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English Abstract 

 

Background 

Aging and frailty add dimensions of complexity to the management of cardiovascular diseases. As 

the world population ages, accurately assessing frailty and vulnerability in older patients is 

becoming increasingly important. Sarcopenia is a component of the frailty syndrome that can be 

assessed through a variety of methods. Assessment of frailty and sarcopenia is often not feasible 

in very ill patients who may be bed bound and cannot carry out physical tasks. Musculoskeletal 

ultrasound imaging is proving to be useful in the identification of sarcopenia, a marker of frailty. 

Quadricep muscle thickness (QMT), an indicator of sarcopenia, can be measured from ultrasound 

images of the thigh. Currently, there is limited research surrounding the ability of muscle 

ultrasound images to provide valuable diagnostic information for frailty or for machine learning 

(ML) models to measure QMT.  

  

Objectives 

The primary goal of this study was therefore to develop ML models capable of predicting QMT 

based on provided quadricep ultrasound phased array images as input variables. The secondary 

goal was to confirm the relationships between QMT and handgrip strength (HGS), lean body mass 

(LBM), phase angle (PA), clinical frailty scale (CFS) score. 
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Methods 

This study was a retrospective single-center cross-sectional cohort study conducted at the Jewish 

General Hospital. The study population consisted of adult inpatients and outpatients undergoing a 

transthoracic echocardiogram. Ultrasound images of the thigh served as the primary input 

(independent) variable for the ML models we developed. Ultrasound image collection was 

performed by trained sonographers at the Jewish General Hospital echocardiography laboratory. 

The images were retrospectively annotated to delineate the femur and the top of the quadricep 

muscle. Five different measures of frailty were used as the output (dependent) variables; HGS, 

CFS, LBM, bio impedance PA, and QMT. For the first experiment, single variable linear 

regression ML models were trained using the ultrasound images as input variables and the five 

different frailty measures as output variables. 5-fold cross validation was used to test the 

performance of the model and mean absolute error (MAE) was measured to determine the model 

accuracy. For the second experiment a segmentation model was trained to identify a region of 

interest on the ultrasound images. This region of interest was then used to train a new linear 

regression model to predict QMT values.  

 

Results 

The final cohort consisted of 486 patients with a mean age of 66 ± 14 years and was 57% female. 

Increasing QMT was positively associated with HGS, LBM, PA, while negatively associate with 

CFS. 

 

The ML model using ultrasound images as inputs predicted QMT values with a MAE of 0.4478 ± 

0.033 cm. The ML model that used ultrasound images overlaid with predicted binary masks from 
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the segmentation model predicted QMT with a MAE of 0.355 ± 0.021 cm. The ML model that 

used ultrasound images overlaid with ground truth binary masks predicted QMT with a MAE of 

0.3210 ± 0.013 cm. 

 

Conclusion 

From these results it may be assumed that increased QMT could be used as a surrogate marker of 

these four different frailty measures. The models we have developed can provide a QMT value 

from a provided ultrasound image. This QMT value can further be used to determine the sarcopenic 

condition of the patient.   
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French Abstract 
 
 
Introduction 

La fragilité ajoute de la complexité au traitement des maladies cardiovasculaires. À mesure que la 

population mondiale vieillit, il devient de plus en plus important d'évaluer avec précision la 

fragilité et la vulnérabilité des patients âgés. La sarcopénie est une composante du syndrome de la 

fragilité qui peut être évaluée par diverses méthodes. L'évaluation de la fragilité et de la sarcopénie 

n'est souvent pas possible chez les patients très malades qui sont alités et incapables d'effectuer 

des tâches physiques. L'échographie musculosquelettique s'avère utile dans l'identification de la 

sarcopénie, un marqueur de fragilité. L'épaisseur du muscle quadriceps (EMQ) - un indicateur de 

sarcopénie - peut être mesurée à partir d'images échographiques de la cuisse. Actuellement, il 

existe peu de recherches sur la capacité des images échographiques musculaires à fournir des 

informations afin de diagnostiquer la fragilité. 

 

Objectifs 

L'objectif principal de cette étude était de développer des modèles d’apprentissages automatiques 

(MAA) capables de prédire l’EMQ sur la base d'images quadriceps échographiques de réseau 

phasé. L'objectif secondaire était de confirmer les liens entre l’EMQ et la force de la poignée (FP), 

la masse corporelle maigre (MCM), l’angle de phase (AP), et l’échelle clinique de fragilité (ECF). 

 

Méthodes 

Cette étude rétrospective a été effectuée sur une cohorte transversale monocentrique menée à 

l'Hôpital général juif. La population étudiée était composée de patients adultes hospitalisés et de 

patients externes subissant une échocardiographie transthoracique. Les images échographiques de 
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la cuisse ont servi de variable indépendante principale pour les MAA que nous avons développés. 

La collecte des images échographiques a été effectuée par des échographistes formés au laboratoire 

d'échocardiographie de l'Hôpital général juif. Les images ont ensuite été annotées pour délimiter 

le fémur et le haut du muscle quadriceps. Cinq mesures différentes de la fragilité ont été utilisées 

comme variables dépendantes ; la FP, le score sur l'ECF, la MCM, l’AP de la bioimpédance et 

l’EMQ. Pour la première expérience, des MAA à régression linéaire à variable unique ont été 

formés en utilisant les images échographiques comme variables indépendantes et les cinq mesures 

de fragilité différentes comme variables dépendantes. Une validation croisée à 5 fois a été utilisée 

pour tester les performances du modèle et l'erreur absolue moyenne (EAM) a été mesurée pour 

déterminer la précision du modèle. Pour la deuxième expérience, un modèle de segmentation a été 

formé pour identifier une région d'intérêt sur les images échographiques. Cette région d'intérêt a 

ensuite été utilisée pour former un nouveau modèle de régression linéaire afin de prédire les valeurs 

d’EMQ. 

 

Résultats 

La cohorte finale était composée de 486 patients avec un âge moyen de 66 ans ± 14 ans et était 

composée à 57 % de femmes. L'augmentation de l’EMQ était positivement associée à la force de 

la poignée, la masse corporelle maigre et l’angle de phase, mais négativement associée à la CFS. 

Le MAA utilisant des images échographiques comme variable indépendante prédit les valeurs de 

l’EMQ avec une EAM de 0.4478 ± 0.033 cm. Le MAA qui utilisait des images échographiques 

superposées avec des masques binaires prédits à partir du modèle de segmentation prédisait l’EMQ 

avec une EAM de 0.355 ± 0.021 cm. Le MAA qui utilisait des images échographiques superposées 
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avec des masques binaires de données de vérification prédisait l’EMQ avec une EAM de 0.3210 

± 0.013 cm. 

 

Conclusion 

À partir de ces résultats, on peut supposer que l'augmentation de la masse musculaire du quadriceps 

pourrait être utilisée comme marqueur de substitution pour ces quatre différentes mesures de 

fragilité. Les modèles que nous avons développés peuvent fournir une valeur d’EMQ à partir d'une 

image échographique donnée. Cette valeur de l’EMQ peut en outre être utilisée pour déterminer 

l'état sarcopénique du patient. 
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CHAPTER 1: THESIS INTRODUCTION 

 

The diseases and medical conditions that accompany aging become more important with 

each passing year. The average age and life expectancy of the general population is growing, 

meaning that older individuals represent an increasingly larger proportion of society1. Aging is a 

process that poses numerous obstacles to clinicians and the health care system. Cardiovascular 

medicine is especially susceptible to the clinical complexities of identifying, evaluating, and 

treating older individuals. 

The process of aging, while inevitable, is not identical from person to person. Interpersonal 

differences in aging can be explained by the differences between chronological age and biological 

age. While chronological age is simply a measure of years gone by, biological age or physiological 

age is characterized by progressive damage to cells and tissues that are tightly linked to epigenetic 

changes2. Age is a potent risk factor for cardiovascular disease (CVD), yet the risks associated 

with age refer to the consequences of biological age. Using an individual’s chronological age for 

risk stratification is therefore not sufficient.  

Frailty is best characterized as a syndrome with various symptoms that are often observed 

together. Frailty is an age associated ailment that is described by the physiological changes 

observed in aging and physical and cognitive decline3. Individuals identified as frail are at 

increased risk for major adverse health outcomes including hospitalization and mortality4. The 

physiological basis of frailty necessarily indicates that biological age rather than chronological age 

should be used. Assessment of frailty and biological age, however, remains relatively 

underexplored and no gold standard exists to identify vulnerable individuals5.  
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The physical decline observed in the frailty syndrome is often characterized by a loss of 

muscle mass, quality, and strength. Decreases in muscle mass and strength is known as sarcopenia 

and has emerged as an effective indicator of frailty6. Sarcopenia represents the functional and 

physical aspect of frailty which remains a multi-system syndrome6. Assessing sarcopenia in a 

clinical setting could therefore provide valuable insight as to the frail state of older individuals. 

Sarcopenia deals specifically with muscle mass and function. Various tests such as handgrip 

strength (HGS) have been validated as good indicators of muscle strength and sarcopenia7.  

Additionally, imaging modalities have made their way to the forefront to characterize 

muscle mass and composition. Measuring quadricep muscle thickness (QMT) with ultrasound 

imaging has emerged as a promising tool for quantifying a patient’s sarcopenic condition8. Muscle 

quality has also been shown to be a negative predictor of mobility and functional capacity in older 

adults9. Increased proportions of intramuscular adipose tissue (IMAT) is seen in frail individuals 

compared to non-frail age and body mass index (BMI) matched individuals9. QMT and strength 

are proving to be valuable measures of sarcopenia and frailty but should be supplemented with 

quadricep muscle quality (QMQ) assessment. 

The objectives of this thesis were to perform a literature review on the current landscape 

of the evaluation of frailty in cardiovascular patients and to subsequently conduct a retrospective 

cross-sectional cohort study to train artificial intelligence (AI) models to determine QMT 

measurements from provided ultrasound images. Additionally, QMT was assessed as a frailty 

marker in comparison to different validated measures of frailty. 
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CHAPTER 2: LITERATURE REVIEW 

 

Physiology of Age: Chronological age vs Biological Age 

 

 Across the world, populations are aging at unprecedented rates, meaning older adults 

compose a much larger proportion of society. Adults over the age of 60 are expected to account 

for 21.1% of the world population by 205010. In 2019 adults over the age of 65 represented 17.5% 

of the Canadian population but accounted for over 45% of national health expenditure according 

to the Canadian Institute for Health Information (Figure 1). Additionally, once humans pass the 

threshold of 50 years of age an exponential increase in the burden of chronic conditions is 

observed11. The appropriate care and management of older patient groups poses many challenges 

for clinicians. An increased efficiency of identifying age-related vulnerability begins with 

understanding the physiology of aging. 

 When identifying and evaluating individuals in a medical setting, chronological age has 

often been used as a marker of vulnerability. This measure falls short due to the simple reason that 

individuals age at different rates. While chronological age counts the number of years that have 

passed since birth, biological age addresses the physiological changes that occur over an 

individual’s lifetime. Biological age has been measured using numerous biomarkers that reflect 

physiological changes related to the aging process12. These biomarkers can be biochemical such 

as quantification of C-reactive protein (CRP), or functional such as the forced expiratory volume 

(FEV), or even circulatory such as blood pressure measurements12. These biomarkers, reflecting 

biological age, were demonstrated to have significantly better predictive value for mortality than 

chronological age12. To further demonstrate that aging is not a uniform process but rather an 
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individual process, researchers at Duke University established that age-related physiological 

changes occur in humans as early as 30 years of age11. Furthermore, these changes occur at 

different rates in different people11. Evaluating chronological age relies on the basis that 

physiological deterioration occurs in individuals over time. Multi system decline due to age can 

manifest itself in several ways; changes in body composition, energy imbalance, signaling network 

deficiencies, and neurodegeneration13.  

 At the cellular level, the process of aging can in part be explained through the mechanisms 

of cellular senescence. Cellular senescence describes the permanent halting of the cell cycle and 

cellular proliferation, demonstrating that cells stop replicating over time14. Many age-related 

deficiencies have been tightly linked to cellular senescence, making it a focal point of current 

research15. Age related cellular senescence has been characterized by the progressive damage and 

changes that occurs to cells after undergoing many rounds of cellular division. Every time a cell 

divides, its telomeres are shortened. As cells continuously divide, telomeres continuously become 

shorter until they trigger senescence via the p53 molecule leading to downstream signalling to halt 

the cell cycle14. Telomere attrition throughout a cells lifespan can ultimately result in the loss of 

coding DNA sequences. These senescent cells with truncated chromosomes tend to acquire 

inflammatory phenotypes. The senescence associated secretory phenotype (SASP) is characterized 

by the release of numerous proinflammatory cytokines1. The concept of ‘inflammaging’ deals with 

these SASP cells and their role in chronic inflammation in older individuals1. Additionally, chronic 

inflammation has been demonstrated to be closely linked to the aging process and age associated-

multimorbidity16. These aging cells seem to create problematic microenvironments leading to 

various diseases. SASP cells drive the progression of atherosclerosis and are even found in higher 

quantities in areas of the brain where neurodegeneration is observed17, 18.  
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Cellular senescence plays a significant role in the process of aging and helps in part to 

explain the cellular basis of age-related diseases. Chronological age fails to take these cellular 

changes that occur at different rates in different individuals into consideration, making 

measurements of biological age seemingly more favorable in terms of risk stratification.  

 

  

 

 

 

 

 

 

 

 

 

Figure 1 

 

Defining Frailty 

 

Frailty is a clinical syndrome that represents a manifestation of older biological age. The 

frailty syndrome is multidimensional and characterized by an increased state of vulnerability to 

stressors5. More specifically, this increased vulnerability to environmental and physiological 

stressors leads to increased susceptibility to negative health-related outcomes5. This age-related 
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syndrome can additionally be described by functional decreases of physiological systems and a 

decrease in physiological reserve19. As the definition of frailty has progressed over the years, 

decline in cognitive function in individuals has become an important facet in the frailty phenotype3. 

An estimated 40-50% of adults over the age of 80 are thought to meet the definition of frailty20. 

As was briefly touched upon in the discussion of biological aging, frailty cannot be described by 

one mechanism alone but rather is the result of a combination of multiple age-related processes. 

Cellular senescence, chronic inflammation, hormonal dysregulation, oxidative stress and 

epigenetic changes are just a few examples of the numerous physiological processes that interact 

to cause the frail phenotype (figure 2)21. In the clinical setting, for many years there has been no 

strict protocol to identify frailty. Clinicians have seemingly relied on the presence of the following 

age-related changes to identify frail individuals:22 

 

1. Generalized weakness 

2. Poor endurance 

3. Weight loss or malnourishment 

4. Reduced activity 

5. Unsteady gait and risk of falling 

 

Frailty has become an important focus of research across numerous medical disciplines, 

due to the information the frailty syndrome may provide with regards to risk of mortality, 

morbidity, and disability. Individuals who are identified as frail are often at heightened risk of 

adverse outcomes. Hospitalized older adults who are identified as frail have been shown to be at 

increased risk of in-hospital mortality than their robust counter parts23. Frailty and the associated 
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risks are not exclusive to hospital settings; frail older community-dwelling adults have been shown 

to be at increased risk of future disability24. Slowness and weight loss, commonly seen signs of 

frailty, are strongly associated with incident disability in community-dwelling elders24. This 

concept is important because increased disability results in increased dependency, reductions in 

quality of life, and increased resource use. Disability is a commonly discussed potential outcome 

in older populations, but it also serves as an important risk factor22.  It is important to note that 

frailty, disability, and comorbidity are three distinct concepts. The interplay between these three 

entities often leads to the use of these terms interchangeably when in fact they refer to distinct 

processes. 

 While frailty is seen as the clinical manifestation of aging, it is important to note that the 

progression of the frailty syndrome is thought to be modifiable. Nutritional, physical, and cognitive 

intervention are currently being explored as to their impact on the progression of frailty. 

Intervention at these levels is proving to delay the progression of the frailty syndrome and in certain 

cases even reverse this seemingly unidirectional process25.  

 

 

 

 

 

 

 

 

Figure 221 : The various physiological mechanisms that lead to the frailty syndrome. 
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Figure 3:  The interaction between numerous psychological, cognitive, social, environmental, and 
physiological factors can contribute to the frailty syndrome. Increasing frailty is accompanied by 
losses in autonomy which could lead to hospitalization or placement in homes. Frailty 
subsequently predisposes individuals to increased mortality and morbidity.  
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Frailty and Sarcopenia 
  

The physical decline observed in the frailty syndrome is often characterized by a loss of 

muscle mass, quality, and strength. Age-accompanied decreases in muscle mass and strength are 

known as sarcopenia and has emerged as an indicator of frailty. The components of the frailty 

phenotype that were described by Fried et al. serve as markers of sarcopenia22. Weight loss, 

exhaustion, weakness, slow walking speed, and low physical activity, are all markers of either 

decreased muscle mass or function. When looked at independently of frailty, sarcopenia and poor 

functional performance also serve as robust predictors of poor health-related outcomes and 

disability26. 

While frailty and sarcopenia are not synonymous concepts, most older adults who are 

identified as frail are also sarcopenic27. The concurrence of both these syndromes is important 

because evaluation of frailty by clinicians is often based on characteristics of sarcopenia28. The 

European Working Group on Sarcopenia in Older People (EWGSOP) defined Sarcopenia as a 

 

“…syndrome characterised by progressive and generalised loss of skeletal muscle mass and 

strength with a risk of adverse outcomes such as physical disability, poor quality of life and 

death.”  

 

The definition changed the way sarcopenia was evaluated by incorporating reduced muscular 

function and strength in the presence of loss of mass29. The evaluation of functional capacity for 

sarcopenia broadened the physical characteristics of the syndrome. Sarcopenic obesity has become 

an important concept where obese individuals may still suffer from decreased muscle mass and 

function while maintaining a high total body mass. Older obese individuals who are also 
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sarcopenic have been shown to be at higher risk for poor health-related outcomes than their non-

sarcopenic counterparts28. The paradoxical nature of sarcopenic obesity makes it harder to assess 

and diagnose, yet the inflammatory processes related to obesity further enhances muscle 

degradation, causing these individuals to be at higher risk for negative outcomes30.  

 Several factors contribute to the onset and progression of severity of sarcopenia in older 

adults. Genetic factors have been attributed to interpersonal differences for sarcopenia notably 

allelic differences for specific enzymes, loss of motor neurons and changes in motor unit 

organisation31, 32, 33. The most pervasive cause of sarcopenia, however, is muscle disuse and 

inactivity28. During exercise, anti-inflammatory mediators known as myokines are released that 

help maintain muscle mass34. When exercise is stopped for extended periods of time and sedentary 

habits are adopted, increased levels of pro-inflammatory mediators are observed35. Age-related 

decreases in physical activity leads to increased inflammation and subsequent muscle degradation, 

this decrease in muscle quality and strength reinforces sedentarism further exacerbating the 

sarcopenia and frailty syndromes. The cyclical relationship between sarcopenia and exercise is an 

important target for intervention. Additionally, as muscles degrade, increased adipose deposits 

within skeletal muscle are observed36. This is known as intramuscular adipose tissue (IMAT) and 

results in decreased functional capacity of the muscle as well as increased inflammation36. IMAT 

can potentially serve as a surrogate marker of frailty and sarcopenia in the future. Frail individuals 

tend to have higher proportions of IMAT than their non-frail BMI matched counterparts9. Muscle 

size and thickness have often been parameters assessed for sarcopenia and frailty, but muscle 

quality needs to be taken into consideration as well. Deposits of adipose tissue within skeletal 

muscle, such as the quadriceps have been shown to be more strongly related to decreases in 

autonomy of older adults than decreases in muscle mass alone37.  
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Cardiovascular Disease and Frailty 

 

Commonalities Between Frailty and CVD 

 

 Many of the physiological and lifestyle factors that exacerbate the frailty syndrome are the 

same factors that lead to increased risk of cardiovascular disease (CVD). Age and age-related 

physiological changes sit at the top of the list for risk factors in CVD38. The co-occurrence of 

frailty and CVD in older patients is becoming increasingly prevalent as the population continues 

to age. A meta-analysis conducted by Afilalo et al. looked at nine studies consisting of 54, 250 

elderly patients and found that in patients with coronary artery disease (CAD) or heart failure (HF), 

50-54% of these patients were also frail39. Interestingly this does not clarify the directionality of 

this relationship. Frail patients are more at risk of developing CVD and patients with CVD are also 

more at risk for developing the frailty syndrome40. In patients with CVD, however, the presence 

of clinical frailty increases the risk for mortality and disability.39 

 When previously defining frailty in this literature review, the concept of inflammageing, 

discussing chronic inflammation in older adults, was closely linked to the frailty phenotype. 

Chronic inflammation in CVD has been a widely investigated area of research. Oxidative stress 

caused by aging, obesity, diabetes, and other metabolic disorders are conducive to a plethora of 

different forms of CVD41. The inflammatory mediators that result in sarcopenia and increased 

frailty also damage endothelial cells, leading to vascular damage and remodeling1. Age associated 

inflammation also leads to increased atherosclerosis and insulin resistance, potent factors in the 

development of CVD1. Much like in frailty, multi-system dysfunction is common in patients with 

CVD, highlighting the synergistic relationship between the two40.  
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Frailty as a Risk Factor 

 

 Across numerous studies, frailty has been associated with poor survival in a “dose-

responsive” manner42. Presence of an increased number of components of the frailty syndrome 

leads to increased rates of mortality42. In CVD specifically, the risk of mortality doubles in frail 

older adults, even when adjusting for age and comorbid conditions43. The role of frailty in CVD 

has been demonstrated from the subclinical level to HF and cardiac surgery.  

 Preceding clinical CVD, subclinical manifestations of CVD take place. Individuals who 

are identified as frail tend to have increased symptoms of underlying CVD44. Additionally, the 

reverse trend has been observed in a study from University College London, where carotid intima-

media thickening (CIMT) was measured as a marker of subclinical CVD45. In this study by 

McKechnie et al., the presence of subclinical CVD was strongly associated with incident frailty45. 

Interestingly, other studies have shown that individuals with slow gait, a sign of frailty as described 

by Fried, were more likely to have CIMT and other subclinical markers of CVD46. Frailty is 

prevalent in CVD even before the symptoms manifest themselves in acute clinical settings. 

 The bi-directional relationship between frailty and CVD is emphasized in the case of HF.  

As discussed, frailty is a multi-system syndrome in which individuals are more vulnerable to 

decompensation. In the context of HF, frail patients are more predisposed to increased frequency 

of hospitalization and complication43. Additionally, frailty predisposes cardiac patients to 

increased myocardial injury in response to cardiac exacerbations, thereby predisposing frail 

individuals to developing clinical HF43. Numerous studies have demonstrated a strong association 

between frailty in HF and poor clinical outcomes47. It is important to note that patient reported 

quality of life is also worsened in HF patients who manifest the frail phenotype47. The multi system 
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degeneration that occurs in HF and frailty also demonstrates an overlapping of physiological 

pathways. Hormonal dysregulation, chronic inflammation and increased muscle catabolism are 

consequences of both ailments, and therefore the interaction of both HF and frailty leaves patients 

in a heightened state of vulnerability48. Frailty and HF are intertwined to the extent that almost 

50% of HF patients are also frail49. It is therefore becoming of increasing importance to understand 

how the identification and intervention of frailty in HF patients may provide benefit for patient 

centered outcomes.  

 In the context of CAD and percutaneous coronary intervention (PCI), frailty further 

complicates risk assessment and outcomes. Numerous studies have demonstrated that frail patients 

undergoing PCI have a higher risk of mortality and morbidity following the procedure43. Frailty 

has been shown to significantly increase the rate of 18-month and 3-year mortality in patients 

following PCI50. Additionally, reductions in quality of life are also more pronounced in frail 

patients post PCI50, 51. The increased risk of adverse outcomes post-PCI in the presence of frailty 

highlights the importance of proper frailty evaluation. 

 Frailty as a risk factor becomes increasingly important when evaluating heavily invasive 

procedures such as cardiac surgery. The decreased physiological reserve and resilience that defines 

the frailty syndrome is important to consider in the context of the extreme physiological stressor 

that is cardiac surgery. The procedure itself is taxing on multiple physiological systems, but the 

recovery period when a patient is bed bound is a major contributor to decline in patient condition. 

Frail patients who undergo invasive cardiac procedures have increased rates of mortality and 

increased length of hospital stay43. In a study performed by Afilalo et al. at the Jewish General 

Hospital in Montreal, gait speed was shown to be a powerful predictor of mortality and morbidity 

in older cardiac surgery patients52.  The benefits and potential risks need to be evaluated in the 
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case of frail, older cardiac surgery patients to determine if an invasive procedure will truly lead to 

an increased quality of life or reduced risk of death. Transcatheter aortic valve replacement 

(TAVR) is a procedure that was developed in response to the frailty dilemma in cardiac surgery. 

Frail, elderly patients make up the majority of individuals who undergo TAVR, yet frail patients 

are still at increased risk for mortality following the procedure43. Frailty serves as a potent predictor 

of risk in cardiac patients from a subclinical level up to an acute level. Proper evaluation of the 

frailty syndrome is therefore something that needs to be taken into consideration in the clinical 

setting. 

 

Evaluation of Frailty in Older Adults 

  

 There are currently various tools and models for frailty assessment in use. Evaluation 

methods are based on the two differing models of frailty: the frailty phenotype and the 

accumulation of deficits model. The frailty phenotype considers the following five clinical 

features: weakness, slow gait, weight loss, exhaustion and low physical activity22. The 

accumulated deficits model of frailty focuses on comorbid conditions in addition to cognitive, 

psychological and social factors53.  

 

The Frailty Phenotype Model 

 

 When assessing the frailty phenotype, physical function and sarcopenia are evaluated using 

various tests. The Fried scale and the Short Physical Performance Battery (SPPB) remain the two 

most used tools for evaluation of the frailty phenotype54. The Fried scale assesses the five clinical 
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features of the frailty phenotype outlined above. If three or more of the clinical features are present 

in a patient, the individual is diagnosed as frail according to the Fried scale55.  

To evaluate the dimensions of the Fried scale, specific tests and questions are used. 

Weakness is generally measured using a handheld dynamometer to determine hand grip strength 

(HGS). Specific sex and BMI stratified cut-offs are used to determine if a patient’s HGS is deemed 

as frail or robust55. Unintentional weight loss is determined if the patient has lost 10 or more pounds 

in the previous 12 months not due to exercise or dieting55. Slow gait speed is measured using 

variations of the four- or five-meter walk tests. Sex and height stratified cut-offs are used for gait 

speed measures. Self-reported exhaustion is evaluated based on the following two questions taken 

from the Centre for Epidemiological Studies Depression scale (CES-D): (1) “How often in the last 

week did you feel like everything you did was an effort,” (2) “How often in the last week did you 

feel like you could not get going”55. If patients state they felt they could not get going or required 

effort for all their daily activities at least three days in the last week, they would be considered 

frail55. Low physical activity considers the frequency with which patients exercise during the 

week; sex stratified cut-offs measured in energy expenditure per week (kcal) are used to classify 

patients as frail or robust55. 

The SPPB scale specifically addresses physical performance measures and does not 

address exhaustion or fatigue. The SPPB scale uses the chair rise test, gait speed, and tandem 

balance to measure the frailty phenotype56. Each test is given a score from 1-4 based on specific 

cut-offs resulting in a maximum possible score of 12 and a minimum possible score of 0. A score 

of 5 or less on the SPPB scale is indicative of frailty56. Gait speed in the case of SPPB is measured 

in the same way as the Fried scale. The chair rise test asks patients to stand and sit down five times 

as quickly as possible while not using their hands, this is a timed test56. The tandem balance test 
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asks patients to stand with their feet touching side by side, in a semi tandem position or in a full 

tandem position. Patients must be able to stand in all three positions for 10 seconds each to score 

full points56.  

These two ways of measuring the frailty phenotype are important ways of determining risk 

due to the relationship of frailty and various health related outcomes. In nursing home residents, 

the Fried scale was shown to be a powerful predictor of all cause mortality57. Similar results were 

seen in pre-operative patients, the Fried scale was an effective tool to predict post procedural 

mortality and various patient centered outcomes58. Interestingly across many studies, the Fried 

scale falls under criticism for its feasibility. While a few of the assessed domains are simple, it is 

not always easy to evaluate gait speed in the case of severely frail patients in an acute setting59. 

Gait speed serves as a marker of sarcopenia and physical functioning but cannot be assessed in 

bed bound patients. Frailty as defined by the SPPB criteria has been associated with increased risk 

of disability, prolonged length of stay and all-cause mortality in hospitalized patients60. The SPPB 

scale is thought to be an effective tool for risk prediction and frailty diagnosis in older patients59. 

As with the Fried scale, the same problems in terms of feasibility arise with the SPPB scale. All 

three assessed domains require a patient to be mobile and fall short in the case of severely frail 

individuals who are restricted in their ability to move independently.   
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The Accumulated Deficits Model 

 

The accumulation of comorbid conditions, various health deficits, cognitive decline and 

other psychological and social factors are considered in the accumulated deficits model of frailty. 

The two methods of measuring frailty under this model are the Frailty Index (FI) and the Clinical 

Frailty Scale (CFS). 

The frailty index is a value calculated based on all the accumulated symptoms, signs, 

functional impairments, diseases, radiographic, electrocardiographic or laboratory abnormalities 

that a patient displays61. The FI is calculated as a quotient of all the deficits present relative to all 

possible deficits considered62. The FI has also been shown to be a strong predictor of mortality 

across the literature62. The CFS is a scale from 1-9 where clinicians attribute a score to patients 

based on comorbidity, functional capacity, and cognitive ability; a higher score indicates increased 

frailty and vulnerability63. The CFS is a judgement-based evaluation tool that allows clinicians to 

interpret information how they see fit. Despite the seemingly subjective nature of the CFS, many 

studies across cultures and languages have demonstrated high reliability and validity of this clinical 

frailty measure64, 65, 66, 67. The use of FI and CFS demonstrate similar predictive capabilities with 

respect to mortality as the Fried and SPPB scales. The Fried and SPPB scales may be better at 

determining functional capacity due to the physical nature of the assessments, but there is a trade-

off with reduced feasibility in relation to FI and CFS. 
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Ultrasound and Sarcopenia 

 

Sarcopenia is described by decreases in muscle strength, mass, and quality. Muscle strength 

can be measured using a variety of physical tests, making it the most commonly assessed 

dimension of sarcopenia. Muscle mass can be measured using different scales and body scans, 

ranging from simple Body Mass Index (BMI) calculations to more complex devices such as Bio-

electrical Impedance Analysis (BIA) scales that utilize micro currents of electricity to measure 

body composition. Muscle quality remains the dimension of sarcopenia that is less assessed, yet 

as discussed above, it may provide powerful prognostic information.  

Different imaging modalities can provide insight into the enigma of muscle quality in older 

patients. Ultrasound is safe in terms of limited radiation and portable versions of ultrasound probes 

are starting to be increasingly present in clinical settings. The safety and feasibility of ultrasound 

make it a particularly interesting avenue of exploration from a frailty and sarcopenia standpoint. 

 Skeletal muscle ultrasound imaging can be used to quantify muscle mass by visualizing 

the muscle and subsequently measuring muscle thickness68. Ultrasound is also capable of 

investigating muscle quality. Fat infiltration and intramuscular fibrous tissue can be analyzed on 

skeletal muscle ultrasound images providing insight into the functional capacity of the muscle68.  

 Echo intensity (EI) demonstrates changes in tissue. More fat or fibrous tissue makes a 

muscle appear whiter and increases the mean pixel intensity (brightness) of the muscle68. Specific 

contractile components of skeletal muscle appear darker or more hypoechogenic while the whiter 

regions are hyperechogenic. When measuring mean pixel intensity to determine the EI of skeletal 

muscle, lower values correspond to darker, less echogenic areas which are thought to correspond 

to higher muscle quality69. Higher values of EI are thought to correspond with decreased muscle 
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quality and potential muscle disease70. Research around this is still limited, yet certain studies are 

showing a negative relationship between EI and muscle strength and function. This relationship 

highlights the potential for muscle quality to be used as a surrogate marker for muscle strength and 

sarcopenia70. 

 Differences in muscle quality and EI are important when considering two muscles of the 

same cross-sectional area but differing EI. While both muscles may be the same size, the functional 

capacity of the muscle with hyperechogenic regions may have reduced functional capacity and 

could meet the criteria for frailty diagnosis. Individuals with high values of skeletal muscle EI 

have been found to have lower locomotive function than individuals with lower EI values71. 

Changes in muscle composition and EI relative to aging are especially important in the context of 

frailty and sarcopenia. In numerous studies of healthy subjects, individuals over the age of 60 were 

found to have increased EI relative to their younger counter parts across numerous major muscle 

groups, indicating reduced muscle quality72. Additionally, research has shown that frailty as 

measured by the Fried scale was associated with higher EI values of the quadriceps73. EI is still 

being validated as a marker of sarcopenia but could prove to be an effective and feasible diagnostic 

tool in clinical settings. 

It is important to note that several factors can influence the EI of a muscle, such as 

hydration and glycogen levels69. Increased EI has been seen in conjunction with exercise and 

therefore adds confusion to the research indicating that high values of EI corresponds to lower 

quality muscles74. Ultimately, EI and ultrasound as a diagnostic tool for frailty and sarcopenia is a 

promising avenue for future frailty research, but increased investigation will be necessary to 

determine its role in a clinical setting. 
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Conclusion and Study Motivation 

 

 This literature review sought to determine the current landscape of frailty evaluation and 

assessment. No gold standard for frailty evaluation exists. Current methods such as the Fried 

scale and the SPPB are effective at determining frailty in patients who are somewhat mobile but 

falls short for extremely frail patients who may be bed bound. Imaging modalities are becoming 

increasingly prevalent in frailty research. Ultrasound imaging can be easily done at bedside and 

probes are becoming increasingly portable.  

 Little research has assessed the ability of ultrasound images to determine a patient’s frail 

condition. This hole in current research has inspired our investigation of the ability of ultrasound 

images of the thigh muscle to provide information on sarcopenia and frailty. Artificial 

intelligence (AI) in medicine is changing the way patients are evaluated and diagnosed; this has 

influenced our development of machine learning models to help measure thigh muscle size and 

quality to eventually try and improve current methods of frailty evaluation.  
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English Abstract 

 

Background 

Aging and frailty add dimensions of complexity to the management of cardiovascular diseases. As 

the world population ages, accurately assessing frailty and vulnerability in older patients is 

becoming increasingly important. Sarcopenia is a component of the frailty syndrome that can be 

assessed through a variety of methods. Assessment of frailty and sarcopenia is often not feasible 

in very ill patients who may be bed bound and cannot carry out physical tasks. Musculoskeletal 

ultrasound imaging is proving to be useful in the identification of sarcopenia, a marker of frailty. 

Quadricep muscle thickness (QMT), an indicator of sarcopenia, can be measured from ultrasound 

images of the thigh. Currently, there is limited research surrounding the ability of muscle 

ultrasound images to provide valuable diagnostic information for frailty or for machine learning 

(ML) models to measure QMT.  

  

Objectives 

The primary goal of this study was therefore to develop ML models capable of predicting QMT 

based on provided quadricep ultrasound phased array images as input variables. The secondary 

goal was to confirm the relationships between QMT and handgrip strength (HGS), lean body mass 

(LBM), phase angle (PA), clinical frailty scale (CFS) score. 
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Methods 

This study was a retrospective single-center cross-sectional cohort study conducted at the Jewish 

General Hospital. The study population consisted of adult inpatients and outpatients undergoing a 

transthoracic echocardiogram. Ultrasound images of the thigh served as the primary input 

(independent) variable for the ML models we developed. Ultrasound image collection was 

performed by trained sonographers at the Jewish General Hospital echocardiography laboratory. 

The images were subsequently annotated to delineate the femur and the top of the quadricep 

muscle. Five different measures of frailty were used as the output (dependent) variables; HGS, 

CFS, LBM, bio impedance PA, and QMT. For the first experiment, single variable linear 

regression ML models were trained using the ultrasound images as input variables and the five 

different frailty measures as output variables. 5-fold cross validation was used to test the 

performance of the model and mean absolute error (MAE) was measured to determine the model 

accuracy. For the second experiment a segmentation model was trained to identify a region of 

interest on the ultrasound images. This region of interest was then used to train a new linear 

regression model to predict QMT values.  

 

Results 

The final cohort consisted of 486 patients with a mean age of 66 ± 14 years and was 57% female. 

Increasing QMT was positively associated with HGS, LBM, PA, while negatively associate with 

CFS. 

 

The ML model using ultrasound images as inputs predicted QMT values with a MAE of 0.4478 ± 

0.033 cm. The ML model that used ultrasound images overlaid with predicted binary masks from 
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the segmentation model predicted QMT with a MAE of 0.355 ± 0.021 cm. The ML model that 

used ultrasound images overlaid with ground truth binary masks predicted QMT with a MAE of 

0.3210 ± 0.013 cm. 

 

Conclusion 

From these results it may be assumed that increased QMT could be used as a surrogate marker of 

these four different frailty measures. The models we have developed can provide a QMT value 

from a provided ultrasound image. This QMT value can further be used to determine the 

sarcopenic condition of the patient.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 37 

INTRODUCTION  

 

 The world population is ageing at a rapid rate such that approximately 16% of the world 

population is expected to be over the age of 65 by the year 20501. This trend of increasingly older 

adults translates to increasingly older patients. For adults 65 years of age and older, cardiovascular 

disease is the leading cause of disability2. Older patients remain the demographic most at risk for 

adverse outcomes following a cardiovascular event or diagnosis3. Additionally, older patients are 

at higher risk for mortality and morbidity following cardiac surgery4.  

 A patient’s level of vulnerability can be described by their level of frailty. Frailty is a 

geriatric syndrome and is described by decreased physiological reserve and ability to cope with 

physiological stressors, such as cardiac surgery or hospitalization5. Frailty has been used as a 

measure of biological age which is a more accurate risk predictor than chronological age6. Certain 

biomarkers have been increasingly used as surrogate markers of frailty and have been subject to 

investigation. 

 Sarcopenia has been a validated marker of frailty; evaluating methods to measure 

decreased muscle strength, quality and size has therefore been a focal point of frailty related 

studies7. Hand grip strength (HGS), clinical frailty scale (CFS) scores, and various body 

composition measures have been evaluated and validated as screening tools for sarcopenia and 

frailty8. 

 Measuring HGS, CFS, lean body mass (LBM) and phase angle (PA) while promising, are 

perhaps not feasible measurements to take in all patient populations such as those in ICU or 

bedbound patients. Various imaging modalities have shown preliminary success in highlighting 

sarcopenic phenotypes. The use of ultrasound and assessing light intensity in images has been 
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shown to be good indicators of sarcopenia. Muscle thickness and quality are important 

characteristics that can be evaluated in ultrasound images, yet no studies have developed machine 

learning artificial intelligence models that can predict QMT from a provided ultrasound image. 

The primary goal of this study was therefore to develop ML models capable of predicting QMT 

based on provided quadricep ultrasound phased array images as input variables. The secondary 

goal was to confirm the relationships between QMT and HGS, LBM, PA, CFS. 

 

METHODS 

 

Study Design 

 This study was a retrospective single-center cross-sectional cohort study conducted at the 

Jewish General Hospital. Data collection began in January 2019 and was finished in December of 

2019.  

 

Study Population 

 The study population consisted of adult inpatients and outpatients undergoing a 

transthoracic echocardiogram (TTE) at the Jewish General Hospital. Exclusion criteria were: (1) 

pregnant women, (2) patients with cardiovascular implantable devices (pacemaker or 

defibrillators) as bio-impedance (BIA) could not be used, (3) patients who did not consent to being 

weighed using BIA, (4) patients who could not verbally consent. 
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Ultrasound Image Acquisition and Preparation 

 Ultrasound images served as the primary input variable for the ML model we developed. 

Ultrasound image collection was performed by trained sonographers at the Jewish General 

Hospital echocardiography laboratory. Sonographers performed routine clinically indicated TTE 

exams. Additionally, sonographers were asked to acquire an additional, non-standard image of the 

anterior mid-thigh. All images were acquired using a phased array cardiac ultrasound probe. 

 The ultrasound images of the thighs from patients were stored in the hospital data-base and 

were accessible through the ViewPoint 6 and EchoPac software. The anterior thigh images were 

loaded, and all annotations made by the sonographers had to be removed such that no labels 

remained. The images were exported and analyzed on the DICOM viewing software, Osirix. For 

each quadricep image, we delineated the upper border of the femur using nine equally spaced 

points such that the fifth point was positioned centrally on the upper margin of the bone. These 

points represented coordinates on the ultrasound image to be used for thickness measurements and 

as reference points for our machine learning model. Similarly, we used five points to delineate the 

approximate superior limit of the quadricep muscle. The third point in this series of five points 

was positioned centrally on the upper margin of the muscle; this central point was roughly aligned 

with the central point of the femur. The thickness of the muscle was calculated by measuring the 

distance between the central points on the femur and the upper limit of the quadricep. The two 

distinct sets of points for each image were stored as Java Script files (JSON) to be used as reference 

coordinates in the development of the AI model. 

 In addition to delineating the superior margins of the bone and muscle, we resized the 

ultrasound images to 700x1000 pixels such they would all be uniform. We then cropped the images 

using various cropping sizes to focus on regions of interest (ROI) of varying size. The size of the 
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ROIs were determined as a function of the percentage of the total thickness of the muscle in each 

image. In addition to uncropped images, three different ROI dimensions were evaluated. 40%, 

60% and 80 % of the muscle thickness were used as the dimensions of the square ROIs. Multiple 

machine learning models were subsequently trained using either uncropped images or one of the 

three discussed cropped ultrasounds. The rationale behind cropping the images was to minimize 

the presence of artifacts from the software or during image acquisition; this would allow the model 

to evaluate the muscle tissue only within the specified region. 

 

Covariates 

 In addition to ultrasound images, age and sex were recorded. Weight and height were 

measured as part of the normal routine of the TTE exam. Heart Failure (HF) status was also 

recorded.  

 

Deep Learning Model Frailty Outputs 

 Five different markers of frailty were used as output (dependent) variables. As such, 

different models were trained to predict each of the five different outputs based on the provided 

inputs (ultrasound image). Concurrently with TTE examination, a Clinical Frailty Scale (CFS) 

score was recorded, handgrip strength (HGS) was assessed, and patients were weighed on a 

bioimpedance scale (BIA) to yield phase angle (PA) and lean body mass measurements (LBM). 

QMT was measured retrospectively. 

The Clinical Frailty Scale (CFS) rates patients based on the evaluation of the patient’s 

symptoms, level of mobility and disabilities in activities of daily living (ADL) and instrumental 
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activities of daily living (IADL). Patients are scored on a scale from 1-9; a lower score indicates 

robustness while a higher score indicates increased frailty and vulnerability.  

HGS was measured by trained interviewers with a Jamar hydraulic handheld dynamometer 

that was adjusted to the patient’s hand size. Patients were seated with their elbow bent at 90 degrees 

and pressed against the side of their body. Patients were asked to squeeze the dynamometer once 

with each hand and a third time with the strongest hand and the results to the nearest kilogram 

were recorded. The highest of the three measurements was used in the study.  

At the time of TTE examination patients were weighed using BIA. Electrodes connected 

to the BIA scale were placed on each hand and each foot. Patients were asked to sit with their arms 

spread out to the side so that there was no contact between their torso and arms. The BIA measured 

the resistance of imperceptible electrical currents passed through the body. Measured resistance 

values are used to compute the Total Body Water (TBW) as well as intracellular body water (ICW) 

and extracellular body water (ECW). Additionally, the measurements can be used to calculate PA 

and lean body mass (LBM). We used PA and LBM as additional frailty markers in the ML model. 

PA values of frailty were measured on a continuous scale. 

 

Machine Learning Approach 

Experiment 1:  Single Variable Linear Regression Model 

 Multiple different linear regression (LR) ML models were trained with one input variable 

and one output variable each.  For the first five LR models the uncropped ultrasound image was 

used as an input. Model 1 was trained using HGS as the output variable. Model 2 was trained using 

LBM as the output variable. Model 3 was trained using PA as the output variable. Model 4 was 

trained using CFS as the output variable. Model 5 was trained using QMT as the output variable. 
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The models were validated using 5-fold cross validation. The accuracy of the model was measured 

by calculating the mean absolute error (MAE).  

 

Experiment 2: Segmentation Model 

 The second experiment required the sequential training of two models: a segmentation 

model and an LR model. The predicted output of the segmentation model was used as the input 

for the second LR model assessing QMT.  

 A segmentation model was trained to produce binary masks that contained a region of 

interest from a provided ultrasound image. The segmentation model was trained using ground truth 

(GT) binary masks that were generated from the annotated ultrasound images. The lateral points 

of the annotations were used to delineate the mask border. The inputs to the segmentation model 

were the ultrasound images containing no annotations. The outputs were the predicted masks using 

the plain ultrasound images. 

 A LR model was then trained using a combination of the plain ultrasound images and the 

output of the segmentation model. The predicted masks from the segmentation model were 

overlaid on their corresponding ultrasound images, providing a cropped ROI. This cropped 

ultrasound image was then provided as the input to the LR model to predict muscle thickness. The 

model was validated using 5-fold cross validation and accuracy was measured by MAE.  

 Additionally, a LR model was trained using the GT segmentation masks and ultrasound 

images. The GT masks were overlaid on their corresponding images and this ROI was provided 

as an input to the model to subsequently predict QMT. 
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Figure 1: Methodology of experiment 2. The first step was to train the segmentation model. Using 
the outputs of the segmentation model, we trained the LR model to predict muscle thickness. 
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RESULTS 

 

Baseline Characteristics 

 The final cohort consisted of 486 patients. 549 patients were recruited and consented to the 

study. 63 patients were excluded from the study due to missing data or poor ultrasound image 

quality. The study cohort had a mean age of 66 ± 14 years and was 57% female. The mean values 

for the frailty measures across the study cohort were as follows: the mean BMI was 28.9 ± 6, the 

mean CFS was 3 ± 1, the mean HGS was 26.1kg ± 11.4kg, the mean LBM was 48.2kg ± 10.9kg, 

the mean PA was 4.9° ± 1.0°, and the mean QMT was 3.33cm ± 1.08cm. 

 The mean BMI values were very similar across male and female patients across all age 

groups with the lowest BMI of 28.3 in female patients over the age of 70, and the highest BMI of 

29.4 in female patients under the age 70. HGS, a strong predictor of frailty, was 24% lower in male 

patients over the age of 70 compared to their younger counterparts. HGS in older female patients 

was lower by 21% compared to their younger counterparts. The same trends with respect to age 

and sex were observed for LBM and PA. Baseline characteristics are further outlined in Table 1.  

 

 

 

 

 

 

Figure 2: Flow Diagram. 
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Table 1: Baseline characteristics by sex and age. 
 

 

 N Age 
(Mean) BMI CFS HGS 

(kg) 
Weight 
(kg) 

LBM 
(kg) 

PA 
(∘) 

QT 
(mm) 

Female < 70 
Years 156 56.2 29.4 2.7 22.1 75.3 43.9 5 36.2 

Male < 70 Years 108 55.5 29.2 2.6 38.7 87.4 60.1 5.9 34.3 

Female ≥ 70 
Years 122 78.3 28.3 3.4 17.5 68.7 39.7 4.2 31.33 

Male ≥ 70 Years 100 78.8 28.7 3.3 29.3 80.5 52.4 4.5 29.2 

 

 

Quadricep Thickness 

 The validated frailty measures of HGS, CFS, LBM and PA were all compared to QMT. A 

positive relationship was observed between QMT and HGS, LBM, PA. Figures 3-5 demonstrate 

the scatter plots of these relationships. A negative relationship was observed between QMT and 

CFS; lower CFS values indicate increased robustness. As QMT decreased, CFS and frailty was 

observed to slightly increase (Figure 6).  
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Figure 3: Scatter plot showing the linear relationship and 95% confidence intervals for Hand Grip 
Strength (kg) vs Quadricep muscle thickness (mm) for males and females. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Scatter plot showing the linear relationship and 95% confidence intervals for Lean 
Whole Body Mass (kg) vs Quadricep muscle thickness (mm) for males and females. 
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Figure 5: Scatter plot showing the linear relationship and 95% confidence intervals for Phase 
Angle (deg) vs Quadricep muscle thickness (mm) for males and females. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Box plots showing the relationship between the Clinical Frailty Scale and Quadricep 
muscle thickness (mm) for males and females. 
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Machine Learning Image Preprocessing 

 486 ultrasound images were preprocessed and removed of all annotations and edits that 

had been made by technicians (Figure 7). All 486 images were then annotated delineating the 

femur and the top of the quadricep muscle. 5 points were used for the top of the muscle while 9 

points delineated the bone (Figure 7). Muscle thickness was also measured across all images. 

 

 

 

 
Figure 7: Sample ultrasound images of the quadricep (a) without annotation and (b) with 
annotations. The green line delineates the top of the femur, the blue line delineates the top of the 
quadricep muscle, and the orange line connects two points, providing a muscle thickness 
measurement. 
 
 
 
 

 

 

 

a) b) 
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Machine Learning Models 

1. The first ML model was the LR model using the unannotated ultrasound images. The LR model 

was successfully trained to provide QMT values for corresponding ultrasound images provided 

as inputs. The mean MAE for the 5-fold cross validation was 0.4478 ± 0.033cm. The MAE 

values for the test sets of each fold of the cross validation are listed in Table 2 under Model 1.  

 

2. The second ML model used was trained using two steps. The QMT predictions were more 

accurate than in the single step single variable LR model. The first step comprised the 

segmentation model. The segmentation model was successfully trained using the GT binary 

masks created with the image annotations (Figure 8). The mean dice score for the segmentation 

model was 0.856 ± 0.013. The dice scores for each fold of the segmentation model are listed 

in Table 2.  For LR Model 2, the predicted binary masks were then overlayed on the ultrasound 

images, providing the ROI for the QMT LR model (figure 8). The mean MAE for the LR 

model using the predicted masks was 0.355 ± 0.021cm. All the MAE values for each fold of 

the cross-validation for the LR model are listed in Table 2 under Model 2.  

 

3. To further evaluate the performance of the model, an additional LR model was made using the 

GT binary masks overlaid on ultrasound images as input variables rather than the predicted 

binary masks from the segmentation model. This LR model performed slightly better with a 

mean MAE of 0.3210 ± 0.013cm. All the MAE values for each fold of the cross-validation for 

the LR model are listed in Table 2 under Model 3.  
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Table 2: Linear regression model mean absolute error (cm) and segmentation model dice score 
for each fold of 5-fold cross-validation for Model 1, 2, 3 and the Segmentation Model. The mean 
and the standard deviation of the MAE and DSC in these 5 test sets is provided.  
 
Fold LR Model 1 

MAE 
LR Model 2 

MAE 
LR Model 3 MAE Segmentation Model 

DSC 
1 0.4621 0.3357 0.3194 0.84 

2 0.4926 0.3653 0.3372 0.87 

3 0.4028 0.3613 0.3254 0.85 

4 0.4372 0.33 0.3019 0.87 

5 0.4443 0.3806 0.3211 0.85 

Mean MAE 0.4478 ± 0.033 0.355 ± 0.021 0.3210 ± 0.013  

Mean DSC    0.86 ± 0.013 
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Figure 8: Sample ROI cropping beginning with (a) whole, unaltered ultrasound image. (c) Ground 
truth binary mask was made to train the segmentation model so that it could provide (d) a predicted 
binary mask as an output for a given ultrasound image. The predicted binary mask was then 
overlaid on the corresponding ultrasound image to create (b) a cropped ROI for the LR model to 
subsequently predict QMT. 
 
 

a) b) 

c) d) 
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Figure 9: Scatter plots showing Ground Truth vs Predicted QMT values for LR Model 1 using 
whole ultrasound images as inputs. Each fold of the 5-fold cross validation is shown in addition to 
(f) the mean.  
 
 

b) a) c) 

d) e) f) 
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Figure 10: Scatter plots showing Ground Truth vs Predicted QMT values for LR Model 2 using 
ultrasound images overlaid with predicted binary masks from the segmentation model as inputs. 
Each fold of the 5-fold cross validation is shown in addition to (f) the mean.  
 
 
 

b) a) c) 

d) e) f) 
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Figure 11: Scatter plots showing Ground Truth vs Predicted QMT values for LR Model 3 using 
ultrasound images overlaid with ground truth binary masks as inputs. Each fold of the 5-fold cross 
validation is shown in addition to (f) the mean.  
 
 
 
 

b) a) c) 

d) e) f) 
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CONCLUSION 

 

 This study primarily aimed to develop ML regression and segmentation models to predict 

QMT by using ultrasound images as input variables. Additionally, the study aimed to evaluate the 

relationship between QMT and four different frailty related variables. The findings indicate that 

QMT was positively associated with increased HGS, LBM and PA. QMT was also found to be 

negatively associated with CFS. From these results it may be assumed that increased quadricep 

muscle mass could be used as a surrogate marker for these four different frailty measures. This 

conclusion is an extension of the results of several studies in the literature that have demonstrated 

low muscle mass and sarcopenia as indicators of the frailty syndrome. Additionally, the machine 

learning models that were developed showed promising results. The models we have developed 

can provide a QMT value from a provided ultrasound image. This QMT value can further be used 

to determine the sarcopenic condition of the patient.  

Several frailty assessments are available, such as the Fried scale, the short physical 

performance battery (SPPB), etc. yet no gold standard for evaluation exists. While many of these 

assessments are useful tests to determine a patient’s functional capacity and by extension, frailty, 

these assessments can be long, and require a certain level of mobility. Bed bound patients and 

severely frail individuals cannot be accurately assessed using many of these methods. Ultrasound 

imaging can easily be performed at bedside and a QMT measurement could provide useful 

information to clinicians regarding the vulnerability of patients.  

 Despite the successful development of these ML models, the single variable LR models 

that were developed to predict HGS, LBM, PA and CFS from ultrasound input images could not 

accurately do so. There are certain limitations that should be addressed in future studies that seek 
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to develop similar ML models. The first was the image quality. All ultrasound images were 

acquired with a phased array cardiac probe; this probe is not meant for musculoskeletal image 

acquisition. Additionally, fewer than 500 images from patients were included in this study. This is 

a rather small sample size in the context of machine learning. Finally, physical strength was only 

measured using HGS and did not comprise a lower limb component.  

 Future research using thigh ultrasound images for frailty evaluation should incorporate the 

use of a linear array ultrasound probe, to ensure clear image quality. Lower extremity strength 

should also be measured such that all the elements of sarcopenia (muscle mass, strength, and 

quality) may be incorporated into future models. 

 QMT proves to be a promising screening tool in identifying frail individuals. The results 

demonstrate that QMT values can be accurately predicted from provided ultrasound images using 

LR and image segmentation ML models. The challenges posed by the frailty syndrome for 

clinicians is not only the management of the syndrome but also the detection of the condition. ML 

models using quadricep ultrasound images are an exciting avenue of frailty evaluation that should 

be further explored.   
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CHAPTER 4: THESIS CONCLUSION 

The global population is aging at a rapid rate. Age is an important risk factor for 

cardiovascular disease; efficiently identifying vulnerable, older individuals has become a focal 

point of cardiovascular research. Understanding the differences between biological age and 

chronological age helps to explain the individual differences in the aging process. The frailty 

syndrome deals with decreased physiological reserve and is associated with increased rates of 

mortality and morbidity. Despite this knowledge, no gold standard for frailty evaluation exists. 

Imaging modalities have been increasingly explored as a tool to identify sarcopenia in patients. 

Sarcopenia can act as a surrogate marker of frailty. Ultrasound images of the thigh muscle could 

therefore potentially provide important frailty diagnostic information. 

 The literature review on the frailty syndrome discussed the current understanding of the 

frailty syndrome, its relationship with cardiovascular diseases, and how we evaluate it. Although 

certain frailty assessments such as the Fried scale or the SPPB scale provide relevant insight into 

a patient’s functional capacity, these assessments are not feasible in extremely frail individuals 

and only provide indirect assessments of sarcopenia. Extremely frail or bed-bound patients cannot 

be assessed in many cases due to their physical limitations. Previous research has been done to 

demonstrate that muscle size is associated with physical function and by extension robustness. 

Ultrasound images can be performed at bedside and can provide instantaneous information about 

muscle quality. Little work has been done however to demonstrate the relationships between 

quadricep muscle thickness and various frailty measures. Additionally, little research has made 

use of machine learning models to determine muscle thickness from provided ultrasound images. 

 According to the findings of the manuscript, HGS, LBM, and QMT all decline with age, 

while CFS increases. The results demonstrate that QMT is positively associated with HGS, LBM, 
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PA, while the inverse is observed with CFS. QMT needs to be further validated as a frailty marker 

but proves to be a useful marker of sarcopenia. The study most importantly demonstrated that 

machine learning models could accurately predict the QMT measurements from provided 

ultrasound images. This finding helps to lay the groundwork for future machine learning models 

targeting ultrasound imaging and frailty.  

 It is important to discuss the limitations of this study. The cohort size of 489 patients is 

quite small especially with respect to machine learning methodology. This both reduces the 

external validity of the study and is a potential reason for certain insignificant results in some of 

the linear regression machine learning models. Additionally, the patient population consisted 

mostly of outpatients and therefore did not include many severely frail patients. The patient 

population was not entirely representative of the full range of the frailty syndrome. Finally, the 

images were acquired with a phased array cardiac probe; this limited the quality of the 

musculoskeletal images that were used.  

 Going forward, a more comprehensive patient population should be analyzed; cardiac 

inpatients would be a good next step to include increasingly frail individuals. Additionally, a linear 

array probe should be used so that the image quality may increase and so that values such as mean 

pixel intensity can be easily and accurately measured. To our knowledge, ultrasound imaging has 

never been routinely used to assess patient frailty. The development of more robust predictive 

machine learning models using ultrasound images of the thigh should be a focus for frailty 

research. No gold standard exists for frailty evaluation and ultrasound imaging of the 

musculoskeletal system could prove to be an effective indicator of frailty and vulnerability in 

cardiac patients. 
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