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Abstract

Manually converting Medieval chant manuscripts, written in square notation, to a
computer-readable format is costly. Optical Music Recognition (OMR), which automati-
cally performs the conversion from scanned manuscript images, can potentially reduce this
cost. Machine learning models can be used to perform OMR, though they often require
large amounts of labelled training data. In this work, a generative adversarial network
(GAN) is trained to generate images of the individual notes and symbols that make up
square notation. A GAN entangles two neural networks in a game, where one is progres-
sively trained to generate increasingly realistic images based on a training set to fool a
second network, which iteratively evaluates whether the generated examples appear as real
as the training set. The music symbols generated by the GAN are placed on staff lines
on synthetic manuscript pages, mimicking the appearance and structure of a real page
of square notation. A novel OMR workflow is introduced that includes two sequential
machine learning OMR models used in sequence: the first for object detection of musical
symbols, the second for determining the vertical staff position of the notes. The baseline
OMR workflow experiments are trained with real manuscript images only, and their results
are compared against the OMR workflow trained with both real and synthetic manuscript
images. Two medieval manuscripts, the Salzinnes Antiphonal and the Einsiedeln Stiftsbib-
liothek Codex 611(89) are used for the experiments. Comparing against the baseline real
data experiments, an increase in the OMR workflow’s evaluation metrics demonstrates
that the OMR of square notation is improved by training the workflow with both real and
synthetic data, assisted by the GAN architecture. Experimental results indicate that the

OMR of square notation can be improved by using GAN-synthesized manuscript data.
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Résumé

La conversion manuelle de chants médiévaux depuis leur notation neumatique carrée
vers un format lisible par les ordinateurs est un processus cotiteux. La Reconnaissance
Optique de la Musique (ROM ; OMR en anglais) pourrait contribuer a réduire ce cotit en
convertissant automatiquement les images numérisées de manuscrits. Des modéles d’ap-
prentissage automatique peuvent étre utilisés pour améliorer les performances de la ROM,
bien qu’ils requiérent normalement un important volume de données annotées. Dans le
cadre de ce projet, un Réseau Antagoniste Génératif (RAG; GAN en anglais) a été en-
trainé pour générer les images individuelles des notes et des symboles que 1'on retrouve
dans la notation carrée. Un RAG entreméle deux réseaux de neurones en un jeu d’appren-
tissage mutuel : tandis qu'un des réseaux est entrainé a générer des images de plus en
plus réalistes, le second évalue par itération si celles-ci sont aussi réalistes que celles uti-
lisés pour 'entrainement. Les symboles musicaux générés par le RAG sont placés sur des
lignes de portée de pages manuscrites synthétiques qui imitent I’apparence et la structure
d’une vraie page de notation carrée. Une nouvelle méthode de ROM est présentée dans
ce projet. Elle inclut deux modéles d’apprentissage automatique en séquence, le premier
pour la détection de symboles musicaux et le second pour déterminer la position verticale
des notes dans la portée. Les expériences basées sur le processus de ROM sont entrainées
uniquement avec de réelles images manuscrites, et leurs résultats sont comparés avec celles
entrainées avec a la fois avec des données réelles et des données synthétiques. Deux ma-
nuscrits médiévaux ont été utilisés pour ce projet, 'antiphonaire de Salzinnes et le codex
611(89) de la Einsiedeln Stiftsbibliothek. En comparaison avec les expériences menées sur
données réelles, une augmentation dans les métriques d’évaluation du processus de la ROM
de notation carrée démontre que celle-ci peut étre améliorée avec 1’aide de ’architecture
du RAG, en entrainant le processus & la fois avec des données réelles et des données syn-
thétiques. Les résultats expérimentaux révélent que la ROM de notation carrée peut étre

améliorée par 'usage de données manuscrites synthétisées par un RAG.
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1 Introduction

Square notation, dating back to the 13" century, is used in a number of manuscripts main-
tained by many libraries and archives. In order to preserve the cultural and musical information
found in these manuscripts, many of them have been scanned and uploaded for widespread dig-
ital access, unlocking the possibilities of applying computer vision operations in the realm of
Music Information Retrieval Music Information Retrieval (MIR) to automatically extract mu-
sical information from the scanned images. Within MIR, Optical Music Recognition Optical
Music Recognition (OMR) is a research field focused on the detection and encoding of musical
information into a machine readable output, taking a scanned image of musical content (e.g., a
page of a score) as input. When applying heuristic, conditional programming to the detection
and pitch classification of square notation, it is difficult to fully anticipate the inherent variety in
the manuscripts’ handwriting styles, ink bleed-through, and background textures. In machine-
learning-based OMR workflows, often a large amount of annotated manuscript training data
is needed to encapsulate these variables. Unfortunately, manually transcribed manuscripts are
rare, and without increasing their amount, which can be costly, the OMR models may not learn

the necessary parameters for accurate results.

Traditional data augmentation seeks to resolve this problem by transforming existing input
data to synthetically create more training data for a machine learning task. While these pro-
cesses introduce new data by, for example, rotating or adding noise to an image, the results
are only slight adjustments to what is already existent. Recent research has introduced a novel
strategy for data augmentation from a more fundamental standpoint, generating completely
new examples instead of transforming pre-existing ones. Generative Adversarial Networks
Generative Adversarial Network (GAN) entangle two neural networks in a game, where one
network, generator (G), is trained to generate examples with the same statistics as a given
training set. The second network, discriminator (D), takes data from the training set and
data generated by G, and evaluates whether each input is real or not. The errors from D are
propagated backwards towards G, which learns to generate more realistic data, representative
of the training set. This loop optimally continues until D is rating inputs 50% real and 50%
fake on average, meaning that D is fooled by G and cannot distinguish which examples are real
or synthetic. The goal is to use this G to create realistic manuscript training data for use in
a novel OMR workflow for square notation, comparing whether training datasets comprised of

real and synthetic manuscript data outperform exclusively real training datasets.



The novel OMR workflow for square notation envisioned for this research is used to au-
tomatically locate the important musical elements on each manuscript page and classify their
vertical position on their respective staff, the four-line system used to establish the notes” musi-
cal pitches. To locate the musical elements on the page, an object detection model is proposed.
By providing the model with the coordinates and name of each relevant musical symbol on the
page, it learns to make predictions for where these objects are located in the overall manuscript
image. The detected musical symbols then need their vertical position to be classified in relation
to the nearest staff upon which they appear. By establishing the vertical position of clefs and
notes on the page, their final pitches can also be encoded. This task is handled by a separate
classification model, trained on the enlarged bounding boxes of musical symbols that reveal the
surrounding staff lines and the musical symbol’s relation to them. These two models will be
trained with the real manuscript data to establish the baseline evaluation metrics. The models
will then be retrained with the identical manuscript data in addition to the GAN-synthesized
data, and the evaluation metrics will be compared. An increase in the metrics pertaining to
the real and generated dataset will demonstrate that the OMR of square notation is improved

with the use of synthetic manuscript training data.

1.1 Thesis Organization

This thesis spans five chapters, including this introductory chapter. Chapter 2 expands into
background literature for the machine learning methods used in this thesis. The first section
is focused on modern deep learning, object detection, and data augmentation practices. The
second section includes an overview to GANs and how they have been used for creating training
data for other machine learning tasks. The third section provides a more in-depth understanding
of square notation, and a review of existing research on the topics of machine-learned OMR for
square and other music notations. Chapter 3 begins with an overview of the the manuscript
image generation and processing workflows and the Medieval manuscripts used in this research.
The extraction of the ground truth manuscript information is then explained, followed by the
processes for using the GAN to generate synthetic neume components and manuscript pages.
The following sections break down the OMR workflow into the separate object detection and
staff position classification steps, and finish with the evaluation metrics used to measure the
performance of the workflow. Chapter 4 encompasses the experimental results of the baseline

and synthetic manuscript page training datasets for the OMR workflow. Finally, Chapter 5



includes additional discussion of the findings in Chapter 4 and suggests possible avenues into

future work.



2 Background

This chapter presents more information about recent strides in machine learning that have
made way for the development of Generative Adversarial Networks (GANs) and the existing
body of work that has already been applied to the automatic transcription of square nota-
tion. Section 2.1 provides a general overview of square notation. In Section 2.2, the general
concept of machine learning is introduced, including deep learning, object detection, and data
augmentation, as a gateway to Section 2.3, where an overview of GANs and their utility for cre-
ating training data is provided. Finally, Section 2.4 includes a survey of recent OMR research

performed for the automatic transcription of square and other music notations.

2.1 Square Notation

In the 13" century, square notation evolved out of the earlier forms of recording music in
writing. It was introduced as a notation for Gregorian chants, the unaccompanied, monophonic
sacred songs in the Roman Catholic Church. Earlier chant manuscripts featured neumes—
musical symbols—directly above corresponding lyrical text on a page, though no staff lines
were included. Square notation introduced a standard staff with four lines and clef symbols to

establish relative pitch relationships for neumes on the staff (Figure 2.1).



Figure 2.1: Page of the square notation Salzinnes Antiphonal manuscript.

Square notation is an early form of musical notation used for monophonic vocal music,
or chants, the singing of words and phrases in religious settings. Lyrical text below each
staff organizes the musical information into phrases or syllables, which are further broken
down into neumes, and once more into neume components, the class of individual symbols
that make up the most succinct musical information in square notation. Similar to modern
musical notation, clefs at the beginning of each staff indicate the relative pitch position for the
following neume components. The rectangular and diamond-shaped punctum and inclinatum
components, respectively, represent individual note pitch information. Obliques, the wide,
descending parallelograms represent two pitches, one at the beginning and ending staff position.
At the end of most staves, the custos indicates what the first pitch will be on the following

staff. A section of a square notation manuscript can be seen in Figure 2.2.

Neumes in square notation generally refer to musical phrases of lyrical text, which broadly

1. https://smu.ca/academics/archives/the-salzinnes-antiphonal.html


https://smu.ca/academics/archives/the-salzinnes-antiphonal.html

Figure 2.2: Neume components in square notation. From left to right, the
first unique symbol occurrences are a clef, followed by rectangular punctums,

a diagonal oblique, and descending diamond-shaped inclinatums.

refers to a sequence of one or more successive note pitches. The neume’s constituent neume
components are the smallest building blocks of musical information in square notation. Fig-
ure 2.3 shows the most commonly occurring neume components. Punctums and inclinatums
represent individual pitches, while obliques represent two pitches: one at each of the starting
and end positions of its diagonal form. Compound neumes are made up of two or more con-
secutive neume components either explicitly connected by a penstroke, or they are grouped
together based on the relationship to a corresponding syllable or phrase in the lyrics (Figure
2.4). Musicologists have been able to identify a subset of common compound neumes, though
many are too complex and uncommon to receive a specific categorization other than generally
being a compound neume. Thus, individual neume components will be focused on exclusively
throughout this thesis since they represent all of the note-by-note information on a page, which

can be encoded discretely into a machine-readable format.

Figure 2.3: Neume component examples.



Figure 2.4: Compound neume examples.

Similar to modern musical notation, square notation features clefs that signal the reader of
the position to pitch relationships from staff to staff (Figure 2.5). The vertical center position of
c- and f-clefs establish this relationship for the following neume components, indicating on which
staff line the reference pitch is found. Figure 2.6 shows the nine possible neume component
positions on the staff and illustrates how the relative pitch is subsequently established from the

most recent occurring clef change.

Figure 2.5: Examples of the c- and f-clefs.



Figure 2.6: Example representing a c-clef that centers the C pitch on line 2

(12) and subsequent neume component pitch encodings.

The focus on the OMR of square notation stems from a research initiative centered at McGill,
the Single Interface for Music Score Searching and Analysis (SIMSSA) project (Hankinson et al.
2012). Motivated by community efforts to make archival music information widely available
and digitally accessible, SIMSSA incorporates an expanding range of tools for encoding, editing,
and searching musical information in a large, public database. Ideally, this research will be
incorporated into SIMSSA, which could increase the OMR efficiency and accuracy of square

notation manuscripts to be included in the database.

2.2 Machine Learning

With recent developments in the computational efficiency and processing power of personal
computers, machine learning has become a quintessential toolset for researchers. In contrast to
traditional heuristic algorithms, a complex function or model is built out of a large set of input
examples referred to as the training dataset. In supervised machine learning, every example in
the training dataset has a number of features, z, that are assumed to correspond to an output

label, y. Through multiple iterations or passes over the training dataset, the model is tuned



to the examples provided, learning how z generally leads to y. Tuning a model too quickly or
without enough examples can lead to consistent, but inaccurate results. The model does not
accurately capture the features that contribute to y, lacking the complexity to learn about any
underlying trends. This is referred to as underfitting. Training a model for too long without a
broad set of examples can lead to memorization of the training data, resulting in a model that
is too complex and does not leave room for making accurate predictions when provided with
new data. This is referred to as overfitting. More data always comes as a benefit to machine
learning operations, assuming that the examples involved represent a wide diversity that will
generalize well to the test dataset, which is comprised of examples with the same set of features
z, but without an output label, y. Examples from the test dataset are fed into the final trained
model, and the model provides a corresponding y as an output. The classification accuracy of

the test dataset is often used as the core metric for evaluating the model.

2.2.1 Deep Learning

In recent years, machine learning has become increasingly complex, achieving higher levels of
abstraction via deep learning in areas of image processing and speech recognition (LeCun et al.
2015; Goodfellow et al. 2016). In a general deep learning framework, multiple processing layers
are strung together to evaluate various characteristics from the original input data. Individual
features described in the previous section compound to form these high-level attributes. For
example, a deep learning model can be trained to detect facial attributes in a celebrity portrait
dataset, handling the individual detection of eyes, noses, and mouths in different processing
layers (Liu et al. 2015). This is referred to as object detection, a popular application in deep

learning algorithms that has powerful implications for OMR research.

2.2.2 Object Detection

Object detection with machine learning is an age-old task that has continued to stay rele-
vant for many types of image processing operations (Papageorgiou and Poggio 2000). Instead
of classifying the entire image, smaller targets in the overall image are identified and usually
assigned a label. An object detection dataset is composed of these “scenes” alongside corre-
sponding text files that detail the coordinates of the bounding box that surround each target in

the overall image, referred to as a bounding box, often including an assigned label as well. For



example, an operation to detect bounding boxes for cats and dogs in an outdoor setting will
require many images of the animals in this setting, with an accompanying file for each image
stating where the animals are located in the image pixel-wise (bounding box), and whether
they are a dog or a cat. This simple localization task has a significant amount of application in

security, medical, and engineering disciplines (Buczak and Guven 2016; Kourou et al. 2015).

A number of deep learning models have been generalized for adaptive use in custom ob-
ject detection tasks. Girshick (2015) introduced the Fast Region-based Convolutional Neural
Network (Fast R-CNN), improving upon the original R-CNN also proposed by Girshick et al.
(2014). Fast R-CNN was able to train deep detection networks such as VGG16 (Simonyan and
Zisserman 2014) nine times faster than the original. The improved architecture takes an image
and regions of interest (Rols) or bounding boxes as input into a fully connected CNN. Each Rol
is divided into an array of sub-windows where each is individually pooled, reducing their di-
mensionality into a fixed-size feature map. Passing through fully connected layers of the CNN,
the feature map is projected onto a final feature vector with two outputs: softmax probability
estimates over the number of Rol input classes and the four values representing the coordinates
of the bounding box (per Rol). Ren et al. (2015) developed the Faster R-CNN architecture as
an extension of Fast R-CNN. They introduced a novel Region Proposal Network (RPN), which
is a CNN used to take an input image and output bounding-box object candidates, each with a
score representing whether it refers to the relevant set of object input classes (e.g., any of dog,
cat, car, etc.) or the background of the image. The RPN is intertwined with the Fast R-CNN
by sharing a subset of fixed convolutional layers between the two models during training. RPN
is first trained independently to output object proposals used for training input to the Fast
R-~-CNN detector. These detections are then used to continue training the RPN while fixing the
two model’s shared convolutional layers and only updating the unshared layers in the RPN.
Finally, the unshared layers in the Fast R-CNN are updated while keeping the shared layers
fixed, resulting in a unified object detection architecture. Compared against previous Selective
Search (SS) pipelines (Uijlings et al. 2013) on the PASCAL VOC 2007 dataset (Everingham
et al. 2007), a baseline mean average precision (mAP) of 68.5% was achieved for a Faster
R-CNN with unshared convolutional layer, beating the SS baseline of 66.9% and evaluating
in 198 ms as opposed to 1830 ms with SS. Using a Faster R-CNN with shared convolutional
layers and trained on the PASCAL VOC 2007 and 2012 data, following Girshick (2015), the
mAP increased to 73.2%. The Faster R-CNN, selected for use in this research, is a competitive

architecture for increasingly accurate and efficient object detection.
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As universal as object detection has become, it is still a very expensive, time-intensive
process on most consumer hardware, motivating researchers to introduce novel approaches for
reducing the overall computational load and processing time. This also coincides with an
increase in camera resolution, which provides researchers with more detailed, pixel-rich source
images for object detection at an increased computational cost. Images can be down-scaled,
but this comes as a direct loss of information, reducing the overall number of pixels, especially
considering those that might make up a very small target in a scene. For detecting small
objects in a large scene, image segmentation or tiling is a simple way to transform a dataset
of computationally demanding images into new sets of smaller image scenes (Plastiras et al.
2018). This is done by first selecting desired dimensions for each chunk of the larger image.
Next, x- and y- pixel overlap values are declared to ensure no targets in the scene are omitted
because they would have otherwise been broken up by a non-overlapping segmentation. The
x-overlap and y-overlap values must exceed the minimum width and height respectively of any
target in the scene or the targets are at risk of not being included after the segmentation is

performed.

As mentioned previously, image segmentation or tiling can be used to localize very small
objects in a large image scene, such as locating small note heads in a large music manuscript.
Tiling is thoroughly explored by Unel et al. (2019). By segmenting a large image of a street
scene, the researchers performed an object detection and classification task for cars and people
in the smaller images. Training their model with the smaller tiles, the car and human targets
were detected in each segment and later merged to encompass the overall scene. When merging
the segmented chunks after detection, some objects in the scene will have been detected more
than once, since they could have appeared in more than one tile due to the segmentation pixel
overlap. If bounding box areas overlap by more than 25%), the detection/classification with the
higher accuracy is chosen and the other intersecting boxes are removed. The researchers also
found that model complexity linearly increases with the number of tiles chosen, and to improve
smaller object detection, using a larger number of smaller tiles leads to a direct increase in
detection accuracy. Thus, it is a sensitive trade-off of quick real-world inference and accuracy
of results, though segmenting images into a small number of tiles tended to maintain both

desirable features.
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2.2.3 Data Augmentation

In order to reduce the possibility of overfitting a machine learning model, it is desirable to
have a large amount of diverse training data. Data augmentation is the process of creating
new modified data out of pre-existing data by perturbing a subset of the original features in a
training dataset, since they are sometimes small, or in rarer cases, too clean to generalize well
to possibly noisier unseen data. In image datasets specifically, translation, mirroring, blurring,
and other transforms are utilized to augment an existing example without changing its overall
label, effectively increasing the number of examples in the dataset (Simard et al. 2003). This
has remained a popular dataset extension tool for many years (Baird 1990), but the new data
introduced by these augmentations do not represent entirely novel examples, providing only
a limited set of possible alterations to the existing data. Very recently, the use of Generative
Adversarial Networks (GANSs) have been proposed as a possible solution to generate a greater

diversity of augmented training data.

2.3 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs), introduced and coined by Goodfellow et al.
(2014), are comprised of two distinct deep learning models to train: the generator (G) and
discriminator (D). The two models are intertwined in a sort of adversarial game, where G is
trained to fool D by synthesizing data that mimics some real input data. Every iteration of
training, D receives an input from one of two sources, the real input data or G-synthesized
data, and it evaluates whether the input material is real or not. The errors from D are routed
backwards through the architecture to G, via a method referred to as backpropagation (LeCun
et al. 1989; Rezende et al. 2014). This training loop optimally continues until D is rating
inputs 50% real and 50% fake on average, equivalent to a random guess. In other words, G
becomes so proficient at creating synthetic data that D cannot distinguish between what is real
and fake. GANs can be used to synthesize any type of input data, though their development
has made significant impacts on image processing and data augmentation. The general GAN

architecture can be seen in Figure 2.7.
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Figure 2.7: Standard GAN architecture (Ongiin and Temizel 2018, 5).

2.3.1 GANSs and Image Processing

Since the inception of GANSs, synthetic image generation has become a very popular ap-
plication of the architecture. Improved stability in Wasserstein GAN (WGAN) architectures
made large strides in creating realistic synthetic images from real input data (Arjovsky et al.
2017), achieving high-quality image synthesis on the LSUN bedroom image datasets (Gulrajani
et al. 2017) (Figure 2.8). Gulrajani incorporated a gradient penalty to the WGAN architecture
(WGAN-GP) which improves upon the undesirable behavior of weight clipping in the discrim-
inator model. Wang et al. (2018) introduced a conditional GAN architecture that allowed for
specific object omission or replacement with a new object when synthesizing images. For exam-
ple, a training dataset containing photos from the perspective of a car dashboard with objects
labelled in the scene led to a conditional GAN that would take inputs from the developer to
omit cars in the road, or change the road material from asphalt to cobblestone (Figure 2.9).
This form of style transfer was explored by Gatys et al. (2016), who employed a Convolutional
Neural Network (CNN) to render natural image scenes in different artistic styles labelled prior
to learning (Figure 2.10). Karras et al. (2018) developed StyleGAN, which accomplishes an
unsupervised separation of physical features in the input images. For example, the researchers
trained StyleGAN with a large dataset of real human portrait images, and the architecture pro-
vided a generator that synthesized highly realistic images, with learned, adjustable parameters
for generating portraits with differing freckle density, hair type, etc. (Figure 2.11). Oeldorf
and Spanakis (2019) augmented the original StyleGAN to create their own multi-class archi-
tecture, LoOGAN, used to synthesize company logos. With LoGAN, labels are used to train the
network to generate distinct categorizations of logos, while still inferring more specific, class-

dependent features with unsupervised learning during the training process (Figure 2.12). The
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photo-realistic qualities of GAN image synthesis have many implications towards extending

training datasets for subsequent machine learning operations.

Figure 2.8: Enhanced training of the LSUN bedroom dataset with the
improved Wasserstein GAN architecture (Gulrajani et al. 2017, 6). The
baseline row implements the deep convolutional GAN (DCGAN), the second
row without Batch Normalization (BN) in G, the third a Rectified Linear
Unit (ReLU) Mutilayer Perceptron (MLP), the last a 101-layer Residual
Neural Network (ResNet). The second column is a Least-Squares GAN
(LSGAN) architecture. In row five, the gated multiplicative nonlinearities are

Long Short Term Memory (LSTM) gates.
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Figure 2.9: Style transfer GAN examples (Wang et al. 2018, 8798). In (b)
and (c), style transfers are made to the road material, surroundings, and car

color from (a).
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Figure 2.10: Artistic style transfer GAN examples (Gatys et al. 2016, 2418).
The original image (A) is applied learned styles from famous artworks by
JM.W. Turner (B), Vincent van Gogh (C), Edvard Munch (D), Pablo
Picasso (E), and Wassily Kandinsky (F).
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Figure 2.11: StyleGAN-generated portrait examples.

Figure 2.12: LoGAN-generated logo examples. 3

2. https://github.com/NVlabs/stylegan
3. https://github.com/cedricoeldorf/ConditionalStyleGAN
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2.3.2 Using GANSs for Creating Training Data

By utilizing GANs, researchers have been able to extend training datasets from a more foun-
dational standpoint. Parameterizing the general aspects of the source material and synthesizing
convincing new examples based on the original, labelled dataset, researchers have evaluated the
utility of GAN data augmentation through both qualitative and quantitative means (Bowles
et al. 2018).

GANSs are continually creating realistic renderings of labelled images. Using the CIFAR
dataset, Denton et al. (2015) created synthetic images that were highly realistic to human
evaluators (Figure 2.13). Utilizing a Laplacian pyramid framework? to generate the images,
40% of the time, subjects were not able to discern synthetic CIFAR examples from the real ones.
This is a large increase over a 10% discernible difference subjects perceived from a general GAN
baseline. Shmelkov et al. (2018) argued that subjectively rating GAN images is not enough
of an evaluation since it is lacking any quantitative criteria. They introduced two separate
measures of recall (“GAN-train”) and precision (“GAN-test”) by incorporating classification
neural networks to handle the separate evaluations. For the GAN-train metric, the network
was trained on synthetic images and evaluated on a set of real images. The GAN-test metric is
comprised of the inverse: training a model on real images and evaluating with synthetic ones.
Synthetic images are considered good quality when GAN-train accuracy is close to validation
accuracy. The same case is made for GAN-test, with the caveat that a higher accuracy in GAN-
test is indicative of the original GAN simply memorizing the dataset and overfitting. During
experimentation, they found that a training dataset of 2,500 real images padded with 50,000
GAN images resulted in a higher GAN-train accuracy than a network trained with 5,000 real
images. In practice, the GAN images were not as realistic as their counterparts, though they
still revealed an underlying diversity that 5,000 real images alone could not capture. Both of
these subjective and quantitative evaluations suggest that GAN architectures can extend real

datasets and lead to improvements in the training process.

No matter how large a dataset, it is generally preferred to have a surplus of available training
data to reduce overfitting (Goodfellow 2017). As discussed previously, GANs can be used to

increase the size of the dataset of any task by shifting the training focus inward, artificially

4. A Laplacian pyramid consists of resampling and smoothing an image while continually reducing its overall
resolution. In this case, a GAN was used in between each step of the pyramid on the way to the final output

result.
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Figure 2.13: Synthetic CIFAR images for subjective evaluation
(Denton et al. 2015, 7).
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Figure 2.14: First row: Model images without augmentation functions.
Middle row: RenderGAN output images. Last row: Real images of bee
orientations (Sixt et al. 2018, 3).

extending the amount of available data by generating new examples with corresponding features
and labels. For example, RenderGAN has been developed for these purposes, greatly reducing
the amount of time needed to manually label many individual examples of bee orientations in a
larger image scene (Sixt et al. 2018). RenderGAN first learns to generate an image representing
the orientation of a bee’s positioning, then a cascade of augmentation functions are applied to
blur and add lighting and background detail to the generated image (Figure 2.14). Once
the detailed image is generated, the discriminator ultimately decides if the synthetic image is
distinguishable from the real training data. Compared against a previous image recognition
process, there was a rise from 55% to 96% correct labelling of bee orientations when using
a training dataset that contained the real data and RenderGAN’s synthetic images. GANs
are successfully being utilized to both augment and extend otherwise finitely available real
data, resulting in accuracy increases for object classification and detection tasks (Antoniou
et al. 2018). In this thesis, GANs are used to synthesize artificial training data to increase the

performance of a novel OMR workflow for square notation.

2.4 Optical Music Recognition

Automatic transcription is a popular application in the realm of Music Information Re-
trieval Music Information Retrieval (MIR), specifically, with optical music recognition Optical
Music Recognition (OMR) software. OMR is focused on the detection and encoding of musical
information into a machine-readable output, taking a scanned image of musical content (e.g., a

page of a manuscript) as input. The general OMR workflow is outlined by Rebelo et al. (2012):
1. Image pre-processing
2. Staff line detection and recognition of musical symbols

3. Reconstruction of the musical information
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4. Construction of a musical notation model

Handwritten square notation was one of the first notations to introduce the use of staff lines
to establish position and pitch relationships for neumes, the musical symbols of the notation.
It is used in a number of manuscripts collected by many libraries and archives, and thus, it
is a sustained research area on the development of archival OMR software. The following
sections provide an introduction to the existing research on employing both heuristic- and
machine-learning-based automatic transcription workflows for OMR of square and other music

notations.

2.4.1 OMR for Square Notation

With and without machine learning, many researchers have employed a variety of strategies
for the automatic transcription of square notation. Vigliensoni et al. (2011) assembled existing
heuristic transcription algorithms to create an automatic transcription workflow for square
notation in the Liber Usualis. They combined six distinct processes that used staff-finding
algorithms from Miyao and Okamoto (2004) and the MusicStaves Gamera Toolkit® to detect
the positioning of neumes in the staff and establish their pitch relationships to the most recent
occurring clef. Special conditions were also established for compound neumes such as the
podatus and torculus (Figure 2.4), which involved separating the symbol into individual neume
components. Their error analysis was performed on a dataset of “20 random pages with a total of
2219 neumes and 3114 pitches correctly labelled” (Vigliensoni et al. 2011, 427). The detections
were encoded into the Music Encoding Initiative (MEI) structure, a research community effort

to standardize the machine readable format of various musical notations. ¢

Using the Miyao
staff-finding algorithm, compound neume considerations, and staff line spacing correction led
to a 97% correct detection rate of the first pitch of a neume. Compared against a workflow
using the MusicStaves Gamera Toolkit, with no compound neume considerations and no staff

line spacing correction, this was a statistically significant increase from an 85% detection rate

of the first neume pitches.

Ramirez and Ohya (2014) envisioned a new workflow for OMR of square notation that com-
bined staff area detection and machine-learned classification of musical information. Contrary

to arguments made by Rebelo et al. (2012), Ramirez argued that pixel-based staff line removal

5. http://music-staves.sf.net/
6. https://music-encoding.org/
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could possibly lead to the introduction of unwanted noise. Starting from a grayscale binariza-
tion of the target manuscript image, they created a general staff template that was iteratively
compared against the actual staves on a page, in an optimization task that rotated the template
until it had a maximum alignment. This was repeated for all of the staves on a page, continually
updating the staff rotation angle and keeping track of their respective pixel coordinates. They
also created neume templates that were scaled and rotated with respect to the staff’s height
and rotation angle, which were similarly used in a maximum alignment optimization process
for the neumes within each detected staff area. In the maximum alignment detection task,
they detected 804 of 847 possible staves (95%), though only 5,000 of around 8,000 neumes were
detected and correctly labelled (62%). Another 2,150 neumes were detected but incorrectly la-
belled (27%). Surveying the machine-learned classifiers explored by Rebelo et al. (2012), they
decided to use individual Support Vector Machines (SVMs) to redo the symbolic classifications
of the 7,150 detected neumes, both correctly and incorrectly classified. Training separate SVM
classifiers with individual sets of 8, 9, and 16 neume and neume component classes, the SVM
trained on 8 classes achieved an improved classification accuracy of 92% across the detected

neumes.

Wick et al. (2019) developed a novel staff line and symbol detection workflow for square
notation, employing a Fully Convolutional Network (FCN) to handle pixel-based predictions
for both (Long et al. 2015). Their staff detection algorithm acts on a grayscale, deskewed
manuscript page as a whole, training an FCN to detect individual staff lines that are heuristi-

)

cally grouped into “polylines,” making up every staff on the page. The coordinates from each
staff grouping are then used to extract individual staff images from the whole manuscript page,
and use them as input to the following symbol detection step of the workflow. For locating
the clefs, individual neume components, and accidentals, they trained another FCN to handle
the classification of these individual glyphs. For their staff detection approach, over 99% of all
staff lines were both detected and correctly classified, culminating in an F;-score of 99.7%. An
Fi-score is a metric that combines the precision, the ratio of correctly predicted positives to
the total number of predicted positives, and recall, the ratio of correctly predicted positives to
the total number of actual positives. Their best FCN model for neume component detection
and classification achieved an Fi-score above 96%. They also introduced their own metric,
diplomatic symbol accuracy rate (ASAR), factoring in the correct labelling of symbol type and
location, and achieved about 87% accuracy with the same model. Wick and Puppe (2019)

incorporated the staff line and symbol detection models into OMMR/all, a web-based OMR
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and correction framework for square notation (Figure 2.15).

OMR has seen many advancements in recent years, and it coincides with a large-scale
focus in the community to make archival music information available in a digitally accessible,
public database. Hankinson et al. (2012) introduced the Single Interface for Music Score
Searching and Analysis” (SIMSSA) project, which is still in development today. Incorporating
digital document viewing, musical symbol searching, and OMR software, it is a growing online
database that encompasses the wider community focus to digitize archival manuscripts and
encode their coinciding musical information in a searchable manner. Successful transcription of
square notation with GANs developed in this thesis could speed up the data acquisition process

for SIMSSA, processing and encoding more archival manuscripts into the database.

Figure 2.15: OMMRA4all user interface. 8

2.4.1.1 Partial OMR for Square Notation

Researches have also focused on individual steps of the OMR workflow. Calvo-Zaragoza
et al. (2018) introduced a pixel-level classification of a manuscript page of square notation to
separate the relevant musical data from the other features. Each pixel in the ground truth

manuscript data was first labelled as belonging to the background, text, musical symbol, or

7. https://simssa.ca/
8. https://ommr4all.informatik.uni-wuerzburg.de/en/

23


https://simssa.ca/
https://ommr4all.informatik.uni-wuerzburg.de/en/

staff layer of the page. Focusing on a pixel of interest, they enlarged the area around it to
include surrounding pixels, operating on the hypothesis that neighboring information would
provide the information necessary to correctly classify the original pixel (Figure 2.16). These
blocks were passed as training input to a Convolutional Neural Network (CNN), which learned
to classify the center pixel of interest. Training the CNN with two distinct manuscripts, the
highest overall layer labelling accuracy of 88% resulted in an F;-score of 88% in manuscript M1
and 91.3% in manuscript M2 at block input sizes of 51 x 51 pixels. They also performed a cross-
manuscript adaptation, where the CNN was trained on one manuscript’s data and evaluated
on the second. The CNN trained with M1 and evaluated with M2 resulted in an F;-score of
87.2% while the converse received a score of 73.3%, providing evidence that this adaptation is

actually feasible, considering M2’s Fi-score only changed by 4% (91.3% to 87.2%).

Figure 2.16: Block extraction examples for different CNN input sizes

(Calvo-Zaragoza et al. 2018, 6).

While these various strategies and steps of the OMR workflow can correctly classify a
majority of neumes and neume components, there is always a need for extraneous errors to be
corrected. Burlet et al. (2012) introduced a browser-based, music notation editor called Neon.js,
conceived for the editing of square notation transcription data through the web. Alongside

Hankinson et al. (2011), Neon.js increased awareness of the MEI format. In accordance with
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version 4.0 of the MEI, Regimbal et al. (2019) recently introduced Neon2, which uses Verovio?
to render and edit the corresponding MEI files for square notation. The SIMSSA OMR workflow

includes the current version of Neon2 and the pixel-level classification work by Calvo-Zaragoza

et al. (2018).

2.4.2 Recent Applications of Object Detection in OMR

Researchers have recently pursued heuristic and machine-learned OMR for other handwrit-
ten musical notations such as common Western and mensural music notations. For example,
Bar6 et al. (2016) created a learning-free method for recognizing compound music notes in
polyphonic handwritten common Western music notation (CWMN) scores. Detecting prim-
itive elements such as note heads, stems, beams, and flags, with heuristic line and blob de-
tection, they were clustered into a hierarchical representation for identifying the compound
notes (Figure 2.17). They compared their methodology against the commercial OMR software,
PhotoScore ' on two CWMN subsets of the CVC-MUSCIMA dataset (Fornés et al. 2012).
They achieved higher precision and recall metrics than PhotoScore for one of the partitions
containing mostly compound notes, though much lower scores in the other, where PhotoScore

succeeded in detecting “easier” individual notes.

9. http://www.verovio.org/
10. https://www.neuratron.com/photoscore.htm
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Figure 2.17: (a.) Primitive note elements detection candidates (b.) A

detected compound note and hierarchical representation (Baro et al. 2016, 3).

In the realm of machine learning-based OMR, Pacha and Calvo-Zaragoza (2018) applied
region-based CNNs for the automatic detection and staff position classification of notes and clefs
in mensural notation. Utilizing the Faster R-CNN model (Ren et al. 2015) with a Inception-
ResNet-v2 feature extractor (Szegedy et al. 2017), it was trained to detect the bounding boxes
of all the musical symbols on the page. The vertical position of each musical symbol had
to be established in the staff, so each detection was enlarged, then extracted with the target
musical symbol still in the center (Figure 2.18). A label was assigned to the extracted image to
indicate the position of the music symbol on the staff. A second CNN was separately trained
on the extracted images in Figure 2.18 to determine their positions. Their test experiments
yielded 66% mean average precision (mAP) and 76% weighted mAP for the detection of musical
symbols with R-CNN, and 98% accuracy on the correct position classification of the detected
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musical symbols on the staff. This work successfully represented an end-to-end OMR workflow

as an extendable object detection problem.

Figure 2.18: Example inputs to the position classification CNN
(Pacha and Calvo-Zaragoza 2018, 243).

Metaj and Magnolfi (2019) also used the Faster R-CNN model to detect notes in the MUS-
CIMA++ dataset (Haji¢ jr. and Pecina 2017), containing 140 images of handwritten CWMN
with and without staff lines and fully annotated across 105 classes of music symbols. They
compared the object detection performance of a Faster R-CNN pre-trained with ImageNet !
versus one trained from scratch, finding that the pre-trained model achieved higher mAP scores
more quickly, even though it was trained on image contexts different from music notation. The
model trained from scratch produced increasing mAP scores as it continued to train, though

the pretrained network consistently maintained higher mAP scores, indicating that transfer

learning can work well in diverse training contexts.

Huang et al. (2019) handled the object detection and staff position classification of printed
CWNM in a single step. Using the You Only Look Once (YOLO) object detection system
(Redmon and Farhadi 2018), they annotated the coordinates of each note alongside a number
of classes: type, pitch, and duration. In the feature map generated by their training model,
they expanded the coordinates of the candidate bounding boxes with seven defined pixel-value
pairs and assessed the highest overall confidence across the type, pitch, and duration labels.
In the 91% of notes correctly detected, they achieved a duration accuracy of 92% and a pitch
accuracy of 96%. They achieved an average increase in accuracy from van der Wel and Ullrich

(2017), who achieved an 80% note detection with 94% duration and 81% pitch correctness.

11. http://image-net.org/index
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In a similar fashion, Calvo-Zaragoza et al. (2019a) trained a Convolutional Recurrent Neural
Network (CRNN) to handle the end-to-end OMR of mensural notation. They reduced the
diplomatic symbol error rate, a calculation of the necessary manual operations to correct an
OMR process, to 7%, a decrease from 25% in another approach using Hidden Markov Models
(Calvo-Zaragoza et al. 2019b).

Individual sections of the OMR workflow have also been scrutinized in recent years. Pacha et
al. (2018a) focused on the object detection step, training a deep convolutional neural network on
the MUSCIMA -+ dataset. Optimizing different hyperparameters such as overall architectures,
feature extractors, and the inclusion or omission of staff lines, the highest achieved mAP of
their model was 87.8% on the test set. Lower detection accuracies were found in music symbol

classes with less occurrences than others, a common issue in automatic OMR research.

Pacha et al. (2018b) extrapolated upon their previous OMR work and tested three popular
object detection models against three distinct OMR datasets for symbol detection: MUS-
CIMA-++ (handwritten CWMN), DeepScores (printed CWMN) (Tuggener et al. 2018), and
Capitan (handwritten mensural notation, extended from the dataset used in Pacha and Calvo-
Zaragoza (2018)). The three models compared on each dataset were Faster R-CNN, RetinaNet
(Lin et al. 2017), and U-Net (Ronneberger et al. 2015), all variations of a general CNN ar-
chitecture for object detection. RetinaNet had the shortest training and evaluation time for
all datasets, though it suffered greatly in detecting any small objects, even common symbols
like note heads. U-Net, classifying the score images on a pixel-based level, achieved the highest
mAP scores across all three datasets, though it took an enormous amount of time to train
the 107, 39, and 56 classes respectively, about 2-3 hours per symbol, making it impractical
for situations requiring consistent retraining. Faster R-CNN performed well on the DeepScores

and Capitan datasets, though it struggled with small, bunched symbols in MUSCIMA ++.

The survey performed by Pacha et al. (2018) provided insights regarding how to best design
and implement the object detection portion of the OMR workflow in this thesis. Pacha and
Calvo-Zaragoza (2018) directly motivated the design of the position classification task. In the
next chapter, the specific methodologies for the synthetic page generation preprocessing step
and the OMR workflow will be described, along with the metrics established for evaluating the

entire process.
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3 Methods

In this chapter, the implementation of the neume component object detection and position
classification workflows is discussed in detail. In Section 3.1, an overview of the workflow is
provided, outlining the GAN pre-processing chain for the synthetic manuscript data and the
main block of processes trained with the real and synthetic data. In the subsequent sections,
each process is explained in further detail, providing evidence of initial approaches that led to

the final overall workflow.

3.1 Overview of Workflow

The workflow envisioned for this project includes a network of procedures where both the
real and synthetic manuscript data is processed. For the synthetic pages, there is a data creation
phase that happens before the aforementioned main stream of processes. The synthetic data is
combined with the real data in a number of different training scenarios, highlighted in Chapter
4. Figure 3.1 highlights the preprocessing steps for preparing the real and synthetic data that
is used as input for two distinct OMR evaluation pipelines: one using solely real input data
and the other using both real and synthetic input data. Sections 3.2, 3.3, 3.4, and 3.5 cover the
preprocessing steps, explaining how real ground truth data is extracted and used as input to
a GAN architecture to synthesize glyphs and neumes which make up the synthetic manuscript
images and ground truth data. Sections 3.6 and 3.7 discuss the object detection and position
classification processes in the OMR pipelines that are evaluated and compared using metrics

described in 3.8.
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Figure 3.1: Overview of the preprocessing and OMR workflow
implementations. The real ground truth data is input to a GAN to create the
synthetic ground truth data. Then, two OMR pipelines, one with solely real

data, and the other with real and synthetic data, are used to detect and
classify the glyphs and neumes on the manuscript pages, and their evaluation

metrics are compared.

Synthetic manuscript images are entirely generated based on the real manuscript images
and transcription data. First, a GAN is used to create the individual neume components. It
is trained on the set of the smallest building blocks of musical information in square notation:
punctum, inclinatum, custos, clef, and oblique (Figure 3.2). This data for training is obtained

from the ground truth manuscript MEI files from two Medieval manuscripts. After the synthetic
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Figure 3.2: Neume component classes.

neume components are generated by the GAN, they are placed pseudo-randomly into the nine
possible pitch positions on a staff in square notation. This is determined by assigned relative
weights to each neume component type, controlling which appear more often than others. A full
manuscript page is synthesized with neume components on staff lines, and non-musical features
such as decorative text and lyrics are not included. The coordinates, type, staff position, and
pitch of each neume component placed on the page are recorded in a corresponding text file,
providing all the synthetic “ground truth” parameters necessary for training and evaluating the

recognition workflow.

The main block of processes for the parallel OMR workflows consists of two distinct portions:

— Object Detection and Classification of Glyphs and Neumes

— Position and Pitch Classification of Glyphs and Neumes

First, the manuscript page is divided into smaller tiles to make the object detection oper-
ation more efficient and accurate. Motivated by Unel et al. (2019), a novel page partitioning
algorithm separates each manuscript page into equal-sized tiles. Object detection is then per-

formed on each tile, and the relative coordinates and type of each neume component detection
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are recorded. The tiles are then stitched back together into the original manuscript page, and
the relative coordinates for each neume component detection are re-established in relation to the
overall original image. Every detected glyph and neume is then classified on position and later
pitch, which is determined by the most recently occurring clef. In the following subsections,

each of these core processes are further broken down and discussed.

3.2 Real vs Synthetic Manuscript Pages

The major hypothesis being tested in this thesis is whether a training dataset extended
with synthetic manuscript data can outperform one comprised of only finite real data for the
automatic recognition of square notation. In order to prepare a viable dataset, the synthetic
manuscript pages need to encompass all of the pertinent information for performing automatic
music symbol recognition found in the real manuscript data. The synthetic manuscript images
must contain 4-line staves that fill the page from top to bottom with surrounding margins
vertically and horizontally. Each staff will begin with a clef, end with a custos, and neume
components will fill the space in between. Some of the neume components will be placed
immediately next to one another, mimicking the presence of common compound neumes in real
manuscript data (See Figure 2.4). These features encompass the necessary attributes that must
be included in the synthetic manuscript pages for use in the automatic recognition workflow.

In the next two sections, the two Medieval manuscripts used in this research are introduced.

3.2.1 Salzinnes Antiphonal

Produced in 1554 and 1555, the Salzinnes Antiphonal (See Figure 2.1) is a choir manuscript
written in square notation, containing the music associated with Divine Office, a set of chants
for blessing each day with prayer (Dietz 2006). It was commissioned by Dame Julienne de
Glymes, prioress of the Cisterian Abbey of Salzinnes, Namur, in present day Belgium. The
manuscript spans two volumes across 240 folios, or 480 pages in total, with 2932 chants. Each
page measures 39.4 x 61.5 cm, and the digital scans are 4414 x 6993 pixels. Alongside the chants,
there are a number of full-page illustrations depicting biblical and other historical scenes, in
addition to full-length portraits of 34 nuns with their names and associated patrons’ coat of
arms. The manuscript, salvaged from the destruction of the Abbey in 1795 by the French
Revolutionary Army, was likely in the possession of Bishop William Walsh, who brought it to
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Canada as the first Archbishop for the Archdiocese of Halifax in the mid-nineteenth century.
In 1975, it was donated to the Patrick Power Library at Saint Mary’s University in Halifax,

Nova Scotia.

3.2.2 Einsiedeln Codex 611(89)

The Einsiedeln Codex 611(89) manuscript (Figure 3.3), part of the Stiftsbibliothek collection
at the Abbey Library of Saint Gall, Switzerland, was created in the fourteenth century, most
likely prior to 1314.12 It originated in Einsiedeln, Switzerland, and remained in use at the
Benedictine Abbey of Einsiedeln until the 17*" century. This manuscript, also written in square
notation, contains chants framed in the anticipation of the arrival of certain important saints,
including John the Baptist and Peter from biblical times. Four folios were added in the 16"
century, bringing the total to 281 folios, across 562 pages. Each page measures 22 x 32 cm,
and the digital scans are 4872 x 6496 pixels. The manuscript is digitally archived through the

Virtual Manuscript Library of Switzerland. 3

12. https://www.e-codices.unifr.ch/en/list /one/sbe/0611
13. See footnote 12

33



Figure 3.3: Page from the Einsiedeln Codex 611(89).

3.3 Extracting Existing Manuscript Information

Both of the Medieval manuscripts are filled with chants, and lyrics found under each staff
accompany the musical information, sometimes expanding into large decorative text (Figure
3.4). The synthetic manuscript pages will not include the decorative and lyrical features from
real manuscript images since the focus here is on the location of neume components on the

page, which the GAN is solely trained on.
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Figure 3.4: Decorative and lyrical text example in the Salzinnes Antiphonal.

In order to generate synthetic manuscript data and train object detection and position
classification algorithms, ground truth MEI data needed to be created for both manuscripts.
The data needed to have labels for every musical glyph in the manuscript image, including its
coordinates, type of symbol, position in the staff, and musical pitch. All of the manuscript
pages are digitally available as high-resolution scanned images, though none were encoded
into verifiable ground truth data prior to this work. Neon, the online neume editor (Burlet
et al. 2012, Regimbal et al. 2019), was used to create the ground truth MEI data for both
manuscripts. Employing a web-based graphical user interface, Neon provides a useful set of
tools for quickly annotating the square notation. Neon receives a manuscript image of square
notation as input, in addition to an MEI-formatted file. The user selects general staff and neume
component shapes from a sidebar editing panel and places the selection on the manuscript
image by clicking on the respective target where a virtual overlay of the glyph is placed (Figure
3.5). Staff shapes can be skewed to align with the unaligned staves on the page, and the
possible neume component positions on the staff are automatically bound to the placed staff
shape. The skewing is necessary to align the virtual boundaries of the staff with the distorted
staff shapes in the manuscript image, due to every page’s bounding to the spine of the thick
physical manuscript and the imperfectness of handwriting (Figure 3.6). When the annotation is
complete, the data can be saved as an MEI file, which is parsed to select the necessary features
for training synthesizing GAN images and training the automatic music recognition pipeline.
With the use of Neon, annotated manuscript page data was created, edited, and verified for

use in the training processes.
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Figure 3.5: Annotation example of punctums in a small section of the

Salzinnes Antiphonal using Neon’s insert portion of the editing interface.

Figure 3.6: Staff skewing example in Neon. Moving the diamond-shaped icon

on the right side aligns the annotated glyphs to the correct coordinates.

Prior to this research, the entirety of the Salzinnes manuscript had been processed with a

pre-existing OMR workflow, though the output data had not been fully corrected or verified.
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A brief visual evaluation made it clear that most pages contained a number of errors, so they
needed to be edited for use in the ground truth dataset. Fortunately, the pre-existing data was
already encoded in the MEI format, which required only editing in Neon instead of annotating
from scratch. Twenty pages of the Salzinnes manuscript were collected and edited in Neon for

use in the overall workflow.

The Einsiedeln manuscript did not have any prior annotation data encoded in MEI. Thus,
pages for this manuscript needed to be annotated from scratch in Neon. This was a time-
consuming process, since the average number of neume components and glyphs per page for
Einsiedeln is around 500. This resulted in 10 pages of Einsiedeln for use alongside 20 pages of

Salzinnes in the overall workflow.

3.4 Creating Synthetic Glyphs and Neumes

Square notation is comprised of many compound sequences of musical notes that are collec-
tively referred to as neumes. Depending on the combination of neume components that make
them up, they determine the overall classification for the neumes (see 2.3.1). The groupings
of neume components are dependent on proximity and syllabic relationships to lyrical text.
Without a strong theoretical understanding of square notation, it can be difficult to discern
where one compound neume ends and the next begins. There are definitive neume sequences
and compound neumes that can be identified in the manuscripts, though they do not encom-
pass all of the possible combinations of neume components. Sequences of neumes often become
too long and do not often feature the same ordering or composition of neume components.
Due to their high variability, it is difficult to provide classifications that generalize well for all
neume sequences. The classifiable compound neumes also appear infrequently, which does not
provide many examples for training a GAN architecture. It would be more feasible to train a
GAN with individual neume components, since they encompass a specific set of classifications.
Hence, it was decided to only synthesize the neume components and glyphs that have definitive
shapes and musical information: the c-clef, f-clef, custos, inclinatum, oblique, punctum, and

virga. Most of these glyphs can be seen in Figures 2.2 and 3.7.

In order for the GAN to synthesize neume components, a set of cropped neume component
images and corresponding type labels needed to be prepared. For training the object detection

and position classification steps of the OMR workflow, the coordinates, position, and type
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of each neume component also needed to be prepared. The 30 MEI files annotated in Neon
encompassed the ground truth data used for training, verifying, and testing the entire workflow.
The files contained the coordinates, type, position, and pitch of every neume component on
each page. A Python script was composed to parse the MEI files, extracting the coordinates,
type, staff position, and pitch for each neume component. The script receives a manuscript
image and relevant MEI file as input. From the MEI file, the script records the aforementioned
set of attributes for every glyph on the page in a comma-separated text file format. Using
the coordinates, the script then locates the placement of every glyph on the page and saves a
separate image cropped to the glyph within the coordinates. Each cropped image file name

was listed alongside its type in another corresponding text file for use in GAN training.

When training a GAN image synthesis model, each input needs to be of the same dimensions.
The cropped neume component images varied in their sizes, and a possible solution was resizing
them to the same dimensions. Unfortunately, any image rescaling to a standard size reduces the
number of overall pixels in the larger neume component cases such as obliques and clefs, which
results in information loss. In order to avoid any resizing, a neume component padding approach
was introduced for the creation of input images for the GAN (Figure 3.7). Starting from a white
background image, every extracted neume component was vertically and horizontally centered
on an individual background image to avoid the need for any resizing, as long as the height and
width of the background image exceeded those dimensions in the largest of neume component
cases. The standard background image size of 256 x 256 was chosen because the largest width
and height of all the neume components found in the two manuscripts were 178 and 155 pixels,
respectively. As intended, every neume component was then centered on the white background
image. The padded images and corresponding neume component type labels were then used as

the training dataset for the GAN architecture.
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Figure 3.7: Padded neume component GAN training dataset examples. From

left to right: oblique3, virga, and clef.c.

Although several open-source GAN architectures were tried, due mainly for efficiency, Style-
GAN was chosen (Karras et al. 2018). Others tried included DCGAN (Radford et al. 2016) in

Pytorch '* and Torchfusion °.

Both local and web-based programming environments such as
Google Colab ' and Kaggle!” had enough hardware resources to compute a dataset of 128 x
128 images for these architectures, but not enough when scaling to 256 x 256, the chosen input
dimensions for the GAN. An open-source version of StyleGAN was pursued in Tensorflow, '8
another popular machine learning library for Python. The public repository for StyleGAN 19
indicates how long the training process will take when using 256 x 256 input images and the

t,2Y ensuring that it

GPU hardware memory requirements on the 70,000 image FFHQ datase
was feasible to train with available hardware, though at a cost for time, taking at most five
days to complete. The neume component dataset contained 12,000 images, so it was likely
that training time would be considerably reduced. This information made it possible to move

forward with StyleGAN.

The base StyleGAN architecture is able to synthesize images with the same overall class
labelling, such as a human portrait, but it does not come equipped with an option for training a
multi-class supervised GAN approach, where one model could generate different classes based on

a coinciding label. A multi-class training scenario was preferable to training individual GAN

14. https://pytorch.org/

15. https://github.com/johnolafenwa/TorchFusion
16. https://colab.research.google.com/

17. https://www.kaggle.com/

18. https://www.tensorflow.org/

19. https://github.com/NVlabs/stylegan

20. https://github.com/NVlabs/ffhq-dataset
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architectures for each class to maintain overall training efficiency and reduce the amount of
parallel processes needed to train the dataset partitions. StyleGAN includes dataset preparation
configurations for class-based architectures such as the MNIST handwritten text dataset, and
the code was augmented to prepare the custom neume component multi-class dataset in the

Tensorflow format.

Compute Canada?! is a high-performance computing system, remotely accessed for use in
this work. The network is partitioned into a number of different computing clusters or nodes
that encompass a number of use cases. Cedar, a general-purpose node, features a large set of
powerful GPUs available for user access. GPUs are highly beneficial to machine learning oper-
ations involving images, and Compute Canada offers a number of possible configurations. The
most powerful GPU available on Cedar, NVIDIA’s V100 Volta, ?? provided sufficient memory
(32 Gb) for the GAN generation portion of this project.

3.5 Creating Synthetic Manuscript Pages

The final pre-processing step before the OMR object detection and position classification
operations was creating synthetic manuscript pages. The generated neume components from
the GAN were placed onto a manuscript page, mimicking the structure of a real page of square
notation. Omitting the decorative text and lyrical features, the neume components were placed
on 4-line staves in one of the nine possible pitch positions for square notation (See Figure 2.6).
The synthetic clefs and custos were also placed in their designated positions at the beginning
and end of each staff respectively, culminating in the creation of synthetic full page manuscripts

image for use in training the novel automatic music recognition workflow.

3.5.1 Staff Height Normalization

In order to mimic the real manuscript pages, the height of the staves on the synthetic
manuscript pages needed to be normalized. Normalizing the height of the staves influenced
the final sizing of the synthetic neume components on a page. In handwritten manuscripts,
the height of each staff on a page tends to vary as well as the number of staves. In addition,

the Salzinnes and Einsiedeln manuscript image scans used in this research are not of the same

21. https://www.computecanada.ca/
22. https://docs.computecanada.ca/wiki/Cedar
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dimension. The size of neume components on a manuscript page is relative to the height of
their respective staff, so the height of the space determines their relative size. For punctums
and inclinatums, their height is approximately equal to the height of one staff space (See Figure
2.6), or one third of the entire staff height. Thus, by setting the synthetic manuscript staff space
height to the average staff heights of the two manuscripts, the neume component sizing was
also generally standardized. Between the two distinct handwriting styles in the manuscripts,
there is still some deviation in neume component sizing since the Einsiedeln glyphs are slightly
smaller, leaving more space in between staff lines. Measuring a sample of 5 Salzinnes and 5
Einsiedeln pages, the average staff space height was discovered to be 60.0 pixels. The average
staff space heights for the individual manuscripts were 63.33 pixels for Salzinnes and 56.67
pixels for Einsiedeln. These average dimensions were used for normalizing neume component

sizes when generating manuscript pages.

3.5.2 Page Generation

In order to generate the synthetic pages for training the OMR workflow, staff lines were first
placed on a manuscript page then filled in with synthetic neume components. Staff lines for the
two manuscripts were created in Adobe Illustrator by drawing four horizontal and parallel lines
spaced vertically with the average staff height dimensions from Section 3.5.1. For the Salzinnes
manuscript, the lines were colored red, and for Einsiedeln, they were colored gray. They were
set to an arbitrary length, able to be later resized when placing on the manuscript page, since
any horizontal or vertical stretching introduced little to no visible distortion. As mentioned
previously, the GAN was trained to generate neume components centered in a 256 x 256 white
background image. The white space surrounding the neume components needed to be removed
before placement on the manuscript page, since it would cover the staff lines and nearby neume
components, and it does not contain any information from the original real data. Using Python,
each generated image was automatically cropped to remove the white space surrounding the

neume component. The resulting images were then placed on the synthetic manuscript page.

As the final step in preparing synthetic manuscript pages for training, each page was pop-
ulated with staves and synthetic neume components (Figure 3.8). The pages were populated
with 12 to 15 individual staves for Salzinnes and 15 to 18 for Einsiedeln, the average num-
ber of staves in the pages from each manuscript. Every synthetic page had a 200 pixel top

margin, 500 pixel bottom margin, and 200 pixel margins on the left and right. The staves
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filled the remaining coordinates, deviating between 97% to 103% of the remaining page width.
The margins and randomized staff widths were selected to mimic the outer structure of the
real manuscript pages and the slight variability in the widths of each staff. For each staff, a
blank staff image was placed on the page background. The staff image was three times the
height of the normalized staff space height from 3.5.1, since there are three internal spaces per
staff. Starting at the lower y-coordinates of the respective staff, the nine possible pitch posi-
tions on the staff were calculated by dividing the staff space height by two and incrementing
by this value nine times until reaching the top of the staff. These nine y-coordinate values
represented the vertical position placement options for neume components on each staff, which
were randomly selected when placing punctums, inclinatums, and custos. Clefs and obliques
individually span multiple vertical positions and were placed on a smaller subset of the possible
locations. Clefs are vertically centered around staff lines, and they only appear at positions 12,
13, and l4. Obliques cover three distinct types: oblique2, oblique3, and oblique which specify
the amount of pitch positions spanned by the neume component. They were placed relative to
their leftmost starting position, and the rightmost position must remain within the nine possi-
ble pitch positions. Thus, the oblique2 was only placed in position /1 and above, the oblique?
only s2 and above, and the oblique4 only [2 and above. This guaranteed the descendant right

position would remain within the range of possible positions.
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Figure 3.8: Synthetic Salzinnes page example.

On each staff, the first and last glyphs to appear are a clef and custos. In between them,
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there are on average 25 synthetic neume components placed per staff on the page, based on the
average occurrences of neume components per staff in the two manuscripts. This was randomly
chosen in a range from 20 to 30 neume components per staff. They were spaced horizontally 40
to 60 pixels from one another, except when a compound neume was created. Neume components
were instead placed immediately adjacent to one another to create compound neumes. An
algorithm randomly selected a predetermined compound neume sequence and starting vertical
position. The sub-process randomly occurred from 0 to 5 times per staff. For example, to
create a clivis, two punctums were joined horizontally to one another with the second placed
one position down from the first. A torculus was created by placing three punctums in a
horizontal row, with the middle punctum one pitch position above the other two (Figure 3.9).
Mentioned previously in 3.4, the object detection step in the OMR workflow was not trained
to detect these compound neumes, though it was tasked with detecting the individual neume
components that make up the sequenced neumes, which added another layer of realistic features
to the synthetic data that exist in the real data. The object detection model was challenged
to separately detect these closely connected neume components in both the synthetic and real

manuscript images.

Figure 3.9: Synthetic clivis and torculus examples.

3.6 Object Detection of Glyphs and Neumes

Following the creation of the synthetic manuscript pages, both the real and generated images
were then used as input to the automatic OMR workflow. The first step of this OMR process
involved the detection of all neume components on a page of square notation. By breaking
down the manuscript images into tiles, training a model to detect the neume components in
each respective tile, and restitching the tiles into the original image, each glyph can be efficiently

detected and classified in the overall scene.
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3.6.1 Object Detection Algorithm

Initially, a machine learning model needed to be trained to detect neume components can-
didates on the manuscript pages. Based on the previous review of machine-assisted recognition
of musical symbols in Section 2.4.2, the Faster R-CNN model (Ren et al. 2015) emerged as the
optimal candidate for training this model. The model features shorter training times than other
open-source detection frameworks with transfer learning (Metaj and Magnolfi 2019), performs
well on datasets that do not have bunched objects (Pacha et al. 2018), and is conveniently
embedded in PyTorch, the machine learning framework of choice for the OMR workflow. To
train the Faster R-CNN model, every input image is provided alongside an annotation file. The
annotation file specifies the coordinates for all of the neume components in the image and the

class label.

3.6.2 Page Tiling

With available hardware, it would have been demanding to train an object detection model
on full-size manuscript pages. Salzinnes manuscript pages are 4414 x 6993 pixels and contain
hundreds of neume component candidates. Resizing a manuscript page would remove the
details of small neume components, making the object detection task harder to train. Instead,
the original resolution manuscript page can be partitioned into overlapping tiles of smaller-size
images for training the object detection model. This considerably reduces the computational
load of the training process and decreases the number of detection candidates in each input

example.

In Python, a script was created to handle the tiling of manuscript pages for training the
object detection model. The script had four input parameters: the number of tiles in the x and
y direction and the amount of overlap in pixels respective to each dimension. If a bounding box
for a neume component was cut off by a partition, then the object was not included for detection
in the tile. As long as the x and y pixel overlaps exceeded the maximum width and height of
any glyphs in the dataset, every glyph had the opportunity to be detected. By specifying 10 tile
splits in the x and y directions, and 200 and 160 pixel overlap values respectively, every neume
component was guaranteed to appear in at least one tile. These input parameters produced

average tile sizes of 600 x 750 pixels (width x height).

The coordinates of each neume component needed to be re-established in the context of the
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tile in which they resided. The coordinates of each tile were recorded, keeping track of their
offset from the top-left corner of the original page. The tile coordinates were subtracted from
the neume component coordinates, which justified the neume component coordinates relative
to their respective tile. Since adjacent tiles from the original image are overlapping, the same
neume component in the original page could appear in multiple tiles. If the object detection
model detected the same glyph in multiple tiles, then a decision needed to be made for the
final classification when connecting the tiles back together into the full original page. This was

handled in the final restitching phase of the object detection step.

3.6.3 Restitching

After detecting the objects in each individual tile, the original manuscript page needed
to be stitched back together before performing position and pitch classification on the neume
components. It was preferred to reconnect all of the tiles, since the space above and below the
detected neume components was necessary for position classification, and it was possibly cut off
by the segmentation process. Using each tile’s pre-recorded coordinates of its original position
in the full page, the coordinates of each detected element on the tile were re-established in

context to the top-left corner of the original manuscript image.

Figure 3.10: IoU visualization. %

In the event of overlapping detection candidates, a single prediction bounding box had to

23. https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
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be selected. The detection boxes from each tile were combined into one large array per page,
and an Intersection over Union (IoU) calculation was made to prune the final detection boxes
based on the ground truth data. IoU (Figure 3.10) measures the overlap between the prediction
and ground truth data boundaries by calculating a ratio of the area that both boundaries share
(intersection) to the total area that both boundaries cover (union). The predicted detection
with the highest ToU score and correct class label was considered the final detection in the
original page. For example, if the object detection stage reported two instances of a punctum
with approximately the same global page coordinates with IoU scores of 0.8 and 0.9 respectively,
this resulted in a final classification of the second punctum with the higher score. Figure 3.11
shows an example representing multiple candidate pairs detected in adjacent overlapping tiles.
Once all of the multiple candidates were pruned, the predicted coordinates of each neume

component were passed to the position and final pitch classification tasks.

Figure 3.11: Two adjacent and overlapping tiles from the same region of the
manuscript image. The neume components with bounding boxes represent
the same neume component in the original manuscript image, and the
darkened regions are the total overlap area between the two tiles. The green
bounding boxes indicate which detection received the higher IoU score when
restitching the page and comparing to the ground truth data and will be
passed on to the next step of the OMR workflow.
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3.7 Position and Pitch Classification

With all the neume components and glyphs detected on the page, they were then musically
classified, first on their position on the staff, followed by their pitch relationship to the most
recent clef. The position of a neume component is only known by determining its vertical
placement relative to the staff lines. This involves identifying which of the nine staff positions
a neume component is located. From the ground truth data, a position label was included
for each neume component in the nine possible positions: s1, 11, s2, 12, s3, 13, s4, l4, s5 (See
Figure 2.3). Using the bounding box coordinates in the ground truth data, the height of the
bounding boxes were extended with the detected neume components still in the center (Figure
3.12), cropped as individual images for the training set, and labelled on the centered neume
components’ staff positions. All bounding box heights were extended by two times the average
staff space height above and below the vertical center of the detected neume component to
ensure that enough of the staff lines were visible for classifying the position. For the oblique
glyphs, the labels were assigned to the starting positions of their diagonal shapes, and for
clefs, the labels were assigned to the staff line that they were centered on. Regardless of the
neume component’s position on the staff, this height extension included more staff lines in the

bounding box, which needed to be visible for the following position classification task.

Figure 3.12: Extended bounding boxes for position classification model
examples. From left to right: clef.c at 14 (classified on the pitch encoding at

the vertical center), oblique3 at s4, and punctum at 13.

A separate neural network from the object detector was trained to classify neume component

positions on the staff. This was a ResNet 18 model (He et al. 2016) imported from TorchVision

48



within PyTorch, trained from scratch on the neume component dataset. The model expects
inputs of 224 x 224 pixels, so the vertically extended bounding boxes were resized to this
standard dimensionality. Once this classification was made, the final pitch classification could

be heuristically established.

Finally, with the neume component’s position classified, a pitch classification was performed.
Neume component pitches are a function of both position on the staff and their relationship
to the most recent clef occurrence, similar to modern musical notation. Before defining this
relationship, all the neume components and glyphs on the page had to be organized in reading
order, checking their coordinates first from top to bottom, then left to right. Neume components
in the same staff appear at different heights, so their relationship to the nearest staff also has to
be established to infer the correct “reading order.” Iterating through every neume component
and glyph on the page, the most recent occurring clef change needed to be consistently updated.
The clef informed the algorithm of the staff line that the reference pitch was on, so every staff
line and space then received a pitch encoding. Based on the position of every neume component,
their pitch was finally labelled. With the coordinates, type, position, and pitch of every neume

component classified on a manuscript page, this data can then be encoded into the MEI format.

3.8 Evaluation Metrics

The main evaluation being made in this research is comparing whether a training dataset
comprised of both real and synthetic manuscript data leads to more accurate results than
training with only real manuscript data. In order to make this comparison, metrics need to be
used to measure the accuracy of the object detection and position classification models. For
the object detection task, a mean average precision metric (mAP) will be used. The mAP
is one of the most commonly used metrics in the field of object detection (Liu et al. 2020).
mAP considers the impact of incorrect detections and defends against biases of simple accuracy
metrics in unbalanced detection scenarios (e.g., when one object has many more occurrences
than the others). To calculate mAP, precision and recall metrics are required. Precision is the
ratio of correctly predicted positives to the total number of predicted positives, and recall is

the ratio of correctly predicted positives to the total number of actual positives:

TruePositive

rectsion =
P TruePositive + FalsePositive
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TruePositive

recall =
TruePositive + FalseNegative

In any object detection scenario, it is likely that predicted bounding boxes do not consist
of the exact same coordinate values as the ground truth data, and a spatial threshold value
needs to be introduced to evaluate their correctness. As explained in Section 3.6.3, Intersection
over Union (IoU) (Figure 3.10) measures the overlap between the prediction and ground truth
data boundaries. Setting a threshold value for IoU between 0 and 1, a prediction is considered
a true positive above this threshold or a false positive below it, which is used to make the
precision and recall calculations for each image in the dataset. For each image, the metrics are
sorted incrementally by increasing recall values and plotted against the corresponding precision
values. Finally, the mAP metric is found by calculating the area under the resulting curve on

this plot. The mAP will be calculated on a per class basis of the detected neume components.

For establishing an overall score across classes, an augmented weighted mAP (w-mAP) score
will be used. In a typical w-mAP scenario, all of the class-specific mAP scores are multiplied by
their total occurrences in the ground truth data, summed, and divided by the total number of
object candidates. The augmented w-mAP metric will add more weight to the obliqgue neume
components. A common evaluation factor of OMR tasks is the time spent manually correcting
a workflow’s annotations. This factor is included in the w-mAP metric to penalize the symbols
that take more time to annotate manually, namely the obligue. In Neon, to annotate neume
components besides the oblique, one clicks on the corresponding symbol on the editing panel,
and then clicks where to place it in the manuscript (See Figure 3.5). Annotating an oblique
involves eleven clicks, nine more than any other neume component, thus the oblique counts
in the augmented w-mAP will be multiplied by 5.5 (11/2), and the total weight of all neume

components will be updated accordingly. 2*

The following position classification task will also be evaluated. It will be evaluated on the
set of correct, true positive detections passed on from the object classification task. For each
image in this set, the precision and recall will be calculated for the predicted positions. Since

this operation is assigning only one label to the overall image, the IoU threshold is not used,

24. In Neon, annotating an oblique involves selecting the punctum symbol, clicking twice for the start and
ending positions, changing to the edit panel by neume, dragging over the two punctums, selecting “group
neumes,” changing to edit by neume component, dragging over the two punctums again, selecting “group neume

components,” dragging over the two once more, and finally selecting “toggle ligature.”
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and an Fi-Score will be calculated instead. Fi-scores factor in the weighting of the precision

and recall values as one combined metric.

P =24 Precision * Recall

Precision + Recall

The main evaluations listed above will be compared between training datasets comprised
of different amounts of real and synthetic training data. The baseline dataset for comparison
contains real data only. Other datasets contain the same amount of real data and are appended
with synthetically generated manuscript data. The test data used for evaluation is not used in
the training process. Furthermore, synthetic images are only generated using real pages that
are not being tested. If the experiments using both real and synthetic image training datasets
result in higher evaluation metrics than the baseline real dataset, then it will demonstrate that

synthetic data generation is useful for improving the OMR of square notation.

The GAN performance, separate from the main OMR workflow, will be evaluated on its own.
The Fréchet Inception Distance (FID) measures the similarity of GAN-synthesized images to
the real images it is trained with (Heusel et al. 2017). Contrary to the Inception Score proposed
by Salimans et al. (2016), the FID compares the statistics of the generated and real images,
instead of solely considering the generated images on their own. Lower FID scores indicate more
realistic reproductions. While training, the modified StyleGAN repository outputs separate
model checkpoints and keeps track of the corresponding FID metric at each step. Thus, the
model checkpoint with the lowest FID score will be selected for generating neume components

to place on synthetic manuscript pages.
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4 Experiments

In this chapter, the methodology described in Chapter 3 is evaluated through a number of
different training scenarios. The main evaluation being made is whether the OMR of square
notation can be improved by training with real and synthetic data as opposed to real data on
its own. There are two main experimental configurations for making this comparison: both
Medieval manuscripts will be evaluated separately with their own training models. In each
configuration, the OMR workflow will be trained with the corresponding real data to establish
a baseline accuracy of OMR in the object detection and position classification of neume com-
ponents. These metrics will be compared against the same workflow trained with both real and
GAN-synthesized manuscript data. An increase in the evaluation metrics when training with
real and synthetic data demonstrates that the OMR of square notation is improved by training
with GAN-synthesized manuscripts. The creation of the datasets is described in Section 4.1,
followed by the experimental overview in Section 4.2. The results of the GAN generation step
appear in Section 4.3, and the individual manuscript experimental results appear in Sections

4.4 and 4.5.

4.1 Dataset Creation

As stated previously, there are two distinct types of ground truth data prepared for use
in the experiments: real annotated manuscript data and GAN-synthesized data, created from
the real data. The real manuscript data consists of the manuscript images and corresponding
annotations created in Neon (Regimbal et al. 2019). The Salzinnes manuscript had unverified
annotation data available from a previous OMR workflow, which was reviewed and edited in
Neon for use in this research. The Einsiedeln manuscript did not have any prior annotation data
available, and thus its ground truth data was created from scratch. Once the real manuscript

data was entirely annotated, it was used to create the GAN-synthetized manuscript data.

The first step to create the synthetic manuscript data is training the GAN with the real
manuscript data. It is trained with the cropped and white-padded individual neume components
from the real manuscript images with type labels assigned to each. Once training is complete,
the desired number of pages to generate can be specified with a Python script, using the GAN to

generate the individual neume components for placement on the page. The script also generates
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a corresponding comma-separated text file, indicating the coordinates, type, staff position, and
pitch of every synthetic neume component. These synthetic pages and corresponding text files
are used as ground truth data along with the real data for training the object detection and

position classification models.

The dataset preparation for the experiments requires a patchwork of encoding and process-
ing steps, including the GAN architecture for generating synthetic data. The 30 manuscript
MEI files annotated in Neon (20 Salzinnes, 10 Einsiedeln) are parsed into a comma-separated
text file that includes information about each neume component on the real pages: their coor-
dinates, type, staff position, and pitch. The coordinates and types of the neume components
are used to extract the training dataset for the GAN, which includes the neume components as
white-padded individual images that are each assigned a type label. The real manuscript im-
ages and text files are uploaded to Google Colab, where the object detection and staff position
classification processes of the OMR workflow are run. A 5-fold cross validation is introduced,
specifying which data will be used for training, testing, and validation in the GAN, object
detection, and staff position classification models. Even though the GAN is separated from the
main OMR workflow and is generating synthetic data, it would undermine the integrity of the
experiments to train it with any neume components in the testing data, since generated exam-
ples would possibly appear too similar to those reserved for evaluation in the OMR workflow.
Hence, the 5-fold cross validation is maintained throughout the entire workflow. Using the
real data, the baseline metrics can be calculated, and GAN-synthesized pages will be included
to establish the comparison metrics when training the OMR workflow with real and synthetic

data.

4.2 Experimental Overview

The goal of the experiments is to detect the neume components on the manuscript pages
and determine their position relative to the staff. This task consists of object detection and staff
position classification models with distinct sets of real and synthetic data. The experiments
are broken down into the comparison of real training data vs combined real and synthetic
training data evaluation metrics. Experiment I is trained and evaluated with data from the
Salzinnes manuscript, and Experiment II is identical with respect to the Einsiedeln manuscript.
In each experiment, the baseline metric is established by training the workflow with real data

only and evaluating with the testing data (Table 4.1). The workflow is retrained with the
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same real data in addition to synthetic data, and the evaluation metrics are compared against
the baseline values, using the same testing set. This process is performed as part of the 5-
fold cross validation. For each manuscript fold, the respective GAN, object detection, and
position classification models are all trained with the same manuscript data. An increase in
the evaluation metrics demonstrates that the OMR of square notation is improved with the use
of GAN-synthesized data. In the next sections, the results of the FID, w-mAP and F;-scores
(see Section 3.8 for the explanation of these metrics) for each manuscript configuration will be

presented.

Table 4.1: General evaluation process of the individual experiments. Baseline
metrics are established with the real manuscript data and compared against

the metrics found in the combined real and synthetic data.

Training Dataset Object Detection | Staff Position Overall Metric
Classification

Real manuscript Baseline mAP scores | Baseline Fi-scores Baseline mAP x Fy

data

Real and Comparison mAP Comparison Comparison mAP x

GAN-synthesized scores Fi-scores Fy

manuscript data

4.3 GAN Manuscript Data Synthesis

The preprocessing step for the main object detection and position classification workflow
involves creating the synthetic GAN manuscript pages. For each manuscript, five separate
GANSs were trained to generate the neume component classes across the five folds, culminating
in ten total GAN models. Using the modified StyleGAN codebase, each model was trained on
Compute Canada using four Tesla V100 Volta GPUs. Model checkpoints were saved during
training, about every 120 iterations, and a log indicated the FID scores at the respective
model instances. Regardless of the fold or training data, there was significant instability in the
training process of the GANs at around 8,500 training iterations. Up until this iteration, the
FID score trend would decline, then jump to values equal or higher than when the training
process began, around 360, indicating that features learned in previous training iterations were

no longer being rendered in the synthetic images. The training process also saved image grids of
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generated examples at each model checkpoint. When reaching the instability point, the images
being generated were entirely black squares, reflecting the sudden change in FID scores. These
were not usable model iterations for generating neume components, and the prior checkpoint
with the lowest FID score was used. Early GAN training indicated this widespread instability,
and to save on parallel model training time, Compute Canada resource requests were reduced
to train the models to their most stable points, about 7,500 iterations, which took just over 24
hours to train per model. A plot of the FID score versus training iteration for the Salzinnes

manuscript can be seen in Figure 4.1.

Figure 4.1: Plot of Salzinnes FID metrics across all five cross-validation
splits. The jump in the S2 plot indicates the GAN’s instability at 7,200

training iterations.

4.4 Experiment I

The Salzinnes manuscript dataset was comprised of 20 pages and split across five folds
of 16, 2, and 2 pages respectively, an 80 (training), 10 (validating), 10 (testing) split out of
100. On the neume component level, this averaged out to an 80, 9.9, 10.1 split due to their
differing amounts per manuscript page. The baseline metrics were established by training the

object detection and position classification workflow with the real manuscript training data on
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its own. To establish the comparison metrics, each fold of the manuscript training data was
then appended with 16, 24, and 48 pages of GAN-synthesized ground truth data, expanding
the amount of manuscript training pages by 100%, 150%, and 300% respectively. The overall
average and weighted metrics are found in Table 4.2, including a combined mAP x F; metric for
each training scenario. The two evaluation metrics are multiplied together since the candidates
for the position classification task are dependent upon being located by the previous object
detection task, and incorrectly or undetected neume components cannot be mapped to any
coinciding ground truth data. The highest increase in the combined metric occurred in the 48
synthetic manuscript page case, leading to a 29.8% reduction in errors from the baseline. This
is highly proportional to the reduction in errors of the object detection step, which yielded a

28.0% reduction in errors.

Table 4.2: Salzinnes manuscript w-mAP and F;-scores

at 0.5 IoU threshold.

w-mAP (Object Weighted mAP x F,
Detection) F,-Score (Position
Classification)
Real Salzinnes 0.950 0.993 0.943
Pages
Real + 16 0.963 0.996 0.959
Synthetic
Real + 24 0.964 0.992 0.956
Synthetic
Real + 48 0.964 0.996 0.960
Synthetic

Table 4.3 shows the average mAP scores per neume component class. The average amount
of testing candidates per type class across all five folds were 37.6 (clef.c), 16.8 (clef.f), 40.8
(custos), 98.4 (inclinatum), 22.2 (oblique2), 6.6 (oblique3), 0.4 (oblique4 ), and 995 (punctum).

The punctum far outnumbers the other types, encompassing 81.7% of all symbol candidates.
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Table 4.3: Salzinnes mAP scores per neume component class

at 0.5 IoU threshold.

clef.c | clef.f | cus inc ob2 ob3 ob4 punc
Real 0.930 0.924 0.942 0.958 0.942 0.695 0 0.960
Real + 16 0.920 0.926 0.936 0.960 0.980 0.893 1 0.965
synth
Real + 24 0.936 0.934 0.960 0.968 0.986 0.950 1 0.965
synth
Real + 48 0.948 0.958 0.958 0.968 0.968 0.988 1 0.968
synth

Table 4.4 presents the F1-Score results per staff position placement. The average occurences
per staff position were 3.6 (s1), 23 (11), 63.2 (s2), 121.8 (12), 199.8 (s3), 161 (13), 71.6 (s4), 47.8

(14), and 4.4 (sb). The most common occurrences were in the middle staff positions.

Table 4.4: Salzinnes F; scores per staff position.

sl 11 s2 12 s3 13 s4 14 s5
Real 0975 | 0.995 |0.998 |0.994 | 0.99 |0.994 | 0.990 | 0.984 | 0.921
Real + 16 0.969 | 0.997 0998 |0.995 |1 0.998 | 0.997 | 0.992 | 0.971

synth

Real + 24 | 0.985 [0.993 | 0.997 | 0.987 |0.997 [0.990 | 0.996 | 0.987 |1
synth

Real + 48 0.969 | 0.995 |0.999 |0.994 | 0.998 | 0.996 | 0.9965 | 1 1

synth

4.5 Experiment 11

Experiment II was identical to Experiment I, except the Einsiedeln manuscript was used
instead of Salzinnes. The Einsiedeln manuscript dataset was comprised of 10 total pages and
split across five folds of 8, 1, and 1 pages respectively. In the context of neume component totals,
this averaged out to an 80, 10.1, and 9.9 split, again due to their various counts per manuscript

page. The real manuscript data baseline metrics were compared against three synthetic page
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scenarios, with 8, 12, and 24 additional synthetic manuscript pages respectively, marking 100%,
150%, and 300% increases in the amount of manuscript training data. The overall average and
weighted metrics are found in Table 4.5, which includes the combined mAP x F; metric. The
largest increase in the combined metric was found in the 8 synthetic page case, a 9.3% reduction
in errors (0.925 to 0.932). Similar to Salzinnes, this increase was highly proportional to the

performance of the object detection task, which saw an 8.5% reduction in errors.

Table 4.5: Einsiedeln manuscript w-mAP and F;-scores

at 0.5 IoU threshold.

w-mAP (Object Weighted mAP x F,
Detection) F,-Score (Position
Classification)
Real Einsiedeln 0.941 0.983 0.925
Pages
Real + 8 0.946 0.985 0.932
Synthetic
Real + 12 0.938 0.984 0.922
Synthetic
Real + 24 0.942 0.985 0.928
Synthetic

Table 4.6 displays the average mAP scores per neume component class. Across all five folds,
the average number of candidates per class were 33.6 (clef.c), 1.4 (clef.f), 19.2 (custos), 108.6
(inclinatum), 24.4 (oblique2), 8.2 (oblique3), 2.2 (obliques ), 697.4 (punctum), and 303.4 (virga).
Similarly to Salzinnes, the punctum is the most commonly occurring neume component, making

up 56.6% of the training set, followed by the virga at 24.6%.
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Table 4.6: Einsiedeln mAP scores per neume component class

at 0.5 IoU threshold.

clef.c | clef.f | cus inc ob2 ob3 ob4 punc | virga

Real 0.910 | 0.690 | 0.892 |0.932 | 0.982 |0.805 | 0.670 | 0.928 | 0.948
Real + 8 0.894 | 0.953 | 0876 |0.902 | 0.978 |0.933 | 0.900 | 0.946 | 0.948

synth
Real + 12 0.894 | 0.953 | 0.876 | 0.902 | 0.978 | 0.933 | 0.900 | 0.946 | 0.948

synth
Real + 24 0.908 | 0.730 | 0.884 | 0.924 | 0.974 | 0.948 | 0.88 0.946 | 0.930

synth

Table 4.7 presents the F1-Score results per staff position placement. The average occurences
per staff position were 11 (s1), 35.4 (11), 51.2 (s2), 112.8 (12), 113.2 (s3), 142.8 (13), 56.2 (s4),
57 (14), and 10 (s5). Similarly to Salzinnes, the most common occurrences were in the middle

staff positions.

Table 4.7: Einsiedeln F; scores per staff position.

sl 11 s2 12 s3 13 s4 14 sH
Real 0926 | 0.995 |0.993 |0.985 | 0.987 | 0.982 | 0.987 | 0.957 | 0.762
Real 4 8 0.947 | 0.993 |0.993 |0.985 |0.983 |0.990 | 0.975 | 0971 | 0.955

synth
Real + 12 0.947 1 0.993 |0.993 | 0.985 | 0.983 |0.990 | 0.975 | 0.971 | 0.955

synth
Real + 24 | 0921 [0.985 |0.991 |0.983 | 0.989 |0.988 |0.990 | 0.970 | 0.954

synth

4.6 Discussions

Generally speaking, the inclusion of GAN-synthesized data increased the overall accuracy
of the object detection portion of the OMR workflow. In the Salzinnes manuscript, the w-mAP
metric increased from the baseline value of 0.950 to 0.964 in the best case, a 28.0% reduction in

errors when using 48 additional synthetic manuscript pages. Each individual neume component
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class saw an increase in the mAP scores, most significantly among the obliqgues. The GAN-
synthesized versions of each oblique class yielded significant increases in their respective mAPs,
especially the oblique3 and oblique4. In the case of the oblique4, it was totally undetected with
only the real training data and successfully detected in both synthetic training data extensions
for every occurrence. It should be noted that there were only two oblique/ instances among
the original (real) 20 Salzinnes pages. The clef.c and custos classes saw a slight reduction in
their mAPs when trained with the real data and 16 synthetic pages, which conversely increased
above the baseline metric when being trained with real data and 24 or 48 synthetic pages.
Punctums and inclinatums saw little increase in their mAP score respectively, likely due to the
large number of real examples already available to begin with. Their rectangular and diamond

shapes are also among the simpler geometries of neume components.

In the Einsiedeln manuscript, the object detection w-mAP increases were less significant,
though still yielded an 8.5% reduction in errors in the best case with real data and 8 synthetic
manuscript pages. The mAP scores increased in the three synthetic data scenarios, though
using 8 pages instead of 12 and 24 pages resulted in the highest w-mAP score. Per class, many
of the mAP scores tended to suffer slightly but still saw significant increases in the oblique3 and
obliquej cases. The clef.f mAP score increased drastically in the 8 and 12 synthetic page test
case to 95.3%, and dropped to 73% with 24 synthetic pages, just above the 69% baseline. On
some of the Einsiedeln GAN training splits, the clef.f class did not achieve qualitatively accurate
synthetic images, generating examples that were smeared and blurred more than any of the
examples the GAN was provided with (an example is shown in Figure 4.2). The 24 synthetic
pages populated with inaccurate clef.f reproductions dwarfed the amount of real examples,
possibly leading to the lower mAP score. The oblique2, oblique3, and punctum classes were the
only stable increases among the combined real and synthetic page training sets. There was a
slight reduction in the mAP score of the obligue2 in every synthetic dataset for Einsiedeln, and

it was reduced from 0.982 to 0.974 in the worst case (24 synthetic pages).
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Figure 4.2: Poor Einsiedeln clef.f generation comparison to the real training

data.

The position classification task was affected minimally by the inclusion of synthetic manuscript
data. Fyi-scores in the real manuscripts were already close to 100% across all position classes.
The outermost stave positions, sl and s5, above and below the stave respectively, saw the most
adjustments in their metrics. The F;-Score for position s5 increased to 100% when training
Salzinnes with 24 synthetic pages and increased from 76.2% to 95.4% in the synthetic training
scenarios with Einsiedeln. The F;-scores were lower than the baseline in more classes when
training with 24 synthetic pages in both manuscripts. Although these were minimal decreases,
this was likely due to the real pages being outnumbered by the synthetic pages, where the
placement of some neume components may have confused the model. Some of these synthetic
neume component images were generated with the surrounding staff line fragments that were
visible in the real training dataset (Figure 4.3). The GAN learns to generate the examples that
are provided to it, and that included these line fragments. When placing the GAN images on
the synthetic manuscript page, no heuristic was used to infer where a neume component should
be placed based upon the intersecting staff fragments. Since the fragments do not always align
with the overall staff lines on the page, the minimal decrease in F-scores could be a byproduct

of their placement.
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Figure 4.3: Example of truncated staff line neume component placement.
The bounding box for each neume component includes generated staff line

snippets that do not align with the underlying staff lines on the page.

The combined mAP x F; metric is highly dependent on the performance of the object de-
tection task. The coordinates of the detected neume components are compared against the
ground truth data at an IoU threshold of 0.5, which passes the highest IoU score among over-
lapping detections to the position classification task. Incorrectly detected or undetected neume
components have no ground truth position data to link to, hence they are omitted from the
position classification task. The combined metric improved in almost all synthetic manuscript
cases, though it reduced slightly when training Einsiedeln with 12 synthetic manuscript pages.
The object detection task suffered slightly in this scenario, the only time when w-mAP metric
did not increase. Salzinnes saw the highest combined metric when training with the largest 48

synthetic page scenario, while Einsiedeln improved the most with the smallest 8 page addition.
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5 Conclusions

By training a GAN to generate neume components and place them on synthetic manuscript
pages, the OMR of square notation is improved for both of the Salzinnes and Einsiedeln
manuscripts. In the object detection portion of the workflow, the errors were reduced by
28.0% and 8.5% respective to each manuscript. Considering that the average number of pages
in these two manuscripts is over 500, using combined real and synthetic training datasets in an
applied scenario has the opportunity to correctly detect a larger amount of neume components

and reduce the amount of incorrect detections (false positives).

The addition of the synthetic training data significantly increased the w-mAP metrics for the
oblique classes in both manuscripts. This is a valuable finding since the time spent correcting
obliques far exceeds the amount of time for any other neume components in Neon. Requiring
eleven clicks, nine more per occurrence, their annotation is weighted at 5.5. In Einsiedeln, the
obliques outnumbered the clef.c, clef.f and custos classes and they were almost as common
as the clef.c and custos classes in Salzinnes. Due to their rate of appearance, the time spent
correcting annotations created by this OMR workflow would be considerably reduced. In the
event that developments are made to Neon to shorten the time spent per oblique annotation,
then it would retroactively reduce the impact that their more accurate mAP scores have in the
overall augmented w-mAP score. With that in mind, the original w-mAP score still increased
when using real and synthetic data, reducing errors by 18% in the best Salzinnes case with a
100% increase in size of the training set. The manual correction of obliques will still involve extra
steps if improvements are made, since they vary in their width and height on the staff, requiring
unique individual attention. The GAN, trained with the sparse oblique4 class, still generated
realistic results that improved the detections in the test sets on both manuscripts. Even if the
GANs “memorized” these rare examples, the synthetic versions still generalized better to the
testing data, resulting in significantly improved mAP scores. This finding suggests that rare
symbols in the real training data should be proportionately more represented in the synthetic

manuscript pages.

The position classification task was largely unaffected by the addition of synthetic manuscript
data. Fi-scores were already near 1.0 when training with solely real data, leaving very little
room for improvement. In Salzinnes, the weighted Fi-Score increased with the 100% larger real

and synthetic dataset (0.993 to 0.996), slightly decreased at 150% (0.992), and increased again
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at 300% (0.996). On Einsiedeln, the weighted F;-Score minimally increased to 0.985 from the

baseline score of 0.983 in the 100% and 300% training dataset increases.

Synthetic data generation, albeit rough, still improved the metrics for both processes in
the OMR workflow. The GAN was trained to generate synthetic neume components that
were not separated from the staff lines surrounding them in the original manuscript image.
When placing the neume components on the page, they were not aligned into staff placements
depending on where the truncated staff lines appeared in the generated image. For example,
an inclinatum generated with a staff line through its center was not bound to placement on the
four staff line positions, it could appear in any of the staff spaces, too. It would have required
another processing method to either remove the staff lines from the neume components before
training or after the results were generated from the GAN. Even though the synthetic pages
had truncated staff lines surrounding the neume components, the position classification model
did not suffer in the weighted F;-Score. The outermost staff positions, s/ and s5, saw the
greatest F1-Score improvements. In both manuscripts, the real data comprised of only a few
occurrences, so increasing the number of neume components in these positions with synthetic
data provided more valuable training data, even considering the generated set of truncated staff

lines surrounding neume components placed in mismatching positions.

The GANSs, each trained on different folds of the padded neume component images, varied
in their FID metrics. There did not seem to be any correlation between lower FID scores
and increased w-mAP metrics in the object detection step of the OMR workflow. Again, a
lower FID score indicates that the generated examples are more realistic when comparing to
the real examples than higher FID scores. The average FID metric for Einsiedeln was lower
than Salzinnes, although Salzinnes had the greater reduction in errors when training with the
synthetic data. The varying reproductions of the neume components generalized better to the

test data in some folds, but not in others.

5.1 Future Work

The GAN and synthetic page generation preprocessing step is ripe for further inspection.
One aspect of GANs that was not utilized in this thesis is latent space exploration (Bojanowski
et al. 2018). The latent space is the input vector that the generator model receives to create

synthetic examples. Usually comprised of completely randomized noise, the latent space vector
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is the sort of genetic code for the generated image. With latent space exploration, these vectors
are first qualitatively evaluated against their corresponding output examples, and examples are
selected with the desired output features. New labels can be assigned to the output images
with desirable features, and a simple logistic regression can be calculated to wrap around
the generator model, progressively selecting new generated images with the desired qualities.
Latent space exploration could be used to find generated neume component examples that do
not include staff line fragments, making it easier to place them in any staff position on the
synthetic manuscript page. Latent space exploration could also be used to find examples that
include truncated staff lines either intersecting or surrounding the generated neume components.
If generated staff lines intersect the neume component, then the example would be bound to
only being placed on staff lines. Surrounding staff lines would indicate that the generated
neume component should only be placed in one of the staff spaces. This experimentation could

possibly improve the position classification task even further to a near perfect evaluation.

The amount of neume components per page and placement positions can be further explored.
Rare neume components did not fare well in the baseline metrics, suggesting that more should
be included in the synthetic manuscript data. The distribution of generated neume components
mimicked the average totals for most classes in the real data, so more weight could be assigned
to the under-represented classes such as the obliques. For staff position placements, one could
experiment with only placing neume components in under-represented locations to create a more
balanced dataset. The density of neume components on a single page could also be experimented
with, to determine if increasing the density of neume components per staff increases difficulty
on the object detection algorithm or not, requiring a fewer number of pages of synthetic training

data to be generated.

The configurations for the testing and training data can be envisioned in a number of
different scenarios. A transfer learning experiment could be conducted, training the OMR
workflow with one model’s data and evaluating with the other. In the context of the manuscripts
used in this thesis, one scenario would involve training the GAN and OMR workflow with
Salzinnes data and evaluating with Einsiedeln. Similarly, the baseline metrics from this transfer
case would be compared against increasing training sets of real and synthetic manuscript data.
If the evaluation metrics are close to those found in the singular manuscript training and testing
scenarios performed in this thesis, then transfer learning could reveal some underlying features

that exist between manuscripts, handwriting styles, and neume component geometries.
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In order to directly evaluate the similarities that exist between different manuscripts, one
could train the entire process with multiple manuscripts. For example, the GAN, object detec-
tion, and position classification models would be provided with training examples from both
the Salzinnes and Einsiedeln manuscripts in a singular experiment. The GAN would then be
generating neume component examples that exist in between the styles of the two manuscripts.
The metrics from the singular manuscript OMR workflows could be compared against the met-
rics established by this multi-manuscript workflow, when both are evaluated individually with
a singular manuscript’s testing data. In the aforementioned example, this would involve using
the same Salzinnes testing data in the singular and multi-manuscript training workflows and
comparing their metrics. Similar to the transfer-learning idea, this could possibly reveal some

underlying features that exist between different manuscripts.

One could also experiment with testing sets that contain more real manuscript data than the
training set. The training set should still be larger than the test set, using synthetic manuscript
pages to reach a viable ratio between the two. For example, one could train the workflow with 4
real and 16 synthetic pages and test with 5 real pages. Then, the amount of synthetic training
data and real testing data could be successively increased, comparing the evaluation metrics of
each scenario. Tests like this might infer that less time could be spent on manual annotation if

the synthetic dataset increases coincided with higher evaluation metrics.

5.2 Contributions

This thesis represents a significant contribution as it provides the first study of using syn-
thetic data generated by a GAN in any OMR processing workflow. The process envisioned is
able to be replicated for any images of music notations that, similar to CWMN, require indi-
vidual symbols to be located, classified, and encoded into a pitch. This workflow, created as
part of the SIMSSA project, can be embedded into pre-existing document processing in the Ro-
dan workflow engine and the SIMSSA database. As an applied tool, the creation of synthetic
manuscript training data can possibly lead to greater OMR performance without any extra
time spent on manual annotations. This thesis has shown that the OMR of square notation

can be improved with the use of GAN-synthesized manuscript data.
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Appendices

Appendix A Oblique Error Weighting

This appendix further explains the reason for applying a greater weight to the oblique classes
in the w-mAP metric. In Neon, annotating an oblique involves selecting the punctum symbol,
clicking twice for the start and ending positions, changing to the edit panel by neume, dragging
over the two punctums, selecting “group neumes,” changing to edit by neume component,
dragging over the two punctums again, selecting “group neume components,” dragging over the
two once more, and finally selecting “toggle ligature.” This process involves eleven clicks, nine
more than any other neume component, thus the oblique counts in the augmented w-mAP are

multiplied by 5.5 (11/2).

67



References

Antoniou, A., A. Storkey, and H. Edwards. 2018. Data Augmentation Generative Adversarial
Networks. arXiv:1711.04340 [cs, stat]. arXiv: 1711.04340.

Arjovsky, M., S. Chintala, and L. Bottou. 2017. Wasserstein GAN. ArXiv abs/1701.07875.
arXiv: 1704.00028.

Baird, H. S. 1990. Document Image Defect Models. In H. S. Baird, H. Bunke, and K. Ya-
mamoto (Eds.), Structured Document Image Analysis, 38-46.

Baro, A., P. Riba, and A. Fornés. 2016. Towards the Recognition of Compound Music Notes
in Handwritten Music Scores. In Proceedings of the 15th International Conference on
Frontiers in Handwriting Recognition, Oct 23-26; Shenzhen, China, 465-470.

Bojanowski, P., A. Joulin, D. Lopez-Pas, and A. Szlam. 2018. Optimizing the Latent Space
of Generative Networks. In J. Dy and A. Krause (Eds.), Proceedings of Machine Learning
Research, Volume 80, July 10-15; Stockholm, Sweden, 600-609.

Bowles, C., L. Chen, R. Guerrero, P. Bentley, R. Gunn, A. Hammers, D. A. Dickie,
M. V. Hernandez, J. Wardlaw, and D. Rueckert. 2018. GAN Augmentation: Augment-
ing Training Data using Generative Adversarial Networks. arXiv:1810.10863 [cs]. arXiv:
1810.10863.

Buczak, A. L., and E. Guven. 2016. A Survey of Data Mining and Machine Learning Methods
for Cyber Security Intrusion Detection. IEEE Communications Surveys Tutorials 18 (2):
1153-1176.

Burlet, G., A. Porter, A. Hankinson, and I. Fujinaga. 2012. Neon.js: Neume Editor Online. In
Proceedings of the 15th International Society for Music Information Retrieval Conference,
Oct 8-12; Porto, Portugal, 121-126.

Calvo-Zaragoza, J., F. J. Castellanos, G. Vigliensoni, and I. Fujinaga. 2018. Deep Neural
Networks for Document Processing of Music Score Images. Applied Sciences 8 (5): 654.

Calvo-Zaragoza, J., A. H. Toselli, and E. Vidal. 2019a. Handwritten Music Recognition for
Mensural Notation with Convolutional Recurrent Neural Networks. Pattern Recognition
Letters 128: 115-121.

Calvo-Zaragoza, J., A. H. Toselli, and E. Vidal. 2019b. Hybrid Hidden Markov Models and
Artificial Neural Networks for Handwritten Music Recognition in Mensural Notation.

Pattern Analysis and Applications 22: 1573-1584.

68



Denton, E. L., S. Chintala, A. Szlam, and R. Fergus. 2015. Deep Generative Image Models
Using a Laplacian Pyramid of Adversarial Networks. In C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett (Eds.), Advances in Neural Information Processing
Systems 28, 1486—-1494.

Dietz, J. 2006. Centuries of Silence: The Discovery of the Salzinnes Antiphonal. Master’s
thesis, Saint Mary’s University.

Everingham, M., L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman.
2007. The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results.
https://www.researchgate.net/publication/277292831_The_2005_pascal_
visual_object_classes_challenge.

Fornés, A., A. Dutta, A. Gordo, and J. Llados. 2012. CVC-MUSCIMA: A Ground-truth of
Handwritten Music Score Images for Writer Identification and Staff Removal. Interna-
tional Journal on Document Analysis and Recognition 15 (3): 243-251.

Gatys, L. A., A. S. Ecker, and M. Bethge. 2016. Image Style Transfer Using Convolutional
Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, June 26 — July 1; Las Vegas, NV, 2414-2423.

Girshick, R. 2015. Fast R-CNN. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), Dec 13-16; Santiago, Chile, 1440-1448.

Girshick, R., J. Donahue, T. Darrell, and J. Malik. 2014. Rich Feature Hierarchies for Accu-
rate Object Detection and Semantic Segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, June 24-27; Columbus, OH, 580-587.

Goodfellow, I. 2017. NIPS 2016 Tutorial: Generative Adversarial Networks. arXiv:1701.00160
[es]. arXiv: 1701.00160.

Goodfellow, I., Y. Bengio, and A. Courville. 2016. Deep Learning. MIT Press.

Goodfellow, 1., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. 2014. Generative Adversarial Nets. In Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger (Eds.), Advances in Neural Infor-
mation Processing Systems 27, 2672—2680. Curran Associates, Inc.

Gulrajani, I., F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. 2017. Improved
Training of Wasserstein GANs. ArXiv abs/1704.00028.

Hajic jr., J., and P. Pecina. 2017. The MUSCIMA ++ Dataset for Handwritten Optical Music
Recognition. In Proceedings of the 14th International Conference on Document Analysis

and Recognition, Nov 9-12; Kyoto, Japan, 39-46. ISSN: 2379-2140.

69


https://www.researchgate.net/publication/277292831_The_2005_pascal_visual_object_classes_challenge
https://www.researchgate.net/publication/277292831_The_2005_pascal_visual_object_classes_challenge

Hankinson, A., J. A. Burgoyne, G. Vigliensoni, and I. Fujinaga. 2012. Creating a Large-scale
Searchable Digital Collection from Printed Music Materials. In Proceedings of the 21st
International Conference on World Wide Web, April 16—20; Lyon, France, 903-908. ACM.

Hankinson, A., P. Roland, and I. Fujinaga. 2011. The Music Encoding Initiative as a
Document-Encoding Framework. In Proceedings of the 12th International Society for Mu-
sic Information Retrieval Conference, Oct 24-28; Miami, FL, 293-298.

He, K., X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image Recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
June 26 — July 1; Las Vegas, NV, 770-778.

Heusel, M., H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. 2017. GANs Trained
by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(Eds.), Advances in Neural Information Processing Systems 30, 6626-6637.

Huang, Z., X. Jia, and Y. Guo. 2019. State-of-the-Art Model for Music Object Recognition
with Deep Learning. Applied Sciences 9 (13): 2645-2665.

Karras, T., S. Laine, and T. Aila. 2018. A Style-Based Generator Architecture for Generative
Adversarial Networks. ArXiv abs/1812.04948. arXiv: 1812.04948.

Kourou, K., T. P. Exarchos, K. P. Exarchos, M. V. Karamouzis, and D. I. Fotiadis. 2015.
Machine Learning Applications in Cancer Prognosis and Prediction. Computational and
Structural Biotechnology Journal 13: 8-17.

LeCun, Y., Y. Bengio, and G. Hinton. 2015. Deep Learning. Nature 521 (7553): 436—444.

LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel. 1989. Backpropagation Applied to Handwritten Zip Code Recognition. Neural
Computation 1 (4): 541-551.

Lin, T.-Y., P. Goyal, R. Girshick, K. He, and P. Dollar. 2017. Focal Loss for Dense Object
Detection. In Proceedings of the IEEE International Conference on Computer Vision, Oct

22-29; Venice, Italy, 2980-2988.

Liu, L., W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and M. Pietikdinen. 2020. Deep
Learning for Generic Object Detection: A Survey. International Journal of Computer
Vision 128 (2): 261-318.

Liu, Z., P. Luo, X. Wang, and X. Tang. 2015. Deep Learning Face Attributes in the Wild.
In Proceedings of the International Conference on Computer Vision (ICCV), Dec 7-13;
Santiago, Chile.

70



Long, J., E. Shelhamer, and T. Darrell. 2015. Fully Convolutional Networks for Semantic
Segmentation. arXiv:1411.4038 [cs]. arXiv: 1411.4038.

Metaj, S., and F. Magnolfi. 2019. MNR: MUSCIMA Notes Recognition. Using Faster R-CNN
on HandwrittenMusic Dataset. Master’s thesis, Politecnico di Milano.

Miyao, H., and M. Okamoto. 2004. Stave Extraction for Printed Music Scores Using DP
Matching. Journal of Advanced Computational Intelligence and Intelligent Informatics 8:
208-215.

Oeldorf, C., and G. Spanakis. 2019. LoGANv2: Conditional Style-Based Logo Generation
with Generative Adversarial Networks. In Proceedings of the 2019 18th IEEE Interna-
tional Conference On Machine Learning And Applications (ICMLA), Dec 16-19; Boca
Raton, FL, 462-468.

Ongiin, C., and A. Temizel. 2018. Paired 3D Model Generation with Conditional Generative
Adversarial Networks. In Proceedings of the European Conference on Computer Vision
(ECCV), Sep 8-14; Munich, Germany, 473-487.

Pacha, A., and J. Calvo-Zaragoza. 2018. Optical Music Recognition in Mensural Notation
with Region-Based Convolutional Neural Networks. In Proceedings of the 19th Interna-
tional Society for Music Information Retrieval Conference, Sep 23-27; Paris, France,
240-247.

Pacha, A., K.-Y. Choi, B. Cotiasnon, Y. Ricquebourg, R. Zanibbi, and H. Eidenberger. 2018.
Handwritten Music Object Detection: Open Issues and Baseline Results. In Proceedings
of the 13th International Workshop on Document Analysis Systems, Apr 24-27; Vienna,
Austria, 163-168.

Pacha, A., J. Haji¢ jr., and J. Calvo-Zaragoza. 2018. A Baseline for General Music Object
Detection with Deep Learning. Applied Sciences 8 (9): 1488-1508.

Papageorgiou, C., and T. Poggio. 2000. A Trainable System for Object Detection. Interna-
tional Journal of Computer Vision 38 (1): 15-33.

Plastiras, G., C. Kyrkou, and T. Theocharides. 2018. Efficient ConvNet-based Object De-
tection for Unmanned Aerial Vehicles by Selective Tile Processing. In Proceedings of
the 12th International Conference on Distributed Smart Cameras, Sep 3—4; Eindhoven,
Netherlands.

Radford, A., L. Metz, and S. Chintala. 2016. Unsupervised Representation Learning with
Deep Convolutional Generative Adversarial Networks. In Proceedings of the 4th Interna-

tional Conference on Learning Representations, May 2-4; San Juan, Puerto Rico.

71



Ramirez, C., and J. Ohya. 2014. Automatic Recognition of Square Notation Symbols in West-
ern Plainchant Manuscripts. Journal of New Music Research 43 (4): 390-399. Publisher:
Taylor and Francis Ltd.

Rebelo, A., I. Fujinaga, F. Paszkiewicz, A. Marcal, C. Guedes, and J. Cardoso. 2012. Optical
Music Recognition: State-of-the-art and Open Issues. International Journal of Multimedia
Information Retrieval 1 (3): 173-190.

Redmon, J., and A. Farhadi. 2018. Yolov3: An Incremental Improvement. arXiv preprint
arXi:1804.02767.

Regimbal, J., M. Zoé, G. Vigliensoni, A. Tran, and I. Fujinaga. 2019. Neon2: A Verovio-based
Square-Notation Editor. Presented at the Music Encoding Conference 2019, May 29 —
June 1; Vienna, Austria. https://music-encoding.org/conference/2019/abstracts_
mec2019/Neon2. pdf.

Ren, S., K. He, R. Girshick, and J. Sun. 2015. Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett (Eds.), Advances in Neural Information Processing Systems
28, 91-99. Red Hook, NY: Curran Associates, Inc.

Rezende, D. J., S. Mohamed, and D. Wierstra. 2014. Stochastic Back-propagation and Vari-
ational Inference in Deep Latent Gaussian Models. ArXiv abs/1401.4082.

Ronneberger, O., P. Fischer, and T. Brox. 2015. U-Net: Convolutional Networks for Biomedi-
cal Image Segmentation. In N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi (Eds.),
Medical Image Computing and Computer-Assisted Intervention — MICCAI 2015, Cham,
Switzerland, 234-241. Springer International Publishing.

Salimans, T., I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. 2016.
Improved Techniques for Training GANs. In Advances in Neural Information Processing
Systems 29, 2234-2242. arXiv: 1606.03498.

Shmelkov, K., C. Schmid, and K. Alahari. 2018. How Good is My GAN? In Proceedings of the
FEuropean Conference on Computer Vision, Volume 11206 of Lecture Notes in Computer
Science, Sep 8-14; Munich, Germany, 218-234.

Simard, P.; D. Steinkraus, and J. Platt. 2003. Best Practices for Convolutional Neural Net-
works Applied to Visual Document Analysis. In Proceedings of the Seventh International
Conference on Document Analysis and Recognition, Aug 3—6; Edinburgh, Scotland, 958—
963.

Simonyan, K., and A. Zisserman. 2014. Very Deep Convolutional Networks for Large-scale

72


https://music-encoding.org/conference/2019/abstracts_mec2019/Neon2.pdf
https://music-encoding.org/conference/2019/abstracts_mec2019/Neon2.pdf

Image Recognition. arXww preprint arXiv:1409.1556.

Sixt, L., B. Wild, and T. Landgraf. 2018. RenderGAN: Generating Realistic Labeled Data.
Frontiers in Robotics and Al 5: 66.

Szegedy, C., S. Toffe, and V. Vanhoucke. 2017. Inception-v4, Inception-ResNet and the Impact
of Residual Connections on Learning. In Proceedings of the 31st AAAI Conference on
Artificial Intelligence, Feb 4-9; San Francisco, CA, 4278-4284.

Tuggener, L., 1. Elezi, J. Schmidhuber, M. Pelillo, and T. Stadelmann. 2018. DeepScores: A
Dataset for Segmentation, Detection and Classification of Tiny Objects. In Proceedings
of the 24th International Conference on Pattern Recognition, Aug 20-24; Beijing, China.

Uijlings, J. R., K. E. Van De Sande, T. Gevers, and A. W. Smeulders. 2013. Selective Search
for Object Recognition. International Journal of Computer Vision 104 (2): 154-171.

Unel, O. F., B. O. Ozkalayci, and C. Cigla. 2019. The Power of Tiling for Small Object
Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, June 16-20; Long Beach, CA, 582-591.

van der Wel, E., and K. Ullrich. 2017. Optical Music Recognition with Convolutional
Sequence-to-Sequence Models. arXiv preprint arXw:1707.04877.

Vigliensoni, G., J. A. Burgoyne, A. Hankinson, and I. Fujinaga. 2011. Automatic Pitch
Recognition in Printed Square-Note Notation. In Proceedings of the 12th International
Society for Music Information Retrieval Conference, Oct 24-28; Miami, FL, 423-428.

Wang, T.-C., M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro. 2018. High-
Resolution Image Synthesis and Semantic Manipulation with Conditional GANs. In Pro-
ceedings of the 2018 IEEE/CVFE Conference on Computer Vision and Pattern Recogni-
tion, June 18-23; Salt Lake City, UT, 8798-8807.

Wick, C., A. Hartelt, and F. Puppe. 2019. Staff, Symbol and Melody Detection of Medieval
Manuscripts Written in Square Notation Using Deep Fully Convolutional Networks. Ap-
plied Sciences 9 (13): 2646-2673.

Wick, C., and F. Puppe. 2019. OMMRA4all: a Semiautomatic Online Editor for Medieval
Music Notations. In J. Calvo-Zaragoza and A. Pacha (Eds.), Proceedings of the 2nd In-
ternational Workshop on Reading Music Systems, Nov 2; Delft, The Netherlands, 31-34.

73



	Abstract
	Résumé
	Acknowledgements
	Introduction
	Thesis Organization

	Background
	Square Notation
	Machine Learning
	Deep Learning
	Object Detection
	Data Augmentation

	Generative Adversarial Networks (GANs)
	GANs and Image Processing
	Using GANs for Creating Training Data

	Optical Music Recognition
	OMR for Square Notation
	Recent Applications of Object Detection in OMR


	Methods
	Overview of Workflow
	Real vs Synthetic Manuscript Pages
	Salzinnes Antiphonal
	Einsiedeln Codex 611(89)

	Extracting Existing Manuscript Information
	Creating Synthetic Glyphs and Neumes
	Creating Synthetic Manuscript Pages
	Staff Height Normalization
	Page Generation

	Object Detection of Glyphs and Neumes
	Object Detection Algorithm
	Page Tiling
	Restitching

	Position and Pitch Classification
	Evaluation Metrics

	Experiments
	Dataset Creation
	Experimental Overview
	GAN Manuscript Data Synthesis
	Experiment I
	Experiment II
	Discussions

	Conclusions
	Future Work
	Contributions

	Appendices
	Appendix Oblique Error Weighting

