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(i)

ABSTRACT

This thesis describes the design, installation, and analysis
of the external beam transport system of the McGill Proton
Synchrocyclotron.

A review of the basic theory of magnetic deflection and
focusing systems is also presented.

The extraction system has been optimized and a final beam
intensity of 2.5 x 10-8 amperes obtained, for an extraction efficiency
of 2.7%

The floating wire technique has been successfully used in
the momentum analysis of the external beam. A point on the range energy
curve for aluminum has been established with high precision at
99.88 ¥ 0.06 Mev corresponding to a range of 9814 tq mg/bm2 in
pure aluminum. This point has been used to calibrate a range energy
measurement of the external beam and the beam has been found to have
an energy of 100.0 Mev and an energy spread of 0.33 Mev (full width

at half maximum).
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1. INTRUDUCTIUN.

In the fall of 1961 an intense external beam was successfully
extracted from the McGill 82" proton Synchrocyclotron using the
principle of magnetic regenerative deflection (Moore, 1962).

This beam had an average intensity of 4 x 1079 amperes or 2.5 x 1010
protons/sec, and a pulsed time structure of 15 gsec. bursts at a
repetition rate of 400 per second.

In order to make the best use of this external beam, it was
decided to incorporate an extension to the cyclotron vault in a
general expansion of the Laboratory. The addition to the cyclotron
vault was to be a large experimental area, well-shielded from the
cyclotron, and out of the direct line of neutron flux produced
in the beam extraction process.

During the initial,planning stage, both internal and
external beam facilities were used for research. A temporary
transport system utilizing available equipment was described by
Barton and McPherson (1963). Construction on the building
extension was started in December 1962 and completed in May, 1963.
The new beam transport system was operational by November 1963.

It was felt at this time that an accurate determination of
the energy of the external beam would be of value, since the
available method of energy measurement using the theoretical
range-energy relationship yielded uncertainties of the order of
two percent.

This thesis, then, describes the design and installation

of the external beam transport system of the McGill Synchrocyclotron
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and a precise, absolute determination of the energy and energy spread

of the external beam.



2. THEORY OF MAGNETIC DEFLECTION AND FUCUSING SYSTEMS

2.1 Introduction

The use of an external beam of charged particles from an
accelerator necessitates a transport system to deliver the beam to the
experimental location. In most nuclear experiments, it is desirable to
have a well defined beam of small cross-sectional area and small
momentum-spread. A transport system typically provides: deflection,
focusing, and momentum analysis and the methods of forming such beams
comprises beam, or particle optics. Surveys of the techniques of beam
transport have been given by Luckey (1961), Chamberlain (1960), and
de Raad (1963).

Beam optics involves the study of systems using electromagnetic
forces to define the paths of charged particles. The simplest and most
practical systems at medium and high energies use purely magnetic fields:
deflection and momentum-analysis being obtained with bending magnets and
focusing with quadrupole magnets. (Electrostatic focusing becomes
impractical at high energies due to the excessively high fields required).

Particle beams are usually characterized by small displacement,
angular spread and momentum spread. When these criteria are satisfied,
first order theory for the equations of motion can be used, and by
definition the equations of the trajectories become linear in these
three parameters (displacement, angular and momentum spreads). The
calculation of trajectories and of the properties of magnetic systems
then lends itself ideally to matrix formalism as developed by Penner (1961).

Second-and higher-order theories to correct for aberrations not accounted
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for in the first-order theory can be found in the literature (Brown et
al, 1964), but will not be considered here.

In designing a beam transport system the first assumption is
the existence of a "central" ray with magnetic rigidity equal to the
average magnetic rigidity of the accelerator beam (or a particle with
momentum equal to the average momentum of the particles of the beam)
whose trajectory coincides with the central path through the system.

An arbitrary ray is then specified at any point in the system by giving
the position along the optic axis z, the perpendicular displacements

Xy ¥, from the axis, the corresponding conjugate momenta

(x' = dx/dz, y' = dy/dz) and the momentum difference ap/p between

the particles making up this ray and those of the central ray of the
system. (By convention x,y,z, form a left handed coordinate system).
Finally each particle is assumed to have a constant velocity in the z
direction vz since the angular displacement is small and v, can therefore
be considered equal to v the total velocity.

In the following sections the equations of motion of the
particles in a beam are derived for a drift space, a magnetic quadrupole
and a uniform-field bending magnet. Use of the matrix method in tracing
trajectories of these particles is shown; and the concept of phase space
representation of the total beam is presented. Much of the theory
presented here can be found in the literature and reference has been
made to several sources. In general, however, most references do not
cover uniformly all parts of the theory and it was felt that a more

comprehensive review in an integral form would be useful.



2.2 Drift Space

In a drift space, or field free region particles in the beam
experience no forces. If at position 2z=0, a particle has coordinates
(xys Xo'); at z=2 the coordinates will be (x, + x5'%y Xo'). This can
be simply expressed in matrix formalism by introducing the three

dimensional position vector for the particle:

The matrix equation for a drift space is then:

X ) (1 L 0 xo.ﬁ
x' = 0 1 0 Xo'
ap 0 0 1 Ap (1
P ) L J P

A similar relationship holds for the y,z plane (conventionally the

vertical plane).

2.3 The Magnetic Quadrupole

The geometry and field pattern for a magnetic quadrupole are
shown in Fig. 1, the z axis representing the optic axis and x and y
the horizontal and vertical directions respectively. The quadrupole
field is created by making the pole pieces rectangular hyperbolic
cylinders which are symmetrical about the x,z and y,z planes. If
adjacent poles have opposite polarity as shown, the field gradients
are constant and the force on a charged particle is proportional to
its displacement from the optic axis. This can be shown as follows:

Within the region of the quadrupole lens, Maxwell's equations give
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FIGURE 1:
MAGNETIC QUADRUPOLE LENS

The geometry of the pole tips and field lines is shown.

FIGURE 2:
PRINCIPAL PLANES AND FOCAL PUINTS UF QUADRUPULE

The symbols are explained in the text.
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curl B = 0,
or ?By, = 3By
Jy =X

which in the first (and linear) approximation gives

Bx= ky
and By = kx (2)

where k is the field gradient of the quadrupole.

Now consider the scalar potential V;

b —
v = H.ds
a

where H = B =1 (iBy + JB)
to ko
b b
then: V = 1 (B dx + Bydy) = k (ydx + xdy)
ho Ja bola

and choosing V at the centre of the quadrupole to be zero:
X,Y
V = k (ydx + xdy) = k XY
Ho /0 Fo

This obviously implies hyperbolic equipotential lines, and the pole
pieces of quadrupoles are assumed to be of high enough permeability
(non-saturated) that their surfaces are magnetic equipotentials. The
equation describing the pole face of the quadrupole is in fact 2xy = a2

where a is the aperture radius shown in Fig. 1.

The Lorentz force components in the x and y directions are

given by:
Fy = -quzB, = -qvkx 3)
and F} = quky

These equations immediately show that in this configuration the
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quadrupole is focusing in the x direction and defocusing in the y
direction. Polarity reversal of the quadrupole gives focusing in
the y direction and defocusing in the x direction. The equations
of motion for the focusing plane may be derived as follows:

d (mvy) = F; = -qvkx

dt
and since the force is entirely radial,

2
d“x + qv kx = 0
dt?  m

changing variables using the relation z = vt:

2
d°x +q kx = 0
4z mv

and substituting the magnetic rigidity Bp for mv/q:

d2x + kx = 0
dz° Bp

which has a solution of the form:

x = AcosKz + BsinKz 4)
where K¢ = k/Bp .
The derivative with respect to z of (4) gives

x' = -AKsinKz + BKcosKz (5)
The initial conditions x = x,, x" = Xo' when z = 25 = 0
give the constants A and B in (4) and (5), and evaluating at z=L,

the length of the quadrupole, gives the equations of motion in the

horizontal plane:

L}

X XoCOSKL + xo' sinKL

K

L

X ~XoKsinKL + x,' cosKL

Similarly the equations of motion in the y plane are given by:

(6)



C)

y = Yy CcoshKL + y,* sinhKL
K
y' = y,KsinhKL + y,'coshKL 48]

Equations (6) and (7), being linear, may be rewritten in matrix form.

2 e 4 R

where the transfer matrices Mp in the focusing plane and My in the

defocusing plane are given by:

Mp = [ coskL 1sinKL
K
| -KsinKL  coskL ®)
My = ( coshKL Tl{sinhl(L
. KsinhKL coshKL

The quadrupole can be represented by a thick lens with principal
planes P;, P, as shown in Fig. Z. The entrance principal plane

P.

i 1s a distance t; after the magnet entrance and the exit principal

plane a distance t, before the magnet exit. The transfer matrix for

the thick lens (Penner, 1961) is:

Moo= [1 te][l 0 (1 ti]
0 1 -/f 1) lo 1 (9)

where f is the lens focal length. The optical properties of the
quadrupole are then simply obtained by equating the matrix of (9)
with those of (8), and are summarized here:

for the focusing plane:

f 1/(KsinKL)

i

t; = tg = (1-cosKL)/(KsinKL) (10)
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and for thedfocusing plane:
f= -1/(KsinhKL)

tj = tg = (coshKL-1)/(KsinhKL) aan

Calculations involving quadrupoles are greatly simplified by
using the thin lens approximation, which in most cases is quite
adequate. A quadrupole lens is thin if the principal planes practically

coincide: i.e. t; =t = L/2. If the expressions for t; or t,

(10, 11) are expanded in powers of KL:

tj = teg = LU + K212 + ...)
2 12

for a converging lens and,

t; = te = LU - KLZ + ...)
A v

for a diverging lens; and the thin lens approximation is satisfied

when K2L2<<].. Now expanding the focal lengths in power series gives:

1= KLU - B2+ .0
Tp N

and 1l = KPL(L + L8 + ...
T, 6

which in the thin lens approximation gives:
Pp = -Pp = KL
where P the power of the lens is the reciprocal of the focal length.
Quadrupoles are most frequently used in combinations of two
(doublets) or three (triplets) to obtain systems which give overall
focusing in both the x, z, planes. The focusing properties for doublets
and triplets can be found in the literature (Luckey 1961, Enge 1959).

The simplest procedure for focusing simultaneously in both planes,
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employs a doublet consisting of two quadrupoles with approximately
equal strength but opposite polarity. The beam envelope in a typical

doublet is shown in Fig. 3.

2.4 Uniform Field Bending Magnet

The uniform field bending magnet (or simple wedge), serves
three basic functions in a beam transport magnet system:

i) a combination of bending magnets can deflect a beam through
any required angle, or translate a beam by successive deflections in
opposite directions.

ii) The dispersive property of a bending magnet (the property
of giving particles of different magnetic rigidity proportionately
different deflections) provides a means of momentum (or energy)
selection. Consequently bending magnets are frequently used as energy
analysers.

iii) A bending magnet can also be designed (by correct choice of
entry and exit angles) to give a certain amount of focusing in the
radial (horizontal) and, or the vertical planes.

The geometry of a simple wedge magnet is shown in Fig. 4a. The
central trajectory is deflected through an angle o in the radial plane
and is undeflected in the vertical plane. The angles B, and B, are
chosen, conventionally, to be positive in the direction which provides
positive vertical focusing. This convention can be restated: J is
positive if the beam trajectory is on the same side of the normal to
the pole edge as the centre of curvature of the trajectory.

The radial orbits for a simple wedge with B; = By = O will be

considered first, then generalized to include the case of angled pole
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FIGURE 3:
BEAM ENVELUPE IN QUADRUPOLE DOUBLET

The quadrupole configuration illustrated here has the

first quadrupole focusing in the y plane and the second in the

x plane.
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edges; and followed by the vertical equations of motion.

Following the procedure of Penner (1961), the coordinates (x, x')
will be calculated at the magnet exit for a particle which enters the
magnet with coordinates (xo, Xo') and momentum p' = p + ap, for the
case Bl = Bo = 0. The central trajectory xo = X' =0, p=p)isa
circular arc of radius p and length pa, and the trajectory of the

case considered is an arc of radius p*' = p + ap,

where ap = 4p
p P

This case is illustrated in Fig. 4b. AC is the central trajectory with
centre of curvature at 0. BD is the trajectory of the particle with
momentum p' with centre of curvature at P. The initial and final
coordinates are X, (=AB), x,' and x(=CD), x'. Construct 0Q perpendicular
to OA, PQ parallel to OA, and RP perpendicular to OC. Then, since:

OA = OC = p

BP = DP = p+ ap
OC + CD = OR + RD
and RD = PbDcosx'

it follows that:

X OR + (p + aplcosx' - p

OQsina + PQcosa + (p + aplcosx' - p

BPsinx,' sina + (OB - BPcosx,')cosa + (p + ap)cosx’ - p

(p + ap)sinxy'sina + [p + x5 - (p+ Ap)cosxo'] cosq
+ (p + ap)cosx' - p

The first order solution in x is obtained by using the inequalities

Xo'<< 1y, X << py ap<<py X"<« 1 and rejecting all terms which are

second order or higher in x,, x,'y x', & p.
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FIGURE 4:

a) GEOMETRY OF A SIMPLE WEDGE MAGNET
b) CONSTRUCTIONS FUR CALCULATING TRAJECTURIES IN A
SIMPLE WEDGE MAGNET (NO VERTICAL FOCUSING)

Refer to the text for a description of the symbols.



FIG 4a - GEOMETRY OF SIMPLE WEDGE MAGNET

FIG 4b — CONSTRUCTIONS FOR CALCULATING
TRAJECTORIES IN A SIMPLE WEDGE MAGNET
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To first order then:

X = X,c0sa + X, 'psina + ap(l - cosa). (12)

)
The coordinate x' may be obtained by using the relation

tanx' = (1/p) ( ¥x/2a), considering a to be a variable and evaluating

the derivative of (12) at a:

x' = -x, sina + xy'cosa + ap sina

P P (13)

Since to first order tanx' = x'.

In matrix form the radial equation of motion is:

’ﬁ >
X (cosa psina  p(l-cosa) X,
x' = -sina/p cosa sina X"
Ap 0 0 1 Ap
(P ) | p
(14)
It should be noted here that for the case ap = 0 the above

transfer matrix can be reduced to a two by two submatrix which on
comparison with (8) indicates essentially the same transformation as
for a converging quadrupole. Here a has replaced KL and p, 1/K.
Thus in addition to deflection of a particle of momentum p the bending
magnet also focuses horizontally with a focal length of f = p/sina.
Consider now the effect of rotation of the pole edges on the
radial trajectories. Fig. 5 illustrates the effect of rotation of
the exit pole edge through an angle BZ‘ 0Q is the central trajectory
and AB the pole edge with B, = 0. With ﬁz = 0 the trajectory of a
particle with initial coordinates (x,, x,°, ap/p) is RV, which is an
arc of radius p + Ap between R and T with centre of curvature at C

and a straight line from T to V. The final coordinates are (xl, xl', A p/p)
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where x; = PT and x;' = angle ATC as shown above.

If the pole edge is now rotated through B, about the point P
on the central trajectory to A'B’' then the new trajectory for the
particle (xo, Xo,'s ap/p) is RW , which consists of an arc RS with
centre at C and a straight line SW. The final coordinates of this
trajectory are (x, x', 4p/p) where x = xy + TU and x' = x;' +
angle TCS. From Fig. 5 it can be seen that SU and ST are of the same
order of magnitude as xl(provided BZ is not much greater than 45%).
The angle TCS is therefore small (of order x/p) and TU is zero to
first order. Also to first order SU = ST and the perpendicular distance

SU. Thus:

1

of S to the edge AB is SUcosx,

SU = PTtanpPs = xjtanfs

xtanp2
and the angle TCS = SU/(p + 4p) = (x/p)tan Bo.
The effect of an exit pole edge rotation can therefore be

expressed by an additional transfer matrix as follows:

(R P N s

which essentially is the same as adding a thin lens to the normal exit
wedge.
The effect of rotating the entrance pole edge through an angle Bl can
be considered by a similar method using the mirror image of Fig. 5 and
is given by the transfer matrix

1 0

tanBl/p 1

The transfer matrix then for radial motion through a uniform field
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FIGURE 5:

ROTATION OF EXIT PULE EDGE

The symbols are explained in the text.



FIG 5 - ROTATION OF EXIT POLE EDGE
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bending magnet with both pole edges rotated, is obtained by combining

the above edge matrices (extended to three dimensions) with (14):

1 0 0 cosa psina p(l-cosa)jfl 0 0
MasByspo) = | tanPo/p 1 V) -sina/p cosa sing tanB;/p 1 0
0 0 1 0 0 1 U 0 1
which gives:
rcos(a-ﬁl) psina p(l-cosa) )
ospy
- (1-tanpjtanfs)sin(a-B-P2) cos (a-P2) sina + (l-cosa)tanfs
"= pcos (B;+85) cosfBo
LV 0 1 y (15)

It should be noted here that positive §, or B, (vertical focusing)
impliesdefocusing in the horizontal plane.

A uniform field bending magnet with normal entrance and exit does
not deflect trajectories in the vertical direction and can be represented
by a drift space of length pa for the vertical motion. If, however, the
pole edges are rotated there are magnetic field components in the x
direction of the horizontal plane near the pole edges (due to the
fringing field). This is illustrated in Fig. 6 where a coordinate
system including the normal to the pole edge z' has been superimposed
on the coordinate system of the trajectory z.

In the fringing field region, from Maxwell's equations curl B= 0

and

2B, = 2B
2 y'
ay' dz
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FIGURE 6:

NON - NOURMAL ENTRY THROUGH THE FRINGING FIELD OF A WEDGE MAGNET

2z represents the optic axis or particle trajectory, and

z' the normal to the entrance pole edge.
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FIG 6 — NON-NORMAL ENTRY THROUGH THE FRINGING
FIELD OF A WEDGE MAGNET
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or to first order:

deo = dByo Y'
dz'

It is also obvious that y' = y and 2’ = zcosf; .

Hence: By = B,ssinp; = sinB; dByy
dz*
= tanB1 dBy y
dz

From the Lorentz force:
Fy = qvby
The change in momentum in the y direction is then derived as follows:

= _Fdt = . = .
Apy Fy Fy _(_i; qvBy _d;,g_

(the negative sign being introduced since py is decreasing i.e. vertically
focusing)
= t =

AFX Ay -q tanf)dB, y
p P
and integrating:

L

L1}

y -q tanBlyB
p

-Btanp;y = ~(1 tanﬁl)y
p

The only first order effect therefore is to cause an angular deflection
of the trajectories in the vertical direction, A similar expression
can be obtained for the exit pole edge deflection, and the transformation

matrix for the whole magnet in the vertical plane is then given by:

I Y [ | O |
y' -tanﬁz/p 1 0 1 -tanBl/p 1 yo-]
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which gives the vertical transfer matrix:
M = 1 - atanB, pa

-1(tanf; + tanfy) + a tanfjtanP, 1- atanfo| (16)
p P

2.5 Fringing Fields in Quadrupoles and Bending Magnets.

In the previous sections, the fields in quadrupoles and wedge
magnets have been treated as if they had sharp boundaries. In fact
there are fringing fields which extend out for distances of the order
of several gap widths for uniform bending magnets and of the order of
a fraction of the aperture for a quadrupole. The theoretical fringe
field for plane-parallel square poles has been calculated by Coggeshall
(1947) and more generally for deflecting magnets by Enge (1964). In
order to make the "sharp cut-off" theory compatible with "non-ideal”
magnets having fringe fields, the conventional modification is to
introduce the concept of the "effective length" of the field. In the

case of a uniform field magnet, the effective length is simply defined as:
Leff = .Ihdz /Bnax

where Bpay is the maximum field inside the magnet, and the integral is
taken along the optic axis to include the fringing field areas. The
fringing field for a bending magnet can be approximated in the region
near the gap by B = Bmaxe"Z/a (Coggeshall, 1947) where a is the gap
width and z the distance from the pole edge.

With quadrupoles the correction is somewhat more difficult to
define. 1In the fringing field , the field gradient is still mainly
constant at fixed z, although it decreases with distance from the

magnet edge approximately as e'Z/Qa (Luckey 1961) where 2a is the
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quadrupole aperture. A fairly good, although somewhat tedious,
approximation to the quadrupole behaviour can be obtained by dividing
the fringe region into small sections, each with a transfer matrix
characterized by the gradient k at the centre of the section,
multiplying the matrices together, and so defining an equivalent or
effective length and gradient for the quadrupole.

In practice the effective lengths for both bending magnets and
quadrupoles are found empirically. For uniform field bending magnets

use is made of:

a« = (B! dez

1}

Binax‘["eff
Bp

where a is the angle of deflection of particles of rigidity Bp. The
effective length usually exceeds the physical length of the iron pole
face by about two gap widths. The correction to the quadrupole length
depends on several parameters, in particular the overhang of the coils,
and is usually of the order of ten to thirty percent of the quadrupole

aperture.

2.6 Use of Transfer Matrices in Tracing Particle Trajectories

It has been shown above that the transformation properties of
the various magnetic devices of a beam transport system on a beam of
charged particles can be represented by a set of transfer matrices. A
magnet system consists of an arrangement of bending magnets and
quadrupoles separated by drift spaces. The problem then of tracing out
the trajectory of a particle with a given set of initial conditions
(xg5 X5's Ap/p) reduces to the simple multiplication of matrices.

By convention, three by three matrices are used in the horizontal plane



(23)

to include dispersion effects ( note that quadrupoles are non-dispersive
to first order, and the matrices of (8) can be readily expanded to three
dimensions). 1In almost all cases it is sufficient to use two dimensional
matrices in the vertical plane since dispersion is not encountered to
first order.

It should be remembered however, that the matrix formulation
is only an approximation, albeit a good one in most cases, and depends
for its accuracy on the criteria of first order theory being satisfied.

The matrix method of tracing particle trajectories, although
elegant and simple, only follows one particle at a time. Consequently
many trajectories have to be traced in order to determine the overall
behaviour of a beam, and unless done with the help of a computer this
can prove very tedious. A more practical method of theoretical
prediction or verification of the performance of a beam transport
system uses the concept of the phase space ellipse in tracing the beam

envelope through the system.

2.7 The Phase Space Ellipse.
The spread of a beam of mono-energetic particles can be represented
by an ellipse in phase space. The individual particles comprising the
beam are plotted as points on a plot of the displacement from the optic
axis against the angﬁlar spread in the horizontal or vertical phase
plane. The points are then found to lie within an area bounded by
a closed curve, which for most beams has a generally elliptical shape.
In linear systems the phase space area is a constant and is a characteristic
of the beam known as its "emittance". The concept of the "density of

particles in phase space" comes from statistical mechanics, and the
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preservation of the area in phase space in a linear system is a direct
consequence of Liouville's theorem (Tolman 1950). Liouville's theorem
states that volumes in phase space are conserved if the particle motion
can be derived from a Hamiltonian (i.e. if the energy remains constant).
The phase space for a particle beam is in fact six dimensional, but
since there is no appreciable coupling between the motion in the three
planes, two dimensional phase space plots can be used. Another very
useful consequence of Liouville's theorem is that any transformation
matrix describing the motion of particles in a linear system has a
determinant of unity (Penner 1961). This provides a very convenient
method for detecting errors, or checking calculations involving transfer
matrix calculations.

The behaviour of phase space diagrams can be qualitatively
explained as follows for simple linear transformations. The effect
of a drift space is illustrated in Fig. 7a: particles with positive
divergence x' and negative displacement will drift towards the optic
axis, whereas particles with positive displacement will drift even
further from the optic axis. The net effect is that the ellipse
shown in Fig. 7a will drift to the ellipse of 7c. An ellipse in the
second and fourth quadrants then representsa converging beam, and in
the first and third a diverging beam. As the beam passes through a
crossover or focus (7b), the ellipse has its axes parallel with the
x'y x axes, and for a beam with finite area in phase space, size or
displacement at the focus will not be a point but rather have finite
size. The quality of a beam is therefore largely determined by its

area in phase space. Zero phase area implies that a beam can be
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FIGURE 7:

PHASE SPACE ELLIPSES

The behaviour of a phase space ellipse in the x plane

is illustrated for a drift space and a thin lens.
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focused to a point or cast an infinite distance remaining parallel.
The case of a simple focusing thin lens is illustrated in Figs. 7dye,f.
In transporting a phase space ellipse through a beam transport

system, a useful parameterization of the ellipse is given by:

X Xcos(® + ¥ ) ; x' X'sin(® - ¥ )

y Ycos(® + ‘Py) ; y' Y'sin(© - ‘Py)

where X, X' and Y, Y' are the maximum displacement and divergence in
the x and y planes as illustrated in Fig. 7g, ﬂ’x, «yy characterize
the slope of the major axis of the ellipse (V¥ is negative for a
diverging and positive for a converging beam), and ® is a running

parameter. The three parameters X, X', ¥ o or Y, Y ¥ y then

characterize any particular ellipse. Consider a transfer matrix which

takes a point x,, x,' into x, x' :
[x) [a b (xo]

1 ]

x' c d X,

The effect of this transformation on a phase space ellipse can be shown

to give:
X2 = a2X02 + b2(Xo')2 - 2X0)§0'sin2“yxo ab
a? = o dPxgn? - 2xx tsin2 ¥ cd
Xx'sin2 ¥, = X X,'sin Z'Y’xo (ad + be) - Xooac - (Xo')zbd
and Area = 7XoX,'cos2 ¥ with similar equations for the y plane.

Hence, knowing any specified initial ellipse, these equations can be
used to find the behaviour of the ellipse (by giving the parameters

X,X';*’x, Y, Y§“+y) at any point in a transport system.
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3. THE EXTERNAL BEAM TRANSPORT SYSTEM

3.1 General Requirements

The beam transport system was designed to fulfil several basic
requirements:

a) To bend the external proton beam from the cyclotron through
an angle of some 75° into the direction of the new Beam Hall.

b) To provide some means for varying the energy of the beam.

c) To collect and deliver this beam to any experimental
location at the end of the Beam Hall.

d) To provide sufficient flexibility in focusing the beam on
to a target in the experimental area.

Part of the required deflection was achieved by modifying the
existing 45° C-frame bending magnet and the additional bend was obtained
by the design of a new 28° H-frame bending magnet. In order to achieve
energy variation by the normal method of energy degrading, and at the
same time minimize the increase in phase space area of the beam due to
multiple scattering in the degrader, the added requirement of an
intermediate focus at which to place the degrader had to be incorporated
in the design. This was achieved by designing the entrance and exit
pole edge angles of the two bending magnets to give strong overall
focusing in both the horizontal and vertical planes. Collection and
refocusing of the degraded beam was accomplished with a quadrupole
doublet which was designed to cast a converging beam into the Beam Hall.
A switch magnet was used to deflect the beam horizontally across the
Beam Hall and a second pair of quadrupoles mounted on a carriage

pivoted about the centre of the switch magnet provided the final focusing



(28)

at the experimental area.

The final layout of the external beam transport system is
shown in Fig. 8, and as a general reference for the following sections
Table I summarizes the coordinate z of the various elements comprising
the system. Fig. 9 presents these in a graphical form showing, in
addition, the horizontal and vertical apertures. The origin of the
optic axis of the system was arbitrarily chosen as the aluminum exit
flange of the cyclotron. It should be noted that all distances and lengths
shown in these diagrams are actual physical dimensions and correction
to the effective lengths should be made for any transport calculations
(effective lengths are tabulated in tables 2, 3). The following
sections give a more detailed account of the installation and performance

of the transport system.

3.2 Section to the Entrance of the 28° Bending Magnet

a) Alignment: The beam enters the tramnsport system through a
pair of horizontal and vertical slits at the exit of the cyclotron and
is transported to the bending magnet system in 4" o.d. copper vacuum
pipe. The beam pipe was aligned on the beam by exposing Polaroid Land
Film Packets (Polapan 200, type 52) at several points along the optic
axis and carefully surveying the beam path. This in fact was the
procedure followed in the alignment of almost all sections of the beam
transport system and some representative examples of the beam patterns
obtained are shown in Plates 1 and 2. The convention used in all
polaroid exposures followed a left handed coordinate system with
y - displacement up, x-displacement to the right and displacement

along the optic axis into the plane of the picture.
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FIGURE 8:

LAYOUT OF THE BEAM SYSTEM
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TABLE 1

Coordinate z of the elements comprising the system

measured from the aluminum flange at the cyclotron

exit.
z in inches

Horizontal exit Slit -5.0
Vertical exit Slit -2.5
Thin Collimator 131.4
Trimming Slits 132.7
28° Bending Magnet Entry 186.1
Exit 204.1

Straight through exit 218.8

45° Bending Magnet Entry 225.1
Exit 258.6

Straight through exit 254.6

4" Quadrupole No. 1 Centre 306.9
6" Quadrupole No. 1 Centre 327.5
View Box No. 1 Centre 437.1
Switch Magnet Entry 453.8
Exit 465.9

View Box No. 2 Centre 646.8
6" Quadrupole No. 2 Centre 665.8
4" Quadrupole No. 2 Centre 685.7
End of final "T" flange 712.8

All distances are physical dimensions and correction to effective

lengths should be made for transport calculations.



@D

FIGURE 9:

SYSTEM APERTURES

Here the vertical and horizontal defining apertures of

the main elements of the system are shown with their coordinate z.
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The simplicity and speed of this method make it ideal for the purpose.
The exposure used is typically of the order of 10° protons, depending
of course on the cross-sectional area of the beam.

b) Improvement to Beam Extraction. The external beam intensity,

as originally reported by Moore (1962), was 4 x 10'9

10

amps. or approximately
2.5 x 107" protons/sec. It was found that an increase in regenerator
strength of 10 % gave an increased beam intensity of 2.5 x 1()_8 amps
or 1.6 x 10ll protons/sec, after optimizing the regenerator position
and magnet current. The variation of beam intensity with regenerator
position (at optimum magnet current setting) is shown in Fig. 10 for
three regenerator strengths.‘ Exposures taken before and after the
change of regenerator strength at z=98" are shown in Plate 1, pictures
(1) and (2) respectively. On the basis of these exposures, the strength
of the internal horizontal-focusing quadrupole section in the extraction
channel was decreased to minimize the horizontal divergence of the
extracted beam. The pattern of the final extracted beam is shown in
Plate 2, (1),(2), (3).

c) Bmittance of the Beam. Phase space diagrams of the new
external beam were obtained by placing a brass block with a rectangular
array of 0.030" diameter holes spaced 0.125" horizontally and 0.090"

vertically in the beam and tracing the rays to a polaroid exposure

some 50" downstream. The diagrams are shown in Fig. 11. The beam

At the time of writing, the beam intensity is 8 x 10‘9 amps. This loss
in intensity is associated with a reduction of about 50% in the cyclotron

internal beam and is probably due to poor r.f. oscillator performance.
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FIGURE 10:
BEAM INTENSITY VARIATION WITH REGENERATOR STRENGTH

Each point represents optimum magnet current. The reading of the
regenerator position on the micrometer barrel increases for radial

motion into the cyclotron.
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has an area of 0.675 inch milliradiansin the horizontal phase plane
and 1.69 inch milliradians in the vertical plane.

d) Trimming Slits. A set of horizontal and vertical slits
were designed and constructed with a view to trimming the beam to ensure
perfect transmission through the system. These slits are located at
z = 133" and are geared so that each slit can be adjusted separately

or in pairs. The slits can also be moved remotely by use of a "selsyn"
servo-motor.

e) Faraday Cup. In order to provide a quick measurement of
the external beam current, a Faraday Cup with a swinging bottom was
installed in the section before the entrance to the 28° magnet. A
sketch of the Cup is shown in Fig. 12.

The Faraday Cup is an accurate and absolute method of measuring
the current of a charged particle beam. However precautions must be
taken to ensure that inaccuracies due to systematic errors do not arise.
The most common sources of error are due to:

i) ionization of residual gas in the cup by the proton beam

ii) knock-on electrons from the cup window

iii) secondary emission of electrons from the cup due to the

incident protons

iv) aperture of cup too small to accept the entire proton beam
The first two errors can be effectively removed by coupling the cup
directly to the external beam vacuum system (10"2 microns). The third
error is commonly minimized by placing a magnetic field of a few hundred
gauss across a fairly deep cup (length commonly twice the diameter) or
a bias Ping" or grid at a negative voltage of a few hundred volts in

front of the cup.
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PLATE 1:

BEAM PICTURES

These pictures were obtained by exposing Polaroid Land
Packets (Polapan 200, type 52) directly in the beam. The
convention used in all polaroid exposures follows a left
handed coordinate system with y displacement up, x displacement
to the right and displacement along the optic axis (the beam

direction) into the plane of the picture.
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PLATE 2:

BEAM PICTURES AT POINTS THROUGH THE TRANSPORT DEFLECTION SYSTEM.
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FIGURE 11:

EMITTANCE PLOTS AT z = 160"



HORIZONTAL PHASE SPACE

RAM 2
DIAGRA <
-
AREA = 0.675 INCH MRAD. 2
~><

| 2 .3 4 5 .6
X - INCHES
VERTICAL PHASE SPACE 3
DIAGRAM
AREA = 1.69 INCH M'RAD.
a
o <
o o
.
=
7 =
(+] [0 .
o (o] -
o o o >
o o o]
o 1 o s Lo PR i 1 1
- o -02 4 -0l O o0l 0.2 0.3
o ) o p Y - INCHES
(o] [o] [e] o
o] [o) 0
o]

FIG

EMITTANCE PLOTS AT Z=160"




(38)

The end of the cup rotates on a teflon insulated shaft, and can
be moved into the proton beam remotely from the cyclotron control desk.
The shaft is rotated by a pair of solenoids, operating on a rack and
pinion and controlled from the cyclotron control desk. The current
from the Faraday Cup is measured with a Keithly micro-micro ammeter
(model 414). The cup is located immediately after the trimming slits,
where the cyclotron fringing field combined with the 8" length of the
cup appears to be sufficient in the suppression of secondary emission
electron losses. It was found that a bias voltage, on the bias ring
(both positive and negative), had no noticeable effect on the current
measured by the cup.

f) Intensity Profile of Beam. Intensity profiles of the beam
were obtained at the trimming slit position by sweeping a 2 mm slit
across the beam in both horizontal and vertical planes, and measuring
the intensity of the beam through the slit with the Faraday Cup. The

profiles obtained are shown in Fig. 13.

3.3 Deflection Into Beam Hall.

The beam pipe from the cyclotron passes through a window in the
inner cyclotron vault shielding wall and is coupled to the 20° Bending
Magnet vacuum chamber with a short section of flexible bellows. The
vacuum chamber of the 28° Bending Magnet is directly coupled through
another short section of bellows to the 45° Magnet chamber.

a) 28° Bending Magnet. The 28° H-frame bending magnet was
designed in this Laboratory and the iron fabricated by Dominion
Engineering. The coils were wound in the Laboratory using 6" wide

by 0.012" thick pure (1S) Alcan aluminum strip, and insulating with
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FIGURE 12:

FARADAY CUP EXTERNAL BEAM MONITOR
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mylar. Edge cooling of the coils was achieved with copper plates. The
pole tips were designed to provide strong vertical focusing at the
entrance and horizontal focusing at the exit. (The main limitation
to transmission through the magnets being the small vertical aperture
of the 45° Magnet). The tapered pole pieces are 4 1/2 " wide and the
general shape of the pole can be seen in Fig. 8. To provide a more
uni form field over a greater area of the poles, adjustable edge shims
of 3/8" wide x 1/8" iron were mounted on the pole edges and their
position adjusted empirically by carefully mapping the field with a
Hall probe (Moore 1962). The method of mounting the shims can be
seen in Fig. 14. The vacuum chamber is made from copper waveguide
and has an aperture 2.84" wide by 1.34" high. It is provided with
a straight through section which helped in aligning the magnet and
allows a target area to be set up along the line of the undeflected beam.
The initial alignment of the 28° Magnet was performed by optically
aligning the straight through section of the vacuum chamber on the
previously surveyed beam path with a theodolite. Final alignment
was accomplished with the proton beam, both using polaroid exposures
and viewing a fluorescent screen with closed circuit television. The
alignment of the beam in the vacuum chamber was checked by bombarding
a ple#iglass block placed in the vacuum and observation of the beam
pattern produced by discolouration of the plexiglass.
Pictures of the beam exiting from the cyclotron are shown in
plate 2 (1,2,3). Non-linearities due to saturation in the sharp
corners of the pole tips were observed, using the ray tracing technique

described earlier (3.2c¢c). This non-linearity was effectively removed



41)

FIGURE 13:
BEAM INTENSITY PROFILES AT TRIMMING SLITS (z = 133™)

The beam outside the indicated 87.5% in the horizontal
plot does not get through the 28° Bending Magnet due to insufficient

horizontal aperture.
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FIGURE 14:

SHIMMING UF 28° BENDING MAGNET

The iron edge shims were used to provide a more uniform
field across a wider portion of the pole pieces and the wedge

shims were empirically adjusted to remove non-linearities.
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by cutting 15° from the exit angle of the poles and empirically wedge
shimming the entrance pole tip as illustrated in Fig. 14. The effect
of wedge shimming on the non-linearities can be seen in pictures (3)
and (4) of Plate 1. In (3) and (4), both the entire beam and the array
of "pencil" beams are shown, clearly demonstrating the improvement in
(4) with wedge shims. The 28° Magnet was provided with a tilting
adjustment screw with which the whole magnet could be rotated slightly
on an axis parallel to the straight through optic axis, thus permitting
the beam to be cast up or down by a few degrees in the vertical plane.
This adjustment was carefully aligned to ensure a truly horizontal

beam after deflection. The beam exiting from the cyclotron dips about
four milliradians, and the beam now entering the beam hall dips by less
than 0.2 milliradians. Pictures (4) and (5) of Plate 2 illustrate the
strong vertical focusing and somewhat weaker horizontal focusing
obtained with the 28° Bending Magnet.

b) The 45° Bending Magnet. This is a uniform field C-frame
bending magnet and has been described in some detail by Hunt(1955).
Slight modifications were made to the magnet including: a new vacuum
chamber with a straight through section, a narrower pole gap to allow
a higher field and new entrance and exit angles designed to give
horizontal focusing. The aperture of the vacuum chamber is 5" wide
by 0.94" high. No shimming of the poles was necessary, the field being
uniform over a large area. The 45 Magnet was aligned following the
same procedure as for the 28° Magnet. with special care being placed
in the vertical alignment.

The focusing effect of the two bending magnets on the proton

beam is well illustrated by the pictures (6) to (11) of Plate 2.
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¢) Beryllium Degrader. A Beryllium degrader has been designed
and is presently being constructed. When completed it will be placed
at a location immediately following the 45° Magnet close to the
horizontal focus. The degrader will be remotely controlled at the

cyclotron console and will provide a large range of proton energies.

3.4 Transport into Beam Hall.

a) First Quadrupole Set: The beam from the focus at the exit
to the 45° Magnet is strongly diverging (the minimum total divergence
with no degrader is about 64 milliradians). This beam is collected,
refocused and cast into the new Beam Hall by a pair of quadrupoles,
consisting of one 4" aperture quadrupole manufactured by Spectromagnetics
Industries, followed by a 6" aperture quadrupole manufactured by Pacific
Electric Motor. The 4" quadrupole is normally used vertically focusing,
and the consequent defocusing in the horizontal plane necessitated the
larger aperture quadrupole for horizontal focusing.

The optimal position of this quadrupole pair is governed by two
main considerations: the admittance of the quadrupole set after degrading
which decreases with the solid angle subtended by the 4" quadrupole at
the degrader, as the quadrupoles are moved further downstream. The focal
length of the quadrupole doublet is shortest with the quadrupoles near
to the degrader, and the magnification consequently undesirably large.

A compromise between acceptable quadrupole admittance and magnification
therefore had to be made.

The quadrupole set was aligned on the beam first optically
using the carefully surveyed beam path and finally with the proton beam.

The alignment of the quadrupole magnetic centres on the beam path was
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obtained by moving the quadrupoles until the centroid of the beam spot
on a fluorescent screen viewed by closed circuit television appeared

to be undeflected for different settings of the quadrupoles. To
facilitate the focusing of the quadrupole doublet, viewing boxes were
placed at two positions after the quadrupoles (at z= 437" and z= 647")
permitting quick visual adjustment to suit experimental conditions. The
fluorescent screen in each viewing box is remotely controlled and

swings into the beam at an angle of 45°. The screens are viewed
through plexiglass windows by television cameras.

b) Switch Magnet. The switch magnet is located some 12 feet
from the first quadrupole set and provides a means of deflecting the
proton beam to any point at the end of the Beam Hall. The magnet is
a uniform field H-frame bending magnet, designed in this laboratory
and constructed in the same way as the 28° Bending Magnet. The pole
gap is 1 5/8" and the entrance and exit edges of the poles are
perpendicular to the undeflected central beam trajectory. The pole
gap was enlarged at the centre of the magnet to allow room for a
flexible 6" diameter stainless steel bellows section in the vacuum
chamber. This design permitted a continuously variable direction of
the exit of the vacuum chamber over an angle of ¥ 150, without
breaking the vacuum in the system. The aperture of the vacuum chamber
is 5.5" wide by 1.375" high and focusing of the first quadrupole set
was adjusted to clear this aperture. The sections of vacuum pipe
from the quadrupole set to the switch magnet and after the switch
magnet are 6" o.d. aluminum. Alignment of the switch magnet followed

the same procedure as the previous magnets.
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c) Second Quadrupole Set. The second quadrupole set consists
of a 6" quadrupole and a 4" quadrupole identical to those of the first
pair. The first quadrupole focuses vertically (normal polarities) and
the 4" quadrupole horizontally to give the desired focus at a target.
At full strength, spot sizes of the order of 10‘2 square inches can be
obtained. An example of the focused beam is shown in picture (6) of
plate 1. The two quadrupoles were mounted on a carriage which pivoted
about the centre of the switch magnet, making transport of the beam to
any direction at the end of the beam hall a very simple procedure. The
quadrupole carriage also supports the vacuum pumping system, interlocks
and controls for the external beam system. This quadrupole set was
aligned in the same way as the first quadrupole set. However alignment
was obtained at the undeflected position of the switch magnet, and
consequently irregularities in the level of the floor (up to 1/16")
will give rise at some positions to slight deflections of the beam
centroid by the quadrupoles.

d) Beam Sink. The beam sink consists of epoxy in a copper
cylinder which forms a Faraday Cup to collect the transmitted beam
current. This Faraday Cup has a depth of 28" and an aperture of 6".
Epoxy is used to stop the proton beam because carbon produces fewer
neutrons than most materials and produces no long lived radio activity.
The Faraday Cup is enclosed in a structure of two tons of iron blocks

to attenuate the neutron and gamma ray fluxes produced by the collected beam.

3.5 Magnet Power Supplies.
The magnet power supplies were designed and built in the laboratory

and descriptions of the various supplies appear in internal Laboratory
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reports. All the magnets are protected by water cooling interlocks.
Regulation on the bending magnets has been observed by continuous
monitoring of the voltage on the series regulator shunt, to be of

the order of several parts in 104 over fairly long periods. The
voltage was monitored by balancing most of the potential across a
Rubicon type B potentiometer in series with a 10 mv Leeds and Northrup
recorder. The quadrupole supplies are also regulated to a few parts

in 104.

3.6 Summary of Magnet Properties.

The properties and general parameters of the bending magnets
are tabulated in table 2 and those of the quadrupoles in table 3.
Table 2 includes a general purpose experimental 20° C-frame bending
magnet which was designed and constructed the same way as the 26°
Bending Magnet and Switch Magnet. The excitation curves for the 28°
and 45° bending magnets are shown in Fig. 15. These were obtained by

measuring the field in a uniform region of the magnets with a Hall Probe.

3.7 Performance of the Beam Transport System

a) Deflection System. Using the methods of Chapter 2 and the
experimentally obtained beam emittance of Fig. 11, as a set of initial
conditions, several properties of the deflection system were calculated
theoretically, and are compared below with experimental results. Transfer
matrices were calculated for the two bending magnets and the drift spaces
involved and are tabulated in table 4. The beam envelope was then
obtained by transporting the phase space ellipses of Fig. 11 through

the system and the resulting profiles are shown in Fig. 16.
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FIGURE 15:

EXCITATION CURVES

The excitation curves for the two bending magnets were

obtained by measuring the field in a uniform region with a Hall probe.
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TABLE 2

Bending Magnet parameters

Magnet Defl. Pole edge angles Curvature Length Aperture Current
Angle Steel Effective P Steel Effective Horiz. Vert. Max Usual
a b1 B B1 B2 Inches Inches Inches Amps
28° 28° 459 259 45° .27° 42.9 18.0 21.0 2.84 1.34 100 86
45° 45.5° -38° o -31° -2° 43.6 33.5 34.6 5 0.94 65 52
Switch to 115° 0 to15° 0 to15°  Var. 12.1 13.7 5.5  1.37 100  Var.
Experimental to~20° Pole tips to suit 5 150 Var.
experiment
TABLE 3
Quadrupole Parameters
Quadrupole Aperture Length Turns  Field Gradient Lens Power Maximum
Steel Effective per per amp. per amp. Current
Inches Inches Pole Weber/m> Rad/m amps
4 inch 4 8 9.4 58 0.0434 9.46 x 1073 300
6 inch 6 10 12.6 100 0.0566 9.20 x 1u-3 400

/ AL\



(49)

Also shown in these graphs are the experimental values for the maximum
sizes (2X, 2Y) in the horizontal and vertical planes, obtained from the
polaroid exposures of plate 2. The agreement is generally very good,
in spite of the fact that no account was taken of the cyclotron
fringing field, the transformation from the cyclotron exit to the 28°
Magnet entrance being taken as a drift space. The behaviour of the
horizontal phase ellipse is illustrated in Fig.léo.where the ellipse

is plotted for several points through the system. The horizontal phase
ellipse at z = 160" was projected backwards (using an inverse drift
space transfer matrix) towards the cyclotron and the crossover point
found to be at z = -21.2". The distance to the horizontal focus after

the bending magnets can then be found from the matrix equation:

x 1 (1 7 0) Xo ) a b e Xo

x' = 0 1 O MM MM, X' = c d f Xo'

ap 0 0 1 Ap 0 0 1 ap

p p p
7 \ ) /

4

where & is the drift space to the focus from the 45° Magnet exit, and
Mps Mo, M3, M4, are the horizontal transfer matrices for: the drift
space from the crossover inside the cyclotron to the 28° Magnet entrance,
the 28° Bending Magnet, the drift space separating the magnets and the
45° Magnet respectively. The condition for focusing, then, (at the
central momentum p) is simply that the matrix element b of the product
matrix be zero (since by definition x must be independent of x,'). This
gives a focus distance & = 7.2" (z = 267") which compares very well with
the experimental value of ~9" (z = 269"). This is also shown in Fig. 16.

Another property of interest is the momentum dispersion of the combined



TABLE 4

Transfer Matrices for Deflection System

a b e a b
Horizontal = c d f Vertical = c d
0 Q 1
Horizontal Vertical
a b c d e f a b c d
28° Bending Magnet 1.352 20.15 -.00643 0.644 0.0502 0.00409 0.512 21.0 -.0174 1.249
45° Bending Magnet 0.273 31.0 -.0263 -.676 0.130 0.00703 1.477 34.6 0.0150 1.028

Drift Spaces:

Cyclotron exit to 28° Entry 1 184.6 0 1 0 0 1 184.6 0 1
28° Exit to 45° Entry 1 19.5 0 1 0 0 1 19.5 0 1
Units are: X,y - inches

x'yy' - milliradians

ap/p - percent

(09)
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FIGURE 16:
BEAM ENVELOPE THROUGH DEFLECTION SYSTEM

The beam envelope obtained theoretically from the
emittance plots of Fig. 11 is compared with points determined

from sizes of polaroid exposures.
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FIGURE 16a:

HORIZUNTAL PHASE SPACE ELLIPSES

These ellipses were obtained by transporting the horizontal

phase space ellipse of Fig. 11 through the system.
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bending magnet system at the focus. This follows directly from the
above matrix equation:

X = ax, + e ap (b= 0)
p

here the coefficient a is the magnification and e the momentum dispersion.
Using the transfer matrices of table 4, the dispersion is then calculated
to be ~0.34 inches/% momentum spread (or approximately 6 Mev/inch).

The horizontal size of a mono-energetic beam at this point (diverging

at 68 milliradians), from the conservation of phase space area, would

be 0.012". The size obtained experimentally from the poloroid exposures
(~0.2") must therefore be attributed almost entirely to energy spread

of the beam. This, in fact, gives a very rough estimate that at least

95% of the beam is included in an energy spread of 1.1%.

b) Quadrupole Doublets and Switching Facility. In the final
alignment of the quadrupole pairs, both possible polarities (vertical
focusing first, or horizontal focusing,in both doublets) were checked.
The most flexible experimental arrangement uses vertical focusing first;
although with horizontal focusing first it is possible to obtain large
momentum dispersion due to the very short horizontal focal length of
the first quadrupole set (and consequent large magnification). The
switching magnet design and pivoted second quadrupole carriage was
found to be very satisfactory. The unusual pole piece geometry of the

switch magnet gave no apparent distortions due to non-linearities.

¢) Transmission of System. The overall transmission of the
system was estimated by coupling a Faraday Cup to the end of the system
and comparing the current measured there with that from the external

beam monitor Faraday Cup. The transmission was found to be of the order
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of 85%. It was suspected that beam losses were probably due to
inadequate horizontal aperture of the 28° Bending Magnet. This was
verified experimentally by measuring the transmission from the

trimming slits to the exit of the 45° Magnet for varying slit positions.
In order to avoid beam losses in the 28° Bending Magnet vacuum chamber,
and the consequent "halo" of scattered protons of degraded energy, the
horizontal trimming slits at z= 132" were set at -1.0 cm and +1.7 cm,
the 12% beam loss now being at the slits.

d) Reduced Intensity "Clean" Beam. Reducing the intensity of
the external beam is an important consideration for many experiments,
and if this is done by normal slitting, degraded energy slit scattered
protons can significantly increase the accepted energy spread. To
eliminate this problem a thin (" A E") collimator of 1/32" copper
which could be manually rotated into the beam was located before the
trimming slits at z = 131". The present collimator is a 0.030"
diameter hole. The degraded portion of the beam is deflected through
a greater angle by the deflecting magnets and is stopped at the exit to
the 45° Magnet by a brass full range collimator. The picture (5) in
plate 1, taken at the exit to the 45o Magnet with the collimator in
place, clearly shows the momentum discrimination. The loss in energy
of 100 Mev protons in 1/32" of copper is ~3.6 Mev (Rich and Madey, 1954).
Using these results the momentum dispersion (at the image of the
collimator) can be found by the same method as 3.7a to be~ 0.37 inches/%
momentum spread or alternately ~5.5 Mev/inch. This compares well with
the energy "dispersion™ calculated from the displacement and energy loss,

~5 Mev/inch. (These are only intended to be approximate).
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It was shown that it is possible to reduce intensities by
at least two orders of magnitude by using this thin collimator and

produce negligible slit scattered protons.
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4, MUMENTUM ANALYSIS OF THE EXTERNAL PROTON BEAM

4.1 Introduction.

The most extensively used method in the experimental determination
of proton beam energies makes use of the theoretical range-energy
relationship. The range of protons in various materials has been
evaluated by a number of authors. An extensive tabulation of proton
ranges up to energies of 10 Bev has been made by Rich and Madey (1954),
who essentially enlarged upon the calculated values previously compiled
by Aron, Hoffman, and Williams (1951). The calculation of the range
is based on the Bethe-Bloch (1937) theory of the stopping of charged
particles in matter. The ionization loss dE/dx which forms the basis
for the range calculations involves the mean ionization potential I of
the atoms of the stopping medium. The ionization potential is not
calculated precisely by the theory however and must therefore be
determined experimentally. Rich and Madey use the approximate relation
I=11.52Z which was derived from experimental work by Wilson (1941).
More recently Sternheimer (1959, 1960) has recompiled the ranges for
protons in several substances (Be, C, Al, Cu, Pb, and air) using more
accurately determined values for the ionization potential and including
shell corrections for the energy loss at low energies. However, even
with these refinements Sternheimer estimates an accuracy of only ~1%.
Only a few points on the theoretical range-energy curve have been
obtained experimentally using absolute methods of energy measurement
(Mather and Segre, 1951 at 340 Mev, Bloembergen and van Heerden 1957

at 35 to 120 Mev, Hubbard and MacKenzie 1952 at 18 Mev and Bischell
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Mozley and Aron 1957 at 6 to 18 Mev). 1In most cases the deviation
from the theory is of the order of one or two percent.

Using the theoretical range-energy relationship, then, is
unsuitable for any measurements to an accuracy of better than one
percent.

It was decided, somewhat arbitrarily, to attempt to measure
the energy of the McGill external beam to an accuracy of ~0.2% This
accuracy therefore necessitates an absolute measurement of the energy.
However, an absolute measurement was felt to be, in itself, of limited
practical value, since the energy of the beam depends on many cyclotron
parameters and may vary significantly over a period of time. To provide
a convenient means of accurately measuring the energy of the external
beam at any time, it was therefore decided to obtain a precise
experimental point on the range-energy curve in Aluminum near 100 Mev,
the energy of protons available from the McGill cyclotron. This point
could then be extrapolated sufficiently accurately over a small region
about the 100 Mev range by use of the theoretical values for dF/dx, and
range-energy then used as a secondary energy measurement.

Several methods for the absolute measurement of the energy of
a charged particle beam were investigated to determine which method
would be most applicable using the available facilities. A short
review of the methods considered follows:

a) General Magnetic Rigidity methods: This method utilizes a
bending magnet as a momentum analyser (usually with uniform-field and
neutral entrance and exit angles). The accuracy attainable is limited

mainly by the difficulty in precisely determining the magnet parameters.
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Momentum calibration involves accurate measurement of the angle of
deflection and a knowledge of the field map extending well into the
fringe-field regions. This method was used very accurately by Bischell
et al (1957) in measuring proton energies of 6 to 18 Mev. In general
however, accuracies better than 1% are difficult to achieve.

b) Time of Flight: As the name implies, the momentum of the
particles in the beam is measured directly by timing over a known
length flight path. With the techniques of fast electronics now
available this approach might be feasible but would still be difficult
for accurate results.

¢) Calorimetry: The beam energy is directly determined by
measuring the temperature increase of a thermally insulated target
which stops the beam (typically using thermistors in a bridge circuit:
Chambers, 1963). This method is most usefully applied at low energies
and has the advantage of being applicable to neutral beams. At higher
energies however, a severe limitation in the accuracy is the difficulty
in accurately correcting for nuclear (typically p, xn) losses, which
are of the order of 15%.

d) Cerenkov Radiation: A very elegant experiment using this
method to measure the energy of a 340 Mev proton beam was performed by
Mather (1951) and used in determining the range energy relationship at
that energy (precisions of ¥ 0.8 Mev). At lower energies however, it
becomes difficult to find a suitable radiator with sufficiently high
index of refraction. (For theory of Cerenkov radiation see Evans 1955).
At 100 Mev diamond with an index of refraction of ~2.5 could be used,

but its high dispersion makes precise interpretation of the Cerenkov
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angle difficult.

e) The Floating Wire Technique. This method uses a bending
magnet as a momentum analyser and in this sense is similar to a),
however the problems associated with accurate measurement of magnetic
fields are avoided. With some care very good accuracy can be obtained
(Cranberg 1951, Citron et al 1959).

The floating wire technique makes use of the close analogy
between the trajectory of a charged particle beam in a magnetic field,
and the path of a flexible current carrying wire under tension. The
basic equations illustrating this analogy are shown as follows:
for equilibrium of an element of the wire, under tension T; of length
s, carrying a current f'through a magnetic field B:

Pred -.h.g e
dT = -(i xB) - 6
ds
where G represents external forces other than the amperian force
(gravitational, friction, etc.). For a particle beam of momentum p
and velocity v:

dp = e xB
dt

neglecting G and introducing the unit vector W in the direction of the

particle trajectory or wire configuration gives:

di = -i (@xB)  for the wire

ds T

i = e G xB for the particle
ds p

When the trajectories of the wire and particle coincide, these two

equations become identical and:

-i
T

Tlo
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using the relation Bp = mv/e this reduces to:

Bp = -T/i (1)
where Bp is the magnetic rigidity characterizing the particles in
the beam. The negative sign in (1) indicates that a wire carrying
a conventional current in a given direction represents the trajectory
of a positive charged particle in the opposite direction. Thus, in
principle, to obtain the momentum of a proton beam all that is
necessary is to define the trajectory (using slits), and suspend a
wire along the same path and measure the ratio of wire tension to
wire current holding the field B constant. Tension and current can
both be measured to high precision fairly easily; and the limitations
to the accuracy of the method can be summarized as follows:

i) the effect of gravitational force on the wire causes the
wire to sag and introduces a correction to the tension T. This is
negligible if very fine wires are used.

ii) the effect of elastic forces due to the wire stiffness;
this is also negligible for fine wires (stiffness of a cylinder is
proportional to the cube of the diameter) and can be reduced
experimentally by annealing the wire in the trajectory with heavier
current for a short time.

iii) the effect of pulley friction; this can be minimized by
pulley design.

It was decided after these considerations that the floating
wire technique was the most attractive for the purpose of a range

energy determination for 100 Mev protons.
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4.2 Experimental Apparatus and Procedure.

The essential features of the system are shown schematically
in Fig. 17. The external beam switch magnet (described in the previous
chapter) was used as the momentum analyser and the beam deflected by
approximately 15° for range measurements.

a) Slit system for beam definition: an extremely monoenergetic
and spatially well-defined pencil beam was obtained with slits 1 and 2
shown in Fig. 17. Slit 1 was located at the exit to the first quadrupole
pair at z = 340" and slit 2 at the entrance to the switch magnet at
z = 443", Both slits 1 and 2 consist of a thick (full energy) copper
slit followed by a thin (AE) copper slit as shown in Fig. 17. Thin
slits were used to define the pencil beam in order to minimize the
energy spread and scattering effects of slit edge penetration. The
degraded components of the beam passing through the slits are effectively
separated from the full energy component by the momentum dispersion of
the switch magnet. Both slits 1 and 2 were insulated from the slit
housings with plexiglass; this permitting the use of slit 1 as a
monitor in the counting system and slit 2 as a contact to detect
movement of the floating wire. A thin slit (slit 3) with a 1/4"
vertical aperture to define the beam in the vertical plane was located
at z = 444"; the final slit (slit 4) was located at z = 723" (at the
end of the external beam system) and defines the deflected beam vector.
This slit was thick enough to stop the full energy protons. All three
horizontal slits could be moved across the beam to allow flexibility
in alignment and slit 1 could be remotely adjusted by means of a

"selsyn" servo motor.
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FIGURE 17:
EXPERIMENTAL LAYOUT FUR RANGE ENERGY MEASUREMENT

In the floating wire momentum measurement, the balance
frame was located at the exit of slit 4 and the wire clamped

at the centre of slit 1.
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Slits 1 and 2 effectively define the horizontal area in phase
space accepted by the system.

b) Proton Detection and Counting System. The vertical slits
defining the pencil beam had an acceptance of approximately .05% of
the total beam in the horizontal plane and the horizontal slit
approximately 20% in the vertical plane. The overall acceptance was

therefore .01%. Thus a beam flux of somewhat less than 10'12 amps

or 10°

protons per second could be expected. This effectively
eliminated the use of Faraday Cups or secondary emission techniques
for the measurement of the beam current. Therefore a scintillation
counter was used to detect individual protons which necessitated a
further reduction of two orders of magnitude in beam intensity to
avoid pile up in the detector. Two detectors were used during the
course of the experiment. A full range plastic Naton scintillator
1 1/2" diameter x 3" coupled to an RCA 6342 photomultiplier was used
to detect the protons while aligning the slit system on the pencil
beam. A U.1" x 1 3/4" diameter plastic Naton scintillator coupled
to a CBS 7817 photomultiplier was used in the range measurement. The
use of a thin scintillator minimized background scintillations from
sources other than the protons themselves.

The energy deposited in the dE/dx scintillator varied from
~1.8 Mev at a proton energy of 100 Mev to a maximum of 15 Mev,
corresponding to the maximum energy completely stopped in 0.1" of Naton.

Pulses from the eighth dynode of the photomultiplier were sent

through a White cathode follower, amplified, and counted in a 256

channel kicksorter (Technical Measurement Corporation, Model CN-110).
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Background counts which appeared almost entirely in the
channels corresponding to proton energies below 1 Mev were subtracted
by estimating the true proton counts in these channels from the
overall count spectrum. The counting periods were normalized by use
of a monitor on the first slit. The current incident on this slit was
integrated by a Keithly micro-microammeter modified to indicate charge
collected.

¢) Range-Energy Absorbers. The absorbers used in the range
energy measurement were made by stacking 3" diameter, 0.012" thick
99% pure (1S) aluminum discs. The mass per unit area of each absorber
was very carefully measured to an accuracy of better than 0.05% The
absorbers were mounted on three motor driven wheels inside a vacuum
chamber. The positions of these wheels and therefore the thickness
of the absorber could be remotely controlled, and absorber thickness
from O to 11 gm/bmz, in steps as low as ~50 mg/bmz, readily obtained.
The range analyser vacuum chamber was coupled directly to the vacuum
system of the external beam. A thin 0.001" aluminum alloy window
at the exit of the analyser chamber permitted placing of the detector
within 3/8" of the absorbers, to minimize counting losses due to
multiple scattering . For this reason, too, the heaviest absorbers
were mounted in the wheel closest to the detector.

d) Floating Wire System: In the use of this technique,
constant tension in the wire is generally provided by passing the wire
over a pulley and hanging a known weight from it. 1In pulleys of
conventional design however, the friction at the bearing gives rise

to an uncertainty in the actual tension on the wire which is difficult
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to reduce to less than 1%. A more accurate conversion of vertical
into horizontal force can be achieved by means of a frame pivoting

on a knife edge (Citron et al, 1959). The design used here is shown
schematically in Fig. 18 and in more detail in the photograph of

Plate 3. The frame is made of aluminum and the lever arms are
approximately five inches long. The knife edge was made from an
injector type razor blade and was mounted in the frame, held in a
brass collar 1/2" in diameter. The knife edges rest on supports
mounted on a heavy brass base. This base was supported by a platform
with steel runners parallel to the wire. The motion of the base with
respect to the fixed platform allowed the frame to be relevelled after
a movement of the wire. A balancing screw was provided to allow
leveling of the horizontal arm of the "pulley". Stable equilibrium
was achieved by ensuring that the centre of gravity of the frame was
approximately 1/8" below the knife edge.

A set of weights giving a range from ~60 gm to ~120 gm in ~20 gm

steps was made and very accurately weighed on an analytic balance.

The wire used was 0.0035" diameter form:T::ibper wire. Where
it was necessary to bare the wire for electrical contact, the formel
was removed with "strip var" (Walsco Chemicals Ltd.). The wire was
fixed in the centre of slit 1 with a specially constructed clamp having
a 0.0075" lip which ensured positive centering in the 0.015" slit.
Contact to this end of the wire was made through the slit. In order
to hang the wire along the beam trajectory, it was necessary to break
the system vacuum, and remove the vacuum pipe section between the

first quadrupole set and the switch magnet, and the switch magnet and
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FIGURE 18:

THE BALANCE FRAME
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PLATE 3:

THE BALANCE FRAME USED IN THE FLOATING WIRE MEASUREMENT

This photograph shows the essential features of the Balance
Frame. The leveling adjustment screw, and the knife edge resting
on its supports can be readily seen, as can the configuration of
the wire, and the hanging weight. The base slides on steel runners

over a platform which can be levelled with three level screws.
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the second quadrupole set. The pulley was located immediately after
slit 4 and the wire threaded through the slits and over the balance
frame and attached to the known weights. Electrical contact to the
wire at this end was made by baring the wire where it was in contact
with the frame and fixing a terminal in the brass base. There was
good electrical contact between the knife edge and the base. In
operation the frame was initially levelled with a theodolite and a
reference mark established for levelling with the wire in place. 1In
aligning the wire two methods were used.

The portion of the wire passing through slit 2 was bared and
contact between the wire and the slit was observed by measuring the
voltage between slits 1 and 2 with an oscilloscope. In addition a
theodolite was used as a telescope to visually centre the wire in
the 0.015" slit 2. The wire was centred in slit 4 by eye. In order
to centre the wire in the magnet gap, the sag (approximately 3/8" in
400 feet) was offset by raising the wire slightly at slit 1 and slit 4.

The current for the wire was provided by a Heathkit transistorized
regulated 50 volt power supply (model IP20), with additional external
series regulation. Details of the current regulator are shown in
Fig. 19. It was found necessary to hang a 21,000 pf capacitance
across the output of the Honeywell D. C. amplifier to reduce a large
60 cps signal. Regulation was observed to be extremely good (one or
two parts in 10%). The current was determined by measuring the voltage
across a standard precision one ohm resistor (Rubicon Bureau of
Standards type 1100) with a John Fluke model 801 Potentiometric
D. C. Voltmeter, which in turn was calibrated against a Rubicon type B

potentiometer.
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FIGURE 19:

FLUATING WIRE CURRENT REGULATOR
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e) Switch Magnet Monitor. The voltage across the series
regulator shunt in the switch magnet was continuously recorded
throughout the experiment by balancing most of the voltage across
a Rubicon type B potentiometer in series with a Leeds and Northrup

10 mv recorder.

4.3 Experimental Range-Energy Results

a) Alignment of Pencil Beam. Slits 2, 3, and 4 were fixed
and the pencil beam aligned very carefully by sweeping the beam
profile across the detector slit (4) with the switch magnet, and
optimizing the settings of the two deflection bending magnets
(28° and 45° Magnets). This procedure was found to be very critical
due to the size of the slits and the precision in alignment necessary.
The first slit was then moved into position and all parameters
adjusted for minimum slit scattered background. The full energy
scintillation counter was used and it was found necessary to reduce
the beam intensity by detuning the cyclotron{(the oscillator plate
voltage and dee voltage were reduced). The profile of the pencil
beam obtained is shown in Fig. 20. The counting period was normalized
by counting for a fixed monitor reading, :Rough dead time corrections
were made on the basis that the dead time of the counting system -
here an aptimeter (Model 361-R) triggered by 'a Tektronix escilloscope
(585) - was greater than the beam burst length, about 15us. This
profile represents a spatial spread of about 1/8" as calculated
using the transfer matrix for the switch magnet and later verified
with a polaroid exposure.

The 0.030" slit (4) was then withdrawn to eliminate any

possibility of slit edge penetration and degrading and the dE/dx
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FIGURE 2u:
PENCIL BEAM PROFILE

The profile was obtained by sweeping the beam across a
0.030" slit in front of the detector. The profile represents

a spatial spread of approximately 1/8".
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counter used for the range determination. Here again the counting
period was normalized to the incident flux by the use of the monitor
on slit 1. The transmission through the absorber plotted against

the absorber thickness is shown for the end of the range in Fig. 21
(again corrected for dead time losses). The number of protons
traversing the absorber was determined from the individual kicksorter
spectra obtained at each point on the range curve. The kicksorter was
energy calibrated by an estimation of the energy loss in the scintillator
for several residual proton energies (using range energy tables for
aluminum and CH by Rich and Madey, 1954). It was found that zero
energy in fact corresponded to zero channel (with base line set at
zero). Corrections were estimated for background, and for low energy
protons that would have been counted in the inoperative first three
channels of the kicksorter.

The thickness of aluminum absorber corresponding to the mean
range was found to be 9802 Ty mg/cm2 (using the more accurate
probability plot). The mean range is defined as the thickness of
absorber at which half the protons are transmitted. Making corrections
to the above range for the aluminum thin window at the exit of the
analyser (7.4 mg/cm2) and the aluminum foil used to cover the
scintillator (4.7 mg/cm2) gives a final mean range of 9814 tq mg/cmz.
The straggle (a gaussian distribution of the range of an initially
monoenergetic beam, due to the statistical nature of the stopping
process) obtained from the range curve was calculated to be 2.75 t 0.20%
full width at half maximum.

The energy measurement using the floating wire technique followed
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FIGURE 21:

RANGE CURVE FUR ALUMINUM
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immediately after the range energy determination. Slit 4 was reset
to the centre of the beam. Dismantling the vacuum system and hanging
the wire was a fairly lengthy process and the switch magnet was
therefore monitored continuously to detect any changes in the field
over this period. The largest variations were of the order of 2 or

3 parts in 103, The wire was very carefully aligned for four
different weights and the results of these measurements are tabulated

in Table 5 below.

TABLE 5

Floating Wire Energy Calibration

Weight Tension Current Magnetic Rigidity Energy
gms. gms. ma. Bp Kg.ins. Mev.
62.451 62.072 410.7 583.5 99.89
81.953 81.456 539.0 583.4 99.87
102.010 101.391 670.9 583.5 99.88
121.519 120.781 799.2 583.5 99,88

(The value of g was taken to be 980.6 in these calculations).

The consistency of the results is a good indication of the precision
with which this method can be used. The sensitivity of the pulley
(an indirect test for any frictional couple) was investigated by
adding a 100 mg weight when the system was in equilibrium. It was

found that a corresponding 0.1% increase in current had to be ma de
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to restore equilibrium. The two lever arms were very carefully
measured with a traveling microscope, the results of several
measurements yielding a mean value of 126.558 * 0.020 mm for the
horizontal and 127.331 ¥ 0.010 mm for the vertical arm. This
introduces a correction factor of 0.99393 ¥ 0.0003 by which the
weight must be multiplied to obtain the true tension.

An estimation of the errors involved in this measurement
indicates a maximum error of f0.03% in the momentum or f0.0b% in
the energy. The width of slit 2 was found experimentally to represent
an energy variation of ~0.2% The weight of the wire gave rise to a
sag of approximately 3/8" for the lightest weight used and this
represents a negligible correction to the tension. The energy
measurement then is given as 99.88 + 0.06 Mev. This new calibrated
point on the range energy curve and its error limits are compared to
the theoretical values of Rich and Madey (1954) and Sternheimer (1959)
in Fig. 22. The deviations of the theoretical curves from the
experimental point for a range of 9814 mg/cm2 in aluminum are
summarized below:

Rich and Madey give: 99.78 Mev differing from the experimental
point by -0.1%.

Sternheimer's tabulation gives: 98.87 Mev differing from
the experimental point by -1.0%

The measured straggle of 2.75 ¥ 0.20% compares well with the
value for 10U Mev obtained from a tabulation by Sternheimer (19690)

of 2.83% (full width at half maximum).
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FIGURE 22:
THEORETICAL RANGE ENERGY CURVES

The experimentally determined point 99.88 * 0.06 Mev at
9814 ¥ 7 mg/'cm2 is shown compared to the theoretical range curves

of Rich and Madey (1954) and Sternheimer (1959).
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4.4 Determination of the Energy and Energy Spread of the External Beam
The range analyser was set up at the exit to the second
quadrupole set and the proton beam focused to a small spot at the
exit window was viewed on a fluorescent screen. A Faraday Cup was
then coupled to the analyser in place of the exit window and a range
energy curve obtained for the whole beam. (The trimming slit settings
were -1.0, +1.7 horizontally and -1.0, +1.0 vertically). The current
from the Faraday Cup was measured with a Keithly micro- microammeter,
and was normalized by measuring the total beam current in the external
beam monitor Faraday Cup. The resulting range energy curve is shown
in Fig. 23. The first plot shows the complete curve and illustrates
the initial attenuationof the beam due to nuclear losses (in this
case 17% which agrees well with a rough calculation using a cross

section of 2nR2

for removal of protons from the beam by nuclear
processes). The mean range in aluminum for the whole beam was found
to be 9835 mg/'cm2 which corresponds to an energy of 100.0 Mev (using
the experimental range energy point and extrapolating with Rich and
Madey's theoretical value for dE/dx).

In order to get an indication of the energy spread of the beam,
the analyser and Faraday Cup were located after a 0.030" slit at the
horizontal crossover downstream from the 45° Magnet. The slit was
moved horizontally across the beam by remote control utilizing a
"selsyn" servo motor, and the beam profile obtained by measuring the
current collected in the Faraday Cup at 0.025" -intervals. Here again

the measured current was normalized by using the external beam monitor

cup. The profile obtained is shown in Fig. 24 and shows the same
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FIGURE 23:

RANGE IN ALUMINUM OF TUTAL BEAM

This range curve was obtained with a Faraday Cup as

the detector.
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FIGURE 24:
BEAM ENERGY SPREAD

The first curve represents a horizontal profile obtained at the
degrader focus by moving a 0.030" slit across the beam. The range
curves were obtained with the 0.630" slit centred at 0.25" and 0.35"

(arbitrary zero).
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horizontal size as was indicated previously by polaroid exposures. A
range energy determination was then performed with the slit defining
a small portion of the beam on either side of the profile. These
range energy curves (also normalized) are also shown in Fig. 24.

The mean ranges on the low and high energy sides of the beam were
found to be 9805 mg/'cm2 and 9877 mg/'cm2 respectively. These ranges
correspond to energies of 99.84 Mev and 100.28 Mev respectively.

This indicates an energy dispersion of 4.4 Mev/inch (the measurements
were made 0.10" apart). This is in good qualitative agreement with
the results obtained earlier (see Chapter 3) by other methods. The
horizontal size of the beam at this focus should be 0.012" on the
basis of phase space area, if the beam were perfectly monoenergetic.
It is therefore reasonable to consider the profile to be a momentum
distribution of the beam. Assigning this profile the energy dispersion
obtained in the range energy measurement above, an energy spread (full
width at half maximum) of 0.33 ¥ 0.03 Mev is obtained (the uncertainty
being mainly due to back-lash in positioning the slit). The full
energy spread appears to be considerably larger due to a long, low
energy tail. The energy of the centroid of the profile is 100.07 Mev
which agrees well with the previous measurement of the total beam
energy (the mean energy is somewhat lower, actually, due to the low

energy tail).
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5. CONCLUSION

No major difficulties were encountered in the installation
of the external beam transport system, and in general its performance
followed design predictions very closely.

The extraction system was optimized and a final external

11 protons/sec

beam intensity of 2.5 x 10'8 amperes or 1.6 x 10
obtained for an extraction efficiency of ~2.7% (internal beam ~0.9uamp.).
The floating wire technique was used very successfully in the
momentum analysis of the external beam. An accurate point at
99.88 ¥ 0.06 Mev corresponding to 9814 1 7 mg/'cm2 was found on the
range energy curve using a monoenergetic pencil beam. This point
was used to calibrate a range measurement of the external beam and
the beam was found to have an energy of 100.0 Mev with an energy
spread of 0.33 Mev (full width at half maximum).
Photographs taken at the time of writing are included to
illustrate some of the main features of the transport system.
Plate 4 shows the start of the beam transport system at the exit
gate of the cyclotron. Plate 5 shows the thin collimator , trimming
slits, and Faraday Cup; Plate 6, the elements of the deflection
system, the 28° and 45° Bending Magnets; and Plate 7 a view of the

switching magnet and focusing quadrupole facilities in the beam hall.
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PLATE 4:

BEAM EXIT FROM THE CYCLOTRON

In the background are the cyclotron exit slits and further
forward the exit gate and external beam fore-pump manifold can be
seen. The exit gate is protected by a thermo-couple at the far end

of the beam system and can be remotely controlled.
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PLATE 5:
THE THIN COLLIMATOR, TRIMMING SLITS, AND FARADAY CUP

This photograph shows (from left to right), the thin collimator
position knob, the vertical and horizontal trimming slits, the cup bias
ring, and the Faraday Cup. The solenoids used to rotate the cup end
can be seen with their rack and pinion motion. 1In the rear is a
"selsyn" servo motor used to drive the horizontal trimming slits

remotely.
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PLATE 6:

THE DEFLECTION MAGNETS

From left to right: the 28° H-frame bending magnet with the
cooling system for the coils clearly evident, and the 45° C-frame
bending magnet can be seen. Note also the straight through sections
of the vacuum chambers which permit the setting up of auxiliary

experimental stations.
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PIATE T7:

SWITCHING AND FOCUSING FACILITY IN THE BEAM HALL

The switch magnet can be seen in the background, and the
carriage supporting the second quadrupole doublet, and much of the
external beam vacuum equipment in the foreground. In the upper
central part of the photograph is the television camera viewing the

second view box which is out of view here.
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