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Abstract

Block shear in bolted steel connections has been widely recognized
and studied as a possible failure path for steel members under tension.
However, despite their ubiquity in modern steel structures, the block
shear failure mode has not been explicitly studied for W-sections with
bolted flange plate connections. Further, the block shear failure mode
has not been verified for flange-connected W-Sections under flezure,
where the force developed in the tension flange could theoretically
create the conditions necessary for a block shear failure mode. A
recent study confirmed the existence of the block shear failure mode
in bolted flange plate W-sections under pure tension; this thesis acts
as a continuation of that study by investigating the block shear failure

mode in W-sections under flexure.

A total of 17 finite element models were developed to perform a para-
metric study on the possibility of a moment-induced block shear fail-
ure mode. Of the 17 section-connection configurations, 6 were fab-
ricated for full-scale laboratory testing to verify the results of the
finite element models. The results of the study showed that the block
shear failure mode is a possible failure path in the tension flange of
bolted moment connections, and should be explicitly considered dur-
ing design. However, the possibility of the block shear failure mode
is limited to a narrow combination of section depths, flange thick-
nesses, and overall connection geometry. In general, the CSA S16-19

design equation was found to provide good predictive capacity for the



block shear failure mode, with its assumption of a gross shear area
and a higher-than-yield stress state at failure accurately reflecting the

observed stresses in the finite element models.

In addition, an analytic study on the relation between the local block
shear failure mode and the various net section flexural resistance re-
duction requirements was performed. These requirements, known as
the 15% Rule in the CSA S16 standard, reduce the overall allowable
flexural capacity of W-sections when holes are present in the flanges.
A significant portion of typical section-connection detail combinations
trigger these clauses, which then significantly reduce the allowable
capacity of a flexural member. The analytic study, along with the
results from the finite element study, showed that the newly revised
CSA S16-19 method for the 15% Rule provides a significant increase
in allowable flexural capacity as compared to previous methods in the
CSA S16 standard as well as similar reduction methods in the AISC
360-16 standard.



Résumé

La rupture par bloc de cisaillement dans les connexions boulonnées en
acier a étée largement reconnue et étudiée comme mode de défaillance
possible pour les éléments en tension. Cependant, malgré leur om-
niprésence dans les structures en acier modernes, le bloc de cisaille-
ment n’a pas étée explicitement étudié pour les profilés a ailes larges
(section W) avec des connexions de plaques de recouvrement. En plus,
ce mode de défaillance n’a pas été vérifié pour les sections W chargées
sous un moment de flexion, ou la force dans 'aile de tension pourrait
théoriquement créer les conditions nécessaires pour une défaillance
par bloc de cisaillement. Une étude récente a confirmé 'existence du
bloc de cisaillement dans les W-sections de plaques de recouvrement
boulonnées sous tension pure. Cette these s’inscrit dans la continuité
de cette étude en étudiant le mode de rupture par bloc de cisaillement

dans les W-sections sous un moment de flexion.

Au total, 17 modeles d’éléments finis ont été développés pour effectuer
une étude paramétrique visant a déterminer la possibilité du bloc de
cisaillement de l'aile en tension dans les sections W, sous un mo-
ment de flexion. Parmi ces 17 modeles, 6 ont été aussi fabriqués pour
étre essayés en laboratoire afin de vérifier les résultats des modeles
d’éléments finis. Les résultats de I’étude ont montré que la rupture par
bloc de cisaillement sous moment de flexion est un mode de défaillance
possible pour les sections W avec des connexions a plaques de recou-

vrement, et doit donc étre explicitement prise en compte lors de la



conception. Cependant, la possibilité de ce mode de défaillance est
limitée a un rang étroit de combinaisons de profondeurs de section,
d’épaisseurs d’aile et de géométrie globale de la connexion. En général,
I’équation de conception de la norme CSA S16-19 réussit a prédire ce
mode de défaillance avec ses hypotheses uniques d’aire de cisaille-
ment sans réduction et de niveau de contrainte supérieur a la limite
élastique au moment de la défaillance, d’apres les résultats observés

dans les modeles d’éléments finis.

En plus, une étude analytique sur la relation entre le mode local de
défaillance par bloc de cisaillement, et les exigences de réduction de la
résistance a la flexion pour des sections d’aire réduite, a été réalisée.
Ces exigences, connues sous la “Regle de 15%”, réduisent la capacité
de flexion admissible des sections W lorsque des trous pour boulons
sont présents dans les ailes. Une grande proportion des détails de con-
nexion entre sections typiques sont concernés par ces clauses, ce qui
réduit ainsi la capacité admissible en flexion de I’élément. L’étude ana-
lytique, en utilisant les résultats de I’étude par éléments finis, a montré
que la méthode de la norme CSA S16-19 récemment révisée pour la
“Regle de 15%” fournit une amélioration significative de la capacité en
flexion admissible par rapport aux méthodes précédemment adoptée
par la norme CSA S16, ainsi que pour des méthodes de réduction

similaires de la norme AISC 360-16.
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Chapter 1

Introduction

1.1 Context

Wh-section steel members are ubiquitous in modern steel structures, where the
efficient cross section shape allows for their use in all load-bearing applications.
For moment frame connections and beam splices, bolted flange plate connections
are necessary to transfer the bending moment between members. Block shear of
the tension flange is a possible failure mode for such connections. Block shear is
a combined tension/shear failure mode, where a block of the flange is torn from
the member along the bolt hole line(s); two possible loading scenarios for block
shear in W-sections are shown in Figure 1.1. Although block shear failure has
been explicitly studied for various structural steel sections, current Canadian de-
sign standards (CSA S16-19) for flange-connected W-sections are based on proxy
results from tee sections (WT) in pure tension only (Epstein & Stamberg, 2002;
Canadian Standards Association, 2019). Until recently, it was not verified that
W-sections can be effectively modelled as two connected W'T sections; further, it
is unclear whether current design equations capture the effect of moment-induced
block shear failure, where the more complex stress distribution may affect failure

behaviour.



1.1 Context

Steel Moment Frame

RERERRERRERERRR

Lateral Load Uniformly Distributed Load

Pure Tension Block Shear Moment-Induced Block Shear

Figure 1.1: Possible loading scenarios for block shear failure in W-sections.



1.2 Motivation and Objectives

In addition to block shear considerations, the CSA S16-19 standard calls for
moment resistance reductions for W-sections with net flange areas less than 85%
of the gross area. Since its introduction in 1954, the reduction equation, known as
the 15% Rule, has long been considered overly punitive, with significant flexural
capacity still available in the member (Canadian Standards Association, 1954).
As moment connections require significant removal of the flange area for bolt
holes, many connection details trigger this clause and force a reduction in the
overall capacity of the beam. Further, it is also possible that an alternative
interpretation of this clause may be used: if the connection detailing does not
trigger the 15% Rule, a structural designer may assume that the capacity of
the member is simply that of its gross section, and bypass the resistance of the
connection geometry, namely the potential for the block shear failure mode in the

tension flange.

1.2 Motivation and Objectives

The intent of this research project was to provide clarity on the existence of the
block shear failure mode for bolted flange plate W-section connections, as well as
to evaluate the current predictive capacity of common design equations. First,
the possibility of a moment-induced block shear failure should be verified, both
analytically and through finite element analysis. Then, the predictive capacity of
existing design methodologies should be assessed. Should a block-shear critical
connection detail exist, it would confirm that moment-induced block shear failure
is both a possible failure mode, and that it should always be explicitly considered
when designing connections.

Further, since all studied section-connection details would naturally have re-
duced flange areas while undergoing flexure, additional insight should be possible
on the 15% Rule. The theoretical reduced capacity from the 15% Rule could

be compared to the observed flexural capacity of the finite element models to
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evaluate the applicability of such strength reduction equations. A block shear
failure that occurs below the expected reduced flexural capacity would further
confirm that block shear should be independently considered as a failure mode
for all bolted W-sections under flexure; a block shear failure that occurs above
the expected reduced flexural capacity would suggest that the 15% Rule is in fact

overly punitive, and should be revised or removed.

1.3 Scope of Work

This project was the second phase of a two phase project investigating the block
shear failure mode in W-section bolted flange plate connections. The work
done by Pizzuto (2019) confirmed the existence of block shear failure in flange-
connected W-sections in pure tension, and evaluated the predictive capacity of
current Canadian, American, and European design procedures. This project in-
vestigated the scenario the possibility of a moment-induced block shear failure for
bolted W-sections under flexure, where the force developed in the tension flange
could potentially induce a block shear failure mode.

The project was carried out in three steps. First, an analytic design method-
ology was developed to detail pure moment splice connections for a block shear
critical failure mode. This methodology was used to detail a series of section-
connection combinations that would theoretically fail in moment-induced block
shear. Second, six preliminary finite element models were developed and analysed
to evaluate the analytic design method, and to provide initial confirmation that
the block shear failure mode would occur. These preliminary finite element mod-
els were fabricated in full-scale for eventual testing in the structural laboratory
at McGill University; a design of the loading beam, as well as the selection and
location of laboratory instrumentation was also performed. Third, an expanded
finite element model catalogue was created, with 17 total section-connection de-

tails designed to fail in block shear. The results of these finite element models
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were aggregated, and a review of the predictive capacities of the CSA S16-19,
AISC 360=16, and the Eurocode 3-2005 block shear design equations was per-
formed. Further, key observations on the actual failure mechanism of the block
shear failure mode were made. Finally, the results of the finite element models
was compared against an analytic review of varying flexural resistance reduction

equations for further insight on the applicability of the 15% Rule.

1.4 Thesis Outline

Chapter 2 provides an overview of the existing literature on the block shear failure
mode, including the results of laboratory tests, methods and improvements in
finite element modelling techniques, and the background of the block shear design
equations as used by the CSA S16-19, AISC 360-16, and the Eurocode 3-2005
design standards. It also provides the background and current interpretations of
net section flexural resistance design equations.

Chapter 3 presents the development and formalized procedure for designing
a block shear failure critical moment connection. It also provides an overview on
the development and detailing of the first six finite element models, and presents
the initial findings.

Chapter 4 covers the design and detailing of support components and instru-
mentation in preparation for laboratory testing. This includes the design and
detailing of the loading assembly, an overview of the overall testing protocol, and
the positioning and type of the instrumentation during testing.

Chapter 5 discusses the overall findings of the research objectives after an ad-
ditional 11 block shear failure critical moment connections were modelled. Fur-
ther, an analytic study is performed to evaluate the performance of existing and
proposed methods for net section flexural reductions.

Chapter 6 summarizes the overall scope and findings of this research project,

and provides recommendations for future research.



Chapter 2

Literature Review

Block shear failure has been recognized as a potential failure path for bolted steel
connections since the late 1970s. Since then, much research has been performed
to determine the mechanics of the failure mode, as well as a suitable equation for
design standards that could cover the wide range of potential block shear failure
scenarios, some of which are shown in Figure 2.1. Analytical, physical, and finite-
element testing has been performed to varying degrees of complexity since the
first instance of block shear failure was observed by Birkemoe and Gilmor (1978).

The general findings of the decades of research are:

1. The block shear failure mode consists of a rupture plane and a yield plane.
2. The block shear failure mode consists of a tension plane and a shear plane.

3. The effective resistance/sensitivity to the block shear failure mode depends

on the cross-section geometry of the loaded member.

In general, the CSA S16-19 (Canadian Standards Association, 2019) design
equation for block shear seems to provide accurate predictive capacities for steel
sections under pure axial tension, including flange-connected W-sections, while
the AISC 360-16 (American Institute of Steel Construction, 2016) design stan-

dard tends to underestimate the true capacity of a block section critical member.



~
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Figure 2.1: Typical block shear failure scenarios.

However, the attempt to develop a truly generalized block shear failure equation
that reflects the true observed failure mechanisms is still the subject of ongo-
ing research, with improved design equations suggested by researchers as late as
2016. This chapter provides a summary of the cumulative research on block shear
failure, including developments in finite element modelling techniques, up to the
current state-of-the-art.

In addition, this chapter provides the background on the recently revised
Clause 14.1 in the CSA S16-19 standard, otherwise known as the 15% Rule.
Although it mostly affects how Canadian designers determine the effective flexural
capacity of beam members, it is possible that this clause may also affect how
structural designers approach the block shear failure mode for W-sections under

flexure.



2.1 Block shear failure

2.1 Block shear failure

The block shear failure mode was first observed by Birkemoe and Gilmor (1978)
while investigating beam end double angle connections. While loading a CSA
G40.21 44W grade uncoped beam connection, a tension rupture at the free edge
of the last bolt row prematurely caused a drop in the connection capacity. Severe
rotational deformation was observed, centered around a hinge formed in the upper
flange-web interface. To investigate this unexpected failure mode, the researchers
performed the same test on a coped beam to eliminate the potential flexural
hinge support. The coped beam showed a significant reduction in connection
capacity, with the entire block of the web section detaching from the main section.
Birkemoe and Gilmor (1978) suggested the following predictive equation for the

block shear failure mode:

Pult = AntFu + O6AmFu (21)

Where:
A,; = Net tension area
F,, = Ultimate engineering tensile strength

A,, = Net shear area

The findings of this research were incorporated into the revised AISC Specifi-
cation for the Design, Fabrication and Erection of Structural Steel for Buildings
for the same year (American Institute of Steel Construction, 1978). However,
it was not introduced as a unique failure mode to be considered via Equation
2.1, but rather as a set of revised edge and end distance limits to prevent tensile
rupture on free edges for bolted bearing-type connections.

Ricles and Yura (1983) expanded the work of Birkemoe and Gilmor by testing
a series of double row bolted beam end connections to evaluate the effect of end

and edge distances, as well as the effect of standard and slotted holes on the
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overall capacity of the connection. Tests were based on W18X60 sections of
ASTM A36 grade steel. The results of their tests showed a block shear failure
mode as seen by Birkemoe and Gilmor (1978), but at an ultimate capacity that
was significantly lower than predicted by Equation 2.1. It was noted that the
capacity of the connection was more sensitive to the edge distance (the tensile area
near the free edge perpendicular to the force) than the end distance, suggesting
that the distribution of stress in the tensile plane played a significant role in the
overall capacity of the connection. A finite-element analysis was performed on
the connections to investigate the behaviour of both the tensile and shear stress
distributions. It was determined that the distribution of stress along the tensile
plane was non-uniform, with certain regions unable to reach the material ultimate
strength, F,,, before failure. The finite-element analysis showed that short edge
distances had a triangular stress distribution, with peak stresses at the free edge
where rupture initiates, while larger edge distances resulted in a bi-linear tensile
stress distributions, with peak stresses near the bolt holes. The analysis also
showed that for the shear planes, the average shear stress was relatively stable,
with longer connections showing less variance of the shear stress along the gross
plane. It was also noted that the shear plane does not reach the rupture stress
limits at the time of tensile rupture, contrary to Equation 2.1.

Based on these findings, Ricles and Yura (1983) concluded that the block
shear capacity is highly dependent on connection geometry, and that further
research must be performed to fully understand the failure path. To conclude,

they suggested a revised equation to predict the block shear failure mode:

Py = 0.6F, Ay, 4 0.5F,A,, (2.2)

Where:
F, = Yield tensile strength

Ayg = Gross shear area
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Ricles and Yura reduced the tensile contribution of block shear by half in
Equation 2.2, reflecting the significantly lower stresses observed in their double-
row connection tests, and changed the shear rupture component to a gross shear
yield component to better reflect their test results.

Hardash and Bjorhovde (1985) focussed on evaluating and developing predic-
tive models for block shear in bolted gusset plate connections. A common practice
at the time was the use of the Whitmore Effective Section method, which simply
provided the allowable ‘net’ section area for tensile rupture based on a 30 degree
sweep of stress emanating from the lead row of bolts (Whitmore, 1952). A total of
28 gusset plate connections of steel plates with varying bolt pitches, gauges, and
number of bolts were tested. Further, both hot and cold rolled steel plates were
tested to investigate the effect of varying F,/F, ratios. Hardash and Bjorhovde
reinforced the idea that the net tensile rupture strength should be used for block
shear failure equations, but noted that the shear component remained sensitive to
the overall connection length as well as the material yield-to-ultimate strength ra-
tio. Due to some specimens showing shear rupture at failure, it was suggested that
the behaviour of the shear plane depends on the F,/F,, ratio, where higher values
result in shear rupture at failure. In other words, since significant deformation
is required for the tensile plane to rupture, steel materials with insufficient duc-
tility would rupture along their shear plane before or concurrent with rupture of
the tensile plane. Hardash and Bjorhovde concluded with a suggested predictive
equation that considered connection lengths, net gauge distances, and ‘effective’
shear stresses, which provided accurate representation of the test results.

The findings of Hardash and Bjorhovde (1985) and Ricles and Yura (1983)
were incorporated into a revised set of design equations in the 1986 AISC LRFD
specification (American Institute of Steel Construction, 1986), where the block

shear capacity is taken as the greater of:

R, = 0.6F, Ay, + Fy Ay (2.3)
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R, = 0.6F, A, + F,A,, (2.4)

The justification for the use of the greater of either Equation 2.3 or 2.4 was
based on the observation that block shear failure occurred at the fracture point of
a failure plane, meaning it should be classified as a brittle failure mode. Whether
it was the shear or tensile plane that ruptured, it should be assumed that the
yield stress is reached in the opposing plane.

Orbison et al. (1999) tested 12 different configurations of angles and WT
sections made from ASTM A36 steel in direct tension. The connections were
detailed to investigate the effect of connection lengths and load eccentricities on
the tension stress distribution and the overall capacity of the block shear failure
mode. Angles were tested with a single colinear row of two bolts with varying
edge distances; The W'T sections had varying numbers of bolts connected to the
web, along with varying edge distances. An additional series of W sections was
also tested with two bolt row connections in the web only.

All specimens failed in the typical block shear manner, with a net tension
rupture plane, and severe shear deformation, indicating gross yielding of the
shear plane. Like other researchers, the authors noted that the edge distance
played a critical role in the capacity and stress distribution of the net tension
plane. Shorter edge distances had higher peak stress concentrations that initiated
rupture, while larger edge distances allowed for a more uniform stress distribution
and higher overall tensile capacity. It was noted, however, that the shorter edge
distances had the effect of increasing the in-plane eccentricity of the connection to
the section centroid; it was possible that the increased shear lag effect on the short
edge distance connection was the cause of the higher stress distribution, rather
than the edge distance itself. The authors concluded that the 1993 AISC LRFD
equation at the time could not account for varying connection configurations,
and that further research was necessary to isolate the effect of varying connection

parameters.
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Topkaya (2004) performed a parametric finite element study of over 1000
connection configurations to better understand the failure mechanism of block
shear. It was observed that the failure mechanism at ultimate capacity consisted
of a net tensile fracture plane and a gross shear plane with significant yielding
and deformation. It was noted that the average stress on the gross shear plane
was sensitive to the overall connection length, as well as the F,/F, ratio of the
material. Longer connection lengths had a lower average stress at failure, but
with less variation of stress; shorter connection lengths had a higher average
stress at failure, but with greater likelihood of stress concentrations. The study
also found that in-plane load eccentricities could affect the connection capacity
by up to 10% for longer connections, but out-of-plane eccentricities had little to

no affect on the connection capacity.

2.1.1 Section efficiency: the effect of load eccentricity

As research continued on the block shear failure mode, it was clear that load
eccentricities, whether in-plane or out-of-plane, played a fundamental role in the
overall capacity of a block shear critical connection. Naturally, researchers looked
for methods to account for these eccentricities, and their relation to the shear lag
factor already present in net section fracture calculations.

The net section fracture failure mode consists entirely of tension planes simul-
taneously reaching their ultimate capacity, f,, resulting in a complete rupture of
the tension member. When a bolted connection has a centroid that is offset from
the gross section centroid (typically occurring when only some legs of a non-
rectangular section are bolted), a shear lag factor, U, is applied to the theoretical
net section capacity to reflect the reduction in strength as stresses in unconnected
regions must flow into connected regions. The shear lag factor is used to deter-

mine an effective net area, A,. = UA,, to be used for the net fracture strength
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equation.

~| &I

Where:
T = connection eccentricity
[ = connection length

Equation 2.5 resulted from the work by Munse and Chesson (1963), who in-
vestigated the effect of different cross section geometries, connection geometries,
and fabrication methods on the overall capacity of bolted and riveted joints.
Their work concluded with an empirical design rule that included, in addition to
the shear lag coefficient, factors that accounted for material ductility, fabrication
methods, and bearing effects on the fasteners. Although only the shear lag fac-
tor was adopted by North American design standards, the work by Munse and
Chesson showed that connection strengths are dependent on a variety of design
decisions.

This equation provided a simplified analytical method for determining the
effective resistance of a tensile bolted connection, and remains the basis of the
effective net section calculation method in both the AISC 360-16 and CSA S16-19
design equations. However, with the use of Equation 2.5 as presented, three issues
are prone to occur. First, since the shear lag efficiency factor is a function of the
connection length, a connection must first be designed before its design capacity
is calculated. This results in an iterative and inefficient design methodology. Sec-
ond, as no formal bounds were set by Munse and Chesson (1963), short connection
lengths and/or large eccentricities could result in shear lag factors that approach
0, or even negative values. Third, the shear lag factor is unable to account for
tensile connections with unconnected regions, where shear lag must occur, but
without any connection eccentricities. For example, a W-section tensile mem-
ber connected only by the flanges would not experience any shear lag reduction.

More recent research has suggested simple tabulated values for U based on the
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section type and number of bolts present (Kulak & Wu, 1997), while others have
provided a more robust analytical method of connection analysis based on the
induced moments on the connection (Epstein & D’Aiuto, 2002). The latest CSA
S16-19 design standard removes the use of equation 2.5 completely for bolted
tensile connections, while the AISC 360-16 design standard maintains the use of
equation 2.5 with tabulated lower bounds for different bolt configurations.

Epstein (1992), while testing a series of double-rowed, staggered angle connec-
tions, noted that the predictive block shear equations of the AISC 360 provisions
of the time were improved by the use of the shear lag factor (Equation 2.5) on
the fracture component of resistance. From a test of 38 single-leg bolted angles
in tension, the inclusion of the U factor improved the professional factor (PF) of
the AISC 360 LRFD design equation from 0.901 to 1.008. Epstein concluded that
the shear lag factor inclusion on the tension term was an appropriate method of
improving the predictive capacity of the block shear failure mode.

Epstein continued to investigate the effect of shear lag on the block shear
failure mode, focussing on structural tees. Epstein and D’Aiuto (2002) developed
an analytical method for tensile connection efficiencies based on the induced mo-
ments and rotational capacities of connected structural tees. The method pro-
vided accurate calculations of the induced tensile forces and moments in each
member, and it was suggested that the existing axial-moment interaction equa-
tions could then be used to limit the capacity of the connection. The authors
concluded, however, that the existing shear lag factor U provided similar results,
and sometimes provided a better professional factor than their proposed method.
Epstein and D’Aiuto affirmed the use of the shear lag factor as an appropriate
inclusion in both net section fracture and block shear fracture calculations.

Epstein and Stamberg (2002) investigated the effect of connection length and
web depth on 50 flange-connected structural tees. The web depth was varied by
cutting the base W-sections at different points along the depth of the section. A

variety of failure modes were observed: a transition from block shear failure to net
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section failure as the eccentricity decreased; a transition from block shear failure
to net section failure as the connection length increased; premature buckling of the
unconnected stem for significantly deep tees. The researchers again affirmed their
suggestion that the shear lag factor was an appropriate addition to the tension
term in block shear equations. However, as the authors noted that Equation 2.5
as-is would determine values of U that were unrealistically low or even negative,
they provided lower and upper bounds of 0.65 and 0.90.

In rebuttal of these recommendations, Grondin (2005) discussed concerns in
the methodology and assumptions in Epstein’s work. Grondin noted that the use
of the shear lag factor was mechanically incorrect when investigating block shear
failure, even if it provided statistically accurate results. The shear lag factor
developed by Munse and Chesson (1963) and adopted by North American design
standards was explicitly meant to address the reduction in the active net tension
plane area during a net section fracture failure. Grondin noted that since the
block shear failure mode only considered the local geometry of the fracture block,
the use of a net area reduction factor made no sense, as the stress distribution
of the entire cross section is irrelevant to the stress distribution in the local
block tension plane. Previous research on the block shear failure mode suggested
that it was rather the in-plane eccentricity and corresponding non-uniform stress
distribution that affected the ultimate capacity of the connection (Ricles & Yura,
1983; Hardash & Bjorhovde, 1985). It was possible then, that a reduction in the
fracture component for block shear equations was appropriate, but that the shear
lag factor used by Epstein provided a false positive improvement in predictive

capacity.

2.1.2 Comprehensive equations for block shear

The need for an appropriate ‘efficiency factor’ that accounted for the effect of
in-plane stress distributions during block shear failure was evident. Driver et al.

(2006) proposed the Unified Block Shear equation, based on a statistical review
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of previous testing on 205 block shear failure specimens of gusset plates, angles,

tees, and coped beams.

F,+ F,
Pu = RtAntFu + RvAgv (L>

2.6
o3 (2.6)
Where:

R; = Tensile component efficiency factor

R, = Shear component efficiency factor

The unified equation (Equation 2.6) differed from previous predictive equa-
tions for three reasons. First, the components of the equation reflected the typical
observed failure mode of net tensile fracture and gross shear yield. Second, based
on consistent test results showing that the shear plane reached a stress much
higher than the shear yield stress, but lower than the fracture stress, the average
of the yield and ultimate shear stresses were taken for the gross shear compo-
nent of the equation. These tensile stresses are divided by /3 to reflect the
equivalent shear capacity using the Von Mises yield criterion. Third, the correc-
tion factors for the tensile stress, R;, and the shear stress, R,, were introduced.
These correction factors were empirically based on the results of the aggregate
study. Tabulated values were provided depending on the section and connection
geometries. The unified equation by Driver et al. (2006) remains the basis for the
most current design provisions in both the AISC 360-16 and CSA S16-19 steel
design standards, although both design standards only use reduction factors for
the tension plane, with the shear plane remaining at full capacity.

However, the most recent AISC 360 standard (AISC 360-16) still uses the
original equation for U, but with lower and upper bounds for select connection
scenarios. The bounds eliminate the second issue mentioned above, while explicit
clauses prevent the third issue from presenting itself; W sections connected only
by their flanges are to be treated as WT sections when determining the value for

U. For bolted connections, the Canadian design provisions (CSA S16-19) have
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Table 2.1: Correlation factors for Equation 2.6 (Driver et al., 2016)

Connection Type R, R,
Gusset Plates 1 1
Angles and Tees 0.9 09

Coped Beams: one bolt line 0.9 0.1
Coped beams: two bolt lines 0.3 1

simplified the effective area calculations into tabulated values of U for the tension
plane, depending on the section type and number of bolts present. The CSA S16
method eliminates the need for Equation 2.5, as well as the need to know the
connection length before determining the overall capacity.

Recent advancements in finite element modelling techniques have been used
to perform a more detailed evaluation of the stress distribution and failure mech-
anisms for block shear failure. Clements and Teh (2013) performed finite element
analysis on bolted plate connections, and concluded that the true critical shear
plane lies between the net and gross shear sections. The authors named this criti-
cal plane the active shear plane, which was a function of the connection geometry
and the hole diameter. Based on a series of nineteen finite element models, the
authors demonstrated that the use of the active shear plane had the greatest
predictive accuracy, with a mean Professional Factor of 1.02, compared to the
AISC 360-10 (PF = 0.88) and the Eurocode 3-2005 (PF = 1.04), whose block
shear design method is presented in Section 2.3. Further their proposed equation
correctly predicted the critical failure mode between the block shear failure and
net section fracture for all nineteen block shear connection models, something

that the AISC 360-10 design equations could not do.

d
P,=F,) Ay (0.9 + 0.1]9—2) +0.6F,Agy (2.7)

Equation 2.7 shows the proposed block shear failure equation as a function of

the hole diameter, d, the bolt gauge, py, as well as the average shear area, A,,.
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The average shear area is in turn a function of the hole diameter and the con-
nection length. Although more involved than existing design equations from the
ATISC 360 and the CSA S16 standards, the proposed active shear plane model pro-
vides a user-friendly, analytical approach to determining the block shear capacity
of a connection, rather than the empirical best-fit equations provided by other
laboratory-based studies. Further research and finite element verifications have
shown that this proposed equation performs well for a wide range of block shear
failure scenarios (Elliott et al., 2019; Elliott & Teh, 2019). Despite favourable
results, the AISC 360 and the CSA S16 standards continue to use more simplified

design equations to calculate the block shear resistance.

2.1.3 W-section block shear failure

Despite their ubiquity in modern structural steel design, block shear failure has
not been widely studied or verified in the context of W-sections. However, there
are numerous possibilities for a tensile failure to occur in W-sections, such as
W-sections used as brace members, W-section columns during uplift scenarios
from wind/seismic loading, as well as the tension half of W-sections under flex-
ural capacity. When the block shear failure mode is checked for W-sections, the
efficiency factor, U, is borrowed from the varying suggested factors for strutural
tees in direct tension, something that has not been explicitly verified.

To provide this explicit verification on the block shear failure mode for W-
sections under pure tension, Pizzuto (2019) tested a series of full-scale flange-only
bolted splice connections of W-sections, and performed subsequent FE analysis on
the expected failure mechanism. Pizzuto performed ten laboratory tests on flange-
only bolted splice plate W-section connections under pure tension, with section
sizes ranging from a W250X73 section to a W690X152 section, and evaluated
the predictive capacity of both the CSA S16-14 and the AISC 360-16 design
standards. Two potential block shear failure modes were identified, and are

shown in Figure 2.2:
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e

Figure 2.2: W-section block shear failure modes as observed by Pizzuto (2019).

1. The Edge Block Shear (EBS') Failure mode, where the corners of the flanges

are removed, and the entire failure block remains in the flanges

2. The Complete Block Shear (CBS) Failure mode, where the entire flange is
removed, with the shear plane lying in the web/K-area interface along the

connection length

The test specimens were detailed using the CSA S16-14 design equations to
force a theoretical block shear critical failure mode. Three of the ten specimens
were detailed to fail in Complete Block Shear, while the remaining were detailed
with a critical Edge Block Shear resistance. The results of the tests provided key
insight on block shear failure for W-sections: first, that block shear was a very
possible failure mode for flange-connected W-sections, and must be considered
during design. Second, the CSA S16-14 design equations have a good predic-
tive capacity for block shear failure in W-sections, as indicated by Professional
Factors, the test-to-predicted resistance ratios, that were close to 1.0.

The average professional factor for the CSA S16-14 design method was 1.03,
compared to the AISC 360-16 professional factor of 1.16. This reaffirmed the

Tt is noted that Pizzuto referred to the EBS failure mode as Corner Block Shear. The
name has been changed to Edge Block Shear to easily distinguish from the Complete Block
Shear failure mode when using their respective acronyms.
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observations made by numerous other block shear researchers, in that the true
reflective failure mechanism is a net section fracture and a gross shear yield plane.
The significant underestimation of block shear capacity provided by the AISC 360-
16 lies in the fact that the assumed failure mode includes a net shear fracture.
The work by Pizzuto (2019) laid the foundation for the research presented in this
thesis: since block shear failure is a confirmed critical failure mode in W-sections,
with good predictive capacity from current design standards, do these conclusions

still hold for a W-section under flexure?

2.2 Flange section reductions: The 15% Rule

The CSA S16-14 standard states, in Cl.14.1 (Canadian Standards Association,
2014), Proportioning of Beams and Girders:

Beams and girders consisting of rolled shapes...shall be proportioned
on the basis of the properties of the gross section...No deduction need
be made for fastener holes in webs or flanges unless the reduction of
flange area by such holes exceed 15% of the gross flange area, in which

case the excess shall be deducted.

This clause, known as the 15% Rule, which has remained in the CSA S16 standard
since its introduction in 1954, has had a significant impact on the way Canadian
steel designers detail their flexural members and connections (Canadian Stan-
dards Association, 1954). Only with the recent release of the 2019 version of
the CSA S16 standard has this clause been revisited to reflect the advances in
structural steel materials, connection methods, and understanding of ductile steel
behaviour. This section provides an overview of the background of the 15% Rule

as well as its effect on structural steel design.
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2.2.1 Lilly and Carpenter (1939)

The basis of the 15% rule lies in a study performed by Lilly and Carpenter (1939)
on the effect of holes in built-up riveted plate girders on the flange stresses ex-
perienced during load. A series of built-up plate girders under four-point loading
was tested to evaluate the effect of open holes, bolted holes, and riveted holes on
the effective moment of inertia, as well as the stresses at the flange extremities.
Engineers of this era had multiple options when determining the moment of iner-
tia for the design of built-up plate girders. Typically, the ‘net moment of inertia’
of the girder was calculated, which was determined by deducting the effect of the
tension flange holes from the gross moment of inertia. This effectively shifted
the neutral axis of the member away from the gross section centroid. The use of
this ‘net moment of inertia’ also relied on two unsubstantiated assumptions: first,
it assumed the section behaviour of the plate girder through its entire length is
based on the net section with tension flange hole reductions. Since it is clear that
tension flange holes are intermittently spaced, with full gross section properties
between holes, it should be expected that this ‘net moment of inertia’ calcula-
tion was inherently conservative. Second, it assumed that the net compression
flange effectively acted as the gross flange section; the assumption was ostensibly
based on the fact that fasteners in the compression flange holes would sufficiently
transfer forces across the hole by contact bearing. It was noted that the gross
moment of inertia, however, was used by at least some engineers for deflection
calculations of the girder.

The results of their test program shed light on the two assumptions stated
above. Test specimens were loaded to the same peak deflection within the elas-
tic range. By comparing the observed strains in the tension and compression
flange extremities, it was possible to evaluate the effect of holes and fasteners on
the moment of inertia, as well as to determine the working neutral axis of the
test specimen. First, it was observed that the neutral axis deviated only slightly

from the gross section neutral axis, even for the worst-case scenario open hole
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sections. Previous calculations of the ‘net moment of inertia’ provided a signifi-
cantly shifted neutral axis. This suggested that compression flange deformation
was as significant as that of the tension flange, and that compression flange holes
should be considered if net moment of inertia calculations are performed.

Second, the observed stresses in the extreme tension flanges were lower than
the predictions based on both a traditional net moment of inertia (with an offset
neutral axis) as well as a modified net moment of inertia calculation (that as-
sumed the neutral axis remained at the gross centroid). This confirmed the belief
that assuming net section properties continuously extend along the length of the
member resulted in significant underestimations of flexural capacity. It was also
observed that the hole spacings affected the magnitude of this underestimation,
with closer spaced holes showing a better correlation between predicted net sec-
tion behaviour and observed stresses. However, the measured flange stresses were
somewhat higher than the calculated values using the gross moment of inertia,
suggesting that flange area reductions did have some effect on the overall section
properties.

Overall, Lilly and Carpenter concluded that the working moment of inertia
approached that of the gross moment of inertia, and that the neutral axis ef-
fectively remained at the gross centroid, contrary to the practice at the time.
In recognition that the observed moment of inertia lay somewhere between the
typical net moment of inertia and gross moment of inertia, Lilly and Carpenter
provided an analytical equation for an ‘effective moment of inertia’ that corre-
lated well with their experimental data, and was influenced by the hole pitch and
diameter. However, they concluded that the difference was negligible, and that
the gross section area was acceptable for use with most strength and deflection
calculations.

These tests were performed on steel grades vastly different than what is typ-
ically used in modern construction, with an average yield strength of 265 MPa

and an average ultimate strength of 443 MPa. Further, the test specimens were
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Figure 2.3: All W-sections affected by the 15% rule for 2 bolts per flange as a
function of the bolt diameter, d,, and the beam depth, d.

not loaded to their ultimate capacity. Still, despite the differences in material
strengths as well as the limited testing, the findings of this study were adopted
into the 15% rule as observed up until the CSA S16-14 standard, where the gross
section properties may be used up to an Ay, /A, of 85%, past which the net

section properties must be used.

2.2.2 Recent findings on the 15% rule

The 15% rule has had a profound impact on the design of steel flexural members
for over 50 years. Figure 2.3 shows the significant number of W-sections that
trigger this clause when a typical arrangement of two bolt rows per flange is

used for a bolted connected. Almost all W-sections used as primarily flexural
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members are affected when using 7/8” bolts or larger, reducing the allowable
flexural capacity to as much as 75% of the gross capacity. This limitation has left
structural designers with two options: design flexural members with significant
reduced capacities to account for bolted connections, or specify more expensive
welded connections and/or flange reinforcement to allow for full flexural capacity
to develop. Research has developed over the past fifteen years to scrutinize the
15% rule and its relevancy with respect to modern materials and design methods.

Sivakumaran et al. (2010), based on the doctoral thesis of Arasaratnam (2008),
reviewed the results of 25 tests on ASTM A992 steel W-sections under flexure
with varying configurations of holes and fasteners in both tension and compres-
sion flanges. The objective of their study was to verify the applicability of the
15% rule on modern steel materials, and to observe the true effect of net flange
areas on the ductility and ultimate capacity of flexural members. Twenty-five
W200X42 sections were tested under 4-point loading, with a single set of holes in

the constant moment region in four general configurations:

1. No holes in flanges
2. Tension flange holes only, up to 50% of gross area removed
3. Holes in both flanges, up to 60% of gross area removed

4. Holes in both flanges, up to 60% removed, with fasteners in holes

Specimens were loaded to the post-ultimate strength range, typically until the
load-deflection curve returned to the initial yield load limit. All specimens, with-
out exception, surpassed the gross plastic moment at ultimate capacity regardless
of the hole/fastener configuration. The ratio of peak experienced moment, M,,,
to the theoretical gross plastic moment, M,, ranged from 1.07 (63% of gross
flange area, both flanges) to 1.23 (85% of gross flange area, tension flange only).
Sivakumaran et al. (2010) observed that even for specimens with net flange areas

nearing 50% of the gross area, the rotational stiffness in the elastic range changed
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very little, and that the reduced flange areas only affected the peak rotational ca-
pacity of the beam well past the ultimate moment. Almost all test specimens
failed in eventual net section fracture of the tension flange, except those with
holes in the compression flange without fasteners. Some specimens with unfilled
compression flange holes experienced local compression flange buckling due to the
reduced area, which limited the peak moment capacity of the specimen. With
the compression flange holes filled with fasteners, the failure mode returned to
a tension net fracture as the fasteners provided an adequate bearing force trans-
fer mechanism. The authors concluded that flexural members of typical modern
steel materials that greatly exceed the 15% net flange area rule can reach the
ultimate gross section capacity, and that current design methodology was overly
punitive. Additionally, the authors noted that although the ultimate flexural
capacity is not affected by moderate to significant flange area removal, the avail-
able rotational ductility is. For flexural members with a net flange area ratio
A FyfAs F, < 0.95, the rotational ductility of the section may be reduced.
However, it was noted that this rotational capacity is dependent on numerous
other factors unrelated to the section geometry, such as stability constraints and
the rotation capacity and stiffness of the connecting member. The authors con-
cluded with a suggested alternative design method that assumes the complete

fracture of the tensile region of the flexural member as the ultimate failure mode:

Myns = 0.85Z,F, < M, (2.8)

While the CSA S16 standard for net section flexural capacities remained un-
changed since the inclusion of the 15% rule until the S16-2019 edition, the Amer-
ican AISC 360 standard had modified their equivalent rule to the following equa-
tion in the AISC 360-05 and onwards (American Institute of Steel Construction,
2005), based on the findings by Geschwindner (2010):

FyAp > YrF,Ag, (2.9)
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2.2 Flange section reductions: The 15% Rule

F, A,
M, = =<
Afg

Where: Yr =1.0if F,/F, < 0.80, Y7 = 1.1 otherwise.

Sy (2.10)

This design method assumes the failure mode to be the onset of rupture of
the extreme tensile fibre of the net flange area. It is noted that this method is
valid only if Equation 2.9 does not hold; otherwise, the full gross section moment
capacity may be used. Although Equation 2.10 is more involved and provides
higher flexural resistances than the 15% rule of the CSA S16-14 standard, its
assumed failure mode and reduced overall resistance is still not consistent with
those observed by Arasaratnam (2008) and Geschwindner (2010).

For these reasons, Swanson (2016) performed an aggregate review of bolted
W-section flexural capacity tests from five different universities (Larson, 1996;
Swanson & Leon, 2000; Schneider & Teeraparbwong, 2002; Altstadt, 2004; Sato
et al., 2007) to evaluate the true observed failure mechanisms, as well as the
predictive capacity of the AISC 360 design equation. Like the results observed
by Sivakumaran et al. (2010), an average ultimate flexural capacity of 1.06M), gr0ss
was observed across all test specimens, with Ay, /Ay, ratios reaching as low as
70%.

Swanson (2016) made two conclusions on the state of current design methods
for flexural W-sections with reduced flange areas that complemented the conclu-
sions of Sivakumaran et al. (2010): first, current design methods for net flexural
capacities are overly conservative, with almost all observed test specimens reach-
ing the full gross plastic moment capacity before ultimate failure. Second, the
current design methodology is removed from the actual observed failure mech-
anisms for these flexural members. Both the simplified 15% rule of the CSA
S16-14 and the revised method in the AISC 360-16 are only triggered by strict
clauses; in other words, for the CSA S16-14 method, a section with a net flange
area ratio of 14.9% would have a significantly different flexural resistance than a

section with a ratio of 15.1%. For the AISC 360-16 method, this sudden jump in
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2.2 Flange section reductions: The 15% Rule

section capacity is also met with a sudden change in the assumed failure mode
from a gross section plastic moment failure to the fracture of the extreme tensile
fibre of the section. Based on these findings, Swanson suggested an improved
design equation that better correlated with the observed test results, eliminated
the sudden shift in flexural capacity, and was more reflective of the true observed

failure mode:

_ FAp,
fg

M,

Sy + FuZgwer < FyZy (2.11)

Equation 2.11 properly reflects the observed failure mode with the onset of flange
rupture with the remaining section under complete yielding.

In light of contemporary evidence of the inadequacy of the 15% rule in the CSA
S16 design standard, and based on the work of Sivakumaran et al. (2010), the most
recent 2019 version of the CSA S16 standard has revised and expanded on Clause
14.1 for the first time since its introduction (Canadian Standards Association,
2019). For steel materials with £}, < 350M Pa, and whose flange area reductions
do not exceed 15%, the gross section properties may still be used like in previous
iterations of the 15% rule. The major difference is the treatment of flexural
members that do not meet either the yield strength requirement (£, > 350M Pa),
or the 15% maximum flange area reduction, with the introduction of effective

section properties, S, and Z, respectively.

S.=aS+5,<8 (2.12)

Ze=aZ+2,<8 (2.13)

Where S,, and Z,, are the calculated net section modulus and plastic modulus,
and with values of « varying depending on the material yield strength (above
or below 350M Pa), as well as the location of the fastener holes (one flange only

vs. both flanges). For values of F,, < 350M Pa, « is a fixed value equal to 0.05
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2.2 Flange section reductions: The 15% Rule

for sections with holes in one flange only, and 0.12 for sections with holes in

both flanges. For values of F}, > 350M Pa, an upper limit for the value of « is

0<a< {1—5(%)} (2.14)

With the value of 5 based on whether there are holes in one flange (5 = 1.24) or
both flanges (8 = 1.15).

introduced:

The inclusion of Equations 2.12 to 2.14 has provided much needed clarity and
improvement on the design of flexural members with fastener holes exceeding
15% of the gross flange area. First, Equations 2.12 and 2.13 imply that the
failure mode of W-sections that trigger the 15% rule clause will be identical to
that of their equivalent gross section, albeit at a reduced capacity; class 1 and
2 sections will still reach the ultimate flexural capacity at full plasticity of the
reduced section, while class 3 sections will reach their capacity at the onset of
yielding of the reduced section. This is in contrast to the AISC 360-16 design
method (Equation 2.10), which assumes a sudden change to a fracture failure
mode should its equivalent net flange area ratio limit be surpassed. Maintaining
the assumption of a ductile failure mode is in accordance with the findings of the
most current research (Topkaya, 2004; Sivakumaran et al., 2010; Geschwindner,
2010; Swanson, 2016).

Second, the addition of the o parameter significantly increases the allowable
flexural capacity of a section triggering the 15% rule clause, and eliminates the
sudden drop in flexural capacity as soon as the 15% net flange area ratio threshold
is crossed. For a typical steel section with F,, < 350M Pa, and holes in both
flanges, an additional 12% of the gross section property (Z,.S), is included in the
effective section and plastic moduli. This additional 12% increase in the flexural
capacity of a reduced-area W-section effectively provides a smooth transition from
gross section flexural capacities to a reduced capacity for sections with net flange
area ratios of 85% or less.

Third, the use of different a values for higher strength steel sections reflect
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2.2 Flange section reductions: The 15% Rule

the need for a more conservative design approach for steel materials with higher
F,/F, ratios. As noted by Sivakumaran et al. (2010), flexural sections with
higher F,/F, ratios are more susceptible to a tensile fracture failure, even if it
occurs past the gross plastic moment capacity of the section, and are also more
susceptible to a reduced rotational capacity. Providing a lower value of « for
these material types provides a level of additional precaution while maintaining
the same methodology for calculating effective section properties.

The revised CSA S16-19 Cl.14.1 provides a much needed change to the 15%
rule in the context of current knowledge and modern steel materials. As Canadian
steel designers transition into the S16-19 standard, the true effect of the improved
allowable performance of reduced flange area flexural members can be determined.
However, considering the research that this revised method is based on, it should
still be expected that the calculated reduced flexural capacity of many W-sections
will still be below the true available capacity. Whether this discrepancy remains
too punitive for Canadian steel designers, or whether the revised design method
provides a sufficient compromise and a real-life benefit is yet to be seen.

With the AISC 360-16 method for net section flexural resistances detached
from the true observed mechanisms of net section flexural failure, as well as a
new and unproven CSA S16-19 method, it is not clear if there is an overlap
or redundancy between the net flexural resistance calculations and other failure
modes associated with bolted flexural members. Namely, if the block shear failure
exists in bolted flexural W-section members, and if current design equations can
accurately predict these failure modes, do they implicitly consider the effect of
flange area reductions on the overall flexural capacity of the member? Is the
15% rule relevant if a more low-level analysis of the block shear failure mode
is taken? On the contrary, if the 15% rule clause is not triggered, does this
provide an avenue for designers to not explicitly check the block shear failure
mode for flexural members? Further, it is not even clear whether the 15% rule

should ever be applied in a bolted flexural connection for W-sections, which
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2.3 Contemporary design procedures for Block Shear

naturally must occur at the beam ends, whether it is at a moment splice or a
beam-column connection. The intent of the 15% rule was to evaluate the overall
flexural capacity of a section with reduced cross-sectional area, and not as a check

on a force transfer mechanism.

2.3 Contemporary design procedures for Block

Shear

The extensive research on block shear failure has resulted in many suggested
design equations to both accurately and safely predict the capacity of a given
tensile bolted connection. However, many of these proposed equations are too
involved for practical use by designers, and as such, design standards have adopted
and maintained calculation approaches that are relatively simple to implement.
This section provides an overview of the current design equations used by the

CSA S16, AISC 360, and the Eurocode 3 standards.

2.3.1 Canadian design procedure (CSA S16-19)

The Canadian design standard specifies in Cl.13.11, the block shear resistance as:

F,+F,

T, = u[UiAnFy + 0.6Ag,~—

] (2.15)

Where:

¢, = Resistance factor = .075

U; = Efficiency factor = 1.0 for Flange-connected Tees

And where the (F, + F,) term is replaced by Fy for F, > 460M Pa.

This equation is based on a modification of the proposed unified equation by

(Driver et al., 2006), It is noted that there is no explicit suggested value for the

efficiency factor for W-sections, nor are there any suggestions for bending-induced
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2.3 Contemporary design procedures for Block Shear

tensile stresses. However, it is reasonable to assume that the efficiency factors for
structural tees would adequately apply to tensile W-sections, given no explicit

suggestions are provided.

2.3.2 American design procedure (AISC 360-16)

The current AISC Load and Resistance Factored Design (LRFD) provision for
block shear failure is provided in AISC 360-16, equation J4-5:

dR, =0 [O.6OFUAM + UbsFuAm] <o [O.GOFyAgv + UbsFuAnt] (2.16)
Where:
d =0.75

Ups = 1 (uniform tension stress), 0.5 (nonuniform tension stress)

The AISC specified capacity of the block shear failure mode is the combination
of the lower of the net section shear fracture or gross section shear yield along
with the net section tensile fracture. The efficiency factor, Uy, is either 1 or 0.5,
depending on the tensile stress distribution. It is unclear whether the uniformity
of the tension stress distribution is with respect the the fracture plane area only,

or across the entire section of the member in question.

2.3.3 European design procedure (Eurocode 3-2005)

The European code specifies separate equations for concentric and eccentric load-

ing. For symmetric bolt groups subject to concentric loading (Eq. 3.9):

qunt fy Anv
+
Y2 ’YM()\/g

Verfird = (2.17)
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2.4 Finite Element Modelling

For a bolt group subject to eccentric loading (e.g., coped beams):

qunt + fyAnv

(2.18)
29m2  YaoV3

Verfo.rd =

Where:
Apt = net tension area
A,, = net shear area
a0 = 1.00
Ym2 = 1.25

The Eurocode 3-2005 generally follows the same procedure as the AISC 360-
16 design method, but without the upper bound in place for the transition into
a gross shear yield failure mode. Regardless of material ductility and relative
strengths of each failure plane, the assumed failure mode for the Furocode 3-
2005 design method is always a complete fracture of the block. It is also noted
that the shear strength of f,/ V/3 used by the Eurocode 3-2005 is equivalent to
the 0.60 factor used by the AISC 360-16 and the CSA S16-19 methods; the use
of 0.60 is simply a rounded value of the Von Mises shear yield criterion of f,/ V3.

2.4 Finite Element Modelling

To expand beyond time-intensive and expensive laboratory testing, finite element
modelling has been extensively used to explore the block shear failure mechanism.
The use of finite element modelling software allows researchers to quickly explore
the varying parameters that affect the block shear failure mode, allowing for
a more complete understanding of the underlying mechanisms. However, there
must be careful consideration when developing these models to ensure they are
representative of true physical scenarios: the representation of material behaviour
in complex stress states; boundary conditions and other simplifications of external
factors of loading; proper definition of failure criteria.

Linear elastic two-dimensional finite element models were developed early on
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2.4 Finite Element Modelling

in block shear research, and the methods and technology used have progressed
over time. Different element types, material definitions, and boundary conditions
have been used to varying degrees of accuracy. An active field of research is the
modelling of rupture initiation and the corresponding post-ultimate behaviour
of the connection. This section provides an overview of the varying techniques
used by researchers to evaluate the block shear failure mode via finite element

modelling.

2.4.1 Initial methods of finite element analysis

After the first instance of block shear failure was observed by Birkemoe and
Gilmor (1978), Ricles and Yura (1983) set to perform a parametric analysis of
coped beams to determine the effects of bolt spacings, edge distances, and single
or double row bolt configurations on the block shear failure mode. The objective
of the study was to determine how the different parameters affected the stress dis-
tribution along the tension and shear planes. The study included a series of finite
element models to explore the variation of stresses in the main failure planes. Due
to computational limitations of the time, significant simplifications were made on
the FE models to represent the true test conditions. First, both the beam and the
connecting clip angle were modelled with two-dimensional planar elements, us-
ing a combination of four-node quadrilateral and three-node triangular elements.
The use of planar stress elements significantly reduce computational time, but are
unable to capture any effects of out-of-plane deformations, whether it is the buck-
ling of the web, or the out-of-plane necking of the net tensile region. Second, the
connecting clip angles were simplified with spring boundary conditions. Third,
bolt holes were not modelled as circular absences in the planar beam model, but
rather as square absences to match the element types used for the model. The
force transfer from the bolts was modelled as nodal ties between the theoreti-
cal connecting surfaces of the square bolt “hole” in both the clip angle and the

beam web. This simplified the connection to an infinitely rigid, always-in-contact
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2.4 Finite Element Modelling

transfer of shear between the beam web and the connecting plate. Despite these
simplifications, the general results derived from the finite element analyses pro-
vided additional insight on the block shear failure mechanism. Namely, that the
free edge distance of the tension plane has a great effect on the stress concen-
tration and distribution of the failure plane; that a second row of bolts creates
a highly non-uniform stress distribution on the tension plane, which reduces the
capacity at failure, and; the most typical stress distribution of the block shear
failure path at capacity was a tensile fracture with a shear yielding plane.

Since the first finite element models were performed by Ricles and Yura (1983),
many block shear researchers developed their own models for varying section types
and loading configurations to further understand the mechanics of the failure
mode. Epstein and Thacker (1991) used finite element modelling techniques
to investigate the block shear failure mode for single-leg connected angles. They
developed FE models to investigate the effect of out-of-plane eccentricities and the
corresponding shear lag on the tensile capacity of single-leg bolted steel angles,
as well as the possible strengthening effects of bolt stagger. Since single-leg
connected angles will experience out of plane as well as torsional deformations,
the authors developed a model using four-node quadrilateral shell elements that
were unrestrained from out of plane deformations. The models also included
realistic circular bolt holes as opposed to the square estimates of Ricles and Yura
(1983). However, some simplifications remained: the variation in thickness of
the web-heel fillet can not be captured using shell elements; only material non-
linearity is modelled, as necking in the out-of-plane direction for shell elements is
not captured.

Epstein and Chamarajanagar (1996) improved on these limitations by us-
ing three-dimensional 20 node hexahedral elements (C3D20) in their correlation
models with previously tested single-leg connected steel angles. The use of 3D
elements allowed for geometric non-linearities to be captured as well as the ability

to directly correlate FE results to strain gauge readings that are placed on the
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exterior surfaces of the test specimens. It also allowed for a better representation
of the true geometric properties of the tested specimens. Failure of the tension
plane was based on interpolated strain data between two nodes on opposing sides
of the expected failure plane; once the interpolated strain reached a predefined
failure limit, ranging from 2¢, to 5e¢,, the ultimate strength of the fracture plane
was assumed to be reached. The authors do not mention how or if the strain and
stresses of the shear plane were evaluated.

Topkaya (2004) expanded the finite element analyses study of block shear
failure in both gusset plates and single-leg connected angles. Over one thou-
sand analyses were performed to evaluate the predictive capacities of the AISC
360 block shear equations at the time. For this study, three-dimensional ten-
node tetrahedral elements (C3D10) were used to model the angles, while two-
dimension, six-node triangular plane stress elements (CPS6) were used to model
the gusset plate. These elements were selected for their ability to handle large
in-plane deformations and material non-linearities. The models used a generic
true stress-strain response of an elastic perfectly plastic response, and then a
linear strain hardening region, with a stress plateau once the ultimate strength
was reached. The predictive capacity of these model parameters were tested on
previous laboratory test results, showing a professional factor of 0.990, indicating
a good representation by the finite element models (Hardash & Bjorhovde, 1985;
Gross et al., 1995; Orbison et al., 1999).

Pizzuto (2019) performed FE analysis for the initial confirmation of block
shear failure in flange-connected W-sections under pure tension, before perform-
ing laboratory tests on full-scale representative sections. FE analysis was also
redone using calculated geometric and material measurements to compare and
calibrate against the laboratory results. All relevant parts were modelled using
solid elements to best capture significant deformations, both in and out of plane.
C3D8 brick elements were used for the W-section, splice plates, and bolts. while

C3D6 wedge elements were used for the K-area as it better suited the curved and
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triangular geometry. The load displacement vs. applied force curves of the FE
models had very good correlation to the observed test results up to the ultimate
load point. As expected, since no simulation of fracture was implemented, the FE
models could not accurately reflect the post-ultimate behaviour of the overall sec-
tion. However, qualitative observations between the simulated and true deformed
shapes of the connection region past the ultimate capacity of the section showed
a very reasonable predictive capacity of the FE models. For these reasons, the

FE modelling of this thesis is widely based on the methodology used by Pizzuto.

2.4.2 Modelling of fracture in block shear failure

Although the studies discussed in the previous section used a range of finite ele-
ment modelling techniques to varying degrees of accuracy, none of the mentioned
studies modelled the initiation and propagation of fracture in the tensile failure
plane. Although these non-fracture models can accurately represent the stress
distributions up to the failure point (the initiation of fracture), understanding
the complete failure mechanism requires the ability to model the post-ultimate
behaviour of a given connection. The different methods used to represent the rup-
ture path of tension and shear planes in block shear tensile failure are explored
in this section.

Huns et al. (2006) performed an in-depth finite element study of block shear in
gusset plates to investigate the exact failure mechanism and progression of block
shear. The models were developed using four-node, reduced-integration shell
elements (S4R), which allowed for changes in element thickness. The material
true stress-strain behaviour up to the engineering ultimate strength was derived
from averaged tensile coupon testing results, with post-ultimate true stress-strain
behaviour (up to € = 1.2) based on a previous study on ductile structure steel
by Khoo et al. (2000). Fracture was modelled via a deletion method, where an
element was removed from the analysis model once the major principal strain of

the element integration points reached the average tensile rupture strain based on
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coupon testing results; in this study, this total (elastic + plastic) strain was € =
1.13. The modelling of the shear plane was slightly more involved: the shear strain
at the point of rupture during tensile coupon testing was recorded, and acted as
the shear strain corresponding to shear fracture. A similar deletion method was
used, where once the integration points of an element reached this maximum
shear strain, the element was removed from the analysis. The predictive capacity
of these models were tested against eight different laboratory results on gusset
plate block shear failure, with a mean professional factor of 1.04.

Wen and Mahmoud (2017) developed a more involved method to represent
fracture in FE models of block shear failure in gusset plates. Their work developed
an analytical method of approximating the rupture strength of the shear plane
based on the inclusion of the Lode Parameter in addition to the stress triaxiality
used to model tensile fracture. They developed a damage model to represent
the plastic strain in a given element as a proportion of the total strain energy
capacity. The damage value, D, was checked at each iteration of the finite element
analysis, and the elements with D > 1 was deleted before the next iteration.
The authors used reduced-integration, two-dimensional planar stress elements
(CPS4R) for their analysis. Testing the predictive capacity of these models to
previously tested laboratory results showed an extremely high degree of accuracy
that extended well past the ultimate capacity of the connection. The inclusion
of the new damage parameter allowed for an accurate modelling of post-fracture
behaviour of the gusset plate.

Elliott and Teh (2019), while evaluating the validity of the Whitmore Net
Section capacity calculation method, performed finite element models of bolted
gusset plate connections that included fracture modelling. For the best represen-
tation of out-of-plane element deformation, three-dimension, eight-node hexahe-
dral elements were used (C3D8R). Like previous researchers, fracture was mod-
elled using damage initiation parameters and an element deletion method. A true

stress-strain material curve was defined using the Ramberg-Osgood power func-
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tion (Ramberg & Osgood, 1943), and the stress triaxiality and strain at fracture
were defined based on previous tension coupon testing by Aalberg and Larsen
(2000). Once an element reached these limits, it was deleted from subsequent

steps in the analysis.

2.5 Summary

Block shear as a failure mode for bolted connections has been observed, studied,
and calculated for over 50 years. Through extensive laboratory testing and finite
element analysis, the Canadian S16 design standard has provided an accurate and
general method of predicting block shear strength capacities. The CSA S16-19
design method for block shear failure assumes a gross shear yielding plane and
a net tensile fracture plane for a given block, with an efficiency factor, U, that
accounts for non-uniform stress distributions from in-plane eccentricities; while
the U factor was initially calculated as a function of the connection length as well
as the bolt group eccentricity, it has largely been replaced by tabulated values
based on direct tension test results on plates, angles, and structural tees.

Until recently, however, the block shear failure mode had not been explicitly
verified for flange-connected W-sections, despite their widespread use in struc-
tural steel design. It was generally accepted that the efficiency factor could be
borrowed from flange-connected structural tees due to the inherent symmetry
of W-sections. This verification was finally performed by Pizzuto (2019), where
finite element analyses and full-scale laboratory testing concluded that the CSA
S16-14 design method (unchanged in 2019) calculated accurate predicted capaci-
ties for flange-connected W-sections under pure tension. The results from Pizzuto
also confirmed that the failure mechanism as assumed by the CSA S16 standard,
consisting of a gross shear yield plane and a net tension fracture plane, accurately
reflected the observed failure mechanism in the laboratory tests.

With this failure mode and corresponding predictive equation verified and
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Centre Block Shear

Figure 2.4: Potential moment-induced failure modes for W-sections under flexure.

assessed for W-sections in pure tension, it is natural to consider the same ques-
tions for the tension flange of a bolted W-section connection under moment, since
Wh-sections are widely used as flexural members. A potential block shear failure
scenario could occur at beam ends for moment-frame bolted connections, as well
as mid-span in bolted beam splices; three possible moment-induced block shear
failure modes are presented in Figure 2.4. Although the effect of relatively small
induced moments due to connection eccentricities have been studied in the con-
text of block shear failure, it is to the author’s knowledge that the effect of a
directly applied moment on the block shear failure mode and predictive capacity
has not yet been performed; this corresponds well to the fact that most studies
on the block shear failure mode have been performed on sections that are not
used as flexural members, namely gusset plates, angles, and tees.

Further complicating the study of block shear under moment-induced tension
is the potential conflict or redundancy with the 15% Rule found in the CSA

S16 design standard, that reduces the allowable flexural capacity of W-sections
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with reduced flange areas due to bolt holes. It is unclear whether the flexural
capacity corresponding to a potential tension flange block shear failure inherently
covers the effect of bolt holes in flexural members, or if the 15% rule must also be
considered during design. Further, it is unclear whether the 15% rule is applicable
at all in the context of beam ends, since the origins and subsequent research that
the rule is based on is with respect to hole along the mid-span of the beam.
Through a series of finite element analyses and corresponding full-scale labora-
tory tests, this thesis aims to shed light on the following questions. First, is block
shear in the tension flange a real possibility for bolted W-section connections
under flexure? Second, can the current design equations in the CSA S16, AISC
360, and Eurocode 3 standards accurately predict this failure mode? And third,
does the 15% rule play any part in the design and detailing of a flange-connected
bolted splice plate W-section under flexure, or should this rule be reserved for

bolt holes placed along the mid-span of a beam?
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Chapter 3

Preliminary verification of
moment-induced block shear and
selection of laboratory test

specimens

Before the predictive capacities of the current block shear design equations can be
evaluated in the context of moment-induced tension in the flange of W-sections
under flexure, the possibility of this failure mode must first be confirmed. Further,
should the moment-induced block shear failure mode be a possibility, the predic-
tive capacity of current design equations should be evaluated. These questions
were addressed in three phases. First, a general iterative design methodology
was developed for the selection and detailing of a bolted splice plate connection
under pure moment that would theoretically fail in moment-induced block shear.
Second, the design methodology was used to select five initial section-connection
details that would be modelled using finite element analysis, and fabricated to
test in the structural laboratory for finite element analysis calibration. Next,

the five section-connection details were developed into preliminary finite element
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models (pFEMs) to verify the analytic assumptions and expected loads at failure.
The configuration of the finite element models were developed to replicate the
conditions of the structural laboratory at McGill University, as seen in Figure
3.1, to allow for a direct comparison with laboratory test results. This section
provides an overview of the selection of the preliminary test specimens, which
include the development of the analytical design, as well as the development and

verification of the initial finite element models.

3.1 Selection of initial test specimens

The selection of five initial preliminary models with moment-induced block shear
critical connection details required the development of a consistent design method-
ology. In the early stages of the development of this methodology, it was observed
that the theoretical moment-induced failure mode for W-sections was highly sen-
sitive to varying geometric factors of the section itself, as well as the number of
bolts that are required to carry the block shear capacity in the flange. However,
basic requirements were defined before the completion of the design methodology
and specimen selection to guide the process and to reduce the range of viable

sections:

1. The section chosen should reflect a typical W-section used for beam ele-

ments.

2. The section should be ideally a Class 1 section to avoid premature local

buckling of the flange and/or web.

3. The connection should be detailed such that the block shear failure mode

is critical.

4. The critical block shear failure strength should ideally occur while the gross

section remains elastic.
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Figure 3.1: Translation of laboratory test conditions into modelled region.
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5. All peripheral elements (bolts, splice plates) should remain well within their

elastic range at the point of block shear failure.

6. The critical required load should be below the capacity of the laboratory
actuator (11 MN).

This section provides a detailed overview of the geometric constraints for
moment-induced block shear, as well as the final design methodology and the
selection of the five preliminary test specimens to be numerically modelled as

well as fabricated and tested in the structural laboratory.

3.1.1 Effect of section geometry on moment block shear

failure potential

Due to the widespread use of W-sections in all load bearing applications, there
is an extensive range of available depths, widths, and linear masses. Various
geometric properties of a given W-section influence the range of possible failure
modes for a bolted moment connection, including the flange thickness, flange
width, as well as the depth of the section.

Since the failure plane areas for both the gross shear yield and net tension
fracture are proportional to the flange thickness, sections with relatively thick
flanges require a greater amount of force to induce the block shear failure mode.
A larger force at block shear failure would require additional rows of bolts to
carry this force. However, this addition of bolts further increases the block shear
resistance due to the increased connection length, and often leads to a required
moment-at-failure that is greater than the gross section capacities, namely M,
and M,. A visual example of this conflicting requirement is shown in Figure
3.2. For heavy flange sections, it was determined to be impossible to detail a
connection such that the block shear failure mode was critical while maintaining

adequate bolt strength and remaining below gross section capacities.
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Figure 3.2: Comparison of thick vs. thin flanges for block shear sensitivity.

In a comparison of deep to shallow sections, the induced flange forces for an
equivalent moment in deep sections are much lower due to the larger moment
arm between the compression and tension flanges. Therefore, for an equivalent
moment splice connection detail, a deeper section must be loaded to a greater
moment to reach the block shear strength capacity of the connection, as shown in
Figure 3.3. It was observed that with bolt spacing details consistent with those
used in practice, this required moment often encroached on the gross section
moment capacities, and made it difficult to isolate the moment-induced block
shear failure mode. However, on the contrary, shallower sections, although they
have a greater induced flange force for a given applied moment, also typically
have smaller gross section flexural capacities. Therefore, a shallower beam did
not immediately allow for a block shear critical connection, because the minimum
block shear force may still exceed the gross section capacity due to its inherently
lower flexural strength.

Further, sections with narrow flanges caused geometric limitations when de-
tailing the connection and splice plates, as seen in Figure 3.4. The narrow width
of the flange compounded by the reduction of usable space in the flange interior
due to the fillet region made the detailing of the interior splice plate difficult or
impossible to meet CSA S16-19 edge spacing limits (Canadian Standards Asso-
ciation, 2019).
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3.1 Selection of initial test specimens

Figure 3.3: Comparison of deep vs. shallow sections for block shear sensitivity.

Geometric

Incompatibility

Figure 3.4: Comparison of wide vs. narrow flanges for block shear sensitivity.
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3.1 Selection of initial test specimens

In general, it is noted that the potential for a moment-induced block shear
failure to occur in a bolted flange splice connection is limited to relatively shallow
sections with moderate-to-thin flange thicknesses, with a moderate-to-wide flange
width. In addition to these specific section geometry limitations, it is noted that
the number of required bolts in each flange greatly affects the possibility of a
block shear critical connection detail. For every new row of bolts added to a
flange, the connection length increases significantly due to the minimum spacing
requirements for fastener holes. This increase in connection length increases the
shear component of the block shear failure mode, and often leads to a block shear

resistance surpassing the gross section capacity for flexure.

3.1.2 Section selection and connection detailing

With the initial geometric limitations in mind, W-sections were selected by ran-
dom, and a block shear critical moment splice connection detail was attempted.
The detailing of the connections relied on certain base assumptions and require-

ments:

1. The connection is a bolted moment splice under pure moment only.

2. No web splice is provided — all force transfer occurs through the flanges.
3. Full lateral stability is provided for the beam.

4. Bolts are in double-shear, with both interior and exterior splice plates!.

5. The induced force in each flange is assumed to be Mypiica/(d —tf), i.e. the
assumed moment arm of the force couple is between the centroids of the

two flanges.

Iholts in double-shear were specified to provide the shortest connection length possible for
a given bolt diameter. As previously discussed, the moment-induced block shear failure mode
was found to be highly sensitive to the overall connection length of the bolt group.
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3.1 Selection of initial test specimens

The design methodology (outlined in Figure 3.5) was automated via Julia
functions in a step-by-step procedure template created in Jupyter Notebooks
(Kluyver et al., 2016). Using Jupyter Notebooks allowed for visual exploration of
all possible combinations of bolt diameter, end distance, edge distance (gauge),
and pitch, and ensured that all connection details met CSA S16-19 distance re-
quirements at all times. Jupyter Notebooks also provided the added benefit of
easy annotation and case-by-case notes for each test specimen.

The semi-automation of the preliminary design phase was especially necessary
due to its trial-and-error nature. Although general limitations in section geometry
were understood before the preliminary design phase, these limitations were only
relative measures; it was unclear as to what constituted a “narrow” flange or a

“deep” section in absolute value terms.

3.1.3 Sample design methodology for M5: W610X101

This section provides the step-by-step design methodology for one of the six
section-connection details that were selected for fabrication for full-scale labora-
tory testing, detailed in Section 3.1.4; the selected specimen was a W610X101
section, whose geometric properties relative to other W-sections is shown in Fig-
ure 3.8. The logic of each step is presented, along with the basic performed
calculations. Full design checks and S16-19 spacing limit calculations are not
explicitly shown, but are performed when following the workflow in Figure 3.5.

First, basic assumptions of material strengths were defined:

F, = RyFy nomina = 1.1 x 350 = 385M Pa (ASTM A992, probable)
F, = 460M Pa (ASTM A992, nominal)
Fouporr = 1050M Pa (ASTM F3125 Grade A490')

Since the objective of this study was to evaluate the predictive capacity of

existing block shear design equations, and not to evaluate their statistical level

! American Society for Testing and Materials (2019)
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|I Choose section |

Select material
properties

!

Determine critical moment
capacities:
My, My,

}

Choose design moment
capacity:
Mdesign =X My
Where X = 0.90 (typ.)

!

Determine equivalent flange force:
Fdesign = Mdesign/(d - tf)

Choose bolt diameter, Increase Fgesign by 1.5x
grade for splice plate design
v ¥
Determine number of bolts such
that:
¢Rbolts = Fdesign

!

Determine connection spacing l
limits (CSA S16-14):
endmin , pitchmin, edgemin

Distribute flange force:
Fexterior = Fdesign/z
Finterior = Fdesign/4

Interior plate passes all
connection spacing
limits?

Determine if theoretical minimum
block shear capacity < Fges

Determine minimum
thickness required for:
- Bolt bearing
- Compression buckling
- Gross tension yielding
- Net tension fracture

Choose end
distance:

dend

!

Visualize and select
desire combination
of pitch, gauge to
reach target
connection capacity

Choose critical thickness

as plate thickness. Round

accordingly for standard
plate sizes.

Connection geometry
designed

L

Splice geometry
designed

Figure 3.5: Specimen detailing methodology
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Figure 3.6: Final designed M5 test specimen.

of safety, probable material capacities and unfactored design equations are used.
The nominal yield strength, F,, is multiplied by 1.1 to determine the probable
yield strength as per the CSA S16-19 C1.27.1.7 (2019) for seismic design. It is
noted that the ultimate strength, F),, was left at its nominal value as no direct
method for a probable ultimate strength value is provided in the CSA S16-19
standard. During the finite element analysis of these designed specimens, prob-
able material strengths based on the coupon testing results of similar sections
performed by Pizzuto (2019) were used.

Second, the basic bolt information was defined:

dy="17/8"
Hole tolerance = 2mm
dy, =~ 24dmm

Shear planes = 2

The selection of the initial bolt diameter was arbitrary, but was typically
chosen to be either 7/8” (22.2mm) or 17 (25.4mm). This provided an ideal
compromise between strength (reducing the number of total bolts required per
flange), while minimizing the reduction in flange area as well as minimizing the
require bolt spacing limits.

Then, since the ideal critical block shear failure moment occurs below the

yield moment of the gross section, a target moment value, My, was determined
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3.1 Selection of initial test specimens

Figure 3.7: Definition of Pitch, Gauge, and End distances
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Figure 3.8: W610X101 W-Section properties
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3.1 Selection of initial test specimens

as a proportion of the yield moment, M,. This proportion was typically taken as

0.80M,,, but was adjusted depending on the section.

Mges = 0.80M, = 0.805,F, = T76kNm (3.1)

As the moment splices were detailed without any web connections, the entire
moment must transfer through the flanges. The design moment was then trans-
lated into a design force by assuming a moment arm between the compression

and tension flange centres.

Frow = Mies _ y300pn (3.2)
d—t;

Then, a block shear resistance of the tension flange equal to Fjy.s would cor-
respond to a moment design equivalent to Mg = 0.80M,, and would be the
critical moment resistance of the section. At this stage, a preliminary check on
the capacity of the fasteners was performed. To maximize the potential for a
block shear critical moment connection, it was important to minimize the overall
connection length by minimizing the number of bolts used in each bolt row. To
determine this minimum viable number of bolts per flange, the target block shear
capacity Fy.s was divided by the shear resistance of an individual bolt. Nominal
material strengths and unfactored strength equations were assumed for the bolt,
and two shear planes were used, as both interior and exterior splice plates were

specified.
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3.1 Selection of initial test specimens

Then:

‘/r,shear = 0-6Fu,boltnAb

- 0.6(1050)(2)(7T22'22

)
= 489kN

Vi bearing = 2.4F peamdpt ¢
— 2.4(460)(22.2)(14.9)
= 366kN

‘/r = min [V;,sheary ‘/r,bearing]

= 366kN
Fles
Ny, min = i
1322
~ 366
=3.6—>14

(3.3)

(3.4)

(3.5)

(3.6)

A total of 4 bolts was required per flange to adequately resist the specified

target moment capacity. At this stage of the design process, some qualitative

information was provided on the likelihood of a block shear critical moment con-

nection design. By experience, it was noted that a block shear critical connection

geometry was difficult or impossible when siz or more fasteners were required in

the tension flange, assuming the bolts will always be placed in a single line on

each side of the flange. Since the shear component of the block shear equation

was proportional to the connection length, [., adding another bolt to each row

on the tension flange had a significant impact on the block shear resistance. If

Mg.s was large and required a significant number of bolts to adequately resist

its corresponding flange force, the minimum possible block shear resistance value
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3.1 Selection of initial test specimens

would exceed the target flange resistance, Fj.,. In this case, the target moment
could be increased in an attempt to match this minimum block shear resistance,
with Myes allowed to exceed M,, but remaining below M,. However, this could
induce a positive feedback loop in which increasing M.; would further increase
the number of bolts required to resist the target force. An alternative option was
to increase the bolt size. However, due to a limited selection of standard bolt
diameters, this method was found to be ineffective from the author’s experience.
Therefore, should the required bolt number per flange for a reasonable value of
Mges exceed 4 bolts, the design process could either be restarted with a new
section size, or continued with the understanding that the critical block shear
moment strength would most likely not be the critical moment capacity.

Next, the connection spacing limits defined by the CSA S16-19 Cl1.22.3 and
Table 5 (2019) were determined. The relevant limits were the minimum end
distance, the minimum edge distance, and the minimum/maximum bolt pitch.
A visual definition of these three values are provided in Figure 3.7. An upper
limit of 100mm (4”) was set for the maximum end distance. The minimum edge
distance was used to determine the minimum and maximum possible bolt gauge,
or the centre-to-centre distance between bolt rows on opposing sides of the web.
The maximum gauge was the distance where the minimum edge distance was
reached on the free end of the flange; the minimum gauge was the distance where
the minimum edge distance was reached for the yet-to-be-designed interior splice
plate that was placed on either side of the section web. Since the interior splice
plate must lie flat on the interior face of the flange, its width was governed by the
flange width as well as the k; distance from the centre of the section to the toe of
the flange-web fillet. For a given combination of pitch, gauge, and end distance,

the corresponding block shear resistance of the tension flange and its equivalent
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3.1 Selection of initial test specimens

moment resistance was determined by:

by — —d F,+F,
T’I‘,EBS =2X / gagge hthu + 06(67’Ld +pz’tch(nbolt8 — 1))tf Y +
(3.7)
F,+ F,
T,ops = (by — 2dp)t i F,, + 0.6(end + pitch(npois — 1))ty —2 + (3.8)
And:

Mgps = T, gps x (d — ty) (3.9)

Mecps =T, cps % (d — ty) (3.10)

Since all connection geometry limits were defined, the entire block shear design
space could then be determined and plotted. A plot of all possible combinations
of bolt geometry and the corresponding critical block shear moment capacity
is shown in Figure 3.9. Each vertically stacked surface represented a given end
distance, and all combinations of allowable pitch and gauge were represented by
the X and Y axes. The two distinct slopes along the pitch axis represented the
two different possible block shear failure modes, Edge Block Shear (EBS) for
smaller pitches, and the Complete Block Shear (CBS) for larger pitches. The
intersection of the two slopes represented the theoretical connection length where
the two block shear failure modes would have the same theoretical resistance.

It is noted that there exists a third theoretical block shear failure mode, the
Centre Block Shear (CeBS), where a central block is removed from the flange,
with shear planes lying in both the flange as well as the web. Due to three
simultaneous shear planes for this failure mode, it was found to not govern the
connection design for practical connection details. Nevertheless, the CeBS failure
mode was considered during the automated calculations. A visual overview of

these three moment block shear failure modes is provided in Figure 3.10.
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city (kNm)

Critical Moment Capa

Figure 3.9: Design space for W610X101 section.
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Centre Block Shear

Figure 3.10: Possible moment block shear failure modes.

At this stage, a critical design requirement was evaluated: did there exist a
possible combination of end, pitch, and gauge distances that resulted in a theo-
retical block shear failure resistance that was equal to or less than the specified
target moment capacity, Mg.s? A plot of My against the possible design space
for the W610X101 section is shown in Figure 3.11; the intersection of the tar-
get moment surface with the design space indicated that there was a possible
combination of connection geometry such that the critical block shear moment
capacity was equal to or less than the target moment capacity, Mgy.. Should
the target moment surface not intersect with the connection design space, two
options were possible. First, the target design moment could be increased to
allow for a possible design space intersection, effectively raising the red surface.
Second, the bolt size could be adjusted to change minimum spacing requirements
to lower the design space surfaces. From experience, it is noted that the second
option had marginal impact on the absolute values of the design space surfaces.

The first option was limited by the gross section properties: the target moment
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Figure 3.11: Target moment capacity Mg, in red against the M5 design space.
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Figure 3.12: Sample of possible connection geometry combinations for a block
shear critical failure mode.

may be increased to above the elastic moment, but should remain below the gross
plastic moment to create a block shear critical connection. However, since the
difference between M, and M, is typically small, the actual window of adjustment
for My.s was also small. It is in the author’s experience that should the initial
target moment not be met by the selected section and bolt hole size, a block shear
critical connection was unlikely to control the design, and a new section should
be selected.

Once a possible block shear critical failure mode was confirmed, the geomet-
ric combinations that resulted in a block shear moment resistance within a set
tolerance (typically 10%) of the target moment was plotted for a final connection
geometry design. One possible set of connection geometry with an end distance
of 50mm (2”) that provided a critical block shear moment capacity within 10%
of the target moment capacity is shown in Figure 3.12. When possible, the final
connection geometry was chosen to reflect typical spacings used by practising

engineers, typically in half-inch increments. These typical spacings are end dis-
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3.1 Selection of initial test specimens

tances of approximately 50mm (2”), pitch distance of approximately 75mm (3”),
and edge distances greater than 38mm (1.5”). For the M5 specimen, the following

connection geometry was selected:

end = 35mm
pitch = 75mm
gauge = 145mm

With the final connection geometry, all possible failure modes and their corre-
sponding unfactored, probable moment capacities were calculated. A comparative
overview of the moment capacities of all possible failure modes is shown in Figure

3.13. For example, the Edge Block Shear moment, Mggg, was calculated by:

T, EBs =2 X {bf — gagge — dhthu + 0.6(end + pitch(npous — 1))ty By + F“]
(3.11)
=2 % [228 — 1245 — 24(14.9)(460) +0.6(35 + 75(2 — 1))(14.9)@]
— 1256kN
Mgps = Trpps(d —tf) = 1256(602 — 14.9) (3.12)
= 724kNm

With the final connection geometry specified, and critical moment capacities
verified, the periphery elements were designed. For the splice plates, one exterior
and two interior splice plates were specified for each flange. The flange force
was assumed to be transferred approximately proportional to its size, and was
increased to 150% of the expected critical failure mode to provide an additional

level of safety:
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Figure 3.13: Overview of theoretical probable and unfactored moment resistances.

Frgt = 1.5 X Flyiy /2 = 1.5T, pps/2 = 942kN (3.13)
Fyy = 1.5 X T, pps/4 = ATIEN (3.14)

The minimum thickness of each plate was determined for each potential failure
mode using the CSA S16-19 design standard. The widths of both the interior and
exterior splice plates were maximized to the available flat surfaces on both sides

of the flange:

bsplice,emt = bf (315)

by — 2k
bsplice,int: ! 9 ! (316)

The design checks included: gross section yielding, net section fracture, plug

shear, bearing failure, as well as the buckling compression resistance of the exte-
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rior compression flange. For this calculation, the end to end length was taken as
the centre-to-centre distance between the nearest bolt holes on opposing sides of
the splice. With a typical 12mm (0.5”) gap specified between opposing sections,
this length was calculated by:

L,=2xend+ 12 (3.17)

The effective length factor of £ = 0.7 was chosen for compression buckling
design, as the geometry of the splice plates and bolts were assumed to act as fixed
boundaries for the free length. Once the critical plate thickness was determined,
it was then rounded up to the nearest half-inch increment to reflect common
stock plate thicknesses for structural steel fabricators. A standard end distance
of 50mm (2”) was used for the free ends of each splice plate.

Since the detailed connections were to be modelled using finite element analy-
sis software as well as fabricated and tested in the structural laboratory, the rest
of the section outside of the connection region was also designed and detailed.
First, as the laboratory test specimens would be loaded under a four-point load
configuration, the shear span and total length of the beam were selected. The
total length of the beam was chosen to be [ = 2500mm with a shear span of
a = 1500m; a justification of these dimensions are provided in Chapter 4. With
the selected shear span, the required applied force in a four-point load configura-
tion was calculated. To be conservative, the expected required force was chosen

as the force corresponding to the gross plastic moment:
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Mapplied
a

M,

D
1.5m
1117kNm

1.5m
= 1675kN

(3.18)

Papplied =

Next, the bearing capacity of the section was determined for this required
force. For most of the sections tested, the bearing capacity of the web alone was
sufficient to withstand the expected forces. However, to minimize local deforma-
tions during laboratory testing, bearing stiffeners were specified for all test spec-
imens. One inch stiffeners were placed at load and support points that spanned
up to the toe of the web fillet in the K-area of the opposing flange from the point
of contact. A base size of 8mm E490 electrode fillet welds was initially specified
along all contact points between the stiffener and the section, with the size being
increased if the welds could not withstand the full expected load on the stiffener.
The beam end was extended by 200mm (l;o1r = 2700mm) to provide additional
bearing support at the end. The effective length and shear span of the beam

section remained at | = 2500mm and a = 1500mm, as seen in Figure 3.6.

3.1.4 Initial test specimens

The process above was performed over thirty times, with sections selected by
trial-and-error, accounting for the general rules for block shear sensitive section
geometries as listed previously. From the initially designed section-connection
details, five unique sections were selected to be fabricated and tested in the struc-
tural laboratory. These sections were chosen to represent the general geometric
limits for block shear critical sections in flange width and section depth. The

range of geometry in depth, width, and linear mass of the selected five specimens
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Figure 3.14: Width, depth, and linear mass of all standard W-Sections (selected
specimens highlighted in red)

is shown in Figure 3.14. It is noted that although a good range in flange width and
section depth was captured in the selected group, the linear masses are all similar
in value, with a maximum linear mass of 113kg/m, and a minimum of 53kg/m.
This is in part due to the fact that the wide range of linear masses available for a
Wh-section with similar section depths come from the large variance in available
flange thicknesses. This is best observed by the series of upwards sloping groups
of section sizes in the d vs. W graph in Figure 3.14. As previously indicated,
since the block shear resistance is highly sensitive to the flange thickness, heavier
sections typically could not be detailed such that the block shear moment was
the critical resistance.

The expected moment capacities of the two block shear failure modes as well
as the two gross section flexural strengths are found in Figure 3.15 and Table
3.1. All specimens were detailed such that the critical moment resistance was

tied to the Edge Block Shear failure mode. The isolation of the EBS failure
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Figure 3.15: Theoretical unfactored and probable moment capacities of selected
specimens
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Table 3.1: Selected section overview. Critical moment capacities are in bold.

Test ID  Section Bolt Diameter (in) M, (kNm) M, (kNm) Mcps (kNm) Mgps (kNm)

72 XE’

M1 V2O0RSE 7/8 295 266 277 250
(W10X39)

Mz V300X 7/8 643 581 624 502
(W14X61)
410X5

Mg VALOXS3 3/4 404 357 339 299
(W16X36)

M4/M6 W‘%6OX113 1 1028 920 946 741
(W18X76)
10X101

WEI0XI0 7/8 1117 970 894 724
(W24X68)

mode, or the difference in resistance between the critical resistance and the next
lowest resistance, varied depending on the section, with the M1:W250X58 section
having the smallest difference between the EBS moment failure mode and the
Yield Moment. The connection details of the preliminary models M1-M6 are
provided in Chapter 5. It is noted that M4 and M6 have the same section size
and connection geometry, but M6 has the addition of a typical web splice plate
connection with slotted holes to observe the effects of these additional bolts in

the block shear failure mechanism.

3.2 Preliminary finite element models

Once specimens M1 to M6 were selected and detailed, preliminary finite element
models (pFEMs) of the expected laboratory loading conditions were created to
verify the initial analytical calculations on the expected failure mode. Like all
finite element analyses, the preliminary set of models require significant iteration
and verification to ensure that a suitable compromise was met between proper
boundary conditions that reflect true expected loading conditions, the selection
of mesh elements and mesh density for analysis resolution, and computational

time. For physical representation of the test configuration, a parametric script in
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Grasshopper for the Rhinoceros computer aided design program was developed.
These files were then imported into Abaqus/CAE for all remaining finite element
analysis tasks. This section provides an overview of the development of the

preliminary finite element models.

3.2.1 Physical representation of test conditions

As the objective of this project was to investigate the block shear failure mode
during moment-induced tension, a four-point load, pure bending moment method
was chosen for the laboratory testing component. The four-point load method
provides the benefits of eliminating shear forces in the mid-span region, con-
trolling the applied moment for a given load by adjusting the distance between
load/support points, and allowing for an extended region of constant moment to
allow for comparisons of gross/net section behaviours at the same moment value.
A more detailed description of the laboratory loading conditions is provided in

Chapter 4.

o o o

1500mm

2500mm

2700mm

Figure 3.16: Translation of test conditions to FE conditions.
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The loading method also provides the added benefit of two planes of symmetry,
the first at the centre of the splice plates (see Figure 3.16), and the second being
along the weak axis of the cross-section, parallel and centred on the web. These
planes of symmetry allow for modelling only one half of each symmetry plane in

the pFEMs, significantly reducing the computational time required for analysis.

3.2.1.1 Load/Support boundary conditions

The behaviour of the loading and support points was controlled by displacemen-
t/rotation boundary conditions on the exposed face of the loading and support
plates (Fig. 3.17). Both plates were tied to the beam, simulating a no-slip con-
dition. The surfaces of these plates were then coupled to a single reference point
100 mm above each plate using the kinematic coupling constraint method. Cou-
pling the face of each plate to a single point allowed for simpler manipulation of
the changing displacement/rotation conditions on the plate during the loading
process. Figure 3.17 shows the coupling and displacement of the loading plate to
simulate the displacement-based loading performed in the structural laboratory.
A similar coupling was performed on the support plate to represent that roller
support.

During the bolt preloading step of the analysis, both the loading and support
reference points were fully restrained from any displacement or rotation. For
loading steps, the support reference point was only restrained from lateral /vertical
displacement, and was only permitted to rotate in the direction of bending; the
loading reference point restrained all rotation in the non-bending direction, and
was deflected directly downwards to load the beam. The loading of each specimen

occurred in two steps:

1. LOAD1 displaced the load plate 10mm downwards. This small initial dis-
placement was to allow for all bolt slippage to occur before primary loading.

Additionally, the use of Abaqus’ restart requests allowed for mid-analysis
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changes to the FE model without having to restart the computationally

expensive initial slippage phase.

2. LOAD2 displaced the load plate beyond the initial slip point to the point of
ultimate connection capacity. After trial and error, a final displacement of
90-120mm at the load point provided the necessary flange force development
and deformation. Using restart requests, the specimens could be further
loaded without restarting the analysis by creating an additional LOAD3

step when necessary.

3.2.1.2 Connection symmetry

The four-point loading configuration was symmetric about the centre of the
loaded member. Applying a symmetry plane boundary condition to the faces
of the splice plates cut at the centreline allowed for the modelling of one-half of
the loading assembly (Figure 3.18). The rotation at the location of the boundary
condition (the mid point of the splice plates) was 0, i.e. parallel to the horizon.
It is noted that this naturally assumed perfect symmetry and positioning
of all loading and support plates, as well as perfect symmetry of both beam
specimens on either side of the connection. Although these assumed conditions
are impossible to replicate in real life, for the preliminary finite element models,
these simplifications were acceptable, since only the general behaviour of the

tension flange was desired.

3.2.1.3 Cross section symmetry

The second plane of symmetry was in the weak-axis, parallel to the web (Global

X axis in Abaqus/CAE). Two main points were noted:

1. This boundary condition was applied to all surfaces that have been effec-

tively ‘cut’ by the symmetry plane, including the exterior splice plates and
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(a) Loading plate constraint.

(b) Displacement on reference point.

Figure 3.17: Constraint/Displacement method on loading plate. support.
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Figure 3.18: ZSYMM Boundary condition on the M3 pFEM in Abaqus/CAE

load /support plates. It is noted that this boundary condition does not re-
strict the relative displacement between parts; the slipping/bearing of the
splice plates with respect to the beam was still captured. However, this
boundary condition would not be able to capture any lateral distortion of

the splice plates should it occur during laboratory testing.

2. This boundary condition eliminated the possibility of capturing (in)elastic
lateral buckling of the beam section, as it effectively placed a lateral dis-
placement restriction on the entire length of the beam. It was determined
that since the real-life laboratory lateral supports would ensure that the
test specimen’s unbraced length (L) was significantly lower than that of its
critical length (L, ), this simplification of the lateral support was adequate

for preliminary analysis.

To verify the validity of point 2, two full FE analyses were performed on the
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Figure 3.19: XSYMM Boundary condition on the M4 pFEM in Abaqus/CAE

M2 (W360X91) specimen: one modelling the full section geometry, with only
the splice plate symmetry and realistic lateral restraint points; the other using
both the splice and web symmetry planes, effectively providing complete lateral
support for the specimen. All other model details (element type and size, loading
protocol, interaction properties) remained identical, and the force/moment values
from the half model were doubled and compared to the full model results.

A series of comparisons between the full and half finite element models is
shown in Figures 3.20 to 3.23. The X, Y, Z displacements of a single node in
the centre of the web are compared in Figure 3.20, and shows virtually identical
behaviour, indicating that the web splice symmetry boundary condition is a suit-
able simplification for the behaviour of the connection, and that lateral torsional
buckling will not occur.The global behaviour of applied displacement vs. the end
moment (Figure 3.21) experienced by the connection is also identical, further

confirming that the web symmetry boundary conditions is a valid simplification
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Figure 3.20: Connection displacement comparison of M2 Full/Half models
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Figure 3.21: End moment comparison of M2 Full/Half models

of the full section model.

In addition, the local failure components for both the Edge Block Shear and
Complete Block Shear failure modes were nearly identical for both the full FE
model and the simplified half model. The comparison of each failure mode was
split into the corresponding shear and tension plane regions. The free body cut
tool in Abaqus was used to determine the cumulative force vector magnitude in
each failure plane to compare between the full and half models. As these local
stressed areas were the major concern point for analysis, it was concluded that
the double-symmetric, quarter-model representation of the test conditions was

suitable for the primary finite-element analysis.

3.2.2 Model development and procedure

The 3D solid models of the test specimens and all supporting pieces were created
in a parametrically driven Grasshopper file in the Rhinoceros v6 CAD program
(Robert McNeel & Associates, 2018). The use of parameter-based design was
chosen to expedite the drawing procedure for future models. Although the pFEMs
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EBS Shear Component (kN)

Figure 3.22: Edge block shear component comparison of M2 Full /Half models
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Figure 3.23: Complete block shear component comparison of M2 Full/Half models
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3.2 Preliminary finite element models

are based on nominal section properties, and nominal connection geometries,
the post-laboratory phase of modelling would require as-measured section and
connection properties. Further, for future parametric studies after the model
calibration, the Grasshopper script provides a significant increase in productivity.

A conceptual illustration of the Grasshopper script developed for this project
is presented in Figure 3.24. The input parameters were adjusted by the user in

the following groups:

1. Cross Section Details: d,bs, 15,1, k, k1.

2. Connection Details: djgc, nrows, end, gauge, pitch.
3. Plate Details: 41, dena-

4. Bolt Details: dy, djeqq, lp.

5. Loading Details: Location and dimension of stiffeners, lyeam, lshear

Once the unique parameters were provided, the script outputted five unique
3D parts, some of which were used multiple times. The general part list and their
number of use in the FE models are listed below, with a reference image in Figure

3.25:

1. Fine Mesh Section: the portion of the beam close to the splice connection.
This is defined as the first 500mm of the beam section from the connection

end. (1)
2. Coarse Mesh Section: the remaining portion of the beam. (1)

3. Exterior Plates: The splice plates touching the outer faces of both the

compression and tension flanges. (2)

4. Interior Plates: The splice plates touching the inner faces of the tension/-

compression flanges. (4)
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Figure 3.24: Specimen drawing program in Grasshopper
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Figure 3.25: Rhino/Grasshopper output components.

5. Bolt: A simplified bolt model of both cylindrical shank and head. The
shank length is specified as the exact grip length between the flange thick-
ness and the plate thicknesses. (8-12)

6. Loading Plate: the 8" x8”x1.5” hardened plate used to load the beam.
7. Support Plate: the 8” wide steel plate at the supports.

These parts were exported as .sat files and imported separately into Abaqus/-
CAF and re-assembled. In addition to the section-specific parts outputted by the
CAD program, two additional section-independent parts were defined once and
reused for each model: the loading plate and support plate representing the two

contact points on the beam section to the applied loads.

3.2.2.1 Material properties

Early-stage models to test part interactions and analysis methods used fully elas-

tic steel material properties with a Young’s Modulus of 200 GPa and a Poisson’s
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ratio of 0.3. As the pFEM analysis developed, representative material properties
were required to reach the high strain, non-linear stress state that was required
to develop the expected block shear failure mode.

Since the laboratory test specimens were not fabricated during the pFEM
portion of this study, the coupon testing data from the work of (Pizzuto, 2019)
was used as surrogate true material properties for the pFEMs. For each unique
section, four flange and three web coupons were taken from the same fabrication
heat. Testing results provided the local Young’s Modulus, and the engineering
stress-strain curve until rupture. The Poisson’s ratio was assumed to be constant
at 0.3. The engineering stress-strain curves were converted to the true stress-
strain values, and were used for the plastic material properties in the FE models.

The coupon testing results for Pizzuto had values of the Young’s Modulus
ranging from 199 GPa to 226 GPa, and yield stresses ranging from 342 MPa to
444 MPa. As there was a significant spread in the true material properties of
the available coupon data, the properties of the section closest to the FE model
section was used to represent the probable material property. The comparison is
show in Table 3.2.

Table 3.2: True material property sections

Test ID Section Size Closest Coupon Section

M1 W250X58 W360X64
M2 W360X91 W360X64
M3 W410X53 W410X85
M4 /M6 W460X113 W460X113
Mb W610X101 W530X138

Abaqus requires the use of sections to define material properties for different
regions on the same mass. This resulted in separate section definitions for the
beam flange and web. Following the procedure of (Pizzuto, 2019), the ‘flange’
section included the entire K-area fillet region of the flange/web interface, as

well as the portion of the web that is enclosed within the fillet depth. This was
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considered a suitable replacement to having additional coupon data for the K-
area alone as the region represents a very small portion of the overall cross-section
area, and was assumed to have a negligible effect on the global behaviour of the
section.

Bolts, splice plates, and loading plates, which were conservatively detailed
to remain elastic under load, were modelled as perfectly elastic materials with
E = 200 GPa. In case of unexpected yielding/failure during laboratory testing,

coupons were specified for the fabrication of the splice plates for eventual testing.

3.2.2.2 Mesh element selection

The selection of elements was based on previous successful element choices made
by past studies on structural steel connections at McGill University (Pizzuto,
2019; Moreau, 2014). Meshing was performed entirely with solid elements. Ini-
tially, the “Coarse” section of the beam was planned to be represented by planar
shell elements as high localized strain and plastic behaviour was not expected in
the gross section, and shell elements could greatly reduce the computational time.
However, it was determined that the added complexity of adequately represent-
ing the flange/web fillet interface, the bearing stiffeners, and the tie constraint to
the solid “Fine Mesh” section was not worth the computational time that could
potentially be saved.

The majority of the mesh was based on hexahedral, first-order reduced inte-
gration C3D8R ‘brick’ elements. Hexahedral elements were chosen to represent
the section as the base shape resembled the major section geometries of rectan-
gular flanges, webs, and stiffeners, allowing for elements to naturally fill most of
the base geometry with limited distortion. The combination of the first-order
analysis and the reduced-integration scheme provides a single integration point
for each element, rather than upwards of 27 for the same base element shape
(Dassault Systemes, 2018). In addition to the C3D8R elements, C3D6 ‘wedge’

elements were also used for the flange/web fillet area, as well as in the central
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portion of the bolts. The wedge elements were suitable for approximating the
curved and axisymmetric regions.

Although second-order elements provide more integration points and thus
more accurate and ‘smoother’ results, they are ideal only for problems that do not
involve severe element distortions (Dassault Systemes, 2018). Since the region of
interest at the tension connection was expected to undergo significant deformation
at the bolt holes, and for the added benefit of reduced computational demand,
first-order elements were selected for analysis.

The selection of reduced-integration elements over full-integration elements
was initially based on expected computational efficiency. However, in a reduced
vs. full integration comparative trial on the M4 pFEM, it was observed that
CPU time required for either integration scheme was virtually identical (Table
3.3). A comparison of local and global behaviour of the output models of both
the full and reduced integration methods showed equally similar results, even
when loaded well beyond the critical failure point of the connection (Figure 3.26).
However, even though both the computational resources required and the anal-
ysis results were similar, it was decided that reduced-integration elements would
be used for the remaining pFEMSs, and to re-evaluate the procedure during the
post-laboratory calibration phase of the project. Reduced-integration elements
was selected for two reasons: first, since only the M4 pFEM was used to compare
the results between the integration schemes, it was possible that a reduced com-
putational time could still be achieved with other geometries for the remaining
models; second, reduced-integration elements are often preferred for high-strain
and bending scenarios, where shear locking is not possible (Dassault Systémes,
2018; Sun, 2006).

One potential issue with the use of first-order reduced-integration hex ele-
ments was the possibility of hourglassing, where the strain at the single integration
point is calculated to be zero, resulting in a false zero-energy scenario and erro-

neous results. However, there are many safeguards that can prevent hourglassing:
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Table 3.3: Run time comparison of Full vs. Reduced elements of the M4 pFEM

Integration Type CPU Time (s)

Full 27091
Reduced 27094
End Moment Comparison Tension Splice Comparison
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Figure 3.26: Analysis comparison of Full vs. Reduced C3D8 elements of the M4
pFEM

82



3.2 Preliminary finite element models

Table 3.4: Mesh overview

No. Edge Elements and Approx. Size (mm)

Mesh Total no. Elements
Bolt Hole Flange Thickness
Coarse 5 (3) 4 (4) 19080
Medium 8 (2) 6 (3) 41508
Fine 10 (1.5) 8 (2) 101040

Abaqus provides a built-in hourglass control method where an artificial stiffness
is introduced to limit any propagation of zero-strain elements, and; increasing
the number of elements through the thickness of a member and/or increasing the
mesh density of a high-strain region limits the possibility of an hourglass effect
failure (Sun, 2006; Rao, 2011; Dassault Systemes, 2018). The mesh sensitivity
analysis in the following section ensured that the risks for the hourglass effect

were minimized.

3.2.2.3 Mesh sensitivity analysis

To ensure both analytic accuracy and computational efficiency, a mesh sensi-
tivity analysis was performed on the M4:W460X113 pFEM. Starting with an
initial ‘Coarse’ mesh density based on previous FE work and recommendations
by Pizzuto (2019), the mesh size was subsequently reduced for two additional
models; the mesh sensitivity analysis was only performed on the expected high-
deformation end connection region, while the remaining parts did not change in
mesh size. Table 3.4 provides an overview of the changes in the approximate
mesh size and number of elements in the bolt hole edge region and flange thick-
ness for each trial model. With each change in mesh density, both local and global
behaviour was observed and compared to the previously completed models.

A major point of concern was the ability of the mesh to capture the high strains
expected from bolt hole deformation at the gross shear plane. The deformed

meshes from all three mesh density trials are shown in Figure 3.29; of note is the
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Figure 3.27: Comparison of Coarse, Medium, and Fine meshes

significant single-element distortion for the coarse mesh at the bolt hole along the
gross shear plane, and the smoother and more distinct ‘teardrop’ deformation in
the fine mesh.

Since it is the local stress/strain behaviour that is of major importance, two
stress regions were used to compare the results of the three mesh densities. First,
the Von Mises stress along the gross shear plane for the edge block shear failure
mode was compared from a load displacement of 0 to 50mm; second, the Von
Mises stress in the net tension plane for the edge block shear failure mode near
the end of loading (100mm load displacement) was compared. Since the location
and configuration of the elements change with each new mesh density, it was
impossible to compare a single element’s or node’s response. For the purpose of
the mesh sensitivity analysis, the nodal output response of all nodes along either
the gross shear plane or the net tension plane was extracted from Abaqus and the
mean value was determined. The averaged stresses from each mesh density and

the comparison between the average values are shown in Figures 3.30 and 3.31.
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Figure 3.28: Comparison of Coarse, Medium, and Fine meshes

Table 3.5: CPU Time comparison for Coarse, Medium, and Fine meshes

Mesh Density CPU Time (s)

Coarse 13146
Medium 27094
Fine 53226
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Figure 3.29: Comparison of Coarse, Medium, and Fine deformed meshes at
100mm load displacement
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Figure 3.30: EBS: Shear Component Comparison

87



3.2 Preliminary finite element models

Von Mises Stress (MPa)

Von Mises Stress (MPa)

Coarse Mesh Medium Mesh
700 |
650 -
600 -
550
500
450 -
Fine Mesh Comparison
— e
700 | - = Medium
Coarse -
450 -
50 6I0 7I0 BIO 9I0 100 50 6I0 7IO BIO 9I0 100

Load Displacement (mm) Load Displacement (mm)

Figure 3.31: EBS: Tension Component Comparison
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Figure 3.32: Meshed bolt and exterior splice plate.

There was no significant difference between all three mesh densities for the
stresses in the shear region. However, for the tension stress response, the coarse
mesh increasingly underestimated the average stress compared to the other two
densities as the loading increased, while the fine and medium meshes showed a
similar response. Based on the comparison of these two local responses, as well
as complete correlation of global responses (such as the total splice end moment
and tension splice force), it was determined that the medium mesh density was
suitable for the preliminary finite element models. Computation time (Table 3.5)
scaled approximately linearly with the total number of elements, allowing for the
medium mesh to provide a suitable compromise between accuracy and resources
required.

With the mesh sensitivity analysis performed and a comparison between the
reduced and full-integration schemes evaluated, a general method for the finite
element model meshing was completed. The coarse mesh section of the model
followed the general element sizing principles as the Coarse Mesh values in table
3.4, while the splice plates were detailed with a mesh similar to that of the fine
mesh section. The bolts were meshed using a Hex-Dominated Sweep mesh of
approximately 4mm to symmetrically fill the cylindrical shank and bolt head;

the use of this mesh type and size was based on its successful use by Pizzuto
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(2019).

3.2.2.4 Contact properties

Contact between parts were simplified with a single friction coefficient of 0.30,
corresponding to a contact surface Class A in the CSA S16-19 standard, with
default Abaqus normal contact properties. While first developing the pFEMs,
contact instabilities were the major cause of diverging analyses and solver errors.
Errors in CAD precision from the imported parts caused plates in contact with
the flanges to have a non-flat surface, resulting in the lack of a proper initial
contact interface, resulting in instability issues. Additionally, without the initial
snug contact interface, the sudden preloading of the bolts caused the static solu-
tion procedure to diverge, as Abaqus attempted to resolve contact overclosures
between parts. The improvement of input CAD file tolerances, as well as the use
of the automatic stabilization feature for the bolt pretension step resolved this
issue. The automatic stabilization provides damping to the model proportional
to the total strain energy of the system, preventing any sudden shifts in adjacent

model components that would cause solution convergence stability issues.

3.2.2.5 Loading procedure

The analysis was split into four distinct steps in Abaqus to allow for changes in
loading procedures without having to completely restart the analysis. The steps
are described in Table 3.6. Each step started with an initial increment size of
1E~*s, with an automatically adjusted minimum increment size of 1£-8s, and
a maximum increment size of 0.05s. Typically, the smaller increment sizes were
necessary during the bolt slipping and first contact of the bolt shank to the flanges
in the LOAD1 step. Once all parts were in solid contact with each other, the step
sizes increased.

Determining the total displacement for the LOAD2 step was an iterative pro-

cess. Since the FE models did not consider fracture of the tension (or shear)

90



3.2 Preliminary finite element models

Table 3.6: Step definition for Abaqus pFEMs

Step Time Description
INITIAL N/A  Defining all boundary conditions.
PRETENSION 0.1 Pretensioning of bolts while supports are fixed in place.
LOAD1 0.5  Load until all slipping has occurred.
LOAD2 1 Load until failure.

plane, the stress in the tensile plane followed the true stress-strain path as de-
termined by previous coupon test data. As no fracture stress/strain was defined,
the tensile stress continually increased until the material definition reached its
limit.

Failure for a given block shear mode could then be defined as the point where
both the shear and tension planes reach their nominal stress capacity, or 0.6%
for the shear plane and F,, for the tension plane when using the CSA S16-19 design
equations. The stress from the finite element models could be determined in two
ways: first, the free body cut resultant force magnitude of each failure plane region
can be divided by the initial, undeformed failure plane area to determine the
engineering stress of each plane. Second, the Von Mises stress of all the elements
in each failure plane can be extracted from each failure plane, with the mean
value compared to the failure criteria. The second method has proved to be more
meaningful, as it inherently considers the often significant deformation of each
failure plane at failure, and better considers the complex stress distributions by
using the Von Mises yield criterion rather than engineering stress values. Chapter
5 provides greater detail in the definition, calculation, and use of this failure

criteria.
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3.3 Results of preliminary finite element models

Once the first five finite element models were completed, an initial evaluation
of the expected failure modes compared to the observed failure mechanism was
performed. First, a qualitative evaluation of the tension flange at maximum load
was performed; the relative deformation and the Von Mises stress contours are
shown in Figures 3.33 and 3.34.

It is immediately evident that the Edge Block Shear failure mode has occurred
due to the significant displacement of the corner blocks relative to the rest of the
flange section, as well as the distribution of higher stresses around the last row of
bolts that propagate towards the free edge and along the gross shear plane. For
specimens M3-M5, significant necking can be observed along at the net tension
failure region, suggesting an imminent fracture of the plane.

Second, the predictive capacity of the CSA S16-19 block shear equation and
the assumed conversion between the block shear resistance and the equivalent
moment resistance was evaluated. The block shear failure of the pFEM was
defined as the point where the average Von Mises stresses on both the tension
and shear planes reached their nominal capacities, F, and F,,. The total moment
at the splice face at this point of failure was then defined as the corresponding
moment capacity of the given failure mode.

These resistances were then compared to the theoretical moment resistance
calculated in the process described in Section 3.1.3, where the unfactored, prob-
able CSA S16-19 block shear resistance of the tension flange was multiplied by
the assumed moment arm between the flange centroids to determine the corre-
sponding moment resistance of the block shear failure mode.

The true observed moment resistance was divided by the theoretical moment
resistance to obtain the Professional Factor for the CSA S16-19 design equation
and the methodology used in Section 3.1.3, the results of which are shown in Fig-
ures 3.35 and 3.36. A Professional Factor of 1.0 would indicate a perfect predictive

design equation; a Professional Factor greater than 1.0 would indicate a predic-
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Figure 3.33: Relative deformation comparison of M1-M5 pFEMs.
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Figure 3.34: Von Mises Stress comparison of M1-M5 pFEMs.
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tive design equation that underestimates the true capacity of the section, and
conversely, a Professional Factor less than 1.0 would indicate a predictive design
equation that overestimates the true capacity. Since the ultimate displacement
of the load point in the pFEMs were a rough estimate of the critical displacement
at ultimate load, some specimens were loaded to a point where the Complete
Block Shear failure planes also reached their respective limits. These values were
compared to the theoretical resistances in Figure 3.36 as an additional point of
evaluation for the CSA S16-19 block shear design equations, but it is noted that
the EBS failure mode still governed the overall capacity as expected.

The Professional Factors for the EBS and CBS failure modes were 1.11 and
1.08 respectively, suggesting that the design methodology could reasonably pre-
dict for the moment-induced block shear failure mode. Further, little scatter of
the data points in Figure 3.35 indicated that any deviation from perfect predic-
tive capacity was from smaller systematic errors of the design equation and not
a complete dissociation between predicted and true failure behaviour.

Based on the qualitative confirmation of the Edge Block Shear failure mode,
as well as reasonable Professional Factor values of both the failure modes, the
final detailing of the pFEM specimens for fabrication could be performed with
confidence. Further, the good correlation of both qualitative and quantitative
data of the pFEMs confirmed that the assumptions and methodology for calcu-
lating moment-induced block shear resistances was reasonable, and that further
finite element modelling could be performed for additional data and insight on

the moment-induced block shear failure mode.

3.4 Summary

Insight on two key components of the research project was provided in this sec-
tion. First, the analytic methodology for the selection and detailing of a W-section

moment splice connection with a block shear critical failure mode was presented.
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From numerous trial and error attempts to detail a block shear critical moment
splice connection, a general set of observations on what section geometry param-
eters could allow for a block shear critical connection was determined. In general,
a block shear critical moment splice connection is expected to be possible in a lim-
ited subset of available W-sections due to the conflicting limitations between bolt
shear strengths, connection lengths, and gross section flexural capacities. This
analytic design procedure was also expanded to design the bolts, splice plates, and
bearing stiffeners should the section-connection detail be fabricated and tested in
a structural laboratory.

Second, once a set of potential moment block shear failure section-connection
details were determined, preliminary finite element analyses were performed to
provide initial verification that the analytic methods were accurate. The develop-
ment of these models required multiple iterations to verify the validity of bound-
ary condition assumptions as well as a mesh sensitivity analysis to determine a
reasonable mesh density to reflect true deformation and stress distributions at
failure. The preliminary finite element analysis results showed that the moment-
induced block shear was a possible failure mode for bolted moment connections,
and that the proposed design methodology and assumptions were reasonable for
predicting the capacity of a moment-induced block shear failure.

With the base methodology for both the analytic design and finite element
modelling of a moment block shear connection completed, the laboratory testing
phase of the project could be developed. This required the analysis and design of
additional components for laboratory testing such as the loading beam and bear-
ing plates, as well as the selection and detailing of the required instrumentation.
Chapter 4 provides an overview of the laboratory testing preparation performed

for this research project.
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Chapter 4
Laboratory test preparation

For the calibration and verification of the preliminary finite element models, full
scale testing of the six test specimens was planned in the Jamieson Structural
Laboratory at McGill University. The overall footprint of the test configuration
as well as the detailing of the loading beam were based on the capacity of the
available loading apparatus, the spatial limitations of the structural laboratory,
and the geometric and strength limitations of existing test apparatuses. The
type, quantity, and location of a series of instruments to record strain, force, and
displacement during testing were also determined. Due to fabrication delays and
the disruption of in-person research work due to COVID-19 during the Spring
of 2020, the laboratory phase was not completed within the time frame of this
thesis. This section provides an overview of the preparation and detailing of the

laboratory testing phase, but does not provide the results of these tests.

4.1 Detailing of specimens

With the connection geometry finalized for the M1-M6 test specimens, additional
design decisions were required before fabrication and laboratory testing. First,
the length of the test specimens was chosen to be 2700mm, with an effective

support-to-connection end length of 2500mm, based on the spatial constraints
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Figure 4.1: Overview of complete test assembly.
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Figure 4.2: Test assembly overview.

of the structural laboratory. The total test length of 5400mm allowed for the
majority of the testing assembly to remain within the footprint of the loading
frame assembly surrounding the main hydraulic actuator, as shown in Figure
4.1. The individual specimen lengths of 2700mm allowed for efficient storage
and transportation within the structural laboratory, as the total weight of each
specimen remained below the lifting capacity of the magnetic lift attachment used
when transporting the beams.

The selection of a 1500mm shear length combined with the total 2500mm
effective length of the beam was based on two factors. First, it minimized the
required effective length of the loading beam to 2000mm; this allowed for a reason-
ably sized W-section to be used as the loading beam, while providing adequate
strength and stiffness throughout the test series. Second, it provided suitable
clearance for the lateral support clamp plates on either side of the loading plate
assembly. This was critical, as the available positions for the lateral support
assemblies were limited by the existing longitudinal running beams on the test
frame. The 1500mm shear span also provided a suitable distance to develop the
required moment in the splice connection without exceeding the capacity of the
11MN actuator. As determined in Section 3.1.3 Equation 3.18, the absolute peak
expected force at each load point was 1675kN; this would then require a load at
the hydraulic actuator of 3350kN, well below the 11MN capacity of the machine.
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4.1 Detailing of specimens

Figure 4.3: Approximate location of coupon blanks.

Since the laboratory testing configuration consisted of a symmetric moment
splice connection, two beams were required for each test. However, to reduce the
amount of instrumentation required for each test, and to allow for certainty in
the failure behaviour of the overall splice connection, it was desirable to force
the expected block shear failure mode on one side of the moment splice. This
was achieved by adding an additional row of bolts for one of the two beams,
Beam A, to increase the connection strength of one side of the moment splice.
Instrumentation could then be installed on Beam B alone, as failure would localise
in the Beam B connection region. This asymmetry would also provide the benefit
of requiring a lower total displacement of the loading beam to reach the expected
block shear failure mode, as severe tension flange deformation would concentrate
on one half of the moment splice. In the structural laboratory, Beam B was always
specified on the South side of the testing frame, as the Data Acquisition System
and hydraulic actuator controllers were closer to that end, allowing for shorter

lead wires and connections from the instrumentation to the recording system.
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4.2 Design of loading beam

For capturing the true material properties of each test specimen, 60mmx600mm
blanks were cut from the web and flanges of the parent W-section; the approx-
imate locations of these blanks are shown in Figure 4.3. The blanks were then
specified to be milled to shape and tested for tensile properties as per the ASTM
A370-05 standard (American Society for Testing and Materials, 2005). The re-
sults of the coupon testing will allow for more accurate finite element models to

be created.

4.2 Design of loading beam

Since a four point loading configuration was specified for the laboratory tests,
a suitable load spreading member was required to transfer the single point load
from the hydraulic actuator to the two sides of the moment splice. The design
of the loading beam required that it was well within its elastic range for the
expected flexural, shear, and bearing loads during all six of the laboratory tests.
As the shear span of the four point load configuration was set as 1500mm, and
the total effective length of each specimen was 2500mm, the loading beam would
have a total effective length of 2000mm, excluding any additional extension at
each end to provide improved bearing resistance. The loading beam would then
have to adequately withstand an effective three point loading configuration with
a distance between points of 1000mm.

The design load was selected to be two times the expected load to reach
gross plastic moment capacity on the M5:W610X101 test specimen, which had
the highest theoretical value of Mp from all selected specimens. The equivalent
load applied at the two ends of the loading beam was determined by dividing the
expected unfactored gross plastic moment using probable material properties by

the shear span, a = 1500mm:
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4.2 Design of loading beam

Mmax,MS =2X MP (41)
=2 % (1.1 x 350M Pa)(Z,)
= 2233kNm

Pmax - mam/a (42)
_ 2233kNm
 1.5m

= 1488kN — 1500k N

Then the expected shear, moment, and bearing load was determined for the

loading beam:

Vi = 1500kN (4.3)
M; = 1500kN x 1m
— 1500kN'm
By = 1500kN x 2 (4.4)
— 3000k N

Tabulated values for flexural and shear resistances in the CISC Handbook,
based on the CSA S16-14 standard, were used as starting points for the selection
of a suitable W-section loading beam. A heavy-flange W-section was chosen to
maximize the flexural stiffness of the loading beam while maintaining a reasonable
weight. As many W-sections fit the calculated strength requirements, a 2400mm
long W460X349 section was chosen based on the available stock of the steel
fabricator. The additional 400mm is due to an extension of 200mm on either
end of the loading beam to provide sufficient bearing area for the half-round

contact assembly between the loading beam and the test specimens. The expected
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4.2 Design of loading beam

strengths of the loading beam were calculated using nominal material strengths
for ASTM A992 steel (American Society for Testing and Materials, 2019) as well
as factored design equations from the CSA S16-19 standard:

M, = M, = 240TkNm > M;
V, = 3287kN > V;
B, = 6945kN > By

L

A = 1.2mm = ——
= 665

As with specimens M1-M6, 25mm (1”) bearing stiffeners were specified at
all contact points. The stiffeners were not necessary for strength requirements,
but were included to provide additional torsional stability to account for possible
load eccentricities during testing. Further, due to the heavy beam section and
relatively short length, additional shear stiffeners were included between load
points to prevent any onset of shear buckling. These stiffeners also provided
additional torsional stiffness along the length of the loading beam. The elastic
deflection of the loading beam at midpoint from the peak expected load was also
calculated; this deflection of 0.06% of the load beam length was determined to
be suitable for testing.

Further verification of the loading beam design was performed by an elastic
finite element analysis, as shown in Figure 4.4. The loading beam model was
placed in representative boundary conditions, and the central loading plate was
displaced downwards until the onset of yielding of the beam. The finite element
analysis verification of the loading beam was necessary since the CSA S16-19
design methodology used to determine the shear and bearing resistances allow
for yielding of the section before reaching the ultimate capacity state. Since
any yielding in the loading beam would provide measured displacement errors

during testing, and would result in progressive deformation of the loading beam
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4.2 Design of loading beam
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(b) Loading region.

Figure 4.4: Finite element model of loading beam.
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4.3 Instrumentation and data acquisition

for subsequent tests, preventing yielding of the loading beam was critical. A
visual inspection of the finite element model showed the onset of yielding at the
compression flange near the central loading plate. This yielding onset occurred
at a load of 3167kN, which surpassed the design peak bearing load on the beam
during testing. The conservative analytical and finite element analysis verification
of the loading beam design provided confidence that the W460X349 section was

a suitable member to load the test specimens.

4.3 Instrumentation and data acquisition

Since the objective of the laboratory tests was to verify the validity of the finite el-
ement models, instrumentation to capture accurate strains and deformations was
specified at critical locations along the test specimen. A series of strain gauges,
linear variable differential transformers (LVDTSs), and string potentiometers were
specified for each test to capture strains in local failure plane regions as well as
global displacements and induced forces.

Spring potentiometers, LVDTs, and load cells were specified along the test
assembly to capture global values of displacement and force, as shown in Fig-
ure 4.5. Three string potentiometers were specified on the ground of the test
configuration at the precise location of the loading points on each half of the
connection. The string potentiometers were secured to wood plates that could
be weighed downed during testing to keep the position stable. The total force
at the load point was determined by the internal load cell of the loading head of
the 11MN hydraulic actuator. An internal LVDT also provided the displacement
of the actuator head on the loading beam. Not shown in Figure 4.5 are two
additional LVDTs magnetically attached to each side of the tension flange, that
would capture the displacement of the edge ‘block’ for the EBS failure mode.

For local observations of strain at the expected failure planes, as well as precise

measurements of strain across the gross section, a series of strain gauges were
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4.3 Instrumentation and data acquisition
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Figure 4.5: Instrumentation for global deformation capture.
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Figure 4.6: Strain gauges for local deformation capture.
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4.3 Instrumentation and data acquisition

specified for each test specimen, as shown in Figure 4.6. First, to determine
the overall moment experienced at the moment splice, linear strain gauges were
specified along the gross section of the web as well as at the extreme edges of
both flanges. The positioning of the gross section strain gauges was based on
remaining in the constant moment region of four-point load configuration, as well
as avoiding the location of the lateral support clamp plates. In general, the gross
section strain gauges were placed 100mm behind the centreline of the last row of
bolts in a given connection. Providing a series of strain gauges at the gross section
allowed for an accurate measurement of the induced moment on the section, as
well as the stress profile along the depth of the member.

At the tension flange near the connection region, additional strain gauges were
specified to measure the local strain in three of the four expected failure planes of
block shear: the shear plane for the EBS failure mode (EBSS), the fracture plane
for the EBS failure mode (EBSF), and the fracture plane for the CBS failure
mode (CBSF). The stress at the failure plane could then be determined once
the true material properties of the section were determined. Strain gauges were
not appropriate for the shear plane for the complete block shear failure mode
(CBSS) as the failure plane is located at the curved intersection of the web/K-
area interface, and were not installed. Since the controlling failure mode for all six
laboratory test specimens was expected to be in Edge Block Shear, the omission
of strain gauges in the CBSS plane was determined to be acceptable; a post-test
visual analysis of the deformation of the CBSS area was planned by drawing a
series of equidistant grid lines alone the entire connection region for the beam,
where the change in distance between grid points could then be measured by
hand. For the two fracture planes, EBSF and CBSF, linear strain gauges were
placed at the centreline of each expected failure plane. For the CBSF plane, the
strain gauge was centred between the two bolt hole centres; for the EBSF plane,
the strain gauge was placed halfway between the free edge of the flange and the
closest edge of the neighbouring bolt hole. The expected shear yielding failure
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4.4 Test assembly and loading method

mode for the EBSS failure plane was captured by rectangular stacked strain
gauge rosettes. Since the stress pattern of the shear plane near the bolt holes
were expected to be significantly more complex than that of the tension planes,
a rosette was specified for the EBSS failure plane. The rosette allowed for the
calculation of all principal stress values, which could then be used to determine
the Von Mises stress at the EBSS failure plane, allowing for a direct comparison
to the average Von Mises stress extracted from the finite element models.

The specified strain gauges were capable of accurately measuring up to € =
0.014 of total strain. From experience with testing steel coupons of ASTM A992
steel, the strain gauges were expected to provide usable results up to approxi-
mately the initial strain hardening region of the stress-strain curve. Although
this limitation of the strain gauges would not allow for a complete capture of the
local strain profile up to fracture, their use was justified since the onset of fracture
would be visually evident from extensive deformation, as well as from the change
in the applied load vs. deformation curve that is constantly monitored during

testing.

4.4 Test assembly and loading method

The full testing assembly, as seen in Figures 4.7 and 4.8, consisted of the moment
splice connection assembly, the loading beam, and contact points. The contact
points provided proper bearing surfaces for loading, support, and lateral restraint,
and came from existing components from the structural laboratory at McGill
University.

The support assembly consisted of a rocker element providing 200mm of bear-
ing length on each end of the moment connection, that rested on a series of 3”
(75mm) thick plates and two 6”7 (150mm) diameter steel cylinders that allowed
free displacement in the axial direction, as well as rotational freedom at the sup-

port locations. The loading assembly contact point provided an equivalent degree
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4.4 Test assembly and loading method

Figure 4.7: Render of loading frame assembly.
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4.4 Test assembly and loading method

Figure 4.8: Exploded view of test specimen assembly.

of freedom at the load points, with an 8” (200mm) half-cylinder providing the
rocking surface on a series of 1.5”7 (38mm) thick steel plates and a series of 1”
(25mm) cylinder rollers.

To restrain any lateral torsional buckling of the beams during testing, lat-
eral support was provide by four clamp plate assemblies that were bolted to the
compression flanges of the beams. These clamp plates were restrained from lat-
eral displacement by a series of tie rods and ball joints that were fixed along
two existing running beams on the test frame. As existing holes in the running
beams governed the location of the lateral support anchor points, the position
of the clamp plate assemblies on the two test beams were not perfectly symmet-
ric; the exact positions are shown in Figure 4.9. The tie rod support system
allowed for vertical displacement by means of a freely spinning upper plate on
each of the clamp assemblies. The limited vertical stroke of this lateral support
configuration ( 100mm), as well as the existing holes in the test frame columns

to mount the running beams, required that the vertical position of the running
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4.5 Summary
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Figure 4.9: Positioning of lateral support clamps. Dimensions in mm.
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beams be changed depending on the section depth being tested. This allowed for
the maximum possible amount of vertical displacement while maintaining lateral
support.

A fixed-rate, displacement-based loading protocol was specified for the labo-
ratory tests, with a Ilmm/minute loading rate determined to be a suitable com-

promise between test duration, safety, and resolution in the captured data.

4.5 Summary

To calibrate and verify the preliminary finite element models, a full-scale labo-
ratory test procedure was developed, and six representative moment splice con-
nections were detailed and fabricated for testing at the structural laboratory at
McGill University. The test configuration consisted of new and existing com-
ponents to support, load, and stabilize the specimens during testing. Existing
assemblies were used to provide load, support, and lateral restraint contact points,
while a new loading beam was design and verified using finite element analysis to
adequately load the beams on either end of the moment splice connection. The
loading beam was designed to remain well within the elastic range when under
the theoretical maximum required load for the entire test program. This design
was based on factored design equations in the CSA S16-19 standard using nom-

inal ASTM A992 steel properties, and was verified using finite element analysis.
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4.5 Summary

String pontentiometers, LVDTs, and load cells were specified to capture global
values of displacement and force during testing, while linear and rosette strain
gauges were specified at critical points to accurately measure strain and stress
in local failure regions. Due to fabrication delays as well as the disruption of
in-person research work due to COVID-19, testing was not completed within the

time frame of the author’s program, and is thus not discussed in this chapter.
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Chapter 5
Expanded FE study and results

From the preliminary models M1-M5, 12 additional finite element models under
the same loading conditions were created and evaluated. These additional models
served to explore a wide range of section sizes and connection geometry to provide
a reasonable level of certainty on the evaluation of the predictive capacity of the
current block shear design equations. As the preliminary models included non-
standard connection geometry to isolate the block shear failure mode as much as
possible, they were given the SPEC suffix in the test ID. Five additional models
with the same section sizes as the SPEC series, but with more typical bolt spacing
details were modelled to observe the minor changes in the connection capacities;
these specimens were given the ID suffix TYP to represent Typical Connection.
The remaining FE models M7-M12 were of varying section sizes and connection
geometries. In addition to a review of the performance of the current block shear
design equations, an analytic investigation on the 15% rule was performed. The
results from the block shear finite element study provided further insight on the
validity of current and proposed design methods for reduced flexural capacities

for reduced flange areas of W-sections.
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5.1 Expanded finite element analysis

5.1 Expanded finite element analysis

With the completion of the preliminary finite element models and their fabrication
for laboratory testing, the catalogue of block shear critical finite element section-
connection details was expanded to provide additional insight on the moment-
induced block shear failure mode. The finite element model procedure, including
the selection and density of mesh elements as well as the loading protocol, followed
the procedure used to develop the initial five models.

Five additional finite element models, M1TYP to M5TYP, were based on the
same section sizes as M1-M5, but with connection spacing details more commonly
used in practice. The initial M1-Mb) primary finite element models were renamed
MI1SPEC to M5SPEC to indicate that the connection details were specified by
the author, while M1TYP to M5TYP indicated that the connection details had
‘typical’ bolt spacings. Typical in this context meant bolt pitches of 3”7 (75mm),
end distances of 2”7 (50mm), and edge distances no less than 1.5” (38mm). For
specimens in MISPEC to M5SPEC that already met the requirements of ‘typical’
connection details, an additional row of bolts was added for the equivalent TYP
model. In addition to the five models based on the initial section sizes, six
new section-connection details, M7 to M12, were designed and modelled. The
methodology used in the detailing of the initial M5-M6 models was retained,
with sections being selected at the discretion of the author to span as much
of the available W-section geometric parameters as possible. An overview of
all modelled specimens and connection details are provided in Figure 5.1 and
Table 5.1. The three main parameters were the section width (bs), the section
depth (d), and the linear mass (W). The relative geometries of the entire tested
catalogue of sections is shown in Figure 5.1. As discussed in Chapter 4, although
a suitable range of beam depths (d) and flange widths (by) were covered by the
test catalogue, the linear masses (W) of the tested sections remained relatively
low (W < 170kg/m) due to the limitation on block shear critical failure modes.

With a total of 17 section-connection details, all relevant information on stresses,
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Figure 5.1: Complete range of available W-sections. Tested and modelled speci-
mens in red.

forces, and displacements of the loaded models was extracted for an aggregated

review.

5.1.1 Initial observations

Before numerical data were extracted from the finite element analysis models,
an initial visual evaluation of the deformed shapes of the loaded connection as
well as the colour-graded contour plots of stress and displacement was performed.
For most sections, the isolated deformation of the edge block was evident, and
was clearly demarcated by the displacement contours as shown in Figure 5.2;
the necking of the tensile plane was also visually evident for most sections. The
Von Mises stress contours also provided initial confirmation that the block shear
failure occurred, with most of the gross shear plane reaching the yield stress,
while the net tensile plane typically showed stresses approaching or surpassing

the expected ultimate strength of the material, indicating the onset of rupture.
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5.1 Expanded finite element analysis

Table 5.1: Connection geometry overview for M1-M12 specimens.

ID SECTION d;, (mm) nyews End (mm) Pitch (mm) Gauge (mm)
M1SPEC  W250X58 24 2 35 65 120
MITYP  W250X58 24 2 50 5 126
M2SPEC  W360X91 24 2 50 75 170
M2TYP  W360X91 24 3 20 75 170
M3SPEC  W410X53 21 2 35 60 110
M3TYP  W410X53 21 2 20 5 107
M4SPEC  W460X113 27 2 50 75 180
MATYP W460X113 27 3 20 75 180
MbHSPEC  W610X101 24 2 35 75 145
MSOTYP  W610X101 24 2 50 5 145

M6 W460X113 27 2 20 5 180

M7 W530X72 24 2 50 75 130

M8 W200X52 21 2 38 65 125

M9 W250X101 24 2 50 5 170

M10 W310X74 24 2 50 75 128
M11 W460X74 24 2 50 75 115
M12 W690X170 27 2 20 75 165
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Figure 5.2: Axial displacement contours of tested specimens. Units in mm.
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The Von Mises stress contours for a subset of specimens are shown in Figure 5.3.

The initial visual observations of the deformed section allowed for confidence
in both the assumed simplifications used for the finite element modelling, as well
as the general accuracy of the design methodology in developing a block shear
critical connection detail. Once these initial observations were made, a more

quantitative analysis of the data was performed.

5.1.2 Extracting data from finite element models

All relevant data after the completion of a finite element model run in Abaqus
is contained in its Output Database, or .odb, file. From this .odb file, two levels
of data were extracted. First, global values of force (N), moment (Nmm), and
displacement (mm) were extracted using the Free Body Cut tool in Abaqus. These
values captured the vertical displacement of the load point, the induced moment
at the centreline of the splice plates, as well as the total force in each of the four
block shear failure planes, the compression and tension splice plate groups, as well

as the loading plate; these data sets were exported into a .csv file using the Excel
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5.1 Expanded finite element analysis
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Figure 5.3: Von Mises stress contours of tested specimens. Units in MPa.

plugin in Abaqus. Second, local Von Mises stress data from the integration point
of each element along the four major block shear failure planes were extracted
using the Report tool in Abaqus. Depending on the connection geometry, a
given failure plane could have over 150 individual elements that each output a
unique time history report of the stress states; these individual datasets were
automatically merged into a single .rpt file when exported using Abaqus, which

could be parsed using a custom Julia function.

5.1.3 Data parsing, preparation, and analysis

The data extracted above was then parsed, modified, and analyzed in an auto-
mated Jupyter Notebook in the Julia programming language. The objectives of

the Jupyter Notebook were:

1. Converting .csv and .rpt data into easily manipulable vectors and matrices
2. Converting units of N, mm to kN, m for global data

3. Determining failure plane areas from connection and section geometry
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5.1 Expanded finite element analysis

4. Doubling force/moment units to account for symmetric modelling of one

half of the specimen
5. Determining average stress values for each failure plane
6. Determining the index at failure for each failure mode

7. Exporting the cleaned data into a single .csv file

Once the results of the finite element model were parsed and analysed, rele-
vant information could be plotted, compared, and exported for future use. Two
major visualizations are the total splice moment of the section detail, shown in
Figure 5.4, and the stresses along each individual block shear failure plane, shown
in Figure 5.5. Although the global splice moment graph provided a qualitative
understanding of the overall behaviour of a given section-connection detail, it did
not provide any information on the local block shear failure region. To evalu-
ate the true failure mechanisms, the aggregated elemental stress data were used
instead. The Von Mises stress in each of the four failure planes were plotted (Fig-
ure 5.5) along with the average value across each plane. The failure plane was
assumed to reach its capacity once the average value reached the theoretical ma-
terial capacity for the given plane and load type, meaning the yield strength, f,,
for the shear failure planes, and the ultimate tensile strength, f,, for the tensile
fracture planes. The use of the Von Mises stress was appropriate for both failure
planes, since it is equal to the maximum principal tensile stress when under pure
tension, and would not provide erroneous results when estimating the point of
failure of the fracture plane. This was further verified early in the analysis proce-
dure by extracting both the Von Mises stress and pure axial stress data from the
fracture plane of the EBS failure mode and comparing the two data sets. The
comparison confirmed that the purely tensile loading of the EBS fracture plane
provided equivalent stress values when using either the Von Mises stress or the

axial stress of each element.
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Figure 5.4: Load displacement vs. induced moment from M5 FE model.

A given block shear failure was assumed to occur at the moment when both
planes for a given failure mode reached their respective stress limits: the shear
plane reaching a Von Mises stress of f,, and the tension plane reaching a Von
Mises stress of f,. The index of the overall data set at this failure point was
recorded, and the relevant global data at the moment of failure was extracted.
The moment developed in the splice connection at the failure index was taken as
the moment capacity of the given block shear failure mode. For most specimens,
the load point was displaced significantly past the Edge Block Shear failure mode
such that the Complete Block Shear failure planes also eventually reached their
respective capacities. For example, for the M5 specimen shown in Figure 5.5, the
average Von Mises stress, shown as the blue curves, of all four block shear fail-
ure planes eventually reached their respective strength limits during the loading

procedure.
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Figure 5.5: Von Mises stresses along major failure planes for M5 specimen. Ele-
ments highlighted in red.
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5.2 Results and Observations

5.2.1 Effect of section geometry

With the analysis of each individual specimen completed, and clear metrics for
failure defined, an overall comparison of all 17 models was performed using nor-
malized data. First, the moment capacities of all observed failure modes were
plotted against the major geometric properties of the W-sections, namely the
section depth (d), the flange width (bs), and the net flange area ratio (b,/b,),
to determine if any clear trends were visible. To provide moment resistance
values that could be compared against other modelled sections, all resistance val-
ues were normalized to the theoretical gross yield moment capacity, M,, which
was calculated using the engineering yield strength associated with the true ma-
terial stress-strain function defined in each model. The blue circles represent
the moment-at-failure for the Edge Block Shear failure mode, while the orange
squares show the moment-at-failure for the Complete Block Shear failure mode,
should it have occurred; the gross plastic moment resistance, M, for each section
is also plotted as a dashed line. These initial comparisons of moment block shear
failure resistances are presented in Figures 5.6 to 5.9.

From the initial observations on geometric properties vs. the block shear
failure moment, no clear relationship between the variables was evident. One
minor exception was the effect of the section depth to the ability to achieve
the Edge Block Shear moment before the gross yield moment. From the available
data, sections below d = 400mm did not reach the critical EBS moment until after
the gross yield moment. However, this limitation was not taken as a fundamental
change to the failure mechanism of the block shear failure mode, but was simply
a physical limitation and conflict between a shallow section’s limited gross section
flexural capacity and the required moment to induce the necessary forces to cause
block shear failure in the tension flange. A more in-depth discussion on this

geometric conflict was provided in Chapter 3.
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Figure 5.6: Block shear failure moments normalized to M,
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Figure 5.7: Section depth vs. block shear failure moments.
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125



5.2 Results and Observations

2000 2000
E £
£ 1500 S 1500
X v
< =
-+ -+t
C C
(] Q
£ 1S
S o
= 1000 = 1000
= g
=) =
‘© ‘©
L w

500 - 500 |

1 1 1 1 1 1 1 1
500 1000 1500 2000 500 1000 1500 2000
Yield Moment, M, (kNm) Plastic Moment, M, (kNm)

Figure 5.10: Block shear failure moments compared to gross section capacities.

An alternative comparison of the block shear failure moments relative to the
gross section capacities is provided in Figure 5.10. With all else held equal, the
gross section capacity of a flexural W-section would increase with the increase in
depth of the member; then, for an equivalent connection detail, there would be a
greater likelihood that the required moment to induce a block shear failure would
remain below either M, or M, of the gross section. It is noted, however, that
this may not always be the case, since the increase in depth would also require
an increase in applied moment to reach an equivalent force in the two flanges as
a shallower section. This conflict between the section depth, the gross section
properties, and the induced flange forces was discussed in detail in Chapter 3.
However, for the modelled set of specimens shown in Figure 5.10, the increase in

flexural capacity of a deeper section provided a net difference in favour of isolating

the block shear failure mode.
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5.2.2 Distribution of stress

A comparison of the average Von Mises stress in each of the four block shear
failure planes for all modelled specimens is shown in Figure 5.11; an overview
of the location of each shear plane was provided in Figure 5.5. The total splice
end moment normalized to the gross section yield moment was taken as the
independent variable, while the average Von Mises stress in each failure plane
was normalized to the theoretical stress capacity of the given section and failure
type. The point at which a given stress line crossed the theoretical capacity
(shown as a red line) would represent the moment-at-failure for the given failure
plane. In general, both the EBS and CBS fracture planes had similar moment vs.
stress behaviour, with a generally linear relationship. The EBS and CBS shear
planes, however, had a significantly greater spread in their path towards failure,
with the CBS shear plane in the web exhibiting a highly non-linear and random
relationship to the total applied moment. What was consistent for both failure
modes was that fracture plane failure was preceded by the shear plane failure,
affirming that the failure mechanism as assumed by the CSA S16-19 standard,
where ultimate failure of the block shear mode occurs with a shear plane yield
and eventual tension plane fracture.

When observing the stress distribution along each failure plane for a single
specimen, further clarity on the assumed failure mechanism for block shear failure
was provided. A typical stress distribution in the shear and tension planes as
observed in the M3:W410X53 model is shown in Figures 5.12 and 5.13.

For the fracture plane, a common observation from all models was that the
entire net flange area participated to a high degree of stress, whether or not the
EBS failure mode governed over the CBS failure mode. As observed in Figure
5.12, a significant portion of the entire net flange area (the CBS Fracture plot)
is near its ultimate tensile strength at the point of EBS Fracture failure. This
suggested that the EBS and CBS fracture planes are highly related, and that the

isolation of one failure mode over the other is more dependent on the behaviour
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Figure 5.11: Average Von Mises stress in each failure plane.
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Figure 5.12: Tension plane stress distribution for M3 specimen.

129



5.2 Results and Observations

Von Mises Stress (MPa)

Von Mises Stress (MPa)

CBS: Shear

600 [

500 [
N B B S S S S S - S S S S S S S S S — —

400 /

300 |

200

100

0 1 1 1 1
20 40 60 80 100

Load Displacement (mm)
EBS: Shear

- = f, (Web)

m— AvQ.

600 -
500
400
300
200
100

20 40 60 80 100
Load Displacement (mm)

Figure 5.13: Shear plane stress distribution for M3 specimen.

130
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of the respective shear planes rather than a clear stress concentration on one of
the two fracture planes. It is noted, however, that as the connection is loaded
beyond the point of initial EBS failure, the concentration of stress in the EBS
fracture failure plane becomes evident. A comparison of the distribution of stress
across the net flange area for the M3 and M5 specimens is provided in Figure
5.14. The Mb specimen, which had a greater flexural stiffness than the M3
specimen, reached its block shear capacity early in the load displacement of the
model. As the model was continuously loaded, significant necking occurred in the
EBS Fracture plane, which concentrated the stresses at that location. The CBS
Fracture plane plot for the M5 model in Figure 5.14 shows a clear divergence
of two groups of stress as the loading increased. The upper block shows the
concentration of stress in the EBS Fracture plane as necking increases.

For the shear planes, the distribution of stresses was less uniform, and highly
dependent on the failure mode in question. The EBS shear planes, which are
directly adjacent to the bearing surfaces of the bolts, showed a uniform increase
in stress during loading, similar to the EBS and CBS fracture planes. However,
the CBS shear plane, located at the Web/K-Area interface, showed a highly
non-uniform stress distribution throughout the loading of the connection. At
the point where the average stress along each plane reached its yield strength,
a significant portion of the CBS shear plane remained below its capacity. Two
key observations were made on the shear planes of the block shear failure modes.
First, for the EBS shear plane, the highly uniform increase in stress indicated
that the assumption of the gross section for the shear plane, as used in the design
methodology of the CSA S16-19 standard, was correct, since a net section shear
failure would plot low stress values for elements that are exclusively in the gross
section. Second, for the CBS shear plane, it was clear that the true distribution
of stress along the failure plane did not match the assumed failure mechanism;
a significant portion of the assumed failure plane did not participate in any load

resistance. Although the connections were not detailed such that the CBS failure
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Figure 5.14: Comparison of complete block shear fracture plane Von Mises stress
distribution between M3 and M5 specimens.
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5.2 Results and Observations

mode was critical, it would be likely that the progression of stress would behave
similarly should a CBS critical connection be loaded.

Based on these observations, two outcomes on the current predictive capacity
of block shear design equations were expected. First, for the Edge Block Shear
failure mode, the CSA S16-19 design methodology, which assumes a gross shear
plane and a net tension plane, should provide a more accurate prediction of the
EBS resistance compared to the AISC 360-16 and Eurocode 3-2005 methods,
which assume both net shear and tension planes. Second, since the distribution
of stress along the Complete Block Shear failure plane did not match the assumed
stress state for any block shear design equation, the predictive capacity for the
CBS failure mode was expected to be worse than that of the EBS failure mode

for any given design equation.

5.2.3 Effect of connection length

As discussed in Chapter 3, the moment-induced block shear failure mode was
determined to be highly sensitive to the overall connection length of the bolt
group, as the shear plane component of the block shear resistance equation is
proportional to this length. As previously noted, the connection geometry of all
specimens were selected to be as representative of typical bolt spacings as possible;
these typical spacings were end distances of 2” (50mm), and bolt pitches of 3”
(75mm). However, for the initial 5 specimens, M1-M5, some deviations from
typical bolt spacings were made to isolate the block shear failure mode as much
as possible. For example, specimen M1 was specified with an end distance of
35mm and a bolt pitch of 65mm, and specimen M5 was specified with an end
distance of 3bmm. Further, all bolts were detailed with both inner and outer
splice plates, allowing for a double shear configuration. For more typical moment
splice scenarios where only the outer splice plate would be specified, a minimum
of double the amount of bolt rows would be necessary to carry the equivalent force

in a single shear configuration. This doubling of rows would have a significant
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Figure 5.15: Comparison of SPEC vs. TYP series of specimens M1-M5.

impact on the overall connection length of the bolt group, as well as the ability
to force a block shear critical connection.

To observe the effect of the connection length on the overall behaviour of the
moment splice connection, an additional 5 specimens, MITYP to M5TYP, were
modelled to compare to the initial M1-M5 series, renamed M1SPEC to M5SPEC.
For specimens with atypical bolt spacings, such as M1 and M5, the bolt geometry
was reconfigured to meet typical spacing values; for specimens that were already
specified with typical spacing values, an additional row of bolts was added using
the same bolt pitch. The values of these distances was provided in Table 5.1.

The overall critical moment resistances of the SPEC and TYP specimens is
shown in Figure 5.15. As expected, the slight to moderate increase in connection
length corresponded to a significant increase in the overall block shear failure

resistance. For specimens M1TYP and M2TYP, this increase in connection length
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resulted in a change from a block shear critical connection to a gross section
failure, as seen by the absence of block shear failure moments in the figure. For
specimens M3TYP and M4TYP, the increase in connection length resulted in the
Edge Block Shear moment resistance to exceed the gross yield moment resistance.

A more detailed comparison of the global and local effects of the connection
length for the M2 specimen is shown in Figures 5.16 and 5.17. The M2TYP
specimen is equal to the M2SPEC specimen, albeit with an additional row of bolts
at the same pitch, resulting in an overall connection length of 200mm compared
to 125mm for the M2SPEC specimen. Observing the global load displacement
vs. total splice moment in Figure 5.16, a significantly stiffer connection behaviour
was evident for the M2TYP specimen. This was expected, since the individual
force transferred at each bolt region is reduced, minimizing the local deformation.
When comparing the average Von Mises stress in each of the four block shear
failure planes, shown in Figure 5.17, the effect of the increased connection length
was more evident. A general reduction in the overall stress in each failure plane
was observed for the M2TYP series, with no failure plane reaching its strength
capacity. The increased capacity of the M2TYP block shear failure planes allowed
for more of the gross section to participate in the induced moment, reaching the
gross plastic moment before any local failure modes occurred.

As expected analytically, and verified with the M1TYP-M5TYP specimens,
the overall connection length of the bolt group played a significant role in the
block shear failure capacity of a bolted moment connection, as well as the overall
stress distribution in the connection region. Increasing the connection length was
observed to stiffen the overall flexural response of the beam, reduce the average
stress in the shear plane for a given load, and allow for greater participation by
the gross section to change the overall failure mode from a local block shear to
a gross plastic moment. For a typical moment splice connection for W-sections,
practising engineers would most likely specify single shear bolts to the capacity

of the gross plastic moment of the section, rather than the double shear bolts
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5.3 Predictive capacities of design equations

designed to the capacity of the expected block shear resistance as performed
during this study. The increased number of bolt rows would almost certainly
increase the connection length to the point where the block shear failure mode

would not govern the overall resistance of the section-connection detail.

5.3 Predictive capacities of design equations

The predictive capacities of the CSA S16-19, AISC 360-16, and Eurocode 3-
2005 design methods were evaluated for both the EBS and CBS failure modes.
Although the detailing of the connections never provided for a CBS critical failure,
some specimens reached the theoretical CBS failure state as the specimen was
loaded beyond the EBS failure point; for these specimens, the predictive capacity
of the CBS failure mode was also evaluated. Further, some specimens did not
reach either block shear failure mode; these specimens were generally from the
TYP series of specimens that did not explicitly detail the connection geometry
for a block shear failure mode, but rather to reflect more industry-standard bolt
spacing distances.

The moment value at which both failure planes of a given block shear failure
mode reached their respective capacities was taken as the failure mode’s moment
capacity, which was then compared to the calculated, theoretical moment capac-
ities of the three listed design methods. The metric used for determining the
accuracy of a given design equation was the Professional Factor (PF), taken as
the true observed moment-at-failure divided by the expected moment-at-failure
as calculated by the design equation. A Professional Factor greater than 1 would
indicate that the given equation had underestimated the true available capacity
of a given failure mode; a Professional Factor less than 1 would indicate that
the true capacity of a given failure mode was below the expected value. Since
probable material properties and unfactored design equations were used when

determining the predictive capacity of an equation, a PF greater than 1 did not
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5.3 Predictive capacities of design equations

suggest an increased level of safety, nor was it a desirable outcome. Rather, it
suggested that the predictive design equation could not accurately represent the

true failure mechanism.

5.3.1 CSA S16-19

The CSA S16-19 block shear resistance equation is unique from both the AISC
360-16 and Eurocode 3-2005 design equations in that the shear failure plane is
strictly defined as the gross shear area yielding at a stress averaged between the
tensile yield and ultimate strengths. The efficiency factor, Uy, is a tabulated
value used to account for the reduced capacity of the tension plane when in-plane
eccentricities exist. For the moment-induced block shear failure modes, the value
of U; was taken as 1.0, which is the tabulated value for flange-connected structural

tees in direct tension.

F,+F,

Tr = ¢U[UtAnFu + 0‘6‘49” 9 ]

(5.1)

An overview of the predictive capacity of the CSA S16-19 design equation
for the EBS and CBS failure modes is presented in Figures 5.18 and 5.19. As
expected from visualizing the distribution of stresses in the failure planes, the
CSA S16-19 design equation accurately predicted the EBS failure mode, with
a mean Professional Factor of 1.08. This further suggested that the use of the
gross shear area was appropriate for the block shear failure mode. What was not
expected was the equally high predictive capacity for the CBS failure mode, as
the assumed stress distribution of the CBS Shear failure plane did not reflect the
observed stresses in the finite element model. It was possible that although a
uniform stress level was not present along the CBS Shear plane, highly stressed
regions of the failure plane made up the difference of lower stressed regions and
provided an effective stress across the entire plane that could be predicted by the

simplified CSA S16-19 equation.
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Figure 5.18: CSA S16-19 EBS predictive capacity.
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Figure 5.19: CSA S16-19 CBS predictive capacity.
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5.3.2 AISC 360-16

Two key differences exist in the AISC 360-16 design equation compared to the
CSA 516-19:

Ry, = 0.60F, Apy + Ups FyAny < 0.60F, Agy + Ups Fyu Ay (5.2)

1. The assumed failure mode is the simultaneous rupture of the net tension
plane and the net fracture plane, with a shear fracture strength taken to be

0.6f,.

2. However, if the net shear fracture term exceeds the gross shear yield capac-
ity, the gross shear yield strength is taken instead. The shear yield strength
is taken to be 0.6f,, whereas the shear yield strength for the CSA S16-19

equation takes into consideration significant strain hardening, and is higher.

From the observed stress distributions for the EBS Shear failure planes, it was
evident that the assumed failure mechanism of the AISC 360-16 design equation
was not reflective of the true load path. This was further confirmed by the
significantly poorer Professional Factor of 1.28 for the EBS failure mode. It is
noted that although the AISC 360-16 design method reduces the active shear
area of the failure plane, the higher professional factor compared to the CSA
S16-19 design equation arises from the fact that the AISC 360-16 assumes a
shear fracture, rather than shear yielding. However, like the CSA S16-19 design
equation, the AISC 360-16 provided a reasonable mean Professional Factor of 1.09
for the CBS failure mode, a significant improvement compared to the EBS failure
mode. The improvement of the Professional Factor for the CBS failure mode was
attributed to the fact that the assumption of the net shear area fracture does not
hold for the CBS Failure mode, where 0.6F, A,, must be greater than 0.6F,Ag,,
and would thus require the use of the more reflective assumption of a gross area

shear yield.
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Figure 5.20: AISC 360-16 EBS predictive capacity.
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Figure 5.21: AISC 360-16 CBS predictive capacity.
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Predictive Capacity: EBS (Eurocode 3-2005)
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Figure 5.22: Eurocode 3-2005 EBS predictive capacity.

5.3.3 Eurocode 3-2005

The Eurocode 3-2005 design equation was expected to provide the greatest un-
derestimation block shear resistance due to the assumption of a net area yield
contribution of the shear plane. This was confirmed by the Professional Factor of
1.5 for the EBS failure mode, meaning the true resistance of this failure mode was
150% of the predicted value. Like the AISC 360-16 design method, the Eurocode
3-2005 equation showed an improvement in the Professional Factor for the CBS
failure mode, with PF=1.1, since the net shear area is equal to the gross shear

area along the web/K-area interface.
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Figure 5.23: Eurocode 3-2005 CBS predictive capacity.
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5.3.4 Summary of block shear predictive capacities

Comparisons of the predictive capacities of the three equations are shown in
Table 5.2 and Figure 5.24. Empty values for the Professional Factor in Table
5.2 reflect specimens that did not reach the given block shear failure mode. The
CSA S16-19 design equation provided the best predictive capacity out of the
three design standards, especially for the prediction of the EBS failure mode.
Further, the AISC 360-16 and Eurocode 3-2005 equations appeared to provide
increasing Professional Factors (increasing underestimation of strength) as the
overall capacity of the EBS failure mode increased. The high predictive capacity
of the CSA S16-19 design equation supported the use of the gross area for the
shear plane, as well as using an intermediate strength value between the yield
and ultimate strengths, as determined by (Driver et al., 2006). For the AISC
360-16 and the Eurocode 3-2005, the use of the net shear area at either a yield
or fracture strength state significantly underestimated the resistance of the EBS
failure mode. The use of the gross shear area was further supported by the fact
that both the AISC 360-16 and Eurocode 3-2005 design equations performed
better when predicting the CBS failure mode, where the net shear area was
equivalent to the gross shear area. One unexpected outcome of all three design
equations was the relatively good predictive capacity for the CBS failure mode, as
observations on the stress distribution along the CBS Shear plane suggested that
significant regions of the plane did not reach strength limits throughout the entire
loading of the connection. Although the simplified shear resistance components
of all three design equations do not reflect the true mechanism of failure for the
CBS plane, it is probable that it provides a reasonable estimation of the average
stress state along the plane, with certain regions of the shear area participating

with a higher degree of stress that offsets the lower stressed regions.
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5.3 Predictive capacities of design equations

Table 5.2: Overview of Professional Factors.

CSA S16-19 AISC 360-16 Eurocode 3-2005
ID Section EBS CBS EBS CBS EBS CBS
MISPEC W250X58 1.12 1.38 1.57
MITYP  W250X58
M2SPEC  W360X91 1.16 1.34 1.60
M2TYP  W360X91
M3SPEC W410X53 1.07 1.06 1.29 1.08 1.51 1.08
M3TYP  W410X53 0.99 1.10 1.13 1.12 1.35 1.13
M4SPEC W460X113 1.09 1.14 1.34 1.14 1.46 1.14
M4TYP W460X113 0.96 1.24 1.38
M5SPEC  W610X101 1.11 1.03 1.31 1.04 1.58 1.05
M5TYP W610X101 1.10 1.06 1.25 1.08 1.54 1.08
M6 W460X113 1.10 1.35 1.47
M7 W530X72 1.05 1.05 1.20 1.07 1.49 1.08
M8 W200X52 1.02 1.21 1.38
M9 W250X101 1.16 1.37 1.57
M10 W310X74 1.06 1.24 1.49
M11 W460X74 1.11 1.21 1.32 1.22 1.53 1.23
M12 W690X170 1.02 0.99 1.20 1.01 1.45 1.01
Mean: 1.07 1.08 1.28 1.09 1.49 1.10
Combined: 1.08 Combined: 1.21 Combined: 1.35
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Figure 5.24: Comparison of block shear Professional Factors.
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5.4 15% Rule

54 15% Rule

To investigate the role of the 15% rule on the net section flexural resistance and
any relationship to the block shear failure mode, an analytic review of four net
section flexural resistance equations was performed and compared against the

results from the finite element study.

5.4.1 Analytic review

The reduced capacity of a flexural W-section with holes in the flanges is ap-
proached in varying ways, as reviewed in Chapter 2. The AISC 360-16 design
method uses a proportional reduction in flexural capacity based on the area re-
moved from the flanges; the CSA S16-14 method simply took the net section
properties of S or Z for net flange areas below 85%; the CSA S16-19 method
adds a modifier to the S16-14 method depending on geometric and material prop-
erties of the section, and; the proposed design method by Swanson (2016) adds
a modifier to the AISC 360-16 method to account for the participation of the
web at failure. To investigate the significance of the flexural resistance limits
that these equations impose, the theoretical reduction in moment capacity as a
proportion of the gross plastic moment capacity was calculated for all tabulated
W-sections using bolt diameters from a range of 1/2” (13mm) to 1-1/2” (38mm).

The following assumptions and simplifications were made for all four analyses:

1. Nominal properties of ASTM A992 steel: f, = 345M Pa, f, = 450M Pa.

2. Two parallel rows of bolts in each flange, i.e. four bolt holes across the net

section.
3. A 2mm hole tolerance for each bolt hole.

4. Full lateral support provided.
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5.4 15% Rule

For computational efficiency, the reduced section capacity calculations were
performed on all W-sections and each of the bolt sizes, regardless of any geometric
incompatibility or the section’s likelihood of use as a flexural member. Although
the figures presented below show net flange area ratios as low as 25%, it should
be clear that such a combination of section and bolt size would not exist in prac-
tice. However, the inclusion of these theoretical combinations provided additional
insight on the general trend of each design equation on its effect on net section

flexural members.

5.4.1.1 AISC 360-16: Equation F13

The AISC 360-16 method for net flexural resistances do not have a geometric
limit on the net flange area to trigger the reduced capacity equation, but rather
considers the capacities for the net flange fracture strength and the gross flange
yield strength, as seen in Equation 5.4. Should the inequality in Equation 5.4 not
hold, i.e. the net fracture resistance is critical, the section capacity is reduced to
the calculated value of Equation 5.5. For ASTM A992 steel sections, this critical
point of transfer from the gross section flexural capacity to the reduced flexural

capacity occurs at a net flange area ratio of ~ 76%.

F,Ap, > YrF, Ay, (5.4)
F, Ay,
M, = =g, (5.5)
Afg

Where: Yr = 1.0 if F},/F, < 0.80, Y7 = 1.1 otherwise.

The effect of the AISC 360-16 design method on all tabulated W-sections and
bolt size combinations is shown in Figure 5.25. Two clear issues are evident with
the AISC 360-16 design method. First, the sudden reduction of approximate
20% of the gross section flexural capacity at the 76% net flange area limit seems

unreasonable, especially along with the assumed change of failure mode from a
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Figure 5.25: AISC 360-16: Net flexural resistance.

yield stress limit state to the sudden fracture of the flange extremity. An equation
like this would suggest that a section with a net flange area ratio of 78% would
perform and fail in a significantly different way than the same section with a net
flange area ratio of 75%. It is noted, however, that the majority of the section-
connection details that were modelled for the block shear failure analysis had a
net flange area ratio greater than 76%, and would not have had an overall flexural

capacity resistance reduced by the AISC 360-16 design method.

5.4.1.2 CSA S16: Clause 14.1

Two methods of the CSA S16 were explored, as the most recent S16-19 standard
provided the first revision on net flexural capacity design since its initial adoption
in the 1950s. The original method, which was in effect up until the CSA S16-14

standard, simply required that the net section geometric properties should be
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Figure 5.26: CSA S16-14: Net flexural resistance.

used if the reduction in flange area was greater than 15%. Ostensibly, this meant
that Class 1 and 2 sections were allowed to reach the plastic moment state, albeit
with a reduced value of the plastic section modulus, Z, while Class 3 sections
would reach a similarly reduced yield moment state with a lower value of the
elastic section modulus, S. This provided a more reasonable assumed ductile
failure mode compared to the AISC 360-16 method; however, the sudden drop
in capacity from one side of the net area threshold to the other remained. The
effect of the CSA S16-14 15% Rule on all tabulated W-sections is shown in Figure
5.26. Since the CSA S16-14 15% rule was tied to a non-linear geometric property
(S or Z), the reduction in capacity was no longer proportional to the amount of
flange area lost, and as such, there is a greater variation in the proportional loss
of available flexural capacity for a given net flange area ratio.

The revised 15% Rule design method introduced in the most current CSA S16-
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5.4 15% Rule

19 standard added a term to the net section property. This term was a proportion,
a, of the gross section property, which would then be added to the net section
values of S and Z. The value of a was dependent on the yield strength of the
material, as well as the existence of holes in both the tension and compression
flanges; a complete explanation was provided in Chapter 2. For the assumed

conditions of the analytic study, the value of o was taken as 0.12.

Se=aS+5,<8 (5.6)

Ze=al+2Z,< 7 (5.7)

The effect of the revised 15% rule in the CSA S16-19 standard on the flexural
capacity of bolted W-sections is shown in Figure 5.27. The revised method showed
the same spread of reduced capacities for a given net flange area ratio as the
CSA S16-14 method, but improved on the previous method by shifting the entire
reduction capacity upwards by 12% of the gross section property. It is clear that
the revised method provided a significant improvement in allowable performance
for flexural members. Perhaps more significant, however, is that this upward shift
in the allowable capacities has effectively eliminated the sudden discontinuity of
flexural strength on either side of the 15% reduction threshold. A flexural member
with a net flange area of just below 85% could reach an allowable moment that
is close to M, rather than a sudden drop in capacity.

The CSA S16-19 in general provided a welcome improvement in allowable
flexural strengths for bolted W-sections compared to the previous CSA S16-14
standard. It also reduced the sudden discontinuity of flexural capacity once the
15% rule was first triggered; however, this was at the cost of a slightly more in-
volved design method. Further, one key component was unchanged in the S16-19
design method: the use of a 15% flange area reduction as the threshold for re-

duced section capacities. Although the tested combinations of section-connection
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Figure 5.27: CSA S16-19: Net flexural resistance.
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details for the block shear finite element study did not trigger the AISC 360-
16 equation for flexural capacity reductions, all models would trigger the 15%
threshold of the S16-19 method, as the specimens had net flange area ratios of
75% to 81%. Therefore, although the S16-19 method would perform better than
the AISC 360-16 when both clauses are triggered, the AISC 360-16 had the ben-
efit of an additional reduction in approximately 10% of the net flange area ratio

before any decrease in the section capacity is required.

5.4.1.3 Swanson Equation (2016)

After completing a statistical review of previously performed tests on bolted
W-section connections, Swanson (2016) suggested an improved design equation
that better fit the observed ultimate flexural capacities. The reduced capacity
was based on the proportional reduction used by the AISC 360-16 method, but
included an additional contribution from the web, which was assumed to reach
the ultimate strength limit. It is noted, however, that the use of the ultimate
strength across the web region was not based on the observed failure mechanisms
of the laboratory tests, but rather because it provided the best statistical fit for
the aggregated test results. What was unique with the Swanson equation was
that there was no threshold for the net flange area ratio before the equation is
triggered. Rather, the equation would be used for any amount of reduced area
caused by bolt holes, with an upper limit in place that ensured that flexural

capacities did not exceed the gross section capacity.

F, A,

M, =
Afg

S$ + FuZx,web < FyZJ: (58)

The effect of the Swanson equation on reduced flexural capacities is shown in
Figure 5.28. The benefit of including the contribution of the web was immedi-
ately clear; sections with net flange areas as low as 60% could still theoretically
reach the gross plastic moment capacity. It is noted, however, that these section-

connection combinations were most likely from sections with extremely thick
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Figure 5.28: Swanson Equation 3: Net flexural resistance.

webs, and would typically not be used in a flexural loading scenario. Another key
observation was that some section-connection details that did not trigger either
the 15% rule for the CSA S16-19 standard or the approximate 76% threshold for
the AISC 360-16 standard still had reduced flexural capacities, since the Swanson
method required the reduction equation to apply for all bolted flexural members.
In general, however, the Swanson equation allowed for a wide range of net flange
area ratio values with little to no reduction in the overall flexural resistance of

the section.

5.4.2 Comparison of design methods

A comparison of all four design methods and regression lines is shown in Figure
5.29. The significant improvement of the CSA S16-19 method from the CSA S16-

14 method was immediately clear, as well as the smooth transition from reduced
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section capacities to full gross section strength. When comparing the AISC 360-
16 and the CSA S16-19 methods, the AISC 360-16 provided a better allowable
flexural capacity for net flange area ratios greater than 76%, due to the inherently
lower threshold before reductions were imposed. However, for sections with net
flange area ratios below the threshold of the AISC 360-16 equation, the CSA
S516-19 provided consistently higher allowable strengths. The Swanson method
typically provided the highest flexural capacity for sections with significant flange
area reductions, but also had a significantly larger spread of reduction due to the
dependence on the geometry of the web. It would be expected for typical flexural
We-sections that the reductions would be on the lower end of the plotted range,
since thick web sections are typically restricted to columns. Further, for sections
with net flange area ratios greater than 85%, there was a greater possibility that
the Swanson equation would provide a lower resistance than the CSA S16-19
method, since the area threshold for CSA S16-19 reduction was not met, and
gross section properties could be used.

To evaluate section-connection combinations more reflective of reality, the
results of the block shear finite element study were plotted against the four pre-
dictive design equations; this plot is shown in Figure 5.30. The Edge Block Shear
moment capacities are shown as red circles, while the peak experienced moments
are shown as black squares. Since the modelled specimens were specifically de-
tailed to fail in block shear, the plotted capacities do not perfectly reflect a more
conventional moment connection with the same bolt diameters, since additional
rows of bolts would increase the block shear moment capacity. However, it is clear
that some block shear critical connection details still failed at a moment greater
than allowed by the CSA S16-19 equation, and even the proposed Swanson equa-
tion. Further, all of the peak experienced moments were near, or greater than,
the theoretical gross plastic moment capacity, an observation made by previous
researchers on net section flexural capacities (Swanson, 2016; Sivakumaran et al.,

2010). Since the net flange area ratio would be unaffected with additional rows of
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Figure 5.29: Comparison of net flexural resistance methods.
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bolts, it would be expected that as the block shear moment resistance increases
above the gross section capacities, the overall capacity of the connection would
approach the values of Mpgag in Figure 5.30.

In general, the CSA S16-19 design method provided a much needed improve-
ment in allowable flexural capacity for typical flexural section-connection details
for bolted W-sections. It also eliminated the sudden loss in flexural capacity once
the 15% rule was first triggered, instead providing a smooth and gradual decrease
in strength as net flange area ratios decreased. For the range of net flange area
ratios observed in the block shear finite element study, the greatest reduction
in allowable strength was approximately 95% of the gross plastic moment for
a net flange area ratio of 75%. It was clear that even connections detailed to
critically fail in block shear could still surpass the theoretical moment capacity
of the entire section. Instead of a measure of the actual reduced capacity of the
member, these limits on flexural strength could rather be considered as proxy
load limitations due to the loss of rotational ductility from the reduced flange
areas, as observed by Sivakumaran et al. (2010), where although the strength
of the net flexural member is not greatly affected by reduced flange areas, the
rotational capacity is. However, the significance of the improved S16-19 method
for Canadian structural steel designers is yet to be determined, as the standard
has not been widely adopted at the time of this report. It is unclear if the im-
provement in allowable flexural capacity provides a reasonable compromise for
engineers attempting to maximize the performance of structural members, or
whether it still causes unacceptable reductions in flexural capacity for net flange
area ratios typically encountered by practising engineers. Should it be the latter,
the proposed equation by Swanson (2016) could provide the required additional
flexural capacity. However, Swanson’s equation implied a failure mechanism that
was not observed in any of the laboratory tests on which the equation was based;
rather, the fracture of the web plane was included as it provided the best statisti-

cal fit. Should Swanson’s equation be desired as an eventual replacement for the
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Figure 5.30: FE results compared to net flexural resistance predictions.
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Figure 5.31: Reduced flexural capacities for common beam sections only.

CSA S16-19 design method, significant testing should be done to confirm that
the web fracture term in the equation remained appropriate for a wider range of

section-connection configurations.

5.5 Conclusion

The finite element study of 17 bolted moment connections provided insight on the
existence of, and the current predictive capacity for, moment-induced block shear
failure in W-sections. The CSA S16-19 method, which uniquely assumes a gross
shear area and a stress-at-failure that is greater than the yield strength, provided
the best predictive capacity for both the Edge Block Shear and Complete Block
Shear failure modes, with a Professional Factor of 1.08. The importance of using

the gross shear area was evident in the fact that the AISC 360-16 and Eurocode 3-
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2005 both performed significantly better in predicting the Complete Block Shear
failure mode, where the net shear area is equivalent to the gross shear area. It
was conclusively determined that the block shear failure was a possible failure
mode for the tension flange in bolted W-section moment connections, and should
be explicitly considered during the design of steel structures.

In addition to the finite element study for moment-induced block shear failure,
an analytic study reviewed the effect of the various net section flexural capacity
reduction methods on all tabulated W-sections and for a wide range of typical
bolt diameters. It was found that the CSA S16-19 design method for the 15%
rule provided a significant improvement on the allowable flexural strength of a
bolted W-section compared to the previous method in use up to the CSA S16-14
standard. It also performed significantly better than the AISC 360-16 method,
but only when the net flange area ratio limits were met by both design standards.
The performance of a proposed equation by Swanson (2016) was also evaluated.
Although the proposed equation may provide the highest allowable flexural re-
sistance in certain scenarios, the equation proposed by Swanson is divorced from
the true failure mechanism of net section flexural members observed by previ-
ous researchers. It is yet to be seen whether the improved method provided by
the CSA S16-19 provides a suitable compromise for Canadian structural design-
ers between safe design and maximizing performance, or if a further increase in

allowable flexural strengths is required.
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Chapter 6

Conclusions

6.1 Overview

An analytic design methodology for block shear critical W-section moment splice
connections was developed to investigate the theoretical possibility of the block
shear failure mode for W-sections under flexure. Using this methodology, a wide
range of W-section moment connections were detailed to theoretically fail in block
shear in the tension flange. At this stage, it was observed that a block shear
critical moment connection detail was highly dependent on the geometry of the
W-section, as well as the overall connection length of the bolt group. To verify
the design methodology, 17 representative non-linear finite element models were
developed and analysed. Further, 6 of the 17 models were fabricated for eventual
full-scale laboratory testing to calibrate the finite element models.

The analysis of the finite element models confirmed that block shear failure
in the tension flange was a possible failure mode for bolted W-section moment
connections under flexure, and should be explicitly considered when designing
steel structures. Further, the block shear failure mode was observed to consist
of a gross shear area at a stress state between the yield and ultimate strengths,
and a net tension area at the ultimate strength. These two observations were
supported when comparing the predictive capacities of the CSA S16-19, AISC
360-16, and the Eurocode 3-2005 design methods for block shear failure. The
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CSA S16-19 design equation, which uniquely assumes a gross shear area, as well
as a stress-at-failure of the shear plane that is greater than the yield strength,
had the greatest predictive performance, with a Professional Factor of 1.08.

In addition to the block shear failure analysis, an analytic study on the existing
and proposed design methods for net section flexural resistances of W-sections
was performed. The flexural resistances of the 17 finite element models were
compared against the theoretical reduced flexural capacities from the equations
in the CSA S16-14, CSA S16-19, AISC 360-16, as well as a proposed equation by
Swanson (2016). This analytic review showed that the newly revised CSA S16-19
method for net flexural capacity provided a significant increase in performance
compared to previous iterations of the standard, as well as the AISC 360-16;
however, it was noted that the true flexural capacity of some of the finite element
models still exceeded the reduced limit, suggesting the reduction equations are
still overly punitive. The proposed equation by Swanson (2016) provided the
highest allowable flexural resistance, but assumed a failure mechanism that is

divorced from observed laboratory results.

6.2 Future work

With an analytic design methodology, a finite element model catalog, and a review
of the finite element analysis results, key insight on moment-induced block shear
failure in W-sections was provided. The immediate suggested progression of this
study is the laboratory testing of the M1-M6 specimens for calibration of the
finite element models. This calibration phase will provide the evaluation metrics
for the assumed boundary conditions, loading protocols, and mesh selection and
densities for the existing finite element models. The laboratory testing phase is
expected to be completed by the end of Summer 2020.

Next, to be further representative of true loading scenarios, the effect of shear
across the splice connection on the block shear failure mode should be explored.

It is possible that the transfer of shear load across a beam splice could influence
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the overall stress distribution across the tension flange such that the block shear
failure mode is affected. Further, since a shear splice theoretically contributes
some moment transfer across a connection, the global flexural response would
also be affected.

Finally, it was noted that the block shear failure mode is highly sensitive to
varying section geometry parameters as well as the overall connection length.
However, the limits of these section geometry parameters were qualitatively de-
fined, with the overall observation being that moderate depth, moderate widths,
and moderate-to-thin flange thicknesses are required for a block shear critical
connection. Since the value of these variables, as well as the typical expected
connection lengths, are finite and tabulated, a further analytic study into defin-
ing these geometric limits should be possible.

In general, further work for moment-induced block shear failure in W-sections
should shift towards practical scenarios of design and analysis. As the main focus
of this study was to isolate the moment-induced block shear failure mode as much
as possible, many simplifications and deviations from typical design and loading
conditions were made, such as the flange-only pure-moment connection, as well
as atypical bolt spacings. Further research should consider the effect of shear

transfer, and should maintain the use of typical bolt spacings and numbers.
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Appendix A

Net section flexural resistance

In Section 5.4, varying methods for reduced flexural capacities for W-sections
with bolt holes in the flanges were reviewed. Of these methods, the reduction
equation developed by Swanson (2016) consistently provided the highest allow-
able flexural capacity for typical section-bolt diameter combinations for flexural
members. However, it was noted that the assumed failure mechanism of the
Swanson Equation did not reflect the observed laboratory failure paths that the
equation was based on. Specifically, the assumption of the stress-at-failure across
the entire web of F,, was disputed.

A supplementary series of finite element models was developed to investigate
the true stress distribution along the critical net section for bolted moment con-
nections. The series was based on the M5:W610X101 test specimen, and was
noted as M5S to represent the investigation of the Swanson Equation. Based on
the initial M5 model, which was renamed as M5S0, two parameters were varied
to investigate their effect on the overall stress distribution across the net section.
First the number of bolt rows was increased from 2 to 3, to transition the critical
failure mode away from block shear failure and towards the theoretical net sec-
tion flexural capacities; second, the presence of a web splice was also included to
investigate how a moment transfer through the web would affect the stress distri-
bution across the critical net section. A total of four specimens were evaluated,

and are summarized in Table A.1.
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Table A.1: W610X101 M5S series overview

ID  End (mm) Pitch (mm) Gauge (mm) # Rows Web Splice

M5S0 2 No
M5S1

5 35 75 145 2 Yes
M5S2 3 No
M5S3 3 Yes

Figure A.1: Simplified boundary condition for web splice.

The web splice was simplified as a rotationally fixed boundary condition across
a1” x 15”7 (25mm x 375mm) region of the beam end, as seen in Figure A.1. This
simplification effectively provided an infinitely stiff web connection; although this
simplification would cause an overestimation of the true stress transfer across the
web splice, it was deemed acceptable to investigate a ‘best case scenario’ influence
on the stress distribution across the critical net section.

All specimens were loaded to a 90mm displacement at the load point, and the
elemental stresses across critical regions of the specimens were compared. First
the general visual stress contours shown in Figures A.2 and A.3 were compared.
In general, the effect of the web splice on the overall stress distribution was
most evident when comparing the 2 bolt row specimens, M5S0 and M5S1. Since

the M5S0 specimen was detailed to fail in block shear, the inclusion of the web
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S, Mises

M5S1

M5S3

Figure A.2: Comparison of Von Mises stress distributions for the M5S series.

splice had the greatest effect in limiting the extreme local deformations that were
present in the tension flange of the M5S0 specimen, and participating in the
moment transfer across the connection. For the M5S2 specimen, where the block
shear failure mode was no longer critical, the participation of the web splice was
less pronounced.

Next, the elemental axial stresses across the critical net section was plotted
and compared. The critical net section is the section across the last row of bolts in
a given bolted connection, where any theoretical failure would occur; the location
of the critical net section is shown in Figure A.4. A comparison of the elemental
stresses cross the critical net section is shown in Figure A.5. Elements in the
flanges (black) were visually separated from the elements in the web (blue). The
red horizontal lines represent the yield strength, and the red vertical line indicates
the load displacement at which the overall unfactored gross plastic moment was
reached at the splice connection. All specimens eventually reached the theoretical
gross plastic moment capacity, with the exception of M5S0, which was detailed
to fail in block shear.

As expected, since deformation/stress concentrated at the local block shear
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Figure A.3: Comparison of Von Mises stress distributions for the M5S series.

Figure A.4: Location of critical section.
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Figure A.5: Axial stress distribution across critical net section.

region for the M5S0 specimen, the elements along the web were at or near zero
stress throughout the entire loading history. With the addition of a web splice in
the M5S1 specimen, the web elements along the net critical section participated to
the overall flexural resistance to a significantly higher degree. Although the M5S1
had an improved flexural resistance over the M5S0 specimen, significant defor-
mation of the tension flange still existed, as noted by the asymmetric distribution
of flange stresses; the M5S1 specimen was able to reach the gross plastic moment
capacity, but only due to significant strain hardening of the tension flange.

A similar pattern was observed between the M5S2 (3 bolt rows, flange only
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connection) and the M5S3 specimens (3 bolt rows, flange + web connections),
where the inclusion of the web splice allowed a greater degree of participation of
the web at the critical net section. It was noted that for the M5S2 and M5S3
specimens, the stress distribution of the web was not symmetric. Compressive web
elements reached the yield strength to a higher degree than tensile web elements,
suggesting that compressive web buckling could limit the actual resistance of the
section in more realistic conditions. In general, however, the stress distribution
along the web of the critical net section was not uniform, nor did it reach a stress
state close to the ultimate strength as assumed by the Swanson Equation. This
further confirmed that the assumed failure mechanism of the Swanson Equation
was divorced from the true failure material behaviour for bolted W-sections under
flexure.

Without further investigation, it is difficult to evaluate or recommend the
Swanson Equation for general use when determining the flexural capacity of a
reduced flange area W-section. On one hand, a wide range of sections with
reduced flange areas are capable of reaching the overall gross plastic moment,
as observed by the M1-M12 specimens modelled during this research project.
The Swanson Equation, with the highest allowable flexural capacity for typical
section-connection combinations, would allow for structural steel designers to
maximize the performance of bolted W-sections. On the other hand, the true
failure mechanism does not align with the assumed mechanism of the Swanson
Equation, as observed by the M5S specimens. Whether the compromise between
a reflective design equation and additional allowable flexural performance would
provide real-life benefits while maintaining the existing levels of design safety

should be better understood by additional research.
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Appendix B
Code

designtools.jl

function fourpoint_xy(force, a, 1, x, E, I)
delta = force .*x a ./ (6 .*x E .x I)

k(3 .x1 xa .- 3 .%xa"2 .-x"2)
return (delta ./ 1e6)[1] #mm

end

function fourpoint_yx(delta, a, 1, x, E, I)
force = (6 .* delta .*x E .* I)
./ (a .x (3 .x1 .xa .-—3 .xa"2 .—-x"2))

return (force .*x 1e3)[1] #kN
end

function bearing_res(sec_props, l_bearing,

fy; E = 200e3, interior = true, phi_bi = 0.80, phi_be = 0.75)
#input: section, yield strength

#if interior = true, this is a load point on the

#INTERIOR of the beam

#if false, this is a member end bearing support

h = sec_props.d .- (2 .* sec_props.t_f) #mm, web height

w = sec_props.t_w #mm, web thickness

t = sec_props.t_f #mm, flange thickness

web_slenderness = h ./ w

if (web_slenderness .>= 1100/sqrt(fy)) [1]
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println("Web slenderness limit reached. Bearing stiffeners required.")
return
end

if interior
println("Interior Load:")
#interior bearing resistance
N = 1_bearing .+ 10 .*x t

br_1 = (phi_bi .*x w .x N .x fy / 1e3)[1]

#kN, web local plastic buckling

br_2 = (phi_bi .* 1.45 .* w."2 .*x sqrt(fy *x E) ./ 1e3)[1]
#kN, web overall buck

println("Web local buckling resistance: " * string(br_1) * " kN")
println("Web overall buckling resistance: " * string(br_2) * " kN")
return min(br_1, br_2)

else

println("Member end support:")

#beam end bearing resistance

N = 1_bearing .+ 4 .*x t

br_1 = (phi_be .*x w .x N .x fy / 1e3)[1]

#kN, web local plastic buckling

br_2 = (phi_be .* 0.60 .* w."2 .* sqrt(fy * E) ./ 1e3)[1]
#kN, web overall buck

println("Web local buckling resistance: " * string(br_1) * " kN")
println("Web overall buckling resistance: " * string(br_2) * " kN")
return min(br_1, br_2)

end

end

function comp_resistance(area, fy, ry, k, L; E = 200e3, phi = 0.90, n = 1.34)
lambda = k .* L ./ ry .x sqrt.(fy ./ pi~2 ./ E)

return (phi .* area .x fy .x (1 .+ lambda.”(2n))."(-1 ./ n) ./ 1le3)[1]

end

function bearing_stiffener_res(sec_props, t_stiffener, d_stiffener,
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fy; phi = 0.9, n_stiffeners = 1.0, k = 0.75, E = 200e3, interior = true)

#check stiffener dimension is within flange width:
d_max = (sec_props.b_f .- sec_props.t_w) ./ 2

if (d_stiffener .> d_max) [1]

println("Bearing stiffeners extend past flange.")
println("Max. stiffener depth = " * string(d_max) *" mm.")
return

end

#web height
h_w = sec_props.d .- (2 .x sec_props.t_f)

#slenderness limit check

stiff_slenderness = d_stiffener ./ t_stiffener
if (stiff_slenderness .>= (200 / sqrt(fy))) [1]
println("Stiffener too slender. Revise.")

return

end

#web area

if interior

b_web = 25 .*x (sec_props.t_w) .- t_stiffener
a_web = 25 .* (sec_props.t_w). 2

else

b_web = 12 .*x (sec_props.t_w) .- t_stiffener
a_web = 12 .* (sec_props.t_w)." 2

end

#total effective area
a_total = a_web .+ (d_stiffener .* t_stiffener) .* 2 .* n_stiffeners

#moment of inertia

#stiffener

d_stiff = 2 .*% d_stiffener .+ sec_props.t_w
b_stiff = t_stiffener

#web

d_web = sec_props.t_w
#b_Web is defined above
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I = n_stiffeners .x (b_stiff .* d_stiff."3) ./ 12 +
(b_web .* d_web."3) ./ 12

#radius of gyration
r = sqrt.(I ./ a_total)

compl = comp_resistance(a_total, fy, r, k, h_w, phi = phi)

comp2 = 2 * (1.5 * phi * d_stiffener * t_stiffener * fy / 1e3)

comp = min(compl, comp2)

println("Bearing resistance: " * string(comp) * " kN")
return comp[1]
end

function init_plate_sizer(sec_props, m_p_nominal, fy_p)

#input the gross plastic moment of a section,

#returns the required exterior plate thickness to transfer the moment as
#a force couple.

#this function ignores the contribution of the interior plates.
typ_thickness = [6.35, 12.7, 16, 19, 20, 22,

22.2, 24, 25.4, 27, 28.6, 30, 31.8, 36, 38.1]

for thickness in typ_thickness
force = thickness .* sec_props.b_f .x fy_p ./ le3 #yield force

moment = force .* (sec_props.d .+ thickness) ./ 1le3 #kNm

if (moment .>= m_p_nominal) [1]

ratio = moment ./ m_p_nominal

println("Plate thickness of ",

thickness, "mm provides ",

ratio .* 100, "% of required gross plastic moment.")
return thickness[1]

break

end

end
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println("Thickness must exceed 38.1mm.")
return
end

function init_plate_sizer2(sec_props, d_b, gauge, fy_beam, fy_plate, fu_plate;
tol = 0, n_rows = 2)

#input the gross plastic moment of a section,
#returns the required exterior plate thickness to transfer the moment as
#a force couple.

#Typical thicknesses of steel plates
typ_thickness = [6.35, 12.7, 16, 19, 20, 22,
22.2, 24, 25.4, 27, 28.6, 30, 31.8, 36, 38.1, 50.8]

#determine max gross capacity of beam section
m_plastic = plastic_moment(sec_props, fy_beam) #kNm

#force in flange required to be transmitted by plates
flange_force = moment2force(sec_props, m_plastic) #kN

#force is split in half between interior and exterior plates
plate_force = flange_force ./ 2 #kN

exterior_force = 2 .* plate_force
interior_force = plate_force

#design exterior plate

for thickness in typ_thickness

ext_gross = thickness .* sec_props.b_f #mm~2

ext_net = ext_gross .- ((d_b .+ tol) .* thickness) .* n_rows #mm~2

ext_gross_yield = ext_gross .* fy_plate ./ 1le3
ext_net_frac = ext_net .* fu_plate ./ 1le3

ext_critical = min(ext_gross_yield, ext_net_frac)
if (ext_critical .>= exterior_force)[1]
ratio = ext_critical ./ exterior_force .*x 100

println("Exterior Plate Thickness of ", thickness, "mm provides ",
ratio, "% of required force.")

182



ext_thickness = thickness
break

end

end

#design interior plate

for thickness in typ_thickness

int_gross = thickness .* (sec_props.b_f ./ 2 .- sec_props.k_1)
int_net = int_gross .- ((d_b .+ tol) .* thickness) .* (n_rows ./ 2)

int_gross_yield = int_gross .* fy_plate ./ 1e3
int_net_frac = int_net .* fu_plate ./ le3

int_critical = min(int_gross_yield, int_net_frac)

if (int_critical .>= interior_force) [1]

ratio = int_critical ./ interior_force .* 100

println("Interior Plate Thickness of ", thickness, "mm provides ",
ratio, "% of required force.")

int_thickness = thickness

break

end

end

return ext_thickness[1], int_thickness[1]
end

function Vr_weld(sec_props, t_stiff, Xu, Fu, D, L; phi_w = 0.67)
#Defined Properties

tl = t_stiff

t2 = max(tl, sec_props.t_w[1])

#Maximum Weld Size

if t1 <= 6

D_max = t1

else

D_max = t1 - 2

end

#minimum Weld Size
if t2 <= 12
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D_min = 5
elseif 12 < t2 <= 20

D_min = 6
else
D_min = 8
end

#Minimum weld length
L_min = max(40, 4 * D)

#icheck limits

if D < D_min || D > D_max
println("Revise Weld Size")
return

end

if L < L_min

println("Increase weld length.")
return

end

#Weld Metal Fracture
Vr_weld = 0.67 * phi_w * 0.707 * D * L * Xu / le3

#Base Metal Fracture
Vr_base = 0.67 * phi_w * D * L * Fu / 1e3

return min(Vr_weld, Vr_base)
end

function weld_size_finder (P, sec_props, t_stiff, Xu, Fu, L; phi_w = 0.67)

D1 =P / (0.67 *x phi_w * 0.707 x L * Xu / 1e3)
D2 =P / (0.67 * phi_w * L * Fu / 1e3)

D = max(D1, D2)
tl = t_stiff
t2 = max(tl, sec_props.t_w[1])

#Maximum Weld Size
if t1 <= 6
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D_max = t1

else

D_max = t1 - 2

end

#minimum Weld Size
if t2 <= 12

D_min = 5

elseif 12 < t2 <= 20
D_min = 6

else

D_min = 8

end

#Minimum weld length
L_min = max(40, 4 * D)

#icheck limits

if D < D_min

D = D_min

elseif D > D_max
D = D_max

end

if L < L_min

println("Increase weld length.")
return

end

println("Minimum Weld Size: " * string(D))
return Vr_weld(sec_props, t_stiff, Xu, Fu, D, L; phi_w = phi_w), D
end

exploretools.jl

using Plots
using DataFrames
using CSV
pyplot O
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W_data = CSV.read("W.csv")

function name2data(section_name)

#input a section name as a string (eg. "W460X19"),
#returns all section properties of that section
#as a database to then be called

#out_frame is the 1 dimensional data frame for all section
#info for the section = section_name
out_frame = W_data[W_datal[l:end, :name] .== section_name, :]

#first two columns are redundant and are removed for output
out_frame = out_framel[:, 3:end]

#0utput relevant 1 dimensional dataframe
return out_frame
end

function plastic_moment(sec_props, yield_strength; phi = 1.0)

#input is one row dataframe of a given section + material yield strength
#returns the theoretical plastic moment capacity (Z x Fy)

return phi * (sec_props.Z_x * yield_strength ./ 1e3)[1]

end

function yield_moment(sec_props, fy; phi = 1.0)
#returns the moment corresponding to the first instance where the

#extreme tension (and compression) fibres reach Fy

return (sec_props.S_x .* fy ./ 1le3)[1]
end

function net_plastic_modulus(sec_props, d_b, n_bolts; tol = 0)

#returns approximate (ignoring K-curve area) plastic modulus
#of a given section with reduced flange areas from bolt holes

hole_area = (d_b + tol) * sec_props.t_f[1]
centroid_distance = (sec_props.d[1] - sec_props.t_f[1]) / 2

z_negative = 2 * n_bolts * hole_area * centroid_distance
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Z_final = sec_props.Z_x[1] * 1le3 - z_negative

return (Z_final ./ 1e3)
end

function netIx(sec_props, d_b; tol = 0, n_rows = 2)
#Calculating the net moment of Inertia due to bolt holes
#Via NEGATIVE areas of bolt holes & parallel axis theorem

gross_Ix = sec_props.I_x[1] * 1le6

d_centroid = (sec_props.d[1] - sec_props.t_f[1]) / 2
#Distance from center of section to center of flange

db = d_b + tol

A_bolt = db * sec_props.t_f[1]
bolt_Ix = db * sec_props.t_f[1]°3 / 12

bolt_reduction = 2 * n_rows * (bolt_Ix + A_bolt * d_centroid~2)
net_Ix = gross_Ix - bolt_reduction

return net_Ix
end

2)

function netSx(sec_props, d_b; tol = 0, n_rows

y= sec_props.d[1] / 2

return netIx(sec_props, d_b; tol = tol, n_rows = n_rows) / y

end

function net_yield_moment(sec_props, d_b, fy;
tol = 0, phi = 1.0, n_rows = 2)
y = sec_props.d[1] / 2

net_sx = netIx(sec_props, d_b; tol = tol, n_rows = n_rows) / ¥y

return phi * net_sx * fy / 1le6
end
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function s16_14_1(sec_props, d_b, fy; disp = true,
n_rows = 2, tolerance = 0, phi = 1.0)
gross_flange_area = sec_props.b_f .* sec_props.t_£f

area_loss = sec_props.t_f .* (d_b + tolerance) .* n_rows

net_area = gross_flange_area .- area_loss

ratio = (net_area ./ gross_flange_area) [1]

net_zx = net_plastic_modulus(sec_props, d_b,

n_rows; tol = tolerance)

net_plastic_moment = phi * net_zx .x fy ./ 1e3 #kNm

if (ratio .< 0.85)[1]

if disp

println("85% rule triggered. Net properties should be used.")
end

return true, ratio, net_zx, net_plastic_moment

else

if disp

println("85% rule not triggered. Gross section properties O0K.")
end

return false, ratio, net_zx, net_plastic_moment

end

end

function edge_distance(sec_props, d_b, gauge)

#returns edge distance of given section + connection gauge
edge = (sec_props.b_f .- gauge) ./ 2

return edge[1]

end

function geo_limits(sec_props, d_b, n_bolts)
#where n_bolts is IN THE DIRECTION OF LOADING

pitch_min = 2.7 * d_b #mm
#minimum edge distances corresponding to bolt diameter
bolt_sizes = 25.4 .x [5/8 3/4 7/8 1 1.125 1.25] #mm

edge_limits = [28 32 38 44 51 57] #mm
idx = findfirst(x -> (x - d_b) >= 0, bolt_sizes) [2]

188



edge_min = edge_limits[idx]

#minimum end distance
if n_bolts > 2
end_min = edge_min
else

end_min = 1.5 * d_b
end

#Determine gauge limits (EXTREMELY CONSERATIVE DUE TO k_1)
gauge_min = 2 * (sec_props.k_1[1] + edge_min)

# println("Minimum values for [pitch edge end] distances (mm)")
return [pitch_min edge_min end_min]
end

function geo_comparison(design, minimums)
#input is: [PITCH EDGE END]
#compares design geometry to s16 limits

comp = design .> minimums #outputs array of booleans

pitch_check = comp[1]
edge_check = comp[2]
end_check = comp[3]

if all(value -> value == true, comp)

println("Bolt hole geometry limits satisfied. Design 0K.")
return true

else

println("Bolt hole geometry limits not satisfied. Revise.")
println("Minimum [pitch edge end] = ",

minimums, " ; Design = ", design)

return false

end

end

function net_flange_area(sec_props, d_b;
n_rows = 2, tolerance = 0)
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# define hole size
d = d_b + tolerance

#gross flange area
gross = sec_props.b_f .* sec_props.t_f #mm"2

#loss of area due to holes
loss = sec_props.t_f .*x d .* n_rows #mm"2

return (gross .- loss)[1] #mm~2
end

function s16_block_strength(sec_props, d_b, fy, fu, end_dist,
pitch, gauge, n_bolts;
disp = true, phi_u = 1.0, ut = 1.0, tolerance = 0)

#d_b = bolt diameter

#fy, fu = material strengths

#end_dist = dist from end center of hole to free end of section
#edge_dist = dist from center of hole to section edge

#pitch = distance between bolts parallel to load

#gauge - distance between bolts perp. to load (across the web)
#n_bolts = number of bolts in one line

#define hole size

d = d_b .+ tolerance

#Determine connection length 1_c

1l _c = end_dist + pitch * (n_bolts -1)

#Edge fracture
net_fracturel = (sec_props.b_f .- gauge .- d) .* sec_props.t_f
gross_shearl = 2 x 1_c .* sec_props.t_f£

#Center fracture
net_fracture2 = (gauge .- d) .* sec_props.t_f #mm~2
gross_shear2 = 2 * 1_c .* sec_props.t_f .+ l_c .* sec_props.t_w #mm"2

#gross shear strength
if fy > 460
shear_strength = fy
else
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shear_strength = 0.5 * (fy + fu)
end

#Find forces for each component
tensionl = (ut * fu) .* net_fracturel ./ 1le3
tension2 = (ut * fu) .* net_fracture2 ./ 1le3

shearl = gross_shearl .* shear_strength .* 0.6 ./ 1e3
shear2 = gross_shear2 .* shear_strength .* 0.6 ./ 1e3
blockl = tensionl .+ shearl
block2 = tension2 .+ shear2

#Return critical capacity

if (blockl .< block2) [1]

if disp

println("Edge block shear governs.")
end

return (phi_u .* blockl) [1] #kN
else

if disp

println("Center block shear governs.")
end

return (phi_u .* block2) [1] #k

end

end

function s16_edgeblock(sec_props, d_b, fy, fu, end_dist,
pitch, gauge, n_bolts;
disp = true, phi_u = 1.0, ut = 1.0, tolerance = 0)

#d_b = bolt diameter

#fy, fu = material strengths

#end_dist = dist from end center of hole to free end of section
#edge_dist = dist from center of hole to section edge

#pitch = distance between bolts parallel to load

#gauge - distance between bolts perp. to load (across the web)
#n_bolts = number of bolts in one line

#define hole size
d = d_b .+ tolerance
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#Determine connection length 1_c
1l c = end_dist + pitch * (n_bolts -1)

#Edge fracture
net_fracturel = (sec_props.b_f .- gauge .- d) .* sec_props.t_f

gross_shearl = 2 x 1_c .* sec_props.t_f

#gross shear strength

if fy > 460

shear_strength = fy

else

shear_strength = 0.5 * (fy + fu)
end

#Find forces for each component
tensionl = (ut * fu) .* net_fracturel ./ 1le3

shearl = gross_shearl .* shear_strength .* 0.6 ./ 1e3

blockl

tensionl .+ shearl

return (phi_u .* blockl) [1] #kN
end

function s16_complete(sec_props, d_b, fy, fu, end_dist,
pitch, n_bolts; n_rows = 2, phi_u = 1.0, ut = 1.0, tolerance = 0)

d = d_b .+ tolerance
#Determine connection length 1_c
1 c = end_dist + pitch * (n_bolts -1)

#net fracture area

net_fracture = sec_props.t_f[1] * (sec_props.b_f[1] - n_rows * d)
#gross shear area

gross_shear = sec_props.t_w[l] * 1_c

#gross shear strength
if fy > 460
shear_strength
else
shear_strength

fy

0.5 *x (fy + fu)
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end

tension = (ut * fu) .* net_fracture ./ 1le3

shear = gross_shear .* shear_strength .*x 0.6 ./ 1e3

block tension .+ shear
return (phi_u .* block) [1] #kN
end

function s16_centerblock(sec_props, d_b, fy, fu, end_dist,
pitch, gauge, n_bolts;
disp = true, phi_u = 1.0, ut = 1.0, tolerance = 0)

#d_b = bolt diameter

#fy, fu = material strengths

#end_dist = dist from end center of hole to free end of section
#edge_dist = dist from center of hole to section edge

#pitch = distance between bolts parallel to load

#gauge - distance between bolts perp. to load (across the web)
#n_bolts = number of bolts in one line

#define hole size

d = d_b .+ tolerance

#Determine connection length 1_c

1l_c = end_dist + pitch * (n_bolts -1)

#Center fracture
net_fracture2 = (gauge .- d) .* sec_props.t_f #mm~2

gross_shear2 = 2 * 1_c .* sec_props.t_f .+ 1l_c .* sec_props.t_w #mm"2

#gross shear strength

if fy > 460

shear_strength = fy

else

shear_strength = 0.5 * (fy + fu)
end

#Find forces for each component
tension2 = (ut * fu) .* net_fracture2 ./ 1le3
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shear2 = gross_shear2 .* shear_strength .* 0.6 ./ 1e3

block2

tension? .+ shear?2

return (phi_u .* block2) [1] #kN
end

function force2moment(sec_props, flange_force)

#flange force should be in kN

return (sec_props.d - sec_props.t_f)[1] .* flange_force[l] ./1e3 #kNm
end

function moment2force(sec_props, moment)

#moment in kNm

return ((moment .* 1e3) ./ (sec_props.d .- sec_props.t_f))[1] #kN
end

function net_moment_inertia(sec_props, d_b, n_bolts; tol = 0)
I_initial = sec_props.I_x .* le6 #mm™4

#Define hole size d

d = d_b .+ tol #mm

chr

#define the moment of inertia of the missing areas
I_bolt = d .x sec_props.t_f."3 ./ 12 #mm™4

A_bolt = d .* sec_props.t_f #mm~2

# distance of hole areas to centroid of section
bolt_to_centroid = (sec_props.d .- sec_props.t_f) ./ 2

#Reduction of I_initial via parallel axis theorem
I_reduction = n_bolts .* (I_bolt .+ (A_bolt .* bolt_to_centroid.”2))

#Final net moment of inertia
I _final = I_initial .- I_reduction

return (I_final ./ 1e6)[1]
end

function section_overview(section_name, d_b, end_dist, fy, fu,
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pitch, gauge, n_bolts;

phi = 1.0, phi_u = 1.0, tol = 0, disp_plots = true)
println("For " * section_name * ": ")

section = name2data(section_name)

#output theoretical full section moment resistance
mp_gross = plastic_moment(section, fy; phi = phi)
m_y = yield_moment(section, fy; phi = phi)

#check on 85% rule

redux, ratio, net_zx, net_plastic_moment =
s16_14_1(section, d_b, fy;

phi = phi, tolerance = tol)

#Theoretical net yield (elastic) moment
m_y_net = net_yield_moment(section, d_b, fy;
tol = tol, phi = phi)

#check geo limits

edge = edge_distance(section, d_b, gauge)

#array of relevant connection geometry

connex_geo = [pitch edge end_dist]

#array of minimum distances required by s16 standard
connex_limits = geo_limits(section, d_b, 2)

#evaluation of design and required connection‘ geometry
geo_pass = geo_comparison(connex_geo, connex_limits)

#fmoment resistances

#A11l block shear components

edgeblock = s16_edgeblock(section, d_b, fy,

fu, end_dist, pitch, gauge, n_bolts;

phi_u = phi_u, tolerance = tol)

edgeblock_moment = force2Zmoment(section, edgeblock)

centerblock = s16_centerblock(section, d_b, fy,

fu, end_dist, pitch, gauge, n_bolts;

phi_u = phi_u, tolerance = tol)

centerblock_moment = force2moment(section, centerblock)

completeblock = s16_complete(section, d_b, fy,
fu, end_dist, pitch, n_bolts; phi_u = phi_u,
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tolerance = tol)
completeblock_moment = force2moment (section,
completeblock)

#output results
connex_length = end_dist + pitch * (n_bolts - 1)

##CRITICAL LENGTH##

1_c_prime = lc_crit_finder(section, fy, fu, d_b, gauge;
tol = tol)

pitch_prime = (l_c_prime - end_dist) / (n_bolts - 1)

i

output_dataframe = DataFrame(Section = section_name,
BoltDiameter = d_b,

HoleTolerance = tol,

EndDistance = end_dist,

Pitch = pitch,

Gauge = gauge,

N_bolts = n_bolts,
Connectionlength = connex_length,
Criticallength = 1_c_prime,
CriticalPitch = pitch_prime,

F_y = fy,
F_u = fu,
phi = phi,

phi_u = phi_u,

s16_14_1_trigger = redux,

NetZx = net_zx,

NetPlasticMoment = net_plastic_moment,
NetGrossRatio = ratio,
GrossPlasticMoment = mp_gross,
ElasticMoment = m_y,

NetElasticMoment = m_y_net,
CompleteBlockMoment = completeblock_moment,
EdgeBlockMoment = edgeblock_moment,
CenterBlockMoment = centerblock_moment)
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#Bar plots for moments

#concatenate the different section moment capacities
moment_recap = vcat(output_dataframe.GrossPlasticMoment,
output_dataframe.NetPlasticMoment,
output_dataframe.ElasticMoment,
output_dataframe.NetElasticMoment,
output_dataframe.CompleteBlockMoment,
output_dataframe.EdgeBlockMoment,
output_dataframe.CenterBlockMoment)

#labels for each moment type
moment_names = ["Gross Plastic",
"Net Plastic",

"Elastic",

"Net Elastic",

"Complete Block",

"Edge Block",

"Center Block"]

#display plot

if disp_plots

sec_plot = bar(moment_names,moment_recap,

xrotation = 15,

ylabel = "Moment (kNm)",

title = "Section Moment Capacity Summary: " * section_name,
legend = false)

return sec_plot, output_dataframe
else

return output_dataframe

end

end

function max_pitch_finder(sec_props, db, fy, fu,
min_end, min_pitch, min_gauge, n_bolts;
factor = 1.0, tol = 0, disp = false)

global pitch_temp = min_pitch
global block_temp = 0O
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plastic_force = moment2force(sec_props,
plastic_moment (sec_props, fy))

while block_temp < factor * plastic_force
block_temp = s16_block_strength(sec_props,
db,

ty,

fu,

min_end,

pitch_temp,

min_gauge,

n_bolts;

disp = false)

pitch_temp += 5
end

return pitch_temp
end

function matrix_blockshear(sec_props, db, fy, fu,
endrange, pitchmatrix, gaugematrix, n_bolts, tol)

L = length(endrange)
main_matrix = Matrix[]

#For every valid value of the end distance,
#of pitch and gauge

for k = 1:L

matrix = [force2Zmoment (sec_props,
s16_block_strength(sec_props, d_b, fy, fu, endrangelk],
pitchmatrix[i, j], gaugematrix[i, j],
n_bolts; tolerance = tol, disp = false))
for i = 1:L, j = 1:L]

push! (main_matrix, matrix)

end

return main_matrix

end

function target_moment_matrix(target, dim)
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#given the target in kNm:
base = ones(dim, dim)

return base .* target
end

function edge_bs_matrix(sec_props, db, fy, fu,
endrange, pitchmatrix, gaugematrix, n_bolts;
phi_u = 1.0, tol = 0)

L = length(endrange)
main_matrix = Matrix[]

for k = 1:L

matrix = [force2Zmoment (sec_props,
s16_edgeblock(sec_props, d_b, fy, fu, endrangel[k],
pitchmatrix[i,j], gaugematrix[i,j],

n_bolts; phi_u = phi_u,

tolerance = tol, disp = false)) for i = 1:L, j = 1:L]

push! (main_matrix, matrix)
end

return main_matrix

end

function center_bs_matrix(sec_props, db, fy, fu,
endrange, pitchmatrix, gaugematrix, n_bolts;
phi_u = 1.0, tol = 0)

L = length(endrange)
main_matrix = Matrix[]

for k = 1:L

matrix = [force2moment (sec_props,
s16_centerblock(sec_props, d_b, fy, fu, endrangelk],
pitchmatrix[i,j], gaugematrix[i,j],

n_bolts; phi_u = phi_u, tolerance = tol,

disp = false)) for i = 1:L, j = 1:L]
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push! (main_matrix, matrix)
end

return main_matrix

end

function complete_matrix(sec_props, db, fy, fu,
endrange, pitchmatrix, n_bolts; tol = 0)

L = length(endrange)

main_matrix = Matrix[]

for k = 1:L

matrix = [force2Zmoment (sec_props,
s16_complete(sec_props, db, fy, fu, endrangel[k],
pitchmatrix[i,j], n_bolts;

tolerance = tol)) for i = 1:L, j = 1:L]

push! (main_matrix, matrix)

end

return main_matrix

end

function critical_matrix(edge, center, net)
L = length(edge)

main_matrix = Matrix[]

for k = 1:L

matrix = [min(edgelk] [i,j], center[k][i,j],

net[k] [1,j]) for i = 1:L, j = 1:L]

push! (main_matrix, matrix)
end

return main_matrix
end

function geo_viewer(; section_name = "")
d = W_data.d
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b = W_data.b_f

w = W_data.W

threed = scatter3d(d, b, w,
legend = false,

xlabel = "d (mm)",

ylabel = "b (mm)",

zlabel = "W (kg/m)",

color = :black,

camera = (10,10))

bw = scatter(b, w,
legend = false,
xlabel = "b (mm)",

ylabel = "W (kg/m)",
color = :black,
grid = false)

dw = scatter(d, w,
legend = false,
xlabel = "d (mm)",
ylabel = "W (kg/m)",
color = :black,

grid = false)

bd = scatter(b, d,
legend = false,
xlabel = "b (mm)",
ylabel = "d (mm)",
color = :black,
grid = false)

if section_name != ""

sec = name2data(section_name)
sec_d = sec.d

sec_b = sec.b_Tf

sec_w sec.W

scatter3d! (threed, [sec_d], [sec_b],
color = :red,
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markersize = 10)

scatter! (bw, [sec_b]l, [sec_w],
color = :red,
markersize = 10)

scatter! (dw, [sec_d], [sec_w],
color = :red,

markersize = 10)

scatter! (bd, [sec_b], [sec_d],

color = :red,
markersize = 10)
end

twod = plot(dw, bw, layout = (1,2))

allthree = plot(threed, twod, layout = grid(2,1,
heights = [0.8, 0.2]), size = (800, 800))

fours = plot(bd, threed, dw, bw, layout = (2,2),
size = (1000,600))

return fours
end

function geo_viewer2(d, b, w; section_name = "")
dl = W_data.d

bl = W_data.b_f

wl = W_data.W

threed = scatter3d(dl, bil, wil,
legend = false,
xlabel = "d (mm)",

ylabel = "b (mm)",
zlabel = "W (kg/m)",
color = :black,
camera = (10,10))

bw = scatter(bl, wl,
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legend = false,

xlabel = "b (mm)",
ylabel = "W (kg/m)",
color = :black,

grid = false)

dv = scatter(dl, wl,
legend = false,
xlabel = "d (mm)",
ylabel = "W (kg/m)",
color = :black,

grid = false)

bd = scatter(bl, di,
legend = false,

xlabel = "b (mm)",
ylabel = "d (mm)",
color = :black,

grid = false)

scatter3d! (threed, d, b,

legend = false,
xlabel = "d (mm)",
ylabel = "b (mm)",
zlabel = "W (kg/m)",
color = :red,

markersize = 10,
camera = (10,10))

scatter! (bw, b, w,
legend = false,

xlabel = "b (mm)",
ylabel = "W (kg/m)",
color = :red,

markersize = 10,
grid = false)

scatter! (dw, d, w,
legend = false,
xlabel = "d (mm)",
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ylabel = "W (kg/m)",
color = :red,
markersize = 10,
grid = false)

scatter!(bd, b, d,
legend = false,
xlabel = "b (mm)",

ylabel = "d (mm)",

color = :red,

markersize = 10,

grid = false)

twod = plot(dw, bw, layout = (1,2))

allthree = plot(threed, twod, layout = grid(2,1,
heights = [0.8, 0.2]), size = (800, 800))

fours = plot(bd, threed, dw, bw,
layout = (2,2), size = (1000,600))

return fours
end

function lc_crit_finder(sec_props, fy, fu, d_b, gauge;
tol = 0, u_ebs = 1.0, u_cbs = 1.0)

#Given the section properties, bolt size, and gauge
#Returns the critical length (1_c’) where the
#theoretical EBS and CBS failure modes are equal

tf = sec_props.t_f[1]

tw = sec_props.t_w[1]

bf = sec_props.b_f[1]

dg = gauge

db = d_b + tol

if fy > 460

fv = 0.6 x fy

else

fv = 0.6 * (fy + fu) / 2
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end

return (fu * tf) / (fv * (2tf - tw)) *
(bf * (u_cbs - u_ebs)

+ db * (u_ebs - 2*%u_cbs) + u_ebs * dg)
end

function lc_crit_finder2(tf, tw, bf, dg, db,
fy, fu, d_b, gauge;
tol = 0, u_ebs = 1.0, u_cbs = 1.0)

if fy > 460

fv = 0.6 x fy

else

fv = 0.6 * (fy + fu) / 2
end

return (fu * tf) / (fv * (2tf - tw)) *
(bf * (u_cbs - u_ebs)

+ db * (u_ebs - 2*u_cbs) + u_ebs * dg)
end

function separator(fy; fu_bolt = 1050)
db_store = 25.4 .x [1/2, 3/4, 7/8, 1]
s16_14_matrix = Vector[]

fit_check = Vector(]

#for a given bolt diameter

for db = 1:length(db_store)

#bolt diameter of current iteration
bolt_diameter = db_store[db]

Ab = bolt_diameter”2 / 4 * pi

Fub = Ab * fu_bolt

#store array for sl16_14.1 check
checkstore = []

fitstore = []

#for each section in the W_data dataframe:
for i = 1:size(W_data, 1)

#current section of iteration
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secprop = W_datal[i, :]

flangeforce = moment2force(secprop,plastic_moment (secprop, fy))
n_bolts_raw = flangeforce * 1e3 / 2 /
(0.6 * Fub) / 2

n_bolts = 2 * ceil(n_bolts_raw / 2)

#see 1f s16_14.1 passes

check, netzx, netmp = s16_14_1(secprop, bolt_diameter,
fy; disp = false, tolerance = 2)

#collect pass/fail information

push! (checkstore, check)

#minimum connection limits

pitch_min, edge_min, end_min = geo_limits(secprop,
bolt_diameter, n_bolts) #pitch/edge/end

gauge_min = 2 * (secprop.k_1[1] + edge_min)

if (secprop.b_f[1] - gauge_min) / 2 < edge_min

fit = false
else
fit = true
end

push! (fitstore, fit)

end

push! (s16_14_matrix, checkstore)
push! (fit_check, fitstore)

end

return s16_14_matrix, fit_check
end

function platedesign(sec_props, d_b, fy, fu, n_bolts;
n_rows = 2, tol = 0, factor = 1.2)

maxmoment = plastic_moment(sec_props, fy)
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F = moment2force(sec_props, maxmoment)
F_ext = factor x F / 2
F_int = factor x F / 4

#bank of minimum thickness values
t_ext_store = []
t_int_store = []

#First minimum thickness is that of Factor X flange thickness
t_min = sec_props.t_f[1] * factor

push! (t_ext_store, t_min)
push! (t_int_store, t_min)

#second minimum thickness is of gross yield of the platedesign
t_extl = F_ext * 1e3 / (sec_props.b_f[1] * fy)

b_int = (sec_props.b_f[1] - 2 * sec_props.k_1[1]) / 2
t_intl = F_int * 1e3 / (b_int * fy)

push! (t_ext_store, t_extl)
push! (t_int_store, t_intl)

#Third minimum is the bearing failure of the plate
t_ext2 = F_ext * 1e3 /

(3 * 0.8 * n_bolts * n_rows * d_b * fu)

t_int2 = F_int * 1e3 /

(3 * 0.8 * n_bolts * n_rows * d_b * fu)

push! (t_ext_store, t_ext2)
push! (t_int_store, t_int2)

#net section rupture

t_ext3 = F_ext * 1e3 /

(sec_props.b_f[1] - n_rows * (d_b + tol)) / fu
t_int3 = F_int * 1e3 /

(b_int - n_rows / 2 * (d_b + tol)) / fu

push! (t_ext_store, t_ext3)
push! (t_int_store, t_int3)
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return maximum(t_ext_store), maximum(t_int_store)
end

analysistools.jl

using CSV
using DataFrames
using Statistics

##For analysis of output files from Abaqus FE Analysis

function reportparser(rpt_file::String,
data_row; allowable_missing = 0.05)

#Import the base file, with all its issues
init_import = CSV.read(rpt_file,

header = false,

datarow = data_row,

delim = ’ 7,

ignorerepeated = true,

silencewarnings = true)

third_import = second_import[mean.(ismissing,
eachrow(second_import)) .< allowable_missing, :]
last_import = third_import[:,2:end]

#return the final cleaned value
return last_import

end

function failpoint_EBS(df, fy, fu; failure = true,
gen = false, fv = 0)
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if gen

if fv ==

println("ERR: fv is set to 0 MPa.")
return

end

shearyield = findfirst(x -> x >= fv, df.EBSS_GEN)
fracture = findfirst(x -> x >= fu, df.EBSF_GEN)

out = [shearyield, fracture]

if any(x -> x == nothing, out)
println("EBS Failure does not occur.")
return false

else

if failure

return max(shearyield, fracture)
else

return shearyield, fracture

end

end

end

shearyield = findfirst(x -> x >= fy, df.EBSS)
fracture = findfirst(x -> x >= fu, df.EBSF)

out = [shearyield, fracture]

if any(x -> x == nothing, out)
println("EBS Failure does not occur.")
return false

else

if failure

return max(shearyield, fracture)

else

return shearyield, fracture

end
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end

end

function failpoint_CBS(df, fy, fu;
failure = true, gen = false, fv = 0)

if gen

if fv ==

println("ERR: fv is set to O MPa.")
return

end

shearyield = findfirst(x -> x >= fv,
df .CBSS_GEN)

fracture = findfirst(x -> x >= fu,
df .CBSF_GEN)

out = [shearyield, fracture]

if any(x -> x == nothing, out)
println("CBS Failure does not occur.")
return false

else

if failure

return max(shearyield, fracture)

else

return shearyield, fracture

end

end

end

shearyield = findfirst(x -> x >= fy, df.CBSS)
fracture = findfirst(x -> x >= fu, df.CBSF)

out = [shearyield, fracture]

if any(x -> x == nothing, out)
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println("CBS Failure does not occur.")
return false

else

if failure

return max(shearyield, fracture)

else

return shearyield, fracture

end

end

end

Jupyter Sample
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W610X101_A: Failure in Edge Block Shear

Initializing julia functions required for analysis and design.

In [1]:

include("exploretools.jl")
include("designtools.j1l")

Out[1]:

weld_size finder (generic function with 1 method)

In [2]:
m5_geo = geo_viewer(; section_name = "W610X101")
Out[2]:
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Initializing the section properties desired:
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In [3]:

section = "W61leX101"
sec_props = name2data(section)

Out[3]:
1 rows x 38 columns (omitted printing of 28 columns)

w A d d_det b_f b_fdet tw t wdet t_wdet/2 tf

Floaté4 Int64 Int64 Int64 Int64 Int64 Float64 Float64 Float64 Float64

1 101.0 13000 602 603 228 229 10.5 11.1 6.35 14.9

Initializing connection details:

In [4]:
n_rows = 2
Out[4]:

2

Initializing material properties:

NOTE:

The true value of $f_y$ is take from David Pizzuto's T8 test specimen coupon data. However, the ultimate
strength $f_u$ is taken as the nominal value times the material factor $r_y$, since true engineering ultimate
stress is difficult to derive from the frue properties.

In [5]:
ry = 1.1
rt = 1.1

fy = 350 * ry #Mpa
fu = 460 #Mpa

fy_plate = fy #Mpa
fu_plate = fu #Mpa

fu_bolt = 1050 #Mpa
Out[5]:

1050
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1: Maximum theoretical moment capacity

Determine the plastic moment and the elastic (just @ yield) moment of the section:

In [6]:

M_p = (plastic_moment(sec_props, fy))[1] #kNm
My = sec_props.S_x[1] * fy / 1e3 #kNm
out[6]:

970.2000000000002

Design capacity

The detailing of the connection will be such that the moment end will fail at X% of $M_p$ or $M_y$

In [7]:

X = 80 #%
M_des = X/100 * M_y

Out[7]:

776.1600000000002

Equivalent force in flange

The corresponding force in the flange with respect to $M_{design}$ is determined:
In [8]:

F_des = moment2force(sec_props, M_des) #kN

Out[8]:

1322.0235053653555

2: Bolt Design
The effect of holes caused by bolt holes will be determined.

Bolt diameter + hole tolerance:
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In [9]:

d_b = 25.4 * 7/8 #mm
tol = 2 #mm

Out[9]:

2

Effect on flange. Determine if the 85% rule clause will be triggered or not:

In [10]:
redux, ratio, Z_x_net, M_p_net = sl16_14 1(sec_props, d_b, fy; tolerance = tol)

if M_p_net < M_des
println("Warning: Net Plastic Moment less than design moment.")
end

A_flange_net = net_flange_area(sec_props, d_b; tolerance = tol)
85% rule triggered. Net properties should be used.
Out[10]:

2675.295

Determine number of bolts per row

Based on the shear strength of a single bolt, determine the required number of bolts.

Nominal strength of bolt, $r_n$ is the minimum between the shank shear strength and the ultimate bearing
resistance of the flange at the bolt hole:

In [11]:

Ab = (pi * d_b*2) / 4 #mm" 2
fu_bolt #Mpa

u fu #Mpa

_f = sec_props.t_f[1] #mm

o <
I}

rn_1 = phi_b * 0.6 * F_nv * A b / 1le3 #kN
rn_2 = 2.4 * F_ub * d_b * t_f / 1e3 #kN

rn = min(rn_1, rn_2)
Out[11]:

244 .40718562093363
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Determining the total number of bolts required per row:

Note that since inner splice plates will be used, the bolts will not be under single-shear loading. However, since
the distance of the shear plane from the neutral axis will differ, the shear stresses in each shear plane should
maybe not be considered even.

The value is rounded up to the nearest even integer.

In [12]:
shearplanes = 2
Out[12]:

2

In [13]:

n_bolts_tot = Int(ceil(F_des / rn / shearplanes))

n_bolts_float = n_bolts_tot / 2
n_bolts = 2 * ceil(n_bolts_tot / 2) / 2

if n_bolts < 2.0
n_bolts = 2.0

end

n_bolts
Out[13]:

2.0

3: Connection Limits

The connection geometry limits as a function of the section geometry and the bolt size is determined:

$16-14 minimum limits:
The S16 sets minimum limits for pitch, edge, and end distances.

The minimum gauge is s.t. the bolt hole (including tolerance) does not encroach on the curved K-area of the
section.

216



In [14]:

pitch_min, edge_min, end_min = geo_limits(sec_props, d_b, n_bolts) #pitch/edge/end

gauge_min = 2 * (sec_props.k_1[1] + edge_min)
gauge_max = sec_props.b_f[1] .- 2 .* edge_min

end_max = (12 .* sec_props.t_f)[1]
Out[14]:

178.8

For a more realistic maximum end distance, set a hard limit (~5 inches)

In [15]:
end_max = 5 * 25.4
Out[15]:

127.0

Verify the possibility of a center block shear failure mode:

In [16]:

maximum_edge = s16_edgeblock(sec_props, d_b, fy, fu, end_min, pitch_min, gauge_min, n_bolt
s; tolerance = tol)

minimum_center = s16_centerblock(sec_props, d_b, fy, fu, end_min, pitch_min, gauge_min, n_
bolts; tolerance = tol)

if maximum_edge < minimum_center

println("Center Block Shear Impossible")
else

println("Center Block Shear theoretically possible™)
end

Center Block Shear Impossible

Determine if section is theoretically too narrow for any bolts:

In [17]:

if (sec_props.b_f[1] - gauge_min) / 2 < edge_min
println("Section too narrow for bolts. Revise.")
else
println("Flange width sufficient.")
end

Flange width sufficient.
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Maximum pitch:

There is no set limit on the maximum pitch allowed for bolts. The maximum pitch is instead defined as the pitch
at which the block shear resistance of the connection configuration matches that of the gross plastic moment
(the theoretical highest moment possible in the beam).

In [18]:

max_pitch = max_pitch_finder(sec_props, d_b, fy, fu, end_min, pitch_min, gauge_min, n_bolt
s; tol = tol)

out[18]:

175.0075

4: Connection Design

The three design variables for the connection are: bolt pitch, gauge, and end distance. The design space of
these variables is first explored.

First, define increment , the resolution between data points in the design space (mm).

In [19]:
increment = 6.35 #mm (1/4 inch)
out[19]:

6.35

The design space will be carried by plotting all possible combinations of pitch/gauge/end and evaluating the
resulting block shear moment to the desired block shear moment capacity.

The design space is created by:

The number of dimensions is based on the maximum range difference in the three design variables.

In [20]:

pitch_dif = max_pitch - pitch_min
gauge_dif = gauge_max - gauge_min
end_dif = end_max - end_min

dif_max = max(pitch_dif, gauge dif, end_dif)
dif_n = Int(ceil(dif_max / increment))

out[20]:

19

Each design variable range is turned into a linear space vector:
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In [21]:

pitchrange = collect(range(pitch_min, stop = max_pitch, length = dif_n))
gaugerange = collect(range(gauge_min, stop = gauge_max, length = dif_n))
endrange = collect(range(end_min, stop = end_max, length = dif_n))

out[21]:

19-element Array{Float64,1}:
33.3375
38.54097222222222
43.74444444444445
48.947916666666664
54.15138888888889
59.35486111111111
64.55833333333334
69.76180555555555
74.96527777777777
80.16875
85.37222222222222
90.57569444444445
95.77916666666667
100.98263888888889
106.18611111111112
111.38958333333333
116.59305555555555
121.79652777777778
127.0

The pitch and gauge vectors are turned to equivalent matrices:
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In [22]:

pitch_matrix = repeat(reshape(pitchrange, 1, :), length(pitchrange), 1)
gauge_matrix = repeat(gaugerange, 1, length(pitchrange))

out[22]:
19x19 Array{Float64,2}:
149.0 149.0 149.0 149.0 .. 149.0 149.0 149.0 149.0
149.167 149.167 149.167 149.167 149.167 149.167 149.167 149.167
149.333 149.333 149.333 149.333 149.333 149.333 149.333 149.333
149.5 149.5 149.5 149.5 149.5 149.5 149.5 149.5
149.667 149.667 149.667 149.667 149.667 149.667 149.667 149.667
149.833 149.833 149.833 149.833 .. 149.833 149.833 149.833 149.833
150.0 150.0 150.0 150.0 150.0 150.0 150.0 150.0
150.167 150.167 150.167 150.167 150.167 150.167 150.167 150.167
150.333 150.333 150.333 150.333 150.333 150.333 150.333 150.333
150.5 150.5 150.5 150.5 150.5 150.5 150.5 150.5
150.667 150.667 150.667 150.667 .. 150.667 150.667 150.667 150.667
150.833 150.833 150.833 150.833 150.833 150.833 150.833 150.833
151.0 151.0 151.0 151.0 151.0 151.0 151.0 151.0
151.167 151.167 151.167 151.167 151.167 151.167 151.167 151.167
151.333 151.333 151.333 151.333 151.333 151.333 151.333 151.333
151.5 151.5 151.5 151.5 .. 151.5 151.5 151.5 151.5
151.667 151.667 151.667 151.667 151.667 151.667 151.667 151.667
151.833 151.833 151.833 151.833 151.833 151.833 151.833 151.833
152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0

Mapping Failure Modes

The 3 design failure modes: Edge block shear, Center block shear, and Complete (Net) block shear are
determined.
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In [23]:

edgebs_matrix =
X, n_bolts; tol = tol)

centerbs_matrix = center_bs_matrix(sec_props, d_b, fy, fu, endrange, pitch_matrix, gauge_m

atrix, n_bolts; tol = tol)

cbs_matrix =
= tol)

out[23]:

19-element Array{Array{T

[868.378 878.362 .. 1038.

68.378 878.362 .. 1038.11

[876.509 886.493 .. 1046.

76.509 886.493 .. 1046.24

[884.641 894.625 .. 1054.

84.641 894.625 .. 1054.37
[892.772 902.756 .. 1062

»2} where T,1}:
11 1048.09; 868.378 878.362 .. 1038.

1048.09; 868.378 878.362 .. 1038.11
1056.22; 876.509 886.493 .. 1046.24

1064.35; 884.641 894.625 .. 1054.37

.5 1072.48; 892.772 902.756 .. 1062.5 1072.48; .. ;

24 1056.22; 876.509 886.493 .. 1046.

37 1064.35; 884.641 894.625 .. 1054.

11 1048.09; .. ;

1048.09]

24 1056.22; .. ;

1056.22]

37 1064.35; .. ;

1064.35]

2.772 902.756 .. 1062.5 1072.48; 892.772 902.756 .. 1062.5 1072.48]

[900.904 910.888 .. 1070.

00.904 910.888 .. 1070.63

[909.035 919.019 .. 1078.

09.035 919.019 .. 1078.76

[917.167 927.151 .. 1086.

17.167 927.151 .. 1086.89

[925.298 935.282 .. 1095.

25.298 935.282 .. 1095.03

[933.43 943.414 .. 1103.16 1113.14; 933.43 943.414 .. 1103.16 1113.14; .. ;

1080.62; 900.904 910.888 .. 1070.63

1088.75; 909.035 919.019 .. 1078.76
1096.88; 917.167 927.151 .. 1086.89

1105.01; 925.298 935.282 .. 1095.03

63 1080.62; 900.904 910.888 .. 1070.
76 1088.75; 909.035 919.019 .. 1078.
89 1096.88; 917.167 927.151 .. 1086.

03 1105.01; 925.298 935.282 .. 1095.

63 1080.62; .. ;

1080.62]

76 1088.75; .. ;

1088.75]

89 1096.88; .. ;

1096.88]

03 1105.01; .. ;

1105.01]

3.43 943.414 .. 1103.16 1113.14; 933.43 943.414 .. 1103.16 1113.14]

[941.562 951.546 .. 1111.

41.562 951.546 .. 1111.29

[949.693 959.677 .. 1119.

49.693 959.677 .. 1119.42

[957.825 967.809 .. 1127.

57.825 967.809 .. 1127.55

[965.956 975.94 .. 1135.68 1145.67; 965.956 975.94 .. 1135.68 1145.67; .. ;

29 1121.27; 941.562 951.546 ..
1121.27; 941.562 951.546 .. 1111.29
1129.41; 949.693 959.677 .. 1119.42

1137.54; 957.825 967.809 .. 1127.55

1111.
42 1129.41; 949.693 959.677 .. 1119.

55 1137.54; 957.825 967.809 .. 1127.

29 1121.27; .. ;

1121.27]

42 1129.41; .. ;

1129.41]

55 1137.54; .. ;

1137.54]

5.956 975.94 .. 1135.68 1145.67; 965.956 975.94 .. 1135.68 1145.67]

[974.088 984.072 .. 1143.82 1153.8; 974.088 984.072 .. 1143.82 1153.8; .. ;

4.088 984.072 .. 1143.82 1153.8; 974.088 984.072 .. 1143.82 1153.8]

[982.219 992.203 .. 1151.

82.219 992.203 .. 1151.95

[990.351 1000.33 .. 1160.

90.351 1000.33 .. 1160.08

[998.482 1008.47 .. 1168.

98.482 1008.47 .. 1168.21
[1006.61 1016.6 ..

1161.93; 982.219 992.203 .. 1151.95

1170.06; 990.351 1000.33 .. 1160.08

1178.19; 998.482 1008.47 .. 1168.21

95 1161.93; 982.219 992.203 .. 1151.
08 1170.06; 990.351 1000.33 .. 1160.

21 1178.19; 998.482 1008.47 .. 1168.

95 1161.93; .. ;

1161.93]

08 1170.06; .. ;

1170.06]

21 1178.19; .. ;

1178.19]

1176.34 1186.33; 1006.61 1016.6 .. 1176.34 1186.33; .. ;

6.61 1016.6 .. 1176.34 1186.33; 1006.61 1016.6 .. 1176.34 1186.33]

[1014.75 1024.73 .. 1184.47 1194.46; 1014.75 1024.73 .. 1184.47 1194.46; .. ;

014.75 1024.73 .. 1184.47 1194.46; 1014.75 1024.73 .. 1184.47 1194.46]

crit_matrix For each combination of pitch, gauge, and end, the minimum value from the three matrices

above is the critical failure mode of the connection geometry:
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In [24]:
crit_matrix = critical_matrix(edgebs_matrix, centerbs_matrix, cbs_matrix)
Out[24]:

19-element Array{Array{T,2} where T,1}:

[634.411 662.746 .. 1038.11 1048.09; 633.74 662.076 .. 1038.11 1048.09; .. ; 62
3.01 651.345 .. 1038.11 1048.09; 622.339 650.674 .. 1038.11 1048.09]

[657.489 685.824 .. 1046.24 1056.22; 656.818 685.154 .. 1046.24 1056.22; .. ; 6
46.088 674.423 .. 1046.24 1056.22; 645.417 673.753 .. 1046.24 1056.22]

[680.567 708.903 .. 1054.37 1064.35; 679.896 708.232 .. 1054.37 1064.35; .. ; 6
69.166 697.501 .. 1054.37 1064.35; 668.495 696.831 .. 1054.37 1064.35]

[703.645 731.981 .. 1062.5 1072.48; 702.974 731.31 .. 1062.5 1072.48; .. ; 692.
244 720.579 .. 1062.5 1072.48; 691.573 719.909 .. 1062.5 1072.48]

[726.723 755.059 .. 1070.63 1080.62; 726.052 754.388 .. 1070.63 1080.62; .. ; 7
15.322 743.657 .. 1070.63 1080.62; 714.651 742.987 .. 1070.63 1080.62]

[749.801 778.137 .. 1078.76 1088.75; 749.131 777.466 .. 1078.76 1088.75; .. ; 7
38.4 766.735 .. 1078.76 1088.75; 737.729 766.065 .. 1078.76 1088.75]

[772.879 801.215 .. 1086.89 1096.88; 772.209 800.544 .. 1086.89 1096.88; .. ; 7
61.478 789.814 .. 1086.89 1096.88; 760.807 789.143 .. 1086.89 1096.88]

[795.957 824.293 .. 1095.03 1105.01; 795.287 823.622 .. 1095.03 1105.01; .. ; 7
84.556 812.892 .. 1095.03 1105.01; 783.885 812.221 .. 1095.03 1105.01]

[819.035 847.371 .. 1103.16 1113.14; 818.365 846.7 .. 1103.16 1113.14; .. ; 80
7.634 835.97 .. 1103.16 1113.14; 806.963 835.299 .. 1103.16 1113.14]

[842.114 870.449 .. 1111.29 1121.27; 841.443 869.778 .. 1111.29 1121.27; .. ; 8
30.712 859.048 .. 1111.29 1121.27; 830.042 858.377 .. 1111.29 1121.27]

[865.192 893.527 .. 1119.42 1129.41; 864.521 892.856 .. 1119.42 1129.41; .. ; 8
53.79 882.126 .. 1119.42 1129.41; 853.12 881.455 .. 1119.42 1129.41]

[888.27 916.605 .. 1127.55 1137.54; 887.599 915.935 .. 1127.55 1137.54; .. ; 87
6.868 905.204 .. 1127.55 1137.54; 876.198 904.533 .. 1127.55 1137.54]

[911.348 939.683 .. 1135.68 1145.67; 910.677 939.013 .. 1135.68 1145.67; .. ; 8
99.946 928.282 .. 1135.68 1145.67; 899.276 927.611 .. 1135.68 1145.67]

[934.426 962.761 .. 1143.82 1153.8; 933.755 962.091 .. 1143.82 1153.8; .. ; 92
3.025 951.36 .. 1143.82 1153.8; 922.354 950.689 .. 1143.82 1153.8]

[957.504 985.839 .. 1151.95 1161.93; 956.833 985.169 .. 1151.95 1161.93; .. ; 9
46.103 974.438 .. 1151.95 1161.93; 945.432 973.767 .. 1151.95 1161.93]

[980.582 1000.33 .. 1160.08 1170.06; 979.911 1000.33 .. 1160.08 1170.06; .. ; 9
69.181 997.516 .. 1160.08 1170.06; 968.51 996.846 .. 1160.08 1170.06]

[998.482 1008.47 .. 1168.21 1178.19; 998.482 1008.47 .. 1168.21 1178.19; .. ; 9
92.259 1008.47 .. 1168.21 1178.19; 991.588 1008.47 .. 1168.21 1178.19]

[1006.61 1016.6 .. 1176.34 1186.33; 1006.61 1016.6 .. 1176.34 1186.33; .. ; 100
6.61 1016.6 .. 1176.34 1186.33; 1006.61 1016.6 .. 1176.34 1186.33]

[1014.75 1024.73 .. 1184.47 1194.46; 1014.75 1024.73 .. 1184.47 1194.46; .. ; 1
014.75 1024.73 .. 1184.47 1194.46; 1014.75 1024.73 .. 1184.47 1194.46]

blockshear_matrix takes the minimum between the edge and center block modes for any given value of
pitch, gauge.
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Visualizing the Design Space

The complete design space of pitch/gauge/end is plotted.

Note: the Z-axis is not the end distance. The end distance, however is implicitly linked (linear) to the Z-axis for
any given combination of pitch and gauge.
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In [25]:

title = "Connection Geometry Design Space: " * section

figl = surface(pitch_matrix, gauge_matrix, crit_matrix,
title = title,

xlabel = "Pitch (mm)",

ylabel = "Gauge (mm)",

zlabel = "Critical Moment Capacity (kNm)",
legend = false,

#color = :viridis,

alpha = 0.5,

markersize = 2,
size = (800,800))

#cgradients() #use this function to see color map Libraries available
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Out[25]:

Connection Geometry Design Space: W610X101
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Target Moment Values

The free design space is now compared to the target limits, namely the design space should consist only of
combinations that incur a block shear moment capacity that is LESS THAN:

1. The Gross Plastic Moment $M_p$
2. The Elastic Moment $M_y$

and should approach:

1. The design target moment $M_{des}$

Define the moment capacity targets:

In [26]:

mdes_matrix = target_moment_matrix(M_des, length(endrange))

out[26]:

19x19 Array{Float64,2}:

776.16 776.16 776.16 776.16 776.16 .. 776.16 776.16 776.16 776.16
776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16
776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16
776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16
776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16
776.16 776.16 776.16 776.16 776.16 .. 776.16 776.16 776.16 776.16
776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16
776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16
776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16
776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16
776.16 776.16 776.16 776.16 776.16 .. 776.16 776.16 776.16 776.16
776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16
776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16
776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16
776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16
776.16 776.16 776.16 776.16 776.16 .. 776.16 776.16 776.16 776.16
776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16
776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16
776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16 776.16
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In [27]:

surface! (pitch_matrix, gauge_matrix, mdes_matrix, color = :red)

Out[27]:

Connection Geometry Design Space: W610X101

Gauge (mm)
150

100
120
Pitch {(mm)

160

149

Extracting valid connection combinations

Find all combinations within X% of $M_{des}$

Narrow down the search results to combinations that are within a certain threshold of the target matrix.
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In [28]:

pitch_close = Vector[]
gauge_close = Vector[]
block_close = Vector[]
end_close = []

X = 0.15 #IE 5% tolerance

for i = 1:dif_n
idx = findall(x -> abs((x - M_des)) < X * M_des, crit_matrix[i])

if size(pitch_matrix[idx])[1] != ©
push!(pitch_close, pitch_matrix[idx])
push!(gauge_close, gauge_matrix[idx])
push!(block_close, crit_matrix[i][idx])
push!(end_close, endrange[i])

end

end
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In [37]:

limit_x = (pitchrange[1], pitchrange[end])
limit_y = (gaugerange[1], gaugerange[end])

for i = 1:length(end_close)
end_dist_simple = round(end_close[i], sigdigits = 3)
title = "Target Combinations for " * section * "; End = " * string(end_dist_simple) *

mm
display(scatter(pitch_close[i], gauge_close[i],
xlabel = "Pitch (mm)",
ylabel = "Gauge (mm)",
xlims = limit_x,
ylims = limit_y,
title = title,
legend = false))
end
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Target Combinations for W610X101; End = 33.3mm
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Target Combinations for W610X101; End = 38.5mm
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48.9mm
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Target Combinations for W610X101; End = 59.4mm
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In [42]:

i=4
end_dist_simple = round(end_close[i], sigdigits = 3)
title = "Target Combinations for " * section * "; End = " * string(end_dist_simple) * "mm"

scatter(pitch_close[i], gauge close[i],
xlabel = "Pitch (mm)",
ylabel = "Gauge (mm)",
xlims = limit_x,
ylims = limit_y,
title = title,
legend = false)

out[42]:

Target Combinations for W610X101; End = 48.9mm
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In [43]:

savefig("m5targetcombos.pdf")

Choose desired combination in Design Space for further
analysis

The complete design space for the given section size + bolt number is determined. A definitive connection
geometry should be determined for the design of the splice plates, and final verification of the connection.

Choose End, Pitch, Gauge based on allowable design space
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In [30]:

end_distance = 35

pitch = 75
gauge = 145
Out[30]:
145

Overall connection design review:

Now that all required connection details are provided (number of bolts, pitch, gauge, end), an evaluation of the
section can be made:

In [31]:

barl, overview = section_overview(section, d_b, end_distance, fy, fu, pitch, gauge, n_bolt
s; tol = tol)
barl

For W610X101:
85% rule triggered. Net properties should be used.
Bolt hole geometry limits satisfied. Design OK.

Out[31]:
Section Moment Capacity Summary: W610X101
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In [32]:
overview
Out[32]:

1 rows x 24 columns (omitted printing of 16 columns)

Section BoltDiameter HoleTolerance EndDistance Pitch Gauge N_bolts ConnectionLeng

String Float64 Int64 Int64 Int64 Inté4 Float64 Float
1 W610X101 22.225 2 35 75 145 2.0 11(

Factored Resistances

In [35]:

bar2, overview 2 = section_overview(section, d_b, end_distance, fy, fu, pitch, gauge, n_bo
1ts; tol = tol, phi = 0.9, phi_u = 0.75)
bar2

For W610X101:
85% rule triggered. Net properties should be used.
Bolt hole geometry limits satisfied. Design OK.

out[35]:
Section Moment Capacity Summary: W610X101
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In [36]:
203e3 / (sec_props.t_f[1] * (sec_props.b_f[1] - gauge - d_b - tol) / 2)
Out[36]:

463.6039497686262

240



	1 Introduction
	1.1 Context
	1.2 Motivation and Objectives
	1.3 Scope of Work
	1.4 Thesis Outline

	2 Literature Review
	2.1 Block shear failure
	2.1.1 Section efficiency: the effect of load eccentricity
	2.1.2 Comprehensive equations for block shear
	2.1.3 W-section block shear failure

	2.2 Flange section reductions: The 15% Rule
	2.2.1 Lilly and Carpenter (1939)
	2.2.2 Recent findings on the 15% rule

	2.3 Contemporary design procedures for Block Shear
	2.3.1 Canadian design procedure (CSA S16-19)
	2.3.2 American design procedure (AISC 360-16)
	2.3.3 European design procedure (Eurocode 3-2005)

	2.4 Finite Element Modelling
	2.4.1 Initial methods of finite element analysis
	2.4.2 Modelling of fracture in block shear failure

	2.5 Summary

	3 Preliminary verification of moment-induced block shear and selection of laboratory test specimens
	3.1 Selection of initial test specimens
	3.1.1 Effect of section geometry on moment block shear failure potential
	3.1.2 Section selection and connection detailing
	3.1.3 Sample design methodology for M5: W610X101
	3.1.4 Initial test specimens

	3.2 Preliminary finite element models
	3.2.1 Physical representation of test conditions
	3.2.1.1 Load/Support boundary conditions
	3.2.1.2 Connection symmetry
	3.2.1.3 Cross section symmetry

	3.2.2 Model development and procedure
	3.2.2.1 Material properties
	3.2.2.2 Mesh element selection
	3.2.2.3 Mesh sensitivity analysis
	3.2.2.4 Contact properties
	3.2.2.5 Loading procedure


	3.3 Results of preliminary finite element models
	3.4 Summary

	4 Laboratory test preparation
	4.1 Detailing of specimens
	4.2 Design of loading beam
	4.3 Instrumentation and data acquisition
	4.4 Test assembly and loading method
	4.5 Summary

	5 Expanded FE study and results
	5.1 Expanded finite element analysis
	5.1.1 Initial observations
	5.1.2 Extracting data from finite element models
	5.1.3 Data parsing, preparation, and analysis

	5.2 Results and Observations
	5.2.1 Effect of section geometry
	5.2.2 Distribution of stress
	5.2.3 Effect of connection length

	5.3 Predictive capacities of design equations
	5.3.1 CSA S16-19
	5.3.2 AISC 360-16
	5.3.3 Eurocode 3-2005
	5.3.4 Summary of block shear predictive capacities

	5.4 15% Rule
	5.4.1 Analytic review
	5.4.1.1 AISC 360-16: Equation F13
	5.4.1.2 CSA S16: Clause 14.1
	5.4.1.3 Swanson Equation (2016)

	5.4.2 Comparison of design methods

	5.5 Conclusion

	6 Conclusions
	6.1 Overview
	6.2 Future work
	References

	References
	Appendices
	A Net section flexural resistance
	B Code

