
(.

c

..

A'Knowledge-based S~stèm '
for On-line Robot Error Recovery ~"

1.

/

..

,/),

Martin Boyer

B. Eng.

Departrnent of Electrical Engineering

McGiII University

" ,

•

A thesis submitted to the Faculty of Graduate Studies and Research

. .,
in partial fulfillmen.t of the rèquirements for the degree of

f.. t

Master of Engineering

July 1988

Martin Boyer

"

• 1·

\

,.

\ l

.. ,
/ ,

Abstract

'<

This research inv'estigates the;problems associated with manipulation and. to
-- "

a certain extent. programming errors in a shared operatbr / computer control of li robot -
. system. The principle is to tr~ce ail actions. at run time. to provide on-line dctcction

" and recovery of errors. A world model is construded and maintained for the purposc of

predicting the effects of actions and slgnaling errors when the actual outcome of an actlOll
"'-. --. • ,J

differs from its required elfect. Default reasoning is used extensively to speèd up proccssing

and compensatë for the high cost of sensing, After a task planner has dealt with the gcneral

o~ganisati~n of the program. the system presented here has the respon~1 ï'bility of copmg with

variations of the rea1 world to aUam the 'desired goal wlth the given lan. .
1

"

Al'test case. overhead power line maintenance. dem6nstràtes _the functioning

of the system and. although the work is based on thls particular context. ~he scneme

(described comprises a generic "substrate" which deals with common basic robot actions­

such as move and grasp and is supplemented by task and envlronment specific knowlcdge

such as which parts can be mated. sizes. and weights. This part of the system is static

for a given task and a good portion of it. the substrate. is valid for a wide range of tasks.

.(

"

(

, ,

1

/
/'

Cette recherche' investigue les problèmes associés aux erreurs de manip0ation

et, jusqu'à un ce;tain'point. de 'programmation d'un manipulateur robotisé, en commande

partagée entre un opérateur et un contrôleur intellige~t. À la base, toutes les actions sont

~ suivies, au moment de l'exécution, pour permettre la détection et le recouvrement des
Il

\

erreurs en ligne. Un modèle du monde est com~truit et maintenu afin de prédire les effets ,

des actions et de signaler une erreur lorsque le résultat d'une actIOn diffère de l'effet reqUis. '

Un raisonnement par défaut est utilisé de façon systématiqu~ pour accélérer le traitemel}t
, .

et pour compenser' le coût' élevé d'utilisati,on des capteurs. Une fois la tâche planifiée, le

système prç,senté ici a la responsabilité de s' ada pter aux-variations de l'enviroflnement afin
"""

d'atteindre' le but désiré au moyen du plan original.

.....
Un cas type. l'entretien de lignes de distribution électrique, démontre le fonc-

tionnement du système et, quoique développé dans ce €ontexte particulier, le système
1

comprend un "substrat" générique. Ce substrat décrit les manipulations de base, telles

les déplacements et l'action de la pihce. et comprend des connaissances spécifiques à la
,

tâche et à l'environnement, telles que les pièces pouvant être jointes, les dimensions et les

masses. Cette partie du système ne varie pas pour une tâche donnée et une bonne part, le

substrat, est valable pour un grand nombre d'applications.

/
"

iii

·'

-,
:~~

\~

IV •
\

C
J

r

o

..
1

.:

,F

Acknowledgements

t wish to thank, first my thesis supervisor, Doctor Laeeque Daneshmend, for
- ,

prov~ding many of the original ideas. careful guidance, and Tor generally dping more than

he had to. 1 also extend my gratit'ude to the stu'dents and staff of the .computer Vision and
t> ..

Robotics Laboratory, Mike Parker in particular, for help on numerous techmcal problcms

an~ many comments on human interfaces.

Je tiens également f remercier mon co-directeur à l'Institut de recherche

d'Hyd'fo-Québec, le Docteur Riene Girard, un homme éclairé qui. par Sil gra(lde ouver­

ture d'esprit et sa confianée, a rendu mon séjour à /'IREQ des plus agréables ct stimulants.
- .

J'exprime aussi ma reconnaissance envers l'Institut P9ur un important support fina~cier ef

technique, de même qu'envers le personnel du laboratoire de robotique, tout spécialement
\

Jean Le6sard pour m'avoir supporté durant plus de deux ans, mais surtout pour de riches

discussions sur les besolfls et possibilités de la télérobotique. En 'dernier -lieu. je.remercie

mes parents ainSI que Louis et Manon, pour leurs encouragements et leur amitié au cours
\.1'

d'un hiver difficile, sans lesquels cette thèse n'aurait jamais été complétée.
~ -

,

------)

iv

(

c

" \.. Contents

Contents 1
"

l'I
J~ ~ _ 1\

List of Figures : : ,i ••••••• ~ •••• : •• ' VIII

. " \\ ' _ r ~J 0 ~

C'bapter 1 Introduc:;tion ' J~ : ;'.... • •• 1

, '

.' 1.1 The Problem\t ~ ;. 1

1.2 Previous Work/Theory r. ... : ... : ' .. f. • • . • • • • •• 2

1.3

1.2.1

1.2.2
-

, ,
,1 •

Pre}execution Planning and Verification, ... :: 2

Failure Re,ason Analysis :... 4 , ,

'1.2.3 . Object Oriènted Programming '. 7 '
, ,

Motivation ' ',' .. 8

1.'3.1 Appli~ations , ... ',' '. (.............. ' ". ~ ... '.' . .. 8
,~

1.3.2 Replanning ve-rsus Error Recovery'. .. 9
\\ .

1.3,.3 What Is 15ER?, ~" " 11

1.4 Thesis Overview : '\ ... 12

Chapter 2 Problem Description and Representation /) .. :. 13

;?1 Task Description
<V

13

2.1.1 TheOperator, ,.-.: _ 14

2.2 Typical Task -.................... ". 14

2.2.1 Actions and Associated Êrrors ~ 14
~ .,

2.2.2 Level of Representation ~ : ~- -16
\ -

2.3 Frame Representation : 17
,

2.3.1 Objects , .. 18

2.3.2

2.3.3

2.3 4

Tool~ : :.' :

Actions " -..... .

Where is the Knowledge? ." "11. .•..•••.••.••.•••••••.•..••
p ~

21

23

v

1

-. \

1

0,
\

.,

Contents .
~ .. "' • ., l.. 1 ;

2.3.5 ART. The Au\omated Rea,oning Too\ ... : }~"j26

l
" -. ê '

2.4 . 'Domain Independence : • 27

Chapter 3 A Dynamic World Model ,; : ... "'..... 28

3.! Effects of Actions '''--.
, c

'01 • fi
,) • t t -

3.2 ,Use of Sensors ,) 30
1.., ..

3.3 Action Trace' : .. ' , . : 31

3.~ High-Ievel Parser :. •. ,31
_ • iJ .. _

, ,

Chapter 4 b Enor Detection and Analysis ' .. .' 33 , ,

4.1
("

Error" Types "(J! •••••••••••• ' •••••••••••••••••••••••••••••••••••• 33

4.~ Error Sources .. . 35

4.3 Run-time Error Detectlôn .. ~' . .' "";'!' •• ,: ••••••••••••••••• ~. 37

4.4 Post-mortem Analysis ~ ~: ,.•.. 38

4.4.1

4.4.2

The Failure Tree " ' .. : . \ .. ' .. .
~ D •

Ultimatc Source of Error. __ t. .. ~
39

40

4.5 Complexity Analysls -....... ' ~ ~. --40

-
Chapter 5 Error Recovery .. 42

5.1 Error Recovery Aigorithm " : 42

5.1.1 Constraini.pg the Searcp' Space , 44

5.2 Recovery"Propagatio!'! ~ ' " .. : ' '. 46
M •

5.3 Example ... ~.' ',~:• 47

• 5.4 Recovery, Cost ,. ' , • 50

Chapter 6 Conclusion::- : ' '....... 58

6.1 Summaryand Discussion '..... 58

r vi

!

. -_ .. _-_._---------------------------~-------------------------,---
',",

"

r
./

CQ.ntents ,
6,2 C t 'b t' ',,-' , . 59 on ri U Ions. , . ~ ... , , :

< •

6.3 Future Work ' r.: .. ~ :" "
~t - ~.

60

Appendix A. Sample ISER..5ession 62

, Appendix B. The H igh Level, Parser ... ' . • 67
.. ,

" References ~ , ' :•...... -. 68
e ... ~ " .,i,

'.
~

\ .' \r

"
...

'.
~ "-\,

~i

'.

\
vii

\

•
List of Figures ...

o
" , "

Î

'- '"
.0' List of Figures

••

o

1.1 Replanning versus Error ~eco~ry \:-. 10

2.1 Objects classes in 15ER,•.......... ,. ' ,
---- 19 ...

2.2 Action classes in 15ER ' : 24
.

5.1 The ~ction 5earch 5pace .. '/Jo '. 45

5.2 Error Recovery ... , ' . .' ' ... 1 •••• 46
1 •

'5.3 Perfect and Actual plans : :" 53
, \

i 5.4
"

, .
Program Costs as functio.n of th~ Number of 5teps 56

- A.l Typical 15ER display : '.

T-
,A.2' The 15ER menu ~ : , ,." " 64

A.3 The conductor object. initial state ' : • 64
1 •

)
A.4 The conductor object. goal state. • #0 r-. ,

< -.. 64

•
A.5 Error arialysis state : .. : 66 .,

• ,

v

..
" . '. o

,
viii --'

•

c

"

..

Chapter 1 Introduction'

1 \

1.1 The Problem

Robot manipurntor-s are increasingly'used in uncontrolled environments. This

requires tire coordination of compJex systems. using multiple tools and sensors. executing
Il.

more complex tasks. and driven by intelligent controllers. Often. such environments ar,e
!;I ~ ... , 1

\ _,J

associated with non repetitive tasks. such as maintenance and repalr. usually assisted by if

buman operator. This form of robotics. telerobotics. is receivmg more and more attention

for space applications {Sheridan86. WiII85] and lluclear reactor maintenanc~ [Moya86]. In
"

those cases w.re an operator is "in the loop" . the original plan can be ,discarded whenoever

the- operator sees a better way"'to accom~lish the task or when an error occurs while
, ,."

performing the task. Hence the need for on-line planning and error recovery or. in a more

gener.al sense. a way for the operator to interact 'with the planner ,and the capability to

recover from failures due to departLVes from the origina'J model of the world. Kaemmerer
.

and Allard have described an on-line system to provide sych an interface for process conVoi
... i

(Kaemmel'er87] and Lee et al. dis€ussed the errors associated wlth small batch prqduction. , --

due to the inherent flexibility involved [Lêe84]

j

To provlde adaptiveness .to changmg world conditions. a usual approach is to e

replan. as if the error state was a "normal" initial state. to achi€ve an unchanged goal

state. This creates three problems: the first one being a CO$t to be paid because of the

,.

,

~1"In ,\1

['ft.
.~ ,,'

..

- 1

l 2 Prcviolls Work/Thcory

diffiêulties inheJent to planning. Second. neither the system nor the operator learn from

their errors. A ~ird problem might occur since bliod re-planning may very weil produce
- . (

the same failure that triggered the need for re-planning, without any uscful error messagè' ..

Pinpointing the source .of the error would ease error recovery by reduci~ the comp'exitr

and amount of recovery necessary; if the cause of the error can be "rcrJoved" .by simple
\ -

local planning. then no grobal understanding of the intention of the plan is needed an~

automatic. straightforward recov~ry càn be accomplished. Furthermore. a great portion of

the ori~inal plan can be salvaged, reducing the replanning and repair time.

Errors occur at ditTerent stages m the conGeption and cxecution" of a robot t'lsk:

Before execution, the plan can be incorrect and not correspond to the ta'5k-)~pecification. . - .
. During execution, incomplete or incorrect knowledge of the world causes the wrong param~

eters to be 'used. And in general. robots are still imperfect and therc is not y~t -any means to

àdequately model the environment in which they operate. This work does'-~! specifically

address the first problem. that of incorrect plans. but dcals with, the last tWifproblcms in
• >

an original way; instead of attempting to resolve ail necessary 'informationvbcf~re exccution . '
of a plan·by a "perfect" robot. the errors are altowed to m~.nifest themsclves (assuming the

J

pran is gener~lty good. there sho~ld not 'bé.?many er;ors). Error recovery IS lhcn performed
, .. .

by fmding the souu;e of the error and uSlng local planning. with a bettér y'nderstanding of
" .A . -

the environment. to remove any side effects of the fallure ahd re-execute the fajled.<"action.
J

.. ' \ 0.

The key point here is that it can be more efficient to let a.fE}W' nQn-catastrophic: enors occur

and correct them than to try to prevent ail errors by systematically performing exhaustive

-sensing. because the plar)ner cannot ~oresee 'very weil in uncontrolled environmeQl.s and

hence the reco"'ry procedure must be defined at run-time. '"

1.2 Previous Work/Theo:ry

1.2.1 pre-execution Planning and Vèrific8~ion
~ t

1.

Brooks [Brooks82] developed a plan checker to take explicit account of errors . ' ~

2

(

"

/

"

1 2 Previous Work/Theory
'"

and auto~tically modify a given plaQ to include sensing and to guarantee its success
More precisely. ail errors can be treated as uncertainties and Brooks states that it is pos­

sible_.to make infer:nces about ~ncertaÎnties and to use thoses inferences. in comput~tion.
T~e major advantage of this approach IS the us~ of symbolic rather than n~eric compu­

tation. so that uncertafnties in object position and size can be used to infer required initial

torerances or the necessity for sensing. This is one of the most elega~t ànd mathematically
,

sound stat(!ments of th~ problem of robot operation in presence of errars. It has practical

limitations. though. In highly uncertain envlronments when. for instance: it is rather difficult

to estimate uncertainty ln image analysis and obJect [ecognltion: in effect. the uncertainties

are so large - even after sensmg - that the calculated tolerances are m'eaningless1. As , .
a(~matter of facto the system is intended to be applied to industrial assembly operations. , -
where tolerances are usually a few percentage points of the nominal va tue. not to unstruc­

tured environments. where such a nominal value sometimest does not exist. Donald' has •
-

pursued this approach further in [Donald86].

Contrary to Brooks quantitative approach. STRWS [Fikes71] is a symbolic robot

task planner. It operates in first-order predicate \alculus and sees the world as a set of well­

formed formplae (WFFs). Given a collection of WFFs representing the world and the current

p'osition of the robot. SIRIPS tries to apply certain operations in order to incrementally

r> modify the current state of the world until a goal state is 'tjhieved. These operations'are

represented in first-order predlcate calculus as a number of facts about the world which
\

"

no longer hold and another set of facts which become true after successful completion of

the operation. STRIPS however. does not explicitly deal with uncertainties introduced by

, an irnperfect world mode!. as it operates only on the contents of its databa~e. Further. its
<

world model is not very siructured: It consists of a collection of facts not specially grouped.

This lack of organisation hinders the development of large data bases of actions and obJects

to '~ork upt4. As a-result. these facto;s limit the applicability of STRIPS in real-world

situations.

1 ln this case. Brooks: system would reject the plan as impossible to guarantee. ,

3

J'\

o

· ..

1 2 Prc.vious Work/Thcory

After STRIPS came a number of learning systems; Hayes-Roth describes the

foundation~ for his TL (The Learner) system in'ttfayes-Roth83]. H,s work does not de'al

extensively with error recovery but. as with most automatic learning systems. the formali­
(

sation of knowledge and thé,organisation of plans can be 'of great value. Hayes-Roth models , ,
plans and actions into theoi-ies. in such a way that actions. subjected to conditions. have

predicted effects. The fallure to',re,alise a predicted effect indicates a ~w in the theory.

Tl then learns by adjusting its bellefs in accordance with the observed results of actions.

This adjustment can be made ;n one of several ways. ail of which deal with restricti,on or

enlargement of range and domain of application of actions. That is fundamentally difTerent

fromthe Srinivas approach described next. where errors are caused mainly by incorrect

execution of actions. as opposed to an incorrect plan. Furthermore. and this point is com-

-, mon to many learning systems. the universe in which TL operates has to be accurately

observable: The Learner cannot cope with incomplete knowledge.

1.2.2- Failure Reason Anafysis ,,' f

-+
Srinivas presented S0me of the earliest work on robot error recovery [5rinivas77J:

his1~~~ was essentially to let errors occur and then to identify them through failùre rca­

son ànalysis. that is. by "under~tanding why acti~n At resulted ln state 8f . a robot can

determine where the problem lies and wh~t can be donc about Il." [Srinivas78] His major

contribution was a logical classification of failure types into operational errOTS. information

errors. precondition errors. and constraint errors.

/
Once an error is detected. a failure tree is constructed as a linked set of failure

nodes ard action nodes. The tree is successively pruneQ, until a fevr -- or a unique~­

explanations are found; a chain oJ reasons represented by a path from the root no de of the

failure tree to one of lts leaf nodes. This reasoning was later put in practice in the next

system. by Gini et al. [GlOi85. 5mith86].
l

Gini uses a monitor frecoverer system to catch and resolve errors at execution

time. 5tarting with a -Iogically correct AL robot program (5mith86] and from general forms

4

c

\

1'2"1 Pr"Llous WorkJTheory

\ , .. ~

of post- and preconditions associated with each instruction. the ,original task descriptIOn ...
-- the program - is èxpanded into an augmented pro'gram contalning the original AL

program and additional instructions to check sensor data in order to maintain a d~scriptlon

of the outcome of the robot operations. the world __ model. The program is also,augmented

in another direction to create a list of possible errors and where they are likely to (-cur. In

erdèr to det_ect these errors. the expecteâ sens&! v~l~es and tolerances are also calcufated. _

The list of errors and the expetted sens or ,values are kept in the local knowledge base. The

monitor uses the augmented program as input and issues robot and sensor instructions.

When an uncxpected situation is detected. that is. when a condition of the augmel)ted

program is not met. control is passed to the recoverer which uses the local knowtedge base

.J ,to identify the error using heuristics about where errors are susceptible to occur and then

constructs an augmented program to implement the "recovery strategy" 2.

This ap-proach is promising as it organi~es a n~mber of concepts into one prac..,
\"

tical system but. apart fro~-~~e fact that its recovery s~rategy _ is still ul1c1ea~. a major

point prevents its direct application in telerobotics: too much of the system relies on the

preprocessor and. in general. ,on the off-line phase which rules out any computer assistance

, for those portions of the task where the operator directly controls the manipulator. As a

matter of facto the system is ~ared towards efficient real-,time execution of the tas!<. and

th'!! is the ultimate motivation bebind the preptocessor, the augmented program, and the'
.

local knowledge base. In the type of tasks considered for telerobotics. on the other hand.

the decision time i6 usually longer than the execution (me. lessenlng the need for rapid

execution.

The work presented here expands on the ide s of Srinivas to eliminate a priori
,

planning and analysis of the task. This will allow the use of the system along with operator
o •

interventions. In Srinivas approach. a task is decom osed in a series of states So to Sn

that result from the execution of actions Ao to An. If a failure is detected at state S f'

2 Though some specifie examples are gfven. a general reeovery strategy has yet to e6"me! .
5

,

o

o "

1 2 Prcviolls Work/Thcory

by recognizing that it is different "from the expected state S" it means .. that some prior
Q

action AJ U < t) failed to achieve. its goal. Srinivas, then, does not rcally ~ask "What

can be done to ,go from S f to Sn 7" but actually: "Why d,d A f result in the, failure
~ .

state S f?" Four possible causes are then identified: operational errors, precondition crrors,

information errors, and. constraint errors. The process of finding w~ich failure is originally

responsible for causing a transition to an error state (lnd how It occurred is tcrme~ (ai/lire

reason analysis. In Srinivas' system, it is a process of reduction of the set of ail possible
...

, expia nations to the specifie one that applies to the current situation

This alJalysis is based on a failur~ tree, which expJicitly represents ail the stél~es

of the task from the failure state to the goal state as failure nodes of the trec and the robot

actions as the action nodes linking the failure nodes. This is necessary because il" élction
, ~.

resllits and intermediate states cannot be validated at run time, only thosc conditions easily
J • •

checked fr'bm information directly available from feedback and scnsors ,He ilctually verifiee!

~~Consequently, an action failure can mamfest itself only later during the task execution <lnd
1

thus the,..need for backtracking of the sequence of events. In the failure tree, olle lIction

. node points to (possibly) many fallure nbdes through "Possible Reason For Failura"

links. Each failure node then points to another, unique, action node through, links such a~

"Never Achieved By" or "Incorrectly Provided By". Thus. although the sequence

of actions in the task is linear (there is a single agent for change, the robot). the shape of

the tree is not.· This is because the shape of the failure tree is a\better representation of

tbe relation between the actions than their sequence in time. 1

Therc are four types of fallur~ nodes, correspond mg, to t~e four types of error,

plus the trivial goal failure which mdicates an u,nreachable goal. An operational crror is

-" the result of inherent problems in executing the action: servo deviations and dropping li

carried abject are examples of such errors. Information errors are typlcally caused by sensor . ~
inaccuracies or errors in the initiai world model. 8 ndltlon errors groùp ail 'non-verified

assumptions, either trivialty simple. such as the osition of an object left by the robot on li

stable surface. or more expensive to venfy, such as, the physÎcctl relationships betwccn twô

6

~
J.

1

c

1.2 Previous Work/Theory

objects. Constraint er.rors~ final/y. represent those preconditions that the robot has no way

of making true. \uch as the mobility of a fixed object.

The failure tree grows by' adding failure nodes from the current action node and

then new action nodes to those failure nodes. and so on. The tree is pruned in several ways:

First. looking at the execution trace. precondltion and constraint errors can be verified and

éliminated. Second. the manifestation of the failure can rule out sorne reasons for failure

and last. for a given action. if none of its "ancestor" actions can be shown to hav~ failed

then that action can be considered successful and the tree can be pruned at that point.

• Once the cause of the error has been established. local kno'wledge IS used to correct it. In , '

practice. this means that t'he sequence of steps necessary to recover from an action will be

in the knowledge base for each type of action. Thes~ recovery routines\will have ~.general

form such as: undo certain steps. correct action, redo the original step;' !

As the 'author·points out. this scheme is incapable of confidering interactions
? \ •

in th~ solution of a problem. Furthermore. it cannot ,cope with incorre~t plans: the system

does not reason about the plan (or the recovery procedures) itself. Also. ~ the time Snnivas

conceived his scheme. rri'~ny tools currently common were not practical. Two important

on es are faster"'èomputers â,~d knowledge based development systems. The' former allows

the c;.reation and maintenance of the failure tree at run tlme which. apart from speedmg up

the recovery time. permits early ~rror detectlon by verifymg more conditions as the task is
6

executed. The latter allows a better. more effkient and deeper. representatlon of data and

contrOl flow. in the hope that it will provide robust recovery capabihties.
~

1.2.3 Object Oriented Programming
'i{

The universe in which the system described here operates is divided into objects.

with a relatively small number of relations between different objects. These objects are

then organised into frames. with the frame slots describing the objects 'by assigning dlscrete . '

values to their charactenstics. At any pomt in tlme. the state of the world is taken to be the
"""\ ~'!:r

7

1.3 Motivati~n

set of the curren~ values of the slots in the object frames. Sorne of these notions appearcd

~arly on in predicate form with STRIPS and recently- in [Kak86) ane!' (Gencscreth87]. The

use of frames eases the management of large numbers of objects. specially wilh high-Ievel

tools' such as ART and KEE [lnference87. Ramamoorthy87] which have dedicated LISP

constructs to create and maintam such frames and relations betwecn thern.

Actions. in turn. are also represented as frames. with slots describing the

changes in the world as modifications ta bè made to object slots. A plan.!a robot program

can thus be described incrementally as a s~quence of action specifications. Other mcans to

describe operations 01) objects also exist. See for example [Cardelli85] for a form"al descrip­

tion of object-oriented programming and data abstraction. The basic ide". concrcti~ed by

methods. is ta think of objects has having several facets. one for each type of action thal

can be applied to it. For any glven action. the effect of that action on an object is dcfined

in the objec1 itself. Ginsberg and Smith. in [Ginsberg88] in particular. have also dealt with

sorne problems associated with the description of actions and reasoning about change.

1.3 Motivation

1.3.1 ~pplications

Srinivas originally developed his system. MEND. to support off-linc planning

by monitoring task execution by the JPL robot dunng unsupervlsed space manipulations.

ln general. robot err~r rec~very is necessary whenever u~reseen çonditions arise and the

cost of replanning or repairin'g errors is hlgh and for ail environments that arc diffrcult to

cnaracterise. Sheridan [Sheridan86] demonstrated the usefulness of tel~robotics in a clélSS
,

of space applications where transmi~slon delays limit the possibility ()f teleoperation of
'-

manipulators from the earth control station. he stressed the fact that local processlIlg. at

both erds. can reduce the time required for task completion. Accordangly. operator error

prevention and failure analysis are believcd to be able ta reduce task cost in two ways.

namely: shortening completion time and reducing complexity and number of errors

8

1

-/

1

... '

/

1 3 Motivation

As a matter of facto several Ideas in thls thesls are directed towards an Imple­

mentatIOn with a telerobot system to perform mamtené}nce work on electncal power Imes.

The problems faced are thé desire to keep the opyrator at a safe distance from the work

area. the necessity to complete the task in a short time. and the limlted robotics experience
l

of the operator. To a large extent. these constraints are shared by space [NASA85]. nu-, . -
clear [Thunborg86]. and underwater [Yoerger87] applications. There is a growing concern

for the safety of workers during energised power line maintenance. for both overhead and

. underground systems. and changes are expect,ed ln the various work laws to reflect this.
. ~ , \

1.3.2 Replanning versus Error Recovery

~,

ln presence of error. there are two radically different approaches. the first one IS

more traditional and IIlvolves evaluation of tllr; current state of the world. of the goal state. ,
and planning to ac/llevp the goal state Planning. m ot~er words. from the error state as

~

if it was a "normal" initiai state, to achieve an unchanged goal state - wlth the added

advantngcs of a better knowledge of the world and. often. a shorter way to the goal state

thall From the mitlal state The latter advélQ,tage IS specially Important to planners relying

on differcnc; reduction. also ca'lied means;-~ analysis in [Ernst69]. to evaluate the path to

the goal state. such dtfTerence functions are difficult to implement and art' generally most

rcliable when the difference is small i e .. close to the goal state. The flrst factor in favor of

rcplanning·. a more <lccurate world mode!. cornes From the manifestation of the error and

Ils subsequent analysls. A more accurate view of tjle world may unèover short paths to the

goal stllt,e <lnd. glven that a good dtfference functton is available. may yield better recovery

strategies slIlce evaluation o~ pla,n success is often tnfluenced by the actions comp~sm~, tl;,

pl<ln: the predlC<ltes are generally "tuned" to evaluate the glven actions.' ~'-

Th,e second approach to error processing IS error recovery. by whlch a robot

plan IS salvaged by ta king appropnate actions to bring the world back into astate from

whlch the orrglllai plan can resume. ThiS is fundamentally different from replannmg: rn

facto replanning can be seen as updating t~e world model from the real world and restarting

9

)

" t 3 Moiiv.llton

from there. wnereas error recovery 15 more like <lttemptmg to resynchrollise the actu,ll world

with the mtended world model and exe~utmg the origin<ll plan Error rccovcry Gan use 10c.1/

replanning as weil: attempting 'ta reach the very next state' (instctld of the goal 5tate) _ .. _

immediately. ThiS obviously favors the use of difference functions since the diffcrenccs are

, likely to be small III number ang complexity Figure 1 1 àlustrates the ditTcrcnccs bclwccn
~ ~

replanning. which goe,s from the error state Serror directly to the gotll. and crror rccovcry.

which g?es back to the last state Sn before an error occurred.

.:: -­
\

1 \ '-1 ' rcplanning
... \

An+i A 11+3

(SI1+2) ~;OA~)

Figure 1.1 Replal\nlng versus Error Recovery
1

"'-', The replanning co st IS mainly computatlonal:- it rcquires extensive analysls of

sensor values and. dependmg on the planning "distance" From the error sttlte to the goal

state. a great deal of searcl~ For certain applications. a tlmd phase. plan verificatIOn.

might be required for safety or cost reasons Error rccovcry. on the other hand. d()c~ not

reqUire very deep analysis. smce the diffcrcnce between the currcnt and the de~lred sldtec;

is generally smal!. provided the errors arc caught carly or that actIOns are independcnl

The analysis can thus be narrowed and dlrected towards a small numbcr of relevant world

characteristics. Indeed. error analysls is bound to ylcld a sub-optlmal plan and h~nce the

burden is shifted towards the manipulatIOns. to put the system III astate whlch 15 part of
, '

the original plan Furthermore. such an approach is IIkely to producc a number of redund,mt

or unnecessary steps. Last. trylllg to retain as much of the original plan as p()~siblc can

10

•

1 4 Thesis Overview

lead to a d~ad end. if the plan was wrong in the first place.
, ;;i

'/1 r

From these arguments. it can be argued ~hat replanning is inadequate in complex '

environments or whenever a quick response is expected. unless good and fast planners are
, -

available. In a complex environment. the frame problem 15 a serious issue; figuring what

should be done next is not a simple search problem because the state space is very large

Associated with this. difference functlOns operating weil on wldely sèparated states are

still necded. Error recovcry and plan salvagmg 15 potentially more efficient in camplex

cnvironmcnts. provided a reliable overall plan -can be constructed. Local analysis and

recovery can he used to adjust the plan for mmor variations at executlon time. retaming

the advantages of a carefully deslgned (human generated) plan. However. since the analysis

is only local. error recovery does not necessarily converge to the goal state. if two states

are mutually exclUSive for Instance. and it can be decelvingly inefflcient. Actually. for a

given problcm. replannmg is mcreasingly effiCient around the goal state. whereas trymg to

salvage the original plan. if it is correct. is more efficient at the beginning of the task

1.3.3 What 1515ER?

ISER stands for Intel/jgent 3 System for Error Recovery. Its flrst purpose is to

monitor and examine commands issued to the robot system by a program or an operator.

at execution time. and validate them on the basls of Jheir posslbilJty of success glven the

current statc of the work cell Second. 15 ER attempts to analyse fallures that do occur.

to provide an expia nation for the failure and suggest actIOns that speclflcally fix the failure

and bring the work cell ln astate from whlch the original plan can proceed. It is not meant

to be a planner but It uses a great deal of heunstic knowledge to decide on a course of

action without ttlking II1to consideration the TIumber of facts a planner normally does. The

"knowledgc-based" natu're of 15ER resldes in Its knowledge of general actions and obJects.

what. is required to use thcm. and what to do wh en they are a cause of failure

11

(
J

1.4 Thesls Overview

1.4 Thesis Overview

The problem is first described by presenting its contex~ <lAd identifying <l typical

task,for demonstration purposes. At that point. the representation of actions and objects

used by ISER is introduced. Chapter 3 describes the world model necessary to keep track of

evolution in the work cell. The next chapter cJassif!es errors and tbeir sources and ex plains

the process of error analysis. while chapter 5 details the error recovery algorithm and

discusses the notion of the cost of a task with respect to parameters such as the nurnbcr

of steps in the program and the probability of failure. Finally. the conclusion presents the

contributions of this work and indicates directions for future research.

.' , .,.

,

-1

L ,

12

(

(

\

Chapter 2 Problem Description and Repres,entation

2.1 Task'Description

t
FOII~fing a rapid growth of their power network. many el~ctric power utilitie~

n~w ~ut he ,~fÎ~rity on safe and ~fficlent mainte~ance techniques: due to adverse ~tm~:
sphe~~c c dltlons. mamtenance work can be tedlous or even dangerous. Automation IS

" envisaged to reduce down time. whlch IS extremely expensive. prevent accidents. and in­

crea se consistency across the nctwork. The most common operations are the replacement
l'

of the cross-mm. the msulator. splicing and connections. etc. [RSI85. Henkener85]. ail yn-

der tensions ranging from 12.5 t~ 200 kilovolts. with a technician operating the mampulator

from a special cabm on the ground [RSI88. Cohen87] or at the end of a boom [lERE87] ..

At the Institut de recherche d·Hydro-Québec. in'sulator replacement has been selected as a

represent\ltive task to explore the posslbllities of telerobotics in overhead live-linc mainte­

nance [Girard88]. This insulator supports the 25 kilovolt conductor and insulates it from
\

the pole. Briefly. this reqUires the removal of the two tie-wires fastening the conductor to
f1

the insulator. lifting the conductor. changing the porcelain. and putting back the conductor.

" attaching it with neW tle-wires

The technique developed involves the use of a few dedicated tools. manipulated

by a PUMA 760 indus trial robot [Unimation83). Eventually. a specially designed mampu­

lator will replace the PUMA. since the.J'atter does not provide the strength. morphology.

("
1

o

, ,

2.2 • Typicàl TilSk

and' insulation chafacteristics required by live-line work (RSI85}. The tools comprise an

unwrapping to'ol to remove the tie wires from the conductor. a wrapping tool tO' do the

opposite. a gripper. a cutter. a range sensor. and a camera. Additionàlly. an auxiliary arm

is-..available to hold ànd lift the conductor above the insulator. An experimental sètup is

used in the Jaboratory ~ implement and test robot programs.

2.1.1 The Operator

Ultimately. the system will be operated by a maintenance technician. on the

ground. hence the necessity to provide automated routines to speed up the execution of

the task and. since linemen are not generally skilled in robotics. the desire to provide hclp

and supervision. Accordingly. the domain of kllOwledge in the expert system is not in

~-- maintenance of live power lines but rather in the operation of complex te le robot systems. , .
The 'system is expected to prevent "manipulatioo" errors by the operator. provide analysis

of failures. and automatically recover from a certain class of failures.

2.2 Typical Task ,.

ln order to illustrate and validate the expert system. il part of the actual task-~

has been chosen: the unwrapping of one tie-wire fastening the conductor to the insulator.

2.2.1 Actions and Associated Errors

The following is a Hsting of the sequence of actions_ required to remove one set

.of tie-wires (there are two). along wlth associated errors and types cJassified as one of

operational (0). information (1). precondition (p). or constraint (C).

3.
~

Unwrapping of the Right-side Tie-wires

3.1 Localisation and count of the number of turns

3.1.1 Scan cOl)ductor surface wi th 'proximi ty sensor
"

(

(
\1

'1
/"

Robot errors
- Inadeq:1ate environment for aensor
- Position error on insulator
M Not enough room for sensor/robot
- Conductor out of reach

3.1.2 Compute number of turns and conductor position

3.2 Unwrapping per se

3 .2. 1 Mount unwrapping toal
Robot errors

- Tool mounting errors

3.2.2 Install tool on conductor
- Robot errors

Posi tion/ orientation error on conductor .
- Not enough r'oom
- Conductor movement
- Incompatibility between conductor and tool

3.2.3 Turn motor on and slide tool towards insulator
Robot errors

- Tool errors
- Too much tie-wire to fit in tool
- Tool stieking to conductor

Position/orientation error on condùctor
- Position/number of turns error
- Tie wire in bad shape. eut. etc.
. Not enough room ..

,"
3.2.4 Stop motor and verify operation

3.3 Tool removal.

3.3.1 Back off tool and free the tie wires
- Robot errors
- Tool errors
- Tool blocked bi the tie-wires

Wires not entirely unwrapped
Tool stieking to copductor

t

1 3.3.2 Align tool opening
- Tool errors
- Indication error on tool open
- Tool not free from wires
- Section of wire still attached to tool

3.3.3 Unmount tool
- . Robot errors
- Tool errors

\

\

2.2 Typical Task

(0)
(P)
(I)
(C)
(p)

(0)
. (0)

(0)
(1)
(C)
(P)
(C)

. (0)
(0)
(0)
(0)
(I)

b (I)

CP)
(C)

(0)
(-8)
(0)
(P)
(0)

(0)

(~)
()
(P)·

(0)
(0)

15

,

/

o

• Tool opening not aligned with conductor
- Tool not free from wir~s
- Tool unmounting errors

2.2 Typlcal Task

(P)
(P)
(0)

This list reveals that a number of errors are common to several difTercnt açtions

while only a small portion of the e~rors are specifie to certain actions. This lead to the

classification of errors in classes to allow inheritance of error types ln the definition of

actions.

2.2.2 level of Representation

1 b 1· " 1 h . 1-- d • h { n sym OIC computmg ln genera, c ooslng a proper representatlon for t e

items being manipulated is essential to the efficiency of the system. In 15ER. which h~s

to reason about real objects and actions. this choice will have important rcpercussions on

the possibilities of the system. Objects and actio~s have to be rcprescnted with sufficicnt

detail to facllitate reasoning about errors while being general enough to be élPplicable to

several similar items.

Ali items, objects or actions. are represented as mer'nbers of one or more classes,

each item distinguished by its own characteristics and those inheritcd from the more gcncral

class above it' [5tefik85]. Those classes ~re meant to be as g~neral as possible: to be sharcd

among different applications. pa ch actuàl item is an instance of an ,tem class. 50 that no

two classes are equal but two instances of the same class are simllar to a _ccrtain dcgrce. , ,
Formally" what different;ates a item class from an instance of that c1ass is the absence

of variables in the representation of an instance ,whereas certain values in a class can be

undetermined Thus. two different objects in the same class - or one at differcnt points

in time - could be differentiated only by their posttioh~ Consequently, the world can

be represented as the set of ail objects in the database. and their current charactcri~ti~s

represent the current 5:tate of the world. This representation -is statit: in 15ER. that is no
, *

movement or continubus action can be represented and hence t,here. ,s no notion of. for
o

example. a falling object or a moving conveyor belt. Instead. continuous actions would

have to be modeled as sequen_ces of discrete events. . .
16

(

(

'1

2 3 Frame Representation

Just how much of aJ;.bange in the world will get represented as a single action
,

(in a way, the quantizat~on level) is directed by the fact that the goal of the system is to

djsc~r erro~s rather than to perfectly represent the state of the world. Hence an "action"

snould be a sequence of events long ~nough to be susceptible to produce an error but short

'enough to limit the number of possible errors to a manageable number. Manageable in

the sense that the error can be identified in terms of a fact in the database. Actually,

the level of representation of actions is Imked to the level of representation of objects as

actions modify characteristics of objects and. accordingly, acti~ns are defined ln terms of

thosé characteristics. Slnce actions modify".the state of the wor/d, the world model must
~<

~

be updated as actions are execut~d. This is done by exar!lInlng the definition of the a_~tion

in the database: this definition compr~es a set of characteristics to be added ,to or deleted

from the data base 50 that the world model IS incrementally modified as tbe robot executes

its ,task. This set of modificatlo,\s to the database IS considered complete and correct for

'the pur poses of error recovery.

•

Ultirnately. then, one must decide on what kind of characteristics rpHst be

included and available ta define objects and actions on those objects. Indeed. the choice

depends heavily on the application. speed required. and proc'essing power available. In this
6

case. and for-telerobotics in general. the application, demands good interactive response
, .

and a high-Ievel intêrface. but it <llso benefits from- great processing power (a human) and

,does not require a great deal of autonomy (although it is always an advantage). As the .
main goal is to assist the user to issue commands to a complex sy~tem and to understand

decisions. reports. and requests from the system, the representation employed must reflect

this and givé the operator a qualitative view of the work cell rather than manipulator-

oriented dimensions and coordina'tes. -l' - . \ ,
"

2.3 Frame Representation

17

j

,n
.~

2.3 hamc RcprcseÏltatloll

2.3.1 Objects

T 0 reason a bout [obot actions and errors. it is necessary to have a representation

. of the world: the objects wdrked upon and the robot Îtself. This-world model is organised

in frames. one per object. This typ~ of representa~ion is particularly appropnate since

15ER deals with qualitative aspects of the world and doés not use confidence values: the

elements of the frames (the slots) are then simple parameter/value pairs. In the case whcre

a parameter can take more than one value at a tlme, many slots can oc assignèd ta the

same parameter, with difTe~ing values. This is true of several relations between objects,

such as attached-to which' can be used to indicate that <ln abject is linked ta many other

objects at the same time.

As can be seen in figure 2.1. the object c1ass comprises the simple-tool

sub-c1ass. indicated by the kinds relation. ThiS type of relation between frames allows

automatic ingeritance (maintained by the ART shell) for specifie classes from their parent

classes. The simple-tool class. for example. comprises the to~l and sensor sub-classes.
'Y

These distinctions are used ln various sections of the system to restrrct a se,llrc.h for objects
l'

which have certain abilities, to slmplify parsing of robot messages. etc (

Simple tools. tools. and sensors are related to generic objects through their

applied-to. modifies. and measures slots Simple tools by themsclves cannot do

much. they usually serve as an interface between tools or sensors a~d generic objects:

a screwdriver is an instance of a simple tool. a robot (an instance of a tool) applicd to

a screwdriver. which in ,turn is applied to a screw. can a~tach an object to another and

thus modify their respective attached-to slots. This IS used at the error dctection stage

to verify the proper usag,e of tools, and sensors. it cou/d also be used for automatic p/a~

generation to determine which sens~r is suited to obtain a certain parametcr and which

tool can perform the required task

As pointed out before. relations between objects are modeled as s/ots in each

object's frame. While each object is independent. that is no slot i5 shared with <:tnother

18

~, "{. - 'i il '

(

(

2.3 Frame Representation

Schetlla IIferarchy frOM '1I~JECT

Figure 2.1 Objects classes in 15ER

, object's slot. the value of a slot often depends on a value from another related object. The

mobility of an object. for instance. IS recur~ively defined to be the same as the mobility

of the objects to which an object is attached. This definition. including minor variants. is

reflected in four rules in the section of the ëystem which keeps the world model up to date

Although 15ER can be customised. it is desirable to have a general system

capable of satisfymg most applications; ideally. only task-speclfic knowledge should need to

be added. Much in the same way that a robot language can build subroutmes from primitive

actions. a robot task de~criptlOn system must allow the creation of specific obJects and

actions suited to the task at hand. To ;revent chaos and ensure proper Integration of ty/

various components of ISER. a formaI. strict representation of the obJects ln the Wà~

19

l'
2 3 r raille Rl'ptcsent .Ilion

is defined here. Surely, new slots can be added to augment the functionahty of 15ER: in

particular to take advantage of ART's data structures in an object-ariented parilcl!g"n1.

Currently, an obJect is defined to have at least five slotnames'

• • any physical obj ect' . ->
;a three-valued vector in centime~rs

(defschema object
(dimensions)
(attached-to)
(abstract-position
(weight)
(mobile)

)

;an object
initial~position)

;in kilos. approximate
;yes or no?

value only

ThiS particular choice of slots is directed by the fact that ISER opera tes at a symbolic

levelonly. Those slots that can contain numbers (dimensions and weight) could actuêllly

take qualitative values such as small or heavy since their sole purpose is to verify the

compatibility of objects with certain tools: lhe~e is a maximum payload that the robot can

support and, similarly, there is a maximum obJect size thilt the gripper cart hanelle

Tfe abstract-posi-tion slot indicatés the current symbolic position of the

object. As an exan'H~le, consider the abstract -posi tion of the unwrapping tool: Ifs

value when the task begins is tool-rack. this changes to robot whïlc the manipulcltor

is displacmg il. and changes again to conductor when the tool 15 applicd to rernovc the

tie wires. Therefare this symbohc position is an object and il can cvcntually he Il~('d will!

a real-world interpreter that is capable of mapping symbolic de~CrlptlOn to/from phy~IC;11

coordmates. At that tlme. a physical-posi tlOn slot 'could be ilM./d to the ~tilndard

obJect schema4 . In a few cases. the abstracF-position c,;!n be the obJect Ibelf. to

indicate that thls object's position is absolute rather that relative to another obJcct TIII~ i,>

always the case far flxed objects. such as the tool rack. which also hav.c a vdluc of wf mi ta

for 0 thelr weight slot, reflectmg the impossibllity (for the robot) to rnove ~uch object!>

Besides its physlcal sIgnification, the inf in-He weight and ,>clf abstract -posi tion

4 The literature seems to use the terms frame and schema intcrc.hangeably. Since ART usc~
schemata. we.will reserve the use of frame for a general item and schema for an 'ART construct

~ .
70

\

(

2 3 Frame Representation
~

slots serve to· to stop recursion when' evaluating the position of an object through other

objects.

The last standard slot. attached-to. is multiple-valued. meanmg that ap object

can be.attac"h~d to many objects at the same time. althoug'h it Cân have only one abstract­

pos! tion-. This raises the problem of determining a unique abstract-posi tion from
. (.

multiple attached-to values. 5ince 15ER has to present a consistent world model to the

operator. the ambiguity is resolved by assigning to abstract- posi tion the position of the
,

object most recently atlached to the current obJect. Consldering that the attached-to slot

is an attempt to descnbe the structure of the obJects, thls solution generally shows how far
-<,

the assembly has gone smce one usually assembles small parts into more complex obrcts.

slot IS set to the largest ob ct in the structure. .

. \

at alhi~her level of abstract~'O . When a structure IS disassembled. tH'e abstract-posi tion

~ r

2.3.2 Toois

Just as there is a notion of a standard .. generic object. the simple-tool class

has this minimum configuration: - -

(defschema simple-tool
t (is-a object)

(applied-to)
(purpose)
(configurati n)

)

"any tool, passive or active' ,

;an object
.. ;an action

;open. closed, extended, etc.

\ 1

The first slot simply states that a simple-tool mherits ail the characteristics of
l)

general jec. The applied-to attribute 15 dynamlc and mdicates, when the tool is used.

which obJect is bemg worked on to allow world model update of that object. This attribute

is multiple-valued since a tool can be applied to several obJects ai the same tlme. to attach
~ .

them for instance. The purpose slot associates an actIOn wlth the simple-tool. th~ action

definition can be looked up to determille the effects of the tool of the conditions necessary

prior to its use. The last slotname. the configuratlon, IS applicable to most tools; som".;,

21

2 ~ Ir.llllt':Ht'pr t'St'nt.llion

.such as strewdrivers. have only one conflgurlltion but mllny. such as grippers (opcn/c1o~e)

and cameras (short/long focallength) hllve multiple s~éltes thélt need to be_ reprc~ented and

hence the conf iguration attribute' groups these states that would othcrwisc Ilccd to be

represented as a large number of differents s10ts. b~.eaklng the gener<lltty of th(' system.

The simple-tool class IS dlvided further into the tool and sensor clas~es. At

this pOint. the distinction between slmple-tools and tools is clartfled: a ~imple-lool cannot

accomplish anythlng by itself: a screwdrtver. for Instance. needs ~o be turned 011<' Wdy 01

another by a tool capable of exerting some force. A grtpper. on .the othcr h.lIld. I~ cOIl~ldered
'"

to be a tool slnce it can plck an object by itself. even though another tool /lldy be requlft'd l

, "

to move the obJect. In a way. slmple-tools Ciln be consldercd as adaptors betwCt'n t\ !',<menc

to~1 and a partlcular obJect. For a powered screwdrtver. the V,HIOUS si/e~ and tYPC~/Of

bits are consldered 10 be simple-tools and the motor/gear lrain asscllIbly 15 llw.loal l:"s
distinction justifies the eXistence of the powered slot. whlch tllkes a boole<ln value. / Thl~

attribute IS 50 Important ln error hilndling (in II Pilnic situiltlon. it may be c.rucial tp find
o 1 •

any movtng part ilnd to stop il" motors) ilnd slnce It 15 common to .l~ t061s. it shyJld not

be lumped into the eonf~gutation category /

(defsehema tool "powered, active tool"

)

(is-a simple-tool)
(modifies)
(powered)

;an objeet attribute(s)
;boolean, subset of configu ation?

-9 •
This ilctually rillses the issue of why there should eXlst SlfnPl

t
'- ools when .dl

, tools could be ln the same class. perhaps dlfferentlated through the conf i uratlon !'Iot

Recallmg the automatlc screwdrtver example. It sho'I\d be noted that the; various blt~ ilrc
-. 1

independent of the motor: they may get lost. break and they have to he trl~crted tri the

. tool. etc, The pOlllt ,s they are separilte obJects and the system may have to f(!.J~on

about them. to replace a broken bit for instance. Furthermore they c.Jnnot be dl~po~ed of

as normal "task" objects: they cannot be 'assembled Into a fm,shed product yct they .Jr(~

used repeatedly Hence slmple-tools cannot be Incorporated tIlto the more gcncral clol<'~ of

ob j eets. nor can they be ra,sed to the status o~ tools slnce. III gencral. the robot cannot

/

/

v 1 23 Frame Representation

apply them dlrectly and they are assoclated wlth one and 'only one tool

Finally. what distmguishes tools from sensors IS the fact th<!t the former cannot

proYlde any information on the objects worked on. only sensors cano This is reflected ln

the modif ies and measures slots for tools and ~ensors. respectlvely. These slots pomt

to object attnbutes to be used for world model update when a tool IS applied to an abject .
and in the error recovery phase. to Identify whlch sensor can verify a fact or provide the

information necessary for an action ta be executed.

(defsch;ma sensor "a measuring tool"
(is-a simple-tool)
(measures) ;an,object attribute(s) .)

2.3.3 Actions

Although not as structured as obJects. actions are described with frames. Their

hierarchy is not as deep as that of obrcts; namely. actions do not inherit as many char­

acteristics from other actions as the obJect classes do (figure 2 2) Furthermore. actions

frames are flxed and do not change over time They are used to defme the clianges made to

the world as execution proceeds. In the form of modification specifications for object slots.

For instance. the robot aC,tion (move block-23 posüion-l n has at Jeast two effects in

the world: the position slot of block-23 must be updated t? reflect its displacement.

and the configuration slot of the robot must abo reflect the new arrangement of the

robot This is achieved by means of the d-modify. d-assert. and d-retract 5 slots in

the action frame whlCh states which object slot should be modlfled and how.

Action frames arc also lJsed for error detection and recovery; they define pre­

and post-conditions that must hold during correct executlon of a task These conditions

arc facts that must be present ln the current state of the world. otherwise an error is ralsed.

Chapter 4 expands further on the notIOns of error and error detection

5 The d stands for dcfincd as opposed to a pattlcular instance of a modificatIOn to be made

23

).

o

\

2 3 Frallle Rcprcscnt.ltioll

Sehe.,a Il u'rnr, hy fro., /lCT! ON

Figure 2.2 Action classes in 15ER

ln 15ER. the generic action has these followlng clements

(defschema action
(d-effect'or)
(d-error)
(d-assert)
(d-retract)
(d-modify)

)

"any action, by any too1"
;the actor, the too! performing the action
;possible error assoclated with an action or a tool
;fact to be asserted after execution of an action
;fact to be retracted after.executlon of an action
;fact to be modified after execution of an action

The d-effector slat has the value. if il eXIsts and Îs unIque. of the agent

assoclated with the action Its use is internai ta the high-Ievel parser (scetlon 3 4). Formally.

an action is a set of preconditions. post-conditions. new faa spcclflcatlo,,~. and old faet

kpeciflcations The precondltlons are representcd by the d -e rror slot,> while ttlC post-

74

(

-- -----------~--------- - ---- ------------------------------

2 3 Frame Representation

conditions and new lold fact specifications are equivalent to the d-assert and d-retract

slot5. The d-modify slot can be modeled as a combmatlon of d-assert and d-retract

slots. Th,e fact that post-conditions and modification specificatIOns are represented by the

same slots follows from the method by whlch the world model IS updated; it could. for

instance. have been based entirely on mterpretatlon of sensor readings. Post-conditions
'\' .

are generally less speciflc than world update indicators and hence. in thls system. post-

conditions are derived trom such mdicators. This is in contr~st wlth what has Abeen done

in [Gmi85]. where special steps are included in the robot program to provide information

to monitor the outcome of actions.

Tlae following notation will be used throughout the paper to represent actions:

• and:

..

A . action. a set of C, P, 0, N
1

C : ,precon,ditlon

° : old fact to be retracted

N : new fact to be added

P: post-condition. any ° or N

\' F . any facto F ~ W

S : a pOSSible state of the world. S c W

W : the set of ail facts. in any state of the world

0b 0 2, .. ·,On, .. OJ

Nt>N2, .. ,Nn , . Nk

CnEW,

On EW,

Nn EW

Obviously. the modifications must not be mutually exclusive'

Vn Vm Vp: (Nn E S) 1\ (Nm E S) 1\ (Op -:f. Nn)

25

2.3 Frame Representation

2.3.4 Wnere is the Knowledge?

Precisely. two kinds of information are required in 15ER: Fitst is the ability to

fo"ow the task and represent changes m the work ccII as variations in the database and
i

provlde a world model to assist the user. in determinmg the system' s idea of the world

and behavior. T.hls also serves ISER' s error recovcry by complementmg the second typc of

information required. the pre- and post-conditIOns to cvery actIon

Information on the, actual sttlte of thc world IS provlded pnmanly by thc m,mi­

pulator system which relays the position of the robot and the values of the scnsors. ThiS

is matçhed with corresponding slots in object frames. which are then updatcd accordmgly.
)

ln many situations. however. there is no Information on the new ~lale of certain object~

and it must be inferred from the expected outcome of actions. ThiS expectcd outcomc

is the second source of knowledge. The pre- and post-conditions for ail actions arc givcn

explicltly at compile tlme in the defmitions of actions and obJects. clther dircctly or through

inheritance from other Items.

2.3.5 ART, The Automated Reasoning Tooi

,
,!II

The diSCUSSIOn of representatlon of the wortd would not bc complete without il

brief description of the facllttles provlded by ARTt that are used in 15ER Flr~t and f()rcrn()~t.

ART provldes a database system wlth pattern match mg that allows rctncval of world rnodel

facts. Second. It provldes a frame organisatIOn of the data called the schema sy5tern; HIIS

organisation allows class deftnttion and inhentance as weil as obJeGt rntlnlpUlaLlon, l he

database can then be modlfied wlth pattern-matchlng rules and ,ln Inference engmc thal

provldes forward-chalning and. to a certain extent. backward-chammg of the rule., éJ5 weil

as pnoritles on rules and classes of rules. Last. It offers a r1ch set of graphie prmlltlve~ lo

group and dlsplay the mformation III an efficient way The reader is IIlvited to notcflthat
c,J

ART IS a reglstered trademark of Inference Corporation

(
2 4 Domain Ipdependence

this is in no way an endorsement of a commercial product. but rather a clarification of its

capabilities with regards to the large number of expert system she/ls available: it is used

as a prototyping tool to avoid reinventing the wheeJ.

2.4 Domain Independence

It is relatively difficult to c/assify- and organise ail the tasks that can be ac-
~

complished in a ~tic cell. The number of high level actions is infinite. yet they can

be described in terms of a limited set of primitives. such as those composing the robot .­

language itself. VAL-II. for instance. uses about 30 keywords to describe robot ~otions

[Unimatlon86]. In the context of error recovery. these pr,mitives can be ~.ssociated in a rel­

atively straightforward way with errors char3cteristic of the actions IOvolved. that is every

action can only fall in one of several ways ln 15ER. thls is the role of the d-error slots.

That part of the knowledgc IS stable and 1n1lependent of the. task or domain of

application To be really useful. however. 15ER has to be augmented with a great deal of

domain-speclfic knowledgc. ObJects in general and specially tools have to be described m
<

" (terms of standard 15ER primItives Adding a new object reqUires hlltng in the standard s\ot

values. "adding il new sensor or tool reqUires a more complete deSCription since not ail of their

characteristlcs. ~uch as compatible-,with can be derived from sensor observation. Adding

a new lIction requires more analysis. its effects on the world medel must be determined

a? weil ilS Its preconditlOns ThiS is unnecessary if the new action can ~e represented by

a sequence of predefmed 15ER actions: in such a case. the new action should be broken

down into atomic actions trlat 15ER can handle ln the a!dvent of an error. The design of

a truly fI.fxiblc reprcsentation. however. is beyond the scope .. of thls dissertation: as John

McCarthy pointed out [McCarthy87]. "the prqblem of generality in artificial intelligence IS

almost as unsolved as ever".

.1 27

J

o

Chapter 3 A Oynamic World Model

The state of the world at any point in time is defined as the set of ail object slots.

ln practice. a small number of slots has to be maintained directly: otber slot values Ciln

be deduced easily Positions. for instance. have to be recalculated every time an object is

moved and. since positions cannot always b~determined exactly. they arc likely to introduce

uncertainties and errors. Once the position is known. however. determining rcléltlon~ SLJch

as attached-to or mobile is deterministic and thus straightforward. Hencc. the position

of objects and tools must be' determined flrst._ along wlth tool configuration. like open or

close for a gripper and extended or retracted for a robotic arm.

3.1 Effects of Actions

When the system is started. the data base is initialised. to reflect the state of

the work cell. by setting the objects slots to the appropriate values; starting with typical

values. the world madel is adjusted from sensor readings. After each action. the world

model must be updated to reflect the changes in the actual world. Defining the program as

a sequence of action frames. effects of actions on the state of the world can be monitored
,. ,

incrementally. This is what was donc in STRIPS. which included a set of facts to be added

or deleted from the set of well-formed formulae representmg the state of the world. Simi-
t .

larly. actions ln 15ER have special ,slots whose values defme facts altered by the executlOn

of the action. These d -modHy slots contam patterns to be instantiated at run-time by tlie

(

(

3.1 Effects of Actions

\ .
high-Ievel parser (section 3.4). The d-assert and d-retract slots complete the functlon

of d-modify. As mentioned earlier in section 2.3.3. the very nature of 15ER makes the

modification patterns (the~-modify slots) equivalent to post-conditions because the, ex­

pected outcome of actions is used to construct and mairitain the world mode!. The term

post-condition is really meaningful only in the context of error recovery.

Since there is no planner available, to organise and sequence the actio-,"!s, it i~

imperative to use the proper representatlon for the actions. hl particularl the preconditions

must match the modification patterns if actions are to be chained. Conceptually: any

a~tion ç~1J follow any other action. provided the preconditions are met. and for this to be
'.

also true ;~sing ISER's representiltion. there are restricl,ons to be ~')II_owf'd. The number

of preconditions must be small and there must exist at least one actiol, wlll~ a matching

modification pattern for every current preconditlon. Unmatched preconditlons are actually

constraint errors. which the robot cannot resolve. Hence. the database of actions is self-

con ta ined.

Each modification pattern must be matched by a precondition in another ac­

tion. Furthermore. the mtent of the action must be clear and independent of preceding

actions; for instance. mate and unscrew are used instead of move down and rotate

counterclockwise. Actions must be represented at a level low enough that the modifi­

cations are observable. If the only possible evaluator is human. it should be e,xpected that

only the human will be able to diagnose and solve an error Hence. the level of representa­

tion is a functlOn of the resolution of the available sensors-sensors taken in a very broad

sense. to include any program available to interpret them. In general then. one cannot have

"The insulator is changed" as a post-condition since such a fact is too complex to

evaluate. The modification patterns must also be achlevable: the predtcates used must

match the actIOns in the database. The previous example. The insulator is changed.

would not qualify since. in general. there IS no such general action as change~insulator.
t

Actions must alSD be simple to allow for the preconditions to be orthogonal. mdependent

of each other. This to make sure that the order in which the preconditions are established

29

"

3.2 Use of Sens ors

is irrelevant.

Ta summarise. the plan must be representable as a set of successive catis to
" , ,....

\ (

J

robot program subroutines. Ali dis'placements should be relative ta ~bjects. to he able to ~

iQfeor their intent. In facto "15ER could he cohsidered '~o be a front-end ta a robot programming

language. and a succession of action frames would constitute an 15ER program. 'The
> ,

preconditions and modification patterns must be at the same level of complcxity and match:

The set of preconditions and modification pa~terns must then he closed. the only op(~nings

allowed being the constraint errors. The conditions must in general be exprcsscd in terms

of world model objects and symbolic coordinates. They must not be exprcssed in tcrms

of preceding actions. in other words the sequence of robot actions p<1ssed to 15ER must . t{ n

co~stitute a local Markov program [Nilsson80]. The precondiiions must ~c indepcndent of

each other 50 that the order in which they are made true is irrelevant. '
"

Using the notation introduced in section 2.3.3. C~ ="'l'~ = Pk. for any ~, j, k .

. namely, ail preconditi?ns and modification patterns are world facts (in the database) and.<

conversely. ail worlç facts are su'sceptibie to be conditions.

~ (wor/d-fact) :== (object-s/otname) ((abject) (object-s/otva/ue))

3.2 U se of Sensors

?ensors are used to confirm - or infirm - 15ER' s idea of the world. Sensor
, . "'

values serve"as reference points from which the world model is extrapolatcd. This infor-

mation is also used to verify and elimin"ate post-conditIons or. as described in the next
\ J

chapter. to ,prove that en error has occurred. The process of OJarnta,ning the world model

from action definition is completely independent from the in~egration of measured values in

the model and. consequently. sensor input is allowed to occur at any point during exccution

of the task. This permits. for instance. use of unexpected' robot messages as information­

to he integrated in the world mode!.

30

(

(

\

3.4 High-Ievel Parser

,_3.3 Action Tràce

The interface between 15ER and the real world is through the robot controller. In

one 'direction. the controlle~ sends a copy of the ~xecuted action .. to 15ER. as weil as sensor

output. In case of error. J5 ER sends back commands to be executed by the manipulator
~.) .~

or the sensors. The sequence of exec\jted actions is necessary for the purpose of error
"

recovery. to trace back the failures to their source. This sequence is therefore kept as a list

of actions. each prepended with its sequence number. t~r~ Üme a~ action IS added to the

action trace "st. 15ER's world model is incrementally updated from the new action. These

actions are not analysed by the control/er but they must correspond to those descri15ed at

compile tlme in the database. It is the responsibility of the high~level parser to analyse the

robot control/er' s messages to identify the type of action. the effector. the subJect of the
-,

action. etc. Later. the output of the parser is used by other modules in 15ER ta update the

world model and perform error detection and .analysis.

~

3.4 High-Ievel Parser

. The most general form of ~>ndition in~ludes an action name. a sta~e specifica­

tion. and the condition description itself.

where

C(A,S) -_F

•
°A : pointer to an action description

S : state specification

F : fact or set of facts in the database ..

Such a Iorm is overly general and in practice. one of two schemes is used: ln

the first one. the state specification is null. matching ail states. and the condition becomes

a set offacts (actually. any observable events). In the second scheme. there IS no' condition

description (F is null) and the state specification'rm~tches only those states for which the
,,1.

31

û'llt
""?J

o

--

(

3 4 High-Icvcl Parscr

,
action is applicable. Indeed, the two representatlons are mathematically equivalent but,

conceptually, the first representation, where S is null. is readily applicable whcn conditions

can be represented as a small set ,of facts, and the second 15 more conv-enlcnt for planners

------ . deafing with multiple states. Since there 15 no notion of multiple states ln 15ER and that

only the cunent state is considered, S is made nul! and hence the conditions rcducc to this

general' form:

(d-error
~

\ error-type) ((action) (condition))) -

- Concretely, this means that errors, as defined as faets in the database, ÎncJudc

al'}..!rror type, such as information or operational error, a speclflc action for which the error

is defined, and a condition t,hat, when present in the current state of the world, Taises an

error of the specified type. The condition can contain certain vart<lbles to allow errors to

be defined at compilE' time with sufficient generality to be applicable in any situation. Il
.' '

is the role of the high-Ievel parser to instantiate sueh variables at run-time.,rcflceting the,

context in which the actions and fallures take place. The high levcl parser is a front end

fa 15ER for the robot controller: the controller issues statements dcscnbing the current

robot actions for the purpose of maintaining a trace of the actions i,n 15ER. The parser is

responsible for converting actions of the form:
o ...

(action parameter-1 parameter-2) \.

into database -entries specifying explicitly what the agent (the tool) is, along with which

objects are being acted on and how. Appendlx B describes this process in greater detail.

Conceptually. the parser allows actions to have parameters and to instantiate these para­

meters at execution time. In the current implementatlon, a parametcr can oe one the four

parser-variables; the effE!ctor of the current action. a ~ildGard that can stand for

any value (used mainly for retraction of sets of facts), and subject or argument, which
,

are interpreted according to thè curr~nt action.

32

c

Chapter 4, Err'or Detection and Analysis

'.

Error processing in 15ER is divided into three parts:" error detection and analysis

come first. followed by the error recovery itself. described in the next chapter. The purpose

of error detection is to stop execution of the robot program before damage occurs to

the work cell or the mantpulator and to provide indication of the failure type and current

state of the ,world to the second phase. the error analysis. Error analysis IS essentially a
~ j ~

computational process: from the symptoms of the failure given by the error detectlon and

the actIOn tra~e. error analysis is lJsed to determine the Original source of the error.

4.1 Error Types

There are two ways in which an error can be detected: the first one. easlest to

detect. is in the form of an error message from the robot controller. This type of error is

generally given in terms of low-Ievel primitives representative of the configuration of the

manipulator and capabilities of the controller. Typical errors of this type in VAL Il are:

- *Stopped due to servoing error*
- *Hand closed too far* ,
- *Hardware defect*
- *[Fatal] Out of range* Jt <joint>
- *Motor stalled* Jt <joint>
- *High Acceleration* Jt <joint>
- *Envelope error* Jt <joint>

, r -
4 1 Ellor lype ..

r
While VAL Il defmes over 400 error messages. related to hardware failures.

system limitatIOns (diJk space. communications. etc.). pr.ogramming or run ~e crrors

(arithmetic overflow). and. hke the above list. manipulation errors. 15ER actually dC;'lls only

with the latter. The term manipulation error- denotes here the class of crrors caused by

limitations of the controller or the partlcular robot configuration: in a brolld sense. thcy alc

due to departures of the actual system From an ideal one. Actually. Ideal maniplilator~ do
q

not eXlst and are used only as an abstraction m the blocks world: they arc nof SubjCcL Lo
\

gravit y and other physlcal constraints ~uch as manlpulator configuration and length. After

detection of a manipulator error. It is analysed to infer as much as possible of the currcnt

state of the work cell. the position of the robot. and th,e nature of the error (i.e. collision . .
excess weight. out of range. etc) It can be more difficult to mterpret. though. which action

failed and triggered the error message.

A second type of error occurs when a post-condition (a local goal) is not satisfiecJ ,

upon completlon of an actlbn. the error is raised wh en there is a dlscrepanc~ betwecn the

observed state of the work cell and the internai world model Of course. this type of error

is most con){enient because it IS expressed in terms of sub-goals and C<ln thus bc used to

ensure the desired accompllshment of the task. If the plan IS regarded as il SUCCCS!.IOIl of

states. then a c~rrect sequence of successfully achleved sub-goals guar~,ees plan ~lIc(,e~~

Alternatively. if an evaluator function IS available. it can be used to aS5e~s the ~lJ(,CCS!' of

the task by lookmg only 'at the fmal state to verify that it matches the goal Agam. a~

mentioned in the introduction. such an evaluator is impractlcal for rcal. wrnplex. ta~k~

because its_cost IS prohibitlvely high ln res9urces and computatlonal tlme

The flrst type of error. coming from the robot system. I~ rnapped. <lftèr b('lIIg

7
_~Janalysed. as sub-goal error: the error message is slmply consldcrcd to he a m<lnlfe~tcltl()n of

the error, much as if there WllS an im~led post-conditIOn statmg thclt there !.holJld not tH!
~, 1

any robot error at any till.lc. The error message from the robot 15 thus treated ,)~ addition,11

information about the wO,rld and is ad<)ed as a proven fact ln the w()r!d modd

Hardware fallures and programming mistakes cannot be resolved wlthout. rco<;

1

\

---_._--_._._--- ..

4 2 Error Sources

pectively, redundancy of topls or hlgh-Ievel reasonmg to untangle the programmer' s mtent.

Apart trom fault-tolerant computmg, there does not appear to exist any work to support

the idea of non-fatal hardware fallures. On the Qther hand, there is some progress do ne

in the area of automatlc 'software understandmg and debuggmg: HACKER. for mstance,

has been developed to study learning b~ debugging "almost-njht" plans [Sussman75].

Another example is the preprocessor used to generate the augmented progratn in Ginl's

implementation [Gmi85]: the augmented program is IIltented to be more complete and th us

better than the original program

Partly because the world IS not entirely observable and I?artly because the world

model is imperfect and incomplete, not ail errors are detccted This may be due to the

absence of an appropriate sensor for.a particular state. because the sensor IS incorrect,
'-1

because it would take too long to measur~ a certain parameter., or even due to the sheer

complexlty of the currcnt state Thus, errors are hkely to go unnotlced until a subsequent

action triggers a manifestation of the error The phllosophy in 15ER. mhented from the

original Srimvas system. IS to let those errors occur ThiS allows the robot task to proceed

at high spced. performing costly analysis only in èase of error, although ln practlce, un­

verified precondltlons are not discarded but are rather' marked as possible errors to speed

up future analysis. Having mapped ail types of fallures"as the absence of any precondltion

necessary for the next step to proceed, and given that undetectêd fallures are allowed to

occur. errors are defined to be preconditions proven to be false

4.2 Error Sources

Fallures can have many sources: this section discusses several categories of

errors and what can be done to circumvent them.

~

Even before recovery is performed, sensors are Important to verlfy success of

an operation from wlthm the user program, m which a manrpulation can be repeated un­

til succcssful. or to measure some parameter before or during a manrpulation. Evidently,

35

l
7.

- 4 ') Inor $0111 tl'~

sensor maccur<lcy IS a pnmary cause of error. whether the p.uall1elN 15 ueyond Hl(' scnsor

operatmg range. the sensor IS misused. or even fallcd complctcly Sen~or l.lllurcs Cdll~e
c

severe problems ln 15ER because sensors are belleved, and not con~istcnlly V('nflCd How-

ever. they are venfled to a certain extent dunng crror ;lIl()lySI~ .1Ild recov('ry when ,lCti()n~

- even senslng actions - are venfled: If another sens or exi~ts to corrobor ale the v.lllle of

'the flrst one. It can be used to provide limited sensor intcgratloll IShafPrB6]

Insufflcient use of sensing can have the sa me efTccl5 .l~ ~('n ... or f,lIlur<' bul 15

not 50 severe because a cause for the error can be esttlblishcd L,H k of ... ell~1Il!~ IW(OllH'S

evident when certain charactenstics or parameters of the work (,('11 CélnlloL be gU.H.Jnl<'cd;

" the program mcorrectly believes the world IS ln a cerlam slalü when lt IS not. Brooks'

system (Brooks82] is a direct attempt to elimmatc such progralllmmp, error~

r,>oA':y-f f
Tools can err m two ways. they..50 lie mac;urale (5LJch as a <;('rvolllg ('[for ln the

manipulator) or they can totally fad to achleve some functlon In.lu.lIr <l<..y CMI be lho\Jl~hl

of as a quantitative error. whde total fallure IS a qualllative error The IIII'dn'" 10 ev,lludle

these errors can be simllar but recovery procedures dlffer. Il c.ould he ddv,1I1td[~(,OU~ to

have total fallure slncc ISER's recovery proccss IS gearcd more towards rCdtt<:f1Ipllllg {;lIled

actions rather than corrcctl/lg (replanning) the current state of the work «,II TOt.ll fallure.

on the other hand. may imply damages that can bc dlnlcult tn rep'Hr <lnd ~lllce inaccuraty

usual/y results in more control/ed Situations. where the actual statc IS ollly qll.JlIliutlVdy

different from the expected one, the latter could be casier to resolve

. Due to the limited nature of the world model ln ISEH. external agents ,Hld lack

of integrity of obJects in the work cel/ are Ilkely to tntroduce unpredrc.lcd ~t.lle5 wltilln

the normal sequence of actions As a matter of fact, ISER a~~tJmes there I~ only one

agent for change. thc robot, and gravit y, wlIld. etc are never <..onsldcrcd. Ac; a rüslllt, if the

obJects are fragile or the assembly IS unstable and subJcct to "asynchronow," rnodlficall(ms.
,

unexpected errors will occur and Will Incorrectly be Imputed to the fallurc of a previou<,

action. Although the diagnosis is incorrect. the recovery procedure will probably solve the

problem and reachleve the necessary state by redomg the "f;:lIlcd" actIOn

(
4 3 Run-tlnle Error Detection

Programmmg errors are not detected exphcltly since one important assumption
.

ln 15EH is that the plan IS correct and errors can arise only from action fallure rather than

from Incorrect or incomplete sequences of actlo~s. 5lnce It relies 50 much on tho world

model. 15ER will only flnd error'> that have a physical manifestation It will eventua"y flnd
....

the dfccl of a loglcal or programming error wlthout reasoning about It and hence cannot

resolvc 10glC<ll crrors. unless they are at a levellow enough to be modeled within an aqion

Formally. it cannot Identify an error as the result of a part/cular sequence of actions. 15ER

can only dlscovcr that a certain state was not reached by a certam (one) action ln other

words. 15ER bcllevcs the robot IS faulty. not the program

The last source of error Iles in 15ER itself. the-world model depends for the most
'\, \

part on the post-conditions associated ~o the actIOn deflllitions 5uch deflnition errors are

potentlally fatal bccausc an action could never ach,eve sorne of its post-conditions and

cause 15ER to beheve there is a permanent fallure of some sort ThiS conditIOn can be

detectcd to some extent when a" precond(tlOns have been verifled but the action still fails

ln gcneral. if the world rnodells different from the actual world. it can come from an actual

action failure (a genuine error). from an incorrect plece of information given by a faulty

scnsor when in fact the real world is perfectly fine. or from an Incorrect action defmitlon ln

15ER 51~e 15ER does not reason about itself. It can be mislead by the last case and by

a faulty sensor If no other sensor IS avallable to verlfy It.

4.3 Run-tilne Error Detection

Therc are numerous advantages 111 detecting errors as soon as they occur. sll1ce

15EI< rcsolves errors mainly by reattempting falled actions. the sooner the error is detected.

the doser It IS to the st<lte propltlOus to the executlon of the "patch" (chapter 5 dlscusses

thls in greater detatl) 5imllarly. error analysis is simpler because the effect of the failure

can be directly observed. Furthcr. the chances of propagatIon of the error are dlmlllished
',.
and the probablhty of damage IS lowered To thls end. the post-conditions of every action

should be veriflcd' entlrely but It Îs impractlcal to do so. Sorne conditions. however. are

37

-

4 4 P(\st-IlIOI tl'Ill An,llysl',

qUickly venfled and can be used to mOnitor the task prog~css This IdN ongm,lt('d in th('

Srlnlvas system and IS central to the error analysis procedure of ISER

One notable difTerence wlth the 5rinlvas theory 15 the way vcnfi('d prpcollditioll!'>

are handled: such facts are removed frorn the database ,lnd only unvclltted preconditlOns

are kept as possible reasons for (future) fatlure~ ln the CO/ltcxt of error detection. tlte

distinction between precondltlons and post-conditions bccomcs clcar. post cOI\(.litioll~ c,m

be used to verlfy action success even thougl~ not ail post-conditions <Ire necc~sary. pr('con-

ditlons are ail necessary and tlre vcriflcd by mtltchmg thcm wlth correspollding prevlOu<,

post-conditions. 1f no post-condition I~ found for a Clarent prccondltlOIl. il w<lrning i~ i~.,t1ed

to the operator: thls can be caused by an Incomplete world mode\' by il pronranlllling err~>r

or, slmilarly. by Lln Invtlltd requcst from the operator If a corrcspondtn~ Po.,t-condilloll I~

found but It was not vcrifled. th(' prccondltion IS also kept as trlle but IIIlVNllied Filltilly,

if the correspond mg post-condItion eXlsts and IS venfied. the IHCCOlldlllOIl I!-. ellIlllII.lt(·d

because it will never be used agatn

The above procedure IS slmdéÏr ln Spirit tü Lhe consLruc tlon 01 the f.IIItITP lrec

in-the origlllai system exccpt thaL 15ER makes use of the pattern maLchlllr, ("pabilitlc~ of

ART to virtutllly budd the tree as the plan IS exccutcd: although ttwy, arc lloL CXpll(,ILly

linked. ART can easily match the precondltlons of a glven actIOn Will! the po~t COlldltlon~

of prevlous actIOns

4.4 Post-mortem Analysis /

~
The tree can then be constructed. explored, and pruned according to lhe fol

lowmg princlples:

• Look for dlstlllctive fetltures of a fallure Lo verify if the f()lIure 1'> p()..,~ibl('

• If no reason for the fallure of an actIon can 1><' found. then It UHl be t/"'Yurw;r!

that the actIon succeeded and thus there 15 no support for a fallure due Ln that

actIon (i.e .. a successful action cannot cause anothcr action to fall)

(

44 Post-mortcm Analysis

This proccss is. of course. apphed recurslvely U·IUII. hopefully. only one possible
([

source of error 5ubslStS. If marc than one possible source of error IS foond. the system
(,

asks the operator to resolve the ambigUity

4.4.1 The Failure Trec

Once an error IS detected. the crucial step IS to determine the cause of the

error. this process was called fallure reason analysls by Snnlvas [Snnlvas78] Although the

error analysls ln ISER does not yield an exp"Clt fallure tree as the original technique dld. It

is easy to match the preconditlons of a glven action wlth the post-conditrons of prevlOus

actIOns The process of flndmg the cause of the error 15 reduced to a search problem.

st<lrlmg CIL the unsuccessful <lC-llon. for a prevlOus action whose fallure to estabhsh the

neccssmy preconditlQns for the currenl action was not detected. Before thls search takes

place. dunng the actual executlOn of the task. default reasonmg IS used to a great extent to
,

prune the se<lrch. ail actions are assumed to have succeeded unless proven otherwise Tills

clllows on-II ne. realo-tlme reduction of the search space if an action IS proven successful. ItS

post-conditions will not have to be venfled further and hence can be e"minated from the

datab<l~e

, The tree IS exp<lnded towards the fadure reason by matchlllg unresolved pre­

conditions with c<lrlier post-conditions ThiS constltutes a chain of actions during which

an error nllght have occurred. The <lctual search IS recurslve if an action falls when its

local goal (a post-condition) is not met. this is because some precondltlon(s) of the current

action was not realised by a prevlous actIOn whlch also faded. Tiie termmatlon condition

for the recursion is when no cause for the failùre of the current action can be found. in that

c(lse the fallure IS attnbuted to either the action itself. to an unvenfled IIlfOrmatlon. or to

a constr<lmt error

The tree 15 pruned if there 'IS no evidence to support the possibl"ty of failure and

IS pruned further us mg the method of fallure "signature" (what Snnlvas calls distmctive

39

\

-'

features of a fallure) to elimmate possIble reasons of fjlliure base,d 011 traces Icft by f()llllICS

Collisions. for Instance. leave a *Motor stalled* fact in the databilse. whereas largc

position errors do not

4.4.2 Ultimate Source of Error

15ER conslders only one error at a time or. more precisely. believcs that only

one action failed ongmally and caused subsequent actions to fall. Although in practicc thi~

may be false. ail fallures can be treated under thls assumptlon if they Me proce~~ed in

sequence. A few crrterl<l dlstmguish the flrst unsuccessful action from ail others: If It filded
" first. ail preceding actIOns establlshed their post-conditions. by defmition. Accordingly. LI\('

falled actIOn had ail Its precondltlùns estabhshed. SInCC ail previous post-condition!> ilrc

valid. The ultlmate source of error IS thus the flrst <lction wlllch fillied to e~tabli!>h lb

post-conditIOns The absence of one of these later caused ilnother ilctlOIl ta fall ;JIId !>o

" on unt" a manifestation of the error was detected The flr!>t error IS important bculIJ!>c Il
f

15 futile to attempt to continue execution of the ongmal plan. knowmg that a cortdition is

missing. and therefore It must be resolved flrst.

4.5 Complexity Analy,sis

,)
It is typical of many search and planning problems to suffer from combinatorial

explosion. the number of possible outcomes grows exponentially wlth the nurnber of step!>

explored ln thls section. an attempt 15 made to quant If y the d~pth and breadth of the

search for the ultlmate source of error

First of ail. the complexity of the scarch depends heavdy on the average numbcr

of precondltions per action, or actually. on the average number of ullvcnflcd preconditlOn'i.

Each unvenfied precondltlOn must be matchcd agam!>t'post-condltlOns of prccedmv, action,>

which. in turn .. must also be venfled recurslvely. The upper limlt on the number of actIOn!>

40

1

(

4 5 Complexlty Analysis

that must be traversed this way is the number of executed actions and the lower limit is. of

course. the number of preconditions of the failed action is the error is caught immediately.

pres~~the ~umber of preconditions in the definitions of 15ER actions is

ar~lficially low. from 3 to 6. as thts IS ail that was needed fOM:omputer simulation. but a more
1

re~listlc number would be more around 10 to 15. depending on the level of representation
-

and generahty of the system Of that number. only about 10% to 20% can be expected to

be venfied and elimlnated. The search can be limited 10 other ways. though. by segmenting

the task lOto "unrelated" parts: If it known that a section of the program was completed

successfully . .the unverifled post-conditions can be marked as verified and their dependent

preconditions can be e"mrnated. It is then reasonable to imagine that such unrelated parts

be limited to less than a hundred steps. whlch is a reasonable upper limit. given that not

ail these conditIOns will have to be independently verifled wlth sensors.

Last. the number of conrlltlons to be venfied depends heavlly on the "seriaI"

nature of the task. if a large number of actio~s must be executed in a glven~0rder (building a

tower. for rnstan,cc). the scarch Will be Ilmlted in depth to the first action proven successful.

This follows from the princlple that the success of an action guarantees the success of its

predecc~sors On the other hand. If many actions are rndependent and can be executed in

any order. the task is h'ghly parallel and the branehing factor of the failure tree IS higher.

This generally leads to la rger seareh spaees.

41

=0

.<

Chapter 5 Error Recovery --

5.1 Errof Recovery Aigorithm

,

Upon compleÜon of the failure reason analysis, thJfirst action that failed will

be identified as the ultimate source ()(error The principle b hind ISER's error recovery

is that the success of the plan does not depend on the or de in which the precondition!>

are established It th en follows that. if a precondition is missing. the preconditiol1 can he

established at any moment before the failed action can be attempted again. Th(! general

idea is to establlsh the conditions necessary for the control/ed execution of the failed actIOn

i.e., with addltlonal feedback. This controlled executlon is con~idered a patch for the original

plan. Since errors are not necessarily detected as they occur, the state of the world at the

time the error is detected can be very different from the state in whlCh the "patch" can

be applied Instead of direct replannmg from the current state to the "recovery" statc, the

manipulatIOns that took place after the failed action are analysed to guide planning and

gradually bring the state ol the world towards the recovery state by undoing act.ions, JO

reverse order ThiS procedure is outhned below'

ypatch = failed action
\top = last executed action

, "

, "

Undo actions that have post-conditions simila~ to preconditions
of the failed action. Such post-conditions have the same parameters
but different values compared to the preconditions.

c

c

5 1 Error Recol/ery Aigorithm

for (i from top to patch)
if (post-condition (i) = precOAdition (patch»

undo_with_sensing (i)
remember_action_was_undone (i)

endif
endfor

, , ,
, . ,

Il

If there are preconditions still unresolved, search for any
known action that is susceptible to achieve it. 1

forall (precondition-error (patch»
find_action (i)

such that (post-condition (i) = precondition-error (patch»
execute_with_sensing (i)

endforall

, , , At this point. if there are preconditions missing, preventing
application of the patch, abandon ship.~

if (precondition-error (patch»
exit ("Cannot establish preconditions to apply'the patch' ')

endif

;;; Because this action failed once, take good care when executing it.

execute_with_sensing (patch)
if Gerror-detecued)

. exit (" Cannot redo the failed action")
endif

, , , Redo carefully"the actions that were lindone in the tirst step.

for (i from patch to top)
if (action_was_undone (i) or

(post-condition (i) = precondition (j) and
j is in 'range (i, top]»

execute Ci)
endif

endfor

At this poin~, we are at the state we should have been
: ;; had there been no error.

exit ("Success")

Of course, slnce liUle is known about the actual state of the world after an

error, the actions must be carefully undone in the first'part of the recovery procedure. with
1

43

o

\ .,

l'

o

5.1 Error Rccovcry A~gorithm
•

as much sênsing as practical.

5.1. L-_ Constraining the Search Space

ErrQf recovery is thus regarded as search for an action or a sequence of actions
- ~ ..)

susceptible to "patch" the plan in order to proceed towards the original goal. This search
-'

is expensive in processing time. however. and actually too expensive to bc acceptable in an

interactive robot env!ronment such as telerobotics, One must then look for ways to reducc

the recovery delays. Given that failure reason analysls has identlfied the ultimate source of

the error, the failure of an action due to an informatIOn or an operatlonal error, the simplest

patch is to attempt to re-execute the failed action with, possibly. a bctter understanding
J

of the current state of the world. In order to redo this action. its preconditions must be

verified. this time with the use of sensors since the stato of the world cannat be inferred

From the world model after an error. Assuming the error analysls is "orrect. the failed action

is the first source of error and therefore its preconditicns were once established correctly.

Hence. the preconditions of the failed action missing from the current state of the world

must have been undone by steps subsequent to the failed actIon. The scarch space can then

be reduced to the set 'of actions that took place between the failed action and the action

w~ere th~ error was detected. searching for 'actions which have post-conditions slmilar to
-_/

the preconditions of the failed action. These similar post-conditions are an indication that

one aspect of the world that was present and necessary for the failed action to succeed

has been altered after the failed action was attempted. They are slmilar because they are

expressed with the same parameters. with different values. If such actions are found, they

can -ea-sily be undone if inverse actions exist for these, namely if the inverse-action,slot
-

is non-null. Otherwise. the search space must be expanded to the set of ail actions in th.,è

d~tabase, as shown by figure 5.1. When ~n error occurs. 15ER tirst se~rches for inv!se

actions for.each of the previous steps.

44

....

5 2 Recovery Propagation

,.

Plan

--~--------- ~

(

/ ' 'Previous)
Steps,

, :/
~./ -------

Inverse
Actions

The Action Search Space

Figure 5.2 describes the error reco)lery procedure by '":ort;lparin~ the normal se-
.,. 0 _ a t'

quence of ~tates. So to SS' to the sequence of states So to S5e created by an error ln the

execution of A2. detected lit SSe' In thls example. the I,)rror is detected at run time after . "
eiècution of As and the analysis finds that the error occurred at A2.

Suppose:

-', The recovery then proceeds as loll~ws:

Errar occurs at 'Ai" j

The error IS detected at SSe
S4e and S3e confliet with Si
S2e and SSe do not conflict with Si .
Undo A4.'lA3 to achieve Si
Redo A 2 (with sensing)
Redo A 3.,A4. and As (without sensing)

Note th.t ~2 and AS'.re not explicltly undone. Thi~~b"{.use actions in 15ER

are atamic (refer ta sections 2.3.3 and 2.4) and, tnerefare partial success is never recognized .
,.

Ta cope with the fact that the outcame of the failure of AS is unpredictable. it is considered
, .

-. only if SSc interferes with the undoing,of A3 and AS by confl.icting with their preconditions.
. -

Aiso Flote that A3' A4' and As are re-executed without specia~ sensing. This follows' from
.. '\....

1)

the rationale of the original plan: if It was worth attempt'ing A3 to AS·wlthout verifying S2.
,

it is certainly valid to attempt execution now that S2 has been established explicitly.

4S

-0

Error:

l
source

of error

Figure 5.2

5.2 1- Recovery Propagation
A '

,

A3 .. _(!)

Error Recovery

5 2 Rccovcry PropaRation

A4 AS

(.S4,)._

As

(SSe)
l

crror
detectcd

il> The class of errors thélt will be trapped and corrected by 15 ER has atrcady bccn

discussed. This section deals with how error correction at the lowest level can propagate

to repair high-Ievel plans.

As 15ER aims to solve errors occumng ln the course of an instance of the

execution of a task. often these E:rrors are due to some particular arrangement of the work

cell or sorne coincidence of events Indeed. su ch errors are very common but their trcatmcnt

does not constifute the core of most tasks: that is. errorfdetect,on is seldorn secn as il

.'

goal of the task planner Assuming then that the task planner has dealt wlth the gcncrcll

organisation of the program. 15ER has the responsibility of coping with variations of the

real world to aUain the desired goal with the given plan. The recover,y plans should he a~' ..

short and reliable as possible. however. slnce an error in the execution of a rccovery plan
J}

stops 15ER. This is based on the assumption that failure of a recovery plan indicates a .

possible recurrence of the error that triggered the execution .oLt he, recover y plan in the first

(" 46

\

\

c

5.3 Example

place.

The form of the recovery plans Is not different from that of a top level robot,

plan. Recovery pJans are weaker. however. because interaction between steps is never

considered: there is no meta-knowledge as there could be in a carefully thought plan.

As recovery plans blindly attempt to satisfy preconditions. recovery failure then indicates

that sorne preco~dition for an action in the recovery 'plan is missing. Since, in recovery

mode, ail actions are checked and ail precondition's are verifled. this means that there is an

unachicvable state in the recovery plan. If the recovery plan is conceptually valid, the,farlure

to e,stabhsh the state 15 a constraint error, beyond the robot's capabilities. If the recovery

plan is invalid. for instance if the unachievable state is unnecessary. then there is a flaw
'"

in ISER itself. in its data base as a réquired precondition missing from an as:!ion frame. in

the robot system repeatedly failing to opera te. or in a sensor returning an Incorrect value.

These last four failure types cannot be dealt with at the level of ISER. which would suffer

from sorne form of neurosis6. but rather at sorne higher level. In telerobotlcs. the operator

can evaluate where the fault is by comparing ~is, assessment of the situation wlth the status

report from 15ER.
~

Indeed. upon failure of a recovery plan. the standard error arillysis procedure

can be applied qUickly to narrow down the possible reason for failure to:

missing precondition (constraint error or 'sensor failure)

missing post-condition (constraint error. robot or sensor failure. or incorrect database) , .

Of course, a flaw in ISER itself can manifest itself irl any of a nU"!lber of ways. ail causing

self-induced neurosis.

5.3 Example
-, .

T Ü" illustrate the ërror recovery algorith' and the recovery procedure in general.

6 Eithcr its perception or interpretation of the world . red or its body. the robot. refuses to
operate Neurosis;s an abuse of language. but it depicts weil the system behavior.

~7

"'

"'>-

U
' , . , .

,
"

!j

o

fi

5 3 l:x.lIl1plt·

the follôw~nifexample is typical of many runs of the robot program devclopcd ln Hydro­

Québec's laboratories. to realise the ~ask outlined ln chapter 2. It dcmonstrates what

occurs when an imprecision in the measure of the position of the conductor \eads ta n

, collision between the unwrapping tool and the conductor when the tool is matcd with the

conductor The original plan IS'

(d-actrace 1\ (move tool-rack))
(d-actrace 2 (pick-tool sonar)
(d-actrace 3 (displace sonar above-conductor»
(d-actrace 4 (apply sonar conductor-posltion»
(d-actrace 5 (leave-tool sonar»
(d-actrace 6 (pick-tool unwrapping-tool»
(d-actracê 7 (displace unwrapping-tool ~nductor»)
(d-actrace 8 (mate unwrapping-tool cond ctor»
(d-actrace 9 (apply unwrapping-tool tie-wires»
(d-actrace 10 (apply unwrapping-tool conductor»
(d-actrace 11 (apply robot unwrapping-tool»
(d-actrace 12 (unapply robot»
(d-actrace 13 (unapply unwrapping-tool»
(d-actrace 14 (unmate unwrapping-tool conductor»
(d-actrace 15 (leave-tool unwrapping-tool»
(d-actrace 16 (move cradle})
(d-actrace 17 (stop robot»
(d-actrace 18 (goal»

Running !t yields a message from the robot control/er. which re<lds. <lfter intcr­

pretation by 15ER

(robot-error 8 (mobile robot no»

Which means that at least one joint motor ~talled-aCstep 8. Error analysis yields the

following IIst of preconditions:

(precondition (mobile conductor no»
(constralnt (compatible robot tool»
(constraint (compatible tool conductor»
(constraint (mobile tool yes»
(constraint (can-reach tool conductor))
(precondition (mobile robot yes»
(needs-information (position conductor»

:glvcn!
:ok
:ok
:ok. it moved
:ok
.ok. it movcd
.not vcnfled

=> the ùl1ly possible cause of failure is an Incorrect (pos i tion conductor).
'-

Whlçh action was supposed to get (position conductor)?

48

"

"
53 Example

(d-actrace 4 (apply sonar conductor-position»
o ,

There is only one reason why action 4 could fail. imprecision in the sonar.

Actually. it could also fail if the sonar measured the position 9f spmething else. but we

can safely assume the approximate position of the conductor IS known (from the operator.

say). Hence. there is no action prlor to 4 that could have falled.

15ER then proceeds with local planning to recover from the error:

Attempt to redo action 4 with senslng. Actually. action 4 IS a sensing operation

and hence IS a special case. performing "sensmg wlth sensing" is much like sensor integra- ,

tion. The user could be asked for a sensor that could verify a previous sensing operation.

but as a first approximation. the original sensor is used to repeat the measurement. This

in no way changes the course of the recovery procedure. except for a change ln the sensor

used to patch the plan

Starting from action 8. trace back for actions wlth post conditions matchmg

preconditions of:

(apply sonar conductor-position)

these are:
• (holds robot sonar)

• static constraints .that have been verifled already (compatibilities. etc.)
<l

It rnay be a~ that (d-actrace 6 (pick-tool un_rapping-tool)) VI­

olates thls. but it woul~cqUire too much reasonmg to figUie dlrectly that holdlnt the

unwrapping tool precludes holdmg the sonar Instead. ISER dl5covers that

(d-actrace 5 (leave-tool sonar»

violates (holds 'robot sonar). This 15 ea5y to undo. the Inverse action IS (plck-tool
•

. sonar). The preconditions of (pick-tool sonar) have to be val!dated

and finally.

(leave-tool ~whatever~)
(move tool-rack)

;i.e .. the unwrapping-tool

49

5 4 Rccovt'ry Cost

-J (pick-tool sonar)

The preconditions of (apply sonar conductor-posi tion) are now validatcd.
~

We can then define the recovery plan'

(defpIan •• patch' •
(Ieave-tool *whatever*) ;;.e .. the unwrapp;ng-tool
(move tool-rack)
(pick-tool sonar)
(execute-with-sensing Capply sonar conductor-position»

)

(Ieave-tool sonar) .
(pick-tool unwrapping-tool)
(displace unwrapping-tool conductor)
(m~te unwrapping-tool conductor)

',' ",)

;from list of "undoncs"
;from li5t of "undoncs"
;necessary for nex.t action
;becausc it failcd

This plan can th~n be sent to the contr~ler to be exccll-ted by the robot. Con-. .'

ceptually, it consists of the following steps'

1 ° Undo actions to get to a state ln whlch the falled action can re attemptcc.J.

2° Redo the falled action '

3° Redo the actIOns undone

4° If any action not ln the IIst of "undones" has post-conditions matching precon­
ditions of one of the undones. redo it anyway ln case it was also undone.

5.4 Recovery Cost

Allowmg non-cata5trophlc f<lIlures ta occur, ln the hope that the rnamfcsl.ltloll

of the fallure will provlde useful clues to recover from the failure and continue cxecutlon of

the original plan, makes sense only If the tot<ll cost of the failure and rccovery 15 low. To

verify this, one must address the problem of the trade-off between' ./

..

Full sensing. hlgh computatlonal co~t

sensor complexity

multiple displaccment of sens9fs

hlgh relrabillty and safety

No sensing +. recovery. posslbly optimal use of hardware

low reliability. danger

\,

sa

(

5 4 Recovery Co st

possibility of learnmg

15ER is less useful with full sensing: ca lied upon dlscovery of error. It assumes

that errors arc due to Incorrect information or operation The best use of 15ER Iles some-
-,

where in between. because there is a cost in tlme. resources. and perhaps ln material

(damages to the obJects ln the work ar,ea) Ali these costs form the recovery cost. If it

is high. the plan should include sensmg and be careful to prevent recovery Conversely. if

the recovery cost IS small. It may be more efficient to let the robot program run at hlgher

speed and lower c.omplexlty

The recovery cost CR IS a function of.

,
- the tlme to compute the patch

- numbcr and cost of the manipulations

- amount of sensing required

- damages caused by the error

For (l given plan consisting of the sequence of manipul~tions:

and properly interspersed sensmg operations:

The cost of the program IS then the sum of the manipulation cost CM and of the sensing

cost Cs To a first approximatlO.n. ail manipulations can be assumed to have the same

cost (gcllr wellr. for instance) and 50 can the sensing operations Hence. the program or
(/

plan cost Cp IS proportlonal to the number of actions For a glven run. the total or task t

cost CT is then the program cost plus the recovery cost-

CT = Cp+CR (1)

Whlle 15ER itself has no control over the top level planner, which defmes the

program and hence the program cost, IS it deslrable to produce an estimate of the expected

51

"

1)" HI'l OVI'1 V CO .. t

recovery cost. to reduce the overall average task cost. Indced. L'T C<l1l110t be elirnin<ltcd

by any trade-off in program versus recovery since both contam tcrms in m.ll1lpulatlOI1 and

sensmg. If one refmes (1) to inc\ude a measure of the probablhty of error

(2)

where:

Then. starting from a complete "perfect" plan which accounts for cvcry POSSI­

bility of fallure and prevents them. eHors are impossible and {J :::: 0 On the other hand.

if one allows errors to occur (p > 0) by removmg some of the manipulatloll ,lfld ~(\l1sing

operatIons from the perfect plan. Cl' dccreases,while the CI{ term b Illorp lI11portant The

probabihty of error raises as less checkmg 15 perforrned and. con~eqlJelllly. fi I~ dirpctJy

proportlOnal to the number of operatIons Icft out from the pcrfect plan. UlllIll,ltely. ()lH'

wants to mlnlmlze CT by mlnll1l1Zmg Cp whde kecpmg p low enough to IlInlt the ('(I(I(,l or

Rehning the evalu,ltlon of CU- one can argue tl1.1t Cu also IIlcre .. ~e~ Will! Il

as Cp is decreased Using the mode! of the perfcct plan. t!w, is explalfled by tlH' f,ICt

that. If error detectlon and correction steps are ehminalcd from the perfect plan and .Ill
r

error occur5, it is likely"that the removed steps wcre neccssary and will !J,IVe 10 be clolle.

perhaps in a modifled form. in the error recovery prOCC5S i)Jld thu~ rillse the v.Jlue of e/(.

TO,flpproximate. again. CR can be dlvlded Into two componenls: the <.o~t of prror .J1l<lly'>l~

and of undoin~ faded steps. the error complexlty (Fu). and the cast of dOlllg ~tep'> olTlIltf>d
,

from the perfect plan. the "error detectlon" cost (Cf)) Hcwrltll1g (2). one obtJlns

(3)

where:

CD + Cp = CPT) the cost of the perfect plan

\

5 4 Recovery Cost

The error complexlty IS largely related to the amount of search required to fmd

the ultlmate source of error If many checks are performed du ring plan execution. the

error analysis IS bounded. errors are detected sooner. and the nU!'lber of steps to undo IS

reduccd. ail factors contnbutmg to reduce the cost associated with the error complexlty.

He can thus be estlmated from the following assumptlons.

a) On the average. failures will oceur half way between two "checks" ln program
exccutlOn

b) The number of operations to venfy after an error is that portion of the perfect
plan that would fall between the la st ctkek and the action during whlch the
error was detected.

c) The number of steps to undo IS that portion of the actual plan that oecurred
slnce the la st check

d) If actions must be exccuted ln a glven order. the error analysis cost IS deereased
since success of an action guarantees success of prevlous1actlons

c) If actions can by executed ln any order. the cost of undotng steps deereases as
the staek of actions IS shallower

The ~rror Cdfnplexlty IS dlvided Into two terms. the portion due to the extent

of the <lnalysis required <:lnd the part due to the number of steps that have to be undone

From the above <lssumptions. and given that the actual plan is a selection of steps from the

perfeet plan, the rclationshlP between the aetual plan and the perfect plan can be depicted

as in figure 5 3 below.

stcp« to venfy or undo C
,.......-"--.. Pp

1"lCllt..'d 11111111111111111111111111111-1-11+1111111-111 H-HII-IIIIIH-I-III-11-i1 l'l,Ill

actu,ll
plan

()

o
- - - 1--- --1- - -- 1

1 l
no fmlu,rc fmlurc

Figu~e 5.3 Pcrfect and Actual plans

53

AsSumlng~n..-even dlstnbutlOn of "checks" over the tlctutll plan, the nnalysi~
cost is proportlonal to the number of steps in the perfect plan over the tlctunl llulllbcr of

stops:
CPp

analysis cost ex --­
Cp

From d above, and using S as a measure of how mtlny l'teps must be executed in a given

order. to denote the "seriai" nature of the task, the analysis cost can be refmed élS:

1G
analysis cost ex - ~r.

S Cp

This is consistent with the fact that ail conditions must be verified if they can be establishcd

in any order. Finally. from a:

.~

11 Cp
analysis cost = - -- -_P

28 Cp

'The cost of undoing st_eps can be simllarly derived from a. c. and e:

1 Cp
undoing cost = -S-_P

2 Cp

Hence. the error complexily evaluates to.

1 Cpp --5
2 Cp

'\.

Rewriting (3). we obtain this fmal form to represent the approximate cost of a given task:

CT = Cp + pC [) + pEe + p Es

Cp+ CD = CPp

CD
p=F-

C pp

Be =! C pp s
2 Cp

where'

(4)

--- -----

,

/

(

F, S : constants depending on the task and domain
,

CT: task cost

5 4 Recovery (ost
~

Cp : program (plan) cost = number of actions (q + T) in plan
\. -",

CD ~err6r detection cost = C Pp - Cp

EC : error complexity

ES : error seve rit y

p : probability of error

C Pp : cost of perfect plan = estimate of number of actions

to ensure proper execution

A new term. the error severity (ES). has been added to artlficially raise the

cost of certain errors for safety or cost purposes (e.g . prevent shorting phases of power
<')

lines). Strictly speaking. thls would not be reqUired If error analysis and world modeling

were complete and sufficient to describe ail effects of actions For example. if the planner

understood enough of the real world to model the Implications of a short Circuit between

the ph<lses (power outage. conductor damage. robot replacement. etc.) It would put a high

vatue of error complexity for these steps

Ji' IS constant and depends' on the task/domam. In the blocks world. for in­

stance. there ai· \ no operational nor' information errors Using a generic "perfect plan"

which includes sensing steps. one can optlmlze It by removmg these redundant steps. In

the blocks world. F = O. and the task cost equatlon IS reduced to

CT =Cp

Conversely. In harsh envlronments. su.staming heavy wlnds for instance. errors

are more likely to occur if sensing is reduèed: objects can move and fall. for example. This

IS not rclated to the complexity of errors: displacements of objects is easy to resolve and fix.

Therefore. F is a measure of the necessity to perform 'sensing and verification of actions

55

o

5,4 Rccovcry Cost
"-

and an indication of how delicate the task is. It is actually defined to be the percentage of

actions that will cause a lai/ure is they are nol, execute'd.

Independently of the probability of error. error cornplexity is a functlon of the

plan and domain of applicatio'n. If the plan conslsts of several ~ctions that must ~e executcd

in a certain order, ,the errors are more complex ta ?nalyze and résolve since <ln error carly

in the execution of the plan can have repercussion~n many ilctions afterw,nds. On the

other hand. If the actions can be ·executed in any arder (in parallcl). crrors can bc flxcd

easily. By analogy with the blocks world. one can see that ~uildlng a towcr will yicld l\

higher error complexity than laying out a row of blocks Thfreià,e. S is defined to be the

ratio of the number of steps that must be executed in succession over the number of stcps

that can be executed in any order or in par~el This figure J actually related to the shape

of the failure tree. if it is hlgh and narrow. the search can be very deep and S' is high. if.

on the other hand. the failure tree is wide but short. S is low.

The following figure illustrates typical program costs for Cp varying from 1 to

100. for CPp = 100. ES = O. and various values 'of F and S.

600 =1 e .=10

=9 ? .=4
Ill---l---+---l-------- - - - -- -

H+----"~--- ----- -"'- -- --- -

=4 ===- --:;.:=--____ ;:::0-'--'

"--_-----1

e'--------L---- - - - - - 100 e
-

Figure 5.4 Program Costs as function of the Number of Steps

This shows that. as the probablilty of error decreases. it 15 worth executing Icss

actions and performing less checking and sensing. As expected. the beneflt decreascs În

(
/ 54

.
the case where more actions have to be executed in order (note the scale difference between

the two figures). Also expected is the fact that ail curv~s join at the point where ail actions
-

are executed (a perfect plan) and no error occurs. The actual decrease in task cost should

be more dramatic (it varies between 25% and 60%) but this analysis does not take into

account".the very high cost of êxecuting sorne parts of a perfect plan. In reality. not ail

actions carry the same cost and the cost of the perfect plan is prohibitively high. ralsmg

the right end of the curve and thus increasing the relative benefit of performing tasks wit,h

less sensing.

..

J'

..

57 '

, 1

o

..

\

)

Chapter 6 Conclusion

6.1 Summary and Discussion

The goal of telerobotic,s is to accelerate completion of tasks performed by a
/

human operator remotely controlling a manipulator. It quickly becomes evident that ,a

computer intelface is necessary to translate the operator' s intentions into robot instruc-
, .

tions and, conversely, to translate robot coordinates into positions and relations. This

thesis has addressed a part of this goal: the problem of robot error recovery in Cl poorly

characterised environment. 5uch a context imposes several constraints. the most severe

being the possibllity of interruption of the original plan by the operator. Consequently. on­

lin~ intelligence must supplement pre-execution planning for such unexpected interruptions.

Furthermore. the differ{;!nces between the actual world and the expected world upon which

the original plan is based cause actions to fail in ways difficult or expenslvc to predict.

15ER has been designed to tackle these two problems. asynchronous interruption

and randomness of the work environment. by using a world model to monit9r the execution

of the task as a sequence of actions rather than as the achievement of a top-leveJ goal.

5uccess is then measured for each action as they are executed. allowing changes to the
'-

. original plan without affecting the general perform'ance of the system. In order to do this.
- -

15ER includes definitions ofall the actions that can bè executcd by the robot system; these

definitions include restrictions on the state in which the action can be executed and the-

(

Î

6 2 Contributions

expected oltcom~ of the action--:" If the restrictions are not satlsfied. an error is signaled

and the robot system is stopped to prevent further damage. At this point. the failure

i5 analysed to discover the source of the error. The central Idea in 15ER is to use local

planning to reduce the complexity of the planning reqUired tQ recover from the error: a great

confidence is put on the original plan and only as a last resort Will ISER attempt to build a

simple. local. recovery plan to replace It Actually. ISER attempts to cope with variations

in the real world. ~o follow the original plan-:..

Just as its world model adapts to the -actual state of the work cell. 15ER· is

relatively independent of the context and could be used in a wide range of applications.

New objects and actions can be added as variants or specialisations of those already ln

pla'ce to customise the world model to the particular context.

6.2 Contributions

15E~ expands on the idea of e.rror recovery and operator-assisted manipulator

by providing run-time assistançe and failure recovery. This is ln contrast with common

.. methods involving a planner to b~'ild a new plan from the failure state to the goal state: in

15ER rather. local planning is use~ to(patch the origln~1 plan and salvage it. Consequently.

the plan can be repaired w}th less re~ources than those required by a full-fledged planner.

As it attempts to verify ail prèconditions &efore execution of actions. 15ER also provides

error prevention ln the form of messages warning the opprawr about the possibility of

future failures.

As a side effect. 15E~: req\Jrred the creation of a high-Ievel parser ta interpret
\ '

robot messages and determine w~ich objects are directly affected by an action. The parser
i •

is required to raise the I~vel of abstraction from what the robot system u'~es to what a

qualitative" system can understand. ,This representation and the associated world model.
.,--/'

,both still incomplete. could be used to elaborate a more complete system to" r~ason about

object relations and thus maintain a world model to present informatio*to the operator in a .,.

59

o

•

_.

6.3 Future Work

cleBr and flexible manner. _The way the Infor,matlOn is organised is also of interest: instead

of having a separate data base for ~e world model. objects carry their own definitions

of the changes they produce in the world. as weil as ~he restrictions on th-e states in

which they can be used or applied. The related notion of action classes is viabte. but it

seems more promising to incorporate action defmitions in objects. going from frarne~based

representation to true obJect-oriented programming.

6.3, Future Work

The definltions of actions as separate items in the database is an artifact of the

original version of ART which did not support object-oriented. programrning. as Wc current

one (3.1) does. Describing actions as attributes of objects (method~) would greatly simplify
.,.,

expansion and custo.misallon of the database. Limlted octlon attribules Cl\rcody cxist 'for

sorne objects. but they must be processed explicltly by special rules. Using Ihethod~. world

model upqate would be performed simpl~ by sendtng (J message to th(; objects tnvolved

indicating which action was cxecuted. Determining which objects arc involvcd is alrcady

done by the hig~-Ievel .parser.

_As 15ER handles errors. the task planner can take advantage of this to generate

more gener~1 plans. Further. the plans should includé s~nsing operàtions ta ald in Nror

. detection. As a matter of facto the analysis of the task cost can be used to evaluate how

much processing and verification must be included in .the original pl'ln and how muth can

be left off ta be executesJ only in case of error. ln arder to minimise the average C0!.t of

the task. Since 15ER analyses the sources of error and finds ways around those crrors. Cl
~ ,

learning system could also complement 15ER and pass this information back to the planncr

in order to generate more efficient plans. Actually. from the planner point of view. 15ER
l ,

serves as an extension of the robot capabilities and presents a constant model: independent

of the robot and environment.

Experimenting with the system has unveiled new avenue's in interactive robot

task specification. as ~II objects can be represented by a set of. characteristi~/value pairs.

r~ w.

(

6 3 Future Work

the actions can be defined by the operator by indicating the final desired values (compare

for instance figures A.3 and A.4). This would require a sophisticated planner if many

such values can be changed at once by the oper~tor but it can be implemented easily for

srru311 changes i the world model. allowing mteractive object-oriented programming of the

robot. This is a great advantage since telerobots are really meant to be used by personnel

unfâmiliar with obots and great experience in the domain o'f application. Ultimately. one

wants to render the robot as transparent as possIble: the manipulator is a too4, not an

end by itself. 15ER aims a't that b, compensating for the environment. but Its interface to
,

the robot system is not sufficiently versatile to accommodate any robot system. Several

schemes have ueen' developed to achieve this, one of whlch models the robot system as
\

an operating system, allocating resources, interfacing, etc [Ca,rayannis88]. Again, the

. central idea being an abstraction of the' robot and its work space to present the operator a

functional vlew of his tool.

.
\

, 61

.1;.'

Appendix A. Sample 15ER Session

\
Certain ideas expressed in this thesis have been implemented and explorcd with

a simulated task. The sequence of actions. the sensor values. and various errors wcrc

defined in a file and 15ER simply stepped through them to' simulatc'scqucntial cxecution ... ,

by a manipulator. This appendix demonstrates ISER's behaviollr throllgh il fcw differcnt

scenarios.

First is a simple warning displayed wh en ISI!R finds th<lL the next attion I~ III

contradiction with the current state of the world. It reflects the fact that thc rn.Jnlpulator

cannot handle two tools at the same time (the unwrappmg tool ~nd a gripper). and hC/l(.c

the request to install the gripper (by an u/lexperienced operator. for In~tancc) i~ IIkely to

produce an error. It IS /lot forbidden. however. t~ be consistent wlth ISER\ phil()~()phy th.}t

it is generally better to let execution continue. unless it C<ln he proven thal il fallure ha~

occurred. In this particular case. one can imagine that the unwrapplllg tool wa., dropped
-

by accident. perhaps causing damage to the tool mount detector. and the Illtent of the

operator is to use the gripper to recuperate It I~ figure A.1. the 1SER Statua wmdow

lists the current action and the next one The UNWRAPP1lIG TOOL wtndow 5how,> tllat 15EH

believes the tool IS attached to (mounted on) the robot. and the 1SER Warnings wHldow

indicates what makes 15 ER believe that the next action will fail. Ali thl~ mforrnation WilS

deduced from the standard action. tool. and objects definitions .

" 62

0'>
w

~,

."
o'Q'
c:: ..
tl)

>
~

~
~ ;::,
CJ

(f)

m
::0
c..
VI

~
CJ
'<

COI94AND WINDIN

=~ execute next actlon

=> execute next action

=> execute next act10n

=> 1

~~ ~.,f,'~~l: ","
ISER Warnlngs

The (EHPTY ROeOT YES) precondition of action 3 was not .et,

,~ " ~;
~, l "

" II(

:j

ROBOT
Positlon UHWRAPPIHG-TOOl
Hobile YES

.,..

,

, l, ," ~ , l'; ; ~ ~, ... 1 l' , ','
: ' f ' I,~' : ~ '~" i

!. ~,~ ~ " ,',,, ,' ..
", ~' ,,'

" ' \,t,.

l,

UNWRAPPING TOOl
PositlQn TOOl-RACK-POSITIOH
H!l'bile YES
fttached to ROBOT

.Jo

ISER COI94ANDS
execute next act10n
restart
exanine abject
hlde obJect
enter action
expose ART aenu
hlde ART .. enu

~L~ ,

~;

ISER Status
Tracing action 2
--) (PICK-TOOl UHWRAPPING-TOOl)
Hext actlon

(PICK-TOOL GRIPPER)

" '

':ll8~: ' '
~I"'I ! l' '1

,. t ,~\'" " ,~
t ~ ~ , 'l' ~1 ,t ,

~" ,~t
' ..

..

,; J'

CONOUCTOR
Position COHOUCTOR-POSITIOH
Hobi1e ND
Attached to INSULATOR

.~\~:;

~>'<

" ,

'\! t~ ." ~

l," " '; >,' ,1~~

'! ~ " ,1

" '~ ..

" 1 ':
l~!

~

1

L,/

\

o

Figure A.2 Iists the choices p.vailable. to the operator. who can enter and ma-
ti

nipulate the sequence of actions to be executed and select which' objects from the world

model will be displayed on the screen.
.#

ISER COHHANOS
.Mucute nOMf action
restart
oxuln. object
hlde object

'\ enter 8Ct Ion
exp.'. ART .. enll
lit de ART lIIenu

... ',-.

Figure A.2 The 15ER menu

. ,

t'
p 1

1

Figures A.3 and A 4 give a simple example of the effects of actions on the

world model and how this reflects on the display They illustrate the diffcrences in the
\

characteristics of the conductor before the task IS executed and after the tie wires are

.... removed. Jeavrng the conductor unattached and mobIle. stl" at its original positiqn.

CONouel (Jfl
Pos ft 1 on CONDurrOR-/'OSITION
Hohl le HO
Attached to. IN511l11 TOR

Figure A.3 The conductor object. initial state.

CONOIJCTOR
PositIon. COHDUCTOR-P051TIOH
Mobl le YE5

Figure A.4 The conductor obJect. goal state

-' . \

\ ,

\ .,

1 V

(

The last figure depicts a typlcal dlsplay immediately after an error has been

detected. namely a joint stalled while removing the unwrapping tool from the conductor.

This could be caused. for Instance. by mlsalignment of the slot allowing the unwrapping

tool to slide in and out (mating/unmating) on the conductor. At this pomt. the status

window indlcates that ISER IS performmg error analysis and a special Error Analysis

win~ow lists the current deductions The warning wind~~ also pomts out that the fatle~..,if

action IS necessary for the next one and should thus be fixed before continumg. Applymg

the process of error analysis descnbed in chapter 4 will reveal the necessary preconàitions

for this action and proceed to verlfy and establlsh them.

"

65

li

cr>
C'>

Q

on
~.

c: ...
~

l>
U"I

m
0
""' Q.)

:::1

'" -<
!<?
VI

VI
ru
1':>

-

..;<q

CJHHANO WINOOW
\

=> 1
=> execute next action

=> eXeCIJte next act10n

=> execute next actlon •
=> execute next action - .
=>
=> ex.cute next actlon 1

d

.
ISER Warm ngs

Actlon 18 fal1ed to aChleYB the goal (~OBILE ROBOT NO),
The (MOSILE ROSOT YES) precondltlon of actlon 11 was not met

Error Analysls
Robot error at actlon 18 (MOBILE ROeOT HO)
Goal error at actlon 18 (HOBIlE ROSOT NO)

,

.

. . .
1 ~

ROBOT UNWRAPPING TOOl.
PaSl tl on CONOUCTOR Posltlon CONOUeTOR-POSITION
Hoblle NO Hoblle HO

Attached to ROeOT

---- -- _ .. _- --_ --~---- _ ... _ ... _-

t:. ~

13ER COHMANOS
execute next ac1fion
restart
examine abject
hlde obJect
enter actlon
e,,~ose ART menu
hide ART menu

,e
,

~,,: >,~ '~~~:;:~' .
~', ~ '.

" ,'" '1 ",;

"' '!:, 1- ;~:<,"-., "
" 1)

,- e '-
l'

• ~ (, 'I..'~ , ~ ~
< 1,.. ~

~ ~~~
<'

", <-

{t- ,-
-' ,

"
,
~:~ ~r" ~ ,

<

"' < <

" ~,<' , ~~-<':~(... F"~~"'ij , < <

: ..
,

<
,

:
~

-
ISER Status

Analyslng error (HOSILE ROBOT NO) of actIon 19
--) (UNHATE U~ORAPPIHG-TOOL CONOUeTOR)
Hext actlon.

(lEAiE-TOOl U~PAPPIHG-TOOL)

1

1
--.

CONQUCTOR
POSltlon, COMOUCTOR-POSITIOK
Hobl1e YES

,

,

(

(

\.

, }

Appendix B. The High level Parser

The high level Parser is the interface between the robot system. which opera tes

on physical abjects. and 15ER itself. which operates on classes of abjects. Ta be able

ta specify prc- and post-conditions for action classes. actîons must be parameterised and

variables must be used ln action descriptions The parser receives action specifications

from the robot and then instantlates conditions in the data base from the robot values and

the gencral action defmltions This process IS best· explained by consldering the set of

acceptable action speCifications as a robot programmmg language (it is. conceptually. at

the same level) and ta use the following Backus-Naur form (BN F) to represent it·

(actrace) ::= (actrace (positive-integer) (action-der))

(action-der) "= ((action) { (.subject) } (argument)") 1

((action) (effector)) { (subject) } 1

(goal)

(action) ::= move 1 pick-tooll displace 1 mate 1 apply 1

unapply 1 unmate ! leave-tool ! stop

(argument) .:= (subject) 1 (abstract-position)

(subject) :: = (object)

(abstract-position) :'= (object) ,

(posltive-integer) ::. 1. 2. 3

For, every ilction recelved from the robot controller. the parser looks up in the

definition of the action to determine if it has default values and then exphcltly posts its

instantiated pilrameters

67

References

Brooks82 Brooks. R. A. . "Symbolic Error Analysis ,wd Robot Planning". Internatiollal

'la Journal of Roboties Researeh. Vol 1. No 4. Wmter 1982

Carayannis88 Carayannis. G . "A Generic Run-time Environment for II Robotic W<lrk

cell". Ph 0 Dissertation. McGl1i University. Montreal. Cannda. June 1988.
-

Cardelli88 Cardeill. Land Wegner. P . "On Understanding Types. Data Abstraction. and

Polymorphism". ACM Computing Sur veys. Vol. 17. No. 4. Deeember 1985. pp. 471--

522

Cohen87 Cohen. J .. "Live-Lme Repair with TOMCAT~PRI Journal. Vol. 12. no 5.

July / August 1987. pp 14-19

Donald86 Donald. B. R . "Robot Planning wlth Uncertalllty m the Geometrie Modcls of

the Robot and Environment· A Formai Framework for Error Detection and Hccovcry ".

Proe. IEEE Int. Conf. an Robotics and Automation 1986. pp 1588-1593. 1986.

Ernst69 Ernst. G. W. and Newell. A . "GPS A Case Study III GCllcrallty and Proolcm

Solvmg". Academlc Press. New York. NY. 1969

Fikes71 Fikes. R. E. and Ndsson. N. J . "STRIPS. A New Approach to the Application of

Thearem Proving to Problem SolvlIlg ". Artrficialllltelllgcncc. Vol 2 (1971). pp. 189-

208.

Genesereth87 Genesereth. M. Rand Nilsson. N J . "Logical Foundation~ of Artif.cial

Intelligence" . Morgan Kaufman Publishers Inc . Los Altos. CA. 1087

Gini85 Gi' M. et al. . "The Role of Knowledge in the Architectur{ of a l~oblJst Hobot

IEEE Int. Cgnf an Robot/cs and Automation 1985. pp. 561-'567.

1985.

Ginsberg88 Ginsberg. M. L and Smith. D. E "Reasoning about Action 1: A Po~~.blc

Worlds Approach". Artificiallntel/igence. Vol 35 (1988). pp 165-195.

\ Girard88 Girard. 1. "La robotique en distribution". Techlllcai report no. IREG 4167C,

Institut de recherche d'Hydra-Québec. Varennes. Oc. Canada. April 1988.

Hayes-Roth83 Hayes-Roth. F. ,. 'Uslllg Proofs and Refutations to Learn from ExpcrJ

'ence··. III Machine Learning: An AI Approach M,chalski. Carbonnell. and M.tchell.

eds. Tloga Publishing Co. Palo Alto. CA 1983.

Henkener85 Henkener. J. A . "Study of a Componcnt Evaluation Unit for Hcmotc maIn

tenance of Transmission Lines" Interim report for RP1497 -1. prepared by SOlJthwest

Researeh Instutute. Electnc Power Rescarch lnstltutc report no EL-4188. August

1985.

(

IERE87 IERE of Japan. "New Applications of Electronics in Power Facilities of Japan".

Report Submitted to 16th General Meeting of IERE. December 1987.

Infcrence87 Inference Corp .. "ART Reference Manual". Inference Corp .. Los Angeles.

CA. Version 3.0. January 1987. \

Kaemmerer87 Kaemmerer. W. r .. Allard. J. R .. "An Automated Technique for Providing

Moment-by-Mome,nt Advlce Concerning the Operation of a Process". Proc. AAAI-87

Sixth National Conference on Artificiallntelligence. pp. 809-813. 1987.

Kak86 A. C. Kak et al.. "A Know1edge-8ased Robotlc Assembly Cell" . IEEE Expert. Vol.

1 No. 1. pp. 63-83. Spring 86.

lee84 Lee. M. H .. Hardy. N. W .. a;Jd 8arnes. D. P .. "Research into automatlc error

recovery". Proe. 1. Mech E. Colloql.'ium on U. K. Robotics Research. Paper C463/84.

London. 1984.

Moya86 Moya. M. M. and Davidson. W. M .. "Sensor-Driven. Fault- Tolerant Control of

a Maintenance Robot". PlOC. IEEE Int. Conf. on Robotics and Automation 1986.

pp. 428-434. 1986

Mycrs86 Myers. W .. "Introduction to Expert Systems", IEEE Expert. Vol. 1 no. 1.
Spring 1986. pp. 100-109

NASA85 NASA Task Force [dlrected by D. R. Criswell]. "Robotics for the United States

Space Space StatIon". Robotics. Vol. 1 no 4. December 85. pp. 205-222.

Nilsson80 Nilsson. N. J .. "Principles of Artiflcial Intelligence". Tioga Publishing Co ..

Palo Alto. CA. 1980.

RSI85 Robotic Systems International. Ltd. . "Application of Robotics to Distribution

Systems". Canadian Electrical Association report n'Ô. 190 D 392. Montreal. Canada.

December 1985.

RSI88 Robotic Systems International. Ltd. . "Application of Robotics to Distribution

Systems. SKYARM Functional Specifications". Canadian Electrical Association report

no. 190 D 392. Montreal. Canada. revision 3. March 1988.

Ramamoorthy87 Ramamoorthy. C. V . Shekhar. 5 .. Garg. V .. "Software Development

Support for AI Programs". IEEE Computer. Vol. 20 no. 1. January 1987. pp. 30-40.

Shafer86 Shafer. S. A .. 5tentz. A . Thorpe. C. E .. "An Architecture for Sensor Fusion

in a Mobile Robot". Proe. IEEE Int. Conf. on Robotics· and Automation 1986. pp.

2002-2011. 1986.

Sheridan86 Sheridan. T. 8 .. "Human Supervisory Control of Robot Systems". Proc.

IEEE Int. Conf. on Roboties and Automation 1986. pp. 808-812. 1986

Smith86 Smith. R. E. and Gini. M .. "Robot Tracking and Control Issues in an Intelligent

Error Recovery System". Proc. IEEE Int. Conf. on Robotics and Automation 1986.

69

\

1

f ,
f

..r _

\
\

0

pp. 1070-1075. April 1986.

Srinivas77 Srinivas. S .. "Error Recovery in Robots Systems". Ph. D. Thesis, California
Institute of Technology. 1977. '

Srinivas78 Srinivas. S .. "Error Recovery in Robots through Failure reason Analysis",

Proc. National Computer Conference, pp. 275-282. 1978.

Stefik85 Steftk. M. and Bobrow. D. G .. "Objeet-Oriented Ptbgramming: Themes and

Variations" . The AI Magazine. Vol. 6. no. 4. Winter 85. pp. 40-62.

Sussman75 Sussman. G J .. "A Computer Madel of Ski" Acquisition" . American Else-

vier. New York. NYiii:197

Jhunborg86 Thunbo: .. "A Remote Maintenance Robot System for a Pulsed Nuclear
Reactor". Proe. IfE Int. Conf. on Robotics and Automation 1986. pp. 442-447.
April 1986.

Unimation83 Unimatian Inc. . "Puma Mark" Robot. Equipment and Programming

Manual". Unimation Inc .. CT .. August 1983.

Unimation86 Unimation Ine .. "User's Guide to VAL Il''. Unimation Inc .. CT. Version

2.0. February 1986.

WiII85 Will. R.W .. "TRICCS: A Proposed TeleoperatorjRobot Integrated Command and

Control S.9stem for Spaee Applications". NASA Technical Memorandum. No. 87577.
Langley Research Center. July 1985. ...

Yoerger87 Yoerger. DR .. Slatine. J-J. E. . "Supervisory Control Architecture for Un-

derwater Teleoperation". Proc. IEEE Int. Conf. on Robutics and Automation 1987.

pp. 2068-2073. 1987.

J

(""

"-

"

70

1
',1,

1

1
1

'1

>,

