\

- | A’Knowledge-based Sast’ém

for On-line Robot Error Recovery .
€

A}

[N

v

Martin Boyer e

- B. Eng.)
Departraent of Electrical Engineering .
McGill University
N]
»
]
A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillrﬁen‘t of the requirements for the degree of
o * ¢
. . Master of Engineering .
July 1988 . o o

ﬂg « © Martin Boyer p \

, S Abstract : : .

P

¢ ‘e

4 s v é;;_‘

-

This research investigates the_nproblen}s associated with manipulation and.\to
a certain extent, programming errors in a shared operatbr/computer control of a robot
_system. The [;rinciple is to trace all actions, at run time, to provize on-line detection
and recovery of errors. A world model is constructed and maintained for the purpose of
predicting the effeciigf actions and signaling errors when the actual outcome of an action
differs from its required effect. Default reasoning is used extengiQoely to speéd up processing
and compensate for the high cost of sensing. After a task planner has dealt with the general

organisation of the program, the system presented here has the responl i'bility of coping with

e

variations of the real world to attan the desired goal with the given plan. / .

Artest case, overhead power line maintenance. demonstrates the functioning
of thg'éystem and, although the work is based on this particular context, the scheme
“described comprises a generic “substrate” which deals with common basic robot actions—
such as move and grasp and is supplemented by task and environment specific knowledge

such as which parts can be mated, sizes, and weights. This part of the system is static

for a given task and a good portion of it, the substrate, is valid for a wide range of tasks.

Q@

- , ‘

Cette recherche investigue les problémes associés aux erreurs de manipulation
et, jusqu’a un cer.tain’point. de brogrammation d'un manipulateur robotisé, en commande
partagée entre un opérateur et un contrdleur intelligeﬁt. A la base, toutes les actions sont
suivies, au moment de I'exécution, pour permettre la détection et le recouvrement des
erreurs en ligne. Un modéle du monfie est construit et maintenu afin de prédxr‘e les effets
des actions et de signaler une erreur lorsque le résultat d'une action différe de I'effet requis. -
Un raisonnement par défaut est utilisé de facon systématiqué pour accélérer le traitement
et pour ;:ompenser le colit’ élevé d'utilisation des capteurs. Une fois la tiche pla;lifiée. le
systéme présenté ici a la responsabilité de s'adagter aux variations de I'enviropnement afin

d’atteindre le but désiré au moyen du plan original.

7 . . ~4
Un cas type, I'entretien de lignes de distribution électrique, démontre le fonc-

tionnement du systeme et, quoique déveldppé dans ce eontexte particullér, le systeme
comprend un “substrat” générique. Ce substrat décrit les manipulations de base, telles
les déplacements et l'action de la pince, et comprend des connaissances spécifiques 2 la
tiche et a I'environnement, telles que les pieces pouvant étre jointes, les dimensions et les
masses. Cette partie du systéme ne varie pas pour une tiche donnée et une bonne part, le

&

»

substrat, est valable pour un grand nombre d'applications. -

A

e

Acknowledgements \

’ A

t wish to thank.first my thesis supervisor, Doctor Laeeque Danesflmencj. for
providing many of the original ideas, careful guidénc‘e. and for generally doing more than
he had to. | also extend my grat‘it‘ude to the students andﬂstaﬂc of the Computer Vision and
Robotics Laboratory, Mike Parker in particular, for help on numerous technical problems

and many comments on human interfaces.

s v

Je tiens également j. remercier mon co-directeur a I'lnstitut de recherche

d’'Hydso-Québec, le Docteur Pér.re Girard, un homme éclairé qui, par sa grande ouver-
ture d’esprit et sa confiance, a rendu mon séjour a I'lREQ des plus agréables et stimulants.
J'exprime aussi ma reconnaissance envers |'Institut pour un important support financier et
technique, de méme qu’envers le personnel du laboratoire de robotique, tout spécialement

A

Jean Lessard pour mavoir supporté durant plus de deux ans, mais surtout pour de riches
discussions sur les besoips et possibilités de la télérobotique. En dernier -licu. je.remercie
mes parents ainsi que Louis et Manon, pour leurs encouragements et leur :;mitié au cours

v

d'up hiver difficile, sans lesquels cette thése n'aurait jamais été complétée.

| ! ’ > - ,
y . E: Contents
C ! v r " Contents o /
S B
" O LISEOf Figures ... e viii
Chapter 1 Introduction. .. :' P \{ SRR 1
14 The Problem ... Lo, 1
. 1.2 Previous\Work/Theory..' F S .2
1.2.1 Prelexecution Planning and Verification,.‘. c.r 2
. 1.2.2 Failure Rgpédn Analysis e 4
. 1.2.3 Object Oriénted Programmningr 7
- 1.3 MOEIVALIONo o\ttt e e et e e e e e e 8
131 Appligatioﬁs T SR 84
E 1.3.2 Replanning versus Error Recovery * 9
‘ 133 "What Is ISER? DR e 11
’1.4 Thesis Overview 0 i, e e 12)
Chapter 2 Problem Description and Representation P 13
‘ - 21 Task D‘escri;;tio;g ... 13
211 The Operator..................... T . 14
2.2 Typical Ta;k S 14
: . 221 Actions and Associated Errors P 14
2.2.2 Le\\iel of Repr:.sentation - ___ e 16
‘ 2.3“ Frame Representation. e uiiii i eiinenns e 17
231 Objectsooii. L e 18
T 232 Tools.eis il SUUTEUIR e, 2
(o 1233 ACHONS .\ttt e 23
| \\ 234 Where is the Krolowledge?.\p.... B 26
‘ T ’ ' v

—_

N) ‘" i Coi\tcnts

| 235 ART. The Automated Re-a?oning Too‘l A e ﬂ 1/26 ,
]2.4 ‘Domain Independence.................... oo P é ‘27

Chapter 3 A Dynamic World Model .//............................. 28
’ 3.1 Effects ;>f (ll\ctions e e 28
32 ,,UseofSensor's’....'.E.... ‘ e ° e 30
L3.3 Action Trace' 0 e i e 31
3.4 High—leve! Parser....... e e PR e ,.31
Chapter 4 = Error Detection and A};alysié RETFTRRE A . 33‘
41 Error Typesv. ..o .. e DU a. . ‘33
4.2 Erfor Sources I 35
4.3 Run-ti‘me Error Detection. . &, . .. oivt sy e SEEY e, . 37
4.4 Post-mortem Ana‘lysis e e LERTRRTeS . 38
441 The Failure Tree.covvmenieiinne, e v N
442 Ultimate Source of Error.~.......... 0 ..o 40
) 45 Complexity Analysis ... -......! ‘ ’- ~40
" Chapter 5 Error Recovery I 42
51 'Error Recovery Algorithm........... e [RREERRERRRRRRRRY p 42
5.1.1 Constrainipg the Search-Space................ BT 44
' 5.2 RecoveryPropagation................. TTPP . .‘ 46
5.3 Example. - oe.iit e IR 47
54 Recovery Cost pe e e e e 50

e “ ’ Vo
Chapter 6 Conclusion :-...... . e N 58
\ 6.1 Sumrr;ary and Discussion. e 58
| [
!

N

e

-

Appendix A. Sample ISERsSession................. e ev... 62

" Appendix B. TheHighLevel.Parser...-...-...‘...‘.. il 6T
' ’ ; ., 68 |

*
4

. -~ P
- '
+
& v
£}
~
r ’ !
’
-
Q
’
. L]
.
d-
. \ .
. . ~ .
™ - [l ¢
o
¢ .
A0
1y &
’)
. -
< ! ? .a \
4 -
4 .
B * .
¢
-
' -
a
' -
dy -
- I3
' . ® ¢ . -
K4 - -
N e
-
.
. (5 ’ ‘
Xy
« i
- v
.
‘
u
. L] N
» &J
©
v -
i i
b
.
N .
o
- o
3

vii

- U
\ ‘Y ; h)
- = 9 ! ,
* R) ! ~
M B List of Figures
3 | ‘ ‘ :
* - P , . \ .
. L
- - List of Figures ’ . .
. ot 1) . 3
1.1 Replanning versus Error Recovery............ U el 10
2.1 Objects classes in ISER, LR fee e Cierpe e 19
. 2.2 Action classes in ISER.0.....ooiiiiiiiii e 24
) 5.1 The Action Search Space...o................ e .. 45
9 LN
. C 52 Error Recovery..................... e e . ; 46
- t
5.3 Perfectand Actual plans /. i, e 53
’ « 5.4 Program Costs as function of the Numberof Steps.................... 56
< ‘ . .) ’) s
Al Typical ISER display. o i e 63
: - . 0
o
A2 ThelSER menu. T e e e 64
K , A3 The conductor object, initial state. e e PR T
| A4 The conductor object, goal state. T ... 64
’ r
A5 Error analysis state...... e e e e . 66
4 ® ’ o
T ']
’ \
)] ’ ‘
v Y . \
u:;« N > \\ - !
\-"’ + \ .
A . /o, \ .
- .) R J
@ *j*_ 3
R il —-
L ’ ol i d .

\ " A -
Chapter 1 : Introduction®
o~ \ 1(] A)
. J)
v . ¢
’ ~
¥ » Vﬁ -
1.1 The Problem N
. ' . PO
¢ Robot manipulators are increasingly ‘used in uncontrolled environments. This

" requires the coordination of complex systems, using multiple tools and sensors, executing

more complex tasks, and driven by intelligent con‘troHers. Ofien. such environm$ents are ,
associated with nor; repetitive tasks, such as maintenance and repair, usually assisted by 5
human operator. This form of robotics, telerobotics, is receiving more and more attention

for space applications [Sheridan86, Will85) and nuclear reactor maintenancg [Moya86]. In

those cases wheere an operator is “in the‘\ loop™. the original plan can be discarded wherlever

the operator sees a better way~to accomphsh the task or when an error occurs while
performing the task. Hence the need for on-line planning and error recovery or, in a more

general sense, a way for the operator to interact ‘with the planner.and the capability to

recover from failures due to departyres from the original model of the world Kaemmerer CL
and Allard have described an on-line system to provnde such an interface for process control
[Kaemmet’er87] and Lee et al. dlscussed the errors assocnated with small batch production,

Y ar

' due to the inherent flexibility involved [Le€e84|

]
To provide adaptiveness to changing world conditions, a usual approach is to

replan, as if the error state was a "normal” initial state, to achieve an unchanged goal

state. This creates three problems: the first one being a cost to be paid because of the

Vs

. , o 12 Previous Work/Theory

Y -

difficulties inherent to planning. Second, neither the system nor the operator learn from
their errors. A third problem might occur since blind re-planning may very we!l p}oduce
the same failure that triggered the need for re-planning, without any useful error message.
Pinpointing the source of the error would ease error recovery by reducing the complexity’
-+ and amount of recover; necessary:; if the cause of the error can be "reif\oved" by simplhev
local blanning. then no global understanding of the intention of the plan is needed amffé

automatic, straightforward recovery can be accomplished. Furthermore, a great portion of

the original plan can be salvaged. reducing the replanning and repair time.

-

Errors occur at different stages in the coneeption and execution of a robot task:
Before execution, the plan can be incorrect and not correspond to the taskspccification
: During executlon mcomplete or incorrect knowledge of the world causes the wrong param-
eters to be ‘used. And in general, robots are still imperfect and there is not yet any means to
adequately model the environment in which they operate. This work does‘not specifically
address the first problem, that of incorrect plans, but deals with the last twe problems in
an original way: instead of attempting to resolve all necessary mformatlon before executlon
of a plan-by a “perfect” robot, the errors are altowed to mlanifest themselves (assuming the
pfan is gener.‘«‘ihx good, there should not 'bé”f‘many err’ors). Esror recovery is then performed
by finding the sougce of the error and using local planning; with a better understanding of
the environment, to remove any side effects of the fallu;;:*phd re-execute the failed.action.
'l:‘ﬁe key point here is that it can be more efficient to let a few nan-catastrophic errors occur
and correct them than to try to prevent all errors by systematically performing exhaustive
-

sensing. because the planner cannot foresee very well in uncontrolled environments and

hence the recmgry procedure must be defined at run-time. “

1.2 Previous Work/Theory _ . . -

.

[g

-

' 1.2.1 Pre-execution Planning and Verification
8 - ¢+

- °

' L
Brooks [Brooks82] developed a plan checker to take explicit account of errors

Fl ‘-2

12 Previous Work/Theory

and auiomatically modify a §iven plan to include sensing and to guarantee its success.
More precisely, all errors can bg treated as uncertainties and Brooks states that it is pos-
sible to make inferences about uncertainties and to use thoses inferences in computation.
The major advantage of this approach i1s the usé of symbolic rather than nyferic compu-
tation, so that uncertalnties in object position and size can be used to infer required initial
tolerances or the necessity for sensing. This is one of the most elega'nt and matheatically
sound statements of the problem of robot operation in presence of errors. It has practical
limitations, though, 1n highly uncertain environments when, for instance,’ it is rather difficult
to estimate uncertainty in image analysis and object [ecognltionl: in effect, the uncertainties
are so large — even after sensing — that the calculated tolerances are rﬁ‘eaninglessl. As
a*matter of fact. the system is intended to l?e applied to industrial assembly operations,

where tolerances are usually a few percentage points of the nominal value, not to unstruc-

tured environments, where such a nominal value sometimes: does not exist. Donald has

.

pursued this approach further in [Donald86].

"~ Contrary to Brooks quantitative approach, STRIPS [Fikes71] is a symbolic robot
task planner. It operates in first-order predicate“@alculus and sees the world as a set of well-
formed formulae (WFFs). Givena collection of WFFs representing the world and the current
position of the robot, SERIPS tries to apply certan 9perations in order to incrementally
modify the current state of the world until a goal state is gghieved. These operations‘are
represented in first-order predicate calculus as a number of facts about the world which
no longer hold and another set of facts which become true after successful completion of

the operation. STRIPS however, does not explicitly deal with uncertainties introduced by

" an imperfect world model, as it operates only on the contents of its databa$e. Further, its

world model is not very stfuctured; it consists of a collection of facts not specially grouped.

This lack of organisation hinders the development of large databases of actions and objects

N

to work upén. As a-result, these factors limit the applicability of STRIPS in real-world

situations. ,

1 |n this case. Brooks' system would reject the plan as impossible to guarantee. ,

- 3

a

12 Previous Work/Theory

After STRIPS came a number of leamning systems; Hayes-Roth describes the
foundations for his TL (The Learner) system m}ﬂayes Roth83] His work does not deal
extensively with error recovery but, as with most automatic learning systems, the formali-
sation of knowledge and th(t?,organisation of plans can be of great value. Hayes-Roth models
plans and actions into theafies. in such a way that actions, subjected to conditions, have
predicted effects. The failure to'realise a predicted eﬁéct indicates a f}aw in the theory.
TL then learns by adjusting |ts beliefs in accordance with the observed results of actions.
This adjustment can be made in one of several ways, all of which deal with restnctlon or
enlargement of range and domain of application of actions. That is fundamentally different

fror the Srinivas approach described next, where errors are caused mainly by incorrect

execution of actions, as opposed to an incorrect plan. Furthermore, and this point is com-

- mon to many learning systems, the universe in which TL operates has to be accurately

observable; The Learner cannot cope with incomplete knowledge.

5 ¥
1.2.2- Failure Reason Analysis -

*

¥

Srinivas presented some of the earliest work on robot error recovery [Srinivas77];
his’ﬁeq was essentially to let errors occur and then to identify them through failure rea-
son énalys\is, that is. by "undergtanding why éctiqn A, resulted in state Sy, a robot can
determine where the problem lies and what can be done about 1t."[Srinivas78] His major
contribution was a logical classification of failure types into operational errors, information
errors, precondition errors, and constraint errors.

N /

- Once an error is detected. a failure tree is constructed as a linked set of failure
nodes and action noﬁes. The tree is successively pruneq until a fewr — or a unique
explanations are found; a chain of reasons represented by a path from the root node of the

failure tree to one of its leaf nodes. This reasoning was later put in practice in the next

system, by Gini et al. [Gini85, Smith86]. 4

h |

]

Gini uses a monitor/recoverer system to catch and resolve errors at execution

time. Starting with a logically correct AL robot program [Smith86] and from general forms

4

-

¢

12’ Prlwous Work / Theory

-)
ol .

of post- and preconditions associated with each instruction, the original task description

" — the program — is expanded into an augmented program contaming the original AL

program and additional instructions to check sens;)r data in order to maintain a description
of the outcome of the robot operations, the world«model. The program is also,augmented
in another direction to create a list of possible errors and where they are likely to <fcur. In
erder to detect these errors, the expected sens] v?lues and tolerances are also calculated.
The list of errors and the expetted sensor values are kept in the local knowledge base. The
monitor uses the augmented program as input and issues robot and sensor instructio'ns.
When an unexpected situation is detected, that is, when a condition of the augmented

program is not met, control is passed to the recoverer which uses the local knowledge base

_to identify the error using heuristics about where errors are susceptible to occur and then

constructs an augmented program to implement the “recovery strategy” 2 N

e

This approach is érg)mising as it organiées a number of concepts into one prac-
tical system but, apart from EE/’he fact that its recovery s;rategy_ is still upclear, a major
point prevents its direct application in telerobotics: too much of the system relies on the
p-reprocessor and. in general, on the off—liné phase which rules out any computer gssistance
for those portions of the task where the operator directly controls the manipulator. As a
matter of fact, the system is éared towards efficient real-time execution of the task, and
that is the ultimate motivation behind the preprocessor, the augmented program, and the
local knowledge base. In the type of tasks considered for telerobotics, on the other hand,

the decision time is usually longer than the execution rée. lessening the need for rapid

execution,

The work presented here expands on the ideas of Srinivas to eliminate a prion
planning and analysis of the task. This will allow the use jof the system along with 'op’erator
interventions. In Srinivas approach, a task is decomposed in a series of states Sy to Sy

that result from the execution of actions Ag to An. [f a failure is detected at state Sy,

r

) B .

-

2 Though some specific examples are given, a general recovery strategy has yet to come!

3

3

12 Previous Work/ Theoty

by recognizing that it is different ‘from the expt;.cted state S,. it means-that some prior
action A, (5 < 1) failed to achieve its goal. Srinivas, then, does not really ask “What
can be done to €0 from S; to S, but actually: "Why did Ay result in the failure
state Sf?" Four possible causes are then iden'txified: operational errors, preconditioﬁ errors,
information errors, and constraint errors. The process of finding which failure is originally
responsible for causing a transition to an error state and how 1t occurred is termed failure

reason analysis. In Srinivas’ system, it is a process of reduction of the set of all possible

. explanations to the specific one that applies to the current situation

’

This analysis is based on a failure tree, which explicitly represents all the states
of the task from the failure state to the goal state as failure nodes of the tree and the robot
actions as the action nodes linking the failure nodes. This is necessary because all action

o~

resylts and intermediate states cannot be validated at run time, only those conditions easily
J

checked from information directly available from feedback and sensors are actually verified

B%Consequently. an action failure can manifest itself only later during the tas,k execution and

thus the,need for backtracking of the sequence of events. In the failure tree, one action

. node paints to (possibly) many failure nodes through “Possible Reason For Failure”

links. Each failure node then points to another, unique, action node through links such as
"Never Achieved By” or "Incorrectly Provided By'. Thus. although the sequence
of actions in the task is linear (there is a single agent for change, the robot), the shape of
the tree is not.” This is because the shape of the failure tree is a,better representation of

%

the relation between the actions than their sequence in time. ~

There are four types of failure nodes, corresponding to the four types of error,

plus the trivial goal failure which indicates an unreachable goal. An operational error is

‘* the result of inherent problems in executing the action; servo deviations and dropping a

carried object are examples of such errors. Information errors are typically caused by sensor
inaccuracies or errors in the initial world model. P ndition errors grotip all -non-verified
assumptions, either trivially simple, such as the fosition of an object left by the robot on a

stable surface, or more expensive to venfy. such as)the physical relationships between two

¢

6

! 1.2 Previous Work/Theory

objects. Constraint errors, finally, represent those preconditions that the robot has no way

of making true,}uch as the mobility of a fixed object. .

The failure tree grows by adding failure nodes from the current action node and
then new action nodes to those failure nodes, and so on. The tree is pruned in several ways:

First, looking at the execution trace, precondition and constraint errors can be verified and

aliminated. Second, the manifestation of the failure can rule out some reasons for failure

and last, for a given action, if none of its “ancestor” actions can be shown to havé failed
then that action can be considered successful and the tree can be pruned at that point.
Once the cause of the error has been established, local knowledge 1s used to correct it. In
practice, this means that the sequence of steps necessary to recover from an action will be
in the knowledge base for each type of action. These recovery routineS\wiII have 9.general
form such as: undo certain steps. correct action, redo the original steps. !

As the author-points out, this scheme is incapable of considering interactions
in thg solution of a problem. Furthermore, it cannot cope with incorreé(t pla'ns: the system
does not reason about the plan (or the recovery procedures) itself. Also, &tthe time Srinivas
conceived his scheme, many tools currently common were not practical Two important
ones are faster"computers and knowledge based development systems. The former allows
the creation and maintenance of the failure tree at run time which, apart from speeding up
the recovery time, pei}nits early error detection by verifying more c?nditlons as the task is
executed. The latter allows a better, more efffcient and deeper, representation of data and

ki

contrdl flow, in the hope that it will provide robust recovery capabilities.
o

v

1.2.3 Object Oriented Programming

W

The universe in which the system described here operates is divided into objects,
with a relatively small number of relations between different objects, These objects are
then organised into frames, with the frame slots describing the objects by assigning discrete

values to their charactenstics. At any point in time, the state of the world is taken to be the
= L'..";"" .

%

1.3 Motivation

set of the current values of the slots in the object frames. Some of these notions appeared
early on in predicate form with STRIPS and recently-in [Kak86] and [Ger1esereﬂ187]. The
use of frames eases the management of large numbers of objects, specially with high-level
tools>such as ART and KEE [Inference87, Ramamoorthy87] which have dedicated LISP

constructs to create and maintain such frames and relations between them.

Actions, in turn, are also represented as frames, with slots describing the
changes in the world as modifications to be made to object slots. A plan./a robot program
can thus be described incrementally as a sequence of action specifications. Other means to
describe operations on objects also exist. See for example [Cardelli85] for a formal descrip-
tion of object-oriented programming and data abstraction. The basic idea, concretised by
methods, is to think of objects has having several facets, one for each type of action that
can be applied to it. For any given action, the effect of that action on an object is defined
in the objecﬂc itself. Ginsberg and Smith, in [Ginsberg88] in particular, have also dealt with

some problems associated with the description of actions and reasoning about change.

1.3 Motivation ‘ , i ‘

1.3.1 Applications i g

.
. .

Srinivas originally developed his system, MEND, to support off-line planning
by monitoring task execution by the JPL robot during unsupervised s'pace manipulations.
In general, robot error recovery is necessary whenever unforeseen conditions arise and the
cost of replanning or repai;iﬁg errors is high and for all environments that are difficult to
characterise. Sheridan [Sheridan86] demonstrated the usefulness of telerobotics in a class
of space applications where tranémissuon delays limit the possjbility of teleoperation of

manipulators from the earth control station, he stressed the fact that local processing, at

both ends, can reduce the time required for task completion. Accordingly, operator error

prevention and failure analysis are believed to be able to reduce task cost in two ways,

namely: shortening completion time and reducing complexity and number of errors

1

) . ’) 13 Motivation

As a matter of fact, several ideas in this thesis are directed towards an imple-
mentation with a telerobot system to perform maintenance work on electrical power lines.
The problems faced are the desire to keep the opgrator at a safe distance from the work
area, the necessity to complete the task in a short time, and the limited rolgoiics experience
of the operator. To a large extent, these constraints are shared by space [NASA85], nu-.
clear [Thunborg86]. and underwater [Yoerger87] applications. There is a growing concern

for the safety of workers during energised power line maintenance, for both overhead and

-underground systems, and changes are expected in the various work laws to reflect this.

1.3.2 Replannir;g versus Error Recovery
I .

In presence of error, there are two radically different approaches, the first one 1s
more traditional and involves evaluation of tH@\ current state of the world, of the goal state,
and planning to achieve the goal state Planning, in ott}er words, from the error state as
if it was a “normal” intial state, to achieve an unch%nged goal state — with the added
advantages _of a better knowledge of the world and, often, a shorter way to the goal state
than from the nitial state The latter advantage is specially important to planners relying
on difference reduction, also calll'ed means,—::\\ﬁ‘}i analysis in [Ernst69], to evaluate the path to
the goal state, such difference functions are difficult to implement and ar&’generally most
reliable when the difference is small i e., close to the goal state. The first factor in favor of
replanning, a more accurate world model, comes from the manifestation of the error and
its subscquent analysis. A more accurate view of the world may uncover short paths to the
goal state and, given that a good difference function is available, may yield better recovery
strategtes since evaluation of plan success is often influenced by the actions compgsm’g(‘th)e«

‘ (

plan; the predicates are generally “tuned” to evaluate the given actions. ’ N

The second approach to error processing is error recovery, by which a robot
plan is salvaged by taking appropnate actions to bring the world back into a state from
which the original plan can resume. This is fundamentally different from replanning; n

fact. replanning can be seen as updating the world model from the real world and restarting

4

9

- 13 Motivation

- .
< from there, whereas error recovery i1s more like attempting to resynchronise the actual world
with the intended world model and exeguting the original plan Error recovery can use focal
J replanning as well; attempting to reach the very next state'(instead of the goal state)
immediately. This obviously favors the use of difference functions since the differences are
!ikely to be small in number and complexity Figure 1 1)Alustrates the differences between
r’eplanning. which goes from the error state Sepror directly to the goal. and error recovery,

which goes back to the last state S,, before an error occurred.

A .) i @en'(}Q
) [failure] BN

" [replanning|
A

C 1

S s
/ |recovery]

/ __An+l CAns2 An+3

-~ Lo ‘- N S N
@ <Sn+ ,> (Snsz) (f;oAL)

)
!
|

5 O O

3

Figure 1.1 Rcplaining versus Error Recovery
!

\\\ The replanning cost 1s mainly computational; it requires extensive analysis of

. sensor values and, depending on the planning “distance™ from the error state to the goal

| state, a great deal of search For certain applications, a third phase, plan verification,
might be required for safety or cost reasons Error recovery, on the other hand, does not
require very deep analysis, since the difference between the current and the desired states
is generally small, provided the errors are caught early or that actions are independent
The analysis can thus be narrowed and directed towards a small number of relevant world
characteristics. Indeed, error analysis is bound to yield a sub-optimal plan and hence the
burden is shifted towards the manipulations, to put the system in a state which is part of

the original plan Furthermore, such an approach is likely to produce a number of redundant

bl

or unnecessary steps. Last, trying to retain as much of the original plan as possible can

10

3
1

v . 14 Thesis Overview
v

lead to a dﬁ?d end, if the plan was wrong in the first place.
¥

k4

From these argumenfs. it can be argued that replanning is inadequate in complex
environments or whenever a quick response is expected, unlﬁess good and fast planners are
availai)le. In a complex environme}nt, the frame problem 1s a serious issue; figuring what
should be done next is not a simple search problem because the state spﬁce is very large
Associated with this, difference functions operating well on widely separated states are
still needed. Error recovery and plan salvaging 1s potentially more efficient in complex
environments, provided a reliable overall plan.an be constructed. Local analysis and
recovery can be used to adjust the plan for minor variations at execution time. retaining
the advantages of a carefully designed (human generated) plan. However, since the analysis
is only local, error recovery does not necessarily converge to the goal state, if two states
are mutually exclusive for instance, and it can be decewvingly inefficient. Actually, for a
g‘iven problem, replannlné is increasingly efﬁcnént around the goal state, whereas trying to

salvage the original plan, if it is correct, is more efficient at the beginning of the task
1.3.3 What Is ISER?

ISER stands for /ntell_igent3 System for Error Recovery. Its first purpose is to
monitor and examine commands issued to the robot system by a program or an operator,
at execution time, and validate them on the basis of their possibility of success given the
current state of the work cell Second, ISER attempts to analyse failures that \do occur,
to provide an explanation for the failure and suggest actions that specifically fix the failure
and bring the work cell in a state from which the original plan can proceed. It is not meant
to be a planner but it uses a great deal of heunstic knowledge to decide on a course of
action without taking nto consideration the number ;)f facts a planner normally does. The
“knowledge-based” nature of ISER resides in its knowledge of general actions and objects,
what is required to use them. and what to do when they are a cause of failure

3 A modesty apa;t'

11

i/

bt

-

1.4 Thesls Overview

1.4 ' Thesis Overview) .

The problem is first described by presenting its context and identifying a typical
task-for demonstration purposes. At that point, the representation of actions and objects
used by ISER is introduced. Chapter 3 describes the world model necessary to keep track of

evolution in the work cell. The next chapter classifies errors and their sources and explains

. the process of error analysis, while chapter 5 details the error recovery algorithm and

discusses the notion of the cost of a task with respect to parameters such as the number

of steps in the program and the probability of failure. Finally, the conclusion presents the

&

contributions of this work and indicates directions for future research.

s

g

12

[P A

4

Chapter 2 Problem Description and Representation

2.1 Task Description
\

Follq\/ving a rapid growth of their power network. many electric power utilities
now put he Bpi’ority on safe and efficient maintenance techniques: dile to adverse atmopl
spher._ié conditions. maintenance work can be tedious or even dangerous. Automation is
envisaged to reduce down time, which i1s extremely expensive, prevent accidents, and in-
crease consistency across the network. The most common operations are the replacement
of the cross-arm, the insulator, splicing and conneZtions. etc. [RSI85, Henkener85], all un-
der tensions ranging from 12.5 to 20b kilovolts, with a technician operating the manipulator
from a special cabin on the ground [RS188, Cohen87] or at the end of a boom [IERE87].
At the /nstitut de recherche d'Hydro-Québec, insulator replacement has been selected as a
representative task to explore the possibilities of telerobotics in overhead live-line mainte-
nance [Girard88]. This insulator supports the 25 kilovolt conductor and insulates it from
the pole. Briefly, this requires the removal of the two tie-wires fz;stening the conductor to

n

the insulator, lifting the conductor, changing the porcelain, and putting back the conductor,

v

" attaching it with new tie-wires R

The technique developed involves the use of a few dedicated tools. manipulated
by a PUMA 760 industrial robot [Unimation83]. Eventually, a specially designed manipu-

lator will replace the PUMA, since the Jatter does not provide the strength, morphology.

Y

e

22" Typical Task

E and 'insulation characteristics required by live-line work [RSI85]. The tools comprise an
unwrapping tool to remove the tie wires from the conductor, a wrapping too! to do the

opposite, a gripper. a tutter, a range sensor. and a camera. Additionally, an auxiliary arm

is~available to hold and lift the conductor above the insulator. An experimental sétup is

used in the Jaboratory to implement and test robot programs. _

°

2.1.1 The Operator -

Ultimately, the system will be operated by a maintenance technician, on the
ground, hence the necessity to provide automated routines to speed up the execution of
the task and, since linemen are not generally skilled in rc;botics. the desire to provide help
and supervision. Accordingly, the domain of knowledge in the expert system is not in

- _maintenance of live power lines but rather in the operation of complex telerobot §ystems.
The'system is expected to prevent “manibulatiqn" errors by the operator, provide analysis

of failures, and automatically recover from a certain class of failures.

2.2 Typical Task - ’ ,
In order to illustrate and validate the expert system, a part of the actual task™

has been chosen: the unwrapping of one tie-wire fastening the conductor to the insulator.
2.2.1 Actions and Associated Errors .)

The following is a kisting of the sequence of actions required to remove one sct

of tie-wires (there are two), along with associated errors and types classified as one of

operational (0), information (I). precondition (P). or constraint (C).

~
» i
3. Unwrapping of the Right-side Tie-wires
% 3.1 Localisation and count of the number of turns

3.1.1 Scan comductor surface with 'proximity sensor

14

3.2

3.3

.2.2 Install tool on conductor

- Robot errors .
~ Inadeqhate environment for sensor . .
Position error on insulator

~ Not enough room for sensor/robot

- Conductor out of reach

1

.1.2 Compute number of turns and conductor position

!

Unwrapping per se

.2.1 Mount unwrapping tool

- Robot errors
- Tool mounting errors qy

- Robot errors ‘ s

- Position/or;entation error on conductor -

- Not enough room

- Conductor movement

- Incompatibility between conductor and tool

.2.3 Turn motor on and slide tool towards insulator

- Robot errors -
- Tool errors .

- Too much tie-wire to fit in tool

~ Tool sticking to conductor

- Position/orientation error on conductor
- Position/number of turns error

- Tie wire in bad shape, cut, etc.

.~ Not enough room,

n

.2.4 Stop motor and verify operation

Tool removal.

.3.1 Back off tool and free the tie wires

- Robot errors ~
- Tool errors

- Tool blocked by the tie-wires
- Wires not entirely unwrapped
- Tool sticking to copductor

.3.2 Align tool opening

- Tool errors

- Indication error on tool open

- Tool not free from wires

- Section of wire still attached to tool

.3.3 Unmount tool

- ‘Robot errors
- Tool errors

X N

2.2 Typical Task

(0)
(P)
(1)
(C)
(P)

(0)
-(0)

€1))
(D
(©)
(P)
v ()

(0)
(0)

(0)

(0)

(1)

¢ (D)
(P)
~(©)

(0)
¢0)
(0)
P)
(0)

o
&
(P)-

LY

(0) .

(0)

15

2.2 Typical Task

\\

]
- Tool opening not aligned with conductor) (P)
- Tool not free from wires (P)
"= Tool unmounting errors ' (0)

This list reveals that a number of errors are common to several different actions
while only a small portion of the errors are specific to certain actions. This lead to the
classification of errors in classes to allow inheritance of error types in the definition of

actions.

2.2.2 Level of Representation - . .

« In symbolic computing in general, choosing a proper representation for the
items being manipulated is essential to the efficiency of the system. In ISER, which has
to reason about real objects and actions. this choice will have important repercussions on
the possibilities of the system. Objects and actions have to be represented with sufficient
detail to facilitate reasoning about errors while being general enough to be applicable to

several similar items.

-« - Allitems, objects or actions, are represented as members of one or more classes,
each item distinguished by its own characteristics and those inherited from the more general
class above it‘[Steﬁk85]. Those classes are meant to be as general as possible. to be shared
among different applications. Each actuél item is an instance of an item class, so that no
two cla§ses are equal but two instances of the same class are similar to a certain degree,
i:ormally. what differentiates a item class from an instance of that class is the absence
of variables in the representation of an instance whereas certain values in a class can be
undetermined Thus, two different objects in the same class — or one at different points
in tir;we — c;)uld be differentiated only by their position: Consequently, the world can
be represented as the set of all objects in the database, and their current characteriétips
represent the current state of theuworld. This representationis static in ISER, that is no
movement or conti;u‘ous action can be rep;esented and hence there 1s no notion of, for

example. a falling object or a moving conveyor belt. Instead, continuous actions would

have to be modeled as sequences of discrete events.

’ - 16

» ‘ 23 Frame Representation

Just how much of a ghange in the world will get represented as a single action
(in a way, the quantization level) is directed by the fact that the goal of the system is to
discq,,v;r errors rather than to perfectly represent the state of the world. Hence an “action”
should be a sequence of events long enough to be susceptible to produce an error but short
‘enough to limit the number of possible errors to a manageable number. Manageable in
the sense that the error can be identified in terms of a fact in the daltabase. Actually,
the level of representation of actions is linked to the level of representation of objects as
actions modify characteristics of objects and, accordingly. actions are defined in terms of
those characteristics. Since actions modify the state of the world, the world model must
be updated as actions are executéfd. This is done by examining the definition of the action
in the database; this definition compn‘ées a set of characteristics to be added to or deleted
from the database so that the world model is incrementally modified as the robot executes
its task. This set of modifications to the database 1s considered complete and correct for

‘the purposes of error recovery.
-,

Ultimately. then, one must decide on what kind of characteristics must be
ingluded and available to define objects and actions on those objects. Indeed', the choice
depends heavily on the application, speed required, and processing power a\gailable. In this
case, and for telerobotics in general, the application demands good interactive response
and a high-level interface, but it aI;o benefits from"g-reat processing power (a humén) and
does not require a great deal of autonomy (although it is always an z;dvantage). As the
main goal is to assist the user to i:ssue commands to a complex system and to understand
decisions, reports, and requests from the system, the representation employed must reflect
this and give the operator a qualitative view of the work cell rather than manipulator-

_

oriented dimensions and coordinates. _ N

2.3 Frame Representation

2.3 Frame Representation

o R -

.

2.3.1 Objects

N -

To reason about robot actions and errors, it is necessary to have a representation

- of the world: the objects wdrked upon and the robot itself. This-world model is organised

in frames, one per object. This type of representation is particularly appropnate since
ISER deals with qualitative aspects of the world and does not use confidence values; the
elements of éhe frames (the slots) are then simple parameter/value pairs. In the case where
a parameter can take more than one value at a time, many slots can be assigned to the
same parameter, with differing values. This is true of several relations between objects,
such as attached-to which can be used to indicate that an object is linked to many other

objects at the same time. \

M

As can be seen in figure 2.1, the object class comprises the simple-tool
sub-class, indicated by the kinds relation. This type of relation between frames allows
automatic inheritance (maintained by the ART shell) for specific classes from their parent
classes. The simple-tool class, for example, comprises the tool and sensor sub-classes.
These distinctions are used in various sections of the system to restncut a search for objects

I

which have certain abilities, to simplify parsing of robot messages, etc ¢

Simple tools. tools, and sensors are related to generic objects through their
applied-to, modifies, and measures slots Simple tools by themselves cannot do
much, they usually serve as an interface between tools or sensors aqd generic objects:
a screwdriver is an instance of a simple tool, a robot (dan instance of a ~too|) applied to
a screwdriver, which in .turn is applied to a screw, can attach an object to another and
thus modify their respective attached-to slots. This 1s used at the error detection stage
to verify the proper usage of tools and sensors. it could also be used for automatic ;;[an
generation to determine which sensor is suited to obtain a certain parameter and which
tool can E)erforrﬁ the required task '

As pointed out before, relations between objects are modeled as slots in each

object’s frame. While each object is independent, that is no slot is shared with another

13

2.3 Frame Representation

[[FeT]

. Schema Hierarchy from UBJECT
A

[fAs-InsTANCES {300 [as-THsTANCES }>| XL

~ [ias=instancrs)| TR0 ' ,

.

{enntH]

L 3

HAS~-INSTANCES GRIPPER

HAS-INSTANCES INSULATOR

HAG-INSYANCES

HAS-INSTANCES 1w [XTTRd
HAS=INSTANCLS 4@

HAs-1s TARCES | TN

(KINDSH a SIMPLE=TO0L

HAS-INSTANCES UNWRAPPIMG-TUDL

[y

Figure 2.1 Objects classes in ISER

+ object’s slot, the value of a slot often depends on a value from another related object. The

mobility of an object, for instance, 1s recursively defined to be the same as the mobility
of the objects to which an object is attached. This definition, including minor variants, is

reflected in four rules in the section of the 8ystem which keeps the world model up to date

.

Although ISER can be customised, it is desirable to have a general system

capable of satisfying most applications; ideally, only task-specific knowledge should need to
be added. Much in the same way that a robot language can build subroutines from p;imltive
actions. a robot task description system must allow the creation of specific objects and
actions suited to the task at hand. To ;revent chaos and ensure proper integration of t

various components of 1SER, a formal. strict representation of the objects in the wokd

19

’ B
[23 Frame Representation

is defined here. Surely. new slots can be added to augment the functionality of ISER; in

particular to take advantage of ART's data structures in an object-oriented paradigm.

<

Currently, an object is defined to have at least five slotnames:

(defschema object ‘‘any physical object'’ -
(dimensions) ;a three-valued vector in centimetérs
(attached-to) ;an object o
(abstract-position initial-position) ‘ " o
(weight) ;in kilos, approximate value only
(mobile) ;yes or no? -

) . ‘ °

This particular choice of slots is directed by the fact that ISER operates at a symbolic
level only. Those slots that can contain numbers (dimensions and weight) could actually
take qualitative values such as small or heavy since their sole purpose is to verify the
compatibility of objects with certain tools: there is a maximum payload that the robot can
support and, similarly, there is a maximum object size that the gripper can handle '

T&he abstract-position slot indicatés the current symbolic position of the
object. As an example, consider the abstract-position of the unwrapping tool; s
value when the task begins is tool-rack, this changes to robot while the manipulator
is displacing it, and changes again to conductor when the tool 15 applied to remove the
tie wires. Therefore this symbolic position is an object and it can eventually be used with
a real-world interpreter that is capable of mapping symbolic description to/from physical
coordinates. At that time, a physical-position slot could be adddl 1o the standard

object schema®

. In a few cases. the abstracf-position can be the object iself, to
indicate that this object’s position is absolute rather that relative to another object This is
always the case for fixed objects. such as the tool rack?, which also have a value of infinite
for their weight slot, reflecting the impossibility (for the robot) to move such objects

Besides its physical signification, the infinite weight and self abstract-position

~

~

4 The literature seems to use the terms frame and schema interchangeably. Since ART uses
schemata, weywill reserve the use of frame for a general item and schema for an’ ART construct

20

- 23 Frame Representation
N

slots serve to to stop recursion when' evaluating the position of an object through other

objects.

The last standard slot, attached-to, is multiple-valued, meaning that an object
can be attached to many objects at the same time, although it can have only one abstract-
positio;r. This raises the problem of determining a unique abstract-position from
muitfple attached-to values. Since ISER has to present a consistent world[rﬁodel to the
operator, th'e ambiguity is resolved by assigning to abstract-position the position of the
object most recently atlached to the current object. Considering that the attached-to slot
is an attempt to describe the structure of the objects, this solutlon generally shows how far
the assembly has gone since one usually assembles small parts into more complex obgacts
ata hlgher level of abstractiop. When a structure 1s disassembled, tHe abstract-position
slot 1s set to the largest object in the structure.

4

~

2.3.2 Tools

*

" Just as there is a notion of a standard, generic object, the simple-tool class

has this minimum configuration: -

(defschema simple-tool ‘‘any tool, passive or active’’

! (is-a object) .
(applied-to) ;an object
(purpose) « ;an action ‘ .
(configuratign) ;open, closed, extended, etc.

!
|

"\I'he first slot simply states that a simple-tool inherits clnll the characteristics of
general . The applied-to attribute is dynamic and indicates, when the tool is used,
which object is being worked on to allow world model update of that object. This attribute
is multiple-valued since a tool can be applied to several objects at the same time, to attach
“them for instance. The purpose slot assocnates an action with the simple-tool, the action
definition can be looked up to determine the effects of the tool of the conditions necessary

prior to its use. The last slotname, the configuration, is applicable to most tools; some,

21

¢.3

i

23 brameRepresentation

' .

such as strewdrivers, have only one configuration but many, such as grippers (open/close)
and cameras (short/long focal length) have multiple s“tates that need to be_represented and
hence the configuration attribute groups these states that would otherwise need to be

represented as a large number of differents slots, breaking the generality of the system.

The simple-tool class 1s divided further into the tool and sensor classes. At
this point, the distinction between simple-tools and tools is clanfied: a simple-tool cannot
accomplish anything by itself: a screwdnver, for instance, needs to be turned one way o
another by a tool capable of exerting some force. A gripper, on ih}: other hand, 1s considered
to be a tool since it can pick an object by itself, even though another tool may be required’
to move the object. In a way, simple-tools can be considered as adaptors between a g,cnenc
to;)I and a particular object. For a powered screwdriver, the various sizes and Lypes of
bits are considered to be simple—;ools and the motor/gear train assembly is the tool This
distinction justifies the existence of the powered slot, which takes a boolean value. This
attribute i1s so important in error handling (in a panic siotuation. it may be crucial t/K find

.

any moving part and to stop all motors) and since 1t 1s common to all todls, it sholild not

-

be lumped into the configuration category

(defschema tool ‘‘powered, active tool'’
(is-a simple-tool)
(modifies) ;an object attribute(s)
(powered) ;boolean, subset of configuration?

) s 4 w

This actually raises the issue of why there should exist simple-tools when all
. .

. tools could be in the same class, perhaps differentiated through the configuration slot

Recalling the automatic screwdrniver example, 1t sho'ld be noted that the/ various bits are

independent of the motor: they may get lost, break and they have to be mserted n the

. tool. etc. The point 1s they are separate objects and the system may have to reason

about them, to replace a broken bit for instance. Furthermore they cannot be disposed of
as normal “task” objects: they cannot be assembled into a finished product yet they are
used repeatedly Hence simple-tools cannot be incorporated into the more general class of

objects, nor can they be raised to the status of, tools since, 1n general, the robot cannot

27

Ry
.

K 23 Frame Representation

apply them directly and they are associated with one and only one tool

Finally, what distinguishes tools from sensors 1s the fact that the former cannot
provide any information on the objects worked on. only sensors can. This is reflected in
the modifies and measures slots for tools and sensors. respectively. These slots point
to object attributes to l;e used for wor’ld model update when a tool is applied to an object
and in the error recovery phase, to identify which sensor can verify a fact or provide the

information necessary for an action to be executed.

(defschema sensor ‘‘a measuring tool’’

(is-a simple-tool) e
(measures) ;an object attribute(s)
)
2.3.3 Actions ‘ -

~r

Although not as structured as objects, actions are described with frames. Their
hierarchy is not as deep as that of ob,ects: namely, actions do not inherit as many char-
acteristics from other actions as the object classes do (figure 2 2) Furthermore, actions
frames are fixed and do not change over time They are used to define the changes made to
the world as execution proceeds, in the form of modification specifications for object slots.
For instance, the robot action (move block-23 position-17) has at least two effects in
the world: the position slot of block-23 must be updated to reflect its displacement,
and the configuration slot of the robot must also reflect the new arrangement of the
robot This is achieved by means of the d-modify, d-assert, and d-retract ° slots in

the action frame which states which object slot should be modified and how.

Action frames are also used for error detection and recovery; they define pre-
and post-conditions that must hold during correct execution of a task These conditions
are facts that must be present in the current state of the world, otherwise an error is raised.

Chapter 4 expands further on the notions of error and error detection

5 The d stands for defined as opposed to a particular instance of a modification to be made

23

23 Frame Representation

Schema Hierarchy from ACTION

TN g [APPLY] POTTR | crase |
.‘/ T

i *
(ST N1 uNAPPLY | .

. [E
{1ouc)

%
L]
DROP-OBJECT |
CTTERE | rrcx-ron ||
: -
PICK-OBIECT /&l"@’lM|
. /
{wove || MOTEEE o15pacr
R J

Figure 2.2 Action classes in ISER

In ISER, the generic action has these following elements

(defschema action ‘‘any action, by any {ool’’

(d-effector) ;the actor, the tool performing the action

(d-error) ;possible error associated with an action or a tool
\ (d-assert) ;fact to be asserted after execution of an action

(d-retract) ;fact to be retracted after.execution of an action

(d-modify) ;fact to be modified after execution of an action

)

The d-effector slot has the value, if it exists and is unique, of the agent
assoclated with the action Its use is internal to the high-level parser (section 3 4). Formally.
an action is a set of preconditions, post-conditions, new fact specifications, and old fact

Kpecifications The preconditions are represented by the d-error slots while the post-

74

2 3 Frame Representation

conditions and new /old fact specifications are equivalent to the d-assert and d-retract
slots. The d-modify slot can be modeled as a combination of d-assert and d-retract
slots. The fact that post-conditions and modification specifications are represented by the
same slots follows from the method by which the world model 1s updated; it could, for
instance, have been based entirely on interpretation of sensor readings. Post-conditions

| B
are generally less specific than world update indicators and hence, in this system, post-

conditions are derived }rom such indicators. This is in contrast with what has been done
in [Gini85]. where special steps are included in the robot program to provide information

to monitor the outcome of actions.

The following notation will be used throughout the paper to represent actions:

action, a set of C, P,O,N
precondition
old fact to be retracted

[

new fact to bJe added

-3

any fact, F ¢ W

A
C:
O:
N:
P : post-condition, any O or N
F-
S : a possible state of the world, S ¢ W
W ‘

the set of all facts, in any state of the world

and:

) A: Cy,Cy,...,Cp,. .C, CnpeW,
01,02,...,0n,.. 0, On €W,

NI’NZa .o, Nn, . Nk N, eWwW

Obviously, the modifications must not be mutually exclusive-

Vn Vm Vp:(Np € S)A(Npm € S)A(Op # Ny)

25

-

. {‘

2.3 Frame Representation

'

2.3.4 Where is the Knowledge?

Precisely, two kinds of information are required in ISER: First is the ability to
follow the task and represent changes in the work cell as variations ir‘\e the database and
provide a world model to assist the user.in determining the system’s idea of the world
and behavior. This also serves ISER’s error recovery by complementing the second type of

information required, the pre- and post-conditions to every action

3

Information on the actual state of the world 1s provided pnimanly by the mani-
pulator system which relays the position of the robot and the values of the sensors. This
is matched with corresponding slots in object frames, which are then updated accordingly.
In many situations, however, there is no information on the new stlate jof certain objects
and it must be inferred from the expected outcome of actions. This expected outcome
is the second source of knowledge. The pre- and post-conditions for all actions are given

explicitly at compile time in the definitions of actions and objects, either directly or through

inheritance from other items. .

2.3.5 ART, The Automated Reasoning Tool

S A

The discussion of representation of the world would not be complete without a
brief description of the facilities provided by ART! that are used in ISER First and foremost,
ART provides a database system with pattern matching that allows retrieval of world model
facts. Second, it provides a frame organisation of the data called the schema system; this
organisation allows class definition and inheritance as well as object manipulation. The
database can then be modified with pattern-matching rules and an inference engine that
provides forward-chaining and, to a certain extent, backward-chaining of the rules as well

as priorities on rules and classes of rules. Last, it offers a rich set of graphic prumtives to

group and display the information in an efficient way The reader is invited to notcéthat

t ART s a registered trademark of Inference Corporation

. 26

2 4 Domain Ipdependence

this is in no way an endorsement of a commercial product, but rather a clarification of its
capabilities with regards to the large number of expert system shells available; it is used

as a prototyping tool to avoid reinventing the wheel.

2.4 Domain Independence

It is relatively difficult to classify- and organise all the tasks that can be ac-
complished in a robotic cell. The number of higif; level actions is infinite, yet they can
be described in terms of a limited set of primitives, such as those composing the robot -
language itself. VAL-II, for instance, uses about 30 keywords to describe robot motions
[Unimation86]. In the context of error recovery, these prymitives can be associated in a rel-
atively straightforward way with errors characteristic of the actions involved, that is every

action can only fail in one of several ways In ISER, this is the role of the d-error slots.

.
€

That part of the knowledge 1s stable and m%ependent of the task or domain of
application To be ;eally useful, however, ISER has to be augmented with a great deal of
domain-specific knowledge. Objects in general and specially tools have to be described 1n
terms of standarfi ISER primitives Adding a new object reqmre; filling in the standard slot
values,’adding a new sensor or tool requires a more complete description since not all of their
characteristics, such as compatible-with can be derived from sensor observation. Adding
a new action requires more analysis, its effects on the world medel must be determined
as well as its preconditions This is unnecessary if the new action can be represented by
a sequence of predefined ISER actions; in such a case, the new action should be broken
down into atomic actions that ISER can handle in the ajdvent of an error. The design of
a truly flexible representation, however, is beyond the scope of this dissertation; as John
McCarthy pointed out [McCarthy87]. “the prgblem of generality in artificial intelligence 1s

almost as unsolved as ever”.

27

[

(g

Chapter 3 A Dynamic World Model
a J

2

The state of the world at any point in time is defined as the set of all object slots.
In practice, a small number of slots has to be maintained directly; other slot values can
be deduced easfly Positions, for instance, have to be recalculated every time an object is
moved and, since positions cannot always bg,determined exactly, they are likely to introduce
uncertainties and errors. Once the position is known, however, determining rclat;oné such
as attached-to or mobile is deterministic and thus straightforward. Hence, the position

of objects and tools must be'determined first, along with tool configuration, like open or

close for a gripper and extended or retracted for a robotic arm.

3.1 Effects of Actions

When the system is started, the database is initialised, to reflect the state of
the work cell, by setting the objects slots to the appropriate values; starting with typical
values, the world madel is adjusted from sensor readings. After each action, the world
model must be updated to reflect the changes in the actual world. Defining the program as
a sequence of action frames, effects of actions on the state of the world can be monitored
incrementally. This is what was done in STRIPS, which mcluded a set of facts to be added
or deleted from the set of well-formed formulae representing the state of the world. Simi-
Iarly.‘ actions in ISER have special slots whose values define facts altered by the execution

of the action. These d-modify slots contain patterns to be instantiated at run-time by the

3.1 Effects of Actions

high-level pa;ser (section 3.4). The d-assert and d-retract slots complete the function
of d-modify. As mentioned earlier in section 2.3.3, the very nature of ISER makes the
modification patterns (the d-modify slots) equivalent to post-conditions because the ex-
pected outcome of actions is used to construct and maintain the world model. The term

post-condition is really meaningful only in the context of error recovery.

Since there is no planner available to organise and sequenceé the aZtio_ns, it is
imperative to use the proper representation for the actions. In particular; the preconditions
mustrr‘)hatch the modification patterns if actions are to be chained. Conceptually, any
action ci:'zgq follow any other action, provided the preconditions are met, and for this to be
also true flés;ing ISER’s representation, there 'are restric}nons to be iollowed. The number
of preconditions must be small and there must exist at least one action wiil: a matching
modification pattern for every current precondition. Unmatched preconditions are actually

constraint errors, which the robot cannot resolve. Hence, the database of actions is self-

contained.

Each modification pattern must be matched by a precondition in an&ther ac-
tion. Furthermore, the intent of the action must be clear and independent of preceding
af:tions: for instance, mate and unscrew are used instead of move down and rotate
counterclockwise. Actions must be represented at a level low enough that the modifi-
cations are observable. If the only possible evaluator is human, it should be expected that
only the human will be able to diagnhose and solve an error Hence, the level of representa-
tion is a function of the resolution of the available sensors—sensors taken in a very broad
sense, to include any program available to interpret them. In general then, one cannot have
“The insulator is changed” as a post-condition since such a fact is too complex to
evaluate. The modification patterns must also be achievable; the predicates used must
match the actions in the database. The previous example, The insulator is changed.
would not qualify since, in general, there is no sucp general action as change<insulator.
Actions must also be simple to allow for the preconditions to be orthogonal, independent

of each other. This to make sure that the order in which the preconditions are established

-

29

{

lvék

LN}

3.2 Use of Sensors \

is irrelevant. - .o

To summarise, the plan must be reprssentable as a set of successive calls to

robot program subroutines. All displacements should be relative to objects, to be able to —

infer their intent. In fact, ISER could be cohsidered to be a front-end to a robot programming

language. and a succession of action frames would constitute an ISER program. The
preconditions and modification patte}ns must be at the same level of éomplexity and match:
The set of preconditions and modification patterns must then be closed. the only openings
allowed being the constraint errors. The conditions must in general be expressed in terms

of world model objects and symbolic coordinates. They must not be expressed in terms

of preceding actions, in other words the sequence of robot actions passed to ISER must 4.1 n

constitute a Jocal Markev program [Nilsson80]. The preconditions must be independent of

v

each other so that the order in which they are made true is irrelevant, . -

”~

Using the notation introduced in section 2.3.3, C, =71, = I, for any 1,7, k.

“namely, all preconditions and modification patterns are world facts (in the database) and,

conversely, all world facts are susceptible to be conditions.

. { world-fact) := (object-slotname) ((object) (object-slotvalue))
l .

L

3.2 Useof Sensors\

& D
_ o

Sensors are used to confirm — or infirm — ISER’s idea of the world. Sensor
values serve as reference points from which the world model is extrap?)lated. This infor-
mation is also used to verify and e>|‘i»mirfate post-conditions or, as described in the next
chapter, toﬂpro‘ve that en error has occurred. The process of maintaining the world model
from action definition is completely independent from the integration of measured values in
the model and. consequently, sensor input is allowed to occur at any point during execution
of the task. This permits, for instance. use of unexpected robot messages as information’

to be integrated in the world model.

30

«

(

3.4 High-level Parser

3.3 Action Trace

The interface between ISER and the real world is through the robot controller. In
one direction, the controller sends a copy of the executed action_to ISER. as well as sensor
output. In case of error, ISER sends back commands to be executed\ by the mampulatorA
or the sensors. The sequence of exeD%ted actions is necessary for the purpose of error
recovery, to trace back the failures to their source. This sequence is therefore kept as a list

3

of actions, each prepended with its sequence number. Fﬁ.ery time an action is added to the
e

action trace list, ISER’s world model is incrementally updated from the new action. These
actions are not anAaIysed by the controller but they must correspond to those described at
compile time in the database. It is the responsibility of the high-level parser to analyse the
robot controller's messages to identify the type of action, the effector, the subject of the
action, etc. Later, the output of the parser is useqd by other modules in ISER to update tf;e

world model and perform error detection and analysis.

*

3.4 High-level Parser

The mo5t general form of\c}ndition includes an action name, a state specifica-

tion, and the condition description itself.

C(A,S8) = F

‘ ¢
where SN

°A : pointer to an action description
S : state specification

-

F : fact or set of fgcts in the database -

\

Such a form is overly general and in practice, one of two schemes is used: In
the first one, the state specification is null, matching all states, and the condition becomes
a set of facts (actually, any observable events). In the second scheme, there is no condition

description (F is null) and the state specification matches only those states for which the

we

3

3

34 High-level Parser

action is applicable. Indeed. the two representations are mathematically equivalent but,
conceptually, the first representation, where S is null, is readily applicable when conditions
can be represented as a small set of facts, and the second 1s more convement for planners
Eﬁng with multiple stages. Since there i1s no notion of multiple states in ISER and that

only the current state is considered, S is made null and hence the conditions reduce to this
~

~

general form: -
(d—error Zerror—type) ((action) (condition))) T

e

- Concretely, this means that errors, as defined as facts in the database, include
an error type, such as information or operational error, a specific action for which the error
is defined, and a condition that, when present in the current state of the world, raises an

error of the specified type. The condition can contain certamn variables to allow errors to

"be defined at compile time with sufficient generality to be applicable in any situation. It

is the role of the high-level parser to instantiate such variables at run-time, reflecting the
context in which the actions and failures take place. The high level parser is a front end
fo ISER for the robot controller; the controller issues statements describing the current
robot actions for the purpose of maintaining a trace of the actions ip ISER. The parser is

responsible for converting actions of the form:

v (action parameter-1 parameter-2) N

into database “entries specifying explicitly what the agent (the tool) is, along with w‘hich
objects are being acted on and how. Appendix B describes this process in greater detail.
Conceptually, the parser allows ~actions to have parameters and to instantiate these para-
meters at execution time. In the current implementation, a parameter can be one the four
parser-variables; the effector of the current action, a wildeard that can stand for
any value (used mainly for retraction of sets of facts), and subject or argument, which

are interpreted according to the current action. .

-

Chapter 4. _ & Error Detection and Analysis

¥ .

-

Error processing in ISER is divided into three parts: error detection and analysis
come first, followed by the error recovery itself, described in the next chapter. The purpose
of error detection is to stop execution of the robot program before damage occurs to

the work cell or the manipulator and to provide indication of the failure type and current

state of the .world to the second phase, the error analysis. Error analysis 1s essentially a

computational process; from the symptoms of the failure given by the error detection and

the action trace, error analysis is used to determine the onginal source of the error.

4.1 Error Types

There are two ways in which an error can be detected; the first one, easiest to
detect, is in the form of an error message from the robot controller. This type of error is
generally given in terms of low-level primitives representative of the configuration of the

manipulator and capabilities of the controller. Typical errors of this type in VAL Il are:

- *Stopped due to servoing error*

- *Hand closed too far* .

- *Hardware defectx

- *[Fatal] Out of range* Jt <joint>
- *Motor stalled* Jt <joint>

- *High Acceleration* Jt <joint>

- *Envelope error* Jt <joint>

(..}

-

41 Enor Types
. r

While VAL 1l defines over 400 error messages, related to hardware failures,
system limitations (di!l; space, communications, etc.), programming or run :J::e errors
(arithmetic overflow). and, like the above list. manipulation errors, ISER actually deals only
with the latter. The term manipulation error denotes here the class of errors caused by
limitations of the controller or the particular robot configuration: in a broad sense, they arc
dgue to depa;tures of the actual system from an ideal one. Actually. ideal manipulators do
not exist and are used (inly as an abstraction in the blocks world; they are not subject to
gravity and other physical constraints such as manipulator configuration and length. After
detection of a manipulator error, it is analysed to infer as much as possible of the current
state of the work cell, the position of the robot, and the nature of the error (i.c . collision,

excess weight, out of range, etc) It can be more difficult to interpret, though, which action

failed and triggered the error message.

A second type of error occurs when a post-condition (a local goal) is not satisfied
upon completion of an action, the error is raised whén there is a discrepancy between the
observed state of the work cell and the internal world model Of course, this type of error
is most conxenient because it 1s expressed in terms of sub-goals and can thus be used to
ensure the desired accomphshment of the task, If the plan s regarded as a succession of
states, then a correct sequence of successfully achieved sub-goals guarﬁ?@ees plan success
Alternatively, if an evaluator function is available, it can be used to assess the success of
the task by looking only at the final state to verify that it matches the goal Agan, as
mentioned in the introduction, such an evaluator is impractical for real, complex, tasks

because its _cost 1s prohibitively high in resources and computa‘nonal time

The first type of error, coming from tll1e robot system, 1s mapped, after being
analysed, as sub-goal error; the error message is simply considered to be a manifestation of
the error, much as if there was an\impdled post-condition stating that there should not be
any robot error at any time. The error message from the robot is th!us treated as additional

information about the world and is added as a proven fact in the world model

4

Hardware failures and programming mistakes cannot be resolved without. res

¢

\ 4 2 Error Sources

-

pectively, redundancy of tools or high-level reasoning to untangle the programmer’s intent.
Apart from fault-tolerant computing, there does not appear to exist any work to support
the idea of non-fatal hardware faillures. On the other hand, there is some progress done
in the area of automatic software understanding and debugging: HACKER, for instance,
has been developed to study learning by debugging “almost-night” plans [Sussman75].
Another example is the/preprocessor used to generate the augmented program in Gini's
implementation [Gini85]; the augmented program is intented to be more complete and thus

better than the original program

Partly because the world 1s not entirely observable and partly because the world
model is imperfect and incomplete, not all errors are detected This may be due to the
absence of an appropriate sensor for a particular state, because the sensor Is incorrect,
because it wo:Id take too long to measure a certain parameter, or even due to the sheer
complexity of the current state Thus, errors are hkely to go unnoticed until a subsequent
action triégers a manifestation of the error The philosophy in ISER, inherited from the
original Srinivas system, 1s to let those errors occur This allows the robot task to proceed
at high speed. performing costly analysis only in case of error, although n practice, un-
verified preconditions are not discarded but are rather-marked as possible errors to speed
up future analysis. Having mapped all types of failures<as the absence of any precondition
necessary for the next step to proceed, and given that undetected failures are allowed to
occur, errors are defined to be preconditions proven to be false

N 4

SN "
4_.2 Error Sources

Failures can have many sources; this section discusses several categories of

errors and what can be done to circumvent them.
a
»
Even before recovery is performed, sensors are important to verify success of
an operation from within the user program, i which a manipulation can be repeated un-

til successful, or to measure some parameter before or during a manipulation. Evidently,

35

tod

4 2 Lior Souwces

sensor naccuracy Is a primary cause of error, whether the parameter is beyond the sensor
operating range, the sensor 1s misused, or even failed completely Sensor taillures cause
severe problems in ISER because sensors are beheved and not consistently verfied How-
ever, they are verified to a certain extent during error analysis and recovery when actions
— even sensing actions — are vertfied; if another sensor exists to corroborate the value of

the first one, 1t can be used to provide limited sensor integration [Shafer86]

Insufficient use of sensing can have the same effects as sensor failure but s
not so severe because a cause for the error can be established Lack of sensig becomes
evident when certain charactenistics or parameters of the work cell cannot be puaranteed;
the program mcorre(;tly believes the world 1s in a certain state when it 1s not, Brooks’

system [Brooks82] is a direct attempt to eliminate such programming errors

Tools can err in two ways, they _C}n’l;“g'maccurate (such as a servoing error in the
manipulator) or they can totally fail to achieve some function [naccuracy can be thought
of as a quantitative error, while total failure 1s a qualitative error The means to evaluate
these errors can be similar but recovery procedures‘dlffer. it could be advantageous to
have total failure since ISER's recovery process is geared more towards reattempting failed
actions rather than correcting (replanning) the current state of the work cell - Total farlure,
on the other hand, may imply damages that can be difficult to repair and since inaccuracy

usually results in more controlled situations, where the actual state 1s only quantitatively

different from the expected one, the latter could be casier to resolve

. Due to the limited nature of the world model in ISER, external agents and lack
of integrity of objects in the work cell are hkely to introduce unpredicted states within
the normal sequence of actions As a matter of fact, ISER assumes there 1s only one
agent for change, the robot, and gravity, wind, etc are never considered. As o result, if the
objects are fragile or the assembly 1s unstable and subject to “asynchronous”™ modifications,
unexpected errors will occur a;nd will incorrectly be imputed to the faillure of a previous
action. Although the diagnosis is incorrect, the recovery procedure will probably solve the

problem and reachieve the necessary state by redoing the “failed” action

C)

—

43 Run-time Error Detection

Programming errors are not detected explicitly since one important assumption
in ISER is that the plan is correct and errors can arise only from action failure rather than
from incorrect or incomplete sequences of actions. Since 1t relies so much on the world
model, ISER will only find errors that have a phygical manifestation It will eventually find
the effect of a logical or programming error without reasoningﬁabout it and hence cannot
resolve logical errors, unless they are at a level low enough to be modeled within an action
Formally. it cannot identify an error as the result of a particular sequence of actions, ISER

can only discover that a certain state was not reached by a certain (one) action In other

words, ISER believes the robot 1s faulty, not the program

The last source of error lies in ISER itself, the world m<;del depends for the most
part on the post-conditions associated to i:he action definitions Such definition errors are
potentially fatal because an action could never achieve some of its post-conditions and
cause ISER to beheve there is a permanent falure of some sort This condition can be
detected to some extent when all preconditions have been verified but the action still fails
In general, if the world model 1s different from the actual world. it can come from an actual
action failure {(a genuine error), from an incorrect piece of mformation given by a faulty
sensor when in fact the real world is perfectly fine, or from an incorrect action definition in
ISER Sig,ce ISER does not reason about itself, it can be mislead by the last case and by

a faulty sensor if no other sensor 1s avatlable to verify 1t,

4.3 Run-time Error Detection

There are numerous advantages in detecting errors as soon as they occur, since
ISER resolves errors mainly by reattempting failed actions, the sooner the error is detected,
the closer it 1s to the state propitious to the execution of the “patch” (chapter 5 discusses
this in greater detail) Sinularly, error analysis is simpler because the effect of the failure

can be directly observed. Further, the chances of propagation of the error are diminished

™,

and the probability of damage 1s lowered To this end, the post-conditions of every action

should be verified® entirely but it is impractical to do so. Some conditions, however, are

[

37

®

)

¢

3

¢

4 4 Post-mortem Analysin

quickly verified and can be used to monitor the task progress This 1dea ongimated in the

Srinvas system and 1s central to the error analysis procedure of ISER,

One notable difference with the Srinivas theory is the way verified preconditions
are handled; such facts are removed from the database and only unvenhied preconditions
are kept as possible reasons for (future) failures In the context of error detection, the
distinction between preconditions and post-conditions becomes clear, post conditions can
be used to venfy action success even though not all post-conditions are necessary, precon-

-
ditions are all necessary and are verified by matching them with corresponding previous
post-conditions. If no post-condition 1s found for a current precondition. a warning is issued
to the operator; this can be caused by an incomplete world model, by a programming crror
or, similarly, by an mvalid request from the operator If a corresponding post-condition 1

found but 1t was not verified. the precondition 1s also kept as true but unvernfied Finally,

if the corresponding post-condition exists and 1s verified, the precondition 1s c¢himmated

_because it will never be used agamn

The above procedure 1s similar in spint to the construction of the fadure tree -

in-the original system except that ISER makes use of the pattern matching capabilities of
ART to virtually build the tree as the plan s executed; although they.are not explicitly
linked, ART can easily match the preconditions of a given action with the post conditions

of previous actions

4.4 Post-mortem Analysis
- /
The tree can then be constructed, explored, and pruned according to the fol

lowing principles:
o Look for distinctive features of a failure to verify if the failure 15 possible

e If no reason for the faillure of an action can be found, then it can be assumed
that the action succeeded and thus there s no support for a fallure due to that

action (i.e.. a successful action cannot cause another action to fail)

"
~
[

44 Post-mortem Analysis

This process is, of course, applied recursively uttil, hopefully, only one possible
¢
source of error subsists. If more than one possible source of error 1s found. the system

<
asks the operator to resolve the ambiguity

4.4.1 The Failure Tree

Once an error 1s detected, the crucial step 1s to determine the cause of the
error, this process was called failure reason analysis by Srinivas [Sninivas78] Although the
error analysis m ISER does not yield an explicit failure tree as the onginal technique did, it
is easy to match the pretonditlons of a given action with the post-conditeons of previous
actions The process of finding the cause of the error 1s reduced to a search problem,
starting at the unsuccessful action, for a previous action whose failure to establish the
necessary preconditions for the current action was not detected. Before this search takes
place, dunng the actual execution of the task, default reasoning 1s used to a great extent to
prune the search, all actions are assumed to have succeeded unless proven otherwise \Thcs
allows on-hne, real-time reduction of the search space if an action is proven successful, its
post-conditions will not have to be verified further and hence can béa eliminated from the

database 4

* The tree 1s expanded towards the failure reason by matching unresolved pre-
conditions with earlier post-conditions This constitutes a chain of actions during which
an error nught have occurred. The actual search is recursive if an action fails when its
local goal (a post-condition) is not met, this is because some precondition(s) of the current
action was not realised by a previous action which also failled. Ttie termimation condition
for the recursion is when no cause for the faiIL',lre of the current action can be found, in that
case the fatlure 1s attrnibuted to either the action itself, to an unverified information, or to

4—?

a constraint error

The tree is pruned if there 1s no evidence to support the possibility of failure and

1s pruned further using the method of faillure “signature” (what Srinivas calls distinctive

39

3

.

. 45 Complexity Analysis

features of a falure) to eliminate possible reasons of falure based on traces left by falures
Collisions, for instance, leave a *Motor stalledx* fact in the database, whereas large

position errors do not
4.4.2 Ultimate Source of Error

ISER considers only one error at a time or. more precisely, believes that only
(;ne action failed oniginally and caused subsequent actions to fail. Although in practice this
may be false, all farlures can be treated under this assumption if they are processed in
sequence. A few critena distinguish the first unsuccessful action from all others:\lf it faled
first, all preceding actions established their post-conditions, by definition. Accordingly, the
fallec'i action had all its preconditions established, since all previous post-conditions are
valid. The ultimate source of error i1s thus the first action which failled to establish its
post-conditions The absence of one of these later caused another action to tail and so
on until a manifestation of the e\rror was detected The first error 1s important because 1t
15 futile to attempt to continue execution of the onginal plan, knowing that a cor{dition 1S

missing, and therefore it must be resolved first.

4.5 Complexity Analysis | -

It is typical of many search and planning problems to suffer from combinatorial
explosion, the number of possible outcomes grows exponentially with the number of steps
explored In this section, an attemptl i1s made to quantify the dépth and breadth of the

search for the ultimate source of error

First of all, the complexity of the search depends heavily on the average number
of preconditions per action, or actually, on the average number of unverified preconditions.
Each unverified precondition must be matched against'post-conditions of preceding actions

which. in turn. must also be verified recursively. The upper limit on the number of actions

r

44
A

45 Complexity Analysis

(that must be traversed this way is the number of executed actions and the lower limit is, of

'

course, the number of preconditions of the failed action is the error is caught immediately.

- Pres&ﬂy{the :lumber of preconditions in the definitions of ISER actions is
- artificially low, from 3 to 6, as this is all that was needed for:’computer simulation, but a more
realistic number would be more around 10 to 15, depending on the level of representation

and generality of the system Of that number, only about 10% to 20% can be expected’to)
be verified and elimmated. The search can be limited in other ways, though, by segmenting
the task into “unrelated” parts; if it known that a section of the program was cor’npleted
successfully, the unverified post-conditions can be mar,ked as verified and their dependent
preconditions can be eliminated. It is then reasonable to imagine that such unrelated parts
be limited to less than a hundred steps, which is a reasonable upper limit, given that not

all these conditions will have to be independently verified with sensors.
+ N

Last, the number of conditions to be verified depends heavily on the “serial”

nature of the task, if a large number of actions must be executed in a givenerder (building a

/ tower, for mstaqce). the search will be imited in depth to the first action proven successful.
This follows from the principle that the success of an action guarantees the success of its
predecessors On the other hand. if many actions are independent and can be executed in

any order, the task is highly parallel and the branching factor of the failure tree 1s higher.

This generally leads to larger search spaces.

&

41

! Chapter 5 , ‘ Error Recovery

v

5.1 Error Recovery Algorithm ")

Upon completion of the failure reason analysis, the|first action that failed will
be identified as the ultimate source of error The principle behind ISER’s error recovery
is that the success of the plan does not depend on the order in which the preconditions
are established It then follows that, if a precondition is missing, the precondition can be
established at any moment before the failed action can be attempted again. The general
idea is to establish the conditions necessary for the controlled execution of the f;liled action
i.e., with additional feedback. This controlled execution is con)Lidered a patch for the original
plan. Since errors are not necessarily detected as they occur, the state of the world at the
time the error is detected can be very different from the state in which the “patch” can

be applied Instead of direct replanning from the current state to the “recovery” state, the

manipulations that took place after the failed action are analysed to guide planning and

gradually bring the state of the world towards the recovery state by undoing actions, in

reverse order This procedure is outlined below-

top = last executed action ‘

Kpatch = failed action
f7 ;73 Undo actions that have post-conditions similar to preconditions
;+; of the failed action. Such post-conditions have the same parameters
% ;3 but different values compared to the preconditions.)

51 Error Recovery Algorithm

for (i from top to patch)
if (post-condition (i) = precondition (patch))
undo_with_sensing (i) . .
remember_action_was_undone (i)
endif

endfor
&

: 5, If there are preconditions still unresolved, search for any
;. known action that is susceptible to achieve it. .

forall (precondition-error (patch))
find_action (i)
such that (post-condition (i) = precondition-error (patch))
execute_with_sensing (i)
endforall

i +s At this point, if there are preconditions missing, preventing
i+ application of the patch, abandon ship.

if (precondition-error (patch))
exit (‘‘Cannot establish preconditions to apply the patch’’)

endif !
;+3 Because this action failed once, take good care when executing it.

execute_with_sensing (patch)
if (error-detected)

v exit (*‘Cannot redo the failed action’’)
endif

;37 Redo carefully the actions that were undone in the first step.

et

for (i from patch to top)
if (action_was_undone (i) or
(post-condition (i) = precondition (j) and
j is in range (i, topl)) .
execute (i) .
endif
endfor

i:: At this point., we are at the state we should have been
i ++ had there been no error.

exit ('‘Success’’)

Of course, since little is known about the actual state of the world after an

error, the actions must be carefully undone in the first’part of the recovery procedure, with
3

43

5.1 Eror Rcfovcry Algorithm

4
@ as much sensing as practical.

5.1.1._. Constraining the Search Space

s

Errqr recovery is thus regarded as search for an action or a sequence of actions
sus:ceptible to “patch” the plan‘in order to proceed towards the original goal. This search ’
is expensive in processin‘g tim;. however, and actually too expensive to be acceptable in an
interactive robot environment such as telerobotics, One must then look for ways to reduce
the recovery aelays. Given that failure reason analysis has identified the ultimate source of
the error, the failure of an action due to an information or an operational error, the simplest
patch is to attempt to re-execute the failed action witt;. possibly, a better understanding
of the current state of the world. In order to redo this action, its preco\nditions must be
verified, this time with the use of sensors since the state of the world cannot be inferred
from the world model after an error. Assuming the error analysis is correct, the failed action
is the first source of error and therefore its preconditions were once established correctly.
Hence, the preconditions of the failed action missing from the current state of the world
must have been undone by steps subsequent to the failed action. The search space can then
be reduced to the set of actions that took piace between the failed action and the action
where the error was detected, searching for actions which have post-conditions similar to
Nthe preconditions of the failed action. These similar post-conditions are an indication that
one aspect of the world that was present and necessary for the failed action to succeed
has been altered after the failed action was attempted. They are similar because they are
expressed with the same parameters, with different values. If such actions are found, they
can easily be undone if inverse actions exist for these, namely if the inverse-action slot
is non-null. Otherwise, the search space must be expanded to the set of all actions in the

ﬁ database, as shown by figure 5.1. When an error occurs, ISER first searches for inverse

actions for.each of the previous steps. -

44

\y’) 5 2 Recovery Propagation

.
) Previous
' Steps,
e
;‘, : PG s e
Figure 5.1 The Action Search Spac
. . . } .
. Figure 5.2 describes the error recoyery procedure by ~omparing the normal se-
quence of states, Sy to S, to the sequence of states Sy to Si, created by an error in the
- execution of Aj, detected at Sge. In this example, the crror is detected at run time after
o
efecution of Ag and the analysis finds that the error occurred at A;. >
‘) Suppose: Error occurs at“A;;" i .
' ‘ The error 1s detected at S,
T . Sy and S3, conflict with Sy ‘
T) Sy, and Sg, do not conflict with Sj
\ * The recovery then proceeds as Yollows: Undo Ay." A3 to achieve Sy .
i Redo A) (with sensing)
. Redo As3. A4. and Ag (without sensing)
\ Note that Ay and Agrare not explicitly undone. T his i‘s»bp\c‘ause actions in ISER
N ‘ are atomic (refer to sections 2.3.3 and 2.4) and.therefore partial success is never recognized.
To cope with the fact that the outcome of the failure of Ag is unpredictable, it is considered
> only if Sg, interferes with the undoing.of A3 and A5 by conflicting with their preconditions.
, Also note that A3, A4, and Ajs are re-executed without special sensing. This follows' from
o s - “‘\)
’ C the rationale of the original plan: if it was worth attempting A3 to Ag”without verifying Sy,

it is certainly valid to attempt execution now that S has been established explicitly.

52 Recovery Propagation

A As

A
2

Al A 3
R A N T -
Nomal:(5) (3) (=) (8)

L Az
S IORORY
3
~ BRCONCY

4‘\ -~
(8) (Ss)

A

i As
(Si) (Ss)
1

I : CITOr
source detected
of error

‘ Figure 5.2 Error Recovery

52 LRecovery Propagation
&

'

>

& The class of errors that will be trapped and corrected by ISER has alrcady been
discussed. This section deals with how error correction at the lowest level can propagate

to repair high-level plans.

As ISER aims to solve errors occurring in the course of an instance of the
execution of a task, often these errors are due to some particular arrangement of the work
cell or some coincidence of events Indeed, such errors are very common but their treatment
does not constitute the core of most tasks; that is, error(etection is seldom seen as a
goal of the task planner Assuming then that the task planner hés dealt with the general
organisation of the program, ISER has the responsibility of coping with variations of the
real world to attain the desired goal with the given plan. The recovery plans should be as’
short and reliable as possible. however, since an error in the execution of a recovery plan
stops ISER. This is based on the assumption that failure of a recovery plan indicates a -

possible recurrence of the error that triggered the execution of the recovery plan in the first

“— 46

A\

5.3 Example

ey

place.

[

e

The form ?f the recovery plans is not different from that of a top level robot
plan, ‘Reco,very plans are weaker, however. because interaction between steps is never
considered:; there is no meta-knowledge as there could be in a carefully thought plan.
As recovery plans blindly attempt to satisfy preconditions, recovery failure then indicates
that some precor;dition for an action in the rec0\}ery ‘plan is missing. Since, in tecovery
mode, all actions are checked and all preconditions are verified, this means that there is an
unachievable state in the recovery plan. If the recovery plan is conceptually valid, the faillure
to establish the state 1s a constraint error, beyond the robot’s capabilities. If the recovery
plan is invalid, for instance if the unachievable state is unnecessary, then there is a flaw
in ISER itself, in its database as a required precondition missing from an action frame, in
the robot system repeatedly failing to operate, or in a sensor returning an ﬁucorrect value.
These last four failure types cannot be dealt with at the level of ISER, which would suffer
from some form of neurosis®, but rather at some higher level. In telerobotics, the operator
can evaluate where the fault is by comparing 'bis\assessment of the situation with the status

report from ISER.
£ 4

a -
-

Indeed, upon failure of a recovery plan, the standard error aralysis procedure

can be applied quickly to narrow down the possible reason for failure to:

missing precondition (constraint error or sensor failure)
missing post-condition (constraint error, robot or sensor failurg, or incorrect database)

Of course. a flaw in ISER itself can manifest itself ir any of a number of ways, all causing

self-induced neurosis.

5.3 Exampie

and the recovery procedure in general,

Toillustrate the error recovery algorith

S Either its perception or interpretation of the world™t red or its body, the robot, refuses to
operate Neurosis is an abuse of language, but it depicts well the system behavior.

47

-

53 Example

»

the following example is typic.al of many runs of the robot program developed 1in Hydro-
Québec’s laboratories, to realise the task outlined in chapter 2. It demonstrates what
occurs when an impreci;ion in the measure of the position of the conductor leads to a
" collision between the unwrapping tool and the conductor when the tool is mated with the
conductor The original plan 1s*

(d-actrace 1! (move tool-rack))

(d-actrace 2 (pick-tool sonar))

(d-actrace 3 (displace sonar above-conductor))
(d-actrace 4 (apply sonar conductor-position))
(d-actrace 5 (leave-tool sonar))

(d-actrace 6 (pick-tool unwrapping-tool))
(d-actrace 7 (displace unwrapping-tool g¢onductor))
(d-actrace 8 (mate unwrapping-tool condlictor))
(d-actrace 9 (apply unwrapping-tool tie-wires))
(d-actrace 10 (apply unwrapping-tool conductor))
(d-actrace 11 (apply robot unwrapping-tool))
(d-actrace 12 (unapply robot))

(d-actrace 13 (unapply unwrapping-tool))
(d-actrace 14 (unmate unwrapping-tool conductor))
(d-actrace 15 (leave-tool unwrapping-tool))

(d-actrace 16 (move cradle))
(d-actrace 17 (stop robot))

(d-actrace 18 (goal))

Running it yields a message from the robot controller, which reads, after inter-

pretation by ISER

(robot-error 8 (mobile robot no))

L
M P

Which means that at least one joint motor Etalled"éf/srt/ep 8. Error analysis yields the

following list of preconditions: - -

(precondition (mobile conductor no)) ;given!

(constraint (compatible robot tool)) ;0k

(constraint (compatible tool conductor)) ;ok .
(constraint (mobile tool yes)) ;ok. it moved .
(constraint (can-reach tool conductor)) .ok

(precondition (mobile robot yes)) .ok, it moved
(needs-information (position conductor)) .not vernfied

= the dhly possible cause of failure is an incorrect (position conductor).

~

Which action was supposed to get (position conductor)?

48

w 53 Example

(d-actrace 4 (apply sonar conductor-position))

+

There is only one reason why action 4 could fail, imprecision in the sonar.
Actually, it could also fail if the sonar measured the position of something else, but we

can safely assume the approximate position of the conductor is known (from the operator,

say). Hence, there is no action prior to 4 that could have failed.

'

ISER then proceeds with local planning to recover from the error:

Attempt to redo action 4 with sensing. Actually, action 41s a sensing operation

’

. and hence 1s a special case, performing “sensing with sensing” is much like sensor integra-.

tion. The user could be asked for a sensor that could verify a previous sensing operation,
but as a first approximation, the original sensor is used to repeat the measurement. This
h

in no way changes the course of the recovery procedure, except for a change in the sensor

used to patch the plan

[

Starting from action 8, trace back for actions with post conditions matching

preconditions of:

(apply sonar conductor-position)

these are:
¢ (holds robot sonar)

e static constraints that have been verified already (compatibilities, etc.)
A

)
It may be arrl,d that (d-actrace 6 (pick-tool unwrapping-tool)) vi-
olates this, but it would\require too much reasoning to figuie directly that holding the
unwrapping tool precludes holding the sonar Instead, ISER discovers that

(d-actrace 5 (leave-tool sonar))

violates (holds Trobot sonar). This i1s easy to undo, the Inverse action is (pick-tool

sonar). The preconditions of'(piclvtool sonar) have to be validated

(leave-tool *whatevert) ;i.e., the unwrapping-tool
(move tool-rack)

and finally. .

49

’

)

54 Recovery Cost

~/ (pick-tool sonar)

The preconditions of (apply sonar conductor-position) are now validated.

We can then define the recovery plan

(defplan ‘‘patch’’
(leave-tool *whateverx*)

(move tool-rack)
(pick-tool sonar)

(execute-with-sensing (apply sonar conductor-position))

;L.e., the unwrapping-tool

(leave-tool sonar) ifrom list of "undones”

" (pick-tool unwrapping-tool) ;from list of "undones”
(displace unwrapping-tool conductor) :necessary for next action
(mgte unwrapping-tool conductor) :because it failed

) 0 ;

'

This plan can then be sent to the contr&ler to be executed by the robot. Con-
ceptually, it consists of the following steps:

1° Undo actions to get to a state in which the failed action can ?e attempted.
2° Redo the fatled action
3° Redo the actions undone

4° if any action not in the hist of “undones™ has post-conditions matching precon-
ditions of one of the undones, redo it anyway in case it was also undone.

t

5.4 Recovery Cost

Allowing non-catastrophic fallures to occdr, in the hope that the manifestation
of the failure will provide useful clues to recover from the failure and continue execution of

~

the originalﬁplan. makes sense only if the total cost of the failure and recovery 1s low. To
verify this, one must address the problem of the trade-off between - ;
Full sensing. high computational cost
sensor complexity
multiple displacement of sensors - ,
.. high reliabibty and safety | p

No sensing +. recovery. possibly optimal use of hardware

low rehability. danger

50

54 Recovery Cost

possibility of learning

™]

ISER is less useful with full sensing; called upon discovery of error, it assumes
that errors are due to incorrect information or operation The best use of ISER lies some-
where in between. because there is a cost in time, re;ources. and perhaps in material
(damages to the objects in the work area) All these costs form the recovery cost, if it
is high, the plan should include sensing and be careful to prevent recovery Conversely, if

the recovery cost 1s small, it may be more efficient to let the robot program run at higher

speed and lower complexity

The recovery cost C'p 1s a function of.

- the time to compute the patch

- number and cost of the manipulations

- amount of sensing required .
- damages caused by the error

For a given plan consisting of the sequence of manipulqtions:
my, My, m3,.. ,My
and properly interspersed sensing operations:
51,592,583, ,Sr

The cost of the program 1s then the sum of the manipulation cost Cjs and of the sensing

cost Cy To a first approximation, all manipulations can be assumed to have the same

cost (gear wear, for instance) and so can the sensing operations Hence, the program or
!

plan cost Cp 1s proportional to the number of actions For a given run, the total or task -

cost C'p is then the program cost plus the recovery cost-

Cr=Cp+Cp (1)

fy

While ISER itself has no control over the top level planner, which defines the

program and hence the program cost, 1s it destrable to produce an estimate of the expected

51

i

¢

¢

h 4 Recovery Cost

recovery cost, to reduce the overall average task cost. Indeed. (Cp cannot be eliminated
by any trade-off in program versus recovery since both contain terms in mampulation and

sensing. If one refines (1) to include a measure of the probabihity of error
Cr=Cp+pCy (2)

where:

0<p<t -

Then, starting from a complete “perfect” plan which accounts for cvery posst-
bility of failure and prevents them, errors are impossible and p = 0 On the other hand,
if one allows errors to occur (p > 0) by removing some of the manipulation and sensing
operations from the perfect plan, Cp decreases‘whlle the Cp term s more nn;)onzmt The
probability of error raises as less checking 1s performed and, consequently, p s directly
proportional to the number of operations left out from the perfect plan, Ultmately, one
wants to mimimize Cp by minimizing Cp while keeping p low enough to himit the effect of
Chp.

5

Refining the evaluation of Cp. one can argue that Cp also increases with p
as Cp is decreased Using the model of the perfect plan, this is explamed by the fact
that, if error detection and correction steps are ehminat{ed from the perfect plan and an
error occurs, it is likely that the removed steps were necessary and will have to be done,
perhaps in a modified form, in the error recovery process and thus raise the value of (/p.
TO@pp;oximate, again, C'p can be divided into two components; the cost of error analysts
and of undoiny failed steps, the error complexity (£¢;). and the cost of doing steps onmitted

¢

from the perfect plan. the “error detection” cost (Cp)) Rewnting (2), one obtains

Cr=Cp+opllse+Cp) (3)
where: 4

Cp+Cp=Cp, the costof the perfect plan

L2

e

54 Recovery Cost

1

The error complexity is largely related to the amount of search required to find
the ultimate source of error If many checks are performed during plan execution, the
error analysis 1s bounded. errors are detected sooner, and the number of steps to undo is
reduced, all factors contributing to reduce the cost associated with the error complexity.
I'¢ can thus be estimated from the following assumptions.

a) On the average, failures will occur half way between two “checks” in program
execution

b} The number of operations to venfy after an error is that portion of the perfect
plan that would fall between the last chleck and the action during which the
error was detected.

¢) The number of steps to undo 1s that portion of the actual plan that occurred h
since the last check

d) If actions must be executed in a given order, the error analysis cost is decreased
since success of an action guarantees success of previousfactions

¢) If actions can by executed in any order, the cost of undoing steps decreases as
the stack of actions s shallower

\ The error cdinplexity 1s dvided into two terms, the portion due to the extent
of the analysis required and the part due to the number of steps that have to be undone
From the above assumptions, and given that the actual plan is a selection of steps from the
perfect plan, the relationship between the actual plan and the perfect plan can be depicted

as in figure 5 3 below.

steps to venfy or undo

i CPp
";‘lf;}‘ R R T R e IR R RN IR A RN IR RATER R R RS la]
0
. Cp
SR B I T e e R B B
0 ! !

no falyre fallure
Figure 5.3 Perfect and Actual plans

53

b d

54 Recovery Cost

—

Assummg\)aﬁneven distribution of “checks™ over the actual plan, the analysis
cost is proportional to the number of steps in the perfect plan over the actual number of

steps:

. Cpp
analysis cost oc —=
1)

From d above, and using S as a measure of how many steps must be executed in a given

order, to denote the “"serial” nature of the task, the analysis cost can be refined as:

lysis cost oc Cpy
analysis cost & — -
. y S Cp

This is consistent with the fact that a/l conditions must be verified if they can be established

in any order. Finally, from a:

-

analysis cost L1Ch
¥ s = ——
y 25 Cp
"
' The cost of undoing steps can be similarly derived from a, ¢, and e:
Cp
doin st=-85—P ‘
undoing co 2% B

Hence, the error complexity evaluates to.
e

Cpp11 Cppi
& EC:_‘ Pp*—-——*— I])

Cp2S " Cp2
,}@E 1 g ~ _1_CPP

~‘20']3(:§+L) T 2Cp

S

~

Rewriting (3). we obtain this final form to represent the approximate cost of a given task:

Cr=Cp+pCp+pEc +pEs | ~ (4)

Cp+Cp=Cp,y - R
C

p=F=5 ’
CPP 1
1Cp
Ec=-—=LS

2 Cp

where

‘
[} “ [}

54 Recovery Cost
®

F, S : constants depending on the task and domain

£

Cr : task cost

Cp : program (plan) cost = number of actions (¢ + r) in plan

A

’C;\\errdr detection cost = Cp, —Cp °
E¢ : error complexity
Eg : error severity
p : probability of error \
Cpp : cost of perfect plan = estimate of number of actions Z

to ensure proper execution

A new term, the error severity (Eg). has been added to artificially raise the
cost of certain errors for safety or cost purposes (e.g, prevent shorting phases of power
lines). Strictly speaking. :hls would not be required if error analysis and world modeling
were complete and sufficient to describe all effects of actions For example, if the planner
understood enough of the real world to model the implications of a short circuit between
the phases (power outage, conductor damage. robot replacement. etc.) 1t would put a high

value of error complexity for these steps

I 1s constant and depends on the task/domain. In the blocks world, for in-
stance, there ai no operational nor information errors Using a generic “perfect plan”
which includes sensing steps, one can optimize it by removing these redundant steps. In

the blocks world, I = 0, and the task cost equatton is reduced to

Cr=Cp

Conversely, in harsh environments, sustaining heavy winds for instance, errors
are more likely to occur if sensing is reduted; objects can move and fall, for example. This
1s not related to the complexity of errors; displacements of objects is easy to resolve and fix.

Therefore, F' is a measure of the necessity to perform 'sensing and verification of actions

55

%%:,

! 54 Recovery Cost
[N

and an indication of how delicate the task is. It is actually defined to be the percentage of

actions that will cause a failure is they are not executed.

Independently of the probability of error. error complexity is a function of the
plan and domain of application. If the plan consists of several ’Actions that must be executed
in a certain order, the errors are more complex to gnalyze and resolve since m; error early
in the execution of the plan can have repercussiongon many actions afterwards. On the
other hand, if the actions can be-executed in any order (in parallel). errors can be fixed
easily. By analogy with the blocks world, one can see that building a tower will yield a
higher error complexity than laying out a row of blocks ThT:%e. S is defined to be the
ratio of the number of steps that must be %ecuted in succession over the number of steps
that can be executed in any order or in parallel This figure il actually related to the shape

of the failure tree, if it is high and narrow, the search can be very deep and S is high, if,

on the other hand, the failure tree is wide but short, S is low.

The following figure illustrates typical program costs for Cp varying from 1 to

100, for Cp, = 100, Eg = 0. and various values of I' and .

389(_, T S— e e T 6081/=1 € 5=10
I
-
=0 7 s=4 0.7 sx1@
9.5 a=4 0.5 s=10
3
.
- e
~— \
e e e A \
e Lo - \
=0 =4 J e ,/F/ @.2 secl0
il S g
[
— o e —
)
g T o . 1e¢ o N 104

Figure 5.4 Program Costs as function of the Number of Steps

This shows that. as the probability of error decreases, it 1s worth executing léss

actions and performing less checking and sensing. As expected, the benefit decreases in

H“6

°

!

/ 5 4 Retovery Cost

1

the case where more actions have to be executed in order (nt;te the scale difference between
the two figures). Also expected is the fact that all curves join at the point where all actions
are executed (a perfect plan) and no error occurs. The actual decrease in task cost should
be more dramatic (it varies between 25% and 60%) but this analysis does not take into
account’-the very high cost of éxecuting some parts of a perfect plan. In reality, not all
actions carry the same cost and the cost of the perfect plan is prohibitively high, raising
the right end of the curve and thus increasing the relative benefit of performing tasks with

less sensing.

. A
by

57

N

1

Chapter 6 Conclusion

6.1 Summary and Discussion

The goal of telerobotic/s is to accelerate completion ef tasks performed by a
human operator remotely controlling a manipulator. It quickly becomes evident that a
computer intérface is necessary to translate the operator's intentions into robot instrgc—
tions and, conversely, to translate robot coordinates into positions and relations. This
the§is has addressed a part of this goal: the problem of robot error recovery in a poorly
characterised environment. Such a context imposes several constraints, the most severe
being the possibility of interruption of the original plan by the operator, Consequently, on-
line intelligence must subplement pre-execution planning for such unexpected interruptions,
Furthermore, the differences between the actual world and the expected world upon which

the original plan is based cause actions to fail in ways difficult or expensive to predict.

ISER has been designed to tackle these two problems, asynchronous interruption
and randomness of the work environment, by using a world model to monitor the execution
of the task as a sequence of actions rather than as the achievement of a top-level goal.

Success is then measured for each action as they are executed, allowing changes to the

"original plan without affecting the general performance of the system. In order to do this,

ISER includes definitions of all the actions that can bé executed by the robot system; these

definitions include restrictions on the state in which the action can t?e executed and the-

.
. e
) ' l

%

6 2 Contributions

expected oﬁ{comq of the action. If the restrictions are not satisfied. an error is signaled
and the robot system is stopped to prevent further damage. At this point, the failure

is analysed to discover the source of the error. The central idea in ISER is to use local

planning to reduce the complexity of the planning required to recover from the error; a great .

confidence is put on the original plan and only as a last resort will ISER attempt to build a
simple, local, recovery plan to replace it Actually, ISER attempts to cope with variations

in the real world to follow the original plan.

«

i

Just as its world model adapts to the actual state of the work cell, ISER.is
relatively independent of the context and could be used in a wide range of applications.
New objects and actions can be added as variants or specialisations of those already in

place to customise the world model to the particular context.

6.2 Contributions

i
)
»

ISER expands on the idea of error recovery and operator-assisted manipulator
by providing run-time assistance and failure recovery. This is in contrast with common
methods involving a planner to build a new plan from the failure state to the goal sfate: in
ISER rather, local planning is used to,patch the original plan and salvage it. Consequently,
the plan can be repaired with less re§ources than those required by a full-fledged planner.
As it attempts to verify all préconditions Before execution of actions, ISER also provides
error prevention in the form of messages warning the Opgrator about the possibility of

future failures.

i

As a side effect, ISERi'; required the creation of a high-level parser to interéret
robot messages and (ietermine wh!ich objects are directly affected by an action. The parser
is required to raise the level of abstraction from what the robot system uses to what a
qualitative-system can understand. .This representatign and the associated world model,

. both still incomplete, could be used to elaborate a nfq:)re complete system to reason about
object relatiorls a"nd thus maintain a world model to present informatiofto the operator in a

Q

59

6.3 Future Work

!

clear and flexible mar;ner.NThe way the information is organised is also of interest; instead
of having a separate database for ¥he world model. objects carry their own definitions
of the changes they produce in the world. as well as the restrictions on the states in
which tﬁey can be used or applied. The related notion of action classes is viable, but it
seems more promising to incorporate action definitions in objects, going from frame-based

representation to true object-oriented programming. -
6.3, Future Work

- The definitions of actions as separate items in the database is an artifact of the
original version of ART which did not support object-oriented. programming, as the current
one (3.1) does. Describing actions as attributes of objects (methods) would greatly simplify
expansion and customisation of the database. Limited action attr?butes already exist for
some objects, but they must be processed explicitly by special rules. Using methods, world
model update would be performed simply by sending a message Lo the objects involved
indicating which action was executed. Determining which objects are involved is already

done by the high-level parser.

i JAs ISER handles errors, the task planner can take advantage of this to generate

- more generél plans. Further, the plans should include sensing operations to aid in error

/_/ - - detection. As a matter of fact, the analysis of the task cost can be used to evaluate how
’ mugh processing and verification must be included in .the original plan and how much can

be left off to be executed only in case of error, n order to minimise the a;/crage cost of

the task. Since ISER analyses the sources of error and finds ways around those (;ff()l"i, a

learning system could also complement ISER and pass this information back to the planner

in order to generéte more efficient plans. Actually, from the planner point of view, ISER

serves as an extension of the robot capabilities and presents a constant model; independent

of the robot and environment.

' : Experimenting with the system has unveiled new avenues in interactive robot

task sp‘eciflcation, as a)H objects can be represented by a set of characteristic/value pairs,

_ !\\,J ° 60 _

@

r

63 Future Work

the actions can be defined by the operator by indicating the final desired values (compare

for instance figures A.3 and A.4). This would require a sophisticated planner if many

such values can be changed at once by the operator but it can be implemented easily for

small changes inthe world model, allowing interactive object-oriented programming of the

robot. This is algreat advantage since telerobots are really meant to be used by personnel

unfamiliar with robots and great experience in the domain of application. Ultimately, one

wants to render the robot as transparent as possible; the manipulator is a tool, not an

end by itself. ISER aims at that bz compensating for the environment, but its interface to

the robot system is not sufficiently versatile to accommodate any robot system. Several

schemes have been developed to achieve this, one of which models the robot system as

A
an operating system, allocating resources, interfacing, etc [Carayannis88]. Again, the

_central idea being an abstraction of the robot and its work space to present the operator a

functional view of his tool.

61

ot

Appendix A. Sample ISER Session

Certain ideas expressed in this thesis have been implemented and explored with
a simulated task. The sequence of actions, the sensor values, and various errors were
defined in a file and ISER simply stepped thr(lugh them to'simulate sequential execution
by a manipulator. This appendix demonstrates ISER’s behaviour through a few different

scenarios.

»

First is a simple warning displayed when ISER finds that the next action is in
contradiction with the current state of the world. It reflects the fact that the manipuiator
cannot handle two tools at the same time (the unwrapping tool and a gripper). and hence
the request to install the gripper (by an unexperienced operator, for instance) is likely to
produce an error. It is not forbidden, however, to be consistent with ISER’s phifosophy that
it is generally better to let execution continue, unless it can be proven that a failure has
occurred. In this particular case, one can imagine that the unwrapping tool was dropped
by accident, perhaps causing damage to the tool mount detector, and the intent of the
operator is to use the gripper to recuperate it In figure A.1, the ISER Status window
lists the current action and the n'ext one The UNWRAPPING TOOL window shows tl;zut ISER
believes the tool 1s attached to (mounted on}) the robot, and the ISER Warnings window
indicates what makes ISER believe that the next action will fail. All this information was

deduced from the standard action, tool, and objects definitions.

4

62

N
S esddSe

£9

Keydsip Y351 (eodhl [y anBiy

COMMAND WINDOW

=> execute next action

z> execute next actfion

=> execute next action

= f

; ISER COMMANDS
execute next action "
restart |
exanine object
hide ohject
enter action
expose ART nmenu
hide ART menu

\
.

' R R S
7 SRR !
ISER Warnings " ' : - , T
The (EMPTY ROBOY YES) precondition of action 3 was not met. , e

a ’ N)\: ‘\‘
N Lo

. 3 * B

ISER Status
- : Tracing action 2
-=> (PICK-TOOL UNWRAPPING-TOOL)
. Next action
- . (PICK-TOOL GRIPPER)
R TR R S ,
L i ‘; . "J“i' . {!S*, u:ﬂﬁ,ﬂﬂ:t”“wh ,Tﬁx,;\ L T: Yo ”: , ﬁ;) . . -
. - o : ! .
(- . 1 ! P i ¢ - . .

- ¢ :1 . s - ;‘ ;“‘ N i) ' o “E{lj‘\i L : ’ 5 5(1{ VT "
. ‘ BT - . (Y . X o o ' e r:nl:}’ﬂxl‘ y r N i":‘g;’ «75‘&@'1;‘;“.‘
‘ B . e, I PR U L WS

. T)) : R N
¢ . [' . P A TR R NI

ROBOT 2 UNWRAPPING TOOL CONDUCTOR
Position UNWRAPPING-TOOL Position TOOL~RACK-POSITION Position CONDUCTOR-POSITION
Mobile YES Mogbile YES Mobile NO

ﬁttached to ROBOT

Attached to INSULATOR

e

g

()

u

Figure A.leists the choices gvailable to the operator, who can enter and ma-

/

nipulate the sequence of actions to be executed and select which objects from the world

model will be displayed on the screen.,
9

ISER COMMANDS
/
restart . f
!
f

exanine ohject

- . hide ohject

'\entor action K

expose ART menu < '

hide ART menu !
PR

Figure A.2 The [SER menu

|
i
|
|
|
~ |
|
|

|

Figures A.3 and A4 give a simple example of the effects of actions on the
world model and how %his reflects on the display They illustrate the differences in the
characteristics of the conductor before the task i1s executed and after the tie wires are

~removed, leaving the conductor unattached and mobile, still at its original positiqn.

CONDUCTOR 4

Position CONDUCTOR-POSITION

Hohile NO

attached to. INSULATOR

Figure A.3 The conductor object, initial state.

. ¥
CONDUCTOR
Position, CONDUCTOR-POSITION
Mobile YES

' ‘ Figure A.4 The conductor object, goal state

O , | \

¢

|

04

The last figure depicts a typical display immediately after an error has been
detected, namely a joint stalled while removing the unwrapping tool from the conductor.
This could be caused, for instance, by misalignment of the slot allowing the unwrabping
tool to slide in and out (mating/unmating) on the conductor. At this pomt, the status
window indicates that ISER s performing error analysis and a special Error Analysis
window lists the current deductions The warning windq\a also points out that the falleq¥$
action is necessary for the next one ard should thus be fixed before continuing. Applying
the pro;ess of error analysis described in chapter 4 will reveal the necessary preconditions

for this action and proceed to venfy and establish them.

34

99

X3

nels siskjeue Joug gy 2anSyg

-

=) execute next action

=> execute next action
=> execute next action

=> execCute next action

=> execute next action

QPMHAND WINDOW

ISER COMMANDS
execute next action
restart
examine object
hide chject
enter action
expose ART menu
hide ART menu

£

ISER Warnings
Action 18 fairled to achieve the goal (HOBILE ROBOT NO).
|- The (MOBILE ROBOT YES) precendition of action 11 was not net

Robot error at action 18
603Y error 3t action 18

¢

Error Analysis

(MOBILE ROBOT NO)
{MOBILE ROBOUT NOD)

v

ISER Status
Analysing error (MOBILE ROBOT NO) of action 18
=~> (UNMATE UNWRAPPING~TOOL CONDUCTOR)
KRext actien.
(LEAYE-TO0L UNWPARPING~TOOL)

ROBOT
Position CONDUCTOR

Hobile NOQ

Position

Mob1ie

Attached to

UNWRAPPING TOOL,
CONDUCTOR-POSITIDN
L] N
ROBOT

CONDUCTOR
Position. COMDUCTOR-POSITION
Mobile YES

7

« ~

Appendix B. The High Level Parser

The high level parser is the interface between the robot system, which operates
on physical objects, and ISER itself, which operates on classes of objects. To be able
to specify pre- and post-conditions for action classes, act’;ons must be parameterised and
variables must be used in action descriptions The parser receives action spedifications
from the robot and then instantiates conditions in the database from the robot values and
the general action defimitions This process is best-explained by considering the set of
acceptable action specifications as a robot programming language (it is, conceptually, at

the same level) and to use the following Backus-Naur form (BNF) to represent it

(actrace) = (actrace { positive-integer) (action-def))
(action-def) = ((action) { (subject) } (argument)’) |
((action) { effector))({ (subjec;) H
(goal)
(action) ::= move | pick-tool | displace | mate | apply |
unapply | unmate | leave-tool | stop
(argument) .= (subject) | { abstract-position)
(subject) ::= (object) X
(abstract-position) S (object)
(positive-integer) ::= 1, 2, 3, ...
For. every action received from the robot controller, the parser looks up in the

definition of the action to determine if it has default values and then explicitly posts its

instantiated parameters

67

4o

References

Brooks82 Brooks. R. A., "Symbolic Error Analysis and Robot Planning”. International
Journal of Robotics Research, Vol 1, No 4, Winter 1982 ’

Carayannis88 Carayannis, G , “A Generic Run-time Environment for a Robotic Work
cell”, Ph D Dissertation, McGill University, Montreal, Canada, June 1988,

Cardelli88 Cardelli, L and Wegner, P , “On Understar:ding Types, Data Abstraction, and
Polymorphism”, ACM Computing Surveys, Vol. 17, No. 4, December 1985, pp. 471~
522

Cohen87 Cohen. J., "Live-Line Repair with'TOMCATL.—EPRI Journal, Vol. 12, no 5,
July/August 1987, pp 14-19

Donald86 Donald, B. R ., "Robot Planning with Uncertainty in the Geometric Models of
the Robot and Environment: A Formal Framework for Error Detection and Recovery ™,
Proc. IEEE Int. Conf. on Robotics and Automation 1986, pp 1588-1593, 1986.

Ernst69 Ernst, G. W. and Newell, A , “"GPS A Case Study mn Generality and Problem
Solving”, Academic Press, New York, NY, 1969)

Fikes71 Fikes, R. E. and Nilsson, N. J , “"STRIPS. A New Approach to the Application of
Theorem Proving to Problem Solving ", Artificial Intelligence, Vol 2 (1971), pp. 189-
208.

Genesereth87 Genesereth, M. R and Nilsson, N J | "Logical Foundations of Artificial
Intelligence”, Morgan Kaufman Publishers Inc . Los Altos, CA, 1987

Gini85 Gipi. M. et al. , “"The Role of Knowledge in the Architecturé{ of a Robust Robot
’ /ﬁm(ﬁ IEEE Int. Conf on Robotics and Automation 1985, pp. 561-567,
1985.)

Ginsberg88 Ginsberg, M. L and Smith, D. E , "Reasoning about Action I: A Possible
Worlds Approach”. Artificial Intelligence. Vol 35 (1988), pp 165-195.

Girard88 Girard, F/ “La robotique en distribution”. Technical report no. IREQ-4167C,
Institut de recherche d'Hydro-Québec, Varennes, QC, Canada, April 1988.

Hayes-Roth83 Hayes-Roth, F.,,\‘Usmg Proofs and Refutations to Learn from Expen
ence”, in Machine Learning: An Al Approach Michalski, Carbonnell, and Mitchell,
eds. Tioga Publishing Co, Palo Alto, CA 1983.

Henkener85 Henkener, J. A , “Study of a Component Evaluation Unit for Remote man
tenance of Transmission Lines” Interim report for RP1497-1, prepared by Southwest
Research Instutute, Electric Power Research Institute report no EL-4188, August

. 1985.

T

=

e
Y

IERE87 IERE of Japan., "New Applications of Electronics in Power Facilities of Japan”,
Report Submitted to 16" General Meeting of IERE, December 1987.

Inference87 Inference Corp. . “ART Reference Manual”. Inference Corp., Los Ange!es.
CA. Version 3.0, January 1987.

Kaemmerer87 Kaemmerer, W. F ., Allard, J. R., “"An Automated Technique for Providing
Moment-by-Moment Advice Concerning the Operation of a Process”, Proc. AAAI-87
Sixth National Conference on Artificial Intelligence, pp. 809-813, 1987.

Kak86 A. C. Kaket al.,"A Know'edge-Based Robotic Assembly Cell”, IEEE Expert, Vol.
1 No. 1, pp. 63-83, Spring 86.

Lee84 Lee. M. H., Hardy. N. W., and Barnes, D. P., “Research into automatic error
recovery”, Proc. |. Mech E. Colloquium on U. K. Robotics Research, Paper C463 /84,
London, 1984.

Moya86 Moya, M. M. and Davidson, W. M. ,"Sensor-Driven, Fault-Tolerant Control of
a Maintenance Robot", Proc. IEEE Int. Conf. on Robotics and Automation 1986,
pp. 428-434, 1986

Myers86 Myers, W. ., “Introduction to Expert Systems”, IEEE Expert, Vol. 1 no. 1,
Spring 1986, pp. 100-109

NASA85 NASA Task Force [directed by D. R. Criswell]. “Robotics for the United States
Space Space Station”, Robotics, Vol. 1 no 4, December 85, pp. 205-222.

Nilsson80 Nilsson, N. J. . “Principles of Artificial Intelligence”, Tioga Publishing Co.,
Palo Alto, CA. 1980.

RS185 Robotic Systems International, Ltd. ., "Applcation of Robotics to Distribution
Systems”, Canadian Electrical Association report nd. 190 D 392, Montreal, Canada,
December 1985.

RSI88 Robotic Systems International, Ltd. , “Application of Robotics to Distribution
Systems, SKYARM Functional Specifications”, Canadian Electrical Association report
no. 190 D 392, Montreal, Canada, revision 3, March 1988.

Ramamoorthy87 Ramamoorthy, C. V, Shekhar, S., Garg, V.. "Software Development
Support for Al Programs”, IEEE Computer, Vol. 20 no. 1, January 1987, pp. 30-40.

Shafer86 Shafer, S. A., Stentz, A, Thorpe, C. E. , “An Architecture for Sensor Fusion
in a Mobile Robot”, Proc. IEEE Int. Conf. on Robotics- and Automation 1986, pp.
2002-2011, 1986.

Sheridan86 Sheridan, T. B. . "Human Supervisory Control of Robot Systems”, Proc.
IEEE Int. Conf. on Robotics and Automation 1986, pp. 808-812, 1986

Smith86 Smith, R. E. and Gini. M., "Robot Tracking and Control Issues in an Intelligent
Error Recovery System”. Proc. IEEE Int. Conf. on Robotics and Automation 1986,

69

pp. 1070-1075, April 1986.

Srinivas77 Srinivas, S., "Error Recovery in Robots Systems”, Ph. D. Thesis, California
Institute of Technology, 1977. J N

Srinivas78 Srinivas, S. . "Error Recovery in Robots through Failure reason Analysis”,
Proc. National Computer Conference, pp. 275-282, 1978.

Stefik85 Stefik, M. and Bobrow. D. G. . "Object-Oriented Pfogramming: Themes and
Variations”, The Al Magazine, Vol. 6, no. 4, Winter 85. pp. 40-62.

Sussman75 Sussman, G J., "A Computer Model of Skill Acquisition”, American Else-
vier, New York, NY, 197

ThunborgB86 Thunbotg S., “A Remote Maintenance Robot System for a Pulsed Nuclear
Reactor”, Proc. IEEE Int. Conf. on Robotics and Automation 1986, pp. 442-447,
April 1986.

Unimation83 Unimation Inc. , "Puma Mark Il Robot, Equipment and Programming
Manual”, Unimation Inc., CT., August 1983,

* Unimation86 Unimation inc. . “"User’s Guide to VAL 1", Unimation Inc., CT. Version

2.0, February 1986.

Willgs Will, R.W., “TRICCS: A Proposed Teleoperator /Robot Integrated Command and
Control System for Space Applications”, NASA Technical Memorandum, No. 875717,
Langley Research Center, July 1985. -

Yoerger87 Yoerger, D R, Slotine, J-J. E. , "Supervisory Control Architecture for Un-
derwater Teleoperation”, Proc. IEEE Int. Conf. on Robotics and Automation 1987,
pp. 2068-2073, 1987.

70

