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ABSTRACT

The reconstruction of near-fields from far-field pattern data
is studied using a Fourier analysis-Bessel function technique. It
is found that the surface of a conducting cylinder may be accurately
located for pattern function data good to 3-4 decimal places, but
that translated systems involve some loss of accuracy due to
induced asymmetry. The information content of the scattering
system is studied, and shows particular relevance when the
reconstruction utilizes sectors of the 360° pattern function.
Further, bounds are derived for the range of Fourier coefficients
necessary for accurate reconstruction. Finally, excellent agreement
is found between the reconstructed near field and available

experimental data.
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INTRODUCTION

The subject of inverse scattering i; concerned with the
techniques used to relate scattering meas;rements to information
about the scattering object. It includes such areas of interest
as the determination of molecular, atomic, and nuclear structure;
radar object identification; sonar location of sea life and
submarines; geophysical and mineralogical research with patterned
explosions; and antenna synthesis from a desired radiation pattern.
The techniques include variations of scattering matrix inversion
(Paddeyev and Seckler (1963); Boerner, Vandenberghe, and Hamid (19715);
reciprocal kernel method; Fourier transform of the scattering matrix
(Weston and Boermner (1969)); and straightforeward electromagnetic
techniques suitable for analytic continuation (Mittra (1970); Weston
and Boerner (1969)). Also available for high-frequency limits is the
geometrical approximation (Weiss (1968)).

In this thesis we will treat in detail the inverse scattering
of cylindrical conductors using a FPourier analysis-Bessel function
technique that can be included in the analytic continuation
classification. We will be especially interested in the numerical
aspects of the process. The study is conducted in such a way that
the limitations of the techniques are emphasized. The first three
chapters discuss the classical scattering problem for conducting
cylinders, the relatively simple inverse scattering method, and the
changes that make the scheme computable. Chapter 4 discusses some

information and sampling concepts related to the problem, and
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Chapter 5 chrdhologs a number of studies of near-field
reconstruction from the far-field pattern function. Included
are several graphs which will be useful for assuring accuracy
in further reconstruction studies using éhis inverse scattering

technique.



CHAPTER 1

SCATTERING THEORY FOR- CYLINDERS

Scattering of electromagnetic radiation by a conducting circular
cylinder is one of the basic scattering problems, since there is an
exact analytic solution in the cylindrical coordinate system
coincident with the scattering cylinder. Kerker (1969) presents a
concise treatment of scattering by homogeneous circular cylinders,
and the special case of the conducting cylinder follows when the
proper limits are applied to the equations describing the general
solution.

For amy boundary-value problem involving a wave-type solution,

a complex wavefunction ¢ may be defined over the region of interest,
‘sub ject to the appropriate boundary constraints. For scattering
problems we normally let the exterior boundary of the space be at
infinity, and so a suitable boundary condition, known as the
radiation condition, is imposed on all possible wave solutions.

For a cylindrical geometry, this requires the magnitude of the
scattered wave function to decrease at least as quickly as 1/p.

These solutions must satisfy the wave equation:
(v KW = 0 ' (1.1)

V" is the Laplacian operator associated with the coordinate
system. In this study we will restrict ourselves to the case of
electric field parallel to the cylinder axis, which eliminates

polarization effects and enables us to treat the superposition of



Incident Wave

Scattered Wave

Figure 1.1 : Pictoral representation of the scattering process, show-
ing an incident plane wave together with a wave scattered
at an angle ¢ from the incident direction. The waves are
axially polarized.

.1ncident and scattered waves in a scalar manner. For our case of a
conducting cylinder, the solution is also subject to the boundary
condition =0 on all conducting surfaces.

Our experiment will be conducted using a plane wave as the
incident test function. Therefore we can proceed readily with an
analysis in terms of Bessel functions. For an incident plane wave
E-polarized along the cylinder axis, we choose a propagation

direction x, and let
Yo = B’ = Bl = B, KPP g, 2 M Lape™®

The last step shown is the definition of the exbansion in terms

of a Fourier-Bessel series (Harrington (1961)). The totral field at



any point outside the cylinder is the sum of contributions due to

the incident and scattered waves:

E.= &, + &S (1.3)

and the requirements imposed by the physics of the experiment
(scattered waves propagating away from the cylinder, and zero
total field at the conducting surface) allow us to construct a

scattered field of the form
s = i-h @) h@
Eo =% 2 ) auH., (kp)e (1.4)
ne =00

where the H:Jare Hankel functions of the second kind, and the a, are

a set of undetermined mode coefficients. The total field is simply

Be= E :Zi_o;r’“I]m (kp) + am He (ké]c.)w (1.5)

Because y=E,=0 at the cylinder surface, the undetermined

coefficients are readily found to be:

am = —Jin (k) [ Hn® (ka) (1.6)

The far-zone approximation to the scattered field uses a standard

asymptotic form of the Hankel function (Hildebrand (1962))

‘ . Ty — T
R .

Equation 1.4 then becomes:
L -t s -2
ES = BiE 7 o M eV (1.8
Le>=] s

and we define the far—-ficld pattern function by the factor




analogous to a Fourier sum:
o .
an
9D == tmed™? (1.9)
=z —co

Later, in developing the inverse scattering method, we will be
interested in translations of the pattern function. These may be

calculated with the following relation:

3'(@)"-3(@) eJkPoC:A(Q—%) (1.10)

Here @, is the radius between the origins and ¢° is the angle

g' (P

Po cos(P-¢)

Primed System

Original System

Figure 1.2 : Pattern function translation geometry. The signal
from the primed system must start later by the time
equal to the projection pocos(P-¢d) measured in periods.

from the original to the primed system. This relationship follows
from proper phase additions to a signal originating in the primed

coordinate system so that it has the same behavior at infinity as



the original signal. In Figure 1.2 the signal from the primed
system must start later by a time equal to the projection
;%cos@¢-q%) measured in periods. Therefore, as above, g'(¢)
represents the signal g(¢) with the projection added as phase.
The same result follows when a reverse translation is made from
the primed to the original system, except ¢%=¢5+ﬂ; Consequently
double translations arriving back at the first origin involve
no change of g(¢).

In the primed coordinate system the pattern function g'(¢)
may be Fourier analyzed in the same manner as Equation 1.9:

o2 r _ym®’
) == a, e (1.11)
j Me—-oo

and a scattered field solution can be constructed as in Equation 1.4:

£S5 S ™ad RE(p) ™ (L.12)

Incident Plane Wave

XY YR

Primed System

Original System

Figure 1.3 : Incident field translation geometry. The phase at P
must be the same in either coordinate system. Therefore
the field measured from the primed system must include
the phase factor pPocosggwhen a translation is made
from the original system.



A solution for the scattered wave may be built up in the region
of space beyond the minimum radius circle just enclosing the
scattering object (Mittra (1970)). The total field in this region
is then the sum of the incident field with respect to the primed
system and the new scattered solution (4(p',¢'). The translated

incident field is

e =k (powo?ow'waP ) (1.13)

Wine (P)@ = Eq =
= efjkP°C°4(b° . E;;

and this follows from a simple vector sum. See Figure 1.3. We
now write down the total field expression for the primed coordinate
system:
e . oo iy
= =E‘°"§_£“‘ e~ Jkpecoodo I;,(ke')«x-aﬁ(\-l,,,“’(ky)]d"*q’ (1.14)
This completes the electromagnetic theory we need for developing

an inverse scattering technique for cylinders.



CHAPTER I1

TECHNIQUE FOR INVERSE SCATTERING

When we look for ways to develop information about the identity
of a scattering object from measurements of the scattered field,
we rely upon techniques of the "inverse scattering' problem. In the
present study we want to determine the location and size of a
conducting cylinder. Taking the scattered far-field pattern, we
regenerate the near field along azimuthal and radial contours.
This theory is 2-dimensional (applicable to cylindrical structures)
which is reduced in complexity by assuming an incident wave
polarization parallel to the cylinder axis. For conducting cylinders
normal to the reconstruction plane, this means that we have
Dirichlet boundary conditions. We search for points of zero field
in the near-zone and record them. Since the cylinder is a convex
body, it is possible, using only the pattern function translations
given by Equation 1.10, to locate surface points within the regions
of valid near—field expansion (that is, within the space outside
of the minimum radius circle just containing the conductor).

The first step in this inverse scattering process is a Fourier

analysis of the far-field pattern:

an= be[{ @i g |+ Uzg@) ai“(pa(@] 2.1

As will be the policy regarding analysis throughout the paper, the
mathematics will be in complex form for genmerality, although

making complex measurements of a pattern function is an idealization.
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This course was chosen so that the loss of reconstruction accuracy
would be more method-dependent.

Once the set of Fourier coefficients is obtained, we can find
the field values at any point within the raﬁge of the reconstruction
method, Equation 1.5 or 1.14, depending on whether the cylinder
is centered or not. The first test that can be preformed is a check

of the matching of the Fourier sum to the original pattern function:

or o
[ ey - Z (Re trrcssn @ — Tmauy sinnl]
(g @ 2 (Reladrep + Tm ) oo n0[ {0 22

The smaller the number obtained from this operation, the more
accurately the decomposition relates to the pattern function. For
the cylinder, the numbers vary very quickly as translations are
applied to the pattern function, but from their magnitude, estimates
may be made of the reconstruction quality. We will discuss this

in detail in Section 5.c.

Because we consider only the cylinder in this study, the theory
as developed in Chapter 1 is sufficient for all pattern function
translations. More generally, this would be true for any convex
shape. We can strictly determine only those points of the scatterer
which lie on the circle of minimum radius completely enclosing the
body. The process of translation which allows more points to be found,
as in Figure 2.1, extends the region of determinable field into the
area invalid in the untranslated analysis (region I in Figure 2.1).
This i{s known as analytic continuation (Mittra (1970)).

Non-convex bodies may be analyzed by a process involving different
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Circles of Minimum
Radius Enclosing the

Cylinder

Primed System !!!||| )

Conducting Cylinder

Original System

Figure 2.1 : Geometry for analytic continuation. In the original
system, regions I and II are inside the circle of
minimum radius enclosing the cylinder. A translation
to the primed system allows computation of the field
in region I, which localizes the body to region II.

expansions of the wavefunctions for the region extending from the
origin to the circle of maximum radius just excluding the body.
This is explored by Imbriale and Mittra (1970), and is not of

interest in the present study.

11
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CHAPTER IIIX

METHOD FOR COMPUTATION

For this study, we chose a group of cylinder sizes within the
range of practical microwave experimentation. Radii varied from

0.25A (ka=1.57) to 4.0A (ka=25.12). See Figure 3.1. A complex

O 00000

=, k= i, ke ke Ol

A A
a=0.25\ a=0.50A a=1.0A a=1.1A a=2.0A a=4.0A
ka=1.57 ka=3.14 ka=6.28 ka=6.91 ka=12.56 ka=25.12

Figure 3.1 : Diagram showing the relationship between wavelength and
radius for the cylinders studied in these reconstruction
experiments.

function subprogram HANK (Howarth (1970)) was used to compute the

values of Hﬁl the Hankel function of the second kind, and the initial

set of Fourier coefficients a, was constructed as:
a, = -Real (HANK(n,ka))/HANK(n,ka) (3.1)

with k the wavenumber and a the radius.

Pattern functions generated from this set of coefficients we;e
tabulated at 3° intervals from -180° to +180°, a scheme which
parallels the discrete measurement scheme of a laboratory experiment,
although the interval was chosen to satisfy a one-page output

requirement and a consideration of computational necessity. Sce



Incident Plane Wave

-__T____-jr___-___-_

Figure 3.2 : Representation of angles in the azimuthal reconstruction

process. The plane wave is incident from the left. A is
the direction to a reconstructed field point, and in the
program is measured in integral units of 30, with NA=1
for -180° and NA=121 for +180°. B is the direction of a
translation, measured as an integer from 0°.

Figure 3.2 for the angular measurement plan. In Chapter 4 we will
discuss the a priori, or structural, information aspects of this
scattering problem, and we will see that a ka=6.28 cylinder has
four pairs of degrees of freedom, meaning that the radiation is
equivalent to four complex oscillators. From this, 121 data points
for 360° indicates 30 data points for each pair of degrees of
freedom, a good prediction for accuracy.

The most important differences between the theory explained

in Chapter 1 and any computational scheme based on it are the

13
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limitations on the number of terms in the sums, and the error
introduced in numerical procedure. The inverse scattering programs

accepted as input data the tabulated far field pattern function

IS o aroaeay. 2y =121
GPHI(I) = 37 ap of" (3T-283) =) (3.2)
Kem—iS I=1

corresponding to Equation 1.9. With these limits, the input pattern
function for cylinders as large as 1.1A radius was built from a

set of Fourier coefficients which included all those non-zero to

6 decimal places. See Figure 3.3. Aspects of reconstruction
degradation due to the coefficient limitations will be discussed

in Chapter 5.

ka (k=6.28)
25.12 —
18.84 — Real Part
Imaginary Part
12.56 *
6.28 — //f/f:
1
‘
3‘\\'Cutoff for “Input Data
]
]
1

] I |
10 20 30

Order of Fourjier Coefficients

Figure 3.3 : Diagram showing the order necessary to include all non-
zero 6 decimal place Pourier coefficients. Note that if
n is the order, the total number of complex coefficients
involved is 2n + 1.
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The generation of Fourier coefficients and the subsequent
construction of a pattern.function whose values are complex numbers
raises a question about possible measurement schemes, since a
practical measurement of the far—field yields only an amplitude
pattern unless certain special things are known, for example, the
phase of the radiated signal and the precise trajectory of the
measuring device with respect to the radiating object. To make
an amplitude measurement you need only be in the far-zone with
a reasonably accurate distance and direction figure, while the
phase measurement requires distances precise to a fraction of
a wavelength. Since one can never make true microwave far-field
measurements in the laboratory, the complex (phase-containing)
far—field pattern figures generated by the Bessel function thcory
contain more information than a real experiment might. But for this
analysis we should use the complex figures rather than their
magnitude alone, because the purpose of the study is to judge
how the method itself brings about inaccurate reconstruction
results.

Quite simply, the reconstruction program takes the pattern
function and generates a set of Fourier coefficients that
reproduce it. The bulk of the program is a series of tests, checks,
and methods for preserving numerical accuracy, and a sequence of

near-zone field magnitudes are plotted according to either an

azimuthal or radial plan. Interpretation of these graphs results

in information about the scattering ob ject.

Translations of the pattern function, to represent the far-field



pattern of a cylinder moved away from the origin, are computed
using the method of Equatién 1.10. A subroutine TRANSG preforms the
operation on the 121 point data set. Translation parameters involve
only the radial distance and angle between the old and new
coordinate systems.
The reconstruction of the a, from the pattern function uses a
more detailed set of data, where the normal group of 121 foints
has been enlarged to 361 by an interpolation subroutine EXPAND.
Presumably this causes a better fit in regions of rapidly varying
pattern function values. The reconstruction accuracy check described
by Equation 2.2 is tested in a subroutine VARIA, which works
with the new a, and the original 121 point set of pattern data.
No attempt was made at using the VARIA criterion as the basis of
an optimization scheme for the a,, although such a technique might
be developed by treating the number returned by VARIA as a function
of the a, vector and finding a local minimum by an iterative process.
The limits of the regenerated Fourier coefficients present little
problem for ;n-axis scattering, since there is perfect reconstruction
to the 4th or Sth decimal place, and coefficients originally zero
are regenerated as 0.000000 or +£0.000001. If the field is being
reconstructed near the conducting surface, such numbers can be
omitted. Once translations are made, however, the order of
coefficients necessary for such accuracy goes up very quickly.
For the 0.25A radius cylinder, a Fourier coefficient order of 4
provides good on-axis reconstruction. A translation of 0.05)\ makes

it necessary to use an order of 6 to include the significant

16



coefficients, even though this system fits within a circle of
0.30A radius. An order of 6 is sufficient for a centered 0.50A
radius cylinder. This matter is treated quantitatively in
Section 5.c. It should be noted here th?f a Fourier coefficient
order of 6 implies a coefficient vector of dimension 13, to
include the +,-, and zero orders. Figures in the programs

use the vector dimension rather than the single-sided order.

Two types of output scans are used, the radial and the azimuthal,
and an attempt was made to automate the location of scatterer
points with the azimuthal scans. The field in the near-zone
is reconstructed for successively smaller rings, and once a field
value less than a particular cutoff is found, the program
sequences the radii to the smallest circle just containing the
scatterer. This works well for on-axis cylinders, but for the
other cases, false zeros and inaccuracies cause it not to be
worth the effort. Radial scans provide a better sort of information,
as can be seen from Figures 5.e.2 and 5.e.3, but they require
more initial guesswork in setting up the off-axis problem. A unit
circle 3.5 units from the origin subtends only 30° of arc.

All programs and subroutines used for this study are listed

in the Appendix.

17
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CHAPTER IV

INFORMATION CONCEPTS

Any practical method of inverse scatgering must make reference
to a spatial information theory, since the process of reconstruction
from a set of sampled points is statistical. Purthermore, since we
expect to recover scattering object detail, the wavelength of the
incident test field must be considered with respect to the object
dimensions. Perhaps this is most easily explained by repeating an
analogy due to Sir Arthur Eddington, as quoted by Gabor (1961):

“If an icthyologist casts a net with meshes two inches wide for
exploring the life on the ocean, he must not be surprised if he
finds that 'no sea creature is less than two inches long'".
.Gabor (1946) and MacKay (1950) were among those primarily
responsible for the development of quantal information concepts, and
Gabor's earlier paper was the foundation for the extensive
communications applications by Shannon (1948,1949). Of particular
interest to this study, Gabor dealt with the infcrmation content
of light beams, and his method for calculating the number of
degrees of freedom in them can be directly applied to the
scattering problem.

Recently, Winthrop (1971) has developed a pseudopotential
theory for the propagation of structural information (the a priori
information which comes from a knowledge of the degrees of freedow)
and this seems that it will outline methods for the more complete

analysis of diffraction and scattering problems. Relationships
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about the structural information at different cross-sections of
the field are found by the introduction of an information flow
vector. Tubes of information flow are then postulated as being
perpendicular to the surfaces of constant pseudopotential, in much
the same way that field lines run normally between electrostatic equi-
potential surfaces. The theory has analogies to Huyghens'
constructions and fluid mechanics, and perhaps fluid models can be
used to analyze situations too complicated for the pseudopotential
theory itself. However, to begin with, we must address ourselves
to the points where these ideas may be of use in the present study.
The idea of quantified information and the use of "missing
information" enables the communications engineer to set design
characteristics 5nd analyze the behavior of his systems, because he
.is dealing with a probabilistic process that has both structural
and metrical aspects: he expects messages within a certain codeset,
and his receiving equipment is designed to discriminate within the
expected range of frequency, voltage level, phase, and so forth.
In electromagnetic theory, the precise description of certain
quantities, such as ¢ and Y¢, leads to a complete exact solution
for the fields involved. In this case the a_priori (structural)
information results from a knowledge of the geometry and the
physical laws. On the other hand, a specificatiom of the properties
in a specific area of the field usually does not lead to a solution
which describes the remainder of the field and its sources. The
inverse scattering problem is beset with this difficulty, and we

must therefore find a way to associate field information with



bounds on solution precision: bounds that vary with the initial
information. We will then be able to investigate with more
precision such problems as the calculation of points in the far-
field from select near-field points. In particular, it may help
make unnecessary the 360° measurements required for accurate
Bessel function analysis by providing confidence in the accuracy
of discrete systematic measurement patterns suited to Cartesian
recording equipment.

Besides sampling, there is another way information concepts
may be applied. A scattering system may be considered as a state
space, and using analogies to statictical mechanics, we can

work from the fundamental invariant

Entropy + Information Content = Constant . (4.1)

(MacKay (1950)), which is simply the relationship between
unstructured and structured knowledge within a set of boundary
conditions. In form it expresses the yin-yan principle that what
we know plus what we don't know about the system defines the whole
(sometimes with a little of the second in the first and vice-versa,
too!). The two gub-classes of information, the structural (a_priori)
and information from measure (a posteriori) can then be acted upon
to change the entropy (disorder).

Quantities of information on structure for light beams (and
electromagnetic waves in general)‘are directly related to the
degrees of freedom for a system (MacKay (1950)). For a monochromatic

beam, their number may be calculated from the relation derived

20
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by Gabor (1961):
P = 2X 2XO0Object Area X Accessible Fourier Area (4.2)

where the first 2 accounts for the complex nature of the optical
disturbance, and the second for polarization. In the cylindrical
scattering problem, both 2's are suppressed because we wish to talk
of numbers of oscillators (themselves complex) and because the axial
polarization never introduces a transverse electric field. To keep
matters clear, we will always use the terms ''complex' or "pairs"
when referring to an equivalent number of oscillators and the
associated deg;ees of freedom.

For the two-dimensional scattering problem, the calculation
of the number of degrees of freedom must account for a difference
.in system orientation from the light-beam case: the object area and
Fourier transform space are one-~dimensional. From any direction
in the two-dimensional space of the cylindrical scattering
problem, the object area is the diameter 2a. The maximum accessible
Fourier area is then the diameter of the circle of radius n/)\, where
N is the refractive index. With only the axial polarization

considered,
N = 2a X2n/\ (4.3)

is the number of oscillators necessary for an equivalent radiation
pattern. We can verify the validity of this figure with the following
thought about sampling theory: scattering by an object %A in

diameter can provide no information about the object detail. Prom



actual practice, we know that in scattering problems this size
object can be replaced by a single line of current, or omne

oscillator. Therefore, when a=%A and n=1,

N =2\N4X2/A =1 4.4)

we find that we have indeed provided the correct number of

complex degrees of freedom. For the cylinder sizes discussed in

Number of Number of True
Cylinder Radius a Oscillators N Degrees of Freedom F
a=0.25\ N=1 F=2
a=0.5\ N=2 F=4
a=1.0A N=4 F=8
a=1.1A N=4 .4=5 F=8.8=9
a=2.0A N=8 PF=16
a=4.0A N=16 F=32
.Table 4.1 : Relationship between cylinder size, number of degrees

of freedom, and equivalent number of oscillators for
the inverse scattering study.

this study, Table 4.1 shows the tabulations from Equations 4.2 and 4.3.
Some application of these numbers is found in Section 5.d, where
reconstruction from sectors of patte?n function data is treated.

To the extent that it is found here, information theory provides
some assurance that the experiment is being conducted properly. It
is hoped that the ideas may find application beyond sampling, and
that the behavior of diffracting and imaging systems can be
numerically tied together with ubiquitous field effects, such as

the nulls and Airy rings.

22



CHAPTER V

RESULTS OF THE INVESTIGATION

Five aspects of the reconstruction problem were studied, and
they are each treated under their own subheading in this chapter.
However, before proceeding it is necessary to scale a particular
coordinate system extensively used in the following sections. The
azimuthal field reconstructions are in real space; so the
distance from -180° to +180° is a function of the radius, 2nr.
Presenting these graphs in their true scaled form was considered

confusing, so the alternate form of Figure 5.1 was chosen. The

r=1.5

T I T
-180° -90° o° +90° +180°

Figure 5.1 : Coordinate system for azimuthal field plots.

horizontal scale runs from -180° to +180°, and the radius is
indicated in the upper left-hand corner. The vertical scale marker
indicates a field magnitude of 1.0, the magnitude of the incident
plane waves. 1f one wished to construct a graphic model of the
field, the horizontal scale would have to be expanded in

proportion to the radius.

23



S5.a : Pield Reconstruction for Centered Cylinders.

The diagrams in Figure 5.a.1 show a sequence of reconstructed
field magnitudes for scattering by a 4.0A radius cylind;r. As the
radius ap?roaches that of the cylinder itéelf, the field settles
to zero, indicating a returned conducting surface. Because the
pattern function for this-cylinder éoes not contain complete
information (see Figure 3.3), there is in the field a periodicity
which is associated with the Fourier coefficient order. However,
the reconstruction is approximate (see Figure 5.b.4), and so the
features of the returned field may be noted. Close to the +180°
positions at r=4.25, a peak in the standing wave is evident. This
is expected since a small portion of the cylinder reflects the
incident wave like a nearly plane surface. In the 0° direction,
the average of the field is a minimum, indicating the shadow
region of the cylinder.

Figure 5.a.2 shows a sequence of azimuthal field reconstructions
for a 1.1A radius cylinder. Now the reconstructiong are in the
"good" (r=2.60; r=2.10) and the "very good" regions shown in
Figure 5.b.4. Again, as the radius of the reconstruction circle
approaches the cylinder radius, the magnitude becomes a smooth
function which settles to zero. Reconstruction for radii less
than the cylinder radius briefly appears to be symmetric with that
for radii above it, but, in diagrams not shown, rapidly expands
into saturation by r=0.5. The feature of the drifting peaks in
the sequence simply represents a geometrical phenocmenon: as the

radius decreases the circular contour intersects fewer standing
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waves about the cylinder.

The pattern function data is altered for the reconstructions
shown in Figure 5.a.3. These new pattern functions represent
measurement data that might be supplied by increasingly less
accurate equipment (6 decimal place accuracy is beyond the limit
of practicality for normal equipment). We see that these
degradations do not affect reconstruction at r=1.60, but that
the data accurate to 2 decimal places causes inaccurate reconstruction
at radii less than this.

Noise added to the pattern function data provides the
reconstructions in Figure 5.a.4. Again, except for noise with
0=0.05, the changes do not affect reconstruction at r=1.60.
However, even the noise with 0=0.0005 affects reconstruction at
'r=1.10'although the field behavior is obvious at this noise level.
We may conclude that reconstruction will be accurate with pattern

function data good to 3-4 decimal places.
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r=4.50 r=4.125

r=4.40 r=4.10

VaV.VoN
=4.0625
r=4.0313

_w

r=4 .00

Figure 5.a.1 : Sequence of azimuthal field reconstructions for the
4\ radius cylinder. The Fourier coefficient order is
15. Note the standing wave peak at r=4.25.
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r=2.60 r=1.225

r=2.10 r=1.20

r=1.70 r=1.1625

r=1.50 r=1.10 ’
. .

r=1.35 r=1.00

Figure 5.a.2 : Sequence of azimuthal field reconstructions for the
1.1A radius cylinder. The Fourier coefficient order
is 15.



A fr=1.60

A Ir=1.35

AR A4

A N
[ANANE

ANDANE R4

Figure 5.a.3a

Azimuthal field reconstructions for the 1.1A radius
cylinder. The Fourier coefficient order is 15, and the
reconstruction is at r=1.60 (left) and r=1.35 (right).

Cases: A.
B.
C.
D.
E.

Original 6 decimal place data.
Roundoff to 4 decimal places.
Truncation to 4 decimal places.
Roundoff to 2 decimal places.
Truncation to 2 decimal places.
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Figure 5.a.3b :

E\N\M'V\ANVWVWW\M/WV\MNW\N

Azimuthal field reconstructions for the 1l.1A radius
cylinder. The Fourier coefficient order is 15, and the
reconstruction is at r=1.1625(left) and r=1.10(right).
Cases: A. Original 6 decimal place data.

B. Roundoff to 4 decimal places.

C. Truncation to 4 decimal places.

D. Roundoff to 2 decimal places.

E. Truncation to 2 decimal places.
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r=1.60 r=1.69

—Jr=1.35

S
N>
K

r=1.10 r=1.10

!

Figure 5.a.4a : Azimuthal field reconstruction for the 1.1A radius
cylinder. The Fourier coefficient order is 15.
Cases: Left. Original 6 decimal place data.
Right. Gaussian noise added. £#=0.0, 0=0.0005.

Saturation

Figure 5.a2.4b : Azimuthal field reconstruction for the 1.1A radius
cylinder. The Fourier coefficient order is 15.

Cases: Left. Gaussian noise added. #=0.0, 0=0.005.

Right. Gaussian noise added. #=0.0, 0=0.05.
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5.b : Fourier Coefficient Orders.
L

Calculating the near—field while changing the limits of the
Fourier sum provides information about accurate and inaccurate
reconstruction. In Figure 5.b.1 the reconstructed field for a
1.0\ radius cylinder is shown at several radii for three different
Fourier coefficient orders. At r=3.0 and r=1.5 the order 5
reconstruction contains no real information, while the order 10
plot looks first 1like a highly degraded, and then a slightly
degraded version of the expected field. At r=3.0 the order 15
reconstruction is approximate, and at r=1.5, it is very good. As
the radius of the conducting surface is approached, all three limits
provide good results.

Reconstructions for a 0.25A radius cylinder are found in
Figure 5.b.2. At r=8.0 there is nothing believable about the
returned field for any of the coefficient orders. At r=1.0 the
order 7 and order 15 reconstructions are similar, with the latter
appearing to be the best choice. At r=0.75 the order 7 plot seems
best, while the order 15 reconstruction is just beginning to
blow-up. As r approaches 0.25 the order 3, 5, and 7 reconstructions
provide good results, while the order 15 plot has saturated.

These observations bring out an important detail which may
be converted into a criterion on the Fourier coefficient order
necessary for good computation of the reconstructed fields. The
best angular resolution for a circular pattern is related to the
order of the Fourier sum, and the best linear resolution along

the circumference is related to the angular resolution. Doubling



the radius doubles the circumferential length, so.a detail of
specific length on each circle requires a higher Fourier coefficient
order to resolve it on the larger one.

For plane wave scattering, we may approximate the Fourier
coefficient order necessary for reconstruction at any radius by
determining the percentage of the circumference intercepted by
360° phasefronts at the point they are nearly normal to the circle.
See Figure 5.b.3. This defines the region of greatest angular
variation. Provided the radius is greater than the wavelength,

the chord B and arc A are nearly equal. Therefore,
n=2mr/A (5.b.1)

is a measure of the circumference in terms of arc length, and
should be the Fourier coefficient order necessary to reproduce
a circular function whose greatest angular frequency has an arc
period A.

In Figure 5.b.4, one of the important results of this study,
the above criterion is plotted together with bounds on the range
of good reconstruction, a composite of the information from this
section and Section 5.e. We see that the criterion of Equation
5.b.1 coincides with the upper bound. Further studies can make
use of this in order to be within a region of good reconstruction

at any specific distance from the origin.
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IS-W 15-\ /

Figure 5.b.la : Azimuthal field reconstructions for a 1.0\ radius
cylinder at r=3.0 (left) and r=1.125 (right). The
Fourier coefficient order is indicated in the diagram.

.5 Jr=1.5 5 §r=1.0
10 - 10
15 15

Figure 5.b.1b : Azimuthal field reconstructions for a 1.0A radius
cylinder at r=1.5 (left) and r=1.0 (right). The
Fourier coefficient order is indicated in the diagram.



34

r=1.0

15

Figure 5.b.2a

Azimuthal field reconstructions for the 0.25\ radius
cylinder at r=8.0 (left) and r=1.0 (right). The
Fourier coefficient order is indicated in the diagram.
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3] r=0.75 3 Jr=0.2813

\ /_
7 7
- -
\ /
15 15
- =
Saturation

Figure 5.b.2b : Azimuthal field reconstructions for the 0.25\ radius
cylinder at r=0.75 (left) and r=0.2813 (right). The
Pourier coefficient order is indicated in the diagram.
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Circular Cross-
Section of the Field

S N
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1
1>

Region of Highest
Angular Frequency

|
— > —>

™~

f Linear Cross- /// i
Section of the Field Phasefront

Figure 5.b.3 : If a cross-section of a plane wave field is made
along a circular contour as shown in the diagram,
the highest angular frequency occurs where the circle
is intersected by the diameter parallel to the
phasefronts. From this we can estimate the Fourier
coefficient order necessary to reconstruct the
cross-section.




37

Radius
it £ A
(units 05 o)

e Insufficient n=2nr /A
Information

4.0 —

e Approximate
3.0_] PP

2.0 ® Very Good

® Saturation

. T T
10 _ 20 30

Order of Fourier Coefficients

Figure 5.b.4 : Diagram showing the Fourier coefficient order
necessary for good reconstruction at specific
distances from the origin. The bounds are obtained
primarily from the radial reconstructions of Section
5.e. The upper bound coincides with Equation 5.b.1.
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5.c : Translations of the Pattern Function.

When the coordinate system is centered on the cylinder axis,
the reconstructed field can accurately return the position of the
conducting surface. If the coordinate system for the reconstruction
is displaced from this axis, the accuracy decreases. Azimuthal
reconstructions for very small translations appear nearly
identical to their untranslated counterparts, but once the
translation distance becomes more than a few percent of the
cylinder radius a definite character governs the surface of
minimum field. In Figure S:Cfl a translation of A£,=0.28 for a
1.0\ radius cylinder shows a parabolic curve in the surface of
minimum field. The surface should indicate minima at points near
the cylinder. Strictly speaking, the analysis is nof valid for
reconstruction radii less than r=1.28 (the minimum radius enclosing
the cylinder) but there is no saturation over the region shown
in the diagram.

This raises the question of how much information is lost in
translating a pattern function. In Pigure 5.c.2 the order necessary
to include all non-zero 5-6 decimal place Fourier coefficients
is plotted against the minimum radius enclosing the cylinder
for translated systems. Note that the untranslated cylinder
requires 10 coefficients. These points form a slight upward curve
which is well within the bounds determined in Section 5.b. The
translation of Figure 5.c.1 fits right in this range, so the
alteration in the shape of the returned conducting surface

depends on degradations in the translated pattern function, and
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not on an insufficient coefficient order. Similar conclusions
can be drawn from Figures 5.c.3 and 5.c.4, where a 0.25\ radius
cylinder has been translated with #,=0.04.

While the information presented in'Figures 5.c.2 and 5.c.4 is
useful in determining a proper coefficient order for translated
pattern functions, an analysis of the values generated by VARIA
provides more information about the usefulness of the translated
pattern functions themselves. Recall that VARIA preformed the
operation described by Equation 2.2: a test of fit between a
pattern function and a set of Fourier coefficients derived from
it. Figure 5.c.5 shows the values of this subroutine plotted
for many translation parameters of a 1;0A radius cylinder. The
_Pourier coefficient order is 12. From Figure 5.c.2 we expect
.good results up to a minimum radius of r=1.2, or Py=0.2. For
180° in Figure 5.c.5 this is exactly the case: the curve makes a
sharp upward bend at this point. However, translations at angles
other than +180° and 0° causes sufficient asymmetry in the
regenerated pattern function that the values of VARIA become
orders of magnitude greater than those for translations along
the incident direction. The mechanism for the translations
themselves is tested by preforming double translations, out to
a given point and back again, without calculating the new
Fourier coefficients in the meantime. As we can see from the
line of stars, théy accurately return the value of VARIA for Py=0.
Therecfore, the degeneration by translations from the preferred

direction (the incident wave direction) is related to the
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computing of the new Fourier coefficients. When the preferred
direction is aligned with the pattern function symmetry axis
(as in 180° or 0° translations) the regenerated coefficients
match the pattern function. When translétions at other angles
are preformed, the pattern function symmetry is destroyed, and
the test of Equation 2.2 indicates serious mismatching. For the
data of Figure 5.c.1l, VARIA returned a value of 36.45, a figure
9% orders of magnitude above the figure for a centered coordinate
system. .

In FPigure 5.c.6 some values returned by VARIA are plotted
for translations involving three cylinder sizes. These are for
optimal translations, with ¢5=180°. The 4.0A radius cylinder
shows mismatching due to the incomplete character éf its pattern
function (see Figure 3.3). The 1.0\ radius cylinder Gas discussed
above. From Figure 5.c.4 we expect the curve for the 0.25)\ radius
cylinder (Fourier coefficient order 7) to turn upward near P,=0.05,

and it improves on our guess by remaining flat to £, =0.10.
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Figure 5.c.1

Reconstruction in a coordinate system translated
from the axis of a 1.0\ radius cylinder. ¢,=32° and
Py=0.28. The Fourier coefficient order is 15, and
the radius varies from r=1.4 to r=0.8. Low points

in the azimuthal scans are indicated by the heavy
lines.
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Figure

Figure 5.c.2 :

I I | |
10 20
Order of Fourier Coefficients

Translations of a 1.0\ radius cylinder. Values of the
minimum radius enclosing the cylinder vs. the Fourier
coefficient order necessary to include all non-zero

5-6 decimal place coefficients are plotted with the
bounds of Figure 5.b.4. The star indicates the position
of the reconstruction in Figure 5.c.l.
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Figure 5.c.3

Reconstruction in a coordinate system translated
from the axis of a 0.25)\ radius cylinder. ¢b=-6° and
I%=0.04. The Fourier coefficient order is 7, and

the radius varies from r=0.30 to r=0.23. Low points

in the azimuthal scans are indicated by the heavy
lines.
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5 10 15
Order of Fourier Coefficients

Figure 5.c.4 : Translations of a 0.25) radius cylinder. Values of the
. minimum radius enclosing the cylinder vs. the Fourier
coefficient order necessary to include 2ll non-zero
5-6 decimal place coefficients are plotted with the
bounds of Figure 5.b.4. The star indicates the position
of the reconstruction in Figure 5.c.3. '
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Values returned by subroutine VARIA for translations
of a 1.0\ radius cylinder. The Fourier coefficient
order is 12. The angle @, is indicated in the diagram.
Double translations (out from and back to the cylinder
axis) are indicated by the stars.
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Pigure 5.c.6 :
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Values returned by subroutine VARIA for translations

of 0.25)\, 1.0\, and 4.0A radius cylinders.

$,=180°.

The Fourier coefficient order is 7 for the first case,
12 for the second, and 15 for the third. The pattern
function data for the 4.0\ case is not constructed
from all the non-zero 6 decimal place coefficients.
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S.d : Reconstruction from Sectors of Pattern Data.

In Figures 5.d.1 and 5.d.2 we can see how the reconstruction
process improves as larger angular sections of the pattern data
are included in the analysis. Recall that 121 data points have been
used to correspond to the 360° pattern function. We can see from
the diagrams that even the removal of the two endpoints from the
data set causes noticeable changes. In Figure 5.4.1 (r=1.5)‘the
field for 354° (119 of the full 121 points) is only a bit more
lumpy than the 360° case, but as the radius decreases, the fine
structure dominates the pattern. Compare this with its counterpart
in Figure 5.d.2 (r=1.2). The trend eventually reaches a limit at
r=1.0 (not shown) when the fine structure begins to saturate the
plotting space, in sharp contrast to the real field which we know
is zero.

The removal of points from the data set causes the high order
Fourier coefficients which are normally close to zero to be
regenerated with large magnitudes. Essentially, they are trying
to add a square well to the pattern function. Interpolation of the
pattern data into the missing region would improve the reconstruction
provided attention was paid to the aspects of information content
discussed in Chapter 4. For the 1.0A radius cylinder pattern data,
interpolation should accurately re-establish data into missing
regions extending to 90° since this size cylinder has four pair degrees
of freedom. This figure might be considered an optimistic upper
bound. However, when we observe the graph showing the real part

of the true pattern function, Figure 5.d.3, it appears that a



quadratic scheme can easily fill missing points from -180° to -135o
and from +135° to +180°, a 90° extent. In this figure, the pattern
is divided arbitrarily into four regions which seem to

correspond to the output of four separate oscillators, and

thereby to the conjectured four complex degrees of freedom. For
non-interpolated sectors of pattern data, Figure 5.d.2 shows that
we must accept information from better than 300° before reasonable

judgments may be made about the reconstructed field close to

the cylinder.
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Pigure 5.d.1 : Reconstruction with sectors of pattern function data
(symmetrical about 0°) for a 1.0\ radius cylinder. The
Fourier coefficient order is 12 (15 in the lower 360°
diagram) and r=1.5.
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figure 5.d.2

Reconstruction with sectors of pattern function data
(symmetrical about 0°) for a 1.0A radius cylinder. The
Fourier coefficient order is 12 (15 in the lower 360°
diagram) and r=1.2.
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Figure 5.4.3 :

Real part of the pattern function for a 1.0\ radius cylinder (ka=6.28). The
pattern is divided into 90° sections corresponding to the four complex degrees of
freedom of this scattering system.
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5.e : Comparison with Experimental Data.

The final éuestion we wish to raise in this study concerns
the linking of the computational inverse scattering method to a
real experiment. In fact, there is very good agreement betweenﬂthe
reconstructed near field and an actual map-of near—field values
measured by Howarth (1971). In the experiment a 0.5" conducting
cylinder was illuminated by a horn-fed microwave field with
A=12.75mm. Consequently, ka=3.16. The curvature of the incident
field was about 1/6)\ maximum over the region 5\ to one side of
the cylinder, a fair plane wave approximation. The measured field
was amplitude and phase referenced to the source, providing a map
for each quantity. This data was then compared with the near field
reconstructions for the ka=3.14 cylinder. Reconstructed values were
plotted along two radial contours, at 300° and 330° (see Figure 5.e.1).
Several different limits were used in the Fourier summations, and
the regions of validity can be ascertained from the combined
graphs in Pigures 5.e.2 and 5.e.3. The circles indicate the field
points taken from the map in Figure 5.e.1, and we see good matching

along the 300° contour, and excellent matching at 330°.
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Figure 5.e.1

-2

Map of the field in the vicinfty of a conducting cylinder
illuminated by nearly plane waves (Howarth 1971). Ka=3.16
and the contours are scaled in db. A small section of the
phase map appears at the top. The lines A and B refer to
reconstructions found in Figures 5.e.2 and 5.e.3.
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Radial field reconstructions for the 0.5A radius cylinder. Ka=3.14, the axis is at
300° (A in Figure 5.e.1), and the Fourier coefficient order is indicated in the
diagram. The measured field for the ka=3.16 system is indicated by the circles.
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Figure 5.e.3 : Radial field reconstructions for the 0.5\ radius cylinder. Ka=3.1l4, the axis is at
330° (B in Figure 5.e.1), and the Fourier coefficient order is indicated in the
diagram. The measured field for the ka=3.16 system is indicated by the circles.
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CONCLUSION

In making a concise assessment of the Fourier amalysis-Bessel
function inverse scattering method, it ca# be said that it works,
but that to work well, it requires precision that is not
necessarily obtainable in practice. The technique definitely can
be used in problems where the scatterer dimensions are in the
ordef of a few wavelengths (which, of course, imposes a severe
restriction on the recoverable detail), but it seems much too
limited to handle the problem of distinguishing the B.A.C. 111
from the Boeing 727 in an air traffic control facility. A practical
ob ject recognition scheme will simply have to rely on much less
scattered field data. Consequently, it will be wise to extend the
application of the information content ideas in such a way that
they will be able to show the effects of limited sampling. Also,
work can be done with real-time correlation analysis, which has
been a somewhat successful technique for providing information
about colloids from the simultaneous measurement of scattered light

intensity at a number of angles.
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iUV a0,.0 I78 KXBICIXLIN,000PIIIK) #) 5)

Yauved,. 9o 1Plr XL Tel)GY TO 172

[TILLUPLTS 1Y) IFIKX4GVeG1 )02 TO 178 O
OFLtAaanELTH . LINFIXKX) 2027 .
wavhe ), 0 . MY Y

rennst .0 . 17T KXa5)

taaQFACoRA ‘ LINLIKRX) sxTU N2 .

GlelGeQala0) , 179 wRIVF{AVINOILINE .

He s enscAScE N AR RN RN R AN C A A S EREA T RN RN E R SR e 1AD FURVMATL 4 I B1AL) .

AZtvuTeal GCAN S3CCT LON, | LINT (XKD wULANK

LR R R R R R R R L LI L L L L L DL 172 CONT NP .

titsng e it NEFRO=0

19 Ly d oL Y S005 AN TRAP LD 00KV GO0 909 T DO 120 Xete1 21

L e AQUTLRIDEC PIYRI002) IFIUPNHTIIC) . GT.OPS)IGO TN 120

NINCATANM YUY, S22 00 : . Xakit] exReCNSIFLOAT{IK~103)0510H)

NCamt o RUME CITER T S M¢) YaYRLEXROSINIFLNAT{ 3ok =t 43 ) aSPNK)

OFraQurL Q%) .. e . e et e XSUMIRSUMSX

G0 10 8 ' YSUMaYSUMey

GPal0.0.040) NSUMENSUUe)

CONTINYE ' AaNTTE(D LS

HH 100 NsY N . 1TR FORMATLICY, ! x \ 4 LLGIRR)

N sy =ul ' TANLTR LS IQIXGY UNAf(R) T T T T T T e s s et ne e e
N MO0 =ND A ) ! ! 19 FOUNRAT(Y ', JF10,.0)

MEEMANGf TRE (N NZTHNay

WEHIRAIN )OI RG IO ONNICTXP(GH ) ONEALIHK)OGIOONN2 120 CONTINUT .
Continug Pl AL L L L L Y St L L LT L R L L L e T e
T 10 Relo 1 20 ' B c ™m2 fﬂLLONING SEAUENCE PROVINES A METHOND OF CLOSING IN ON THE |
VTarL OAT{dox=-1AY )otD . c CIRCLE JUST CONTAINING THT CONODUCT ING SURFACF. THE CUTOFF IS |
WEUUL {60040} [ CHOSEN TO PROVIDE AN ACCURACY OF DMINODCLTA, | -
nO 101 JAS W) C B LR L L L L L T —n=-

Nxer LDATLJA=NCloNT TFIUPDONNFN 0.0 100 TO 204

N eCMbLL{ 80 NX) . TRLUPNONNFQe=1,006G0 TN 202

WAUN Sy Ja) o CE RPN ) IFINZEHD.FO.10G0 TD 201 .
CONT )Y, . ‘ HANDE N .

el () s CANS (HAUN) * . . 2000 ==1,0

Cnut trur GO O 207

LIRS CYST-RRAL 201 7FN0r) .0

FOIUATE Y, *aaDtuS IN CLOSE=IN SEQUENCEa® FT7,4) G0 10 207

L LG R L e - - 202 IF(NZERDTI.10G0 TO 20)

BRISELN G AMIING U Tl PICLD MACNITUNL Wl | PRI I ]

E R L e L D L L L L T G 10 207 M

O 121 teted? 203 NANYZ0,5

LINL LT enLANT 2rQ0e1.0
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Al Conginged,
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e
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n

20?

fON

o0

6o 10 PO
1PINZFRD.FO.1)C0O TO 209
UMNUNS=1,0

N Y0 296

yeneNe s .0
DELTAPANSIILLTA) SULDOWN
oo 1Y MA
APLTASAIS{IELTA) o BBANDO 2RO

IFEAUAIIPLT ALY LONINIGH TO 210

RIS RNNCL TASRA

FPARI LG NID% N ML T ANTGIGCO YO 209
G 10 1

NCOANTSHCOUNT | v

IPENCOINTWENGIIGO YO 211
FPIRCNUNT (EQ NGO 1D 212
aY Te 2m

CAVET AUNZEL AT {NTUMN)
YAVRYSUNZPLNAT( NGUN)
whietAY

vilaYAY

WNasONT{ EAVEeDeVAVEeD)
ST [ FLELATANDI YAV RAV)/Z78M)
ey 20ttty

s hanelt t)

[ NI 4
RAVERSUAZPLOAT ( NGV M)
YAVSYOUUZELHATINSUN)
RIviRAVIP00xA) }/240
Yielvaved )evintizd.0
TEIAQMITa) eadevioa))
NEe P IRLATAND LY 14X 1 )/780N)
ot 1N on2

cauri

6 10 06

CONTINUT

L3 [ 1

END

ARPENDIX A2, )

Inverse scattering program for rvadial scans.

Seo Appendix A4 for a sanple data module.

[4

INVERSES THIS 1S THE FORM OF THE INVERSE SCATTERING PROGRAN
NESTGNEN TO RECONSTHUCT THE' NEAR FPIELD ALONG RADIAL CONTQOURS,

L N RN N aNa o Na NaNa s WalaS s Walal

1)

02

03

(1)
0y

(1)

or

01

09

SUVROUT INFS NH"F %ANY VAIIIAoNA‘KnYHANSGﬂ’KPAND.

|
t
|
|
|
CAE MUST TIE TAKEN [N HQUILDING THE DATA MODULF! |
Ae  PAVTTFIN FUNCTION CARDSE 121 CAMDS NP COMPLEX TAR FIFLD |
NATA. TAMWLATED IN ) DEGREE INTCRVALS FRON =Pl Tn Pl |
STATEMCNT O FURMAT, |
Be SFTUP CARD: STATLHENT 08 FORNAT, ]
Ce  RADITAL SCAN CAI STATFVMENT 31 FORMAT. USE AS NANY RADIAL |
SCANS AS NECHSSARY FOR EACH SETUP CARD. N |
De T CAND: T IN COLUNN |, |
Co 0 CAIN: 0 IN COLUNN 2, |
THE GROUP (1,CsD) VAY NE RCPEATED OCFORE THE & CARU.
INPLICET COMILER (A LG M)
REAL LINLL INFA
DOUMLE BATCISTON DEDIK A, DIY A DPXN, DRV
DIMENSIIN MI(A1) JHI61)NORIEI6TL ), OBYHI6Y)
DIMENSTON LINFUST)ALEINFALSL),GIPNLICL2D)
COMMON/GILEZGPUT LT ) (el (NEZARLK ZA06 30700LK ZDPXAL 361 ),0PYAL 361 ),
INP My SPHENDLR/ZGPUKZGPO KT L S0T) JNXT o NXF
DATA ULANK WX ARG sDIT o XTHENT ¢ XTEN2 NARZIN o IN? nlNoolel'NLv""/
HEAD(S,01)%PL
FORMAT{ 10X 2R1060)
nn 02 tx§,121
GLOMICLY aGRtL () ’
NPHAILIAI%02065%3003,07110,0 *
SPHa X 1A 18920%36/1 7040
DR IEET)
CUNTINUT
oD 0a 1w1,124
CENL (Y =GIPHILT)
CUNTINUT
REANCD0BIMI G NE o NF JNTH XK ¢ XOF AC o XA
FOUMAT(12, V1 34PF1C¢04F5,2)
TF{NRFQ0IGH TO 100
WRITE (54CTIVANT oNF eNTHy XK XA o XIFAC
FONVATEO 10 0 GETUD INFURMATINANLI® /74900 80X 41242%¢ *MA: DIMENSION OF T
IME FOURTSR COEFFIC IENT MATHIXo®o/Z0® *oTXo1 302X *NIS START ANGLE
2 1ReBI)V 200 S TX ST NN GONFS FINISH ANGLE (121 meB]) 047,09 047X, 1)
B2XENTIHE INITIAL PATTFIRN TRANSLATION IN DEGREES.?4/+% ® \F1040,2X,
AVEK?S WAVENUMIERG'3/4® 4 F10.642Xe* XA RADIAL UNIT DISTANCE "o/t ¢
5aF10.6:2X4 ' XOTACS INITTAL PATTERN TRANSLATION RADIUS FACTNR,?)
nn oon Ixl,sl
LINFALT) PRLANK
N C? Ivlenrliain
LINFALL ) =0AR
NXl=Yent-2
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oOnNCNANANAAD

—1 DPAUtLICeY

NN OON

i
1

8

vz

tn

-~

b4

NEPRYONF =2
WU AOPACO KA
HTusy TN
CNF AL LOPAC
NCalvivel )22
1P(a0,£0:04%)G60 7O 12
CALL THAMNLINTH XK XP0)
GIVEN A PATICRN PUNCT 0N, THP PIURLIEH COEFFICIENTS UP TO A
BEAINED ONICA WA ANT CUMPUTED,
Y PITIN] °

‘HINHTANT ANAGLE WPAAURED [N INTFGRAL OCGREES EXPANOED OY 3.
NP AT LI AT ANGLE MPARUNED [N INTPGRAL OFGREFS CXPANDFD AY 3,

NNOMALLY ME8) AND NP 8121, CURNFSOONDING TO «N] AND ¢P] KFSP,

CALL Feman)
no 13 1ol 0l
OnPxalldsd.0

LY RN BTSN

NTFLOAT (VNI 50N

O 1 Nanu] NP
NAeFLOAT (N1 ) enT

HRAC VI R {0y 047X}

NAEUME GO TINIOCP YD (nX )

IR AINIZRP AL (100U N)
DN =A LEAGEAUN)

CuNT TN

CALL DASF LML NILADOYALIBL )
PLAANCLIOPYAINET)) 20, 2031 05)
CALL 03 7( A ™, Nty DOV, 30T ) .
FanNGLIDDYIINTT P IZ0 20 810%)
(IR IRT4 LIN Y § 0 P8

ANt NUE
“wirgto.in) . !
FOUNATE LY CTICONSTHUCTAD POURIER COEFRICIENTS, )

R VTS L AR PR AR RS L R L}
SVATEY L 2K 2T D)

NnoeA

' S N e T T S D R YD G 5 ee Y Y Y TR ED G D D M YRS T R e e

e YK 2BCMOL (000,072}

PM IR PATTIREN FUNCTION GPHE MR HAVE COVPUTCD A SET OF
YR IPEY COZEPICIANTS A{uUN), wl wiLL NUw RUN A TEST ON THESE
COCPEICIENTS TO SEE 0w abll THEY RECONSTRUCT TME OHIGINAL

DATTFUN PUNCTION,

CALL VAQTA{MN VALUL)

w2 LI EA D0 IVALUR

FORVATE Y90, *TEAY FIT Ty OATTEAN RUNCTION = ,F10,.6)
CH SLOLACORASCOLINTNR SO

YO ROPACEXARS T e M)}

3¢
n

h 4

A

)

L]}

a2

0

[ XANGLE

meenmcamsssccanmectsnseecsncseesnhenaakhae.
HADIAL SCAN SCCTION. _ )
REANIS o Y1) TARACKA RN IN JRMAX s XANGLE 4 SCALL
FORMATLAT oI Xe SF1)eh s F1QaA )}
IF{TOACKALLOWXTIENIIGO TOY 0O)

WRITF (O 12101 UMAX o XANGLE . SCALT
FURMATEO )0 IRADTAL SCAN' (BX P ANINI Y (F1046,4 ¢
(NEGRAES) 19 F10.64¢

RMAXI®4F (0.6,
POINTS PER UNIT RADIUS:Y 4F1d40)
00 I il

LINT LT 0L ANK

PlaRviIN .

N2209 Nt D /SCALE

FCaxAeCOSIXANGLF o60H)

FSaxasSINICANGLESSOY)

XPuX U)o eFC '

X2aXN 14N QeFC

Y1sY()eR2eZS

Y2ayplewlers

ANFWIwSCIT( X1 082 0v 1 9e2)

PNEWIESURT{ X 20024¥2 0 02)

XANGERATAN2(YY oY) /S0y

RANADPCATANI( Y2, X2)/75M™

GJa(0edelel)

AKQ | FXKOR

XKRP ¥ XX o NP

NO AL NEl oD

NOaN-MC

NMPSMAD(=NY o8} .

GFu(i)eINUD

HXLEHANK{ XKL o ND )

MX2 X ANK XK B 20N )™ -
AT =X KERNTW LSO OCOS{XANG L 0 SPH)
UTIawxoNNIWIONIHSCOSL XANG 20 GPN)
MK sCMOLX(00BTY)

[

n!tv)lk(N)tuiIOGFQCEx°(NK})OREAL(Hll)‘GF
HAIN) TA{N) OHXQ GreCE KP{MK2 ) *RE AL (HX2) ¢ GF
CONT tNUE

UTRRANGLF OS5

MUV (0.0,040) . ' *
NSUNDIa(0.04Ne0)

DO 42 JAzl M0

MK2FLOAT( JA-MC ) oNT

HKECHMPLX (0400 AK)

HSUML ZHUMTeHTC JA) fCRXP(HK)

NSUN2 = SUM442{ JA) SCEXP (MK

CONTINIE

HWAHI I ECANSIHSUMY )

APNT2aCANSE HSYU2)

PIRENTED GUAPHING OF THE FIELD MAGNITUNE uPMI, |
WRLTE (o h0 101 AT Ly 122, 19012 L INPA

FORMATE® o X el 00 302%XsF1000s5XeF0Ge3e¢2XsF10e6,11XeU1AL)
IX2IFIX(20,0000H 1 ¢15)

1FLIRLTIIGD 1D WA

09



L1}

a2
3

(-1}

5%

110
114

59

100

IPFLIR.QY.31)C0 YO B1
LINRLtIR)exAROS

en 10 32

| R LN
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LINEL It entAang
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TPt LT} IGO TN 87
IPAs G214 T 99
LI%f (RE)eDOVY

60 10 An

Heni

LINC IRy euTrND
(LAY YL YRINIL 4
FUNUATI a0 03¢, ATAY)
LinFieyefiLam
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Sudroutines and functions.
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SUBNOUTINE TRANSGINTHXK 4 XRN)

THIS SUMINUTINE REGPNCRATES THE PATTURN FUNCTION FOR A }
TRANSLATION OF THE COORDINATE AXESe XRO 1S THE RADUIUS AETWEEN |
|
|

THF OPEGINSe AND NTH 1S THE INTEGRAL NUMDER NP DERGREES IN THE
ANGUL AT SFIATATION FRAOM THE ORIGINAL TU THE NEw NIRIGIN, XX 1S THE
WAVENUMNER,

TUPLICTY COMPLEX (G)

COMMNNZGILR/ZGHHI(I21 o NE NP

SHIts 1, 1AL YI2060IAZLIR0.0

NN 21 TN NF

MaT e {- N YaNTH

17(NU, LT, =100} PUSMM ¢ 300

NTePHIFLUAT(MV)

HiXsxx ex2NeCOSINT)

GRECMBLX{ 04 0¢tIK)

GEULCTIZGPUICT) $CRXP(GR) ’

WALTF {02 INTH XK XU

FORAAT(VLO P TRANSLATIIN OF THE PATTERN FUNCTIONGY o/74%0% y *NTH:  xK$
] XA 47 40? ' 1ALIXG2F1 0047020 o * TRANSLATED GPNMELY)

NN 04 fael.at :

[atefeny

tud=ten?

WITTTLACOIILoGPHELT ) 1AL GPHTLTA1)oT182.GPHI(182)

FORMATEY 3ol Ye2XoMF 10e0e) PXelIe2Xe2F10a0017X01 392X42F10,60)
CANTLNUP

RETURN

END '

COMBLEX FUNCTION HANK(R M)

THIS COMDLEX FUNCTION COMPUTES A HANKEL FUNCTION OF THE 2N XIND.|

DIVENSTIUN wDRD(2)

COVOLFX TENDN] , TFUPD

CUMVNN ZNFRR/ZK L K2 TR ) I RR2ISIJERAN(2+8) +ERNNI245)
DATA WIRNLL ) oW OANL2 JZ7AHDESI AHNESY /4P 1/ 34131593/

N2lANS(M)

IF{RGEe1040sANDIHRGT JFLOATINI) GO TO 1

CALL NISI(R«NsDJIAL0.0C05,1F)

IFUIERLGTL0) GO TN 1§10 ' .
CALL NESRY(RNJDYA, ICR)

IFLIERLGGTL0) GO T 1S

HANK SCMPL X (I Ay =AYAD

1F{M.GFe0) DETUNN .
IFENDDING2) «GTo0) HANK 2=HANX

QETURN

19



1

BB RN
P2l N) @

R

Hiwy
IFLN.GYeA) NisO

ANG21Q4T(2.07(PI0R))
CrtteQa(PLUAT(NINGCO0.8)0PT /2.0

Vs, 06" LNAT{ N8 e2)

2ad No(A.000) 002

Pa].0

IFlN0T4%) Pr)l0={U-189,0)0(U=223.0)/(208.002)
I1P(N.GE8) Pol,0=Pe(1l=A1.010(U=121.0)/(13:002)
Da) 0=nafu=28.000{U~a9,0)/(0,002)
Neld='olit=1,.0}0(U=9,0)72

Nel.8

TP OF oA) 0] o0~{U~121,0)0tU=106V,0)/(214002)
IFENGANeA) O8] (0=00(11=09,0)0{U=31.0)/7(10.002)
02],0=N0tU=2,0)0{U=-24,0) /(). 002}
ONQefy=140)7(A 00N}

MANK A UPIOCUIL Y P =)o CHMIM X(CORICHT ) o =SINLCNHT))
1PIND CEQeN) GO T )

Citlen=) 780010t
O31,0={00070/210(1,0~(0X7:%7710(1:0¢(206:.0/72)0(1:0=300.0337172)))
020121282000 1,4,0=L 22750072100 140~(06:97210(1:0=69.0/72)1)

TEMD2 RTINS CNIL R0, =) 0CUNLX{COSICNT) o=FIN(CHE D)

LU AN

HANKED O PTLOATINI )OS TLUP | /R=-TEMDPD

Niavte}

IFENL OGP aNY GO TN )

TEvudetrun)

GO T 2

treirn .NCa3) GO TN 1L

KPex2el

IFEXSolTe1 0N RDGTe3) CO TO &

[CUNTREY $3E L]

tnotudyan

FANNED JK2) NI

[ ARV IR ]

PAINT 1209001 ) IERIRNVORDIL) e DJA,
PURMATEIRH) == FUNCTION *MANK® = SUARNUTEIRE *1A8,
= PO CONIITTIONGIP BN edMX & JIDF10.3¢3H N a,13:2K148,
1O 1200 = EXCCUTION OELETED)

caty rxtey

PRIHT 12.wORDE2 ) TER RN ENN0(2) (OYA
CALL ol .

£ND

aAnnn

02

SUDNOUT INE EXPAND

THIS SUMRAJTINE EXPANDS THE DATA OF GPMIL121) TO GPXI(361)
BY A FIVE PUINT INTEHPOLATION MFTHON,

TNPLICIT COMPLEX(G)
CIMMONZGULKZGIHT( 121 ) o NToNF/ZGRORZGPX L (61 ) o NXT o NP
Al® =7,0/24),0

A28 T0,0/241,0

A3e10.0/7241.0

Adv=17,0/24)3,0

ASE  R,0/2474.0

Ne=10.0/247,0

UPe160.0/240,0

NAL20.07043,0

NAI=VP.0/24Y,0

Ivs Ka0/74 3.0

nn o1 el

GOXILVal=2)uGPNTI(T)

NY 02 a2, 010

GPUTEIOl =) et oGAULCT=104NDeGPHI( | JeNIOGPMIITS L) NAIGPHI(T42)
1enseGonIt e

GPXICJo1)  wAReGPUI(I~100A20GPHIL L JOANOGPHI(T L )¢AROGPHI(L+2)
VeAse Gl {Ten)

GPX1LD) *IOGAHICI20) ¢N26GPHIL  L1)oNIOGRHIL  2)¢DASGPHI( JI)
1eNS0G0HIL  A)

(AU SERE SALOGONHI(IP0IeA2eGPMT L TICAISGRHEIL 2)¢A4GPHIL I}
1eASSLIIIL  A) ’

(A SRR ITY )

TendeGoul( 2)

GAXLLIST)  wALOGINICIIB)eA20GPHT (119)0A3CGRHI(120 ) 4ARPGPHTI(121)
1eanaGPuIt  2) )

GOXTLIS0) =N 1sGAHI(1L19)4D20GPHI(I20)00IGPHI(12]1 )04 GPHI(  2)
1endechult 3

GPXTLIA0)  SALSGIHTL L1Q)SAROGPHI{120) $AISGPHI( 121 14 AASGOHIL  2)
1eASSGONTL ) '
aeETYeN

€ND

eN1GONT(ILIB)4D26GPHTLLIIN)SNICGCPHI(120)4DAOGPHI(321)

29




LY XaXal

SUNADUT INE VAR TA( N, VALYUE)

LY T8

- cwssvevasmane

) ARTENDIX A&,
f
Miscellaneous programing cooments.

}
.Sample data module for the aztmuthal program:

THES SUNINUTINE COUPUTES SINTEGRAL (NTNF) | GPHI=SUN(=YAL¢RA)AIN]® |'

(LIS FELTUIRNEY 1) AND IS A TESY OF TeE RIT OF THE A(N) TO GPMI,
THOLTCEY COMDLEX(ALGIN)
NRILE MIFCTIALON NDPRALOOYALOPMH
CNVUNN/ZGILKZGONTII21 ) oNT W NTZADLCZA(DI)ZOMK/NDXAL 38 )OPYAL36L) .
1031, 5N,y I
LIS I LUTERYZ ]
AN 0l el
0t Nhraix)ed, 0
NN OX eyl e
HAS(0:0:0e0)
Nek HAT({ 1oAY} 05PN
TR 02 Xuy.vn
AEPLIAT{RX-NC)ONT
HE WLl QN NN)

0¥ wreHTeA(X)eCERP(NK)

03 DPYAINIS({CADSIGMIT{M)=NX)}o02
CALL DYCPLDMLONXAOPYAL 121}
VALUY 23RGE LORYAINT) )
TR A04)
08 FORUAT(I )Y, * T1FST (F SUGROUTINE VAR A VALUES COF OPXA AND DPYA.')
no on Irdeey
tatwtony
TADel o4

Pattern function data for a 1.0\ radius cylinder (ka=6.28)
tollowed by these data cards:
6.2018

31 128 3 0.001%

T produces the locus dlagram of Section S.c.
Sanple data module for the radial program:

Pattorn function data for a 0.5\ radius cylinder (ka=3.14)
followed by thosc data cards:

41 1121 ¢ LJ2M LB 0.0 1.0
V28 10.0 307.0 24,0
i 0.2% 100 I3t 0 24,0
v
0

produces the scans of Section S.e for a Fourler coefficlent order of 20.

WIETPLALONILDPRALL ) OPYA(L) .lu.ovuuu YeDPYACTIAL) s 192, DPXAC(02) When the atatements between 02 and 03 {n the azimuthal proguu

LeDttvat inr)
03 FORVATEY ¢ N lI02NPPI012e3%Ke 13¢ 2% 2F1001248Xe1302X02F16412)
08 CONTL I

frryny

un

AUNNOUTINE RYTOUT

INOLICIT COMDLER (G) . .
CONMUONZGILR 20PN LE2L ) oNTWNF

NO 01 taj.ay

taintod]

tAYajen? '
WOLTRLALO2) 1 oCOMICT) o tATGPMTLLIAL) 18R.GPNT(TA2)

02 FUNWATEY 4 3xeldedNedP 1040 1PXel 30202 10e0017XelIe2R42F50:0)
0 CNutTinue
e TuaN
(D)

are repluccd byt

NTHZMON{ NTHOL RO, 360)
CALL TRANSG INTH XK o XRN))

the program can test double translations as described {n écctlon S.c.

1400 0¢28 04007 0001 20 006 14"

£9
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Co®IHUD ASIONs *sl o) ivnnDd
tovv*9) Jijun
IXHLOXVLIM NI {1 ) Dy
CARNYaXS

LA¢AVS axys

Alex]

(SASKNYSESALISSNYD 1VD
XluAl

CIACHYS S XSS NYY V)
(AR RNLCLEDLATSRZETHY

(01} 1KgT) Ivauexys

121 1a] oy 00

0°0anys

$000°Cny

dtituxy

(+4°UB0OY SO0 aVWUIS 4D USION* 404 }avarDd
V2t n) allbn

(3 ¢4
(B}

LAUS *AVYSIE T )i ) b oL
LA TXNTS R TR FIRYILY
1000t VYN ING Y araYY
(RIS FL. ¥ ENLT
(VL) Nl wN
(AL RS AR R RITNE R LA LT R X1 YHIA
GO0l ) ) I ) IVIYaR VY
(G00°0°5C00°0 el btuat] dlnuY
[EAREE AN 14 S H]

(e0S3OVId WHIDAA & 0L LhuY 40 Jud QNAUE, *«04)aVvRn04 W2 *
(I AR EFR LI |

AP Y I B ) ]

$e*THAY ASIUNG 2l )AVYNN0OY

(RS LD NIRRT

(XHS*XYS)IX Venda(l ) IHyY

. CASRUL BYS

. IA+X VS axYy,
Alaxl

(ZARYS S AL ISSNYD 1TV)

¥izAl

(LASRYSSS e X1 )SS VD VIvD)

CCEITHGD IO YR vexUs

(1) 1vuD) “tvadgaxvy

Zteial wit vu
0*JunvsS
TTTTIT609 005
teyacex]
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