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Abstract
Motor performance decline observed during aging is linked to changes in brain structure and func-

tion, however, the precise neural reorganization associated with these changes remains largely

unknown. We investigated the neurophysiological correlates of this reorganization by quantifying

functional and effective brain network connectivity in elderly individuals (n = 11; mean age = 67.5

years), compared to young adults (n = 12; mean age = 23.7 years), while they performed visually-

guided unimanual and bimanual handgrips inside the magnetoencephalography (MEG) scanner.

Through a combination of principal component analysis and Granger causality, we observed age-

related increases in functional and effective connectivity in whole-brain, task-related motor net-

works. Specifically, elderly individuals demonstrated (i) greater information flow from contralateral

parietal and ipsilateral secondary motor regions to the left primary motor cortex during the

unimanual task and (ii) decreased interhemispheric temporo-frontal communication during the

bimanual task.Maintenance of motor performance and task accuracy in elderly was achieved by hyp-

eractivation of the task-specific motor networks, reflecting a possible mechanism by which the aging

brain recruits additional resources to counteract known myelo- and cytoarchitectural changes. Fur-

thermore, resting-state sessions acquired before and after each motor task revealed that both older

and younger adults maintain the capacity to adapt to task demands via network-wide increases in

functional connectivity. Collectively, our study consolidates functional connectivity and directionality

of information flow in systems-level cortical networks during aging and furthers our understanding

of neuronal flexibility inmotor processes.

KEYWORDS

aging, granger causality, magnetoencephalography, motor control, network connectivity

1 | INTRODUCTION

Advancing age is associated with decreased cognitive and motor perfor-

mance in humans (Enoka et al., 2003; Seidler et al., 2010). Motor decline

often affects skills that are necessary to perform many daily life tasks as,

for instance, hand motor control (e.g., reaching and grasping objects),

bimanual coordination (e.g., tying shoelaces), as well as gait and balance

(e.g., walking; Maes, Gooijers, de Xivry, Swinnen, & Boisgontier, 2017;

Seidler et al., 2010). With an ever-increasing aging society (Krueger et al.,

2015), identifying the neural correlates underpinning the deterioration of

motor control has become a primary focus of research (Song et al., 2014;

Tomasi & Volkow, 2012). Early studies highlighted age-related structural

atrophy and aberrant functional activity in primary and secondary motor

areas (Calautti, Serrati, & Baron, 2001; Mattay et al., 2002; Sullivan,
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Rohlfing, & Pfefferbaum, 2010; Ward, Swayne, & Newton, 2008), while

more recent accounts have selectively focused on altered communication

in functional brain networks involved in sensory and cognitive functions

(Fujiyama et al., 2016; King et al., 2017; Park, Boudrias, Rossiter, &Ward,

2012; Siman-Tov et al., 2016). Despite these quantitative reports, a neu-

robiological framework consolidating whole-brain functional connectivity

and directionality of information flowwithinmacroscale cortical networks

recruited during unimanual and bimanual movements remains to be

established in healthy aging.

Brain reorganization in aging is believed to take place in order to

maintain motor performance despite gray and white matter volume loss

(Mora, Segovia, & del Arco, 2008; Sullivan et al., 2010). Age-related thin-

ning of the cerebral cortex occurs predominantly in the primary motor

cortex (M1) and calcarine sulcus (Salat et al., 2004). In addition to struc-

tural changes, growing evidence suggests a compromised functioning of

the motor network during healthy aging (for comprehensive reviews, see

Maes et al., 2017; Seidler et al., 2010). One of the main theories that has

emerged to explain brain reorganization in light of these age-related

structural changes posits that activity levels within a given motor-related

area is increased in an attempt to compensate for neuronal loss and mye-

lin deterioration (Cabeza, Anderson, Locantore, & McIntosh, 2002). Mag-

netoencephalography (MEG) represents a powerful tool to investigate

task-related and resting-state dynamic cortical networks with millisecond

resolution and consequently unravel the complex functional changes

involved in healthy aging. Notably, MEG captures real-time neuronal

activity by measuring extracranial neuromagnetic fields and is less prone

to spatial distortions caused by head tissues than electroencephalography

(Baillet, 2017; Supek&Aine, 2014). An increasing number ofMEG studies

have shown great promise formapping the brain's spatiotemporal charac-

teristics in the context of aging. For instance, resting-state MEG studies

have reported reduced slow oscillatory activity (<8 Hz) but an increase in

faster oscillations (8–30 Hz) in older adults (Bruce, Bruce, & Vennelaganti,

2009; Kielar et al., 2016; Vlahou, Thurm, Kolassa, & Schlee, 2014). These

findings are in line with a previous study reporting faster neuronal firing

rates and oscillation frequencies in task-activated cortical regions in

elderly individuals (Hong&Rebec, 2012). This effect is thought to indicate

the presence of a compensatory mechanism that counteracts the

decrease in nerve conduction velocity due to white matter atrophy in

healthy aging (Kielar et al., 2016). While the examination of brain oscilla-

tions can provide direct information on networks electrophysiology, the

analysis of connectivity time series using this modality remains in its

infancy, with few availablemethods (O'Neill et al., 2017).

Harnessing the high spatiotemporal resolution of MEG, our study

introduces a novel method to track age-related functional and effective

connectivity changes in whole-brain networks underlying the production

of unimanual and bimanual handgrips. Our main hypothesis was that the

aging brain counteracts neurobiological changes by recruiting additional

resources in motor-related networks (i.e., increased functional connectiv-

ity or hyperactivity). Consistent with the extensive literature on the role

of stimulus-locked evoked alpha (8–12 Hz) and beta (13–30 Hz)

responses during motor tasks (Crone et al., 1998; Willemse et al., 2010;

Yuan et al., 2010), we employed principal component analysis (PCA) to

derive brain networks that were (i) within those frequency ranges,

(ii) consistent across all participants to allow direct comparison of network

connectivity between groups, and (iii) specifically underlying hand

movements. In line with previous evidence highlighting a loss of hemi-

spheric asymmetry during normal aging (Heuninckx, Wenderoth, Deb-

aere, Peeters, & Swinnen, 2005; Heuninckx, Wenderoth, & Swinnen,

2008;Ward & Frackowiak, 2003), we further usedGranger causality anal-

ysis to evaluate the directionally of information flow within the identified

task-related networks. We expected that elderly individuals would show

an increase in bilateral causal influences among motor-related regions.

Aside from reorganization of task-based networks, modulation of resting-

state connectivity following performance of motor tasks has been fre-

quently demonstrated in fMRI studies of young adults (Ma et al., 2010;

Tung et al., 2013), whereas evidence of task-induced modulation in older

adults remains scarce (Solesio-Jofre et al., 2018). Leveraging an innovative

study design with interspersed resting-state and task sessions, we were

able to assess whether aging affects resting-state network connectivity

immediately following the performance of unimanual and bimanual hand

movements. We hypothesized that the expected increase in task-related

connectivity in elderly subjects would lead to a subsequent increase in

resting-state connectivity immediately following the task. This would pro-

vide robust evidence that performing a repetition of handgripmovements

can result in age-specific functional changes in the brain, therefore pro-

viding insights into the mechanisms by which the healthy older brain

adapts to different levels of task demands.

2 | METHODS

2.1 | Participants

MEG recordings as well as structural T1w images were collected from

12 healthy young adults (mean age = 23.7 years) and 11 healthy

elderly individuals (mean age = 67.4 years). Details regarding data

acquisition and preprocessing are described in the Supporting Infor-

mation. Details regarding demographic information and behavioral

performance are presented in Table 1. Both groups were matched

with respect to gender and education. Inclusion criteria for all partici-

pants were as follows: (i) no present or previous history of a psychiat-

ric conditions, (ii) aged between 18-30 years (young group) and

60–75 years (elderly group), and (iii) right-handed according to the

Edinburgh Handedness Inventory (Oldfield, 1971). Exclusion criteria

included: (i) contraindications for MRI, or other limitations that would

interfere with MRI or MEG data acquisition (e.g., claustrophobia, metal

implants) and (ii) a Mini-Mental State Examination (MMSE) score ≤ 24.

Written informed consent was obtained from all participants. The

study was approved by the Research Ethics Board of the Montreal

Neurological Institute and Hospital, McGill University.

2.2 | Experimental design

As detailed in Supporting Information, motor performance of both hands

was assessed for each participant via measurements of (i) handgrip

strength, (ii) fine manual dexterity (nine hole peg test; NHPT), and

(iii) unilateral gross manual dexterity (box and block test; BBT).Motor per-

formance scores for the dominant hand (right hand) and nondominant

hand (left hand)were used for group comparison.
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All participants underwent three separate 5 min resting-state ses-

sions, interspersed with two isometric handgrip tasks (Figure 1). During

each resting-state session, participants were instructed to keep their eyes

open and fixate on a cross. The firstmotor task consisted of 50 unimanual,

visually-paced, isometric right-handgrips, in which subjects had to apply

force to track a ramp target. Prior to scanning, subjectswere asked to grip

themanipulandumwith maximum force in order to assess their maximum

voluntary contraction (MVC). These values were then used to set the

subject-specific target forces of 15% and 30% of MVC. In each trial, par-

ticipants had to maintain a steady force at 15% of MVC for 3 s, followed

by a linear increase of 3 s to reach and maintain a steady force at 30% of

MVC for 3 s. The second motor task consisted of 50 bimanual, visually-

paced, isometric handgrips performed at 15%ofMVC (6 s each).

2.3 | Task-based functional connectivity and
statistical analyses

The task-based functional connectivity analysis pipeline (Supporting Infor-

mation Figure S1) was conducted in Brainstorm (Tadel, Baillet, Mosher,

Pantazis, & Leahy, 2011) andMATLAB, andwas similar to that used in pre-

vious research (Larivière et al., 2017; Larivière, Ward, & Boudrias, 2018;

Whitman et al., 2016). Specifically, for every participant, the task-related

data were down-sampled to 160 Hz and epoched offline with a post-

stimulus timewindowof 9,000 ms (unimanual task) and 6,000 ms (biman-

ual task) with the first time point (time = 0) corresponding to stimulus

onset. A linearly-constrained minimum variance (LCMV) beamformer

spatial filtering approach (Van Veen & Buckley, 1988) was used on the

subject-specific task-averaged epoched data to reconstruct a single time

series for each of the 148 cortical brain regions defined by the Destrieux

sulcogyral-based atlas (Destrieux, Fischl, Dale, & Halgren, 2010). For each

pre-defined source location (i.e., brain region), activity was estimated at

each vertex and subsequently averaged to produce a single time series

per brain region. Time-frequency decomposition of source time series

was then performed using Morlet wavelets (Tallon-Baudry & Bertrand,

1999) for two frequency bands of interest: alpha (8–12 Hz) and beta

(13–30 Hz; Crone et al., 1998; Willemse et al., 2010; Yuan et al., 2010).

Trial averaging preceded time-frequency analysis to specifically capture

task-locked modulations and minimize non-task-related signals (David,

Kilner, & Friston, 2006). Frequency-specific source time series for every

subject were combined to create two data matrices (one per frequency

band), each with columns corresponding to brain regions and rows

corresponding to poststimulus time points × subjects. Singular value

decomposition (SVD), of which PCA is a special case, was performed on

each of the four standardized data matrices. For every component

extracted, the resulting decomposition yielded (i) a spatial pattern of task-

related variance in brain activity (i.e., a network constrained to the domi-

nant 15% of interconnected brain regions derived from component load-

ings), resulting in independent sources of variance reflecting task-specific

brain networks and (ii) component scores (i.e., time series) providing an

estimate of the network's engagement at each poststimulus time point

during the length of the trial, with component scores at each time point

reflecting the influence of the spatial pattern for that given network. In

other words, component score time series represent the strength of each

network's signal, with higher/lower component scores depicting a

stronger/weaker influence from that spatial pattern, and a component

score of zero corresponding to baseline. The network-level connectivity

analyses of oscillatory power described above were performed separately

for eachmotor task (i.e., unimanual and bimanual).

Group differences in the activation level of each functional brain

network at every poststimulus time point were statistically compared

using repeated measures analysis of variance (ANOVA). Notably,

repeated measures ANOVAs are suitable to test for group differences

between time series as they do not assume non-independence among

the repeated observations and allow for correlation between repeated

measures within subjects. As such, the amplitude envelope of each net-

work's associated time series was extracted using the Hilbert transform

and then submitted to repeated measures ANOVA to test for group and

time differences. For every unimanual network identified, the Hilbert

transform values at each time point and for each subject were submitted

TABLE 1 Participants' demographic information and behavioral

scores

Variable Young Elderly

Sex (male/female) 8/4 8/3

Handedness (right/left) 12/0 11/0

Age (years)a 23.7 (2.9) 67.4 (3.9)

BBT (right)b 67.5 (5.5) 57.1 (4.2)

BBT (left)b 66.7 (5.5) 56.8 (4.8)

NHPT (right)b 0.58 (0.1) 0.44 (0.04)

NHPT (left)c 0.52 (0.1) 0.41 (0.06)

Grip strength (right) 46.2 (15.1) 39.1 (9.3)

Grip strength (left) 44.1 (16.1) 34.8 (7.9)

Note. Standard deviations are in parentheses. BBT: box and block test;
NHPT: nine-hole peg test.
aElderly > young, p < 0.0001.
bYoung > elderly, p < 0.0005.
cYoung > elderly, p < 0.01.

FIGURE 1 Schematic overview of the experiment protocol carried out in the MEG scanner. Subjects performed two hand motor control tasks

(unimanual, bimanual) interspersed with three 5 min resting-state sessions. Each motor task consisted of 50 trials with variable interstimulus
intervals [Color figure can be viewed at wileyonlinelibrary.com]
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to a 1,441 × 2 repeated-measures ANOVA, with the within-subjects

factor of Poststimulus Time (1,441 time points were estimated after

stimulus onset), and between-subjects factor of Group (elderly individ-

uals and young adults). Similarly, for the identified bimanual networks,

these Hilbert transform values for every subject were submitted to a

962 × 2 repeated-measures ANOVA, with the within-subjects factor of

Poststimulus Time (962 time points), and between-subjects factor of

Group. Moreover, we carried out a power analysis using G*Power (Franz

Faul, Universität Kiel, Germany) and calculated the required effect sizes

for the current study, with a sample size of 23 (n1 = 12, n2 = 11),

power = 0.8, and alpha = 0.05. Minimum effect sizes based on our sam-

ple size are Cohen's f = 0.046 (unimanual task) and Cohen's f = 0.051

(bimanual task).

2.4 | Granger causality analysis of task-specific brain
networks

Granger causality has been increasingly used to identify the presence

of directional interactions (or causal relations) in physiological systems

(Schiatti, Nollo, Rossato, & Faes, 2015). This approach relies on the

concept that a causal influence from a source region to a target region

can be assumed if past information about the source region (i.e., its

corresponding time series) improves the prediction of future values of

the target region. In other words, Granger causality can provide

insights as to how information propagates from one brain region to

another. We conducted Granger causality connectivity analysis using

the narrow band time series from each region within the task-specific,

PCA-derived functional brain networks. Specifically, Granger causality

was performed on each subject individually, and binary outcomes

were coded 0 for nonsignificant causal relations (p > 0.05) and 1 for

significant causal relations (p < 0.05) among all pairs of brain regions.

The model order parameter of our multivariate autoregressive model

was optimized using the minimum description length criterion and sta-

tistical significance of every pairwise causal relation was detected

using an F-test. Findings were corrected for multiple comparisons,

controlling at a false discovery rate of p < 0.05. Significant group-level

causality maps (constrained to the significant, subject-level causal rela-

tions) were then detected using binomial p value computation for test-

ing proportions. Specifically, for a given causal link, the binomial test

uses the mean of all coded binary outcomes within a group (i.e., 0 s

and 1 s) to compute the number of subjects presenting this significant

causal link that is required for this link to be significant at the group-

level (Siegal, 1956). As such, the resulting task-based Granger causal-

ity maps display the dominant patterns of cortical information flow

that were significant both at the subject- and group-levels for every

task-specific brain network.

2.5 | Resting-state functional connectivity and
statistical analyses

For each participant and each of the three resting-state sessions, the

MEG data were down-sampled to 300 Hz and epoched offline in 10 s

windows to obtain meaningful activation from both low- and high-

frequency modulations (Supporting Information Figure S2). The choice

of time window was further determined from previous work showing

fairly robust test–retest reliability when using epochs of 10 s resting-

state data (Colclough et al., 2016; Jin, Seol, Kim, & Chung, 2011). Epochs

in which significant signal artifacts were observed were rejected and the

remaining “clean” 10 s windows were concatenated across time. The

LCMV beamformer spatial filtering approach (Van Veen & Buckley,

1988) was subsequently used on the subject-specific, concatenated data

to reconstruct a single time series for all of the 148 cortical brain regions

defined by the Destrieux atlas (Destrieux et al., 2010). Each time series

was corrected for signal leakage effects (i.e., spurious correlations

between the inferred cortical sources) using a symmetric, multivariate

correction method intended for all-to-all functional connectivity analysis

(Colclough, Brookes, Smith, & Woolrich, 2015). The Hilbert transform

was subsequently used to extract the instantaneous power and phase

within six frequency bands of interest: delta (1–4 Hz), theta (5–7 Hz),

alpha (8–12 Hz), beta (13–30 Hz), gamma “low” (31–80 Hz), and gamma

“high” (81–150 Hz). Resting-state functional connectivity analysis was

performed for each of the six frequency bands by systematically comput-

ing pairwise envelope correlations between all 148 source-reconstructed

brain regions. The resulting all-to-all connectivity matrices (one per fre-

quency band) were sorted in functional networks according to the

recently proposed seven-network brain cortical parcellation estimated

by intrinsic functional connectivity using resting-state fMRI data from

1,000 healthy adults (Yeo et al., 2011). This network parcellation pro-

vided spatial consistency across all subjects as well as between resting-

state runs, thereby making direct comparison of functional network con-

nectivity possible. Here, functional connectivity was defined as themean

connectivity strength (i.e., the mean of all pairwise correlations) within

each of the pre-defined seven resting-state networks. Differences

between groups (young vs. elderly), runs (resting-state 1, 2, and 3), and

mean connectivity strength for each of the seven resting-state networks

were identified by carrying out six 7 × 3 × 2 mixed-model ANOVAs

(one per frequency band). Tests of sphericity were carried out for all

ANOVAs and Greenhouse–Geisser adjusted degrees of freedom were

checked. Original degrees of freedom are reported as any violations of

sphericity did not affect the results.

2.6 | Associations between task-based findings and
resting-state connectivity changes

To relate resting-state connectivity changes to task-based functional

network activity and motor task performance, we calculated Pearson

correlations between resting-state connectivity changes following

both unimanual and the bimanual tasks (i.e., taken as the difference in

connectivity between the second and first resting-state scan as well

as between the third and second resting-state scan, respectively) and

(i) the levels of coordinated activity in each task-related network and

(ii) motor task performance scores.

3 | RESULTS

3.1 | Behavioral results

As displayed in Table 1, the behavioral scores for each hand were

entered into two-sample t tests to compare motor performance
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between young and elderly individuals. For both hands, young adults

performed significantly better than elderly individuals on the BBT and

NHPT (p values < 0.01), whereas grip strength did not differ between

groups (p values > 0.09).

As for task performance, we defined task accuracy as the differ-

ence between the grip force applied and the position of the ramp tar-

get; higher accuracy was achieved when participants closely matched

the target force, defined by the middle of the target ramp. We com-

puted the mean accuracy of all trials for every participant (within each

task independently), and subsequently tested for significant differ-

ences between young and elderly individuals for each task by entering

the accuracy values into two-sample t tests. No significant differences

were observed between both groups with respect to task accuracy

during the unimanual task (using the dominant right hand; p > 0.3) as

well as during the bimanual task (using the dominant right hand and

the non-dominant left hand; p values > 0.1).

3.2 | Task-based functional connectivity results

Inspection of the scree plot of singular values was carried out for the

two frequency bands of interest (alpha, beta) and for each motor task

(unimanual, bimanual). Visual inspection of every component (i.e., network)

extracted from our task-based analysis was performed. Brain networks

which did not include motor regions were excluded from the analysis and

are not discussed below. This led to the inclusion of three unimanual net-

works (all beta-related) and three bimanual networks (two beta-related, one

alpha-related). The brain regions and estimated time series associated with

each network are displayed in Figure 2a–c (unimanual networks) and Figure

3a–c (bimanual networks), and described below. Anatomical descriptions

for each network are presented in Supporting Information Tables S1–S3

(unimanual networks) and Supporting Information Tables S4–S6 (bimanual

networks).

3.3 | Functional networks underlying unimanual
handgrips

3.3.1 | Ventral Frontoparietal network

This network was the first component extracted from beta frequency

activity and accounted for 18.3% of task-related variance (Supporting

Information Figure S3a). Activation in this networkwas largely lateralized

to the right hemisphere and specifically included the temporoparietal,

anterior cingulate, occipital, as well as the bilateral anterior inferior fron-

tal cortices (Figure 2a). This spatial pattern is highly consistent with that

of a frontoparietal attention network known to play a role in detecting

behaviorally relevant stimuli and mediating bottom-up processing

(Corbetta & Shulman, 2002; Wen, Yao, Liu, & Ding, 2012). This network

was therefore identified as the ventral frontoparietal network. The Hilbert

transform values (i.e., envelope) of the network's associated time series

were entered into a mixed-model ANOVA, and a significant main effect

of Poststimulus Timewas observed (F1,440, 30,240 = 1.16, p < 0.001). The

Poststimulus Time × Group interaction was also significant (F1,440,

30,240 = 1.19, p < 0.001; Cohen's f = 0.24), and was caused by increased

activity in the elderly group during the sustained handgrip periods

(i.e., 0–3 s and 6–9 s; Figure 2a).

3.3.2 | Default-mode network

This network was the second component extracted from beta frequency

activity and accounted for 8.4% of task-related variance (Supporting

Information Figure S3a). As displayed in Figure 2b, this network recruited

core regions of the default-mode network such as the right anterior cingu-

late cortex, precuneus, inferior temporal cortex, as well as the bilateral

ventromedial prefrontal and lateral parietal cortices. Although activation

of the default-mode network has been predominantly observed under

task-free or “resting-state” conditions, recent studies have reported sig-

nificant default-mode network suppression during attention-demanding

tasks (Anticevic et al., 2012). While a known limitation of functional con-

nectivity measured using in vivo neuroimaging lies in an inability to distin-

guish excitatory from inhibitory connections (Park & Friston, 2013),

beta-related default-mode activity has been previously identified as a

signature of task-related fMRI deactivations (Laufs et al., 2003). The time

series envelope values associated with this network were entered into a

mixed-model ANOVA; main effects of Poststimulus Time and Group, as

well as the interaction, were all not significant (p values > 0.2), suggesting

that activity within this network did not differ across time or between

groups (Figure 2b).

3.3.3 | Motor network

This network was the third component extracted from beta frequency

activity and accounted for 5.1% of task-related variance (Supporting

Information Figure S3a). This network included predominantly left

motor-related regions, notablyM1, primary and secondary sensory corti-

ces (S1, S2), and the superior frontal gyrus extending into the supplemen-

tary motor area (SMA). It also included activation in right S1 as well as

the superior and inferior parietal lobules. Based on this spatial pattern

(Figure 2c), this network was labeled themotor network.We found a sig-

nificantmain effect of Group (F1, 30,240 = 4.12, p = 0.05) and a significant

Poststimulus Time × Group interaction (F1,440, 30,240 = 1.26, p < 0.001;

Cohen's f = 0.25). Figure 2c shows that both groups produced similar

levels of activity; however, relative to the young group, the time series of

elderly individuals were characterized by distinct sharp activation peaks,

whichmay underlie the significant interaction.

3.4 | Functional networks underlying bimanual
handgrips

3.4.1 | Left-dominant motor network

This network was the first component extracted from beta frequency

activity and accounted for 19.4% of task-related variance (Supporting

Information Figure S3b). Activations in this network were mostly

lateralized to the left hemisphere, and included M1 extending anteri-

orly into PMd and PMv, S1, inferior parietal lobule, and bilateral occip-

ital cortex (Figure 3a). This component was therefore labeled the left-

dominant motor network. As evidenced by a significant Poststimulus

Time × Group interaction (F961, 22,125 = 1.10, p < 0.05; Cohen's

f = 0.23), elderly individuals exhibited distinctly higher levels of activ-

ity throughout the entire isometric bimanual handgrip relative to

young adults.
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3.4.2 | Bilateral motor network

This network was the second component extracted from beta frequency

activity and accounted for 7.8% of task-related variance (Supporting

Information Figure S3b). The spatial pattern of interconnected brain

regions in this network was characterized by bilateral M1 activations

(extending anteriorly into PMd), as well as left S1 and anterolateral parie-

tal cortex activations (Figure 3b). This component was thus identified as

the bilateral motor network. A mixed-model ANOVA carried out on the

FIGURE 2 Unimanual task-based networks. (a) Ventral frontoparietal network, (b) default-mode network, (c) motor network. Compared to young

adults, elderly individuals showed increased task-based connectivity in networks subserving attention-driven and motor processes. The dominant
15% of component loadings (i.e., spatial pattern) for the first three principal components extracted from the beta frequency (13–30 Hz) are
mapped to the surface template (left). The estimated time series (i.e., component scores) associated with each network represent the network's
engagement at each poststimulus time point, with higher component scores reflecting a stronger oscillatory signal from the corresponding
functionally connected network (right). The shaded area represents the standard error of the group mean. Contralateral and ipsilateral with
respect to the moving (right) hand [Color figure can be viewed at wileyonlinelibrary.com]
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Hilbert transform values of the network's associated time series revealed

significant main effects of Poststimulus Time (F961, 20,181 = 1.16,

p < 0.0005), Group (F1, 20,181 = 7.17, p < 0.05) as well as a significant

Poststimulus Time × Group interaction (F961, 22,125 = 1.15, p < 0.005;

Cohen's f = 0.24). As seen in Figure 3b, this interaction was caused by

increased activity levels in the elderly group later in the trial (from 3 to

6 s), whereas young adults exhibited constant levels of activity through-

out the entire bimanual handgrip task.

FIGURE 3 Bimanual task-based networks. (a) Left-dominant motor network, (b) bilateral motor network, (c) right-dominant motor network.

Similar to the unimanual findings, relative to young adults, elderly individuals expressed varying degree of hyperconnectivity in cortical networks
underlying bimanual handgrips. The dominant 15% of component loadings (i.e., spatial pattern) for the first two principal components (a and b)
extracted from the beta frequency (13–30 Hz), and the first component (c) extracted from the alpha frequency (8–12 Hz) are mapped to the
surface template (left). The estimated time series (i.e., component scores) associated with each network represent the network's engagement at
each poststimulus time point, with higher component scores reflecting a stronger oscillatory signal from the corresponding functionally connected
network (right). The shaded area represents the standard error of the group mean [Color figure can be viewed at wileyonlinelibrary.com]
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3.4.3 | Right-dominant motor network

This network was the first component extracted from alpha frequency

activity and accounted for 25.6% of task-related variance (Supporting

Information Figure S3b). The corresponding functional network

included activations in and around right M1, specifically extending

anteriorly into PMd and posteriorly into the central sulcus, left inferior

parietal cortex, and bilateral occipital cortex (Figure 3c). Based on the

spatial distribution of the network, this component was labeled as

right-dominant motor network. The main effects of Poststimulus Time

and Group, as well as the interaction, were not significant (p values

> 0.4), suggesting that activity within this network did not differ

across time or between groups (Figure 3c).

3.5 | Association between behavioral scores and
brain activity

To examine the relationship between behavioral motor performance

and levels of task-related brain activity, we carried out Pearson corre-

lation analyses between task accuracy scores and the level of engage-

ment for each functional network (i.e., the component scores).

Despite the low variability in task accuracy scores between partici-

pants, older adults demonstrated a positive relationship between task-

related brain activity and behavioral motor scores in four functional

networks: default-mode and motor networks (unimanual task;

Supporting Information Figure S4a), as well as left- and right-dominant

motor networks (bimanual task; Supporting Information Figure S4b).

3.6 | Granger causality

We investigated the direction of information flow from and to every

brain region derived from all six task-based networks extracted from the

functional connectivity analysis. Binomial statistics revealed that causal

links were significant at the group-level if the links were significant at the

individual-level in at least five subjects (i.e., 5/12 for the young group and

5/11 for the elderly group), that is: p value = P(X ≥ 5 | p = μgroup) < 0.05.

We used a multivariate autoregressive model of order 3, meaning that

the time lag between interacting neuronal ensembles corresponded to

18.75 ms (i.e., 3/160). Granger causality maps for the unimanual and

bimanual networks as well as for each group are depicted in Figure 4a–f,

respectively. Brain region abbreviations for the Granger causality maps

are listed in Table 2.

3.7 | Resting-state functional connectivity results

A significant main effect of Run was observed in two frequency bands,

specifically delta (F2, 42 = 11.1, p < 0.005) and beta (F2, 42 = 4.7,

p < 0.05), whereas a significant main effect of Network was found in all

frequency bands: delta (F6, 126 = 14.3, p < 0.001), theta (F6, 126 = 14.3,

p < 0.001), alpha (F6, 126 = 56.3, p < 0.001), beta (F6, 126 = 14.3,

p < 0.001), gamma “low” (F6, 126 = 8.8, p < 0.001), and gamma “high”

(F6, 126 = 8.0, p < 0.001). Significant interactions involving Network,

Run, or Group were solely observed in the delta and beta frequency

bands and are described below.

3.8 | Task-induced connectivity changes in the delta
frequency band

Slow oscillatory connectivity (1–4 Hz) differed between young and

elderly subjects across different resting-state sessions as evidenced by a

significant Run × Group interaction (F2, 42 = 5.61, p < 0.05, η2p = 0.21).

Within-subjects contrasts yielded significant group differences from the

first to second resting-state run (p < 0.005), and from the second to the

third run (p < 0.05). As can be seen from Figure 5a, this interaction was

caused by elderly subjects exhibiting a large increase in delta connectivity

in the second resting-state run (i.e., after the unimanual task) relative to

young adults. Correlations between unimanual task-based functional

findings and resting-state connectivity changes (i.e., difference between

second and first resting-state scans) revealed a significant relationship

between ventral frontoparietal network activity and resting-state delta

increases following the unimanual task in older adults (r = 0.53, p < 0.05).

Moreover, a negative association between delta-related resting-state

connectivity changes and task performancewas observed in young adults

(r = −0.50, p < 0.05) but was marginal in elderly individuals (r = −0.30,

p > 0.18; Supporting Information Figure S5a). The analogous correlations

involving resting-state connectivity changes following the bimanual task

were all nonsignificant (Supporting Information Figure S6a).

3.9 | Task-induced connectivity changes in the beta
frequency band

The beta frequency (13–30 Hz) showed a significant Run×Network inter-

action (F12, 252 = 2.76, p < 0.05, η2p = 0.12), indicating that beta-related

resting-state network connectivity varies as a function of time

(i.e., resting-state run). Figure 5b shows that this interaction can be inter-

preted by enhanced connectivity from the first to the second resting run

(i.e., increased connectivity after the unimanual task), notably in the visual,

dorsal attention, and sensorimotor networks. A significant Network ×

Group interaction was also observed (F6, 126 = 3.43, p < 0.05, η2p = 0.14)

suggesting that elderly subjects demonstrated slightly higher beta oscilla-

tory connectivity than young adults in all resting-state networks (nonsig-

nificant, p values > 0.36), with the exception of the visual network

(p < 0.05; Figure 5c). Correlations between unimanual and bimanual task-

based functional findings and resting-state connectivity changes did not

yield any significant associations; however, older adults demonstrated a

strong positive relationship between beta-related resting-state connectiv-

ity increases following unimanual handgrips and task performance

(r = 0.64, p < 0.05), an association that was absent in young individuals

(r = 0.20, p > 0.26; Supporting Information Figures S5b,S6b).

4 | DISCUSSION

Wecompared functional brain network organization in young and elderly

individuals during and before/after unimanual and bimanual hand move-

ments. Capitalizing on the high spatiotemporal resolution of MEG, we

employed an innovative combination of functional and effective multi-

variate connectivity analyses to derive task-specific brain networks and

assess the direction of information flow among cortical areas. Relative to

young adults, elderly individuals showed hyperactivity in networks
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subserving attention-driven andmotor processes, in both unimanual and

bimanual hand motor control tasks. Granger causality analysis of task-

based networks revealed that elderly individuals were characterized by

an increased input to M1 contralateral to the hand used during the

unimanual task, whereas during the bimanual task, they exhibited a rela-

tive decrease in frontal connectivity. Taken together, these findings high-

light a novel age-related dichotomy in hemispheric communication

during unimanual and bimanual movements, with increased ipsilateral to

contralateral communication during the unimanual task and a substantial

decrease in interhemispheric communication during the bimanual task.

Furthermore, by measuring resting-state activity levels before and after

each motor task, we found that elderly individuals, similarly to young

adults, maintain the capacity to adapt to task demands via network-wide

connectivity increases. Collectively, our multi-method approach quan-

tifies functional and effective macroscale cortical organization changes,

and further expands our understanding of neuronal flexibility following

motor processes during aging.

4.1 | Age-related connectivity changes in unimanual
movements

Duringmovement and performance of visuomotor control tasks, primary

and secondary sensorimotor networks are engaged to implement motor

behavior, while networks comprising higher-order regions are recruited

to ensure cognitive resources and goal-directed behavior (Serrien, Ivry, &

Swinnen, 2007). Indeed, tasks that demand externalized attention to a

FIGURE 4 Within-network effective connectivity. Group-specific granger causality maps for the unimanual and bimanual task-based brain

networks are displayed in (a–c) and (d–f), respectively. Relative to young adults, elderly individuals displayed greater information flow from
contralateral parietal and ipsilateral secondary motor regions to the left primary motor cortex during the unimanual task as well as decreased
interhemispheric temporo-frontal communication during the bimanual task. Surface brains with blue nodes represent causal maps for the young
group and those with red nodes represent causal maps for the elderly group. Abbreviations for each brain region are listed in Table 2 [Color figure
can be viewed at wileyonlinelibrary.com]
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visually presented stimulus have been shown to reliably activate regions

within the frontoparietal network (Corbetta & Shulman, 2002; Spreng,

Stevens, Chamberlain, Gilmore, & Schacter, 2010), with older adults

showing higher activity increases in the prefrontal and parietal cortex

(Cabeza et al., 2002; Madden et al., 2007). Our findings revealed a similar

pattern of hyperconnectivity during the unimanual task, suggesting that

attentional demands are significantly increasedwhen elderly participants

are required to perform handgrips. Accordingly, this greater cortical acti-

vation could further reflect a mechanism by which goal-directed atten-

tional control is employed by elderly individuals in an attempt to dampen

the processing of task-irrelevant stimuli (Milham et al., 2002). Unlike the

attention network, in which increased activation was indicated by overall

higher oscillatory amplitude, enhanced activity in themotor network was

characterized by sharp beta peaks in elderly individuals. According to

computational modeling studies on transient neocortical beta rhythms,

these sharp beta oscillations likely reflect greater temporal synchrony in

synaptic input on cortical pyramidal neurons (Sherman et al., 2016). In

line with the latter finding, our effective connectivity analysis based on

Granger causality revealed enhanced interhemispheric information flow

from ipsilateral (right) primary and secondary sensorimotor regions as

well as parietal regions to contralateral (left) M1 during unimanual hand-

grips in the elderly group. Combined, these findings are in agreement

with an influential theory of brain reorganization suggesting a loss of

asymmetry in connectivity patterns in older adults (Heuninckx et al.,

2005, 2008;Ward & Frackowiak, 2003), possibly reflecting a mechanism

whereby greater synchrony of excitatory input currents are recruited to

TABLE 2 Granger causality brain region abbreviations

Brain region Abbreviation Brain region Abbreviation

Angular gyrus AG Middle frontal sulcus MFS

Anterior cingulate cortex ACC Middle occipital gyrus MOcC

Anterior superior temporal gyrus aSTG Occipital pole OcP

Calcarine cortex Cal Orbitofrontal cortex OFC

Central sulcus CS Parieto-occipital sulcus POS

Collateral sulcus ColS Posterior parietal cortex PCC

Cuneus Cun Precuneus PCu

Dorsal premotor PMd Primary motor cortex M1

Frontal pole FrP Primary sensory cortex S1

Frontal pole gyrus FpG Secondary sensory cortex S2

Inferior frontal gyrus IFG Suborbital sulcus SoS

Inferior frontal sulcus IFS Superior frontal gyrus/supplementary motor area SFG/SMA

Inferior parietal lobule IPL Superior parietal lobule SPL

Intraparietal sulcus IPS Supramarginal gyrus SMG

Inferior temporal gyrus ITG Temporal pole TmP

Inferior temporal sulcus ITS Temporooccipital fusiform gyrus TOFus

Insula Ins Temporooccipital lobe TOcL

Lateral occipital cortex LOcC Temporooccipital fusiform gyrus TOFus

Medial prefrontal cortex mPFC Ventral premotor PMv

FIGURE 5 Task-induced resting-state connectivity modulation. (a) Group difference in mean resting-state connectivity in the delta frequency

range (1–4 Hz), averaged across all networks, and plotted as a function of resting-state run. (b) Spider plot showing mean beta-related (13–30 Hz)
connectivity differences between resting-state runs, averaged across groups, and plotted as a function of resting-state networks; relative to
baseline (Resting-State 1), all seven resting-state networks showed task-induced connectivity increases. (c) Spider plot showing group differences
in mean beta-related connectivity, averaged across resting-state runs, and plotted as a function of resting-state networks; relative to young
adults, elderly individuals showed higher connectivity levels in all but the visual network [Color figure can be viewed at wileyonlinelibrary.com]
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counteract known age-related structural (Salat et al., 2004, 2005),

myeloarchitectural (Bartzokis, 2004), and neurochemical changes (Mora

et al., 2008). Future neuroimaging studies integrating network connectiv-

ity measures with microstructural features, such as myelination and tis-

sue microstructure, may enrich our understanding of the intriguing

associations existing between beta oscillatory rhythms and myelin in

aging populations as well as in neurodegenerative disorders (Lariviere

et al., 2018).

4.2 | Age-related connectivity changes in bimanual
movements

Neurophysiological and neuroimaging studies of bimanual hand move-

ments support the view that the dominant hemisphere, as opposed to

each contralateral hemisphere independently, controls the organiza-

tion of bimanual hand movements (Serrien, Cassidy, & Brown, 2003).

In line with these earlier observations, our whole-brain multivariate

analysis of the bimanual task data revealed three functional networks

of interest: a left-dominant, a right-dominant, and a bilateral motor

network. Akin to our unimanual findings, we found age-related con-

nectivity increases in the left-dominant and bilateral motor networks

during sustained isometric bimanual handgrips. Interestingly, while the

unimanual task only elicited networks in the beta band, both alpha

and beta motor networks emerged during the bimanual task. Based on

previous electrophysiological and fMRI studies highlighting the impor-

tance of the dominant hemisphere during bimanual hand movements

(Jancke et al., 1998; Serrien et al., 2003; Viviani, Perani, Grassi,

Bettinardi, & Fazio, 1998), we speculate that task-related activity from

the nondominant side (i.e., right hemisphere) is suppressed—or driven

into a more “rest-like” state—by the dominant hemisphere, an interac-

tion that may be accompanied by more pronounced alpha brain

waves. Alternatively, it has been suggested that beta-related activity

preferentially relates to motor aspects of coordination while alpha-

related activity underlies somatosensory processing (Pfurtscheller,

Stancak Jr., & Neuper, 1996; Salmelin & Hari, 1994). In line with our

current findings, this alpha-beta dichotomy may reflect different sys-

tems whereby beta-related dominant (i.e., left) and bilateral motor

network activity is involved in the initial production of bimanual hand-

grips, whereas alpha-related nondominant (i.e., right) motor network

activity rather reflects a mechanism by which the nondominant hemi-

sphere processes sensory information from the dominant hemisphere

and adjust its motor output accordingly.

The effective connectivity maps for the bimanual task-based net-

works revealed that young adults rely more on prefrontal regions, such

as the frontal pole, suborbital sulcus, orbitofrontal cortex, and medial

prefrontal cortex. This pattern of strongly interconnected frontal

regions was largely absent in the elderly group, which is in agreement

with previous cognitive studies reporting age-related activity decreases

in prefrontal regions (Cabeza et al., 2002; Damoiseaux et al., 2007). Yet

another striking difference in connectivity patterns between young and

older adults lies in the importance of the left temporal pole region in

the bilateral motor network. According to our Granger causality analy-

sis, this brain area appears highly integrated within the bilateral motor

network in the young group as it receives cortical information from

several parietal and frontal regions (including left PMd), but also has a

causal influence on the posterior cingulate cortex, a connectivity pat-

tern that is largely absent in elderly individuals. Our findings further

demonstrate that bimanual movements in elderly individuals appear to

be controlled from each contralateral hemisphere independently—with

minimal interhemispheric connectivity—thus expanding upon previous

research suggesting that the neural organization of the bilateral motor

network in adults is driven by the dominant (left) hemisphere (Serrien

et al., 2003). This lack of coordination between hemispheres may result

from altered white matter integrity of the corpus callosum, which plays

a key role in allowing both hemispheres to communicate during biman-

ual movements (Kennerley, Diedrichsen, Hazeltine, Semjen, & Ivry,

2002; Ota et al., 2006). Indeed, previous research investigating the

interhemispheric connections of the temporal lobes in monkeys demon-

strated that the corpus callosum receives extensive fibers from the

temporal pole (Demeter, Rosene, & Van Hoesen, 1990). This reinforces

the importance of the left temporal pole in coordinating movement in

both hands during bimanual movements. Our results further suggest

that this region is a central hub responsible for mediating information

flow between the two hemispheres. Due to their long-distance connec-

tivity and their central role in communication and integration of infor-

mation in the brain, cortical hubs are known to be represent a high-cost

feature of brain connectivity and as a consequence become highly vul-

nerable in aging (Crossley et al., 2014).

4.3 | Task-induced modulation of resting-state
network connectivity

Previous research studying the effects of intensive motor learning on

subsequent resting-state brain activity in healthy adults have confirmed

the presence of task-induced short- and long-term changes in cortical

properties (Bellec et al., 2015; Vahdat, Darainy, Milner, &Ostry, 2011). In

line with these reports, our analysis of the resting-state runs acquired

before and after each motor task revealed significant connectivity

increases following the unimanual task relative to baseline (i.e., the first

resting-state session), but significant connectivity decreases following

the bimanual task (relative to the second resting-state session). This

enhanced connectivity pattern was observed in both young and elderly

subjects, and was particularly noticeable in resting-state cortical net-

works that included regions previously engaged during the unimanual

task (e.g., visual, dorsal attention, sensorimotor, default-mode networks).

On the other hand, the lack of task-induced connectivity increases in the

third resting-state scan (i.e., following the bimanual task) may relate to

longer trial duration in the unimanual task (9 s unimanual handgrips vs. 6 s

bimanual handgrips) which in turn yielded a stronger and/or longer-

lasting postmovement rebound effect. Notably, our data suggest that

unimanual hand movements can induce similar neuronal flexibility, as

reflected by an increase in resting brain connectivity relative to baseline,

even in the absence of external stimulation or intensive motor learning.

However, future research protocols encompassing an aspect of motor

learning, whereby motor performance changes across time, may be bet-

ter suited to study the aging brain's ability to adapt to task demands.

While the evidence reported herein indicates that healthy adults,

irrespective of age, retain the capacity for task-induced connectivity

changes at a systems level, elderly individuals also showed task-induced
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increases in slow wave oscillatory connectivity. Considered alongside

cognitive studies in aging which have reported enhanced inter-

hemispheric delta coherence (Maurits, Scheeringa, van der Hoeven, & de

Jong, 2006; Vecchio, Miraglia, Bramanti, & Rossini, 2014), the large

increase in delta connectivity following the unimanual task may play a

role in modulating attentional or cognitive resources, and may therefore

represent a marker of healthy neurocognitive aging.

4.4 | Limitations, methodological considerations, and
future directions

We investigated group differences in activity levels of commonly shared

task-based brain networks which precluded us from determining

whether, and how, spatial reorganization occurs during healthy aging.

While these questions were outside the scope of this study, our Granger

causal connectivity approach provided initial insights into age-related

changes in the spatial pattern of information flow involved in motor pro-

cesses. Further, the relatively small number of participants in each group

may have contributed to low statistical power and an inability to detect

significant group differences. While results reported here are consistent

with previous fMRI and EEG studies with larger sample sizes (Maes et al.,

2017; Sala-Llonch, Bartrés-Faz, & Junqué, 2015), reproducibility of our

findings should be assessed in a similar, but larger, cohort of young and

elderly individuals. Lastly, our choice of processing pipeline may have

precluded the identification of modulatory effects that were not time-

locked to the production of isometric handgrips. While our trial averaged

connectivity analyses may have led to nonphase-locked task-related sig-

nal loss in alpha and beta frequency bands (Brookes et al., 2016), our ana-

lytical framework was primarily designed to target oscillations that were

directly evoked by the production of isometric handgrips while also

suppressing non-task-related signals as well as physiological and mea-

surement noise (David et al., 2006).

4.5 | Conclusions

The present work shows that despite matching levels of task accuracy,

brain organization in elderly individuals is characterized by hyperactivity

in MEG networks specifically underlying the performance of unimanual

and bimanual hand movements. Furthermore, spatial patterns of infor-

mation flow involved in motor processes significantly differed between

young and older adults, with the latter group showing enhanced connec-

tivity from ipsilateral frontal and parietal motor regions to contralateral

M1 during unimanual movements. Interestingly, while frontal and tem-

poral regions acted as integrative hubs for the coordination of inter-

hemispheric information flow in young adults, elderly individuals

demonstrated relatively little fronto-temporal information flow during

the bimanual task. Finally, the combination of task-related and resting-

state protocols described here represents a valuable tool for future

research aiming at understanding brain organization during healthy

aging. Our integrative experimental approach may further contribute to

the refinement of rehabilitation strategies aiming at enhancing neural

flexibility in movement-impaired populations by means of exercise pro-

grams targeting handmovement.
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