDoH

contribute to the accuracy and reliability of stroke predictions. A detailed list of results for

all the metrics evaluated for each SDoH subset can be found in Appendix B.

Demographic Factors: Including demographic data like age and marital status

improved the performance of several stroke risk prediction models (Figure 4.3), particularly

GBM (77.10% accuracy with demographics vs 74.10% without) and XGB (76.10% vs

71.70%). Similar results were obtained for KNN models (69.30% vs 65.40%).While NN
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initially suffered a drop in accuracy with all features (62.90% all features vs 68.80% with

traditional features only), incorporating demographics still yielded a modest improvement

(65.90%). These findings suggest that demographic data can enhance the accuracy of

various predictive models, though the impact may vary depending on the specific model

type.

Figure 4.3: Impact of Demographic Features on Model Performance

Economic Factors: Economic features’ (Figure 4.4) influence on stroke risk prediction

models varies by algorithm. GBM and LGBM see accuracy gains (77.10% and 77.60%

respectively) with economic features, suggesting these variables like employment and housing

are strong predictors. KNN also benefits greatly, reaching its highest accuracy (70.70%) with

economic data. Conversely, (69.80%) and XGB (75.60%) show more modest improvements,
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while NN see a slight recovery in accuracy (66.80%) compared to the full feature set. CB is

the only model with a slight decrease (73.20%) in accuracy, indicating it might not utilize

economic variables as effectively as others. Economic features enhance the performance of

specific models, highlighting their relevance, but the impact varies depending on the model

type.

Figure 4.4: Impact of Economic Features on Model Performance

Ethnicity: Examining the impact of ethnicity (Figure 4.5) on stroke risk prediction

models reveals different outcomes across algorithms. RF (65.90%) shows no change in

accuracy, suggesting ethnicity offers no additional predictive power for this model. GBM

(73.70%) and XGB (73.70%) experience slight decreases, implying ethnicity has some

value, but not as much as traditional features. LGBM (73.70%) and CB (72.70%) see

moderate reductions, indicating a mild impact of ethnicity on their performance. KNN
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(64.40%) and NN (63.40%) exhibit the most significant drops, suggesting the ethnicity

feature may not align well with their underlying mechanisms or may even introduce noise.

The influence of ethnicity on model accuracy varies considerably, with some models

potentially benefiting little and others struggling to integrate this feature effectively.

Figure 4.5: Impact of Ethnicity on Model Performance

Mental Health Factors: Integrating mental health data (Figure 4.6) into stroke risk

prediction models yielded interesting insights but generally decreased accuracy across all

algorithms. NN exhibited the maximum drop (62.00% accuracy), suggesting mental health

features alone offer less predictive power for this model compared to the complete dataset.

GBM and XGB also showed accuracy declines, indicating some value in mental health data

but less than the full feature set. LGBM and CB displayed moderate decreases, suggesting
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a milder influence of mental health on their performance. The most significant drops

occurred with KNN (69.30%) and NN (61.50%), potentially due to these models struggling

to integrate mental health data effectively. Mental health features may offer valuable

insights when combined with others, their inclusion highlights the complexity of mental

health as a predictor and the need for further analysis to capture its full potential.

Figure 4.6: Impact of Mental Health Features on Model Performance

Neighbourhood Factors: Analyzing the impact of neighborhood features

(Figure 4.7) reveals a trend where most models either see no improvement or experience a

decrease in accuracy compared to using all features. (65.90%) shows no change, suggesting

neighborhood data offers no additional benefit for this model. GBM (71.20%), XGB

(72.20%), CB (72.70%), and LGBM (73.70%) all experience minor to moderate accuracy
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drops, indicating neighborhood features hold some value but less than the full dataset. The

most significant decrease occurs with KNN (59.50%), suggesting this model struggles to

utilize neighborhood data. Similarly, the NN (63.90%) shows a decrease, further

highlighting potential challenges in leveraging this type of information. While

neighborhood features might hold some predictive power, they appear less influential on

their own and may require integration with other data types for more robust prediction in

these models.

Figure 4.7: Impact of Neighbourhood Features on Model Performance

Personal Factors: Incorporating personal data (Figure 4.8) impacts model

performance, revealing its value for stroke risk prediction. XGB sees a substantial accuracy

gain (72.20%) from personal features, highlighting their positive influence. Notably, GBM
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achieve their peak accuracy (77.10%) with personal features, suggesting these features hold

the strongest predictive power within this model. KNN shows a moderate benefit (68.80%)

from personal data, while LGBM (75.60%) and XGB (75.60%) experience slight decreases

compared to the full feature set but remain improved over traditional features alone.

Interestingly, the NN struggles with personal features (61.50%), indicating a potential

mismatch between this data type and the model architecture. CB also shows a minor

decrease (74.10%) from the full set but performs better than with only traditional features

(73.70%). Personal features generally enhance model performance compared to traditional

features, with some models even achieving peak accuracy with them.

Figure 4.8: Impact of Personal Features on Model Performance

Race: Examining the influence of race (Figure 4.9) on stroke prediction models reveals
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different effects. KNN (65.40%) experience minimal changes, suggesting race offers little

additional predictive power beyond traditional features. GBM (74.10%) and LGBM

(74.10%) show slight accuracy dips, indicating race has some value but isn’t a major factor.

CB (75.10%) remains stable, demonstrating its ability to utilize race without compromising

performance. Interestingly, the NN shows a slight improvement (66.80%), suggesting some

benefit from race features. Overall, the impact of race on model accuracy is varied, with

some models indifferent and others experiencing minor changes. This highlights that race

may hold some predictive power, but its influence is often subtle compared to other

features.

Figure 4.9: Impact of Race on Model Performance:

Social Factors: Incorporating social features (Figure 4.10) into the models yields
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mixed results, impacting each model’s accuracy differently compared to both traditional

and all feature sets. RF (68.30%) and LGBM (74.10%) experience accuracy gains from

social data, but these increases are smaller than those observed with the full feature set.

Conversely, GBM (71.20%) and KNN (65.40%) see their performance decline when using

social features alone compared to both traditional and all features. The NN (63.40%)

shows a slight improvement with social data, but it remains lower than its peak accuracy.

Interestingly, CB (74.10%) performs equally well with social features as with traditional

features, and XGB (74.10%) maintains its top accuracy from the full feature set even when

using social features alone. Social features tend to provide some benefit or maintain

performance compared to traditional features.

Figure 4.10: Impact of Social Features on Model Performance
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Results show that adding SDoH subsets improves model accuracy in some cases, giving

a better picture of what affects stroke risk and boosting prediction strength. Demographic,

economic, personal and social subset had the most positive impact on performance. The

models GBM, LGBM, CB, and XGB performed best in all scenarios.

4.2 XAI

We employed XAI methods such as feature importance, SHAP, and LIME which allowed us

to pinpoint the specific SDoH factors that play important roles and offer insights into their

relative importance.

4.2.1 Feature Importance

We analyse the feature importance plot based on feature ranking and the relative importance

of each feature. The order of the features from top to bottom indicates the rank of importance

as assessed by the model. Features higher on the y-axis contribute more to the model’s

decisions. Whereas, the length of the bars represents the relative importance of each feature.

A longer bar means a higher score and, therefore, a greater impact on the model’s predictions.

Such plots serve as tools for interpretability, helping to explain the model’s behavior in a

human-understandable way.
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CatBoost:

In the CB model (Figure 4.11), the type of smoker (Smoker_Type) and the presence of

heart disease (Heart_Disease) stand out as the foremost influential factors, highlighting

the significance of lifestyle habits and medical conditions on predicting stroke.

Demographic aspects such as age (DHH_AGE) and marital status (DHH_MS) also hold

substantial weight, showing the model’s attention to personal and social circumstances.

Delving further, the model considers both traditional risk factors, such as high cholesterol

(High_Cholesterol) and blood pressure medication usage (High_BP_took_meds), and

social factors like stress perception (Perceived_Life_Stress), employment status (Working),

alcohol consumption (Had_Alcohol_12mo), and health perception (Perceived_Health).

This mix highlights the influence of SDoH factors along with clinical indicators on stroke

using CB model.

Figure 4.11: Feature Importance - CatBoost Figure 4.12: Feature Importance - GBM
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Gradient Boosting Machine:

In the GBM model (Figure 4.12), age (DHH_AGE) is identified as the most crucial factor,

emphasizing its role in stroke predictions. The importance of smoking type (Smoker_Type)

is also highlighted, maintaining its significance across different models. Following these are

medical conditions and social factors such as heart disease (Heart_Disease) and marital

status (DHH_MS), showing their consistent impact. Features representing health

perceptions and lifestyle choices, including perceived health (Perceived_Health), blood

pressure medication usage (High_BP_took_meds), and alcohol consumption

(Had_Alcohol_12mo), form the middle tier of importance. Furthermore, the model

considers the effects of stress perception (Perceived_Life_Stress) and education level

(Level_of_Education), albeit with less weight than the leading factors. This illustrates

that SDoH had an impact on GBM’s assessment of stroke along with traditional factors.

LGBM:

In the LGBM model (Figure 4.13), smoking type (Smoker_Type) and age (DHH_AGE)

emerge as top predictors, with the model also placing significant emphasis on stress

perception (Perceived_Life_Stress) and health perception (Perceived_Health), sometimes

even more than on traditional medical factors such as heart disease (Heart_Disease).

Following these, factors like marital status (DHH_MS), blood pressure medication usage

(High_BP_took_meds), and doctor consultations in the past year (Dr_Consult_12mo)
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further contribute to the accuracy of predictions. Notably, this model distinguishes itself

by valuing unique features such as living environment (Urban_Rural) and ethnicity

(Norwegian), showcasing its consideration of SDoH influence on stroke.

Figure 4.13: Feature Importance - LGBM Figure 4.14: Feature Importance - RF

Random Forest:

In the RF model (Figure 4.14), the significance of smoking type (Smoker_Type) once

again tops the list, followed by age (DHH_AGE) and heart disease (Heart_Disease), with

marital status (DHH_MS) also highlighted as a key factor. Further down the importance

scale, the model benefits from information provided by blood pressure medication usage

(High_BP_took_meds), alcohol drinking frequency (Drink_Alcohol_freq), and high

cholesterol (High_Cholesterol), among other features. Additionally, employment status

(Working), education level (Level_of_Education), and sense of community

(Community_Belonging) contribute to the model’s decision-making, although with a more
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subtle impact, demonstrating the role of SDoH in RF’s assessment of stroke.

XGBoost:

In the XGB model (Figure 4.15), heart disease (Heart_Disease) emerges as the most

influential factor, underscoring its role in predictions. A closely ranked group of features,

including blood pressure medication usage (High_BP_took_meds), ethnic backgrounds

(Chinese, Norwegian), high cholesterol (High_Cholesterol), and age (DHH_AGE),

illustrates the model’s consideration of a blend of medical and demographic factors.

Ethnicities such as Chinese and Norwegian highlight the model’s attention to demographic

diversity. Lower in the importance order, ethnicities like South East Asian, alongside

lifestyle choices and medical consultations (Had_Alcohol_12mo, Dr_Consult_12mo), and

other ethnic backgrounds (German, Metis), contribute to varying degrees. Closing the list

of top features are type of smoker (Smoker_Type), marital status (DHH_MS), English,

and health perception (Perceived_Health), which, despite being at the end, still influence

the model. This showcases the role SDoH plays in XGB’s prediction for stroke.

We weren’t able to generate feature importance plots for KNN and NN in this analysis.

Unlike other models, KNN doesn’t assign individual weights to features, relying on data

point proximity for predictions. NN, with their complex layers and transformations, make

it difficult to isolate the contribution of each feature.

The analysis of feature importance across different models consistently highlights a few
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Figure 4.15: Feature Importance - XGBoost

key predictors for stroke, notably the type of smoker (Smoker_Type), age (DHH_AGE), and

the presence of heart disease (Heart_Disease). These factors are frequently top-ranked across

models, indicating their influence on stroke prediction. In addition, demographic aspects

such as marital status (DHH_MS) and diverse SDoH like employment status (Working),

perceived health (Perceived_Health), and stress levels (Perceived_Life_Stress) also play

important roles, although their impact varies among the models.

4.2.2 SHAP

SHAP, offers insights into the model’s decision-making on a comprehensive level while still

detailing individual predictions. In stroke prediction, a red bar in the SHAP plot signifies

that a feature is positively influencing the prediction of a stroke occurring. In contrast, a blue

bar would indicate a positive influence toward predicting no stroke. The length of the bars

in SHAP plots denotes the relative importance of each feature, with longer bars indicating
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a stronger impact on the model’s output.

CatBoost:

For the CB model (Figure 4.16), smoking behavior (Smoker_Type) and age (DHH_AGE)

are important in the model’s predictions, highlighting their role in health outcomes.

Interestingly, the model gives considerable importance to personal health perception

(Perceived_Health), mental well-being (Perceived_Life_Stress), and social connections

(Sense_of_Community_Belonging). These findings reveal the model’s sensitivity to both

health-related behaviors and broader social factors. The presence of medical condition

management features like high blood pressure medication (High_BP_took_meds), and

cholesterol levels (High_Cholesterol) further indicates the model’s integration of

traditional health metrics, reinforcing the influence of SDoH on stroke prediction.

Gradient Boosting Machine:

In the GBM model (Figure 4.17), weight (Weight) emerges again as a dominant feature,

consistent with its significance in other models. The continued prominence of

non-traditional factors such as stress perception (Perceived_Life_Stress) and community

ties (Sense_of_Community_Belonging) across models suggests a universal impact of these

factors on health predictions. The recurrence of features related to heart disease

(Heart_Disease), high blood pressure medication (High_BP_took_meds), and cholesterol
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Figure 4.16: SHAP Plot - CatBoost Figure 4.17: SHAP Plot - GBM

levels (High_Cholesterol) across different models underscores their relevance in predicting

stroke along with the important role of SDoH.

LGBM:

In the LGBM model (Figure 4.18), the consistency in highlighting weight (Smoker_Type)

as an influencer aligns with findings from other models, pointing to its integral role in

health outcomes. The model places significant weight on an individual’s health perception

(Perceived_Health) and stress levels (Perceived_Life_Stress), indicating that how a

person views their health and handles stress is crucial for prediction. Lifestyle habits like

blood pressure management (High_BP_took_meds) and alcohol consumption frequency
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(Drank_Alcohol_freq) are also key, emphasizing the role of SDoH in influencing health.

Figure 4.18: SHAP Plot - LGBM Figure 4.19: SHAP Plot - Random Forest

Random Forest:

For the RF model (Figure 4.19), weight, type of smoker (Smoker_Type) again ranks as a

primary influencer, underscoring its consistent importance across models in predicting

health outcomes. The model gives considerable importance to mental well-being

(Perceived_Life_Stress) and social connections (Sense_of_Community_Belonging),

echoing the sentiment of other models about the impact of psychological and social factors.

Additionally, it highlights the relevance of managing health conditions like high cholesterol

(High_Cholesterol) and lifestyle choices (Drank_Alcohol_freq), showcasing the model’s
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capability to integrate both SDoH factors and traditional health metrics in its assessment.

XGBoost:

The XGB model (Figure 4.20) aligns with the trend seen in other models, where weight is

the most dominant feature, reinforcing the influence of lifestyle habits on health. The

model places considerable emphasis on non-traditional features such as stress perception

(Perceived_Life_Stress) and community belonging (Sense_of_Community_Belonging),

signifying its attentiveness to social and psychological aspects of health. Alongside these,

traditional health indicators like heart disease (Heart_Disease), blood pressure medication

usage (High_BP_took_meds), and cholesterol levels (High_Cholesterol) maintain their

established importance, reflecting the model’s comprehensive approach to include both

medical conditions and SDoH factors in stroke prediction.

For SHAP analysis, KNN and NN require specialized versions of SHAP explainers due

to their unique model architectures. Unfortunately, these specific SHAP explainers were

incompatible with the existing software environment on ISQ’s office machines, leading to

technical installation issues. This limitation prevented the effective application of SHAP-

based interpretability methods for these models within the ISQ infrastructure.

SHAP analysis consistently identifies smoking behavior, age, sense of community

belonging, perceived health, and stress levels as key predictors across models, along with

traditional health metrics like medication use and cholesterol levels. This underscores the



4. Results 62

Figure 4.20: SHAP Plot for XGBoost

importance of integrating SDoH factors along with traditional medical factors in stroke risk

assessment.

4.2.3 Lime

LIME provides a detailed look at how each feature affects an individual prediction in a model.

In the context of stroke prediction, a red bar in the LIME plot means that the feature is

contributing to the model predicting the absence of stroke, while a green bar suggests a

contribution toward a stroke prediction. The length of these bars indicates the strength of

each feature’s impact, with longer bars signifying greater influence on the prediction for that

specific patient’s case.
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Catboost:

For the CB model (Figure 4.21), the prediction for a stroke incident is heavily influenced

by the presence of heart disease (Heart_Disease) and the age (DHH_AGE) of the

individual, with both of them being the top contributing features. The model interprets

these factors as strong indicators, where existing heart conditions and increased age raise

the model’s prediction probability for a stroke. Other features such as blood pressure

medication (High_BP_took_meds), cholesterol management

(High_Cholesterol_took_meds), and recent alcohol consumption (Drank_Alcohol_12mo)

also play roles in the predictive process, but to a lesser extent.

Figure 4.21: LIME plot - CatBoost Figure 4.22: LIME plot - GBM

Gradient Boosting Machine:

In the GBM model’s analysis (Figure 4.22), features like body weight (Weight) and an

individual’s problem-handling ability (Problem_Handling_Ability) appear to have a

protective effect, reducing the likelihood of a stroke prediction. Conversely, the presence of
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heart disease (Heart_Disease) is interpreted as increasing stroke risk. The model also

considers marital status (DHH_MS) and cholesterol medication

(High_Cholesterol_took_meds) when making its prediction, reflecting the way the model

weighs various health-related factors and SDoH attributes in assessing stroke risk.

KNN:

For the KNN model (Figure 4.23), the prediction leans towards ’Stroke’, with heart disease

and cholesterol levels (Heart Disease, High_Cholesterol_took_meds) marked as significant

contributors. The model’s prediction also takes into account blood pressure medication

usage (High_BP_took_meds), blood pressure levels (High_BP), and smoking type

(Smoker_Type), each playing a role in influencing the likelihood of a stroke prediction,

though their impact is secondary to that of heart-related factors.

Figure 4.23: LIME plot - KNN Figure 4.24: LIME plot - LGBM
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LGBM:

In the case of LGBM (Figure 4.24), an individual’s perceived health (Perceived_Health)

and age (DHH_AGE) emerge as the main influences. Interestingly, this suggests that while

advanced age is generally considered a risk factor, a positive health perception might mitigate

this risk according to the model. Other factors the model considers include heart disease

(Heart_Disease), medication for high blood pressure (High_BP_took_meds), and weight

(Weight), all contributing to the model’s assessment of stroke risk, highlighting the interplay

between medical conditions and SDoH.

XGBoost:

In the XGB analysis (Figure 4.25), the prediction leans towards ’Stroke’, with heart disease

(Heart_Disease) and specific weight parameters (Weight in the range 61.00 to 74.00)

identified as important contributors. Additionally, marital status (DHH_MS), and the

usage of medication for high cholesterol and high blood pressure

(High_Cholesterol_took_meds and High_BP_took_meds), also play significant roles.

The visualization suggests that the presence of heart disease and being within the specified

weight range greatly increase the likelihood of a stroke prediction, highlighting the model’s

attention to these specific health indicators and treatments as significant risk factors along

with few SDoH factors.
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Figure 4.25: LIME plot - XGBoost Figure 4.26: LIME plot - RF

Random Forest:

For the RF model (Figure 4.26), the prediction is mainly driven by presence of heart

disease (Heart_Disease) and a different weight range (Weight in the range 74.00 to 80.00).

This model also considers the impact of high blood pressure and cholesterol medication

(High_BP_took_meds and High_Cholesterol_took_meds), as well as the individual’s

problem-handling ability (Problem_Handling_Ability). The orientation of green bars for

these features suggests that despite the presence of heart disease, the specific weight range

and how an individual manages problems play crucial roles in predicting stroke. This

demonstrates the influence of SDoH factors in combination with medical conditions in

assessing stroke.

Neural Network:

For the NN model (Figure 4.27), the prediction indicates biological sex (DHH_SEX) and

the presence of heart disease (Heart_Disease) emerging as the dominant factors influencing
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the presence of stroke. The inclusion of features such as access to a regular healthcare

provider (Regular_Healthcare_Provider), usage of cholesterol medication

(High_Cholesterol_took_meds), and smoking habits (Smoker_Type) further shapes the

prediction landscape. This analysis underlines the NN’s capacity to integrate both SDoH

metrics and broader health-related behaviors in formulating its predictions, illustrating the

interplay of various factors in stroke prediction.

Figure 4.27: LIME plot for NN

LIME analysis across multiple models emphasizes the strong impact of heart disease and

age on stroke predictions. Additional important contributors include medication usage for

blood pressure and cholesterol, as well as lifestyle factors like recent alcohol consumption

and weight. This multifactorial influence highlights the importance of integration of both

traditional medical indicators and broader SDoH in assessing stroke risk.
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Chapter 5

Discussion

Our discussion delves into the implications of incorporating SDoH data into ML models

for stroke prediction. We utilized ML models ( such as LGBM, XGB, RF, GBM, CB, and

NN) alongside interpretability techniques (such as feature importance, LIME and SHAP) to

understand how SDoH data influences model performance and decision-making. Our results

align with previous research suggesting that at least for specific ML models, including SDoH

factors improves stroke prediction accuracy [101,102].

5.1 Impact of SDoH on Model Performance

The AUC scores were calculated considering all features, encompassing both traditional and

all SDoH categories. Among these models, the LGBM achieved the highest AUC score (81%),

highlighting its effectiveness in utilizing complex data for accurate predictions. This aligns



5. Discussion 69

with studies showing the strengths of gradient boosting methods in other medical prediction

tasks [103]. However, our NN model achieved a lower AUC score (65%). This suggests

potential limitations in the NN model’s suitability for this specific data or an extensive need

for further hyperparameter tuning. Similar findings have been reported in other studies,

where the effectiveness of all models, in our case NN, can be data-dependent [104]. XGB also

performed well with an AUC of 80%, further establishing the efficacy of gradient boosting

methods in this context. Ensemble methods like RF, GBM, and CB also demonstrated

better performance each with AUC scores of 79%. These findings suggest their capability

of handling features effectively, which aligns with research highlighting the strengths of

ensemble methods for complex data analysis [105].

These observations emphasize several key takeaways. First, model choice plays an

important role when predicting stroke. Based on the results, models like RF, XGB, LGBM,

and CB seem well-suited for handling clinical and SDoH data due to their ability to

leverage complex features. Second, identifying relevant featues is important for stroke

prediction. As observed from our analysis, GBM’s performance demonstrated sensitivity to

the type of features used. Finally, the lower AUC score achieved by the NN model suggests

potential challenges in utilizing SDoH data effectively. This may necessitate more

sophisticated model design or optimization strategies for NN approaches. Thus, our

analysis underscores the importance of selecting the appropriate model based on available

data and the specific prediction task. It also shows that the inclusion of SDoH data
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enhances model performance for stroke prediction.

5.2 Role of SDoH in Stroke Prediction

Addressing concerns about the interpretability of AI models in healthcare, our research

focused on integrating XAI techniques and SDoH data into stroke prediction models.

LIME and SHAP, as XAI methods, proved crucial in enhancing the interpretability of our

models [106]. They clarified how both traditional health metrics and SDoH factors

influence predictions. This transparency reinforces the importance of including medical

data, alongwith demographic, economic, social, and personal factors. This aligns with the

growing emphasis on a “whole patient" approach in healthcare [107]. “Whole patient” care

involves assessing lifestyle, comorbidities, communication, mental health, socioeconomic

status, and medication issues – all areas impacted by SDoH [107]. By addressing these

broader factors, our approach aims to provide more holistic and patient-centred solutions,

potentially fostering wider adoption of AI in clinical settings.

XAI techniques provided valuable insights into the role of SDoH within our stroke

prediction models. Studies suggest integrating demographic and economic features

enhances model accuracy [101] and our findings corroborate this. However, the degree of

improvement in predictions varied across different models, reflecting the diverse

mechanisms employed by machine learning models to handle these features. This aligns

with existing research highlighting the challenges of integrating SDoH into ML
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models [108]. Ethnicity and mental health features showed less consistent effects on model

performance, indicating a complicated relationship between these factors and health

outcomes. This suggests a need for more refined feature engineering to optimize their

integration. Similar findings have been reported in other studies, where the effectiveness of

incorporating complex data can be data-dependent and require careful feature engineering

for optimal impact [109].

Interestingly, incorporating social and personal features alongside clinical predictors

such as heart disease and weight positively impacted model performance. These additional

features provided valuable context, enhancing the models’ understanding of the interplay

between SDoH and stroke risk. This aligns with the growing recognition of the importance

of a holistic approach in healthcare AI, where considering social determinants alongside

traditional medical data leads to more comprehensive and informative models [48].

Notably, race emerged as a significant predictor in certain cases, highlighting its potential

importance in stroke prediction. However, it’s crucial to acknowledge the complexities

surrounding the use of race in medical AI, ensuring its responsible integration to avoid

potential biases [72].

Research has established the link between mental health and physical health [110].

Consistent with this, perceived health and life stress emerged as prominent factors in our

study, underlining the crucial role of an individual’s mental well-being. The sense of

community belonging also emerged as a notable factor, indicating the impact of social
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support on health outcomes. Employment status and the ability to handle daily activities

further reinforced the connection between economic stability and daily functional capacity

and health outcomes, as suggested in existing literature [111]. Additionally, urban or rural

residency influenced health likely through factors like access to healthcare and

environmental conditions. Finally, the level of education played a role, suggesting its

impact on overall health and well-being, consistent with findings reported in the

literature [112]. These insights highlight the importance of a comprehensive healthcare

approach that integrates SDoH alongside traditional health metrics. This holistic approach

fosters a deeper understanding of individual health outcomes, ultimately facilitating

improved model performance and providing actionable insights for targeted health

interventions.

XAI techniques proved crucial in pinpointing the most influential factors across

different models, aligning with research highlighting the importance of interpretability for

understanding model behavior [89]. For example, in CB and GBM models, XAI methods

revealed smoking habits and heart disease as top features. This aligns with established

knowledge regarding the strong influence of lifestyle choices and existing health conditions

on stroke risk [113]. LGBM’s focus on psychosocial factors, as uncovered by XAI, further

aligns with studies demonstrating the link between mental well-being and stroke risk [114].

Additionally, XGB’s emphasis on demographic factors like "Chinese" and "Norwegian"

underscored the model’s sensitivity to ethnic backgrounds, a complex interaction of
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medical and demographic factors that XAI helps to elucidate [101].

LIME, as a vital XAI tool, provided in-depth insights into individual predictions of various

models, revealing how specific features influence stroke risk predictions. For example, in the

CB model, LIME highlighted heart diseases and age as key factors, illustrating how older

age and existing heart conditions substantially increase stroke risk. Similarly, in LGBM, age

and how an individual perceives their health were significant, indicating a relationship where

an individual’s self-perceived health status could mitigate or amplify the risk posed by age.

These insights from LIME, similar to findings in other studies [115, 116], help understand

the model’s reasoning at an individual prediction level, offering a transparent view of how

different health-related factors are weighted and interpreted.

SHAP, another XAI method, provided a broader, more aggregated view of feature

importance across multiple models. This aligns with the strengths of SHAP for offering

global explanations of model behavior [26]. It identified and quantified the impact of both

traditional health metrics and non-traditional SDoH factors. For instance, weight was

consistently a dominant factor in models like CB, GBM, and LGBM, as revealed by SHAP,

highlighting its significant role in health predictions, which aligns with existing

research [117]. Furthermore, SHAP brought attention to the importance of psychosocial

factors such as self-perceived health, self-perceived life stress, and sense of community

belonging, emphasizing the need to consider both physical and mental well-being in stroke

risk assessment, as supported by prior studies [114].
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The distinct importance placed on SDoH across various models points to the potential

for personalized healthcare interventions. This aligns with the growing interest in utilizing

AI for personalized medicine [118]. By understanding the specific SDoH that influence stroke

risk for individuals or groups, healthcare providers can tailor interventions more effectively,

potentially mitigating risk through targeted strategies. These targeted interventions could

address factors like access to healthy food, stress management techniques, or social support

networks, potentially leading to improved health outcomes.

5.3 Limitations

Our study, while extensive, has limitations inherent to the scope of data and methodologies

applied. Our study’s scope is bounded by the dataset provided by the ISQ and the chosen

methodologies, limiting our ability to capture the full larger population and SDoH that

influence stroke. The use of machine learning models and XAI techniques like LIME and

SHAP, while beneficial for interpretability, cannot completely untangle the complex

relationship between clinical and SDoH. Notably, the NN model exhibited poorer

performance compared to other models, suggesting potential mismatches between model

complexity and dataset characteristics. The correlational nature of our analysis limits our

capacity to infer causality, underscoring the need for methodologies capable of establishing

direct cause-and-effect relationships. Additionally, the inconsistent impact of features such

as ethnicity and mental health on model performance underscores the necessity for refined
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feature engineering and broader data sources to improve predictive precision and model

robustness.

5.4 Future Work

To overcome the limitations mentioned above, future directions of research will focus on

broadening the dataset to include a wider range of SDoH, potentially from diverse

geographic and socio-economic contexts. Enhancing the dataset will facilitate an in-depth

analysis of underrepresented determinants. Moreover, advancing machine learning

methodologies and exploring newer XAI approaches could elevate model accuracy and

interpretability. Investigating the longitudinal effects of SDoH on stroke risk is another

important area, requiring different models capable of adapting to temporal changes in risk

factors. Furthermore, building on the correlations identified in this study, future research

should focus on delineating causality to more accurately guide intervention strategies.

Addressing these specific challenges will deepen our understanding of stroke risk factors

and pave the way for more targeted and fair healthcare solutions.
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Chapter 6

Conclusion

This study investigated the role of SDoH in enhancing model performance to predict strokes.

This research work addresses the limitations identified in Chapter 1, where traditional models

solely reliant on clinical data can lead to biased and inaccurate results. We address this gap

by integrating SDoH data along with clinical data while prioritizing fairness and explanability

in healthcare.

Building upon the foundations established in Chapters 2 and 3, our study confirmed

the importance of SDoH in stroke incidence. Chapter 2 explored the existing literature

on the relationship between SDoH and stroke risk in individuals, while Chapter 3 detailed

the methodological approaches for incorporating various SDoH factors into AI models. Our

method involved rigorous data pre-processing, model development, and the application of

XAI techniques. XAI, as discussed in Chapter 3, plays a crucial role in understanding how the
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model arrives at its predictions, ensuring transparency and addressing ethical implications.

The findings in Chapter 4, demonstrate that incorporating SDoH data improves model

accuracy. This chapter also delves into how different social factors influence stroke risk.

Notably XAI analysis revealed that SDoH factors like demographics, economic status, and

personal factors influenced stroke risk predictions. This underscores the importance of

considering SDoH alongside traditional medical data for a more comprehensive

understanding of stroke risk, as emphasized throughout this study.

Chapter 5 elucidates how our research contribute to healthcare AI in several ways.

Firstly, we demonstrate the role of SDoH in stroke prediction, advocating for a more

holistic approach. Secondly, we highlight the potential for AI to promote healthcare equity

by integrating SDoH data. Finally, the research emphasizes the importance of developing

ethically sound and transparent models that address the complexities of SDoH, as outlined

in Chapter 5. This work paves the way for an inclusive, equitable AI-powered healthcare

system capable of delivering personalized care and ultimately reducing health disparities.

In conclusion, this study establishes the crucial role of SDoH in stroke prediction,

advocating for a holistic approach in healthcare AI. By integrating SDoH data and

employing XAI techniques, we can build fairer, more accurate, and interpretable models.
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Appendix A

List of SDoH & Traditional Features

Table A.1 provides a breakdown of the variables used in our analysis, categorized by both

SDoH and traditional clinical risk factors. The table details the specific variables included

under each SDoH category, offering a clear picture of the factors considered in our models.

Table A.1: SDoH and Traditional Categories

Subset Feature Name
Traditional Drank alcohol in last 12 months

Frequency of drinking alcohol in last 12 months
Drank more than 5 drinks on one occasion in last 12 months
Has asthma
High blood pressure
Takes medication for high blood pressure
Has diabetes
Has heart disease
Stroke incidence
Takes medications for high cholestrol
Smoked more than 100 cigarettes in lifetime

Continued on next page
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Table A.1 – continued from previous page
Subset Feature Name

Type of smoker - Daily/ Occasionally/ Not at all
Weight
Height
Exposed to second hand smoke (private vehicle) in last 1 month
Exposed to second hand smoke (public places) in last 1 month
Self perceived weight - underweight/ overweight/ just about right

Demographic Marital Status
Sex
Age

Economic Worked at a job/ business
Worked at a job/ business past week
Has a regular healthcare provider

Neighbourhood Rural or Urban Area
Dwelling - owned or rent

Personal Self-perceived ability to handle unexpected problems
Self-perceived ability to handle day to day demands
Self-perceived health
Self-perceived mental health
Self-perceived life stress

Social Food Security
Could not afford to eat
Sense of belonging to local community
Highest level of education

Mental Health Mood Disorder (Depression, Bipolar, Mania, Dysthymia)
Anxiety disorder
consulted mental health professional in last 12 months

Race Aboriginal Identity - First Nations/ Metis/ Inuk (Inuit)
White
Chinese
South Asian
Black
Filipino
Latin America
Southeast Asian
Arab

Continued on next page
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Table A.1 – continued from previous page
Subset Feature Name

West Asian
Japanese
Korean

Ethnicity Canadian
French
English
German
Scottish
Irish
Italian
Ukranian
Dutch (Netherlands)
Chinese
Jewish
Polish
Portugese
South Asian
Norwegian
Welsh
Swedish
Other
Metis
Inuit
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Appendix B

Evaluation Metrics for SDoH Subsets

Table B.1 dives deep into the performance of our stroke prediction models across various

SDoH subsets. To evaluate how well the models function and how SDoH factors influence

these predictions, we calculated key metrics for each model within each SDoH subset. These

metrics include accuracy, precision, recall, and F1 score. By analyzing these measures, we

gain valuable insights into the models’ ability to accurately predict stroke occurrences when

considering different SDoH factors.

Table B.1: Model Evaluation Metrics for Specific SDoH (in percentage)

Model Feature Subset Accuracy Precision Recall F1 Score
Random Forest Traditional 65.90 66.00 64.70 65.30

All SDoH 77.10 77.80 75.50 76.60
Economic 69.80 69.60 69.60 69.60
Personal 72.20 72.30 71.60 71.90

Continued on next page
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Table B.1 – continued from previous page
Model Feature Subset Accuracy Precision Recall F1 Score

Neighbourhood 65.90 65.70 65.70 65.70
Demographic 72.20 72.30 71.60 71.90

Race 65.40 65.70 63.70 64.70
Ethnicity 65.90 67.40 60.80 63.90

Social 68.30 70.30 62.70 66.30
Mental Health 62.00 61.50 62.70 62.10

GBM Traditional 74.10 74.70 72.50 73.60
All SDoH 73.20 72.80 73.50 73.20
Economic 77.10 77.20 76.50 76.80
Personal 77.10 78.40 74.50 76.40

Neighbourhood 71.20 72.20 68.60 70.40
Demographic 77.10 77.80 75.50 76.60

Race 74.10 75.80 70.60 73.10
Ethnicity 73.70 75.00 70.60 72.70

Social 71.20 71.70 69.60 70.60
Mental Health 70.70 70.60 70.60 70.60

KNN Traditional 65.40 66.00 62.70 64.30
All SDoH 69.80 71.30 65.70 68.40
Economic 70.70 70.60 70.60 70.60
Personal 68.80 68.60 68.60 68.60

Neighbourhood 59.50 60.00 55.90 57.90
Demographic 69.30 70.10 66.70 68.30

Race 65.40 67.00 59.80 63.20
Ethnicity 64.40 66.70 56.90 61.40

Social 65.40 65.70 63.70 64.70
Mental Health 69.30 68.60 70.60 69.60

Neural Network Traditional 68.80 69.80 65.70 67.70
All SDoH 62.90 62.00 65.70 63.80
Economic 66.80 66.30 67.60 67.00

Continued on next page
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Table B.1 – continued from previous page
Model Feature Subset Accuracy Precision Recall F1 Score

Personal 61.50 60.70 63.70 62.20
Neighbourhood 63.90 67.50 52.90 59.30
Demographic 65.90 65.70 65.70 65.70

Race 66.80 68.10 62.70 65.30
Ethnicity 63.40 64.20 59.80 61.90

Social 63.40 65.20 56.90 60.70
Mental Health 61.50 61.40 60.80 61.10

LGBM Traditional 74.60 75.50 72.50 74.00
All SDoH 77.60 78.60 75.50 77.00
Economic 77.60 76.40 79.40 77.90
Personal 75.60 77.70 71.60 74.50

Neighbourhood 73.70 75.50 69.60 72.40
Demographic 75.60 75.50 75.50 75.50

Race 74.10 74.30 73.50 73.90
Ethnicity 73.70 74.00 72.50 73.30

Social 74.10 75.30 71.60 73.40
Mental Health 72.70 73.50 70.60 72.00

CatBoost Traditional 73.70 73.50 73.50 73.50
All SDoH 75.10 76.80 71.60 74.10
Economic 73.20 73.70 71.60 72.60
Personal 74.10 74.70 72.50 73.60

Neighbourhood 72.70 72.50 72.50 72.50
Demographic 74.10 74.70 72.50 73.60

Race 75.10 75.80 73.50 74.60
Ethnicity 72.70 71.70 74.50 73.10

Social 74.10 75.30 71.60 73.40
Mental Health 72.20 71.40 73.50 72.50

XGBoost Traditional 71.70 72.90 68.60 70.70
All SDoH 74.10 75.30 71.60 73.40

Continued on next page
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Table B.1 – continued from previous page
Model Feature Subset Accuracy Precision Recall F1 Score

Economic 75.60 76.00 74.50 75.20
Personal 75.60 77.10 72.50 74.70

Neighbourhood 72.20 73.20 69.60 71.40
Demographic 76.10 75.70 76.50 76.00

Race 73.70 74.50 71.60 73.00
Ethnicity 73.70 75.00 70.60 72.70

Social 74.10 75.30 71.60 73.40
Mental Health 69.30 69.30 68.60 69.00
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