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Short Title

A MATHEMATICAL MODEL OF HIGH-SPEED WHEEL MOBILITY ON SOIL



Abstract

Motivated by the problem of aireraft and space-shuttle landing on an underlyving
unpaved soil surface in an emergency. a time-dependent mathematical formulation
of high-speed wheel mobility on soil is developed and solved by a control-volume-
based finite element method. The wheel-soil contact forces are determined solely on
the basis of the physics of the problem. Thus, none of the usual assumptions or
simplifications regarding the distribution of interfacial normal and/or shear stresses,
albeit in the context of quasi-static wheel mobility, is made. The formulation allows
for the incorporation of a.rbitrafy soil constitutive equations, henee strain-rate effects.
Soil and wheel inertia are fully accounted for. Consideration is given to the possible
existence of a stick-slip pheromenon along the wheel-soil interface.

An object-oriented dynamic wheel-soil interaction C++ computer program is
developed and validated. Predictions of soil drag and associated wheel sinkage during
simulated aircraft landings are presented. The use of object-oriented programming
allows for an easily re-usable and extendable code. Thus the code developed herein can
readily be specialized or generalized to solve other practical soil-structure interaction

problems.

it



Résumé

Motivé par la problématique d’atterrissage de la navette spatiale ou des avions sur
des surfaces non pavées en cas d'urgence, 'auteur présente un modele mathématique
pour I'historique de la mobilité des roues sur sol & haute vitesse basé sur la méthode des
dléments finis & basé de volume de contréle. Les forces de contact entre la roue et le sol
sont déterminées exclusivement en fonction des concepts physiques du probléeme. Ainsi,
aucune supposition n'est necessaire quant a la distribution des contraintes normales
ou de cisaillement, inhérente aux modeles quasi-statiques de mobilité des roues. La
formulation permet I'incorporation de relations constitutives générales des sols, et de
cette maniére, des effets de vitesse de déformation. Les proprietés d'inertie du sol et
de la roue sont aussi prises en compte de méme que l'existence possible du phénomeéne
de décollage a travers l'interface sol-roue.

Un logiciel orienté objet en langage C++ sur l'interaction dynamique sol-roue a
été développé et validé. Des prédictions sur la force de résistance horizontale du sol
ct sur 'affaissement de la roue pendant la simulation d'atterrissage sont presentées.
L'utilisation de la programmation orientée objet permet la création de code 2 réutili-
sation et extension relativement simple. Donc, le code développeé ici peut étre rapi-
dement spécialisé ou généralisé pour I’étude des problémes pratiques d’interaction sol-
structure,

il
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Chapter 1

Introduction

1.1 General

This thesis has been motivated by the problem of aircraft and space-shuttle land-
ing on an underlying unpaved-deformable soil surface in an emergency. Aircrafts have
traditionally been designed to operate on paved concrete or asphalt runways. Thus,
the capability of an aircraft to successfully land on, or take-off from, an unpaved soil
surface cannot be taken for granted.

In on-soil landing, the aircraft tires would, at touch-down and during the subse-
quent ground-roll, penetrate the soil surface and consequently be subjected to a drag
force which may greatly exceed that which would be encountered on a paved surface.
To insure the structural integrity of the aircraft, and thus avert the potentially huge
cconomic and human cost of a crash, the landing-gear system must be designed to
withstand the increased soil drag on the tires.

The primary consideration with regard to aircraft take-off from an unpaved soil
surface is the capgbility of the aircraft power-plant to provide the thrust necessary to

overcome the soil drag on the tires and achieve the take-off velocity, subject to such

1
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constraints as the runway length and ground-roll duration,

The accurate prcdictidn of the soil drag is, without doubt, o vecessary and fun-
damental requirement for the analysis and/or design of an aireraft for operational
capability (landing, taxiing or take-off) from an unpaved soil terrain. It is noteworthy
that, in contrast with the low-speed long-distance steady-state driven wheel mobility
characteristic of vehicle operation on soil terrains [1, 2, 3], aireraft ground operation is
cssentially one of high-speed short-distance transient free-rolling wheel mobility.

Application of a predictive capablilty of high-speed wheel mobility on soil is not
limited to the problem of emergency aircraft or space-shuttle landing. Other applica-
tions include forward-area military operations vis-a-vis troop and supply movement,
distribution of emergency relief aid to remote regions and prevention of aircraft ground-

ing at war time due to the bombing and cratering of the paved runways.

1.2 Statement of the Problem

This thesis seeks to develop a mathematical model for predicting the soil drag and
associated wheel sinkage during transient high-speed wheel mobility on a soil terrain for
application to the problem of aircraft landing and take-off from unpaved soil surfaces.

Transient analysis of on-soil wheel mobility is a highly complex, coupled moving-
boundary problem. As the wheel advances, contact is established, maintained and
eventually broken with various material points (i.e. infinitesimal pm'r.iclc:g)—r}f';thf:soil
sutface. The high- speed typically encountered in aircraft ground operations makes the

wheel and soil inertia as well as the soil strain-rate important considerations.
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1.3 Literature Review

1.3.1 Experimentation

[ 1964, Bocing Company conducted a series of aircraft taxiing (i.c. uniform
speed) operations on the soil terrain at Harper Lake, California. The steady-state soil
drag and rat depth were measured at various wheel speeds in the high-speed range
typically encountered in aircraft landing and take-off operations. The experimental
data 4] indicates a rather complicated variation of soil drag and rut depth with aircraft
speed. Further experimental studies under more controllable conditions in a soil bin
facility were commissioned by the Nati.onal Aeronautics and Space Administration
(NASA) and the United States Air Force (USAF) in 1967. The results {3, 6] confirmed

the test data trend obtained in the Boeing Company studies.

1.3.2 Empirical Models

Richmond et al. [4] and Crenshaw [6] developed empirical models based on the
concept of dimensionless mobililty numbers for predicting soil drag and rut depth in
terms of tire speed. Kraft [7] presented linear least-square best-fit equations to available
experimental data on soil drag vs rut depth and rut depth vs tire load in the so-called
* region 2 velocity range’ where the drag ratio (soil drag/tire load) and rut depth are
relatively constant with speed. Pope (8, 9] proposed a model based on rate-controlled
plate-bearing tests. Results were, however, presented only for a narrow range of tire

speeds.
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1.3.3 Mathematical Models

Mathematical models of high-speed wheel mobility on a soil surface are few. In
fact, many of the so-called mathematical models are essentially “curve-fits™ of expen-
mental data (e.g. Kraft [7], Crenshaw [6]) or are based on the plate-penetration analogy
(c.g. Pope[8, 9], Grahn {1i}).

Hovland [12] proposed a mathematical model to determine the contribution of soil
inertia to the soil drag. It is based on the coneept of a soil wedge being continnonsiy
formed and accelerated in front of the wheel. Dagan and Tulin [13] and Karafiath
and Sobierajski [14] attempted to solve the dynamic cquations of motion of a rigid-
plastic soil, subject to prescribed wheel boundary conditions, using the method of
characteristics. The formulation of Dagan and Tulin [13] only partially incorporates the
soil inertia while that of Karafiath and Sobicrajski [14] runs into numerical difficulties
at high tire speeds.

The Lockheed-Georgia Co. developed a tire-soil model based on the characterizi-
tion of the soil as a three-element viscoelastic solid (Crenshaw [10]). Corrective terms
were, however, needed to match the qualitative behavior of the predictions with that
of the test data. In a fairly recent study, conducted for the United States Air Foree Ly
Northrop Corporation, Pi, Yamane and Smith {16] had to modify the Lockheed-Georgia
model in order to achieve compatibility between the tire and the soil. Incidentally, they
found the modified model to be rather sensitive to the input parameters and conse-
quently deemed it inadequate. The need for a more advanced and reliable model was

highlighted. Subsequently, Pi [15] presented a model, based on the quasi-steady motion
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of o tire rolling at constant speed on a linear viscoelastie laver (soil), using a kernel
function formulation. In this approach, the contact pressure is expressed in terms of
the normal and tangential kernel functions, defined as the normal soil surface defor-
mations due, respectively, to a unit-concentrated normal and tangential load moving
at constant speed. Then, through an iteration process, the soil surface deformations
compatible with the given tire load and speed are determined. This model appears
to he the most analytically advanced of existing models. Its major drawbacks are the

following:
1. wheel is constrained to travel at constant speed.
2. couvective soil inertia terms are ignored.

3. arbitrary soil constitutive models cannot be incorporated.

1.4 Proposed Mathematical Model

A comprechensive analytical transient model of dynamic wheel-soil interaction is
proposed. Formulation is in terms of the underlying physical principles and laws as em-
bodied in the equations of mass and momentum conservation. (Isothermal conditions
are assumed whercupon the energy conservation equation is identically satisfied.)

Soil and wheel inertia are includc;d in full. The formulation allows for the incor-
poration of arbitrary soil constitutive models. Thus, soil strain-rate effects are readily
accommodated. Consideration is also given to the possible existence of the stick-slip

phenomenon along the wheel-soil interface.
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The wheel-soil interface forces are obtained solely on the basis of the plivsies of the
problem. In other words. no assumptions regarding the distribution of the intertacial
shear and/or normal stresses are made. This is particularly signiticant iw tight of the
overwhelming proportion of researchers who, albeit in the context of quasi-static wheel
mobility, presently rely on these simplified assnmptions to obtain a solution,

The numerical solution of the governing equations is by a control-volinme-hased
finite element method (CVFEM). This method, which has received the most application
in the areas of computational fluid mechanics and heat trausfer, enjoys a nuuber of
advantages over the conventional finite element method and, in geueral, yields more
accurate results.

An object-oriented programming (OOP) of the control-volume-based finite el
ement method is also proposed. The object-oriented approach is vastly superior to
conventional structured programming methods. It results, for example, in the casy
re-use and extendability of functional code. Thus arbitrary soil-structure nteraction
problems can readily be accommodated within the framework of an object-oriented
code. >

The proposed model is restricted, without loss of generality, to a rigid wheel or
highly inflated treadless tire. This restriction has been imposed mainly to facilitate
the formulation, implementation and testing of the proposed model without incuring
the complexities and uncertainties of any particular tire model {17, 18]. Soil drag and
rut depth increase as tire pressure increases. Thus, a rigid wheel would yicld an upper

bound solution, hence a conservative prediction. It is interesting to note, however,
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that o high-pressure tire performs better, Les encounters less rolling resistance. than a

low-pressure tire on a paved surface [19].

1.5 Organization of Thesis
Tiis thesis is organized into seven (7) chapters as follows:

1 introduces the problem and reviews pertinent literature.

o

formulates the governing equations and boundary conditions.

3 discretizes the governing equations and boundary conditions using a control-volume-

based finite clement method.

4 discretizes the computational domain using body-fitted grid generation techniques

within the framework of the dyvnamic relaxation method.

9 proposes an object-oricnted programming (OOP) of the wheel-soil interaction and

grid-generation equations.
6 presents results of numerical computations.

7 summarizes and concludes, makes recommendations for further studies and states

the contributions of the thesis.
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Chapter 2

Governing Equations

The momentum and mass conservation laws, constitutive equations and boundary

conditions in dynamic wheel-soil interaction are presented.

2.1 Soil Subsystem

2.1.1 Momentum Conservation

Consider a deforming body B occupying volume V/(t) and bounded by surface

5(t), at time :. Tvpically, the body is subject to the following forces:

1) gravitational force

Vo pgdV
2) damping force
- v pevdV
3) surface force

10
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where pis the mass density. ¢ is the damping factor, 7 is the gravitational acceleration
vector, © is the veloeity vector and & is the stress vector.

The momentum of the body is given by

] pidV
V()

It follows from Newton's second law that

o
i --.nf=/ "dV—f Fdv f 5d 2.1
dt .[\-'(:)pw V(:)pg vmpcv + S(:)a(s ( )

It can be shown [4] that

d dF
£ dV = / & av
dt .[V(:) rF vu)pdt d

wliere F is an arbitrary scalar or vector function. Thus eq. (2.1) may be written in the

form
f ‘wdv—f Fdv f -zv+f 7dS (2.2)
V(t)pdt - V(t)pg V(r)pcb( 500) -

In Eulerian-differential formulations (e.g [7, 12]), the particle acceleration di/dt is often
replaced by the spatial acceleration 85/0t. Using the chain rule of partial differentia-
tion, one obtains the following relationship:

dv o7 =
—. - i)
T +v-Vv (2.3)
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N

B i B[ \
| \ \

\I

. e

body sub-bodies

Figurc 2.1: Breakdown of body into sub-bodies (imaterial control voluies)

where V is the differential vector opcrator, del. Thus, the use of 98/ rather than
dv/di cssentially ignores the convective inertia terms - Vo, The Lagrangian-integral
formulation, eq. {2.2), incorporates the incrtia terms in full.

Let us mentally break down the body B into n smallcr, but. arbitrary, sub-bodies
By,...,B;...., B, as illustrated in Fig. 2.1. These bodies may be conceptualized as
moving or malerial control-volumes. It will be recalled that in classical luid mechanics,
one generally deals with spatial control-volumes which are fixed in space. Let the
material volume and bounding surface, at time !, of an arbitrary sub-hody 53; be
denoted V(1) and S;(?), respectively, as illustrated in Fig. 2.2. The development. leading
to the momentum conscrvation cquation (2.2) is applicable to cach of the sub-bodics.

Thus,

dv
U = FdV — d f 7 dS 9.4
V.»mpd:‘-z v fm)pgdv -/V.-u)‘m Vi S.mms (24)

for
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s
l
T \\‘
: s,
f ‘ |
\ (D \:
y /
\ J/ \i(t)/ /
\V’/ X‘/
body B sub-body B,
Figure 2.2: Time-dependent material volume and bounding surface
Clearly.
) j Fdv=[ Fav (2.5)
for
d*u di

F= pdt2 . —pCEE Pg.

By virtue of Newton’s Third Law—action and reaction are equal but opposite—the

inter-body stress vectors cancel out. Consequently,

T f 5dS= [ &ds (2.6)

;=1 Yoile) S(z)

Equations (2.5) and (2.6) constitute what is known as the conservative property. It is

desirable that the discretized conservation equations possess the conservative property,

as explained in the next chapter.

In a two-dimensional formulation in the Cartesian zy plane, an arbitrary vector



Governing Equations 1l

quantity & may be expressed in the form

F= v, 0+ 0] (2.7)

where "and J arc the unit vectors along the & and y axes, respectively, and

v, = &-F (2.9)

Thus, expressing § and & in the form of eq. (2.7) and substituting into eq. (2.1), one

obtains
/ @ = dv - / cu, dV + / a.dS (2.10)
vn" a2 T I P v s -
f pd—v"l dV = pg, dV —f peo, dV +f o, dS (2.11)
vie) dt? A0 M vy ¢ sy

Equations (2.10) and (2.11) are coupled through the mass conservation and constitu-

tive equations.

Kinematics

The particle displacement #, velocity ¥ and acceleration & are related kinemati-

cally, as follows:

<
]

&5

&
]

f=

& §
———
o
—
8
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The mitial conditions for solving eys. (2.13) and (2.12) for ' and &, in terms of &, are

provided in the form:

50) = (2.14)
70) = @ (2.15)

The acceleration @ is determined from the momentum conservation equation.

2.1.2 Mass Conservation

The mass of body B is given by

v 2.
/ P (2.16)

By the law of conservation of mass

d

—_ V = 217
dt V(t)pd 0 (2.17)

Reynolds’ Transport Theorem [4, 3] states that for an arbitrary scalar or vector function

F.

d

dF -
= fv W FW =), (G HFY - (2.18)
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Thus, substituting p for F in eq. (2.18). the mass conservation equation (2.17) may be

expressed in the form

(‘i"+pv YdV =0
Vi)

Clearly, the preceeding analysis is applicable to cach of the bodies By, Ba,..

Thus,

dp
T . BdV =
j‘” LY D=0

for

dp =

E-l'pv-b——o
It can be shown (e.g. [4, 3]) that

= _ 1dJ

V"b‘—ja

where J is the Jacobian. Substituting eq. (2.22) into eq. (2.21), one obtains

d,oJ)=0

dt

(2.19)

vy By

(2.20)

(2.23)
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Equation (2.23) is a Lagrangian-differential form of the mass conservatiou equation.

Iutegrating eq. (2.23), one obtains

pJ = constant (2.24)

where J is the Jacobian of the current coordinates z, y with respect to the initial

coordinates X, Y. In symbolic notation,

_ Oxy) o=
J = XY {2.25)
Jdr Oz
ax ay
aa((\t;{)) = (2.26)
R R
oxX oY
It can be shown [17] that
AX,Y) 9(z,y)
Thus
l — a(-'Y»Y) 3D
J T 9(z,y) (228)
oz dy
= (2.29)
oy ov
dz Oy
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Substituting
X = r—u, {2.30)
Y = y—u, (2.31)
into eq. (2.29), we obtain
e, Ju,
1 ox ay
Wi = (2.32)
Jdu, du,
or dy
Ju, du, du, Ju, o e
= (1 B ) .(1 9y ) =y o (2.33)
If the initial displacement gradients are zero, that is,
du du, du, Ju
z = —1(0) = z =4 = 2.34
3:1:(0) ay( ) ay(o) 03:(0) 0 (2.34)
then J{0) =1 and the ‘constant’ in eq. (2.24) eq?xals the initial density p(0) and
p= f—%{)—) (2.33)

Substituting eq. (2.33) into eq. (2.33), one obtains

_ dur Ou, Ou,du, Ou.Ou, o
p=r0 |1~ (G G T -5 %) 220
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[f the displacement gradients are smallsuch that their products are negligible compared

to nnity, as in ‘small strain’ theory, then

rF=r [1 - (S.r: + Eyy)] (2‘3‘-)
where
du.
o == 2.
See = = (2.38)
du, .
Syy = 3_3; (2.39)

Iu the sign convention used, straius are positive in extension and negative in compres-

s,

2.1.3 Constitutive Equations

Momentum and mass conservation cquations are not sufficient to uniquely de-
termine the response of a material to a given forcing function. This is evident from
physical as well as mathematical considerations. The fact that different materials do
not have the same mechanical response to an identical forcing function clearly pro-
vides a physical basis for an additional equation. Mathematically, the conservation
equations arc under-determined — there are more unknowns than equations. The ad-
ditional mathematical and physical requirements for a unique solution are met by the

constitutive, i.e. stress-strain, equation of the material.
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Soil is a non-linear material with complex stress-strain characteristies. Math-
ematical analyvses of dynamics problems are further complicated by the rate-etfects
often exhibited by soils. There are two general view-points on the incorporation of the
constitutive behavior of soils into a theoretical analysis (Whitman {15]).

One view-point calls for the development and use of a comprehiensive mathemat-
ical stress-strain model to ensurc a complete and accurate analysis. The eap, eritical
state, Lade's, nested yield-surface, bounding-surtace and endochronic models (|18, 16])
fall into this category. In general, these “advancoed models™ are not attractive for most
practical work because of their complexity and the relatively large munber of inpat
parameters required.

The other view-point is that a simple linecarized model which simulites the stress-
strain features of key importance for the particular problem at hand be used. The
advantage of this approach is the case with which computations can be performed,
Furthermore, with much fewer input parameters, the engineer quickly develops a feel
for their significance and role. In effect, the engineer’s judgement quickly beeomes an
important part of the overall analysis. For these reasons, the ‘simple model” approach
is more common among engineering practitioners. The simple models often used in-
clude the linear visco-elastic model, linear hysteretic model, bilinear yielding maodel
(Whitman[15] ) and the hyperbolic model {18, 16].

Kocher and Summers[10] and others have found that visco-clastic mnodels ade-
quately describe the dynamic stress-strain behavior of soils. Whilst various forms of

visco-elastic models are available, we opt for the three-element model consisting of:
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siress
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|
. =
Spring %
|
. il
spring, = m— dashpot,
= O
!
|
Q
|
Y
stress

Figure 2.3: Three-element visco-elastic model for soil

1. a spring of modulus E; in parallel with a dashpot of viscosity 71, and
2. a spring of modulus E, in series with 1.

This model. illustrated in Fig 2.3, is known as the standard linear solid and has been
used. in the context of wheel-soil interaction, by many researchers (e.g Pi[7], Oidal9],
Hiroma and Ota[25]). The model is relatively simple, conceptually and implementa-
tionally. Model parameters may be determined using wave propagation theory [11, 10}
or in the manner presented by Oida[9].

The stress-strain equation of this model under uniaxial, i.e. one-dimeﬁsiona.l,

conditions may be written as ([2. 9])

(Ev+ Ex)o+mé=E Eac+Eamé - (2.40)
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where ¢ anrd ¢ are the uniaxial stress and strain, respeetively, and the superposed dot

denotes time differentiation.
Techniques for solving the first-order ordinary ditferential equation ( 2.40) include
the Laplace Transform and the integrating factor methods. It is noteworthy that the

standard linear solid exhibits a non-linear stress-strain behavior. Consider, for example,
(2.41)

a constant rate of straining, represented by the forcing function

Substituting eq. (2.41) into eq. (2.40), and re-arranging, one obtains
£t 4 E;_)éo

E\+ E,» o= E\E,
m

de
— +
™m

dt
(2.43)

dt) = exXp (E—lj—-—EEt)
™

YT

An integration factor for eq. (2.42) is

e.»cp(jE‘+E2

L)1
= e

(2.44)

=M _
E,+ Es

where
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Multiplying eq. (2.42) by ¢'/7| one obtains

d (ae‘/T) _E\E,

stetlT 4 EaellT
= - + Es

Integrating eq. (2.43) with respect to ¢t yields

4T E1E2

Tt = T)eT + ExsTe!™ + C
1

age

where € is the constant of integration. The initial condition

c{0) =0

yields

EEs
m

C=

ET? — EaiT

Substituting eq. (2.48) into eq. (2.46), and re-arranging, one obtains

o= Eaé {T (1 _& ) (1 - e"/'-’) + ﬂ:Pt}
m m

From eq. (2.41),

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)
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which, on substituting into eq. (2.49). vields & in terms of &

a=E%TO-%f)P-uq}%Hé+%n} (2.51)

| V]
o

We note that

do _ é ._ £ E] 9
== Es { (1 ~ ) exp (—ITE) + -"—l-T} (2.53)

The initial slope, at ¢ = 0, is given by

%:% (2.54)

R

Note that it is independent of £&. We note also that as ¢ — oo,

(2.55)

A qualitative plot of the stress vs strain vs strain-rate relationship, eq. (2.31), is shown

in Fig. 2.4. The stress corresponding to a given strain incrcases with the strain rate.
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Figure 2.4: Strain rate effect on stress-strain behavior of visco-elastic model

In rate-controlled plate-penetrometer tests conducted by Grahn[31, 32], the pressure-
sinkage-velocity curves exhibit 2 similar trend to the viscoelastic model prediction
{Fig. 2.4). The strain rates 1, 2 and 3 indicated in Fig. 2.4 are to be viewed as relative,
rather than absolute, quantities. To derive the constitutive relationship under general

loading functions, we consider the forcing function

0 ift<O
()= H(t)=
1 otherwise
[t is easy to show that
E,
= 2 o ——— ' -t!T '2_"'
o(0) = ¥(t) = g (B + Eae™T) (2.56)

H(t) is the so-called Heaviside unit function and T, defined in eq. (2.44),.is the re-
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lazation time of the material. (t)—the stress-relazation function  is the stvess that
must be applied to produce a strain which changes at ¢ = 0 from zero to unity and
remains unity thereafter.

By virtue of Boltzmann’s Superposition Principle (c.g (6. 1]), the stress o(¢) due

to a given arbitrary strain history £(t) may be expressed as

¢ ds(7) -
= Yt = 7)) ——dr 2.
o(t) /_m (¢ = d (2.57)
On integrating by parts, eq. (2.57) takes the form
t
o(t) = Es [s(t) - f K(t — ) e(7) dr] (2.58)
where
Kit-7)= Ex e~U="IT (2.59)
M
and e{—o0) = 0.

The corresponding stress-strain equations under planc-strain conditions are

_ B(l-v) v
o':z(t) = (1 + V)(l — 2V) {exz(t) + -__'_eyy(t)

1-v
L

~ [ K =) [eueln) - Jenlm)] a7} (200)

—~00

Es(l —v) v
oy(t) = (14 v)(1 —2v) {s”(t) + 1—-v £xx(t)
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T(t) = ._G{ () — 93((11:2?) _!m Kt = 7)s4y(7) dr} (2.62)
where
E, .
G = m (2.63)

is the shear modulus. Pi[7] treated Es, v and G as three independent parameters
because of the relatively low G-value of the soil used. In the derivation of eqgs. (2.60)-
(2.62), the time-dependence of the volumetric strain is ignored, i.e., the volumetric
strain is assumed to be purely elastic ([8, 7]). The unloading behavior of the soil may
be modelled by using a smaller value of Ea.

The strains &,.. £, and &, are assumed to be small. in accordance with the
linearity requirement of the superposition principle. Thus, the infinitesimal strain-

displacement equations are applicable:

du.
- - 2.
' ax ( 64)
Ju -
Eyy = Fy! (2.60)
. _ 1{ou,  Ou, ]
. We note, and emphasize, that the wheel-soil interaction model proposed in this

thesis is not constrained to the linear visco-elastic model but admits arbitrary consti-
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tutive models.

2.2 Wheel Subsvstem

2.2.1 Momentum Conservation

Consider a wheel undergoing simultaneous translational and rotational motion

on a soil surface under the action of the following foree system:

1) wheel-soil contact stress

Q

2) gravitational force
myg

3) axle force

P
4) axle torque
T
The linear momemtum of the wheel is
dZ
dt
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The equation of linear momentumn conservation (Newton's Second Law), governing the

translational motion of the wheel, is given by

m& / GdS +mg+ P (2.67)
dt S

where S(¢) is the wheel-soil contact surface. In component form,

-mgli = c:dS + mg. + P, (2.68)
dt Sy

s = f 0,dS +mgy + P (2.69)
dt sw Y vy

The rotation of the wheel—about an axis perpendicular to the ry plane—is gov-

erned by the equation of angular momentum conservation:

dw
dw _ 2.7
1= -/;(t)agdS+T (2.70)

where r is the radius of the wheel, I is the moment of inertia of the wheel about its

axis of rotation, w is angular velocity of the wheel and o, is the tangential stress:

2
I
o
~y

(2.71)

where ¢ is the tangential unit vector. The force system acting on the wheel and the dy-
namic equilibrium of the wheel, embodied in eqgs. (2.68), (2.69) and (2.70), is illustrated

in Fig. 2.5. A superposed dot indicates time differentiation; for example, %, = du./dt.
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3\ —mi,

SRS S

contact stresses

Figure 2.5: Forces acting on wheel: dynamic equilibrium

Let the direction of travel, D.O.T, of the wheel be 7. Thus, a driving torque, braking
torque and free-rolling wheel are characterised by T greater than, less than and equal
" to zero, respectively. The integral of &, over those points of the wheel-soil interface
where o, is positive is refered to as the soil thrust H while the integral over those points

where o iIs negative represents the rolling resistance R or soil drag D. that is,

H = /m)a,, S (2.72)
R=D = > dS 273
[s_ma (2.73)
where
S(t) = S*T(t)+S57(t)+ 5°(t) (2.74)

or > 0 on S*(t) (2.75)
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a, < 0 on S7(t) (2.76)

g, = 0 on St (2.77)

The draw-bar pull, DBP, is the force acting on the wheel axle, in the direction opposite

the direction of travel of the wheel. Thus,

pDBP = -P, ' (2.78)

H-R- m% + mg, (2.79)

The draw-bar pull is a measure of the amount of force that can be pulled along by
the wheel. If the wheel is travelling .t constant speed (¢, = 0) in the horizontal plane
{g. = 0}, eq. (2.79) reduces to

DBP=H-R (2.80)

Note that the soil thrust, rolling resistance (soil drag) and draw-bar pull are all aligned

in the direction of travel of the wheel, as illustrated in Fig. 2.6. The wheel slip s is

defined as

TW =T,

§=

x 100% (2.81)

TW

Minimization of the wheel slip is crucial in traditional long-distance off-road mobility -

where energy loss due to wheel slippages can be considerable.
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direction of travel

./,‘
;
( draw-bar pull \
| —-—-————— !
/
soil thrust S soildrag

roling resistance = soil drag

Figure 2.6: Soil thrust, rolling resistance and draw-bar pull

Kinematics

The linear displacement @. velocity ¢ and acceleration @ of the wheel are related

kinematically, as follows:

di
D= — 2.32
v dt (2.82)
dv
Q= — 2.5
a=— (2.33)

The initial conditions for solving eqgs. (2.83) and (2.82) for ¥ and %, in terms of 4. are

provided in the form:

50) = % ‘ (2.84)

#0) = @ (2.85)

1l
=
(<)
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The acceleration @ is determined from the momentum conservation equation,
The rotation 8, angular velocity w and angular acceleration « of the wheel are

related kinematically, as follows:

dé
= — iy ]
w=— (2.86)
dw
= — 287
a=— (2.87)

The initial conditions for solving egs. (2.87) and (2.86) for w and 6. in terms of «, are

provided in the form:

w(0) = wy (2.88)

8(0) = 6, (2.89)

The angular acceleration « is determined from the conservation of angular momentum

equation.

2.2.2 Mass Conservation

By the law of mass conservation,

dm
_— = 9
% 0 (2.90)

m = constant (2.91)
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2.2.3 Constitutive Equations

A rigid wheel is considered. Accordingly, a zero strain tensor exists, b,

ry
I
(r

(2.92)

=
<
i
fr
[
=
il
=]

The state of stress within the wheel is not needed.

2.3 Boundary Conditions

2.3.1 Inter-Control-Volume Boundary

An inter-control-volume boundary necessarily lies inside the computational re-
gion. Consider two arbitrary adjacent control-volumes By and Ba, bounded by S and
S, respectively. Their common boundary, or interface, is denoted §) N Sa, where N is

the usual intersection symbol in set theory. At any point p € (5; N Ss),

=07 (2.93)

52 =q- ﬁg (2.94)

where o is the stress tensor (continuous across inter-control-volume houndaries) and

the subscripts 1 and 2 refer to 5 and S5, respectively. Clearly,

Ay = =7 (2.95)
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s0 that

Fa = -7, (2.96)

which is in accordance with Newton's Third Law.

[n a two-dimensional analysis, in the ry plane,

o _
G = A (2.97)
Ty
n
T o= A« ) (2.98)
ny
Ozr Ogry
c = (2.99)
| Tzy Oyy
Thus
Or = Ozxlty+0zyhy (2.100}
Oy = Ozl + Ty, (2.101)

2.3.2 Transmitting Boundary

The complexity of wheel-soil interaction essentially precludes the existence of

closed form solutions to practical problems. Consequently, one must resort to a nu-

merical solution procedure, such as the finite element, finite difference or boundary
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clement method. For practical and cconomic reasons (e.g. computer storage aud ex-
ccution time), the entire infinite domain cannot be analyzed. It must be truncated
around the region of interest—the wheel—to vield a finite computational region.

The artificial boundary so obtained should be designed. by way of boundary
conditions, to transmit the arriving waves. This is because the boundary is, in reality,
an internal boundary and thus has no wave-rellecting capability. Il waves are reffected
back into the computational domain, the mathematical model would be at odds with
the actual physical problem and erroncous results would be obtained unless the tinwe-
duration of the problem is such that reflected waves do not get ‘close’ to the wheel.
[t is worth noting that if the system is so heavily damped that waves are essentially
dissipated before arriving at the artificial boundary, then a static-type analysis of the
boundary will suffice. For the solution of general wheel-soil interaction problems, a
transmitting (synonyms: non-reflecting, radiating, silent) artificial bouundary is needed.

Consider the one-dimensional problem of wave propagation in an initially undis-
turbed, homogeneous, isotropic, elastic half-space generated by the application, on the
surface of the half-space, of an arbitrary time-dependent but spatially uniform forcing
function [13]. Let the half-space be defined by y 2 0, the surface being y = 0. Due to
symmetry, lateral motion is inhibited, i.e., the displacement, velocity and acceleration

vectors may be expressed as

=)
]
e

L Y

<
il
<
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T=aj

where u, v and a are functions of y and t only, ie., u = u{y,t), v = v(y,t) and
a = a{y,t). The shear stress o, is identically zero.

The equation of motion, i.e. conservation of linear momentum, reduces to

doyy d*u :
—_— = p— 2.102
dy e ( )
if gravity and damping forces are ignored.
The constitutive equation is given by
Oyy = (A +2G)eyy (2.103)
where
Ju
E|| = - (2.104)
vy ay

and the Lamé clastic constants A and G are, in terms of Young’s modulus E and

Poisson’s ratio v, given by

E
_ Ev
T +n)(1-2)

(2.106)
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The particle velocity ¢ and acceleration a, expressed in spatial coordinates, are
du  Ju Ju
'S — = — 4 e 2107
t dt ot o dy { ")
dv Qv av
=E—-—=-—+4t— 2.108
=T t dy ¢ L
Solving eqs. (2.107) and (2.108) for v and a, in terms of u, one obtaius
du\ " du
v=(l-xm) = 2109
( ay) ot (2.109)

- ou\’® 8u du\ Ou *u ou\” u T AN
— -— — — 9 -_—— | —— — — —_— — 2
e [(1 8y) e+ (1 ay) 3t g0t (at) au'-’] (1 Oy) (2.110)

Using eqs. (2.103), (2.104) and {2.110) in eq. (2.102), the following nou-linear wave

equation is obtained:

o du 2 Ou ou\® 9% du\ Ju Fu
2 (= =(1-28) a1y 2.
[c" (Bt) ] o (1 By) e +"(1 Oy) 3t 301 (2.111)
where
G=2 +:G (2.112)

Equation (2.111) admits a solution of the form

u(y,t) = f (t - i) (2.113)

as can be verified by direct substitution. Clearly, f(t — y/cy) represents displacement
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due 1o waves travelling in the +7 direction. Because of the infinite extent of the half-
space, motion at any point will be due solely to waves travelling in +J direction as no
boundary-reflected waves, propagatiag in the —J direction, would be encountered. It
is evident, therefore, that if the motion of particles on an artificial boundary satisfy
eq. (2.113), that boundary will be a transmitting one.

On differentiating eq. (2.113) with respect to y and with respect to t, one obtains

du _ o
515- =f (2.114)
Y
g_; ==L (2.115)

where f' = 3f/9(t — y/cy). On eliminating f' from eqs. (2.114) and (2.113), one

obtains

) g
Eu +Cym =0 (2.116)

Using egs. (2.103), (2.104) and (2.109) in eq. (2.116), the following transmitting bound-

ary condition

—pCqe

O'yy = m (2-11 ‘)
is obtained. If @ = j, then the required boundary traction is given by
_ Tpogu 5
Gy T=v/cd) (2.118)

If v € cq, the one-dimensional form of the viscous boundary proposed by Lysmer
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soil surtace

p_[[ | computational S U q
domain é )
X [
transmitting
boundary _—]]]“'1 dashpot
-
=

——

Figure 2.7: Viscous model of transmitting boundary

and Kuhlemeyer [5] is recovered. (The viscous boundary of Lysmer and Kuhlemeyer
is undoubtedly one of the most acclaimed; other non-reflecting boundary models can
be found in {14] and in references therein). The basic idea of a viscous model of a
transmitting boundary is the absorption of the arriving waves by dampers, represented
by dashpots, as illustrated in Fig. 2.7. By virtue of eq. (2.118), we consider the following

viscous-type transmitting boundary condition for two-dimensional analysis:

—PCdUn

P 2.119
= oulcd (A1)
—PCsYs
O = —————— 2,120
where ¢; is as defined in eq. (2.112) and ¢, is
2=9 (2.121)
p



Coverning Equations -4l

cq and e, are the dilatational and shear wave velocities, respectively, in the medium.
If », € ¢q and v, € ¢, or if the convective velocity and acceleration terms

are ignored, the boundary equations of Lysmer and Kuhlemeyer arc obtained. The

transmitting boundary, characterized by cgs. (2.119 and (2.120), will be refered to as

2 convective viscous boundary because of the inclusion of the convective terms.

2.3.3 Free-Surface

The non-contact region of the soil and wheel surfaces constitutes a free surface.
At cacl point on a free-surface,

Oz 0
= (2.122)

A non-zero traction due, for example, to wind stresses may be applicable. If such is
the case, the zero stress vector in eq. {2.122) is simply replaced with the appropriate

value.

2.3.4 Wheel-Soil Interface

The wheel-soil interface is the link between the mobility of the wheel and the
associated sub-soil response. The determination of the stresses at the wheel-soil inteface
is the primary concern, and most difficult problem, in analytical wheel-soil interaction
studies. Many reseachers (e.g. Hiroma and Ota [25]) simplify the problem by neglecting

the tangential component of the stress vector. Others (e.g. Yong and Foda |27]) make
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a priori assumptions about the shape of the stress distribution.

Clearly, it should be possible to completely determine, from the physics of the
problem, the normal and tangential contact stresses without any assumptions or con-
straints on the shape or magnitude of the stresses. This is our objective  to develop
a purcly analytical procedure to determine the contact stresses on the basis of the
underlying physical laws and principles.

Consider the dynamic contact between the wheel and an arbitrary soil surface
particle. Let the wheel particle and soil particle at the contact point be denoted w and

s, respectively. The following conditions apply:

(0w =7} = 0 (2.123)
(@w—3&) -7 = 0 (2.124)
(Fo+5)-7 = 0 (2.125)
(Gu+da)-t =0 (2.126)

where 7 and £ are the normal and tangential unit vectors, respectively, at the wheel-soil
contact point (Fig. 2.8). Equations (2.123) and (2.124) ensure kinematic compatibility:
equality of motion in the normal direction. Equations (2.125) and (2.126) enforce
Newton’s Third Law.

Onre more equation, in the tangential ¢ direction, is required. The basis of the
additional equation is the stick-slip status of the contact point. The stick-slip phe-

nomenon was considered in a recent tribology-based quasi-static model proposed by
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Figure 2.8: Normal and tangential unit vectors at wheel-soil interface

Yong and Foda [27]. A schematic of the stick-slip phenomenon is shown in Fig. 2.9,
where w and s denote wheel and soil particles, respectively. At a stick-point, the

tangential components of velocity and acceleration are identical:

Tyl = Ty-t+rw

-t = gy-t+ra

If the stick-point equations (2.127) and (2.128) result in a shear stress in excess of the

shear strength of the interface at the point, slip is deemed to occur. The slip velocity

v, 1s given by

Vy = Tyl T ~ Ty -1 (2.129)

At a slip-point, the shear stress is given by the shear strength of the interface. The

. simplest and most widely used interface model appears to be the basic Mohr-Coulomb
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g

Figure 2.9: Schematic of stick-slip phenomenon
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cqnation, given by

01 = Cq + [0y, (2.130)
where
o, = shear stress
0, = normal stress
¢. = adhesion
p = friction coefficient

Experimental studies aimed at establishing the relationship between the interface
shear strength and slip velocity are, for the most part, contradictory and confusing.
For example, Payne [19] reported that the slip velocity had little or no effect on the
shear strength; Stafford and Tanner [20] c~mcluded that eq. (2.130) was valid, even
at high slip velocities, with the friction coefficient increasing logarithmically with slip
velocity but the adhesion remaining unchanged. The experimental results of Burchenko
et al. [30] suggest that adhesion increases with\slip velocity up to 2.2-2.8 m/s. Yusu
and Dechao [21], using statistical-mechanics-based rate process theory [28], derived the

following relationship between the shear strength and the slip velocity:

Oy = Cq + po, + Alnv, (2.131)
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where

vy = slip velocity

A = material constaut

Equation (2.131) was validated in the speed range 0.3-1.7 m/s, using a high-speed
direct shear device [29]. Equation (2.131) indicates that the net adhesion (¢, + Alne,)
increases logarithmically with the slip velocity while the friction coetficient is unal-
fected, in direct contradiction of the results of Stafford and Tanner [20]. McKyes [22
pointed to two drawbacks with eq. {2.131). First, the unit of the cocfficient of A,
namely, kPa/ln (m/s), is awkward. Second, there is the problem of the logarithmic
term, In v, becoming negative at low speeds and potentially giving a prediction of neg-
ative friction. In addition to providing very good fits to the experimental data of Yusu

and Dechao [21], the modified equation

Oy = Cq + pop + Av, {2.132)

proposed by McKyes [22] also resolves the above-mentioned problems. Yusn and
Dechao {23], in their response to McKyes' comments, strongly defended the nonlin-
earity of their original equation (2.131), noting that the general trend of 2 nonlinear
equation cannot be captured with one linear equation and, furthermore, that the mod-
ified equation (2.132) has no theoretical basis. To resolve the issues raised with regard

to negative friction at low speeds and the awkward unit of 4, Yusu and Dechao [23]
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rewrote their original equation in the form

O = Ca + o + Aln (1 + 5—) (2.133)
0

where »y is an arbitrary constant.

Recent studies by Dechao and Yusu [24] revealed that, for a soil-soil interface,
the linear Mohr-Coulomb model, eq. (2.130), is not valid at high slip rates. They found
that the relationship between o, and o, becomes increasingly non-linear as the shear
rate increases, Whether or not this finding applies to soil-solid interfaces needs to
be thoroughly investigated. Youg and Foda [27), in their tribology-based quasi-static
model, used a friction coefficient that decreases with slip velocity. Pi [7] and Ueno et
al. [26] used a rate-independent friction coefficient.

Pendiny the resolution of these conflicts and contradictions, we will, following Pi
[7] and others, and without loss of generality, implement the Mohr-Coulomb model,
eq. (2.130), whose accuracy, to at least first order, is not in question. With reference

to the soil particle at an arbitrary wheel-soil contact point, we rewrite eq. (2.130) in

the form
F-t=((cg +us-f) (2.134)
where
U -
(= 2] (2.135)

is the direction of slip (DOS) parameter, ensuring that the shear stress acts in a direc-
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o

tion opposite that of the slip veloeity,
As the wheel advances, various points on the soil surface establish, maintain and
cventually break contact with the wheel. Contact is established hetween the wheel and

an arbitrary soil surface particle il

Te—Tw| 1 (2.1306)

where T, and T, are the position vectors of the (infinitesiial) soil particle and centerof
the wheel, respectively; = is the radius of the wheel. It is presumed that the wheel-soil
interface has zero tensile strength. Thus, contact is broken, i.c. separation oceurs,

when continued contact requires a tensile normal stress:

G- <0 (2.137)

In general, the stick and slip modes co-cxist along the wheel-soil interface. A

detailed analysis of the coupled stick-slip equations is presented in chapter 3.
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Chapter 3

Discretization of Governing Equations

3.1 Control-Volume Finite Element Method

The basis of the control-volume-based finite clement method (CVFEM) is the
strict enforcement of the conservation laws at the discrete level by the direct dis-
cretization of the integral form of the governing conservation cquations. The discretized
equations so obtained possess a direct physical interpretation. Conscquently, bound-
ary conditions can be introduced with relative ease. Other advantages of the CVFEM,
over conventional finite element methods, include reduced computational times and in-
creased accuracy. The CVFEM may be conceptualized as a hybrid of the finite clement
method (FEM) [3, 4, 5] and finite volume method (FVM) [17].

The CVFEM has been advantageously used for the solution of a variety of fluid
flow, heat transfer and convection-diffusion problems (1, 16, 2]. In this chapter, thc_

CVFEM is applied to the solution of the dynamic wheel-soil interaction equations.

o
h>
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3.2 Domain Discretization

3.2.1 Finite Elements and Control Volumes

The first step in a control-volume finite-element analysis is the discretization of
the computational domain into finite elements and control volumes. As in a conven-
tional finite clement method, cc;nsidcmble flexibility exists in the sclection of element
shape, size and distribution. Control volumes may be constructed around the grid
nodes in an essentially arbitrary manner provided certain key conditions are met: (1}
they do not overlap; (2) they completely fill the domain, i.e. there are no gaps, and (3)
control-volume boundaries do not lie along inter-element boundaries.

A control-volume finite-element mesh based on 3-noded triengular elements is
shown in Fig. 3.1 and one based on 4-noded gquadrilateral elements is illustrated in

Fig. 3.2. The algorithm for both meshes is as follows:

1. Discretize the computational domain into finite elements (triangular elements in

Fig. 3.1 and quadrilateral elements in Fig. 3.2).

2. Discretize the computational domain into polygonal control volumes by joining

the centroid of each element to the midpoint of its sides.

Typical interior, boundary and corner control volumes are highlighted in Figs. 3.1
and 3.2. We note that the quadrilateral-element-based mesh, in contrast with the
triangular-element-based mesh, yields a control volume size distribution that varies

proportionately with the element size distribution.

-
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(8)

(b)

Figure 3.1: Discretization of computational domain into: (a) triangular finite
elements; (b) polygonal control volumes

The discretization of an arbitrary-shaped computational domain into quadrilat-
eral elements is considezed in chapter 4. Triangular elements can be readily constructed

from the quadrilateral elements.

3.3 Interpolation Functions

Displacement, velocity and acceleration are defined at the nodes. Density, strains
and stresses are defined at the element level. Strains and stresses within an element
depend on the assumed variation of the nodal displacements. A linear variation yields a

constant strain element, which is known to be computationally very efficient. However,
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Figure 3.2: Discretization of computational domain into: (a) quadrilateral finite
elements; (b) polygonal control volumes '
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there are some drawbacks. Constant strain triangular elements tend to be too stiff while
constant strain quadrilateral elements give rise to mesh instabilities commonly referred
to as hour-glass modes. The source of these unwanted distortions is the inability
of the clement forces derived from a constant strain quadrilateral element to resist all
the compatible modes of deformation. There are techniques, however, for reducing or
eliminating hour-glass modes (e.g. Last and Harkness [18]).

In this thesis, constant strain quadrilateral elements are used. Hour-glass coutrol
is discussed in section 3.6.6.

Continuity of stresses within elements, hence across inter-control-volume bound-
aries, ensures that the proiiosed CVFEM possesses the conservative property. This
means, in essence, that Newton’s Third Law will be enforced at the inter-control-volume
boundaries. As a result, if the discretized momentum cquations of an arbitrary munber
of control volumes are added, the inter-control-volume stresses will cancel out and the
resulting momentum equation of the aggregate control-volume will be free of stresses
from within, as it should. The accuracy of a solution may be considerably reduced in

the absence of the conservative property.

3.4 Numbering Scheme

3.41 Global

Nodes are numbered (7, j), (i+1,7), (3,7 + 1}, (i +1,7 +1) ete., as illustrated in

Fig. 3.3.
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Figure 3.3: Global numbering scheme for nodes and control volumes

Elements are numbered (z,7), (:+1,7), (z,7 +1), ( + 1,7 + 1) etc., as illustrated

in Fig. 3.4, such that an arbitrary element (7, j) is defined by nodes (z,5). (¢ + 1.7),

(i,j+ 1) and (i + 1,5 +1).
A control volume is identified by the node which is located on it. Thus, the

numbering scheme for control volumes parallels that of the nodes. The region of the

computational domain commeon to control volume (. j) and element (3, 7) is denoted
cv(z, j)-(2,7)

The bounding surface of control volume (z,7) is denoted ¢s(Z, ;) and the intersection

of ¢cs(i,7) and element (i, j) is denoted

es(z, 7).e(2,7)
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Figure 3.4: Global numbering scheme for quadrilateral finite elements

3.4.2 Local

The discretization of the governing equations will, for sake of computational
efficiency and simplicity, be carried out element-by-element. The element-by-clement
discretization process is facilitated and the presentation clearer if conducted in terms
of a local numbering system.

An arbitrary element (, 7) is denoted e in the local numbering system. The nodes
of the element are numbered 1, 2, 3, and 4 in a clockwise fashion (Fig. 3.5) with node
1 corresponding to node (,7) in the global system. The centroid of 'he clement is
labelled 0.

As in the global numbering scheme, a control volume is, in the local numbering
system, identified by the node located on it. Thus, the control volumes associated with

nodes 1, 2, 3, and 4 are denoted cv(1), cv(2), cv(3) and cu(4), respectively, and their
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Figure 3.3: Local numbering scheme {or nodes of quadrilateral element

regions of intersection with element ¢ are denoted

cv(l).e

respectively. This is illustrated in Fig. 3.6. The bounding surface of control volumes
cu(1), cv(2), cv(3) and cv(4) are denoted cs(1), es(2), es(3) and cs(4), respectively,

and their intersections with (the boundary of) elemnent e are denoted

cs{l).e
cs(2).e
cs(3).e

cs(d).e
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Figure 3.6: Local labelling scheme for control-volume/finite-clement intersection

With reference to the inter-control-volume boundary traclions, the intepration
path cs(l).e, traversed in the clockwise dircction, goes from the midpoint of side 1
2 to node 0 (centroid} to the midpoint of side 1-4. Considering the transmitting
boundary tractions on side 1-2, if applicable, the integration path ¢s(1).e, traversed in
the clockwise direction, gocs from node 1 to the midpoint of side 1- 2. The integration

paths for the other control surfaces associated with element ¢ can be readily depicted

in a similar manner.

3.5 Sign convention

The continuum mechanics convention wherein normal stresses are positive in
tension, and normal strains are positive in extension, is followed. (This is contrary
to the usual soil mechanics usage). Shear stresses and strains are considered positive

when they act in a positive coordinate direction on a surface whose outward normal is
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Figure 3.7: Dircction of positive stresses and coordinates

in a positive direction. For example, &, is positive if it acts in the +y direction on a
face whose outward normal 1s in the 4z direction, as indicated in Fig. 3.7. Note that
Oyr = Oy

A rectangular cartesian coordinate system in which the y-axis is oriented 90
degrees clockwise from the z-axis, as depicted in Fig. 3.7, is utilized. The z-axis is
parallel to the soil surface so that for a horizontal soil surface, the y-axis points in
the direction of gravity. Rotaticnal variables (c.g. angular coordinate, angular velocity,

torque) increase in the clockwise direction.
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3.6 Soil Subsystem
3.6.1 Momentum Conservation

The momentum couservation equations (2.10) and (2.11) are to b discretized

over each of the control volumes. For an arbitrary control volume en(i, j), the monen-

tum conservation equations are:

de. . .
/ p—dV = / pg- dV — peve dV 4+ g, dS
Jeinn = dt —  Jetiy) e L degy T
inertia gravitational damping traction
p—— - - P~ -
f @y v f pgedV = [ pevydV+ [ a,dS
— = - cur, dV oyl
cu(i.j)p dt eoling) Y eligy Y estig) o

A term-by-term discretization of these equations follows.

Inertia Force

A “lumped mass” approximation of the inertia force vields

dv dv.
L= gy = (2= / AV
fcu(i,j)p dt ( dt )I.J. r.v(t'g')p

dv, duv,
Sygy = (L ] v
-/:.'u(l'.j)p dt ( dt )'.J. cu(i.j)p(

(3.1)

(3.2)

(3.3)

(3.4)

In words, the irertia force on control volume (Z, j) is approximated by the the product

of the control-volume mass and the acceleration of node (i, j). The acceleration vector

will be denoted by du/dt and &, interchangeably.
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Damping Force

A “Inmped mass” approximation of the damping term yields
/ per.dV = (cv,)_,.‘j/ pdV (3.3)
cv(iy) cv(ig)

[ww)pcu,, &V = (), [w(l_d) pdV (3.6)

In words, the damping force on control volume (4, j) is approximated by the the product

of the control-volume mass, the damping coefficient and velocity of node (7. ).

Gravitational Force

The gravitational acceleration vector § is constant. Thus the relationship

. dV = g, dv 3.7
-/;u(fd)pg g -/;v(i.j)p (3-7)

dav = dv 3.8
-/a-(u) PGy v -[ﬂ'(id) P (38)

is exact.

Mass

The integral term on the right hand sides of egs. (3.3)-(3.8) is the control volume

mass, i.e.,

f pdV = mij (3-9)
evl{iy)
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G4t
This integral is most efficiently determined element-by-eclement. With reference to the
local numbering system, it can be shown that
™= e pdV = p{{g — yd(ey = 2o} = (w2 — ) — mad}/4 (310
< b
M= pdV = p{(y2— yod(xy = a3) — (r2 — ol — ) }/4 - (3.11)
o) e
mg = pdV = p{{ys = ya)we — 2g) — (02 — Mo = w) /4 (3.12)
ce(3)e
my = / pdV = p{(yo— yal(z1 — x3) = (wo — xa){tn —ya)}/1 (3.13)
cv(i)e
for a unit width of control volume. It can easily be verified that
my + my = ma + my (3.14)
Clearly then,
my+mg = mf2 (3.13)
my+my = mf2 (3.16)
where
m= [ pdV (3.17)
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is the mass of element e, Element density p is determined from the equation of mass

CONSCIVALION,

Traction

A control-volume is subjected to surface force (traction) along its

1. inter-control-volume boundary

[ ]

. frec-surface, if applicable
3. wheel-soil interface, if applicable, and
4. transmitting boundary, if applicable

Discretization of the traction tern: is considered in the section 3.8: boundary conditions.

Residual Force

The initial element stress is taken to be the centroidal stress. Consequently, the
discretized momentum conservation equation of an arbitrary soil control volume cv(7, 7)
at time t = 0—, just prior to the reference initial time t = 0, vields, in general, a nodal

acceleration

a;;(0-)

different from that which actually exists. The result is a discretization-induced inertia
force given by

m;.; L\El',"j(o—) (318)
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where A@; j{0=) is the discretized nodal acceleration less the actual nodal acecleration,
This force, eq. {3.18). may be conceptualized as a residuel force. Typically, the soil
domain is at rest (velocity = acceleration = 0) at time ¢t = 0—. To remedy the discrep-
ancy in the nodal accelerations, the discretization-induced inertia foree. o (3.18), is

added to the discretized control volume force at all times ¢ > 0.

3.6.2 Time Integration

A variety of time integration schemes arc available for diseretizing the kinematie
equations, relating acceleration to velocity and displacemnent. We consider three of the

often used schemes.

Central Difference Scheme

The central-difference explicit scheme {7, 8] may be expressed in the form:

d.n-{-lf2 - dn—l/'.’

& = T (3.19)
. dn+l —dn
dn+1/2 - - 3.9
— (3.20)

where d, d and d denote displacement 4, velocity ¢ and acccleration @, respectively;

the superscripts denote time—d" is the displacement at time t", d"F12 35 the velocity

at time t*+1/2 ete., and

tn+1/2 = (tn+tn+l) /2 (321)
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ATV = (At 4 A /2 (3.22)

At o= " (3.23)

Note that ineqs. (3.19) and (3.20), displacement and acceleration are defined at integral
time steps while velocity is defined at half-time steps. The initial conditions d® and
A" are specified and A is determined from the momentum conscrvation equation. The
above difference scheme is not “self-starting”™. At the initial time (n = 0}, ¢q. (3.19)
contains two unknowns—d/? and d=2. One cannot, therefore, solve for d'/2 on the
basis of eq. (3.19). A so-called “starting formula” ,‘ c.g.

a'{n-!-l/‘.’ - d'n

n = = 3.24
=" =0 (3.24)

is needed.

The momentum conservation equation relates the acceleration at a given time to
the foree at the same time. The damping force, transmitting boundary force and the
wheel-soil contact force are velocity-dependent. Therefore, computation of these forces
requires velocity at the same times as the acceleration, that is, at integral time steps.

The following “extrapolation” formula

. dni—l - d'n—l/2
3 = S rar)e

may be used to determine velocity at integral time steps. The central difference scheme

is conditionally stable.
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Newmark’s Scheme

The general equations of Newmark's time integration scheme[9] are:

A = P A (AP - 23)d" 2540 2 (3.26)
"t = &+ At"{(1 - y)d® + yd" (3.27)
where 8 and ~ are scalar constants that determine the stability characteristies of the

scheme. The values § = 0.25 and ¥ = 0.5 yield an implicit scheme, characterized
by unconditional stability. The disadvantage of such a scheme is that the equations
become spatially coupled, resulting in a more complex code. The values ;3 = 0 and
v = 0.5 yield an explicit scheme, with conditiona}.stability. The relative sitplicity of
explicit schemes is quite attractive, notwithstanding the limitation on the time step.
A ‘very explicit’ scheme, produced by 8 = v = 0, was presented by Grant[l10]. It
required, however, that a fictitious damping term be introduced to conrter-balance the

inherent negative numerical damping.

Predictor-corrector

The predictor-corrector algorithm [11] is an explicit scheme based on Newmark's
equations. It predicts displacement and velocity at time £**! using the known accelera-
~ tion at time t*, computes the acceleration at time t"*! and then corrects the predicted

isplacement and velocity using the acceleration at time ¢"7f. Formally, the algorithm
displ t and velocity g th leration at time t"*!. Formally, the algorit)

i
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1s given by:

~dﬂ+ 1

~rjn+l

d"+1

dn +1

&+ Attd" + ()1 - 23)d" /2
d" + At"(1 = y)d"

~dn+l + (Atn)‘.’.ﬁd'n-i-l

D At"'y('l'""'l

G9

(3.28)

(3.29)

(3.30)

(3.31)

where ~d™t! and ~d**! are the ‘predictor’ values; d**! and d™*! are the ‘corrector’

values. The momentum conservation equation is explicitly solved for ¢"*! using the

predictor valnes. This algorithm is conditionally stable.

Stability

Explicit schemes are, in general, conditionally stable. The stability limit, i.e. the

time step above which numerical instability occurs, may be established from physical

as well as mathematical considerations. Physically, the computational time step should

not exceed the time it takes the fastest travelling stress wave to completely pass through

the smallest element. The element-wave transit time, for an arbitrary element, is given

by

ws(f
¢ min

(3.32)
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where ¢ is fastest wave speed through the clement and ¢, 15 the minham tength of

{ ( 1in
(-) = — (3.33)
€/ min Cruax

For simplicity, one may set {,,in equal to the minimum inter-nodal distance and then

the element . We note that

impose a factor of safety. For an arbitrary quadrilateral element. the inter-nodal dis-

tances are simply:

by = \/(1‘2 =) + (g2 = m) (3.3)

by = {2z — 22)° + (23 — )’ (3.35)

baa = \/(:r., — 23’ + (s — ) (3.36)

by = (z1 = 20)* + (11 — )’ (3.37)

The speed of propagation, ¢, of a stress wave through a material may be expressed in

1d
c= 1/;% (3.38)

where do/de is the slope of the stress-strain curve of the material. The dilatational

the form [13]:

(normal) wave speed ¢, and the distortional (shear) wave speed ¢, arc obtained from

the normal-stress/normal-strain and the shear-stress/shear-sirain curves, tespectively.
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For :n isotropic elastic material, the slopes do/ds are given by

(“_") = A+2G (3.39)
e n

(’{_") = G (3.40)
[

where the subseripts n and s refer to the normal and shear curves, respectively. Thus,

- —_ 41
Ca G : (3-41)

o
!
o

<

= (3.42)

._.
!
o

<

Since 0 < v < 1/2,

Ch > C4 (3.43)

That is, the clastic dilatational wave travels faster than the elastic distortional wave.
A perusal of the viscoelastic constitutive equations reveals that (1) viscoelastic dilata-
tional wave is faster than viscoelastic distortional wave speed, and (2) elastic dilata-

tional wave is faster than viscoelastic dilatational wave speed, i.e.,

cq(elastic) > ¢, (viscoelastic) > ¢,(viscoelastic) (3.44)

-

Thus, the stability limit of an elastic material is less than that of a viscoelastic material

and, therefore, constitutes a conservative estimate.
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-1
[

In a contact-impact problem, the stability limit may be signiticantly reduesd
depending on the speed of the impactor/penetrator. In the high-speed wheel-soil in-
teraction problem considered herein, the reducetion factor was determined by mumerieal

experimentation.

3.6.3 Mass Conservation

The mass conservation equation. applied at the element level, yields the current

clement density:

A -
p = po-.-f (3.45)
= myfd {3.16)

where A is the area of the element and the subscript ¢ refers to the initial value. The

initial density at the centroid of each element will be assumed to prevail thronghont

the entire element.

3.6.4 Constituitive Equations

The integral terms in the coustitutive equations (2.60)-(2.62) arc of the forin

1(t)

/t K(t —7)e(r) dr

t - .
[ E; e-(t"r)!ra(tr) (lnr—

=% T
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" s t )
= éc"/’f e Te(r) dr (3.47)
m -2

At time ¢ 4+ A¢,

{t+At)

I(t+At) = s o j

e Ts(r) dr
™ —o0

= B —cranr {f‘ e"Te(7) dr + jH-m e Te(7) d.—}
-0 t

T

o . o t+ A1
= L] e~TI(t) + %e‘(“"mﬂf eTe(r) dr (3.48)
m 1 t

Using the trapezoidal rule, the integral termt in eq. (3.48) is discretized as follows:
40t .
j eTe(r) dr = [e(“""\")ﬁs(t + At) + e'/Ts(t)] At/f2 (3.49)
t
Substituting eq. (3.49) into eq. (3.48), one obtains
: Ex _ayr E : 5
It + At) = n_e (I(2) +=(t) At/ + -;—s(t + At} At/2 (3.50)
1 1

Based on eq. (3.50), the constitutive equations (2.60)-(2.62) are discretized as follows:

Es(L-v)

=) = TrI-m)

L, (t+AL)

{E“(? A+ 1—v %

— L(t+ At + 8,0t + A0} (331)

A
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s &4

owlt) = 5 f‘-’i)l(l—i’)zv) {;‘WU F3) + et + AN
— Iyt + M) + Lot + A0} (3.52)
or(t) = 2G {sxy(t +A) - Hlxyu + _\r)} (3.53)
where
I(t+At) = %e"‘“ﬁ [Lee(t) + s2e(t) A2 /2) + %’s”(t + A A2 (3.54)
Lyt + A = i—;"e-‘—“” [1(8) + 54 (t) 22/2] + %s_.,_.,(t +AAL/2 (3.55)

L,(t+At) = %.»-A‘/T[I,y(t)+.~:,,,(t)m/2]+%sw(s+m)m/2 (3.56)

The initial conditions

"

22(t) = €,,(8) = £4,(t) =0 o<t <0 (3.57)

yield

2(0) = I,,(0) = I,(0) =0 (3.58)

Initial stresses ¢.:{0), 0,,(0) and 0.,{0) are appended to the right hand sides of

egs. (3.531)-(3.53), respectivetly, yielding

. Es(1 —v) v . .
t) = o0 Exz(t t)+ ——e, .t + At
ult) = 0al0) + Ty (et + 00 T 8k
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- Lo(t+ )+ H,(t+ A1) (3.59)

Es(1-v) {

o) = ayy(0)+(l+v)(1_2u)

12
£yt + At) + T curlt + A1)

— Iy(t+ a8 + L.t + 2t)}  (3.60)

31 -v)

a,(t) = o.,0)+2G {Ery(t +4) - m

Lt + ;\.r)} (3.61)

3.6.5 Strain-Displacement Equations: Contour Integral
Method

The contour integral method uses Green’s theorem to express the derivative in
an arbitrary-shaped region in terms of an integral around the boundary of the region.

For a region .-'l.. bounded by 5, Green's theorem says:
du
— i — P + . '2
% ¢A fsun, ds (3.62)

where « is an arbitrary function and i € {z,y}. & can be shown that

du
L%d:i = fs udy (3.63)
% 4 = —fud:c (3.64)
ady s y '
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If the gradients Ju/dr and Ju/Jy are assumed constant in the region (elewent), then

it 1 f !, 3.05)
— = =/ RYLE

dr W (0
0"

% = —%./;_u dr {3.06)

Assuming that u varies linearly between element nodes, the integrals in egs. (3.65) and

(3.66) arc readily cevaluated:

du 1. _ _ _ _ " =
% = T;{“”(y:’ -y)+ u-z:s(y:; — o) + tga(ys — ) + Ay - i)} (3.67)

du 1 _ - . _ N
% = —:{ul-_)(:r-_» = 21) + fag(rg — @) + digq{wqg — y) + gl —ag)} (3.68)

where %2 = (%) + u2)/2 etc.

Equations (3.67) and (3.68) can be cast in the form:

d 1
e (O CIES MR O ) (3.69)
% = —'2%{(1‘2 —zi)(wr — ug) = (z1 = Tg)(us — uq)} (3.70)

where A is the area of the element:

2A= (yz - ya}’_xl - —'L':s) - (1'2 - 3’-’4)('!11 - #3) (3-71)

The displacement gradients are substituted into the strain-displacement eqs. (2.64)-
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x-mode y-mode

Figure 3.8: Hour-glass modes for constant-strain quadrilateral clement

(2.66) to obtain the strains &z, &y and 2,

3.6.6 Hour-Glass Control

Hour-glassing was introduced in section 3.3. In this section, the cause of hour-
glassing is more closely examined and techniques of controlling hour-glass modes are
presented.

A careful examination of the displacement-gradient equations (3.69) and (3.70)
reveals that there are certain displacement ficlds, which are not rigid body motions,
that yield zero displacement gradients, hence zero strains and stresses. For example,
if du is added to u; and u; but subtracted from u, and u,, as shown in Fig. 3.8 for
du = bu, (x-mode) and for éu = du, (y-mode), the displacement gradients du/dx and
Oufdy are unchanged. Producing no stresses (and therefore no forces), the presence of
such a displacement field is unresisted and can result in mesh instability. A rectangular
mesh would be distorted into a pattern of hour-glass shapes. The absence of stresses

implies zero energy. As a result, the terms spurious sero-energy or kincmalic modes
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are also often used.

The physical basis for hour-glassing is that preseription of a uniform strain field
throughont the element results in an over-determined problem: there are eight inde-
pendent displacement components per clement {two at each node) but only six modes
of deformation (three components of uniform strain and three rigid-body motions).
The remaining two modes are realized as hour-glass modes.

A very innovative hour-glass control scheme was recently proposed by Last and
Harkness[18]. It is based on the recognition that a truly uniform strain field exists
within the sub-clement formed by joining the mid-peints of the sides of the element.
Hour-glass modes are eliminated by requiring that the velocity field of the entire ele-
ment be consistent with that of the constant-strain sub-element. Formally. with ref-
erence to an arbitrary point 0 within the sub-element, the velocity at any other point

within the element is related to the velocity at 0, by the chain rule, as follows:

a 07}
b= v+ a—;(m —z0) + %(y - %) (3.72)

It is computationally convenient to select the centroid of the element as the reference

point. Thus,

g = (z1+z2+z3+24)/4 (3.73)
Yo = (N +y2+ys+ya)fd (3.74)

vo = (v +ve+vs+vy)/d (3.75)
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The nodal velocities. consistent with a constant-strain clement, are determined {rom

eq. (3.72). It can be shown that
Ary=-Am=Avy = —-Ar, = Ah (3.76)

where A is the difference. at node 1. between the corrected, by eq. (3.72). and the
uncorrected velocity cte. Ak represents the amplitude of the hour glass correction for
the element. The amplitude in the x-direction will. of course. be ditferent from that in
the v-direction.

The change in momentum of the element as a result of the velocity correction is
given by

Almv) = miAv, + maAvy + maluvs + myAu, (3.77)

which, by virtue of egs. (3.14) and (3.76), yicids

Almy) =0 (3.78)

Thus, the momentum of the element is conserved. Non-conservation of the clement
momentum would intreduce a fictitious body force into the momentum conservation
equation of the control volumes and, therefore, produce inaccurate results.

The nodal velocity correction scheme, eq. (3.72), pertains to the nodes of 2 single
element. Other than corner nodes, nodes are s.ha.red by more than one element, with

each element requiring, in general, a different velocity correction. The global nodal



Diseretization of Governing Equations 80

veloeity correction may be obtajned by equating the giobal change in the momentum
of the node to the sum of the loeal (e, element-based) changes.

It is essential that the hour-glass velocity corrections satisfy the governing bound-
ary conditions, Thus, at a displasement-controlled boundary, no correction should be
applied. However, at a stress-controlled boundary, where nedes are {ree to move and

may undergo hour-glass motions, hour-glass velocity correction is called for.
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3.7 Wheel Subsystem

3.7.1 Momentum Conservation

Discretization of the integral terms of the momentum conservation eqguations

(2.68), (2.69) and (2.70), i.c..

f o dS, f o, dS, and j oS
5{t} S() S

is considered in section 3.8—Boundary Conditions.

3.7.2 Time Integration

The time integration schemes of section 3.6.2 arc applicable to Lhe lincar as well as

to the rotational motion of the wheel with 0, w and « replacing d, d and d, respectively.

3.7.3 Mass Conservation

The mass of the wheel is specified and remains constant, i.c.,
m = mg (3.79)

where my is the initial (specified) mass of the wheel.
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3.7.4 Constitutive Equations

o
o

A zero strain-tensor prevails—spatially and temporally—for a rigid wheel. The

stress state within the wheel is not needed.

3.8 Boundary Conditions

3.8.1 Inter-Control-Volume Boundary

For computational efficiency and simplicity, the inter-control-volume boundary

tractions are determined element-by-clement:

/ o, dS
cx{l)e

¢, dS
./;s(n-c v
j o.dS
ca(2}e

o, dS
-ls('.’)-c Y

L .04

o, dS
.[c.-(-u-c v

o'zx(ydl - y’.:)/?' - axy(x-i - 7:2)/2
azy(y-i - y2)/2 - o-yy(x-‘l - 3:.'!)/:2
Ore(yy — ¥3) /2~ Oy — x3)/2

Oyt — ¥3)/2 = 7y (ay — 23)/2

- c.dS

23(2)e¢

- o, dS
-/;1(2)-c y

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)
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per unit width of control volume,

3.8.2 Transmitting Boundary

We rewrite the transmitting boundary tractions, eqs. (2.119) and (2.120), in the

form
2 _Cn (3.8%)
On = =—pC;——— [ M Lo
P T
o = —pct —— (3.89)
1 - U
where
B, = = (3.90)
Cd
5 = = (3.91)
Cs
Then making use of the binomial series expansion,
=l+z+z+2>+-- (3.92)
-z

We cast eqs. (3.88) and (3.89) in the form

0n = —pci(on+ 32 +3% +-) (3.93)
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o = —pi(n+Eeilse) (3.94)
Retaining only terms up to 2nd order, we have
o, = —pcy ('Er,, + Eﬁ) (3.93)
= =pcqty — pUs (3.96)
o, = =pc (E, + ﬁf) (3.97)
= —peuy — pvd (3.98)
The transmitting boundary tractions are evaluated element-by-element:
¢/2 g2
f onds = —pcq ] tads — p j vids (3.99)
es(1)e Y Y
e/2 o2
/ ods = —pc,] v,ds-—p[ vids (3.100)
cs(1)e 0 ¢
¢ €,
/ Opds = mpcd[ vads — p[ vads (3.101)
es(2)e £f2 £/
¢ e
f ods = —pc,j vds — p/ v;ds (3.102)
es(2)e £f2 £/2

The integrals on the right hand sides of egs. (3.99)-(3.100) are determined as follows.

A linear variation of velocity between adjacent nodes yields

r= (1'—%) -1+%-2 0<s<{ (3.103)
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: I

where ¢ is the length of side 1-2 and s is the distance measured along U 2 from 1 to 2.

Thus.

& S

N [(1 - -,) & + -,:-2] i (3.104)
: {
S A -

b = [(1 _ ?) 7+ ?,'-',_,] ¥ (3.105)

where 7 and t are the normal and tangential unit vectors, respectively, Integration of

eqs. (3.104) and (3.103) yields

2 2
/v,,ds = [(s—%) m+%t_, A+ C (3.106)
2 I
vds = [(b-j—e) 5,+;—ga_, D (3.107)

where C and D are integration constants. Evaluating the above integrals between the

applicable limits, we obtain

£/2 ¢
f vads = = (37, +5) 7 (3.108)
0 8
2 ¢ -~
]; wds = Z(35+3)- ¢ (3.109)
2 [4 - - -
j;/zvuds = (R+7)7 (3.110)
" nd ¢ 3 3 3.111
= =(3v -t 3.
Jprds = gBR+H) (3.111)
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We now constder the 2nd order terms. A simple algebraie manipulation vields

(3.112)

[ RV]
—
~
=
-
=
—
Py
cﬁ
Iul
=]
g
———
e~ &
nl %
o
——
~
it
=1
M
] I

R R CH R IR MO e

Integration yields

3 o2 3
f”ﬁ"*‘ = “g(ﬁvﬁ)'“’(l—%) +2(F, - ) (B - 7) (; S )

o3 3¢
+ '")2;_;‘-""0 | (3.114)

f"?ds = -§(m-t 2(1—%)34-2(,71.@(.-.2.;) (i‘g,iqﬁ)
+('T'”"t‘)235_:2+D (3.115)

where C and D are integration constants. Evaluation of the 2ud order integrals between

applicable limits vields

£f2 “ £ o .9 o i o o am
/ﬂ vids = [T A +4(5 %) (- 1) + (- 7Y (3.116)

[Pie = L@ G ED @] e

/4 o 4 e e o e o o an
[mv;ds = = [@ 27 +4@ -0 (@ 1) + (5 7)) (3.118)

I
!

ft; 2 ds ;4 :7 (3 8) +4 (5 -9) (8- 1) + (3 Q] (3.119)
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The length, £, of side 1-2 1s given by

{ = \/(-1‘-; =) (=)

The unit normal and tangential vectors are given by

where

It can easily be shown that

f oz ds
f oyds

Hl

= 0.0+ n,J

= t,7+t,f

1

E(JL‘-_)".’L'[)

1

E(ﬂ:!-!}l)
= ty
= —t,
n_._fands+t,,fa,rls

nyfa,, ds-i-tyja, s

2
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(3.121)

(3.122

{(3.123)

{3.124)

(3.125)

(3.126)

(3.127)

{3.128)
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3.8.3 Free-Surface

We consider o stress-free surface, resulting in no contribution to the control-
volume traction. As indicated previously, a stressed surface ean be readily accommo-
dated, One simply integrates the given surface stresses along the appropriate control-

volume boundaries,

3.8.4 ‘Wheel-Soil Interface

In the cnsuing development of the wheel-soil contact equations, the wheel is
considered the ‘driver’ or ‘master’ and the contacting soil-surface control-volumes are
relegated to the position of ‘passengers’ or ‘slaves’. In other words, kinematic compat-
ibility is enforeed by the wheel.

Let cv(?) denote an arbitrary soil surface control volume and let the contact

surface between cu(z) and the wheel w be denoted
es(?) - w

The force exerted by the wheel on ¢s(7), given by the integral of the contact stress

vectors over the contact surface es(z) - w, is discretized as follows:

f 0 S =Pi (3.129)

where 7; acts at node i, located on c¢s(i). The discretized momentum conservation
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cquation of control volume er{s), in the normal direction 7,. s given by
md; iy = fion 4 -, RARIE

wlere 7; is the unit outward normal vector, with respeet to the wheel, at node & f: 1%
the sum of all forces, acting on control volmne ce(i), less the wheel contact loree ji;
m; 18 mass of control volume ce(i) and a; is aceeleration of node £,

The normal acceleration of node ¢ equals that of the wheel by virtue of kinematic
compatibility:

(.E,' ' 'l_i,’ = (-f", . ﬁ, (.;l:”)

where @,, is the acceleration of the wheel. Substituting eq. (3.131) into (3.130), we

obtain

i oy = mydy, - ;= fi -0 (3.132)

relating the normal contact force on node ¢ to the wheel acceleration. Equation (3.132)
is applicable to all contact nodes, regardless of their stick-slip condition.
The integral of the interface slip constitutive equation (2.134) over the contact.

surface ¢s(z) - w, i.e.,

f F-tds= j (lc, +po-it)ds (3.133)
cs(i)w es(i)w
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is eliseretized as follows:

j G fds = [t (3.134)
ex[i)w

[ Geat o @)ds = Gleali+ pfi- ) (3.135)
es(r)w

where & is the length of es(i) - w; ¢ is direction of slip (DOS) parameter at node &2 ; is
tangential unit veetor at node i, Substituting egs. (3.134) and (3.135) into eq. (3.133).
we obtain

i - = Glcali + i - T3) (3.136)

A node in stick condition is subjected to the same acceleration as the wheel, i.e.,

@t =0t +raw (3.137)

where «,, is the angular acccleration of the wheel (@, and a* will be used inter-
changeably) and r is the radius of the wheel. The discretized momentum conservation
equation of control volume cu(i). in the tangential direction £;, is now writen in the

form:

- -

pi-ti=mi@, & +rau) - fi- & (3.138)

The lincar momentum conservation equation of the wheel is given by

My, = fw + ﬁw (3139)
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where f,. is the sum of all forces, acting on the wheel, Tess the soil contact foree 7 and

m,. is the mass of the wheel. By Newton's Third Law (action and reaction),

P = =2 (3.140)
We express p; in the form
o= )+ (- fOh (3.141)

and substitute egs. (3.140) and {3.141) into cq. (3.139) to obtain

-

Moy = fo= 3 (B A+ (B D)) = T [ d0m+ - DE] (3.042)

etk isslp

where the notation 7 € stk and i € sip refer to nodes in stick and slip modes, respee-
tively.

Similarly, the equation of angular momentum of the wheel is cast in the form

low=T-1 ¥ 5i-f-r 5 5 (3.143)

iSxtk ealp

where I is the moment of inertia of the wheel;

We express @,, in component form as

= 2T+ aly :(3.144)
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aned ttote that

fo = (Pe+ Wo)T+ (P, + W,)]

(3.143)

where P, and P, are the applied axle wheel load in the x and y dircctions respectively;

T is the applied wheel torque; W, and W, are the wheel weight in the @ and y directions,

respectively.

Substituting eqs. (3.132), (3.136), (3.138), (3.144) and (3.143) into eqs. (3.142)

and (3.143), we obtain, after some lengthy algebra,

where

M., =

M. =

Myr

17 3 r 3
Mgy M, a¥ P.+F.+ W,
My, M, |4 a¥ [ _ P,+F, +W, ¢
M., M., o L T+ F.

; \ 4 J

Mu+ 3 mi(n2 +2)i+ 3 my(nl + plton.);
1€ sth i€slp

Z mi(nan, +tot,); + Z mi(nzny + ultony);
i€atk i€alp

Z rm,-(tx);

otk

z mi(nynz + tytz)i + z m:‘(nyn:: + #Ctyn::)i
icath iEslp

My + Z m;(n'j + t:i)i + Z mi(ni + pGtyny):
icatk i€alp

(3.146)

(3.147)

(3.148)

(3.149)

(3.150)

(3.151)
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My = 3 rm(ty), (3.152)
icatk

M., = z rm(te)i + Z ripgn:); 13.153)
Eath i€alp

M, = Z rm;(ty )i + z ran{pdny ) {3.154)
iSath ialp

M. = I+ "my (3.153)

iCath

can be construed as mass matrix coefficients, aud

Fro = 3 [f.:(ni +2) + f(eny, + t_rt,,)]
iSatk

icslp

+ Z [fi(n';); + plnzt )i + fy(nzn, + I'Cf-:‘"y)]l

= > (Cealts)i (3.156)

icalp

Fy = Z [fx(n:ny-i‘trty)+fy(.n'ﬁ+t-j)]i

1€tk

+ 3 [felnany + ulnaty) + fy(n3 + pCnyt,)]
i€slp

- 2 (Gealty): (3.157)

icslp ~

F: = Z (ng)g + Z (rqun)i - Z (chuﬂ)l' (3158)

i€ath icslp iEalp

represent the soil-imposed forces. The unit normal and tangential vectors are given by

ne = (zi—z,)/7 (3.159)

ny = (¥—yw)/T (3.160)



Diseretization of Governing Equations 94

t: = —n, (3.161)

t, = n, (3.162)

where x,, and ., denote the coordinates of the center of the wheel. The direction of

slip paraneter ¢ is given by

Uy
G=— (3.163)
|v.l _
where v, is the slip velocity:
Uy =Dp - tdwr="0-T (3.164)

Solving cq. (3.146) for a¥, @) and @ in terms of {P;, P,, T}, using the row

o
reduction method, we obtain

Qv = = (3.165)
A'Vyyi\r;: - .'Vy:.'\r;.y

D,N.. = D.N,.
al = = (3.166)
y NyyNoo = NN,y

ag = (Pe+ e+ W, = My — M) /M. (3.167)

where

Ny = MoyMye — MM, (3.168)

Ny = MeMye — Mo M, (3.169)
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Ny = My M. — MM, (3.170)
No. o= MaMe = MM, (3.171)
and
Dy = M(Po+ Fe4+W,) = M (P, + F, + 1)) (3.172)
D. = M (P, + F,+W,)= M. (T + F.) (3.173)

The wheel accelerations are, finally, substituted into the applicable equation (stick or
slip) to obtz;in the wheel-soil interface nodal forces. We begin with the premise that all
contact nodes are in stick mode and solve for the contact forces. Those nodes which
fail the ‘stick test’, i.e. violate the maximum shear stress criterion, are re-classified as
slip nodes and the solution process repeated.

We note that in the absence of wheel-soil contact, M,, = A, = m,, M. =1,
My = Mze = My, = M. = M., = M., = 0 and egs. (3.165), (3.166) and (3.167)

reduce, respectively, to

o' = T[I (3.174)
ay = (Py+W,)/my (3.175)
ay = (P +W;)/m, (3.176)
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Chapter 4

Dynamic Grid Generation

4.1 Introduction

This chapter is concerned with the discretization of the computational domain
into quadilateral elements. The construction of control volumes, as detailed in the chap-
ter 3, is trivial once a suitable finite-element mesh has been generated. An arbitrary-
shaped computational domain may be discretized into quadrilateral elements by using
any one of 2 number of body-fitted grid generation techniques, the most common of
which is based on the numerical solution of a system of coupled second-order partial
differential equations (Thompson, Warsi and Mastin [1], Mobley and Stewart [2], Kang
and Leal [3], Rangwalla and Munson [4]).

Many of these approaches are derived, directly or indirectly, from the concept of
conformal mappings. The primary drawback with conformal mappings is the require-
ment that scale factors be equal in all directions, resulting in equal-sized elements.
Clearly, it is desirable, for sake of accuracy, that smaller-sized elements be placed, or
equivalently that grid lines be concentrated, in regions of expected rapid changes. Dif-

ferences in existing grid-generation procedures are centered, for the most part, around
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the manner in which grid/element concentration is achieved. It is desirable, in wheel-
soil interaction, that elements be concentrated near the soil surface where, as the wheel
travels, the most rapid changes are expected to occur,

The term ‘dynamic grid generation’ as used herein refers to the dyoamic relax-

ation formulation and solution of the grid-generating equations.

4.2 Regular Domain

A regular domain, such as a rectangle, can be readily discretized by algebraic
interpolation techniques. With reference to the node numbering scheme outlined in

chapter 3, a rectangular computational domain is discretized into rectengular finite

elements with nodal coordinates

(i,j) = x(o,0)+"‘"(i“‘“"'j“;’““_)""(0’0) (i) (4.1)
'.m:ucy 'm-'ux =} 0,0 .
y(i,j) = y(0,0)+y(l Jj _) A )y(J) (4.2)

where f(Z) and g(j) are monotonically increasing functions of their arguments, and

flo) =0 (4.3)
flimax} = imax (4.4)
g(0) = 0 (4.5)

9(Jmax) = Jemux (4.6)
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The nodes (0,0} and (Fgux Jmax) 2re diagonally opposite coruers of the rectangular

computational dowain. The functions f(2) and g{7) control the packing of the nodes

and will be referred to as packing functions.

To concentrate the nodes sinoothly towards the soil surface () = 0), the packing

function g(j) must satisfy the condition

B < G+ (47)
for all j. Consider the (nonlinear) hyperbolic sinh function

g(j) = Asinh(Bj)+C (4.8)
where

sinh(z) =1 (e‘ - e"") (1.9)

and 4, B and C are constants, to be determined. Imposition of the boundary condi-

tions (4.5) and (4.6) yields

C =0 (4.10)
_ Jronx
sinh(BJmax) (411)
Thus, eqn. {4.8) becomes
. _ Jmaxsinh(Bj) (4.12)

9(j) = Sh( B )
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where B remains an arbitrary constant. The parameter B controls the intensity of the
packing and will be referred to as the infensity factor. The intensity of the packing
(towards the surface j = 0) increases with the (absolute) value of 5.

‘The packing function g(j) is indeterminate for B = 0:

JmaxsSinh(0)

4E) sinh(0)

oo

(4.13)

According-to I'Hépital’s rule [§], if F(a) = G(a) = lO. and if, as ¢ approaches a, the

limit of F'(t)/G'(t) exists, then

%i_l_n FL:) = lim m {1.14})

@ G( ) {=eit G’(f)

where prime ’ denotes the derivative with respect to the argunent t. Using I'Hopital's

rule, eq. (4.14), we obtain

lim Fmaxsinh{B7)

,1}5}, 9) = Fob sinh( B max)
_ m N Jmuxsinh(Bj)]/0B
B 8[sinh(3.7'm=u)1/33
_ Jmaxjcosh{ Bj)
" B=0 J1.xcoSh( Bimux)
y (4.15)
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Thaos the mesh approaches nntformity, in the j-direction, as B approaches 0. To gen-

erate a uniform mesh in the j-direction, the linear function

9(j) =17 (4.106)

i computationally more efficient than setting I = 0 in the nonlincar equation (4.8).
A uniform spacing of the grid lines in the direction of travel (D.O.T') of the wheel

appears logical. This is attained with the lincar packing function:

fliy=1 (4.17)

Notice that eqn. (4.17) satisfies the boundary conditions (4.3) and (4.4).

A schematic plot of the packing function (4.12) is shown in Fig. 4.1 for different
intensity factors B: 0, 0.025, 0.05 and 0.1. (fmax = 90).

Figures 4.2(a), 4.2(b), and 4.2(¢) show rectangular meshes obtained with the

packing functions

9(d) = 3
. Fmaxsinh(0.27)
9l4) SINR(0.2 o)
. FmaxSinh(0.47)
90) = ah(0Aj,)

respectively. In all cases, f(7) = ¢, ipax = 21 and fpax = 11.
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Figure 4.1: Packing function variation with intensity factor
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4.3 Complex Domain

4.3.1 Grid-Generation Equations

AR

For an irregularly-shaped computational domain, we constder the orthogonal grid-

generation equations of Mobley and Stewart[2]:

where

where

a‘..’
fo = =%
Py
fh = 52

+ &

fr =0
fu =0
;0% dx Jdie
(5 W - FE -8 C—
8"’y DJ Qy
a2 01 6603
f'(§)
= S—
J(7)
_ 1)
fi(2)
_ 40)
9(J)

(4.23)

(4.24)
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fi) and g(J) are the packing functions and the syinbol prime " denotes differentiation
with respect to its argument. The constant S is known as the seale factor and is related
to the conformal module M of the domain [2, 4:

M = ghmax (4.25)

jm&u(

Eqguation (-1.25) is a neceessary condition if the  and y coordinates of the four corner
nodes (0,0 (Fuaxs 0)0 (M Jiax) a0 {fnax. Jimax) ave to be specified. The conformal
module of a rectangular domain is, by definition, the ratio of its length to its width:

lenzth

Miypeer = —2mn
rect \Vldth

(4.26)

For a simple irregular domain, the conformal module can be determined analytically [2].
In general, however, the analytical determination of the conformal module of a complex
domain is very difficult. Consequently, a numerical approach is utilized (section 4.3.3).

We note that eqs. (4.20) and (4.21) may be cast in the form

g {10z g .0z
— — —— — — . l‘)"'
[z Y (6 az‘) + 5 (‘533') (4.27)
_ 9 (loy) 9 (.0y -
v = 3 (6ai)+aj (633') (4.28)

of the equations governing heat conduction, seepage and torsion.

. We seek to solve eqs. (4.18) and (4.19) for z(,7) and y(i, ), respectively, at each
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of the nodal points (i.7).

4.3.2 Boundary Conditions

The boundary of the computational domain is discretized into four segments
corresponding to ¢ = 0. ¢ = iyaxe J = 0 and § = Juan. One boundary coudition for
solving eq. (+.18) for £ and one boundary condition for solving eq. (119} for y are

required on each of the segments. The Neumann boundary condition

dr Oy .

il éa—j (1.24)
or

dy Oz .

%= —b-&-)-j {1.30)

produces orthogonal grids. While orthogonal grids are not essential, they are generally
desirable, particularly in curvilinear finite-difference schemes [4, 3, 6] for 2 number
of reasons: (1) easy application of Neumann boundary conditions (2) simplifications
in the finite-difference algorithm and (3) improved accuracy. Notice that egs. (4.29)
and (4.30) reduce to the Cauchy-Riemann equations when é§ = 1. A necessary second

boundary condition *, provided by the geometric equation of the boundary:

z = z(y) (4.31)
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or

y = ylr) (4.32)

At the corners {0, 0), (Tuus ) (0, Jmax ) and (fnaxs Jmax) ©f the computational domain,
the values of x and y are specified. The Neumann condition. eq. (4.29) or (4.30), and
the Dirichlet condition, ¢q. (4.31) or (1.32), arc applied in a complementary manner at
cach boundary segnient, as illustrated subsequently. At each boundary, a combination
of one Neumann and one Dirichlet boundary condition is applied. We note that the

generating equations (4.18) and (4.19) are coupled through the boundary conditions.

4.3.3 Finite-Difference Discretization
Grid-Generating Equations

The solution domain, characterized by integral values of ¢ and j, is uniformly-
spaced with Az = Aj. We therefore take advantage of the relative simplicity and
cfficiency of the finite-difference method in handling such problems. At an arbitrary

node (i, 7}, the central finite-differnce discretization of egs. (4.20) and (4.21) yields

foo = (Tinrg = 285 + Timrg) + 6 (Tigar — 2205 + Tig-1)

- F (-'r:‘+1.j - -‘-"'a‘-l.j) /2 - ‘552,,‘Gj (-’L'i.j-;-l - -’L‘;,j-l) /'2 (4.33)

fo = (Uisrg = 200 + vim1g) + & (Wiger — 2935 + vijr)

- Fi(yinrg — ¥ic1g) /2 = 63,65 (Yigrr — ¥ij-1) /2 (4.34)
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Boundary Conditions

Discretization of the boundary condition (.30} viclds

Uiy = Yim14) /2= =8, (g = rigo) /2 (1.33)
so that
Yiclg = Vigrg + 6y (@ige = Tig=1) =05 0 < j < Juux (-1.36)
Yiely = Yimrg = 8ij (Lijer — Tij=1) P =t 0<J < Juax (4.37)
Tigmt = Tigel + Yirryg = Yi-15) [0 J=000 <1 < (4.38)
Tijer = Tijor = (Yivrg — Yi-ry) [0 J = Joaxs 0 < < i (4.39)

The boundary condition (4.29) can be treated similarly. Recall that 2 and y are known
(specified) at the four corners of the domain. Complementing the Neunann boundary

conditions (4.36)-(4.39) are the Dirichlet houndary conditions:
z = by(y) 1=0; 0<J < Fiax (4.40)
r = bl(y) § = ima; O <j < jmnx (4-41)

y = by(z) §=0; 0 <t <ty (4.42)
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y = ]"_’(J') J = .jm:tx; 0<i< irn:nc (443)

The functional forms of by, by, b and by are completely arbitrary. The system of
houndary conditions applied to the solution of eqs. (4.18) and (4.19) is illustrated in
Fig. 41.3. The surface y = by{r) could represent, for example, a rough (i.e. uneven} soil

surface.

Scale Factor

The scale factor S may be obtained from ecither of the Neumann conditions,
eq. (4.29) or (4.30), by integrating along a non-boundary line of constant ¢ or j. In-
tegrating eq. (4.29) with respect to i, from 7 = 0 to { = i, along an arbitrary

non-houndary j-line:

/mu a_x di = S Tmax f aJ d; (4.44)
0 ot
we obtain
, imax QY _
S = i Zine = xﬂ.j)/'/; f -3-_%([2 (4.45}

Numerical integration of the denominator in eq. (4.45) by the trapezoidal rule]9)] yields

(f aj) (f J).m,,fz by (f aj),-,,] (4.46)

where A7 = 1, and by the central difference approximation,

fmax aJ Az
/1; fagd )

o)
a—g = (Yijet = Yij-1) /2 (4.47)
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X = b,(y) physical domain x=b,y)
Y ‘bz(X)
0 aj 3 ai _ifi,_
I l !
x = baly) t#x) = 0 i x = by (y)
%
™ ax __10Y
' aj 6ai
)
Yy _58x -0~ Y _50x
5 o 3] fy)=0 3i ) 3]
Jnax y-bz(x}
'
i

Figure 4.3: Boundary conditions for x and y
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4.3.4 Solution by Dynamic Relaxation Method
Introduction

The discretized grid-generation equations f; = 0 and f, = 0 with f; and f,
given by egs. (1.33) and (1.34), respectively, each constitute a set of simultaneous
equations. These simultancous finite-difference equations may be solved iteratively by,
for example, the tri-diagonal matrix algorithm (TDMA) (e.g Patankar[7], Lawal[6]) or
directly by. for example. Gaussian elimination.

Herein, we consider the dynamic relaxation method—a technique commonly used
for the static solution of structural mechanics problems. In this method, an equivalent
damped dynamic problem, rather than the original static equation, is solved. The static
solution corresponds to the steady-state solution of the dynamic problem. Dynamic
relaxation is an explicit iterative method. Its main advantage is that it circumvents
the need to solve a set of simultaneous equations. Thus, it is relatively simple and easy
to program. In addition, the core storage requirement is rnucix less than that required

by “static” finite difference algorithms.

Formulation

The dynamic relaxation method is based on the equality of the solution of the

*static’ problem

f:=0
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and the steady-state solution of the “dynawmie’ problem

mir+ci = f; (-1o18)
my+cy = fy (-1.10)

The (fictitious) parameters ¢ and m denote, respectively, the dimping factor and mass
density (discussed in a later section}. The variables f, and f, may be conceptualized
as forces acting in the = and y directions, respectively. Initial values of + and y, at
time ¢t = 0, are required. Note that initial values are required of iterative methods in
general and so do not counstitute an additional requircinent for the dynamic relaxation

method. The boundary conditions for the static problem are also applicable to the

dynamic problem.

Initial Conditions

The initial coordinates z, ¥ have a notable effect on the number of iterations
required to reach the converged, static state. Obviously, the closer the initial condi-
tions are to the solution, the fewer the number of iterations that will be required. In
this thesis, we determine the initial coordinates by a packing-function-based algebraic
interpolation, much like the algebraic discretization tcchniq__lie for a regular domain

(section 4.2). Formally, the initial coordinates are given hy:
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fll[' 0< l < j:x:;-x:

+ 'T(imnx»[.n - -7-'(0?0)

£(i,0) = £(0,0) — ) (4.30)

y(i,0) = by(x(3,0)) (4.51)
i) = 0]+ e = 20 Jms) ;) (4.52)
Yidu) = Gl Fue) (4.53)

for 0 < 7 < jhax

y(O-Jn:uf) - y(0.0) o) (4.54)

¥(0,5) = (0,0)+

Jmnx

(0, 5)

ba(¥(0, 7)) (4.35)

Yimd) = Yliman,0) 4 Limteomae) = W ©) g (4.36)

Jmax

liman ) = bi(¥{imax, 7)) (4-57)
for 0 < & < ipae and 0 < 7 < Fronxe:

I(imax,.'{:) —I(O‘JJ) f( )

z(1,7) = z(0,7)+ i (4.58)

max

y(i,jm.-nf) - y(i,0) al5)

max

y(i,3) = y(i,0)+
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Zero inttial velocities are prescribed:
r =0 (-1.60)
g =0 (1.61)

Time Integration

We write the dynamic equations eq. {(4.48) and (149}, at an arbitrary time $"in

the compact form

mz" + cz" = f" (1.62)
where
fz
| fy
z
xr = | (4.64)
Y

and the superscript ™ refers to time t*. The central difference discretization of the

temporal derivatives is expressed in the form

én-i-l/Z - :'cn-l/2

z" = fnr1/2 _ gn=1/2 (4.65)

n+l _ 0
. ) - n41/2 z d
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where

C"+”2 = (t“+t"+l)/2

= ()2

We cousider o constant time inerement Ad:

At = Mty

= g2 _gn=lf2

by virtue of which egs. (4.64) and (4.65) become

T

s b1/ a',:n—l/'.’.

At

mn+l - "
At

sndl/2

The value of " is obtained by linear interpolation:

" = (a':n-lf‘.’ + in-&l/ﬁ)/?

116

(4.67)

(4.68)

(4.69)

(4.70)

(4.71)

(4.72)
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Substituting cq. (4.7D) 1nto g (4.62) and rearranging o LT we obtn the teciy
g l ! Y

rence formula

/o Min-w_ _r (heh
mfAt +¢/2 mfAt+ ¢f2
mn-!-l = "+ ;i:rl-i-l,".'At (l?:))

The solution process simply entails the direct substitution of & at the previous tinwe to
obtain the current value. We note, however, that eq. (-L.74) cannot be used to start the
integration since the velocity  is known at time %, not at t712 The initial conditions

arec of the form

2 £ o (4.76)
2 = o (4.77)
Substituting eq. (4.77) into eq. (4.73), we Obtai{l
272 = g2 (4.78)
which on substituting into eq. (4.74) at time ¢° yields
P (4.79)
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Observe that the damping coefficient ¢ does not enter into the starting formula (4.79).

To summarize, the time-marching schere is as follows:

forn=20:
g o LA (4.80)
2m
for n # 0
SR A s
for n > 0:
" = " + " T2AL (4.82)

\We now seek the values of ¢ and m which yield the fastest convergence towards the
steady-state, hience static, solution and the value of At which ensures stability as well
as accuracy of the results.

Time Step

Expressing eq. (4.62) in terms of z, we obtain, for n # 0,

ot _ 2 [m = (1 + &) (a8)?] .
R m + cAt/2 i

+ [terms containing i}, &, @iy, i1, Thiel (4.83)
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From physical considerations, an increase in 7, should result in an fnerease in o)t

and vice versa. Thus, the coefficient of z7; must be positve:

2 [m - {1+ 6?J)(At)'“'] -
m 4+ cAt/2 -

That is,
At <\ Jm/(1+03)

For n =0, we obtain

el m = (1 +83,)(At)?
] — i

g

n

n

+ [terms containing =}, ;, T, T T

" "
ig=1v 41

The coefficient of 7; is positive if

At < /m/(1 + &%)

Thus, the same time step limitation applies for all n > 0.

Damping Factor

1

LY

(4.86)

{(1.87)

The damping factor is the primary vehicle for reducing the motion of the dynamic

problem to zero, yielding the static solution. Whilst many values of the damping

factor will suffice, the value which attenuates the motion rost rapidly, known as the
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eritical damping factor, is sought. A damping factor greater than the critical (an over-
darnped problem) yields a solution which converges to the static solution asymptotically.
Thus, a small difference between successive values of & does not neccessarily indicate
that the true solution has been reached. On the other hand, if a damping factor
less than the critical is used {an under-damped problem), the oscillations decay with
successively smaller amplitudes. This provides a useful tool for monitoring and checking
the convergence of the soultion to the static one.

The critical damping factor is a function of the fundamental (lowest) frequency

of the undamped problem. It is shown [18, 16] that

Ceritical = 2 (4.88)

where Cepiticar 15 the critical damping factor and w, is the fundamental frequency. Note
that in [18], the damping factor is normalized with respect to the mass, hence the
apparent difference betweeen eq. (4.88) and the corresponding equation therein. The
analytical determination of the fundamental frequency is not trivial. A numerical
technique, which has been successfully used in structural mechanics [19] and seepage
[16] problems, is considered. From the solution of the undamped (¢ = 0) problem, the
fundamental frequency wy may be obtained in one of two ways. In the first method,

the oscillations of  at a representative node are monitored. If the number of iterations
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taken to complete one cycle is N, then

wo =27/ N At (-1.89)

and the critical damping factor, eq. (.88}, is

Ceritical = dmm /.‘\"At (l .90)

In the second method, the total kinetic energy is monitored. If the munber of iterations

taken to reach maximum kinetic energy is 3/, then

wo = 2T [AMAL (4.91)

and the critical damping factor, eq. (1.88), is

Ceritical = T [MAL (4.92)

From eq. (4.91), we see that the number of iterations taken to attain the maximum

kinetic energy corresponds to one quarter (1/4) of a cycle of the fundamental mode.

The kinetic energy KE is given by

KE=L1S mi-4 (4.93)

An alternative dynamic relaxation method based on the undamped dynamic prob-
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lem is presented in [17). This approach makes use of the fact that a vibrating body
attains maxinnun Kinetic energy at a static equilibrum position. Implementation is
relatively simple. The total kinetic energy is monitored and when it peaks, all the
nodal velocities are set to zero. The process is repeated until convergence is attained.
For a system vibrating in one mode, no iteration is, theoretically, neccessary. In
practice, however, a few iterations may be required. It is noted in [17] that in the
conventional damping approach, damping forces may induce a path-change in path-
dependent-processes and thus render the solution suspect. Herein lics a major advan-
tage of the damping-independent method. There is also the advantage of by-passing

the determination of a damping factor.

Mass Density

The mass density m is a fictitious parameter with no physical significance. A
reduction in m to a value which does not violate the stability criterion, eq. (4.85), can

result in an appreciable increase in the rate of convergence. Re-arranging eq. (4.85),

m 2 (AtY(1 +68%;) (4.94)

For a constant mass density m, the optimum time step, eq. (4.85), will vary with
time because of the time-dependent parameter §. Similarly, for a constant time step
At, the optimum mass density, eq. (4.94), will be time-dependent. To maintain the

relative simplicity of the constant time-step algorithm, we will keep the time-step fixed
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| )
-e

and determine the corresponding optimum mass density from eq. (4.94). To provide
a sufficient margin of safety aguinst numerical wnstability, the wass density may be

increased by a factor a. that is,

m = a(At)*(1 + &) (:1.95)

where a > 1.

Convergence

Convergence to the static solution is deemed to have occurred when the following

quantities become vanishingly small (i.e. fall within a prescribed tolerance level):
1. difference between successive values of &

2. force f

In theory and practice, these conditions will be met almost simultancously and so only

one of the conditions needs to be monitored.

Results

Some results of computations conducted are presented in chapter 6.
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Chapter 5

Object-Oriented Program Development

5.1 Introduction

Object-oriented programming (OOP) is the latest development in software design
philosophy, with seemingly limitless potential. By way of introduction, we consider two

rather basic and fundamental questions:

(a) what is object-oriented programming?

(b) what are its benefits?

The first of these questions {what is OOP?) has no definitive answer, as evidenced by

the following characterizations!:

“My guess is that object-oriented programming witl be in the 1980’s what
structured programming was in the 1970’s. Everyone will be in favor of
it. Every manufacturer will promote its product as supporting it. Ev-
ery manager will pay lip service to it. Every programmer will practice it

(differently). And no one will know just what it is.” — Reutsch [2].

'compiled, in part, by Nelson [

126
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“Object-oriented is well on its way to becoming the buzeword of the 1980,
Suddenly evervbody is using it, but with such a range of vadically ditferent

meanings that no one seems to know exactly what the other is saying.” -

Cox [1).

“QObject-oriented has become a buzzword that implics ‘good’ program-

ming.” — Stroustrup [3)].

“T have a cat named Trash. In the current political climate, it would scem
that if I were trying to sell him (at least to a computer scientist), 1 would
not stress that he is gentle to humans and self-sufficient. living tmostly on

field mice. Rather, I would argue that he is object-oriented.”™ — King [4].

“A complete definition of what it means to be object-oriented is therefore
not possible, though we can perhaps judge when one language is more

object-oriented than another.” — Niestrasz [3].

This lack of a universal definition as to what makes a program object-oricnted stems,
in part, from the temptation to single out and herald that attribute of OOP that is
most relevant to one's need and application. Regardless of one’s definition, however,
there is 2 general consensus that OQOP represents a considerable improvement over the
traditional programming approach and is well on its way to becoming the de facto
standard.

The second question (what are the benefits of OOP?) is much less controversial.,

The superiority of OOP is based essentially on two powerful concepts: encapsulation
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and inheritance. Encapsulation refers to the process of combining both code and
data tnto a single entity to form a new data type called class while inheritance is the
iechanisin of deriving @ new class from an existing one. Encapsulation and inheritance
enable codes to be more readily rensed, specialized or generalized to solve new problems.
Reuse of existing code is a very cfficient way to reduce the time and cost of software
development. In addition, the tools of OOP allow for greater control over a program’s
structure and modularity.

The primary difference between the object-oriented philosophy and the tradi-
tional approach lies in the manner in which the functions apd data variables are or-
ganized and implemented. In OOP, data variables and the functions that operate on
them are grouped together as 2 unit and implemented as such while in the traditional
approach, functions and variables are treated as separate entities. The OOP approach
is based on the recognition that data variables and the codes that operate on them are
mutually dependent and co-exist. Clearly, object-oriented program design requires a
radical change in the thought process.

Object-oriented programming of the dynamic wheel-soil interaction problem is
highly desirable in view of the extensions, e.g. to incorporate tire flexibility and tread-
pattern, that will be required in the future. We also note that the validation of the
code will greatly facilitated by the organization of the program into self-contained
mini-programs (classes) that can be independently tested.

In the rest of this chapter, the fundamental concepts of OOP are highlighted and

applied to the development of an object-oriented control-volume-based finite element
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program for dynamic wheel-soil interaction, The C++ programuming lamguage {7, 8.9,

10, 11, 12, 13] is cmployed.

5.2 Fundamental Concepts

The fundamental concepts of object-oriented programming, namely encapsula-
tion, friends, inheritance, virtual functions, polymorphistu. operator overloading, con-

structors and destructors are described.

5.2.1 Encapsulation

Encapsulation, also known as data abstraction, is the combining of functions
and data variables into a self-contained single entity to form a new data type. This new
data type is called a class and a class variable is called an object. The relationship
between a class and an object is analogous to that between a data type and a variable.
The member functions of a class are known as methods and the data variables are
called instance variables. The term member will be used as a generic term to
denote a member function or a data variable.

Each member of a class has full access to any other member of the class. Access
to 2 member by a non-member of the class can be unrestricted, restricted or deniced,
depending on the specified access privilege. Each member within a class is declared
public, private or protected. A private member can only be accessed by members

within the same class. A protected member can be accessed only by members within
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. . bl -
the sate class and members of classes derived from this class®. A public member can

be accessed by any member of any class. The general syntax for class declaration ts:

class name

{
private:
// private members are declared here
public:
// public members are declared here
protected:
// protected members are declared here
5

The double slash // is a one-line comment symbol — evervthing to the right of it
is tgnored. Members are private by default. Thus, the access specifier private is
optional. Usually, data members are made private while the member functions are
made public, so that the data members can only be accessed by the member functions
of the class. This data-hiding capabilty is a very attractive and useful feature as it

guards against accidental or inadvertent corruption of data by external members.

5.2.2 Friends

Access to the private members of a class by a non-member of the class may be

obtained through the friend function mechanism. A member that seeks access to the

bl » . - -
“derived classes are discussed in section 5.2.3
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private members of a class is declared a friend of the class with the preface friend, in

the following manner:

class classl

{
public:
int datal;
void funci():
3

¢class class2

{
private:
float data2;
int func2();
friend void classi::funcl();
+;

It makes no difference whether a friend function is declared in the private or public
section of the class. In the above declaration, the member function funct of class
class1 is given access to the private members of class class2, natnely the data menber
data2 and the member function furc2. The friend function funcl is merely a friend,

not a member, of the the class2 family.
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All the member funetions of one class may be made friends of another class by

declaring the entire elass as a friend of the desired class as illustrated below:

class class2

{
private:
float dataZ;
int func2();
friend classl;
I

All the private members of ¢lass2 are now accessible to any member of ¢lass1.
Friends functions can be conveniently used to provide privileged access to more
than one class. Friend functions are particularly useful for providing quick fixes to
t.e implementation details of a class. The concept and use of friend functions is,
however, a rather controversial one since they break through the encapsulating wall
that is built around the private members of a class. As a general rule, a recurrent need
to use friend functions is a strong indication that the object-oriented structure of the

program is weak and needs re-organization.

5.2.3 Inheritance

Inheritance is the process of creating a new class from an existing one by adding
new members. overloading existing member functions, modifving access privileges, etc.

The new class is known as a derived class while the original class is refered to as the
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base class. Through inheritance, a well-tested code can be specialized or generalized

to solve new problems. A derived class is declared in the form:

class derived: private basel, public base2
{

// declaration of new members

In the derived class declaration, cach base class is prefaced by the access specifier
public or private. the latter being the default. The access specifier does not alter the
access status, within the base class, of the basc class members. The access specifier
pertains to the base class members inherited by the derived class.

With a public access specifier, the public and protected members of the base
class are public and protected members, respectively, of the derived class. The private
members of the base class remain private to the base class and are not aceessible to
the derived class.

With a private access specifier, on the other hand, the public and protected
members of the base class become private members of the derived class. The private
members of the base class, however, remain private to the base class and are inaccessible
to the derived class.

Note that the private members of the base class can only be inherited by the
derived class through the mechanism of friend functions.

In some instances, it may be desirable to dlter the access status of a base class

member within the derived class. Suppose, for example, a hase class member is trans-
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mitted to a derived class as a private member. This may be converted to a public or

protected member of the derived class as follows:

class base

{
private:
void  funrc0();
protected:
int funcl();
public:
void func2();
float func3();
h

class derived:private base
{
protected:
base::funci();
public:
base::func2();

};

In the above code, the protected and public members func1(), func2() and func3()

of the base class base are transmitted to the derived class derived as private members
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(func0 () is not transmitted at all). Within the derived class, fune1() s converted
to a protected member while fune2() is converted to a public member: fune3() is
not converted within the derived class and so remains a private member. In o similar
manner, base class members transmitted to a derived class as public wmembers can
be converted to private or protected members. This mechanism is known as access

declaration.

5.2.4 Virtual Functions

It is permissible to declare, in the derived class, a member function with an
identical name, - :turn value and argument list as a basc class member. The mechanism
of virtual functions is provided to invoke the desired member dynamically, i.c., at run-
time rather than at compile-time. The syntax calls for the prefacing of the base class
member with the kevword virtual. This declaration {virtual) is not required in the

derived class member:

class base

{
public:

virtual void func();

class derived:public base

{
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public:
void func();
}:
The desired function is sclected at run-time using pointers, as illustrated below:

int main()

{
base b;
derived d;

base *ptr;

ptr = &b;

ptr -> func(); // executes base::func();

ptr = &d;

ptr -> func(); // executes derived:func();

We note that the keyword virtual is necessary if the selection of the desired function is
to be done at run-time. This process is known as late or dynamic binding. Without
the virtual keyword, notwithstanding the use of pointers, the selection will be made
at compile-time — a process known as early or static binding. Dynamic binding
consumes less memory than static binding. Virtual functions are used to efficiently

invoke different versions of a base class function.
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5.2.5 Polymorphism

The term polymeorphism is adapted from Greek and means “having many
shapes’. In OOP, polyvmorphism {also known as function overloading) s the use
of the same name for two or more member functions of the same class. The nctions
must be distinguishable by the number and/or type of their arguments (calling parum-
cters). Traditional programming languages, it will be recalled, require that a ditferent
name be used for every function. Clearly, it is preferable, from the standpoint of clarity
and robustness, to use the same name for functions that perform similar actions on
different types of variables. The following code segment illustrates the use of the same
function name abs for the absolute value of an integer, a single-precision real numuber

and a double-precision number:

class absolute

{
public:
int abs (int);
float abs (float);
double abs (double);
3

The appropriate function, dependent on the calling parameter, is automatically selected

by the compiler. Polymorphism is often used to provide alternate constructors® to a

3constructors are discussed in section 5.2.7
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cliss,

5.2.6 Operator Overloading

Operator overloading is the usc of the same operator (e.g. +, —, *) to conduct
similar operations on different data types. For example, the use of the + operator for
integer as well as real number addition constitutes operator overloading. Using operator
overloading, matrix multiplication and addition, for example, can be implemented by

the familiar notation:
A=Bx*C+0D; // A, B, C and D are matrix objects
The syntax for operator declaration is:

matrix operator*(matrix& A);
matrix operator+(matrix& A);

matrix operator=(matrixk A);

5.2.7 Constructors and Destructors

A constructor is a member function with the same name as the class it belongs
to. Unlike normal member functions, however, a constructor is not explicitly called.
Ratlu;r, it is automatically invoked when a class variable, i.e. object, is declared. Con-
sequently, it is a convenient, and ofter used, method for initializing data members, as

illustrated below:

¢lass nodes
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int M, N;

node (int M, int N):

nodes::nodes (int m, int n)

=
1]

m;

The constructor could, equivalently, be defined in-line, alongside its declaration, as

follows:
nodes (int m, int n) {M=m; N=n};
The following object declaration

void main()

{

nodes x{(50, 30);

assigns the values 50 and 30 to the private data members M and N, respectively, of

object x of class nodes. Constructors, like other member functions, can he overloaded.
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A destrietor is also a member function with the same name as the class it belongs
to bat, unlike 2 constructor, it is prefaced by a tilde ~. When an object goes out of
scope, the construetor is antomatically tnvoked, Useful and common applications of
destructors include dealloeation of dynamic memory and closing of files at program
end. Whilst constructors and destructors have many of the characteristics of normal

member functions, they do have some unique features, for example:
1. They do not have return values, not cven void.

2. They cannot be inherited, though a derived class can invoke a base class’ con-

structor and destructor.
3. Coustructors cannot be virtual but destructors can.

4. Constructors and destructors are automatically invoked when objects are created

and destroyed, respectively.

5.3 Program Development

5.3.1 Introduction

The journey towards an object-oriented world of computational mechanics has
begun. In a recent paper entitled Object oriented programming in scientific computa-
tions: The begining of a new era, Filho and Delvo [14] presented a (preliminary) sketch
of the framework and basic clements of their proposed object-oriented finite element

program. It consists essentially of base classes element, material and matrix which de-
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fine, in somewhat general terms, the basie ingredients of a finite element analysis, The
framework pertains, specifically, to the conventional tinite element wethod, wherein
matrix manipulation (assembly, solution) constitutes an integral component,

Herein, we develop an object-oriented control-volume-based inite element pro-
gram for the solution of soil-structure interaction problems, in general, awd dynanmie
wheei-soil interaction problems, in particular. A necessary and very important tirst
step in the development of an object-oriented program is the design of a elass structure
for the problem. Desirable attributes of a class structure are simplicity and tHexibility,
Our proposed class structurc consists of two sets of classes. The first set pertains o
the run-time allocation of storage space for the nodal, elemental and control-voltme-
based variables. The second sct of classes constitutes the functions and associated
data for solving dynamic soil-structure interaction problems within the framework of

the control-volume-based finite element method.

5.3.2 Dynamic Memory Allocation

The heap provides, relative to the stack, a huge reservoir from which large
amounts of storage space can be drawn dynamically, i.c. at run-time. In a finite element
analysis, where the data requirements are often considerable, dynamic memory alloca-
tion is extremely useful. Run-time memory allocation yields, relative to compile-time
allocation, a smaller code size.

Dynamic memory for the nodal, elemental and control-volume-based variables is

allocated by class nodes, class elements and class cvolumes, respectively. Nodal
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ariables are coordinates, displacements, velocities and accelerations. Elemental vari-
ables are stresses, strains, density and mass. Control-volume-based variables arc mass,
forces and hour-glass momentum.

The methods and structure of classes nodes, elements and cvolumes are very

similar. Thus, we will discuss, in some detail, class nodes, listed below:

/* two-dimensional dynamic memory allocation for nodes */

#define type float

class nodes

{
protected:
typex* p;
int sl, s2, 1b1l, 1b2, ubi, ub2, i, j;
public:
nodes (int M, int N=1, int imin=0, int jmin=0);
“nodes (); |
type& node (int i, int j=0);
void initialize (type value);
}

nodes::nodes(int M, int N, int imin, int jmin)
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{
s1 = NM;
s2 = N;
1b1 = imin;
1b2 = jmin;
ubl = lbi+si-1;
ub2 = 1b2+s2-1;

if (1 (p = new typex[s2]))
{

cout << "Insufficient memory for nodes. Reduce M and/or N \n";

exit(1);

for (j=0; j < s2; j++)
if (1(p[jl = new typelsil))
{

cout << "Insufficient memory for nodes. Reduce M and/or N \n";

exit(1);

iritialize (0.0);
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nodes: : “nodes{)

{
for (j = 0; j < s2; j++)

delete p[jl;

delete p;

typek nodes::node(int i, int j)
{
if (1 <1b1 |] i >uwbl || j <1b2 || j > ubdb2)
{
cout << "Illegal array index (" << i << "," << j <€ ") ¥ K
"sent to nodes::node(int, int) \n";
exit(1);
)

return (p{j-1b2] [i-1b1]);

. void nodes::initialize (type value)
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for (j = 0; j < s2; j++)
for (i = 0; i < s1; i++)
PL10i] = value;
}

#undef type

Class nodes consists of constructor nodes, destructor ~nodes and metuber funetions
node and initialize. The required array size and lower bound array indices are
supplied to the constructor. Using the mechanism of default valués. a default lower
bound of zero is set. This feature provides considerable flexibility to the programmer.
Memory is allocated within the constructor nedes and deallocated by the destructor

~nodes. An arbitrary object x of class nodes, created by

nodes x(M,N);

allocates dvnamic memory for a two-dimensional array of size M by N for nodal variable
x, with the array indices taking on the default lower bound (0,0). {The upper bound
is, of course, (M-1,N-1}).

The member function node references the values of the array clements. For
example, the variable x.node(i,j) identifies the value of x at node(i,j). A check
is made to determine whether the indices (i,3) lie within the range supplied to the
constructor.

Member function initialize is used to initialize the array clements. The fol-

lowing statement
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x.initialize (2.0):

will assign the munber 2.0 to all the array elements of x.

Tle pre-processors #define and #undef are used to allow for an easy incorpora-
tion of the desired variable type (e.g float for single precision, double for double pre-
cision, int for integer). If #define type float isreplaced by #define type double,
for example, we obtain a double-precision dynamic array.

Objects of classes clements and evolumes are created and referenced in a similar

manner:

elements  sigxx(M,N);
cvolumes mass{M,N);
sigxx.elem(i,j) = 0.0;

mass.cvol(i,j) = 5.3;

5.3.83 Class Structure for Wheel-Soil Interaction

The framework of our proposed class structure consists of base classes GRID,
ELEMENT, INTERIOR, TRANSMITTING, BOUNDARY, CORNER, NEWMARIK,
WHEEL. PRINT and PLOT. These classés and their functions are presented in tabular
form in Table 5.1. Also shown are the memory allocation classes nodes, elements
and cvolumes, discussed in the previous section.

The wheel-soil interaction classes are further discussed below.

1. Class GRID discretizes an arbitrary-shaped computationa domain into quadri-

lateral finite elements, using the dynamic relaxation algorithm.
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Table 5.1: Object Oriented Program Design: Wheel-Soil Interaction

CLASS FUNCTION

nodes Allocates dynamic memory for
nodal variables

cvolumes Allocates dynamic memory for
control-volume-based variables

elements Allocates dynamic memory for
element-based variables

GRID Generates finite element mesh

ELEMENT Computes element-based variables and clement
contribution to associated control volunies

INTERIOR Motion and hour-glass control of interior nodes

BOUNDARY Boundary conditions and hour-glass control of
boundary nodes

CORNER Corner conditions and hour-glass control of
corner nodes

TRANSMITTING | Transmitting boundary forces and contribution to
associated control volumes

NEWMARK Time integration scheme

WHEEL Wheel-soil contact forces

PRINT Prints solution to a file

PLOT Plots solution on the screen
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o

. Class ELEMENT computes, thic clement-by-clement, the element-based variables
(i.e. stresses, strains, density, mass) as well as element contribution to the mass.

internal traction and hour-glass momentum of the associated control volumes.

Class INTERIOR computces the motion and hour-glass velocity correction of the

interior nodes.

. Class TRANSMITTING computes the transmitting boundary forces exerted on

the associated control volumes. It is used in association with class BOUNDARY,

where applicable.

Class BOUNDARY consits of four classes, namely BOUNDARY1, BOUND-
ARY2, BOUNDARY3 and BOUNDARY4, corresponding to each of the four
boundaries of the computational domain. Each of these BOUNDARY classes
Nsupplies the applicable boundary conditions and computes the forces on the as-
sociated control volumes or the motion of the boundary nodes (depending on
the boundary conditions). Also computed are the hour-glass velocity corrections,
if applicable, of the boundary nodes. This format, in conjunction with that of
class CORNER, discussed below, allows for the easy incorporation of any desired

boundary condition and makes the code readily adaptable to the solution of a

wide variety of soil-structure interaction problems.

. Class CORNER consits of four separate classes, namely CORNER1, CORNER2,

CORNERS3 and CORNER4, corresponding to each of the four corners of the

computational domain. Each of these CORNER classes suppiies the applicable
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=1

10.

corner conditious and computes the forces on the associated control vohwme or the
motion of the corner node (depending on the corner conditions). Coruer forces
computed within the BOUNDARY classes are simply passed on the CORNER
class. Also computed are the hour-glass velocity correction, if applicable, of the

corner node.

. Class NEWMARK is the time integration scheme used to integrate the equations

of motion.

Class WHEEL is provides the functions for determining the wheel-soil contact

forces. It is used in association with the surface boundary.

. Class PRINT prints specified results, e.g., soil drag, wheel sinkage, contact forees

and their stick-slip status, translational velocity.

Class PLOT plots specified results on the screen. This is particularly useful for

visualizing the deforming soil grid during wheel passage.
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Chaptsr 6

Results

6.1 Introduction

The dynamic wheel-soil interaction and the grid-generation equations were coded
in the C++ programming language, using object-oriented structure, in the manner de-
tailed in chapter 5. Borland C++ compiler was used. Computations were conducted on
486-microcomputers in the Civil Engineering and Applied Mechanies Micro-Computing
Facility.

The grid generation program was implemented as a stand-alone so it can be used
independently of the wheel-soil interaction problem. The wheel-soil interaction code
was tested, and successfully validated, in the context of a variety of transient problems,
including dynamic punch indentation [1}, dynamic soil compaction [2], transmitting
boundary effectiveness [3] and hour-glass control [4].

In this chapter, résults a.fe presented, first for the grid generation and then for a

wheel-soil interaction problem simulating aircraft landing on a soil-surface rumway.

151
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6.2 Dynamic Grid Generation

Four complex (i.c. irregularly-shaped) computational domains were used as test

cases, These are:
1. inclined surface
2. sinusoidal surface
3. circular
4. triangular

The results presented herein were obtained using the undamped dynamic relaxation
algorithm. The damped algorithm yielded essentially the same results. In all cases, a
tolerance level of 1077, a time increment At = 1 and a mass density factor a = 1 were

used,

6.2.1 Inclined Surface

The inclined surface domains, with surface slopes 1/10 and 3/10, are shown in
figs 6.1 and 6.2, respectively. The grid lines are packed near the surfaces with a packing

intensity factor B; = 0.2.
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Figure 6.1: Inclined surface domain with packing of grid lines near the surface
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. Figure 6.2: Inclined surface domain with packing of grid lines near the surface
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6.2.2 Sinusoidal Surface

The sinusoidal surface domains are shown in Figs 6.3 and 6.4 with the sinusoidal

surfaces defined by

2rnx

y = R(1 - cos 7 ) (6.1)

where R =1, n =3 in fig 6.3 and R =10, n =1 in fig 6.4. The grid lines are packed
near the surfaces with a packing intensity factor B; = 0.4. A sinusoidal surface could

be used to simulate a rough (i.c. uneven) soil terrain.

6.2.3 Circular Domain

The circular domain is shown in Figs 6.5 with no packing of the grid lines. The
circular domain could be used, in future extensions, to model a deformable wheel (i.e.
tire). A similar grid, generated for modelling fluid flow and heat transfer through a

circular duct, can be found in Lawal[3].

6.2.4 Triangular Domain

The tria.ngular domain is shown in Figs 6.6 with no packing of the grid lines.
A similar grid was generated by Lawal[3] for modelling fluid flow and heat transier

through a triangular duct.
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S

Figure 6.3: Sinusoidal surface domain with packing of grid lines near the surface

Figure 6.4: Sinusoidal surface domain with packing of grid lines near the surface
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Figure 6.5: Circular domain with no packing of grid lines

Figure 6.6: Triangular domain with no packing of grid lines
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6.2.5 Discussion
Effect of time step

Numerical experimentation revealed that neither the numerical stability of the
algorithm nor the accuracy of the results nor the rate of convergence is atfected by
the time increment At. This is entirely consistent with our formulation wherein the
stability of the numerical scheme is embodied, not in the time step as is usnally the case,
but in the mass density. The reason for this, it will be recalled, was to enable the use of
a time step that is independent of the evolving solution ficld and thus take advantage

of the relative simplicity of the constant-step central-difference tinte integrator,

Effect of mass density

The mass density can be modified through the factor of safety ¢ (the muss den-
sity varies linearly and proportionally with a). It was observed that the theoretical

optimum « value of 1 was indeed the most computationally reliable.

Effect of tolerance level

The tolerance level had a significant effect on the rate of convergence, as depicted
in Table 6.1 for the triangular domain. The sharp increase in the number of time steps
taken to reach convergence as the tolerance level is decreased was characteristic of all
the domains tested. As expected, the degree of orthogonality of the grid lines increases
as the tolerance level is decreased. Results obtained with tolerance levels of 107% and

10~° were practically the same.
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Tuble 6.1: Effect of tolerance level on convergence rate

tolerance | time steps
10~} 16
10-2 132
10-3 337
10~ 706
10-3 1311

6.3 Simulation of Aircraft Landing

6.3.1 Problem Parameters

The main gear tire of a Boeing 367-80 aircraft touches down on an unpaved soil
surface, with a velocity of 42.4 m/s (95 miles per hour} at an angle of 13.9 degrees
from the horizontal. The tire radius and width are 23 in (0.584 m) and 16 in {0.406
m) respectively. A vertical load of 9300 1b (41.366 kN) acts on the tire. A tire-soil
frictional cocfficient of 0.33 is assumed. These tire parameters were adapted from Pi[6].
The tire is considered to be highly inflated, 1.e., rigid. The ground-roll operation is
one of free-rolling wheel mobility, i.e., no external torque is applied to the wheel axle
(T = 0). The soil may, and is expected to, exert an interfacial torque on the wheel
cansing it to rotate as it travels along the soil surface. A w_heel mass of 10 1b (4.536
kg) is used.

Three different soils, adapted from Pi[6] and whose properties are listed in Ta-
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ble 6.2, were considered. The soils are identiticd AL B and C in order of inereasing
strength or, equivalently, deereasing deformability. The Young's modulus, Potsson’s
ratio and shear modulus are considered to be three independent parameters because
of the relatively low value of the shear modulus determined for the soils. The cone
index CI, averaged over a 6 in {152 mm) penetration depth is also indicatezl. The cone
index is defined, by the Waterways Experimentation Station (WES) of the U.S. Corps
of Engineers, as twice the force deeded to push a 30-degree cone having a base area ol
0.5 in? (322.6 mm?) into the soil. The cone index is, of course, a function of the depth
of penetration.

The computational soil domain, shown in Fig. 6.7, is 12 ft (3.658 m) long and
4 ft (1.219 m) wide. The discretized domain consists of 450 nodes and 396 clenents.
There are 45 equal-spaced vertical grid.lincs (7 = constant), munbered 0 through 4,
along the direction of travel of the wheel and 10 horizontal grid lines (j = constant),
numbered 0 through 9 starting from the soil surface. The horizontal grid lines are
concentrated towards the soil surface with a packing intensity factor B; = 0.3. The

wheel touches down on soil surface node 11, that is, node (11,0).

6.3.2 Solution

Results are presented for the time evolution of (1) soil drag, (2) wheel sinkage, (3)
contact nodes, (4) contact angle (length), (5) translational velocity, (6) translational
distance and (7) rotational velocity of the wheel. Also presented is a snap shot, at an

arbitrary time 0.02 sec., of (8) the nodal contact forces and their stick-slip status and
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Table §.2: Soil Parameters

PARAMETER | UNIT A B C
Cl pst 80 120 160
MPa 0.552 0.827 1.103
Es psi 1600 2500 4800
MPa 11.03 17.23 33.10
v 0.185 0.186 0.187
G psi 300 300 300
MPa 2.069 2.069 2.069
Es/E, 1 1 1
E-_g/?]] 1/3 0.7 0.7 0.8
P Ib-s=/in? { 0.000114 { 0.000127 { 0.000138
Mg/m* _1.218 1.357 1.475

(9) the velocity ficld within the soil domain. Finally, the effect of wheel radius on soil
drag and wheel sinkage is considered. The computations were carried out until the
waxinnun soil drag and wheel sinkage had, at least, been reached.

Figures 6.8, 6.9 and 6.10 present the time variation of scil drag ratio, defined as
soil drag/wheel load, for aircraft landing on soils A, B and € respectively. In these
ligures, soil drag represents the resultant horizontal force exerted on the wheel by the
soil and is considered positive in the direstion opposite that of the wheel travel. The
flnctuations in the soil drz3 predictions are due, in part, to the stick-slip phenomenon
and. in part, to the discrete nature of the mathematical model wherein new node
contact and node détachmcnt are accomparied by finite nodal force addition or removal.
Fig. 6.11 shows a third-order polynomial fit. to the soil drag data. Given the increase of
soil drag with soil strength, one is tempted to extrapolate and infer that in the extreme

case of a paved rigid surface, a higher drag would be encountered. With no sinkaige
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or surface motion. a different frictional coeflicicnt. potnt-contact ete., such a deduction
would clearly be unjustified. What is particularly significant in these results is the high
values of soil drag encountered.

Figure 6.12 shows the time variation of sinkage ratio (wheel sinkage/wheel radius)
for all three soils. Thesc are the actual numerical results, e, no datassimoothing was
performed. The maximum wheel] sinkage and the time at which it is obtained inerease
as soil strength decreases. The sinkage values are also high but not intolerable. Clearly,
such high values can be expected in view of the high impact speed and wheel load,

Figure 6.13 is a plot of the translational velocity of the wheel. The wheel un-
dergoes the most reduction in translational velocity on soil C until about (L037 second
when the velocities on soils C and B coincide. Between 0.037 and 0.053 second, the
velocity is least on soil B. However, the deccleration at time 0.055 second is greatest
on soil A, so that, subsequently, the wheel velocity becomes least on soil A.

Figure 6.14 shows that the wheel travel distance is greatest on soil A over the time
range of the numerical computations. The differences are, however, not substantial.

Figure 6.15 presents the rotational velocity of the wheel. The wheel rotates fastest
on soil C until about 0.02 second after which the angular velocity is greatest on soil B.
The angular velocity on A is increasing faster than, and ultimately surpasses, that on
B.

Figures 6.16, 6.17 and 6.18 depict, for soils A, B and C respectively, the soil
surface contact nodes as a function of time. The pattern of nodal contact formation

and detachment is clearly visible. At time 0.01 second, for example, nodes 13 through
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19 of soil A are in contact with the wheel. By time 0.03 second, these nodes have all
detached from the wheel and contact has been established with nodes 21 through 29.

The contact region, expressed in terms of the angular coordinates of the bounding
contact nodes, is portrayved in Fig. 6.19, 6.20 and 6.21 for soils A. B and C respectively.
Wheel-soil angular coordinate ¢ is measured clockwise with points directly below the
center of the circle ascribed an angular coordinate of 90 degrees. Figures 6.16, 6.17
and 6.18 are complementary to Figs. 6.19, 6.20 and 6.21, respectively. For example,
Figs. 6.16 and 6.19 show that the angular coordinate that corresponds to contact node
13 of soil A at time 0.01 sccond is 113 degrees. We note that the wheel-soil contact
region decreases with soil strength.

The normal and tangential contact forces exerted by the wheel, at time 0.02 secc.,
on the soil-surface contact nodes are given in Figs. 6.22. 6.23 and 6.24 for soils A, B
and C respectively. The contact force ratio is defined as the ratio of the contact force to
the wheel load. Also indicated is the stick-slip status of each contact node. A negative
value of tangential force indicates a force acting in the counter-clockwise direction with
respect to the wheel center. Thus, the contact node exerts a clockwise tangential force
on the wheel. As would be expected, the nodal contact force distribution peaks to
the right of the vertical center-line of the wheel. We also note that in contrast with
the tribology model of Yong and Foda [7] wherein it was implicitly assumed that the
stick and slip regions are continuous. the present analysis reveals that the stick and
slip zones can indeed be discontinuous with stick nodes occurring between slip nodes

and vice versa.



Figures 6.25. 6.206 and 6.27 show the deformed soil grid, at time 0.02 sec o sobls
A, B and C respectively. On close examination of these tigures, one finds that the
bottom transmitting boundary is displaced the most in the stiffer soil C and the least
in the softest soil A. The reason for this lies in the stress wave propagation speeds
withii the soils. The dilatational stress wave speed is grc:u.cst. in so1l C and least in
soil A. Accordingly, the stress waves arrive at the boundary of soil C most frequently
and hence cause the greatest distortion.

Figures 6.28 through 6.36 portray, in contour mapping and three-ditmensioual
formats, the horizontal and vertical components of the velocity field within soils A,
B and C at time 0.02 second. The three-dimensional plots illustrate guite vividly
the effect of the different wave propagation specds. The soil-surface disturbances, for
example, can be seen to be most extensive on soil C and least on A.

Figures 6.37 and .38 show the cffect of wheel radius on soil driag and wheel
sinkage, respectively. Clearly, soil drag as well as wheel sinkage decrease as the wheel
radius increases. This would suggest, therefore, that a low-presstre tire wonld perform
much better than a rigid wheel, in so far as minimizing soil drag and wheel sinkage are

concerned.
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Figure 6.7: Wheel approaching landing; initial soil grid
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Figure 6.8: Soil drag vs time: soil A
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Figure 6.9: Soil drag vs time: soil B
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Figure 6.10: Soil drag vs time: soil C
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Figure 6.27: Grid deformation at time 0.020 sec: soil C
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Chapter 7

Conclusion

7.1 Summary and Conclusion

This thesis has developed a mathematical model for predicting the high-speed
transient mobility of a wheel on an unpaved deformable soil surface. Motivation for
this investigation was provided by the problem of aircraft/space-shuttle landing on an
underlying soil terrain in an emergency.

The proposed control-volume-based finite element model incorporates the salient
features of the problem, notﬁny the wheel and soil inertia, soil strain-rate effects and
stick-slip behavior of the wheel-soil interface,

Constant-strain quadrilateral elements are used, in conjunction with polygonal
control volumes, in view of the resulting simplification in the discretization of the
momentum conservation equations. Hour-glass or so-called kinematic or zero-energy
modes, characteristic of constant-strain quadrilateral elements, are successfully con-
trolled by ensuring that the velocity field within each element is consistent with the
uniform strain-rate of the element. Although constant-strain triangular elements do

not undergo hour-glass deformations and would be equally simple to implement, they
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do have the disadvantage of being unduly stiff,

The discretization of an arbitrarv-shaped computational domain into quacdrilat-
eral elements, using bady-fitted orthogonal grid-generation techniques, is presented,
The governing equations are solved by the method of dynamice relaxation.

Wave-absorbing boundary conditions are imposed along the artificial boundary of
the truncated semi-infinite computational domain to prevent the reflection of inctdent
waves back into the interior. The viscous-type boundary conditions, desiguned to absorh
the incident waves, arc modified to account for the convective inertia terms,

The wheel-soil contact forces, hence soil drag. are determined solely on the basis of
the physics of the problem, i.c., no assumption regarding the distribution or magnitude
of the interfacial stresses is made.

Although a viscoelastic constitutive soil model is implemented, the proposed
model can incorporate any user-supplied stress-strain relationship.

An object-oriented program (OOP) of the control-volume-based finite clement.
model is developed. Animportant attribute of this new programming philosophy is that
cede can readily be generalized or specialized to solve othér problems. Thus, a variety
of soil-structure interaction problems of practical importance can, with relatively little
effort, be resolved within the framework of the code developed herein.

Results of numerical computations indicate that a rigid wheel, on impacting a
deformable soil surface at high speed, would encounter a rather significant soil drag
and undergo appreciable sinkage. Both soil drag and wheel sinkage decreased with

increasing wheel radius. However, because of the obvious constraints and limitations
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on the wheel size that can be used, it would appear that a rigid wheel or highly
inflated tire may not be suitable for aircraft landing on soil~—a low-pressure tire must

be considered,

7.2 Recommendations for Further Studies

1. In view of the cxcessive soil drag and sinkage encounterd by a rigid wheel, it is
reccommended that tire flexibility be incorporated into the proposed model. A
low-pressure tire would no doubt encounter much less drag apd sinkage. The
magnitudes, of course, necd to be determined so that a proper design of the

aircraft landing-gear system can be effected.

[3V]

. The effect of soil surface roughness should be investigated because of the high
probability that an uneven soil surface profile would be encountered in an actual

ficld situation.

3. It is also suggested that an experimental program be initiated to verify the ac-

curacy of the proposed model.
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7.3 Contributions

(7]

[41]

The following are considered to be the primary contributions of this thesis:

Development of a control-volmne-based finite element model of trausient hiph

speed wheel mobility on soil for application to ajreraft Luding and take-off,

Determination of the wheel-soil contact forees on the basis of the physies of the
problem, i.c., without any 2 priori assumptions regarding the spatial variation or

magnitude of the interfacial stresses.

Development of a rational basis for the analysis and computer ituplementation of

the stick-slip phenomenon along the wheel-soil interface.

Introduction of convective inertia terms into the viscous boundary conditions

imposed on the artificial boundary of a truncated semi-infinite domain.

Application of the dynamic relaxation method to the generation of body-fitted

orthogonal curvilinear grid over an arbitrary-shaped computational domain.

. Development of an object-oriented control-volume-hased finite clement cotuputer

code {in C++) for the solution of the dynamic wheel-soil interaction and grid-
generation equations. Thus, using the mechanism of inheritance, a variety of

practical soil-structure interaction problems can readily he solved.

-

g

Presentation of previously unavailable results on transient high-specd wheel meo-
bility on soil. This, it is envisaged, will provide future rescarchers the data ase

for validating their models.





