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ABSTRACT 

The reconstruction of near-fields fram far-field pattern data 

is studied using a Fourier analysis-Bessel function technique. It 

is found that the surface of a conducting cylinder may be accurately 

located for pattern function data good to 3-4 decimal places, but 

that translated systems involve same 1055 of accuracy due to 

induced asymmetry. The information content of the scattering 

system is studied, and shows particular relevance when the 

reconstruction utilizes sectors of the 3600 pattern function. 

Further, bounds are derived for the range of Fourier coefficients 

necessary for accurate reconstruction. Finally, excellent agreement 

i5 found between the reconstructed near field and available 

experimental data. 
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INTRODUCTION 

The subject of inverse scattering is concerned with the 

techniques used to relate scattering measurements to information 

about the scattering object. It includes such areas of interest 

as the determination of molecular, atomic, and nuc1ear structure; 

radar object identification; sonar location of sea 1ife and 

submarines; geophysica1 and minera10gica1 research with patterned 

explosions; and antenna synthesis from a desired radiation pattern. 

The techniques inc1ude variations of scattering matrix inversion 

(Faddeyev and Seck1er (1963); Boerner, Vandenberghe, and Hamid (1971»; 

reciproca1 kerne1 method; Fourier transform of the scattering matrix 

(Weston and Boerner (1969»; and straightforeward e1ectromagnetic 

techniques suitab1e for ana1ytic continuation (Mittra (1970); Weston 

and Boerner (1969». A1so avai1ab1e for high-frequency 1imits is the 

geometrical approximation (Weiss (1968». 

In this thesis we will treat in deta~l the inverse scattering 

of cylindrical conductors using a Fourier ana1ysis-Bessel function 

technique that can be inc1uded in the analytic continuation 

classification. We will be especially interested in the numerica1 

aspects of the process. The study is conducted in such a way that 

the lLmitations of the techniques are emphasized. The first three 

chapters discuss the c1assical scattering prOblcm for conducting 

cylinders. the relatively s~ple inverse scattering method, and the 

changes that make the schcme computable. Chapter 4 discusses some 

information and sampling concepts related to the prOblcm, and 
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Chapter 5 chronologs a number of studies of near-field 

reconstruction from the far-field pattern function. Included 

are several graphs which will be useful for assuring accuracy 

in further reconstruction studies using this inverse scattering 

technique. 



CHAPTER l 

SCATTERING THEORY FOR'CYLINDERS 

Scattering of electromagnetic radiation by a conducting circular 

cylinder is one of the basic scattering problems, since there is an 

exact analytic solution in the cylindrical coordinate system 

coincident with the scattering cylinder. Kerker (1969) presents a 

concise treatment of scattering by homogeneous circular cylinders, 

and the special case of the conducting cylinder follows when the 

proper limits are applied to the equations describing the general 

solution. 

For any boundary-value problem involving a wave-type solution, 

a complex wavefunction ~ may be defined over the region of interest, 

subject to the appropriate boundary constraints. For scattering 

problems we normally let the exterior boundary of the space be at 

infinity, and so a suitable boundary condition, known as the 

radiation condition, is imposed on aIl possible wave solutions. 

For a cylindrical geometry, this requires the magnitude of the 

scattered wave function to decrease at least as quickly as l/p. 

These solutions must satisfy the wave equation: 

( 1.1) 

t.. V 1s the Laplacian operator associated with the coordinate 

system. In this study we will restrict ourse Ives to the case of 

electric field parai lei to the cylinder axis, which eliminates 

polarization effects and enables us to treat the superposition of 
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---
Incident Wave 

Scat tered \vave 

Figure 1.1 Pictoral representation of the scattering process, show­
ing an incident plane wave together with a wave scattered 
at an angle ~ from the incident direction. The waves are 
axially polarized. 

incident and scattered waves in a scalar manner. For our case of a 

conducting cylinder, the solution is also subject to the boundary 

condition~=O on aIl conducting surfaces. 

Our experiment will be conducted using a plane wave as the 

incident test function. Therefore we can proceed readily with an 

analysis in terms of Bessel functions. For an incident plane wave 

E-polarized along the cylinder axis, we choose a propagation 

direction x, and let 

(1.2) 

The last step shawn is the definition of the expansion in terms 

of a Fourier-Bessel series (Harrington (19&1»). Tnc total field at 
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any point outside the cy1inder is the sum of contributions due to 

the incident and scattered waves: 

( 1.3) 

and the requirements imposed by the physics of the experiment 

(scattered waves propagating away from the cy1inder, and zero 

total field at the conducting surface) a110w us to construct a 

scattered field of the form 

(1.4) 

where the H!)are Hankel functions of the second kind, and the a~ are 

a set of undetermined mode coefficients. The to~al field is simp1y 

( 1.5) 

Because~=Ez=O at the cy1inder surface, the undetermined 

coefficients are readi1y found to be: 

( 1.6) 

The far-zone approximation to the scattered field uses a standard 

asymptotic form of the Hankel function (Hildebrand (1962» 

( 1.7) 

Equation 1.4 then becomes: 

( 1.8) 

and we define the far-field pattern function by the factor 



analogous to a Fourier sum: 

(1.9) 

Later; in developing the inverse scattering method, we will be 

interested in translations of the pattern function. These May be 

calculated with the following relation: 

( 1.10) 

Here Po is the radius between the origins and ~ is the angle 

Po cos(tp-t!b) 

Primed System 

Original System 

Figure 1.2 Pattern function translation geometry. The signal 
from the 'primed system must start later by the time 
equal to the projection Pocos(~-Çb) measured in periods. 

from the original to the primed system. This relationship follows 

from proper phase additions to a signal originating in the primed 

coordinate system so that it has the same behavior at infinity as 

6 



the original signal. In Figure 1.2 the signal fram the primed 

system must start later by a time equal to the projection 

Pocos(~-~o) measured in periods. Therefore. as above, g'(~) 

represents the signal g(~) with the projection added as phase. 

The same result follows when a reverse translation is made frOID 

the primed to the original system, except ~~=~o+"' Consequently 

double translations arriving back at the first origin involve 

no change of g(~). 

In the primed coordinate system the pattern function g'(~) 

may"be Fourier analyzed in the same manner as Equation 1.9: 

( 1.11) 

and a scattered field solution can be constructed as in Equation 1.4: 

(1.12) 

p 

Incident Plane Wave 

Figure 1.3 

• • • • • • .~ 

Original System 

System 

. Incident field translation geometry. The phase at P 
must be the same in either coordinate system. Therefore 
the field measured fram the primed system cust include 
the phase factor Po coscpowhen a translation is made 
fram the original system. 
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A solution for the scattered wave may be bui1t up in the region 

of space beyond the minimum radius circ le just enc10sing the 

scattering object (Mittra (1970». The total field in this region 

is then the sum of the incident field with respect to the primed 

system and the new scattered solution ~(p'.~'). The trans1ated 

incident field is 

( 1.13) 

and this fo11ows fram a simple vector sumo See Figure 1.3. We 

now write down the total field expression for the primed coordinate 

system : 

( 1.14) 

This completes the e1ectramagnetic theory we need for deve10ping 

an inverse scattering technique for cy1inders. 



CHAPTER II 

TECHNIQUE FOR INVERSE SCATTERING 

When we look for ways to develop information about the identity 

of a scattering object from measurements of the scattered field. 

we rely upon techniques of the "inverse scattering" problem. In the 

present study we want to determine the location and size of a 

conducting cylinder. Taking the scattered far-field pattern, we 

regenerate the near field along azimuthal and radial contours. 

This theory is 2-dimensional (applicableto cylindrical structures) 

which is reduced in complexity by assuming an incident wave 

polarization parallel to the cylinder axis. For conducting cylinders 

normal to the reconstruction plane, this means that we have 

Dirichlet boundary conditions. We search for points of zero field 

in the near-zone and record them. Since the cylinder is a convex 

body, it is possible, using only the pattern function translations 

given by Equation 1.10, to locate surface points within the regions 

of valid near-field expansion (that is, within the space outside 

of the minimum radius circle just containing the conductor). 

The first step in this inverse scattering process is a Fourier 

analysis of the far-field pattern: 

(2.1) 

As will be the policy regarding analysis throughout the paper, the 

mathematics will be in complex form for generality, although 

making complex measurements of a pattern function is an idealization. 
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This course was chosen 50 that the loss of reconstruction accuracy 

would be more method-dependent. 

Once the set of Fourier coefficients is obtained, we can find 

the field values at any point within the range of the reconstruction 

method, Equation 1.5 or 1.14, depending on whether the cylinder 

is centered or not. The first test that can be preformed is a check 

of the mat ching of the Fourier sum to the original pattern function: 

e-f[ Mj(<>\) -Jl~ (0,.)«00" cp - L.(q~) ~ .. ,p)f" 

+ [k(J(~) -l.LRe(~)s~rn<p.,. L..L~) CoQ 1hq»J'2.. J d~ (2.2) 

The smaller the number obtained from this operation, the more 

accurately the decomposition relates to the pattern function. For 

t the cylinder, the numbers vary very quickly as translations are 

applied to the pattern function, but from their magnitude, estimates 

may be made of the reconstruction quality. We will discuss this 

in detail in Section S.c. 

Because we consider only the cylinder in this study, the theory 

as developed in Chapter 1 is sufficient for aIl pattern function 

translations. More generally, this would be true for any convex 

shape. We can strictly determine only those points of the scatterer 

whlch lie on the circle of minimum radius completely enclosing the 

body. The process of translation which allows more points to be found. 

as in Figure 2.1, extends the region of determinable field into the 

area lnvalid in the uotranslated analysis (region l in Figure 2.1). 

This is known as analytic continuation (~ttra (1970». 

Hon-convex bodies may be analyzed by a process lnvolving different 



Primed System 

Circ les of Minimum 
Radius Enclosing the 
Cylinder 

Figure 2.1 

Conducting Cylinder 

Original System 

Geometry for analytic continuation. In the original 
system, regions l and II are ioside the circ le of 
minimum radius eoclosing the cy1inder. A translation 
to the primed system allows computation of the field 
in region 1, which loca1izes the body to region II. 

expansions of the wavefunctions for the region extendiog from the 

orig!n to the circle of maxLmum radius Just excluding the body. 

This is exp10red by Imbriale and Mittra (1970), and is not of 

interest in the present study. 

Il 
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CHAPTER III 

METHOD FOR COMPUTATION 

For this study, we chose a group of cylinder sizes within the 

range of practical microwave experimentation. Radii varied from 

0.25A (ka=1.57) to 4.0A (ka=25.l2). See Figure 3.1. A complex 

o· 00000 
lE 

a=0.25A 
ka= 1. 57 

a=0.50.\ 
ka=3.l4 

a=1.0.\ 
ka=6.28 

a=1.l.\ 
ka=6.9l 

a=2.0.\ 
ka=12.56 

a=4.0A 
ka=25.l2 

Figure 3.1 Diagram showing the relationship between wavelength and 
radius for the cy1inders studied in these reconstruction 
experiments. 

function subprogram HANK (Howarth (1970» was used to compute the 

values of ~~ the Hankel function of the second kind, and the initial 

set of Fourier coefficients Sn was constructed as: 

Bu = -Real (HANK(n,ka»/HANK(n,ka) (3.1) 

with k the wavenumber and a the radius. 

Pattern functions generated from this set of coefficients were 

tabu1ated at 30 intervals trom -1800 to +1800 , a scheme which 

parallels the discrete measurement scheme of a laboratory experiment, 

although the interval was chosen to satisfy a one-page output 

requircment and a consideration of computational necessity. Sec 
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Incident Plane Wave 
1 
1 
1 
1 
1 
1 
1 
1 
1 

+1800 0° 
____ ~I~) ~~----~~--~----~~---T~~------~--~---

1 -1800 

Figure 3.2 

1 
1 
J 
1 
1 

Representation of angles in the azimuthal reconstruction 
process. The plane wave is incident fram the left. A is 
the direction to a reconstructed field point, and in the 
program is measured in integral units of 3°, with NA=l 
for -180° and NA=121 for +180°. B i5 the direction of a 
translation, measured as an integer from 0°. 

Figure 3.2 for the angular measurement plan. In Chapter 4 we will 

discuss the a priori, or structural, information aspects of this 

scattering prOblem, and we will see that a ka=6.28 cylinder has 

four pairs of degrees of freedam, meaning that the radiation is 

equivalent to four complex oscillators. From this, 121 data points 

for 360° indicates 30 data points for each pair of degrees of 

freedom, a good prediction for accuracy. 

The most important differences between the theory explained 

in Chapter 1 and any computational scheme based on it are the 

13 



limitations on the number of terms in the sums, and the error 

introduced in numerical procedure. The inverse scattering programs 

accepted as input data the tabulated far field pattern function 

II=121 

I=l 
(3.2) 

corresponding ta Eq~ation 1.9. With these lLmits, the input pattern 

function for cylinders as large as 1.lA radius was built from a 

set of Fourier coefficients which included aIl those non-zero to 

6 decimal places. See Figure 3.3. Aspects of reconstruction 

degradation due to the coefficient limitations w~ll b~ discussed 

in Chapter 5. 

18.84 

12.56 

6.28 

Figure 3.3 

10 

Real Part 

1 

!"'- Cutoff 
1 
1 
1 

20 

for-Input Data 

30 

arder of Fourier Coefficients 

Diagram showing the order necessary to include aIl non­
zero 6 decimal place Fourier coefficients. Note that if 
n i5 the order, the total number of complex coefficients 
involved is 2n + 1. 

14 



The generation of Fourier coefficients and the subsequent 

construction of a pattern function whose values are complex numbers 

raises a question about possible measurement schemes, since a 

practical measurement of the far-field yields only an amplitude 

pattern unless certain special things are known, for example, the 

phase of the radiated signal and the precise trajectory of the 

measuring device with respect to the radiating objecte To make 

an amplitude measurement you need only be in the far-zone with 

a rea80nably accurate distance and direction figure, while the 

phase measurement requires distances precise to a fraction of 

a wavelength. Since one can never make true microwave far-field 

measurements in the laboratory, the complex (phase-containing) 

far-field pattern figures generated by the Bessel function thcory 

contain more information than a real experiment might. But for this 

analysis we should use the complex figures rather than their 

magnitude alone, because the purpose of the study i8 to judge 

how the method itself brings about inaccurate reconstruction 

results. 

Quite simply, the reconstruction program takes the pattern 

function and generates a set of Fourier coefficients that 

reproduce it. The bulk of the program is a series of tests, checks, 

and methods for preserving numcrical accuracy, and a sequence of 

near-zone field magnitudes are plotted according to either an 

azimuthal or radial plan. Interpretation of these graphs results 

in information about the scattering objecte 

Translations of the pattern function, to represent the far-field 

15 



pattern of a cylinder moved away fram the origin, are camputed 

using the method of Equation 1.10. A subroutine TRANSG preforms the 

operation on the 121 point data set. Translation parameters involve 

only the radial distance and angle between the old and new 

coordinate systems. 

The reconstruction of the 8n fram the pattern function uses a 

more detailed set of data, where the normal group of 121 points 

has been enlarged to 361 by an interpolation subroutine EXPAND. 

Presumably this causes a better fit in regions of rapidly varying 

pattern function values. The reconstruction accuracy check described 

by Equation 2.2 is tested in a subroutine VARIA, which works 

with the new a and the original 121 point set of pattern data. n . 

No attempt was made at using the VARIA criterion as the basis of 

an optimization scheme for the a , although such a technique might n . 

be developed by treating the number returned by VARIA as a function 

of the an vector and finding a local minimum by an iterative process. 

The limits of the regenerated Fourier coefficients present little 

prOblem for on-axis scattering, since there is perfect reconstruction 

to the 4 th or 5 th decimal place, and coefficients originally zero 

are regenerated as 0.000000 or ±O.OOOOOl. If the field is being 

reconstructed near the conducting surface, such numbers can be 

amitted. Once translations are made, however, the order of 

coefficients necessary for such accuracy goes up very quickly. 

For the 0.25A radius cylinder, a Fourier coefficient order of 4 

provides good on-axis reconstruction. A translation of O.OSA makes 

it necessary to use an order of 6 to include the significant 

16 



coefficients, even though this system fits within a circle of 

O.30À radius. An order of 6 is sufficient for a centered O.SOÀ 

radius cylinder. This matter is treated quantitatively in 

Section S.c. It should be noted here that a Fourier coefficient 

order of 6 implies a coefficient vector of dimension 13, to 

include the +,-, and zero orders. Figures in the programs 

use the vector dimension rather than the single-sided order. 

Two types of output scans are used, the radial and the azimuthal, 

and an attempt was made to automate the location of scatterer 

points with the azimuthal scans. The field in the near-zone 

is reconstructed for successively smaller rings, and once a field 

value less than a particular cutoff is found, the program 

sequences the radii to the smallest circle just containing the 

.scatterer. This works weIl for on-axis cylinders, but for the 

other cases, false zeros and inaccuracies cause it not to be 

worth the effort. Radial scans provide a better sort of information, 

as can be seen from Figures 5.e.2 and S.e.3, but they require 

more initial guesswork in setting up the off-axis problem. A unit 

circle 3.5 units from the origin subtends only 300 of arc. 

AlI programs and subroutines used for this study are listed 

in the Appendix. 

17 



CHAPTER IV 

INFORMATION CONCEPTS 

Any practical method of inverse scattering must make reference 

to a spatial information theory, since the process of reconstructi?n 

from a set of sampled points is statistical. Furthermore, since we 

expect to recover scattering object detai1, the wavelength of the 

incident test field must be considered with respect to the object 

dimensions. Perhaps this is most easily explained by repeating an 

analogy due to Sir Arthur Eddington, as quoted by Gabor (1961): 

"If an icthyologist casts a net with meshes two inches wide for 

exploring the life on the ocean, he must not be surprised if he 

finds that 'no sea creature is less than two inches long'''. 

·Gabor (1946) and MacKay (1950) were among those primarily 

responsible for the development of quantal information concepts, and 

Gabor's earlier paper was the foundation for the extensive 

communications applications by Shannon (1948,1949). Of particular 

interest to this study, Gabor dea1t with the info~ation content 

of light beams, and his method for calculating the number of 

degrees of freedom in them can be directly applied to the 

scattering prOblem. 

Recently. Winthrop (1971) has developed a pseudopotential 

theory for the propagation of structural information (the ~p'riori 

information which comes fram a knowledge of the degrees of freedom) 

and this seems that it will out1ine methods for the more complete 

analysis of diffraction and scattering prOblems. Relationships 

18 



about the structural information at different cross-sections of 

the field are found by the introduction of an information flow 

vector. Tubes of information flow are then postulated as being 

perpendicular to the surfaces of constant pseudopotential, in much 

the same way that field lines run normally between electrostatic equi­

potential surfaces. The theory has analogies to Huyghens' 

constructions and fluid mechanics, and perhaps fluid models can be 

used to analyze situations too complicated for the pseudopotential 

theory itself. However, to begin with, we must ad~ress ourselves 

to the points where these ideas may be of use in the present study. 

The idea of quantified information and the use of "missing 

information" enables the communications engineer to set design 

characteristics and analyze the behavior of his systems, because he 

.is dealing with a probabilistic process that has both structural 

and metrical aspects: he expects messages within a certain codeset. 

and his receiving equipment is designed to discriminate within the 

expected range of frequency, voltage level. phase. and so forth. 

In electromagnetic theory, the precise description of certain 

quantities, such as ~ and V~, leads to a complete exact solution 

for the fields involved. In this case the ~priori (structural) 

information results from a knowledge of the ge~ry and the 

physical laws. On the other hand. a specification of the properties 

in a specific area of the field usually does not lead to a solution 

whlch describes the remainder of the field and its sources. The 

inverse scattering problem is beset with this difficulty. and we 

must thcrcfore find a way to associatc field information with 

19 
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bounds on solution precision: bounds that vary with the ini~ial 

information. We will then be able to investigate with more 

precision such problems as the calculation of points in the far-

field fram select near-field points. In particular, it may help 

make unnecessary the 3600 measurements required for accurate 

Bessel function analysis by providing confidence in the accuracy 

of discrete systematic measurement patterns suited to Cartesian 

recording equipment. 

Besides sampling, there is another way information concepts 

may be appliéd. A scattering system may be considered as astate 

space, and using analogies to statictical mechanics, we can 

work fram the fundamental invariant 

Entropy + Information Content = Constant . (4.1) 

(MacKay (1950», which is simply the relationship between 

unstructured and structured knowledge within a set of boundary 

conditions. In form it expresses the yin-yan principle that what 

we know plus what we don't know about the system defines the whole 

(sametimes with a little of the second in the first and vice-versa, 

too!). The two ~ub-classes of information, the structural (~p'riori) 

and information fram measure (~posteriori) can then be acted upon 

to change the entropy (disorder). 

Quantities of information on structure for light beams (and 

electromagnetic waves in general) arc directly related to the 

degrccs of freedam for a systec (HacKay (1950». For a monochramatic 

beam. thcir numbcr may be calculatcd froœ the relation derived 



by Gabor (1961): 

F = 2 X 2 X Ob ject Area X Accessib le Fourier Area (4.2) 

where the first 2 accounts for the complex nature of the optical 

disturbance, and the second for polarization. In the cylindrical 

scattering problem, both 2's are suppressed because we wish to talk 

of numbers of oscillators (themselves complex) and because the axial 

polarization never introduces a transverse electric field. To keep 

matters clear, we will always use the terms "complex" or "pairs" 

when referring to an equivalent number of oscillators and the 

associated degrees of freedom. 

For the tvo-dimensional scattering problem, the calculation 

of the number of degrees of freedom must account for a difference 

in system orientation from the light-beam case: the object area and 

Fourier transform space are one-dimensional. From any direction 

in the two-dimensional space of the cylindrical scattering 

problem. the Object area is the diameter 2a. The maximum accessible 

Fourier area is then the diameter of the circle of radius ~/~. where 

~ i8 the refractive index. With only the axial polarization 

considered. 

N = 2a X2~/~ (4.3) 

i8 the number of oscillators necessary for an equivalent radiation 

pattern. We can verify the validity of this figure vith the following 

thought about sampling theory: scattering by an object ~X in 

diameter can provide no information about the object detail. From 
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actual practice, we know that in scattering problems this size 

object can be replaced by a single line of current, or one 

osci1lator. Therefore, when a=~À and ~=l, 

N = 2>J4X2/À 1 

we find that we have indeed provided the correct number of 

comp1ex degrees of freedom. For the cylinder sizes discussed in 

Cy1inder Radius a 

a=C).25À 
a=O.5À 
a=l.OÀ 
a=l.lÀ 
a=2.0À 
a=4.OÀ 

Number of 
Oscillators N 

N=l 
N=2 
N=4 
N=4.4=5 
N=8 
N=16 

Numb er of True 
Degrees of Freedom F 

F=2 
F=4 
F=8 
F=8.8=9 
F=16 
F=32 

(4.4) 

.Table 4.1 Relationship between cylinder size, number of degrees 
of freedom, and equivalent number of osci1lators for 
the inverse scattering study. 

this study, Table 4.1 shows the tabulations from Equations 4.2 and 4.3. 

Some application of these numbers is found in Section 5.d, where 

reconstruction from sectors of pattern function data is treated. 

To the extent that it is found here, information theory provides 

some assurance that the experiment is being conducted proper1y. lt 

18 hoped that the ideas may find application beyond samp1ing, and 

that the behavior of diffracting and imaging systems can be 

numerlcally tied together vith ubiquitous field effects, such as 

the nulis and Airy rings. 
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C~Y.ŒRV 

RESULTS OF THE INVESTIGATION 

Five aspects of the reconstruction problem were studied, and 

they are each treated under their own subheading in this ehapter. 

However, before proceeding it is necessary to scale a particular 

coordinate system extensively used in the following sections. The 

azimuthal field reconstructions are in real space; 50 the 

distance from -1800 to +1800 is a function of the radius, 2nT. 

Presenting these graphs in their true scaled forro was considered 

confusing, 50 the alternate forro of Figure 5.1 was chosen. The 

r=l.S 

1.0 

+.900 +1800 

Figure 5.1 Coordinate system for azimuthal field plots. 

horizontal scale runs from -1800 to +1800 , and the radius is 

indicated in the upper left-hand corner. The vertical seale Marker 

lndicates a field magnitude of 1.0, the magnitude of the incident 

plane waves. If one wished to construct a graphie model of the 

field, the horizontal scale would have to be expanded in 

proportion to the radius. 
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S.a Field Reconstruction for Centered Cylinders. 

The diagrams in Figure 5,a.l show a sequence of reconstructed 
1 

field magnitudes for scattering by a 4.0À radius cylinder. As the 

radius approaches that of the cylinder itself, the field settles 

to zero, indicating a returned conducting surface. Because the 

pattern function for this-cylinder does not contain complete 

information (see Figure 3.3), there is in the field a periodicity 

which is associated with the Fourier coefficient order. However, 

the reconstruction is approximate (see Figure 5.b.4), and so the 

features of the returned field may be noted. Close to the %1800 

positions at r=4.25, a peak in the standing wave is evident. This 

is expected since a small portion of the cylinder reflects the 

incident wave like a nearly plane surface. In the 0 0 direction, 

the average of the field is a minimum, indicating the shadow 

region of the cylinder. 

Figure 5.a.2 shows a sequence of azimuthal field reconstructions 

for a 1.1À radius cylinder. Now the reconstructions are in the 

"good" (r=2.60; r=2.l0) and the "very good" regions shawn in 

Figure 5.b.4. Again, as the radius of the reconstruction circle 

approaches the cylinder radius, the magnitude becomes a smooth 

function which settles to zero. Reconstruction for radii less 

than the cylinder radius briefly appears to be symmetric with that 

for radii above it, but, in diagrams not shawn, rapidly expands 

into saturation by r=O.5. The feature of the drifting peaks in 

the sequence simply represents a geometrical phenomenon: as the 

radius decreases the circular contour intcrsects fcwcr standing 
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waves about the cylinder. 

The pattern function data is altered for the reconstrüctions 

shown in Figure 5.a.3. These new pattern functions represent 

measurement data that might be supplied by increasingly less 

accurate equipment (6 decimal place accuracy is beyond the limit 

of practicality for normal equipment). We see that these 

degradations do not affect reconstruction at r=I.60, but that 

the data accurate to 2 decimal places causes inaccurate reconstruction 

at radii less than this. 

Noise added to the pattern function data provides the 

reconstructions in Figure 5.a.4. Again, except for noise with 

D=0.05, the changes do not affect reconstruction at r=l.60. 

However, even the noise with D=0.0005 affects reconstruction at 

r=1.IO·although the field behavior is obvious at this noise level. 

We may conclude that reconstruction will be accurate with pattern 

function data good to 3-4 decimal places. 
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r=4.50 

Figure 5.a.l 

r=4.125 

r=4.10 

r=4.0625 

r=4.0313 

r=4.00 

Sequence of azimuthal field reconstructions for the 
4A radius cylinder. The Fourier coefficient order is 
15. Note the standing wave peak at r=4.25. 
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r=2.60 

r=2.l0 

r=1.70 

r=1.50 

r=1.35 

Figure 5.a.2 

r=1.225 

r=1.20 

r=l.lO 

r=l.OO 

Sequence of az~uthal field reconstructions for the 
1.lÀ radius cylinder. The Fourier coefficient order 
1s 15. 
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A r=l.60 

B 

c 

D 

E 

Figure 5.8.38 

A r=l.35 

B 

c 

D 

E 

Azimuthal field reconstructions for the 1.IA radius 
cylinder. The Fourier coefficient order is 15, and the 
reconstruction is at r=1.60 (left) and r=l.35 (right). 
Cases: A. Original 6 decimal place data. 

B. Roundoff to 4 decimal places. 
c. Truncation to 4 decimal places. 
D. Roundoff to 2 decimal places. 
E. Truncation to 2 decimal places. 
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A r=I.1625 

B 

c 

D 

E 

Figure 5.a.3b 

A r=I.IO 

B 

c 

D 

E 

Azimuthal field reconstructions for the 1.IA radius 
cylinder. The Fourier coefficient order is 15, and the 
reconstruction Is at r=I.1625(left) and r=I.10(right). 
Cases: A. Original 6 decimal place data. 

B. Roundoff to 4 decimal places. 
C. Truncation to 4 decbaal places. 
D. Roundoff to 2 decimal places. 
E. Truncation to 2 deciœal places. 
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r=1.60 

r=l.IO 

Figure 5.a.4a 

r=I.IO 

Figure 5.a.4b 

r=1.6ù 

r=I.IO 

Azimuthal field reconstruction for the 1.IÀ radius 
cylinder. The Fourier coefficient order is 15. 
Cases: Left. Original 6 decimal place data. 

Right. Gaussian noise added.I'=0.0,O=0.0005. 

Saturation 

AzLœuthal field reconstruction for the 1.IÀ radius 
cylinder. The Fourier coefficient order is 15. 
Cases: Left:. Gaussian noise added. 1'=0.0, u=0.005. 

Right:. Gaussian noise added. 1'=0.0, u=0.05. 

30 



.- 31 

5.b Fourier Coefficient Orders. 

Calculating the near-field while changing the limits of the 

Fourier sum provides information about accurate and inaccurate 

reconstruction. In Figure 5.b.l the reconstructed field for a 

1.OÀ radius cylinder is shawn at several radii for three different 

Fourier coefficient orders. At r=3.0 and r=1.5 the order 5 

reconstruction contains no real information, while the order 10 

plot looks first like a highly degraded, and then a slightly 

degraded version of the expected field. At r=3.0 the order 15 

reconstruction is apprOKimate, and at r=1.5, it is very good. As 

the radius of the conducting surface is approached, aIl three limits 

provide.good results. 

Reconstructions for a 0.25À radius cylinder are found in 

Figure 5.b.2. At r=8.0 there is nothing believable about the 

returned field for any of the coefficient orders. At r=l.O the 

order 7 and order 15 reconstructions are similar, with the latter 

appearing to be the best choice. At r=0.75 the arder 7 plot seems 

best, while the order 15 reconstruction is Just beginning to 

blow-up. As r approaches 0.25 the order 3. 5. and 7 reconstructions 

provide good results. while the order 15 plot has saturated. 

These observations bring out an important detail which may 

be converted into a criterion on the Fourier coefficient order 

neccssary for good computation of the reconstructed fields. The 

best angular resolution for a circular pattern is related to the 

order of the Fourier sumo and the best linear rcsolution along 

the circumfercnce ls related to the angular resolution. Doubling 



the radius doubles the circumferential length, so a detail of 

specifie length on each circ le requires a higher Fourier coefficient 

order to resolve it on the larger one. 

For plane wave scattering, we may approximate the Fourier 

coefficient order necessary for reconstruction at any radius by 

determining the percent age of the circumference intercepted by 

3600 phasefronts at the point they are nearly normal to the circle. 

See Figure S.b.3. This de fines the region of greatest angular 

variation. Provided the radius is greater than the wavelength, 

the chord B and arc A are nearly equal. Therefore, 

is a measure of the circumference in terms of arc length, and 

should be the Fourier coefficient order necessary to reproduce 

a circular function whose greatest angular frequency has an arc 

period A. 

(S.b.l) 

In Figure S.b.4, one of the important results of this study, 

the above criterion i5 plotted together with bounds on the range 

of good reconstruction, a composite of the information from this 

section and Section S.e. We see that the criterion of Equation 

S.b.l coincides with the upper bound. Further studies can make 

use of this in order to be within a region of good reconstruction 

at any specifie distance from the origine 

32 



5 r=3.0 

10 

15 

Figure 5.b. la 

5 r=1.5 

10 

Figure 5.b. lb 

5 r=1.125 

10 

15 

Azimuthal field reconstructions for a 1.OÀ radius 
cylinder at r=3.0 (left) and r=1.125 (right). The 
Fourier coefficient order is indicated in the diagram. 

5 r=1.0 

10 

15 

Az1muthal field reconstructions for a 1.OÀ radius 
cylinder at r=1.5 (left) and r=l.O (right). The 
Fourier coefficient order is indicated in the diagram. 
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3 

5 

7 

15 

Figure 5.b.2a 

3 r=1.0 

5 

7 

15 

Azimuthal field reconstructions for the O.25~ radius 
cylinder at r=8.0 (left) and r=l.O (right). The 
Fourier coefficient arder is indicated in the diagram. 
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3 r=O.75 

5 

7 

15 

Figure 5.b.2b 

3 r=O.2813 

5 

-----7 

15 

Saturation 

Azimuthal field reconstructions for the O.25~ radius 
cylinder at r=O.75 (left) and r=O.2813 (right). The 
Fourier coefficient order 15 indicated in the diagram. 
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Figure S.b.3 

Circular Cross­
Section of the Field 

Phasefront 

If a cross-section of a plane wave field is made 
along a circular contour as shawn in the diagram. 
the highest angular frequency occurs where the circle 
is intersected by the diameter paraI leI to the 
phasefronts. From this we can estiruate the Fourier 
coefficient order necessary to reconstruct the 
cross-section. 
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Radius 
(units of ~) 

5.0 

4.0 

3.0 

2.0 

1.0 

Figure 5.b.4 

• Insufficient 
Information 

• 

10 

• Saturation 

20 30 
arder of Fourier Coefficients 

Diagram showing the Fourier coefficient order 
necessary for good reconstruction at specifie 
distances from the origine The bounds are obtained 
primarily from the radial reconstructions of Section 
S.e. The upper bound coincides with Equation S.b.l. 
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5.c Translations of the Pattern Function. 

When the coordinate system is centered on the cylinder axis, 

the reconstructed field can accurately return the position of the 

conducting surface. If the coordinate system for the reconstruction 

is displaced from this axis, the accuracy decreases. Azimuthal 

reconstructions for very small translations appear nearly 

identical to their untranslated counterparts, but once the 

translation distance becomes more than a few percent of the 

cylinder radius a definite character governs the surface of 

minimum field. In Figure 5.c.l a translation of Po=O.28 for a 

1.O~ radius cylinder shows a parabolic curve in the surface of 

minimum field. The surface should indicate minima at points near 

the cylinder. Strictly speaking, the analysis is not valid for 

reconstruction radii less than r=1.28 (the minimum radius enclosing 

the cylinder) but there is no saturation over the region shawn 

in the diagram. 

This raises the question of how much information is lost in 

translating a pattern function. In Figure S.c.2 the order nccessary 

to include aIl non-zero 5-6 decimal place Pourier coefficients 

is plotted against the minimum radius enclosing the cylinder 

for translated systems. Note that the untranslated cylinder 

requires 10 coefficients. These points form a slight upward curve 

which i5 weIl within the bounds determined in Section 5.b. The 

translation of Figure 5.c.1 fits right in this range, so the 

altcration in the shape of the returned conducting surface 

dcpcnds on dceradations in the translated pattern function, and 
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not on an insufficient coefficient order. S~ilar conclusions 

can be drawn from Figures 5.c.3 and 5.c.4, where a 0.25A radius 

cylinder has been translated with~=0.04. 

While the information presented in Figures 5.c.2 and 5.c.4 is 

useful in determining a proper coefficient order for translated 

pattern functions, an analysis of the values generated by VARIA 

provides more information about the usefulness of the translated 

pattern functions themselves. Recall that VARIA preformed the 

operation described by Equation 2.2: a test of fit between a 

pattern function and a set of Fourier coefficients derived from 

it. Figure 5.c.5 shows the values of this subroutine plotted 

for many translation parameters of a 1.OA radius cylinder. The 

Fourier coefficient order is 12. From Figure 5.c.2 we expect 

.good results up to a minimum radius of r=1.2, or Po=0.2. For 

1800 in Figure 5.c.5 this is exactly the case: the curve makes a 

sharp upward bend at this point. However, translations at angles 

other than *1800 and 0 0 causes sufficient asymmetry in the 

regenerated pattern function that the values of VARIA become 

orders of magnitude greater than those for translations along 

the incident direction. The mechanism for the translations 

themselves is tested by preforming double translations, out to 

a given point and back again, without calculating the new 

Fourier coefficients in the meantime. As we can see from the 

line of stars, they accurately return the value of VARIA for Po=O. 

Therefore, the degeneration by translations from the preferred 

direction (the incident wave direction) 15 related to the 
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computing of the new Fourier coefficients. When the preferred 

direction is aligned with the pattern function symmetry axis 

(as in 1800 or 0 0 translations) the regenerated coefficients 

match the pattern function. Wben translations at other angles 

are preformed, the pattern function symmetry is destroyed, and 

the test of Equation 2.2 indicates serious mismatching. For the 

data of Figure 5.c.l, VARIA returned a value of 36.45, a figure 

9~ orders of magnitude ahove the figure for a centered coordinate 

system. 

In Figure 5.c.6 sorne values returned hy VARIA are plotted 

for translations involving three cylinder sizes. These are for 

optimal translations, with ~0=1800. The 4.0A radius cylinder 

shows mismatching due to the incomplete character of its pattern 

function (see Figure 3.3). The 1.OA radius cylinder was discussed 

above. From Figure 5.c.4 we expect the curve for the 0.25A radius 

cylinder (Fourier coefficient order 7) to turn upward near Po=0.05, 

and it improves on our guess by remaining fIat to Po=O.lO. 
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Figure 5.c.1 Reconstruction in a coordinate system translated 
from the axis of a 1.0A radius cylinder. ~o=32° and 
Po=O.28. The Fourier coefficient order is 15, and 
the radius varies from r=1.4 to r=O.8. Law points 
in the azimuthal scans are indicated by the heavy 
lines. 
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Radius 
(units of ~) 

3.0 

2.0 

1.0 

Figure 5.c. 2 

" 

o 

10 

Figure 
5.c.l>-..... 

S ~ @ 
* o 

o 0 0 

20 
arder of Fourier Coefficients 

Translations of a 1.OÀ radius cylinder. Values of the 
minimum radius enclosing the cylinder vs. the Fourier 
coefficient order necessary to include aIl non-zero 
5-6 decimal place coefficients are plotted with the 
bounds of Figure 5.b.4. The star indicates the position 
of the reconstruction in Figure 5.c.l. 
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Figure 5.c.3 Reconstruction in a coordinate system translated 
fram the axis of a O.25À radius cylinder. ~o=-6° and 
Po=O.04. The Fourier coefficient order is 7, and 
the radius varies fram r=O.30 to r=O.23. Law points 
in the azimuthal scans are indicated by the heavy 
lines. 
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1.0 
Radius 
(units of A) 

0.5 

Figure 5.c.4 

5 

o 0 

o Figure 
*- 5.c.3 

o 0 

10 15 
arder of Fourier Coefficients 

Translations of a 0.25A radius cylinder. Values of the 
minLmum radius enclosing the cylinder vs. the Fourier 
coefficient order necessary to include aIl non-zero 
5-6 decimal place coefficients are plotted with the 
bounds of Figure 5.b.4. The star indicates the ~osition 
of the reconstruction in Figure S.c.3. 
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log10 

+1 
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-1 

-2 

-3 

-4 

-5 

-6 

-7 

-8 
> 

-9 

-10 

Figure 5.c.5 

"'" 
. ~330 

~150 fo50 0 

90.~ '/ / 315 /170 

W/ / 
V/ /179 1 
V /' 1 / 
/ j 

{'" 

180 / 

/ 
/ 

~ 
'" ..... * * Double 

Translations 

-2 -1 o +1 
12g10~ (units of À) 

Values returned by subroutine VARIA for translations 
of a 1.OÀ radius cylinder. The Fourier coefficient 
order is 12. The angle ~o is indicated in the diagram. 
Double translation~ (out frem and back to the cylinder 
axis) are indicated by the stars. 
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1oglO 

+1 

0 

-1 

-2 

-3 

-4 

-5 

-6 

-7 

-8 

-9 

-10 

Po=O 

Figure 5.c.6 

~ ~ 
/ 7 

/ 
v V 4.0.\. 1 

/ # 
/ 7 

7 
~J 
~ 

1 
1 - 1 

~ ~ 1.0.\. 

'25.\. 

V 
-2 -1 o +1 

logl0 Po (unies of.\.) 

Values returned by subroutine VARIA for translations 
of 0.25.\., 1.0.\., and 4.0.\. radius cylinders. ~o=180o. 
The Fourier coefficient order is 7 for the first case, 
12 for the second, and 15 for the third. The pattern 
function data for the 4.0.\. case Is not constructcd 
from aIl the non-zero 6 decimal place coefficients. 
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S.d Reconstruction from Sectors of Pattern Data. 

In Figures S.d.l and S.d.2 we can see how the reconstruction 

process improves as larger angular sections of the pattern data 

are included in the analysis. Recall that ~21 data points have been 

used to correspond to the 3600 pattern function. We can see from 

the diagrams that even the removal of the two end points from the 

data set causes noticeable changes. In Figure 5.d.l (r=1.5) the 

field for 354
0 

(119 of the full 121 points) is only a bit more 

lumpy than the 3600 case. but as the radius decreases. the fine 

structure domina tes the pattern. Compare this with its counterpart 

in Figure 5.d.2 (r=1.2). The trend eventually reaches a limit at 

r=l.O (not shawn) when the fine structure begins to saturate the 

plotting space. in sharp contrast to the real field which we know 

is zero. 

The removal of points from the data set causes the high order 

Fourier coefficients which are normally close to zero to be 

regenerated with large magnitudes. Essentially. they are trying 

to add a square weIl to the pattern function. Interpolation of the 

pattern data into the missing region would improve the reconstruction 

provided attention was paid to the aspects of information content 

discussed in Chapter 4. For the 1.OA radius cylinder pattern data. 

interpolation should accurately re-establish data into missing 

regions extending to 900 since this size cylinder has four pair degrees 

of freedom. This figure might be considered an optimistic upper 

bound. How~;~r. when we observe the graph showing the real part 

of the true pattern function. Figur~ S.d.3. it appears that a 
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o 0 
quadratic scheme can easily fill missing points fram -180 to -135 

and fram +1350 to +1800
, a 900 extent. In this figure, the pattern 

i8 divided arbitrarily into four regions which seem to 

correspond to the output of four separate oscillators, and 

thereby to the conjectured four camplex degrees of freedam. For 

non-interpolated sectors of pattern data, Figure 5.d.2 shows that 

we must accept information fram better than 3000 before reasonable 

judgments may be made about the reconstructed field close to 

the cylinder. 
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30 r=1.5 

60 

120 

180 

234 

270 

Figure 5.d. 1 

300 

324 

342 

354 

360 

360 F.C.=15 

Reconstruction vith sectors of pattern function data 
(symmetrical about 0 0

) for a 1.0À radius cylinder. The 
Fourier coefficient order is 12 (15 in the lower 3600 

diagram) and r=1.5. 
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30 r=1.2 

Figure S.d.2 

300 

324 

360 

360 F.C.mIS 

Reconstruction with sectors of pattern function data 
(symmetrical about 0°) for a 1.0A radius cylinder. The 
Fourier coefficient order is 12 (15 in the lower 360° 
diagram) and r a l.2. 
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-180° 

!li 

Figure 5.d.3 

+1.0 

+1800 

-1.0 

IV 1. II III 

Real part of the pattern function for a 1.OA radius cylinder (kaa 6.28). The 
pattern is divided into 900 sections corresponding to the four complex degrees of 
freedom of this scattering system. 
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5.e Comparison with Experimental Data. 

The final question we wish to rai se in this study concerns 

the linking of the computational inverse scattering method to a 

real experiment. In fact, there is very good agreement between the 

reconstructed near field and an actual map of near-field values 

measured by Howarth (1971). In the experiment a 0.5" conducting 

cylinder was illuminated by a horn-fed microwave field with 

A=12.75mm. Consequently, ka=3.l6. The curvature of the incident 

field was about 1/6A maximum over the region 5A to one side of 

the cylinder, a fair plane wave approximation. The measured field 

was amplitude and phase referenced to the source, providing a map 

for each quantity. This data was then compared with the near field 

reconstructions for the ka=3.l4 cylinder. Reconstructed values were 

plotted along two radial contours, at 3000 and 330
0 

(see Figure 5.e.1). 

Several different limits were used in the Fourier summations, and 

the regions of validity can be ascertained fram the cambined 

graphs in Figures 5.e.2 and 5.e.3. The circ les indicate the field 

points taken from the map in Figure S.e.l, and we see good matching 

along the 3000 contour, and excellent matching at 3300
• 
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Figure 5.e.l 

-4 -2----0--_... 
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-2 
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-2 

-2 
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0 

-2 

-2 
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-2 

-2 

53 

-4 

\ 

Map of the field in the vicinity of a conducting cylinder 
illuminated by nearly plane waves (Howarth 1971). Ka=3.l6. 
and the contours are scaled in db. A small section of the 
phase map appears at the top. The lin es A and B refer to 
reconstructions found in Figures 5.e.2 and S.e.3. 
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1.5 

1.0 

· 0.5 

Figure 5.c.2 

12 '15 20 31 

Radial field reconstructions for the O.SA radius cylinder. Kaa 3.14, the axis is at 
3000 (A in Figure 5.c.l), and the Fourier coefficient order is indicated in the 
diagram. The measured field for the kaa3.16 system is indicated by the circles. 
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8115 /12 ns 20 31 

. 1.5 

1.0 

0.5 

Figure 5.e.3 

Radius (units of A) 

Radial field reconstructions for the O.SA radius cylinder. Kaa 3.14, the axis ia at 
3300 (B in Figure 5.e.l), and the Fourier coefficient order is indicated in the 
dingram. The mca5ured field for the ka=3.l6 system i5 indicated by the circles. 
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CONCLUSION 

In making a concise assessment of the Fourier analysis-Bessel 

func~ion inverse scattering method, it can be said that it works, 

but that to work weIl, it requires precision that is not 

necessarily obtainable in practice. The technique definitely can 

be used in problems where the scatterer dimensions are in the 

order of a few wavelengths (which, of course, imposes a severe 

restriction on the recoverable detail), but it seems much too 

limited to handle the problem of distinguishing the B.A.C. 111 

fram the Boeing 727 in an air traffic control facility. A practical 

object recognition schcme will simply have to rely on much less 

scattered field data. Consequently, it will be wise to extend the 

application of the information content ideas in such a way that 

they will be able to show the effects of limited sampling. Also, 

work can be done with real-time correlation analysis, which has 

been a samewhat successful technique for providing information 

about colloids fram the simultaneous measurement of scattered light 

intensity at a number of angles. 
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