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Abstract

Block shear in bolted steel connections has been widely recognized

and studied as a possible failure path for steel members under tension.

However, despite their ubiquity in modern steel structures, the block

shear failure mode has not been explicitly studied for W-sections with

bolted flange plate connections. Further, the block shear failure mode

has not been verified for flange-connected W-Sections under flexure,

where the force developed in the tension flange could theoretically

create the conditions necessary for a block shear failure mode. A

recent study confirmed the existence of the block shear failure mode

in bolted flange plate W-sections under pure tension; this thesis acts

as a continuation of that study by investigating the block shear failure

mode in W-sections under flexure.

A total of 17 finite element models were developed to perform a para-

metric study on the possibility of a moment-induced block shear fail-

ure mode. Of the 17 section-connection configurations, 6 were fab-

ricated for full-scale laboratory testing to verify the results of the

finite element models. The results of the study showed that the block

shear failure mode is a possible failure path in the tension flange of

bolted moment connections, and should be explicitly considered dur-

ing design. However, the possibility of the block shear failure mode

is limited to a narrow combination of section depths, flange thick-

nesses, and overall connection geometry. In general, the CSA S16-19

design equation was found to provide good predictive capacity for the



block shear failure mode, with its assumption of a gross shear area

and a higher-than-yield stress state at failure accurately reflecting the

observed stresses in the finite element models.

In addition, an analytic study on the relation between the local block

shear failure mode and the various net section flexural resistance re-

duction requirements was performed. These requirements, known as

the 15% Rule in the CSA S16 standard, reduce the overall allowable

flexural capacity of W-sections when holes are present in the flanges.

A significant portion of typical section-connection detail combinations

trigger these clauses, which then significantly reduce the allowable

capacity of a flexural member. The analytic study, along with the

results from the finite element study, showed that the newly revised

CSA S16-19 method for the 15% Rule provides a significant increase

in allowable flexural capacity as compared to previous methods in the

CSA S16 standard as well as similar reduction methods in the AISC

360-16 standard.



Résumé

La rupture par bloc de cisaillement dans les connexions boulonnées en

acier a étée largement reconnue et étudiée comme mode de défaillance

possible pour les éléments en tension. Cependant, malgré leur om-

niprésence dans les structures en acier modernes, le bloc de cisaille-

ment n’a pas étée explicitement étudié pour les profilés à ailes larges

(section W) avec des connexions de plaques de recouvrement. En plus,

ce mode de défaillance n’a pas été vérifié pour les sections W chargées

sous un moment de flexion, où la force dans l’aile de tension pourrait

théoriquement créer les conditions nécessaires pour une défaillance

par bloc de cisaillement. Une étude récente a confirmé l’existence du

bloc de cisaillement dans les W-sections de plaques de recouvrement

boulonnées sous tension pure. Cette thèse s’inscrit dans la continuité

de cette étude en étudiant le mode de rupture par bloc de cisaillement

dans les W-sections sous un moment de flexion.

Au total, 17 modèles d’éléments finis ont été développés pour effectuer

une étude paramétrique visant à déterminer la possibilité du bloc de

cisaillement de l’aile en tension dans les sections W, sous un mo-

ment de flexion. Parmi ces 17 modèles, 6 ont été aussi fabriqués pour

être essayés en laboratoire afin de vérifier les résultats des modèles

d’éléments finis. Les résultats de l’étude ont montré que la rupture par

bloc de cisaillement sous moment de flexion est un mode de défaillance

possible pour les sections W avec des connexions à plaques de recou-

vrement, et doit donc être explicitement prise en compte lors de la



conception. Cependant, la possibilité de ce mode de défaillance est

limitée à un rang étroit de combinaisons de profondeurs de section,

d’épaisseurs d’aile et de géométrie globale de la connexion. En général,

l’équation de conception de la norme CSA S16-19 réussit à prédire ce

mode de défaillance avec ses hypothèses uniques d’aire de cisaille-

ment sans réduction et de niveau de contrainte supérieur à la limite

élastique au moment de la défaillance, d’après les résultats observés

dans les modèles d’éléments finis.

En plus, une étude analytique sur la relation entre le mode local de

défaillance par bloc de cisaillement, et les exigences de réduction de la

résistance à la flexion pour des sections d’aire réduite, a été réalisée.

Ces exigences, connues sous la “Règle de 15%”, réduisent la capacité

de flexion admissible des sections W lorsque des trous pour boulons

sont présents dans les ailes. Une grande proportion des détails de con-

nexion entre sections typiques sont concernés par ces clauses, ce qui

réduit ainsi la capacité admissible en flexion de l’élément. L’étude ana-

lytique, en utilisant les résultats de l’étude par éléments finis, a montré

que la méthode de la norme CSA S16-19 récemment révisée pour la

“Règle de 15%” fournit une amélioration significative de la capacité en

flexion admissible par rapport aux méthodes précédemment adoptée

par la norme CSA S16, ainsi que pour des méthodes de réduction

similaires de la norme AISC 360-16.
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Chapter 1

Introduction

1.1 Context

W-section steel members are ubiquitous in modern steel structures, where the

efficient cross section shape allows for their use in all load-bearing applications.

For moment frame connections and beam splices, bolted flange plate connections

are necessary to transfer the bending moment between members. Block shear of

the tension flange is a possible failure mode for such connections. Block shear is

a combined tension/shear failure mode, where a block of the flange is torn from

the member along the bolt hole line(s); two possible loading scenarios for block

shear in W-sections are shown in Figure 1.1. Although block shear failure has

been explicitly studied for various structural steel sections, current Canadian de-

sign standards (CSA S16-19) for flange-connected W-sections are based on proxy

results from tee sections (WT) in pure tension only (Epstein & Stamberg, 2002;

Canadian Standards Association, 2019). Until recently, it was not verified that

W-sections can be effectively modelled as two connected WT sections; further, it

is unclear whether current design equations capture the effect of moment-induced

block shear failure, where the more complex stress distribution may affect failure

behaviour.

1



1.1 Context

Steel Moment Frame

Uniformly Distributed Load

Moment-Induced Block Shear

Lateral Load

Pure Tension Block Shear

Figure 1.1: Possible loading scenarios for block shear failure in W-sections.
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1.2 Motivation and Objectives

In addition to block shear considerations, the CSA S16-19 standard calls for

moment resistance reductions for W-sections with net flange areas less than 85%

of the gross area. Since its introduction in 1954, the reduction equation, known as

the 15% Rule, has long been considered overly punitive, with significant flexural

capacity still available in the member (Canadian Standards Association, 1954).

As moment connections require significant removal of the flange area for bolt

holes, many connection details trigger this clause and force a reduction in the

overall capacity of the beam. Further, it is also possible that an alternative

interpretation of this clause may be used: if the connection detailing does not

trigger the 15% Rule, a structural designer may assume that the capacity of

the member is simply that of its gross section, and bypass the resistance of the

connection geometry, namely the potential for the block shear failure mode in the

tension flange.

1.2 Motivation and Objectives

The intent of this research project was to provide clarity on the existence of the

block shear failure mode for bolted flange plate W-section connections, as well as

to evaluate the current predictive capacity of common design equations. First,

the possibility of a moment-induced block shear failure should be verified, both

analytically and through finite element analysis. Then, the predictive capacity of

existing design methodologies should be assessed. Should a block-shear critical

connection detail exist, it would confirm that moment-induced block shear failure

is both a possible failure mode, and that it should always be explicitly considered

when designing connections.

Further, since all studied section-connection details would naturally have re-

duced flange areas while undergoing flexure, additional insight should be possible

on the 15% Rule. The theoretical reduced capacity from the 15% Rule could

be compared to the observed flexural capacity of the finite element models to

3



1.3 Scope of Work

evaluate the applicability of such strength reduction equations. A block shear

failure that occurs below the expected reduced flexural capacity would further

confirm that block shear should be independently considered as a failure mode

for all bolted W-sections under flexure; a block shear failure that occurs above

the expected reduced flexural capacity would suggest that the 15% Rule is in fact

overly punitive, and should be revised or removed.

1.3 Scope of Work

This project was the second phase of a two phase project investigating the block

shear failure mode in W-section bolted flange plate connections. The work

done by Pizzuto (2019) confirmed the existence of block shear failure in flange-

connected W-sections in pure tension, and evaluated the predictive capacity of

current Canadian, American, and European design procedures. This project in-

vestigated the scenario the possibility of a moment-induced block shear failure for

bolted W-sections under flexure, where the force developed in the tension flange

could potentially induce a block shear failure mode.

The project was carried out in three steps. First, an analytic design method-

ology was developed to detail pure moment splice connections for a block shear

critical failure mode. This methodology was used to detail a series of section-

connection combinations that would theoretically fail in moment-induced block

shear. Second, six preliminary finite element models were developed and analysed

to evaluate the analytic design method, and to provide initial confirmation that

the block shear failure mode would occur. These preliminary finite element mod-

els were fabricated in full-scale for eventual testing in the structural laboratory

at McGill University; a design of the loading beam, as well as the selection and

location of laboratory instrumentation was also performed. Third, an expanded

finite element model catalogue was created, with 17 total section-connection de-

tails designed to fail in block shear. The results of these finite element models
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were aggregated, and a review of the predictive capacities of the CSA S16-19,

AISC 360=16, and the Eurocode 3-2005 block shear design equations was per-

formed. Further, key observations on the actual failure mechanism of the block

shear failure mode were made. Finally, the results of the finite element models

was compared against an analytic review of varying flexural resistance reduction

equations for further insight on the applicability of the 15% Rule.

1.4 Thesis Outline

Chapter 2 provides an overview of the existing literature on the block shear failure

mode, including the results of laboratory tests, methods and improvements in

finite element modelling techniques, and the background of the block shear design

equations as used by the CSA S16-19, AISC 360-16, and the Eurocode 3-2005

design standards. It also provides the background and current interpretations of

net section flexural resistance design equations.

Chapter 3 presents the development and formalized procedure for designing

a block shear failure critical moment connection. It also provides an overview on

the development and detailing of the first six finite element models, and presents

the initial findings.

Chapter 4 covers the design and detailing of support components and instru-

mentation in preparation for laboratory testing. This includes the design and

detailing of the loading assembly, an overview of the overall testing protocol, and

the positioning and type of the instrumentation during testing.

Chapter 5 discusses the overall findings of the research objectives after an ad-

ditional 11 block shear failure critical moment connections were modelled. Fur-

ther, an analytic study is performed to evaluate the performance of existing and

proposed methods for net section flexural reductions.

Chapter 6 summarizes the overall scope and findings of this research project,

and provides recommendations for future research.
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Chapter 2

Literature Review

Block shear failure has been recognized as a potential failure path for bolted steel

connections since the late 1970s. Since then, much research has been performed

to determine the mechanics of the failure mode, as well as a suitable equation for

design standards that could cover the wide range of potential block shear failure

scenarios, some of which are shown in Figure 2.1. Analytical, physical, and finite-

element testing has been performed to varying degrees of complexity since the

first instance of block shear failure was observed by Birkemoe and Gilmor (1978).

The general findings of the decades of research are:

1. The block shear failure mode consists of a rupture plane and a yield plane.

2. The block shear failure mode consists of a tension plane and a shear plane.

3. The effective resistance/sensitivity to the block shear failure mode depends

on the cross-section geometry of the loaded member.

In general, the CSA S16-19 (Canadian Standards Association, 2019) design

equation for block shear seems to provide accurate predictive capacities for steel

sections under pure axial tension, including flange-connected W-sections, while

the AISC 360-16 (American Institute of Steel Construction, 2016) design stan-

dard tends to underestimate the true capacity of a block section critical member.
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Figure 2.1: Typical block shear failure scenarios.

However, the attempt to develop a truly generalized block shear failure equation

that reflects the true observed failure mechanisms is still the subject of ongo-

ing research, with improved design equations suggested by researchers as late as

2016. This chapter provides a summary of the cumulative research on block shear

failure, including developments in finite element modelling techniques, up to the

current state-of-the-art.

In addition, this chapter provides the background on the recently revised

Clause 14.1 in the CSA S16-19 standard, otherwise known as the 15% Rule.

Although it mostly affects how Canadian designers determine the effective flexural

capacity of beam members, it is possible that this clause may also affect how

structural designers approach the block shear failure mode for W-sections under

flexure.
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2.1 Block shear failure

2.1 Block shear failure

The block shear failure mode was first observed by Birkemoe and Gilmor (1978)

while investigating beam end double angle connections. While loading a CSA

G40.21 44W grade uncoped beam connection, a tension rupture at the free edge

of the last bolt row prematurely caused a drop in the connection capacity. Severe

rotational deformation was observed, centered around a hinge formed in the upper

flange-web interface. To investigate this unexpected failure mode, the researchers

performed the same test on a coped beam to eliminate the potential flexural

hinge support. The coped beam showed a significant reduction in connection

capacity, with the entire block of the web section detaching from the main section.

Birkemoe and Gilmor (1978) suggested the following predictive equation for the

block shear failure mode:

Pult = AntFu + 0.6AnvFu (2.1)

Where:

Ant = Net tension area

Fu = Ultimate engineering tensile strength

Anv = Net shear area

The findings of this research were incorporated into the revised AISC Specifi-

cation for the Design, Fabrication and Erection of Structural Steel for Buildings

for the same year (American Institute of Steel Construction, 1978). However,

it was not introduced as a unique failure mode to be considered via Equation

2.1, but rather as a set of revised edge and end distance limits to prevent tensile

rupture on free edges for bolted bearing-type connections.

Ricles and Yura (1983) expanded the work of Birkemoe and Gilmor by testing

a series of double row bolted beam end connections to evaluate the effect of end

and edge distances, as well as the effect of standard and slotted holes on the
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2.1 Block shear failure

overall capacity of the connection. Tests were based on W18X60 sections of

ASTM A36 grade steel. The results of their tests showed a block shear failure

mode as seen by Birkemoe and Gilmor (1978), but at an ultimate capacity that

was significantly lower than predicted by Equation 2.1. It was noted that the

capacity of the connection was more sensitive to the edge distance (the tensile area

near the free edge perpendicular to the force) than the end distance, suggesting

that the distribution of stress in the tensile plane played a significant role in the

overall capacity of the connection. A finite-element analysis was performed on

the connections to investigate the behaviour of both the tensile and shear stress

distributions. It was determined that the distribution of stress along the tensile

plane was non-uniform, with certain regions unable to reach the material ultimate

strength, Fu, before failure. The finite-element analysis showed that short edge

distances had a triangular stress distribution, with peak stresses at the free edge

where rupture initiates, while larger edge distances resulted in a bi-linear tensile

stress distributions, with peak stresses near the bolt holes. The analysis also

showed that for the shear planes, the average shear stress was relatively stable,

with longer connections showing less variance of the shear stress along the gross

plane. It was also noted that the shear plane does not reach the rupture stress

limits at the time of tensile rupture, contrary to Equation 2.1.

Based on these findings, Ricles and Yura (1983) concluded that the block

shear capacity is highly dependent on connection geometry, and that further

research must be performed to fully understand the failure path. To conclude,

they suggested a revised equation to predict the block shear failure mode:

Pult = 0.6FyAvg + 0.5FuAnt (2.2)

Where:

Fy = Yield tensile strength

Avg = Gross shear area

9



2.1 Block shear failure

Ricles and Yura reduced the tensile contribution of block shear by half in

Equation 2.2, reflecting the significantly lower stresses observed in their double-

row connection tests, and changed the shear rupture component to a gross shear

yield component to better reflect their test results.

Hardash and Bjorhovde (1985) focussed on evaluating and developing predic-

tive models for block shear in bolted gusset plate connections. A common practice

at the time was the use of the Whitmore Effective Section method, which simply

provided the allowable ‘net’ section area for tensile rupture based on a 30 degree

sweep of stress emanating from the lead row of bolts (Whitmore, 1952). A total of

28 gusset plate connections of steel plates with varying bolt pitches, gauges, and

number of bolts were tested. Further, both hot and cold rolled steel plates were

tested to investigate the effect of varying Fy/Fu ratios. Hardash and Bjorhovde

reinforced the idea that the net tensile rupture strength should be used for block

shear failure equations, but noted that the shear component remained sensitive to

the overall connection length as well as the material yield-to-ultimate strength ra-

tio. Due to some specimens showing shear rupture at failure, it was suggested that

the behaviour of the shear plane depends on the Fy/Fu ratio, where higher values

result in shear rupture at failure. In other words, since significant deformation

is required for the tensile plane to rupture, steel materials with insufficient duc-

tility would rupture along their shear plane before or concurrent with rupture of

the tensile plane. Hardash and Bjorhovde concluded with a suggested predictive

equation that considered connection lengths, net gauge distances, and ‘effective’

shear stresses, which provided accurate representation of the test results.

The findings of Hardash and Bjorhovde (1985) and Ricles and Yura (1983)

were incorporated into a revised set of design equations in the 1986 AISC LRFD

specification (American Institute of Steel Construction, 1986), where the block

shear capacity is taken as the greater of:

Rn = 0.6FyAvg + FuAnt (2.3)
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2.1 Block shear failure

Rn = 0.6FuAns + FyAgv (2.4)

The justification for the use of the greater of either Equation 2.3 or 2.4 was

based on the observation that block shear failure occurred at the fracture point of

a failure plane, meaning it should be classified as a brittle failure mode. Whether

it was the shear or tensile plane that ruptured, it should be assumed that the

yield stress is reached in the opposing plane.

Orbison et al. (1999) tested 12 different configurations of angles and WT

sections made from ASTM A36 steel in direct tension. The connections were

detailed to investigate the effect of connection lengths and load eccentricities on

the tension stress distribution and the overall capacity of the block shear failure

mode. Angles were tested with a single colinear row of two bolts with varying

edge distances; The WT sections had varying numbers of bolts connected to the

web, along with varying edge distances. An additional series of W sections was

also tested with two bolt row connections in the web only.

All specimens failed in the typical block shear manner, with a net tension

rupture plane, and severe shear deformation, indicating gross yielding of the

shear plane. Like other researchers, the authors noted that the edge distance

played a critical role in the capacity and stress distribution of the net tension

plane. Shorter edge distances had higher peak stress concentrations that initiated

rupture, while larger edge distances allowed for a more uniform stress distribution

and higher overall tensile capacity. It was noted, however, that the shorter edge

distances had the effect of increasing the in-plane eccentricity of the connection to

the section centroid; it was possible that the increased shear lag effect on the short

edge distance connection was the cause of the higher stress distribution, rather

than the edge distance itself. The authors concluded that the 1993 AISC LRFD

equation at the time could not account for varying connection configurations,

and that further research was necessary to isolate the effect of varying connection

parameters.
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Topkaya (2004) performed a parametric finite element study of over 1000

connection configurations to better understand the failure mechanism of block

shear. It was observed that the failure mechanism at ultimate capacity consisted

of a net tensile fracture plane and a gross shear plane with significant yielding

and deformation. It was noted that the average stress on the gross shear plane

was sensitive to the overall connection length, as well as the Fy/Fu ratio of the

material. Longer connection lengths had a lower average stress at failure, but

with less variation of stress; shorter connection lengths had a higher average

stress at failure, but with greater likelihood of stress concentrations. The study

also found that in-plane load eccentricities could affect the connection capacity

by up to 10% for longer connections, but out-of-plane eccentricities had little to

no affect on the connection capacity.

2.1.1 Section efficiency: the effect of load eccentricity

As research continued on the block shear failure mode, it was clear that load

eccentricities, whether in-plane or out-of-plane, played a fundamental role in the

overall capacity of a block shear critical connection. Naturally, researchers looked

for methods to account for these eccentricities, and their relation to the shear lag

factor already present in net section fracture calculations.

The net section fracture failure mode consists entirely of tension planes simul-

taneously reaching their ultimate capacity, fu, resulting in a complete rupture of

the tension member. When a bolted connection has a centroid that is offset from

the gross section centroid (typically occurring when only some legs of a non-

rectangular section are bolted), a shear lag factor, U , is applied to the theoretical

net section capacity to reflect the reduction in strength as stresses in unconnected

regions must flow into connected regions. The shear lag factor is used to deter-

mine an effective net area, Ane = UAn, to be used for the net fracture strength
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2.1 Block shear failure

equation.

U = 1− x̄

l
≤ 0.90 (2.5)

Where:

x̄ = connection eccentricity

l = connection length

Equation 2.5 resulted from the work by Munse and Chesson (1963), who in-

vestigated the effect of different cross section geometries, connection geometries,

and fabrication methods on the overall capacity of bolted and riveted joints.

Their work concluded with an empirical design rule that included, in addition to

the shear lag coefficient, factors that accounted for material ductility, fabrication

methods, and bearing effects on the fasteners. Although only the shear lag fac-

tor was adopted by North American design standards, the work by Munse and

Chesson showed that connection strengths are dependent on a variety of design

decisions.

This equation provided a simplified analytical method for determining the

effective resistance of a tensile bolted connection, and remains the basis of the

effective net section calculation method in both the AISC 360-16 and CSA S16-19

design equations. However, with the use of Equation 2.5 as presented, three issues

are prone to occur. First, since the shear lag efficiency factor is a function of the

connection length, a connection must first be designed before its design capacity

is calculated. This results in an iterative and inefficient design methodology. Sec-

ond, as no formal bounds were set by Munse and Chesson (1963), short connection

lengths and/or large eccentricities could result in shear lag factors that approach

0, or even negative values. Third, the shear lag factor is unable to account for

tensile connections with unconnected regions, where shear lag must occur, but

without any connection eccentricities. For example, a W-section tensile mem-

ber connected only by the flanges would not experience any shear lag reduction.

More recent research has suggested simple tabulated values for U based on the
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2.1 Block shear failure

section type and number of bolts present (Kulak & Wu, 1997), while others have

provided a more robust analytical method of connection analysis based on the

induced moments on the connection (Epstein & D’Aiuto, 2002). The latest CSA

S16-19 design standard removes the use of equation 2.5 completely for bolted

tensile connections, while the AISC 360-16 design standard maintains the use of

equation 2.5 with tabulated lower bounds for different bolt configurations.

Epstein (1992), while testing a series of double-rowed, staggered angle connec-

tions, noted that the predictive block shear equations of the AISC 360 provisions

of the time were improved by the use of the shear lag factor (Equation 2.5) on

the fracture component of resistance. From a test of 38 single-leg bolted angles

in tension, the inclusion of the U factor improved the professional factor (PF) of

the AISC 360 LRFD design equation from 0.901 to 1.008. Epstein concluded that

the shear lag factor inclusion on the tension term was an appropriate method of

improving the predictive capacity of the block shear failure mode.

Epstein continued to investigate the effect of shear lag on the block shear

failure mode, focussing on structural tees. Epstein and D’Aiuto (2002) developed

an analytical method for tensile connection efficiencies based on the induced mo-

ments and rotational capacities of connected structural tees. The method pro-

vided accurate calculations of the induced tensile forces and moments in each

member, and it was suggested that the existing axial-moment interaction equa-

tions could then be used to limit the capacity of the connection. The authors

concluded, however, that the existing shear lag factor U provided similar results,

and sometimes provided a better professional factor than their proposed method.

Epstein and D’Aiuto affirmed the use of the shear lag factor as an appropriate

inclusion in both net section fracture and block shear fracture calculations.

Epstein and Stamberg (2002) investigated the effect of connection length and

web depth on 50 flange-connected structural tees. The web depth was varied by

cutting the base W-sections at different points along the depth of the section. A

variety of failure modes were observed: a transition from block shear failure to net
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section failure as the eccentricity decreased; a transition from block shear failure

to net section failure as the connection length increased; premature buckling of the

unconnected stem for significantly deep tees. The researchers again affirmed their

suggestion that the shear lag factor was an appropriate addition to the tension

term in block shear equations. However, as the authors noted that Equation 2.5

as-is would determine values of U that were unrealistically low or even negative,

they provided lower and upper bounds of 0.65 and 0.90.

In rebuttal of these recommendations, Grondin (2005) discussed concerns in

the methodology and assumptions in Epstein’s work. Grondin noted that the use

of the shear lag factor was mechanically incorrect when investigating block shear

failure, even if it provided statistically accurate results. The shear lag factor

developed by Munse and Chesson (1963) and adopted by North American design

standards was explicitly meant to address the reduction in the active net tension

plane area during a net section fracture failure. Grondin noted that since the

block shear failure mode only considered the local geometry of the fracture block,

the use of a net area reduction factor made no sense, as the stress distribution

of the entire cross section is irrelevant to the stress distribution in the local

block tension plane. Previous research on the block shear failure mode suggested

that it was rather the in-plane eccentricity and corresponding non-uniform stress

distribution that affected the ultimate capacity of the connection (Ricles & Yura,

1983; Hardash & Bjorhovde, 1985). It was possible then, that a reduction in the

fracture component for block shear equations was appropriate, but that the shear

lag factor used by Epstein provided a false positive improvement in predictive

capacity.

2.1.2 Comprehensive equations for block shear

The need for an appropriate ‘efficiency factor’ that accounted for the effect of

in-plane stress distributions during block shear failure was evident. Driver et al.

(2006) proposed the Unified Block Shear equation, based on a statistical review
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of previous testing on 205 block shear failure specimens of gusset plates, angles,

tees, and coped beams.

Pu = RtAntFu +RvAgv

(
Fy + Fu

2
√

3

)
(2.6)

Where:

Rt = Tensile component efficiency factor

Rv = Shear component efficiency factor

The unified equation (Equation 2.6) differed from previous predictive equa-

tions for three reasons. First, the components of the equation reflected the typical

observed failure mode of net tensile fracture and gross shear yield. Second, based

on consistent test results showing that the shear plane reached a stress much

higher than the shear yield stress, but lower than the fracture stress, the average

of the yield and ultimate shear stresses were taken for the gross shear compo-

nent of the equation. These tensile stresses are divided by
√

3 to reflect the

equivalent shear capacity using the Von Mises yield criterion. Third, the correc-

tion factors for the tensile stress, Rt, and the shear stress, Rv, were introduced.

These correction factors were empirically based on the results of the aggregate

study. Tabulated values were provided depending on the section and connection

geometries. The unified equation by Driver et al. (2006) remains the basis for the

most current design provisions in both the AISC 360-16 and CSA S16-19 steel

design standards, although both design standards only use reduction factors for

the tension plane, with the shear plane remaining at full capacity.

However, the most recent AISC 360 standard (AISC 360-16) still uses the

original equation for U , but with lower and upper bounds for select connection

scenarios. The bounds eliminate the second issue mentioned above, while explicit

clauses prevent the third issue from presenting itself; W sections connected only

by their flanges are to be treated as WT sections when determining the value for

U . For bolted connections, the Canadian design provisions (CSA S16-19) have
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Table 2.1: Correlation factors for Equation 2.6 (Driver et al., 2016)

Connection Type Rt Rv

Gusset Plates 1 1

Angles and Tees 0.9 0.9

Coped Beams: one bolt line 0.9 0.1

Coped beams: two bolt lines 0.3 1

simplified the effective area calculations into tabulated values of U for the tension

plane, depending on the section type and number of bolts present. The CSA S16

method eliminates the need for Equation 2.5, as well as the need to know the

connection length before determining the overall capacity.

Recent advancements in finite element modelling techniques have been used

to perform a more detailed evaluation of the stress distribution and failure mech-

anisms for block shear failure. Clements and Teh (2013) performed finite element

analysis on bolted plate connections, and concluded that the true critical shear

plane lies between the net and gross shear sections. The authors named this criti-

cal plane the active shear plane, which was a function of the connection geometry

and the hole diameter. Based on a series of nineteen finite element models, the

authors demonstrated that the use of the active shear plane had the greatest

predictive accuracy, with a mean Professional Factor of 1.02, compared to the

AISC 360-10 (PF = 0.88) and the Eurocode 3-2005 (PF = 1.04), whose block

shear design method is presented in Section 2.3. Further their proposed equation

correctly predicted the critical failure mode between the block shear failure and

net section fracture for all nineteen block shear connection models, something

that the AISC 360-10 design equations could not do.

Pp = Fu

∑
Ant

(
0.9 + 0.1

d

p2

)
+ 0.6FyAav (2.7)

Equation 2.7 shows the proposed block shear failure equation as a function of

the hole diameter, d, the bolt gauge, p2, as well as the average shear area, Aav.
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The average shear area is in turn a function of the hole diameter and the con-

nection length. Although more involved than existing design equations from the

AISC 360 and the CSA S16 standards, the proposed active shear plane model pro-

vides a user-friendly, analytical approach to determining the block shear capacity

of a connection, rather than the empirical best-fit equations provided by other

laboratory-based studies. Further research and finite element verifications have

shown that this proposed equation performs well for a wide range of block shear

failure scenarios (Elliott et al., 2019; Elliott & Teh, 2019). Despite favourable

results, the AISC 360 and the CSA S16 standards continue to use more simplified

design equations to calculate the block shear resistance.

2.1.3 W-section block shear failure

Despite their ubiquity in modern structural steel design, block shear failure has

not been widely studied or verified in the context of W-sections. However, there

are numerous possibilities for a tensile failure to occur in W-sections, such as

W-sections used as brace members, W-section columns during uplift scenarios

from wind/seismic loading, as well as the tension half of W-sections under flex-

ural capacity. When the block shear failure mode is checked for W-sections, the

efficiency factor, U , is borrowed from the varying suggested factors for strutural

tees in direct tension, something that has not been explicitly verified.

To provide this explicit verification on the block shear failure mode for W-

sections under pure tension, Pizzuto (2019) tested a series of full-scale flange-only

bolted splice connections of W-sections, and performed subsequent FE analysis on

the expected failure mechanism. Pizzuto performed ten laboratory tests on flange-

only bolted splice plate W-section connections under pure tension, with section

sizes ranging from a W250X73 section to a W690X152 section, and evaluated

the predictive capacity of both the CSA S16-14 and the AISC 360-16 design

standards. Two potential block shear failure modes were identified, and are

shown in Figure 2.2:
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Figure 2.2: W-section block shear failure modes as observed by Pizzuto (2019).

1. The Edge Block Shear (EBS1) Failure mode, where the corners of the flanges

are removed, and the entire failure block remains in the flanges

2. The Complete Block Shear (CBS) Failure mode, where the entire flange is

removed, with the shear plane lying in the web/K-area interface along the

connection length

The test specimens were detailed using the CSA S16-14 design equations to

force a theoretical block shear critical failure mode. Three of the ten specimens

were detailed to fail in Complete Block Shear, while the remaining were detailed

with a critical Edge Block Shear resistance. The results of the tests provided key

insight on block shear failure for W-sections: first, that block shear was a very

possible failure mode for flange-connected W-sections, and must be considered

during design. Second, the CSA S16-14 design equations have a good predic-

tive capacity for block shear failure in W-sections, as indicated by Professional

Factors, the test-to-predicted resistance ratios, that were close to 1.0.

The average professional factor for the CSA S16-14 design method was 1.03,

compared to the AISC 360-16 professional factor of 1.16. This reaffirmed the

1It is noted that Pizzuto referred to the EBS failure mode as Corner Block Shear. The
name has been changed to Edge Block Shear to easily distinguish from the Complete Block
Shear failure mode when using their respective acronyms.
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observations made by numerous other block shear researchers, in that the true

reflective failure mechanism is a net section fracture and a gross shear yield plane.

The significant underestimation of block shear capacity provided by the AISC 360-

16 lies in the fact that the assumed failure mode includes a net shear fracture.

The work by Pizzuto (2019) laid the foundation for the research presented in this

thesis: since block shear failure is a confirmed critical failure mode in W-sections,

with good predictive capacity from current design standards, do these conclusions

still hold for a W-section under flexure?

2.2 Flange section reductions: The 15% Rule

The CSA S16-14 standard states, in Cl.14.1 (Canadian Standards Association,

2014), Proportioning of Beams and Girders:

Beams and girders consisting of rolled shapes...shall be proportioned

on the basis of the properties of the gross section...No deduction need

be made for fastener holes in webs or flanges unless the reduction of

flange area by such holes exceed 15% of the gross flange area, in which

case the excess shall be deducted.

This clause, known as the 15% Rule, which has remained in the CSA S16 standard

since its introduction in 1954, has had a significant impact on the way Canadian

steel designers detail their flexural members and connections (Canadian Stan-

dards Association, 1954). Only with the recent release of the 2019 version of

the CSA S16 standard has this clause been revisited to reflect the advances in

structural steel materials, connection methods, and understanding of ductile steel

behaviour. This section provides an overview of the background of the 15% Rule

as well as its effect on structural steel design.
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2.2.1 Lilly and Carpenter (1939)

The basis of the 15% rule lies in a study performed by Lilly and Carpenter (1939)

on the effect of holes in built-up riveted plate girders on the flange stresses ex-

perienced during load. A series of built-up plate girders under four-point loading

was tested to evaluate the effect of open holes, bolted holes, and riveted holes on

the effective moment of inertia, as well as the stresses at the flange extremities.

Engineers of this era had multiple options when determining the moment of iner-

tia for the design of built-up plate girders. Typically, the ‘net moment of inertia’

of the girder was calculated, which was determined by deducting the effect of the

tension flange holes from the gross moment of inertia. This effectively shifted

the neutral axis of the member away from the gross section centroid. The use of

this ‘net moment of inertia’ also relied on two unsubstantiated assumptions: first,

it assumed the section behaviour of the plate girder through its entire length is

based on the net section with tension flange hole reductions. Since it is clear that

tension flange holes are intermittently spaced, with full gross section properties

between holes, it should be expected that this ‘net moment of inertia’ calcula-

tion was inherently conservative. Second, it assumed that the net compression

flange effectively acted as the gross flange section; the assumption was ostensibly

based on the fact that fasteners in the compression flange holes would sufficiently

transfer forces across the hole by contact bearing. It was noted that the gross

moment of inertia, however, was used by at least some engineers for deflection

calculations of the girder.

The results of their test program shed light on the two assumptions stated

above. Test specimens were loaded to the same peak deflection within the elas-

tic range. By comparing the observed strains in the tension and compression

flange extremities, it was possible to evaluate the effect of holes and fasteners on

the moment of inertia, as well as to determine the working neutral axis of the

test specimen. First, it was observed that the neutral axis deviated only slightly

from the gross section neutral axis, even for the worst-case scenario open hole
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sections. Previous calculations of the ‘net moment of inertia’ provided a signifi-

cantly shifted neutral axis. This suggested that compression flange deformation

was as significant as that of the tension flange, and that compression flange holes

should be considered if net moment of inertia calculations are performed.

Second, the observed stresses in the extreme tension flanges were lower than

the predictions based on both a traditional net moment of inertia (with an offset

neutral axis) as well as a modified net moment of inertia calculation (that as-

sumed the neutral axis remained at the gross centroid). This confirmed the belief

that assuming net section properties continuously extend along the length of the

member resulted in significant underestimations of flexural capacity. It was also

observed that the hole spacings affected the magnitude of this underestimation,

with closer spaced holes showing a better correlation between predicted net sec-

tion behaviour and observed stresses. However, the measured flange stresses were

somewhat higher than the calculated values using the gross moment of inertia,

suggesting that flange area reductions did have some effect on the overall section

properties.

Overall, Lilly and Carpenter concluded that the working moment of inertia

approached that of the gross moment of inertia, and that the neutral axis ef-

fectively remained at the gross centroid, contrary to the practice at the time.

In recognition that the observed moment of inertia lay somewhere between the

typical net moment of inertia and gross moment of inertia, Lilly and Carpenter

provided an analytical equation for an ‘effective moment of inertia’ that corre-

lated well with their experimental data, and was influenced by the hole pitch and

diameter. However, they concluded that the difference was negligible, and that

the gross section area was acceptable for use with most strength and deflection

calculations.

These tests were performed on steel grades vastly different than what is typ-

ically used in modern construction, with an average yield strength of 265 MPa

and an average ultimate strength of 443 MPa. Further, the test specimens were
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Figure 2.3: All W-sections affected by the 15% rule for 2 bolts per flange as a
function of the bolt diameter, db, and the beam depth, d.

not loaded to their ultimate capacity. Still, despite the differences in material

strengths as well as the limited testing, the findings of this study were adopted

into the 15% rule as observed up until the CSA S16-14 standard, where the gross

section properties may be used up to an Afn/Afg of 85%, past which the net

section properties must be used.

2.2.2 Recent findings on the 15% rule

The 15% rule has had a profound impact on the design of steel flexural members

for over 50 years. Figure 2.3 shows the significant number of W-sections that

trigger this clause when a typical arrangement of two bolt rows per flange is

used for a bolted connected. Almost all W-sections used as primarily flexural
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2.2 Flange section reductions: The 15% Rule

members are affected when using 7/8” bolts or larger, reducing the allowable

flexural capacity to as much as 75% of the gross capacity. This limitation has left

structural designers with two options: design flexural members with significant

reduced capacities to account for bolted connections, or specify more expensive

welded connections and/or flange reinforcement to allow for full flexural capacity

to develop. Research has developed over the past fifteen years to scrutinize the

15% rule and its relevancy with respect to modern materials and design methods.

Sivakumaran et al. (2010), based on the doctoral thesis of Arasaratnam (2008),

reviewed the results of 25 tests on ASTM A992 steel W-sections under flexure

with varying configurations of holes and fasteners in both tension and compres-

sion flanges. The objective of their study was to verify the applicability of the

15% rule on modern steel materials, and to observe the true effect of net flange

areas on the ductility and ultimate capacity of flexural members. Twenty-five

W200X42 sections were tested under 4-point loading, with a single set of holes in

the constant moment region in four general configurations:

1. No holes in flanges

2. Tension flange holes only, up to 50% of gross area removed

3. Holes in both flanges, up to 60% of gross area removed

4. Holes in both flanges, up to 60% removed, with fasteners in holes

Specimens were loaded to the post-ultimate strength range, typically until the

load-deflection curve returned to the initial yield load limit. All specimens, with-

out exception, surpassed the gross plastic moment at ultimate capacity regardless

of the hole/fastener configuration. The ratio of peak experienced moment, Mm,

to the theoretical gross plastic moment, Mp, ranged from 1.07 (63% of gross

flange area, both flanges) to 1.23 (85% of gross flange area, tension flange only).

Sivakumaran et al. (2010) observed that even for specimens with net flange areas

nearing 50% of the gross area, the rotational stiffness in the elastic range changed
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2.2 Flange section reductions: The 15% Rule

very little, and that the reduced flange areas only affected the peak rotational ca-

pacity of the beam well past the ultimate moment. Almost all test specimens

failed in eventual net section fracture of the tension flange, except those with

holes in the compression flange without fasteners. Some specimens with unfilled

compression flange holes experienced local compression flange buckling due to the

reduced area, which limited the peak moment capacity of the specimen. With

the compression flange holes filled with fasteners, the failure mode returned to

a tension net fracture as the fasteners provided an adequate bearing force trans-

fer mechanism. The authors concluded that flexural members of typical modern

steel materials that greatly exceed the 15% net flange area rule can reach the

ultimate gross section capacity, and that current design methodology was overly

punitive. Additionally, the authors noted that although the ultimate flexural

capacity is not affected by moderate to significant flange area removal, the avail-

able rotational ductility is. For flexural members with a net flange area ratio

AfnFu/AfgFy < 0.95, the rotational ductility of the section may be reduced.

However, it was noted that this rotational capacity is dependent on numerous

other factors unrelated to the section geometry, such as stability constraints and

the rotation capacity and stiffness of the connecting member. The authors con-

cluded with a suggested alternative design method that assumes the complete

fracture of the tensile region of the flexural member as the ultimate failure mode:

Mfnf = 0.85ZnFu ≤Mp (2.8)

While the CSA S16 standard for net section flexural capacities remained un-

changed since the inclusion of the 15% rule until the S16-2019 edition, the Amer-

ican AISC 360 standard had modified their equivalent rule to the following equa-

tion in the AISC 360-05 and onwards (American Institute of Steel Construction,

2005), based on the findings by Geschwindner (2010):

FuAfn ≥ YTFyAfg (2.9)
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2.2 Flange section reductions: The 15% Rule

Mn =
FuAfn

Afg

Sx (2.10)

Where: YT = 1.0 if Fy/Fu ≤ 0.80, YT = 1.1 otherwise.

This design method assumes the failure mode to be the onset of rupture of

the extreme tensile fibre of the net flange area. It is noted that this method is

valid only if Equation 2.9 does not hold; otherwise, the full gross section moment

capacity may be used. Although Equation 2.10 is more involved and provides

higher flexural resistances than the 15% rule of the CSA S16-14 standard, its

assumed failure mode and reduced overall resistance is still not consistent with

those observed by Arasaratnam (2008) and Geschwindner (2010).

For these reasons, Swanson (2016) performed an aggregate review of bolted

W-section flexural capacity tests from five different universities (Larson, 1996;

Swanson & Leon, 2000; Schneider & Teeraparbwong, 2002; Altstadt, 2004; Sato

et al., 2007) to evaluate the true observed failure mechanisms, as well as the

predictive capacity of the AISC 360 design equation. Like the results observed

by Sivakumaran et al. (2010), an average ultimate flexural capacity of 1.06Mp,gross

was observed across all test specimens, with Afn/Afg ratios reaching as low as

70%.

Swanson (2016) made two conclusions on the state of current design methods

for flexural W-sections with reduced flange areas that complemented the conclu-

sions of Sivakumaran et al. (2010): first, current design methods for net flexural

capacities are overly conservative, with almost all observed test specimens reach-

ing the full gross plastic moment capacity before ultimate failure. Second, the

current design methodology is removed from the actual observed failure mech-

anisms for these flexural members. Both the simplified 15% rule of the CSA

S16-14 and the revised method in the AISC 360-16 are only triggered by strict

clauses; in other words, for the CSA S16-14 method, a section with a net flange

area ratio of 14.9% would have a significantly different flexural resistance than a

section with a ratio of 15.1%. For the AISC 360-16 method, this sudden jump in
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2.2 Flange section reductions: The 15% Rule

section capacity is also met with a sudden change in the assumed failure mode

from a gross section plastic moment failure to the fracture of the extreme tensile

fibre of the section. Based on these findings, Swanson suggested an improved

design equation that better correlated with the observed test results, eliminated

the sudden shift in flexural capacity, and was more reflective of the true observed

failure mode:

Mn =
FuAfn

Afg

Sx + FuZx,web ≤ FyZx (2.11)

Equation 2.11 properly reflects the observed failure mode with the onset of flange

rupture with the remaining section under complete yielding.

In light of contemporary evidence of the inadequacy of the 15% rule in the CSA

S16 design standard, and based on the work of Sivakumaran et al. (2010), the most

recent 2019 version of the CSA S16 standard has revised and expanded on Clause

14.1 for the first time since its introduction (Canadian Standards Association,

2019). For steel materials with Fy ≤ 350MPa, and whose flange area reductions

do not exceed 15%, the gross section properties may still be used like in previous

iterations of the 15% rule. The major difference is the treatment of flexural

members that do not meet either the yield strength requirement (Fy > 350MPa),

or the 15% maximum flange area reduction, with the introduction of effective

section properties, Se and Ze respectively.

Se = αS + Sn ≤ S (2.12)

Ze = αZ + Zn ≤ S (2.13)

Where Sn and Zn are the calculated net section modulus and plastic modulus,

and with values of α varying depending on the material yield strength (above

or below 350MPa), as well as the location of the fastener holes (one flange only

vs. both flanges). For values of Fy ≤ 350MPa, α is a fixed value equal to 0.05
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2.2 Flange section reductions: The 15% Rule

for sections with holes in one flange only, and 0.12 for sections with holes in

both flanges. For values of Fy > 350MPa, an upper limit for the value of α is

introduced:

0 ≤ α ≤
[
1− β

(
Fy

Fu

)]
(2.14)

With the value of β based on whether there are holes in one flange (β = 1.24) or

both flanges (β = 1.15).

The inclusion of Equations 2.12 to 2.14 has provided much needed clarity and

improvement on the design of flexural members with fastener holes exceeding

15% of the gross flange area. First, Equations 2.12 and 2.13 imply that the

failure mode of W-sections that trigger the 15% rule clause will be identical to

that of their equivalent gross section, albeit at a reduced capacity; class 1 and

2 sections will still reach the ultimate flexural capacity at full plasticity of the

reduced section, while class 3 sections will reach their capacity at the onset of

yielding of the reduced section. This is in contrast to the AISC 360-16 design

method (Equation 2.10), which assumes a sudden change to a fracture failure

mode should its equivalent net flange area ratio limit be surpassed. Maintaining

the assumption of a ductile failure mode is in accordance with the findings of the

most current research (Topkaya, 2004; Sivakumaran et al., 2010; Geschwindner,

2010; Swanson, 2016).

Second, the addition of the α parameter significantly increases the allowable

flexural capacity of a section triggering the 15% rule clause, and eliminates the

sudden drop in flexural capacity as soon as the 15% net flange area ratio threshold

is crossed. For a typical steel section with Fy ≤ 350MPa, and holes in both

flanges, an additional 12% of the gross section property (Z, S), is included in the

effective section and plastic moduli. This additional 12% increase in the flexural

capacity of a reduced-area W-section effectively provides a smooth transition from

gross section flexural capacities to a reduced capacity for sections with net flange

area ratios of 85% or less.

Third, the use of different α values for higher strength steel sections reflect
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the need for a more conservative design approach for steel materials with higher

Fy/Fu ratios. As noted by Sivakumaran et al. (2010), flexural sections with

higher Fy/Fu ratios are more susceptible to a tensile fracture failure, even if it

occurs past the gross plastic moment capacity of the section, and are also more

susceptible to a reduced rotational capacity. Providing a lower value of α for

these material types provides a level of additional precaution while maintaining

the same methodology for calculating effective section properties.

The revised CSA S16-19 Cl.14.1 provides a much needed change to the 15%

rule in the context of current knowledge and modern steel materials. As Canadian

steel designers transition into the S16-19 standard, the true effect of the improved

allowable performance of reduced flange area flexural members can be determined.

However, considering the research that this revised method is based on, it should

still be expected that the calculated reduced flexural capacity of many W-sections

will still be below the true available capacity. Whether this discrepancy remains

too punitive for Canadian steel designers, or whether the revised design method

provides a sufficient compromise and a real-life benefit is yet to be seen.

With the AISC 360-16 method for net section flexural resistances detached

from the true observed mechanisms of net section flexural failure, as well as a

new and unproven CSA S16-19 method, it is not clear if there is an overlap

or redundancy between the net flexural resistance calculations and other failure

modes associated with bolted flexural members. Namely, if the block shear failure

exists in bolted flexural W-section members, and if current design equations can

accurately predict these failure modes, do they implicitly consider the effect of

flange area reductions on the overall flexural capacity of the member? Is the

15% rule relevant if a more low-level analysis of the block shear failure mode

is taken? On the contrary, if the 15% rule clause is not triggered, does this

provide an avenue for designers to not explicitly check the block shear failure

mode for flexural members? Further, it is not even clear whether the 15% rule

should ever be applied in a bolted flexural connection for W-sections, which
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2.3 Contemporary design procedures for Block Shear

naturally must occur at the beam ends, whether it is at a moment splice or a

beam-column connection. The intent of the 15% rule was to evaluate the overall

flexural capacity of a section with reduced cross-sectional area, and not as a check

on a force transfer mechanism.

2.3 Contemporary design procedures for Block

Shear

The extensive research on block shear failure has resulted in many suggested

design equations to both accurately and safely predict the capacity of a given

tensile bolted connection. However, many of these proposed equations are too

involved for practical use by designers, and as such, design standards have adopted

and maintained calculation approaches that are relatively simple to implement.

This section provides an overview of the current design equations used by the

CSA S16, AISC 360, and the Eurocode 3 standards.

2.3.1 Canadian design procedure (CSA S16-19)

The Canadian design standard specifies in Cl.13.11, the block shear resistance as:

Tr = φu[UtAnFu + 0.6Agv
Fy + Fu

2
] (2.15)

Where:

φu = Resistance factor = .075

Ut = Efficiency factor = 1.0 for Flange-connected Tees

And where the (Fy + Fu) term is replaced by Fy for Fy > 460MPa.

This equation is based on a modification of the proposed unified equation by

(Driver et al., 2006), It is noted that there is no explicit suggested value for the

efficiency factor for W-sections, nor are there any suggestions for bending-induced
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tensile stresses. However, it is reasonable to assume that the efficiency factors for

structural tees would adequately apply to tensile W-sections, given no explicit

suggestions are provided.

2.3.2 American design procedure (AISC 360-16)

The current AISC Load and Resistance Factored Design (LRFD) provision for

block shear failure is provided in AISC 360-16, equation J4-5:

ΦRn = Φ [0.60FuAnv + UbsFuAnt] ≤ Φ [0.60FyAgv + UbsFuAnt] (2.16)

Where:

Φ = 0.75

Ubs = 1 (uniform tension stress), 0.5 (nonuniform tension stress)

The AISC specified capacity of the block shear failure mode is the combination

of the lower of the net section shear fracture or gross section shear yield along

with the net section tensile fracture. The efficiency factor, Ubs, is either 1 or 0.5,

depending on the tensile stress distribution. It is unclear whether the uniformity

of the tension stress distribution is with respect the the fracture plane area only,

or across the entire section of the member in question.

2.3.3 European design procedure (Eurocode 3-2005)

The European code specifies separate equations for concentric and eccentric load-

ing. For symmetric bolt groups subject to concentric loading (Eq. 3.9):

Veff,1,Rd =
fuAnt

γM2

+
fyAnv

γM0

√
3

(2.17)
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For a bolt group subject to eccentric loading (e.g., coped beams):

Veff,2,Rd =
fuAnt

2γM2

+
fyAnv

γM0

√
3

(2.18)

Where:

Ant = net tension area

Anv = net shear area

γM0 = 1.00

γM2 = 1.25

The Eurocode 3-2005 generally follows the same procedure as the AISC 360-

16 design method, but without the upper bound in place for the transition into

a gross shear yield failure mode. Regardless of material ductility and relative

strengths of each failure plane, the assumed failure mode for the Eurocode 3-

2005 design method is always a complete fracture of the block. It is also noted

that the shear strength of fy/
√

3 used by the Eurocode 3-2005 is equivalent to

the 0.60 factor used by the AISC 360-16 and the CSA S16-19 methods; the use

of 0.60 is simply a rounded value of the Von Mises shear yield criterion of fy/
√

3.

2.4 Finite Element Modelling

To expand beyond time-intensive and expensive laboratory testing, finite element

modelling has been extensively used to explore the block shear failure mechanism.

The use of finite element modelling software allows researchers to quickly explore

the varying parameters that affect the block shear failure mode, allowing for

a more complete understanding of the underlying mechanisms. However, there

must be careful consideration when developing these models to ensure they are

representative of true physical scenarios: the representation of material behaviour

in complex stress states; boundary conditions and other simplifications of external

factors of loading; proper definition of failure criteria.

Linear elastic two-dimensional finite element models were developed early on
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in block shear research, and the methods and technology used have progressed

over time. Different element types, material definitions, and boundary conditions

have been used to varying degrees of accuracy. An active field of research is the

modelling of rupture initiation and the corresponding post-ultimate behaviour

of the connection. This section provides an overview of the varying techniques

used by researchers to evaluate the block shear failure mode via finite element

modelling.

2.4.1 Initial methods of finite element analysis

After the first instance of block shear failure was observed by Birkemoe and

Gilmor (1978), Ricles and Yura (1983) set to perform a parametric analysis of

coped beams to determine the effects of bolt spacings, edge distances, and single

or double row bolt configurations on the block shear failure mode. The objective

of the study was to determine how the different parameters affected the stress dis-

tribution along the tension and shear planes. The study included a series of finite

element models to explore the variation of stresses in the main failure planes. Due

to computational limitations of the time, significant simplifications were made on

the FE models to represent the true test conditions. First, both the beam and the

connecting clip angle were modelled with two-dimensional planar elements, us-

ing a combination of four-node quadrilateral and three-node triangular elements.

The use of planar stress elements significantly reduce computational time, but are

unable to capture any effects of out-of-plane deformations, whether it is the buck-

ling of the web, or the out-of-plane necking of the net tensile region. Second, the

connecting clip angles were simplified with spring boundary conditions. Third,

bolt holes were not modelled as circular absences in the planar beam model, but

rather as square absences to match the element types used for the model. The

force transfer from the bolts was modelled as nodal ties between the theoreti-

cal connecting surfaces of the square bolt “hole” in both the clip angle and the

beam web. This simplified the connection to an infinitely rigid, always-in-contact
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transfer of shear between the beam web and the connecting plate. Despite these

simplifications, the general results derived from the finite element analyses pro-

vided additional insight on the block shear failure mechanism. Namely, that the

free edge distance of the tension plane has a great effect on the stress concen-

tration and distribution of the failure plane; that a second row of bolts creates

a highly non-uniform stress distribution on the tension plane, which reduces the

capacity at failure, and; the most typical stress distribution of the block shear

failure path at capacity was a tensile fracture with a shear yielding plane.

Since the first finite element models were performed by Ricles and Yura (1983),

many block shear researchers developed their own models for varying section types

and loading configurations to further understand the mechanics of the failure

mode. Epstein and Thacker (1991) used finite element modelling techniques

to investigate the block shear failure mode for single-leg connected angles. They

developed FE models to investigate the effect of out-of-plane eccentricities and the

corresponding shear lag on the tensile capacity of single-leg bolted steel angles,

as well as the possible strengthening effects of bolt stagger. Since single-leg

connected angles will experience out of plane as well as torsional deformations,

the authors developed a model using four-node quadrilateral shell elements that

were unrestrained from out of plane deformations. The models also included

realistic circular bolt holes as opposed to the square estimates of Ricles and Yura

(1983). However, some simplifications remained: the variation in thickness of

the web-heel fillet can not be captured using shell elements; only material non-

linearity is modelled, as necking in the out-of-plane direction for shell elements is

not captured.

Epstein and Chamarajanagar (1996) improved on these limitations by us-

ing three-dimensional 20 node hexahedral elements (C3D20) in their correlation

models with previously tested single-leg connected steel angles. The use of 3D

elements allowed for geometric non-linearities to be captured as well as the ability

to directly correlate FE results to strain gauge readings that are placed on the
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exterior surfaces of the test specimens. It also allowed for a better representation

of the true geometric properties of the tested specimens. Failure of the tension

plane was based on interpolated strain data between two nodes on opposing sides

of the expected failure plane; once the interpolated strain reached a predefined

failure limit, ranging from 2εy to 5εy, the ultimate strength of the fracture plane

was assumed to be reached. The authors do not mention how or if the strain and

stresses of the shear plane were evaluated.

Topkaya (2004) expanded the finite element analyses study of block shear

failure in both gusset plates and single-leg connected angles. Over one thou-

sand analyses were performed to evaluate the predictive capacities of the AISC

360 block shear equations at the time. For this study, three-dimensional ten-

node tetrahedral elements (C3D10) were used to model the angles, while two-

dimension, six-node triangular plane stress elements (CPS6) were used to model

the gusset plate. These elements were selected for their ability to handle large

in-plane deformations and material non-linearities. The models used a generic

true stress-strain response of an elastic perfectly plastic response, and then a

linear strain hardening region, with a stress plateau once the ultimate strength

was reached. The predictive capacity of these model parameters were tested on

previous laboratory test results, showing a professional factor of 0.990, indicating

a good representation by the finite element models (Hardash & Bjorhovde, 1985;

Gross et al., 1995; Orbison et al., 1999).

Pizzuto (2019) performed FE analysis for the initial confirmation of block

shear failure in flange-connected W-sections under pure tension, before perform-

ing laboratory tests on full-scale representative sections. FE analysis was also

redone using calculated geometric and material measurements to compare and

calibrate against the laboratory results. All relevant parts were modelled using

solid elements to best capture significant deformations, both in and out of plane.

C3D8 brick elements were used for the W-section, splice plates, and bolts. while

C3D6 wedge elements were used for the K-area as it better suited the curved and
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triangular geometry. The load displacement vs. applied force curves of the FE

models had very good correlation to the observed test results up to the ultimate

load point. As expected, since no simulation of fracture was implemented, the FE

models could not accurately reflect the post-ultimate behaviour of the overall sec-

tion. However, qualitative observations between the simulated and true deformed

shapes of the connection region past the ultimate capacity of the section showed

a very reasonable predictive capacity of the FE models. For these reasons, the

FE modelling of this thesis is widely based on the methodology used by Pizzuto.

2.4.2 Modelling of fracture in block shear failure

Although the studies discussed in the previous section used a range of finite ele-

ment modelling techniques to varying degrees of accuracy, none of the mentioned

studies modelled the initiation and propagation of fracture in the tensile failure

plane. Although these non-fracture models can accurately represent the stress

distributions up to the failure point (the initiation of fracture), understanding

the complete failure mechanism requires the ability to model the post-ultimate

behaviour of a given connection. The different methods used to represent the rup-

ture path of tension and shear planes in block shear tensile failure are explored

in this section.

Huns et al. (2006) performed an in-depth finite element study of block shear in

gusset plates to investigate the exact failure mechanism and progression of block

shear. The models were developed using four-node, reduced-integration shell

elements (S4R), which allowed for changes in element thickness. The material

true stress-strain behaviour up to the engineering ultimate strength was derived

from averaged tensile coupon testing results, with post-ultimate true stress-strain

behaviour (up to ε = 1.2) based on a previous study on ductile structure steel

by Khoo et al. (2000). Fracture was modelled via a deletion method, where an

element was removed from the analysis model once the major principal strain of

the element integration points reached the average tensile rupture strain based on
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coupon testing results; in this study, this total (elastic + plastic) strain was ε =

1.13. The modelling of the shear plane was slightly more involved: the shear strain

at the point of rupture during tensile coupon testing was recorded, and acted as

the shear strain corresponding to shear fracture. A similar deletion method was

used, where once the integration points of an element reached this maximum

shear strain, the element was removed from the analysis. The predictive capacity

of these models were tested against eight different laboratory results on gusset

plate block shear failure, with a mean professional factor of 1.04.

Wen and Mahmoud (2017) developed a more involved method to represent

fracture in FE models of block shear failure in gusset plates. Their work developed

an analytical method of approximating the rupture strength of the shear plane

based on the inclusion of the Lode Parameter in addition to the stress triaxiality

used to model tensile fracture. They developed a damage model to represent

the plastic strain in a given element as a proportion of the total strain energy

capacity. The damage value, D, was checked at each iteration of the finite element

analysis, and the elements with D > 1 was deleted before the next iteration.

The authors used reduced-integration, two-dimensional planar stress elements

(CPS4R) for their analysis. Testing the predictive capacity of these models to

previously tested laboratory results showed an extremely high degree of accuracy

that extended well past the ultimate capacity of the connection. The inclusion

of the new damage parameter allowed for an accurate modelling of post-fracture

behaviour of the gusset plate.

Elliott and Teh (2019), while evaluating the validity of the Whitmore Net

Section capacity calculation method, performed finite element models of bolted

gusset plate connections that included fracture modelling. For the best represen-

tation of out-of-plane element deformation, three-dimension, eight-node hexahe-

dral elements were used (C3D8R). Like previous researchers, fracture was mod-

elled using damage initiation parameters and an element deletion method. A true

stress-strain material curve was defined using the Ramberg-Osgood power func-
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tion (Ramberg & Osgood, 1943), and the stress triaxiality and strain at fracture

were defined based on previous tension coupon testing by Aalberg and Larsen

(2000). Once an element reached these limits, it was deleted from subsequent

steps in the analysis.

2.5 Summary

Block shear as a failure mode for bolted connections has been observed, studied,

and calculated for over 50 years. Through extensive laboratory testing and finite

element analysis, the Canadian S16 design standard has provided an accurate and

general method of predicting block shear strength capacities. The CSA S16-19

design method for block shear failure assumes a gross shear yielding plane and

a net tensile fracture plane for a given block, with an efficiency factor, U , that

accounts for non-uniform stress distributions from in-plane eccentricities; while

the U factor was initially calculated as a function of the connection length as well

as the bolt group eccentricity, it has largely been replaced by tabulated values

based on direct tension test results on plates, angles, and structural tees.

Until recently, however, the block shear failure mode had not been explicitly

verified for flange-connected W-sections, despite their widespread use in struc-

tural steel design. It was generally accepted that the efficiency factor could be

borrowed from flange-connected structural tees due to the inherent symmetry

of W-sections. This verification was finally performed by Pizzuto (2019), where

finite element analyses and full-scale laboratory testing concluded that the CSA

S16-14 design method (unchanged in 2019) calculated accurate predicted capaci-

ties for flange-connected W-sections under pure tension. The results from Pizzuto

also confirmed that the failure mechanism as assumed by the CSA S16 standard,

consisting of a gross shear yield plane and a net tension fracture plane, accurately

reflected the observed failure mechanism in the laboratory tests.

With this failure mode and corresponding predictive equation verified and
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Edge Block Shear

Complete Block Shear

Centre Block Shear

Figure 2.4: Potential moment-induced failure modes for W-sections under flexure.

assessed for W-sections in pure tension, it is natural to consider the same ques-

tions for the tension flange of a bolted W-section connection under moment, since

W-sections are widely used as flexural members. A potential block shear failure

scenario could occur at beam ends for moment-frame bolted connections, as well

as mid-span in bolted beam splices; three possible moment-induced block shear

failure modes are presented in Figure 2.4. Although the effect of relatively small

induced moments due to connection eccentricities have been studied in the con-

text of block shear failure, it is to the author’s knowledge that the effect of a

directly applied moment on the block shear failure mode and predictive capacity

has not yet been performed; this corresponds well to the fact that most studies

on the block shear failure mode have been performed on sections that are not

used as flexural members, namely gusset plates, angles, and tees.

Further complicating the study of block shear under moment-induced tension

is the potential conflict or redundancy with the 15% Rule found in the CSA

S16 design standard, that reduces the allowable flexural capacity of W-sections
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with reduced flange areas due to bolt holes. It is unclear whether the flexural

capacity corresponding to a potential tension flange block shear failure inherently

covers the effect of bolt holes in flexural members, or if the 15% rule must also be

considered during design. Further, it is unclear whether the 15% rule is applicable

at all in the context of beam ends, since the origins and subsequent research that

the rule is based on is with respect to hole along the mid-span of the beam.

Through a series of finite element analyses and corresponding full-scale labora-

tory tests, this thesis aims to shed light on the following questions. First, is block

shear in the tension flange a real possibility for bolted W-section connections

under flexure? Second, can the current design equations in the CSA S16, AISC

360, and Eurocode 3 standards accurately predict this failure mode? And third,

does the 15% rule play any part in the design and detailing of a flange-connected

bolted splice plate W-section under flexure, or should this rule be reserved for

bolt holes placed along the mid-span of a beam?
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Chapter 3

Preliminary verification of

moment-induced block shear and

selection of laboratory test

specimens

Before the predictive capacities of the current block shear design equations can be

evaluated in the context of moment-induced tension in the flange of W-sections

under flexure, the possibility of this failure mode must first be confirmed. Further,

should the moment-induced block shear failure mode be a possibility, the predic-

tive capacity of current design equations should be evaluated. These questions

were addressed in three phases. First, a general iterative design methodology

was developed for the selection and detailing of a bolted splice plate connection

under pure moment that would theoretically fail in moment-induced block shear.

Second, the design methodology was used to select five initial section-connection

details that would be modelled using finite element analysis, and fabricated to

test in the structural laboratory for finite element analysis calibration. Next,

the five section-connection details were developed into preliminary finite element
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3.1 Selection of initial test specimens

models (pFEMs) to verify the analytic assumptions and expected loads at failure.

The configuration of the finite element models were developed to replicate the

conditions of the structural laboratory at McGill University, as seen in Figure

3.1, to allow for a direct comparison with laboratory test results. This section

provides an overview of the selection of the preliminary test specimens, which

include the development of the analytical design, as well as the development and

verification of the initial finite element models.

3.1 Selection of initial test specimens

The selection of five initial preliminary models with moment-induced block shear

critical connection details required the development of a consistent design method-

ology. In the early stages of the development of this methodology, it was observed

that the theoretical moment-induced failure mode for W-sections was highly sen-

sitive to varying geometric factors of the section itself, as well as the number of

bolts that are required to carry the block shear capacity in the flange. However,

basic requirements were defined before the completion of the design methodology

and specimen selection to guide the process and to reduce the range of viable

sections:

1. The section chosen should reflect a typical W-section used for beam ele-

ments.

2. The section should be ideally a Class 1 section to avoid premature local

buckling of the flange and/or web.

3. The connection should be detailed such that the block shear failure mode

is critical.

4. The critical block shear failure strength should ideally occur while the gross

section remains elastic.
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Laboratory Conditions

Simplified Loading

Modelled Region

Figure 3.1: Translation of laboratory test conditions into modelled region.
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5. All peripheral elements (bolts, splice plates) should remain well within their

elastic range at the point of block shear failure.

6. The critical required load should be below the capacity of the laboratory

actuator (11 MN).

This section provides a detailed overview of the geometric constraints for

moment-induced block shear, as well as the final design methodology and the

selection of the five preliminary test specimens to be numerically modelled as

well as fabricated and tested in the structural laboratory.

3.1.1 Effect of section geometry on moment block shear

failure potential

Due to the widespread use of W-sections in all load bearing applications, there

is an extensive range of available depths, widths, and linear masses. Various

geometric properties of a given W-section influence the range of possible failure

modes for a bolted moment connection, including the flange thickness, flange

width, as well as the depth of the section.

Since the failure plane areas for both the gross shear yield and net tension

fracture are proportional to the flange thickness, sections with relatively thick

flanges require a greater amount of force to induce the block shear failure mode.

A larger force at block shear failure would require additional rows of bolts to

carry this force. However, this addition of bolts further increases the block shear

resistance due to the increased connection length, and often leads to a required

moment-at-failure that is greater than the gross section capacities, namely My

and Mp. A visual example of this conflicting requirement is shown in Figure

3.2. For heavy flange sections, it was determined to be impossible to detail a

connection such that the block shear failure mode was critical while maintaining

adequate bolt strength and remaining below gross section capacities.
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MBS < MP
MBS > MP 

TBlock Shear

Figure 3.2: Comparison of thick vs. thin flanges for block shear sensitivity.

In a comparison of deep to shallow sections, the induced flange forces for an

equivalent moment in deep sections are much lower due to the larger moment

arm between the compression and tension flanges. Therefore, for an equivalent

moment splice connection detail, a deeper section must be loaded to a greater

moment to reach the block shear strength capacity of the connection, as shown in

Figure 3.3. It was observed that with bolt spacing details consistent with those

used in practice, this required moment often encroached on the gross section

moment capacities, and made it difficult to isolate the moment-induced block

shear failure mode. However, on the contrary, shallower sections, although they

have a greater induced flange force for a given applied moment, also typically

have smaller gross section flexural capacities. Therefore, a shallower beam did

not immediately allow for a block shear critical connection, because the minimum

block shear force may still exceed the gross section capacity due to its inherently

lower flexural strength.

Further, sections with narrow flanges caused geometric limitations when de-

tailing the connection and splice plates, as seen in Figure 3.4. The narrow width

of the flange compounded by the reduction of usable space in the flange interior

due to the fillet region made the detailing of the interior splice plate difficult or

impossible to meet CSA S16-19 edge spacing limits (Canadian Standards Asso-

ciation, 2019).
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TBlock Shear

Figure 3.3: Comparison of deep vs. shallow sections for block shear sensitivity.

Geometric
Incompatibility

Figure 3.4: Comparison of wide vs. narrow flanges for block shear sensitivity.
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In general, it is noted that the potential for a moment-induced block shear

failure to occur in a bolted flange splice connection is limited to relatively shallow

sections with moderate-to-thin flange thicknesses, with a moderate-to-wide flange

width. In addition to these specific section geometry limitations, it is noted that

the number of required bolts in each flange greatly affects the possibility of a

block shear critical connection detail. For every new row of bolts added to a

flange, the connection length increases significantly due to the minimum spacing

requirements for fastener holes. This increase in connection length increases the

shear component of the block shear failure mode, and often leads to a block shear

resistance surpassing the gross section capacity for flexure.

3.1.2 Section selection and connection detailing

With the initial geometric limitations in mind, W-sections were selected by ran-

dom, and a block shear critical moment splice connection detail was attempted.

The detailing of the connections relied on certain base assumptions and require-

ments:

1. The connection is a bolted moment splice under pure moment only.

2. No web splice is provided – all force transfer occurs through the flanges.

3. Full lateral stability is provided for the beam.

4. Bolts are in double-shear, with both interior and exterior splice plates1.

5. The induced force in each flange is assumed to be Mapplied/(d− tf ), i.e. the

assumed moment arm of the force couple is between the centroids of the

two flanges.

1bolts in double-shear were specified to provide the shortest connection length possible for
a given bolt diameter. As previously discussed, the moment-induced block shear failure mode
was found to be highly sensitive to the overall connection length of the bolt group.
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The design methodology (outlined in Figure 3.5) was automated via Julia

functions in a step-by-step procedure template created in Jupyter Notebooks

(Kluyver et al., 2016). Using Jupyter Notebooks allowed for visual exploration of

all possible combinations of bolt diameter, end distance, edge distance (gauge),

and pitch, and ensured that all connection details met CSA S16-19 distance re-

quirements at all times. Jupyter Notebooks also provided the added benefit of

easy annotation and case-by-case notes for each test specimen.

The semi-automation of the preliminary design phase was especially necessary

due to its trial-and-error nature. Although general limitations in section geometry

were understood before the preliminary design phase, these limitations were only

relative measures; it was unclear as to what constituted a “narrow” flange or a

“deep” section in absolute value terms.

3.1.3 Sample design methodology for M5: W610X101

This section provides the step-by-step design methodology for one of the six

section-connection details that were selected for fabrication for full-scale labora-

tory testing, detailed in Section 3.1.4; the selected specimen was a W610X101

section, whose geometric properties relative to other W-sections is shown in Fig-

ure 3.8. The logic of each step is presented, along with the basic performed

calculations. Full design checks and S16-19 spacing limit calculations are not

explicitly shown, but are performed when following the workflow in Figure 3.5.

First, basic assumptions of material strengths were defined:

Fy = RyFy,nominal = 1.1× 350 = 385MPa (ASTM A992, probable)

Fu = 460MPa (ASTM A992, nominal)

Fu,bolt = 1050MPa (ASTM F3125 Grade A4901)

Since the objective of this study was to evaluate the predictive capacity of

existing block shear design equations, and not to evaluate their statistical level

1American Society for Testing and Materials (2019)
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Choose section

Select material 
properties

Determine critical moment 
capacities:

𝑀𝑦,𝑀𝑝

Choose design moment 
capacity:

𝑀𝑑𝑒𝑠𝑖𝑔𝑛 = 𝑋𝑀𝑦

Where X = 0.90 (typ.)

Choose bolt diameter, 
grade

Increase 𝐹𝑑𝑒𝑠𝑖𝑔𝑛 by 1.5x 
for splice plate design

Determine equivalent flange force:

𝐹𝑑𝑒𝑠𝑖𝑔𝑛 = 𝑀𝑑𝑒𝑠𝑖𝑔𝑛/(𝑑 − 𝑡𝑓)

Determine number of bolts such 
that:

𝜙𝑅𝑏𝑜𝑙𝑡𝑠 ≥ 𝐹𝑑𝑒𝑠𝑖𝑔𝑛

Determine connection spacing 
limits (CSA S16-14):

𝑒𝑛𝑑min , 𝑝𝑖𝑡𝑐ℎ𝑚𝑖𝑛 , 𝑒𝑑𝑔𝑒𝑚𝑖𝑛

Determine if theoretical minimum 
block shear capacity ≤ 𝐹𝑑𝑒𝑠

YN

Choose end 
distance:

𝑑𝑒𝑛𝑑

Visualize and select 
desire combination 
of pitch, gauge to 

reach target 
connection capacity

Connection geometry 
designed

Distribute flange force:

𝐹𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟 = 𝐹𝑑𝑒𝑠𝑖𝑔𝑛/2

𝐹𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 = 𝐹𝑑𝑒𝑠𝑖𝑔𝑛/4

Interior plate passes all 
connection spacing 

limits? 

YN

Determine minimum 
thickness required for:
- Bolt bearing
- Compression buckling
- Gross tension yielding
- Net tension fracture

Choose critical thickness 
as plate thickness. Round 
accordingly for standard 

plate sizes.

Splice geometry 
designed

Figure 3.5: Specimen detailing methodology
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2700mm
2500mm

1500mm

Figure 3.6: Final designed M5 test specimen.

of safety, probable material capacities and unfactored design equations are used.

The nominal yield strength, Fy, is multiplied by 1.1 to determine the probable

yield strength as per the CSA S16-19 Cl.27.1.7 (2019) for seismic design. It is

noted that the ultimate strength, Fu, was left at its nominal value as no direct

method for a probable ultimate strength value is provided in the CSA S16-19

standard. During the finite element analysis of these designed specimens, prob-

able material strengths based on the coupon testing results of similar sections

performed by Pizzuto (2019) were used.

Second, the basic bolt information was defined:

db = 7/8”

Hole tolerance = 2mm

dh ≈ 24mm

Shear planes = 2

The selection of the initial bolt diameter was arbitrary, but was typically

chosen to be either 7/8” (22.2mm) or 1” (25.4mm). This provided an ideal

compromise between strength (reducing the number of total bolts required per

flange), while minimizing the reduction in flange area as well as minimizing the

require bolt spacing limits.

Then, since the ideal critical block shear failure moment occurs below the

yield moment of the gross section, a target moment value, Mdes, was determined
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Figure 3.8: W610X101 W-Section properties
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as a proportion of the yield moment, My. This proportion was typically taken as

0.80My, but was adjusted depending on the section.

Mdes = 0.80My = 0.80SxFy = 776kNm (3.1)

As the moment splices were detailed without any web connections, the entire

moment must transfer through the flanges. The design moment was then trans-

lated into a design force by assuming a moment arm between the compression

and tension flange centres.

Fdes =
Mdes

d− tf
= 1322kN (3.2)

Then, a block shear resistance of the tension flange equal to Fdes would cor-

respond to a moment design equivalent to Mdes = 0.80My, and would be the

critical moment resistance of the section. At this stage, a preliminary check on

the capacity of the fasteners was performed. To maximize the potential for a

block shear critical moment connection, it was important to minimize the overall

connection length by minimizing the number of bolts used in each bolt row. To

determine this minimum viable number of bolts per flange, the target block shear

capacity Fdes was divided by the shear resistance of an individual bolt. Nominal

material strengths and unfactored strength equations were assumed for the bolt,

and two shear planes were used, as both interior and exterior splice plates were

specified.
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Vr,shear = 0.6Fu,boltnAb (3.3)

= 0.6(1050)(2)(
π22.22

4
)

= 489kN

Vr,bearing = 2.4Fu,beamdbtf (3.4)

= 2.4(460)(22.2)(14.9)

= 366kN

Vr = min [Vr,shear, Vr,bearing] (3.5)

= 366kN

Then:

nb,min =
Fdes

Vr
(3.6)

=
1322

366

= 3.6→ 4

A total of 4 bolts was required per flange to adequately resist the specified

target moment capacity. At this stage of the design process, some qualitative

information was provided on the likelihood of a block shear critical moment con-

nection design. By experience, it was noted that a block shear critical connection

geometry was difficult or impossible when six or more fasteners were required in

the tension flange, assuming the bolts will always be placed in a single line on

each side of the flange. Since the shear component of the block shear equation

was proportional to the connection length, lc, adding another bolt to each row

on the tension flange had a significant impact on the block shear resistance. If

Mdes was large and required a significant number of bolts to adequately resist

its corresponding flange force, the minimum possible block shear resistance value
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would exceed the target flange resistance, Fdes. In this case, the target moment

could be increased in an attempt to match this minimum block shear resistance,

with Mdes allowed to exceed My, but remaining below Mp. However, this could

induce a positive feedback loop in which increasing Mdes would further increase

the number of bolts required to resist the target force. An alternative option was

to increase the bolt size. However, due to a limited selection of standard bolt

diameters, this method was found to be ineffective from the author’s experience.

Therefore, should the required bolt number per flange for a reasonable value of

Mdes exceed 4 bolts, the design process could either be restarted with a new

section size, or continued with the understanding that the critical block shear

moment strength would most likely not be the critical moment capacity.

Next, the connection spacing limits defined by the CSA S16-19 Cl.22.3 and

Table 5 (2019) were determined. The relevant limits were the minimum end

distance, the minimum edge distance, and the minimum/maximum bolt pitch.

A visual definition of these three values are provided in Figure 3.7. An upper

limit of 100mm (4”) was set for the maximum end distance. The minimum edge

distance was used to determine the minimum and maximum possible bolt gauge,

or the centre-to-centre distance between bolt rows on opposing sides of the web.

The maximum gauge was the distance where the minimum edge distance was

reached on the free end of the flange; the minimum gauge was the distance where

the minimum edge distance was reached for the yet-to-be-designed interior splice

plate that was placed on either side of the section web. Since the interior splice

plate must lie flat on the interior face of the flange, its width was governed by the

flange width as well as the k1 distance from the centre of the section to the toe of

the flange-web fillet. For a given combination of pitch, gauge, and end distance,

the corresponding block shear resistance of the tension flange and its equivalent
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moment resistance was determined by:

Tr,EBS = 2×
[
bf − gauge− dh

2
tfFu + 0.6(end+ pitch(nbolts − 1))tf

Fy + Fu

2

]
(3.7)

Tr,CBS = (bf − 2dh)tfFu + 0.6(end+ pitch(nbolts − 1))tw
Fy + Fu

2
(3.8)

And:

MEBS = Tr,EBS × (d− tf ) (3.9)

MCBS = Tr,CBS × (d− tf ) (3.10)

Since all connection geometry limits were defined, the entire block shear design

space could then be determined and plotted. A plot of all possible combinations

of bolt geometry and the corresponding critical block shear moment capacity

is shown in Figure 3.9. Each vertically stacked surface represented a given end

distance, and all combinations of allowable pitch and gauge were represented by

the X and Y axes. The two distinct slopes along the pitch axis represented the

two different possible block shear failure modes, Edge Block Shear (EBS) for

smaller pitches, and the Complete Block Shear (CBS) for larger pitches. The

intersection of the two slopes represented the theoretical connection length where

the two block shear failure modes would have the same theoretical resistance.

It is noted that there exists a third theoretical block shear failure mode, the

Centre Block Shear (CeBS), where a central block is removed from the flange,

with shear planes lying in both the flange as well as the web. Due to three

simultaneous shear planes for this failure mode, it was found to not govern the

connection design for practical connection details. Nevertheless, the CeBS failure

mode was considered during the automated calculations. A visual overview of

these three moment block shear failure modes is provided in Figure 3.10.
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Figure 3.9: Design space for W610X101 section.
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Edge Block Shear

Complete Block Shear

Centre Block Shear

Figure 3.10: Possible moment block shear failure modes.

At this stage, a critical design requirement was evaluated: did there exist a

possible combination of end, pitch, and gauge distances that resulted in a theo-

retical block shear failure resistance that was equal to or less than the specified

target moment capacity, Mdes? A plot of Mdes against the possible design space

for the W610X101 section is shown in Figure 3.11; the intersection of the tar-

get moment surface with the design space indicated that there was a possible

combination of connection geometry such that the critical block shear moment

capacity was equal to or less than the target moment capacity, Mdes. Should

the target moment surface not intersect with the connection design space, two

options were possible. First, the target design moment could be increased to

allow for a possible design space intersection, effectively raising the red surface.

Second, the bolt size could be adjusted to change minimum spacing requirements

to lower the design space surfaces. From experience, it is noted that the second

option had marginal impact on the absolute values of the design space surfaces.

The first option was limited by the gross section properties: the target moment
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Figure 3.11: Target moment capacity Mdes in red against the M5 design space.
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Figure 3.12: Sample of possible connection geometry combinations for a block
shear critical failure mode.

may be increased to above the elastic moment, but should remain below the gross

plastic moment to create a block shear critical connection. However, since the

difference between My and Mp is typically small, the actual window of adjustment

for Mdes was also small. It is in the author’s experience that should the initial

target moment not be met by the selected section and bolt hole size, a block shear

critical connection was unlikely to control the design, and a new section should

be selected.

Once a possible block shear critical failure mode was confirmed, the geomet-

ric combinations that resulted in a block shear moment resistance within a set

tolerance (typically 10%) of the target moment was plotted for a final connection

geometry design. One possible set of connection geometry with an end distance

of 50mm (2”) that provided a critical block shear moment capacity within 10%

of the target moment capacity is shown in Figure 3.12. When possible, the final

connection geometry was chosen to reflect typical spacings used by practising

engineers, typically in half-inch increments. These typical spacings are end dis-
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tances of approximately 50mm (2”), pitch distance of approximately 75mm (3”),

and edge distances greater than 38mm (1.5”). For the M5 specimen, the following

connection geometry was selected:

end = 35mm

pitch = 75mm

gauge = 145mm

With the final connection geometry, all possible failure modes and their corre-

sponding unfactored, probable moment capacities were calculated. A comparative

overview of the moment capacities of all possible failure modes is shown in Figure

3.13. For example, the Edge Block Shear moment, MEBS, was calculated by:

Tr,EBS = 2×
[
bf − gauge− dh

2
tfFu + 0.6(end+ pitch(nbolts − 1))tf

Fy + Fu

2

]
(3.11)

= 2×
[

228− 145− 24

2
(14.9)(460) + 0.6(35 + 75(2− 1))(14.9)

385 + 460

2

]
= 1256kN

MEBS = Tr,EBS(d− tf ) = 1256(602− 14.9) (3.12)

= 724kNm

With the final connection geometry specified, and critical moment capacities

verified, the periphery elements were designed. For the splice plates, one exterior

and two interior splice plates were specified for each flange. The flange force

was assumed to be transferred approximately proportional to its size, and was

increased to 150% of the expected critical failure mode to provide an additional

level of safety:
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Figure 3.13: Overview of theoretical probable and unfactored moment resistances.

Fext = 1.5× Fcrit/2 = 1.5Tr,EBS/2 = 942kN (3.13)

Fint = 1.5× Tr,EBS/4 = 471kN (3.14)

The minimum thickness of each plate was determined for each potential failure

mode using the CSA S16-19 design standard. The widths of both the interior and

exterior splice plates were maximized to the available flat surfaces on both sides

of the flange:

bsplice,ext = bf (3.15)

bsplice,int =
bf − 2k1

2
(3.16)

The design checks included: gross section yielding, net section fracture, plug

shear, bearing failure, as well as the buckling compression resistance of the exte-
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rior compression flange. For this calculation, the end to end length was taken as

the centre-to-centre distance between the nearest bolt holes on opposing sides of

the splice. With a typical 12mm (0.5”) gap specified between opposing sections,

this length was calculated by:

Lu = 2× end+ 12 (3.17)

The effective length factor of k = 0.7 was chosen for compression buckling

design, as the geometry of the splice plates and bolts were assumed to act as fixed

boundaries for the free length. Once the critical plate thickness was determined,

it was then rounded up to the nearest half-inch increment to reflect common

stock plate thicknesses for structural steel fabricators. A standard end distance

of 50mm (2”) was used for the free ends of each splice plate.

Since the detailed connections were to be modelled using finite element analy-

sis software as well as fabricated and tested in the structural laboratory, the rest

of the section outside of the connection region was also designed and detailed.

First, as the laboratory test specimens would be loaded under a four-point load

configuration, the shear span and total length of the beam were selected. The

total length of the beam was chosen to be l = 2500mm with a shear span of

a = 1500m; a justification of these dimensions are provided in Chapter 4. With

the selected shear span, the required applied force in a four-point load configura-

tion was calculated. To be conservative, the expected required force was chosen

as the force corresponding to the gross plastic moment:
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3.1 Selection of initial test specimens

Papplied =
Mapplied

a
(3.18)

=
Mp

1.5m

=
1117kNm

1.5m

= 1675kN

Next, the bearing capacity of the section was determined for this required

force. For most of the sections tested, the bearing capacity of the web alone was

sufficient to withstand the expected forces. However, to minimize local deforma-

tions during laboratory testing, bearing stiffeners were specified for all test spec-

imens. One inch stiffeners were placed at load and support points that spanned

up to the toe of the web fillet in the K-area of the opposing flange from the point

of contact. A base size of 8mm E490 electrode fillet welds was initially specified

along all contact points between the stiffener and the section, with the size being

increased if the welds could not withstand the full expected load on the stiffener.

The beam end was extended by 200mm (ltotal = 2700mm) to provide additional

bearing support at the end. The effective length and shear span of the beam

section remained at l = 2500mm and a = 1500mm, as seen in Figure 3.6.

3.1.4 Initial test specimens

The process above was performed over thirty times, with sections selected by

trial-and-error, accounting for the general rules for block shear sensitive section

geometries as listed previously. From the initially designed section-connection

details, five unique sections were selected to be fabricated and tested in the struc-

tural laboratory. These sections were chosen to represent the general geometric

limits for block shear critical sections in flange width and section depth. The

range of geometry in depth, width, and linear mass of the selected five specimens
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Figure 3.14: Width, depth, and linear mass of all standard W-Sections (selected
specimens highlighted in red)

is shown in Figure 3.14. It is noted that although a good range in flange width and

section depth was captured in the selected group, the linear masses are all similar

in value, with a maximum linear mass of 113kg/m, and a minimum of 53kg/m.

This is in part due to the fact that the wide range of linear masses available for a

W-section with similar section depths come from the large variance in available

flange thicknesses. This is best observed by the series of upwards sloping groups

of section sizes in the d vs. W graph in Figure 3.14. As previously indicated,

since the block shear resistance is highly sensitive to the flange thickness, heavier

sections typically could not be detailed such that the block shear moment was

the critical resistance.

The expected moment capacities of the two block shear failure modes as well

as the two gross section flexural strengths are found in Figure 3.15 and Table

3.1. All specimens were detailed such that the critical moment resistance was

tied to the Edge Block Shear failure mode. The isolation of the EBS failure
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Table 3.1: Selected section overview. Critical moment capacities are in bold.

Test ID Section Bolt Diameter (in) Mp (kNm) My (kNm) MCBS (kNm) MEBS (kNm)

M1
W250X58

(W10X39)
7/8 295 266 277 250

M2
W360X91

(W14X61)
7/8 643 581 624 502

M3
W410X53

(W16X36)
3/4 404 357 339 299

M4/M6
W460X113

(W18X76)
1 1028 920 946 741

M5
W610X101

(W24X68)
7/8 1117 970 894 724

mode, or the difference in resistance between the critical resistance and the next

lowest resistance, varied depending on the section, with the M1:W250X58 section

having the smallest difference between the EBS moment failure mode and the

Yield Moment. The connection details of the preliminary models M1-M6 are

provided in Chapter 5. It is noted that M4 and M6 have the same section size

and connection geometry, but M6 has the addition of a typical web splice plate

connection with slotted holes to observe the effects of these additional bolts in

the block shear failure mechanism.

3.2 Preliminary finite element models

Once specimens M1 to M6 were selected and detailed, preliminary finite element

models (pFEMs) of the expected laboratory loading conditions were created to

verify the initial analytical calculations on the expected failure mode. Like all

finite element analyses, the preliminary set of models require significant iteration

and verification to ensure that a suitable compromise was met between proper

boundary conditions that reflect true expected loading conditions, the selection

of mesh elements and mesh density for analysis resolution, and computational

time. For physical representation of the test configuration, a parametric script in

66



3.2 Preliminary finite element models

Grasshopper for the Rhinoceros computer aided design program was developed.

These files were then imported into Abaqus/CAE for all remaining finite element

analysis tasks. This section provides an overview of the development of the

preliminary finite element models.

3.2.1 Physical representation of test conditions

As the objective of this project was to investigate the block shear failure mode

during moment-induced tension, a four-point load, pure bending moment method

was chosen for the laboratory testing component. The four-point load method

provides the benefits of eliminating shear forces in the mid-span region, con-

trolling the applied moment for a given load by adjusting the distance between

load/support points, and allowing for an extended region of constant moment to

allow for comparisons of gross/net section behaviours at the same moment value.

A more detailed description of the laboratory loading conditions is provided in

Chapter 4.

2700mm
2500mm

1500mm

Figure 3.16: Translation of test conditions to FE conditions.
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The loading method also provides the added benefit of two planes of symmetry,

the first at the centre of the splice plates (see Figure 3.16), and the second being

along the weak axis of the cross-section, parallel and centred on the web. These

planes of symmetry allow for modelling only one half of each symmetry plane in

the pFEMs, significantly reducing the computational time required for analysis.

3.2.1.1 Load/Support boundary conditions

The behaviour of the loading and support points was controlled by displacemen-

t/rotation boundary conditions on the exposed face of the loading and support

plates (Fig. 3.17). Both plates were tied to the beam, simulating a no-slip con-

dition. The surfaces of these plates were then coupled to a single reference point

100 mm above each plate using the kinematic coupling constraint method. Cou-

pling the face of each plate to a single point allowed for simpler manipulation of

the changing displacement/rotation conditions on the plate during the loading

process. Figure 3.17 shows the coupling and displacement of the loading plate to

simulate the displacement-based loading performed in the structural laboratory.

A similar coupling was performed on the support plate to represent that roller

support.

During the bolt preloading step of the analysis, both the loading and support

reference points were fully restrained from any displacement or rotation. For

loading steps, the support reference point was only restrained from lateral/vertical

displacement, and was only permitted to rotate in the direction of bending; the

loading reference point restrained all rotation in the non-bending direction, and

was deflected directly downwards to load the beam. The loading of each specimen

occurred in two steps:

1. LOAD1 displaced the load plate 10mm downwards. This small initial dis-

placement was to allow for all bolt slippage to occur before primary loading.

Additionally, the use of Abaqus’ restart requests allowed for mid-analysis
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changes to the FE model without having to restart the computationally

expensive initial slippage phase.

2. LOAD2 displaced the load plate beyond the initial slip point to the point of

ultimate connection capacity. After trial and error, a final displacement of

90-120mm at the load point provided the necessary flange force development

and deformation. Using restart requests, the specimens could be further

loaded without restarting the analysis by creating an additional LOAD3

step when necessary.

3.2.1.2 Connection symmetry

The four-point loading configuration was symmetric about the centre of the

loaded member. Applying a symmetry plane boundary condition to the faces

of the splice plates cut at the centreline allowed for the modelling of one-half of

the loading assembly (Figure 3.18). The rotation at the location of the boundary

condition (the mid point of the splice plates) was 0, i.e. parallel to the horizon.

It is noted that this naturally assumed perfect symmetry and positioning

of all loading and support plates, as well as perfect symmetry of both beam

specimens on either side of the connection. Although these assumed conditions

are impossible to replicate in real life, for the preliminary finite element models,

these simplifications were acceptable, since only the general behaviour of the

tension flange was desired.

3.2.1.3 Cross section symmetry

The second plane of symmetry was in the weak-axis, parallel to the web (Global

X axis in Abaqus/CAE ). Two main points were noted:

1. This boundary condition was applied to all surfaces that have been effec-

tively ‘cut’ by the symmetry plane, including the exterior splice plates and
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(a) Loading plate constraint.

(b) Displacement on reference point.

Figure 3.17: Constraint/Displacement method on loading plate. support.
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Figure 3.18: ZSYMM Boundary condition on the M3 pFEM in Abaqus/CAE

load/support plates. It is noted that this boundary condition does not re-

strict the relative displacement between parts ; the slipping/bearing of the

splice plates with respect to the beam was still captured. However, this

boundary condition would not be able to capture any lateral distortion of

the splice plates should it occur during laboratory testing.

2. This boundary condition eliminated the possibility of capturing (in)elastic

lateral buckling of the beam section, as it effectively placed a lateral dis-

placement restriction on the entire length of the beam. It was determined

that since the real-life laboratory lateral supports would ensure that the

test specimen’s unbraced length (L) was significantly lower than that of its

critical length (Lu), this simplification of the lateral support was adequate

for preliminary analysis.

To verify the validity of point 2, two full FE analyses were performed on the
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3.2 Preliminary finite element models

Figure 3.19: XSYMM Boundary condition on the M4 pFEM in Abaqus/CAE

M2 (W360X91) specimen: one modelling the full section geometry, with only

the splice plate symmetry and realistic lateral restraint points; the other using

both the splice and web symmetry planes, effectively providing complete lateral

support for the specimen. All other model details (element type and size, loading

protocol, interaction properties) remained identical, and the force/moment values

from the half model were doubled and compared to the full model results.

A series of comparisons between the full and half finite element models is

shown in Figures 3.20 to 3.23. The X, Y, Z displacements of a single node in

the centre of the web are compared in Figure 3.20, and shows virtually identical

behaviour, indicating that the web splice symmetry boundary condition is a suit-

able simplification for the behaviour of the connection, and that lateral torsional

buckling will not occur.The global behaviour of applied displacement vs. the end

moment (Figure 3.21) experienced by the connection is also identical, further

confirming that the web symmetry boundary conditions is a valid simplification

72



3.2 Preliminary finite element models

25 50 75 100 125

-5

-4

-3

-2

-1

0

W
e
b
 N

o
d
e
 D

is
p
la

ce
m

e
n
t 

(m
m

)

U1

Full
Half

25 50 75 100 125

Load Displacement (mm)

-150

-100

-50

0

U2

Full
Half

25 50 75 100 125
-5

-4

-3

-2

-1

0

U3

Full
Half

U1

U2

U3

Figure 3.20: Connection displacement comparison of M2 Full/Half models
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Figure 3.21: End moment comparison of M2 Full/Half models

of the full section model.

In addition, the local failure components for both the Edge Block Shear and

Complete Block Shear failure modes were nearly identical for both the full FE

model and the simplified half model. The comparison of each failure mode was

split into the corresponding shear and tension plane regions. The free body cut

tool in Abaqus was used to determine the cumulative force vector magnitude in

each failure plane to compare between the full and half models. As these local

stressed areas were the major concern point for analysis, it was concluded that

the double-symmetric, quarter-model representation of the test conditions was

suitable for the primary finite-element analysis.

3.2.2 Model development and procedure

The 3D solid models of the test specimens and all supporting pieces were created

in a parametrically driven Grasshopper file in the Rhinoceros v6 CAD program

(Robert McNeel & Associates, 2018). The use of parameter-based design was

chosen to expedite the drawing procedure for future models. Although the pFEMs
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Figure 3.22: Edge block shear component comparison of M2 Full/Half models
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Figure 3.23: Complete block shear component comparison of M2 Full/Half models
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are based on nominal section properties, and nominal connection geometries,

the post-laboratory phase of modelling would require as-measured section and

connection properties. Further, for future parametric studies after the model

calibration, the Grasshopper script provides a significant increase in productivity.

A conceptual illustration of the Grasshopper script developed for this project

is presented in Figure 3.24. The input parameters were adjusted by the user in

the following groups:

1. Cross Section Details: d, bf , tf , tw, k, k1.

2. Connection Details: dhole, nrows, end, gauge, pitch.

3. Plate Details: tplate, dend.

4. Bolt Details: db, dhead, lb.

5. Loading Details: Location and dimension of stiffeners, lbeam, lshear

Once the unique parameters were provided, the script outputted five unique

3D parts, some of which were used multiple times. The general part list and their

number of use in the FE models are listed below, with a reference image in Figure

3.25:

1. Fine Mesh Section: the portion of the beam close to the splice connection.

This is defined as the first 500mm of the beam section from the connection

end. (1)

2. Coarse Mesh Section: the remaining portion of the beam. (1)

3. Exterior Plates: The splice plates touching the outer faces of both the

compression and tension flanges. (2)

4. Interior Plates: The splice plates touching the inner faces of the tension/-

compression flanges. (4)
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Figure 3.24: Specimen drawing program in Grasshopper
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1

2

3

4

5

6
7

Figure 3.25: Rhino/Grasshopper output components.

5. Bolt: A simplified bolt model of both cylindrical shank and head. The

shank length is specified as the exact grip length between the flange thick-

ness and the plate thicknesses. (8-12)

6. Loading Plate: the 8”×8”×1.5” hardened plate used to load the beam.

7. Support Plate: the 8” wide steel plate at the supports.

These parts were exported as .sat files and imported separately into Abaqus/-

CAE and re-assembled. In addition to the section-specific parts outputted by the

CAD program, two additional section-independent parts were defined once and

reused for each model: the loading plate and support plate representing the two

contact points on the beam section to the applied loads.

3.2.2.1 Material properties

Early-stage models to test part interactions and analysis methods used fully elas-

tic steel material properties with a Young’s Modulus of 200 GPa and a Poisson’s
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ratio of 0.3. As the pFEM analysis developed, representative material properties

were required to reach the high strain, non-linear stress state that was required

to develop the expected block shear failure mode.

Since the laboratory test specimens were not fabricated during the pFEM

portion of this study, the coupon testing data from the work of (Pizzuto, 2019)

was used as surrogate true material properties for the pFEMs. For each unique

section, four flange and three web coupons were taken from the same fabrication

heat. Testing results provided the local Young’s Modulus, and the engineering

stress-strain curve until rupture. The Poisson’s ratio was assumed to be constant

at 0.3. The engineering stress-strain curves were converted to the true stress-

strain values, and were used for the plastic material properties in the FE models.

The coupon testing results for Pizzuto had values of the Young’s Modulus

ranging from 199 GPa to 226 GPa, and yield stresses ranging from 342 MPa to

444 MPa. As there was a significant spread in the true material properties of

the available coupon data, the properties of the section closest to the FE model

section was used to represent the probable material property. The comparison is

show in Table 3.2.

Table 3.2: True material property sections

Test ID Section Size Closest Coupon Section

M1 W250X58 W360X64

M2 W360X91 W360X64

M3 W410X53 W410X85

M4/M6 W460X113 W460X113

M5 W610X101 W530X138

Abaqus requires the use of sections to define material properties for different

regions on the same mass. This resulted in separate section definitions for the

beam flange and web. Following the procedure of (Pizzuto, 2019), the ‘flange’

section included the entire K-area fillet region of the flange/web interface, as

well as the portion of the web that is enclosed within the fillet depth. This was
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considered a suitable replacement to having additional coupon data for the K-

area alone as the region represents a very small portion of the overall cross-section

area, and was assumed to have a negligible effect on the global behaviour of the

section.

Bolts, splice plates, and loading plates, which were conservatively detailed

to remain elastic under load, were modelled as perfectly elastic materials with

E = 200 GPa. In case of unexpected yielding/failure during laboratory testing,

coupons were specified for the fabrication of the splice plates for eventual testing.

3.2.2.2 Mesh element selection

The selection of elements was based on previous successful element choices made

by past studies on structural steel connections at McGill University (Pizzuto,

2019; Moreau, 2014). Meshing was performed entirely with solid elements. Ini-

tially, the “Coarse” section of the beam was planned to be represented by planar

shell elements as high localized strain and plastic behaviour was not expected in

the gross section, and shell elements could greatly reduce the computational time.

However, it was determined that the added complexity of adequately represent-

ing the flange/web fillet interface, the bearing stiffeners, and the tie constraint to

the solid “Fine Mesh” section was not worth the computational time that could

potentially be saved.

The majority of the mesh was based on hexahedral, first-order reduced inte-

gration C3D8R ‘brick’ elements. Hexahedral elements were chosen to represent

the section as the base shape resembled the major section geometries of rectan-

gular flanges, webs, and stiffeners, allowing for elements to naturally fill most of

the base geometry with limited distortion. The combination of the first-order

analysis and the reduced-integration scheme provides a single integration point

for each element, rather than upwards of 27 for the same base element shape

(Dassault Systèmes, 2018). In addition to the C3D8R elements, C3D6 ‘wedge’

elements were also used for the flange/web fillet area, as well as in the central
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portion of the bolts. The wedge elements were suitable for approximating the

curved and axisymmetric regions.

Although second-order elements provide more integration points and thus

more accurate and ‘smoother’ results, they are ideal only for problems that do not

involve severe element distortions (Dassault Systèmes, 2018). Since the region of

interest at the tension connection was expected to undergo significant deformation

at the bolt holes, and for the added benefit of reduced computational demand,

first-order elements were selected for analysis.

The selection of reduced-integration elements over full-integration elements

was initially based on expected computational efficiency. However, in a reduced

vs. full integration comparative trial on the M4 pFEM, it was observed that

CPU time required for either integration scheme was virtually identical (Table

3.3). A comparison of local and global behaviour of the output models of both

the full and reduced integration methods showed equally similar results, even

when loaded well beyond the critical failure point of the connection (Figure 3.26).

However, even though both the computational resources required and the anal-

ysis results were similar, it was decided that reduced-integration elements would

be used for the remaining pFEMs, and to re-evaluate the procedure during the

post-laboratory calibration phase of the project. Reduced-integration elements

was selected for two reasons: first, since only the M4 pFEM was used to compare

the results between the integration schemes, it was possible that a reduced com-

putational time could still be achieved with other geometries for the remaining

models; second, reduced-integration elements are often preferred for high-strain

and bending scenarios, where shear locking is not possible (Dassault Systèmes,

2018; Sun, 2006).

One potential issue with the use of first-order reduced-integration hex ele-

ments was the possibility of hourglassing, where the strain at the single integration

point is calculated to be zero, resulting in a false zero-energy scenario and erro-

neous results. However, there are many safeguards that can prevent hourglassing:
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Table 3.3: Run time comparison of Full vs. Reduced elements of the M4 pFEM

Integration Type CPU Time (s)

Full 27091

Reduced 27094
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Figure 3.26: Analysis comparison of Full vs. Reduced C3D8 elements of the M4
pFEM
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Table 3.4: Mesh overview

Mesh
No. Edge Elements and Approx. Size (mm)

Total no. Elements

Bolt Hole Flange Thickness

Coarse 5 (3) 4 (4) 19080

Medium 8 (2) 6 (3) 41508

Fine 10 (1.5) 8 (2) 101040

Abaqus provides a built-in hourglass control method where an artificial stiffness

is introduced to limit any propagation of zero-strain elements, and; increasing

the number of elements through the thickness of a member and/or increasing the

mesh density of a high-strain region limits the possibility of an hourglass effect

failure (Sun, 2006; Rao, 2011; Dassault Systèmes, 2018). The mesh sensitivity

analysis in the following section ensured that the risks for the hourglass effect

were minimized.

3.2.2.3 Mesh sensitivity analysis

To ensure both analytic accuracy and computational efficiency, a mesh sensi-

tivity analysis was performed on the M4:W460X113 pFEM. Starting with an

initial ‘Coarse’ mesh density based on previous FE work and recommendations

by Pizzuto (2019), the mesh size was subsequently reduced for two additional

models; the mesh sensitivity analysis was only performed on the expected high-

deformation end connection region, while the remaining parts did not change in

mesh size. Table 3.4 provides an overview of the changes in the approximate

mesh size and number of elements in the bolt hole edge region and flange thick-

ness for each trial model. With each change in mesh density, both local and global

behaviour was observed and compared to the previously completed models.

A major point of concern was the ability of the mesh to capture the high strains

expected from bolt hole deformation at the gross shear plane. The deformed

meshes from all three mesh density trials are shown in Figure 3.29; of note is the
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Figure 3.27: Comparison of Coarse, Medium, and Fine meshes

significant single-element distortion for the coarse mesh at the bolt hole along the

gross shear plane, and the smoother and more distinct ‘teardrop’ deformation in

the fine mesh.

Since it is the local stress/strain behaviour that is of major importance, two

stress regions were used to compare the results of the three mesh densities. First,

the Von Mises stress along the gross shear plane for the edge block shear failure

mode was compared from a load displacement of 0 to 50mm; second, the Von

Mises stress in the net tension plane for the edge block shear failure mode near

the end of loading (100mm load displacement) was compared. Since the location

and configuration of the elements change with each new mesh density, it was

impossible to compare a single element’s or node’s response. For the purpose of

the mesh sensitivity analysis, the nodal output response of all nodes along either

the gross shear plane or the net tension plane was extracted from Abaqus and the

mean value was determined. The averaged stresses from each mesh density and

the comparison between the average values are shown in Figures 3.30 and 3.31.
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Figure 3.28: Comparison of Coarse, Medium, and Fine meshes

Table 3.5: CPU Time comparison for Coarse, Medium, and Fine meshes

Mesh Density CPU Time (s)

Coarse 13146

Medium 27094

Fine 53226
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Figure 3.29: Comparison of Coarse, Medium, and Fine deformed meshes at
100mm load displacement
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Figure 3.30: EBS: Shear Component Comparison
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Figure 3.31: EBS: Tension Component Comparison
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Figure 3.32: Meshed bolt and exterior splice plate.

There was no significant difference between all three mesh densities for the

stresses in the shear region. However, for the tension stress response, the coarse

mesh increasingly underestimated the average stress compared to the other two

densities as the loading increased, while the fine and medium meshes showed a

similar response. Based on the comparison of these two local responses, as well

as complete correlation of global responses (such as the total splice end moment

and tension splice force), it was determined that the medium mesh density was

suitable for the preliminary finite element models. Computation time (Table 3.5)

scaled approximately linearly with the total number of elements, allowing for the

medium mesh to provide a suitable compromise between accuracy and resources

required.

With the mesh sensitivity analysis performed and a comparison between the

reduced and full-integration schemes evaluated, a general method for the finite

element model meshing was completed. The coarse mesh section of the model

followed the general element sizing principles as the Coarse Mesh values in table

3.4, while the splice plates were detailed with a mesh similar to that of the fine

mesh section. The bolts were meshed using a Hex-Dominated Sweep mesh of

approximately 4mm to symmetrically fill the cylindrical shank and bolt head;

the use of this mesh type and size was based on its successful use by Pizzuto

89



3.2 Preliminary finite element models

(2019).

3.2.2.4 Contact properties

Contact between parts were simplified with a single friction coefficient of 0.30,

corresponding to a contact surface Class A in the CSA S16-19 standard, with

default Abaqus normal contact properties. While first developing the pFEMs,

contact instabilities were the major cause of diverging analyses and solver errors.

Errors in CAD precision from the imported parts caused plates in contact with

the flanges to have a non-flat surface, resulting in the lack of a proper initial

contact interface, resulting in instability issues. Additionally, without the initial

snug contact interface, the sudden preloading of the bolts caused the static solu-

tion procedure to diverge, as Abaqus attempted to resolve contact overclosures

between parts. The improvement of input CAD file tolerances, as well as the use

of the automatic stabilization feature for the bolt pretension step resolved this

issue. The automatic stabilization provides damping to the model proportional

to the total strain energy of the system, preventing any sudden shifts in adjacent

model components that would cause solution convergence stability issues.

3.2.2.5 Loading procedure

The analysis was split into four distinct steps in Abaqus to allow for changes in

loading procedures without having to completely restart the analysis. The steps

are described in Table 3.6. Each step started with an initial increment size of

1E−4s, with an automatically adjusted minimum increment size of 1E−8s, and

a maximum increment size of 0.05s. Typically, the smaller increment sizes were

necessary during the bolt slipping and first contact of the bolt shank to the flanges

in the LOAD1 step. Once all parts were in solid contact with each other, the step

sizes increased.

Determining the total displacement for the LOAD2 step was an iterative pro-

cess. Since the FE models did not consider fracture of the tension (or shear)
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3.2 Preliminary finite element models

Table 3.6: Step definition for Abaqus pFEMs

Step Time Description

INITIAL N/A Defining all boundary conditions.

PRETENSION 0.1 Pretensioning of bolts while supports are fixed in place.

LOAD1 0.5 Load until all slipping has occurred.

LOAD2 1 Load until failure.

plane, the stress in the tensile plane followed the true stress-strain path as de-

termined by previous coupon test data. As no fracture stress/strain was defined,

the tensile stress continually increased until the material definition reached its

limit.

Failure for a given block shear mode could then be defined as the point where

both the shear and tension planes reach their nominal stress capacity, or 0.6Fy+Fu

2

for the shear plane and Fu for the tension plane when using the CSA S16-19 design

equations. The stress from the finite element models could be determined in two

ways: first, the free body cut resultant force magnitude of each failure plane region

can be divided by the initial, undeformed failure plane area to determine the

engineering stress of each plane. Second, the Von Mises stress of all the elements

in each failure plane can be extracted from each failure plane, with the mean

value compared to the failure criteria. The second method has proved to be more

meaningful, as it inherently considers the often significant deformation of each

failure plane at failure, and better considers the complex stress distributions by

using the Von Mises yield criterion rather than engineering stress values. Chapter

5 provides greater detail in the definition, calculation, and use of this failure

criteria.
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3.3 Results of preliminary finite element models

3.3 Results of preliminary finite element models

Once the first five finite element models were completed, an initial evaluation

of the expected failure modes compared to the observed failure mechanism was

performed. First, a qualitative evaluation of the tension flange at maximum load

was performed; the relative deformation and the Von Mises stress contours are

shown in Figures 3.33 and 3.34.

It is immediately evident that the Edge Block Shear failure mode has occurred

due to the significant displacement of the corner blocks relative to the rest of the

flange section, as well as the distribution of higher stresses around the last row of

bolts that propagate towards the free edge and along the gross shear plane. For

specimens M3-M5, significant necking can be observed along at the net tension

failure region, suggesting an imminent fracture of the plane.

Second, the predictive capacity of the CSA S16-19 block shear equation and

the assumed conversion between the block shear resistance and the equivalent

moment resistance was evaluated. The block shear failure of the pFEM was

defined as the point where the average Von Mises stresses on both the tension

and shear planes reached their nominal capacities, Fy and Fu. The total moment

at the splice face at this point of failure was then defined as the corresponding

moment capacity of the given failure mode.

These resistances were then compared to the theoretical moment resistance

calculated in the process described in Section 3.1.3, where the unfactored, prob-

able CSA S16-19 block shear resistance of the tension flange was multiplied by

the assumed moment arm between the flange centroids to determine the corre-

sponding moment resistance of the block shear failure mode.

The true observed moment resistance was divided by the theoretical moment

resistance to obtain the Professional Factor for the CSA S16-19 design equation

and the methodology used in Section 3.1.3, the results of which are shown in Fig-

ures 3.35 and 3.36. A Professional Factor of 1.0 would indicate a perfect predictive

design equation; a Professional Factor greater than 1.0 would indicate a predic-
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3.3 Results of preliminary finite element models

Figure 3.33: Relative deformation comparison of M1-M5 pFEMs.
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3.3 Results of preliminary finite element models

Figure 3.34: Von Mises Stress comparison of M1-M5 pFEMs.
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Figure 3.35: CSA S16-19 predictive capacity for the EBS failure mode.
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Figure 3.36: CSA S16-19 predictive capacity for the CBS failure mode.
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3.4 Summary

tive design equation that underestimates the true capacity of the section, and

conversely, a Professional Factor less than 1.0 would indicate a predictive design

equation that overestimates the true capacity. Since the ultimate displacement

of the load point in the pFEMs were a rough estimate of the critical displacement

at ultimate load, some specimens were loaded to a point where the Complete

Block Shear failure planes also reached their respective limits. These values were

compared to the theoretical resistances in Figure 3.36 as an additional point of

evaluation for the CSA S16-19 block shear design equations, but it is noted that

the EBS failure mode still governed the overall capacity as expected.

The Professional Factors for the EBS and CBS failure modes were 1.11 and

1.08 respectively, suggesting that the design methodology could reasonably pre-

dict for the moment-induced block shear failure mode. Further, little scatter of

the data points in Figure 3.35 indicated that any deviation from perfect predic-

tive capacity was from smaller systematic errors of the design equation and not

a complete dissociation between predicted and true failure behaviour.

Based on the qualitative confirmation of the Edge Block Shear failure mode,

as well as reasonable Professional Factor values of both the failure modes, the

final detailing of the pFEM specimens for fabrication could be performed with

confidence. Further, the good correlation of both qualitative and quantitative

data of the pFEMs confirmed that the assumptions and methodology for calcu-

lating moment-induced block shear resistances was reasonable, and that further

finite element modelling could be performed for additional data and insight on

the moment-induced block shear failure mode.

3.4 Summary

Insight on two key components of the research project was provided in this sec-

tion. First, the analytic methodology for the selection and detailing of a W-section

moment splice connection with a block shear critical failure mode was presented.
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3.4 Summary

From numerous trial and error attempts to detail a block shear critical moment

splice connection, a general set of observations on what section geometry param-

eters could allow for a block shear critical connection was determined. In general,

a block shear critical moment splice connection is expected to be possible in a lim-

ited subset of available W-sections due to the conflicting limitations between bolt

shear strengths, connection lengths, and gross section flexural capacities. This

analytic design procedure was also expanded to design the bolts, splice plates, and

bearing stiffeners should the section-connection detail be fabricated and tested in

a structural laboratory.

Second, once a set of potential moment block shear failure section-connection

details were determined, preliminary finite element analyses were performed to

provide initial verification that the analytic methods were accurate. The develop-

ment of these models required multiple iterations to verify the validity of bound-

ary condition assumptions as well as a mesh sensitivity analysis to determine a

reasonable mesh density to reflect true deformation and stress distributions at

failure. The preliminary finite element analysis results showed that the moment-

induced block shear was a possible failure mode for bolted moment connections,

and that the proposed design methodology and assumptions were reasonable for

predicting the capacity of a moment-induced block shear failure.

With the base methodology for both the analytic design and finite element

modelling of a moment block shear connection completed, the laboratory testing

phase of the project could be developed. This required the analysis and design of

additional components for laboratory testing such as the loading beam and bear-

ing plates, as well as the selection and detailing of the required instrumentation.

Chapter 4 provides an overview of the laboratory testing preparation performed

for this research project.
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Chapter 4

Laboratory test preparation

For the calibration and verification of the preliminary finite element models, full

scale testing of the six test specimens was planned in the Jamieson Structural

Laboratory at McGill University. The overall footprint of the test configuration

as well as the detailing of the loading beam were based on the capacity of the

available loading apparatus, the spatial limitations of the structural laboratory,

and the geometric and strength limitations of existing test apparatuses. The

type, quantity, and location of a series of instruments to record strain, force, and

displacement during testing were also determined. Due to fabrication delays and

the disruption of in-person research work due to COVID-19 during the Spring

of 2020, the laboratory phase was not completed within the time frame of this

thesis. This section provides an overview of the preparation and detailing of the

laboratory testing phase, but does not provide the results of these tests.

4.1 Detailing of specimens

With the connection geometry finalized for the M1-M6 test specimens, additional

design decisions were required before fabrication and laboratory testing. First,

the length of the test specimens was chosen to be 2700mm, with an effective

support-to-connection end length of 2500mm, based on the spatial constraints
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4.1 Detailing of specimens

Figure 4.1: Overview of complete test assembly.
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4.1 Detailing of specimens

Loading Beam

Beam A Beam B

Lateral Support
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Rocker Support Assembly

Rocker Loading Assembly

Figure 4.2: Test assembly overview.

of the structural laboratory. The total test length of 5400mm allowed for the

majority of the testing assembly to remain within the footprint of the loading

frame assembly surrounding the main hydraulic actuator, as shown in Figure

4.1. The individual specimen lengths of 2700mm allowed for efficient storage

and transportation within the structural laboratory, as the total weight of each

specimen remained below the lifting capacity of the magnetic lift attachment used

when transporting the beams.

The selection of a 1500mm shear length combined with the total 2500mm

effective length of the beam was based on two factors. First, it minimized the

required effective length of the loading beam to 2000mm; this allowed for a reason-

ably sized W-section to be used as the loading beam, while providing adequate

strength and stiffness throughout the test series. Second, it provided suitable

clearance for the lateral support clamp plates on either side of the loading plate

assembly. This was critical, as the available positions for the lateral support

assemblies were limited by the existing longitudinal running beams on the test

frame. The 1500mm shear span also provided a suitable distance to develop the

required moment in the splice connection without exceeding the capacity of the

11MN actuator. As determined in Section 3.1.3 Equation 3.18, the absolute peak

expected force at each load point was 1675kN; this would then require a load at

the hydraulic actuator of 3350kN, well below the 11MN capacity of the machine.
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4.1 Detailing of specimens

Figure 4.3: Approximate location of coupon blanks.

Since the laboratory testing configuration consisted of a symmetric moment

splice connection, two beams were required for each test. However, to reduce the

amount of instrumentation required for each test, and to allow for certainty in

the failure behaviour of the overall splice connection, it was desirable to force

the expected block shear failure mode on one side of the moment splice. This

was achieved by adding an additional row of bolts for one of the two beams,

Beam A, to increase the connection strength of one side of the moment splice.

Instrumentation could then be installed on Beam B alone, as failure would localise

in the Beam B connection region. This asymmetry would also provide the benefit

of requiring a lower total displacement of the loading beam to reach the expected

block shear failure mode, as severe tension flange deformation would concentrate

on one half of the moment splice. In the structural laboratory, Beam B was always

specified on the South side of the testing frame, as the Data Acquisition System

and hydraulic actuator controllers were closer to that end, allowing for shorter

lead wires and connections from the instrumentation to the recording system.
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4.2 Design of loading beam

For capturing the true material properties of each test specimen, 60mmx600mm

blanks were cut from the web and flanges of the parent W-section; the approx-

imate locations of these blanks are shown in Figure 4.3. The blanks were then

specified to be milled to shape and tested for tensile properties as per the ASTM

A370-05 standard (American Society for Testing and Materials, 2005). The re-

sults of the coupon testing will allow for more accurate finite element models to

be created.

4.2 Design of loading beam

Since a four point loading configuration was specified for the laboratory tests,

a suitable load spreading member was required to transfer the single point load

from the hydraulic actuator to the two sides of the moment splice. The design

of the loading beam required that it was well within its elastic range for the

expected flexural, shear, and bearing loads during all six of the laboratory tests.

As the shear span of the four point load configuration was set as 1500mm, and

the total effective length of each specimen was 2500mm, the loading beam would

have a total effective length of 2000mm, excluding any additional extension at

each end to provide improved bearing resistance. The loading beam would then

have to adequately withstand an effective three point loading configuration with

a distance between points of 1000mm.

The design load was selected to be two times the expected load to reach

gross plastic moment capacity on the M5:W610X101 test specimen, which had

the highest theoretical value of MP from all selected specimens. The equivalent

load applied at the two ends of the loading beam was determined by dividing the

expected unfactored gross plastic moment using probable material properties by

the shear span, a = 1500mm:
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4.2 Design of loading beam

Mmax,M5 = 2×MP (4.1)

= 2× (1.1× 350MPa)(Zx)

= 2233kNm

Pmax = Mmax/a (4.2)

=
2233kNm

1.5m

= 1488kN → 1500kN

Then the expected shear, moment, and bearing load was determined for the

loading beam:

Vf = 1500kN (4.3)

Mf = 1500kN × 1m

= 1500kNm

Bf = 1500kN × 2 (4.4)

= 3000kN

Tabulated values for flexural and shear resistances in the CISC Handbook,

based on the CSA S16-14 standard, were used as starting points for the selection

of a suitable W-section loading beam. A heavy-flange W-section was chosen to

maximize the flexural stiffness of the loading beam while maintaining a reasonable

weight. As many W-sections fit the calculated strength requirements, a 2400mm

long W460X349 section was chosen based on the available stock of the steel

fabricator. The additional 400mm is due to an extension of 200mm on either

end of the loading beam to provide sufficient bearing area for the half-round

contact assembly between the loading beam and the test specimens. The expected
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4.2 Design of loading beam

strengths of the loading beam were calculated using nominal material strengths

for ASTM A992 steel (American Society for Testing and Materials, 2019) as well

as factored design equations from the CSA S16-19 standard:

Mr = My = 2407kNm > Mf

Vr = 3287kN > Vf

Br = 6945kN > Bf

∆max = 1.2mm =
L

1665

As with specimens M1-M6, 25mm (1”) bearing stiffeners were specified at

all contact points. The stiffeners were not necessary for strength requirements,

but were included to provide additional torsional stability to account for possible

load eccentricities during testing. Further, due to the heavy beam section and

relatively short length, additional shear stiffeners were included between load

points to prevent any onset of shear buckling. These stiffeners also provided

additional torsional stiffness along the length of the loading beam. The elastic

deflection of the loading beam at midpoint from the peak expected load was also

calculated; this deflection of 0.06% of the load beam length was determined to

be suitable for testing.

Further verification of the loading beam design was performed by an elastic

finite element analysis, as shown in Figure 4.4. The loading beam model was

placed in representative boundary conditions, and the central loading plate was

displaced downwards until the onset of yielding of the beam. The finite element

analysis verification of the loading beam was necessary since the CSA S16-19

design methodology used to determine the shear and bearing resistances allow

for yielding of the section before reaching the ultimate capacity state. Since

any yielding in the loading beam would provide measured displacement errors

during testing, and would result in progressive deformation of the loading beam
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4.2 Design of loading beam

(a) General overview.

(b) Loading region.

Figure 4.4: Finite element model of loading beam.

105



4.3 Instrumentation and data acquisition

for subsequent tests, preventing yielding of the loading beam was critical. A

visual inspection of the finite element model showed the onset of yielding at the

compression flange near the central loading plate. This yielding onset occurred

at a load of 3167kN, which surpassed the design peak bearing load on the beam

during testing. The conservative analytical and finite element analysis verification

of the loading beam design provided confidence that the W460X349 section was

a suitable member to load the test specimens.

4.3 Instrumentation and data acquisition

Since the objective of the laboratory tests was to verify the validity of the finite el-

ement models, instrumentation to capture accurate strains and deformations was

specified at critical locations along the test specimen. A series of strain gauges,

linear variable differential transformers (LVDTs), and string potentiometers were

specified for each test to capture strains in local failure plane regions as well as

global displacements and induced forces.

Spring potentiometers, LVDTs, and load cells were specified along the test

assembly to capture global values of displacement and force, as shown in Fig-

ure 4.5. Three string potentiometers were specified on the ground of the test

configuration at the precise location of the loading points on each half of the

connection. The string potentiometers were secured to wood plates that could

be weighed downed during testing to keep the position stable. The total force

at the load point was determined by the internal load cell of the loading head of

the 11MN hydraulic actuator. An internal LVDT also provided the displacement

of the actuator head on the loading beam. Not shown in Figure 4.5 are two

additional LVDTs magnetically attached to each side of the tension flange, that

would capture the displacement of the edge ‘block’ for the EBS failure mode.

For local observations of strain at the expected failure planes, as well as precise

measurements of strain across the gross section, a series of strain gauges were
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4.3 Instrumentation and data acquisition
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Figure 4.5: Instrumentation for global deformation capture.
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Figure 4.6: Strain gauges for local deformation capture.
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4.3 Instrumentation and data acquisition

specified for each test specimen, as shown in Figure 4.6. First, to determine

the overall moment experienced at the moment splice, linear strain gauges were

specified along the gross section of the web as well as at the extreme edges of

both flanges. The positioning of the gross section strain gauges was based on

remaining in the constant moment region of four-point load configuration, as well

as avoiding the location of the lateral support clamp plates. In general, the gross

section strain gauges were placed 100mm behind the centreline of the last row of

bolts in a given connection. Providing a series of strain gauges at the gross section

allowed for an accurate measurement of the induced moment on the section, as

well as the stress profile along the depth of the member.

At the tension flange near the connection region, additional strain gauges were

specified to measure the local strain in three of the four expected failure planes of

block shear: the shear plane for the EBS failure mode (EBSS), the fracture plane

for the EBS failure mode (EBSF), and the fracture plane for the CBS failure

mode (CBSF). The stress at the failure plane could then be determined once

the true material properties of the section were determined. Strain gauges were

not appropriate for the shear plane for the complete block shear failure mode

(CBSS) as the failure plane is located at the curved intersection of the web/K-

area interface, and were not installed. Since the controlling failure mode for all six

laboratory test specimens was expected to be in Edge Block Shear, the omission

of strain gauges in the CBSS plane was determined to be acceptable; a post-test

visual analysis of the deformation of the CBSS area was planned by drawing a

series of equidistant grid lines alone the entire connection region for the beam,

where the change in distance between grid points could then be measured by

hand. For the two fracture planes, EBSF and CBSF, linear strain gauges were

placed at the centreline of each expected failure plane. For the CBSF plane, the

strain gauge was centred between the two bolt hole centres; for the EBSF plane,

the strain gauge was placed halfway between the free edge of the flange and the

closest edge of the neighbouring bolt hole. The expected shear yielding failure
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4.4 Test assembly and loading method

mode for the EBSS failure plane was captured by rectangular stacked strain

gauge rosettes. Since the stress pattern of the shear plane near the bolt holes

were expected to be significantly more complex than that of the tension planes,

a rosette was specified for the EBSS failure plane. The rosette allowed for the

calculation of all principal stress values, which could then be used to determine

the Von Mises stress at the EBSS failure plane, allowing for a direct comparison

to the average Von Mises stress extracted from the finite element models.

The specified strain gauges were capable of accurately measuring up to ε =

0.014 of total strain. From experience with testing steel coupons of ASTM A992

steel, the strain gauges were expected to provide usable results up to approxi-

mately the initial strain hardening region of the stress-strain curve. Although

this limitation of the strain gauges would not allow for a complete capture of the

local strain profile up to fracture, their use was justified since the onset of fracture

would be visually evident from extensive deformation, as well as from the change

in the applied load vs. deformation curve that is constantly monitored during

testing.

4.4 Test assembly and loading method

The full testing assembly, as seen in Figures 4.7 and 4.8, consisted of the moment

splice connection assembly, the loading beam, and contact points. The contact

points provided proper bearing surfaces for loading, support, and lateral restraint,

and came from existing components from the structural laboratory at McGill

University.

The support assembly consisted of a rocker element providing 200mm of bear-

ing length on each end of the moment connection, that rested on a series of 3”

(75mm) thick plates and two 6” (150mm) diameter steel cylinders that allowed

free displacement in the axial direction, as well as rotational freedom at the sup-

port locations. The loading assembly contact point provided an equivalent degree
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4.4 Test assembly and loading method

Figure 4.7: Render of loading frame assembly.
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4.4 Test assembly and loading method

Figure 4.8: Exploded view of test specimen assembly.

of freedom at the load points, with an 8” (200mm) half-cylinder providing the

rocking surface on a series of 1.5” (38mm) thick steel plates and a series of 1”

(25mm) cylinder rollers.

To restrain any lateral torsional buckling of the beams during testing, lat-

eral support was provide by four clamp plate assemblies that were bolted to the

compression flanges of the beams. These clamp plates were restrained from lat-

eral displacement by a series of tie rods and ball joints that were fixed along

two existing running beams on the test frame. As existing holes in the running

beams governed the location of the lateral support anchor points, the position

of the clamp plate assemblies on the two test beams were not perfectly symmet-

ric; the exact positions are shown in Figure 4.9. The tie rod support system

allowed for vertical displacement by means of a freely spinning upper plate on

each of the clamp assemblies. The limited vertical stroke of this lateral support

configuration ( 100mm), as well as the existing holes in the test frame columns

to mount the running beams, required that the vertical position of the running
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4.5 Summary

152
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486 508

Figure 4.9: Positioning of lateral support clamps. Dimensions in mm.

beams be changed depending on the section depth being tested. This allowed for

the maximum possible amount of vertical displacement while maintaining lateral

support.

A fixed-rate, displacement-based loading protocol was specified for the labo-

ratory tests, with a 1mm/minute loading rate determined to be a suitable com-

promise between test duration, safety, and resolution in the captured data.

4.5 Summary

To calibrate and verify the preliminary finite element models, a full-scale labo-

ratory test procedure was developed, and six representative moment splice con-

nections were detailed and fabricated for testing at the structural laboratory at

McGill University. The test configuration consisted of new and existing com-

ponents to support, load, and stabilize the specimens during testing. Existing

assemblies were used to provide load, support, and lateral restraint contact points,

while a new loading beam was design and verified using finite element analysis to

adequately load the beams on either end of the moment splice connection. The

loading beam was designed to remain well within the elastic range when under

the theoretical maximum required load for the entire test program. This design

was based on factored design equations in the CSA S16-19 standard using nom-

inal ASTM A992 steel properties, and was verified using finite element analysis.
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4.5 Summary

String pontentiometers, LVDTs, and load cells were specified to capture global

values of displacement and force during testing, while linear and rosette strain

gauges were specified at critical points to accurately measure strain and stress

in local failure regions. Due to fabrication delays as well as the disruption of

in-person research work due to COVID-19, testing was not completed within the

time frame of the author’s program, and is thus not discussed in this chapter.
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Chapter 5

Expanded FE study and results

From the preliminary models M1-M5, 12 additional finite element models under

the same loading conditions were created and evaluated. These additional models

served to explore a wide range of section sizes and connection geometry to provide

a reasonable level of certainty on the evaluation of the predictive capacity of the

current block shear design equations. As the preliminary models included non-

standard connection geometry to isolate the block shear failure mode as much as

possible, they were given the SPEC suffix in the test ID. Five additional models

with the same section sizes as the SPEC series, but with more typical bolt spacing

details were modelled to observe the minor changes in the connection capacities;

these specimens were given the ID suffix TYP to represent Typical Connection.

The remaining FE models M7-M12 were of varying section sizes and connection

geometries. In addition to a review of the performance of the current block shear

design equations, an analytic investigation on the 15% rule was performed. The

results from the block shear finite element study provided further insight on the

validity of current and proposed design methods for reduced flexural capacities

for reduced flange areas of W-sections.
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5.1 Expanded finite element analysis

With the completion of the preliminary finite element models and their fabrication

for laboratory testing, the catalogue of block shear critical finite element section-

connection details was expanded to provide additional insight on the moment-

induced block shear failure mode. The finite element model procedure, including

the selection and density of mesh elements as well as the loading protocol, followed

the procedure used to develop the initial five models.

Five additional finite element models, M1TYP to M5TYP, were based on the

same section sizes as M1-M5, but with connection spacing details more commonly

used in practice. The initial M1-M5 primary finite element models were renamed

M1SPEC to M5SPEC to indicate that the connection details were specified by

the author, while M1TYP to M5TYP indicated that the connection details had

‘typical’ bolt spacings. Typical in this context meant bolt pitches of 3” (75mm),

end distances of 2” (50mm), and edge distances no less than 1.5” (38mm). For

specimens in M1SPEC to M5SPEC that already met the requirements of ‘typical’

connection details, an additional row of bolts was added for the equivalent TYP

model. In addition to the five models based on the initial section sizes, six

new section-connection details, M7 to M12, were designed and modelled. The

methodology used in the detailing of the initial M5-M6 models was retained,

with sections being selected at the discretion of the author to span as much

of the available W-section geometric parameters as possible. An overview of

all modelled specimens and connection details are provided in Figure 5.1 and

Table 5.1. The three main parameters were the section width (bf ), the section

depth (d), and the linear mass (W ). The relative geometries of the entire tested

catalogue of sections is shown in Figure 5.1. As discussed in Chapter 4, although

a suitable range of beam depths (d) and flange widths (bf ) were covered by the

test catalogue, the linear masses (W ) of the tested sections remained relatively

low (W ≤ 170kg/m) due to the limitation on block shear critical failure modes.

With a total of 17 section-connection details, all relevant information on stresses,
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Figure 5.1: Complete range of available W-sections. Tested and modelled speci-
mens in red.

forces, and displacements of the loaded models was extracted for an aggregated

review.

5.1.1 Initial observations

Before numerical data were extracted from the finite element analysis models,

an initial visual evaluation of the deformed shapes of the loaded connection as

well as the colour-graded contour plots of stress and displacement was performed.

For most sections, the isolated deformation of the edge block was evident, and

was clearly demarcated by the displacement contours as shown in Figure 5.2;

the necking of the tensile plane was also visually evident for most sections. The

Von Mises stress contours also provided initial confirmation that the block shear

failure occurred, with most of the gross shear plane reaching the yield stress,

while the net tensile plane typically showed stresses approaching or surpassing

the expected ultimate strength of the material, indicating the onset of rupture.
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5.1 Expanded finite element analysis

Table 5.1: Connection geometry overview for M1-M12 specimens.

ID SECTION dh (mm) nrows End (mm) Pitch (mm) Gauge (mm)

M1SPEC W250X58 24 2 35 65 120

M1TYP W250X58 24 2 50 75 126

M2SPEC W360X91 24 2 50 75 170

M2TYP W360X91 24 3 50 75 170

M3SPEC W410X53 21 2 35 60 110

M3TYP W410X53 21 2 50 75 107

M4SPEC W460X113 27 2 50 75 180

M4TYP W460X113 27 3 50 75 180

M5SPEC W610X101 24 2 35 75 145

M5TYP W610X101 24 2 50 75 145

M6 W460X113 27 2 50 75 180

M7 W530X72 24 2 50 75 130

M8 W200X52 21 2 38 65 125

M9 W250X101 24 2 50 75 170

M10 W310X74 24 2 50 75 128

M11 W460X74 24 2 50 75 115

M12 W690X170 27 2 50 75 165
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5.1 Expanded finite element analysis

Figure 5.2: Axial displacement contours of tested specimens. Units in mm.

The Von Mises stress contours for a subset of specimens are shown in Figure 5.3.

The initial visual observations of the deformed section allowed for confidence

in both the assumed simplifications used for the finite element modelling, as well

as the general accuracy of the design methodology in developing a block shear

critical connection detail. Once these initial observations were made, a more

quantitative analysis of the data was performed.

5.1.2 Extracting data from finite element models

All relevant data after the completion of a finite element model run in Abaqus

is contained in its Output Database, or .odb, file. From this .odb file, two levels

of data were extracted. First, global values of force (N), moment (Nmm), and

displacement (mm) were extracted using the Free Body Cut tool in Abaqus. These

values captured the vertical displacement of the load point, the induced moment

at the centreline of the splice plates, as well as the total force in each of the four

block shear failure planes, the compression and tension splice plate groups, as well

as the loading plate; these data sets were exported into a .csv file using the Excel
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5.1 Expanded finite element analysis

Figure 5.3: Von Mises stress contours of tested specimens. Units in MPa.

plugin in Abaqus. Second, local Von Mises stress data from the integration point

of each element along the four major block shear failure planes were extracted

using the Report tool in Abaqus. Depending on the connection geometry, a

given failure plane could have over 150 individual elements that each output a

unique time history report of the stress states; these individual datasets were

automatically merged into a single .rpt file when exported using Abaqus, which

could be parsed using a custom Julia function.

5.1.3 Data parsing, preparation, and analysis

The data extracted above was then parsed, modified, and analyzed in an auto-

mated Jupyter Notebook in the Julia programming language. The objectives of

the Jupyter Notebook were:

1. Converting .csv and .rpt data into easily manipulable vectors and matrices

2. Converting units of N, mm to kN, m for global data

3. Determining failure plane areas from connection and section geometry
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5.1 Expanded finite element analysis

4. Doubling force/moment units to account for symmetric modelling of one

half of the specimen

5. Determining average stress values for each failure plane

6. Determining the index at failure for each failure mode

7. Exporting the cleaned data into a single .csv file

Once the results of the finite element model were parsed and analysed, rele-

vant information could be plotted, compared, and exported for future use. Two

major visualizations are the total splice moment of the section detail, shown in

Figure 5.4, and the stresses along each individual block shear failure plane, shown

in Figure 5.5. Although the global splice moment graph provided a qualitative

understanding of the overall behaviour of a given section-connection detail, it did

not provide any information on the local block shear failure region. To evalu-

ate the true failure mechanisms, the aggregated elemental stress data were used

instead. The Von Mises stress in each of the four failure planes were plotted (Fig-

ure 5.5) along with the average value across each plane. The failure plane was

assumed to reach its capacity once the average value reached the theoretical ma-

terial capacity for the given plane and load type, meaning the yield strength, fy,

for the shear failure planes, and the ultimate tensile strength, fu, for the tensile

fracture planes. The use of the Von Mises stress was appropriate for both failure

planes, since it is equal to the maximum principal tensile stress when under pure

tension, and would not provide erroneous results when estimating the point of

failure of the fracture plane. This was further verified early in the analysis proce-

dure by extracting both the Von Mises stress and pure axial stress data from the

fracture plane of the EBS failure mode and comparing the two data sets. The

comparison confirmed that the purely tensile loading of the EBS fracture plane

provided equivalent stress values when using either the Von Mises stress or the

axial stress of each element.
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Figure 5.4: Load displacement vs. induced moment from M5 FE model.

A given block shear failure was assumed to occur at the moment when both

planes for a given failure mode reached their respective stress limits: the shear

plane reaching a Von Mises stress of fy, and the tension plane reaching a Von

Mises stress of fu. The index of the overall data set at this failure point was

recorded, and the relevant global data at the moment of failure was extracted.

The moment developed in the splice connection at the failure index was taken as

the moment capacity of the given block shear failure mode. For most specimens,

the load point was displaced significantly past the Edge Block Shear failure mode

such that the Complete Block Shear failure planes also eventually reached their

respective capacities. For example, for the M5 specimen shown in Figure 5.5, the

average Von Mises stress, shown as the blue curves, of all four block shear fail-

ure planes eventually reached their respective strength limits during the loading

procedure.
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Figure 5.5: Von Mises stresses along major failure planes for M5 specimen. Ele-
ments highlighted in red.
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5.2 Results and Observations

5.2.1 Effect of section geometry

With the analysis of each individual specimen completed, and clear metrics for

failure defined, an overall comparison of all 17 models was performed using nor-

malized data. First, the moment capacities of all observed failure modes were

plotted against the major geometric properties of the W-sections, namely the

section depth (d), the flange width (bf ), and the net flange area ratio (bn/bg),

to determine if any clear trends were visible. To provide moment resistance

values that could be compared against other modelled sections, all resistance val-

ues were normalized to the theoretical gross yield moment capacity, My, which

was calculated using the engineering yield strength associated with the true ma-

terial stress-strain function defined in each model. The blue circles represent

the moment-at-failure for the Edge Block Shear failure mode, while the orange

squares show the moment-at-failure for the Complete Block Shear failure mode,

should it have occurred; the gross plastic moment resistance, Mp, for each section

is also plotted as a dashed line. These initial comparisons of moment block shear

failure resistances are presented in Figures 5.6 to 5.9.

From the initial observations on geometric properties vs. the block shear

failure moment, no clear relationship between the variables was evident. One

minor exception was the effect of the section depth to the ability to achieve

the Edge Block Shear moment before the gross yield moment. From the available

data, sections below d = 400mm did not reach the critical EBS moment until after

the gross yield moment. However, this limitation was not taken as a fundamental

change to the failure mechanism of the block shear failure mode, but was simply

a physical limitation and conflict between a shallow section’s limited gross section

flexural capacity and the required moment to induce the necessary forces to cause

block shear failure in the tension flange. A more in-depth discussion on this

geometric conflict was provided in Chapter 3.
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Figure 5.7: Section depth vs. block shear failure moments.
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Figure 5.10: Block shear failure moments compared to gross section capacities.

An alternative comparison of the block shear failure moments relative to the

gross section capacities is provided in Figure 5.10. With all else held equal, the

gross section capacity of a flexural W-section would increase with the increase in

depth of the member; then, for an equivalent connection detail, there would be a

greater likelihood that the required moment to induce a block shear failure would

remain below either My or Mp of the gross section. It is noted, however, that

this may not always be the case, since the increase in depth would also require

an increase in applied moment to reach an equivalent force in the two flanges as

a shallower section. This conflict between the section depth, the gross section

properties, and the induced flange forces was discussed in detail in Chapter 3.

However, for the modelled set of specimens shown in Figure 5.10, the increase in

flexural capacity of a deeper section provided a net difference in favour of isolating

the block shear failure mode.
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5.2.2 Distribution of stress

A comparison of the average Von Mises stress in each of the four block shear

failure planes for all modelled specimens is shown in Figure 5.11; an overview

of the location of each shear plane was provided in Figure 5.5. The total splice

end moment normalized to the gross section yield moment was taken as the

independent variable, while the average Von Mises stress in each failure plane

was normalized to the theoretical stress capacity of the given section and failure

type. The point at which a given stress line crossed the theoretical capacity

(shown as a red line) would represent the moment-at-failure for the given failure

plane. In general, both the EBS and CBS fracture planes had similar moment vs.

stress behaviour, with a generally linear relationship. The EBS and CBS shear

planes, however, had a significantly greater spread in their path towards failure,

with the CBS shear plane in the web exhibiting a highly non-linear and random

relationship to the total applied moment. What was consistent for both failure

modes was that fracture plane failure was preceded by the shear plane failure,

affirming that the failure mechanism as assumed by the CSA S16-19 standard,

where ultimate failure of the block shear mode occurs with a shear plane yield

and eventual tension plane fracture.

When observing the stress distribution along each failure plane for a single

specimen, further clarity on the assumed failure mechanism for block shear failure

was provided. A typical stress distribution in the shear and tension planes as

observed in the M3:W410X53 model is shown in Figures 5.12 and 5.13.

For the fracture plane, a common observation from all models was that the

entire net flange area participated to a high degree of stress, whether or not the

EBS failure mode governed over the CBS failure mode. As observed in Figure

5.12, a significant portion of the entire net flange area (the CBS Fracture plot)

is near its ultimate tensile strength at the point of EBS Fracture failure. This

suggested that the EBS and CBS fracture planes are highly related, and that the

isolation of one failure mode over the other is more dependent on the behaviour
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Figure 5.12: Tension plane stress distribution for M3 specimen.
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Figure 5.13: Shear plane stress distribution for M3 specimen.
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of the respective shear planes rather than a clear stress concentration on one of

the two fracture planes. It is noted, however, that as the connection is loaded

beyond the point of initial EBS failure, the concentration of stress in the EBS

fracture failure plane becomes evident. A comparison of the distribution of stress

across the net flange area for the M3 and M5 specimens is provided in Figure

5.14. The M5 specimen, which had a greater flexural stiffness than the M3

specimen, reached its block shear capacity early in the load displacement of the

model. As the model was continuously loaded, significant necking occurred in the

EBS Fracture plane, which concentrated the stresses at that location. The CBS

Fracture plane plot for the M5 model in Figure 5.14 shows a clear divergence

of two groups of stress as the loading increased. The upper block shows the

concentration of stress in the EBS Fracture plane as necking increases.

For the shear planes, the distribution of stresses was less uniform, and highly

dependent on the failure mode in question. The EBS shear planes, which are

directly adjacent to the bearing surfaces of the bolts, showed a uniform increase

in stress during loading, similar to the EBS and CBS fracture planes. However,

the CBS shear plane, located at the Web/K-Area interface, showed a highly

non-uniform stress distribution throughout the loading of the connection. At

the point where the average stress along each plane reached its yield strength,

a significant portion of the CBS shear plane remained below its capacity. Two

key observations were made on the shear planes of the block shear failure modes.

First, for the EBS shear plane, the highly uniform increase in stress indicated

that the assumption of the gross section for the shear plane, as used in the design

methodology of the CSA S16-19 standard, was correct, since a net section shear

failure would plot low stress values for elements that are exclusively in the gross

section. Second, for the CBS shear plane, it was clear that the true distribution

of stress along the failure plane did not match the assumed failure mechanism;

a significant portion of the assumed failure plane did not participate in any load

resistance. Although the connections were not detailed such that the CBS failure
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Figure 5.14: Comparison of complete block shear fracture plane Von Mises stress
distribution between M3 and M5 specimens.
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mode was critical, it would be likely that the progression of stress would behave

similarly should a CBS critical connection be loaded.

Based on these observations, two outcomes on the current predictive capacity

of block shear design equations were expected. First, for the Edge Block Shear

failure mode, the CSA S16-19 design methodology, which assumes a gross shear

plane and a net tension plane, should provide a more accurate prediction of the

EBS resistance compared to the AISC 360-16 and Eurocode 3-2005 methods,

which assume both net shear and tension planes. Second, since the distribution

of stress along the Complete Block Shear failure plane did not match the assumed

stress state for any block shear design equation, the predictive capacity for the

CBS failure mode was expected to be worse than that of the EBS failure mode

for any given design equation.

5.2.3 Effect of connection length

As discussed in Chapter 3, the moment-induced block shear failure mode was

determined to be highly sensitive to the overall connection length of the bolt

group, as the shear plane component of the block shear resistance equation is

proportional to this length. As previously noted, the connection geometry of all

specimens were selected to be as representative of typical bolt spacings as possible;

these typical spacings were end distances of 2” (50mm), and bolt pitches of 3”

(75mm). However, for the initial 5 specimens, M1-M5, some deviations from

typical bolt spacings were made to isolate the block shear failure mode as much

as possible. For example, specimen M1 was specified with an end distance of

35mm and a bolt pitch of 65mm, and specimen M5 was specified with an end

distance of 35mm. Further, all bolts were detailed with both inner and outer

splice plates, allowing for a double shear configuration. For more typical moment

splice scenarios where only the outer splice plate would be specified, a minimum

of double the amount of bolt rows would be necessary to carry the equivalent force

in a single shear configuration. This doubling of rows would have a significant
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Figure 5.15: Comparison of SPEC vs. TYP series of specimens M1-M5.

impact on the overall connection length of the bolt group, as well as the ability

to force a block shear critical connection.

To observe the effect of the connection length on the overall behaviour of the

moment splice connection, an additional 5 specimens, M1TYP to M5TYP, were

modelled to compare to the initial M1-M5 series, renamed M1SPEC to M5SPEC.

For specimens with atypical bolt spacings, such as M1 and M5, the bolt geometry

was reconfigured to meet typical spacing values; for specimens that were already

specified with typical spacing values, an additional row of bolts was added using

the same bolt pitch. The values of these distances was provided in Table 5.1.

The overall critical moment resistances of the SPEC and TYP specimens is

shown in Figure 5.15. As expected, the slight to moderate increase in connection

length corresponded to a significant increase in the overall block shear failure

resistance. For specimens M1TYP and M2TYP, this increase in connection length
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resulted in a change from a block shear critical connection to a gross section

failure, as seen by the absence of block shear failure moments in the figure. For

specimens M3TYP and M4TYP, the increase in connection length resulted in the

Edge Block Shear moment resistance to exceed the gross yield moment resistance.

A more detailed comparison of the global and local effects of the connection

length for the M2 specimen is shown in Figures 5.16 and 5.17. The M2TYP

specimen is equal to the M2SPEC specimen, albeit with an additional row of bolts

at the same pitch, resulting in an overall connection length of 200mm compared

to 125mm for the M2SPEC specimen. Observing the global load displacement

vs. total splice moment in Figure 5.16, a significantly stiffer connection behaviour

was evident for the M2TYP specimen. This was expected, since the individual

force transferred at each bolt region is reduced, minimizing the local deformation.

When comparing the average Von Mises stress in each of the four block shear

failure planes, shown in Figure 5.17, the effect of the increased connection length

was more evident. A general reduction in the overall stress in each failure plane

was observed for the M2TYP series, with no failure plane reaching its strength

capacity. The increased capacity of the M2TYP block shear failure planes allowed

for more of the gross section to participate in the induced moment, reaching the

gross plastic moment before any local failure modes occurred.

As expected analytically, and verified with the M1TYP-M5TYP specimens,

the overall connection length of the bolt group played a significant role in the

block shear failure capacity of a bolted moment connection, as well as the overall

stress distribution in the connection region. Increasing the connection length was

observed to stiffen the overall flexural response of the beam, reduce the average

stress in the shear plane for a given load, and allow for greater participation by

the gross section to change the overall failure mode from a local block shear to

a gross plastic moment. For a typical moment splice connection for W-sections,

practising engineers would most likely specify single shear bolts to the capacity

of the gross plastic moment of the section, rather than the double shear bolts
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designed to the capacity of the expected block shear resistance as performed

during this study. The increased number of bolt rows would almost certainly

increase the connection length to the point where the block shear failure mode

would not govern the overall resistance of the section-connection detail.

5.3 Predictive capacities of design equations

The predictive capacities of the CSA S16-19, AISC 360-16, and Eurocode 3-

2005 design methods were evaluated for both the EBS and CBS failure modes.

Although the detailing of the connections never provided for a CBS critical failure,

some specimens reached the theoretical CBS failure state as the specimen was

loaded beyond the EBS failure point; for these specimens, the predictive capacity

of the CBS failure mode was also evaluated. Further, some specimens did not

reach either block shear failure mode; these specimens were generally from the

TYP series of specimens that did not explicitly detail the connection geometry

for a block shear failure mode, but rather to reflect more industry-standard bolt

spacing distances.

The moment value at which both failure planes of a given block shear failure

mode reached their respective capacities was taken as the failure mode’s moment

capacity, which was then compared to the calculated, theoretical moment capac-

ities of the three listed design methods. The metric used for determining the

accuracy of a given design equation was the Professional Factor (PF), taken as

the true observed moment-at-failure divided by the expected moment-at-failure

as calculated by the design equation. A Professional Factor greater than 1 would

indicate that the given equation had underestimated the true available capacity

of a given failure mode; a Professional Factor less than 1 would indicate that

the true capacity of a given failure mode was below the expected value. Since

probable material properties and unfactored design equations were used when

determining the predictive capacity of an equation, a PF greater than 1 did not
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suggest an increased level of safety, nor was it a desirable outcome. Rather, it

suggested that the predictive design equation could not accurately represent the

true failure mechanism.

5.3.1 CSA S16-19

The CSA S16-19 block shear resistance equation is unique from both the AISC

360-16 and Eurocode 3-2005 design equations in that the shear failure plane is

strictly defined as the gross shear area yielding at a stress averaged between the

tensile yield and ultimate strengths. The efficiency factor, Ut, is a tabulated

value used to account for the reduced capacity of the tension plane when in-plane

eccentricities exist. For the moment-induced block shear failure modes, the value

of Ut was taken as 1.0, which is the tabulated value for flange-connected structural

tees in direct tension.

Tr = φu[UtAnFu + 0.6Agv
Fy + Fu

2
] (5.1)

An overview of the predictive capacity of the CSA S16-19 design equation

for the EBS and CBS failure modes is presented in Figures 5.18 and 5.19. As

expected from visualizing the distribution of stresses in the failure planes, the

CSA S16-19 design equation accurately predicted the EBS failure mode, with

a mean Professional Factor of 1.08. This further suggested that the use of the

gross shear area was appropriate for the block shear failure mode. What was not

expected was the equally high predictive capacity for the CBS failure mode, as

the assumed stress distribution of the CBS Shear failure plane did not reflect the

observed stresses in the finite element model. It was possible that although a

uniform stress level was not present along the CBS Shear plane, highly stressed

regions of the failure plane made up the difference of lower stressed regions and

provided an effective stress across the entire plane that could be predicted by the

simplified CSA S16-19 equation.
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Figure 5.18: CSA S16-19 EBS predictive capacity.
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Figure 5.19: CSA S16-19 CBS predictive capacity.
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5.3.2 AISC 360-16

Two key differences exist in the AISC 360-16 design equation compared to the

CSA S16-19:

Rn = 0.60FuAnv + UbsFuAnt ≤ 0.60FyAgv + UbsFuAnt (5.2)

1. The assumed failure mode is the simultaneous rupture of the net tension

plane and the net fracture plane, with a shear fracture strength taken to be

0.6fu.

2. However, if the net shear fracture term exceeds the gross shear yield capac-

ity, the gross shear yield strength is taken instead. The shear yield strength

is taken to be 0.6fy, whereas the shear yield strength for the CSA S16-19

equation takes into consideration significant strain hardening, and is higher.

From the observed stress distributions for the EBS Shear failure planes, it was

evident that the assumed failure mechanism of the AISC 360-16 design equation

was not reflective of the true load path. This was further confirmed by the

significantly poorer Professional Factor of 1.28 for the EBS failure mode. It is

noted that although the AISC 360-16 design method reduces the active shear

area of the failure plane, the higher professional factor compared to the CSA

S16-19 design equation arises from the fact that the AISC 360-16 assumes a

shear fracture, rather than shear yielding. However, like the CSA S16-19 design

equation, the AISC 360-16 provided a reasonable mean Professional Factor of 1.09

for the CBS failure mode, a significant improvement compared to the EBS failure

mode. The improvement of the Professional Factor for the CBS failure mode was

attributed to the fact that the assumption of the net shear area fracture does not

hold for the CBS Failure mode, where 0.6FuAnv must be greater than 0.6FyAgv,

and would thus require the use of the more reflective assumption of a gross area

shear yield.
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Figure 5.20: AISC 360-16 EBS predictive capacity.
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Figure 5.21: AISC 360-16 CBS predictive capacity.
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Figure 5.22: Eurocode 3-2005 EBS predictive capacity.

5.3.3 Eurocode 3-2005

The Eurocode 3-2005 design equation was expected to provide the greatest un-

derestimation block shear resistance due to the assumption of a net area yield

contribution of the shear plane. This was confirmed by the Professional Factor of

1.5 for the EBS failure mode, meaning the true resistance of this failure mode was

150% of the predicted value. Like the AISC 360-16 design method, the Eurocode

3-2005 equation showed an improvement in the Professional Factor for the CBS

failure mode, with PF=1.1, since the net shear area is equal to the gross shear

area along the web/K-area interface.

Veff,2,Rd =
fuAnt

γM2

+
fyAnv

γM0

√
3

(5.3)
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Figure 5.23: Eurocode 3-2005 CBS predictive capacity.
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5.3.4 Summary of block shear predictive capacities

Comparisons of the predictive capacities of the three equations are shown in

Table 5.2 and Figure 5.24. Empty values for the Professional Factor in Table

5.2 reflect specimens that did not reach the given block shear failure mode. The

CSA S16-19 design equation provided the best predictive capacity out of the

three design standards, especially for the prediction of the EBS failure mode.

Further, the AISC 360-16 and Eurocode 3-2005 equations appeared to provide

increasing Professional Factors (increasing underestimation of strength) as the

overall capacity of the EBS failure mode increased. The high predictive capacity

of the CSA S16-19 design equation supported the use of the gross area for the

shear plane, as well as using an intermediate strength value between the yield

and ultimate strengths, as determined by (Driver et al., 2006). For the AISC

360-16 and the Eurocode 3-2005, the use of the net shear area at either a yield

or fracture strength state significantly underestimated the resistance of the EBS

failure mode. The use of the gross shear area was further supported by the fact

that both the AISC 360-16 and Eurocode 3-2005 design equations performed

better when predicting the CBS failure mode, where the net shear area was

equivalent to the gross shear area. One unexpected outcome of all three design

equations was the relatively good predictive capacity for the CBS failure mode, as

observations on the stress distribution along the CBS Shear plane suggested that

significant regions of the plane did not reach strength limits throughout the entire

loading of the connection. Although the simplified shear resistance components

of all three design equations do not reflect the true mechanism of failure for the

CBS plane, it is probable that it provides a reasonable estimation of the average

stress state along the plane, with certain regions of the shear area participating

with a higher degree of stress that offsets the lower stressed regions.
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Table 5.2: Overview of Professional Factors.

CSA S16-19 AISC 360-16 Eurocode 3-2005

ID Section EBS CBS EBS CBS EBS CBS

M1SPEC W250X58 1.12 1.38 1.57

M1TYP W250X58

M2SPEC W360X91 1.16 1.34 1.60

M2TYP W360X91

M3SPEC W410X53 1.07 1.06 1.29 1.08 1.51 1.08

M3TYP W410X53 0.99 1.10 1.13 1.12 1.35 1.13

M4SPEC W460X113 1.09 1.14 1.34 1.14 1.46 1.14

M4TYP W460X113 0.96 1.24 1.38

M5SPEC W610X101 1.11 1.03 1.31 1.04 1.58 1.05

M5TYP W610X101 1.10 1.06 1.25 1.08 1.54 1.08

M6 W460X113 1.10 1.35 1.47

M7 W530X72 1.05 1.05 1.20 1.07 1.49 1.08

M8 W200X52 1.02 1.21 1.38

M9 W250X101 1.16 1.37 1.57

M10 W310X74 1.06 1.24 1.49

M11 W460X74 1.11 1.21 1.32 1.22 1.53 1.23

M12 W690X170 1.02 0.99 1.20 1.01 1.45 1.01

Mean: 1.07 1.08 1.28 1.09 1.49 1.10

Combined: 1.08 Combined: 1.21 Combined: 1.35
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Figure 5.24: Comparison of block shear Professional Factors.
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5.4 15% Rule

To investigate the role of the 15% rule on the net section flexural resistance and

any relationship to the block shear failure mode, an analytic review of four net

section flexural resistance equations was performed and compared against the

results from the finite element study.

5.4.1 Analytic review

The reduced capacity of a flexural W-section with holes in the flanges is ap-

proached in varying ways, as reviewed in Chapter 2. The AISC 360-16 design

method uses a proportional reduction in flexural capacity based on the area re-

moved from the flanges; the CSA S16-14 method simply took the net section

properties of S or Z for net flange areas below 85%; the CSA S16-19 method

adds a modifier to the S16-14 method depending on geometric and material prop-

erties of the section, and; the proposed design method by Swanson (2016) adds

a modifier to the AISC 360-16 method to account for the participation of the

web at failure. To investigate the significance of the flexural resistance limits

that these equations impose, the theoretical reduction in moment capacity as a

proportion of the gross plastic moment capacity was calculated for all tabulated

W-sections using bolt diameters from a range of 1/2” (13mm) to 1-1/2” (38mm).

The following assumptions and simplifications were made for all four analyses:

1. Nominal properties of ASTM A992 steel: fy = 345MPa, fu = 450MPa.

2. Two parallel rows of bolts in each flange, i.e. four bolt holes across the net

section.

3. A 2mm hole tolerance for each bolt hole.

4. Full lateral support provided.
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5.4 15% Rule

For computational efficiency, the reduced section capacity calculations were

performed on all W-sections and each of the bolt sizes, regardless of any geometric

incompatibility or the section’s likelihood of use as a flexural member. Although

the figures presented below show net flange area ratios as low as 25%, it should

be clear that such a combination of section and bolt size would not exist in prac-

tice. However, the inclusion of these theoretical combinations provided additional

insight on the general trend of each design equation on its effect on net section

flexural members.

5.4.1.1 AISC 360-16: Equation F13

The AISC 360-16 method for net flexural resistances do not have a geometric

limit on the net flange area to trigger the reduced capacity equation, but rather

considers the capacities for the net flange fracture strength and the gross flange

yield strength, as seen in Equation 5.4. Should the inequality in Equation 5.4 not

hold, i.e. the net fracture resistance is critical, the section capacity is reduced to

the calculated value of Equation 5.5. For ASTM A992 steel sections, this critical

point of transfer from the gross section flexural capacity to the reduced flexural

capacity occurs at a net flange area ratio of ∼ 76%.

FuAfn ≥ YTFyAfg (5.4)

Mn =
FuAfn

Afg

Sx (5.5)

Where: YT = 1.0 if Fy/Fu ≤ 0.80, YT = 1.1 otherwise.

The effect of the AISC 360-16 design method on all tabulated W-sections and

bolt size combinations is shown in Figure 5.25. Two clear issues are evident with

the AISC 360-16 design method. First, the sudden reduction of approximate

20% of the gross section flexural capacity at the 76% net flange area limit seems

unreasonable, especially along with the assumed change of failure mode from a
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Figure 5.25: AISC 360-16: Net flexural resistance.

yield stress limit state to the sudden fracture of the flange extremity. An equation

like this would suggest that a section with a net flange area ratio of 78% would

perform and fail in a significantly different way than the same section with a net

flange area ratio of 75%. It is noted, however, that the majority of the section-

connection details that were modelled for the block shear failure analysis had a

net flange area ratio greater than 76%, and would not have had an overall flexural

capacity resistance reduced by the AISC 360-16 design method.

5.4.1.2 CSA S16: Clause 14.1

Two methods of the CSA S16 were explored, as the most recent S16-19 standard

provided the first revision on net flexural capacity design since its initial adoption

in the 1950s. The original method, which was in effect up until the CSA S16-14

standard, simply required that the net section geometric properties should be
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Figure 5.26: CSA S16-14: Net flexural resistance.

used if the reduction in flange area was greater than 15%. Ostensibly, this meant

that Class 1 and 2 sections were allowed to reach the plastic moment state, albeit

with a reduced value of the plastic section modulus, Z, while Class 3 sections

would reach a similarly reduced yield moment state with a lower value of the

elastic section modulus, S. This provided a more reasonable assumed ductile

failure mode compared to the AISC 360-16 method; however, the sudden drop

in capacity from one side of the net area threshold to the other remained. The

effect of the CSA S16-14 15% Rule on all tabulated W-sections is shown in Figure

5.26. Since the CSA S16-14 15% rule was tied to a non-linear geometric property

(S or Z), the reduction in capacity was no longer proportional to the amount of

flange area lost, and as such, there is a greater variation in the proportional loss

of available flexural capacity for a given net flange area ratio.

The revised 15% Rule design method introduced in the most current CSA S16-

153



5.4 15% Rule

19 standard added a term to the net section property. This term was a proportion,

α, of the gross section property, which would then be added to the net section

values of S and Z. The value of α was dependent on the yield strength of the

material, as well as the existence of holes in both the tension and compression

flanges; a complete explanation was provided in Chapter 2. For the assumed

conditions of the analytic study, the value of α was taken as 0.12.

Se = αS + Sn ≤ S (5.6)

Ze = αZ + Zn ≤ Z (5.7)

The effect of the revised 15% rule in the CSA S16-19 standard on the flexural

capacity of bolted W-sections is shown in Figure 5.27. The revised method showed

the same spread of reduced capacities for a given net flange area ratio as the

CSA S16-14 method, but improved on the previous method by shifting the entire

reduction capacity upwards by 12% of the gross section property. It is clear that

the revised method provided a significant improvement in allowable performance

for flexural members. Perhaps more significant, however, is that this upward shift

in the allowable capacities has effectively eliminated the sudden discontinuity of

flexural strength on either side of the 15% reduction threshold. A flexural member

with a net flange area of just below 85% could reach an allowable moment that

is close to Mp, rather than a sudden drop in capacity.

The CSA S16-19 in general provided a welcome improvement in allowable

flexural strengths for bolted W-sections compared to the previous CSA S16-14

standard. It also reduced the sudden discontinuity of flexural capacity once the

15% rule was first triggered; however, this was at the cost of a slightly more in-

volved design method. Further, one key component was unchanged in the S16-19

design method: the use of a 15% flange area reduction as the threshold for re-

duced section capacities. Although the tested combinations of section-connection
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Figure 5.27: CSA S16-19: Net flexural resistance.
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details for the block shear finite element study did not trigger the AISC 360-

16 equation for flexural capacity reductions, all models would trigger the 15%

threshold of the S16-19 method, as the specimens had net flange area ratios of

75% to 81%. Therefore, although the S16-19 method would perform better than

the AISC 360-16 when both clauses are triggered, the AISC 360-16 had the ben-

efit of an additional reduction in approximately 10% of the net flange area ratio

before any decrease in the section capacity is required.

5.4.1.3 Swanson Equation (2016)

After completing a statistical review of previously performed tests on bolted

W-section connections, Swanson (2016) suggested an improved design equation

that better fit the observed ultimate flexural capacities. The reduced capacity

was based on the proportional reduction used by the AISC 360-16 method, but

included an additional contribution from the web, which was assumed to reach

the ultimate strength limit. It is noted, however, that the use of the ultimate

strength across the web region was not based on the observed failure mechanisms

of the laboratory tests, but rather because it provided the best statistical fit for

the aggregated test results. What was unique with the Swanson equation was

that there was no threshold for the net flange area ratio before the equation is

triggered. Rather, the equation would be used for any amount of reduced area

caused by bolt holes, with an upper limit in place that ensured that flexural

capacities did not exceed the gross section capacity.

Mn =
FuAfn

Afg

Sx + FuZx,web ≤ FyZx (5.8)

The effect of the Swanson equation on reduced flexural capacities is shown in

Figure 5.28. The benefit of including the contribution of the web was immedi-

ately clear; sections with net flange areas as low as 60% could still theoretically

reach the gross plastic moment capacity. It is noted, however, that these section-

connection combinations were most likely from sections with extremely thick
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Figure 5.28: Swanson Equation 3: Net flexural resistance.

webs, and would typically not be used in a flexural loading scenario. Another key

observation was that some section-connection details that did not trigger either

the 15% rule for the CSA S16-19 standard or the approximate 76% threshold for

the AISC 360-16 standard still had reduced flexural capacities, since the Swanson

method required the reduction equation to apply for all bolted flexural members.

In general, however, the Swanson equation allowed for a wide range of net flange

area ratio values with little to no reduction in the overall flexural resistance of

the section.

5.4.2 Comparison of design methods

A comparison of all four design methods and regression lines is shown in Figure

5.29. The significant improvement of the CSA S16-19 method from the CSA S16-

14 method was immediately clear, as well as the smooth transition from reduced
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section capacities to full gross section strength. When comparing the AISC 360-

16 and the CSA S16-19 methods, the AISC 360-16 provided a better allowable

flexural capacity for net flange area ratios greater than 76%, due to the inherently

lower threshold before reductions were imposed. However, for sections with net

flange area ratios below the threshold of the AISC 360-16 equation, the CSA

S16-19 provided consistently higher allowable strengths. The Swanson method

typically provided the highest flexural capacity for sections with significant flange

area reductions, but also had a significantly larger spread of reduction due to the

dependence on the geometry of the web. It would be expected for typical flexural

W-sections that the reductions would be on the lower end of the plotted range,

since thick web sections are typically restricted to columns. Further, for sections

with net flange area ratios greater than 85%, there was a greater possibility that

the Swanson equation would provide a lower resistance than the CSA S16-19

method, since the area threshold for CSA S16-19 reduction was not met, and

gross section properties could be used.

To evaluate section-connection combinations more reflective of reality, the

results of the block shear finite element study were plotted against the four pre-

dictive design equations; this plot is shown in Figure 5.30. The Edge Block Shear

moment capacities are shown as red circles, while the peak experienced moments

are shown as black squares. Since the modelled specimens were specifically de-

tailed to fail in block shear, the plotted capacities do not perfectly reflect a more

conventional moment connection with the same bolt diameters, since additional

rows of bolts would increase the block shear moment capacity. However, it is clear

that some block shear critical connection details still failed at a moment greater

than allowed by the CSA S16-19 equation, and even the proposed Swanson equa-

tion. Further, all of the peak experienced moments were near, or greater than,

the theoretical gross plastic moment capacity, an observation made by previous

researchers on net section flexural capacities (Swanson, 2016; Sivakumaran et al.,

2010). Since the net flange area ratio would be unaffected with additional rows of
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Figure 5.29: Comparison of net flexural resistance methods.
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bolts, it would be expected that as the block shear moment resistance increases

above the gross section capacities, the overall capacity of the connection would

approach the values of MPEAK in Figure 5.30.

In general, the CSA S16-19 design method provided a much needed improve-

ment in allowable flexural capacity for typical flexural section-connection details

for bolted W-sections. It also eliminated the sudden loss in flexural capacity once

the 15% rule was first triggered, instead providing a smooth and gradual decrease

in strength as net flange area ratios decreased. For the range of net flange area

ratios observed in the block shear finite element study, the greatest reduction

in allowable strength was approximately 95% of the gross plastic moment for

a net flange area ratio of 75%. It was clear that even connections detailed to

critically fail in block shear could still surpass the theoretical moment capacity

of the entire section. Instead of a measure of the actual reduced capacity of the

member, these limits on flexural strength could rather be considered as proxy

load limitations due to the loss of rotational ductility from the reduced flange

areas, as observed by Sivakumaran et al. (2010), where although the strength

of the net flexural member is not greatly affected by reduced flange areas, the

rotational capacity is. However, the significance of the improved S16-19 method

for Canadian structural steel designers is yet to be determined, as the standard

has not been widely adopted at the time of this report. It is unclear if the im-

provement in allowable flexural capacity provides a reasonable compromise for

engineers attempting to maximize the performance of structural members, or

whether it still causes unacceptable reductions in flexural capacity for net flange

area ratios typically encountered by practising engineers. Should it be the latter,

the proposed equation by Swanson (2016) could provide the required additional

flexural capacity. However, Swanson’s equation implied a failure mechanism that

was not observed in any of the laboratory tests on which the equation was based;

rather, the fracture of the web plane was included as it provided the best statisti-

cal fit. Should Swanson’s equation be desired as an eventual replacement for the
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Figure 5.30: FE results compared to net flexural resistance predictions.
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Figure 5.31: Reduced flexural capacities for common beam sections only.

CSA S16-19 design method, significant testing should be done to confirm that

the web fracture term in the equation remained appropriate for a wider range of

section-connection configurations.

5.5 Conclusion

The finite element study of 17 bolted moment connections provided insight on the

existence of, and the current predictive capacity for, moment-induced block shear

failure in W-sections. The CSA S16-19 method, which uniquely assumes a gross

shear area and a stress-at-failure that is greater than the yield strength, provided

the best predictive capacity for both the Edge Block Shear and Complete Block

Shear failure modes, with a Professional Factor of 1.08. The importance of using

the gross shear area was evident in the fact that the AISC 360-16 and Eurocode 3-
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2005 both performed significantly better in predicting the Complete Block Shear

failure mode, where the net shear area is equivalent to the gross shear area. It

was conclusively determined that the block shear failure was a possible failure

mode for the tension flange in bolted W-section moment connections, and should

be explicitly considered during the design of steel structures.

In addition to the finite element study for moment-induced block shear failure,

an analytic study reviewed the effect of the various net section flexural capacity

reduction methods on all tabulated W-sections and for a wide range of typical

bolt diameters. It was found that the CSA S16-19 design method for the 15%

rule provided a significant improvement on the allowable flexural strength of a

bolted W-section compared to the previous method in use up to the CSA S16-14

standard. It also performed significantly better than the AISC 360-16 method,

but only when the net flange area ratio limits were met by both design standards.

The performance of a proposed equation by Swanson (2016) was also evaluated.

Although the proposed equation may provide the highest allowable flexural re-

sistance in certain scenarios, the equation proposed by Swanson is divorced from

the true failure mechanism of net section flexural members observed by previ-

ous researchers. It is yet to be seen whether the improved method provided by

the CSA S16-19 provides a suitable compromise for Canadian structural design-

ers between safe design and maximizing performance, or if a further increase in

allowable flexural strengths is required.

163



Chapter 6

Conclusions

6.1 Overview

An analytic design methodology for block shear critical W-section moment splice

connections was developed to investigate the theoretical possibility of the block

shear failure mode for W-sections under flexure. Using this methodology, a wide

range of W-section moment connections were detailed to theoretically fail in block

shear in the tension flange. At this stage, it was observed that a block shear

critical moment connection detail was highly dependent on the geometry of the

W-section, as well as the overall connection length of the bolt group. To verify

the design methodology, 17 representative non-linear finite element models were

developed and analysed. Further, 6 of the 17 models were fabricated for eventual

full-scale laboratory testing to calibrate the finite element models.

The analysis of the finite element models confirmed that block shear failure

in the tension flange was a possible failure mode for bolted W-section moment

connections under flexure, and should be explicitly considered when designing

steel structures. Further, the block shear failure mode was observed to consist

of a gross shear area at a stress state between the yield and ultimate strengths,

and a net tension area at the ultimate strength. These two observations were

supported when comparing the predictive capacities of the CSA S16-19, AISC

360-16, and the Eurocode 3-2005 design methods for block shear failure. The
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CSA S16-19 design equation, which uniquely assumes a gross shear area, as well

as a stress-at-failure of the shear plane that is greater than the yield strength,

had the greatest predictive performance, with a Professional Factor of 1.08.

In addition to the block shear failure analysis, an analytic study on the existing

and proposed design methods for net section flexural resistances of W-sections

was performed. The flexural resistances of the 17 finite element models were

compared against the theoretical reduced flexural capacities from the equations

in the CSA S16-14, CSA S16-19, AISC 360-16, as well as a proposed equation by

Swanson (2016). This analytic review showed that the newly revised CSA S16-19

method for net flexural capacity provided a significant increase in performance

compared to previous iterations of the standard, as well as the AISC 360-16;

however, it was noted that the true flexural capacity of some of the finite element

models still exceeded the reduced limit, suggesting the reduction equations are

still overly punitive. The proposed equation by Swanson (2016) provided the

highest allowable flexural resistance, but assumed a failure mechanism that is

divorced from observed laboratory results.

6.2 Future work

With an analytic design methodology, a finite element model catalog, and a review

of the finite element analysis results, key insight on moment-induced block shear

failure in W-sections was provided. The immediate suggested progression of this

study is the laboratory testing of the M1-M6 specimens for calibration of the

finite element models. This calibration phase will provide the evaluation metrics

for the assumed boundary conditions, loading protocols, and mesh selection and

densities for the existing finite element models. The laboratory testing phase is

expected to be completed by the end of Summer 2020.

Next, to be further representative of true loading scenarios, the effect of shear

across the splice connection on the block shear failure mode should be explored.

It is possible that the transfer of shear load across a beam splice could influence
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the overall stress distribution across the tension flange such that the block shear

failure mode is affected. Further, since a shear splice theoretically contributes

some moment transfer across a connection, the global flexural response would

also be affected.

Finally, it was noted that the block shear failure mode is highly sensitive to

varying section geometry parameters as well as the overall connection length.

However, the limits of these section geometry parameters were qualitatively de-

fined, with the overall observation being that moderate depth, moderate widths,

and moderate-to-thin flange thicknesses are required for a block shear critical

connection. Since the value of these variables, as well as the typical expected

connection lengths, are finite and tabulated, a further analytic study into defin-

ing these geometric limits should be possible.

In general, further work for moment-induced block shear failure in W-sections

should shift towards practical scenarios of design and analysis. As the main focus

of this study was to isolate the moment-induced block shear failure mode as much

as possible, many simplifications and deviations from typical design and loading

conditions were made, such as the flange-only pure-moment connection, as well

as atypical bolt spacings. Further research should consider the effect of shear

transfer, and should maintain the use of typical bolt spacings and numbers.
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Appendix A

Net section flexural resistance

In Section 5.4, varying methods for reduced flexural capacities for W-sections

with bolt holes in the flanges were reviewed. Of these methods, the reduction

equation developed by Swanson (2016) consistently provided the highest allow-

able flexural capacity for typical section-bolt diameter combinations for flexural

members. However, it was noted that the assumed failure mechanism of the

Swanson Equation did not reflect the observed laboratory failure paths that the

equation was based on. Specifically, the assumption of the stress-at-failure across

the entire web of Fu was disputed.

A supplementary series of finite element models was developed to investigate

the true stress distribution along the critical net section for bolted moment con-

nections. The series was based on the M5:W610X101 test specimen, and was

noted as M5S to represent the investigation of the Swanson Equation. Based on

the initial M5 model, which was renamed as M5S0, two parameters were varied

to investigate their effect on the overall stress distribution across the net section.

First the number of bolt rows was increased from 2 to 3, to transition the critical

failure mode away from block shear failure and towards the theoretical net sec-

tion flexural capacities; second, the presence of a web splice was also included to

investigate how a moment transfer through the web would affect the stress distri-

bution across the critical net section. A total of four specimens were evaluated,

and are summarized in Table A.1.
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Table A.1: W610X101 M5S series overview

ID End (mm) Pitch (mm) Gauge (mm) # Rows Web Splice

M5S0

35 75 145

2 No

M5S1 2 Yes

M5S2 3 No

M5S3 3 Yes

Figure A.1: Simplified boundary condition for web splice.

The web splice was simplified as a rotationally fixed boundary condition across

a 1” x 15” (25mm x 375mm) region of the beam end, as seen in Figure A.1. This

simplification effectively provided an infinitely stiff web connection; although this

simplification would cause an overestimation of the true stress transfer across the

web splice, it was deemed acceptable to investigate a ‘best case scenario’ influence

on the stress distribution across the critical net section.

All specimens were loaded to a 90mm displacement at the load point, and the

elemental stresses across critical regions of the specimens were compared. First

the general visual stress contours shown in Figures A.2 and A.3 were compared.

In general, the effect of the web splice on the overall stress distribution was

most evident when comparing the 2 bolt row specimens, M5S0 and M5S1. Since

the M5S0 specimen was detailed to fail in block shear, the inclusion of the web
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Figure A.2: Comparison of Von Mises stress distributions for the M5S series.

splice had the greatest effect in limiting the extreme local deformations that were

present in the tension flange of the M5S0 specimen, and participating in the

moment transfer across the connection. For the M5S2 specimen, where the block

shear failure mode was no longer critical, the participation of the web splice was

less pronounced.

Next, the elemental axial stresses across the critical net section was plotted

and compared. The critical net section is the section across the last row of bolts in

a given bolted connection, where any theoretical failure would occur; the location

of the critical net section is shown in Figure A.4. A comparison of the elemental

stresses cross the critical net section is shown in Figure A.5. Elements in the

flanges (black) were visually separated from the elements in the web (blue). The

red horizontal lines represent the yield strength, and the red vertical line indicates

the load displacement at which the overall unfactored gross plastic moment was

reached at the splice connection. All specimens eventually reached the theoretical

gross plastic moment capacity, with the exception of M5S0, which was detailed

to fail in block shear.

As expected, since deformation/stress concentrated at the local block shear
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Figure A.3: Comparison of Von Mises stress distributions for the M5S series.

Figure A.4: Location of critical section.
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Figure A.5: Axial stress distribution across critical net section.

region for the M5S0 specimen, the elements along the web were at or near zero

stress throughout the entire loading history. With the addition of a web splice in

the M5S1 specimen, the web elements along the net critical section participated to

the overall flexural resistance to a significantly higher degree. Although the M5S1

had an improved flexural resistance over the M5S0 specimen, significant defor-

mation of the tension flange still existed, as noted by the asymmetric distribution

of flange stresses; the M5S1 specimen was able to reach the gross plastic moment

capacity, but only due to significant strain hardening of the tension flange.

A similar pattern was observed between the M5S2 (3 bolt rows, flange only

176



connection) and the M5S3 specimens (3 bolt rows, flange + web connections),

where the inclusion of the web splice allowed a greater degree of participation of

the web at the critical net section. It was noted that for the M5S2 and M5S3

specimens, the stress distribution of the web was not symmetric. Compressive web

elements reached the yield strength to a higher degree than tensile web elements,

suggesting that compressive web buckling could limit the actual resistance of the

section in more realistic conditions. In general, however, the stress distribution

along the web of the critical net section was not uniform, nor did it reach a stress

state close to the ultimate strength as assumed by the Swanson Equation. This

further confirmed that the assumed failure mechanism of the Swanson Equation

was divorced from the true failure material behaviour for bolted W-sections under

flexure.

Without further investigation, it is difficult to evaluate or recommend the

Swanson Equation for general use when determining the flexural capacity of a

reduced flange area W-section. On one hand, a wide range of sections with

reduced flange areas are capable of reaching the overall gross plastic moment,

as observed by the M1-M12 specimens modelled during this research project.

The Swanson Equation, with the highest allowable flexural capacity for typical

section-connection combinations, would allow for structural steel designers to

maximize the performance of bolted W-sections. On the other hand, the true

failure mechanism does not align with the assumed mechanism of the Swanson

Equation, as observed by the M5S specimens. Whether the compromise between

a reflective design equation and additional allowable flexural performance would

provide real-life benefits while maintaining the existing levels of design safety

should be better understood by additional research.
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Appendix B

Code

designtools.jl

function fourpoint_xy(force, a, l, x, E, I)

delta = force .* a ./ (6 .* E .* I)

.* (3 .* l .* a .- 3 .* a^2 .- x^2 )

return (delta ./ 1e6)[1] #mm

end

function fourpoint_yx(delta, a, l, x, E, I)

force = (6 .* delta .* E .* I)

./ (a .* (3 .* l .* a .- 3 .* a^2 .- x^2 ))

return (force .* 1e3)[1] #kN

end

function bearing_res(sec_props, l_bearing,

fy; E = 200e3, interior = true, phi_bi = 0.80, phi_be = 0.75)

#input: section, yield strength

#if interior = true, this is a load point on the

#INTERIOR of the beam

#if false, this is a member end bearing support

h = sec_props.d .- (2 .* sec_props.t_f) #mm, web height

w = sec_props.t_w #mm, web thickness

t = sec_props.t_f #mm, flange thickness

web_slenderness = h ./ w

if (web_slenderness .>= 1100/sqrt(fy))[1]
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println("Web slenderness limit reached. Bearing stiffeners required.")

return

end

if interior

println("Interior Load:")

#interior bearing resistance

N = l_bearing .+ 10 .* t

br_1 = (phi_bi .* w .* N .* fy / 1e3)[1]

#kN, web local plastic buckling

br_2 = (phi_bi .* 1.45 .* w.^2 .* sqrt(fy * E) ./ 1e3)[1]

#kN, web overall buck

println("Web local buckling resistance: " * string(br_1) * " kN")

println("Web overall buckling resistance: " * string(br_2) * " kN")

return min(br_1, br_2)

else

println("Member end support:")

#beam end bearing resistance

N = l_bearing .+ 4 .* t

br_1 = (phi_be .* w .* N .* fy / 1e3)[1]

#kN, web local plastic buckling

br_2 = (phi_be .* 0.60 .* w.^2 .* sqrt(fy * E) ./ 1e3)[1]

#kN, web overall buck

println("Web local buckling resistance: " * string(br_1) * " kN")

println("Web overall buckling resistance: " * string(br_2) * " kN")

return min(br_1, br_2)

end

end

function comp_resistance(area, fy, ry, k, L; E = 200e3, phi = 0.90, n = 1.34)

lambda = k .* L ./ ry .* sqrt.(fy ./ pi^2 ./ E)

return (phi .* area .* fy .* (1 .+ lambda.^(2n)).^(-1 ./ n) ./ 1e3)[1]

end

function bearing_stiffener_res(sec_props, t_stiffener, d_stiffener,
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fy; phi = 0.9, n_stiffeners = 1.0, k = 0.75, E = 200e3, interior = true)

#check stiffener dimension is within flange width:

d_max = (sec_props.b_f .- sec_props.t_w) ./ 2

if (d_stiffener .> d_max)[1]

println("Bearing stiffeners extend past flange.")

println("Max. stiffener depth = " * string(d_max) *" mm.")

return

end

#web height

h_w = sec_props.d .- (2 .* sec_props.t_f)

#slenderness limit check

stiff_slenderness = d_stiffener ./ t_stiffener

if (stiff_slenderness .>= (200 / sqrt(fy)))[1]

println("Stiffener too slender. Revise.")

return

end

#web area

if interior

b_web = 25 .* (sec_props.t_w) .- t_stiffener

a_web = 25 .* (sec_props.t_w).^2

else

b_web = 12 .* (sec_props.t_w) .- t_stiffener

a_web = 12 .* (sec_props.t_w).^2

end

#total effective area

a_total = a_web .+ (d_stiffener .* t_stiffener) .* 2 .* n_stiffeners

#moment of inertia

#stiffener

d_stiff = 2 .* d_stiffener .+ sec_props.t_w

b_stiff = t_stiffener

#web

d_web = sec_props.t_w

#b_Web is defined above
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I = n_stiffeners .* (b_stiff .* d_stiff.^3) ./ 12 +

(b_web .* d_web.^3) ./ 12

#radius of gyration

r = sqrt.(I ./ a_total)

comp1 = comp_resistance(a_total, fy, r, k, h_w, phi = phi)

comp2 = 2 * (1.5 * phi * d_stiffener * t_stiffener * fy / 1e3)

comp = min(comp1, comp2)

println("Bearing resistance: " * string(comp) * " kN")

return comp[1]

end

function init_plate_sizer(sec_props, m_p_nominal, fy_p)

#input the gross plastic moment of a section,

#returns the required exterior plate thickness to transfer the moment as

#a force couple.

#this function ignores the contribution of the interior plates.

typ_thickness = [6.35, 12.7, 16, 19, 20, 22,

22.2, 24, 25.4, 27, 28.6, 30, 31.8, 36, 38.1]

for thickness in typ_thickness

force = thickness .* sec_props.b_f .* fy_p ./ 1e3 #yield force

moment = force .* (sec_props.d .+ thickness) ./ 1e3 #kNm

if (moment .>= m_p_nominal)[1]

ratio = moment ./ m_p_nominal

println("Plate thickness of ",

thickness, "mm provides ",

ratio .* 100, "% of required gross plastic moment.")

return thickness[1]

break

end

end
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println("Thickness must exceed 38.1mm.")

return

end

function init_plate_sizer2(sec_props, d_b, gauge, fy_beam, fy_plate, fu_plate;

tol = 0, n_rows = 2)

#input the gross plastic moment of a section,

#returns the required exterior plate thickness to transfer the moment as

#a force couple.

#Typical thicknesses of steel plates

typ_thickness = [6.35, 12.7, 16, 19, 20, 22,

22.2, 24, 25.4, 27, 28.6, 30, 31.8, 36, 38.1, 50.8]

#determine max gross capacity of beam section

m_plastic = plastic_moment(sec_props, fy_beam) #kNm

#force in flange required to be transmitted by plates

flange_force = moment2force(sec_props, m_plastic) #kN

#force is split in half between interior and exterior plates

plate_force = flange_force ./ 2 #kN

exterior_force = 2 .* plate_force

interior_force = plate_force

#design exterior plate

for thickness in typ_thickness

ext_gross = thickness .* sec_props.b_f #mm^2

ext_net = ext_gross .- ((d_b .+ tol) .* thickness) .* n_rows #mm^2

ext_gross_yield = ext_gross .* fy_plate ./ 1e3

ext_net_frac = ext_net .* fu_plate ./ 1e3

ext_critical = min(ext_gross_yield, ext_net_frac)

if (ext_critical .>= exterior_force)[1]

ratio = ext_critical ./ exterior_force .* 100

println("Exterior Plate Thickness of ", thickness, "mm provides ",

ratio, "% of required force.")
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ext_thickness = thickness

break

end

end

#design interior plate

for thickness in typ_thickness

int_gross = thickness .* (sec_props.b_f ./ 2 .- sec_props.k_1)

int_net = int_gross .- ((d_b .+ tol) .* thickness) .* (n_rows ./ 2)

int_gross_yield = int_gross .* fy_plate ./ 1e3

int_net_frac = int_net .* fu_plate ./ 1e3

int_critical = min(int_gross_yield, int_net_frac)

if (int_critical .>= interior_force)[1]

ratio = int_critical ./ interior_force .* 100

println("Interior Plate Thickness of ", thickness, "mm provides ",

ratio, "% of required force.")

int_thickness = thickness

break

end

end

return ext_thickness[1], int_thickness[1]

end

function Vr_weld(sec_props, t_stiff, Xu, Fu, D, L; phi_w = 0.67)

#Defined Properties

t1 = t_stiff

t2 = max(t1, sec_props.t_w[1])

#Maximum Weld Size

if t1 <= 6

D_max = t1

else

D_max = t1 - 2

end

#minimum Weld Size

if t2 <= 12
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D_min = 5

elseif 12 < t2 <= 20

D_min = 6

else

D_min = 8

end

#Minimum weld length

L_min = max(40, 4 * D)

#check limits

if D < D_min || D > D_max

println("Revise Weld Size")

return

end

if L < L_min

println("Increase weld length.")

return

end

#Weld Metal Fracture

Vr_weld = 0.67 * phi_w * 0.707 * D * L * Xu / 1e3

#Base Metal Fracture

Vr_base = 0.67 * phi_w * D * L * Fu / 1e3

return min(Vr_weld, Vr_base)

end

function weld_size_finder(P, sec_props, t_stiff, Xu, Fu, L; phi_w = 0.67)

D1 = P / (0.67 * phi_w * 0.707 * L * Xu / 1e3)

D2 = P / (0.67 * phi_w * L * Fu / 1e3)

D = max(D1, D2)

t1 = t_stiff

t2 = max(t1, sec_props.t_w[1])

#Maximum Weld Size

if t1 <= 6
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D_max = t1

else

D_max = t1 - 2

end

#minimum Weld Size

if t2 <= 12

D_min = 5

elseif 12 < t2 <= 20

D_min = 6

else

D_min = 8

end

#Minimum weld length

L_min = max(40, 4 * D)

#check limits

if D < D_min

D = D_min

elseif D > D_max

D = D_max

end

if L < L_min

println("Increase weld length.")

return

end

println("Minimum Weld Size: " * string(D))

return Vr_weld(sec_props, t_stiff, Xu, Fu, D, L; phi_w = phi_w), D

end

exploretools.jl

using Plots

using DataFrames

using CSV

pyplot()
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W_data = CSV.read("W.csv")

function name2data(section_name)

#input a section name as a string (eg. "W460X19"),

#returns all section properties of that section

#as a database to then be called

#out_frame is the 1 dimensional data frame for all section

#info for the section = section_name

out_frame = W_data[W_data[1:end, :name] .== section_name, :]

#first two columns are redundant and are removed for output

out_frame = out_frame[:, 3:end]

#Output relevant 1 dimensional dataframe

return out_frame

end

function plastic_moment(sec_props, yield_strength; phi = 1.0)

#input is one row dataframe of a given section + material yield strength

#returns the theoretical plastic moment capacity (Z x Fy)

return phi * (sec_props.Z_x * yield_strength ./ 1e3)[1]

end

function yield_moment(sec_props, fy; phi = 1.0)

#returns the moment corresponding to the first instance where the

#extreme tension (and compression) fibres reach Fy

return (sec_props.S_x .* fy ./ 1e3)[1]

end

function net_plastic_modulus(sec_props, d_b, n_bolts; tol = 0)

#returns approximate (ignoring K-curve area) plastic modulus

#of a given section with reduced flange areas from bolt holes

hole_area = (d_b + tol) * sec_props.t_f[1]

centroid_distance = (sec_props.d[1] - sec_props.t_f[1]) / 2

z_negative = 2 * n_bolts * hole_area * centroid_distance
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Z_final = sec_props.Z_x[1] * 1e3 - z_negative

return (Z_final ./ 1e3)

end

function netIx(sec_props, d_b; tol = 0, n_rows = 2)

#Calculating the net moment of Inertia due to bolt holes

#Via NEGATIVE areas of bolt holes & parallel axis theorem

gross_Ix = sec_props.I_x[1] * 1e6

d_centroid = (sec_props.d[1] - sec_props.t_f[1]) / 2

#Distance from center of section to center of flange

db = d_b + tol

A_bolt = db * sec_props.t_f[1]

bolt_Ix = db * sec_props.t_f[1]^3 / 12

bolt_reduction = 2 * n_rows * (bolt_Ix + A_bolt * d_centroid^2)

net_Ix = gross_Ix - bolt_reduction

return net_Ix

end

function netSx(sec_props, d_b; tol = 0, n_rows = 2)

y= sec_props.d[1] / 2

return netIx(sec_props, d_b; tol = tol, n_rows = n_rows) / y

end

function net_yield_moment(sec_props, d_b, fy;

tol = 0, phi = 1.0, n_rows = 2)

y = sec_props.d[1] / 2

net_sx = netIx(sec_props, d_b; tol = tol, n_rows = n_rows) / y

return phi * net_sx * fy / 1e6

end
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function s16_14_1(sec_props, d_b, fy; disp = true,

n_rows = 2, tolerance = 0, phi = 1.0)

gross_flange_area = sec_props.b_f .* sec_props.t_f

area_loss = sec_props.t_f .* (d_b + tolerance) .* n_rows

net_area = gross_flange_area .- area_loss

ratio = (net_area ./ gross_flange_area)[1]

net_zx = net_plastic_modulus(sec_props, d_b,

n_rows; tol = tolerance)

net_plastic_moment = phi * net_zx .* fy ./ 1e3 #kNm

if (ratio .< 0.85)[1]

if disp

println("85% rule triggered. Net properties should be used.")

end

return true, ratio, net_zx, net_plastic_moment

else

if disp

println("85% rule not triggered. Gross section properties OK.")

end

return false, ratio, net_zx, net_plastic_moment

end

end

function edge_distance(sec_props, d_b, gauge)

#returns edge distance of given section + connection gauge

edge = (sec_props.b_f .- gauge) ./ 2

return edge[1]

end

function geo_limits(sec_props, d_b, n_bolts)

#where n_bolts is IN THE DIRECTION OF LOADING

pitch_min = 2.7 * d_b #mm

#minimum edge distances corresponding to bolt diameter

bolt_sizes = 25.4 .* [5/8 3/4 7/8 1 1.125 1.25] #mm

edge_limits = [28 32 38 44 51 57] #mm

idx = findfirst(x -> (x - d_b) >= 0, bolt_sizes)[2]
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edge_min = edge_limits[idx]

#minimum end distance

if n_bolts > 2

end_min = edge_min

else

end_min = 1.5 * d_b

end

#Determine gauge limits (EXTREMELY CONSERATIVE DUE TO k_1)

gauge_min = 2 * (sec_props.k_1[1] + edge_min)

# println("Minimum values for [pitch edge end] distances (mm)")

return [pitch_min edge_min end_min]

end

function geo_comparison(design, minimums)

#input is: [PITCH EDGE END]

#compares design geometry to s16 limits

comp = design .> minimums #outputs array of booleans

pitch_check = comp[1]

edge_check = comp[2]

end_check = comp[3]

if all(value -> value == true, comp)

println("Bolt hole geometry limits satisfied. Design OK.")

return true

else

println("Bolt hole geometry limits not satisfied. Revise.")

println("Minimum [pitch edge end] = ",

minimums, " ; Design = ", design)

return false

end

end

function net_flange_area(sec_props, d_b;

n_rows = 2, tolerance = 0)
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# define hole size

d = d_b + tolerance

#gross flange area

gross = sec_props.b_f .* sec_props.t_f #mm^2

#loss of area due to holes

loss = sec_props.t_f .* d .* n_rows #mm^2

return (gross .- loss)[1] #mm^2

end

function s16_block_strength(sec_props, d_b, fy, fu, end_dist,

pitch, gauge, n_bolts;

disp = true, phi_u = 1.0, ut = 1.0, tolerance = 0)

#d_b = bolt diameter

#fy, fu = material strengths

#end_dist = dist from end center of hole to free end of section

#edge_dist = dist from center of hole to section edge

#pitch = distance between bolts parallel to load

#gauge - distance between bolts perp. to load (across the web)

#n_bolts = number of bolts in one line

#define hole size

d = d_b .+ tolerance

#Determine connection length l_c

l_c = end_dist + pitch * (n_bolts -1)

#Edge fracture

net_fracture1 = (sec_props.b_f .- gauge .- d) .* sec_props.t_f

gross_shear1 = 2 * l_c .* sec_props.t_f

#Center fracture

net_fracture2 = (gauge .- d) .* sec_props.t_f #mm^2

gross_shear2 = 2 * l_c .* sec_props.t_f .+ l_c .* sec_props.t_w #mm^2

#gross shear strength

if fy > 460

shear_strength = fy

else
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shear_strength = 0.5 * (fy + fu)

end

#Find forces for each component

tension1 = (ut * fu) .* net_fracture1 ./ 1e3

tension2 = (ut * fu) .* net_fracture2 ./ 1e3

shear1 = gross_shear1 .* shear_strength .* 0.6 ./ 1e3

shear2 = gross_shear2 .* shear_strength .* 0.6 ./ 1e3

block1 = tension1 .+ shear1

block2 = tension2 .+ shear2

#Return critical capacity

if (block1 .< block2)[1]

if disp

println("Edge block shear governs.")

end

return (phi_u .* block1)[1] #kN

else

if disp

println("Center block shear governs.")

end

return (phi_u .* block2)[1] #k

end

end

function s16_edgeblock(sec_props, d_b, fy, fu, end_dist,

pitch, gauge, n_bolts;

disp = true, phi_u = 1.0, ut = 1.0, tolerance = 0)

#d_b = bolt diameter

#fy, fu = material strengths

#end_dist = dist from end center of hole to free end of section

#edge_dist = dist from center of hole to section edge

#pitch = distance between bolts parallel to load

#gauge - distance between bolts perp. to load (across the web)

#n_bolts = number of bolts in one line

#define hole size

d = d_b .+ tolerance
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#Determine connection length l_c

l_c = end_dist + pitch * (n_bolts -1)

#Edge fracture

net_fracture1 = (sec_props.b_f .- gauge .- d) .* sec_props.t_f

gross_shear1 = 2 * l_c .* sec_props.t_f

#gross shear strength

if fy > 460

shear_strength = fy

else

shear_strength = 0.5 * (fy + fu)

end

#Find forces for each component

tension1 = (ut * fu) .* net_fracture1 ./ 1e3

shear1 = gross_shear1 .* shear_strength .* 0.6 ./ 1e3

block1 = tension1 .+ shear1

return (phi_u .* block1)[1] #kN

end

function s16_complete(sec_props, d_b, fy, fu, end_dist,

pitch, n_bolts; n_rows = 2, phi_u = 1.0, ut = 1.0, tolerance = 0)

d = d_b .+ tolerance

#Determine connection length l_c

l_c = end_dist + pitch * (n_bolts -1)

#net fracture area

net_fracture = sec_props.t_f[1] * (sec_props.b_f[1] - n_rows * d)

#gross shear area

gross_shear = sec_props.t_w[1] * l_c

#gross shear strength

if fy > 460

shear_strength = fy

else

shear_strength = 0.5 * (fy + fu)
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end

tension = (ut * fu) .* net_fracture ./ 1e3

shear = gross_shear .* shear_strength .* 0.6 ./ 1e3

block = tension .+ shear

return (phi_u .* block)[1] #kN

end

function s16_centerblock(sec_props, d_b, fy, fu, end_dist,

pitch, gauge, n_bolts;

disp = true, phi_u = 1.0, ut = 1.0, tolerance = 0)

#d_b = bolt diameter

#fy, fu = material strengths

#end_dist = dist from end center of hole to free end of section

#edge_dist = dist from center of hole to section edge

#pitch = distance between bolts parallel to load

#gauge - distance between bolts perp. to load (across the web)

#n_bolts = number of bolts in one line

#define hole size

d = d_b .+ tolerance

#Determine connection length l_c

l_c = end_dist + pitch * (n_bolts -1)

#Center fracture

net_fracture2 = (gauge .- d) .* sec_props.t_f #mm^2

gross_shear2 = 2 * l_c .* sec_props.t_f .+ l_c .* sec_props.t_w #mm^2

#gross shear strength

if fy > 460

shear_strength = fy

else

shear_strength = 0.5 * (fy + fu)

end

#Find forces for each component

tension2 = (ut * fu) .* net_fracture2 ./ 1e3
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shear2 = gross_shear2 .* shear_strength .* 0.6 ./ 1e3

block2 = tension2 .+ shear2

return (phi_u .* block2)[1] #kN

end

function force2moment(sec_props, flange_force)

#flange force should be in kN

return (sec_props.d - sec_props.t_f)[1] .* flange_force[1] ./1e3 #kNm

end

function moment2force(sec_props, moment)

#moment in kNm

return ((moment .* 1e3) ./ (sec_props.d .- sec_props.t_f))[1] #kN

end

function net_moment_inertia(sec_props, d_b, n_bolts; tol = 0)

I_initial = sec_props.I_x .* 1e6 #mm^4

#Define hole size d

d = d_b .+ tol #mm

chr

#define the moment of inertia of the missing areas

I_bolt = d .* sec_props.t_f.^3 ./ 12 #mm^4

A_bolt = d .* sec_props.t_f #mm^2

# distance of hole areas to centroid of section

bolt_to_centroid = (sec_props.d .- sec_props.t_f) ./ 2

#Reduction of I_initial via parallel axis theorem

I_reduction = n_bolts .* (I_bolt .+ (A_bolt .* bolt_to_centroid.^2))

#Final net moment of inertia

I_final = I_initial .- I_reduction

return (I_final ./ 1e6)[1]

end

function section_overview(section_name, d_b, end_dist, fy, fu,
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pitch, gauge, n_bolts;

phi = 1.0, phi_u = 1.0, tol = 0, disp_plots = true)

println("For " * section_name * ": ")

section = name2data(section_name)

#output theoretical full section moment resistance

mp_gross = plastic_moment(section, fy; phi = phi)

m_y = yield_moment(section, fy; phi = phi)

#check on 85% rule

redux, ratio, net_zx, net_plastic_moment =

s16_14_1(section, d_b, fy;

phi = phi, tolerance = tol)

#Theoretical net yield (elastic) moment

m_y_net = net_yield_moment(section, d_b, fy;

tol = tol, phi = phi)

#check geo limits

edge = edge_distance(section, d_b, gauge)

#array of relevant connection geometry

connex_geo = [pitch edge end_dist]

#array of minimum distances required by s16 standard

connex_limits = geo_limits(section, d_b, 2)

#evaluation of design and required connection‘ geometry

geo_pass = geo_comparison(connex_geo, connex_limits)

#moment resistances

#All block shear components

edgeblock = s16_edgeblock(section, d_b, fy,

fu, end_dist, pitch, gauge, n_bolts;

phi_u = phi_u, tolerance = tol)

edgeblock_moment = force2moment(section, edgeblock)

centerblock = s16_centerblock(section, d_b, fy,

fu, end_dist, pitch, gauge, n_bolts;

phi_u = phi_u, tolerance = tol)

centerblock_moment = force2moment(section, centerblock)

completeblock = s16_complete(section, d_b, fy,

fu, end_dist, pitch, n_bolts; phi_u = phi_u,
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tolerance = tol)

completeblock_moment = force2moment(section,

completeblock)

#output results

connex_length = end_dist + pitch * (n_bolts - 1)

##CRITICAL LENGTH##

l_c_prime = lc_crit_finder(section, fy, fu, d_b, gauge;

tol = tol)

pitch_prime = (l_c_prime - end_dist) / (n_bolts - 1)

######

output_dataframe = DataFrame(Section = section_name,

BoltDiameter = d_b,

HoleTolerance = tol,

EndDistance = end_dist,

Pitch = pitch,

Gauge = gauge,

N_bolts = n_bolts,

ConnectionLength = connex_length,

CriticalLength = l_c_prime,

CriticalPitch = pitch_prime,

F_y = fy,

F_u = fu,

phi = phi,

phi_u = phi_u,

s16_14_1_trigger = redux,

NetZx = net_zx,

NetPlasticMoment = net_plastic_moment,

NetGrossRatio = ratio,

GrossPlasticMoment = mp_gross,

ElasticMoment = m_y,

NetElasticMoment = m_y_net,

CompleteBlockMoment = completeblock_moment,

EdgeBlockMoment = edgeblock_moment,

CenterBlockMoment = centerblock_moment)
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#Bar plots for moments

#concatenate the different section moment capacities

moment_recap = vcat(output_dataframe.GrossPlasticMoment,

output_dataframe.NetPlasticMoment,

output_dataframe.ElasticMoment,

output_dataframe.NetElasticMoment,

output_dataframe.CompleteBlockMoment,

output_dataframe.EdgeBlockMoment,

output_dataframe.CenterBlockMoment)

#labels for each moment type

moment_names = ["Gross Plastic",

"Net Plastic",

"Elastic",

"Net Elastic",

"Complete Block",

"Edge Block",

"Center Block"]

#display plot

if disp_plots

sec_plot = bar(moment_names,moment_recap,

xrotation = 15,

ylabel = "Moment (kNm)",

title = "Section Moment Capacity Summary: " * section_name,

legend = false)

return sec_plot, output_dataframe

else

return output_dataframe

end

end

function max_pitch_finder(sec_props, db, fy, fu,

min_end, min_pitch, min_gauge, n_bolts;

factor = 1.0, tol = 0, disp = false)

global pitch_temp = min_pitch

global block_temp = 0
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plastic_force = moment2force(sec_props,

plastic_moment(sec_props, fy))

while block_temp < factor * plastic_force

block_temp = s16_block_strength(sec_props,

db,

fy,

fu,

min_end,

pitch_temp,

min_gauge,

n_bolts;

disp = false)

pitch_temp += 5

end

return pitch_temp

end

function matrix_blockshear(sec_props, db, fy, fu,

endrange, pitchmatrix, gaugematrix, n_bolts, tol)

L = length(endrange)

main_matrix = Matrix[]

#For every valid value of the end distance,

#of pitch and gauge

for k = 1:L

matrix = [force2moment(sec_props,

s16_block_strength(sec_props, d_b, fy, fu, endrange[k],

pitchmatrix[i, j], gaugematrix[i, j],

n_bolts; tolerance = tol, disp = false))

for i = 1:L, j = 1:L]

push!(main_matrix, matrix)

end

return main_matrix

end

function target_moment_matrix(target, dim)
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#given the target in kNm:

base = ones(dim, dim)

return base .* target

end

function edge_bs_matrix(sec_props, db, fy, fu,

endrange, pitchmatrix, gaugematrix, n_bolts;

phi_u = 1.0, tol = 0)

L = length(endrange)

main_matrix = Matrix[]

for k = 1:L

matrix = [force2moment(sec_props,

s16_edgeblock(sec_props, d_b, fy, fu, endrange[k],

pitchmatrix[i,j], gaugematrix[i,j],

n_bolts; phi_u = phi_u,

tolerance = tol, disp = false)) for i = 1:L, j = 1:L]

push!(main_matrix, matrix)

end

return main_matrix

end

function center_bs_matrix(sec_props, db, fy, fu,

endrange, pitchmatrix, gaugematrix, n_bolts;

phi_u = 1.0, tol = 0)

L = length(endrange)

main_matrix = Matrix[]

for k = 1:L

matrix = [force2moment(sec_props,

s16_centerblock(sec_props, d_b, fy, fu, endrange[k],

pitchmatrix[i,j], gaugematrix[i,j],

n_bolts; phi_u = phi_u, tolerance = tol,

disp = false)) for i = 1:L, j = 1:L]
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push!(main_matrix, matrix)

end

return main_matrix

end

function complete_matrix(sec_props, db, fy, fu,

endrange, pitchmatrix, n_bolts; tol = 0)

L = length(endrange)

main_matrix = Matrix[]

for k = 1:L

matrix = [force2moment(sec_props,

s16_complete(sec_props, db, fy, fu, endrange[k],

pitchmatrix[i,j], n_bolts;

tolerance = tol)) for i = 1:L, j = 1:L]

push!(main_matrix, matrix)

end

return main_matrix

end

function critical_matrix(edge, center, net)

L = length(edge)

main_matrix = Matrix[]

for k = 1:L

matrix = [min(edge[k][i,j], center[k][i,j],

net[k][i,j]) for i = 1:L, j = 1:L]

push!(main_matrix, matrix)

end

return main_matrix

end

function geo_viewer(; section_name = "")

d = W_data.d
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b = W_data.b_f

w = W_data.W

threed = scatter3d(d, b, w,

legend = false,

xlabel = "d (mm)",

ylabel = "b (mm)",

zlabel = "W (kg/m)",

color = :black,

camera = (10,10))

bw = scatter(b, w,

legend = false,

xlabel = "b (mm)",

ylabel = "W (kg/m)",

color = :black,

grid = false)

dw = scatter(d, w,

legend = false,

xlabel = "d (mm)",

ylabel = "W (kg/m)",

color = :black,

grid = false)

bd = scatter(b, d,

legend = false,

xlabel = "b (mm)",

ylabel = "d (mm)",

color = :black,

grid = false)

if section_name != ""

sec = name2data(section_name)

sec_d = sec.d

sec_b = sec.b_f

sec_w = sec.W

scatter3d!(threed, [sec_d], [sec_b], [sec_w],

color = :red,
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markersize = 10)

scatter!(bw, [sec_b], [sec_w],

color = :red,

markersize = 10)

scatter!(dw, [sec_d], [sec_w],

color = :red,

markersize = 10)

scatter!(bd, [sec_b], [sec_d],

color = :red,

markersize = 10)

end

twod = plot(dw, bw, layout = (1,2))

allthree = plot(threed, twod, layout = grid(2,1,

heights = [0.8, 0.2]), size = (800, 800))

fours = plot(bd, threed, dw, bw, layout = (2,2),

size = (1000,600))

return fours

end

function geo_viewer2(d, b, w; section_name = "")

d1 = W_data.d

b1 = W_data.b_f

w1 = W_data.W

threed = scatter3d(d1, b1, w1,

legend = false,

xlabel = "d (mm)",

ylabel = "b (mm)",

zlabel = "W (kg/m)",

color = :black,

camera = (10,10))

bw = scatter(b1, w1,
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legend = false,

xlabel = "b (mm)",

ylabel = "W (kg/m)",

color = :black,

grid = false)

dw = scatter(d1, w1,

legend = false,

xlabel = "d (mm)",

ylabel = "W (kg/m)",

color = :black,

grid = false)

bd = scatter(b1, d1,

legend = false,

xlabel = "b (mm)",

ylabel = "d (mm)",

color = :black,

grid = false)

scatter3d!(threed, d, b, w,

legend = false,

xlabel = "d (mm)",

ylabel = "b (mm)",

zlabel = "W (kg/m)",

color = :red,

markersize = 10,

camera = (10,10))

scatter!(bw, b, w,

legend = false,

xlabel = "b (mm)",

ylabel = "W (kg/m)",

color = :red,

markersize = 10,

grid = false)

scatter!(dw, d, w,

legend = false,

xlabel = "d (mm)",
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ylabel = "W (kg/m)",

color = :red,

markersize = 10,

grid = false)

scatter!(bd, b, d,

legend = false,

xlabel = "b (mm)",

ylabel = "d (mm)",

color = :red,

markersize = 10,

grid = false)

twod = plot(dw, bw, layout = (1,2))

allthree = plot(threed, twod, layout = grid(2,1,

heights = [0.8, 0.2]), size = (800, 800))

fours = plot(bd, threed, dw, bw,

layout = (2,2), size = (1000,600))

return fours

end

function lc_crit_finder(sec_props, fy, fu, d_b, gauge;

tol = 0, u_ebs = 1.0, u_cbs = 1.0)

#Given the section properties, bolt size, and gauge

#Returns the critical length (l_c’) where the

#theoretical EBS and CBS failure modes are equal

tf = sec_props.t_f[1]

tw = sec_props.t_w[1]

bf = sec_props.b_f[1]

dg = gauge

db = d_b + tol

if fy > 460

fv = 0.6 * fy

else

fv = 0.6 * (fy + fu) / 2
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end

return (fu * tf) / (fv * (2tf - tw)) *

(bf * (u_cbs - u_ebs)

+ db * (u_ebs - 2*u_cbs) + u_ebs * dg)

end

function lc_crit_finder2(tf, tw, bf, dg, db,

fy, fu, d_b, gauge;

tol = 0, u_ebs = 1.0, u_cbs = 1.0)

if fy > 460

fv = 0.6 * fy

else

fv = 0.6 * (fy + fu) / 2

end

return (fu * tf) / (fv * (2tf - tw)) *

(bf * (u_cbs - u_ebs)

+ db * (u_ebs - 2*u_cbs) + u_ebs * dg)

end

function separator(fy; fu_bolt = 1050)

db_store = 25.4 .* [1/2, 3/4, 7/8, 1]

s16_14_matrix = Vector[]

fit_check = Vector[]

#for a given bolt diameter

for db = 1:length(db_store)

#bolt diameter of current iteration

bolt_diameter = db_store[db]

Ab = bolt_diameter^2 / 4 * pi

Fub = Ab * fu_bolt

#store array for s16_14.1 check

checkstore = []

fitstore = []

#for each section in the W_data dataframe:

for i = 1:size(W_data, 1)

#current section of iteration

205



secprop = W_data[i, :]

flangeforce = moment2force(secprop,plastic_moment(secprop, fy))

n_bolts_raw = flangeforce * 1e3 / 2 /

(0.6 * Fub) / 2

n_bolts = 2 * ceil(n_bolts_raw / 2)

#see if s16_14.1 passes

check, netzx, netmp = s16_14_1(secprop, bolt_diameter,

fy; disp = false, tolerance = 2)

#collect pass/fail information

push!(checkstore, check)

#minimum connection limits

pitch_min, edge_min, end_min = geo_limits(secprop,

bolt_diameter, n_bolts) #pitch/edge/end

gauge_min = 2 * (secprop.k_1[1] + edge_min)

if (secprop.b_f[1] - gauge_min) / 2 < edge_min

fit = false

else

fit = true

end

push!(fitstore, fit)

end

push!(s16_14_matrix, checkstore)

push!(fit_check, fitstore)

end

return s16_14_matrix, fit_check

end

function platedesign(sec_props, d_b, fy, fu, n_bolts;

n_rows = 2, tol = 0, factor = 1.2)

maxmoment = plastic_moment(sec_props, fy)
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F = moment2force(sec_props, maxmoment)

F_ext = factor * F / 2

F_int = factor * F / 4

#bank of minimum thickness values

t_ext_store = []

t_int_store = []

#First minimum thickness is that of Factor X flange thickness

t_min = sec_props.t_f[1] * factor

push!(t_ext_store, t_min)

push!(t_int_store, t_min)

#second minimum thickness is of gross yield of the platedesign

t_ext1 = F_ext * 1e3 / (sec_props.b_f[1] * fy)

b_int = (sec_props.b_f[1] - 2 * sec_props.k_1[1]) / 2

t_int1 = F_int * 1e3 / (b_int * fy)

push!(t_ext_store, t_ext1)

push!(t_int_store, t_int1)

#Third minimum is the bearing failure of the plate

t_ext2 = F_ext * 1e3 /

(3 * 0.8 * n_bolts * n_rows * d_b * fu)

t_int2 = F_int * 1e3 /

(3 * 0.8 * n_bolts * n_rows * d_b * fu)

push!(t_ext_store, t_ext2)

push!(t_int_store, t_int2)

#net section rupture

t_ext3 = F_ext * 1e3 /

(sec_props.b_f[1] - n_rows * (d_b + tol)) / fu

t_int3 = F_int * 1e3 /

(b_int - n_rows / 2 * (d_b + tol)) / fu

push!(t_ext_store, t_ext3)

push!(t_int_store, t_int3)
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return maximum(t_ext_store), maximum(t_int_store)

end

analysistools.jl

using CSV

using DataFrames

using Statistics

##For analysis of output files from Abaqus FE Analysis

function reportparser(rpt_file::String,

data_row; allowable_missing = 0.05)

#Import the base file, with all its issues

init_import = CSV.read(rpt_file,

header = false,

datarow = data_row,

delim = ’ ’,

ignorerepeated = true,

silencewarnings = true)

third_import = second_import[mean.(ismissing,

eachrow(second_import)) .< allowable_missing, :]

last_import = third_import[:,2:end]

#return the final cleaned value

return last_import

end

function failpoint_EBS(df, fy, fu; failure = true,

gen = false, fv = 0)
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if gen

if fv == 0

println("ERR: fv is set to 0 MPa.")

return

end

shearyield = findfirst(x -> x >= fv, df.EBSS_GEN)

fracture = findfirst(x -> x >= fu, df.EBSF_GEN)

out = [shearyield, fracture]

if any(x -> x == nothing, out)

println("EBS Failure does not occur.")

return false

else

if failure

return max(shearyield, fracture)

else

return shearyield, fracture

end

end

end

shearyield = findfirst(x -> x >= fy, df.EBSS)

fracture = findfirst(x -> x >= fu, df.EBSF)

out = [shearyield, fracture]

if any(x -> x == nothing, out)

println("EBS Failure does not occur.")

return false

else

if failure

return max(shearyield, fracture)

else

return shearyield, fracture

end
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end

end

function failpoint_CBS(df, fy, fu;

failure = true, gen = false, fv = 0)

if gen

if fv == 0

println("ERR: fv is set to 0 MPa.")

return

end

shearyield = findfirst(x -> x >= fv,

df.CBSS_GEN)

fracture = findfirst(x -> x >= fu,

df.CBSF_GEN)

out = [shearyield, fracture]

if any(x -> x == nothing, out)

println("CBS Failure does not occur.")

return false

else

if failure

return max(shearyield, fracture)

else

return shearyield, fracture

end

end

end

shearyield = findfirst(x -> x >= fy, df.CBSS)

fracture = findfirst(x -> x >= fu, df.CBSF)

out = [shearyield, fracture]

if any(x -> x == nothing, out)
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println("CBS Failure does not occur.")

return false

else

if failure

return max(shearyield, fracture)

else

return shearyield, fracture

end

end

end

Jupyter Sample
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