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ABSTRACT

The heart is a heterogeneous excitable tissue embedded with pacemakers. To

understand the fundamental rules governing its behaviour it is useful to investigate

the interplay between structure and dynamics in simplified experimental and math-

ematical models. This thesis examines FitzHugh-Nagumo type reaction-diffusion

equation models motivated by experiments with engineered cardiac tissue culture.

The aim is to relate how the design properties of these systems determine the un-

derlying spatiotemporal dynamics. First, a functional relation between randomly

distributed heterogeneities and conduction velocity is proposed in two dimensional

heterogeneous excitable media. The transitions to wave break are studied for two

types of heterogeneities related to fibroblasts and collagen deposits. The effects of

pacemakers are next considered with a theoretical study of the transitions in one-

dimensional wave patterns of a pacemaker reset by a stimulus pulse from a distance.

Reflected wave solutions are found near the apparent discontinuity in the phase tran-

sition curve of the system, and they grow into more multi-reflected trajectories for

a coarser spatial discretization of the model. Finally, the dynamical regimes arising

from the interaction of two pacemakers in heterogeneous excitable media are investi-

gated. A novel chick culture is developed to exhibit dominant pacemaker dynamics.

This stable rhythm undergoes transitions to more complex reentrant patterns fol-

lowing induction of new pacemakers by the application of the potassium channel

blocker, E-4031. The dynamics are reproduced by the FitzHugh-Nagumo model,

which further demonstrates the effects of pacemaker size and heterogeneity density
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on the transition to wave break and reentry. These findings may contribute to our

understanding of the generic mechanisms governing the dynamics of wave propaga-

tion through heterogeneous excitable media with pacemakers, including healthy and

diseased hearts.
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ABRÉGÉ

Le coeur est un tissu hétérogène excitable qui contient des générateurs de ry-

thme. Pour comprendre les règles fondamentales qui dirigent son comportement,

il est utile d’étudier l’interaction entre la structure et la dynamique des modèles

expérimentaux et mathématiques simplifiés. Dans cette thèse, j’utilise des modèles

d’équations de FitzHugh-Nagumo. Ces modèles sont motivés par l’expérimentation

avec des tissus cardiaques modifiés pour étudier comment les propriétés des concep-

tions influencent la dynamique d’ondes. Tout d’abord, une relation fonctionelle entre

la densité des hétérogénéités distribuées au hasard et la vitesse de conduction est pro-

posée dans un modèle numérique de deux dimensions de média hétérogènes excita-

bles. Les transitions à l’onde rupturée sont différentes pour deux types de substrats

hétérogènes. Les effets des régions automatiques sont alors considérés avec une étude

théorique des transitions dans les ondes unidimensionelles des générateur de rythme

réinitialisés par une seule impulsion d’une distance. Des solutions d’ondes réfléchies

se trouvent près de la discontinuité apparente de la courbe de transition de phase du

système et deviennent des trajectoires plus complexes pour une discrétisation spa-

tiale plus grossière du modèle. Enfin, les modèles d’ondes résultant de l’interaction

de deux générateurs de rythme dans des médias hétérogènes excitables sont étudiés.

Une nouvelle culture de tissu cardiaque de poussin est développée pour présenter

la dynamique dominante déterminée par un générateur de rythme. Ce rythme sta-

ble subit des transitions à des modèles d’ondes réentrants plus complexes suivant

l’induction de nouveaux générateurs de rythme, par l’application du bloqueur des
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canaux potassiques, E-4031. La dynamique est reproduite par le modèle FitzHugh-

Nagumo, prévoyant l’effet de la taille du générateur de rythme et la densité de

l’hétérogèneité sur la transition de l’onde rupturée et à la réentrée. Ces résultants

contribuent à notre compréhension des mécanismes de média hétérogènes excitables

avec des générateurs de rythme, dont les coeurs sains et malades.
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CHAPTER 1

Introduction

This chapter reviews concepts relevant to the study of the properties which influ-

ence wave dynamics in heterogeneous excitable media with pacemakers. Excitability,

heterogeneity and pacemakers are defined and their properties are discussed in the

context of mathematical and experimental models of cardiac tissue. These topics mo-

tivate my investigations in Chapters Two, Three, and Four using reaction-diffusion

equations and engineered cardiac tissue to characterize determinants of wave dynam-

ics in heterogeneous excitable media with pacemakers.

1.1 Excitable Media

1.1.1 Definition and Examples

Excitable media are spatially distributed systems with the ability to propagate

waves of excitation. The waves travel without amplitude dissipation, but annihilate

each other on contact. These properties arise because coupled elements in the media,

called cells, have the property of excitability. Excitability is defined as the ability of a

cell at rest to show a large active response to a superthreshold stimulus. This active

response is called an excitation and is characterized by the spontaneous increase of

the activation variable to an excited state. Stimuli below the activation threshold

do not excite the system which relaxes back to the rest state. Another important

feature of excitable cells is refractoriness. The property of refractoriness reflects

the unresponsiveness of a cell to quickly repeated stimulation. For some time after
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excitation there is a refractory period during which a second stimulus will not be

able to elicit another excitation event.

An illustrative example of an excitable medium is a forest fire. The flame prop-

agates by exciting trees close to it, and will continue to spread as long as there are

flammable trees nearby. Once a tree has burned another wave of fire cannot pass

through its location until a new tree regrows there. Nature has many other examples

of excitable systems across a broad range of spatiotemporal scales. These include:

star formation in some spiral galaxies [191, 157], spread of some infectious diseases

through populations [19, 159], aggregation of slime mold amoebae [55, 228], sperm-

induced calcium waves in amphibian eggs [54, 158], waves of electrolytes in neural

[31, 97], retinal [82, 48], pancreatic [142, 214], and muscle tissue [15, 95], as well as

in certain chemical reactions like the Belousov-Zhabotisky reaction [243, 227], or the

catalysis of carbon monoxide oxidation on platinum [83, 84].

In this thesis I examine experimental and mathematical models of excitable

media that are applicable to wave propagation in cardiac tissue. Although cardiac

tissue composition is remarkably diverse in animals [224, 16], and even across different

regions of the heart [188, 66], the property of excitability is inherent to cardiac muscle.

Excitation is mediated through a large rapid depolarization of the cell membrane

potential of cardiomyocytes. This depolarization is initiated by an influx of sodium

or calcium ions into the intracellular fluid known as the cytoplasm. These cations

enter the cytoplasm through ion channel proteins located in the cell membrane and

sacroplasmic reticulum membrane [189]. Following this there is a repolarizing return

to a rest state mediated by the exit of potassium out of the cytoplasm through the cell
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membrane [203]. The sequence of large depolarization followed by hyperpolarization

is known as the action potential. Action potentials can not be initiated in quick

repetition because the cell membrane needs time to repolarize back to rest (a duration

called the refractory period). The action potential propagates through the tissue by

diffusion of electric charge from one cell to its neighbours through coupling proteins

called gap junctions [233]. This is the general physical mechanism underlying spread

of excitation through cardiac tissue.

1.1.2 Properties of Excitable Cells

The properties of excitability and refractoriness in an excitable cell are demon-

strated in a system of ordinary differential equations called the FitzHugh-Nagumo

model [69],

dv

dt
= f(v, w) = −av(v − 1)(v − α) + w (1.1)

dw

dt
= g(v, w) = ǫ(v − bw)

where v is the activation variable (representing the cell membrane potential) and is

w the recovery variable (representing the refractoriness of the cell). The parameter

0 < α < 1/2 sets the threshold for excitation, a > 0 controls the magnitude of

the recovery variable, and b > 0 sets the relaxation rate for the recovery variable.

The parameter ǫ << 1 ensures fast excitation and slow recovery. The state space

of this system is shown in Figure 1–1, along with the nullclines (relation between v

and w given dv
dt

= dw
dt

= 0), and some select trajectories (solutions of the differential

equation).
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Figure 1–1: Excitability in the FitzHugh-Nagumo equations. The thick lines are
the v-nullcline, f(v, w) = 0 (black), and the w-nullcline, g(v, w) = 0 (orange). The
intersection of the nullclines at (v, w) = (0, 0) is an attracting fixed point. (a) The
effect of changing stimulus amplitude showing small stimulus relaxing back to rest
(dashed trajectory) while a larger stimulus induces excitation (solid blue trajectory).
(b) An initial stimulus elicit an activation (solid blue trajectory), while subsequent
stimuli (dashed red trajectories) fail to do so. Vector fields are plotted using pp8.m
[174] for Equation (1.1) with a = 2, α = 0.2, ǫ = 0.01, b = 0.5.
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Figure 1–1(a) demonstrates the concept of excitability in the FitzHugh-Nagumo

model. Two trajectories are shown resulting from a subthreshold perturbation to

(v, w) = (0.1, 0) and superthreshold perturbation to (v, w) = (0.2, 0). The trajectory

resulting from the small stimulus (dashed red trajectory) immediately returns to the

attracting fixed point (v, w) = (0, 0). The larger stimulus puts the state (v, w) in a

region of phase space with dv
dt

> 0 leading to an excitation to v ≈ 1.0 followed by a

return to rest (solid blue trajectory).

Figure 1–1(b) illustrates the property of refractoriness. A first stimulus of mag-

nitude v = 0.25 elicits an excitation, but three subsequent stimuli (dashed red trajec-

tories) given before the system relaxes back to rest do not elicit another excitation.

Times during which a larger stimulus could put the system in a state such that

dv
dt

> 0 are the relative refractory period, while the period of times in which no

stimulus amplitude can do this are known as the absolute refractory period.

Some excitable cells also have the ability to oscillate spontaneously - a property

called automaticity. In dynamical systems theory automaticity manifests itself as the

existence of a stable limit cycle. A stable limit cycle, Γ, is a periodic trajectory which

attracts all states in its neighbourhood as t → ∞. The FitzHugh-Nagumo equations

can be induced to exhibit a limit cycle by adding a constant pacemaker current pa-

rameter, Ip > 0, to f(v, w) in Equation (1.1). In figure 1–2a) we see that when

Ip = 0 the system has all trajectories going towards the rest state (v, w) = (0, 0),

while figure 1–2b) shows that with Ip = 0.2 all trajectories tend to the limit cy-

cle. Figure 1–2c) shows that the transition to oscillations in the FitzHugh-Nagumo

equations is via a subcritical Hopf bifurcation. In fact, raising Ip even higher in
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this case eventually terminates the limit cycle via another subcritical Hopf bifur-

cation. Different models of excitable media can show other types of transitions to

periodic behaviour, such as: saddle node on a limit cycle, period doubling, torus,

and homoclinic bifurcations [18, 109].

1.1.3 Emergent Properties of Coupled Excitable Cells

In excitable media the neighbouring cells can represent units of space which

are coupled locally (to their nearest neighbours) so as to be able to excite each

other. Coupling is an important property of excitable media because it allows for

propagation of the excited state through space in the form of a wave. This leads to

new properties not seen in single cells. In the following I introduce the properties of

wave propagation initiation, termination, and different reentrant wave patterns.

Propagation initiation is a process more rich than the simple excitation of a

single cell. First of all, in addition to stimulus amplitude, the threshold for prop-

agation depends on the spatial extent of the stimulus. This spatial dimension to

the threshold for propagation is known as the liminal length, and was first proposed

by Rushton [183] and further developed by Noble [164] for strands of cardiac tis-

sue. A parameter which captures the ability of a wave to propagate is called the

safety factor. It relates how much activation a quiescent cell receives from its excited

neighbours relative to how much it requires to put it over the threshold for excita-

tion [127]. Several different formulations have been proposed [183, 144, 196, 23] for

one dimensional excitable media, with the recent work of Boyle and Vigmond [23]

showing improved agreement with observations in media of two spatial dimensions.
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Figure 1–2: Transition to automaticity in a FitzHugh-Nagumo cell. (a) For Ip = 0
the trajectories are in the excitable regime. (b) For Ip = 0.2 the system exhibits an
oscillation (bolder blue trajectory) to which all other trajectories are attracted. (c)
The bifurcation diagram for the transition from the excitable dynamics to the oscilla-
tory dynamics. As Ip increases the stable fixed point (straight line) begins to coexist
with a stable oscillation (solid dots represent the minimum and maximum of oscil-
lation) separated by an unstable oscillation (hollow dots). The unstable oscillation
eventually shrinks around the stable fixed point so that it loses stability, leaving an
unstable fixed point (dashed line) and a stable limit cycle. This bifurcation diagram
was made using AUTO [52].
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Another property that arises when excitable cells are coupled together is the

ability to exhibit oscillations even though there may be no automatic cells in the

medium. These spatial oscillations are generated when an excitation wave wraps

around and reenters a previously excited site in a periodic fashion. These dynamics

can manifest themselves in different ways depending on the geometry of the medium.

For example, in one dimensional loops of excitable tissue sustained reentrant waves

are quite common [74, 81, 107, 237]. When the loop is cut oscillations are more elu-

sive, but have nevertheless been found in certain partial differential equation models

[20, 47, 134, 186]. This will be further discussed in Chapter Three.

Two types of simple reentrant oscillations exist in two dimensional excitable

media: circus movement reentry, and functional reentry. Circus movement reentry

involves circular propagation around a fixed inexcitable region. Mayer [149] first

proposed this mechanism for reentry in excitable tissue, and it has since been studied

in experimental [25, 70, 154, 185] and theoretical systems [143, 170, 229, 230]. A

relevant question is whether the reentrant oscillation can be sustained when the size

of the obstacle is made arbitrarily small. It turns out that the answer in a number

of cases is yes. Functional reentry refers to waves rotating despite the absence of

an obstacle and has been demonstrated in many theoretical [143, 229, 230, 241] and

experimental settings [4, 64, 104].

The reentrant wave may also have timing which is not strictly periodic. With-

out an obstacle to anchor itself onto, the free end (tip) of the reentrant wave can

still rotate around a circular trajectory [230], or meander in a series of complicated

trajectories [79, 210, 245]. The wave may also break up and spawn new rotational
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centres of reentering waves [68, 245, 247]. Reentrant waves in cardiac tissue are fur-

ther discussed in Section 1.3.6, and reentrant dynamics are observed in the results

of Chapters Two, Three, and Four.

1.1.4 Mathematical Models of Excitable Media

Mathematical models of excitable media can be classified in terms of the con-

tinuity of their independent variables (space and time) and dependent (activation

and recovery) variables. Discrete variables are mapped onto the space of integers,

while continuous variables are real numbers. Models of excitable media fall into

three continuity classes: cellular automata, coupled ordinary differential equations,

and partial differential equations. Cellular automata are composed of a number of

discrete spatial elements, called cells, which are coupled locally to each other. Each

cell has a finite number of states with time-updated rules that guide the transi-

tions between states. In contrast, coupled differential equations have a continuum

of dependent variable states for each cell. Partial differential equations have these

properties, but in addition treat space as a continuous variable.

Cellular automata were conceived by John von Neumann, and soon after applied

to cardiac systems by Wiener and Rosenblueth [240]. These models are tempting to

use because they are relatively easy to understand and implement, and computation-

ally inexpensive. The drawback is that they tend to miss out on physically relevant

properties of excitable media, such as action potential morphology, wave curvature

effects, and dispersion properties [26, 173]. This is mainly due to the typically small

number of variable states used which, among other things, can not faithfully repro-

duce excitation via diffusive coupling between adjacent cells. Furthermore, cellular
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automata models in general lack the theoretical insight that we have developed from

the qualitative theory of differential equations [122].

For these reasons partial differential equations are more commonly adopted for

mathematical modeling of excitable media. This approach gained prominence in

biomathematics following the seminal work of Hodgkin and Huxley [97], whose model

accurately reproduced the dynamics of wave propagation in one dimensional squid

nerve axon. A partial differential equation model of excitable media has the form,

∂v

∂t
= f(v) + D∇2v (1.2)

where f(v) is an m-dimensional vector-valued function of m state variables, v. The

parameter D is a tensor of coupling strengths, and ∇2vi =
n
∑

j=1

∂2vi
∂xj

2 describes the

diffusion of v . In this work we will mostly restrict our attention to the cases where

v = (v,w), n = 2, where isotropic diffusion is restricted to the activation variable

such that the components of D are, Dv =







D 0

0 D






for the activation state, and

Dw =







0 0

0 0






for the recovery state. Models of this form belong to a class of

formulae know as reaction-diffusion equations. In the case of excitable media the

reaction function, f(v), must exhibit the excitability properties discussed in Section

1.1.2.

Coupled ordinary differential equations offer a way of discretizing the space

in Equation (1.2) on a lattice, such that the smallest interval of space becomes

∆x, rather than dx. For example, on a square lattice of area A = (L × L), a
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discretization into k2 square cells with ∆x = L/k makes the m partial differential

equations defined by Equation (1.2) into mk2 coupled ordinary differential equations.

A region of discretized space, represented by a cell (p, q), has its own set of m ordinary

differential equations, each coupled to its neighbours. The coupling at cell (p, q) is

defined by the discretized Laplacian,

∇2v(p,q) = ∆x−2[v(p+1,q) + v(p−1,q) + v(p,q+1) + v(p,q−1) − 4v(p,q)] (1.3)

This first-order approximation of diffusional coupling on a square lattice is used in

the two dimensional reaction-diffusion equations of Chapters Two and Four, inas-

much as it simplifies the definition of heterogeneities in those chapters. The one

dimensional equations studied in Chapter Three are discretized according to a higher-

order approximation to the Laplacian which is explained in Section 3.4.1. In general,

space and time discretization is necessary when numerically solving partial differen-

tial equations on a computer, which has a finite number of states that it can hold

in memory. There are a number of issues when approximating partial differential

equations by discretized equations which will be discussed further in Section 1.2.3.

1.2 Mathematical Models of Cardiac Tissue

1.2.1 Biophysical and Phenomenological Models

At the biophysical level the heart is an extremely complex excitable tissue. It

is composed of two main cell types (myocytes and fibroblasts) with a vast range

of electrical properties, which are connected together in an irregular fashion. At

the cellular scale activation is described by the depolarization of the cell membrane
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caused by movement of ions in and out of the cytoplasm. Equations that explicitly

model this process are called ionic models.

The simplest of these, called first-generation models, define membrane voltage

as a function of changes in ion channel conductances [138]. Second-generation mod-

els incorporate changes in ion concentrations caused by ion pumps and intracellular

movement of calcium through the sacroplasmic reticulum [147], while third gener-

ation models include more biophysical details, such as the effect of contraction on

channel conductivity [132].

These ionic models are under continuous development so as to be able to accu-

rately reproduce increasingly detailed experimental measurements. As such, there-

Excitability is a tendency to make detailed models sometimes involving dozens of

state variables [108]. The high-dimensionality of such systems makes it very difficult

to obtain theoretical insight into the underlying dynamics. Furthermore these models

are highly constrained to the particular circumstances under which the experiment

is carried out (animal species, cell type, region of heart, environmental conditions,

etc.).

These challenges are addressed by simplifying the model so as to reproduce

the macroscopic characteristics of membrane potential dynamics. The first of these

phenomenological models was developed by FitzHugh in the 1960’s to study action

potential propagation in nerve [69]. The FitzHugh-Nagumo equations of propagation

take the reaction terms, f(v, w) and g(v, w) presented in Equation (1.1) and substi-

tute them into the reaction-diffusion partial differential equation defined in Equation

(1.2) to give,
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∂v

∂t
= −av(v − 1)(v − α) + w + D∇2v (1.4)

∂w

∂t
= ǫ(v − bw)

Over time these equations have been modified to suit the particular features of the

cardiac tissue experiment under consideration [94, 29, 245, 67, 2]. Although they are

unable to capture mechanistic details of action potential generation, they are well

suited to reproducing macroscopic characteristics of wave propagation: wave veloc-

ity, activation and refractory periods, periods of oscillations and tissue restitution

properties [161]. Furthermore, these models are relatively easy to implement at the

start of an investigation and can later prove useful as a reference point from which

to compare different ionic models. For these reasons, in this thesis I focus on the

investigation of the FitzHugh-Nagumo type propagation models.

1.2.2 Cable Theory of Cardiac Tissue

Propagation of excitation through cardiac strands can be characterized by a type

of partial differential equation called the cable equation. The passive one-dimensional

cable equation has the form,

∂v

∂t
= −cv + D

∂2v

∂x2
(1.5)

where v represents an activation (or voltage) variable , c is a rate constant, ∂2v
∂x2

is the Laplacian of v, and D is the diffusion coefficient. The cable is passive due

to the linearity of the −cv term. Equation (1.5) was proposed by Lord Kelvin in

1850’s to model the propagation of electrical impulses down the planned transatlantic
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telegraph cable [222]. It has since been used to study current flow through nerve,

muscle, and cardiac tissue [110].

Analytical solutions to Equation (1.5) have been obtained for different initial

and boundary conditions [110]. One can get an idea of its properties by assuming

the activation is at a steady state, ∂v
∂t

= 0, so as to reduce Equation (1.5) to a simpler

linear ordinary differential equation with a solution,

v = v0e
−x/λ (1.6)

where λ =
√

D/c is called the space constant of the cable. The space constant

characterizes the spatial scale of diffusion of subthreshold activation (electrotonus

[204]) through the reaction-diffusion medium.

In general, λ can be found in more complicated partial differential equations

with many state variables, including when the linear term −cv in equation (1.5) is

a non-linear function f(v). The strategy then is to recover the passive component

of the non-linear function by linearizing the equations about the stable fixed point

of the system [124]. One can also numerically find λ by numerically solving the

approximated partial differential equation system around its rest state, with the

addition a constant (step) input stimulus of amplitude A to Equation (1.5) at x =

0. This ensures that A is small enough to be subthreshold to strongly non-linear

responses, like the firing of an action potential. By plotting steady state v at different

x on a log-log plot one obtains a linear fit with slope −λ−1.

This fitting technique is also used in cardiac strand experiments where λ is typ-

ically 1-2 mm in Purkinje fiber [238] and cultured strands of chick ventricular cells
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[184], and is around 0.3 mm in cultured neonatal rat cardiac monolayer [117]. In

Chapter Three I investigate the effect of space constant relative to spatial discretiza-

tion used in the one dimensional cable model.

In higher spatial dimensions the continuous cable theory predicts electrotonic

activation spread falloffs which are sharper than Equation (1.5) [117, 110, 204, 205].

Nevertheless, propagation experiments in cardiac tissue have revealed that electro-

tonic properties are more comprehensively described by spatially discontinuous mod-

els of propagation than continuous partial differential equation models [204, 135, 63].

The two dimensional models used in Chapters Two and Four study the role of connec-

tive discontinuities (in the form of randomly distributed heterogeneous substrates)

in modulating wave speed, and inducing propagation failure.

1.2.3 Numerical Approximation of Continuous Reaction-Diffusion Equa-

tions

When numerically solving partial differential equations, it is important to be

aware of the caveats in the approximations made. One cannot make ∆x and ∆t

infinitely small, and this invariably introduces truncation errors in the discrete ap-

proximation. To guarantee that the numerical scheme solves the underlying partial

differential equation with high fidelity, one should check that: 1)the truncation er-

rors do not grow out of control as the scheme integrates with time, and 2) they

are small enough to have the numerical solution effectively approximate the solution

underlying partial differential equation.

The first consideration is treated with the concept of numerical stability. A

discretization of a partial differential equation is said to be stable if the truncation

error, made at each time step of the iteration, does not grow as more iterations
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are carried out. While it is in general very difficult to check this exactly for non-

linear reaction diffusion equations, many cardiac modellers use the Neumann stability

criterion for the linear diffusion equation as a general guide to stability [9, 119, 178].

When using the forward Euler finite difference scheme in n dimensions the Neumann

stability criterion is defined by:

D∆t

∆xn
≤

1

2n
(1.7)

Once stability is ensured, one should then check that the numerical solution is

relatively close to the actual solution of the partial differential equation. Although

the equations are often not analyticaly solvable, it is still possible get a an idea of

the quality of the approximation by examining the numerical solutions as ∆x and

∆t are incrementally decreased. Figure 1–3 shows the results of such a procedure for

the model used in Chapter Three. The features of the numerical solutions at small

∆x seem to be converging to those of the actual partial differential equation solution

(∆x → 0, ∆t → 0).

Although there are no universal benchmarks for convergence, the space constant,

λ has been used as a rough guide to ensure that the ∆x chosen is small enough

[9, 119, 178]. The spatial discretization is chosen so that the ratio ∆x/λ (known as

the discretization constant) does not exceed ≈5 . The manuscripts published in the

cardiac field that do explicitly address discretization typically have solution features

varying by less than 5% as ∆x and ∆t are halved from the nominal values used

in the simulations [9, 17, 223]. The spatial and temporal discretizations chosen to

simulate the models in this thesis has been chosen to satisfy these criteria. A case in
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Figure 1–3: Convergence of wave features for smaller spatial discretizations of the
FitzHugh-Nagumo cable model studied in Chapter Three. As spatial discretization
∆x is decreased there is convergence of relevant propagation parameters: (a) acti-
vation waveform, (b) action potential duration, (c) risetime of activation, and (d)
conduction velocity.
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which the criteria is not met, resulting in new solutions not present in the underlying

partial differential equation, is discussed in Chapter Three.

1.3 Experiments on Wave Propagation in Cardiac Tissue

1.3.1 Experimental Models

A number of experimental approaches are available to study how the structural

and electrophysiological properties of cardiac tissue determine the types of activation

patterns of waves which propagate through it. The experiments range from clinical

research on humans in situ [118, 225], to highly controlled experiments in various

animal cardiac preparations [4, 41, 111, 162, 185, 233].

Cardiologists use surface electrocardiograms and electrode catheters inserted

into the heart to determine gross properties of electrical propagation through heart

muscle [118]. The electrocardiogram records body surface potentials which give a

low spatial resolution picture of wave propagation through the heart [172], while the

electrode catheters can map field potentials induced by the spread of excitation on a

millimeter scale [71]. These tools are essential in characterizing spatiotemporal pat-

terns of electrical activity and their relation to known classes of cardiac arrhythmias.

One example is the use of the electrodes to locate and ablate accessory pathways to

propagation, which can be the source of a reentrant tachycardias [71, 118]. However,

there are physical and ethical constraints on the range of experimental measurements

and conditions available to study propagation in human heart.

Physiologists have used several different animal models to further our under-

standing of wave conduction through cardiac tissue. These studies have allowed

researchers to not only elucidate the molecular basis of electrical propagation, but
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also study the mechanisms of simulated arrhythmogenic situations (such as acute

ischemia, volume overload, aortopulmonary shunts, fibrosis, etc.), as well as test

the effects of pharmacological agents in modulating wave propagation properties

(reviewed in [115, 162]). While these studies allow deeper investigation into the

mechanisms underlying wave propagation, their scope is still limited by the physical

peculiarities of the particular cardiac tissue used. For example, one is unable to in-

vestigate fundamental design considerations such as: how does cellular heterogeneity

influence wave propagation in cardiac tissue? Questions like this are more readily

tackled when one assumes control of how the tissue is built.

1.3.2 Engineered Tissue Culture Models

Cultured cardiac tissue models are composed of collections of dissociated car-

diac cells subsequently reassociated into excitable tissue. There are currently many

options for the type of cardiac cells to use, and for the shape that the tissue will

take.

Cells have traditionally been taken from embryonic chick [50, 81, 28, 60] or

neonatal rat heart [1, 34, 58, 64, 63, 104, 150, 151] as these young cells are more

capable of reestablishing gap junctional connections necessary to form a functional

syncytium [27]. A cell line derived form murine atrial tumors, called HL-1 cells [42]

has more recently been used to study wave propagation [62, 98, 231], but these cells

have proven challenging to culture into functional excitable tissue [99]. In the last few

years, cardiac stem cells have become a very attractive source for tissue engineering

[32, 61, ?]. These can be in the form of adult stem cells already differentiated into

cardiac tissue, or embryonic stem cells which can differentiate into many types of
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tissue [61]. Both cell types have direct therapeutic potential, insamuch as they can

be reinserted into the host to repair unhealthy cardiac tissue [32, 61, 148, 248].

Embryonic stem derived cardiomyocyte cultures can be engineered into functional

networks of connected cells which support wave propagation [125, 128, 239].

Dissociated cardiac cells can be cultured into different geometric structures,

including: reaggregate spheroids, one dimensional strands, two dimensional (mono-

layer) sheets, or complex three dimensional shapes. Reaggregates are collections of

thousands of cells rotated in liquid so as to clump into ≈ 10−4 m diameter balls

[13, 50, 88, 126, 206]. They can be tuned to exhibit either rhythmic or excitable dy-

namics [50], but they are less amenable to monitoring of spatial activity within them.

Monolayers are cells plated on a flat surface which connect up into a confluent two

dimensional network of cells. The geometry of the tissue boundary can be controlled

to produce shapes such as disks [1, 28, 98, 104, 259], quasi-linear strands [184, 226],

annuli [81], or rectangular areas connected by a narrow isthmus [12]. Three dimen-

sional cultures are prepared by molding cells onto polymeric scaffolds [33, 131], or

by layering of preconstructed tissue sheets [198, 199]. While engineering three di-

mensional tissue requires more sophisticated culturing techniques than those for two

dimensional sheets, the reconnected cells more closely resemble the phenotype of

their counterparts in vivo [33, 60, 206].

Experiments on sheets of chick cardiac tissue motivate the theoretical work

in Chapters Two, Three, and Four of this thesis. The experiments presented in

Chapter Four were carried out using custom engineered cardiac disks of embryonic
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chick ventricular cells. The properties of this preparation are discussed in detail in

Section 4.3.1.

1.3.3 Mapping Wave Propagation

Tracking the evolution of excitation waves requires measurements taken at many

points in space and time. In cardiac tissue culture experiments these measurements

have been made using several electrodes, and various optical mapping techniques.

Microelectrode arrays are collections of extracellular electrodes, each of which

detect electric potential in a region of the extracellular medium. The extracellular

potential near the cells is referenced to a ground electrode in the bath. Cells are

typically plated over the electrodes to reduce motion artifacts which decrease signal-

to-noise ratio [56]. Custom built microelectrode arrays have been used to measure

wave propagation in engineered cardiac tissue sheets [93, 106, 125, 151], and at least

two [78, 101] are now commercially available. While they offer a non-invasive method

of obtaining high time resolution time-series, the number of electrodes (typically

< 80) in each array limits the spatial resolution of recordings [56, 247].

Optical mapping allows for higher spatial resolution measurements of wave prop-

agation. The goal is to capture light from the surface of the excitable media. In

cardiac and nerve tissue this is done by staining cells with dyes sensitive to calcium

or voltage that can detect action potential generation. Voltage-sensitive dyes have

the advantage of providing direct measurement of the potential across the cell mem-

brane, which is the main activation variable diffusing in the system. Conduction

experiments in monolayers have been performed by using voltage dyes like RH-237
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[34, 104], di-4-ANEPPS [239] and di-8-ANEPPS [58, 259], each of which have par-

ticular excitation and emission bandwiths which required specialized light filters

installed into the optical system. The drawbacks of voltage-sensitive dyes include

photobleaching, phototoxicity, and a relatively poor signal-to-noise ratio [26, 239].

Calcium sensitive dyes produce a stronger fluorescence signal, and dyes like Fluo-4

and Calcium Green-1 have been utilized in cardiac propagation studies [1, 28, 239].

More recently, a method of imaging the visible light reflected by moving tissue as

it contracts has provided some accurate reconstructions of wave propagation patterns

[100, 247]. Despite the fact that contraction is a rather indirect measure of excitation,

this dye-free method avoids the toxicity and photobleaching inherent to use of the

current voltage and calcium-sensitive dyes.

Each of these methods detects electrical activation in the form of a change in

the light emitted by the tissue and transduced by photoelectric sensors. These light

detectors take the form of diode arrays on which the cells are cultured, or charge-

coupled device chips which collect the light image through a series of lenses and filters

(see [26, 239] for overview or [1, 28, 34, 58, 100, 104, 247, 259] for specific examples).

Optical mapping experiments used to motivate the studies in Chapters Two,

Three and Four were performed by loading cells with Calcium Green-1 dye, and

imaging using a custom-built macroscope coupled to a charge-coupled device camera.

The details of this optical mapping system are described in detail in Section 4.3.2.

1.3.4 Spatial Heterogeneity

Cardiac tissue is a heterogeneous excitable medium in the sense that regions of

the medium exhibit different properties. These regional differences can predispose
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some parts of the medium to exhibit bursting, automatic (pacemaker), excitable, or

inexcitable dynamics. How the distribution of cellular parameters affect the dynamics

of coupled cells is a common theme in this thesis as well as in many other studies of

cardiac tissue [30, 62, 120, 121, 169, 259].

It is not uncommon for a heart to develop heterogeneities in the form of large

(millimeter-sized) inexcitable regions within the excitable tissue. These regions are

composed of scar tissue formed by myocardial infarction following ischemia [57, 118].

These inexcitable zones form obstables over which waves break and wrap around

to form a reentrant circuit of excitation (also known as circus movement reentry

described in Section 1.1.3). Inasmuch as this situation is thought to be reason for

many dangerous tachycardias, the properties of such reentrant circuits have been the

focus of intense experimental [25, 70, 4, 185, 81] and theoretical research [74, 143,

170, 202, 229, 230]. In Chapter Four I investigate the role of a recovering pacemaker

site acting as a large obstacle leading to wave breakup and reentry.

At the cellular level, the portion of cardiac tissue responsible for propagating

waves is composed of a heterogeneous distribution of different cell types: cardiomy-

ocytes, fibroblasts, and blood vessel endothelial cells. Cardiomyocytes are excitable

cardiac muscle cells which form the bulk cardiac tissue. Despite this they are out-

numbered (about 2:1) by inexcitable cells called fibroblasts [133]. Fibroblasts are

thought to be primarily responsible for maintenance of the extracellular matrix of

cardiac tissue, but they are also electrically coupled to myocytes via gap junctions

[24, 133]. As such, they can act both as current bridges by connecting up distant

myocytes, or current sinks which place an electrotonic load on surrounding myocytes
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during wave propagation [72, 133]. In pathological situations like fibrosis, fibrob-

lasts can secrete excess collagen into the extracellular matrix, which can act as small

(cell sized) obstacles to propagating waves [49, 179, 221]. The influence of small

structural heterogeneities like fibroblasts and collagen deposits on wave propaga-

tion has been investigated in experimental and theoretical models of cardiac tissue

[35, 212, 221, 216, 259] and is the focus of the next chapter.

1.3.5 Cardiac Pacemakers

Pacemakers are regions of automaticity (defined in Section 1.1.2) which entrain

the surrounding excitable tissue by emitting waves of excitation which pass through

the medium with the period of the pacemaker. At the tissue scale, the heart has

evolved specialized regions responsible for pacemaking. The typical rhythm of a

healthy heart is set by a dominant pacemaker called the sinoatrial node. This mul-

ticellular structure is embedded in excitable right atrium muscle, where is can be

distinguished histologically by the less regular distribution of cells in a relatively

fibrous connective tissue matrix [156]. Sinoatrial node cells distinguish themselves

from the surrounding atrial myocytes with distinct electrical properties which al-

low them to oscillate spontaneously. One such property is the “funny current”, If ,

that is an inward current activated at hyperpolarized potentials. A heterogeneous

distribution of If and other ion currents (ICa,L, INa, Ito) plays a functional role in

pacemaking at the cellular and tissue levels [22, 156].

The distributions of cellular beat rates within cardiac pacemakers have been

examined in experimental preparations of the sinoatrial node [22, 130, 166], Purk-

inje fibers [65, 112], as well as embryonic chick tissue [50, 51]. These studies show
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that regions of cells with faster beat rates tend to set the pace of the oscillation.

Nevertheless, it should be noted that, over short distances, electrotonic interactions

between pacemakers can lead to synchronized beat rates slightly slower than that of

the fastest uncoupled pacemaker [22, 51, 152, 166].

There are structures in the heart besides the sinoatrial node which are able to

act as sites of pacemaking, including: fibers in the atria, the coronary sinus and

pulmonary veins, portions of the atrioventricular junction, the His-Purkinje system,

throughout ventricular muscle, right and left ventricular outflow tracts, and valves

[257]. There pacemaker sites are able to drive the heart in case of sinoatrial node

dysfunction (in which case they act as subsidiary pacemakers) [21, 181, 182], but

can also paroxysmally compete with the sinus node for entrainment of the cardiac

muscle (in which case they act as ectopic pacemakers) [38, 116, 180].

In a healthy heart the sinus node has the fastest beat rate of these pacemakers,

and so resets and entrains them [113]. This follows from the property of wave anni-

hilation in excitable media: wave trains generated by the spontaneous pacemaker (or

pacing stimulator) “peel back” wave trains generated by sources of wave trains with

a longer beat rate. [1, 118, 113, 140, 190, 207, 251, 256]. Once the wave train of the

faster pacemaker reaches the source of slower wave trains (be it another pacemaker,

or the pivot point of a reentrant wave) then that source may be reset and entrained

to the period of the faster pacemaker.

A mathematical framework for describing resetting and entrainment of pace-

makers is presented in Section 1.4 and the resetting properties of cardiac pacemakers

are discussed in detail in Section 1.4.3. In Chapter Three I study the resetting of
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a pacemaker region by stimuli delivered through an excitable cable, while in Chap-

ter Four I investigate resetting and dynamics resulting from the interaction of two

pacemaker sites embedded in a chick cardiac monolayer.

1.3.6 Reentrant Waves in Cardiac Tissue

Waves of reentry introduced in Section 1.1.3 are germane to cardiologists. Mines

suggested the relevance of self-sustained rotating waves of excitation to cardiac tachy-

cardias [153], and since then a number of dangerous cardiac arrhythmias have been

associated with reentrant waves. These include: sinus node reentrant tachycardia,

atrial flutter, atrial fibrillation, atrioventricular nodal reentrant tachycardia, atri-

oventricular reciprocating tachycardia, ventricular tachycardia, and ventricular fib-

rillation [257]. Experiments studying the factors influencing reentry formation and

termination in excitable tissue may provide insights for effective treatment of these

arrhythmias.

The determinants of reentrant wave formation have been investigated in a range

of engineered cardiac tissue. These studies have shown that reentry is favoured by

factors such as: premature stimuli [104], rapid pacing [1, 255], large inexcitable ob-

stacles [146], increased fibroblast proportion [259], decreased intercellular coupling

[28, 259], regions of abnormal cell density or low potassium conductance [1]. Con-

versely, termination of reentry can be promoted by rapid pacing [1], electrical field

stimulation [104], and inhibiting sodium conductance [146]. In Chapter Four I inves-

tigate the formation of reentry in engineered chick cardiac tissue by increasing the

beat rates of pacemakers through application of a potassium channel blocker.

26



1.4 Phase Resetting of Pacemakers

1.4.1 Perturbing a Stable Limit Cycle

Robust spontaneous oscillations of pacemakers in excitable media can be de-

scribed in the language of dynamical systems theory. An oscillation is a periodic

solution to a system of differential equations, represented by a simple closed trajec-

tory in state space. Automatic and robust oscillations such as those in the heart can

be thought of as a stable limit cycle defined in Section 1.1.2. A stable limit cycle,

Γ, is a periodic trajectory which attracts neighbouring states. This implies there are

small perturbations from a state v ∈ Γ will converge back to Γ as t → ∞. The basin

of attraction of Γ, designated as B(Γ) corresponds to all states that approach Γ in

the limit t → ∞. A robust heart rhythm which persists despite large perturbations,

can be thought of as having a large basin of attraction.

Small perturbations from v ∈ Γ to v′ ∈ B(Γ) can nevertheless shift the phase of

the oscillation. A phase, ϕ ∈ [0, 1), represents the amount of time that has elapsed

in a cycle relative to the intrinsic cycle length, T0, with ϕ = t−t0
T0

(mod 1) where t0 is

a time chosen to mark the start of the cycle. One can characterize the influence of a

perturbation on the change of phase by performing a phase resetting experiment. A

range of biological oscillations (from circadian rhythms in organims to aggregation

of slime mold amoebae) have been investigated with such experiments [243].

1.4.2 Phase Transition Curve Measurements

Winfree developed a theoretical framework for analysing these phase resetting

experiments. A perturbation (in the form of a brief stimulus) delivered at some

phase of the oscillation, ϕ (also called the old phase), and causes a resultant phase,
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g(ϕ) (also known as the new phase). The oscillation is assumed to be a stable limit

cycle, Γ, with intrinsic period, T0. The timing of the stimulus, also known as the

coupling interval, tc is related to the old phase by tc = ϕT0 (see Figure 1–4). The

resulting cycle lengths, (T1, T2, ..., T∞), after the perturbation are measured and used

to calculate the phase shift, ∆ϕ, given by

∆ϕ =
iT0 − Ti

T0
(mod 1) (1.8)

which holds for i → ∞, but typically the limit cycle reestablishes its intrinsic period

very quickly so that Tn+1 ≈ Tn + T0 for n ≥ 2. For the calculations of ∆ϕ used in

this thesis I found that taking T3 is sufficient (99.9% accurate) to approximate Ti as

i → ∞.
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Figure 1–4: A schematic of measurements taken used to calculate the phase resetting
of a pacemaker used in Chapter Three. The limit cycle oscillation is perturbed just
after the second beat resulting in a slight prolongation of cycle length. The dashed
vertical line represents the reference time corresponding to ϕ = 0 (arbitrarly set at
the upward zero crossing time of v). A stimulus is delivered at a time tc after the
reference time (dashed line) leading to a perturbed cycle length, T1.
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The phase shift perturbs the old phase, ϕ, to the new phase, g(ϕ) = ϕ + ∆ϕ,

resulting in the following relationship by which the new phase is computed

g(ϕ) = 1 − T3/T0 + ϕ (mod 1) (1.9)

Plotting ϕ ∈ [0, 1) against g(ϕ) ∈ [0, 1) gives the phase transition curve, g(ϕ) ∈

[0, 1), that relates the phase resetting effect of a stimulus given at any phase. In

general, no resetting occurs for ϕ where T1 = T0 so that ϕ = g(ϕ). Perturbation

phases for which T1 < T0 cause phase advances. Chapters Three (Figure 3–3(a)) and

Four (Figure 4–8(a)) characterize phase transition curves for partial and ordinary

differential equation pacemaker models, respectively. In space, the separation time

between stimulus and pacemaker, ∆t(s,p), shifts ϕ by
−2∆t(s,p)

T0
resulting in ϕ = g(ϕ) for

stimulus phases where stimulus and pacemaker waves annihilate [94]. The topological

properties of phase transition curves are examined further in Chapter Three (Section

3.3.1).

1.4.3 Phase Resetting and Entraining Cardiac Pacemakers

Phase transition curves have been measured in several different cardiac pace-

makers using a range of experimental preparations [8, 41, 91, 114, 111, 139, 232]

and computational models [41, 45, 90, 89, 137, 176] by directly stimulating the site

of pacemaking. The curves have also been investigated by stimulating a pacemaker

from a distance in real cardiac tissue [74, 118] and mathematical models of excitable

media [73, 74, 94, 165]. While the exact shape of the phase transition curves can be

quite diverse from one experiment to the next (and for different stimulus amplitudes),
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they share some interesting properties. One of these properties is the continuity of

g(ϕ) with respect to ϕ, which is further discussed in Section 3.3.1.

The phase transition curve can be used to predict the entrainment pattern when

periodic stimuli with period Ts are delivered to the pacemaker [88]. Given a fast

return to the limit cycle (i.e.: T2 − T3 ≈ T0), if ϕj is the phase just before jth

stimulus then

ϕj+1 = g(ϕj) + Ts/T0 (mod 1) (1.10)

The iteration of this map with each stimulus number, j, predicts the dynamics

of the pacemaker under periodic forcing. By studying the effect of different pacing

periods on the dynamics of ϕj in Equation (1.10) one can find regions of M:N phase

locking (where every integer M stimuli elicit N beats from the pacemaker), as well

as irregular chaotic dynamics [88, 87]. I use these concepts to predict the limit of 1:1

entrainment of a pacemaker pair in Chapter Four.

1.5 Summary and Outlook

This chapter reviewed the basic concepts relevant to studying the dynamics of

pacemakers in heterogenous excitable media. The properties of excitable media were

introduced and it was demonstrated how they manifest themselves in many forms

of cardiac tissue. This discussion was complemented by an overview of mathemati-

cal and experimental tools used for the modeling and analysis of dynamics in such

systems. In the next three chapters I present results on how properties of hetero-

geneity, resetting, and pacemaker beat rates relate to the dynamics in heterogeneous
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excitable media with pacemakers. The next chapter focuses on properties of hetero-

geneous media, namely the coupling between cells and distribution of two types of

heterogeneous cell substrates, and their role in the dynamics of wave propagation

slowing, wave break, and reentrant wave patterns.
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CHAPTER 2

Dynamics of Wave Slowing and Breakup with two Heterogeneous

Substrates in Excitable Media

2.1 Abstract

Waves of activity in excitable media can propagate as plane waves, or break up

to form reentrant waves. In heterogeneous cardiac tissue, plane wave breakup can be

associated with fatal cardiac arrhythmias. In this chapter I investigate how spatial

heterogeneity can lead to wave slowing, wave break, and propagation failure in a

FitzHugh-Nagumo model of two dimensional excitable media. Two types of hetero-

geneities are considered: sinks are regions in space in which the activity is held at the

rest state, and breaks are non-conducting regions with no-flux boundary conditions.

When these heterogeneities are randomly distributed through the medium they have

an aggregate decremental effect on plane wave velocity, and above a critical propor-

tion of heterogeneities the wave conduction fails. Using numerical simulations and

Luther’s Law I describe the functional relationship between the conduction velocity,

proportion of heterogeneities, and diffusive coupling for each type of heterogeneity.

The results facilitate our understanding of the properties that determine reduced

propagation velocity and wave break in heterogeneous excitable cardiac tissue.

2.2 Introduction

Analysis of wave propagation through spatially heterogeneous media is a classic

problem in physics [105, 253]. In this chapter I consider an excitable medium with
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spatial heterogeneities related to cellular heterogeneities in cardiac tissue. However,

even in a spatially homogeneous excitable medium, there may be transient spatial

heterogeneities (say, in refractoriness) that in turn result in wave break and the for-

mation of spiral waves [68, 171, 244]. A further complication arises in other natural

and experimental excitable systems which invariably contain heterogeneities that lead

to a variety of experimentally observed wave patterns including rotating spiral waves.

Examples include heterogeneities in the form of water-in-oil microemulsions [234, 235]

and experimentally generated catalyst patches in the Belousov-Zhabotinsky reaction

[213], irregularities in catalytic surfaces [5, 6, 14], and variability in the spatial struc-

ture in cardiac tissue and tissue culture [28, 29, 30, 35, 216, 259].

An experimental example of wave break leading to reentrant wave formation is

shown in Figure 2–1. Each panel represents a spatial map of intracellular calcium

concentration in a monolayer culture of spontaneously beathing embryonic chick

heart cells, further described in Sections 4.3.1 and 4.3.2. In this sequence of cal-

cium activations, a wave starting from the top right edge of the culture propagates

through the heterogeneous medium to the left boundary. The second wave attempts

to take a similar trajectory but breaks up in the upper middle to form a reentrant

rotating wave. The irregular propagation of the wave is thought to be influenced

by heterogeneities distributed throughout the medium. The increased presence of

such heterogeneities in the whole heart, such as those induced by fibrosis, may lead

to serious abnormal cardiac rhythms that are associated with rhythms generated by

rotating spiral waves of excitation [35, 145, 216] similar to those shown in Figure

2–1.
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Figure 2–1: An example of wave propagation, breakup, and the formation of a
reentrant wave in chick cardiac monolayer culture (courtesy of T. K. Shajahan).
The activation maps have a field of view of ≈1 cm and are presented every 250 ms.
The brighter colour indicates regions of higher intracellular calcium concentration.
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Given the practical importance of the problem, there have been many theoret-

ical studies of the role of heterogeneities in modulating cardiac conduction. They

analyze the roles of both localized [9, 146, 175, 195, 193, 209, 249, 252] and randomly

distributed heterogeneities [28, 29, 30, 212, 218, 220]. While large localized hetero-

geneities often act as anchoring sites for spiral waves of excitation, smaller dispersed

heterogeneities have more subtle effects on the dynamics. The effects depend on the

coupling and excitability properties of the medium, as well as the types of distributed

heterogeneities. In this chapter I focus on two different types of heterogeneities which

are relevant to cardiac tissue. Breaks are non-conducting regions of space with no-

flux boundary conditions, and sinks are locations at which the activation is fixed at

its rest value.

As the relative density of these randomly distributed heterogeneities increases,

the conduction velocity typically decreases. This can have contrasting effects depend-

ing on the underlying properties of the medium. If the medium normally conducts

plane waves without breaking up, then as the density of heterogeneities increases

plane wave propagation can break leading to rotating spiral waves [29, 30, 212]. In

contrast, for excitable media in which spiral wave formation is not favoured, an in-

crease of heterogeneity can lead to a subsequent slowing of the propagating wave and

paradoxical stabilization of the reentrant propagation [218, 220, 221].

Recent work has focused on understanding the decrease of propagation velocity

as a function of the density of the heterogeneities. Steinberg and others proposed a

dimensionless number to characterize media at the point where plane waves break
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up [212]. Alonso et al. developed an effective medium theory in which effective dif-

fusion coefficients and reaction rates characterize the decrease of conduction velocity

with heterogeneity density [5, 6, 14].

The present findings extend these earlier studies by juxtaposing the factors which

modulate conduction velocity in model cardiac systems with breaks or sinks. Specif-

ically, for each type of heterogeneity I propose a functional form for the relationship

between conduction velocity, coupling, and the density of the heterogeneities.

2.3 Methods

2.3.1 Model of Excitable Medium with Heterogeneities

The excitable medium is simulated using the FitzHugh-Nagumo model defined

by Equations (1.4)

∂v

∂t
= −av(v − 1)(v − α) + w + D∇2v

∂w

∂t
= ǫ(v − bw)

with α = 0.02, ǫ = 0.01, β = 0.5 and D is varied in the range (0.5 − 1) × 10−3.

These equations are solved numerically using forward Euler integration with space

step ∆x = 0.01 and time step ∆t = 0.01. The spatial unit is defined as 1 cm and

time unit is 1 ms, so that D is expressed in cm2/ms. With this choice of parameters

the velocity in the homogeneous system changes by ≈0.1% when ∆x = 0.005 and

∆t = 0.0025.

The partial differential equations are spatially discretized in two spatial dimen-

sions on a 200 × 200 square lattice. To generate the distribution of heterogeneities
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for each cell, a probability of being a heterogeneity, PH , is chosen . This generates a

mean proportion of cells marked as a heterogeneity averaged over all possible distri-

butions, < φ >≈ PH . The actual proportion of heterogeneities in most realizations

is typically very close to < φ > on such a large lattice. Examples of distributions of

heterogeneities at different φ are presented in the first column of Figure 2–2, with

heterogeneities in black and excitable cells in white.

A sink heterogeneity is defined as a discretized cell, held at their rest state

(v = 0, w = 0) (i.e. Dirichlet boundary conditions), and a break cell has no-flux

(i.e. Neumann) boundary conditions, ∂v
∂x

= 0, for all time. A sink is related to an

inexcitable yet coupled fibroblast cell, while a break represents extracellular collagen

deposits between cells that act as non-interactive obstacles to wave propagation.

Plane waves are initiated by setting the initial conditions of the first three

columns of cells on the left side at (v = 1.0, w = 0.0). The conduction velocity

of the waves, CV , is estimated by interpolating activation times (zero crossings with

∂v
∂t

= 0) across a line perpendicular to the direction of propagation, at N/4 th and

3N/4th sites in the medium, where N is the length of the simulation domain. This

gives the a distribution of times taken for the wave to travel that distance. Veloci-

ties are measured by subtracting crossing times along the wavefront. The median of

these velocities is taken to represent the wave speed for that system. Wave speeds

are averaged over ten spatial realizations of different random spatial distributions of

heterogeneities to produce the average conduction velocity, CV , presented in Figures

2–3 and 2–5.
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For both heterogeneity types, ∆x = 0.01 and ∆t = 0.01 were chosen small

enough so as not to appreciably influence the measured conduction velocity. Redoing

the simulations for a smaller ∆x = 0.005 and ∆t = 0.0025 (at D = 0.0007 cm2/ms

in the the homogeneous case, φ = 0) shows a 0.1% increase in conduction velocity

relative to the nominal values of ∆x = 0.01 and ∆t = 0.01. For ensembles of

equivalent spatial distributions of break heterogeneities at φ = 0.05 and φ = 0.10,

the estimate of CV increases by 1.5% and 2.7% respectively relative to the nominal

∆x and ∆t. For equivalent distributions of sink heterogeneities at φ = 0.0005 and

φ = 0.001, the estimate of CV decreases by 0.5% and 1.4% respectively when ∆x =

0.005 and ∆t = 0.0025.

2.4 Results

2.4.1 Effects of Breaks on Conduction Velocity

Figure 2–2 shows examples of distributions of breaks at different proportions and

their effect on wave propagation when D = 0.0007 cm2/ms. For φ=0 the medium

is homogeneous and the excitation propagates as a plane wave. For 0< φ <0.3 the

plane wave is roughened by the presence of breaks, but still propagates through the

medium in one piece. For φ=0.40 the plane wave breaks up in several places and

the resultant wavelets meander through the medium along complex trajectories. For

φ=0.45 the wavelets are unable to propagate to the other side of the medium.

The proportion of breaks, φ, has a decremental effect on propagation velocity

(Figure 2–3). Previous studies of randomly distributed break-type heterogeneities

have noted similar findings [30, 219, 5]. For low proportion of breaks, Tusscher et

al. [219, 221] found that the conduction velocity of the waves of excitation decreases
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Figure 2–2: Examples of activation maps for different proportions of break sites in
the FHN model. The rows correspond to different proportion of breaks with, the
spatial distribution shown in the first column, followed by a sequence of snapshots
of the activation variable, v, in space, for that distribution of breaks. The brighter
color represents regions with high activation.
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linearly with the number of breaks in accordance with Figure 2–3. These studies are

extended to look at how coupling in the medium affects velocity in the presence of

breaks. According to Luther’s law, velocity in the homogeneous medium, CV0, is

proportional to
√

D/τ , where D is the diffusion coefficient and τ is the risetime of

excitation [200, 246]. In the model considered, the risetime (calculated as the time

between 10% and 90% maximal activation) is τ =15.3 ms, and CV0 ≈ 2.5
√

D/τ in

accordance with Luther’s Law.

The effect of break proportion on conduction velocity for different D is shown

in figure 2–3(a). In the heterogeneous medium with low break numbers, conduction

velocity decreases linearly with φ (Figure 2–3(a)). The slope of CV vs φ curve

depends on CV0, as shown in Figure 2–3(b) where CV/CV0 is plotted as a function of

φ. Thus, the conduction velocity in the linear regime decreases with break proportion

as

CV = CV0(1 − kφ) (2.1)

where k is a parameter independent of diffusional coupling strength, D. Figure 2–

3(b) shows that a linear fit of the data at D=0.0007 cm2/ms for low φ (between 0

and 0.05) estimates k = 1.28. Integrating ensembles of identical spatial distributions

at dx = 0.005 and dt = 0.0025, between φ = 0 and 0.05, estimates k = 1.21.

Further increase in the proportion of breaks leads to deviation from the linear

relation of Equation (2.1), and eventually leads conduction failure for φ = φc ≈ 0.41,

independent of D (Figure 2–3(a)). The value of φc=0.41 for conduction failure is

the site percolation threshold for the square lattice [211, 163, 141]. This implies that,

40



0 0.15 0.3 0.45
0

5

10

15

20

φ

C
V

 [c
m

/s
]

 

 

D=0.5 cm
2
/s

D=0.6 cm
2
/s

D=0.7 cm
2
/s

D=0.9 cm
2
/s

0 0.15 0.3 0.45
0

0.5

1

φ

C
V

/C
V

0

 

 

b)

a)

Figure 2–3: The dependence of conduction velocity on break proportion and coupling
strength. (a) Conduction velocity decreases as a function of percentage of breaks
eventually leading to propagation failure at a φ which is independent of D (b) The
velocities are rescaled by CV0 to demonstrate the functional relationship between
CV , φ and CV0. A linear fit between φ =0 and 0.05 is shown for D=0.0007 cm2/ms.
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for the range of D investigated, the wave can propagate between breaks as long as

it can find a connected path in the medium.

Alonso et al. [5] proposed a functional relationship for the conduction velocity

for all 0 ≤ φ ≤ 1

CV = CV0

√

1 − φ/φc (2.2)

where φc is the critical proportion of breaks at which propagation fails. For low φ

equating the linear term from Equation (2.2) with Equation (2.1), one finds that φc,

is related to k by

φc = 1/(2k). (2.3)

With φc = 0.41, Equation (2.3) overestimates the value of k = 1.28 found in the

propagation model by about 4%, while the k = 1.21 found at smaller dx and dt is

underestimates by 2

2.4.2 Effects of Sinks on Conduction Velocity

Sinks, like breaks also have a slowing effect on plane wave propagation through

the medium, although each sink has a much stronger effect on velocity compared

to each break. When sinks are very sparse in the medium (φ < 0.0030 for D =

0.0007 cm2/ms), the wave travels as a roughened plane wave, and the velocity de-

creases approximately linearly. For 0.003 < φ < 0.004, the plane wave breaks in

several places, but soon reforms generating a quasi-planar wave front. This is co-

incident with the linear decrease in velocity at these sink proportions (Figure 2–5).

With higher numbers of heterogeneities in the medium (0.006 < φ < 0.008, when
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D = 0.0007 cm2/ms), the wave breaks up forming curved wave fronts leading to sus-

tained reentrant wave activations in the medium (Figure 2–4). With an even higher

percentage of sinks (φ > 0.0088, when D = 0.0007 cm2/ms) the wave is unable to

propagate through the medium, and the conduction fails. This is a 500-fold decrease

relative to the number of equally sized breaks required to cause propagation failure.

The effect of sink proportion on conduction velocity at different diffusional cou-

pling strengths is presented in Figure 2–5(a). For each value of D, conduction veloc-

ity decreases linearly with the number of sinks at low φ, but then quickly drops to

zero. In addition, the φc at which propagation fails is smaller for higher coupling, in

accordance with the findings of Steinberg et al. [212]

In the linear regime of CV (φ), the conduction velocity with sinks depends on

CV0, as in the case of breaks. In contrast, k of equation (2.1) varies with D. This

is evident for the plot of CV/CV0 against a φD in Figure 2–5(b), and suggests the

following relation between propagation velocity, proportion of sinks, and diffusional

coupling to be

CV = CV0(1 − kSDφ) (2.4)

where kS is a parameter that is constant with respect to D. Figure 2–5(b) shows

that a linear fit for D=0.0007 cm2/ms at low φ (between 0 and 6 × 10−4) estimates

kS = 67.9 s/cm2. Integrating ensembles of identical spatial distributions of sinks at

dx = 0.005 and dt = 0.0025, estimates kS = 67.1 s/cm2. In comparison to Equation

(2.1), the additional slowing of the wave with sink proportion is explained by the
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Figure 2–4: Snapshots of wave breakup and reentry in the presence of sinks. The
panels are separated by 5 ms. For the parameters D=0.0007 cm2/ms, and φ = 0.0052
the plane wave breaks up and forms reentrant circuits of excitation.
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Figure 2–5: Dependence of conduction velocity on sink proportion and coupling
strength (a) Conduction velocity decreases with percentage of sinks and the effect is
stronger for higher diffusion. (b) Both the velocity and φ are rescaled as shown in
the respective axes showing that the velocity decreases with D and φ as predicted by
Equation (2.4). A linear fit between φ =0 and 0.006 is shown for D=0.0007 cm2/ms.
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fact that each sink draws activation from the wavefront which delays propagation in

proportion to coupling strength.

Steinberg et al. predicted the functional dependence of φc at which propagation

fails, and other parameters in the presence of sinks [212]. Figure 2–5(b) confirms

their finding that propagation fails for a constant φD for the range of D investigated.

Despite this, one would expect this observation to breakdown for very low D, because

φc should not exceed 0.41 (at which point the lattice is disconnected). In fact,

one would expect φc → 0.41 for very low coupling strength in sinks, inasmuch as

decoupled sink cells are essentially breaks.

2.5 Discussion

In this Chapter I have investigated the relationships that relate the decrease of

the conduction velocity to the proportion of randomly dispersed heterogeneities in an

excitable medium. The results are in general agreement with several earlier numerical

simulations that noted a linear decrease in conduction velocity and subsequent wave

breaks and conduction failure in both simple and more complex models of excitable

media [219, 212, 221, 5, 6].

Steinberg and others have shown that the linearity of the velocity with respect to

sink site proportion is the additive influence of each heterogeneity [212]. Conduction

velocity in the linear regime is described by Equation (2.1) for breaks and Equation

(2.4) for sinks. With breaks the slope of the velocity against φ is independent of D

as predicted by the homogenization theory of Alonso et al. [5, 6].

For sinks, the rate of decline of CV with φ depends on kSD. A further exami-

nation of this system using a single sink [192] predicts that kS should be dependent

46



on the length of the wavefront and the risetime of activation, but these predictions

have yet to be fully verified. The slowing effect of sinks is modulated by D, because

diffusional coupling influences the amount of activation sinks draw from the wave.

In that sense, sinks have a similar role to fibroblasts in cardiac tissue. However,

there are certain important differences between sinks and fibroblasts. For simplicity

we considered the sinks to be clamped at the resting potential of the normal tissue,

but the resting potentials of fibroblasts are more positive than the myocytes around

them [259]. This means that while during propagation they act as sinks, they act as

sources at all other times. Another limitation is that we assume homogeneous cou-

pling in our simulation domain. In real tissue, myocyte-fibroblast coupling is smaller

than myocyte-myocyte coupling [259].

For both sinks and breaks the range of φ where conduction velocity decreases

sharply correspond to the formation of multiple wavebreaks in the plane wave. In-

terestingly, these wave breaks lead to sustained reentry for the case of sinks, but not

breaks (compare Figures 2–2 and 2–4). This is in accordance to earlier observations

of sinks [212], and breaks [218, 220, 221]. The homogeneous medium used is able

to support reentrant waves, so the fundamental question is: why do breaks destabi-

lize sustained reentry? The answer is likely related to the fact that for the diffuse

spatial distributions of heterogeneities we generate, the waves can break the plane

wave only in such high numbers that it is quite unlikely that a continous excitable

pathway along which reentry can travel will be formed. More work is needed to put

such a statement in a quantitative context, but a way to test the statement could be
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to make the wave in the homogeneous medium thinner (by decreasing D or duration

of activation), which should break the wave at lower φ.

With breaks the propagation fails at the percolation threshold, φc, in accordance

with earlier studies [5, 6]. For sinks I am unable to derive the form of φc, but find

that it is proportional to diffusional coupling in the medium in the range inversti-

gated. The main limitation of the propagation failure estimations by Equation (2.3)

is that they depend on both model and discretization lattice. Real cardiac cells are

not squares, and arranged in a more complicated pattern than those generated by

discretizing on a square lattice [259, 35]. Possible extensions of this work include

investigating the the role of mixtures of sinks and breaks using more sophisticated

lattices, and non-uniformly random distributions of heterogeneities. These modifi-

cations would more accurately resemble the connective distributions seen in fibrotic

cardiac tissue [35].

Furthermore, due to the connections with percolation theory [211], it may be

worthwhile to consider fitting the propagation velocity to the more general functional

form of Equation (2.2), namely CV = CV0(1 − φ/φc)
α, where α is a parameter

characterizing the nature of the heterogeneities and the medium. While this is of

theoretical interest, it may be less relevant to cardiac tissue where φ < φc even in

cases of extreme diffuse fibrosis [221].

In the intact heart, structural abnormalities are often associated with an in-

creased risk of serious and in some cases potentially fatal cardiac rhythms. In recent

years, experimental observations have manipulated the degree of heterogeneities and

the strength of coupling between cells in cardiac tissue using a variety of techniques
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including: the application drugs that impair conduction between cells [29, 30], grow-

ing mixtures of cells of different types [259], and inducing the growth of fibrous tissue

with different conduction and coupling properties from normal cardiac muscle tissue

[35, 216]. Our findings are consistent with the general observation that decreased

coupling between excitable cells and increased heterogeneity of cardiac tissue facil-

itates the initiation of blocked conduction and reentrant waves. The results herein

presented highlight properties of media which are predisposed to these types of dy-

namics, and show the need to further combine theoretical and experimental analysis

of heterogeneous excitable systems.

2.6 Conclusions

This Chapter presented the dynamical consequences of two types of randomly

distributed heterogeneities in a simplified model of cardiac tissue. At low hetero-

geneity numbers, both sink and break heterogeneities slowed the wave in linear pro-

portion to φ. Randomly distributed breaks need to appear at high proportions to

cause breakup of plane waves in the parameter range studied. Wave break up oc-

curs at approximately the percolation threshold of the lattice used to discretize the

partial differential equation. Wave breakup does not lead to sustained wave reentry

in the case of breaks. In contrast, sinks cause breakup and reentry at lower num-

bers. The number of sinks causing wave breakup varies in proportion to the diffusion

coefficient. Moreover, the linear dependence of propagation velocity proportion on

heterogeneities is modulated by an additional factor of D in the case of sinks.

This study provides insights on the role of heterogeneity in wave propagation

and acts as a base to study the role of repeated activation, such as in the case
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of the dynamics in Figure 2–1. The repeated activations come from foci known

as pacemakers, and the next Chapter is the beginning of an examination of the

properties of a reset pacemaker embedded in an excitable medium.

50



CHAPTER 3

Dynamics of Phase Resetting a Pacemaker on an Excitable Cable

3.1 Abstract

A pacemaker in an excitable medium can have its oscillation reset by a wave

generated at a distant site which propagates towards the pacemaker. The relation

between the wave timing and resultant resetting of the pacemaker is captured by

the phase transition curve at any spatial location in the excitable system. In this

chapter I discuss conditions for the continuity of phase transition curves of an ex-

citable medium with a pacemaker. I then use shooting and continuation methods to

analyze the continuity of these curves in a FitzHugh-Nagumo model of a pacemaker

in a one-dimensional excitable medium. Under continuous changes of stimulus pa-

rameters resetting curves are continuous unless a stimulus leads to dynamics that

fall outside the basin of attraction of the pacemaker-driven excitable medium. An

interesting sequence of dynamics is found around the apparent discontinuity in the

phase transition curve. This includes unidirectional slow waves which split into bidi-

rectional fast waves at various distances from the pacemaker. The wave patterns

found near the apparent phase discontinuity of this system may be relevant to the

study of pacemaker-mediated wave dynamics in cardiac tissue.

3.2 Introduction

Pacemakers in excitable media, like the heart, can be reset by waves of excitation

generated by a stimulus or an ectopic pacemaker site. Figure 3–1 shows a central
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pacemaker in cultures of chick ventricular cells being reset by a wave emitted at a

distance. There have been several experiments which explicitly vary the timing of

such an event to see how they determine resultant timing of the pacemaker in other

types of cardiac tissue [8, 41, 91, 114, 111, 139, 232].

In order to discuss the properties of phase resetting I build on the theoretical

framework introduced in Section 1.4.2. Winfree used these ideas to make conjectures

about the properties of phase resetting [242, 243] that were subsequently examined

from a topological perspective by Guckenheimer [86]. The phase transition curve

relates the phase of an oscillation subsequent to a perturbation delivered at a phase,

ϕ. Provided that the state point following the perturbation remains in the basin of

attraction of the limit cycle for a stimulus delivered at any phase of the cycle, the

phase transition curve is a continuous function that maps the unit circle onto itself.

This Continuity Theorem is true for limit cycles in ordinary differential equations

[86] and partial differential equations [73].

Although examination of the Continuity Theorem has not been a focus of ex-

perimental studies, apparent discontinuities in phase resetting curves of oscillating

systems have been observed [243, 92]. There are at least two theoretical mechanisms

that may lead to apparent discontinuities in phase transition curves [77]:

• phase transition curves can be continuous, but very steep due to large changes

in dynamics over a small parameter range

• for some ϕ, a perturbation may displace the state point outside of the basin of

attraction of the limit cycle, so that the Continuity Theorem no longer holds.
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Figure 3–1: An example of a site of pacemaking being perturbed by a wave from a
distance. The activation maps, are taken every 150 ms, with the brightness propor-
tional to intercellular calcium concentration. The central pacemaker sends out two
waves, but is then reset by a wave from the top right corner of the dish.
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Krogh-Madsen and colleagues found an example of an apparent discontinuity,

in a numerical study of resetting in an ionic ordinary differential equation model

of cardiac cells [137]. By using continuation methods with AUTO [52] for stimulus

phase and amplitude parameters close to those for which there is a sharp change in

the phase transition curve, they showed that all perturbed trajectories stay in the

basin of attraction of the limit cycle implying that the resetting curve was steep, but

not discontinuous. In a real biological system, the phase transition curve would be so

steep that to resolve the continuity might demand voltage resolutions smaller than

the voltage changes induced by the opening or closing of a single channel. This could

provide a mechanism for experimental observations of discontinuous phase resetting

[92].

Glass and Josephson carried out a numerical study of resetting a circulating pulse

in a one-dimensional ring and provided an example in which the system was shifted

outside its basin of attraction by appropriately timed stimuli [74]. In this example,

carrying out resetting with a single stimulus at low temporal resolution gives rise to

discontinuous phase transition curves. However, by probing the phases finely near

the discontinuous resetting, in a range of phases called the vulnerable period [208],

stimuli were identified which led to a single retrograde wave. When this retrograde

wave collided with the anterograde wave, both waves annihilated, thereby shifting the

dynamics outside of the basin of attraction of the original anterograde propagation

dynamics. However, additional studies of resetting in a related model, in which

reentry occurs on a one dimensional ring with a tail showed discontinuous resetting

even though there was no evidence for stimuli which would lead to annihilation of the
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reentry [202, 76, 136]. Similarly, numerical results on the resetting of a pacemaker

embedded in a two dimensional excitable medium appeared to lead to discontinuous

resetting curves [94], even though no stimuli led to dynamics lying outside the basin

of attraction of the pacemaker. These findings are in apparent contradiction to the

theory.

In the following I demonstrate that examination of continuity of resetting curves

using shooting methods may be inadequate due to very steep changes in resetting be-

haviour as a function of stimulus parameters. Complex wave dynamics are found in

parameter regions containing the steep change in resetting, including cases of multi-

reflected waves similar to one-dimensional spiral waves previously found [134, 59, 47].

The presence of such solutions may depend sensitively on parameters of the under-

lying equations as well as the discretization of the domain. Although dynamics

occurring over such small regions of parameter space would normally not be consid-

ered to be important for the understanding of real physical or biological systems, the

strong analogy between these dynamics and echo waves observed experimentally in

biological preparations of Purkinje fiber from mammalian heart [7] suggest a possible

implication of these behaviours in situations of reduced cardiac conductivity such as

might occur as a result of heart disease.

3.3 Mathematical Framework

3.3.1 Continuity of Phase Transition Curves in Excitable Media

The following technical material is required for establishing continuity properties

of phase resetting a pacemaker in space. The basic formulation is adopted from earlier

papers [73, 76, 86, 94, 165].
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Assume a dynamical system with a stable limit cycle Γ defined in Section 1.4.2

with period T0, and define a marker event at phase ϕ = 0 and a point Γ as the

reference point. Say that a marker event occurs at time t = t0. Then, in the absence

of perturbations, the phase of the oscillation as ϕ = (t− t0)/T0 (mod 1). The phase

ϕ(t) is the phase at the reference point, and every state in Γ is identified by a phase.

The basin of attraction of Γ, B(Γ), is foliated by hyper-surfaces called isochrons.

In the asymptotic limit t → ∞, all states on an isochron asymptotically approach

the same state on Γ. Consequently, each isochron is identified by a phase defining

the unique state in Γ lying on the isochron. To help fix ideas, consider a two-

dimensional ordinary differential equation with a single unstable steady state and

stable limit cycle that is globally attracting for all points except the steady state.

The isochrons are curve segments that cut transversely across the limit cycle. All

isochrons approach the neighbourhood of the steady state as shown in Figure 3–2.

A point P ∈ B(Γ), P /∈ Γ has the resultant phase, g(ϕ(P )) defined as the phase of

the isochron containing P . If P ∈ Γ then g(ϕ(P )) = ϕ(P ). For partial differential

equations, all definitions extend naturally except that a point P on an isochron

represents a function defining the values of all variables in space.

Now consider a state X0 ∈ B(Γ) and a continuous perturbation, Ψ(µ), depending

on a variable µ. In traditional studies of phase resetting, X0 + Ψ(µ) represents the

locus of states in phase space generated by delivering a perturbation for all points on

(at all phases of) the cycle. However, X0 +Ψ(µ) could equally be generated by other

perturbations including changing the amplitude and the location of the stimulus.
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Γ

Figure 3–2: A schematic of states associated with the phases of a limit cycle in two
dimensions. The isochrons are the red line segments that transversally intersect the
attracting limit cycle, Γ, for different phases, ϕ. The velocity of the trajectory along
the limit cycle is assumed to be uniform, so the phases are uniformly distributed.

As long as the stimulation parameters are changed continuously, the following

lemma holds:

Lemma 1 (Continuity Lemma). If X0 + Ψ(µ) ∈ B(Γ) ∀µ, then ϕl(X0 + Ψ(µ)) is

continuous.

In the particular case where X0 + Ψ(µ) is generated by delivering a stimulus at all

phases to a limit cycle , we have the Continuity Theorem and the phase transition

curve, g(X0 + Ψ(µ)), is a continuous map of the circle into itself [86, 73]. In this

case, the states defined by X0 + Ψ(µ) for all µ define the image of the original limit

cycle Γ following a perturbation delivered at all phases of the cycle. This is often

called the shifted cycle.

In the current context, if a limit cycle oscillation is perturbed by delivering

stimuli of varying amplitudes (rather than of varying phases) then the Continuity

Lemma is required to assert continuity of the phase transition curve delivered as a
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function of amplitude, and provided the stimulus does not lead to a transition outside

of the basin of attraction of the limit cycle.

3.4 Methods

3.4.1 Model of Pacemaker on an Excitable Cable

The FitzHugh-Nagumo equations are adapted (as in Hall and Glass [94]) to

represent a line of excitable medium with an embedded pacemaker. These take the

form,

∂v

∂t
=

1

ε
(v − v3 − w) + Is + IP + D

∂2v

∂x2
,

∂w

∂t
= ε(v + β − γw)

(

wh − wL

1 + e−4v
+ wL

) (3.1)

where β = 0.7 s−1, γ = 0.5 s−1, ε = 0.3, D = 1 cm2/s, Is is a stimulation current,

and IP is a bias current (introduced in Section 1.1.2) used to establish a limit cycle

pacemaker. The constants wL = 0.4 and wh = 0.6 control the duration of the

recovery and active phases in the oscillation. The pacemaker region is induced by

changing Ip and wL in a range of space so that,















pacemaker region : x ∈ [0.72, 0.76] : Ip = 1, wL = 0.13

excitable region : x[0, 0.72) ∪ (0.76, 0.84] : Ip = 0, wL = 0.4.

This configuration makes the region 0.72 ≤ x ≤ 0.76 periodically send out waves

through the rest of the excitable medium with a period T0 ≈ 0.5735376 s.
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To perturb the pacemaker with a wave from a distance, a stimulus, Is, is applied.

The stimulus is of the form

Is = A(tanh(10(t− ts)) − tanh(10(t− te)))/2,

is applied at x ≤ 0.02 cm for a duration te − ts = 1 time unit = 10 ms. The start

time ts is varied to control the phase of stimulation ϕ = ts/T0, and the stimulus

amplitude A is initially fixed at the nominal value A = 1.0.

The resulting phase g(ϕ) is measured at the pacemaker at x = 0.74 cm as the

time at which the first regular maximum of v occurs, divided by T0, and then shifted

so that ϕl = 0 for ϕ = 0.

The boundary conditions consist of Neumann conditions at x = 0 and x = L =

0.84 cm. The system is space discretized with ∆x = 0.02 cm on a 43 cell lattice using

a fourth-order compact Collatz “Mehrstellen” scheme [43] to estimate the Laplacian

of Equation (3.1). This scheme is more accurate than the one presented in Equation

(1.3) by estimating the Laplacian νi = ( ∂2v
∂x2 )i at cell i as:

(2ν2 + 10ν1)/12 = 2(v2 − v1)/∆x2 for i = 1,

(νi+1 + 10νi + νi−1)/12 = (vi+1 − 2vi + vi−1)/∆x2 for 2 ≤ i ≤ 42,

(10ν43 + 2ν42)/12 = −2(v43 − v42)/∆x2 for i = 43.

(3.2)

This system is solved numerically using the 4th-order Dormand-Prince method [53]

to minimize numerical artifact associated with discretization. The method uses ex-

plicit Runge-Kutta fourth and fifth-order estimates to adjust the time step size ∆t,

but in this case the step size was kept fixed at ∆t=5 µs.
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In the resetting experiments a state (v, w) that lies very close to the limit cycle

oscillation is used as an initial condition for each phase resetting run.

3.4.2 Shooting and Continuation Methods

Shooting and continuation are iterative numerical methods used to track solu-

tions (orbits) of differential equations over some parameter range. We adapt these

methods to generate the phase transition curve of the Equations 3.1 and dissect the

stimulation phases at which g(ϕ) changes rapidly. The shooting algorithm involves:

1. choosing a parameter range over which the behaviour of solutions changes,

2. integrating the equations for some guesses (shots) in that parameter range,

3. finding two contiguous parameter shots over which the solutions change, and

use those as endpoints of a new parameter interval,

4. repeating step (1) for this new parameter interval.

In the implementation of shooting used here, the parameter investigated is stim-

ulus phase, φ and stimulus amplitude, A. At the first iteration we compute g(ϕ) for

100 equally spaced phases on the interval ϕ ∈ [0, 0.99]. At each subsequent iteration

step we take ten equally spaced shots over a decimal place range, and look for solu-

tions which change from a non-propagating (non-resetting) response to a propagating

(resetting) response.

Continuation methods provide an alternative to shooting to investigate resetting

curves [45, 137, 168], as they are suited for investigating resetting in continuous or-

dinary or partial differential equations in settings where there are strong divergences

between trajectories arising from neighboring initial conditions.
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To be more specific, given the trajectory u at parameter values p, and a con-

tinuation direction (u′,p′), the next orbit, for step size ∆s in the continuation is

predicted to be at (u,p)new = (u,p) + ∆s(u′,p′), and then corrected using Newton

iterations in a process called pseudo-arclength continuation [52]. A new value for the

continuation direction is then computed by subtracting the corrected new and old

orbits.

In the mathematical model under consideration continuation is implemented

using fixed integration time in AUTO [52], defining a boundary value problem with

the integration time fixed at T = 2.5 s. This amounts to solving the 87-dimensional

ordinary differential equation discretized using Equation 3.2 with ṫ = 1, subject to

87 no-flux boundary conditions, plus t(0) = 0.

3.5 Results

3.5.1 Phase Resetting from a Distance

The phase transition curve of the FitzHugh-Nagumo system stimulated from a

distance of 0.74 cm is shown in Figure 3–3(a). The gross features of this curve are

three intervals of phase with distinct resetting features:

1. 0 ≤ ϕ ≤ ϕ∗ ≈ 0.50. The stimulus generates a large amplitude fast pulse, F ,

which collides with a wave generated by the pacemaker (Figure 3–5(a)) or falls

in the refractory period of the tissue and fails to elicit a wave that propagates

to the pacemaker (Figure 3–5(b)). In either case the stimulus has no effect on

the pacemaker, so g(ϕ) = ϕ.

2. ϕ∗ < ϕ < 0.82: The stimulus generates a fast pulse, F , that propagates to

the pacemaker and resets it (Figure 3–5(e-f)). The first instance of resetting
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around ϕ causes an apparent jump discontinuity in the phase transition curve.

In this range g(ϕ) ≈ 0.82.

3. 0.82 < ϕ < 1.0; see Figure 3–5(g). For all stimulus phases in this range the

induced fast pulse collides with a wave emitted by the pacemaker, so that there

is no resetting. In this range g(ϕ) = ϕ.
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Figure 3–3: Phase resetting of the FitzHugh-Nagumo system using continuation in
stimulus phase. (a) The phase transition curve found using a stimulus at a distance
of 0.74 cm. (b) The new phase, g(ϕ), shown for each continuation step.

These ranges can be compared to predictions of a general model of an excitable

medium with refractory period, R, wave conduction velocity, CV , pacemaker period,

T0, and the stimulus is at a distance, d, from the pacemaker. In this model a

stimulus at a distance d > CV (T0 − R)/2 will fail to reset the pacemaker at any

phase. The general model also predicts that the first phase to lead to propagation

and cause resetting is ϕ∗ = (R + d
CV

)/T0, and the resultant phase during resetting

is g(ϕ) = (T0 −
d

CV
)/T0. In the FitzHugh-Nagumo model considered the relevant
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parameters are R = 0.186 s, d = 0.74 cm, CV = 6.7 cm/s, and T0 = 0.574 s,

giving predictions of ϕ∗ ≈ 0.51 and g(ϕ) ≈ 0.81. The small discrepancies between

these values and those found in the resetting experiment arise from nonlinear effects

such as variable wave propagation velocity through a medium recovering from an

excitation.

3.5.2 Resolving the Apparent Discontinuity in the Phase Transition Curve

The apparent jump in g(ϕ) just beyond ϕ∗ is unable to be resolved using the

shooting method. Figure 3–4 demonstrates that the transition to propagation is

still a jump somewhere in the interval ϕ = [0.506378, 0.506379]. The shooting in

phase cannot give a more precise phase, as the numerical solution of T0 fluctuatates

in the sixth significant figure. The issue is resolved, by invoking the Continuity

Lemma, and measuring the effect of stimulus amplitude at ϕ = 0.506378. As A

is increased from the nominal value, A = 1.0, the shooting method identifies the

transition to propagation at between A = 1.000025 s−1 and A = 1.000026 s−1. In

this region the stimulus generates a slow wave, S, which splits into two counter-

propagating fast waves, f and F (Figure 3–4(e)). This type of solution, labeled

SfF , is similar to reflected pulse solutions seen by others using different excitable

models [11, 36, 47, 59]. The F wave at A = 1.000026 s−1 resets the pacemaker

and causes a jump in the phase transition curve from g(ϕ) = 0.506 to g(ϕ) = 0.861.

Unless higher precision numerical integration is performed, the shooting approach is

not able to resolve the continuity of g(ϕ) in the system defined by Equations (3.1).

Fortunately, using the continuation method does resolve the jump around g(ϕ∗).

The phase ϕ∗ is encountered around step 130 of the continuation, at which point the
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Figure 3–4: Space-time plots of v in the for different stimulation phases and ampli-
tudes using shooting. Stimulus at phase (a) ϕ = 0.506378 does not propagate, while
(b) ϕ = 0.506379 does. Raising stimulus amplitude to (c) A = 1.000025 s−1 still does
not lead to resetting, but (d) A = 1.000026 s−1 does, and corresponds to a reflected
wave solution, SfF . 64



slow low-amplitude wave S is generated at the stimulus site and propagates farther

to the right with each continuation step until it almost reaches the pacemaker site

in Figure 3–5(b). Just beyond this point the pacemaker begins to experience a small

delay in its firing due to the influence of the slow wave S, which corresponds to

the small decrease in the phase transition curve between steps 130 and 165; see

Figure 3–5(c). When the slow pulse S propagates sufficiently close to the pacemaker

the SfF solution appears, with the split from S to fF occurring at the pacemaker

site. At around step 170 the SfF split site begins to move left towards the stimulus

site, as shown in Figure 3–5(d), incrementally advancing the resultant phase of the

pacemaker. When the SfF split site reaches the stimulus site, around step 730, the

S and f pulses disappear and what is left is the fast pulse F resetting the pacemaker

as shown in Figure 3–5(e).

To complement these observations, the phase resetting caused by varying the

stimulus amplitude A is examined using continuation at ϕ ≈ 0.509. Figure 3–6(a)

shows a sharp transition to resetting following a stimulus of amplitude A ≈ 0.502.At

the transition to propagation the jump in g(ϕ) from 0.509 to 0.845 is similar to

what is seen around ϕ∗ in the phase resetting experiment. The transition from no

propagation, to S, to SfF , to F is also observed in this amplitude continuation.

The main difference between using the phase and amplitude for resetting is that

the slow wave generated at the stimulus site is not able to reach the pacemaker site

and cause the small phase advances seen during steps 130–165 of the stimulus phase

continuation. This is due to the fact that the slow wave begins to propagate from

the stimulus site slightly later relative to the time in the phase resetting experiment,
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Figure 3–5: Space-time plots of the activation solutions found during stimulus phase
continuation. The “step” denotes the continuation step number). Panels (b), (c),
(e), and (f) correspond to extrema in Figure 3–3(b). Intermediate panel (d) shows
the pattern SfF most clearly.
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which happens because the stimulus is applied for a non-zero duration. Nevertheless,

the continuity of the phase transition curve is preserved under amplitude continuation

at ϕ ≈ 0.509, in concordance with the Continuity Lemma.
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Figure 3–6: Phase resetting caused by varying the stimulus amplitude A using the
continuation method. Note how g(ϕ) changes from 0.509 to 0.845, corresponding to
a the point (ϕ, g(ϕ)) ≈ (0.509, 0.845) in Figure 3–3(b) The new phase g(ϕ) is tracked
with the continuation step for the amplitude resetting experiment.

3.5.3 Effects of a Coarser Spatial Discretization

A different resetting scenario occurs when varying the amplitude for a coarser

discretization of space (∆x = 0.04 cm). Analysis of the propagation parameters at

different mesh discretizations showed appreciable change of action potential duration,

maximal rate of activation, and propagation velocity between the discretizations

∆x = 0.02 cm and 0.04 cm (see Figure 1–3). In contrast, comparing ∆x = 0.02 cm

with the even finer discretization ∆x = 0.01 cm showed much smaller variations (<

2% for propagation velocity, activation duration, and risetime of activation). These

observations corroborate the possibility that the coarser discretization ∆x = 0.04 cm
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may have different wave patterns from the continuous partial differential equation

defined by Equation (3.1).

The gross features of the phase transition curve for the coarse case are very

similar to those of the finely discretized case shown in Figure 3–6(a). However,

looking closely around the apparent jump discontinuity at A ≈ 0.502 s−1 using

continuation we find differences in the fine structure of the phase transition curve at

∆x = 0.04 cm.

Continuation begins to track solutions which are not present in the ∆x = 0.02 cm

case, including trajectories consisting of a slow wave S which in general:

• reflect from the no-flux boundary as the slow wave s, or

• split into a anterograde fast wave F and a retrograde slow wave s, or

• the slow wave s can reflect or split another S multiple times

These cases are demostrated in the complex solution Figure 3–7. The sequence of

slow pulse reflections (SsF, sfS, SsF, . . .), begins to look like a solution where the

pacemaker never reestablishes entrainment of the medium, and so the system is taken

out of B(Γ).

In Figure 3–7(a) the initial range of times show the slow wave S hitting the

fast wave around t = 0.9 s at cell 15 (x = 0.56 cm), much like in Figure 3–5(b).

However, the wave now splits into an anterograde fast pulse F and retrograde slow

wave s at a point distant from the pacemaker site. The continuation shows a complex

recursive interaction of fast wave stubs with slow waves, where fast waves grow or

shrink one cell at a time. Eventually the fast wave around t = 0.9 s grows to cell 14

(x = 0.52 cm), then to cell 13 (x = 0.48 cm), and so on, up to cell 5 (x = 0.16 cm).
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Figure 3–7: Complex reentrant waves for the discretization ∆x = 0.04 cm.(a) The
space-time plot for a solution of v encounetered during the continuation in phase.
This situation corresponds to the first time that the waves caused by the stimulus
reach t = 250 time units (2.5 s) in the continuation method using phase. The phase
is at ϕ ≈ 0.509; the amplitude is at the critical value A ≈ 0.502 s−1. (b) Tracking
time values of the maxima of v at cell 11 (x = 0.4 cm) versus continuation step on.
Black points denote maxima of fast waves and red points maxima of slow waves.
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Beyond cell 5 the procedure arrives at a situation similar to Figure 3–5(d) and then

continues to Figure 3–5(e) in a straightforward fashion. The time values of the

maxima at cell 11 (x = 0.4 cm) for a continuation up to t = 1.25 s are tracked

in Figure 3–7(b). Before continuation step 60000, there exist two slow waves, one

starting around t = 0.1 s and one starting around t = 0.083 s. The wave for t = 0.1 s

moves a little each time as the fast wave grows one cell. Around continuation step

60000, that is, at the fourth bump, the fast wave has grown to cell 11 and the two

reflected slow waves are merged into the fast wave.

The main problem with dissecting the full sequence of phase transitions in the

∆x = 0.04 cm case is the extremely long computation time required to make it

through the continuation, as evidenced by the number of steps in Figure 3–7(b).

Continuing up to t = 1.25 s took around a week of computation; higher values quickly

become prohibitively expensive because of the recursive nature of the structure.

Nevertheless, the fact that the multi-reflected unstable slow wave disappears at finer

∆x implies that the solution is inherent to the discretized system of coupled ordinary

differential equations rather than the continuous partial differential equations.

3.6 Discussion

This chapter analyzes the resetting of oscillators that are localized to some region

of excitable space. For neural and cardiac systems, stimuli will typically have to travel

through excitable tissue before resetting is elicited. Consider for example, an intact

heart in which an excitation from the normal (sinus) pacemaker resets a pacemaker at

an abnormal (ectopic) location, or in which an inserted artificial pacemaker interacts

with sinus or ectopic rhythms. Resetting from a distance is also observed during
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competition between pacemakers in cardiac tissue culture demonstrated in Figure

3–1.

Previous work has indicated that the threshold for excitation and propagation

can have a very sensitive dependence on stimuli parameters for stimuli delivered

during the transition of tissue from a refractory to an excitable state (often called

the vulnerable period) [47, 74, 94, 136, 137, 208]. This sensitivite dependence can

manifest itself as an apparent jump discontinuity in the phase transition curve. In the

present work continuation methods [52] are developed for the case of the FitzHugh-

Nagumo cable in order to tease out the fine structure of the resetting around the

jump in the phase transition curve. For the cases analyzed, the continuity properties

of the phase transition curve are consistent with mathematical results which indicate

that unless stimuli lead to a transition outside the basin of attraction of an oscillator,

the transition curves will be continuous.

For situations in which a stimulus leads to transitions outside the basin of at-

traction of an oscillator, the continuation methods fail to resolve the continuity of

g(ϕ). This is true for the ∆x = 0.04 cm case presented here, and also by using the

phase and amplitude continuation method to track a one-dimensional spiral solution

in the Morris-Lecar equations of propagation [20]. The fact that continuation is un-

able to connect the curve can therefore provide an operational method to detect the

existence of transitions outside the basin of attraction of the oscillation. This is true

regardless of whether the discontinuous transitions originate from the pacemaker it-

self, or from a spatially periodic solution in the excitable medium away from the

pacemaker site.
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Although the focus of this study was restricted to systems in one spatial di-

mension, the continuation and shooting methods used here are easily adaptable to

analysis of resetting in excitable media of higher dimensions. A limit cycle oscillation

associated with a pacemaker in higher spatial dimensions can be perturbed to obtain

solutions outside of the basin of attraction, such as spiral waves in two spatial di-

mensions (Figure 3–1) and scroll waves in three dimensions [243]. Modulating these

new wave behaviours are new system properties associated with the higher spatial

dimensions. In two dimensions, this includes the properties of heterogeneities studied

in Chapter Two, and this is considered further in Chapter Four.

This chapter primarily deals with theoretical questions and methodologies that

do not appear related to practical situations, since they occur over such small ranges

of the stimulus parameter space. However, experimental studies of propagation of

cardiac excitation in one dimensional cardiac Purkinje fibers show some strikingly

similar behaviours in which echo waves are generated in vitro [7, 177]. These find-

ings imply that these types of wave dynamics may represent generic (rather than

unusual) dynamics as parameters are systematically varied. For the FitzhHugh-

Nagumo model considered, but the extent of phase space in which these echo waves

occur appears to be very small, there may well be circumstances in which the ranges

are larger than those found here. Furthermore, since there are important transitions

of heart dynamics that can only happen once (like those leading to sudden cardiac

death [258]), studying the appearance of complex reentrant wave patterns over lim-

ited regions of parameter space in a mathematical model may still be a practically

important direction for analysis.
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3.7 Conclusions

In this chapter a mathematical framework is presented to express the Continuity

Lemma, which implies that stimulus parameters should reset the pacemaker contin-

uously unless there are trajectories visited which fall outside the basin of attraction

of the pacemaker wave train. The FitzHugh-Nagumo cable model is numerically

investigated using shooting and continuation in both stimulus phase and amplitude.

The continuation method demonstrates that the jump in the phase resetting curve

is caused by a slow wave being formed at the stimulus site, which splits into an echo

starting near the pacemaker and that moves back towards the stimulus location. For

coarser spatial discretization, new multi-reflected solutions are found, and become

too computationally difficult to track to resolve the continuity of the resetting curve.

The results characterize how stimulus parameters can affect the wave dynamics

in a discretized one-dimensional FitzHugh-Nagumo cable model. The motivating

cardiac monolayer dynamics shown in Figure 3–1 demonstrate the need to extend

the pacemaker model to two dimensions. This is the direction of the next chapter,

which investigates the interaction between two pacemakers in a two-dimensional

heterogeneous excitable medium.

73



CHAPTER 4

Dynamics of Two Pacemakers in Heterogeneous Excitable Tissue

4.1 Abstract

Wave breakup and reentry around a pacemaker have been observed in certain

types of cardiac arrhythmias. In this chapter I use experimental and mathematical

cardiac tissue models of pacemakers in heterogeneous excitable media to investigate

system properties that determine wave break and reentrant wave dynamics. Chick

ventricular cells are cultured in vitro to exhibit a dominant central pacemaker site

that entrains other pacemakers in the medium. Application of a rapid delayed rec-

tifier potassium channel blocker, E-4031, leads to an increase in the beat rates of

pacemakers. This induces competition between pacemakers in the medium, and

leads to situations in which waves emitted by faster pacemakers break up over the

slower pacemaker and form reentrant waves. This scenario is simulated with a two

dimensional FitzHugh-Nagumo model of a heterogeneous excitable medium with two

distinct sites of pacemaking. When the intrinsic beat rates of pacemakers are simi-

lar, the faster pacemaker entrains the slower one, along with the rest of the excitable

medium. To induce wave breakup the side pacemaker must emit waves at a rate faster

than the one-to-one entrainment limit of the central pacemaker. The entrainment

limit is predicted by the phase transition curve of the pacemaker, and is dependent on

the diameter of the pacemaker as well as the proportion of randomly distributed inex-

citable break sites in the excitable medium. Reentrant waves are formed on the side
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of the central pacemaker that is farthest from the side pacemaker, and can in some

instances be sustained by being shielded by the central pacemaker from resetting by

the faster side pacemaker. These findings elucidate some features of a mechanism

of pacemaker-induced reentry in excitable media that should be applicable to more

realistic cardiac tissue models.

4.2 Introduction

The sinus node is the dominant pacemaker in the heart [156]. It rhythmically

initiates wave trains of depolarization that propagate through the excitable cardiac

tissue and entrain secondary pacemakers [21, 181]. There are instances where these

secondary sites of pacemaking break out of entrainment by the sinus node and initiate

ectopic beats [257]. The interaction of the sinus wave with waves emitted from other

pacemakers has been experimentally shown to lead to wave reentry around either

the dominant or ectopic site [167, 215]. Reentrant waves associated with the sinus

pacemaker have been seen in both experimental [3] and clinical settings [80, 160, 201],

where it is known as sinus node reentrant tachycardia.

In conjunction with these studies there have been theoretical investigations of

the sequences of activation times possible during competition between a dominant

and an ectopic pacemaker. The dynamics of successive activations can be studied by

iterating difference equations (like Equation (1.10)), which can describe the phase

resetting effect of the dominant pacemaker [76]. These resetting maps have been

iterated to produce a variety of rhythms that are similar to those seen clinically

[44, 155]. Despite this, the mathematical models considered to date do not present
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the phase resetting map results in the context of the underlying spatiotemporal wave

propagation dynamics.

In this chapter, I investigate the wave dynamics during competition between

pacemakers in excitable medium using the FitzHugh-Nagumo model. While I am

not aware of other propagation modeling studies concerning the interaction between

two pacemakers leading to reentrant wave formation around a site of pacemaking, a

closely related phenomenon is wave reentry due to paced wave train breakup over a

region of tissue with heterogeneous excitability properties. There are several com-

putational studies where the heterogeneity is an ischemic zone with compromised

excitability. Bernus et al. show that in the Luo-Rudy model, a 2:1 conduction block

through the ischemic border zone can give rise to reentry at high pacing frequencies

[17]. Using a similar Luo-Rudy model Xu and Guevara report that depending on the

potassium concentration in the ischemic zone, reentrant waves can form either inside

the ischemic zone or outside of it [254]. Using a three-dimensional and anatomically-

realistic mathematical model, Heidenreich and others found instances of both regular

and figure eight reentrant waves initiated by an ectopic activation breaking over the

ischemic zone [96]. These simulation studies show that rapid pacing and excitability

properties of the ischemic zone are able to initiate several types of reentrant wave

patterns.

n of of spiral waves [221], while Shajahan et al. demonstrated that spiral wave

dynamics depend sensitively on the size and position of the obstacle [194].

To study pacemaker induced reentry experimentally, I construct excitable car-

diac tissue containing sites of pacemaking. Chick ventricular aggregates are known
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to act as pacemakers that, when coupled to monolayer tissue, can entrain each other

through the connecting monolayer [85]. In the present context, a disk of concen-

trated cells is placed in the center of the tissue such that it paces and entrains the

surrounding pacemakers and tissue. This situation of a single dominant pacemaker

simplifies and standardizes the spontaneous wave dynamics seen in the cardiac tissue

preparations. On the dominant pacemaker preparations I apply a rapid delayed rec-

tifier potassium channel blocker, E-4031, to increase the rate of side pacemakers such

that they eventually outpace the central pacemaker. This drug is known to increase

the beat rate of chick ventricular aggregates [126], but decrease it in rabbit [129, 236]

and mouse [40] sinus node. The agent has been shown to prolong action potential

duration [39, 236], but has a negligible effect on wave conduction velocity during

pacing [123, 129, 197]. Although the effect of E-4031 on wave break and reentry

has not previously been published for chick ventricular tissue, in other experimental

preparations the drug has been been shown to decrease [103, 123, 197], not change

[129] or increase [10], the incidence of reentrant waves. In humans, mutations in the

gene coding for the delayed rectifier potassium channel (HERG) cause polymorphic

ventricular tachycardias associated with wave break and reentry [46, 187].

I focus my attention on cases where a side pacemaker resets the central pace-

maker leading to the formation of reentrant waves. A simple mathematical model of

wave propagation is used to demonstrate that a side pacemaker with a period shorter

than the one-to-one entrainment limit of the central pacemaker leads to wave break

and formation of reentrant waves. This one-to-one entrainment limit is predicted

by the phase transition curve of the ordinary differential equation describing the
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pacemaker. Discrepancies in the prediction are due to the spatial nature of the pace-

maker, including the pacemaker diameter and the density of break heterogeneities

in surrounding excitable medium. Near the entrainment limit there is a situation

where a spiral wave is sustained despite rotating at a period longer than the driving

period of the side pacemaker. These studies suggest a potential role of pacemakers

in the formation and maintenace of reentrant wave patterns in cardiac tissue.

4.3 Methods

4.3.1 Culturing Cardiac Cells

Cardiac cells were collected from 7 to 8-day-old embryonic chick ventricles, and

were dissociated with trypsin using methods similar to those described by Bub et al

[28, 26]. The culturing procedure involves dissecting the heart from chick embryos

and isolating the lower ventricles. The ventricles were minced and treated with four

dissociation medium washes over a period of 30 minutes. The dissociation medium,

called DM1+2, contains 24.7 U/mL of trypsin (Worthingtion) and 3.63×104 U/mL of

DNAase 1 (Sigma) in solution with 120 mM NaCl, 5.1 mM KCl, 0.44 mM NaH2P04,

0.95 mM NaHP04, and 5.6 mM dextrose. All culturing and imaging solutions were

sterilized through a 0.22 µm pore filter (Millipore) and titrated to pH 7.3 using HCl

or NaOH.

The dissociated cells were transferred into an inactivating medium, called Ti,

which stops the trypsin digestion. Ti medium is composed of 20% medium 199

(GIBCO) and 10% horse serum (GIBCO), as well as, 120 mM NaCl, 1.3 mM KCl,

1.8 mM CaCl22H2O, 0.80 mM MgS047H2O, 0.90 mM NaH2P04, 20 mM NaHC03,
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and 5.5 mM dextrose. The dissociated cells were isolated using a polycarbonate

membrane filter (Canadian Life Science) with 12 µm diameter pore size.

The isolated cells then were centrifuged at approximately 170 g for 30 minutes.

The centrifuge pellet was transferred into 1 mL maintenance medium called 818a.

The 818a medium is like the Ti medium except it contains: 5% horse serum, 10%

fetal bovine serum (GIBCO), 5.14 mM KCl, and 5×10−5 g/mL of the antibiotic

gentamicin sulfate (GIBCO).

Cell plating density was set by counting a sample of intact cells inside a haema-

tocytometer well, and diluting the stock with 818a solution to normalize the cell

seeding density. For monolayer studies the target confluent cell seeding density was

104 cells/cm2. The cells are plated on the central disk region of 32 mm diameter

CellBindTM-coated dishes (GIBCO).

Engineering of a dominant pacemaker was achieved by plating the cells in a

stacked disk configuration shown in Figure 4–2. First, a small central inner disk of

variable diameter, di, was plated by pipetting cells inside a small glass ring in the

center of the dish. The cell plating density in the inner disk, ρi, was varied in the

range of (1-3)×104 cells/cm2. Six hours later a larger disk of diameter do=9 mm was

plated on top of the small disk with a seeding density of ρo=104 cells/cm2.

The plated cells were kept in an incubator at 36 ◦C in 5% CO2 in 2 mL 818a

solution for two days. After the first day the outer glass ring was removed and cells

were washed with fresh 818a. The tissue was imaged in Hank’s solution containing:

130 mM NaCl, 1.3 mM KCl, 1.8 mM CaCl22H2O, 0.80 mM MgS047H2O, 0.80 mM
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MgCl26H2O, 0.40 mM Na2HP04, 3.6 mM NaHC03, 0.40 mM KH2SO4, 10 mM dex-

trose, 2.9 mM sucrose, as well as 9.9 mM HEPES buffer (Calbiochem). The calcium

dye was loaded into each dish using 2 mL Hank’s solution containing 10 µg Calcium

Green-1 fluorescent dye (Invitrogen) and 10 µL of 20% Pluronic acid in DMSO (In-

vitrogen) for 25 minutes. The dye solution was then discarded, and the tissue washed

three times and transferred for imaging in 2 mL of regular Hank’s solution.

4.3.2 Imaging of Calcium Dynamics

Recording of the intercellular calcium fluorescence was performed using a custom-

built macroscopic imaging system outlined in Figure 4–1. The KL2500 light source

(Zeiss) projects light through an excitation filter with 500 nm center wavelength and

50 nm bandwidth (Chroma Optical). The filtered light passes through a fiber op-

tic guide containing an annular diaphragm mounted over the macroscope objective

lens, L1. The fluorescent and reflected light emitted by the tissue is passed through

the L1 lens which is a 50 mm Super-Takumar 1:1.4 (Asahi Optical) photographic

F-mount lens. The focus is set to infinity so that this lens effectively collimates the

light from the object to lens L2. The L2 lens is an 80 mm Nikor 1:2 (Nikon) F-mount

photography lens that projects the image to the focal plane of lens L3. The L3 lens

is composed of an emission filter (545 nm center wavelength with 70 nm bandwidth)

and a 10× reducer (Redshirt Imaging). The reducer projects the image onto the

charged-coupled diode chip of camera C1. The field of view used for macroscopic

activity mapping is approximately 10 mm.

In the experiments reported, the tissue was imaged under no perfusion in a closed

chamber with humidity and temperature control. The temperature controller (Zeiss
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Tempcontrol 37-2) was set to 36 ◦C which maintained the medium at 35±1 ◦C dur-

ing the experiments reported. The gas and humidity controler (Zeiss CTI-Controller

3700), was set to 0.1%CO2 with fan speed set at level two to help maintain temper-

ature and minimize evaporation.

4.3.3 Mapping Excitation in Space and Time

The data collection was carried out using CardioPlex software (Redshirt), with

a spatial resolution of 0.15 µm2 (80 × 80 pixels) and time resolution of 25 ms (40 Hz

sampling). The raw data was then imported into Matlab [102] where it was zero-

meaned for each pixel, spatially averaged over bins of 2×2 pixels and band-pass

filtered over the frequency range of 0.1 Hz to 3.0 Hz using a third-order Butterworth

filter.

To compute crossing times and interbeat intervals (IBIs), a threshold is set

for the light intensity such that when a time series crosses that threshold with a

positive slope, it registers that as the start of an excitation. The threshold was

manually set between 10 and 80 filtered pixel intensity units to properly distinguish

activation events. The exact activation crossing time at each pixel was calculated

by interpolating the light intesity time series. The interbeat intervals were found

by subtracting two contiguous crossing times. Crossing times which were too close

to eachother (<200 ms) were typically caused by extra detections during one actual

activation (see the event at 38 s in the pixel activation time series of Figure 4–4 for

an example), and were discarded in the calculation of the interbeat intervals .
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Figure 4–1: Schematic of the imaging system used to observe the chick cardiac tissue
preparation and its intracellular calcium dynamics (courtesy of Alex Hodge). I1 and
I2 are light sources for the macroscope and microscope, respectively. The light is
projected through the calcium emission filter via fiber optic guide and emitted from
a ring mounted over the macroscope lens (labeled FG). Blue lines represent light
which excites the calcium dye and green lines are the light which the dye emits.
L1-L7 represent the various lenses, and S1-S2 the light splitters detailed in Section
4.3.2. C1 and C2 are both Redshirt Imaging CardioCCD-SM cameras, with C1 used
to macroscopic calcium imaging, and C2 used for microscopic calcium imaging. C3
is a Zeiss Axiocam HRM used for collecting higher spatial resolution still images.
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4.3.4 Model of Excitable Tissue with Pacemakers

The calcium wave dynamics observed in the experiments are modeled using the

FitzHugh-Nagumo equations in two spatial dimensions.

∂v

∂t
=

1

ε
(v − v3 − w) + IP + D

∂2v

∂x2
,

∂w

∂t
= ε(v + β − γw)

(

wh − wL

1 + e−4v
+ wL

) (4.1)

The coupling strength D=0.2 cm2/s is used to obtain excitable dynamics with prop-

agation velocity like that seen in experiments (≈1-3 cm/s). The parameters ǫ=0.9,

β=0.7 were tuned to obtain an excitable medium with stably rotating spiral waves

similar to those seen in experiments (≈0.7-1.4 s). The pacemaker current IP = 1

was added to regions of pacemaking sites (a central disk with a nominal radius of

1.75 mm and a half-disk of radius 0.5 mm at the center-left edge of the medium),

and IP = 0 in all other regions where the medium is excitable. The equations for

the excitable media included diffuse break heterogeneities at φ = 0.1 (as described in

Section 2.3.1) unless otherwise stated. The system was integrated using the forward

Euler method with ∆t=0.5 µs on a 200×200 grid with ∆x=50 µm.

4.4 Results

4.4.1 Engineering a Dominant Central Pacemaker

Standard monolayers of chick ventricular cells (like the one that generates the

dynamics in Figure 2–1) exhibit a wide spectrum of wave patterns, including irregular

switching between sites of pacemaking and formation of reentrant waves. In order

to standardize the spontaneous dynamics of the experimental preparation, one can
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exploit the fact that aggregates of cells in monolayers can entrain surrounding tissue

[85]. I found that growing monolayer cultures with a concentrated disk of cells in the

middle, the thicker regions (shown in Figure 4–2) tend to act as sites of pacemaking.

The central mound rhythmically emits waves that propagate outward and entrain

all other pacemakers in the medium. The calcium wave dynamics of a representative

culture is shown in Figure 4–3, and the interbeat intervals of many cultures are

summarized in Table 4–1.

To investigate how central pacemaker diameter and thickness influence sponta-

neous activity, tissue cultures were engineered at variable inner disk diameters and

cell plating densities as shown in Figure 4–2. The smaller (di=1.8 mm) and denser

(ρi=4×104 cells/cm2) inner disk configurations had a dominant central pacemaker in

7/12 preparations, as summarized in Table 4–1. An example of the dominant central

pacemaker dynamics of Dish 3 is shown in Figure 4–3. Culture configurations with

a larger (3 mm or 5 mm) and less dense (104 cells/cm2) inner disk failed to generate

dominant central pacemakers in any of the nine dishes that were imaged. The wave

dynamics of these dishes included pacing from various regions of the tissue as well

as reentrant waves.

4.4.2 Effects of E-4031 on Pacemaker Beat Rate and Switching

The dishes with a dominant central pacemaker were treated by changing the

medium to one with 0.75-1.5 µM E-4031 (Sigma-Aldrich) which almost immediately

led to the emergence of pacemakers from the outer perimeter of the cultured disk.

These side pacemakers had a period shorter than that of the central pacemaker and

would thus eventually reset and entrain it. An example is shown in Figure 4–4 in
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Figure 4–2: Illustration of the stacked disk geometry paradigm used to culture
the tissue. (a) Schematic of engineered pacemakers plated as a disc of diameter
(di), at variable inner density (ρi), and embedded in a layer of external tissue of
outer density ρo=104 cells/cm2 and outer diameter do=8.9 mm. Examples in (b)
where (ρi=2×104 cells/cm2, di=5.5 mm) and in (c) where (ρi=4×104 cells/cm2,
di=1.8 mm). Images in (b) and (c) are taken using phase contrast imaging with a
field of view of ≈4 mm.

Table 4–1: Summary of spontaneous activity in dishes with the 1.8 mm diameter
dense central mound. The interbeat intervals (at the central pacemaker) are averaged
over a two minute period. Variability of the interbeat interval is lower in dishes with
a dominant pacemaker.

Dish Spontaneous Dynamics Interbeat Interval (±SD)
1 dominant central pacemaker 0.91 ± 0.03 s
2 dominant central pacemaker 1.68 ± 0.02 s
3 dominant central pacemaker 1.41 ± 0.05 s
4 dominant central pacemaker 1.32 ± 0.04 s
5 dominant central pacemaker 1.65 ± 0.07 s
6 dominant central pacemaker 1.55 ± 0.06 s
7 dominant central pacemaker 1.60 ± 0.05 s
8 central pacemaker with wavebreak 2.13 ± 0.09 s
9 dominant side pacemaker 1.06 ± 0.02 s
10 spiral wave with central pacemaker 0.73 ± 0.10 s
11 spiral wave with central pacemaker 0.96 ± 0.09 s
12 spiral wave with central pacemaker 1.11 ± 0.08 s
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Figure 4–3: Central pacemaker periodically emits calcium waves which propagate
outward and entrain surrounding tissue. Top panels: activation maps of intracellular
calcium activity taken every 125 ms. Bottom panels: upper trace shows a time series
of light intensity at pixel (50,50). The black bar shows the time range considered in
the upper activation snapshots. The bottom trace shows that the interbeat intervals
of activation times are relatively constant over many beats.
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which the emerging side pacemaker has a period ≈57% shorter than the original

period of the central pacemaker.

In nine cases more than one side pacemaker emerged, resulting in a complex

sequence of switching between pacemaker foci. In this chapter I restrict my atten-

tion to the two cases in which waves from a single side pacemaker reset the central

pacemaker leading to formation of reentrant waves. A representative sequence of

dynamics is shown in Figure 4–5. A wave emitted from an pacemaker on the left

edge of the preparation breaks up over the central pacemaker, and reenters back into

the central pacemaker. An analysis of the scenario is presented Figure 4–5. The

time series and periods of pixels at the side pacemaker site, central pacemaker site,

and a site behind the central pacemaker show a lengthening of period at the central

pacemaker corresponding to the wave emitted from the side pacemaker breaking up

around it, but then reentering into it retrogradely. This causes a short-lived reen-

trant wave formed behind the central pacemaker. The rotating wave has a period

lower than that seen before the wave breakup incident. With the side pacemaker

still active the reentrant wave meanders and breaks across the central pacemaker

resulting in the interbeat interval increasing again.

4.4.3 Effect of Side Pacemaker Period on Entrainment of the Excitable

Medium in the Model

Using FitzHugh-Naguno model I first investigate how one pacemaker drives the

surrounding excitable medium as the pacemaker beat rate is varied. To do this I

vary the recovery parameter, wL, at the side pacemaker site to see effect on the

intrinsic period of the side pacemaker (TSP ) in the excitable medium with no central

pacemaker. The parameter wL prolongs TSP by increasing the the amount of time
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Figure 4–4: Application of E-4031 induces a side pacemaker with a shortened period
to take over the central pacemaker. Top panels: activation snapshots showing a wave
emitted from a central pacemaker followed by the emergence of a side pacemaker
whose wave entrains the central pacemaker. Bottom figures show the timeseries and
interbeat interval at pixel (63,66) during the pacemaker switch (represented by the
black bar in time series panel below).
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Figure 4–5: Reentrant waves formed through the interaction of two pacemakers in
our cardiac tissue cultures. Top panels: snapshots of calcium activity taken every
150 ms show a wave emitted from the left side pacemaker breaking around the central
pacemaker site and then reentering into it. Bottom trace: Interbeat intervals at three
locations in the medium. The central pacemaker site has the largest change in its
interbeat interval during the wavebreak incident.

89



spent in recovery (Figure 4–6, top panel). The bottom panel of Figure 4–6 shows

the effect that changing wL at the side pacemaker has on beat rates seen at the side

pacemaker site and in the surrounding excitable medium. The medium is driven 1:1

(one beat of pacemaker for one wave through the medium) by the side pacemaker up

to wL = 0.22 beyond which the pacemaker is unable to drive the medium at every

beat. The intervals at 0.225 < wL < 0.245 and 0.265 < wL < 0.300 are parameter

regions of 2:3 and 2:1 entrainment between pacemaker and medium, respectively.

4.4.4 Wave Entrainment Between Two Pacemakers in the Model

To study the wave dynamics resulting from the interaction betwen side and

central pacemakers, a central pacemaker with intrinsic period TCP = 1.55 s is added

to the medium and the rate of the side pacemaker is varied with wL as in the previous

section. The initial conditions were set such that the central pacemaker fires one

beat at which point the side pacemaker begins emitting waves with varying intrinsic

periods TSP . The results are summarized in Figure 4–7. For TSP > TCP = 1.55 s,

the entire medium is driven by the faster central pacemaker (Figure 4–7(a)). For

TCP > TSP > 0.67 s the faster side pacemaker entrains the central pacemaker and the

rest of the medium (Figure 4–7(b)). For TSP < 0.67 s, waves from the side pacemaker

begin to break up over the central pacemaker (Figure 4–7(c)). As was observed in

the experiments, the wave break incidents in the model cause more variability in the

interbeat intervals (Figure 4–7(d)). The cases leading to wave break over the central

pacemaker are investigated further in the next two sections.
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Figure 4–6: The effect of wL on recovery and pacemaker rate. Top panel: increasing
wL of the side pacemaker decreases the oscillation period of the side pacemaker and
the remaining excitable medium. Top trace: time series of the activation variable v
at the side pacemaker when for wL = 0.04 and wL = 0.016 showing that the lower wL

decreases the period of oscillation by decreasing the amount of time the pacemaker
takes to reach firing threshold. Bottom trace: the effect of wL on interbeat interval
at the pacemaker site and in the surrounding medium shows that the pacemaker can
pace the medium up to wL = 0.022 beyond which some beats fail to propagate from
the side pacemaker.
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Figure 4–7: Varying side pacemaker period gives rise to three types of wave dynamics.
Each row of panels shows snapshots of activity at for each type of dynamics. (a) For
TSP=1.72 s the central pacemaker entrains the medium. (b) When TSP=1.32 s the
side pacemaker begins to entrain the medium. (c) For TSP=0.67 s the side pacemaker
waves break around the central pacemaker site. (d) Side pacemaker period is varied
and the last three interbeat intervals at the central pacemaker are shown for each.
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4.4.5 Wave Breakup Over Central Pacemaker in the Model

Waves break when the central pacemaker is unable to propagate waves from the

side pacemaker in a one-to-one fashion. Figure 4–7(a) shows that this 1:1 entrainment

limit, T 1:1
CP , occurs when TSP is 43% of the intrinsic period of the central pacemaker.

Phase resetting the central pacemaker can predict the effect of periodic forcing

by the side pacemaker. To eliminate the effects of wave collisions between the two

pacemakers (see [94]) we compute the phase resetting curve of the central pacemaker

ordinary differential equation (Equation 4.1 at the central pacemaker with D = 0,

and stimulus current, Is). The shape of the stimulus current is taken from the current,

∂v
∂t

, at central pacemaker pixel (101,101) in the partial diferential equation simulation.

The simulation is run with TSP just below T 1:1
CP and the wave profile chosen is from

the last wave before breakup (see Figure 4–8(a), left trace). The resultant phase

transition curve (Figure 4–8(a), right panel) shows the largest period shortening

Ti/T0=0.37 at ϕ =0.41. Other reasonable stimuli waveforms exhibit similar maximal

shorteninings in period (for example, Is = 2.5(tanh(10t) − tanh(10(t− 0.2)))/2) s−1

induces a maximal shortening of the period to 0.38TCP ). The resetting experiments

that the pacemaker cannot be driven 1:1 for TSP/TCP < 0.37 = T 1:1
CP/TCP , which is

smaller but comparable to the factor of 0.43 found in the spatially-distributed model.

System properties which cause the discrepancy in T 1:1
CP/TCP between the spatial

model and ordinary differential equation phase resetting estimate, include the size of

the central pacemaker region and the proportion of breaks in the medium. Decreasing

the diameter of the central pacemaker to 1.5 mm indeed lowers T 1:1
CP/TCP to 0.40 as

shown in Figure 4–8(b), where the interbeat intervals measured at the center of the
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Figure 4–8: Loss of 1:1 entrainment leads to wave breakup around central pacemaker.
(a) The left panel shows times series of voltage, v, (blue dots) and current, dv

dt
, (red

dots) measured at the central pacemaker during a passing wave followed by the
first wave break. On the right, the phase transition curve shows the largest phase
shift at ϕ =0.41 (arrow). (b) The effect of side pacemaker period on the interbeat
intervals at the pacemaker site for two central pacemaker diameters. (c) Increasing
the proportion of breaks causes wave breakup at longer side pacemaker periods.
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central pacemaker for TSP = 0.66 s are constant for the smaller central pacemaker

diameter, but variable from beat to beat (due to wave breakup and reentry) for

the larger diameter. Inasmuch as break heterogeneities decrease the wavelength of

activation (see Figure 2–2) one would expect the density of heterogeneities to also

have an effect on T 1:1
CP/TCP in addition to the effect of pacemaker diameter. This is

confirmed in Figure 4–8(c), where increasing the proportion of break heterogeneities

from 10% to 25% raises T 1:1
CP/TCP from 0.41 to 0.55. These two findings demonstrate

that the limits of pacemaker entrainment are sensitive to the spatial distribution of

both the wave and the reset pacemaker.

4.4.6 Reentrant Wave Patterns in the Model

The medium parameters β and ǫ were tuned to ensure the excitable medium

sustained spiral waves with a rotation period TSW = 0.72 s. This allows for the

formation of reentry whenever the wave breaks over the central pacemaker, but does

not guarantee sustained spiral waves with one dominant period in the system. The

top panels of Figure 4–9 show that when TSP = 0.67 s reentrant waves kept forming

and breaking which lead to significantly fluctuating interbeat intervals behind the

central pacemaker.

On the other hand, sustained reentrant waves are observed for some TSP , like

those leading to the unscattered interbeat intervals in the bottom trace of Figure 4–8.

Top panels of Figure 4–10 show that when TSP = 0.64 s, a spiral wave is formed on

the side of the central pacemaker across from the side pacemaker. The bottom trace

of Figure 4–10 shows that the spiral wave entrains the central area of the central

pacemaker to TSW ≃ 0.72 s over a long period of time. It is interesting that the
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Figure 4–9: An example of reentrant waves which keep forming and breaking for
TSP=0.67 s. Top panels are snaphots of activity taken every 0.4 s starting at 24.2 s.
The bottom figure shows irregularity of beat to beat intervals at the central pace-
maker site despite the regularity observed near the side pacemaker.
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spiral wave can sustain itself despite the fact that TSP < TSW . This seems possible

due to the central pacemaker acting as a shield which blocks waves from the side

pacemaker that should otherwise reset the spiral wave. Despite this observation the

particular determinants which facilitate the maintenance of a spiral wave have yet

to be determined in this system.

4.5 Discussion

The FitzHugh-Nagumo model has the property that when the two pacemaker

rates are similar, the faster pacemaker entrains the other pacemaker and the rest

of the medium. This occurs because the site at which waves from either pacemaker

annihilate each other incrementally moves towards the slower pacemaker - known as

“peeling back” of the slower wave train [1, 118, 113, 140, 190, 207, 251, 256].

Once waves from the faster pacemaker reach the slower pacemaker, there is the

possibility of them either passing through it, or breaking up around it. Wave break

occurs for waves coming at time intervals shorter than the one-to-one entrainment

limit of the central pacemaker. This entrainment limit is approximated by the phase

transition curve of the pacemaker ordinary differential equation.

The discrepancy between maximal beat rate for 1:1 pacing in the ordinary differ-

ential and partial differential equation models include pacemaker size and proportion

of heterogeneities in the excitable medium. Increasing the number of breaks in the

excitable medium raised T 1:1
CP in the FitzHugh-Nagumo propagation model (Figure

4–8). For solitary waves, raising the proportion of breaks in the medium causes the

wavelength to decrease (Figure 2–2). Once the waves are generated in trains, the

wavelength of each wave further decreases because the excitable medium is not as
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Figure 4–10: An example of a reentrant waves which keeps rotating at a constant
period for TSP = 0.64 s. Top panels are snapshots of activation patterns taken every
0.4 s starting at 40.2 s showing a spiral wave at bottom right of the central pacemaker.
The bottom figure shows the calculated IBIs at the side and central pacemaker site
showing the spiral waves mostly entraining the central pacemaker site.
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recovered when the next wave arrives. Thus it is to be expected that increasing break

proportion causes wave break at wave trains with shorter interbeat intervals, which

was indeed been observed in the diffuse fibrosis simulations of Tusscher and Panfilov

[221].

Decreasing the diameter of the central pacemaker decreased T 1:1
CP (Figure 4–8), in

line with previous findings which demonstrate that for circular inexcitable obstacles,

pacing a large enough obstacle will cause wave break which does not reseal once

the wave clears the obstacle [217]. Winfree described the behaviour of spiral waves

in FitzHugh-Nagumo equations similar to the ones used here [245]. He found that

the parameters β and γ control the existence of stable spiral wave reentry and the

meander of the reentrant core. I used this to tune the excitable media to sustain non-

meandering spirals, with relatively constant spiral wave period, TSW =0.72 s. The

fact that this period persists on one side of the central pacemaker while other side is

driven faster by TSP =0.64 s is an interesting finding. A similar results was obtained

by Xie et al. [250], who found that a spatial heterogeneity (of the ǫ parameter) allows

for the coexistence of two spiral waves with distinct periods. This occurs because of

the formation of an insulating region (of broken waves) between the spirals, so that

the faster one does not reset the slower. In the FitzHugh-Nagumo pacemaker model

the insulating region is the central pacemaker, but the criteria for the formation of

a sustained spiral wave is still not well understood. A more careful analysis of the

role of central pacemaker diameter is needed to:

1. elucidate the detailed relationship between central pacemaker diameter (di)

and T 1:1
CP/TCP ,
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2. find the smallest di that causes the wave to break, and study the bifurcation

which occurs there,

3. study the role of di as insulating regions. I hypothesize that:

• larger di would be ameliorate the insulating effect (i.e.: lead to more cases

of sustained reentry behind the central pacemaker),

• a small enough di could not act as an insulator.

In addition to the computational modeling, I have documented my efforts to en-

gineer a a dominant central pacemaker tissue culture. Many questions remain about

the determinants of this dynamic. For example, it is not clear why large mounds are

not successfully dominant pacemakers. Regardless of these considerations, the robust

and stable dynamics of the preparation are well-suited for use as a reference (control)

for many experimental manipulations. I have focused on the effect of E-4031, but

am also interested in the role of central disk diameter, varying the proportion and

properties of fibroblasts, stimulating the central disk from a distance, and the role

of temperature and perfusion flow in determining the wave dynamics.

The observable effects of E-4031 on the dominant pacemaker preparations were

the emergence of side pacemakers with a period shorter than the central pacemaker,

and the induction of reentrant waves caused by wavebreak over the central pace-

maker. The rate increasing effect of E-4031 on pacemakers is in accord with other

experiments with chick cardiac tissue [126]. Kim and colleagues [126] also observed

the induction of complicated interbeat interval patterns in chick aggregates, and

modeled these using an ionic model. In the spatially-extended cardiac tissue prepa-

ration, I have demonstrated that complex sequences of interbeat intervals induced
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by E-4031 can occur as a result of breakup of waves at the central pacemaker and

the formation of reentrant propagation patterns. Asano et al. [10] also observed

initiation of reentry due to E-4031, but found it to be caused by the firing of single

ectopic escape beats caused by early afterdepolarization of the excitable tissue. This

result points to a weakness in the present FitzHugh-Nagumo formulation, as it does

not consider the biophysical effect of E-4031, in decreasing rapidly-rectifying potas-

sium channel conductance. Developement of a biophysical monolayer model with

this potassium current for chick ventricular monolayer would be useful to compare

with the present results. One could modify two different ionic models used by Kim

et al. [126] and Krogh-Madsen et al. [138] for these purposes.

4.6 Conclusions

In this chapter I have discussed conditions leading to wave breakup and for-

mation of reentrant waves in a heterogeneous excitable medium with two sites of

pacemaking. Experimental induction of faster pacemakers in the engineered car-

diac tissue causes wave break and reentry around the slower pacemaker site. The

FitzHugh-Nagumo model confirms that this scenario is consistent with a rate in-

crease of a previously entrained slower pacemaker. The mathematical model further

allows for predictions of breakup based on the phase transition curve, and demon-

strates that central pacemaker size and density of breaks can influence the breakup

of waves. Furthermore, it demonstrates persistent reentrant waves sustained even in

the presence of a faster driving pacemaker. These results can be extended to clarify

the role that system properties play in the generation of wave break and reentry for
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systems with more than one distinct pacemaker sites, including the right atrium of

the heart.
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CHAPTER 5

Conclusions

5.1 Overview of Main Findings

The studies presented in the last three chapters demonstrate possibile rules

governing how certain design properties of heterogeneous excitable media with pace-

makers control the dynamics of sustained propagation of solitary pulses and wave

trains, wave break and the formation of reentrant wave patterns. The FitzHugh-

Nagumo model allowed for explicit control over these properties, and the findings

are compiled in Table 5–1. Some of these results were complemented by observa-

tions of wave propagation in chick cardiac tissue culture. In particular, the stacked

disk cardiac culture (Section 4.4.1) does exhibit wave entrainment by waves from

the faster beating pacemaker (Figure 4–4). Also, the speeding up of a peripheral

pacemaker caused wave break and reentry around the central pacemaker in both

the experiments (Figure 4–5) and mathematical model (Figure 4–7). The following

sections discuss these results in the broader context of the thesis.

5.1.1 Randomly Distributed Heterogeneities Influence Wave Breakup

and Reentry

The presence of either break or sink heterogeneities decreases plane wave prop-

agation speed in two dimensional excitable media. For low proportions of randomly

distributed heterogeneties, the conduction velocity decreased linearly with the pro-

portion of heterogeneities, followed by a rapid decrease once the plane wave began
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Table 5–1: Overview of how the properties investigated influenced the waved dynamics in the FitzHugh-
Nagumo propagation models studied in each results chapter of the thesis. *Note: the effect of stimulus
timing effect is modified with stimulus amplitude, duration, and stimulus position relative to the pacemaker.
Property Relevant

Chapters

Wave Propagation and

Breakup

Reentrant Waves

proportion of sinks 2 propagation fails for a range
of φc ∈ [0.06, 0.09] depend-
ing on D

sustained reentrant waves coinci-
dent with wave break

proportion of breaks 2,4 propagation fails at φc =
0.41, the site percolation
threshold of the square lat-
tice

no sustained reentry during soli-
tary wave breakup; persistent
reentry in the presence of pace-
maker

diffusional coupling 2 raising D increases φc for
sinks

not studied; see [243]

stimulus timing* 3,4 stimulus propagates leading
to resetting for 0.50 < ϕ <
0.82

wave echo at ϕ = 0.5032; multiple
wave reflections for ∆x = 0.04 cm

periods of two pacemakers 4 wave breaks for TSP >

T 1:1
CP with

T 1:1
CP

TCP
∈ [0.40, 0.55]

depending on di and φ
of breaks in the excitable
medium

reentrant waves coincident with
breakup; sustained spiral waves
form behind central pacemaker in
some cases

pacemaker size 4 bigger central pacemaker in-
creases TSP at which waves
break

not studied yet
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to break (Figures 2–3 and 2–5). Sinks cause wave break at much smaller densities

than breaks because of their strong coupling to the medium. Futhermore, greater

diffusional coupling decreases the amount of sinks needed to achieve propagation

failure (Figure 2–5). This is not true in the case of breaks, where propagation fails

at the percolation threshold of the square lattice, irrespective of diffussional coupling

(Figure 2–3). Solitary wave breakup with break heterogeneities does not lead to

sustained reentry (Figure 2–2), but the presence of breaks ameliorates the induction

of wave break (Figure 4–8(c)) and sustained reentrant waves (Figure 4–10) when a

pacemaker is present. These computational results offer a potentially useful charac-

terization of the effects of fibroblasts and collagen deposits in modulating wave break

and reentry in several types of paced cardiac tissue.

5.1.2 Resetting of Pacemaker on a Cable Generates Reentrant Echo

Waves

The phase resetting of a pacemaker from a distance shows a rapid jump in the

phase transition curve during the initiation of the stimulating pulse (Figure 3–3).

According to the Continuity Lemma (Section 3.3.1), the phase transition curve will

be continuous as long as the stimulus does not put the trajectory outside of the

basin of attraction of the limit cycle. In the one dimenstional FitzHugh Nagumo

model, the jump in the phase transition curve is shown to be continuous. This is

achieved by using a slow wave solution that grows into an echo wave at the start

of the resetting (Figure 3–5). For a coarser spatial discretization of the FitzHugh-

Nagumo cable model multiple site of reflections occur (Figure 3–7). While these

complex multi-echo solutions may be a numerical artifact of the discretization, there

is evidence of similar multi-reflected waves in Moris-Lecar equations [20, 47] and in
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Purkinje fibers [177]. The results raise important theoretical questions about the

full spectrum of wave patterns possible, and their relation to one another in phase

space. Overcoming the computational challenges in extending this analysis to two

dimensional models would allow for tracking solutions leading to resetting and relate

the effect of break and sink heterogeneities.

5.1.3 Loss of Entrainment Between Pacemakers Induces ReentrantWaves

To study the interactions between pacemakers in excitable media, a tissue

stacked disk cardiac tissue culture preparation is developed to exhibit dominant

central pacemaker dynamics (Figure 4–3). The determinants of this entrained state

include central pacemaker diameter and density (Figure 4–2). The smallest and

densest of the central disc diameters produced all of the regular central pacemaker

dynamics, but more experiments need to be performed to understand why this is the

case. The stacked disk culturing paradigm should indeed be developed further, for it

opens the door to many other experiments which require regular spontaneous wave

dynamics in chick cardiac monolayers.

In the dominant pacemaker cultures, side pacemakers are induced to beat faster

than the central pacemaker by the application of E-4031 (Figure 4–4). The wavetrain

from the side pacemaker breaks up into reentrant waves (Figure 4–5). This is another

demonstration of the pro-arrhythmic effects of E-4031 in cardiac tissue [10, 126], but

is also novel in that it highlights the role of reset pacemakers in the generation of

complex reentrant wave dynamics.
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The pacemaker switching scenario observed in the experiments is modeled using

the FitzHugh-Nagumo equations with two sites of pacemaking. The model demon-

strates that the pacemaker with faster beat rate entrains the slower pacemaker, up

to a point where it cannot be entrained in a one-to-one fashion (Figure 4–7). The

entrainment limit is approximated by the phase transition curve of the pacemaker

ordinary differential equation, but is also modulated by spatial factors such as pace-

maker diameter and proportion of breaks in the excitable tissue (Figure 4–8). An

extension of these approaches using atrial computational models and experimental

preparations, would be interesting to compare with the present results, and would

be potentially useful in characterizing pacemaker mediated arrhythmias in the heart.

5.2 Other Important Dynamical Determinants

Table 5–1 lists the factors studied and their effects on wave dynamics. One can

think of numerous other properties which could be investigated using the FitzHugh-

Nagumo equations and in vitro cardiac tissue culture to complement the results

presented in this thesis. These include: geometry of tissue or pacemaker(s), the

distribution of cell types (cardiomyocytes, fibroblasts, blood vessel cells, and other

specialized cell types), the anisotropic orientation of myocytes, the intercellular vari-

ation in coupling and electrophysiological parameters, as well as properties of the

extracellular matrix, responses to environmental inputs (such as electrical stimu-

lation, ablation, hypoxic injury, temperature, drug application, stretch, or shear

stress). Underlying these responses (and the responses to them) is a rich network

of molecular and genetic factors [37, 46, 16]. These properties are relevant to wave
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dynamics in particular instances, but together they are a patchwork of results us-

ing different experimental and mathematical models. Compiling a complete picture

of the structure-dynamics relation for simple models would allow one to see which

relations are created, conserved, or lost as more biophysical constraints are added.

5.3 Closing Remarks

Thinking of excitation waves in the heart as a dynamical system, the structure-

dynamics relations associate parameter values to certain types of dynamics, repre-

sented by sets of the state variables in function space. The typical dynamics of the

heart (the sinus rhythm) is a periodic wave train emitted from the sinoatrial node

and propagating through the atria and ventricles. The fact that the sinus rhythm

persists under environmental perturbations leads to the description of this dynam-

ical type as a stable limit cycle with a basin of attraction. Alongside this basin of

the sinus rhythm are other basins containing trajectories representing certain types

of reentrant wave patterns (associated with cardiac arrhythmias) and the rest state

(death). Cardiac arrhythmias are dynamical diseases [75] in which parameters affect

the distribution of basins representing dynamical types in the function space. This

thesis provides a sketch of some structure-dynamics relations in simplified math-

ematical and experimental models of cardiac tissue. Attempting to complete our

understanding of these relationships in increasingly detailed models will inform risk

stratification and treatment strategies for pathophysiological conditions of the heart.
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