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ABSTRACT

bY

Understanding the structure of speech variability 1s necessary to
advance the technology of verbal man-machine communication. Howeverf
empirical studies of variability require large, phonetically 1labelled
speech databases. To allow automatic generation of such databases, a

technique is investigated for automatic phonetic segmentation  and

labelling of speebh, assuming its orthographic transcription 1s given.

A synthetic reference 1s first created from the given transcription.
Phonetic segmentation and 1labelling information for the synthetic
utterance is known. By using dynamic time warping to align the synthetic
and natural utterances, segmentation and labelling information is mapped

onto the natural utterance.

Automatically generated segmentations are compared with manual
segmentations for twenty test sentences. Boundary location error rate 1s
found to be 45 percent (N=659). Although the method gives good global
alignment, it does not reliably align short-tiﬁe acoustic events. TLe
results reflect limitations in both the synthetic speech quality and the

dynamic time warping alignment procedure.
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RESUME

Afin de faire avancer les ‘techniques de communication verbale entre
1 homme et l'ordinateurd il -est important de comprendre la nature de la
variabilité de la parole. Les &tudes empiriques sur la variabilité
exigent de grandes bases de données phonétiquement é&tiquetées. L objet de
la présente &tude est d &valuer une tec}ﬁ;ique automatique de segmentation

et d"&tiquetage phonétique de la parole pour des &noncés dont la

transcription orthographique est connue.

On crée d abord un modéle de référence en utilisant un systéme de
synthése qui convertit le texte orthographique en discours sonore. Ce
modéle de référence synthétique &tant déja doté d une segmentation et a”un’!
6tiquetage phonétique, il s8”agit alors de transférer ces informations &
17 &noncé naturel en utilisant un algorithm d”anamorphose temporelle pour

aligner les deux énoncés.

On a comparé, pour vingt phrases, les segmentations automatiques
ainsi produites & des segmentations manuelles. Le taux d”erreur de
positionnement des frontiéres est de 45 pourcent (N = 659), et varie selon
le type de frontiére. Bien que 1 alignement global soit bon, la'méthode
présente une faiblesse au niveau des &venements acoustiques de courte

durée.

iii



TABLE OF CONTENTS

ABSTRACT tveceaererosvssrtenoosssssccsasonstsnsnssonscnsaassannavsssonns 11
RESUME ..vveceonvssssasncsccsnscasanacsssas T, ceeresseessen .. 1ii
TABLE OF CONTENTS vv v toveeecoasecccessssoactossssssssssosssssasssnnacsss 13

LIST OF TABLES +uvvsocevorsacnssnsnonssaascsssosnnanscsnssovessssscnssscses Vi

LIST OF FIGURES teveseccnssnasansecancsonsnssssnnnsssssessscnsnsnsasss Vil

Chapter 1: SCOPE OF THE PROBLEM ..cvivevcunecnascssnsasnnrsosonssosanes |
1.1 Approaches to Automatic Segmentation and Labelling of Speech ..... 3
1.2 Assumptions Underlying the Synthesize-and-Warp Technique ......... 5

1.3 Overview of the Present Study ...ccoceeeecccerecocosncscccsssncnns 9

Chapter 2: PRELIMINARY EXPERIMENTS USING MITALK SEGMENTATION ......... 12
2.1 Nature of the Segmentation Used in MITAlK cvsvicecsocesnansesnses 14
2.2 Segmentation of Natural Speech: Preliminary Experiment ......... 15

2.3 Segmentation ErTOrs .ceeeeenvoviencnscssnscessscanncasncsocesacss 17
2.4 Discussion of the Preliminary Experiment .......ceceiveeecscecess 19
2.4.1 Implicit segmentation of the synthetic model .e.cieosscessess 20

2.4.2 Induced segmentation of the natural utterance ....ceeceeerees. 21

Chapter 3: THE RULE-BASED SEGMENTER FOR SYNTHETIC SPEECH .ceveesereee. 23
3.1 Machine-Readible Phonetic Alphabet ...eveeeeeviesccersscnscsssnns 25
3.2 Functional Structure of the Rule-Based Segmenter .....eeeeeeseees 25

3.3 Segmentation Level and Rules Used in the Present Study secceve... 29

iv




3.3.1 Level of segmentation .....ceciececencensss Ceteiesanaas ceees. 29
3.3.2 Phonologlc8l TULES vepevesvvoosconnsssnessosontssncanansananss 31
3.3.3 Placement of locally determinable boundaries ........ogeeeoss 36
3.3.4 Placement of locally indeterminable boundaries ...eeceeeeeves 49
3.4 Results of Rule-Based Segmentation of Synthetic Sentences ....... 53

3.5 Discussion of Rule-Based Segmentation ...ieeeeesesirecccascsnanes 57

Chapter 4: PRELIMINARY EXPERIMENT USING RULE-BASED SEGMENTATION
OF MODEL SPEECH +ivevovestconnsnsnscsessasssssosassnccssassses DI
4.1 Experimental ProCeduUre ...eeeieeessrecassesccnessonsasnanssassens D2

4.2 Results and D18CUSSI10N ceeocerscosessanacsosssossessccsscosnnsscanas B3

4.? Evaluating the Correctness of a Given Segmentation ........... ... 66

Chapter 5: QUANTITATIVE EVALUATION OF SYNTHESIZE-AND-WARP TECHNIQUE .. 69
5.1 Experimental Procedure ....ceveeeeecrssessossoscssassocnnss veese. 69
5.2 Evaluation of Segmentation Results .scevecerssiievesscecconcsensees T4
5.3 An Alternative Evaluation of Alignment Performance ...cseeeessess 85
5.4 Additional Experiments ...eeseeseceesscaceasescasssssssssssnasanses 88
5.5 Summary of Alignment Experiments ....eeeeeeserecescssccccssesenss 91

5.6 Conclusions and Possible SOlUL1ONS eeceeesessesososncccsocnccsnonss 94

REFERENCES +iveeeciicinnaccnaseoassssascsssasccssssasssssscacasassasanns 97
APPENDIXA L R A I I I R A N B A A IR B B I I B B B I U I A B L R I S R I B BN BN I Y 99
APPENDIXB L A R A N I R R I A R A A N A A A N A A I S AN A A B SR A R B S A SR R SR A BN I 100

FIGURES ® ® © 0 550 0 05 FI 0L GO P DL DPI SO ILOL BB 0SENSSIONEIEEEIEROIIEBPOOSEPOETEEDP DTS 101

o Emivapbdsile ort® (T



Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

3-1.

3=2.

3—30

3-8.

3-9.

5-10.

LIST OF TABLES

CPA symbols used in this study ................ e 26

Component I: Rules used 1n component I to
determine level of segmentation .........c...cccee..n eessae 30

Component II: Phonological rules of burst
insertion and burst deletion ............. 1

Result of applying MITalk letter-to-sound
rules to input text ............ ... ... cevensenraecnseeras 32

Acoustic category definitions ..... Checesareasosennnrsnean 37

Component III: Rules used for locally determinable
segmentations of sgsynthetic speech .......... ceeeceaaeecaes 38

Definitions of acoustic events used in )
local segmentation rules .....cciiiiiineencnncocesncasnonss 42

Features assigned to vowels, liquids, and glides .......... 50

Rules specifying global acoustic events used
for segmenting vowels, liquids, and glides ....ceceveeenees 5

Error rates for segment boundary location using
constrained and unconstrained warping algorithms .......... 66

Transition durations of hand transcribed sentences ........ T}
Segment durations for hand transcribed sentences ....cccee. T
Experimental conditions employed in the main experiment ... 73
Segment durations for hand vs. automatic segmentation ..... 74
Overall performance of automatic segmentation algorithm ... 75
Performance by segment category ( sonorant, nonsonorant) ... 77
Analysis of nonsonorant/nonsonorant performance ........... 78
Transition durations by boundary type .ceeveeceeeeeresesees 79
Analysis of sonorant/sonorant performance ...ceeeeesseecses 81
Analysis of sonorant/nonsonorant and

nonsonorant/ sonorant boundaATies .....ecececereceacnsenceces 83

vi




Table S5-11.

Table 5-12.

Performance as a segment center locater ...

Effect of varying slope constraints and analysis window .. 89

E

vii

- -
1 Foiears T 1 I s



LIST OF FIGURES

FIGURES FOR CHAPTER 2 t.iocesosveccocesoosooosssontssonsosnonseacssseaess

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

2-1.

2-2.

2-3.

2-4.

2-7.

2-8.

“2-11.

Synthetic speech with MITalk segmentation and labelling.
Sent. 1: The goose was brought straight from the old
mArKet «..vcveriecocnreicestinnccansas cesserae s

Synthetic speech with MITalk segmentation and labelling.
Sent. 2: The sink 1s the thing in which we pile dishes ..

Synthetic speech with MITalk segmentation and labelling.
Sent. 3: A whiff of 1t will cure the most stubborn cold

Synthetic speech with MITalk segmentation and labelling.
Sent. 4: The facts don"t always show who is right .......

Speaker ML with 1nduced MITalk segmentation and labelling.
Sent. 1: The goose was brought straight from the old

117 o <=2 v

Speaker ML with i1nduced MITalk segmentation and labelling.
Sent. 2: The sink 1s the thing in which we pile dishes

Speaker ML with induced MITalk segmentation and labelling.
Sent. 3: A whiff of 1t will cure the most atubborn cold .

Speaker ML with induced MITalk Segmentation ang labelling.
Sent. 4: The facts don"t always show who 18 right .......

Speaker ML with 1induced MITalk segmentation and labelling.
Sent. 5: She flaps her cape as she parades the street ...

Speaker ML with i1nduced MITalk segmentation and labelling.
Sent. 6: The loss of the cruiser was a blow to the fleet

Speaker ML with 1nduced MITalk gegmentation and labelling.
Sent. 7: Loop the braid to the left and then over .......

Speaker ML with induced MITalk segmentation and labelling.
Sent. 8: Plead with the lawyer to drop the lost cause ...

Speaker ML with induced MITalk segmentation and labelling.
Sent. 9: Calves thrive on tender sSpring greSS .eeeessee..

Speaker ML with i1induced MITalk segmentation and labelling.
Sent. 10: Post no bills on this office wall .ieecervnnnns

viii

102

1Q7

1

115

119

124

128

132

136

140

144

148

152

156

“



FIGURES FOR CHAPTER 3

Fig. 3-1.

Fig. 3-2.

Fig. 3-3.

Fig. 3-4.

Fig. 3-5.

Fig. 3-6.

Fig. 3-7.

Fig. 3-8.

Fig. 3-9.

Fig. 3-10.

v

FIGURES FOR

Fig. 4-1.

Fig. 4-2.

FIGURES FOR

Fig. 5-1.

Synthetic
Sent. 1:

market ...

Synthetic
Sent. 2:

Synthetic
Sent. 3:

Synthetic
Sent. 4:

Synthetic
Sent. 5:

Synthetic
Sent. 6:

Synthetic
Sent. 7T:

Synthetac
Sent. 8:

Synthetic
Sent. 9:

Synthetic
Sent. 10:

CHAPTER 4

Rt

teesrseeean R 16

speech with rule-based segmentation and labelling.

The goose was brought straight from the old
................................................ 161

I
speech with rule-based segmentation and labelling.
The sink is the thing in which we pile dishea .. 166

speech with rule-based segmentation and labelling.
A whiff of 1t will cure the most stubborn cold . 7!

speech with rule-based segmentation and labelling.
The facts don"t always show who 1s right ....... 176

speech with rule-based segmentation and labelling.
She flaps her cape as she parades the street ... 181

speech with rule-based segmentation and labelling.
The loss of the cruiser was a blow to the fleet 185

speech with rule-based segmentation and labelling.
Loop the braid to the left and then over ....... 190

gpeech with rule-based segmentation and labelling.

Plead with the lawyer to drop the lost cause ... 195,

speech with rule-based segmentation and labelling.
Calves thrive on tender spring grass ....ce...sa 200

speech with rule-based segmentation and labelling.
Post no b1lls on this office wall ..cecesvvesves 205

® 9 0 8 8 0 0 44080 0P LIPE LV BN ELGINIEISEYLOEIOLEOIESIOLOSEOLEIIEIDES 299

Ali1gned synthetic and natural speech (speaker DS).

Sent. 2:

The sink 1s the thing in which we pile dishes .. 210

Aligned waveforms of synthetic and natural speech.

Sent. 5: She fl(aps her cape as she parades the street) . 215

seednssnaaa ceeenes tieeestteacesrsssasesnses 216

CHAPTER 5 .....
Speaker DS with segmentation induced from rule-based

analysis of synthetic model. Sent. 8: (Plead with the)
lawyer (to drop the 108t CAUSE) .seeeeevevccccereocncoances 217

1X

T ot b ISR o et



Fig.

5-2.

Speaker ML with segmentation i1nduced from rule-based

analysis of synthetic model. Sent. 1: The goose (was

brought straight from the old market) ......ceo... e



[—— 2

Chapter ': SCOPE OF THE PROBLEM

Automatic segmentation of natural speech 18 a complex problem similar
1n many respects to other segmentation problems encountered in artificial
intelligence. The signal to be segmented 1s the surface representation of
an underlying complex process whose detailed structure 1s not directly
accessible. It 1s the difficulty of the general segmentation problem that
has forced most currently employed continuous speech recognition techngues
to replace simplistic segment-recognize recognition paradigms by
hierarchic sequences of hypothesize and test operations. The segmentation
problem as formulated here probes the adequacy of wusing our limited
knowledge of speech generation to assist the analysis that may be required

for recognition.

Solving the problem of -automatic phonemic transcription of speech
would solve the problem of automatic speech recognition. Phonemes are
defined as the abstract segments representing minimal lexaical
distinctions. Unfortunately, the mapping from phoneme string to acoustic
signal 18 highly variable, making the phoneme decoding problem extremely
difficult. The purpose of this study 1s to develop a tool for studying
the structure inherent 1n this mapping, both within a single speaker and
across speaker populations. It 13 expected that a more complete
understanding of the structure of speech variability will facilitate a

solution to the speech recognition problem.
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Phoneme boundaries are not well defined in the speech signal.
Phonetic features associated with underlying phonemes are 1dentifiable,

but those features tend to spread out, coexisting with the features of

ad jacent phonemes. Nonetheless, distinct segments can be observed 1n
sound spectrograms of speech. I will refer to these as ~phonetic
segments” . Phonetic segments correspond to Fant” s (1973:21—23) sound

segments, "the boundaries of which are defined by relative distinct
changes 1n the gpeech wave structure...These boundaries are related to
switching events in the speech production mechanism such as a shift in the
primary sound source, e.g., from voice to noise, or the opening or closing
off of a passage within the vocal cavities, the lateral and nasal pathways
included. Less distinct sound boundaries may be defined from typical

changes in the pattern of formant frequencies."

The purpose of the proposed speech analysis tool 18 to segment speech
automatically 1into phonetic segments, given the underlying lexical string
corresponding to the signal. The proposed tool would also label each
phonetic segment using labels from a finite set of “phones”, or phonetic
segment classes. A reliable analysis tool of this sort would facilitate
large scale statistical studies of speech variation and possibly lead to

improved models of speech variation.




1.1 Approaches to Automatic Segmentation and Labelling of Speech

The automatic segmentation and labelling method investigated relies
on a combination of speech syn&he81s from text and dynamic time warping.
A synthetic utterance corresponding to the given word string is first
synthesized using &a text-to-speech system. The synthetic speech 1s then
temporally aligned with the natural utterance using dynamic time warping.
Assuming the segmentation and labelling of the synthetic utterance are
known, they may be mapped onto the natural utterance wusing the temporal
alignment obtained by dynamic time warping, thus inducing a segmentation
and labelling of the natural utterance. This technique 1is termed

“synthesize-and-warp” .

Many other techniques have been used to segment and label speech
automatically. Since most of these were intended for use in speech
recognition systems, thgy do not assume the underlying string of words is
known. Goldberg (1975) investigates a class of phone-level segmentation
and labelling algorithms which place segmentation boundaries according to
an acoustic change function. Labels are then assigned by computing
distances from the segment to a set of segment templates. Gi1ll et al.
(1978) describe the ZAPDASH segmentation algorithm used 1in the Harpy
speech recognition system. ZAPDASH uses a recursive satrategy, employing
time-domain acoustic parameters. It segments into the following segment
types: silence, unvoiced fricative, aspiration, low amplitude voiced

segment, maximum of the peak +to peak differences of smoothed signal,
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minimum of the peak to ©peak differences of the smoothed si1gnal.
Mermelstein (1975a) proposes a sequential, rule-based approach to phonetic
segmentation and labelling, using acoustic cue detectors. Cohen (1981)
ségments speech wusing Markov modelling, where, a spectral similarity
measure together with statistics on segment duration are used to find the

maximum liklihood set of boundary positions.

Recently, a few experiments have been performed 1in which the
under1§1ng word string or phoneme string of speech to be segmented 1s
known. Sargent and Malcolm (197Q) and Sargent (1982) describe an aid for
the deaf which aligns orthographic syllables with speech syllables. The
method 18 similar to that of Mermelstein (13&%b) in that 1t uses the
energy contour to perform a syllable segmentation. However, Sargent also
uses i1nformation about the expected degree of energy dip between syllable
boundaries of different kinds and about expected voicing during those
dips. Por example, he notes that vowel-liquid-vowel syllable boundaries
have a 0.3 probability of no energy dip, a 0.5 probability of a dip of
less than 10 dB during which voicing 1s maintained, a O.! probability of a

larger than 10 dB dip during which voicing 1s maintained, etc.

Another system for segmenting a known utterance 138 that of Wagner
(1981 ). Wagner’s algorithm first uses the parameters of energy, voicing,
and fundamentéa frequency to segment the utterance into voiced, unvoiced,
and silent segments. Dynamic programming 1s then used to align substrings
of these labels with the given string of phonetic 1labels. Néel et al.

(1983) first locate "stable 1instants” in the speech signal and then use a




dynamic programming algorithm to align these with the known phoneme
string. Each phoneme 1s represented by one or more templates, each
consisting of a single spectrum. The city block (first order Minkovskz )

distance determines the distance between a spectral template and a "stable

instant.”

Segmentation and labelling systems designed to work on a known
utterance can be classified into two groups: those which use a variant of
the top-down synthesize-and-warp technique employed 1n this study (Bridle
and Chamberlain, 1983; Lenni1g, 1983; and Le Saint-Milon and Stellasa,
1983) and those whlch‘uée partially Dbottom-up techniques (Sargent and
Malcolm, 1979; Wagner, 1981; N&el et al., 1983). Applications cited for
segmentation and labelling of a known utterance 1include aids for +the
handicapped (Sargent), training a recognition system (Néel et al.),
creating a dictionary for diphone synthesis (Le Saint-Milon and Stella),
improving quality of synthesized speech (Bridle and Chamberlain), and
generation of a phonetically labelled database (Wagner, Lennig). The

cited studies on segmentation of unknown utterances were directed toward

speech recognition.
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1.2 Assumptions Underlying the Synthesize-and-Warp Technique

The appeal of the synthesize-and-warp technique is that it makes wuse
of Iknowledge already encoded in the text-to-speech system about the
relationship between the underlying phoneme string and the acoustic
signal, requiring no additional source of knowledge. Thug, to the extent
that the synthesized speech 1s an acceptable production of the wunderlying
phoneme string, the differences between synthetic and natural productions
are comparable to the differences between natural productions by different
speakers. Furthermore, aligmment techniques found useful to line up
different natural productions should also suffice to align synthetic
productions to natural productions. However, the following crucial

assuptions must hold if the synthesize-and-warp technique is to produce a

correct segmentation and labelling:

1. The phonemic string underlying the natural utterance corresponds

to that employed by the synthesizer.

2. The synthesizer reproduces the acoustic details of fluent speech
sufficiently accurately to be used as a model in the

synthesize-and-warp procedure.

3. The segmentation of the synthetic speech is correct and reflects

the desired level of analysis.



4. The local distance measure used in the time warping algorithm to
calculate the dissimilarity between speech frames is relatively
sensitive to phonetic differences while being relatively

insensitive to interspeaker differences.

5. The dynamic time warping algorithm adequately compensates for

durational differences between synthetic and natural segments.

The first assumption made by the synthesize-and-warp technique 1is
that the phonemic string underlying the natural utterance corresponds with
that used by the synthesizer. This 1is only roughly the case. The
synthesizer always employs the same lexicon, letter-to-sound rules, and
phonological rules, whereas natural utterances produced by various
speakers differ considerably in dialect, style; and emphasis. Bridle and
Chamberlain (1983) bypass this source of variability, wusing  hand
specification of the phoremic 1input " to the synthesizer, resulting in
enhanced alignment. Because our goal 1s to develop an automatic system
capable of working from text input, no hand specification is performed in

the present study, yielding poorer, but more representative, results.

The second assumption 1s that the synthesized speech be realistic
enough to serve as a reliable model against which to time warp the natural
utterance. Although the gross acoustic features of speech are modelled by
the text-to-speech synthesizer, many less salient features of fluent

speech are not modelled at all. It is immediately obvious when listening
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to the synthetic speech that 1t was not produced by a human speaker. Lack
of accurate reproduction of some aspects of fluent speech may adversely
affect the details of the warp alignment with the natural utterance.
Since the precise alignment 1s crucial to obtaining a correct segmentation
and labelling of the natural utterance, unnaturalness of the synthetic

model 1s a potential source of error in the synthesize-and-warp method.

The third assumption 1s that the implicit segmentation used to
generate the synthetic speech 1s correct. This 1s not necessarily the
cage, since the requirements of the text-to-speech system differ from
those of an analysis system. A finer level of segmentation, corresponding
to phonetic segments, may be desirable for the analysis system, whereas
the synthesizer may use phoneme-size segments. Boundaries between the
synthesizer s segments tend to be defined arbitrarily, while for the
analysis system, 1t 18 desirable for the user to be able to specify

boundary definitions. A solution to this problem 1s proposed 1in Chapt. 3.

A fourth assumption 1s that the local distance measure, used to
calculate the dissimilarity of speech frames, 1s relatively sensitive to
phonetic (interphone) differences while relatively 1nsensitive  to
interspeaker differences. If this assumption does not hold, distances
between similar phones in the natural and synthetic utterances may be
larger than distances between different phones 1n the natural utterance.
This would lead to misalignment 1n the <{ime warping algorithm. The
distance measure used 1n this study 1s known to be sensitive to

interspeaker differences, especially for vowel-like sounds. The 1nabilaity




of the distance measure to distinguish between phonetically relevant and

phonetically irrelevant differences 1s another source of alignment error.

Even if the synthetic phoneme string is correct, phonetic segments of
the natural speech will certainly differ in duration from those of the
synthetic model. The fifth assumption of the synthesize-and-warp method
18 that the dynamic time warping algorithm will adequately compensate for
durational differences between synthetic and natural segments. The
dynamic time warping algorithm wutilizes minimum and maximum slope
constraints and slope penalties to prevent excessive time dilation or
compression, whaile Stl%l allowing needed temporal adjustments. However,
since constraints and penalties are applied uniformly across the time axis
of the speech, they 1gnore wvariability in the elasticity of speech

(Kozhevnikov and Chistovich, 1965), allowing excessive elasticity for

certain events while not enough for others.

The success of the synthesize-and-warp approach is therefore
predicated on at least rough satisfaction of the above assumptions. The
investigations focus on segmentation performance based on these
requirements and 1in turn shed light on the extent that improvements to
speech synthesis and comparison techniques are required before acceptable

segmentation can be attained.
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1.3 Overview of the Present Study

Chapter 2 1s a discussion of preliminary experiments with the
synthesize-and-warp method. The segment 1inventory énd boundaries used
were those defined by the text-to-speech system. This segment 1nventory
and set of ad hoc boundary definitions, although suitable for the
synthesizer, were determined to be unsatisfactory for the generation of a
phonetically labelled database, motivating the development of a rule-based
segmenter for the synthetic speech. The ‘rule-based segmenter, described
in detail 1in Chapt. 3, segments the parameter stre;m used to drive the
terminal analog synthesizer. Because of the regularity of the synthetic
speech and errorless estimates of the acoustic parameters, the rule-based
segmenter is able to achieve precise segmentations of the model synthetic

utterances. The phone 1inventory 1s modified tc suit the needs of a

phonetically labelled database.

Productions of a sentence from four speakers are warped against the
rule- segmented synthetic model in Chapt. 4. This 18 compared with the use
of a hand-segmented natural model. The natural model, while giving
somewhat better segmentation performance than the synthetic model, still
gave rise to a significant number of segmentation errors. This leads to
the conclusion that the contradiction of Assumption 2 (that the
synthesizer produces sufficiently natural speech) 1s not the major source
of error in the synthesize-and-warp procedure. Chapter 4 also addresses

the problem of how to evaluate the correciness of a segmentation, where

10




the required precision in boundary placement depends on the nature of the

boundary 1tself.

Chapter 5 describes the main experiment. The experiment consists of
applying the rule-based segmenter to ten synthetic sentences warp-aligning
the synthetic utterances with natural productions by two speakers. An
analysis of the results indicates that brief segments are less likely to
be correctly segmented than longer segments and that boundaries involving
segments that are acoustically different are more likely to be correctly

segmented than a boundary between acoustically similar phones.

11
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CHAPTER 2: PRELIMINARY EXPERIMENTS USING MITALK SEGMENTATION

The alignment method used in this study requires a segmented and
labelled model utterance. The utterance for which a segmentation and
labelling 1s desired (the test utterance) 1is tlmﬁzwarped against the model
utterance. Segment boundaries and labels are then mapped from the model
utterance onto the test utterance, across the warp path, 1inducing a

segmentation on the test utterance.

In Chapt. 1, five critical assumptions were set forth. Two of these,
Assumptions 2 and 3, are specifically aimed at the quality of the model:
The synthetic speech must be of sufficient quality and the segmentation
and labelling must be correct. Two more, Assumptions 4 and 5, deal with
the fidelity of the alignment procedure, specifically, the sensitivity of
the distance metric and the flexibility of the dynamic time warping
algorithm. Assumption ' addresses the 1ssue of segmental congruence
between the model and wunknown. In this chapter, we examine the
consequences of naively of acg?ptlng the five critical assumptions of

Chapt. 1.

This chapter reports a preliminary experiment employing model

utterances synthesized using the MITalk-79 text-to-speech system [1}.

&

[1] The MITalk-79 text-to-speech system 1s used with permission of MIT.
We have made minor modifications to the original system, i1n particular, by
using a polynomial pulse (Rosenberg, 1971) in place of the original
filtered pulse train.

12
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Appendix A gives the set of ten phonetically balanced sentences (IEEE,
1969) which were used. MITalk-79 takes standard English orthographic
input produces a synthetic speech signal. The first step that MITalk
performs 1s to standardize the text format, spelliné out numbers and
abbreviations. The next few steps convert English orthography to a
phenetic representation expressed in a computer-readable phonetic alphabet
(Appendix B) similar to the ARPABET (Shoup, 1980). Subsequent steps
assign to each phonetic segment a duration and one or two fundamental
frequency targets. A phonetics module uses these segmental and
suprasegmental data to generate one frame of acoustic parameters every 5
ms. The parameters control amplitudes of various types of excitation,
fundamental frequency, formant frequen01e§, bandwid ths, etc., of a

series/parallel terminal analog synthesizer (Klatt, 1980).

The existence of phone durations as input to the phonetics module
implies a nominal segmentatlbn of the synthetic speech. The phonetics
module actually uses these nominal boundaries to provide anchor points
around which to amooth the acoustic parameters. FEach phoneme has a set of
target parameter values, which are affected by its phonological
environment. Different smoothing rules are used depending on the nature
of the segments forming the boundary. Therefore, the segment boundary
locations are not absolute in any sense, but are only meaningful in the
context of the specific targets and smoothing rules used in the phonetics

module.

o o s R 2101
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2.1 Nature of the Segmentation Used in MITalk

Because of 1ts easy availability, the segmentation 1mplicit 1in the
MITalk text-to-speech system was used 1n an 1nitial set of experiments to
test the automatic alignment procedure. In this section, we examine the
properties of this segmentation by looking at spectrograms of synthetic

speech showing locations of MITalk” s implicit phone boundaries.

Figures 2-1 through 2-4 are spectrograms of synthetic productions of
sentences 1 through 4, showing the location of MITalk™ s implicit segment
boundaries. Segments are labelled using MITalk”s phonetic symbols
(Appendix B). The time axis (abscissa) of each spectrogram 1s labelled 1n
units of 5 milliseconds and the frequency axis (ordinate) in Hertz. In
general , the segmentation seems to be a reasonable, phoneme-level

segmentation. Some detalls of the segmentation are as follows:

(i) Stop bursts are sometimes considered part of the stop, as, for
example, 1n the [G] of goose and 1in the [K] of market, of
sentence !, but sometimes partially belon to the stop and
partially to the vowel, as for example in [T AH] of stubborn 1in
Sentence 3.

(ii) Boundaries between vowels and fricatives are somevhat
indeterminate:  in the [UW S] of goose (Fig. 2-1a) the boundary
could just as justifiably be located a few frames to the left in
the riod where formants and frication noise coexist. In
[UV S| MITaelk places the boundary at the end of formarnt
excitation, while in the [AH Z] of was the boundary 1s near the
onget of frication.

(1ii) In the [T S] sequence in brought straight (Fig. 2-1b) the
boundary presumably separates the burst of [TJ from the
frication of S]. Since these are not acoustically
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distinguishable, the location of this boundary reflects only a
convention of the synthesis system and 1s mesaningless from a
speech analysis point of view.

(iv) Liquid-vowel and glide-vowel boundaries are placed in such a way
that most all of the transitional portion 1s identified with the
vowel. Examples are [w AH] in was, [R AO] in brpught, and
[R EYJ in straight,

(v) An 1indeterminacy exists &t vowel-vowel boundaries, such as
[IY oW] 1n the old (Fig. 2-1c). In this example, the boundar
is placed so that the entire transition is included 1in the [OW
segment .

1

|

Similar phendmena are observed in the MITalk segmentations of the other

sentences.

2.2 Segmentation of Natural Speech: Preliminary Experiment

Sentences 1 through 10 were spoken by the author (speaker ML) and
time-aligned with their aynthetic counterparts using & symmetric,
unconstrained, decimated-grid dynamic time warping algorithm (Hunt,
Lennig, and Mermelstein, 1983). Cost penalties were imposed for vertical
and horizontal transitions of one half the destination 1local distance.
The resulting warp path was used to map the MITalk segmentation of the
synthetic utterance onto the natural utterance, inducing a segmentation of
the latter. Induced segmentations in natural sentences ! through 10 are
shown in Figs. 2-5 through 2-14. As 1n the previous figures, the time

aris (abscissa) of each spectrogram is labelled in units of 5 milliseconds
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and the frequency axis 1in Hertz.

One of the difficulties encountered in this preliminary experiment
was the evaluation of segmentation results. Examination of Figs. 2-5
through 2-14 indicates that while most segmentation boundaries can be
eas1ly classified as correct or incorrect, there also exist a large number
whose status 1s questionable. Some boundaries are obviously misplaced and
can be readily identified as gross errors; others are almost right, but
not exactly where this author would have placed them. Most boundaries
appear correct. In Fig. 2-5a, for example, the [G] of goose 1s segmented
correctly. As in the model utterance (Flg. 2-1a), the burst is considered
as part of the [G]. Vowel transitions, on the other hand, are considered
part of the following vowel, as 1n the model. The [W AH] boundary in was
occurs slightly wearlier than we would have preferred: The automatic
segmentation indicates a completely voiceless [W]. This 1s the kind of
minor error that 1s difficult to evaluate: Should the [W AHJ boundary be

considered correct or incorrect”
%

Certain types of errors are serious enough that there can be no doubt
that a segmentation 1s wrong. This type of gross error occurs sentence 2

(Fig. 2-6b) in the [NG IH N WH IH] of thing 1n which. Here the [NG] 1s

extremely short and [IH} begina where [NG] should. From about halfway
through the actual [NG] to the end of [NG], the [N] label 1s attributed.
The {VH] label is incorrectly applied to the actual [IH] of which. The
[IH] label of which is 1incorrectly applied to the actual sequence

[N WH IH]. The alignment appears to have become desychronized, causing

16



gross errors in several consecutive segments. At [CH] of which the

segmenter regains synchronization, although 1t still places the [SH W]

boundary of which we too far to the left. (Note that [SH] 1s the
-

fricative part of the final affricate of the word which.)

2.3 Segmentation Errors

Gross errors 1involving desynchronization occurred 1in the following

sentences:

Sent. 2: [NG IH N WH IH] thing 1n which (Fig. 2-6b)
Sent. 3: [AXWH IN F AX V] a whiff of (Pig. 2-7a)
Sent. 6: [ER SIL W AX Z] cruiser wag (Fig. 2-10b,c)
Sent. 8: [DHAX L A0 T K] the lost cause (Pig. 2-12¢,d)
Sent. 10: [N DH IH] ) on_this (Fig, 2-14b)

The frequent occurrence of desynchronization errors 1s cause for some
concern. However, we will see in Chapt. 4 that many gross errors of type

can be eliminated by the use of local slope constraints on the warp path.

Several other minor errors occurred, affecting only individual
segment boundaries. Boundary errors other than desynchronization errors
are listed below. Doubtful cases have been omitted so that only clear

errors are included below:
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Sent. 2: |[S IH s1nk slightly early (Fig. 2-6a)
SH W which we much too early (Fig. 2-6b)
Sent. 3: [KP Y] cure late (Fig. 2-7b)
DH AX] ‘the early (Fig. 2-7b)
M OW] Tmost slightly early (Fig. 2-7b)
T S] most stubborn early (Fig. 2-7¢)
ER N] stubbozg early (Fig. 2-Tc)
Sent. 4: |AX F the facts late (Fig. 2-8a)
F AE] facts much too late (Fig. 2-8a)
T S] facts late (Pig. 2-8a)
Sent. 5: [D Z] parades late (F1g. 2-94d)
Sent. 6: {Ax F] the fleet late (Fig. 2-10d)
F L] fleet early (Fig. 2-10d)
Sent. 7: [F T] left late (Fig. 2-11¢)
Sent. 9: [P R] spring late (Fig. 2-13c)
IH NG] spring late (Fig. 2-13c,d)
R AE] grass early (Fig. 2-13d)
Sent.10: [P OW] post early (Fig. 2-14a)

In the above list of errors, I have only listed boundaries which I
consider to be indisputably incorrect: doubtful cases have been omitted.

For example, the [T S] boundary of brought straight in sentence ! appears

to be too late: the algorithm has considered a portion of the [S} as the
stop burst, but that portion appears too long. Since we have not defined
any precise criteria for judging whether or not this transcription 1is

cqorrect, we have not listed 1t above as an error.




Rt o SIS IC T T T T I

Some errors are much larger, in terms of number of frames, than
others. For example, the [S IH] boundary of sink (sentence 2) is only
about two frames too early. The reason we are able to 1list this as an
error is that the [S IH] boundary 1s sharply defined by the onset of
voicing. An example of a segmentation which we were tempted to classify
as 1ncorrect but did not 1s the [R AY] boundary of right in sentence 4.
It seems about five frames too early. However, unless we define more
precisely where liquid-vowel boundaries should be placed, we cannot

Justify classifying this as an error.

-

2.4 Discussion of the Preliminary Experiment

Several conclusions were drawn from the preliminary experiment
described above which guided the subsequent course of this work. The
discussion is divided 1nto two sections. The first section discusses the
segmentation of the synthetic model sentences themselves. The second

section focusses on the segmentation induced on the natural sentences.
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2.4.1 Implicit segmentation of the synthetic model

Examining the implicit segmentation of the synthetic sentences (Figs.
2-1 through 2-4), it was noted that the synthesizer s analysis, although
plausible, does not necessarily reflect the level of segmentation or the
segmentation conventions required for a particular kind of phonetic
analysis. For example, in words 1like market (Fig. 2-1d), [AXRJ 1s
considered to be a single segment. Certain kinds of analyses may wish to
separate this sequence 1into two segments. Similarly, for certain
applications, 1t may be desirable to consider diphthongs as two segments
rather than one. Our first conclusion is, therefore, that in order to
employ the segmenter for a wide variety of tasks, the user must be able to
control the level of segmentation. This is not possible if the
synthesizer’s segmentation is adopted directly. In other words,
Assumption 3 (Chapt. 1) may not hold: the model”s segmentation does not

necessarily reflect the desired level of analysis.

Boundary positions in the synthesizer s segmentation are defined not
by theoretical considerations of sgpeech analysis but by the need to
provide a convenient framework for the generation of acoustic parameters.
This 1leads to a lack of consistency in the placement of certain
segmentation boundaries from the point of view of phonetic analysis. For
example, while the stop burst is normally considered part of the stop, as
in [G] of goose (Fig. 2-1a), it is occasionally segmented as if it were

part of the following segment, e.g., [B] of brought (Fig. 2-1b). The
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placement of certain boundaries in the synthetic model, although not
incorrect by any objective criterion, seemed arbitrarily skewed. This was
particulary noticable between sonorant segments (see items (iv) and (v) in

Section 2.1).

Since, from the point of view of an analysis system, the model itself
18 sometimes incorrect in its segmentation, one cannot expect consistency
in the segmentation of natural speech. In other words, Assumption 3 of
Chapt. ! does not hold. Chapt. 3 describes a rule-based system for the
segmentation of the synthetic model. This system is found to produce a
segmentation for which Assumption 3 holds. In addition, the proposed
rul e-based system allows the experimenter to specify segment boundary

definitions and to specify the level of segmentation desired.

2.4.2 Induced segmentation of the natural utterance

An important insight gained in this preliminary experiment from the
evaluation of automatic segmentation of mnatural utterances is an
appreciation of the difficulty of such an evaluation. As noted above in
Section 2.2, sambiguities, indeterminacies, and inconsistencies make
reliable evaluation problematic. Quantitative scoring is necessary in
order to choose among various segmentation procedures. However, as noted
in Section 2.3, one segmentation error of two or three frames may be more

serious from a phonetic analysis point of view than another segmentation
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erro; of five or ten frames. For example, 1f an automatically segmented
database is used toc study the spectra of stop bursts, which have a
durations of the order of ten milliseconds, then a boundary placement
error of the same magnitude would severly distort the results. On the
other hand, an error of ten milliseconds in the position of a boundary
between a liquid and a vowel 1s benign since the transition between these
segments 18 continuous and relatively long. These considerations argue
against a quantitative error criterion based purely on deviation from a

given norm. In Chapt. 4, we propose a solution to the evaluation problem.

Although the majority of the segment boundaries are correct, the
segmentation results are 1insufficiently reliable: Nine out of ten
sentences contain at least one segmentation error. The errors are
attributable to the fact that none of the five critical assumptions

discussed in Chapt. 1 holds completely.

\
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CHAPTER 3: THE RULE-BASED SEGMENTER

One source of segmentation error 1in the preliminary experiment
described 1in Chapt. 2 was the model segmentation i1tself: The implicit
segmentation used for synthesis does not satisfy Assumption 3. In this
chapter, a rule-based system 1s described for segmenting the synthetic
model. The rule-based segmenter allows the user to define the rules used
for segmenting the synthetic model. These rules are defined in terms of
the stream of acoustic parameter frames which drive the terminal analog

synthesizer. The resulting segmentation satisfies Assumption 3.

A disadvantage of the automatic segmentation system used for the
preliminary experiment described in Chapt. 2 1is that the 1level of
segmentation produced by the system cannot be controlled by the user. Ag
described 1in Section 2.4.1, the user has no choice but to consider
vovel*[r] sequences, diphthongs, and stops as indivisible segments. One
of the purposes of the rule-based segmenter described in this chaptér is
to free the user of boundary definition constraints imposed by the
text-to-speech synthesis system, allowing him to define 4a level of

segmentation appropriate to his purpose.

Of course, it would be preferable to apply the rule-based segmenter
directly to the natural speech. This would eliminate the additional
computation and error associated with the dynamic time warping step.
However, designing a rule-based segmenter to perform successfully on

natural speech is a significantly more difficult task. Three factors
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account for the 1increased difficulfy. First, estimating acoustic
parameters from the natural speech upon which to base segmentation rules
is an 1inherently errorful procedure, whereas in the case of synthetic
speech exact parameter values are obtained from an 1ntermediate step in
the synthesis algorithm. Secondly, many secondary cues are absent from
synthetic speech which makes it easier to segment based on primary cues.
Finally, although synthetic speech models phonologically conditioned
variability 1t does so in a deterministic manner; thus, for the same
lnput sentence, 1t always gives the same output. Nevertheless, the
segmentation of synthetic speech provides useful insights for the direct
rule-based segmentation of natural speech. Direct rule-based segmentation

.

will be the focus of future work.

This chapter 1s nrganized in five parts. In Sect. 3.1, we define a
notational device: a computer phonetic alphabet more flexible than the
widely used ARPABET. In Sect. 3.2 we describe the functional structure of
the rule-based segmenter and 1ts various components. Section 3.3
describes the set of rules we have implemented, 1ncluding the level of
segmentation chosen and the segmentation rules themselves. Section 3.4
gives results of applying the rule-based segmenter to a set of synthetic
model sentences. Finally, Sect. 3.5 discusses rule-based segmentation
from a general point of view and speculates as to its applicability to

natural speech.
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3.1 Machine-readible phonetic alphabet

We have devised a computer-readable phonetic alphabet (CPA) that is
designed to resemble the International Phonetic Alphabet (IPA) as closely
as possible. CPA can be used with consistency for both English and French
transcription. With certain extensions, CPA can be adapted for use with
other languages. Table 3-1 lists the CPA symbols used 1in this study,
together with their IPA equivalents and keywords 1llustrating their use in
English. For a complete list, including the additional symbols necessary
for transcribing French, see Lennig and Brassard (in preparation).

]

’

3.2 Functional Structure of the Rule-Based Segmenter

The rule-based segmenter consists of four coﬁponents:

I. Determination of segment label sequence
II. Application of phonological rules
II1. Determination of locally determinable boundaries

IV, Determination of other boundaries.

These four components are applied in sequence to the synthetic utterance

to produce a segmentation of it.
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TABLE 3-1. CPA symbols used in this study.

CPA keyword IPA CPA KEYWORD IPA
[i cream (1 :n] nip bn%
1) bt 1 [&7]  sing 0.
L e bait e £ foe L f
LB bet L€ LV very .VJ
@ ﬁét |2 | T thin 18
LA father a D ‘they 3]
L” but LA 5] sit 9]
Lu boot Lu | 2] zip | Z |
L-U fEt LY .S- Q.Ute »J.-
L O boat e _Z’ vision L3,
1 0 caught L2 Ry hat Lh)
| * synthesize Lo L P) pat P
L a) by | Q) | b) bond _b1
L aw cow | aw |t tea Lt
?O boy | 2J L d) dip L d]
L J yank L J | k cake _kﬁ
W wick W _g} g1ve | 8
_hw] Ehlch _hw] LtSJ cheek _tj]
L1 lap L1 L dZ jeep Ld3
r rap T L_J 4%silence)

[m map L m

(SILENCE: appended to stop to indicate closure portion)
' ( BURST: appended to stop symbol to indicate burst portion)

Component I 18 a set of rules for determining the sequence of segment
labels to be associated with the synthetic utterance. In the preliminary
experiment in Chapt. 2, the ARPAbet representgkion internal to MITalk was
used directly as the segment label sequence. Flexibility is gained by
allowing the user to specify a set of rules to apply either to the MITalk
representation or to the original word string to determine the string of

symbols that will be aligned with the synthetic speech signal. Since we
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are 1nterested in a phonetic segmentation in this study, we use the
ARPAbet representation 48 input to component I. A set of rules, described
in Sect. 3.3, are applied to this MITalk representation to derive a CPA
representation. The CPA representation is not a simple one-for-one
translation of the MITalk transcription: CPA and MITalk representations

use different levels of segmentation.

Component II involves the application of phonological rules to the
output of component I. Phonological rules delete and insert segments in
the segment label sequence based upon segmental context. The output of
component II is a modified segment label sequence. It is the actual
sequence of segments that will be 1located 1n the synthetic model

utterance.

Component III takes as input both the segment label sequence produced
by component II and the sequence of parameter frames produced by the
text-to-speech system. The purpose of component III 1s to locate segment
boundaries which are determinable from logical predicates defined on the
acousgtic parameters of two or three consecutive parameter frames. For

example, the predicate large-bandwidth~change is true iff the sum of the

absolute di1fferences in formant bandwidths between the preceding and
current frames 18 greater than a fixed threshhold. Component III is a
finite state machine in which states represent classes of segments and

predicates are associated with transitioms.
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Certain kinds of boundaries cannot be determined locally, that 1s, by
predicates on two or three parameter frames. For example, the boundary
betweeen two vowels is not characterized by a well defined acoustic event.
Nonetheless, we may wish to define vowel-vowel boundaries at some agreed
upon place, such as at the frequency midpoint of a formant transition. In
order to locate such a boundary, 1t may be necessary to know first where
the second vowel ends. The purpose of component IV 1s find boundaries
which are not locally determinable but depend on the locations of exterior
anchor points. When component III encounters a segment transition for
which 1t has no segmentation rule 1t degérs boundary placement and
continues searching for the next locally segmentable boundary. When the
latter boundary 1s found, the deferred sequence, containing two or more
non-locally segmentable labels, 13 passed to component IV along with its
endpoints. Component IV applies global rules which search for minima and
maxima of parameters to determine segment boundaries within the sequence.
Finally, 1f no rules are available in component IV to segment a particular
sequence of two segments, the sequence 1s arbitrarily davided at 1its

temporal midpoint and a warning message 1s printed.
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3.3 Segmentation Level and Rules Used in the Present Study

The previous section described the functional structure of the
rule-based gegmenter. We now turn our attention to the specific
segmentation rules used 1n the present study. We first present the level
of segmentation we have chosen. This 18 determined by the rules in
component I. The phonological rules of 1n component II are then
presented. Next, rules governing the placement of locally determinable
boundaries are discussed. Finally, we discuss rules governing the

placement of non-locally determinable boundaries.

3.3.1 Level of segmentation

<

The level of segmentation we have chosen uses somewhat smaller
segments than the implicit segmentation used by MITalk. Stops are
segmented into two parts: the stoi closure and the stop burst;
vowel + [r] sequences are segmented as two units rather than as a single

unit as 1s done in MITalk; the phoneme [hw] is described as two segments,

whereas MITalk uses a single segment.

Component I consists of the rules given in Table 3-2, which are used
to translate from a MITalk phonetic transcription into a phonetic label
sequence. Most of the rules are a simple translation from the

ARPAbet-1like transcription of MITalk into CPA, however, several rules
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1involve more than Just a one-for-ome substitution of symbols.

on the lef

contain either one or two segment labels.

MITalk symbol 1s mapped into the same CPA symbol.

t

side

of rules represent single segments.

In a few cases, more

All symbols

Output sequences

than

o]

ne

TABLE 3-2., Component I: Rules used in component I to determine level of
segmentation.
WH ---> h w IXR  --=> 1r Y -—=> J
SIL ===> ER ---> r YY --=> J
IY ---> a1 EXR ---> Er W --=> v
IX ---> I AXR ---> A'r L -——> 1
IH ---> I OkKR ---> O r LX -—=> 1
EY ---> e UXR ---> ur R --=> r
EH ---> E v --=> v RX -—-> r
AE ---> @ DH --=> D H -~-=> h
AY -—=> a) Z -—=> z P -—-=> P
AW  ---> aw GP  --=> g T -—=> t
AA --=> A G -—=> g CH -—=> tS
AH ---> ° ZH  --=> Z TQ -—=> t
AX  ---> F ---> f KP -—=> k
AXP ---> h ™ ---> T K -—=> k
AO ---> 0 S -—=> 8 Q -—=> k
oY --=> 03 SH ---> 8 B -—=> b
oW ---> o M --=> m D -—=> d
OH --=> 0 N --=> n DX -—-> d
UWw  -==> NG ---> g HX -—<> h
YU --=> ju EM ---> m J -—=> Z
UH --=> U EN ---> n
The rules listed above are applied by component I. Even though we

defined the

level

of segmentation to include separate segments for stop

closure and stop burst, the distinction does not appear in the
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tond

the rules given 1in Table 3-2. These will be inserted by the phonological

component, which 1s described i1n the next section.

3.3.2 Phonological rules

The phonological component presently implemented contains only two
rules: stop burst insertion, which translates stop consonants 1nto a stop
closure followed by a stop burst, and stop burst deletion, which deletes

stop bursts before sibilants, nasals, and stops. The rules of component

IT are listed below in Table 3-3.

TABLE 3-3l Component II: Phonological rules of burst insertion and burst

deletion.
Burst insertion rules:
P == p_ p!
t ---> t_ !
k -—-> k k'
b _——— b b!
d -———> d 4a'
g --=> g_ g

Burst deletion rule:

Delete any of the following: p! t! k! b 4! g',
before any of the following: 8Sz2Zmnng p t k b d g

3
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Table 3-4 1llustrates the application of three processes described
above to the text 1input of sentences ! through 10. First, the text 1s
transiated by the MITalk letter-to-sound conversion rules 1into MITalk
phonetic symbols. The MITalk representation serves as input to component
I, which translates it into a CPA transcription of the desired level.
Finally, «component II applies phonological rules of burst insertion and
burst deletion to the output of component I to yield the final segment

label sequence to be used for automatic alignment.

TABLE 3-4. Result of applying MITalk letter-to-sound rules to input text;
CPA transcription resulting from applying component I to
MITalk output; effect on CPA transcription of applying burst
insertion and burst deletion rules (component II).

Sentence 1

text: The goose was brought straight from the old market.

MITalk: SIL DH AX G UN S W AHZ BRAOTSTREYTPFRAXM DH IY OW
LX DM AXR K AX T AXP SIL

comp. I _D*gusw zbrOtstretfr®*mDidldmArk
* tn

comp. II: _D®*g g usw zb B rot st thret t' fr*m

Diold mArk k!#® ¢t t'nh
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text:

MITalk:

comp. I:

comp. II:

text:

MITalk:

Comp. I:

comp. II:

text:

MITalk:

comp. I:

comp. II:

"

Sentence 2
The sink i1s the thing in which we pile dishes.

SIL DH AX S IH NG K IH Z DH AX TH IH NG IH N WH IH CH SH ¥ IY
P AY LX D IH SH IH Z SIL

_D*sIg kIzD*TIg InhwItSwipajldIs
I z

Ig "k k" Iz2D*TIg InhwlIt Swip p'ay
ISIz=z

_D*s
Td d

Sentence 3

A whiff of it will cure the most stubborn cold.

SIL AX WH IH F AXV IKH TQ W IH LX KP YY UXR DH AX M OW S T S
T AH B ER N K OW LX D AXP SIL

_*hwlf*vItwIlkjurD®*mostst brnko
1dh

_*hwIf*vIt t'wIlIlk k! jurD®*most st
t' "b_b' rmk_k'old 4" h_

Sentence 4
The facts don“t always show who is right.

SIL DH AX F AE KT S DOW N TQ AO LX W EY Z SH OW HX UW IH Z
R AY T AXP SIL

_D*f@ktsdontOlwezSohulzrajth_

_D*f@k t sd d'ont_ t'OlwezSohulzraj
t t'h
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text:

MITalk:

comp. I:

-

comp. II:

text:

MITalk:

comp. I:

comp. II:

text:

MITalk:

comp. I:

comp., II:

Sentence 5
She flaps her cape as she parades the street.

SILSH IYF L AEP S HER KP EY PAE Z SH IY P AX R EY DZ DH
AX S T RIY T AXP

_S1fl@pshrkep@zS1p*redzD*"strith

it t'h

S i
38

ifl@p shrk k' ep p'@zSip p'*red 20D
t t'r

k3

Sentence 6
The loss of the cruiser was a blow to the fleet.

SIL DH AX L AO S AX V DH AX K R UW Z ER SIL W AH Z AX B L OW
T AX DH AX F L IY T AXP SIL

_D*10s*vD*kruzr_ w z®* blot®*®D*f 11t

h—
_D*10s*vD®k k'Tuzr v “z*b b lot tr*
D*f 11t tth_

Sentence 7

Loop the braid to the left and then over.

SILLUWPDH AXEREY DT AX DK AX L EH F T AXP SIL AE N DH
EH N OW V ER SIL

_lupD*bredt®*D®1Efth_@nDEnovr_

_ ‘p! D*b b red t t!' *D*1Eft t'h_ @n

lu
DEn

P
ovr
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Sentence 8

text: Plead with the lawyer to drop the lost cause.

MITalk: SILPLIYDWIH THDH AX L AOYY ER T AX DR AA P DH AX L
AO ST K AO Z SIL

comp. I: _plidwITD*10)rt*drApD*10stkOz_

com.p.II: p pli1d d'" wITD*103r¢t t' *d d"rAp p!'D

#¥10st k k' 0z _

Sentence 9

text: Calves thrive on tender spring grass.

MITalk: SILKP AEVZ TH RAYV AONTEHNDERSPRIHNGGR AE S
STL

comp. I: _k@vzTra)vOntEndrsprlIg gr@és_

ouput: _k k"@vzTrajvoOoOnt t'"End d' ' rsp p'rlIg
g &' r@ s

Sentence 10

text: Post no bills on this office wall.

MITalk: SILPOW S TNOW BIHULX Z AC NDH IH S AO F AX S W A0 LX
SIL

comp. I: _postnobIlzO0OnDIsOf®* swOl

comp. II: _p plost nobd B I112z20nDIsOf®swOl
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3.3.3 Placement of logally determinable boundaries

Many boundaries can be determined by observing locally definable

events 1n the parameter stream. By locally definable events, we mean
boolean-valued functions of at most three consecutive parameter frames:
the preceding frame, the current frame, and the following frame.

Boundaries which are not locally determinable will be discussed 1in

Sect. %.3.4.

Segments are classified into 16 acoustic categories. Associated with
each possible transition from one category to another 18 an event expected

1n the parameter stream. For those category transitions whose boundaries

are not locally determinable, the event is simply specified as deferred.

Table 3-5 shows the 16 acoustic categories and their member segments.

i .
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TABLE 3-5. Acoustic category definitions
*—

CATEGORY NAME MEMBER SEGMENTS

silence

vowel

voiced-sibilant
voiced-nonsibilant
voiceless-sibilant
voiceless-~nonsibilant
nasal

glide

liquid
voiceless-aspirate
voiceless-stop
voiced-stop
voiced-stop-closure
voiced-stop-burst
volceless-stop-closure
voiceless-stop-burst
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Application of the locally determinable segmentation rules can be
thought of as a finite state machine in which each segmental category
corresponds to a state. Symbols on arcs, which the finite state machine
must consume to make a transition, are locally determinable events in the
parameter stream. A special event, deferred, causes a transition to occur
immediately with no segmentation boundary being generated. The boundary
will be located by a subsequent process which is allowed to make use of
global patterns. Deferred segmentation is treated 1in detail in

Sect. 3.3.4.
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Table 3-6 gives the'12O rules for performing locally determinable
segmentation. Each rule 1s specified by giving 1ts state of origin, which
corresponds to the current segmental category, 1ts destination state,
which corresponds to the segmental category of the next segment in the
input string, and the acoustic event required by the rule. Definitions of

the acoustic events themselves are given in Table 3-7.

Rules were determined 1n a heuristic manner. They result in a
correct segmentation of the ten phonetically balanced sentences used in
this study, but are not guaranteed to work on new material. It 1s
expected that 1f segmentation of a significant quantity of new material
were attempted, a small number of additions or modifications to the rules

would be required.

TABLE 3-6. Component III: Rules used for locally determinable
segmentation of synthetic speech.

TRANSITION EVENT (see Table 3-7)
vowel --> vowel deferred
vowel --> 1liquid deferred
vowel --> glide deferred
vowel --> nasal large-bandwid th-change
vowel --> voiceless-sibilant av-->0
vowel --> voiceless-nonsibilant av+ave--><45
vowel --> voiceless-aspirate source-->aperiodic
vowel --> voiced-sibilant source-->aperiodic
vowel --> voiced-nonsibilant source-->very-aperiodic
vowel --> voiced-stop-closure av-->0
vowel --> voiceless-stop-closure av-->0
vowel --> glide source-->aperiodic
vowel --> silence av+af+ah+avce~--><30
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liquid --> wvowel deferred
liquid --> 1liquad deferred
liquid --> glade deferred
liquid --> nasal large-bandwid th-change
liquad --> voiced-sibilant source-->aperiodic
liquid =--> wvoiced-nonsibilant source-->very-aperiodic
liquid =--> voiceless-sibilant source-->aperiodic
liquid --> voiceless-nonsibilant source-->aperiodic
liquid --> voiceless-aspirate av--><35
liquid --> voiced-stop-closure av-->0
liquid --> voiceless-stop-closure av-->0
liquid --> silence av+af+ah+avc--><30
glide --> vowel deferred
glide --> 1liquad deferred
glide --> glide deferred
glide --> silence av+af+ahtave--><30
nasal --> vowel large-bandwidth-change-delayed
nasal --> liquid large-bandwid th-change
nasal --> glide large-bandwid th-change
nasal --> volceless-stop-closure av--><35
nasal --> voliced-stop-closure av--><35
nasal --> voiced-sibilant large-bandwidth-change
nasal --> voiced-nonsibilant large-bandwid th-change
nasal --> voiceless-sgibilant large-bandwid th-change
nasal --> voiceless-nonsibilant large-bandwidth-change
nasal --> voiceless-aspirate large-bandwid th-change-delayed
nasal --> silence av+af+ah+avc--><30
voiced-sibilant --> vowel source-->periodic
voiced-sibilant --> voiced-nonsibilant avc-->>50
voiced-sibilant --> voiceless-sibilant av-->0
voiced-sibilant --> voiceless-nonsibilant av-->0
voiced-sibilant --> voiced-stop-closure av=->0
voiced-sibilant --> voiceless-stop-closure av-~>0
voiced-sibilant --> silence ' av+af+ah--><40
voiceless-sibilant --> 1liquid av-->positive
voiceless-gsibilant --> vowel av-->posgitive
voiceless-sibilant --> glide av+avc> af+ah
voiceless-sibilant --> nasal av-->positive

voiceless-sibilant
voiceless-asibilant
voiceless~-sibilant
voiceless-sibilant
voiceless-sibilant
voiceless-sibilant

--> voiced-sibilant

--> voiced-nonsibilant

--> voiceless-stop-closure
-=-> voiced-stop-closure
-=-> voiceless-aspirate

--> sgilence

39

av-->positive
av-->positive
af+ah> 20-->af+ah=0
af+ah>20-->af+ah=0
af> ah-->af<ah
av+af+ah+ave--><30
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voiced-nonsibilant
voiced-nonsibilant
voiced-nonsibilant
voiced-nonsibilant
voiced-nonsibilant
voiced-nonsibilant
voiced-nonsibilant
voiced-nonsibilant

voiceless-nonsibilant
voiceless-nonsibilant
voiceless-nonsibilant
voiceless-nonsibilant
voiceless-nongibilant
voiceless-nonsibilant
voiceless-nonsibilant
voiceless-nonsibilant
voiceless-nonsibilant

voiced-stop-closure --
voiced-stop-closure --
voiced~stop-closure --
volced-stop-closure --
voiced-stop-closure --
voiced-stop-closure --
voiced-stop-closure --

voiceless-stop-closure
voiceless-stop-closure
voiceless-stop-closure
voiceless-stop-closure
voiceless-stop-closure
voiceless-stop-closure
voiceless-stop-closure
voiceless-stop~-closure

voiced-stop-burst -->
voiced - stop-burst -->
voiced-stop-burst -->
voiced-stop-burst -->
voiced -~ stop-burst -->
voiced-stop-burst -->
voiced-stop-burst -->
voiced-stop-burst -->
voiced-stop-burst -->

vowel

liquid

nasal

voiced-sibilant
voiced-nonsibilant
voiced-stop-closure
voiceless-stop-closure
silence

-
-=>
-
-
-
-
-
-
-

liquid

vowel

glide

nasal

voiced-gibilant
voiced-nonsibilant
voiceless-stop-closure
voiced-stop-closure
silence

> nasal

> voiced-sibilant

> voiceless-sibilant

> voiceless-stop-closure
> voiced-stop-closure

> anything

> silence

--> nasal

--> voiceless-sibilant
--> voiceless-nonsibilant
--> voiced-sibilant

~-> volceless-stop-closure
--> voiced-stop-closure
--> anything

--> silence

vowel

glide

liquad

nasal

voiced-nonsibilant
voiced-stop-closure
voiceless-stop-closure
voiceless-aspirate
silence

40

source-->periodic
source-->periodic
source-->periodic
deferred

deferred
av-->0
av-->0

av+af+ah--><40

av-->positive
av-->positive
av+ave> af+ah
av-->positive
av-->positive
av-->positive
af+ah>20-->af+ah=0
af+ah>20-->af+ah=0
av+af+ah+avc--><30

av-->positive
af=0-->af>40
af=0-->af>40
deferred

deferred
af=0-=->af 40
av+af+ah+ave--><3%0

av-->positive
af=0-->afM40
af=0-->af>40
af=Q-->af>40
deferred

deferred
af=0-->af>40
av+af+ah+avc--><30

af>40-->af=0
av-->positive
af>40~-->af=0
af>40-->af=0
av-->posgitive
af>40-->af=0
af>40-->af=0
af>40-->af=0
av+af+ah+avc--><30
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voiceless-stop-burst --> vowel af>40-->af=0
voiceless-stop-burst --> liquad af>40-->af=0
voiceless-stop-burst --> glide af>40-->af=0
voiceless-stop-burst --> nasal af>40-->af=0
voiceless-stop-burst --> voiced-nonsibilant av-=->positive
voiceless- stop-burst --> voiceless-nonsibilant ab-->positive
voiceless- stop-burst --> voiceless-aspirate af>40~->af=0
voiceless- stop-burst --> voiced-stop-closure af>40-->af=0
voiceless-stop-burst --> voiceless-stop-closure * af40-->af=0
voiceless—stop-burst --> sgilence av+af+ah+avc--><30
voiceless-aspirate --> vowel source-->periodic
voiceless-aspirate --> 1liquad source-->periodic
voiceless-aspirate --> glide source-->periodic
volceless—aspirate --> gilence av+af+ah+avc--><30
silence --> vowel av-~->pogitive
si1lence --> 1liquid av-->posgitive
silence --> glide av-->positive
silence --> nasal av-~>pogitive
gilence --> voiced-sibilant av-->pogitive
silence --> voiced-nonsibilant av-->posgitive
silence --> voiceleas-sibilant af+ah<{50-->af+ah>50
silence --> voiceless-nonsibilant af=0-->af>40

Table 3-7 defines the acoustic events used in the rules defined in
Table 3-6. BEvent definitions are i1in terms of the acoustic parameters used
to control MITalk”s terminal analog synthesizer (Klatt, 1980). Acoustic
events are boolean-valued functions defined on the acoustic parameters of
the synthesizer. Numerical values associated with amplitude parameters L

(av, ab, af, ah, avc) are in decibel units.

41



TABLE 3-7. Definitions of acoustic events used 1n local segmentation
rules.

ab-->positive
Amplitude of bypass in previcus frame was zero and in current frame 1s
greater than zero.

af> ah-->af<ah
In the current frame, amplitude 6f frication 1s greater than amplitude
of aspiration, while in the next frame amplitude of frication 1s less
than or equal to amplitude of aspiration.

af>40-->af=0
Amplitude of frication 1n previous frame was greater than 40 and
amplitude of frication 1n current frame 1s zero.

af=0-->af>40
Amplitude of frication 1n the current frame 1s zero and in next frame 1s
greater than 40.

af+ah>20-->af+ah=0
Sum of amplitudes of frication and aspiration in the current frame is
greater that 20 and in next frame 1s zero.

af+ah<50-->af+ah>50 . \.
Sum of amplitudes of frication and aspiration in the current frame is
less than 50 and 1in next frame 1s greater than or equal to 50.

av-->0
Amplitude of voicing in previous frame was positive and in current frame
is zero.

av--><{35
Amplitude of voicing in current frame is greater than or equal to 35 and
in next frame is less than 35.

L3
av-->positive

Amplitude of voicing in current frame is zero and in following frame is
greater than zero.

av+af+ah-~><40

Sum of the amplitudes of voicing, frication, and aspiration in current
frame is greater than or equal to 40 and in next frame is less than 40.
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av+af+ah+ave--><30
Sum of the amplitudes of voicing, frication, aspiration, and sinusoidal
voicing in current frame is greater than or equal to 30 and in the next
frame is less than 30.

av+avc--><{45
Sum of the amplitudes of voicing and sinusoidal voicing 1in current frame
18 greater than or equal to 45 and in the next frame 1s less than 45.

av+ave> af+ah
In the current frame the periodic excitation (voicing plus sinusoidal
voicing) is less than or equal to 45 while in the next frame periodic
excitation 1s less than or equal to 45.

ave-->>50
Amplitude of sinuosoidal voicing 1n the current frame 1s less than or
equal to 50, while 1n the next frame 1t 1s greater than 50.

deferred
This 18 not an acoustic event, but rather a signal to defer the boundary
placement decision to the next stage of processing, discuassed in
Sect. 3.3.4.

large-bandwid th-change
The sum of the absolute differences in the bandwidths of formants one
through three between the current frame and the next frame exceeds 50.

large-bandwid th-change-delayed
This event 1s true one frame after large-bandwidth-change is true, i.e.,
when the sum of the absolute bandwidths differences betweent the
previous and current frames exceeds 50.

source-->aperiodic N
The sum of the amplitudes of frication and aspiration 1s greater than or
equal to the amplitude of voicing for this frame and less than the
amplitude of voicing for the next frame.

source-->periodic ’ :
The sum of the amplitudes of frication and aspiration is less than the
amplitude of voicing for this frame and greater than or equal to the
amplitude of voicing for the next frame.

i e

source-->very-aperiodic
The sum of the amplitudes of frication and aspiration is less than 10
plus the amplitude of voicing for this frame and is greater than or
equal to 10 plus the amplitude of voicing for the next frame.
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We now describe the operation of component III, which performs
locally determinable segmentation using the rules in Table -6 and the
acoustic events 1n Table 3-7. Sentence ! serves as an illustration. At
each stage of segmentation, the state of the segmenter 1s represented as
three lists. The input list contains the list of segment labels to Dbe
associated with the input sentence. The current list contains the item(s)
currently being segmented. The output list contains segmentation labels
with their associated starting and ending frame numbers for the portion of

the sentence for which segmentation has been completed.

For sentence 1, the initial state of the segmenter is as follows:

OUTPUT :

CURRENT :

INPUT: D*g g usw 2zb b' rot st t'ret t'fr*mDio
1d mArk k' *t t' n_

The segmenter is trying to find a boundary between silence, [__], and the
segment [D] of the word "the." Since [D] 1s 1n the class
voiced-nonsibilant ( see Table 3-5), the rule which applies (see Table 3-6)
is the one for segmenting silence followed by a voiced-nonsibilant. This

rule requires that event av-->positive occur. Starting with frame 1 of

the parameter stream as the current frame, the segmenter checks the truth

value of av-->positive and finds 1t 1s false. The current frame is

incremented to 2 and again av-->positive 1s false. This 1s continued

until frame 6 is the current frame, at which point av-->positive 1s true.

When this happens, the boundary between [_] and [D] has been found. [_]
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is moved to the output list and its starting and ending frames, ! and 6,

.

are associated with it. [D} becomes the new current segment.

OUTPUT: (16 )
CURRENT: D

INPUT:

g g usw  zDb b roOot st t'ret t'fr®*mDiol
Ark k! *¢t t'h_

Next, & rule 18 found to determine the boundary between a
voiced-nonsibilant and a vowel. The event the segmenter will look for is

source-->periodic. The cugrent frame 1s i1ntially frame 7, the beginning

of the vowel [*], and 1s incremented until source-->periodic. In this

example, source-->periodic at frame 17, with the following result:

OUTPUT: (1 6 ) (717 D)
CURRENT: *

INPUT: g 8 usw’ zb b rot st

t'ret t' fr*mDiol
d mArk k'*%t t' hn_ - h ;

The next rule which applies 1is vowel --> voiced-stop-closure. The

corresponding event is av-->0. The current frame is initially frame 18.

It 13 incremented until at frame 29, av-->0 becomes true:
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ouTPUT: (1 6 ) (7 17 D) (18 29 *)

CURRENT: g

INPUT: g' usw zb b ro0t st t'ret t' fr*mDiold m

Ark k'*t t' h_
The next few steps are similar to those described so far:
RULE: voiced-stop-closure --> anything

EVERT: af=0-->af>40

OUTPUT: (1 6 _) (7T 17 D) (1829 *) (30 40 g )

CURRENT: g'

INPUT: usw z2zb b rot st t'ret t'fr*mDiol d mA
rk_ k' *t t'h

RULE: voiced-stop-burst --> vowel

EVENT: af>40-->af=0

OUTPUT: (1 6 ) (7 17 D) (18 29 *) (30 40 g ) (41 45 g')

CURRENT: u

INPUT: aw ' 2z b b'rO0t st t'ret ¢ fr*mDiold mAT
k k! ®t t'h

RULE: vowel --> voiceless-sibilant

EVENT: av-=>0

ourPUT: (1 6 _) (7 17 D) (18 29 *) (30 40 g ) (41 45 g') (46 85 u)
CURRENT: s

INPUT: w zb b rot_s t t'ret t'fr*mDiold mArk_

k! *t t!'h
, _. -

RULE: voiceless-sibilant --> glide

EVENT: av+ave> af+ah

OUTPUT: (1 6 _) (7 17 D) (18 29 *) (30 40 g_) (41 45 g!) (46 85 u)
(86 107 s)

CURRENT: w
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INPUT: zb b roOt st t'ret t'fr*mDi1old mArk
k' * T t' h_
RULE: glide --> vowel
EVENT: deferred
At this point, since the required "event” 1s deferred, no

segmentation is attempted. Instead, the ['] is moved from the input list

to the current list and the rule vowel --> voiced-sibilant is applied:

OUTPUT: (1 6 ) (7 17 D) (18 29 *) (30 40 g ) (41 45 g!) (46 85 u)
(86 107 s)

CURRENT: w * %

1

INPUT: r
' h

0Ot st t'ret t!' fr*mDiold mArk Kk

zb b
ot ot

RULE: vowel --> voiced-sibilant
EVENT: source-->aperiodic

The current frame is initially frame 108, It is incremented wuntil

source-->aperiodic. This occurs at frame 127, defining the bounda
€ pe Ty

between ['] and [z]. The segmenter now has available the information that
the sequence [w '] begins at frame 108 and ends at frame 127. This
information, (108 127 (w ")), is sent to component IV for further
segmentation. Component IV is discussed in detail in Sect. 3.3.4. After

component IV has applied, ita output is added to the output list:

a7
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OUTPUT: (1 6 ) (7 17 D) (18 29 *) (30 40 g ) (41 45 g') (46 85 u)
(86 107 s) (108 117 w) (118 127 °)

CURRENT: =z

INPUT: b b'rOt st t'ret t' fr*mDiold mArk k'®*
t t'h_)

RULE: voiced-sibilant --> voiced-stop-closure

EVENT: avy->0

OUTPUT- §1 6 ) (717D) (1829 *) (30 40 g ) (41 45 g') (46 85 u)
86 107 s) (108 117 w) (118 127 ) (128 136 z)

CURRENT: b_
INPUT: b' rOt_ st t'ret t' fr*mDiold mArk k' * ot
t' h

The process continues in a similar manner, performing 1locally
determinable segmentations ijmmediately and deferring globally determinable
ones. In some cases, several consecutive segments are deferred. When the

input and current lists are empty, segmentation is finally complete:

OUTPUT: (1 6 _) (7 17 D) (18 29 *) (30 40 g ) (41 45 g!) (46 85 u)
(86 107 s) (108 117 w) (118 127 )&(128 136 z) (137 150 b )
(151 152 b') (153 169 r) (170 197 0) (198 205 t ) (206 223 s)
(224 232 t_) (233 238 t') (239 257 r) (258 278 e) (279 285 t_)
(286 290 t!) (291 309 f£) (310 315 r) (316 321 *) (322 333 m)
(334 342 D) (343 368 i) (369 394 o) (395 412 1) (413 421 4_)
(422 437 m) (438 449 A) (450 470 r) (471 479 k_) (480 485 k!)
(486 499 *) (500 509 t ) (510 513 t') (514 523 h) (524 692 _)

CURRENT:

INPUT:
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The next section describes the function of component IV, which is
called upon by component III to segment sequences whose boundaries are not

locally determinable.

3.3.4 Placement of locally indeterminable boundaries

In the previous section, we described how component III finds locally
determinable boundaries and mentioned that deferred boundaries, such as
the one between [w] and ["], are determined by component IV. In this

section, we discuss how deferred boundaries are determined.

4

By examining Table 3-6, we can see that the following segmentation

rules are deferred:

vowel --> vowel
vowel --> liquid
vowel --> glide

liquid --> vowel
liquid --> 1iquid
liquid --> glide

glide --> vowel
glide --> 1liquid
glide --> glide

voiced-nonsibilant --> voiced-sibilant
voiced-nonsibilant --> voiced-nonsibilant
voiced-stop-closure --> voiceless-stop-closure
voiced-stop-closure --> voiced-stop-closure
voiceless-stop-closure --> voiceless~stop-closure
volceless-stop-closure --> voiced-stop-closure
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The first nine of these rules refer to segmentation of vowels, liquids,
and glides. Since no discrete event occurs at such boundaries, component
IV uses global rules based on maxima and minima of formant frequencies.
The remaining six rules refer to segmentation of voiced fricatives and
segmentation of stop closures. The latter are clearly not segmentable by
rule: the segmenter uses the heuristic of placing the boundary at the
temporal midpoint of the sequence. The same heuristic 13 used to segment
voiced fricatives, although conceivably it would be possible to segment
voiced-nonsibilant/voiced-sibilant sequences on acoustic grounds. The
remainder of this section describes the rules used to segment vowels,

liquids, and glaides.

Vowels, liquids, and glides are assigned the acoustic features shown
in Table 3-B. In addition, the feature anything is assigned to all

segments.

TABLE 3-8. Features assigned to vowels, liquids, and glides.

SEGMENTS FEATURES

1 lo-F1 hi-F3

r lo-F3

J1Ie hi-F3

wuUo lo-F2

aj aw rising-diphthong
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Rules given 1in Table 3-9 are specified 1in terms of these features and
indicate global acoustic events used to determine the segment boundaries.
Global events differ from local events i1n that their scope 18 the entire
range of the deferred subsequence rather than Just three frames. The
rules are tried in order. The first rule whose context 1s satisfied 1s

used to perform the segmentation.

TABLE 3-9. Rules specifying global acoustic events used for segmenting
vowels, liquids, and glides.

FEATURE OF FEATURE OF
FIRST SEGMENT SECOND SEGMENT EVENT
lo-F2 lo-F3 decreasing-F3
lo-F2 hi-F3% increasing-F3
lo-F?2 anything increasing-F2
hi-F2 1o-F3 decreasing-F3
hi-F2 anything decreasing-F2
lo-P3 lo-F2 increasing-F3
lo-F3 hi-F2 increasing-F3
lo-F3 anything increasing-F3
hi-F3 lo-F2 decreasing-F3
lo-M1 hi-F2 decreasing-F3
lo-F1 anything decreasing-F3
rising-diphthong hi-F3 increasing-F3
anything lo-F1 decreasing-F1
anything . lo-F2 decreasing-F2
anything hi-F2 increasing-F?
anything lo-F3 decreasing-F3
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We now describe the global acoustic events, of which increasing-F3 1s

an example. Each one consists of a direction, increasing or decreasing,

and a parameter, F1, F2, or F3. If the direction 1s 1increasing, the
segmenter will search for a local maximum of the parameter following a
local minimum. This generates a candidate segmentation point, which 1s
tée frame between the extrema at which the parameter of interest most
nearly approaches the average of the extrema. A figure of merit 1s
assigned to the candidate segmentation point. If 1t exceeds a threshold,
the candidate segmentation point 1s accepted. Otherwise, the next local
minimum, local maximum sequence 18 evaluated. If all the extrema pairs
have been evaluated and the threshold has not been exceeded, the candidate
corresponding to the highest figure of merit 1s chosen. This algorithm

results 1n plaging segmentation boundaries at the frequency midpoints of

formant transitions.

The figure of merit 1s the weighted sum of two values: (1)  the
extrema difference and (2) the difference between a candidate’s
segmentation frame and an a priori estimate of that frame. The weight of
the first value 1s positive, while that of the second 1s negative. The a
priori estimate of segmentation boundary position 1s determined by

assuming that each segment 1n the deferred subsequence has equal length.
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3.4 Results of Rule-Based Segmentation of Synthetic Sentences.

Now that we have described the structure of the rule-based segmenter
and the actual rules used, we examine the results of applying the
segmenter to the set of ten phonetically balanced sentences. Figures 3-1
through 73-10 are spectrograms of sentences ! through 10, respectively,
which have been segmented and labelled by the rule-based segmenter. In
Figs. 3-1 through 3-10, the abscissa 1s labelled in frames, where each
frame corresponds to 5 ms. Displayed durations on each spectrogram were
chosen so that the beginning and end correspond to segment boundaries,
causing an integral number of segments to appear in each figure. As a

result, the number of frames displayed 1s different for each spectrogram.

To understand the differences between the rule-based segmentation and
that 1intrinsic to MITalk discussed 1in Chapt. 2, 1t 1s instructive to
compare Figs. 2-1 through 2-4 with Figs. 3-1 through 3-4. Comparing
Fig. 2-1a with 3-ta, the first difference observed 18 the treatment of the
[g} stop burst. In the MITalk segmentation (Fig. 2-1a), the burst 1s
analyzed as part of the [G] segment while the rule based segmenter further
analyzes [g] into g-closure, indicated [g_], and g-burst, indicated [g'].
Other examples of this difference appear at the following boundaries:
[br] (Figs. 2-1b and 3-1b), [tr] (Figs. 2-1b and 3-1c), [k*] (Figs. 2-1d
and 3-le), [th] (Figs. 2-1e and 3-1e), etc. In each case, the rule-based
segmenter appears to segment the burst correctly. Returning to the

beginning of sentence 1, 1t can be seen that the MITalk and rule-based
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segmentations are generally in agreement until we reach the [sw] boundary,

which occurs somewhat earlier i1n the MITalk segmentation.

Comparing Fig. 3-'b with 2-1a, the next discrepancy 1s 1n the [w‘]
boundary, which occurs later in the rule-based segmentation, 1n accordance
with the,rules described in Sect. 3.3.4. These rules cause the [w‘]
boundary to be placed at the frequency midpoint of the second formant
transition. Similarly, in Figs. 2.1b and 3-1b, the [ro] transition occurs

later 1n the rule-based segmentation. The rule 1increasing-F3 has applied,

causing the [rO] boundary to be placed at the frequency midpoint of the F?
transition. Similarly, the [eo] boundary (Figs. 2-1c and %-1d) 1s placed
30 ms later 1n the rule-based segmentation, corresponding to the frequency
midpoint of F2. Other examples of the use of formant transition midpoints
to place boundaries between vowels, liquids, and glides and how this
compares with the MITalk segmentation are the transitions [WIJ and [w1]
(Figs. 2-2b and 3-2c), [I1] (Figs. 2-3a and 3-3b), [Jur] (Figs. 2-3b and
3-3¢c), [we] (Figs. 2-4b and 3-4c), and [raj] (Figs. 2-4c and 3-4e). Note
that in the segmentation of [Jur], MITalk consideres [ur] a single
segment, while the rule-based segmenter divides 1t 1into {u] and [r].
Similarly, [Ar] 1s treated as one segment in MITalk (Fig. 2-1d), while 1t

is treated as two segments in the rule-based segmentation (3-1e).

Note the treatment of the t-burst before [s] in Fig. 2.1b as opposed
to Figs. J.1b-c. In the MITalk segmentation, {15 ms of frication 1s
gsegmented as belonging to the [t], representing the burst, whereas 1n the

rule-based segmentation, the t-burst 1s deleted by a phonological rule due
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to the presence of a following Sibilant. The same phenomenon appears at
the following boundaries: [tS] (Figs. 2-2b and 3-2c) and [ts] (Figs. 2-3c

and 3-3d, Figs. 2-4a and 3-4a).

In Figs. 2-1d and 3-1e, we see that the [mA] boundary 1in the rule
based-model corresponds more closely with the observed acoustic

transition. The same phenomenon occurs at the [g~1] boundary 1n

Figs. 2-2b and 3-2b and at the [mo] boundary in Figs. 2-3b and 3-3c.

MITalk tends to place boundaries between voiceless fricatives and
vowels about 10 ms too early. The rule-based segmenter places such
boundaries at the onset of voicing. Examples of this occur at the
boundaries [sI] (Figs. 2-2a and 3-2a), [TI] (Figs. 2-2a and 3-2b), [SI]
(Figs. 2-2d and 3-2e), [f*] (Figs. 2-3a and 3-3a), [f@] (Figs. 2-4a and

3-4a), and [So] (2-4b and 3-4c,d).

Occasionally, MITalk cuts the burst in two, considering the first
part as belonging to the stop and the second half as part of the following
vowel. The corresponding rule-based segmentations treat the  burst
consistently. Example of this appear in [dI] (Figs. 2-2c and 3-2¢), [do]

(Figs. 2-4a and 3-4b), and [tO] (Figs. 2-4b and 3-4b).

In summary, the following imprecisions and inconsistencies present in
the MITalk segmentation have been overcome using the rule-based segmenter:
inconsistency of burst segmentation, imprecision in segmentation of
voiceless-fricative/vowel boundaries, 1imprecision in segmentation of

nasal-consonant/vowel boundaries. Segmentation level has been modified as
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have the rules for determining boundaries between vowels, liquids, and

glides.
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3.5 Discussion of Rule-Based Segmentation

Results of the previous section indicate that wuse of a rule-based
segmenter gave more precise and consistent analyses of synthetic speech
than were available by simply using the nominal boundary locations of the
synthesizer. In addition, the rule-based segmenter allows the user to
specify segmentation level and the specific criteria used 1n selecting a
segment Dboundary. It 1s useful at this point to speculate on the
applicability of rule-based segmentation techniques to natural speech.
Two facilitating factors that are present when this technique 1s applied
to synthetic speech disappear when 1t 1s applied to natural speech. These
factors are (1) the consistency (lack of free variation) inherent 1in
synthetic speech and (2) the availability of exact values of acoustic

parameters (formant frequencies, bandwidths, etc.)

Although there e no “ree (1.e., stochastic) variation present in the
synthetic speech, the model used to generate 1t 13 sufficiently complex
and rich in phonologically conditioned variation that developing a set of
segmentation rules for the ten sentences discussed above was nontrivial.
Getting the rules to work for the first four sentences was the most
difficult. Sentences 5, 6, 7, and 9 were correctly segmented using those

rules. Finally, modifications had to be made to correctly segment

sentences 8 and 10.
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To 1llustrate an 1nsight gained from debugging the rules, the
specific case of sentence 10 will be described. Using the rules developed
for sentences 1 through 4, one error occurred 1in sentence 10: 1n the word
wall, the boundary between [OJ and [1] was much too early, near the

beginning of [O]. The following rule had applied, causing the error:

anything + hi-F3 -——-> increasing-F3

Recall that the algorithm for handling vowel-liquid segmentations 1s to
place the boundary at a parameter value half way between the transition
extrema. This rule says: find a local F3 minimum 1n [O]; find a8 local
F3 maximum 1n [1]; place the [Ol] boundary at the frame whose F3 most
closely approaches the average F3 of these two local extrema. The problem
occurs because F3 1ncreases monotonically from the beginning of [O] to the
near the end of [1}, so no local F3 minimum 1s found. The algorithm
therefore uses F3 of the first frame of [O} as the local F3 minimum. Thas
value 18 averaged with the local F3 maxaimum, found near the end of [1}, to
determine the F3 value at which to place the [Ol] boundary. Because the
F?3 minimum represents not the beginning of the [Ol] transition but a much

lower F3 at the beginning of [O], the boundary 1s placed much too early.

This problem was solved by changing the rule to use F1 i1nstead of F3:

anything + lo-F1 ——— decreasing-F1

This rule worked well for sentence '0 and for most other vowel-liquid
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boundaries, but caused an error 1in sentence 2. In the word pile, the
boundary between [aJ] and [1] was now i1ncorrect since a local F! maximum
followed By a local F! minimum occur within the [aJ] 1tself, causigg the
segment boundary to be placed between [a} and [J] rather than between [ag}
and [l]. This problem was sclved by adding a new rule, which precedes the

modified rule 1n the rule ordering:

rising-diphthong + hi1-F3% -——=> decreasing-F3

With this final modification, all ten sentences were correctly
segmented. Although no further sentences have been tested, 1t 1s the
intuitive feeling of the experimenter that most sentences would now be
correctly segmented by the rule-based segmenter, but that there would
st1ll be some modifications required to handle certain pHonetic sequences

not yet encountered.

The representation of the rules could be greatly condensed by
extending the wuse of feature notation to the 1locally determinable
segmentation rules (component‘III). Rules in components III and IV should
be expressed 1in the same feature-based notation. The notion of "event”
could be generalized to include local and global acoustic events. Figures
of merit could be computed for all events, rather than jJust for the global
ones. This would allow the rule-based segmentation to be treated as a
dynamic programming problem 1n which the quantity to be maximized would be

the sum of the figures of merit of all the segmentation boundaries. A

59



L=l

better heuristic 1s clearly needed to generate a priori duration

estimates.

Some of the acoustic parameters would have to be changed in order to
apply the rule-based segmentation technique to natural speech. Those
parameters that are difficult to measure or difficult to distinguish from
each other would be replaced by other more accessible parameters. For
example, 1t may not be useful to try to measure quantities such as the
amplitude of sinusoidal voicing (avc), the bypass amplitude (ab), or to
distinguish the amplitude of frication (af) from that of aspiration (ah).
On the other hand, zero-crossing rate, which 1s not currently in the set
of parameters being used, could be very useful for locating boundaries

between sonorant and nonsonorant segments.

In order to overcome phonological variability (phonemic deletion,
insertion, and substitution), a more sophisticated phonological component
1s necessary. Our component II 1s categorical: A gegment 1s either
deleted or retained. In order to handle natural speech, component II must
be able to mark segments as having a certain probability of being deleted.
This probability could then be used 1n the computation of the figure of

merit of a particular segmentation hypothesis.

woF =
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CHAPTER 4: PRELIMINARY EXPERIMENT USING RULE-BASED SEGMENTATION

OF MODEL SPEECH

In a preliminary experiment (Lennig, 1983), a single synthetic
sentence was segmented by the rule-based segmenter and used to segment
four natural versions of the same sentence by applying dynamic time
warping. This chapter describes the expérlment, which differs from that
described 1in Chapt. 2 where Assumption 3 did not hold. In a parallel
experiment also described 1n this chapter, Assumption 2 1s explored by
using a hand segmented model 1n place of synthetic speech. Errors are

analyzed by segment boundary type.

One conclusion drawn from this analysis 1s that potential weaknesses

of the technique 1lie 1n the segmentation of sonorants (vowels, liquads,

»nasals, glldes) and of short-duration events, such &as stop burst. The
difficulty of segmenting sonorants can be attributed to 1naoility of the

distance metric to 1gnore 1interspeaker differences while emphasizing

phonetic ones (cf., Assumption 4). The second weakness 1s likely due to

insensitivity of the time warping algorithm to short events (cf.,

Assumption 5).

Although segmentation errors 1in this experiment are determined
subjectively on a case by case basis, 1t 1s evident that an objective
method for evaluating the correctness of a segmentation is needed. The

problem with quantitative measures based on deviation from a given norm

was discussed 1in Chapt. 2. At the end of +this chapter, a quantitative
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correctness measure 1s proposed which partially overcomes the problem.

4.1 Experimental Procedure

n

The following sentence (sentence 2) was pronounced by four male

speakers and also synthesized using the MITalk text-to-speech system:

The sink 1s the thing 1n which we pile dishes.

Three of the speakers were native speakers of Montreal English; the
fourth was a native speaker of New York English. The naturally produced
sentences were lowpass filtered at 4.4 kHz and sampled at 10 kHz. The
endpoints of each sentence were manually determined. The synthetic
sentence was‘preprocessed to y1eld a mel-frequency cepstrum every 5.0 ms.
The naéurally produced sentences were processed similarly, except that the
frame advance for each speaker was chosen between 4.7 and 6.4 ms so as to
yield approximately the same number of speech frames as 1n the synthetic
reference (454 frames). Unequal numbers of frames are undesirable i1n the

time warping procedure because slope constraints and slope penalties are

used to make the warp path to tend toward a 45 degree line.
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The decimated-grid, symmetric time warping algorithm proposed by
Mermelstein (1978) was used, 1n which grid point (1,)) is accessible from
points (1-1,3-1), (1-2,3), and (1,3-2). The penalty for a vertical or
horizontal step 1s to multiply the local distance at (1,j) by 1.5. Two
different 1local slope constraints were tried: unconstrained and
constrained slope. The constrained slope algorithm permits a maximum of
one consecutive vertical or horizontal step. In a third trial, the first
speaker’s utterance was hand segmented and used as a reference in
conjunction with the constrained slope algorithm to 1nduce segmentations

on the remaining three naturally produced sentences.

4.2 Results and Discussion

Segmentation and 1labelling induced on the natural speech was
inspected by viewing spectrograms annotated with this information. Each
automatically determined segmentation boundary was subjectively classified
as correct or incorrect. Subjective scoring was preferred because certain
segment boundaries, such as the endpoints of a stop burst, are more
precisely determined by the speech signal, while others, e.g., the
boundary between a vowel and a liquid or?glide, may be farther away from a

prescribed norm and still be considered correct. .

-
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Figures 4-1a through 4-1e show time-aligned spectrograms of the
synthetic model (top) and a natural utterance (bottom) produced by one of
the four speakers (DS). Slope-constrained dynamic time-warping was used.
In each figure, the time scales of the two spectrograms are not identical:
They have been linearly adjusted in order to display the same sequence of

segments.

In Fig. 4-1a, the boundaries [D*] and [*s] appear to be a few frames
late. This was not counted as an error 1in the subjective scoring
procedure, since only serious errors were considered. Another minor error
that was not counted was the early placement of the [sI] boundary. The
only error in Fig. 4-ta whaich was considered i1in the results presented here
was the boundary [k_ k'], which occurred late. A gross error occurred in
Fig. 4-1b in the placement of the [Ig”] boundary of thing: It is at least
10 frames (64 ms) late, occurring at the end of the actual [g~] segment

instead of at the beginning. The desynchronization propagates to the next

- boundary, causing [g"l] to be late. The only other error counted was at

the [1d ] boundary (Fig. 4-1d): The boundary late.

Table 4-1 displays segmentation errors, for all speakers, according
to three. boundary types: boundaries between sonorant segments {vowels,
liquids, nasals, glides), boundaries between nonsonorant segments, and
boundaries between a sonorant and a nonsonorant segment, in either order.
As expected, boundaries between similar segment types give rise to higher

error rates. Segmentation performance for all boundary categories is

significantly better when a slope constraint is employed and significantly
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better wusing a natural speech reference as compared with a synthetic
reference. Even using a natural reference, however, the 13 percent error
rate obtained 1s unsatisfactory. This comparison serves to quantify the
importance of Assumption 2: although unnaturalness of the synthetic model
is clearly introducing \segmentatlon error, Assumptions 4 and 5 are at
least as important. The difference 1n performance obtained with different
warp constraints (cf., Assumption 5) 1s greater than the difference

obtained using a natural versus a synthetic model.

The advantage of the constrained time warping algorithm over the
unconstrained algorithm appears most saliently 1in the detection of
sonorant/sonorant boundaries. This may be because 1nterspeaker spectral
differences 1n sonorants overshadow spectral differences between different
sonorant segments, leaving segment duration as the only reliable alignment
criterion. Use of a sgpeaker normalization for glottal source spectrum

shape may improve the accuracy of sonorant/sonorant boundary localization.

One finding obscured by Table 4-1 1s that stop burst 1localization
contributes si1gnificantly to the -error rate. In the constrained,
synthetic trial, for example, seven of the eight nonsonorant/nonsonorant
errors occur on closure/burst boundaries. Five of the nine
sonorant/nonsonorant errors occur on burst/vowel boundaries. Similar
results hold for the other trials. Often, what 18 observed on the
annotated spectrogram 1s an erroneous localization of the stop burst
somewhere 1n the middle of the stop closure, temporally disjunct from the

actual burst. Such errors can be explained by the relatively small
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distance penalty 1incurred by burst misplacement, due to the segment’s
short duration. The problem should be viewed as an i1nadequacy of the time

warping algorithm as currently formulated.

TABLE 4-1. GBrror rates for segment boundary location using constrained
and unconstrained time warping algorithm.

synthetic reference natural reference
unconstrained constrained constrained

sonorant/ 26/32 10/32 4/24
sonorant (81 %) (31 %) (24 €)
nonsonorant,/ 12/20 8/20 ' 2/15
nonsonorant (60 %) (40 %) (13 %)
sonorant/ 13/72 9/72 6/54
nonsonorant (18 %) (13 %) (11 %)
TOTAL 51/124 27/124 12/93

(41 %) (22 %) (13 %)

4.3 Evaluating the Correctness of a Given Segmentation

In the experiment described above, the most difficult procedure was
the subjective evaluation of correctness of the resulting segmentations.
Although some cases were clear-cut, others caused soul searching on the
part of the experimenter before a decision could be reached. Such
subjectivity is dangerous in scientific experiments because experimenter

bias is easily introduced. In this section we propose an objective method
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of evaluating segmentations which has certain desirable properties.

One approach to removing subjectity 1n segmentation experiments would
be to hand segment the natural utterance i1n advance and then measure how
closely the automatic transcription corresponds to the hand segmentation.
This method removes any possible experimenter bias since hand segmentation
18 performed prior to the experiment. Another advantage of this methed 1s
that as many segmentation experiments as desired may be run against the
same hand-segmented data. Different algorithms may be compared with a

common standard.

The problem with this method lies in the measurement of deviations

from the hand-segmented standard. Certain phone boundaries are temporally
indefinite while others are much more precisely defined. Measures Dbased
on mean square error are difficult to 1interpret. For example, a ten
millisecond deviation from the hand segmentation at a vowel/liquid
boundary 1s unimportant, whereas the same deviation at a stop closure/stop
burst boundary 1s a true error. We now propose an evaluation method

designed to overcome this problem.

Hand segmentation 1s used, .but instead of specifying a specific
temporal segmentation point between each pair of segments, a range of
points 1s specified. Viewed another way, the beginning of one segment
followa the end of the preceding segment with a variable number of
intervening frames. This gives rise to unlabelled sections of speech
between segments. If the automatic segmenter locates the segment boundary

anywhere within this region, the segmentation is considered correct.
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Otherwise, 1t 18 considered 1incorrect. Figure 4-2 1llustrates the
evaluation procedure for the first few phones of the phrase "She flaps..."
Figure 4-2a represents the automatically segmented waveform and has a
contiguous segmentation: each segment begins at the same place the
previous segment ends. Figure 4-2b 18 the hand-segmented standard.
Because the segmentation 13 noncontiguous, zones of 1ndeterminacy lie
between the prescribed segment locations. Since the {§1] boundary 1in 4-2a
lies between the end of the [S] and the beginning of ﬁge (1] in Fig. 4-2b,
this boundary would be considered correct. Similarly, the [1f} boundary

13 correct. The [fl] boundary correaponds exactly with the end of [f] Ln

the hand-segmented standard and 1s therefore also considered correct.

Chapter 5 describes a larger experiment 1n which noncontiguous

hand-transcribed standard segmentations are used for evaluation.
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CHAPTER 5: EVALUATION OF AUTOMATIC SEGMENTATION TECHNIQUE

This chapter presents a quantitative evaluation of the automatic
segmentation technique as applied to twenty naturally produced test
sentences. Automatically generated segmentations of +the sentences were
scored X by comparison against manual segmentations 1n which the

experimenter specified a range of correct positions for each boundary.

5.1 Experimental Procedure

Sentences ! through 'O were read once by each of two male speakers
(DS and ML), low-pass filtered at 4&‘12, and sampled at 10 kHz. DS i1s a
native speaker of Montreal English, while ML 1s a native speaker of New
York English. Synthetic versions of sentences ! through 10 were produced

by the MITalk synthesizer using a polynomial pulse for voiced excitation

(Rosenberg, 1971). =

Sentences produced by DS were hand-segmented by the author 1in a
nonoverlapping manner: Transitional regions were not labelled but only
that nuclear region of each phone which was considered to belong to that
phone inalienably. Figure 5-1 1is a spectrographic example of a
hand-produced, nonoverlapping segmentation of the word lawyer in sentence

8, spoken by DS and segmented by the author. The short duration of the

unlabelled transitional region between [l] and [O] implies that 1in the
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opinion of the transcriber, the correct segmentation point of the [10}
boundary 1s temporally well defined. The transitional regions at the
boundaries [OJ] and [Jr} are much longer, implying more 1indeterminacy of

‘

temporal location.

Sentences produced by ML were hand-segmented by P. Boissonneault,
following the same procedure. Figure 5-2, a hand-segmented spectrogram of
ML"s production of the phrase the goose (sentence 1), shows how stop
closures and bursts were segmented: The closure includes the whole 51lentm
portion except for relatively small transitional periods; the burst
excludes any following aspiration. Figure 5-2 also 1llustrates how
vowel/fricative boundaries were handled in the hand segmentation: The

vowel was considered to end when any of the formants ceased to be excited;

the fricative began when strong frication was evident.

Despite careful agreement on segmentatidn criteria and comparison of
partial results, one major difference i1n segmentation techique 18 evident
from the data: Paul Boissonneault tended to allow somewhat shorter
transitional regions as compared with those of the author, as shown 1in
Table 5-1. Average durations of various types of hand-transcribed

segments for the two speakers are given in Table 5-2.
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TABLE 5-1. Average durations (ms) and standand deviations of transitional
regions 1n hand transcribed sentences for speakers DS and ML.
Transitions with silence are omitted. Speaker DS was trans-
cribed by the author, while ML was transcribed by P. Boisson-

neault. N 1s the number of transitional regions.
N AveDur StdDev
Speaker DS 305 29.4 43.7
Speaker ML 314 19.2 27.9
Both speakers 619 24.2 50.5

TABLE 5-2. Average durations (ms) of hand-transcribed segments for
speakers DS and ML. N is number of segments.

Speaker DS speaker ML
class N AveDur N AveDur
vowel 90 77.0 91 87.7

fricative 67 63.6 72 67.6
liquid 36 58.8 36 Tt
nasal 15 64.9 15 55.3
closure 54 46.9 55 55.0
glide 11 4.8 11 5%3.4
burst 42 5.6 44 9.6

LY

During hand segmentation, the transcribers used the same symbols as
used by the rule-based segmenter. They were not allowed to insert or
modify symbols, but they could delete symbols they judged to be absent

from the natural speech. For example, the schwa in the word from
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(sentence ') and the initial [h] of which (sentence 3) were deleted for

both speakers. In 8ll, eleven segments were deleted 1n the hand
segmentations of DS’s sentences, while 1in ML s sentences, four segments
were deleted. Segments deleted 1n the hand transcriptions were not

included 1n the evaluation of segmenter performance.

Synthetic utterances were segmented and labelled using the rule-based
segmenter (Chapt. 3), which also provided endpoints for each sentence.
End points of the naturally produced sentences were determined from the
beginning and end of the hand segmentations- by adding 10 ms of signal to
each end. Synthetic utterances were preprocessed to derive, for each
frame, the first seven mel-frequency cepstrum coefficents, A Hanning
analysis windgw was used of 25.6 ms duration. ﬁzame advance was 5.0 ms.
Natural utterances were preprocessed in a similar manner, except that, as
in the experiment degcribed in Chapt. 4, the frame advance of each natural
sentence was modified so that the total number of frames between sentence

endpoints would be equal to that of the corresponding synthetic sentence.

Synthetic and natural utterances were time-aligned using the
symmetric Zip algorithm (Chamberlain and Bridle, 1983%). The Zip algorithm
is a suboptimal version of the dynamic time-warping procedure in which the
number of cumulative distances retained by the algorithm may not exceed a
specified maximum of contiguous values along a diagonal of the warp space.
This maximum, termed the diagonal length, was fixed at 50 for the first
experiment. The grid topology is nondecimated, differing from that used

in experiments described earlier. Therefore, to achieve approximately the
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same local constraint of a slope between 1/3 and 3, & maximum of two
consecutive horizontal or vertical transitions are allowed. The cost
penalty of a nondiagonal transition i1s 1/2 the local distance at the

destination. Table 5-3 summarizes the experimental conditions.

TABLE 5-3. Experimental Conditions Employed in the Main Experiment.

Horizontal transition penalty: (1/2) (local distance at destinationm)
Vertical transition penalty: i(1/2) (local distance at destination)
Horizontal skip penalty: infinite

Vertical skip penalty: infinite

Max. consecutive horiz. trans: 2

Max. consecutive vert. trans: 2

Diagonal length (frames): 50

Anal. window length synthetic: 25.6 ms (Hanning)

Anal. frame advance synthetic: 5.0 ms

Anal. window length natural: 25.6 ms (Hanning)

Anal. frame advance natural: adjusted between 5.0 and 6.4 ms

to yield same # of frames as synthetic

Local distance measure: Euclidean, using c! through c¢7

The contiguous segmentations of the synthetic sentences produced by
the rule-based segmenter were mapped across the warp paths produced by 2Zip
to induce contiguous segmentations on the natural sentences. The
following section discusses ty;f;gSulting automatic segmentations of the

-

natural utterances.
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5.2 Evaluation of Segmentation Results

Since the automatic segmentations were contiguous, that 1s, the
beginning of one segment corresponds to the end of the previous segment,
the average durations of the automatically transcribed segments are
normally longer than those of the hand-transcribed models. Table 5-4
gives these average durations for speakers DS and ML. The only exception
occurs for DS”s nasals: Automatically derived duration i1s slightly less
than that of the hand-transcribed nuclear region. This is due to

alignment errors of the type seen in Chapt. 4 (Fig. 4-1b).

TABLE 5-4. Comparison of average segmental durations for hand
(noncontiguous) and automatic (contiguous) segmentations.

SPEAKER DS
class N Ave Dur Hand Ave Dur Automatic
vowel 90 77.0 123.7 @
glide 11 34.8 £ 62.0
liquid 36 58.8 93.1
nasal 15 64.9 63.1
fricative 67 63.6 89.0
closure 54 ‘iﬁ46-9 56.3
burst 42 5.6 20.8
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SPEAKER ML

class _E Ave Dur Hand Ave Dur Automatic
vowel 91 87.7 114.8
glide 1" 53.4 54.6
liquid 36 Tt 99.9
nasal 15 55.3 64.7
fricative 72 67.6 85.0
closure 55 55.0 65.5
burat 44 9.6 19.4

The evaluation criterion described in Sect. 4-3 was applied to the
twenty asutomatically segmented antences using the hand segmentations as

models. The results are shown in Table 5-5.

TABLE 5-5. Performance af the automatic segmentation algorithm. N is
the total number of boundaries. ¥Correc is the percentage of
boundaries correctly located. EarlyN is the number of
boundaries positioned too early. LateN is the number of
boundaries positioned too late. EarlyAve is the average error
in milliseconds of the early boumdaries. LateAve is the
average error in milliseconds of the late boundaries. Ave Err
is the average absolute error over all boundaries, correct and
incorrect.

N %Correc EarlyN LateN  EarlyAve LateAve Ave Err

Speaker DS 325 48.0 % 83 86 16.8 18.5 9.2

Speaker ML 334 41.9 % 112 82 13.9 12.7 7.8

Total 659 44.9 % 195 168 15.1 15.6 8.5
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As can be seen 1n the table, the automatic segmentation algorithm
achieves a correct segmentation rate of approximately 45 percent. It
performs somewhat better on DS than on ML, but this may be due to the
application of a more liberal hand segmentation policy to DS (see
Sect. 5.1). The comparable result 1in Table 4-1 for the experiment
described 1in Chapt. 4 1s 68 percent correct segmentation. The difference
can be attributed to the use of a more rigorous evaluation technique
present experiment. Although the error rTate is high, the size of the
average magnitude error for incorrect boundaries is only around 15 ms,

less than one fifth of the average segment duration.

In order to provide a direct comparison with the results discussed in
Chapt. 4, we classify segment boundaries as follows: boundaries betweeen
two nonsonorant segments (including silence), boundaries between two
sonorant segments, and boundaries between sonorant and nonsonorant
segments 1in either order. The result of this analysis is given in Table

5-6. :
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TABLE 5-6. Percent correct segmentation by segment category.
Parenthesized values 1ndicate the total number of boundaries
in the category. Category sonorant/nonsonorant also i1ncludes
nonsonorant/sonorant boundaries. Silence 1s included 1n the
category of nonsonorant segments. Rates from Table 4-1 are
shown in comparable format. Parenthized values give number
of boundaries in each class.

Total From Ch.4

DS ML DS + ML Table 4-1

nonsonorant/nonsorant 24% (90) 35% (97) 30% (187) 60% (20)
sonorant/sonorant 42% (69) 39% (69) 41% (138) 69% (32)

—~—

sonorant/nonsonorant 63% (166) 47% (168) 55% (334) 87% (72)

It is clear that.although the absolute error eates' in the current
experiment are substantially different than those obtained in the
preliminary experminent of Chapt. 4, the ordering of errors by boundary
category is ‘ identical: Boundaries most prone to error are

nonsonorant/nonsonorant boundaries, those least prone to error are
sonorant/nonsonorant  boundaries, with sonorant/sonorant boundaries

intermediate.

To identify the classes of segments contributing to the high error
rate at nonsonorant/nonsonorant boundaries, Table 5-7 further analyzes

that boundary type.
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TABLE 5-7. Analysis of segmenter performance at nonsonorant/nonsonorant
boundaries. Boundary types are listed in order of numerical
importance.

speaker DS speaker ML TOTAL
left right N %Correc N %Correc N #Correc
closure burst 42 4.8 % 44 18.2 ¢ 86 11.6 %
fricative closure 9 22.2% 10 20.0 % 19 21.1 %
fricative fricative 9 0.0 ¢ 9 44.4 % 18 22.2 %
burst fricative 6 16.7 % 9 33.3 % 15  26.7 %
fricative silence 6 100.0 % 8 100.0% 14 100.0 %
closure fricative 5 40.0 % 6 16.7 % 11 27.3 %
silence fricative S 100.0 % 5 100.0 % 10 100.0 %
closure closure 3 33.3 % 3 0.0 % 6 16.7 %
silence closure 3 100.0 ¢ 3 100.0¢% 6 100.0 %
burst silence 2 0.0 % 0 2 0.0 %
TOTAL 90 24.4 % 97 35.1 % 187 29.9 %

™
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From Table 5-7 it is seen that segmenéatlon performance 1is not
uniformly poor within the nonsonorant/nonsonorant boundary class: In
particular, the segmenter does well in identifying boundaries of the types
high performance on

silence/fricative and fricative/silence. The

silence/clo;;re boundaries requires special interpretation: These were
utterance-initial stop closure segments whose onset is indeterminate. The
hand-segmentation convention, therefore, was to make initial closures very
short so that they would always be correct unless boundaries were placed

after the onset of the burst.
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The most important factor in the poor performance of the automatic
segmenter on nonsonorant/nonsonorant boundaries is 1ts performance at
closure/burst boundaries. We hypothesize that the difficulty here results
from the short transitional region provided in the hand segmentation
between the end of the stop closure and the beginning of the stop burst.
Since Dburst onsets are well defined in time, short transitional regions
are appropriate. To check this hypothesis, average transition region
times and standard deviations are given in Table 5-8 for

nonsonorant/nonsonorant boundaries (excluding boundaries with silence).

TABLE 5-8. Average durations (ms) and standard deviations of transitional
regions in hand-segmented models.

Speaker DS Speaker ML

left right N AveDur StdDev N Avelur StdDev
closure burst 42 4.9 14.6 44 5.0 13.4
fricative closure 9 13,2 19.0 10 7.9 12.6
fricative fricative 9 20.6 30.2 9 43 .1 46.5
burst fricative 6 20.0 43.1 9 20.8 36.6

* closure fricative 5 19.0 18.7 6 8.1 10.0
closure closure 3 34.4 38.9 3 23.3 24 .1

~

A strong relationship is observed between percent correct
segmentation and average transition region duration for closure/burst,
fricative/closure, and closure/fr;cative boundaries. For example, the
synthesize-and-warp algofithm misses 88 percent of thé closure/burat

hl
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boundaries, which have an average transition region of 5 ms. Since the
analysis window has an effective length of 12.8 ms and the window advance
varies from 5 to 6.4 ms, time resolution of the system appears inadequate
for location of such boundaries. One possible solution would be to use a

shorter analysis window and/or a shorter frame advance.

The relationship between transitional region duration and segmenter
performance breaks down when boundaries are compared which involve large
differences in the degree to which their left and right-hand phones are
acoutically dissimilar. For example, the closure/fricative boundary has a
high degree of acoustic dissimilarity, while that of burst/fricative
boundary is low. In Tables 5-7 and 5-8, we see that even though DS”'g
transitional regions are essentially equal in average duration for these
two classes, segmentation of closure/fricative is substantially better.
We conclude that two components contribute to segmentation performance.
The stronger of the +two appears to be a priori probability of correct
segmentation, which is proportional to transition region duration. A

secondary component is related to acoustic similarity.

Table 5-9 gives an analysis by boundary type of the sonorant/sonorant

class introduced earlier in Table 5-6.
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TABLE 5-9. Analysis of Sonorant/Sonorant Boundary Performance. N is the
total number of boundaries in the class. %Correc is the
percentage of those boundaries correctly located by the
automatic segmenter. Earl is the number of errors in which
the automatically determined boundary was too early. Late is
the number of errors in which the automatically determined
was too late. EAve is the average magnitude of the early
errors (ms). LAve is the average magnitude of the late errors
(ms). Tot Brr is the average magnitude error over all N
occurrences of the specified boundary (ms). AveTran is
the average transition region duration (ms).

Speaker DS

lef't right __§ 4Correc Earl Late EAve LAve Tot Err‘ AveTrE; .
liquid vowel 20 35.0 % 6 7 11.0 18.6 9.8 28.7
vowel liquid 13 38.5 ¢ 3 5 14.4 9.0 6.8 38.5
vowel nasal 11 45.5 ¢ 0 6 0.0 29.8 16.2 29.9
glide vowel 10 30.0 % 3 4 4.2 11.6 5.9 16.0
nasal vowel 5 60.0¢% 1 1 15.1 55.5 14.1 43.9
vowel vowel 2 100.0 % 0 o . 0.0 0.0 0.0 55.8
vowel glide 2 0.0 % 0 2 0.0 7.8 7.8 30.6
liquid glide 2 50.0 % 1 0 33,2 0.0 16.6 50.2
liquid nasal 2 50.0% 0 1 0.0 45.4 22.7 9.5
nasal glide 1 100.0 % 0 0 0.0 0.0 0.0 45.1
glide 1liquid 1 100.0 % 0 0 0.0 0.0 0.0 75.1
Speaker ML

left right N {Correc Earl late EAve LAve Tot Err AveTran
liquid vowel 20 40.0 % 5 7 26.4 9.8 10.0 28.6
vowel liquid 14 28.6 % 8 2 27.9 26.5 19.7 26.4
vowel nasal 11 54.5 % 2 3 27.4 17.9 9.9 12.5
glide vowel 10 40.0 % 5 1 11.2 7.3 6.3 16.8
nasal vowel S 40.0 % 2 1 14.2 15.2 8.7 32.9
vowel vowel 2 50.09% 0 1 0.0 7.1 3.6 68.1
vowel glide 2 50.0¢% 0 1 0.0 1.8 0.9 35.9
liquid glide 2 50.0% 1 0 14.9 0.0 7.5 12.5
liquid nasal 2 0.0 % 1 1 2.2 36.6 19.4 13.5
glide liquid 1 0.0 % 0 1 0.0 9.3 9.3 8.5

-
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TOTAL

left right N %Correc Earl Late EAve LAve Tot Err AveTran
liquid  vowel /1:6 37.5% 11 14 18.0 14.2 9.9 28.6
vowel liquid 27 33.3% 11 7 24.2 14.0 13.5 32.2
vowel nasal 22 50.0% 2 9 27.4 25.8 13,0 21.2
glide vowel 20 35.0 ¢ 8 5 8.6 10.7 6.1 16.4
nasal vowel 10 50.0 % 3 2 14.5 5.4 11.4 38.4
vowel vowel 4 75.0% 0 1 0.0 7.1 1.8 61.9
vowel glide 4 25.0% 0 3 0.0 5.8 4.4 33.3
liquid glide 4 50.0% 2 0 24 .1 0.0 12.0 31.4
liquid  nasal 4 25.0% 1 2 2.2 41.0 21.1 11.5
glide 1liquid 2 50.09% 0 1 0.0 9.3 4.7 41.8
nasal glide 1 100.0 % 0 0 0.0 0.0 0.0 45.1

Excluding of the four vowel/vowel boundaries, there is only a weak
correlation between segmentation performance and average transition region
length for the sonorant/sonorant boundary. Acoustic dissimilarity effects
are also samaller than in the nonsonorant/nonsonorant case, but our
distance measure appears to be more sensitive to the differences between
vowels and nasals than to those between vowels and liquids or between
vowels and glides as evidenced by better segmentation performance on the

former.

Table 5-10 gives a breakdown  of sonorant/nonsonorant and

nonsonorant/sonorant boundaries.
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TABLE 5-10. Analysis of sonorant/nonsonorant and nonsonorant/sonorant
boundaries. Column labels as in Table 5-9.

Speaker DS
left right N %#Correc Earl Late [EAve LAve Tot Err AveTran
vowel fricative 36 58.3 % 7 8 17.5 9.1 5.4 31.8
fricative vowel 32 62.5% 10 2 12.9 4.6 4.3 24.3 ‘
vowel closure 26 50.0 ¢ 1 12 15.9 18,3 9.0 27.0 .
burst vowel 20 75.0 % 5 0 7.9 0.0 2.0 80.5 ]
burst liquid 12 83.3 % 2 0 4.1 0.0 0.7 43.8 i
fricative liquid 8 100.0 % %0 0 0.0 0.0 0.0 38.0 i
liquid closure 7 42.9% ~ 0 4 0.0 13.2 7.5 21.6 ;
nasal closure 6 16.7 % 0 5 0.0 6.9 5.8 14.3 i
nasal fricative 3 33.3 4 2 0 43.6 0.0 29.0 17.2 ’
fricative glide 3 100.0 % 0 0 0.0 0.0 0.0 76.7 ,
liquid fricative 3  33.3 & 1 1 13.4 0.9 4.8 33.4 i
liquid silence 2 100.0 % 0 0 0.0 0.0 0.0 2815.7
closure nasal 2 50.0 % 1 0 2.5 0.0 1.3 34.2
burst glide 2 100.0% 0 0 0.0 0.0 0.0 g2.8
closure glide 1 100.0 % 0 0 0.0 0.0 0.0 27.2
closure liquid ! 100.0 ¥ 0 0 0.0 0.0 0.0 8.5
silence vowel 1 100.0 % 0 0 0.0 0.0 0.0 454.9
silence liquid 1t 100.0 % 0 0 0.0 0.0 0.0 498.8
(Szeaker ML
- left right N %Cprrec Earl Late EAve LAve Tot Err AveTran
vowel fricative 36 3D.6% 13 12 9.5 6.0 5.4 19.0
fricative vowel 33 57.6% 11 3 6.7 8.6 3.0 13.2 -
vowel closure 26 38.5 % 7 9 4.9 12.8 5.8 13.9
bugst vowel 20 70.0% 6 0 14.4 0.0 4.3 45.1
burst liquid 12 58.3 % 4 1 8.4 0.3 2.8 32.6
fricative liquid 8 62.5 % 1 2 5.7 11.3 3.5 8.7
liquid closure 7 14.3 % 3 3 7.4 8.1 6.6 8.1
nasal closure 6 16.7 % 3 2 16.6 10.6 11.8 11.3
nasal fricative 4 0.0% 3 1 20.5 15.6 19.3 4.6
fricative glide 4 50.0% 0 2 0.0 12.0 6.0 16.6
liquid fricative 3 33.3 % 2 0 24. 0.0 1633 12.5
burst glide 3 66.7 % 1 0 2.2 0.0 0.8 46.6
liquid silence 2 100.0 % 0 0 00 0.0 0.0 2639.3
closure nasal 2 100.0 % 0 0 0.0 0.0 0.0 59.1
silence vowel 1 100.0 % 0 0 0.0 0.0 0.0 324.0
silence liquid 1 100.0 & 0 0 0.0 0.0 0.0 - 240.0
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TOTAL

left right N %Corree¢ Earl Late EAve LAve Tot Err AveTran
vowel fricative 72 44.4 % 20 20 12.3 7.2 5.4 25.4
fricative vowel 65 600 F 21 5 9.7 7.0 3.7 18.6
vowel closure 52 44.72 & 8 21 6.3 15.9 7.4 20.4
burst vowel 40 70,5 % 11 0 1.4 0.0 1.1 62.8
burst liquid 24 70.R ¢ 6 1 6.9 0.7% 1.7 38.2
fricative liquid 16  81.% % 1 > 5.7 1.3 1.8 3.3
liquid closure 14 RIS 4 3 - 7.4 11.0 7.1 14.9
nasal closure 10 16.7 % = - 1h.h 8.0 8.8 12.8
nasal fricative - 14.% % 5 1 29.7 15.6 23.4 0.0
“ricative glide 7 7.4 % 0 o 0.0 12.0 1.4 42.3
liquid fricative A 33,3 ¢ 2 ! J0.8 0.9 10.9 22.9
burst glide 5 80.0 % ! A 2.9 0.0 5.5 A1 .1
l1qut i siience 4 100.0 % 0 s 0.0 0.0 g, 2727.5
“.hsure nasal 4 RN 4 \ 2.5 0.0 0.k 46.6
Slience vowel 2 00.n g ‘ O 0.0 5.0 0.0 41.4
silence L1quid R S ¢ D CLo 0.0 0.0 347 .5
ciosure g.1de D O T ¢ 0 0.0 0.0 0.0 27.2
closure 11quld ‘ X .. 7 ) O 0.0 0.0 0.0 8.4

With a few exceptions, all transition types 1n the categories

sonorant ‘nonsonorant and nonsonorant,/sonorant are segmented with

above-average accuracy. BExceptions are nasal/fricative (14.% percent),
nasal/closure (16.7 percent), liquid/closure /28.b percent). All these

have short average transition regions.

One striking effect evident 1n Table 5-10 1s the asymmetry of
performance 1n segmenting a sonorant followed by closure as opposed to
segmenting closure followed by the same sonorant. In every case,
performance 18 at least twice as high when the closure occurs first.
Since transitions from stops to sonorants are more rapid than those from

sonorants to stops, this result contradicts the general finding that the
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segmentation algorithm has more difficulty locating rapid events. The
result appears to be an artifact of the hand segmentation. Since the hand
segmentation was done on spectrograms, the segmentation marker 1ndicating
the beginning of stop closure was sometimes placed too early, after the
energy of the sonorant had iecayed below the grey-level threshold of the
spectrogram, but before 1t had completely decayed. This became evident
upon subsequent 1nspection of the hand segmentation as prnjected onto the

waveform.

“.7 An Aiternative Evaluation of Alignment Performance

In Sect. 5.2 we saw that the alignment algorithm described does not
reli1ably locate segment boundaries in natural speech. How good a Job does
1t do at finding segment centers” Another way of evaluating the alignment
procedure 13 to check whether or not the temporal <center of the
automatically derived segment lies within the nuclear region of the
segment as defined by the hand segmentation. This 18 an easier task, and
indeed the algorithm performs better at 1t. Results are shown 1n Table

S-11.
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TABLE &-11.

locater for different types of segments.
of segments 1n named class.

correctly located centers.

resulting from placing segment center too early.
number of errors having segment center too late.
average magnitude of early errors {(ms).

magnitude of late errors (ms).

Performance of the alignment algorithm as a segment center

N 1s total number

fCorrec ws the percentage of
Earl 1s the number of errors
Late 1s
EAve 1s

LAve 18 the average

Tot Err 1s the average

magnitude of error over all N segments in class (ms). ADur
1s the average duration (ms) of the nuclear region. (lasses
are listed 1n descending order of %Correc.
N fCorrec Earl Late EAve LAve Tot Err ADur
vowels DS 90) 85,6 4 7 h 13,9 55.4 11.0 77.0
vowels ML 91 3%.4 % ) i 52,5 0.0 3.9 87.7
vowels DS+ML 181 89.5 ¢ + 7 b 4.8 55,4 7.2 82.4
closures DS 54 79.6 % z 8 54 .1 64 .6 12.6  46.7
closures ML 55 90.9 ¢ 2 K 34.9 58.0 4.4 55.0
closures DS+ML 109 85.%3 ¢ 5 1 46.4 62.8 8.5 51.0
sonorants DS 152 80.9 ¢ 15 14 67.0 56.6 11.8 658.5
sonorants ML 15% 87.6 % 15 4 54.9 38.4 6.4 78.1
sonorants DS+ML 305 84.3 % 30 18 61.0 52.6 9.1 73.3
liquid DS 36 77.8 % 4 4 45.0 64.1 12.1 658.8
liquids ML 36 83.3 % 5 1 64.6 61.6 10.7 7.1
liquids DS+ML 72 80.6 % 9 5 55.9  63.6 11.4 65.0
fricatives DS 67 T76.1 % 14 2 38.8 64.5 10.0 63.6
fricatives ML 72 77.8 ¢ 10 6 47.6 44.6 10.3  67.6
fricatives DS+M 129 77.0 ¢ 24 8 42.4 49.5 10.2  65.7
all segs. DS 315 70.2 ¥ 45 49 45.6 50.6 14.4 55.4
all segs. ML 324 78.4 T 41 29 39.5 34.6 8.1 62.6
all segs. DS+ML 639  74.3 % 86 78 42.7 44.7 11.2 59.0
nasals DS 15 80.0 ¢ 1 2 25.6 5%.8 8.9 64.9
nasals ML 15 66.7 % 3 2 54.6 29.5 14.8 655.3
nasals DS+ML 30 73.3 % 4 4 47.3 41.6 11.9 60.1
glides DS 1 54.5 % 3 2 47.6  48.0 21.7 34.8
glides ML 11 81.8 % 1 1 21.7 33,2 5.0 5%.4
glides DS+ML 22 68.2 % 4 3 411 43.1 13.4  44.1
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nonsonorants DS 1673 60.1 % 30 15 34.9 48,2 16.8 473.1
nonsonorants ML 171 70.2 § 26 25 30.6 34.0 9.6 48.6
nonsonorants DS+ML 334 65.3 % 56 60 32.9 42.% 13,1 45.0
bursts DS 2 9.5 % 173 25 26.2 41.7 32.9 5.6
bursts ML 44 1.8 ¢ 14 16 17.9  25.6 15.0 G.6
bursts DS+ML 86 20.9 % 27 41 21.9  35.4 23.8 7.7

Just as DS appeared to be better segmented because the transitional
regions 1n the hand—segmentegh model were longer, ML s segment centers
appear better located due to @r nuclear regions. There appears to be
a rather strong correlation getween average nuclear region duration and
percent correct center location. The only notable exception 18 for
closures, which yield a higher percentage of correct location than other
segments having the same average length. This 13 explicable because they

are acoustically distinct from other types of segments.

In this section we have seen that the alignment algorithm performs
Swh tetter at l-~~2ting segment centers than 1t does at locating segment
boundaries. A possible approach to automatic segmentation would use the
present algorithm to locate segments and some other, more segment specific

approach, to find segment endpoints.
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5.4 Additional Experiments

The Zip algorithm 1s a suboptimal version of the dynamic time warping
algorithm. As such, we must take care to choose the diagonal length
sufficiently large so as to include the optimal time alignment path. To
check 1f this parameter 1s degrading alignment results, another experiment
was run with twice the diagonal length (100 1nstead of 50 frames). All
other aspects of the experiment remained constant. The outcome of the
experiment was that the dynamic time warp paths generated using a diagonal
of 100 frame$s were 1dentical to those using 50 frames for all twenty
sentences. We conclude that a diagonal of 50 frames 1s sufficiently large

to find the optimum path.

As seen in Chapt. 4, the constrained warp performed substantially
better than the wunconstrained warp. However, 1f the warp 1is too
constrained, performance will degrade. An experiment was performed in

which the Zip slope constraint was relaxed slightly, without returning to

a completely unconstrained warp. The main experiment constrained the
slope to be Dbetween !/3 and 3. In this experiment the slope was
constrained to lie between 1'/4 and 4. All other conditions remained

1dentical to those of the main experiment (see Table 5-3).

The outcome resulted in slightly different warp paths and slightly
different 1nduced segmentations. The statistics were close to those 1in
Table 5-5, with segmentation performance on speaker DS improving

insignificantly from 48.0 percent to 48.3 percent, while performance on ML
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worsened from 41.9 percent to 40.1 percent. For both speakers the total

error magnitude increased, but more for ML than for DS.

Another possible reason for poor performance of the alignment
technique, especially 1n burst location, may be that the analysis window,
25.6 ms 1n the main experiment, 18 too long to give the required time
resolution. In another experiment, the analysis window was halved to 12.8

ms, keeping the frame advance and all other conditions as in Table 5-3.

To focus specifically on the three maJo! categories of boundary
discussed above, Table 5-12 selectively compares performance on
closure/burst, liquid/vowel, and fricative/vowel boundaries for the main

experiment (1), relaxed slope constraints (2), and reduced window length

(3).

TABLE 5-12. Comparative segmentation performance on three selected
boundary types of (1) the algorithm in Table 5-3, (2) looser
slope constraints, and (3) shorter analysis window.

Speaker DS
Exp left right =~ N f#Correc Earl Late EAve LAve TotDist
1 closure burst 42 4.84¢ 20 20 16.6 28.7 21.5
2  closure burst 42 7.1% 20 19 16.7 29.5 21.3
3 closure burst 42 1.9 % 15 22 20.0 29.2 22.4
1 liquid vowel 20  40.0 % 5 7 16.73 25.0 12.8 .
2 liquid vowel 20  40.0 % 5 7 16.73 25.0 12.8
3 liquid vowel 200 25.0 % 6 9 13.0 16.0 11.1
! fricative vowel 32 62.5% 10 2 12.9 4.6 4.3
2 fricative vowel 32 68.8% 10 0 15.8 0.0 4.9
3 fricative vowel 32 68.8 ¢ 8 2 17.6 15.9 5.4
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SBeaker ML

Exp left right N ZCorrec Earl Late EAve LAve TotDist
1 closure burst 44 18.2 ¢ 19 17 1.6 111 .3
2 closure burst 44 18.2 % 19 17 16.7 1.1 11.5
3 closure burat 44 18.2 % 17 19 14.4 1.3 10.5
1 liquid vowel 20 40.0 % 5 7 26.4 9.8 10.0
2 liquid vowel 20 30.0 % 5 9 28.6 10.8 12.0
3 liquid vowel 20 45.0 ¢ 4 7 29.5 8.4 8.8
1 fricative vowel 13 57.6 % 11 3 6.7 8.6 3.0
2 fricative vowel 33 57.6 ¢ 12 ? 7.2 14.3 2.5
3 fricative vowel 13 48.5 ¢ 14 z 7.6 26.8 5.7

On speaker DS, relaxing the slope constraint had the desired effect:
Segmentation performance on closure/burst boundaries improved markedly.
This was not the case for speaker ML, however, where segmentation
performance was not affected. Conversely, the liquid/vowel boundary for
speaker DS was unaffected by the loogser constraint, while on speaker ML,
segmentation at this ©boundary worsened. Fricative/vowel boundaries for
speaker DS are correctly segmented more often under relaxed constraints,
but with larger errors for the boundaries that are missed. All these

effects are amall and probably not significant.

A larger speaker-dependent effect occured in the experiment with a
reduced analysis window. The number of correctly located closure/burst
boundaries for speaker DS more than doubled when the analysis window
length was halved, although the averaged magnitude of the remaining errors
increased, just as 1in the case of relaxed slope constraint. The shortened

window had very little effect on ML s sentences. Conversely, segmentation
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2
of DS"s liquid/vowel transitions was worse with the shorter window. Since
these sounds 1nvolve alowly changing spectrm, the use of a longer window
should be an advantage. However, for ML s speech, the shorter window did
not degrade liquid/vowel boundary segmentation. As was the case with the
slope constraint, the best window length appears to depend upon the

speaker.

5.5 Summary of Alignment Experiments

In Chapt. 1, we set forth five critical assumptions that must hold 1in
order for the synthesize-and-warp technique to produce correct results
consistently. With full knowledge that each of these assumptions held
only partially, we proceded to explore the performance consequences 1n
Chapt. 2. By manipulating experimental conditions, 1t was possible to
1s0late the effects of forcing certain of the assumptions to hold. Thus,
by employing rule-based segmentation of the synthetic model, it was
possible to achieve correct model segmentation (Assumption 3). In
Chapt. 4, use of a hand-segmented natural model eliminated errors arising
from synthesis quality (Assumption 2). The resulting reduction in error
rate from 22 percent to 13 percent indicates that the warp algorithm is
indeed sensitive to deficiencies i1n synthesis quality. At the same time,
it 1s clear from the residual 13 percent error rate that the remaining
assumptions, particularly Assumptions 4 and 5, having to do with local

distance and the warp algorithm, are also extremely 1important. In the
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main experiment (Chapt. 5), only Assumption 3 holds. The resulting 45
percent error indicates that the synthesize-and-warp technique in 1ts
present form cannot reliably perform the Job of a human

transcriber/segmenter.

Assumption ! states that the phonetic transcription’ of the model
corresponds to what the speaker actually pronounced. Since in the present
system the phonetic transcription 1is deterministically derived from the
input word string, Assumption 1 does not hold in general. In fact, the
single segmentation error of largest magnitude (220.4 ms) occurred 1n
sentence 5 when speaker DS inserted a pause after the word cape: "She
flaps her cape, as she parades the street.” Since the synthetic model daid
not contain a pause, desynchronization occurred, causing surrounding
segments to be misplaced as well. Another example of failure of
Assumption ' 1s the use by MITalk of the preaspirated glide [hw] as the
initial phoneme of which and whiff. This dialect feature 1s absent from
the speech of both DS and ML. Thus, dialect variability tends to degrade
the automatic segmentation. Finally, when two stop consonants occur
together, our phonological rules predict that the first will not be
released. In practice, speakers sometimes do release the first stop. In

future work on direct rule-based segmentation of natural speech, optional

phonological rules will be used to handle this type of variability.

Assumption 4 1s difficult to control for, since no "correct” distance
metric is known. The congsequence of having Assumption 4 not hold 1s that

local distances between corresponding segments of the test and model
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utterance exceed local distances between noncorresponding segments. Since
the warp algorithm always finds the minimum distance path between the test
and model utterances, the alignment, and therefore the 1nduced
segmentation of the test utterance, will be incorrect. Spectral daistance
measures often behave 1ncorrectly when the two wutterances are from
different speakers. In speech recognition, this 18 called the
“normalization problem”. An analogous problem arises in this case when
natural and synthetic speech are aligned 1n the synthesize-and-warp

procedure.

In the dynamic time warping algorithm, slope constraints are placed
on the path to exclude wunlikely alignments. Assumption 5 states that
these constraints are correctly formulated. In Chapt. 4 we saw that
remov ing slope constraints completely has a devasting effect on
segmentation (41 percent versus 22 percent error). This result underlines
the i1nadequacy of the distance metric: Local distance alone 18
insufficient for avoiding gross misalignments. When slope constraints are
used, however, amall alterations 1n them do not affect segmentation
performance i1n a significant way (Sect. 5.2). The introduction of slope
constraints 1s only a partial remedy to overcome the limitations of the
di1stance metric used. Further improvements are needed to ensure that the
distance met?ic corresponds more closely with the peroeptual similarity of

the corresponding segments. .
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5.6 Conclusions and Possible Solutions

3

The reason that the synthesize-and-warp procedure does not perform
well enough to be practical for automatic labelling of speech databases 1s
that of the five critical assumptions, only Assumption 3 holds
consistently. It may be possible to have Assumption 2 hold by using an
1terative synthesize-and-warp procedure 1n which the spectral features of
the model are adjusted to match those of the test utterance. To make
Assumption 5 hold requires modification of the time-warping algorithm
1tself. Since the segmentation and labelling of the model utterance 1s
known, warp constraints may be defined as a function of segment type. A
possible solution to the problem of phonological variability (Assumption
') may be to associate with each segment of the model a set of
phonological rules, accessible to the warp algorithm. Such rules could
specify, for example, that certain segments may be skipped without

penaltty.

An alternative to the 1terative synthesize-and-warp approach, which
avoirds the five <critical assumptions altogether, 1s suggested by the
success of the rule-based segmenter on synthetic speech: Modify the
rul e-based segmentation algorithm to segment natural speech. Two
additional difficulties are present 1n the rule-based segmentation of
natural speech that were not present in the rule-based segmentation of
synthetic speech: (1) natural speech i1s far more variable than synthetic

speech and (2) estimation of acoustic parameters from the waveform 1s
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errorful. As 1s true for the 1terative synthesize-and-warp procedure
described above, the use of a more complex phonology 18 necessary,
specifying which segmental substitutions, deletions, and 1nsertions are
likely. However, the rule-based environment 18 i1deally suited to the

expression of an elaborate phonology.

Most importantly, a rule-based approach does not encounter the

problem of distance metrics (Assumption 4) since no model utterance 1s

used. Instead, we are required to state an acoustic event that coincides
with each Dboundary type, thus focussing directly on the segmentation
problem. Acoustic events may be arbitrarily complex, involving

conjunction and disjunction of simpler events. The proble$ of spectral
variation can be handled 1n the context of the rule-based segmenter by
specifying events i1n relative terms. For example, 1nstead of defining the
event corresponding to the onset of voicing as was done for synthetic
speech, 1.e., periodic excitation exceeds some fixed threshold, voicing
onset would be defined as an 1increase of periodicity by a specified amount

or proportion within a specified time.

Since perfect warp algorithms and perfect distance metrics do not
exiat, rule-based segmentation of natural speech potentially offers a more
precise segmentation than methods based on warping. Each time a boundary
1s detected, the required event 1s known to have occurred. The user 1s
thus assured that the agreed upon definition of a boundary type has been
instantiated by an acoustic event in the signal. If an expected event

does not occur and 1ts absence cannot be accounted for by a phonological
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rule, then the boundary 1s flagged for subsequent human intervention.
Experience gained i1n the rule-based segmentation of synthetic speech
indicates that errors tend to be discrete i1in nature. If a rule i1is missing
or 1ncorrect, a gross segmentation error occurs. Unlike the
time-warp- based segmentation, minor errors, corresponding to a fraction of
a segment s duration, rarely occur. Gross errors are generally easier to
detect and repair than minor errors.

’l‘

This 1investigation indicates that the synthesize-and-warp technique
ioes not perform sufficiently well toc be used as a speech analysis tool.

Inti1l distance metrics, time warping, and synthetic speech quality are

umproved, a better approach may be the direct, rule-based segmentation of
natural speech. By choosing a direct, rule-based approach, Assumptioms 2,
3, 4, and S5 are unnecessary. Assumption 1, concerning variable

phonological rules, 1s most conveniently addressed within™ the rule-based

framework. Subsequent research will explore this direction.

The implications of these results for speaker-independent speech
recognition are that the distance metric and time-warping procedure
requlre 1mprovement. Better distance metrics would emphasize phkonetic
differences as opposed to interspeaker differences. More realistic slope
constraints i1n the time-warping procedure would reflect observed temporal

variability as a function of segment type.
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APPENDIX A PHNF™" "ALLY BALANCED SENTENGEG USED IN THIS STUDY

ro

The gnose was brought straight from the old market.
The sink 13 the thing in which we pile dishes.

A whiff of 1t wili cure the most stubborn cold.

The facts don"t always show who 18 right.

She flaps her cape as she parades the street.

The loss of the cruiser was a blow to the fleet.
Loop the braid to the left and then over.

Plead with the lawyer to drop the lost cause.
Calves thrive on tender spring grass.

Post no tills on this office wall.
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IXR
EXR
AXR
S XR
UXR
AX

IX

AXP

T Xt~

APPENDIX B:

pompous ' schwa)
impunity (barred 1)
(nonsyllabic schwa)
witch
iellow
rat
Tit
hat
the hurrah (voiced)

PHONETIC SYMBCL: JSED BY MITALK-74

100

which

pal (postvocalic
title {syllabir)
fasten (glottal stop!
Bat—

bat

mat

‘tag

d1d

none

Ei;per paiatal’
Elve pa.atai
Tatin glottaiized
comb

gone

?1ng

church

Jug

bottle ‘flap)

far

zery

thistle

then

sink

zlnc

shrink

EEmoufla&ﬁ

logarithm (syllabic)
button ~ (syllabic)
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Fig. 2-ta. Synthetic speech with MITalk segmentation and labelling.
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Fig. 2-1b

Sentence 1:

Synthetic speech with MITalk segmentation and labelling.

(The goose wa)s brought strai(ght from the old market).
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Fig. 2-1c. Synthetic speech with MITalk segmentation and labelling.

Sentence 1: (The goose was brought st)raight from the o(ld market).
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Fig. 2-1d. Synthetic speech with MITalk segmentation and labelling.

Sentence 1: (The goose was brought straight from the) old market.
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Fig. 2-1e. Synthetic speech with MITalk segmentation and labelling.

Sentence 1: (The goose was brought straight from the old mark)et.
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Fig.

5000-

2-2a.

Synthetic speech with MITalk segmentation and labelling.

Sentence 2:

The sink is the thi(ng 1n which we pile dishes).
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Fig. 2-2b. Synthetic speech with MITalk segmentation and labelling.

Sentence 2: (The sink is the th)ing 1n which we plile dishes).
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Fig. 2-2c. Synthetic speech with MITalk segmentation and labelling.

Sentence 2: (The sink 18 the thing 1n which we) pile dishe(s).
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Fig. s-2d. Synthetic speech with MITalxk segmentation and labelling.

Sentence 2:

(The sink is the thing in which we plle tish)es.
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Fig. 2-3a. Synthetic speech with MITalk segmentation and labelling.

Sentence 3: A whiff of 1t will {cure the most atubborn cold).
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Fig. 2-3b. Synthetic speech with MITalk segmentation and labelling.

Sentence 3: (A whiff of 1t w'l1ll cure the mosa(t stubborn -old).
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Fig. 2-3c.
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Sentence 3: (A whiff of 1t will cure the most stubborn co(ld).
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Fig. 2-3d. Synthetic speech with MITalk segmentation and labelling.

Sentence 3: (A whiff of 1t will cure the most stubborn c)old.
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Fig. 2-4a. Synthetic speech with MITalk segmentation and labelling.

Sentence 4: The facts do(n”t always show who 1s right).
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Fig. 2-4b. Synthetic speech with MITalk segmentation and labelling.

Sentence 4: (The facts d)on"t always show (who 1s right).
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Fig. 2-4c. Synthetic speech with MITalk segmentation and labelling.

Sentence 4: (The facts don't always sh)ow who 1s right.
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Fig. 2-4d. Synthetic speech with MITalk segmentation and labelling.

Sentence 4: (The facts don"t always show who 1s r)ight.
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Fig. 2-5a.

Speaker ML with induced MITalk segmentation and labelling.

Sentence 1:

The goose was b(rought straight from the old market) .




Fig. 2-5b. Speaker ML with induced MITalk segmentation and labelling.

Sentence 1: (The goose wa)s brought strai(ght from the old market).
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Fig. 2-5c. Speaker ML with induced MITalk segmentation and labelling.

Sentence !': (The goose was brought str)aight from the o(ld market).
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Fig. 2-5d. Speaker ML with i1nduced MITalk segmentation and labelling.

Sentence 1: (The goose was brought straight from the) old marke(t).
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Fig. 2-5e. Speaker ML with induced MITalk segmentation and labelling.

Sentence 1: (The goose was brought straight from the old mark)et.
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Fig. 2-6a. Speaker ML with i1nduced MITalk segmentation and labeiling.

Sentence 2: The sink is the (thing 1n which we pile dishes).
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Fig. 2-6b. Speaker ML with induced MITalk segmentation and labelling.

Sentence 2: (The sink 1s th)e thing in which w{e pile dishes).
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Fig. 2-6c. Speaker ML with induced MITalk segmentation and labelling.

Sentence 2: (The sink 1s the thing 1n which! we pile di{shes).
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Fig. 2-6d. Speaker ML with induced MITalk segmentation and labelling.

Sentence 2: (The sink is the thing in which we pile d)ishes.
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Fig. 2-7a. Speaker ML with induced MITalk segmentation and labelling.

Sentence 3: A whiff of it w(ill cure the most stubborn cold).
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Fig. 2-7b. Speaker ML with induced MITalk segmentation and labelling.

(A whiff of it) will cure the mo(st stubborn cold).

Sentence 3:

a0 A L.
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Fig. 2-7c.

Speaker ML with induced MITalk segmentation and labelling.

Sentence 3: (A whiff of it will cure the m)ost stubborn c(old).
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Fig. 2-74d.

Speaker ML with induced MITalk segmentation and labelling.

Sentence 3: (A whiff of it will cure the most stubbor)n cold.
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Fig. 2-8a. Speaker ML with induced MITalk segmentation and labelling.

Sentence 4: The facts d(on”t always show who is right).
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Fig. 2-8b. Speaker ML with induced MITalk segmentation and labelling.

Sentence 4: (The fact)s don"t always sh(ow who is right).
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Fig. 2-8c. ©Speaker ML with induced MITalk segmentation and labelling

Sentence 4: (The facts don"t always) show who is ri(ght).
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Fig., 2-8d. Speaker ML with induced MITalk segmentation and labelling.

Sentence 4: (The facts don t always show who i)s right.
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Fig.

2-9a.

Speaker ML with induced MITalk segmentation and labelling.

Sentence 5: She flaps (her cape as she parades the street).
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Speaker ML with i1nduced MITalk segmentation and labelling.

2-9b.

Fig.

(She fla)ps her cape as (she parades the street).

Sentence 5:

'
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Fig. 2-9c.

Speaker ML with induced MITalk segmentation and .abelling.

Sentence S5: (She flaps her cape) as she parade(s the street).
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Fig. 2-9d. Speater ML with induced MITalk segmentation and labelling.

Sentence S: (She flaps her cape as she para)des the street.
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Fi1g. 2-10a. Speaker ML with induced MITalk segmentation and labelling.

Sentence 6: The loss of th(e cruiser was a blow to the fleet).
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Fig. 2-10b. Speaker ML with induced MITalk segmentation and labelling.

Sentence 6: (The loss of) the cruiser wa(s a blow to the fleet).
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Fig. 2-10c. Speaker ML with induced MITalk segmentation and labelling.

Sentence 6: (The loss of the cruis)er was a blow to {the fleet).
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Fig. 2-104.

Speaker ML with induced MITalk segmentation and labelling.

Sentence 6:

(The loss of the cruiser was) a blow to the fleet.
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Fig.

2-11a.

Speaker ML with induced MITalk segmentation and labelling.

Sentence 7: Loop the brai(d to the left and then over).
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Figo 2-11bo

Sentence 7:

Speaker ML with induced MI™alk segmentation and labelling.

(Loop the br)aid to the lef(t and then over).

il

'J L8 B '.

)

i‘)“‘l‘ .
R

Wm'un

iy

i
H
!

A v r

;L’

[—,

'i 't%{

‘ f'l\»
| Nt‘h

‘i HSA
M !

-y

—~yp

-~

H

280

T 300
M




971

Fig. 2-11c.

Speaker ML with induced MITalk segmentation and labelling.

Sentence 7: (Loop the braid to the le)ft and then o(ver).
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Fig. 2-11d. Speaker ML with induced MITalk segmentation and labelling.

Sentence 7: (Loop the braid to the left and th)en over.
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Fig. 2-12a.

Speaker ML with induced MITalk segmentation and labelling.

Sentence 8: Plead with the 1(awyer to drop the lost cause).
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FPig. 2-12b. Speaker ML with induced MITalk segmentation and labelling.

Sentence 8: (Plead with the) lawyer to dro(p the lost cause).
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Fig. 2-12c.

Sentence 8:

b

Speaker ML with induced MITalk segmentation and labelling.

(Plead with the lawyer to dr)op the lost cau(se).
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Fig. 2-12d.

Speaker ML with induced MITalk segmentation and labelling.

Sentence 8:

(Plead with the lawyer to drop the los)t cause.
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Fig. 2-13a. Speaker ML with induced MITalk segmentation and labelling.

Sentence 9: Calves thr(ive on tender spring grass).
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Fig. 2-13b. Speaker ML with induced MITalk segmentation and labelling.

Sentence 9: (Calves th)rive on te(nder spring grass).
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Fig. 2-13c. Speaker ML with 1induced MITalk segmentation and labelling.

Sentence 9: (Calves thrive on t)ender sprl(ng grass).
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Fig. 2-13d. Speaker ML with induced MITalk segmentation and labelling.

Sentence 9: (Calves thrive on tender spr)ing grass.
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Fig. 2-14a. Speaker ML with induced MITalk segmentation and labelling.

Sentence 10: Post no bi(lls on this office wall).
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Fig.

2-14b. Speaker ML with induced MITalk segmentation and labelling.

Sentence 10:

(Post no b)ills on this (office wall).
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Fig. 2-14c. Speaker ML with induced MITalk segmentation and labelling.

Sentence 10: (Post no bills on this) office wa(ll).
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Fig. 2-14d.

Speaker ML with induced MITalk segmentation and labelling.

Sentence 10:

(Post no bills on this office) wall.
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Fig. 3-1a. Synthetic speech with rule-based segmentation and labelling.

Sentence-1: The goose (was brought straight from the old market).
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Fig. 3-1b. Synthetic speech with rule-based segmentation and labelling.

Sentence 1: (The goose) was brought (straight from the old market).
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Fig. 3-1c. Synthetic speech with rule-based segmentation and labelling.

Sentence 1: (The goose was brought) straight f(rom the old market).
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Fig. 3-1d.

Synt}\etic speech with rule-based segmentation and labelling.

Sentence 1:

(The goose was brought straight f)rom the ol(d market).
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Fig. 3-1e. Synthetic speech with rule-based segmentation and labelling.
Sentence 1: (The goose was brought atraight from the ol)d market.
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Fig. 3-2a. Synthetic speech with rule-based segmentation and labelling.

Sentence 2: The sink (is the thing in which we pile dish®s).
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Fig. 3-2b.

4000

3000

Synthetic speech with rule-based segmentation and labelling.

Sentence 2: (The sink) is the thing in (which we pile dishes).
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Fig. 3-2c. Synthetic speech with rule-based segmentation and labelling.

Sentence 2: (The sink is the thing in) which we p(1le dishes).
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Fig. 3-2d. Synthetic speech with rule-based segmentation and labelling.

Sentence 2: (The sink is the thing in which we p)ile di{ shes).
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Fig. 3-2e.

Synthetic speech with rule-based segmentation and labelling.

Sentence 2: (The sink is the thing in which we pile di)shes.
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Fig. 3-3a. Synthetic speech with rule-based segmentation and labelling.

Sentence 3: A whiff of (it will cure the most stubborn cold).
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Fig.' 3-3b. Synthetic speech with rule-based segmentation and labelling.

Sentence 3: (A whiff of) it will c(ure the most stubborn cold). s

f‘“ "t
. | |

130 140 150 = 160

t! - 1 1 « k?

.
———d
— e e i ef

LT

v

v

T




LT

Fig. 3-3c. Synthetic speech with rule-based segmentation and labelling.

Sentence 3:

(A whiff of it will c)ure the mo{( st stubborn cold).
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Fig. 3-3d. Synthetic speech with rule-based segmentation and labelling.

Sentence 3: (A whiff of it will cure the mo)st stubb{orn cold).
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Fig. 3-3e. Synthetic speech with rule-based segmentation and labelling.

Sentence 3; (A whiff of it will cure the most stubb)orn cold.
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Fig. 3-4a. Synthetic speech with rule-based segmentation and labelling.

Sentence 4: The facts (don”t always show who is right).

3000 .

o0

3000: ““, H,mwl I sM

. i “mm HE H“' o

] | ] nw:»l um‘l“ |
- e



LT

Fig. 3-4b. Synthetic speech with rule-based segmentation and labelling.

Sentence 4: (The facts) don”t (always show who is right) .
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Fig. 3-4c. Synthetic speech with rule-based segmentation and labelling.

Sentence 4: (The facts don"t) always sh(ow who is right).
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Pig. 3-4d. Synthetic speech with rule-based segmentation and labelling.

Sentence 4: (The facts don”t always sh)ow who is (right).
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Fig. 3-4e. Synthetic spee&h with rule-based segmentation and labelling.

Sentence 4: (The facts don”t always show who is) right.
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Fig. 3-5a. Synthetic speech with rule-based segmentation and labelling.

- Sentence 5: She fla(ps her cape as she parades the street).
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Fig. 3-5b.

Synthetic speech with rule-based segmentation and labelling.

Sentence 5: (She fla)ps her cape (as she parades the street)
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Fig. 3-5c¢. Synthetic speech with rule-based segmentation and labelling.

Sentence 5: (She flaps her cape) as she para(des the street).
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Fig. 3-54d.

Synthetic speech with rule-based segmentation and labelling.

Sentence 5: (She flaps her cape as she para)des the street.
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Fig. 3-6a. Synthetic speech with rule-based segmentation and labelling.

Sentence 6: The loass (of the cruiser was a blow to the fleet).
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Fig . 3-6bo

Synthetic speech with rule-based segmentation and labelling.

Sentence 6: (The loes) of the cruis{(er was a blow to the fleet).
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Fig. 3-6c. Synthetic speech with rule-based segmentation and labelling.

Sentence 6: (The loss of the cruis)er was (a blow to the fleet).
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Syntﬁetic speech with rule-based segmentation and labelling.

Sentence 6:

(The loss of the cruiser was) a blow to (the fleet).
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Fig. 3-6d.
300 L
400

-

e . ™

i

- ———
ang— NRETE, 7 e o 20 s e e

N | ;)
LLLEEE

i ;

17
3

[

ti..

.....




681

Fig. 3-6e.

Synthetic speech with rule-based segmentation and labelling.

Sentence 6: (The loss of the cruiser was & blow to) the fleet.
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F1g. 3-7a. Synthetic speech with rule-based segmentation and labelling.

Sentence 7: Loop the b(raid to the left and then over).
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Fig. 3-7b. Synthetic speech with rule-based segmentation and labelling.

Sentence 7: (Loop the b)raid to th(e left and then over).
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Fig. 3-7c. Synthetic speech with rule-based segmentation and labelling.

Sentence 7: (Loop the braid to th)e left (and then over).
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Fig. 3-7d. Synthetic speech with rule-based segmentation and labelling.

Sentence 7: (Loop the braid to the left) and then (over).
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Fig. 3-Te.

Synthetic speech with rule-based segmentation and labelling.

Sentence 7: (Loop the braid to the left and then) over.
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Fig. 3-8a. Synthetic speech with rule-based segmentation and labelling.

Sentence 8: Plead with (the lawyer to drop the lost cause).
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Fig. 3-8b. Synthetic speech with rule-based segmentation and labelling.

Sentence 8: (Plead with) the lawyer (to drop the lost cause).
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Fig. 3-8c. Synthetic speech with rule-based segmentation and labelling.

Sentence B:

5000+

4

(Plead with the lawyer) to drop (the lost cause).
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Fig. 3-8d. Synthetic speech with rule-based segmentation and labelling.

Sentence 8: (Plead with the lawyer to drop) the lost (cause).
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A | S A —

Fig. 3-8e.

Synthetic speech with rule-based segmentation and labelling.

Sentence 8:

(Plead with the lawyer to drop the lo)st cause.
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Pig. 3-9a. Synthetic speech with rule-based segmentation and labelling.

Sentence 9: Calves th(rive on tender spring grass) .
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Fig. 3-9b. Synthetic speech with rule-based segmentation and labelling.
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Sentence 9: (Calves th)rive on (tender spring grass).
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Fig. 3-9c. Synthetic speech with rule-based segmentation and labelling.
Sentence 9: (Calves thrive on) tender s(pring grass).
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Fig. 3-9d. Synthetic speech with rule-based segmentation and labelling.

Sentence 9: (Calves thrive on tender s)pring (grass).
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Fig . 3-930

S000

Synthetic speech with rule-based segmentation and labelling.

Sentence 9:

(Calves thrive on tender spring) grass.
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Fig. 3-10a. Synthetic speech with rule-based segmentation and labelling.

Sentence 10: Post no (bills on this office wall).
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Fig. 3-10b. Synthetic speech with rule-based segmentation and labelling.

Sentence 10: (Post no) bills on (this office wall).
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Fig. 3-10c. Synthetic speech with rule-based segmentation and labelling.

Sentence 10: (Post no bills on) this office (wall).
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Fig. 3-10d. Synthetic speech with rule-based segmentation and labelling.

Sentence 10: (Post no bills on this office) wall.
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Fig. 4-1a. Ali1gned synthetic and natural speech (speaker DS).

Sent. 2: The sink 1(s the thing in which we pile dishes).
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Fig. 4-1b. Aligned synthetic and natural speech (gpeaker DS).

Sent. 2: (The sink) is the thing in (which we pile dishes).
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Fig. 4-1c. Aligned synthetic and natural speech (speaker DS).

Sent. 2: (The sink is the thing )in which we p(1le dishes).
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Fig. 4-14. Aligned synthetic and natural speech (speaker DS).

Sent. 2: (The sink is the thing in which we p)ile di( shes).
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Fig. 4-1e. Aligned synthetic and natural speech (speaker DS).

Sent. 2: (The sink 1s the thing in which we pile d)ishes.
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AMPLITUDE OF NATURAL UTTERANCE

Automatic segmentation

Hand segmentation

Fig. 4-2. Aligned waveforms of synthette-and natural speech.

Sent. 5: She fi{aps her cape as she parades the

street).
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Fig. 5-1. Speaker DS with segmentation induced from rule-based analysis
of synthetic model. Sent. 8: (Plead with the) lawyer (to
drop the lost cause).
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Fig. 5-2. Speaker ML with segmentation induced from rule-based analysis

of synthetic model. Sent. 1': The goose (was brought straight

from the old market).
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