
A message oriented middleware for
mobility

Jean-Francois Desjeans Gauthier

School of Computer Science, McGill University, Montreal

October, 2010

A thesis submitted to McGill University in partial

fulfillment of the requirements of the degree of M.Sc

c©Jean-Francois Desjeans Gauthier, 2010



Contents

Abstract iii

Sommaire v

Acknowledgements vii

1 Introduction 1

2 Background and Related Work 4

2.1 Mobile Network Environment . . . . . . . . . . . . . . . . . . 4

2.2 Handover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Soft Handover . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Mobile Applications in the Enterprise . . . . . . . . . . . . . . 11

2.4 Communication Basics . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Transmission Control Protocol . . . . . . . . . . . . . . . . . . 17

2.5.1 Reliability and Failure Model . . . . . . . . . . . . . . 18

2.5.2 Reliability of TCP . . . . . . . . . . . . . . . . . . . . 18

2.5.3 Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Short Message Service . . . . . . . . . . . . . . . . . . . . . . 22

2.6.1 Guarantees . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Advanced Message Queuing Protocol . . . . . . . . . . . . . . 23

2.7.1 Communication Patterns . . . . . . . . . . . . . . . . . 24

2.7.2 Entities Architecture . . . . . . . . . . . . . . . . . . . 27

i



2.7.3 Reliability Features . . . . . . . . . . . . . . . . . . . . 29

2.7.4 AMQP Communication Patterns . . . . . . . . . . . . 35

2.7.5 AMQP Queue Management . . . . . . . . . . . . . . . 40

2.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.8.1 Publish/Subscribe . . . . . . . . . . . . . . . . . . . . 41

2.8.2 Communication Channel Selection . . . . . . . . . . . 43

3 Mobility Middleware 48

3.1 General Architecture . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Reliability and Ordering . . . . . . . . . . . . . . . . . . . . . 49

3.2.1 TCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.2 SMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Multihoming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Entities Architecture . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Handover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.1 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.2 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5.3 Adaptation . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.4 Initiation . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5.5 Transmission Algorithm . . . . . . . . . . . . . . . . . 65

4 Performance Evaluation 69

5 Conclusions and Future Work 76

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

List of Figures 79

List of Tables 80

References 80

ii



Abstract

Recent advances in embedded technologies have enabled cell phones to

become powerful multihomed computing devices and hosts to a wide range

of applications. However, communication between the device and the outside

world is still a complicated task because the device is mobile, the connection

is intermittent, the signal strength varies greatly and the communication

options are heterogeneous. Previous work has suggested that communication

with these devices is simplified and enhanced with the use of message oriented

middleware (MOM).

MOMs generally allow the exchange of small messages on an IP network

using communication patterns such as notification, request/reply and pub-

lish/subscribe. However, mobile devices also support non-IP networks such

as the short message service (SMS). SMS can be seen as a MOM that is

administered by a Mobile Network Provider (MNO). The advantage is its

ubiquity and privileged access to the status of the device. Additionally, mo-

bile devices can be reached simultaneously on multiple networks, but MOMs

do not support this functionality.

In this work, we introduce a mobility middleware that will improve current

MOM. Our mobility middleware uses a utility-based scheme for automati-

cally choosing one of three network types: MNO, WiFi and the SMS. The

selection scheme makes a decision using context information from the net-

iii



work, the user preferences, the application preferences and the infrastructure.

Additionally, delay-tolerant application can use our mobility middleware to

delay messages in order to improve the utility. We also guarantee FIFO

ordering and at-most-once delivery, at-least-once delivery or at-least-once

processing as required. Finally, we implement our solution with a Java ME

client and a Java middleware and evaluate the performance impact of adding

our mobility middleware to a MOM.

iv



Sommaire

Des avancements technologiques récents sur les systèmes embarqués ont

permis aux cellulaires de devenir des puissants appareils et hôtes d’une panoplie

d’applications. Cependant, la communication entre l’appareil et l’extérieur

est encore une tâche compliquée parce que l’appareil est mobile, la connex-

ion est intermittente, le signal varie et les options de communications sont

hétérogènes. Des travaux passés ont suggéré que la communication avec ces

appareils est simplifié et augmenté par l’utilisation d’un intergiciel par envoie

de messages (MOM).

Les MOMs permettent l’échange de petits messages sur un réseau IP tout

en utilisant plusieurs modèles de communication tels que la notification, la

transmission sur demande et la publication-souscription. Toutefois, les cellu-

laires supportent aussi les réseaux non IP tel que le service de minimessages

(SMS). Le SMS peut être considéré comme un MOM qui est administré par

un fournisseur de service sans-fil. L’avantage du SMS est sont ubiquité et

sont accès privilégié au statu du cellulaire. De plus, les téléphones mobiles

peuvent communiquer sur plusieurs réseaux simultanément, mais les MOMs

ne supportent pas cette fonctionnalité.

Dans ce travail, nous introduisons un intergiciel pour la mobilité perme-

ttant l’amélioration des MOMs suivant le protocole AMQP pour utilisant

avec les téléphones intelligents. Notre intergiciel pour la mobilité utilise

v



un modèle d’utilité pour choisir un canal de communication approprié en-

tre les fournisseurs de service sans-fil, Wifi et le SMS. Le modèle d’utilité

fait une décision à partir de l’information du contexte courant du réseau,

des préférences de l’usager, des préférences de l’application ainsi que de

l’infrastructure. De plus, les applications qui supportent un délai peuvent

utiliser notre intergiciel pour la mobilité pour introduire un délai et améliorer

l’utilité. Nous garantissons l’ordre premier entré et premier sortis des mes-

sages ainsi que la livraison au plus une fois, au moins une fois ou le traitement

au moins une fois tel que requis. Finalement, nous implémentons un client

Java ME ainsi qu’un intergiciel Java et nous évaluons l’impact sur la perfor-

mance de l’introduction de notre intergiciel pour la mobilité à un MOM.

vi



Acknowledgements

I would like to thank MITACS and SAP for providing financial support to

complete the work of this thesis. I would also like to thank Huaigu Wu as

my contact at SAP who has supported me throughout this work. Finally, I

would like to thank Bettina Kemme as my advisor at McGill for her countless

advice, unrelentless help and belief in my work.

vii



Chapter 1

Introduction

The goal of this research project is to design and implement a MOM that

supports various communication patterns: event notification, request/reply

as well as publish/subscribe interface. Using the publish/subscribe com-

munication paradigm, users can subscribe to predefined channels and also

publish messages (called notifications or events) on these channels. All users

subscribed to a channel will receive the events published on it. Most im-

plementations use a central event server that accepts subscriptions and no-

tifications, and forwards notifications according to the subscriptions it has

received previously. MOMs provide various degrees of reliability in regard to

the delivery of published events (at-most-once, at-least-once, exactly-once),

can keep histories of publications, and can provide a whole set of advanced

features.

Several protocols already exist around MOMs, notably the Advanced Mes-

sage Queuing Protocol (AMQP), the Extensible Messaging Presence Protocol

(XMPP) and the Restful Message Service (RestMS). However, most existing

MOMs have been developed for the wired world and will not work properly

and reliably if some of the components are mobile devices that have intermit-

tent connectivity, relatively low bandwidth capacity and carry the concept

1



of costs per data transfer. Thus, the goal of this work is to develop a mobile-

aware MOM that is able to explore all possible communication mechanisms

and that can dynamically and autonomously adjust its connectivity to the

mobile devices, and the quality of service to the current configuration.

Our work is based on the AMQP because of the availability of enterprise-

level open-source implementations such as RabbitMQ. We decided to imple-

ment mobility-related aspects in a mobility middleware that is placed be-

tween the mobile device and the MOM. A mobility middleware faces several

challenges, Firstly, mobile clients have access to different wireless technolo-

gies. For instance, they can have a data plan with their service provider,

they can access a locally available wireless network (Wi-Fi access), or they

can transfer data via SMS. These network types differ in their coverage, cost,

bandwidth, energy consumption, latency and reliability. Many devices are

multimode and can support the data transmission on more than one of these

networks at a time. However, switching dynamically between the networks is

difficult and currently not easily supported. Also, it is not easy to determine

which, at a given time, is actually the best network type to be used. An-

other challenge is the frequent disconnections and handoffs that occur when

devices are relocating. Providing the quality of service known from the wired

world is challenging or might not even be possible in this case. A mobility

middleware has to adjust to these differences.

Motivated by these challenges, our research aims to build a mobility mid-

dleware with the following capabilities.

• It provides mobile clients several connection possibilities:

– Standard Transmission Control Protocol over Internet protocol

(TCP/IP) connection through the service provider and through

wireless hotspots. In both cases the mobility middleware is able

2



to handle the fact that a single mobile device might frequently

disconnect and reconnect with a different IP address.

– Message exchange via SMS. SMS has characteristics that are very

different to IP. In particular, while devices are typically not ca-

pable of accepting connections, and thus, cannot receive messages

before initiating a connection by themselves, SMS can be sent

asynchronously to mobile devices. This can be exploited in some

cases. Also, some mobile users do not have a data plan, so SMS

is the only option if there is no other Wi-Fi access. Even if there

is a data plan, depending on the service coverage, it is possible to

have SMS but not data coverage. Depending on the plans chosen,

SMS might be cheaper or more expensive than a data transfer. In

general, SMS is much slower, and can transfer less data than IP.

• Clients can dynamically switch between their communication channels

without loss of service. Furthermore, the client can use many of these

communication channels at a time.

• The mobility middleware uses a utility-based scheme to select the ap-

propriate communication channel depending on the current context

such as network conditions in terms of bandwidth and latency, user

preferences in terms of cost and energy, application preferences in terms

of delay and infrastructure in terms of access point positioning.

• It provides the same delivery guarantees as the standard MOMs: FIFO

ordering and delivery guarantee such as at-most-once delivery, at-least-

once delivery and at-least-once processing.

• It offers a scheme where messages can be delayed if an application is

delay tolerant. This allows the mobility middleware to improve the

utility of the transmission of a message by waiting for better network

conditions to be present before exchanging a message.

3



Chapter 2

Background and Related Work

2.1 Mobile Network Environment

Current cell phones or mobile hosts (MHs) have access to different wireless

technologies such MNO, WiFi and Bluetooth which are heterogeneous in

terms of their coverage, cost, bandwidth, energy consumption, latency and

reliability. Figure 2.1 [2, 23, 59, 63] shows approximate values for each of

these properties depending on the technology that is employed. Obtaining

accurate numbers for these properties depends on many factors on which

we will not focus in this document. For data prices we use values for the

Canadian MNO Rogers [64]. Figure 2.2 shows the interactions between each

of these technologies.

One standard body has focused mostly on high throughput and short range

wireless transmission. This body, the WiFi alliance, specifies the IEEE 802.11

specification which has seen its first deployment in 2000. Communication

between a WiFi enabled MH and a device on the Internet is done via TCP/IP.

The Bluetooth specification focuses on low power and very short range

wireless transmission. The Bluetooth Special Interest Group has managed

4



Figure 2.1: Approximate Coverage, Cost, Energy Consumption and
Throughput of MNO, WiFi and Bluetooth technologies

the standard since 1998. Communication between a Bluetooth enabled MH

and a device on the Internet is also done via TCP/IP.

MNOs have implemented various technologies over the years. Two stan-

dards bodies have emerged to try and consolidate them. A first collaboration

group started in 1992 between implementers of the Global System for Mobile

communications (GSM) technology currently has 80% of the handset market

[58]. A second collaboration group started in 1993 between implementers

of the Code Division Multiple Access (CDMA) technology has around 12%

of the handset market. These two groups have agreed to implement simi-

lar features and interoperability. They have released several generations of

technologies which are each characterized by higher bandwidth and higher

power consumption. Given these tradeoffs and the cost of putting the infras-

tructure in place, all these generations are expected to stay in operation for

many years to come. MNOs offer connectivity over large distance in popu-

lated urban and rural areas. The other major feature they are providing is

interconnection with other networks such as the Public Switched Telephone

5



Figure 2.2: Interaction between MNO, WiFi and Bluetooth

6



Figure 2.3: Differences between horizontal and vertical handovers

Network (PSTN) which gives access to landlines worldwide (voice), the In-

ternet (data, voice) and other MNO. Each handset that connects to the

network is authenticated and the air interface they access is recorded. This

information is used to locate the MH on the network as well as physically on

the planet and for billing. Communication between a MH on a MNO and

a device on the Internet is done via TCP/IP or the Short Message Service

(SMS).

2.2 Handover

Since the coverage of a given wireless access point (AP) is finite, MHs must

use a number of APs while moving. A handover is the process of transferring

a call or a data session from one AP to another.

In a hard handover the source AP is released before the target AP is en-

gaged. This means that the CC is broken before a new one is established.

In a soft handover the source and the target AP are engaged before trans-

ferring the CC. This allows two simultaneous CCs where data/voice can be

exchanged. We will only consider soft handover in this thesis.

We define the following handover related states:

7



• Initiation: Current context change that triggers the start of the han-

dover process. Handover initiation is activated to maintain or improve

the service.

• Selection: Choice between two or more APs to satisfy current context.

• Execution: Processing changes required to go from one AP to another.

This includes updating the position of the handset, changing its ad-

dress, changing the technology, rerouting, authenticating, etc.

• Adaptation: Modification to the traffic between two hosts to handle

the current context. This includes adding delay, compression, filtering,

etc.

A handover can be classified further into horizontal and vertical handovers.

A vertical handover happens when a MH goes from one technology to an-

other (e.g., Figure 2.2 handover ‘A’) while a horizontal handover is a transfer

between two AP of the same technology (e.g., Figure 2.2 handover ‘B’). Fig-

ure 2.3 shows how horizontal and vertical handovers differentiate from one

another in each of the handovers described above. In this thesis we focus

on vertical handovers where the AP change is instigated by multiple events

provided a good cost/performance benefit.

Context A vertical handover is initiated by changes in context. We define

context similarly to how it was presented in [20]. The network context (1)

represents the current status of the network in terms of cost, bandwidth,

energy consumption, latency and reliability. The application context (2) is

the quality of service requirements defined on an application basis such as

delay, error rate and priority. The user context (3) represents preferences

a user may have in terms of data cost, energy consumption and mobility

patterns. Finally, the infrastructure context (4) encompasses information

about the AP location and coverage. For example, the machine servicing a

8



request from a MH could be chosen based on its distance to the MH’s AP

to lower the latency. Furthermore, one can make adaptation based decisions

(e.g. delay) based on the time of day and the user’s AP pattern (e.g. WiFi

around 14:00 at work).

Selection Scheme There are five approaches that support the selection

process in vertical handovers. The first approach focuses on choosing APs

that will maximize or optimize one particular parameter of the network con-

text such as monetary cost or energy cost. The second approach uses a cost

or utility function. A function can capture a whole range of parameters of

network context. The selection algorithm then chooses APs that maximizes

these functions by obtaining the highest value possible in a utility model and

the lowest value possible in a cost model. A third approach consists of spec-

ifying thresholds for network context values that cannot be crossed by the

system. Once a threshold has been reached, the system must respond appro-

priately. The fourth method, a rule based approach, is similar to thresholds

in that boundary values are specified for parameters of network context.

However, these rules can additionally dictate appropriate actions to be taken

when such a threshold is reached. Rule based systems are typically stateful

and rules can modify the state of the selection scheme. Furthermore, rule

based systems are not limited to the network context, but they can also spec-

ify rules about any type of context. Rules are typically stored in a database

and they are specified by a rule specific language. The language allows ad-

ministrators to easily change and add rules to the system. Finally, the fifth

approach uses artificial intelligence (AI) to select the appropriate AP. AI is

a combination of algorithms and heuristics used by the AI community that

is adapted to use values of network context.

Selection Decision In a vertical handover, the selection decision can be

taken and implemented at various entities. In a mobility middleware ap-

proach, a machine is between the server and the MH. The MH establishes

9



one or more communication channels to the mobility middleware via one or

more APs and the mobility middleware gathers the current context. The

mobility middleware then takes care of choosing the appropriate communi-

cation channel to reach the MH. In a MH approach, the MH opens one or

more communication channels, gathers the current context and decides which

communication channel it should use to transfer data with. More complex

approaches can communicate with the AP to gather additional context in-

formation that cannot be obtained from the mobility middleware or MH

approach only. Finally, network based approach uses many mobility mid-

dlewares typically at different physical locations. The mobility middlewares

communicate with each other and coordinate to choose an appropriate mobil-

ity middleware and communication channel to communicate with a particular

MH. Our work will focus on a hybrid between the MH and the mobility mid-

dleware approach. That is the decision of which communication channel to

choose is made by the MH and the mobility middleware. Context informa-

tion from the AP is not taken into account. In the rest of the document, the

terms communication channel and AP are used interchangeably.

2.2.1 Soft Handover

In a soft handover different transmission strategies can be used to take ad-

vantage of having access to multiple APs.

• Multicast: The MH transmits copies of the same data to multiple APs

in hope that at least one copy will reach its target. When the target

has received a message once it can safely discards any copies. This

method ensures the latency between the MH and the target is at its

lowest because the target will use the first copy it receives.

• Scheduler Based: The MH segments the data it needs to send and

sends it to the best AP according to the current context. If an AP

has reached its bandwidth limit then the MH simply sends segments

10



to the second best AP. The target can receive segments out of order

and it has to reorder them. This approach ensures the best use of the

available bandwidth across multiple AP because the MH will simply

send messages until all the AP have reached their bandwidth limit.

• Flow Based: The MH transmits data from an application to the best

AP. If an AP has reached its bandwidth limit then he can send data

from another application to the second best AP. The target receives

data in order.

MHs that can support transmission to many APs are multimode or multi-

homed. MHs can support transmission of data on the MNO, SMS, WiFi and

Bluetooth simultaneously. When a MH purposefully uses multiple APs to

improve its transmission capabilities without the need to handover, the term

multihoming is used. Our work will focus on scheduler based multihoming.

2.3 Mobile Applications in the Enterprise

Addressing mobile users is increasingly important for enterprises. In the

past, laptops were the MH of choice. Software companies built specialized

software for these MHs so they could support long periods without connec-

tivity. SAP’s software server side architecture for these MHs is shown in

Figure 2.4. The backend can be accessed through several methods. Online

laptops and desktops can access the backend through TCP connections or

through Web Services. Prior to a disconnection, laptops can synchronize rel-

evant information between a database on the device and a middleware called

the Data Orchestration Engine (DOE). Synchronization is done by copying

database tables from the middleware to the device. When offline, the laptop

makes changes locally to the database on the device. When it goes back

online it sends those changes to the middleware. Since the laptop operates

with a database locally, additional business logic must be deployed on the

11



Figure 2.4: Old Mobile Architecture

12



device. Furthermore, the data on the laptop and the DOE is staged. Staging

is the act of copying a subset of a database for a particular user. This way

the whole database does not need to be copied to the laptop. The data on

the laptop cannot be guaranteed to be up to date at any time. Finally, when

online, notifications can be delivered via email.

This decade has been marked by a spur in usage of smartphones. A smart-

phone is a cell phone that offers superior connectivity and computing capa-

bilities. A specialized high level mobile operating system runs on the device

which deals with the constraints of energy, computing, memory, connectivity

and gives access to the array of hardware available such as Global Position-

ing System, compass, specialized radio, accelerometer, gyroscope, camera,

speakers, microphone, keyboard, Central Processing Unit and Graphics Pro-

cessing Unit. While text entry remains a challenge on the small physical or

virtual keyboard, these devices are ideal for multimedia consumption and

light text editing. The major advantage of smartphones over laptops is their

size which allows users to carry them on at all times. Given that worldwide

smartphone sales have now reached 17% of phone sales [55] and that their

computing capabilities are quite advanced, they are now an attractive plat-

form to develop for. In the developed market such as in the United States,

this trend is more pronounced with currently 21% of sales being smartphones

and projections to 50% by the end of 2011 [57]. These smartphones with lim-

ited storage are connected most of the time and are disconnected only for

brief periods of time. The connection is intermittent because of the changing

wireless conditions such as signal strength, bandwidth, proximity to an AP

and mobility of the device. This is different from laptops and desktop which

can be connected with a wire or wirelessly but tend to be immobile. In this

case, the connection lasts for long periods of time with long periods with-

out connection. Large synchronization operations between the laptop and

the DOE work well because of the high bandwidth and reliable connection.

13



Figure 2.5: TANGO Architecture

However, when the connection is intermittent, asynchronous data exchanges

small in size are preferred. TANGO [56] discusses these problems and pro-

poses a message-oriented middleware (MOM) as the central component of

the architecture to solve some of these issues. In the TANGO architecture

shown in Figure 2.5, the mobile application communicates with a messag-

ing client which abstracts the communication between the backend and the

client. The messaging client also interacts seamlessly with web services and

notifications from the backend by going through a MOM. However, TANGO

does not consider in detail the usage of MOMs in the mobile environment. In

particular, it does not fully explore all connectivity possibilities and does not

consider in detail how they could be combined to provide a flexible MOM.

2.4 Communication Basics

Inter-process communication is done by two simple primitives. The send(destination,

message) primitive is called by the sending process and the receive() primitive

is called by the receiving process. Information between these two processes

is exchanged via a communication channel. Each primitive can be blocking

(synchronous) or non-blocking (asynchronous). A blocking send does not

return until a confirmation has been received that the other site has received

the information while a non-blocking send returns immediately. A blocking

14



Figure 2.6: Simplified Layered Network

receive does not return until data has been received while a non-blocking

receive returns immediately whether data is present or not.

Layered Network Model Communication between processes can typi-

cally be described as a layer approach. Each layer provides some service to

the layer above. While each layer perceives sending a message directly to a

receiver at the same layer, a message actually traverses all layers down at

the sender and all layers up at the receiver. Note that as depicted in Figure

2.6, if a layer of the sender sends a message to the same layer at the receiver,

it actually calls the send primitive of the layer below. Furthermore, at the

receiver, when a layer has a message ready for the layer above, we say it

delivers the message to the layer above. While the upper layer receives it

from the lower layer.

A more complete model displayed in Figure 2.7 has 6 layers and each

layer has its own functionality. The physical layer defines at the electrical

and physical level how a machine can communicate with its environment.

This definition includes voltage and particular transmission techniques used

to send and receive information. The data link layer defines protocols to

communicate between machines on a local network. This communication

15



Figure 2.7: Layered Network

can be from one machine to another or from one machine to many (broad-

cast). This layer typically takes care of guaranteeing the accuracy of data

transmitted by the physical layer. The network layer takes care of sending

sequences of information via one or more networks. Its main function is to

route the information correctly from the source to the destination. A well

known network layer is the IP. The transport layer provides services on top of

the other layers such as connection, error recovery, retransmission, segmenta-

tion and reassembly. The best known transport layer is the TCP. The MOM

layer takes care of transmitting messages from one host to one or more hosts

by using abstract destination addresses instead of single host IP addresses.

Finally, the application layer takes care of creating and consuming content.

16



Figure 2.8: TCP Connection Protocol

2.5 Transmission Control Protocol

The TCP is a very important connection oriented protocol on the Internet.

While the IP takes care of the direct transmission of information from one

computer to another computer at the network layer, TCP handles other im-

portant functions at the transport layer. Each host on the Internet is identi-

fied by a unique IP address (x.x.x.x where x represent a digit from 1-255) and

can receive many connections. Each unique connection to a host is identified

by a port number (1-65535). TCP connections are point-to-point from one

IP/port combination to another. The TCP three-way handshake connection

protocol and two-way handshake disconnection protocol are shown in Figure

2.8. The server is the process who is waiting/listening for a connection while

the client is the process who initiates the connection. The initial request is

followed by acknowledgements from both sides. Any of the two processes

can terminate the connection. TCP provides reliable and First In First Out

(FIFO) delivery of segments. Each segment is a series of headers as well as a

payload. Other services provided by TCP include segment size control, error

detection, flow control and congestion control.

17



2.5.1 Reliability and Failure Model

Reliable communication protocoles typically guarantee the delivery of mes-

sages if both sender and receiver are ‘correct’, and are defined through two

properties:

• Validity: Any message sent by a correct process is eventually delivered

to a correct process.

• Integrity: The message received is identical to the one sent, and no

messages are delivered twice.

The question now arises what ‘correct’ means and in this thesis we present

communication paradigms that use two different definitions of correctness

based on availability of processes. At any given time a process can be avail-

able, i.e. it is running and able to execute the protocole tasks, or it is unavail-

able, e.g., because it has crashed or is currently without network connectivity.

Generally, one can assume that processes can restart and reconnect. So un-

availability is usually temporary.

Some communication patterns, such as TCP, define a correct process as

one that is available throughout the protocol execution. That is, in TCP

both sender and receiver must be up at the same time to exchange messages.

Other paradigms, that we will see later, only require the receiver to be even-

tually available, that is, while the sender is sender the receiver might not be

available. But it will still receive the message once it becomes available again

for sufficient time.

2.5.2 Reliability of TCP

TCP provides validity and integrity as defined above if both sender and

receiver are available.

18



Figure 2.9: Positive Acknowledgements

Validity In order to guarantee validity despite message loss, TCP uses

three types of acknowledgement schemes. Acknowledgements are messages

sent by the TCP layer of the receiver side to respond to a message sent by

the sender side. The TCP layer of the sender keeps track of each message it

sends and waits for the acknowledgement to return before forgetting about

the message. In a positive acknowledgement scheme as shown in Figure

2.9 the sender must wait for the acknowledgement m ack of the receiver to

return before sending the next message m’. In a cumulative acknowledgement

scheme as shown in Figure 2.10 the sender can pipeline m and m’ before

receiving one acknowledgement for each message received m ack and m’

ack. In a selective acknowledgement scheme the sender can pipeline m1,

19



Figure 2.10: Cumulative Acknowledgements

20



m2 and m3 before receiving the acknowledgement. The acknowledgement

is specified as the first and last message of a range (e.g. m1 and m3 ). In a

negative acknowledgements scheme the sender can pipeline m and m’ before

receiving the acknowledgements. The receiver only sends acknowledgement

when a message has not been received. Negative acknowledgements are not

used by TCP. Finally, TCP implements acknowledgements with timeouts.

When it sends a message it waits for the acknowledgement to return. If the

acknowledgment does not return after the specified timeout, TCP will resend

the message. These mechanisms guard against message loss.

Integrity In order to guarantee integrity the TCP layer adds a sequence

number to each message. The sequence number is an ordered continuous

range of unique numbers. The TCP layer at the receiver keeps track of

the messages it receives. If two messages with the same sequence number

arrive, the second one will be discarded. Furthermore, the TCP layer adds a

checksum to each message which allows detection of certain errors.

In summary, if there are no process crashes, i.e., both the sender and the

receiver are correct, a message sent by the sender is guaranteed to be received

by the receiver exactly once and as it was sent.

2.5.3 Ordering

Ordering describes in which sequence messages are delivered to the receiver.

TCP guarantees FIFO ordering of messages. If a sender sends messages m1

and then m2 a receiver will receive first m1 and then m2. As mentioned in

Section 2.5.2, TCP includes a sequence number in each message. When the

TCP layer of the receiver receives message m2 it will detect that it missed a

message and wait for previous message m1 and then deliver m1 before m2.

Figure 2.11 shows this property.

21



Figure 2.11: FIFO Ordering

2.6 Short Message Service

The SMS is one of the MNO’ service. A messaging middleware called the SMS

Center (SMSC) provides advanced messaging functionality to the application

layer. The source MH and destination MH are each identified by their phone

number. Each MH is also identified by a port number where the default is

0. These exchanges are point-to-point from one number/port combination to

another. Each message is 160 7-bits characters or 140 bytes of binary data.

The source MH first sends the message to the SMSC where it is queued. A

queue is simply a FIFO data structure that stores messages. The SMSC takes

care of handling and routing messages in transit. The SMS is widespread

and heavily used. Reported counts put the volume per month in 2005 to 200

billion messages in Europe, 304.14 billon in China [53] and 9.8 billion in US

[60]. For Rogers [64], the cost is 0.15$ per message or an unlimited bundle

for 15$ per month [62].

22



2.6.1 Guarantees

TCP is used between the source MH and the SMSC and between the SMSC

and the destination MH. However, the failure model of the SMS is not the

same as TCP. A process, an MH or the SMSC, can crash and recover. That

is, the process is unavailable but later becomes again available. Furthermore,

network partitions can occur and eventually be resolved. That is a correct

process is defined as one that might be unavailable but will eventually recover.

The SMSC stores messages durably on disk to protect these messages against

an SMSC crash. If the destination MH is unavailable temporarily, a message

is kept on the SMSC for a certain time that is set according to the policy

of the MNO. The maximum length of the queue is also a variable controlled

by the MNO. Once the destination MH is online, the SMSC forwards the

message. If the destination MH does not become available again before the

holding period on the SMSC is reached then the message is deleted. Therefore

validity is not achieved, as a correct process that becomes available after

the validity period will not receive the message. Note however, that in a

direct comparison of TCP, SMS actually provides stronger guarantees as it

works in a different failure model. In TCP, if the sender and the receiver

are not available at the same time then messages cannot be transmitted at

all, but SMS supports short periods of unavailability. Integrity, however, is

not respected because SMS does have any mechanisms to protect against

duplicates or reordering in case of crash or disconnection. According to log

traces of a provider in India [53], 73.2% of messages reach recipients within

10 seconds, 17% within a minute and 5% in more than an hour and a half.

5.1% of messages never reach the recipients.

2.7 Advanced Message Queuing Protocol

The AMQP is a protocol specification for MOMs. It is designed so that mul-

tiple implementations can inter-operate across enterprise’s business system

23



and between organizations. Its development was initially started in 2004 for

the finance industry by several companies such as JPMorgan Chase and Co,

iMatrix, Red Hat, IONA technologies, TWIST Process Innovation and Cisco

Systems. However, the working group now includes 20 companies in various

domains. The specification delivers features such as routing, reliability as

well as some ordering properties that an implementation of the specification

must fulfill. The MOM is used as an abstraction layer for communication

between processes, consumers and producers, on different machines, operat-

ing systems and network protocols. The application layer describes processes

which create (Producers) or destroy (Consumers) messages. The MOM layer

takes care of sending messages between these entities. AMQP uses TCP at

the transport layer between hosts. For the remainder of this document we

will be referring to AMQP version 0.8. The choice was made given availabil-

ity of implementations and not based on functionality. More recent version

includes AMQP 0.9, AMQP 0.91 and AMQP 1.0. In this section of the

document we do not intend to copy the whole specification, but to inform of

the architectural and functional specifications relevant to solve our particular

problem.

Although the specification does not force any particular architecture it

is mostly used for client/server topology. This is the architecture we will

be considering. In a client/server architecture the clients, producers and

consumers, communicate with a server, the MOM. Producers, consumers

and the MOM are typically located on different physical machines.

2.7.1 Communication Patterns

AMQP is flexible and can enable many message patterns. We define four

that are of interest in this work.

24



Point-to-Point

A producer sends a message to a consumer. This pattern is useful when a

producer wants to execute an operation (write request), send a notification

or stream some data to a consumer. Point-to-point message assume that the

sender and the receiver are available at the time of transmission just as TCP

does.

Request/Reply

A producer sends a message to a consumer (Request). The consumer then

sends a message to the producer (Reply). This pattern is useful when a

process wants to get data from another process (read request) or he wants to

execute an operation (write request) and get the result. Request/reply again

assumes that both the producer and the consumer are available throughout

the message exchange.

Publish/Subscribe

In this pattern the consumer shows its interest for messages using a certain

scheme or subscription language. Conversely, the producer publishes mes-

sages using the same scheme. This means that the producer and the consumer

do not hold references to each other, but rather to a particular scheme. This

allows a changing number of processes, producers and consumers, to partici-

pate in an interaction without knowing each other. This property is referred

to as space decoupling. The publish/subscribe paradigm also allows for the

participating processes to be present at different time. A producing process

might send a message while a consuming process might be unavailable. The

message is only received later by the receiving process. This is similar to

what we have discussed in the guarantees provided by SMS. This property

is referred to as time decoupling. Finally, producers send messages asyn-

chronously and consumers receive messages asynchronously. The exchange

25



Figure 2.12: Hierarchical Topics in Publish/Subscribe

of information between the producer and the consumer is not synchronous

and this is why we refer to this property as synchronization decoupling.

Again, this is similar to what we have discussed in the guarantees provided

by SMS.

The subscription languages can be classified into three categories: topic

(also known as group, channel or subject), type (also known as content-

based) and content (also known as content-based with pattern matching).

The topic subscription is the most common and it is the one we will review.

In a topic based subscription, each message is classified by a single keyword or

topic (e.g. ‘stocks’). Producers publish messages to a topic and consumers

receive messages from the topic they are registered to. Many publishers

can publish to the same topic and many consumers can consume the same

topic, all receiving all messages that are being sent on that topic. Topics

can be defined in a hierarchy. In Figure 2.12 the topic ‘stocks’ is a sub topic

of ‘germany’. If a consumer registers to the topic ‘stocks’ then it receives

messages published to this topic alone. However, if a consumer registers to

the topic ‘germany’ then it would receive messages published to ‘germany’

26



and ‘stocks’.

Store and Forward

Similar to publish/subscribe a producer send messages to a topic and con-

sumer can register to a topic. If the consumer is unavailable the message

is stored on the MOM until the consumer becomes available. Different to

publish/subscribe, messages sent to a topic are shared among the consumers

that have registered to the topic. This is done in a round robin fashion. That

is, if messages m and m’ are published to a topic to which consumers c and

c’ have subscribed to, each of the consumers will receive one of the messages.

2.7.2 Entities Architecture

This section describes the various entities that exist in an AMQP implemen-

tation to provide interoperability. Modular components are connected as a

chain to form the messaging interaction.

• A producer is a process that creates messages and sends them to the

MOM. It belongs to the application layer.

• A consumer is a process that receives messages from the MOM. It also

belongs to the application layer.

• A message is composed of several headers such as the routing key and

a body that carries the content. Messages are exchanged between the

producer, MOM and consumer in the form of one or more frames. A

frame is the binary representation of a segment of a larger message.

• The routing key is a string that represents a virtual destination address

for a message. The string can contain one or more tokens delimited by

periods (‘.’) (e.g. ‘germany.stocks’).

27



• A message queue is a named FIFO data structure that stores mes-

sages. Queues have several properties such as durability and shareabil-

ity. Queues can be consumed by one consumer for the point-to-point,

request/reply and publish/subscribe communication pattern or shared

by many consumers in a round robin fashion for the store and forward

communication pattern. Finally, a message is removed from a queue

only when it has been successfully delivered to a consumer. The queue

is part of the MOM layer.

• An exchange receives messages from one or more producers, inspects

their routing keys and routes them to one or more message queues.

Exchanges do not store messages. They take care of routing multi-

ple identical copies of a message to all the appropriate queues. The

exchange is also part of the MOM layer.

• A binding is a link between an exchange and a message queue. So while

the exchange does the routing, the binding describes to which queue

the exchange should send the message. A message queue can be bound

by multiple bindings.

• A binding key is a string that defines the binding (e.g. ‘germany’).

The string can contain one or more tokens delimited by periods (‘.’)

(e.g. ‘germany.stocks’). The string can also contain the star (‘*’) wild-

card which matches a single word and the pound wild-card (‘#’) which

matches zero or more words (e.g. ‘germany.*’ or ‘germany.#’).

• A physical host can contain multiple virtual hosts or AMQP instances.

• A connection is the communication channel used between two hosts.

AMQP defines several types of exchanges to define the routing algorithm.

The direct exchange reads a message’s routing key and does an exact match

to a queue’s name. For example a message with routing key ‘stocks’ would

28



be routed to a single queue named ‘stocks’ if such a queue exists. When

the match is successful the message is transferred to the queue. The topic

exchange reads a message’s routing key and matches it to a binding’s bind-

ing key. In this case the routing key is referred to as the topic and must be

matched to the binding key. Topics are defined into hierarchies by periods.

In our previous example ‘germany.stocks’, ‘germany’ is the upper most topic

while ‘stocks’ is a sub topic of ‘germany’. If a binding key is defined as ‘ger-

many.*’ then messages sent with the routing key ‘germany’, ‘germany.stocks’,

‘germany.bonds’ will be matched successfully and the messages sent to the

queues that are bound to this binding. If a binding key is defined as ‘ger-

many’, then messages sent with the routing key ‘germany.stocks’ will not be

matched.

AMQP provides two types of interfaces. One interface creates exchanges,

binding and queues (i.e. it allows for the management of the infrastruc-

ture). The other interface provides all the methods for the message exchange

between producers and consumers. The producer publishes messages via

the publish(exchange,routingKey,message) message. The consumer initially

registers its intent for messages of a queue via the consume(queueName) mes-

sage. The MOM sends messages to consumers via the deliver(m) message

which upon reception by a consumer triggers an event. The event is triggered

at the application layer of the consumer where the message is processed. The

publish/deliver methods are used for all four patterns as described in section

2.7.1

2.7.3 Reliability Features

Depending on the message pattern different failure and availability models

are assumed. Point-to-point and request/reply guarantee message delivery

only when producers, consumers and MOM are available during the message

exchange. Publish/subscribe and store and forward assume producers to

29



be available until the message is received by the MOM. The receiver has

to be eventually available, but can be initially unavailable. The MOM can

crash (be unavailable), but it is expected to recover and become available

again. However it is expected to be available when a producer produces a

message. To defend against temporary unavailability AMQP provides several

reliability features as described below.

Durable queues Queues on the MOM can store messages durably on disk.

In comparison to non durable queues, this measure helps protect messages

against MOM crashes.

Acknowledgement The consumer configuration will influence the time at

which the MOM considers a message as successfully delivered.

• In the first configuration, the consumer does not require acknowledge-

ments. The MOM removes the message from the queue once the TCP

send primitive was successful.

• In the second configuration, the consumer requires acknowledgement.

After processing a message by the application layer the consumer sends

an acknowledgement. The reception of this acknowledgement by the

MOM will mark successful delivery. AMQP supports positive, cumu-

lative and negative acknowledgments schemes. Contrary to TCP, the

MOM will only resend a message when the consumer requests for a re-

delivery. There is no acknowledgment timeout involved on the MOM.

Note that the acknowledgement is not created by the MOM layer. The

application layer of the consumer has to take care of creating and send-

ing this acknowledgement.

Acknowledgements between the MOM and the consumer allow for at-least-

once processing despite consumer failures.

30



Transactions Transactions are operations which allow two or more pro-

cesses to synchronize to provide atomicity and durability of several messages.

• Atomicity: Refers to one or more requests that appear to processes in

an interaction as a single operation which can either fail or succeed.

• Durability: A receiver has received a request only when it is stored

durably on disk. This request can be recovered on process crash.

When there are only two processes, a consensus algorithm such as the one

phase commit (1PC) can be used to provide the properties of a transaction.

Figure 2.13 depicts the sequence of messages that are exchanged in such a

case. In AMQP transactions are provided by the use of three methods. The

start() command indicates the beginning of a transaction. The producer

then sends one or more messages to the MOM using the publish() command.

Finally, the producer completes the transaction with the commit() command.

When the MOM receives the commit() command it processes the messages

and sends back its answer (success or failure via commit-ok). If the operation

was a success than the MOM must put the messages in a durable queue

before sending the response. If the operation was a failure than the MOM

discards the messages and sends the response. The ordering of the messages is

determined at the time they are published and not at the time of the commit.

In figure 2.13, any crash at the MOM at time 3, 4 and 7 can be recovered

by the producer by restarting the transaction. However, if the MOM crashes

at time 8 or the ‘commit-ok’ response is lost, the producer does not know if

the transaction was successful. In that case the producer will need to retry

the transaction. The semantic is that messages are atomically and durably

stored at-least-once.

End to end semantic

Let’s look at the achievable semantics for message delivery from the producer

to the consumer in the case where the consumer or the MOM crash or are

31



Figure 2.13: One Phase Commit

32



Figure 2.14: At-most-once delivery

unavailable for a certain period of time but eventually recover.

At-most-once delivery This semantic means that a message is received

at-most-once by a consumer. In this case, the producer publishes messages

to the MOM without using transactions and the queue is not durable. The

consumer consumes messages without acknowledgments. Figure 2.14 depicts

the exchange between the producer and the consumer. The producer sim-

ply sends a message to the MOM and the MOM sends the message to the

consumer. If the MOM crashes after receiving the message at time 4 or the

consumer crashes at time 6 or 7, then the message is lost. If there are no

such crashes then the message is received once by the consumer. That is, in

case of all entities being available, exactly once is provided.

At-least-once delivery This semantic means that a message is received

at-least-once by a consumer. In this case, the producer publishes messages

within a transaction and the queue is durable. The consumer sends an ac-

knowledgment before processing a message. Figure 2.15 depicts the exchange

between the producer and the consumer. The producer publishes a message

in a transaction that, as we’ve seen in section 2.7.3, is stored durably and

atomically at-least-once at the MOM after time 8. Messages stay stored until

33



Figure 2.15: At-least-once delivery

34



the MOM receives an acknowledgement at time 16. This prevents message

loss from MOM crashes between time 9 and 11. The MOM then sends the

message to the consumer. The acknowledgement sent by the consumer guar-

antees that any crash at time 12, 13 and 14 can be recovered. When the

consumer recovers, it simply sends a request via the redeliver() interface to

receive any messages that have been sent by the MOM but for which the

MOM has not received the acknowledgement. When the consumer crashes

at time 15 or 16 the message has not yet been processed. The message is

guaranteed to be delivered to the consumer at-least-once, but not to be pro-

cessed. If the consumer and the MOM are available throughout the protocol

then the semantic is exactly-once.

At-least-once processing This semantic means that the message is re-

ceived and processed by the consumer at-least-once. In this case, the pro-

ducer publishes messages within a transaction and the queue is durable.

The consumer sends an acknowledgment once it has completed processing

a message. Figure 2.16 depicts the exchange between the producer and the

consumer. The producer sends a message to the MOM in an at-least-once

manner using transactions. The MOM then sends the message to the con-

sumer. The acknowledgement sent by the consumer guarantees that any

crash at time 12,13,14 and 15 can be recovered by sending a redeliver() re-

quest. When the consumer crashes at time 16, the message has already been

processed by the application layer of the consumer. Message redelivery will

cause the message to be processed a second time. The message is guaranteed

to be processed at-least-once. Again, if all processes are available throughout

the protocol exactly-once is obtained.

2.7.4 AMQP Communication Patterns

AMQP makes the distinctions between two types of requests. First, an im-

mediate request where a producer sends a message to a queue, a consumer

35



Figure 2.16: At-least-once processing

36



Figure 2.17: Point-to-Point

is attached to that queue and consumes it. If no consumer is present then

the message is discarded. This is the proposed type for point-to-point and

request/reply communication patterns. That is reliable delivery is provided

if all processes are available throughout the message exchange. Second, a non

immediate request where a producer sends a message to a queue, a consumer

is not currently attached to that queue, but is later available to consume

it. This is the proposed type for publish/subscribe and store and forward

communication patterns. Reliable delivery is provided even if the consumer

is temporarily unavailable.

Point-to-Point

Figure 2.17 depicts the components required to implement the point-to-point

communication pattern as described in 2.7.1. A direct exchange E and a

queue Q need to be created. The producer P sends a message m to the

MOM with routing key k where k is equal to Q. The consumer C consumes

the queue.

At-most-once delivery semantic is chosen. The ordering in such a case is

FIFO.

Request/Reply

Figure 2.18 depicts the components required to implement the request/reply

pattern. A direct exchange E and queues Q and Q’ need to be created.

37



Figure 2.18: Request/Reply

38



Figure 2.19: Publish/Subscribe

Producer and consumer P/C needs to send a request m with return address

Q’ and routing key k where k is equal to Q. Producer and consumer P/C’

needs to send reply m’ with routing key k’ where k’ is equal to Q’.

At-most-once delivery is chosen. The delivery in such a case is FIFO. If

an application requires at-least-once delivery then it can easily be followed

by having a timeout on the producer that waits for the response to come

back. If no response returns then the producer would send a new request.

Duplicate detection is needed at the consumer.

Publish/Subscribe

Figure 2.19 depicts the components required to implement this mechanism.

Each client has its own durable queue and binds it to the topic they sub-

scribe to. The binding is associated with the corresponding exchange. In the

example, consumers C and C’ subscribe to the same topic. The producer P

sends a message to this topic.

This type of pattern requires at-least-once delivery. The ordering in such

a case is FIFO.

39



Figure 2.20: Store and Forward

Store and Forward

Figure 2.20 depicts the components required to implement this mechanism.

A direct exchange E and a single queue Q need to be created. The producer

P sends a message m to the MOM with routing key k where k is equal to Q.

The consumer C consumes the queue. If there is more than once consumer

registered with the queue, messages are delivered in round-robin.

This type of pattern requires at-least-once delivery. The ordering in such

a case is weak-FIFO. The MOM sends messages in a round robin fashion

to each consumer sharing a queue. However, when consumer C crashes a

message can be redelivered to any of the consumers (e.g. C’ ). The message

then arrives out of order. Figure 2.21 illustrates this issue.

2.7.5 AMQP Queue Management

AMQP offers two types of application specific queue management. First,

each message is assigned a priority by the producer. The priority is repre-

sented by a number from one to nine where higher priority is represented by

higher number. The MOM reorders messages in a queue from the highest

to the lowest priority without losing ordering within the same priority level.

Second, the producer assigns a TTL in milliseconds to each message. When

40



Figure 2.21: Ordering delivery with queue sharing

a message is received by the MOM a timestamp is inserted in the header of

the message. The TTL in milliseconds is then added to the timestamp to

obtain the maximum time at which the message should be delivered. The

MOM deletes messages which are over this limit.

2.8 Related Work

2.8.1 Publish/Subscribe

Publish/subscribe [27] is a well known problem that has been looked at exten-

sively by previous work. Existing systems are classified either by their sub-

scription language or by their architecture. Previous work from A. Carzaniga

et al. [37], has already done extensive review of related work in this field.

We will not repeat that here given that the focus of our research will be

on the delivery on those events and not improving the internal working of

41



Architecture
Centralized Client/Server Peer-to-peer

Subscription Language

Topic

ToolTalk [43]* NNTP [44]* Narada [34]*
JEDI [51]*

TIB/Rendez-vous [36]*
JMS [33]
IBus [35]

IBM’s MQSeries [38]
BEA’s WebLogic [39]

AMQP [26]
XMPP [42]

Type
Elvin [45]* Keryx [46]* Gryphon [48]*

Yu et al. [47]* Hermes [48]*

Content
GEM [49]* Siena [37]* Siena [37]*
Yeast [50]*

Table 2.1: Publish/subscribe systems categorized by architecture and sub-
scription language

these systems. Businesses have developed various standards to allow in-

teroperability between MOMs. The most prominent one, Sun’s JMS API

[33], is an API that is accommodated by many commercial implementations

such as IBM’s MQSeries [38], Microsoft Message Queue (MSMQ), TIBCO’s

TIB/Rendezvous [36], Softwired’s iBus [35], and BEA’s WebLogic [39]. Re-

searchers have also supported this API, see Hermes [40], Siena [37] and

Narada [34]. Since JMS is at the API level, interoperability is not guaranteed.

Other more recent standards have defined protocols to solve this problem.

AMQP [26] is a protocol that focuses on publish/subscribe and other com-

munication patterns. XMPP [42] is an XML instant message protocol with

presence notifications. Presence notifications inform connected users of the

other users’ connection and disconnection status. With the new protocol

enhancement XEP-0060, XMPP also handles publish/subscribe. That being

said, AMQP is better for our needs since it is out of the box very efficient,

simple to work with and has many free industrial strength implementations

available. But of course, none of these solutions has been designed with

mobility problems in mind.

Table 2.8.1 categorized all these system by architecture and subscription

language. A star (*) indicates that the data was taken from referenced table

42



in [37].

There has been some work in developing publish/subscribe systems for

mobile environments. Some selected publications are by Jacobsen et al. [28],

A.P. Buchmann et al [29], L. Fiege [30], Y. Huang et al. [31] and Q. Yuan et

al. [32]. However, they typically consider only one communication channel

type or completely abstract from it. Instead, the focus is on building broker

networks in ad-hoc networks (e.g., [32]), or handling frequent disconnection

and location changes (e.g., [5], [29], [30] and [31]). Jacobsen et al. present a

system where different communication channels can be supported, but there

is no discussion on how to choose the communication channel or an eval-

uation of how the different communication channels fair. Coming back to

business solutions, mobility middleware have been built for the communica-

tion between MHs and publish/subscribe systems. Such mobility middleware

include Softwired iBus/Mobile [35] and MQ Everyplace [41]. These mobility

middlewares offer support for MH specific communication channels such as

MNO and SMS, but they do not give support for handover between these

heterogeneous technologies.

2.8.2 Communication Channel Selection

Table 2.8.2 provides a summary of the existing communication channel se-

lection approaches. An IEFT standard called Mobile IP [21, 22] is probably

one of the important solutions to the mobility problem. It provides location

independent routing of IP traffic to a MH by relaying data using a non mo-

bile proxy. However, it is incomplete in many regards as it assumes there

is only one way to reach a MH. Furthermore, it does not handle vertical

handovers nor does it take into account current context such as user prefer-

ences. It also cannot be used over non IP networks or services such as SMS.

L. Chen et al. [1] improve upon Mobile IP by introducing a way to achieve

seamless handover with lower latency. However it does not solve any of the

43



Ref id (Year) Scheme Context Decision Initiation Selection Execution Adaptation Multilmode
[3] (98) No Scheme 2 Proxy No No Yes No Flow based

[12] (99)* Cost No Middleware No Yes Yes No Multicast
[13] (00)* AI No Middleware Yes No No No No
[14] (01)* AI+Rule No Middleware Yes Yes No No No
[16] (02)* Rule No Network Yes No No No No
[5] (03) Optimization 4 Network Yes No No No No

[17] (03)* Rule 1,3,4 Network Yes No No No No
[15] (03)* Rule 1,3,4 Network Yes No No No No
[18] (03)* Threshold 1 Middleware Yes No Yes No No
[19] (03)* Rule No Middleware Yes No No No No
[4] (04) Optimization 1,2,3 MH Yes Yes Yes No No

[20] (04)* Rule 1,2,3 Middleware Yes Yes Yes Yes No
[1] (05) Threshold 1,3 MH Yes Yes Yes No No
[9] (05) Rule 1,2,3 Middleware Yes Yes Yes Yes No
[7] (05) Rule+Utility 1,2,3 Middleware Yes Yes Yes Yes Scheduler
[2] (06) Rule+Utility 1,2,3,4 Middleware Yes Yes Yes Yes Scheduler
[8] (06) Optimization 1,2 MH Yes Yes No Yes No
[6] (07) Optimization 1,4 MH Yes Yes No Yes No
[11] (08) Optimization 1,4 MH+AP Yes Yes Yes No No
[10] (09) AI 1 MH Yes Yes Yes Yes Flow Based

Table 2.2: Comparison table of communication channel selection approaches

before-mentioned problems.

There exists considerable work in regard to choosing the right communica-

tion channel. One of the first attempts was done by a modification to TCP

with a proxy based architecture by D. Maltz et al. [3]. The solution focuses

on how the IP data should reach the MH by using a novel technique called

TCP slice. However, they purposefully choose to not select a particular com-

munication channel decision scheme by citing previous work by B. D. Noble

et al [25]. Wang et al. [15] have proposed cost-functions to do the selection

on a mobile IP proxy based architecture.

A. Seth et al. [2] added queues for messages to unreachable hosts. This

allows applications to deliver data with a maximum user specified delay and

utility-based on the currently available communication channels. Selection

is modeled via rules as well as via utility-functions where their values de-

cay with time. Messages with deadline are ordered from furthest deadline to

nearest before being transferred assuming the worst case scenario. If a better

communication channel becomes available, the system switches to the new

communication channel and the worst case completion time is then recom-

puted. This simple policy does not take into account the current network

44



context or infrastructure context. While [2] use SMS as a control channel,

we question why they have chosen not to use it as a data exchange channel

as well. Finally, the authors choose to employ scheduler based multihom-

ing to improve throughput, but they did not investigate the cost associated

with such a technique. Legacy applications communicate with MHs through

the mobility middleware where plugins are added to support each of these

applications. New applications store data to be transferred as flat files in

the operating system. This data transfer model similar to FTP is arguably

simpler then the publish/subscribe paradigm but less powerful.

Utility-function based approaches are fairly limited in their expression and

can become quite complex by adding context support. A. Qureshi et al.

[7] have tried to add flexibility to utility-functions by packaging them as

objectives in which a “context” defines filters to apply to the traffic and a

“goal” defines various quality of service requirements. The absolute value

of the “utility” can then be compared to other objectives that have been

selected. Unfortunately, the flexibility of the language used by the authors

does not reduce the complexity of writing the policies.

There have been many attempts to use artificial intelligence to select a

communication channel such as J. Makela [13] (Neural Network), Chan et al.

[14] (Fuzzy Logic) and T. Alpcan et al. [10] (Markov Decision Process and

Clustering). There are several problems with using these techniques. First,

it is nearly impossible for the IT department to understand why a certain

decision was taken by the system. Second, they add a lot of computation

to the decision process and could be impracticable in terms of scalability

and time to decision. Third, these approaches fail to take into account the

user preferences in the decision process. Fourth, they require priming before

being able to be used. Finally, in many situations the decision process is

straightforward and the use of these approaches becomes excessive.

45



Probably the most common approach is to use a rule system. It is rich

enough to define appropriate policies for context support while being easy

to configure for IT personnel. N. Fikouras et al. [18] focused on link layer

information (signal strength) to help in the handover decision process. They

fail to present a solution that offers network context support during AP

selection because information from other layers is necessary. P. Vidales et al.

[20] have worked on implementing decision support and context support by

using a rule system. However they fail to account for multihomed devices or

the infrastructure context. In [9], P. Vidales et al. augment the solution by

adding a new kind of automata called “Finite State Transducer with Tautness

Functions and identities”. Although this solution solves problems around rule

conflict management, this approach complexifies the rule elicitation process.

Simpler and more common solutions explicitly assign a priority to each rule.

The previous approaches have provided various decision schemes at the

mobility middleware and MH. Others have focused on the impact of resource

allocation at the infrastructure level. Vadalachos et al. [16] used a policy

system to manage a network of mobility middlewares. K. Jean [15] and K.

Yang [17] have also used policy systems to move routers closer to the MH.

While novel, these approaches do not provide support for mobility middle-

ware or MH based handover decision. Furthermore, the resource allocation

does not take into account the network context.

A few researchers have explored specific decision optimization scheme. A.

Seth et al. [4] make the communication channel selection on the MH either

online using four different schemes (e.g. max throughput estimate or clos-

est AP), or offline with the full knowledge of surrounding infrastructure. H.

Chen et al. [6] focus on theoretical monetary cost minimization of data deliv-

ery where the exact infrastructure properties must be known. Although the

problem is similar to the NP-hard multi choice knapsack it becomes solvable

by adding various constraints. They also study the effect of multiple routes as

46



well as prefetch when the communication channel bandwidth is insufficient.

O. Ormond et al. [8] also mention that the monetary cost minimization is

NP-hard and propose a piece-wise linear user utility-function that depends

on time and monetary cost which they label Consumer Surplus. They com-

pare their approach with Always Cheapest. Finally T. Pering et al. [23]

concentrate on minimizing energy consumption of data delivery on MH by

switching between Bluetooth and WiFi. In [11] they improve their work by

implementing communication between the AP and the MH to determine the

current load on the AP before switching. Although these are the types of

high level goal we would like to specify at the policy level, none of these ap-

proaches describe architectures for context and decision support in handover

of heterogeneous networks.

47



Chapter 3

Mobility Middleware

3.1 General Architecture

We choose to implement a mobility middleware based architecture where

the mobility middleware takes care of doing the communication between the

AMQP MOM and the MHs. As depicted in figure 3.1, it acts as a MOM level

router in the system. As mentioned previously, related work has favored this

architecture for client/server MOMs because it allows a clean separation of

concerns between the mobility related connectivity and the MOM. One of our

goals was to keep the AMQP protocol with as little changes as possible to al-

low good interoperability with other MOMs. This architecture facilitates the

Figure 3.1: Mobility Middleware Architecture

48



reuse of the mobility middleware with any other AMQP implementations. In

addition to handling mobility related connectivity, our mobility middleware

takes care of selecting the appropriate communication channel depending on

the current context. Figure 3.1 shows these different communication channels

possibilities.

A MH can communicate via three mechanisms. Communication can be

done with TCP/IP whereby the MH uses WiFi or the MNO air interface

to the reach the mobility middleware. Communication can be done through

SMS. Then, a cell phone is used as a SMS proxy to send and receive the

messages. This SMS proxy is wired directly to the mobility middleware and

does the conversion between TCP/IP and SMS.

3.2 Reliability and Ordering

3.2.1 TCP

As long as the mobility middleware does not reorder messages, using

TCP between the mobility middleware and the MH is enough the guarantee

the AMQP ordering.

However, adding the mobility middleware in the architecture is a liabil-

ity in regards to message delivery in case of failure. A process has ownership

of a message until it delivers it to another process. We first investigate a

mobility middleware relay scheme. In order to provide this functionality, the

mobility middleware is a consumer of queues on the MOM forwards these

messages to MH consumers. The mobility middleware also receives messages

from clients, producers and consumers, and sends them to the MOM. Figure

3.2 shows the mobility middleware relay scheme from the MOM to the con-

sumer without and with acknowledgments between the MOM and the con-

sumer. When a new message is available on a queue, the MOM first sends the

49



Figure 3.2: Mobility Middleware Relay

message to the mobility middleware. Without using the acknowledgements,

the message responsibility is transferred to the mobility middleware as soon

as the TCP send primitive is successful. The message can be lost because

of a mobility middleware and consumer crash at time 4 and 7 respectively.

If there are no such crash the message is delivered. The message delivery

guarantee is at-most-once. When using acknowledgements the MOM only

successfully removes the message after it has received an acknowledgement

from the consumer at time 13. Crashes at the mobility middleware at time

4, 5 and 11 and at the consumer at time 7, 8 and 9 will prevent the exchange

from being completed. In this case, the consumer sends a redelivery request

to try to obtain the message again. The delivery guarantee of this exchange is

at-least-once. From this, we gather that the addition of the mobility middle-

ware in the architecture does not change the reliability semantic of AMQP,

but introduces additional failure scenarios at the mobility middleware.

50



One solution to minimize the message loss at the mobility middleware

would be to improve it so that it takes better ownership of the message after

reception at the MOM layer by mimicking the MOM in terms of durabil-

ity and acknowledgements. If the MOM has durable queues, the mobility

middleware also has durable queues; if the consumer has acknowledgements,

the mobility middleware also uses acknowledgements. When a new mes-

sage is available on a queue, the MOM sends the message to the mobility

middleware which stores it in a local queue. The mobility middleware then

sends an acknowledgement to the MOM and sends the message to the con-

sumer. When the mobility middleware receives an acknowledgement from

the consumer then it removes it from its local queue. Figure 3.3 displays this

concept with acknowledgements. The message responsibility is transferred

from the MOM to the mobility middleware at time 6 and from the mobility

middleware to the consumer at time 14. This technique has the advantage of

releasing the MOM earlier from maintaining messages for consumers as they

can be removed once they are stored at the mobility middleware.

Due to drawbacks of the second solution, we have chosen to implement the

mobility middleware relay approach.

3.2.2 SMS

As we have seen in Section 2.6.1 the SMS guarantee is best effort and can

cause duplicates, reordering and message loss. This is a problem when using

AMQP over SMS because the specification requires a transport that has well

defined reliability and ordering properties. Oliver [52] proposes a protocol

similar to NETBTL [54] to ensure reliability and ordering of SMS messages in

their SMS-NIC implementation. NETBTL was designed for high through-

put of bulk data in high delay unreliable networks. In order to improve

transmission rates, NETBTL exchanges between the sender and the receiver

multiple aggregates of data called buffers. Transmission between both pro-

51



Figure 3.3: Mobility Middleware Responsibility Transfer

52



cesses attempt to synchronize both of these buffers. The sender breaks a

buffer into segments and sends them to the receiver. Each segment contains

a sequence number to allow for ordering. When the final segment arrives or

after the specified timeout the receiver sends a selective acknowledgement for

the entire buffer. The timeout is equal to the number of segments times the

average delay for each segment. Once the buffer is completely received it can

be passed to the upper network layers. The receiver must keep a history of all

sent NETBTL commands (e.g. acknowledgements) in case of message loss.

The sender requests acknowledgements when a timeout has been reached.

[52] chooses to modify this protocol for the exchange of a single buffer of

32KB segmented to the size of an SMS message. This removes the need for

inter-buffer transfer coordination. The initial message by the sender contains

the size of the data, a sequence number for each complete buffer exchange

and the first part of the data. The receiver acknowledges the first message

which allows the sender to bulk send the rest of the buffer. Instead of using

an average, the timeout is reset to a static value of 200 seconds (four times

the mean SMS delay) each time a new message is received. Each time the

timeout is reached within a buffer exchange this static value is doubled. It

returns to normal when the exchange terminates.

We adjust this approach. AMQP does two types of data transfer. The

first type of messages is small in size and is used as AMQP commands. For

example the creation of a queue, an exchange, a subscription to a topic or

acknowledgements. Such messages fit in an SMS and should be exchanged

as soon as possible. Furthermore, each of these messages requires a response

from the MOM. This already acts as an acknowledgement and we do not

require any additional acknowledgement. Since a client can only send one

of these messages at a time and must wait for the response, ordering is

not an issue. Duplicates are not an issue either because these messages are

idempotent. For these reasons these messages can be sent using SMS without

53



any further reliability added as this is done implicitly already.

The second type is a content message which is routed from the producer

to the consumer. Each message is typically a few KB. To add reliability we

use the NETBTL mechanism and we map each message to a buffer.

3.3 Multihoming

As mentioned in Section 2.1 we consider multimode MHs, but AMQP does

not directly support multihoming. Each AMQP connection is from the source

address to the destination address. One of the main tasks of our work is to

design an infrastructure that allows the exploitation of various communica-

tion channel between clients, producers and consumers, and the MOM.

We address this by implementing most of this functionality into a small

mobility layer on top of the MOM layer at the client and at the mobility

middleware. By separating this functionality from the AMQP protocol we

can keep the interface of AMQP clients, producers and consumers, the same.

The first operation an AMQP client must do is open a communication chan-

nel to the MOM. AMQP allows a host to open multiple TCP/IP connections

to the same MOM. To this we add the ability to open SMS communication

channels. When the client wants to use multihoming it opens a communica-

tion channel for each technology that should be used concurrently (e.g. WiFi

and SMS). When a producer sends a message, the mobility layer selects the

appropriate communication channel to transmit the message. On an incom-

ing message from a MH, the mobility middleware relays the message to the

MOM.

When using a scheduler based approach for multihoming such as described

above, one must take care of reordering messages to obtain FIFO ordering.

54



For example, a first message m is sent via SMS and second message m’ is sent

WiFi. Latency on WiFi is much lower than on SMS and as such, message m’

might arrive before message m. Our mobility layer adds a unique sequence

number to each message so that it can reorder these messages in the correct

order. This technique adds latency that might be inappropriate for latency

sensitive applications, because the mobility layer must hold message m’ until

message m arrives. For this reason, one can direct the mobility layer not

to reorder messages for latency sensitive applications at the cost of loosing

ordering.

Contrarily to a producer, a consumer is bound to an AMQP connection.

Whenever a MH sends a consume(queueName) message on an AMQP con-

nection, the MOM knows this connection is interested in receiving messages

from a queue. If a connection fails then the MOM will stop sending mes-

sages to that MH. However, multimode MHs can receive messages on many

communication channels. If a communication channel fails, but another one

is still opened, then we would like to continue receiving messages. For this

reason, if a client wants to receive messages from a queue on two different

communication channels (e.g. TCP/IP and SMS) then it must send the con-

sume(queueName) message on both of these communication channels. The

MOM will then see two consumers consuming one queue and deliver mes-

sages to these communication channel in a round robin fashion. If one of the

communication channel fails then the MOM will continue sending all mes-

sages on the other communication channel. This approach however, causes

two problems. As we have established in Section 2.7.4 consumers sharing a

queue with acknowledgments have weak-FIFO ordering. Furthermore, each

AMQP connection or communication channel receives equal shares of mes-

sages from that queue. If many hosts are consuming a queue the host having

the most connections would receive a greater proportion of the messages.

55



Figure 3.4: Mobility Middleware Entities Architecture

We solve these problems at the mobility middleware. When the mobil-

ity middleware receives a consume(queueName) message from a MH it first

checks if this MH is already consuming this queue. If it does then the mobility

middleware registers the MH’s interest to this queue on this communication

channel and drops the message. This way the MOM does not receive this

second request and sees only communication channel per consumer to which

all messages for this client are sent. The mobility middleware is then in

charge to relay the message of one of the communication channels to the

client. When the communication channel of a consumer fails, the mobility

middleware checks if another communication channel from the same MH has

requested consuming the same queue. If the MH has done so then the mo-

bility middleware takes care sending a consume(queueName) message to the

MOM for that communication channel to receive further messages.

3.4 Entities Architecture

The architecture is depicted in Figure 3.4. The MH has very little additional

logic compared to the original AMQP protocol. The mobility layer takes

56



care of message reordering, transmitting context information and choosing a

communication channel to transmit a message. The MH has several commu-

nication channels to the mobility middleware (WiFi, MNO and SMS). If a

message exchange is via SMS it goes through the SMS proxy. As explained

in Section 3.2.2 this communication can be done by simple SMS messages

or with the NETBTL protocol. The SMS proxy is connected via the mobil-

ity proxy via TCP/IP and simply takes care of relaying messages with the

mobility middleware. A simple protocol called ‘SMS Proxy’ takes care of

handling this communication.

From client to mobility middleware When the mobility middleware re-

ceives a message from the client (either directly through TCP/IP or through

the SMS proxy) it relays it to the scheduler. There are two types of mes-

sages that the scheduler can receive. First, a regular content message that is

targeted at a topic or a queue. In this case the scheduler relays the message

to the MOM. Second, a context message that is targeted at the scheduler.

These messages are created by the mobility layer of the MH and they contain

information about the current context (network, application, user and infras-

tructure). This information helps the scheduler to decide on the appropriate

communication channel for further content message. We will discuss context

messages and the relevant tasks at the scheduler below. In this case, the

scheduler reads these messages, consumes and processes them and persists

the information.

From MOM to mobility middleware Upon reception of a message from

the MOM the mobility middleware relays the message to the scheduler. The

scheduler takes care of choosing an appropriate communication channel to

transmit the message according to the current context. Finally, the sched-

uler takes care of gathering network related statistics such as the amount of

bandwidth used, the number of SMS messages sent and the monetary cost

incurred by each MH. This information is also persisted.

57



3.5 Handover

Network Statistics Past work has either evaluated network performance

data statically where data is first collected and then reused or dynamically

by continuously collecting data. Static models in general are not appropriate

for MHs and wireless networks because the environment changes rapidly

and widely. Wireless networks are prone to network contention because the

bandwidth is limited and shared between many users. Dynamic network

modeling can be done intrusively where data is injected into the network

or non-intrusively by simply observing regular traffic and calculating the

performance.

In our work we focus on detecting network contentions on a communi-

cation channel and remediating appropriately by adapting our network se-

lection algorithm. Accurate value estimations for latency and bandwidth

are not required. We propose a simple non-intrusive method that monitors

current AMQP traffic on TCP. A header is added to each message sent by

the mobility middleware containing the current time and sending through-

put. The consumer replies with a context message containing the time the

message spent at the consumer, the mobility middleware timestamp, the re-

ceiving and the sending throughput. Upon the reception of this message, the

mobility middleware can calculate the latency by taking the time difference

between the current time and the original timestamp minus the time spent at

the consumer. Finally, by looking at the throughput difference the mobility

middleware knows if there is contention. The context message containing

the statistics can be optimized in a number of ways. The information can be

piggybacked on any message returning to the mobility middleware (control

messages, content message, etc). If such message is not sent, the consumer

will wait a certain amount of time before sending back the statistics. The

mobility middleware then calculates the moving average for both of these

values.

58



Figure 3.5: Multiple Queues

Multiple Queues As we have described previously a consumer consumes

one queue. In this section we will consider that one or more queues are

created for each MH. This means that a MH has one or more consumer

processes at any time. When a producer wants to send a message to a

MH it must first choose a communication pattern. Each of the different

communication patterns directed to an MH will go through either the same

queue or different queues. Figure 3.5 depicts this situation. A point-to-point

message m is sent by producer P with routing key k where k is equal to Q.

A publish/subscribe message m’ is sent by producer P with topic t where

queue Q’ is bound to topic t. Finally, a store and forward message m” is

sent by producer P with routing key k’ where k’ is equal to Q’. Topic t has

more than one queue bound to it. Queues Q and Q’ contain messages that

will be received by the same MH. This allow messages to be separated into

sets with different properties. A user can then apply different transmission

preferences such as limits, selection and adaptation for each of these set as

described below. For example the queue Q is assigned messages that need

to be transmitted as soon as possible. Message m is actually a reply to

request executed by the MH and the user is ready to pay a higher cost for

this message, because he wants the answer right away. Queue Q’ is assigned

messages that can be delayed. Message m’ and m” are notifications from

different sources that the user must eventually receive. However, they do not

59



have to be received right away so the MOM can wait to deliver these messages

at a time where the network conditions are favorable to the transmission.

The separation of messages can simply be done at the communication

pattern level where point-to-point and request/reply messages are stored in

queue Q. These patterns are typically used when a messages needs to be

transmitted right away. Furthermore, publish/subscribe and store and for-

ward messages are stored in the Q’. These patterns are typically used to notify

a process and do not need to be received right away. However, more complex

associations are also possible. Publish/subscribe messages can be assigned

to queue Q or Q’ depending on the needs of the application transmitting the

message. Queue Q receives urgent notifications sent by a publish/subscribe

mechanism while Q’ would receive non urgent notifications. Finally, a single

MH can consume more than two queues. Each additional queue has different

properties.

3.5.1 Limits

In our work, the MH can specify certain requirements such as data transfer,

message and costs limits on a daily, weekly or monthly basis (e.g. maximum

1000 SMS messages per months, 5 megabits per day on 3G). While most

data plans are on monthly basis a MH might decide to enable data usage for

a limited amount of time. Furthermore, finer grained limits might be useful

for situations such as limiting the amount of transmissions on a device each

day for energy management or other purposes. The MH specifies several

sets limits where each set is assigned to a different queue. In our previous

example, a user could set a monthly limit for bandwidth used by non ur-

gent notifications. This would make sure that urgent notifications get the

appropriate share of the bandwidth. The MH also specifies global limits that

have to be respected by a set of queues. Finally, the MH specifies limits that

are assigned to a communication channel. For example, a limit setting the

60



amount of bandwidth used in a month on a given communication channel to

respect monthly allotment from the MNO.

3.5.2 Selection

When there is more than one communication channel available, one must

choose which to use to send data. We use the same cost-function approach

as in [12], but we modify the parameters of this function. We combine

monetary cost (Cn), energy consumption (En), latency (Ln) and coverage

(Vn) to evaluate each communication channel. We show the cost calculation

details that were introduced in [12].

fn = wc ∗ ln(Cn) + we ∗ ln(En) + wl ∗ ln(Ln) + wv ∗ ln(1/Vn)

The higher the cost (f) for a network the worse it is. Depending on the

wireless technology the monetary cost can be counted by a certain amount

of SMS messages or a certain amount of bandwidth. The MH specifies the

monetary cost per megabyte or per message for each communication channel.

The energy consumption represents the amount of energy required to trans-

mit on the technology. We use static values such as displayed in Figure 2.1.

Four weights (wc,we,wl and wv), whose sum is equal to one, allow for cus-

tomization of the cost-function. The MH specifies the values for each of these

weights. An always cheapest approach would be denoted by (1,0,0,0) while

an equally balanced approach would be denoted by (1/4,1/4,1/4,1/4). The

logarithm function is used to compare proportional differences (e.g. twice

as expensive versus twice as energy efficient). As in [12], we compare two

cost-functions by subtracting one by the other.

f1 − f2 = wc ∗ ln(C1/C2) + we ∗ ln(E1/E2) + wl ∗ ln(L1/L2) + wv ∗ ln(V2/V1)

61



A negative value means that f1 is better than f2 while a positive value means

the contrary.

We show an example between SMS and MNO for the transmission of a

512 bytes message. The monetary cost for an unlimited SMS bundle is 15$

per month. We consider that a user would not send more than 10000 SMS

messages and put the cost at 0.0015$ per message. To transfer 512 bytes we

need to send four SMS messages of 140 bytes. The cost of this transaction

is 0.006$. On a MNO, the cost is 30$ for 6GB per month. The cost of

this transaction is 30/6/1024/1024/2 = 0.000002384$. We assume equally

balanced weights.

f1 = 0.25 ∗N(0.0015) + 0.25 ∗N(600) + 0.25 ∗N(10000) + 0.25 ∗N(1000)

f2 = 0.25 ∗N(0.000002384) + 0.25 ∗N(1500) + 0.25 ∗N(250) + 0.25 ∗N(1000)

f1 − f2 = 0.25 ∗ ln(0.0015/0.000002384) + 0.25 ∗ ln(600/1500)

+0.25 ∗ ln(10000/250) + 0.25 ∗ ln(1000/1000)

f1 − f2 = 2.13

In our example the MNO (f2) is better than SMS (f1).

The MH can specify several sets of parameter weights. Each set is assigned

to a different queue. This means that when a communication channel must be

chosen, the scheduler first looks at which queue the message comes from. It

then takes the appropriate set of weights to rank the communication channels.

62



3.5.3 Adaptation

Each application can use one or more communication patterns as identified

in Section 2.7.4 which can be categorized into two types. First, non delay tol-

erant type which is a pattern that is intended to be immediately transferred

from the sender to the MOM and then to the receiver with relatively low la-

tency. The data that is exchanged is time sensitive and delay in its delivery

lowers its usefulness. Point-to-point and Request/Reply are patterns of this

type. Second, delay tolerant type which is a pattern intended for eventual

delivery from the sender to the receiver. The data that is exchanged is not

time sensitive and should eventually be transferred. Email, SMS, instant

messaging, non time sensitive notifications and task distribution are exam-

ples of delay tolerant applications. Store and forward and publish/subscribe

are patterns of this type. In this type the MOM can delay information pur-

posefully in order to optimize the cost according to the current context. For

example a MH is in transit and it currently has access to a MNO. The mo-

bility middleware has a delay tolerant message to send to the MH and it

knows that in 10 minutes the MH will arrive at its destination where WiFi

is available. Since, the cost of this new network is cheaper, the mobility

middleware purposefully waits 10 minutes before sending the message to the

MH. Previous work has shown the potential of taking an always cheapest [6]

or maximum utility [4] approach using full knowledge of the infrastructure

and of the mobility pattern of the user.

In a real world implementation full knowledge is not available. The wireless

signal depends on many factors which influence its strength and availability.

Furthermore, the exact position of the MH is difficult to find. However,

people usually have predictable habits (e.g. work, commuting, home, etc.)

and the network conditions for each of these locations are highly correlated.

It is possible to determine the probability of having access to a given network

at a given time given the position of the MH. Previous work such as [61]

63



has shown how such information can be gathered by using the MH’s GPS,

cell tower IDs or link layer strength information. However, this approach

requires high energy consumption, exchanging information with a server or

algorithm training. In this work, we simply ask the user to manually input

these probabilities in calendar format (e.g. Monday 9:00 to 18:00 90% chance

to have access to WiFi). This information is then sent the scheduler. These

probabilities are then used to determine with how much delay a message can

be delivered.

Dn = Pn ∗Dmax

If only one network is available and the probability of having access to any

other network is 0, then messages are sent immediately. If there is a probabil-

ity of obtaining a better network, then the maximum delay Dmax allowed by

the MH is proportional by its probability Pn. In the case where there is more

than one better network then the one with the highest probability is kept.

For example, the MH currently has access to MNO, but has a 90% proba-

bility to have access to WiFi in the next 10 minutes. Furthermore, the data

to be transmitted can be delayed for a maximum of 10 minutes according to

the preferences of the user. Then the delay is simply 0.9 ∗ 10 = 9minutes.

If after the waiting period the MH still does not have access to WiFi than it

transmits the message using the current available network.

The ordering for an AMQP queue is FIFO. By allowing certain messages

in a queue to be delayed we would lose ordering between non delayed and

delayed messages. For this reason a queue is only assigned either delay

tolerant or delay intolerant messages. For example, a point-to-point message

is sent to the delay intolerant message queue while a publish/subscribe is

sent to the delay tolerant queue. While we have categorized communication

patterns into delay tolerant and delay intolerant they are not bound to these

types. A MH can use publish/subscribe in a delay intolerant manner as

64



well. The MOM simply needs to be configured to route to a delay intolerant

queue. The MH specifies one or more maximum delay preferences (e.g. 5

minute and 60 minutes). Each maximum delay preference is assigned to a

different queue.

3.5.4 Initiation

The MH initially connects with SMS to the mobility middleware. SMS is a

connectionless protocol and the MOM layer ‘connection’ can last for the re-

mainder of the device’s lifetime. The MH is in charge of opening and closing

communication channels to the mobility middleware at any time using TCP

or another technology. The mobility middleware accepts all communication

channels. It also closes communication channels when an exception happens

or if a limit is reached. The client is notified accordingly so it does not recon-

nect. Whenever the MH needs to transmit a message it will choose one of the

available communication channels. If a new communication channel becomes

available the MH will open a new connection to the mobility middleware on

that technology. Whenever the mobility middleware needs to transmit a

large amount of data to a MH and the mobility middleware does not have a

high bandwidth communication channel available, it will send a message to

notify the MH so it opens a new communication channel if possible.

3.5.5 Transmission Algorithm

With several pieces of the algorithm described, limits, communication chan-

nel selection and adaptation, we propose an algorithm for the transmission of

messages. This algorithm is used both at the scheduler and at the mobility

layer of the MH whenever a message needs to be sent. Figure 3.6 depicts this

algorithm. On the mobility middleware, when a new message needs to be

sent, the scheduler first verifies if the limits for the queue have been reached.

If they have we simply do not transmit the message. If they have not we

65



Figure 3.6: Transmission Algorithm

66



continue the algorithm with two major cases.

In the first case, the queue is delay intolerant. The scheduler looks at the

available communication channels to the MH and finds the lowest cost one

according to the cost-function and the weights provided for the queue. Once

the scheduler has found the lowest cost communication channel, it verifies if

the limits for the communication channel have been reached. If the limits

have been reached, the scheduler notifies the MH, closes the communication

channel and looks at the remaining available communication channels. If the

limits have not been reached, the scheduler transmits the message.

In the second case, the queue is delay tolerant. The scheduler looks if the

lowest cost possible communication channel for the MH is available. To find

the lowest cost possible communication channel, the MH provides the best

values of monetary cost, energy consumption, latency and coverage for each

different technology (SMSbest, MNObest, WiFibest). For example, a MH con-

siders that a WiFibest is free, it uses 1000 milliwatts of energy consumption,

has 250 microseconds of latency and has a 100 meters of coverage. Addition-

ally, the scheduler has values for each of the current communication channels

(SMScurrent, MNOcurrent, WiFicurrent). The scheduler then removes the

‘best’ communication channels that have no chance of appearing according

to the probability set in Section 3.5.3. The scheduler compares the remaining

communication channels with each other using the cost-function approach

described in Section 3.5.2 (e.g. WiFibest vs MNOcurrent, WiFicurrent vs

MNOcurrent) and finds the lowest cost communication channel. If one of the

‘current’ communication channel has the lowest cost than we know that we

have the lowest cost possible communication channel.

If the scheduler has access to the lowest cost communication channel, then

the message is transmitted immediately as we described for the delay intol-

erant case. If the scheduler does not have access to the lowest cost commu-

67



nication channel then the message is delayed. The scheduler will transmit

this delayed message when one of two events happens.

• A better communication channel becomes available.

• The message has been delayed for the maximum amount of time spec-

ified by the adaptation algorithm.

68



Chapter 4

Performance Evaluation

We evaluate the impact of our mobility middleware and the communication

channel selection on the Round Trip Time (RTT) of a message from the

producer to a consumer on the same MH. The producer embeds a timestamp

in each message and publishes it to the MOM on a non durable queue.

The MOM then sends it to the consumer and no acknowledgements are

exchanged. The consumer takes the difference between the current time

and the time in the message to obtain the RTT. The producer does not wait

for the message to return to the consumer before sending the next message.

We do this operation for different message loads and throughput. The load

can be read as 60 messages in 60 seconds (at the rate of 1 message per

Figure 4.1: Performance Evaluation Entities one communication channel

69



0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 50 100 150 200 250 300

A
ve

ra
ge

 R
TT

 (
m

s)

Number of Messages Over 1 Minutes

WPN:2nd Generation: With MM, 1 CC, 1 P/C

Figure 4.2: Average RTT vs message load using the MNO 2nd generation
for one producer, one queue and one consumer during one minute

second). Figure 4.1 shows the entities present for this test. The MH is

an older model Blackberry 8700c. The mobility middleware and the MOM

are collocated on the same machine, Intel dual core 2.2 GHz with 2 GB of

RAM on Windows XP. Figure 4.2 shows the average RTT for varying message

loads using a second generation MNO transmission technology on the Rogers

network. The RTT starts at 450ms with a standard deviation of 100ms and

grows quickly. Figure 4.3 shows the average RTT for varying message loads

using SMS. The RTT starts at around 15000ms with a standard deviation

400ms. Obtaining precise performance results for our mobility middleware

on a mobile phone is not feasible. As shown in Figure 4.2 and Figure 4.3,

70



0

10000

20000

30000

40000

50000

60000

0 5 10 15 20 25

A
ve

ra
ge

 R
TT

 (
m

s)

Number of Messages Over 4 Minutes

WPN:SMS: With MM, 1 CC, 1 P/C

Figure 4.3: Average RTT vs message load using the SMS for one producer,
one queue and one consumer during four minutes

71



Figure 4.4: Performance evaluation entities without mobility middleware and
one communication channel

the RTT and standard deviations are very high. This is due to the nature

of the wireless communication channel, sharing the AP with other users and

the fact that no precise time facilities exists on the MH. The results were

obtained after performing the average between three different runs.

We use a desktop computer to obtain more precise results. The producer

and consumer are located on a machine with the same specification as the

MOM machine using the same sending scheme as above. We test four differ-

ent configurations. The first configuration is depicted in Figure 4.4. The MH

and the MOM communicate directly to obtain the base RTT between the

two hosts. The second configuration is depicted in Figure 4.5. The MH has

three communication channels which are each linked to a different consumer.

The MOM sends the messages in a round robin fashion to each consumer.

The third configuration is depicted in Figure 4.1. The MH communicates

with the MOM through the mobility middleware. The mobility middleware

simply relays messages from the MH to the MOM and vice versa. Finally,

Figure 4.6 depicts the last configuration. The MH has three communica-

tion channels, each with different network context. The mobility middleware

72



Figure 4.5: Performance evaluation entities without mobility middleware and
three communication channels

Figure 4.6: Performance evaluation entities with mobility middleware and
three communication channels

73



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50000 100000 150000 200000 250000 300000 350000

A
ve

ra
ge

 R
TT

 (
m

s)

Number of Messages Over 1 Minute

Wired: With MM,3 CC, 1 P/C

Wired: With MM, 1 CC, 1 P/C

Wired: 3 CC, 1 P/C

Wired: 1 CC, 1 P/C

Figure 4.7: Average RTT vs message load using a wired connection for one
producer, one queue and a varying amount of consumers with and without
our mobility middleware during one minute

finds the lowest cost communication channel and sends the message. Since

we are on a desktop, only one type of communication channel is available.

We differentiate each communication channel by labeling each connection

differently (e.g. ‘WiFi’, ‘SMS’, ‘MNO’). When the mobility middleware re-

ceives a connection it associates one of the available labels to a predefined

network context. We used the same fixed values defined in Figure 2.2 with

an equal weight for each member of the cost function (monetary cost, energy

consumption, latency and coverage). The label ‘WiFi’ obtains the best con-

nection. Figure 4.7 shows the average RTT for varying message loads using

74



a wired connection between the two hosts. The base RTT is 0.73 ms for both

the first and second configuration. At 135000 messages, the latency for the

second configuration is slightly higher than the first configuration. We asso-

ciate this difference with thread switching latency at the MH. Each consumer

and producer is handled by a different thread. Since each message is sent to

a different consumer, the MH must keep switching between different threads

which increases the latency. In the third configuration, the addition of the

mobility middleware doubles the base latency (1.51 ms). The overhead of

updating data structures and traversing the mobility middleware is around

0.78 ms. This overhead is quite large for several reasons. The mobility mid-

dleware must first unserialize each message in order to analyze its headers.

These messages must then be reserialized before being sent to the MOM. Ad-

ditionally, the mobility middleware has access to two pools of connections.

One pool contains connections to each MH while the other pool contains

the same amount of connections directed to the MOM. Each connection is

mapped one to one from the MOM to the MH. The mobility middleware

must first determine the source connection and then the source user of each

message before looking up in its internal structure where the message should

be routed. It must then update the appropriate data structures (e.g. limits,

bandwidth, counters, etc.). Finally, the last configuration has a RTT around

2.33 ms. The cost of choosing the lowest cost communication channel is 0.82

ms. This overhead is also quite large. The selection algorithm must compare

each connection against each other to find the best available one and then

it must determine if it is the best possible connection again doing a similar

comparison. Additionally, the algorithm must look up limits, user prefer-

ences and delay to compute this result. In every case the latency will slowly

go up until the machine becomes CPU bound. We think it would be possible

to improve these results by optimizing the data structures we use for each of

these operations.

75



Chapter 5

Conclusions and Future Work

5.1 Conclusion

In this work, we have used a MOM in a mobile context by adding a mobil-

ity middleware. This allowed the MOM to communicate with a MH using

either IP networks such as WiFi and MNO, or a non-IP network such as

SMS. Furthermore, we have used a utility function that takes into account

monetary cost, latency, coverage and energy cost to choose between multiple

communication channels. We have also added several thresholds that should

be respected by each communication channel. Additionally, we have intro-

duced a delay scheme that can be used in delay-tolerant applications. This

scheme allows the mobility middleware to improve the utility of sending a

message by waiting for better network conditions. These algorithms are used

to transmit data on many of these communication channels simultaneously

while keeping FIFO ordering if required. We offer the same guarantees offered

by AMQP such as at-most-once delivery, at-least-once delivery or at-least-

once processing depending on the application requirements. The solution we

implemented introduces considerable latency, but we are confident that this

could be further improved.

76



5.2 Future Work

Our solution focuses on the traditional client/server architecture. We choose

this approach given the readily available implementations. Other approaches

such as peer-to-peer structure, could provide an interesting field of study for

this work. peer-to-peer have been studied by previous work in many different

environments, but not in this particular setting. In particular, developing a

peer to peer message exchange solution based on IP (WiFi, MNO) and non-

IP network (SMS, Bluetooth) using a protocol such as AMQP would provide

very interesting properties. A MH could continue to exchange messages with

devices in its surroundings while being disconnected from the Internet. These

devices could in turn relay these messages to other devices or on the Internet.

This approach could provide limited connectivity to devices disconnected

from the Internet.

In our work we have focused on calculating the utility of the transmission

of a message by a single MH. However, when multiple MHs use shared APs

the network conditions can degrade rapidly. Another approach would use

a global knowledge of the system and calculate a global utility for all the

devices using the same AP. This approach would increase the utility for a

group of MH and improve the transmission performance.

In this thesis, we have developed a system that allows MHs to communi-

cate through various communication channels with the internet. However we

have not studied the security implications of our design. While we use known

protocols (TCP, AMQP, SMS) that have well studied security issues and so-

lutions (transport layer security, encryption, certificates and authentication),

our current design does not take those into account. Further research into

this area would be required before implementing our system into a production

environment.

77



List of Figures

2.1 Approximate Coverage, Cost, Energy Consumption and Through-

put of MNO, WiFi and Bluetooth technologies . . . . . . . . . 5

2.2 Interaction between MNO, WiFi and Bluetooth . . . . . . . . 6

2.3 Differences between horizontal and vertical handovers . . . . . 7

2.4 Old Mobile Architecture . . . . . . . . . . . . . . . . . . . . . 12

2.5 TANGO Architecture . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Simplified Layered Network . . . . . . . . . . . . . . . . . . . 15

2.7 Layered Network . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.8 TCP Connection Protocol . . . . . . . . . . . . . . . . . . . . 17

2.9 Positive Acknowledgements . . . . . . . . . . . . . . . . . . . 19

2.10 Cumulative Acknowledgements . . . . . . . . . . . . . . . . . 20

2.11 FIFO Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.12 Hierarchical Topics in Publish/Subscribe . . . . . . . . . . . . 26

2.13 One Phase Commit . . . . . . . . . . . . . . . . . . . . . . . . 32

2.14 At-most-once delivery . . . . . . . . . . . . . . . . . . . . . . . 33

2.15 At-least-once delivery . . . . . . . . . . . . . . . . . . . . . . . 34

2.16 At-least-once processing . . . . . . . . . . . . . . . . . . . . . 36

2.17 Point-to-Point . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.18 Request/Reply . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.19 Publish/Subscribe . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.20 Store and Forward . . . . . . . . . . . . . . . . . . . . . . . . 40

2.21 Ordering delivery with queue sharing . . . . . . . . . . . . . . 41

78



3.1 Mobility Middleware Architecture . . . . . . . . . . . . . . . . 48

3.2 Mobility Middleware Relay . . . . . . . . . . . . . . . . . . . . 50

3.3 Mobility Middleware Responsibility Transfer . . . . . . . . . . 52

3.4 Mobility Middleware Entities Architecture . . . . . . . . . . . 56

3.5 Multiple Queues . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Transmission Algorithm . . . . . . . . . . . . . . . . . . . . . 66

4.1 Performance Evaluation Entities one communication channel . 69

4.2 Average RTT vs message load using the MNO 2nd generation

for one producer, one queue and one consumer during one minute 70

4.3 Average RTT vs message load using the SMS for one producer,

one queue and one consumer during four minutes . . . . . . . 71

4.4 Performance evaluation entities without mobility middleware

and one communication channel . . . . . . . . . . . . . . . . . 72

4.5 Performance evaluation entities without mobility middleware

and three communication channels . . . . . . . . . . . . . . . 73

4.6 Performance evaluation entities with mobility middleware and

three communication channels . . . . . . . . . . . . . . . . . . 73

4.7 Average RTT vs message load using a wired connection for

one producer, one queue and a varying amount of consumers

with and without our mobility middleware during one minute 74

79



List of Tables

2.1 Publish/subscribe systems categorized by architecture and sub-

scription language . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Comparison table of communication channel selection approaches 44

80



Bibliography

[1] L. Chen, T. Sun, and M. Gerla, USHA : A practical vertical handoff

solution. In Proc. of Multimedia Services Access Networks (MSAN), 2005

[2] A. Seth, M. Zaharia, S. Keshav, and S. Bhattacharyya,

A policy-oriented architecture for opportunistic communi-

cation on multiple wireless networks. [Online], Available:

http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/06/ocmp.pdf,

2006.

[3] D. Maltz, and P. Bhagwat, MSOCKS: An architecture for transport layer

mobility. In Proc. of IEEE Infocom, p.p. 1037-1045, 1998.

[4] A. Seth, N. Ahmed, and S. Keshav, Mobility decisions in heterogeneous

wireless access networks. Manuscript, University of Waterloo, 2004.

[5] Y. Chen, K. Schwan, and D. Zhou, Opportunistic channels: mobility-

aware event eelivery. In Proc. of the 4th ACM/USENIX International

Middleware Conference, 2003.

[6] H. Chen, H. Wu, S. Kumar, and N.-F. Tzeng, Minimum-cost data deliv-

ery in heterogeneous wireless networks. IEEE Trans. Veh. Technol. 56(6),

3511–3523, 2007.

[7] A. Qureshi, and J. Guttag, Horde: separating network striping policy

from mechanism. In Proc. MobiSys, 2005.

81



[8] O. Ormond, and G.-M. Muntean, J. Murphy economic model for cost ef-

fective network selection strategy in service oriented heterogeneous wire-

less network environment. In Proc. of the Network Operations and Man-

agement Symposium 2006.

[9] P. Vidales, J. Baliosion, J. Serrat, G. Mapp, F. Stejano, and A. Hopper,

Autonomic sytem for mobility support in 4G networks. In IEEE Journal

on Selected Areas in Communications, vol. 23, pp. 2288–2304, 2005.

[10] D. Tsamis, T. Alpcan, J. P. Singh, and N. Bambos, Dynamic resource

modeling for heterogeneous wireless networks. In Proc. of IEEE Interna-

tional Conference on Communications (ICC), 2009.

[11] Y. Agarwal, T. Pering, R. Want, and R. Gupta, SwitchR: Reducing

system power consumption in a multi-clients, multi-radio Environment.

In Proc. of IEEE International Symposium on Wearable Computing

(ISWC), 2008.

[12] H. J. Wang, R. H. Katz, and J. Giese, Policy-enabled handoffs across

heterogeneous wireless networks. In Proc. IEEE Workshop. Mobile Comp.

Sys. and Apps., pp. 51–60, 1999.

[13] J. Makela, Handoff decision in multi-service networks. In Proc. of the

Eleventh IEEE International Symposium on Personal, Indoor, and Mobile

Radio Communication (PIMRC 2000), 2000.

[14] P. Chan, Mobility management incorporating fuzzy logic to heterogeneous

IP environment. IEEE Communications Magazine, 2001.

[15] K. Jean, K. Yang, and A. Galis, A policy based context-aware service

for next generation networks. IEE the Eighth London Communication

Symposium, 2003.

82



[16] N. Vardalachos, J. Rubio, A. Galis, and J. Serrat, A policy management

system for hybrid networks. In Proc. of The London Communications

Symposium, 2002.

[17] K. Yang, A. Galis, and C. Todd, Policy-driven mobile agents for context-

aware service in next generation networks. In Proc. of IFIP Fifth Inter-

national Conference on Mobile Agents for Telecommunications (MATA

2003), 2003.

[18] S. Aust, N. A. Fikouras, D. Protel, C. Gorg, and C. Pampu, Policy

based mobile IP handoff decision (POLIMAND), Internet Draft, Work in

progress. [Online], Available: http://www.ietf.org/internetdrafts/draft-

iponair-dna-polimand-00.txt, 2003.

[19] K. Murray, R. Mathur, and D. Pesch, Intelligent access and mobility

management in heterogeneous wireless networks using policy. In Proc. of

the First ACM International Workshop on Information and Communica-

tion technologies, pp. 181–186, 2003.

[20] P. Vidales, R. Chackravorty, and C. Policroniades, PROTON: A policy

based solution for future 4G devices. In Proc. of The Fifth IEEE Inter-

national Workshop on Policies for Distributed Systems (POLICY 2004),

June 2004.

[21] C. Perkins, IP mobility support in IPv4 (RFC 3344). August 2002, [On-

line], Available: http://www.ieft.org

[22] D. B. Johnson, C. E. Perkins, and J. Arkko, Mobility support in IPv6

(RFC 3775). [Online], Available: http://www.ieft.org., 2004.

[23] T. Pering, Y. Agarwal, R. Gupta, and R. Want, CoolSpots: Reducing

power consumption of wireless mobile devices using multiple radio inter-

faces. In Proc. ACM/Usenix Mobisys, 2006.

83



[24] G. Fitzpatrick, S. Kaplan, T. Mansfield, D. Arnold, and B. Segal, Sup-

porting public availability and accessibility with Elvin: experiences and

reflections. In Computer Supported Collaborative Work: the Journal of

Collaborative Computing, pp. 15–51, 2000.

[25] B. D. Noble, M. Satyanarayanan, D. Narayanan, E. J. Tilton, J. Flinn,

and K. R. Walker, Agile application-aware adaptation for mobility. In

Proc. of the 16th ACM Symposium on Operating System Principles, 1997.

[26] Advanced Message Queuing Protocol. [Online], Available:

http://www.amqp.org.

[27] Patrick Th. Eugster, Pascal Felber, Rachid Guerraoui, and Anne-Marie

Kermarrec, The many faces of publish/subscribe. ACM Comput. Surv.

35(2): 114–131, 2003.

[28] G. Cugola, and H.-A. Jacobsen, Using publish/subscribe middleware for

mobile systems. Mobile Computing and Communications Review (SIG-

MOBILE) 6(4):25–33, 2002.

[29] M. Cilia, L. Fiege, C. Haul, A. Zeidler, and A. P. Buchmann, Look-

ing into the past: enhancing mobile publish/subscribe middleware. DEBS,

2003.

[30] L. Fiege, F. C. Gartner, O. Kasten, and A. Zeidler, Supporting mobil-

ity in content-based publish/subscribe middleware. Middleware: 103–122,

2003.

[31] Y. Huang, and H. Garcia-Molina, Publish/subscribe in a mobile envi-

ronment. Wireless Networks 10(6): 643–652, 2004.

[32] Q. Yuan, and J. Wu, DRIP: A dynamic VoRonoi RegIons-Based Pub-

lish/Subscribe protocol in mobile networks. INFOCOM:2110–2118, 2008.

84



[33] Java Message Service (JMS) Specification. [Online], Available:

http://java.sun.com/products/jms/.

[34] The Narada event brokering system. [Online], Available:

http://grids.ucs.indiana.edu/ptliupages/projects/narada/.

[35] Softwired iBus messaging. [Online], Available: http://www.softwired-

inc.com/.

[36] TIBCO. TIB/Rendezvous white paper. [Online], Available:

http://www.rv.tibco.com.

[37] A. Carzaniga, D. Rosenblum, and A. Wolf, Achieving scalability and

expressiveness in an Internet-scale event notification service. In Proc. of

the Nineteenth ACM Symposium on Principles of Distributed Comput-

ing, ACM Press, 2000.

[38] IBM MQ Series. [Online], Available:

http://www.ibm.com/software/ts/mqseries/.

[39] WebLogic. [Online], Available: http://www.bea.com/products/index.shtml.

[40] P. Pietzuch, and J. Bacon, Hermes: a distributed event-based middleware

architecture. In Proc. of the 1st International Workshop on Distributed

Event-Based Systems with IEEE ICDCS, 2002.

[41] WebSphere MQ Everyplace. [Online], Available: http://www-

01.ibm.com/software/integration/wmqe/

[42] Extensible messaging and presence protocol. [Online], Available:

http://xmpp.org/

[43] A. M. Julienne, and B. Holtz, ToolTalk and open protocols, inter-

application communication. Prentice Hall, Englewood Clis, New Jersey,

1994.

85



[44] B. Kantor, and P. Lapsley, Network news transfer protocol — a proposed

standard for the stream-based transmission of news. Internet Requests For

Comments (RFC) 977, 1986.

[45] B. Segall, and D. Arnold, Elvin has left the building: A publish/subscribe

notification service with quenching. In Proc. of AUUG97, Brisbane,

Queensland, Australia, 1997.

[46] M. Wray, R. Hawkes, Distributed virtual environments and VRML: an

event-based architecture. In Proc. of the Seventh International WWW

Conference (WWW7), Brisbane, Australia, 1998.

[47] H. Yu, D. Estrin, and R. Govindan, A hierarchical proxy architecture

for Internet-scale event services. In Proc. of WETICE, 1999.

[48] G. Banavar, T. D. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom,

and D. C. Sturman, An efficient multicast protocol for content-based

publish-subscribe systems. In The 19th IEEE International Conference

on Distributed Computing Systems, 1999.

[49] M. Mansouri-Samani, and M. Sloman, GEM: A generalized event mon-

itoring language for distributed systems. IEE/IOP/BCS Distributed Sys-

tems Engineering Journal 4, 96–108, 1997.

[50] B. Krishnamurthy, and D. S. Rosenblum, Yeast: A general purpose

event-action system. IEEE Transactions on Software Engineering 21,

845–857, 2002.

[51] G. Cugola, E. Di Nitto, and A. Fuggetta, The JEDI event-based in-

frastructure and its application to the development of the OPSS WFMS.

IEEE Transactions on Software Engineering, 2001.

[52] E. Oliver, Exploiting the short message service as a control channel in

challenged network environments. In Proc. of the third ACM workshop

on Challenged networks, 2008.

86



[53] P. Zerfos, X. Meng, S. H. Wong, V. Samanta, and S. Lu, A study of the

short message service of a nationwide cellular network. In Proc. of 6th

ACM SIGCOMM on Internet Measurement, 2006.

[54] D. D. Clark, M. L. Lambert, and L. Zhang, Netblt: a high through-

put transport protocol. SIGCOMM Computer Communication Review,

17(5):353–359, 1987.

[55] B. Tudor, and C. Pettey, Gartner says worldwide mobile phone

sales grew 17 per cent in first quarter 2010. [Online], Available:

http://www.gartner.com/it/page.jsp?id=1372013, 2010.

[56] Huaigu Wu, Louenas Hamdi, and Nolwen Mahe, TANGO: A flex-

ible mobility-enabled architecture for online and offline mobile enter-

prise applications. International Conference on Mobile Data Management

(MDM), 230-238, 2008.

[57] R. Entner, Smartphones to overtake feature

phones in U.S. by 2011. [Online], Available:

http://blog.nielsen.com/nielsenwire/consumer/smartphones-to-

overtake-feature-phones-in-u-s-by-2011/, 2010.

[58] GSM World. market data summary. [Online], Available:

http://www.gsmworld.com/newsroom/market-data/market data -

summary.htm, 2009.

[59] Y. Agarwal, R. Chandra, A. Wolman, P. Bahl, K. Chin, and R. Gupta,

Wireless wakeups revisited: energy management for VoIP over Wi-Fi

smartphones. In Proc. of the Fifth International Conference on Mobile

Systems, Applications, and Services (MobiSys), 2007.

[60] Us Wireless Quick Facts. [Online], Available:

http://www.ctia.org/consumer info/service/index.cfm/AID/10323l.

87



[61] A. Rahmati, and L. Zhong, Context for wireless: context-sensitive

energy-efficient wireless data transfer. In Proc. of MobiSys, 2007.

[62] Rogers text messaging add on. [Online], Available:

http://www.rogers.com/web/content/add-ons/text-messaging.

[63] Rogers data plan. [Online], Available:

http://www.rogers.com/web/Rogers.portal? nfpb=true& pageLa-

bel=WLRS Plans&category=data.

[64] Rogers. [Online], Available: http://www.rogers.com.

88


