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Abstract

Face detection and recognition are key technologies for human-computer interaction,

surveillance, and biometric authentication. However, the trade-off between power con-

sumption and accuracy is crucial for such algorithms running locally on edge devices. In

addition, inference latency is an important constraint for real-time systems. In this work,

we propose an electro-optic hybrid multi-stage machine learning system for decoupled

detection and recognition of faces. The system uses an always-on Mach-Zehnder Interfer-

ometer (MZI)-based optical neural network (ONN) to monitor the presence of faces in the

environment. The computationally intensive digital deep neural network (DNN) for fa-

cial recognition is only turned on once a face is detected. This system enables lower power

consumption and faster operation compared to a traditional, pure-electronic, always-on

system in two ways. First, the always-on face detector takes advantage of the inherent

parallelism of ONN to perform vector-matrix multiplications in linear time complexity

with less power consumed. Second, the normally powered-down DNN for facial recog-

nition significantly lowers energy consumption.

To verify the correctness and efficiency of the proposed design, we applied it to two

different use cases - one with centered face alignment and the other without. We train

and test the system using Neuroptica and PyTorch platforms with both the WIDER Face

and Labeled Face in the Wild (LFW) datasets. Under the assumption of 1% face appear-

ance probability, the most accurate model arises from the unaligned face scenario with a

subsampling process for finding faces. It achieves 97.2% accuracy on the LFW dataset,

coupled with a 10.9% reduction in power consumption compared to the same neural net-
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work on digital processors. In the aligned face scenario, the best accuracy drops to 95.8%

but is accompanied by a remarkable twofold reduction in power and energy usage.

We further verify the performance of the proposed system with non-ideal operating

conditions by taking into account the phase drifts during the programming of phase

shifters and the propagation loss of light. In general, the face recognition accuracy de-

grades as the non-ideal conditions deteriorate. The ONNs are comparatively more sus-

ceptible to phase drifts than propagation loss. By assuming 0.6 dB/MZI propagation loss

and varying the magnitude of phase drifts, the most accurate model from the perfect

operating condition experienced a maximum of an absolute 6.5% drop in system accu-

racy. The overall worst model can only achieve an accuracy of 70%. Finally, the power

and energy consumption of the majority of the selected best-performing models drops as

the non-idealities induce more false negative cases and wake up the power-demanding

DNNs less often.

ii



Abrégé

La détection et la reconnaissance des visages sont des technologies clés pour l’interaction

homme-machine, la surveillance et l’authentification biométrique. Cependant, le com-

promis entre la consommation d’énergie et la précision est crucial pour de tels algo-

rithmes fonctionnant localement sur des appareils périphériques. En outre, la latence

de l’inférence est une contrainte importante pour les systèmes en temps réel. Dans ce tra-

vail, nous proposons un système hybride électro-optique d’apprentissage automatique

en plusieurs étapes pour la détection et la reconnaissance découplées des visages. Le

système utilise un réseau neuronal optique (ONN en anglais) basé sur un interféromètre

Mach-Zehnder toujours actif pour surveiller la présence de visages dans l’environnement.

Le réseau neuronal numérique profond (DNN en anglais) à forte intensité de calcul pour

la reconnaissance faciale n’est activé que lorsqu’un visage est détecté. Ce système per-

met de réduire la consommation d’énergie et d’accélérer le fonctionnement par rapport à

un système traditionnel, purement électronique et toujours actif, et ce de deux manières.

Tout d’abord, le détecteur de visages toujours actif tire parti du parallélisme inhérent à

l’ONN pour effectuer des multiplications vectorielles et matricielles en temps linéaire,

tout en consommant moins d’énergie. Deuxièmement, le DNN normalement éteint pour

la reconnaissance faciale réduit considérablement la consommation d’énergie.

Pour vérifier l’exactitude et l’efficacité de la conception proposée, nous l’avons ap-

pliquée à deux cas d’utilisation différents - l’un avec alignement centré des visages et

l’autre sans. Nous avons formé et testé le système en utilisant les plateformes Neurop-

tica et PyTorch avec les ensembles de données WIDER FACE et Labeled Face in the Wild
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(LFW). Dans l’hypothèse d’une probabilité d’apparition des visages de 1%, le modèle

le plus précis provient du scénario des visages non alignés avec un processus de sous-

échantillonnage pour trouver les visages. Il atteint une précision de 97.2% sur l’ensemble

de données LFW, associée à une réduction de 10.9% de la consommation d’énergie par

rapport au même réseau neuronal sur des processeurs numériques. Dans le scénario des

visages alignés, la meilleure précision tombe à 95.8%, mais s’accompagne d’une remar-

quable réduction par deux de la consommation d’énergie.

Nous vérifions en outre les performances du système proposé dans des conditions

de fonctionnement non idéales en tenant compte des dérives de phase pendant la pro-

grammation des déphaseurs et de la perte de propagation de la lumière. En général, la

précision de la reconnaissance des visages se dégrade au fur et à mesure que les con-

ditions non idéales se détériorent. Les ONN sont comparativement plus sensibles aux

dérives de phase qu’aux pertes de propagation. En supposant une perte de propagation

de 0.6 dB/MZI et en variant l’ampleur des dérives de phase, le modèle le plus précis

dans des conditions de fonctionnement parfaites a connu une baisse maximale de 6.5%

en valeur absolue de la précision du système. Le plus mauvais modèle ne peut atteindre

qu’une précision de 70%. Enfin, la consommation d’énergie de la majorité des modèles les

plus performants sélectionnés diminue à mesure que les non-idéalités induisent davan-

tage de cas de faux négatifs et réveillent moins souvent les DNN gourmands en énergie.
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Chapter 1

Introduction

Face detection and recognition have been trending topics in the realm of computer vision.

State-of-the-art face detection and recognition algorithms deploy Deep Neural Networks

(DNNs) with stacked convolutional and fully connected layers to locate and verify fa-

cial biometrics [2, 3]. While these algorithms can be implemented for real-time execution

on resource-constrained edge devices, this comes at high computational cost and energy

consumption. Moreover, for time-sensitive applications where inference latency is cru-

cial, such as authentication [4] and security [5], responsiveness is key.

Given the “always-on” nature of embedded face detection and recognition, complex

models run continuously, resulting in high inference energy and power. Recent research

efforts balancing face recognition accuracy and computational complexity can be divided

into two approaches: devising resource-efficient algorithms for edge devices and apply-

ing emerging technology for more resource-efficient execution of existing algorithms. The

former either optimizes an existing architecture [6] or proposes novel architectures [7] to

reduce the number of DNN parameters. However, they still assume the highly accurate

DNNs are always on, resulting in substantial power and energy consumption; in addi-

tion, the algorithms rely on Graphics Processing Units (GPUs) to minimize latency. Some

more recent approaches develop the idea of multi-stage execution of face detection and

recognition [8,9]. The face recognition pipeline is decomposed into three stages: detecting

1



the presence of a face, locating the position of the face, and facial feature extraction. Only

the first stage always runs, while the rest of the system is woken up only when a face is

present. This face detection stage, running a low-complexity model to save resources, is

expected to have a higher error rate, but ideally few false negatives.

Researchers have also attempted to leverage emerging technology for energy-efficient

neural network acceleration. Analog computing with neuromorphic electronics can re-

duce energy and latency overhead caused by data sampling and digitalization [10]. How-

ever, electronic devices still suffer from limited bandwidth in metal wires and slower per-

formance improvement as Moore’s Law slows [10]. Therefore, neuromorphic photonics

serves as a promising alternative method. Data propagates at the speed of light in the

waveguides, and Multiply-and-accumulation (MAC) operations can be performed in de-

vices such as Mach-Zehnder Interferometers (MZIs) [11]. The concept of ONNs has been

studied previously in [1], and under perfect operating conditions, the optical processor

can achieve a maximum speed of 100 GHz, with N mW of power spent on executing an

N -dimensional vector-matrix multiplication. Despite the compelling speed and energy

savings, ONNs suffer from scalability limitations and precision loss due to imperfect fab-

rication and noise. These factors restrict the size of ONN to around 10 ⇥ 10 neurons [12]

and reduce overall accuracy.

In this work, we combine the idea of a multi-stage wake-up algorithm and the use

of an optical processor for face detection, benefiting from the energy-efficient ONN and

mitigating its low accuracy with event-driven digital DNNs. The face detection stage is

executed on the optical processor while the rest of the system remains digital. Although

2D-pixel array input to the optical processor has recently been proven to be feasible [13],

we focus on a more conventional way of using the optical processor, which involves lasers

for light injection and an additional stage of dimensionality reduction. We consider the

input/output size, topologies, and number of ONN layers as the hyperparameters of the

ONN design. Moreover, we added false negative reduction methods to the training of the

face detection model to overcome the challenge of undetected valid faces. We perform a
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grid search over all possible designs and select the best models from the Pareto optimal

solution set.

Under perfect operating conditions, the most accurate model achieves 97.2% accuracy

on the LFW [14] dataset with 16 features extracted for an ONN in Clements [15] topol-

ogy with a subsampling process for finding faces. This model achieves 11% savings in

power and 57.5% shorter latency compared to always-on digital processors implement-

ing the same neural networks. On the other hand, the most efficient model allows a 1.83⇥

reduction in power, latency, and energy, but with an absolute sacrifice of 7% in accuracy.

Device imperfection will alter the accuracy of face recognition. In this work, we

mainly consider the phase shift drifts in the programming process of phase shifters and

the propagation loss of light through waveguides. Comparatively, the phase shifter pro-

gramming deviations have a more profound impact than the attenuation of light in waveg-

uides on the ONN and the overall system, as seen by a greater magnitude of accuracy

drop as deviation increases. We subject the optimal face recognition models selected with

perfect operating assumptions to imperfect conditions, by fixing the propagation loss to

0.6 dB per MZI and injecting random Gaussian noise to the phase shifts. The most ac-

curate model under perfect operating conditions experienced a worst-case 6.5% drop in

end-to-end face recognition accuracy. Meanwhile, the least imperfection-resilient model

has its accuracy dropped below 70%. Finally, the majority of the selected models exhibit

a decline in power and energy consumption as the phase drift magnitude increases. This

is attributed to the growing number of false negatives made by ONN, leading to less

frequent activation of the power-demanding digital DNN.

The rest of this thesis is organized as follows: in Chapter 2, we review the concepts

and algorithms of face detection and recognition, especially their implementation on edge

devices. We also introduce the basic concepts of optical neural networks, including the

underlying mathematics, the imperfect operation of the hardware, and the history of its

deployment in deep learning. Next, in Chapter 3, we present an overview of the proposed

electro-optical hybrid system, including its algorithmic components and the evaluations
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applied. In Chapter 4, we describe the experiments to be conducted for the verification

and validation of the proposed system. In Chapters 5 and 6, we show our results of the

experiments under the lossless and lossy operating conditions of ONN. Finally, in Chap-

ter 7, we conclude our observations and explore potential avenues for improvements of

the current design.

Statement of Contribution

All contents in this thesis are my original work, including texts, tables, and figures in

Chapters 1 to 7, and data and plots in Chapters 5 and 6.
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Chapter 2

Background and Related Work

As stated in Chapter 1, current researchers tackle the challenge of balancing face recog-

nition precision and its computational complexity from both software and hardware per-

spectives. In software, researchers devise efficient algorithms to perform face recognition

at a high accuracy but with fewer arithmetic operations. In hardware, they take note of

emerging technology for more power- and energy-efficient execution of arithmetic oper-

ations. This chapter provides an introduction to the current research landscape of face

detection and recognition algorithms and discusses some State-of-the-art (SOTA) solu-

tions to the problem of accuracy-efficiency tradeoffs in terms of the software algorithm

and hardware accelerator design.

2.1 Face Detection and Recognition

Face detection and recognition algorithms have been widely applied to daily applications

such as human-computer interaction (HCIs), surveillance, and biometric authentication.

In this section, we review the key advancements in these algorithms and bring in chal-

lenges faced by today’s edge systems deploying such algorithms.
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2.1.1 Face Detection

The goal of face detection is to determine the presence of faces in an image and locate

their positions using bounding boxes if present [16]. Such face detection algorithms can

be applied to real-life use cases ranging from standalone tasks such as digital camera

auto-focus [17] and organizing electronic photo albums [18] to assisting other systems

such as face verification [19], age and gender estimation [20].

State-of-the-art face detection algorithms can be divided into four categories [16]: cascade-

based methods, part-based methods, channel-feature-based methods, and Neural Net-

work (NN)-based methods. Cascade-based methods contain multiple stages for extract-

ing and learning engineered facial features. For instance, Zhang et al. [21] introduces a

cascaded system feeding Haar-like facial features extracted by Viola-Jones algorithm [22]

to AdaBoost classifiers for detection.

Part-based methods consider human faces as an aggregation of local facial features,

such as hair, eyes, mouth, and nose. Subsequently, attribute-aware models are designed

to identify and locate each of the local features and their responses are combined to form

the candidate window of faces [23]. The candidate window is then sent to a classifier

model to determine its “faceness”.

Channel-feature-based methods focus on the colour channels present in the greyscale

or RGB images. Selected channels are subsampled by a preset factor and aggregated into

a pixel lookup table [24]. A weak classifier such as a decision tree or Adaboost classifier

subsequently discerns intra- and inter-channel correlations to facilitate classification.

Finally, the NN-based methods use convolutional layers to capture spatial patterns in

images and generalize common features across different faces. Powerful DNNs such as

MTCNN [19], RetinaFace [25] use convolutional layers for feature extraction, and fully-

connected layers for bounding box and face presence probability calculation.

Accompanying the rise in the number of NN-based face detectors, large-scale face de-

tection benchmark datasets such as AFLW [26], PASCAL FACES [27] and WIDER FACE

[16] are created for training and testing of models. These datasets contain hundreds of
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Figure 2.1: Face recognition pipeline.

thousands of data instances retrieved from search engines [16], or augmented from exist-

ing datasets [26]. The bounding boxes of the faces are then annotated by crowdsourcing.

To enhance the generalization of models trained on them, these datasets take into account

unconstrained conditions where images are captured with various poses, scales, face ex-

pressions, and occlusions.

2.1.2 Face Recognition

The face recognition pipeline consists of the processes of face detection, alignment, rep-

resentation learning (feature extraction), and classification as shown in Fig. 2.1 [28]. Its

application can be further divided into face verification, where the given face is compared

with other faces in an existing face database (“Is this the same person?”), and face identi-

fication, where the given face is identified within a list of names (“Who is this person?”).

These systems can be applied to real-life scenarios such as attendance monitoring [29],

automated border control [30], and video surveillance [31].

Traditional face recognition systems utilize deterministic algorithms such as PCA and

Linear Discriminant Analysis (LDA) to derive personal face features and decide the iden-

tity of the person. A famous example of the application of these systems is the Eigen-

face [32]. The essence of “eigenface” is to project the facial images onto a feature space,

or the “face space”, to encode the variation among different faces. A face detector deter-

mines the “faceness” of a figure by calculating the proximity between the image projec-
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tion and the face space, and a face recognition model computes the similarity between the

given face and the database to identify the person.

Due to the recent rapid development of deep networks, face recognition models now

rely on deep Convolutional Neural Network (CNN) to capture the features of the human

face depicted in the image. The most common approach is to directly look at the faces as

aggregated pixels (similar to the NN-based face detector) instead of looking at engineered

features (similar to the part-based face detector). The face pixels are transformed into

lower-dimensional face embeddings and the distance or similarity score between the two

embeddings is calculated. Researchers deploy state-of-the-art DNNs such as ResNet, and

Inception Network as backbones of face recognition models and design loss functions to

assist the models in capturing the facial features more efficiently. In face verification, the

ArcFace model [33] proposed an Additive Angular Margin Loss to capture the geometric

features of the face by viewing it as a hypersphere. Similarly, in face identification, the

AdaFace model [34] combined the margin loss with image quality factors to enhance the

model performance when encountering low-quality images. After the face embeddings

are obtained, in face verification, a threshold is used for determining whether the two

faces belong to the same person [2]. Meanwhile, in face identification, an additional fully

connected layer is attached to perform multi-class classification of the face.

To ensure that models can achieve similar invariance to different face and surrounding

conditions, the DNN models are trained on large datasets that contain instances with

variations in pose, illumination, and other factors [2]. A majority of the face recognition

datasets, such as Labeled Face in the Wild (LFW) [14], VGG-Face [3] are created from static

personal photos of celebrities queried from search engines. Some more recent datasets

[35] consider video pairs over images for better approximation of real-life tasks.

2.1.3 Deep Learning Based Face Recognition on Edge Devices

Currently, deep CNN has been deployed to perform face detection and recognition tasks

with extremely low error rates. However, when implemented on edge devices, these
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DNNs struggle with maintaining a balance between accuracy and computing resource

(power, latency, and energy) consumption [36]. The always-on device consumes a mas-

sive amount of power and energy as the inference repeats over time. As a result, re-

searchers are looking for more resource-efficient algorithms that are capable of maintain-

ing state-of-the-art face detection and recognition performance with fewer arithmetic op-

erations during inference.

The first set of solutions considers using lightweight systems as the backbone NN ar-

chitecture for existing face recognition framework to reduce the computations performed

during a single inference [37]. The MobileNets [38] are a set of efficient CNNs designed

specifically for mobile vision applications that are resource-constrained. They employ

depthwise separable convolutions to break down the traditional convolutional layers into

pointwise and depthwise convolutions. This step drastically reduces the number of pa-

rameters in the layers and therefore results in less floating point operations consumed.

Serving as a backbone, a later version of MobileNet, MobileNetV2 [36] is combined with

the FaceNet framework for face recognition tasks. the combined structure achieves the

same level of face recognition accuracy as FaceNet with a 7.5⇥ smaller parameter size.

As designing neural network architectures from scratch can be a demanding job for

human experts, recent studies also focus on developing Neural Architecture Search (NAS)

algorithms that are tailored to deep face recognition applications. NAS algorithms are

based on reinforcement learning or evolutionary algorithms and they automatically search

for better architecture designs by tuning the hyperparameters based on given metrics

such as accuracy, latency, and power consumption. Zhu et al. [39] explores a design

space with various magnitudes of connectivity between convolution layer blocks of a

face recognition model using reinforcement learning. Their explored optimal design also

achieved the same level of face recognition accuracy as FaceNet with 1.8⇥ fewer param-

eters.

As introduced in Section 2.1.2, the face recognition pipeline contains various stages.

Researchers can then take advantage of this stage-wise operation of face recognition al-
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Figure 2.2: The configuration of a 2⇥ 2 optical processor as a part of a 4⇥ 4 ONN.

gorithms and consider shutting down part of the hardware when it is not in use. Bong

et al. [8] proposed a system structure composed of an always-on face detection module

and an event-driven CNN-based face recognition module. The Viola-Jones-based face

detector constantly scans for a face in the environment and only triggers the face recog-

nition module when it believes a valid face is present. The designed system fabricated

on an Application-Specific Integrated Circuit (ASIC) chip consumes only 0.62 mW power

to evaluate one face with a sacrifice of 2% drop in accuracy compared to state-of-the-art

deep face recognition networks. Similarly, Synopsys designed a two-stage face recogni-

tion system with one ”always-on” processor holding a low-resolution face detector and

one event-driven processor for high-accuracy face detection and recognition [9]. They

prove that the proposed stage-wise functionalities are implementable on existing com-

mercial processors and can alleviate the low-power high-performance trade-off.

2.2 Optical Neural Networks

Silicon photonics is one of the emerging solutions for accelerating the Vector-Matrix Mul-

tiplication (VMM) operations, owing to its faster speed, lower energy consumption, and

CMOS-compatible manufacturing capability [10, 40]. With information encoded in light

waves, optical modulators such as MZIs, and Micro-Ring Resonators (MRRs) can be orga-

nized into linear optical processors and perform VMM by light interference. The output

electromagnetic field intensity is expressed mathematically as the multiplication between
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the input field intensity and the transfer matrix represented by the processor. These re-

configurable devices can map any arbitrary complex matrices to it by specifically design-

ing the programming process. In this thesis, we focus on the use of MZIs as the main

component of linear optical processors.

2.2.1 Transfer Matrix and Programming

The optical processors can be seen as the combination of multiple 2⇥2 reconfigurable

units. Each 2⇥2 unit consists of two 3 dB directional couplers and two phase shifters, one

on the internal arm (✓) and the other on the external arm (�), as shown in Fig. 2.2 [11].

Theoretically, the 3 dB couplers equally split the input power to each output branch. To

achieve an arbitrary split at the output ports of the unit, the internal phase shifter ✓ adjusts

the phase difference between the two arms and the external phase shifter � controls the

phase difference between the two output ports (O1, O2). The transfer matrix of the 2⇥2

reconfigurable unit (DMZI) is then formulated as a multiplication of the transformation

matrices of each component and the final result is shown in Eqn (2.1).

DMZI = je
j( ✓2 )

2

4e
j�sin( ✓2) e

j�cos( ✓2)

cos( ✓2) �sin( ✓2)

3

5 (2.1)

The designed phase shifts are programmed to phase shifters by applying a bias voltage

to the optical waveguide. The phase shifters considered in this work take advantage

of the thermo-optical effect. By applying the bias voltage to the phase shifters, thermal

changes occur, and the refractive index of the material changes subsequently, altering the

interference pattern.

2.2.2 Optical Processor Topology

Transformation matrices in larger sizes can be realized by organizing the 2 ⇥ 2 reconfig-

urable units into different topologies such that different [DMZI] are multiplied and con-
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Figure 2.3: Topologies of optical processors: (a) Reck, (b) Clements, (c) Diamond, and (d)

Bokun with 4 input-output ports.

catenated [11]. Commonly seen topologies are shown in Fig. 2.3, and their properties

are listed in Table. 2.1. N denotes the number of input/output ports of the mesh. The

processor depth is the maximum number of MZIs deployed on the longest input-output

path.

The Reck [41] topology (Fig. 2.3(a)) consists of a triangular mesh of MZIs. The trian-

gular shape allows for a more convenient sequential calibration of MZIs from the vertex

to the rest of the mesh. The Clements [15] topology (Fig. 2.3(b)) deploys the same number

of MZIs as Reck while organizing them into a rectangular shape. This change in shape

shortens the processor depth and leads to lower loss experienced by the processor even

when light propagates through the longest input-output path. The Diamond [42] topol-

ogy (Fig. 2.3(c)), as stated in its name, has a symmetrical diamond shape and allows more

consistent path losses between each input-output ports pair. The consistent path lengths

ensure the optimal light intensity directed to the output ports and avoid the light inten-

sity issues led by the tapered-out waveguides [42]. The topology also allows independent

access to all MZIs as a result of the diagonal input-output paths and therefore, supports

Table 2.1: Summary of Optical Processor Topologies and Properties

Name Number of MZIs Processor Depth
Reck N(N � 1)/2 2N � 3

Clements N(N � 1)/2 N

Diamond (N � 1)2 2N � 3

Bokun N(N +N/2� 2)/2 N
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simpler and more accurate programming of phase angles to the phase shifters [43]. The

Bokun [43] topology (Fig. 2.3(d)) further modifies the Diamond topology by keeping only

the middle optical input-output ports for main optical paths and leaving the other ports

for calibration purposes only. This modification further minimizes the processor depth

and enhances the robustness of the model towards operation noises.

2.2.3 Non-ideal Operation of Optical Processor

Fabrication process variation is one of the major concerns on the accuracy of computa-

tions performed on optical processors. During fabrication, the waveguide dimensions

are altered and the geometric shapes of optical components become different from the

simulation. For the 3 dB couplers, their splitting ratios are no longer exact; for the phase

shifters, the bias voltage for inducing the same phase shifts varies across devices and

leads to imprecise mapping of phase angles to them. Moreover, thermal crosstalk during

the programming of a phase shifter leads to unexpected heat-up of other waveguides,

creating unintended phase changes to other phase shifters in the processor. The overall

propagation loss or insertion loss of the waveguide also increases due to the roughness

of sidewalls during fabrication, resulting in more attenuated signals.

All of the aforementioned fabrication imperfections and material restrictions can be

summarized into two effects that directly lead to changes in the transfer matrix: the devi-

ation in phase shifts (✓ and �) programmed to the phase shifters and the propagation loss

defined at a per-MZI basis [42].

2.2.4 Silicon Photonics for Deep Learning

Over the past decade, there has been a growing amount of research work done on cre-

ating optical processors for accelerating the computation of neural networks. While the

processors demonstrate their potential in increasing the inference speed with less power

and better energy efficiency, the loss in computation accuracy compared to digital proces-
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Table 2.2: Summary of Related Work Architectures and Performance

Paper Training Task / Dataset
Architecture Accuracy [%]

Layers Neurons Trained Actual
Shen et al. 2017 [1] Ex-situ Vowel Sound Recognition 2 4x4 91.8 76.7

Hughes et al. 2018 [44] In-situ Ring Separation 6 4x4 91.0 N/A
Shokraneh et al. 2019 [45] Ex-situ Linear Separation 1 4x4 98.9 72.0
Williamson et al. 2020 [46] In-situ MNIST 3 16x16 93.9 N/A

Zhang et al. 2021 [47] Ex-situ
Iris 1 4x4 99.3 97.4

MNIST 1* 4x4 93.5 N/A

Mojaver et al. 2023 [43] In-situ MNIST
1

10x10
70.0

N/A
2 83.5

*Contains two additional digital layers with size 784x4 and 4x10 before and after ONN

sors, and the scalability issues in implementing deep neural networks on the devices are

yet concerns to be addressed. Table. 2.2 summarizes the accuracy of ONNs reported by

recent work. The ex-situ training assumes the neural networks are trained with weights

in the digital format as tunable parameters and the in-situ training assumes the ONNs

are trained with phase angles programmed to the phase shifters. The trained accuracy

is obtained from computer simulations while the actual accuracy is the inference results

obtained on fabricated chips.

Shen et al. [1] demonstrated the practicality of implementing a digitally trained neu-

ral network on optical processors. They proposed a two-layer fully connected neural

network architecture for vowel speech recognition tasks and mapped the ex-situ trained

weights to the optical processors. The weight matrices are decomposed into two unitary

matrices and one diagonal matrix using the Singular value decomposition (SVD). The

unitary matrices are directly mapped to the optical processors and the diagonal matrix

is implemented on a special diagonal matrix layer as shown in Fig. 2.4. Results have

shown that the power consumption of the proposed optical processor is proportional to

the number of neurons implemented and the inference speed is at least two orders of

magnitude faster than state-of-the-art electronic systems. However, the system suffered

severely from the degradation of classification accuracy as a result of the imperfect oper-

ation of devices and the finite precision that a phase can be set.
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Figure 2.4: The architecture of ONN implemented in [1], with a general neural network

layer decomposed into an optical interference unit and an optical non-linearity unit.

To take care of the finite precision of phase angles in the phase shifters, the concept

of in-situ training is introduced such that the ONNs can be trained entirely on phase an-

gles while keeping the directional couplers at 3 dB. Hughes et al. [44] proposed an in-situ

backpropagation scheme based on Maxwell’s equations. The gradient of loss functions is

numerically calculated in terms of the phase shifts for weight updates. The proposed sys-

tem is tested by training a single layer 3⇥ 3 fully connected neural network to implement

the XOR gate. The network reached 100% accuracy after training for 400 iterations.

Activation functions play a critical role in neural networks for introducing non-linearity

to the functions. Most of the current hardware-based activations are implemented elec-

tronically, challenging their incorporation within optical processors. Williamson et al. [46]

introduced a reprogrammable electro-optic activation function that can be implemented

within the optical system and achieved a ReLU-like response by tuning the parameters.

Fully connected neural networks trained on such activation function can reach a maxi-

mum of 94% classification accuracy on the MNIST dataset.

To further enhance the robustness of ONN towards fabrication imperfections, Mourgias-

Alexandris et al. [48] proposed a novel coherent neuromorphic photonic computing de-

vice [49] which contains a phase shifter followed by an amplitude modulating element

per neuron and equipped it with noise-aware training models. They showed that by in-
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jecting the experimentally obtained noise characteristics of the silicon photonics circuitry

to the neural network during training, they were able to achieve an on-chip classification

accuracy of > 99% on the MNIST dataset and 6 orders of magnitude faster speed than the

cascaded MZI design.

More recent studies have suggested the possibility of implementing CNNs on optical

processors with a similar operation to the GPUs [40]. However, the majority of the current

investigations are still limited to fully connected networks and generated tasks such as

simulating XOR gates, separating data points based on mathematical expressions, and

handwritten digit recognition. In this work, we focus on a more practical scenario of a

face detection system.
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Chapter 3

Methodology

3.1 Face Recognition System Overview

Dimensionality 
Reduction

Processor 1

͞Always ON͟��
Face Detection

ONN

Processor 2

Phase 1 Phase 2

Valid/invalid

Database

Classifier

Image 
Sensor Face Detection

Face 
Recognition

Figure 3.1: Flowchart for the two-phase electro-optic hybrid face recognition system. Pro-

cessor 1 is the optical processor for accelerating face detection and processor 2 is the elec-

tronic processor for high-accuracy face recognition.

As shown in Fig. 3.1, the face detection and recognition system consists of two phases,

with an always-on, low-power optical processor that performs detection, and an event-
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driven high-performance processor that performs recognition. The system’s goal is to

achieve high end-to-end face recognition accuracy while consuming less power and en-

ergy compared with the same algorithm implemented on purely digital devices. To

achieve high overall accuracy, apart from using a highly accurate face recognition model,

the face detection model should minimize the number of its FN predictions, which di-

rectly fails the system.

In phase 1, a cropped region from the frame captured by the image sensor is first

downsampled by a dimensionality reduction algorithm and the extracted features are

then fed into the ONN. If a face is detected, processor 1 wakes up processor 2. Processor

2 takes the entire frame captured by the image sensor and executes a more accurate face

recognition neural network.

We consider two practical scenarios for applying the proposed system to real-life con-

ditions. The first scenario, ONN-C(entered), requires continuous monitoring of the sur-

roundings and assumes the users are able to see and proactively align themselves in the

center of the camera’s field of view. This scenario aligns with assumptions made in [9] and

applies to cases such as smart door locks or attendance recording. ONN-C can safely as-

sume that the user appears in the middle and performs only one inference using a center

crop in the image. Processor 2 uses a digital face detection DNN to find the face bounding

box in the original frame.

The second scenario, ONN-U(n)A(ligned), considers the proposed system working

with additional sensors, such as accelerometers. This scenario aligns with assumptions

made in [8] and applies to use cases including laptop or smartphone unlocking. The

sensors activate the ONN under certain conditions and the user’s face location at this

moment varies in the image. Therefore, ONN-UA subsamples image patches from the

original frame using a sliding window and detects if a face is present.

After locating the face in the original frame, the face recognizer model compares it

with an existing database. A face is recognized when the distance between its embedding

and any embedding from the database is below a certain threshold [2].
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3.2 Datasets

In this work, we consider two steps toward the proof-of-concept of using optical proces-

sors in deep learning on computer vision tasks, especially face detection. The first step

consists of using well-established artificial benchmark datasets, such as MNIST, Fashion-

MNIST, and CIFAR-10, to validate the feasibility of optical processors on computer vision

tasks. Next, face detection and face recognition datasets are used to further demonstrate

the potential of optical processors in image/face classification tasks in real-life scenarios.

3.2.1 Reference Datasets

The following datasets are selected for reference in comparing the performance between

digitally trained NNs and ONNs.

MNIST [50]: The MNIST dataset contains images of handwritten digits from zero to

nine in grayscale. Each image is 28⇥ 28 pixels. The dataset is balanced with 6,000 images

per class in the predefined training set and 1,000 images per class in the test set.

Fashion-MNIST [51]: Similar to the MNIST dataset, the Fashion-MNIST dataset con-

tains images from 10 classes of fashion items, such as t-shirts, trousers, and sneakers. Each

greyscale image is 28 ⇥ 28 pixels. The training and test sets contain 60,000 and 10,000 in-

stances that are uniformly distributed across the 10 classes.

CIFAR-10 [52]: The CIFAR-10 dataset contains images in 10 classes (airplane, auto-

mobile, bird, cat, deer, dog, frog, horse, ship, truck), each with three color channels (red,

green, and blue). Each image is 32 ⇥ 32 pixels. Though the original CIFAR-10 dataset

contains 10 independent classes, we rearranged the labels to make the classification bi-

nary by aggregating the original label of “airplanes”, “cars”, “ships”, and “trucks” into a

new group called “vehicles”, and “birds”, “cats”, “deer”, and “dogs” into a new group

called “animals”. The images originally labeled as “frog” and “horse” are removed from

the data set to ensure the balance between data samples between the two classes. This

reduces the total image number to 48,000 with 24,000 images in each category.
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3.2.2 Face Detection Dataset

The WIDER Face dataset [53] comprises 32,203 images with 393,703 faces labeled with

bounding boxes. There are also various scenarios present in the images, including differ-

ent poses, facial expressions, and occlusions. The dataset is split into training, validation,

and test sets with a ratio of 4 : 1 : 5. The bounding box information in the test set is not

publicly available; therefore, we use the training and validation sets for our evaluations.

In this work, we simplify the definition of face detection to a binary classification task:

is a large enough face present in the image? As a result, we need to create a new set of datasets

from the original WIDER face dataset. Moreover, subject to the selected dataset, we define

a “large enough” face to be one with a height in pixels in the range [50, 200].

A sliding window of size (image size ⇥ image size) pixels moves horizontally and

vertically across the image with a step size of image size
2 pixels. Since for each image, we

have the coordinates of the bounding boxes of each face, the starting point of the crop

is the top left corner of the top leftmost bounding box. Similarly, the endpoint is the

bottom right corner of the bottom rightmost bounding box. An extra image size
2 pixels is

added to the four sides of the traversal range to ensure that faces on the edges can be

fully captured and there is a variety of partial face positions in the image patches. We

define the image size to be 100 px, as this preserves the facial features in each cut.

Each image patch is labeled based on the Intersection over Union (IoU) value (Eqn. (3.1))

between the sliding window and the bounding boxes of the nearby faces. We adopt the

WIDER Face methodology and set the threshold to be 0.5: any image with IoU � 0.5 will

be labeled ‘1’ and otherwise ‘0’.

IOU =
Area of Overlap
Area of Union

. (3.1)

A prominent problem as a result of the cropping algorithm is that there are many

more image patches labeled ”0” than those labeled ”1”. With the first 1,348 images from

the original validation set, 66,659 image patches were created and only 8,546 of them are
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labeled ”1”. We consider another sliding window approach to selectively remove label

“0” images from the dataset to resolve the problem of the unbalanced dataset. Each time,

the sliding window looks at 5 consecutive labels and if there is no label “1” present, it

removes the first three labels and their corresponding image patches.

After the entire dataset is created, the dataset is split into training, validation, and test

sets with a ratio of 7 : 2 : 3. To ensure that image patches cut from a single image are not

spread across different sets, these ratios are in terms of the number of original images. For

each original image, the number of image patches created is dependent on the number

of faces it contains, ranging from around 150 image patches with more than 20 targeted

faces to around 10 images when there is only one face. Taking into account this difference,

the dataset division at the image patch level is 4.5 : 1 : 2.7.

3.2.3 Face Recognition Dataset

The Labeled Faces in the Wild (LFW) dataset [14] is a renowned dataset for face verifi-

cation and recognition tasks. It contains 13,233 250 ⇥ 250 px images, with 5,479 distinct

people depicted. The original dataset contains instances of faces that are grouped into

pairs and labeled with the fact that the two faces belong to the same person. There are

also different versions of the dataset with the faces in an unconstrained environment or

funneled for face alignment.

The LFW dataset is only used as the test set in this work, as it contains fewer images

compared to other academic benchmarks. Instead of grouping images into pairs, we con-

sider only the face images of distinct people present in the dataset and create a database

with these faces. The same set of modifications are applied to the images as the WIDER

Face dataset. They are cut into patches with a 100 ⇥ 100 px sliding window and the face

presence labels are determined by the IoU in the same way as the WIDER Face. To ensure

the best generalization of neural network models over the two face detection and face

recognition datasets, we apply min-max normalization to the cropped WIDER Face and

LFW datasets to limit the pixel values in the range [0, 1].
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3.3 Dimensionality Reduction

Though low resolution, images we consider for this work are still too large to be directly

fed to an ONN, recalling that the maximum number of inputs we considered is 64 [54].

Taking the CIFAR-10 images as an example, each image comprises 32 ⇥ 32 ⇥ 3 pixels or

3072 features. Hence, we need a dimensionality reduction methodology to extract the

most representative features of image information.

3.3.1 Principal Components Analysis

In general, PCA maps the n-dimensional data into a k-dimensional subspace (k << n) by

finding the eigenvectors that best represent the feature distribution in an image, known

as the principal components [32]. Normally, applying PCA requires a preprocessing step

of normalizing the dataset, as shown in Eqn (3.2),

x
(i)
j =

x
(i)
j � µ

�j
, (3.2)

where x
(i)
j is the i-th feature of data sample xj , µ is the sample mean of all data points and

�j is the standard deviation of the j-th data sample. However, since we have already nor-

malized the image data, as discussed in Section 3.2.2, into the range [0, 1], this additional

preprocessing is omitted as we already know the apriori distribution of data points.

In the next step, the most representative eigenvectors are obtained by sorting the

eigenvalues of the data in decreasing order and selecting the eigenvectors correspond-

ing to the top k eigenvalues. Considering that the pixel arrays are not always square, we

use SVD in place of eigenvalue decomposition,

W = U⌃V T
, (3.3)

where U and V are orthogonal matrices and ⌃ is a diagonal matrix. The non-zero ele-

ments of ⌃ are the positive square roots of eigenvalues obtained from WW
T and W

T
W ,

22



known as the singular values. The higher the singular value, the more variance in data

points can be seen in the corresponding eigenvector directions, and therefore, the corre-

sponding eigenvector is more representative. To finish the transformation, the selected

top-k eigenvectors are concatenated and multiplied with the original matrix.

3.3.2 Fast Fourier Transform

Fast Fourier Transform (FFT) converts the images to the frequency domain and reflects

the magnitude of variations of image data in each direction. The 2D FFT is applied to the

images after they are converted to greyscale (which will be discussed in Section 3.4):

c(kx, ky) = ⌃m,ne
jkxm+jkyng(m,n), (3.4)

where g(m,n) is the pixel at location (m,n) mapping to the location kx, ky in the Fourier

image, and c(kx, ky) is the corresponding Fourier coefficient [46]. More specifically, (kx, ky)

refers to the same location as (m,n) in the image, but its origin starts at the center of the

image. The transformation defined in Eqn. (3.4) perserves the size of the image. There-

fore, to reduce the dimensionality, we perform a center crop of size L to the transformed

frequency domain image. The L ⇥ L cropped coefficients are stacked to form a L
2 ⇥ 1

feature vector.

FFT preprocessing is particularly suitable for ONNs because of the use of Fourier op-

tics including components such as the lens and spatial filters [46]. These devices can

passively perform the transformations without spending extra power. Moreover, since

ONNs operate on complex numbers, the complex-valued Fourier coefficients can be di-

rectly handled, without isolating the imaginary and real parts as done in the digital neural

networks.
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Figure 3.2: The DAE multi-tasking pipeline: latent space obtained from the encoder is

sent to the decoder and a binary classifier simultaneously.

3.3.3 Autoencoders

An autoencoder is a type of unsupervised generative model for creating a set of outputs

that are certain transforms of the input. In our case, we train the autoencoder with a target

of the output being identical to the input after stages of transformation.

The autoencoder consists of two sets of neural networks, an encoder that applies a

function f to the input xin such that the output z = f(xin) and a decoder that applies a

function g to the output from encoder such that x0 = g(z) = g(f(xin)). The optimization

goal is to minimize the distance between xin and x
0, meaning that the reconstructed input

is as similar as possible to the original input. The encoder is responsible for extracting

the key properties from the input, which is also known as the latent space. The latent

space is therefore smaller than the input space and can be used as the result of dimen-

sionality reduction. The decoder reconstructs the input from the latent space by adding

the dimensions in the reversed pattern.

To better train the the encoder for face detection, we also consider adding a binary

classifier with function ypred = h(z) to the encoder. Backpropagation uses the loss result-

ing from both image reconstruction and face detection:

Ltotal = Lrecons(xin, x
0) + Lclassify(ytrue, ypred). (3.5)
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In this work, we focus on one specific autoencoder architecture, DAE, with different

layer compositions. The images from the reference datasets are fed to DAEs with either

solely fully connected layers or convolutional layers when they are colored. Meanwhile,

the face images are only trained on convolutional networks to best capture the spatial

relationships between pixels and avoid massive fully connected neural networks which

lead to overfitting concerns in training and potentially, scalability concerns during their

implementations on edge devices. Each DAE has a 5-layer encoder; each layer reduces

input size by half and doubles the number of channels when the image is not monochro-

matic. Its decoder mirrors this in reverse. The classifier for multi-tasking has two identical

fully connected layers of K ⇥K neurons, where K denotes the number of extracted fea-

tures, and ReLU activation, and the multi-tasking pipeline is shown in Fig. 3.2. We apply

early stopping during training with a patience window of 5 epochs.

3.4 Image Preprocessing - RGB to Greyscale

In the very first step of FFT for dimensionality reduction, we convert the colorful images

to greyscale according to CCIR 601 [55]. The colors are first gamma corrected by applying

a factor � = 2.2 to each channel (R0 = R
� , G0 = G

� and B
0 = B

�). The values are then

normalized to the range [0, 1] instead of [0, 255] in the original RGB image. Next, the

lightness is computed by Eqn (3.6).

Y = 0.2126 ·R� + 0.7152 ·G� + 0.0722 · B�
, (3.6)

Finally, the ”luminance” of an image is calculated by

L = 116 · Y 1
3 � 16, (3.7)

This L value is then the pixel intensity represented by the RGB channels.
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3.5 False Negative Reduction

A key challenge in the implementation of two-phase models as we propose is phase 1

FNs: if a face is present but not detected, facial recognition fails by default. Therefore, the

goal of our work is to minimize the number of FNs while maintaining the classification

accuracy of ONN.

We considered two methods for this purpose. The first changes the IoU threshold

defined for ‘1’ labels when creating the dataset to count partial faces. In this work, two

new datasets, with IoU � 0.2, and 0.1 are created using the same routine as described in

Section 3.2.2. The IoU � 0.2 dataset allows half-faces to be counted towards valid faces

while the IoU � 0.1 dataset considers all partial faces to be valid. This allows for more

positive labels within the same set of image patches and models trained on these datasets

tend to predict positive labels more often than the one trained on the IoU � 0.5 dataset.

The second method changes the weight assigned to each label class in the loss func-

tion. We penalize FN more severely, and the binary cross-entropy loss becomes

LBCE = ��y · log(ŷ)� (1� y)log(1� ŷ), (3.8)

where � is a constant greater than 1, y is the ground-truth label and ŷ is the output from

classifier after Sigmoid activation

ŷ =
1

1 + e�y0
, (3.9)

where y
0 is the output layer outcome. Consequently, the gradient of the loss function

becomes
@LBCE

@w
= conj(��y + (� � 1) · yŷ + ŷ) · z, (3.10)

where z is the input to the ONN and the complex conjugate is taken for complex-valued

neural networks.
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3.6 System Power and Energy Analysis

We take a probabilistic approach to modeling system behavior: the cost (in power, energy,

or time) of one inference is decomposed into the cost of the ONN plus the cost of the

digital DNN(s), times the probability of it being triggered (p(trigger)).

In ONN-C, p(trigger) depends on the chance of a face appearing in the camera’s field

of view (p(face)) and the probability of FP p(FP ) and True Positive (TP) decisions p(TP )

made by ONN: Hence,

p(trigger|N) = (p(TP )� p(FP )) · p(face) + p(FP ), (3.11)

where N is the number of input features, and for one inference

C = C1 + p(trigger|N) · C2, (3.12)

where C is the power/latency/energy consumption of the entire system, C1 and C2 are

the corresponding consumption of phases 1 and 2 in Fig. 3.1. In this work, we assume

p(face) = 1%, which corresponds to around 14 minutes per day.

In ONN-UA, we assume that faces are always present when the camera starts captur-

ing its surroundings (p(face) = 1). Therefore, p(trigger|N) = p(TP ) = accuracy, since

all the images in the ONN-UA face detection test set contain a face (corresponding to the

p(face) = 1 assumption). A more detailed description of this test set will be provided

in Section 4.3.2. Moreover, in this case, the cost of the ONN (C1) is the cost of a single

inference times the average number of inferences before the ONN detects a face (n(trial)).

Therefore,

C = C1 · n(trial) + p(trigger|N) · C2. (3.13)
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The actual values of C1 and C2 are obtained from established work. We estimate the

power, energy, and latency of 1) the ONN using data provided in [46], and 2) Jetson Nano

using [56]. Memory performance is estimated with CACTI-7.0 [57].

3.7 Performance Evaluation Metrics

The performance of the ONNs and the entire systems are evaluated based on their classi-

fication/recognition accuracy and power/latency/energy consumption as calculated in

Section 3.6. All evaluations begin with plotting the confusion matrix of the test set to vi-

sualize the number of TP, FN, FP, and True Negative (TN) cases. The subsequent metrics

are calculated to further quantify the classification performance.

3.7.1 Accuracy

The accuracy refers to the fraction of time when the model correctly predicts the ground-

truth label. In binary classification cases, it is calculated using the equation

Accuracy =
TP + TN

TP + FN + FP + FN
. (3.14)

More generally, for all classification cases regardless of class size,

Accuracy =
Number of correct predictions
Number of test set instances

. (3.15)

Due to the multi-stage nature of the design in Fig. 3.1, we calculate three sets of ac-

curacy for the system: the ONN face detection (phase 1) accuracy, the standalone face

recognition (phase 2) accuracy, and the end-to-end face recognition accuracy. The former

two sets of accuracy can be calculated by applying Eqn (3.14). Meanwhile, the confu-

sion matrix of the entire system can be computed by combining the confusion matrices
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obtained from phases 1 & 2 alone:

TPtotal = TP2, FPtotal = FP2, (3.16)

FNtotal = FN1 + FN2, TNtotal = TN1 + TN2, (3.17)

and the corresponding values are substituted into Eqn (3.14) to find out the overall ac-

curacy. By observing Eqn (3.17), we can also find out that the FNs in the first stage di-

rectly counts towards the total system errors without any chance of correction by phase 2.

Therefore, reducing FNs in ONN is critical to achieving high end-to-end face recognition

accuracy as stated in Section 3.5.

3.7.2 F1 score

The F1 score (Eqn (3.18)) is the harmonic mean of precision (Eqn (3.19)) and recall (Eqn (3.20))

of the system. It provides a balanced measure of the model’s performance and is particu-

larly valuable for cases where we have unbalanced datasets between classes, in our case,

the slightly unbalanced face detection dataset. This score will be only applied to binary

classification scenarios.

F1 = 2 · Precision · Recall
Precision + Recall

, (3.18)

Precision =
TP

TP + FP
, (3.19)

Recall =
TP

TP + FN
. (3.20)
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Figure 3.3: The ROC curve (blue) with AUROC area labeled in grey.

3.7.3 Area Under the Receiver Operating Characteristics (AUROC)

The Area Under the Receiver Operating Characteristics curve (AUROC) is another fun-

damental metric in binary classification tasks, used for evaluating the effectiveness of a

model in performing the task. The evaluation begins with depicting the Receiver Oper-

ating Characteristics curve (ROC) (as shown in Fig. 3.3) that contrasts the True Positive

Rate (TPR) (a synonym of Recall in Eqn (3.20)) and False Positive Rate (FPR) (Eqn (3.21))

of the model at all classification thresholds.

FPR =
FP

FP + TN
. (3.21)

The classification threshold is the value of probability predicted by the model beyond

which can be considered as a positive label. Lowering it will lead to more data instances

classified as positive, hence leading to more TPs and FPs.

AUROC is the entire two-dimensional area enclosed by ROC and two axes. It can be

seen as the probability that a model ranks a random positive data instance higher than a

random negative one [58].
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3.8 Pareto Optimality

The goal of our work is to find an electro-optic hybrid system that achieves the best trade-

off between face recognition performance and the system’s power/energy efficiency. There-

fore, the design problem can be transformed into a multi-objective optimization problem

using a grid search over the hyperparameters. The two objectives are 1) the high accu-

racy/low error rate of the end-to-end face recognition system, and 2) the low power/energy

consumption of the system, averaged to one inference. The Pareto optimal solutions to

this multi-objective optimization problem can then be described as the models whose

performance cannot be surpassed by another in one objective without degradation in

performance of the other [59].

In the ONN-C case, the first objective refers to the face recognition system accuracy

while the second objective can be analogized by p(trigger|N), as a result of the linear

relationship between it and the total consumption of system shown in Eqn (3.12). More

specifically, given a Pareto optimal solution model m in search space M , with error rate

E(m) and probability of triggering second phase p(trigger|N,m), it dominates the other

solutions n 2 M by

m � n () E(m) < E(n) ^ p(trigger|N,m)  p(trigger|N, n) _

E(m)  E(n) ^ p(trigger|N,m) < p(trigger|N, n).
(3.22)

Multiple Pareto optimal solutions can coexist for the same optimization problem and by

aggregating them, we obtain the Pareto optimal set S,

S = {s 2 S | s 2 M, @n 2 S s.t. n � m}, (3.23)

which are the model designs that fit our goal.

In ONN-UA, the first objective also refers to the face recognition system accuracy.

However, in this scenario, p(face) = 1, and p(trigger|N) = p(TP ) = accuracy. p(trigger|N)
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is now identical to the metric we used for describing the first objective, and no compar-

isons can be made. Therefore, n(trial) will replace it to be another factor influencing the

power and energy consumption pattern as indicated in Eqn (3.13).
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Chapter 4

Experimental Setup

We conduct a set of experiments to prove: (1) the ability of ONNs in performing ob-

ject/face detection tasks, and (2) the feasibility of the proposed multi-stage face detection

and recognition system in both lossless and lossy environments. The stagewise experi-

ments begin from the search for the best dimensionality reduction methods among the

proposed ones in Section 3.3. The best dimensionality reduction method should yield the

highest ONN accuracy based on the extracted features. Next, we use the selected dimen-

sionality reduction method to preprocess data instances from the proposed datasets in

Section 3.2 and train the ONNs on the extracted features. ONNs are configured with dif-

ferent combinations of hyperparameters and their classification performances, including

accuracy, F1 score, and AUROC, on the validation and test sets are compared. Selected

best-performing ONNs are combined with SOTA deep neural networks to complete the

face recognition workflow. We compare the end-to-end face recognition accuracy and the

power/energy consumption of the entire system with different hyperparameter settings

and obtain the Pareto Optimal solution set subject to the perfect operating conditions. Fi-

nally, we inject non-ideal conditions to the Pareto Optimal solution set and observe each

solution’s response to the noise.
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4.1 Simulation Framework

We perform both ex-situ and in-situ training in this work to evaluate the ONNs. The ex-

situ training of ONNs assumes noise-free operating conditions with high arithmetic preci-

sion (64-bit) and directly updates the digital weights during backpropagation. Therefore,

it is only used for investigating the effectiveness of dimensionality reduction methods.

The simulations are implemented using PyTorch. To align the ex-situ trained ONNs with

in-situ trained ones, the parameters used in neural networks are set to be in complex

numbers and the bias per layer is eliminated. The random seeds for each experiment are

fixed to allow fair comparison.

The in-situ training of ONNs uses phase shifts as the parameter to be updated during

backpropagation. The current version of in-situ simulations is built on the Neuroptica [60]

package.

4.2 Efficiency of Dimensionality Reduction

We begin by searching for the most efficient dimensionality reduction methods among

PCA, FFT, and autoencoders. To achieve this, ONNs with a fixed set of hyperparameters

are trained on the extracted features from each dimensionality reduction method with a

set of random seeds. The averaged classification performances of ONNs then serve as

indicators of dimensionality reduction method efficiency.

4.2.1 Experiment Workflow

Fournier and Aloise [61] first presented a comparison between the SVD-based dimen-

sionality reduction methods, such as PCA and isometric feature mapping [62], and the

autoencoders by testing their classification accuracies over the MNIST, Fashion-MNIST,

and CIFAR-10 datasets. The extracted features from the dimensionality reduction meth-

ods are fed into a simple classifier model, K-Nearest Neighbors (kNN), to obtain the clas-
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sification results. However, limited by the complexity and learning ability of KNN, the

classification accuracy decreases below 50% as the complexity of the dataset increases and

the subsequent comparisons become trivial.

Dimensionality Reduction on Reference Datasets

In this work, we follow a similar procedure as [61] for dimensionality reduction tests on

the reference datasets and replace the KNN with ONNs using a fixed set of hyperparam-

eters.

The parameter to be selected in PCA is the number of features (N ). In this case,

N 2 [10, 64]. This not only considers the upper limit of the ONN scalability [54] but

also ensures a sufficient number of features to be used for classification tasks. Similarly,

the only factor involved in the FFT method is the half-feature length L =
p
N
2 , which is the

number of pixels to be cropped from the center of the image. This value is set to be in the

range [2, 4] for the same reason as above. When using autoencoders for dimensionality

reduction, each encoder-decoder architecture was first trained with Adam optimizer [63]

and the reconstruction loss function. An early stopping technique with a patience win-

dow size of 5 is applied, such that when the validation reconstruction loss does not de-

crease within 5 epochs, the training process stops. The upper limit of training epochs is

set to 100. The transformed inputs are derived from the latent space, by reshaping it into

a vector.

We directly input the reconstructed dataset after dimensionality reduction into both

ex-situ and in-situ ONNs. In both cases, the classification network is fixed to 2 layers of

N input and output neurons. We tested over the Reck, Clements, Diamond, and Bokun

topology. The electro-optic non-linear function (Fig. 4.1a) [46] and the complex-valued

ReLU (cReLU) function [64] (Fig. 4.1b for the real part and Fig. 4.1c for the imaginary

part) are inserted between layers for activation and all neural networks are terminated

with a squared normalization layer which imitates a photodiode input. For a k-class

classification task, readings from the first k output ports are obtained. Each selected port
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(a) EO activation (b) Re(cReLU) (c) Im(cReLU)

Figure 4.1: Activations functions to be used in ONNs. The cReLU function is separated

into real and imaginary parts.

corresponds to a class in the dataset and its reading represents the probability of the given

input belonging to the corresponding class. The Adam optimizer [63] and stochastic gra-

dient descent are used in all neural network training procedures with a learning rate of

0.005 for 20 epochs. Each dataset is divided into training, validation, and test sets with a

proportion of 8 : 1 : 1, and each set is split into 10 equal batches during training.

Dimensionality Reduction on Face Detection Dataset

The test of dimensionality reduction methods on the face detection dataset follows the

same procedure as the reference datasets. However, for each method, a fixed number of

64 features are extracted and used solely in the ex-situ training of ONNs with two fully

connected layers of 64 input and output neurons. We leave the feature number selection to

the later stages of hyperparameter tuning of face detection models. The first two neurons

from the output layer of the ONN are used for the final classification decision. We apply

early stopping during training with a patience window of 5 epochs and train up to 80

epochs.
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4.2.2 Evaluation Metrics

Autoencoder Performance

The varied versions of autoencoders are first compared and the best-performing model

is selected for further comparison with other dimensionality reduction methods. The test

set reconstruction loss is the most intuitive indicator of the effectiveness of autoencoders.

We also take into account the test accuracy of ex-situ ONNs trained on the extracted fea-

tures and compare it with the accuracy of the auxiliary classifier if multi-tasking is used.

Dimensionality Reduction Effectiveness on Different Datasets

The MNIST and Fashion-MNIST datasets are designed for 10-class classification tasks and

are artificially balanced among classes. Therefore, in this case, we only look at the overall

test accuracy of ex-situ and in-situ models trained on the two datasets for comparison.

We redesigned CIFAR-10 dataset into a binary classification task. Therefore, in addi-

tion to the test set accuracy, we calculate the F1 score of the ONN predictions and com-

pare them among methods. Since the new CIFAR-10 dataset is also artificially balanced

between classes, we should expect close proximity between the accuracy and F1 scores.

The face detection dataset is not perfectly balanced despite having implemented the

data selection method. Therefore, it is important to look at both the accuracy and the

F1 score to evaluate the ONN’s ability to discriminate between both classes. Moreover,

the AUROC of each model is also compared to evaluate the ONN performance under

different decision threshold values.

4.3 Classification Performance

4.3.1 Hyperparameter Tuning in Face Detection Model

The face detection stage is implemented in the optical domain with the ONNs. The most

effective dimensionality reduction method selected from the previous stage is used for
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Table 4.1: Hyperparameters Tuned during Face Detector Training

Hyperparameter Values/Category
Number of Layers 1, 2, 3

Features 8, 16, 32, 64
Activation Electro-Optic (EO)

Dataset IOU � {0.1, 0.2, 0.5}
Topology Bokun, Clements, Diamond, Reck

� 1, 1.2, 1.4, 1.6, 1.8

generating the extracted features for training, validation, and test sets. Next, these fea-

tures are fed to the ONNs for training and evaluation. Similar to the ex-situ training, the

first two output port (ports O0 and O1 in Fig. 2.3) readings are used for the binary deci-

sion of a face present or absent. After each training iteration, backpropagation is done by

calculating the weight update values in phase angles using the approach in [44]. 10 splits

are applied to the dataset to create batches, and cross-entropy loss is used with stochastic

gradient descent.

The hyperparameters to be tuned (as summarized in Table. 4.1) include the number

of layers ([1, 3]), the input/output size of each layer ([8, 64]), and the optical processor

topology (Reck, Clements, Diamond, and Bokun). EO activation is used for all models,

as it has actual hardware implementation data allowing us to perform power/energy

consumption analysis. The models are trained on datasets with different IoU thresholds

or different weights (� 2 [1, 2]) assigned to the positive class. A fixed learning rate of

0.005 is applied to all cases.

In the ONN-UA cases, the cropped images are applied in series as the sliding window

cuts across the original image, starting from the top left to the bottom right corner. We

not only determine whether the face detector can detect a valid face but also calculate the

average number of sliding window cuts (n(trial)) required before the face detector signals

a valid face. In the ONN-C cases, the center-cropped original image is sent to the detector.
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For one image, ONN-UA tries multiple times to detect a face while ONN-C relies on one

shot.

4.3.2 Evaluation Metrics for Face Detectors

As summarized in Table 4.2, all the ONN face detection models are tested on three differ-

ent sets:

1. the local test sets which are the corresponding test sets of different IoU thresholds,

2. an In-distribution (ID) IoU � 0.5 test set (with the same data distribution as the

training set), and

3. an Out-of-distribution (OOD) test set, which is created from the LFW dataset with

IoU � 0.5 cropping.

As a result of the label ‘0‘ elimination step in the local and ID test sets, the stored

images are no longer consistent sliding window crops. Therefore, they will not be ap-

plied to the ONN-UA scenario which requires sequential image input. The composition

of OOD set also differs in the two scenarios: in ONN-UA, there are two sets of labels

considered, as shown in Fig. 4.2. At a macro level, all the images from the original LFW

dataset contain a face, meaning that the ground-truth labels are all “1”. This corresponds

to the assumption that p(face) = 1. However, during the face searching process of ONN,

it cuts out image patches that may not contain a face. Therefore, at a micro level, the test

set contains label-“0” no-face patches and label-“1” with-face patches. For the reporting

of model performance, we calculate both the macro-level and micro-level accuracy: the

Table 4.2: Summary of Face Detection Test Set Information

Name Source Dataset Cropping IoU threshold Scenarios Tested
Local WIDER Face [0.1, 0.2, 0.5] ONN-C

ID WIDER Face [0.5] ONN-C

OOD LFW [0.5] ONN-C &
ONN-UA
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Figure 4.2: Different Levels of Labeling in the Face Detection Dataset of ONN-UA

macro-level accuracy is the number of 250 ⇥ 250 px images on which ONN successfully

detects a face after scanning through them, and the micro-level accuracy is the number

of 100⇥ 100 px image patches on which the ONN makes the correct decision on whether

there is a face. As we assume the entire face detection system is triggered when a user

is present (i.e., p(face) = 1) for this scenario, the macro-level test set accuracy will be ex-

actly p(trigger|N) as computed in Section 3.6. In ONN-C, the label ‘1’ images are created

from a center crop, and the label ‘0’ images are created from partial-face images from

surrounding cuts and no-face images from IoU � 0.1.

For each model with a different combination of hyperparameters, we calculate its ac-

curacy, F1 and AUROC scores. A model is trained five times with different random seeds

and the evaluation metrics obtained from each seed are averaged. At this stage of in-

vestigation, we do not pick out the best-performing models, instead, we only eliminate a

few combinations of hyperparameters that only yield random-guess level (60% ID test

accuracy) classification performance or have shown strong overfitting trend during the

training process.

The ONN-C and ONN-UA face detectors consider the same set of training hyperpa-

rameters and training data. Therefore, we assume that the ID test performance on ONN-C

face detectors is representative enough such that we can rely on it to eliminate infeasible

hyperparameter sets for both use cases.
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Figure 4.3: The Workflow of Tests on the Face Recognition and Entire System

4.3.3 Combining Face Detection with Face Recognition Models

In the next step, we combine the ONN face detectors with digital face recognition mod-

els and evaluate the performance of the entire event-driven system, using the workflow

shown in Fig. 4.3. Devising a state-of-the-art model for face recognition is beyond the

scope of this work: therefore, we adopt FaceNet [2] pre-trained on the VGGFace2 dataset.

The set of hyperparameters for FaceNet is therefore fixed.

At this stage, we use a test set that is created in the same way as the OOD test set

from face detection stage; however, to avoid confusion with the face detection results, we

simplify its name to “LFW test set”. Furthermore, the 100 ⇥ 100 px LFW test set created

from cropping is called the “new LFW test set” and the original 250⇥ 250 px LFW dataset

is called the “original LFW test set”.

We first obtain the face embeddings of the image patches marked positive by ONN.

The new LFW test set is applied to all selected models from face detection and all the

images that are marked as “face present” are stored. In the ONN-UA cases, the first

positive-marked new LFW test set instance is directly sent to FaceNet to obtain the face

embedding. In the ONN-C case, we use Multi-Task Cascaded Convolutional Neural Net-

works (MTCNN) [19] to figure out the 100⇥100 px bounding boxes of the old LFW test set

instances that correspond to the positive-marked new LFW test set instance. The bound-

ing box regions are cut out and sent to FaceNet for face embeddings.

The real-time face embeddings are pair-wise compared with existing embeddings in

the database. The Euclidean distance between the two embeddings is used as a metric for
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proximity and we select the most appropriate threshold value based on the accuracy of

comparisons.

4.3.4 Evaluation Metrics for Face Recognition and Entire System

The database of face embeddings for phase 2 is created by computing the embeddings of

all images in the 100⇥ 100 px center-cropped face-aligned original LFW test set. To avoid

repetitive inference during the grid search over the hyperparameters, the real-time face

embeddings of both the new LFW test set used in ONN-UA and the MTCNN-cropped

original LFW test set used in ONN-C are calculated in advance to runtime. To further

save storage space, the binary outcome of whether these new face embeddings match

with any of the embeddings in the database is computed and stored in a look-up table

format with the same sequence as the test set. The accuracy of stage 2 can be simply

calculated by summing all elements in the look-up table. Finally, we compute the end-

to-end system accuracy by combining the standalone face detection and face recognition

results based on the confusion matrix constructed by Eqns (3.16) and (3.17).

Using the confusion matrix from face detection, we can also calculate p(trigger|N) of

each model. Combined with the entire system accuracy, we project all the models to the

two-dimensional objective space as described in Section 3.8. The models in the Pareto

optimal solution set are considered the best models under perfect operation conditions.

4.4 Effect of Imperfect Devices

As described in Section 2.2.3, we focus on two device imperfection factors, the deviation

in phases programmed to phase shifters and the propagation loss per MZI. We apply two

sets of sensitivity analyses to the model with different levels of device imperfection.

The first set of sensitivity analysis looks at the impact of topology on the resilience of

the ONN models towards device imperfection. We focus on the ONN-C scenario during

our tests to save simulation time by avoiding the repetitive inference of sliding windows.
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During sensitivity analysis, the distribution of phases programmed to phase shifter in

radians is modeled with Gaussian distributions, such that ✓ ⇠ N(✓i, �✓) and � ⇠ N(�i, ��)

for the internal and external arms. ✓i and �i are the phase shifts obtained from the in-

situ training of ONNs under perfect conditions. The values for �✓ and �� are uniformly

sampled from the interval [0, 1]. Similarly, the propagation loss per MZI in dB is sampled

from the interval [0, 1] and applied to the system by altering the transfer matrix

D
0
MZI = je

j( ✓2 )

2

410
�loss/10 1

1 10�loss/10

3

5 ·

2

4e
j�sin( ✓2) e

j�cos( ✓2)

cos( ✓2) �sin( ✓2)

3

5 . (4.1)

Different pairs of [�✓, ��] and [�✓ = ��, loss] are applied to the trained model and we

monitor the changes in accuracy, number of FN and FP cases, and resultant p(trigger|N).

For each �✓ or �� value, we sample 20 different ✓ and � values from the corresponding

Gaussian distribution, apply them to the system, and take the average of the results. To

quantitatively analyze the robustness of each model, we introduce a Figure of merit (FoM)

where we count the number of [�✓, ��] or [�✓ = ��, loss] pairs that lead to less than

10% drop in the ONN or system accuracy with respect to the perfect condition accuracy.

Models with a greater count are considered more robust as they tolerate a wider range of

errors while achieving the same level of classification performance.

The second set of sensitivity analyses focuses on the Pareto optimal solutions selected

from the perfect operating conditions. We assume a fixed insertion loss of 0.6 dB/MZI [65]

and apply the analysis to both ONN-C and ONN-UA scenarios. The programmed phase

is still modeled with a Gaussian distribution (✓,�) ⇠ N((✓̂, �̂), (�✓, ��)) where ✓̂, �̂ are

phases obtained after training in radians, and �✓, �� 2 [0, 0.5] are the deviations (errors).

The device imperfections are injected into the trained model to obtain the variation in the

ONN accuracy, system accuracy, power, and energy consumption.
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Chapter 5

Results and Discussion under Perfect

Operating Conditions

To prove that the proposed design can save power and energy consumption while main-

taining a high level (� 90%) of face recognition accuracy, we perform a grid search over

the dimensionality reduction methods and the identified hyperparameters in Table. 4.1

with the assumption of perfect operating condition. This assumes ideal fabrication con-

ditions, negligible insertion loss or attenuation of light in waveguides, and the precise

mapping of trained phase shifts to the on-chip phase shifters.

5.1 Dimensionality Reduction

Our discussion of results begins with the effectiveness of dimensionality reduction meth-

ods. The same set of dimensionality reduction methods are applied to both reference

datasets (MNIST, Fashion-MNIST, and modified CIFAR-10) with different numbers of

classes used for classification, and our ultimate goal of the face detection dataset. The

numerical metrics, including classification accuracy, and F1 score, are compared among

methods. We also reconstruct the images after transformations and compare them with

the original images.
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5.1.1 Comparison of Dimensionality Reduction Methods on Reference

Datasets

Table. 5.1 shows all metric values obtained from using dimensionality reduction methods

on the reference datasets with the maximum number of allowable input features and dif-

ferent combinations of hyperparameters. The entries in Italics indicate the result obtained

from ex-situ training.

For both Clements and Reck topologies, a maximum number of 64 features can be

used for successful classification as defined by the model correctly updating the weights

and achieving more than random-guess level performance. The Bokun topology has an

upper bound of 16 features for successful classification. Anywhere beyond the threshold

leads to a model that experiences zero-gradient issues during backpropagation, meaning

that there is no weight update during training, and eventually the model can only per-

form random guesses on the data instances. A similar problem occurs with the Diamond

Table 5.1: Performance of Dimensionality Reduction Methods on Reference Datasets

Dimensionality
Reduction

Method

Trainable
Parameter

Topology Features Activation
MNIST Fashion-MNIST CIFAR-10

Test Accuracy
[%]

Test Accuracy
[%]

Test Accuracy
[%]

F1

PCA

Weight - 64 EO 95.98 85.87 77.71 0.759

Phase Shift

Clements 64
EO 91.51 82.40 71.65 0.683

cReLU 90.20 80.67 75.78 0.770

Reck 64
EO 92.55 81.57 75.14 0.750

cReLU 91.91 81.96 76.83 0.752

Bokun 16
EO 68.67 59.53 70.38 0.430

cReLU 81.62 74.95 73.86 0.716

FFT

Weight - 64 EO 97.31 88.58 66.64 0.664

Phase Shift

Clements 64
EO 91.07 74.60 63.72 0.616

cReLU 90.17 70.49 60.81 0.593

Reck 64
EO 91.92 73.98 63.16 0.647

cReLU 91.12 59.30 61.39 0.609

Bokun 16
EO 74.44 54.91 54.63 0.332

cReLU 77.62 63.00 50.95 0.445

Autoencoder

Weight - 64 EO 90.40 79.90 70.91 0.699

Phase Shift
Clements 64

EO 70.75 68.00 47.96 0.538
cReLU 67.48 67.18 57.05 0.688

Reck 64
EO 61.92 57.76 55.77 0.673

cReLU 60.20 64.29 47.80 0.096
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Table 5.2: Results from Autoencoder Training on CIFAR-10

Dataset
(Image Shape)

Layer Type
Reconstruction

Loss
Test

Accuracy [%]
Number of
parameters

CIFAR-10
(3*32*32)

FC 193742.36 70.91 3842048
Conv 733857.13 70.88 43624

mesh and more severely, the model learns nothing even when only four features are ex-

tracted. This limits the topology’s ability to perform multi-class classification tasks on

datasets such as MNIST and Fashion-MNIST. It is therefore removed from all subsequent

discussions.

In general, as the complexity of the dataset instances increases, the accuracy of both

ex-situ and in-situ ONNs drops. PCA and FFT have similar classification accuracy when

trained with MNIST task. However, as the task becomes harder, the discrepancy in ac-

curacy between the two methods expands to more than 13%, and PCA becomes a better

choice for dimensionality reduction. Moreover, we observe that models trained with EO

activations more frequently outperform their counterparts trained with cReLU activa-

tions. This suggests that the EO activation, which is tailored to the ONN designs [46],

better improves the learning ability of in-situ trained models.

(a) MNIST (b) Fashion-MNIST (c) Modified CIFAR-10

Figure 5.1: The variation in ONN accuracy due to change in the number of input features

with PCA as the dimensionality reduction method.
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For both MNIST and Fashion-MNIST datasets, only one DAE architecture, the one

with only fully connected layers, is used. When it comes to the CIFAR-10 case, two DAE

architectures, one with only fully connected layers and the other with only convolutional

layers are used. Table. 5.2 compares results obtained from two architectures on CIFAR-

10. The fully connected based DAE shows stronger reconstruction ability by lower recon-

struction loss and slightly higher ex-situ ONN test accuracy. However, this comes at the

cost of 88.1⇥ more parameters used in the encoder and decoder. When comparing the

selected DAE performance with the other two methods, it performs worse in MNIST and

Fashion-MNIST even with ex-situ training, but reaches the same level of accuracy on the

CIFAR-10 dataset. Moreover, there is a huge gap between the ex-situ ONN and the in-situ

ones (� 10%), indicating that the features extracted in the latent space of DAEs are hard

to be captured by ONN.

Although models with PCA and FFT exhibit relatively high accuracy using the maxi-

mum allowable number of input features, their corresponding performance degrades sig-

nificantly when using fewer features. As shown in Fig. 5.1, with PCA, models trained on

MNIST and Fashion-MNIST have their accuracy drops below 60% when only 10 features

are used (which also correspond to the number of classes in the dataset). The accuracy

drop magnitude is smaller in the modified CIFAR-10 dataset as for binary classification,

10 input features are still sufficient for the model to make its decision. A similar trend can

be observed in models trained with FFT, as shown in the analysis of Appendix B. This

trend emphasizes the importance of input feature number selection for each method and

the potential negative impact brought by the scalability issue of ONN to its accuracy.

5.1.2 Comparison of Dimensionality Reduction Methods on Face De-

tection

Next, we look at the effect of dimensionality reduction methods applied to the face de-

tection task with IoU � 0.5 dataset. Only the ex-situ ONNs are used to ensure the best
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Table 5.3: Performance of Ex-Situ Face Detection ONNs on Different Dimensionality Re-

duction Methods

Method Classifier Activation
Accuracy [%]

F1 AUROC
Validation Test

PCA ONN
EO 58.45 57.37 0.581 0.607

cReLU 77.00 69.31 0.707 0.741

FFT ONN
EO 51.45 54.52 0.595 0.567

cReLU 73.90 61.50 0.626 0.652

DAE ONN
EO 75.78 66.68 0.666 0.723

cReLU 73.22 67.17 0.694 0.719

DAE +
multi-tasking

MLP ReLU 75.18 67.68 0.697 0.737

ONN
EO 72.63 67.93 0.693 0.741

cReLU 72.62 68.23 0.697 0.736

ability of models trained and help distinguish whether the poor performance of face de-

tector sources from the dimensionality reduction method or the model itself.

The classification performance of models with different dimensionality reduction meth-

ods is summarized in Table. 5.3. The Multilayer Perceptron (MLP) indicated in Italic is

the auxiliary digital classifier for multitasking. Overall, the model trained with PCA and

cReLU activation outperforms the rest in all three metrics. The difference between the best

model and the DAE-based models is small, less than 2% in accuracy, 0.13 in F1 score, and

0.22 in AUROC. Moreover, the DAE-based model shows a more uniform performance

between models with EO and cReLU activation. Since the EO activation is designed for

in-situ training conditions, it results in low accuracy in ex-situ conditions. The training

of the DAEs mitigates this problem by providing a better starting point for the classifiers

by performing more complex transformations between the input image and the output

feature vector. However, this comes at a cost of more than 25⇥ more CPU time spent on

transformation than PCA and FFT. Therefore, we use PCA for the rest of our experiments.
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Figure 5.2: Original CIFAR-10 images (upper row) and their reconstruction (lower row)

using PCA transformation

Figure 5.3: CIFAR-10 images (upper row) and their reconstruction (lower row) from the

DAE with fully-connected layers (figures are converted to greyscale before training)

5.1.3 Comparison of Dimensionality Reduction Methods by Visualiza-

tion

Another effective way of assessing the ability of dimensionality reduction methods is to

inverse transform the extracted features and observe the similarity between the original

and reconstructed images. This technique applies to both PCA and DAE. Here, we visu-

alize the reconstructed CIFAR-10 images from PCA in Fig. 5.2, from DAE with fully con-

nected layers in Fig. 5.3, and from DAE with convolutional layers in Fig. 5.4 with N = 64

features extracted during the transformation. More similar visualizations of MNIST and

Fashion-MNIST can be found in Appendix B. From direct observation, PCA best keeps

both the shape of the object depicted and the color channels present in CIFAR-10 images.

Though DAE with convolutional layers can capture mostly the rigid shape of the objects,

the coloring is largely missing from the reconstructions due to the limited number of pa-
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Figure 5.4: CIFAR-10 images (upper row) and their reconstruction (lower row) from the

DAE with only convolutional layers

Figure 5.5: CIFAR-10 images before (upper row) and after (lower row) Fast Fourier Trans-

form

rameters in the encoder-decode structure. The DAE with fully connected layers performs

the worst among the three models. The figures are converted to greyscale prior to the

training to save parameters and more importantly, the model can only perform a saliency

mask level reconstruction of the object depicted in the figure.

The visualization of the FFT method is different, as we have a transformation followed

by cropping. The direct inverse transformation will not provide any insight into how the

two steps work collectively. Therefore, in Fig. 5.5, we visualize the Fourier coefficients

obtained after the transformation of the CIFAR-10 images. For each image from a different

class, there are some distinctive patterns that can be found in the frequency domain plot.

Although some of them are hard to distinguish by humans, it is expected that NNs can

effectively capture the nuances and perform correct classification.
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5.2 Hyperparameters Tuning and Selection for ONN

5.2.1 Topology, Neural Network Width, and Depth

The optical processor topology determines the size of the neural networks implemented.

Similar to the issues we encountered with reference datasets, while Reck and Clements

meshes can support as large as 64 ⇥ 64 neurons, the Bokun mesh experienced zero-

gradient issues during backpropagation when its input size grows beyond 16. The Di-

amond mesh consistently experiences zero-gradient issues and it is therefore eliminated

from the rest of the discussions.

The feature size (N ) for ONN input/output refers to the width of the neural network

implemented. As shown in Fig. 5.6a, the accuracy of each model on its local test set in-

creases by up to 8% from 8 to 64 features as the neural network receives more information

for decision-making. However, this increase is mostly due to the perfect operating condi-

tion we assumed during the simulation. Considering actual fabrication constraints, more

MZIs in the optical processor leads to higher propagation loss and stronger noise [12].

Therefore, for our final evaluation, only N = 8 and N = 16 are considered.

The depth of the neural network corresponds to the number of optical processors con-

nected in series. Since only fully connected layers are used, the models are prone to

(a) Feature size vs. Accuarcy (b) � vs. Accuracy (c) � vs. AUROC

Figure 5.6: Change in ONN Accuracy and AUROC as a result of the hyperparameter

search.
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overfitting if too many neurons are used. In our case, the 2-layer network demonstrates

the best performance among all models trained. Single-layer networks suffer from under-

fitting due to the insufficient number of parameters, and 3-layer networks start to overfit

within 10 epochs.

5.2.2 Effectiveness of False Negative Reduction

Both redefined dataset and weighted class methods successfully reduce the FN rate in

all models based on their performance on the IoU � 0.5 test set. However, as evidenced

by the huge gap in test accuracy between models trained with IoU � 0.5 dataset and the

other two in Fig. 5.6a, the learning ability of the models is limited by the complexity of

the dataset, which increases as IoU threshold drops. The weighted class methods result

in better test accuracy and the AUROC score. Fig. 5.6b and Fig. 5.6c depict the varia-

tion of test accuracy and AUROC in each ONN as � increases. The best � = 1.2 and 1.4

where the models experienced less than ±3% fluctuation in ID test set accuracy. Notice

that in Section 4.3.2, we indicated that this stage intends to eliminate the infeasible solu-

tions. Therefore, the combinations of hyperparameters being eliminated are: 1) IoU � 0.1

dataset with 8 features, and 2) IoU � 0.5 datasets trained with � � 1.6.

5.2.3 OOD Test Set Performance

Moving on from the hyperparameter tuning, we tested the models on the OOD test

dataset. Table. 5.4 and Table. 5.5 records the test accuracy, F1 score, and p(trigger|N) of all

selected models under the ONN-C assumptions. On average, models with N = 16 out-

perform the ones with N = 8 in terms of accuracy and F1 score. Considering p(face) = 1%,

P (trigger|N = 16) = 0.388 ± 0.09 and P (trigger|N = 8) = 0.360 ± 0.14. Moreover, in this

scenario, the relationship between accuracy or F1 and p(trigger|N) is not linear. A high

face detection accuracy (e.g., the Clements model with IoU � 0.1 set and 16 features) may

denote a situation of high FNs and low FPs, which is indeed detrimental to the entire
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Table 5.4: OOD Results with Modified IoU

Trained
Dataset

Topology N
ONN-C

Accuracy [%] F1 p(trigger|N)

IoU � 0.2

Reck
16

71.23 0.734 0.331
Bokun 76.38 0.790 0.332

Clements 71.48 0.737 0.336
Clements

8
69.85 0.711 0.221

Reck 73.70 0.750 0.294
Bokun 70.56 0.707 0.272

IoU � 0.1
Reck

16
75.93 0.787 0.331

Bokun 73.00 0.770 0.390
Clements 78.08 0.799 0.297

IoU � 0.5

Bokun
16

74.70 0.782 0.417
Clements 76.00 0.790 0.380

Reck 75.98 0.791 0.394
Clements

8
66.83 0.694 0.270

Reck 70.80 0.733 0.350
Bokun 68.23 0.679 0.262

Table 5.5: OOD Results with Different �

Trained
Dataset

Topology � N
ONN-C

Accuracy [%] F1 p(trigger|N)

IoU � 0.5

Clements 1.2

16

77.93 0.810 0.386
Clements 1.4 75.08 0.792 0.438

Reck 1.2 75.43 0.790 0.412
Reck 1.4 72.55 0.775 0.479

Bokun 1.2 77.18 0.804 0.400
Bokun 1.4 76.50 0.799 0.403
Reck 1.2

8

71.33 0.718 0.278
Reck 1.4 75.28 0.768 0.296

Clements 1.2 69.93 0.701 0.276
Clements 1.4 72.95 0.759 0.379

Bokun 1.2 69.73 0.714 0.322
Bokun 1.4 69.53 0.747 0.499

system accuracy. Notably, p(trigger|N) values with the weighted class method are larger

than those of the other methods, indicating its more prominent effect on reducing FNs but

with a sacrifice of increasing FPs which leads to more frequent activation of the second

phase.

Recall that in Section 4.3.2, we defined the ONN-UA test set to contain two sets of

labels, each leading to a set of macro-level and micro-level accuracy calculated for the

system. We report both sets of accuracy for our model comparisons. As shown in Ta-

ble. 5.6 and Table. 5.7, the macro-level accuracy of ONN is significantly higher than the

micro-level accuracy, as the later inferences can mitigate the FNs made by the prior ones.

The average number of n(trial) is 12.22 when N = 16 and 12.83 when N = 8. Models

taking in more features are more sensitive to partial faces and use fewer trials to locate a

face. Moreover, there is an almost linear relationship between macro-level accuracy and

n(trial). A higher macro-level accuracy usually denotes a low n(trial), indicating that the

ONN performs better at identifying partial faces and fewer searches of ONN on the test

set images reach the maximum number of image patches and fail to find a face.
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Table 5.6: OOD Results with Modified IoU

Trained

Dataset
Topology N

ONN-UA

Micro-level

Accuracy [%]

Macro-level

Accuracy [%]
n(trial)

IoU � 0.2

Reck

16

74.70 98.40 12.38

Bokun 75.15 98.15 12.37

Clements 76.10 98.30 12.38

Clements

8

77.43 97.45 12.57

Reck 79.38 97.50 12.62

Bokun 77.88 93.40 13.26

IoU � 0.1

Reck

16

76.03 97.70 12.45

Bokun 73.40 98.90 12.23

Clements 78.55 97.50 12.42

IoU � 0.5

Bokun

16

74.20 99.60 12.18

Clements 75.78 99.65 12.16

Reck 75.83 99.55 12.15

Clements

8

73.93 98.45 12.59

Reck 75.93 98.80 12.46

Bokun 75.88 93.80 13.46

Table 5.7: OOD Results with Different �

Trained

Dataset
Topology � N

ONN-UA

Micro-level

Accuracy [%]

Macro-level

Accuracy [%]
n(trial)

IoU � 0.5

Clements 1.2

16

76.00 99.65 12.10

Clements 1.4 72.73 99.80 12.08

Reck 1.2 75.08 99.60 12.15

Reck 1.4 71.95 99.80 12.11

Bokun 1.2 75.83 99.75 12.09

Bokun 1.4 74.48 99.75 12.07

Reck 1.2

8

77.93 94.70 13.23

Reck 1.4 77.98 96.85 12.73

Clements 1.2 77.40 94.00 13.32

Clements 1.4 77.20 96.80 12.82

Bokun 1.2 77.00 99.00 12.39

Bokun 1.4 75.75 98.50 12.47

5.2.4 Sliding Window Pattern and n(trial)

In ONN-UA, we assumed the sliding window traversal from the top-left corner to the

bottom-right corner. Since all the faces in the LFW dataset have been aligned in the mid-

dle of the image, it takes an average of 12.49 out of 25 inferences for all the models in

Table. 5.6 and Table. 5.7 to find a face.

There are also many other traversal methods such as random selection, clockwise-

spiral (CW-S), and counter-clockwise-spiral (CCW-S) search from the center, which can

be effective under different p(face) assumptions. Indeed, if we consider the centered-face

feature of the LFW dataset and start our search for a face in the center of an image and

spread out spirally, it takes only about 2 inferences for the ONN to successfully locate a

face.

However, in reality, the face of the user can potentially occur at any location in the

range of a camera. To obtain a holistic view of which traversal method works the best,

we modeled the occurrence of a face in a 250⇥ 250 px image range with a 2-dimensional

Gaussian distribution X ⇠ N(µface,⌃face). X = (x1, x2) and we sample x1, x2 2 [�1, 1] with
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(a) µ = [0 0], ⌃ =

"
1 0

0 1

#
(b) µ = [0.2 � 0.2], ⌃ =

"
1 0

0 1

#
(c) µ = [0.2 �0.2], ⌃ =

"
1 0.5

0.5 1

#

Figure 5.7: The probability density function of the 2D Gaussian distribution used for

simulating the face positions in a frame, with different means and covariance matrices.

250 uniformly distributed points. As shown in Fig. 5.7, the mean vector µface = E[X] =

[E[x1], E[x2]]T controls the most likely position of face occurrence and the covariance ma-

trix ⌃face controls the direction of spreading of the probability density function. Therefore,

for a pixel location X = (x1, x2),

p(face) =
1

2⇡
det(⌃face)

� 1
2 exp(�1

2
(X � µface)

T⌃�1
face(X � µface)) (5.1)

To begin with, we assume a perfect face detection model that achieves 100% accu-

racy in distinguishing faces from partial or absent faces. For each traversal method, we

then calculate the average of p(face) in the 100 ⇥ 100 px patches it cuts out. When the

average probability reaches a threshold of 0.15, we assume a face is identified and the

traversal stops. The threshold is determined by assuming a 2D standard Gaussian distri-

bution (Fig. 5.7a) imitating the center-aligned LFW dataset and finding out the threshold

required by the top-left to bottom-right (TLBR) traversal to reach the 12.49 out of 25 infer-

ences for searching a face. We then calculate the average number of patches (considered

as n(trial)) across methods after repeating with 20,000 different combinations of µface and

⌃face. In the random selection method, we also test with 10 different random seeds for the

selection and take the average of n(trial).
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Table 5.8: Required n(trial) for Identifying A Face at Random Location

Method TLBR Random CW-S CCW-S
n(trial) 12.50 12.99 12.19 12.36

Results from the simulation are shown in Table. 5.8. While the TLBR gradually con-

verges to an average number of 12.5, the CW-S with a clockwise spiral cut from the center

gives the fewest number of inferences. Therefore, for future considerations, using differ-

ent traversal techniques can slightly reduce the power and energy consumption of the

ONN face detection.

5.3 Complete System Evaluation

The faces marked “positive” by the ONN face detector are passed to the digital processor

with DNN to perform face recognition. In the ONN-C scenario, using the 100 ⇥ 100 px

bounding boxes detected by MTCNN, FaceNet itself can achieve an accuracy of 97.3%

with a Euclidean distance threshold of 1.0. In the ONN-UA scenario, the 13th image

patch in the middle of the image leads to a FaceNet accuracy of 98.4% with the same

Euclidean distance threshold as ONN-C. Moving one cut to the left or right (the 12th and

14th image patch) will reduce the accuracy by around 2%. The rest of the image patches

lead to a face recognition accuracy  60%.

(a) N = 16 (b) N = 8

Figure 5.8: Full system (end-to-end face recognition) accuracy of models with different

numbers of input features.

56



5.3.1 Entire System Accuracy

Combining the results from two phases, we evaluate the performance of the entire sys-

tem design. Since the two use cases use the same final face recognition dataset, we can

compare the performance between them directly.

Fig. 5.8 shows the entire system face recognition accuracy of all selected models. In

ONN-C, the highly accurate FaceNet successfully boosted the accuracy of the entire sys-

tem from an average of 74.5% and 72.0% in face detection with N = 16 and N = 8 to

93.2% and 87.0%. However, the performance gap between the two feature sizes is still

huge and very few models with N = 8 (2 out of 12) can reach more than 90% face recog-

nition accuracy.

In ONN-UA, the entire system accuracy is indeed lower than that of the ONN face

detector, as more faults are made in the second phase. Those faces detected earlier than

the 12th cut or later than the 14th cut can hardly be recognized since they contain only

partial face features. Despite the drop in accuracy, on average, ONN-UA outperforms

ONN-C by 3.9% with N = 16 and 7.84% with N = 8. The performance gap between the

numbers of input features is also reduced to 2% on average.

(a) ONN-C (b) ONN-UA (c) ONN vs. SOTA Design

Figure 5.9: The projection of the trained models to the design space.
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Table 5.9: Performance of Pareto Optimal Set in ONN-UA

Scenario
Trained
Dataset

Topology � N ID
Phase 1 Performance Total Performance p(trigger|N)/

n(trial)
Consumption

Accuracy [%] F1 Accuracy [%] F1 Power [W] Latency [ms] Energy [mJ]

ONN-UA IoU � 0.5

Clements 1
16

C1-16U 65.82 0.738 97.20 0.971 0.972/12.16 6.71 8.81 63.82
Bokun 1.4 B4-16U 74.48 0.895 97.13 0.971 0.971/12.07 6.87 8.80 63.80
Reck 1

8
R1-8U 75.93 0.944 96.60 0.965 0.966/12.46 5.48 8.76 63.38

Bokun 1.2 B2-8U 77.00 0.944 96.50 0.964 0.965/12.39 5.53 8.75 63.33
DNN N/A 98.42 0.984 N/A 7.54 20.71 117.87

Table 5.10: Performance of Pareto Optimal Set in ONN-C

Scenario
Trained
Dataset

Topology � N ID
Phase 1 Performance Total Performance p(trigger|N)/

n(trial)
Consumption

Accuracy [%] F1 Accuracy [%] F1 Power [W] Latency [ms] Energy [mJ]

ONN-C IoU � 0.5

Clements 1
16

C1-16C 76.00 0.790 93.58 0.932 0.341/1 4.49 7.22 40.37
Clements 1.2 C2-16C 77.93 0.810 95.25 0.951 0.346/1 4.52 7.31 40.87
Clements 1.4 C4-16C 75.08 0.792 95.75 0.956 0.401/1 4.83 8.46 47.43
Clements 1.4

8
C4-8C 72.95 0.759 91.03 0.902 0.344/1 4.13 7.27 40.57

Bokun 1.4 B4-8C 69.53 0.747 93.08 0.870 0.465/1 4.84 9.78 54.84
DNN N/A 98.42 0.984 N/A 7.54 20.71 117.87

5.3.2 The Pareto Optimal Set of Designs

A highly accurate model may come at the cost of higher power and energy consumption.

Therefore, to find out the most balanced design between the two objectives, we project the

trained models to the two-dimensional design spaces defined in Section. 3.8. Fig. 5.9a and

Fig. 5.9b depicts the results of the search. The Pareto-optimal solutions are connected with

lines for each value of N and their corresponding hyperparameters and performance are

recorded in Table. 5.9 and Table. 5.10 by filtering out the models with accuracy below 93%

and 90% for N = 16 and N = 8. In all cases, high accuracy in Phase 1 never implies a high

overall accuracy but smaller p(trigger|N) and n(trial). ONN-UA methods show higher

accuracy as later inferences can continuously correct mistakes made in earlier ones.

5.4 Power, Energy, and Latency Estimation

Estimated power, energy, and latency estimations are reported in the last three columns

of Table. 5.9 and Table. 5.10. The DNN case in both tables assumes MTCNN and FaceNet

run continuously. In the budgeting analysis of ONN power consumption, we account

for a 10 dBm C-band laser with wall plug efficiency of 10% [66]. This optical power is
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(a) Operations by Stage (b) C1-16U (c) C4-8C

Figure 5.10: The breakdown of arithmetic operations, memory operations, and power

consumption by stage (ONN phases refer to the programming power of phase shifters in

ONN).

sufficient to split and feed all input ports of a 16⇥ 16 and a 8⇥ 8 ONN. Moreover, for the

programming of the phase shifters, we assume a uniform power consumption and the

heater efficiency is 1.42 mW/⇡ [67].

The ONN-UA models, assuming more frequent FaceNet wakeup (�96%), exhibit higher

power and energy consumption than ONN-C. Within the Pareto optimal solution set,

ONN-UA requires approximately 12.2 image patches to identify a valid face during slid-

ing window traversal from top-left to bottom-right. However, even the most inefficient

model saves 10.9% of power and 46% of energy compared to the DNN model. Optical

processors operate at GHz rates and consume less power, resulting in the ONN’s serial

subsampling taking less time and energy than its electronic counterpart. The most effi-

cient ONN-C model achieves a significant twofold reduction in power and energy, ac-

companied by a 7% accuracy drop. Due to the low frequency of face appearance, consis-

tently powering down the demanding DNN face recognition leads to substantial savings

in power and energy.

To better compare the effectiveness of the proposed models, we estimated the power

consumption of several SOTA face recognition models [37] designed for edge devices

with the same device and compared them in Fig. 5.9c. The blue line connects the Pareto

optimal solutions for all designs. Notably, the original MTCNN-FaceNet is not Pareto-
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optimal. However, when incorporated into the ONN always-on system we propose, sev-

eral different designs are selected as the Pareto-front.

We further break down the power consumption of the entire system into different

phases. As shown in Fig. 5.10a, the DNNs, including MTCNN for face detection and

FaceNet for face recognition, takes up the majority of floating point operations and mem-

ory accesses. Therefore, in the most power-saving ONN-C case, as shown in Fig. 5.10c, the

memory leakage power and FaceNet computations take up more than 72% of the power

consumption. However, when it comes to the more accurate ONN-UA case, shown in

Fig. 5.10b, the elimination of MTCNN significantly relaxes the requirement for memory.

The repetitive inferences of ONN, leading to repetitive laser input and EO activations,

account for more than 45% of the power consumption, which is almost at the same level

as FaceNet.
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Chapter 6

Results and Discussion with Lossy

Environment

With the presence of device imperfections discussed in Section 2.2.3, the output port field

intensity of ONN can be largely altered and the decisions made by it will change sub-

sequently. Therefore, we perform sensitivity analysis on the selected models from the

perfect operating stage and report their performance against noise.

6.1 A Statistical Approach of Estimating Effect of Noise

Before delving into details of how the proposed system accuracy fluctuates in terms of FN

and FP increase or decrease, we first quantify the significance of FN and FP at different

phases of the proposed system. This will help us understand why the increase or de-

crease in faulty cases may or may not decrease or increase the accuracy values at different

phases.

We begin by optimistically assuming that the prediction made by the second-phase

processor is uniform across all data instances. This means that all data instances have

the same level of “difficulty” to the classifiers and they all belong to the “easy-to-learn”

region in dataset cartography [68]. The model makes consistent and correct predictions
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on the same data instance across time. Therefore, we can safely interpret the accuracy as

a probability of whether a data instance can be correctly classified. Although this may

deviate from the real-life case where certain data instances are harder to distinguish, it

provides insight into how the noise will affect the accuracy of ONN and the system and

how they are connected with the variations in FN and FP.

Suppose that under perfect operating conditions, the ONN model prediction contains

FN0 FN cases and FP0 FP cases. This means that we also have TN0 = 2000 � FP0 TN

cases and TP0 = 2000�FN0 TP cases, considering our OOD test set contains 4,000 images

that are equally distributed over the positive and negative classes.

The accuracy of ONN can be expressed as

ONN Acc0 =
TN0 + TP0

TN0 + FP0 + FN0 + TP0
= 1� FN0 + FP0

4000
. (6.1)

The system accuracy can then be expressed as

System Acc0 =
TN0 + TP0 · p+ FP0 · p

4000
=

2000(1 + p)� p · FN0 + (p� 1)FP0

4000
, (6.2)

where p is the standalone accuracy of (MTCNN +) FaceNet, interpreted as the probability

of an image being correctly classified.

Suppose that when an imperfect condition is applied, it leads to �FN cases of vari-

ation in FN and �FP cases of variation in FP. The ONN model now creates FN1 =

FN0 +�FN FN cases and FP1 = FP0 +�FP FP cases.

The ONN accuracy now becomes

ONN Acc1 = 1� FN0 + FP0 +�FN +�FP

4000
= ONN Acc0 �

�FN +�FP

4000
(6.3)
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Consequently, the system’s accuracy becomes

System Acc1 =
2000(1 + p)� p · (FN0 +�FN) + (p� 1)(FP0 +�FP )

4000

= System Acc0 �
p ·�FN + (1� p)�FP

4000
.

(6.4)

The ONN accuracy drops as �FN and �FP increases. To reverse this trend, at least

one of the variations needs to be negative, with its magnitude larger than the other. How-

ever, for the system accuracy, the case becomes more complex. Suppose that we have

p = 0.973 which corresponds to the accuracy of our current phase 2 system,

System Acc1 = System Acc0 �
0.973 ·�FN + (1� 0.973)�FP

4000

= System Acc0 �
0.973 ·�FN + 0.007�FP

4000
.

(6.5)

When �FN > 0 and �FP � 0, the accuracy drops, and conversely, when �FN  0 and

�FP < 0, the accuracy increases. In case of �FN � 0 and �FP > 0, |�FP |
|�FN | >

p
1�p is

required for the accuracy to grow. Similarly, when �FN < 0 and �FP � 0, |�FP |
|�FN | <

p
1�p

is required for the accuracy to grow. When p = 0.973, p
1�p = 139, the system requires

139 fewer FP cases to compensate for 1 additional FN case to maintain the accuracy. The

function p
1�p has an asymptote at p = 1. Therefore, as p ! 1, the result of the fraction

further grows to infinity. This observation indicates that, while the ONN is equally sen-

sitive to the FN and FP cases, the system accuracy is more susceptible to variations in FN

cases, especially when the accuracy of the digital face recognition system is high. This

observation also emphasizes the need for methods to reduce FN cases.

6.2 System Operation with Noise

Among the hyperparameters we considered for this work (Table. 4.1), the topology and

the number of features are the factors that make a difference in the robustness of ONN

against imperfect operations. In this section, we consider the three effective topologies
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(a) Bokun (b) Clements (c) Reck

Figure 6.1: Change in ONN Accuracy of different topologies with 8 features after loss and

phase angle deviations applied.

(a) FN (b) FP

Figure 6.2: Change in the number of FN and FP of ONN with Bokun topology due to

imperfect operation

found in our grid search and test the impact of imperfect operation for models with differ-

ent topologies trained on the same IoU � 0.5 set without FN reduction under the ONN-C

assumption with N = 8 and N = 16.

6.2.1 Effect of Imperfect Operations on Face Detection

Recall that the face detection stage is fully implemented in the optical domain, Fig. 6.1

indicates the variation in 8⇥8 ONN accuracy concerning the levels of noise in the form of

light propagation loss per MZI and the deviation in phases programmed to phase shifters.
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(a) Bokun (b) Clements (c) Reck

Figure 6.3: Change in ONN Accuracy of different topologies with 8 features after different

phase angle deviations on the internal/external arms applied.

In Fig. 6.1, the programming error has a more profound impact on the ONN accuracy,

as seen by the faster conversion of the grid coloring from yellow to blue along the y-

axis, indicating a more rapid and larger magnitude of decrease in accuracy. Moreover,

in Fig. 6.1a and Fig. 6.1b, the Bokun and Clements topology are more robust against the

increase in signal attenuation and phase shifter programming error. Their contours of

65% accuracy are 2.54⇥ and 1.50⇥ larger than that of Reck.

The impact of propagation loss on the ONN accuracy can be bidirectional, depending

on the topology. The Reck mesh experienced relatively 13.6% decrease in ONN accuracy

when propagation loss increases from 0 to 1 dB per MZI with no phase programming

error. Under the same condition, the Clements topology only experienced an absolute

range of 0.4% fluctuation in accuracy, and the Bokun mesh even displayed an ascending

trend in accuracy. As we take a closer look at the FN and FP cases in it (Fig. 6.2), there is

an underlying increasing trend in FN cases while a decreasing trend in FP cases. When

the magnitude of the FP decrement outweighs the FN increment, we observe an increase

in ONN accuracy.

In Fig. 6.3, the deviation in internal/external arm phase shifter programming has an

almost equal impact on the performance of ONN, as seen by the contours indicating

same-accuracy levels in a quarter-circle shape. All three topologies tested have shown

similar patterns in the performance degradation as noise level increases, with Bokun

65



(a) Bokun (b) Clements (c) Reck

Figure 6.4: Change in ONN Accuracy of different topologies with 16 features after loss

and phase angle deviations applied.

(a) Bokun (b) Clements (c) Reck

Figure 6.5: Change in ONN Accuracy of different topologies with 16 features after differ-

ent phase angle deviations on the internal/external arms applied.

mesh outperforming the rest two with a large area enclosed by the 65% accuracy con-

tour.

Similarly, Fig. 6.4 and Fig. 6.5 indicate the variation in 16 ⇥ 16 ONN accuracy with

different levels of imperfection conditions. The impact of propagation loss per MZI is

still less significant than that of the phase programming deviations, as seen by the quarter-

elliptical shape of contours in Fig. 6.4, with the major axis lying on loss/MZI. However, as

a result of the larger size of meshes, more MZIs are placed on the critical path where light

couples through and this leads to a stronger effect of signal attenuation [12]. The accuracy

of ONNs no more has a chance to increase along the x-axis. When we decompose the error

cases of ONN, there is indeed a slight decreasing trend in FN accompanied by a more
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significant increasing trend in FP. Since FP and FN cases are placed with equal weight

in contributing to ONN accuracy, as calculated in Section. 6.1, the ONN accuracy still

drops when the imperfection magnitude increases. The internal and external arm phase

shifter programming deviation still shows a similar impact on the ONN performance, as

depicted in Fig. 6.5. Bokun mesh outperforms the rest two with 2.02⇥ and 3.30⇥ larger

area enclosed by the 70% accuracy contour.

(a) Bokun (b) Clements (c) Reck

Figure 6.6: Change in System Accuracy of different topologies with 8 features after loss

and phase angle deviations applied.

(a) Bokun (b) Clements (c) Reck

Figure 6.7: Change in System Accuracy of different topologies with 8 features after dif-

ferent phase angle deviations on the internal/external arms applied.
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6.2.2 Effect of Imperfect Operations on Face Recognition

The full system accuracy can be changed as a result of the non-idealities in ONN. Whether

this impact on accuracy is positive or negative depends on either more FN or FP cases in

face detection are generated.

As shown in Fig. 6.6 and Fig. 6.7, with 8 input features, models built on all three

topologies have shown a decreasing trend in accuracy when the intensity of noise in-

creases. The Reck topology, although starting from the highest accuracy with perfect

conditions, experiences a more significant drop in accuracy when the propagation loss

per MZI increases. Without phase programming error, its accuracy drops below 85% af-

ter the propagation loss reaches 0.88 dB per MZI, while the other two topologies maintain

more than 88% accuracy within this range. Furthermore, despite the fact that the Bokun

topology exhibits an increasing trend in ONN accuracy with the increase of propagation

loss when the phase programming deviation is low, its system accuracy still drops as

the increase in FN in ONN has a more weighty impact on the entire system accuracy, as

quantified in Section 6.1.

There are more diverse trends in the accuracy variation when the number of input fea-

tures increases to 16, as shown in Fig. 6.8 and Fig. 6.9. Though the phase shifter program-

ming errors still significantly degrades the system accuracy, the highest system accuracy

(a) Bokun (b) Clements (c) Reck

Figure 6.8: Change in System Accuracy of different topologies with 16 features after loss

and phase angle deviations applied.
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(a) Bokun (b) Clements (c) Reck

Figure 6.9: Change in System Accuracy of different topologies with 16 features after dif-

ferent phase angle deviations on the internal/external arms applied.

no more appears in the bottom left corner which corresponds to the perfect operating con-

dition when propagation loss is considered. According to Section 6.1, one more FN case

can mitigate the impact of 139⇥ more FP cases in the entire system evaluation. Therefore,

although the magnitude of decrease in FN is less than the magnitude of FP increment in

ONN, the entire system accuracy indeed increases. For models built on Reck topology,

the FN case number decreases at first but starts to increase after Loss/MZI reaches 0.5 dB.

Therefore, in Fig. 6.8, the total system accuracy decreases after this point, leading to the

95% accuracy contours lying in the middle of the x-axis.

(a) Loss and Phase Angle deviations (b) Phase Angle deviations

Figure 6.10: Number of data points representing ONN/System Accuracy within 90% of

the perfect condition accuracy with 8 features.
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(a) Loss and Phase Angle deviations (b) Phase Angle deviations

Figure 6.11: Number of data points representing ONN/System Accuracy within 90% of

the perfect condition accuracy with 16 features.

6.2.3 Comparison of Topology Robustness Against Imperfect Opera-

tion

To quantify the performance of each topology on imperfect operating conditions, we de-

fine the FoM as the number of data points (or area) representing an ONN/system accu-

racy above 90% of the perfect condition accuracy. Compared to a fixed accuracy thresh-

old, this FoM takes into account the different starting accuracy of the noise injection and,

therefore, ensures the fairness of comparison.

Fig. 6.10 and Fig. 6.11 shows the results obtained by applying FoM to all models in-

vestigated in the Section 6.2.1 and Section 6.2.2. Regardless of the input feature size, there

is a clear pattern that the Bokun mesh outperforms the other two. The FoM counts of

Clements topology remain close to the Bokun topology when N = 8, but the performance

gap is enlarged to 47.8% fewer counts in system accuracy when N increases, consider-

ing both propagation loss and phase shifter programming deviations. The Reck topology

behaves even worse, as the gap between its performance and the Bokun topology grows

from at least 1.6⇥ to at most 5.3⇥ fewer FoM counts as N increases. Indeed, this per-

formance difference can be attributed to the underlying mesh designs. In the designs

of Bokun and Clements mesh, they minimized and balanced the optical path lengths to
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enhance the topology’s robustness against optical loss. The Reck mesh, however, has an

asymmetrical shape and suffers from imbalanced optical loss between two output ports.

6.3 Best Model Performance with Noise Applied

In this section, we subject the selected optimal models to imperfect operating conditions

calibrated by real fabrication results.

6.3.1 Model Performance in Classification

Fig. 6.12a shows the range of system test accuracy obtained with �✓, �� 2 [0, 0.5]. Since

we fixed the value of Loss/MZI, there is no more increasing trend in the system accuracy

of all models. As �✓ and �� grow, programmed phase shifts are more likely to more

significantly deviate from the trained value. Consequently, the accuracy of all models

decreases. The least resilient model, C1-16C, experienced more than 23% drop in accuracy

value as �✓ and �� grows to 0.5. Comparing across models, 8⇥8 meshes are more robust to

noise than 16⇥16 ones, as seen by the smaller range of best-worst case accuracy variation

in Fig. 6.12b. Fewer MZI units lead to less accumulation of error [12]. Similarly, the ONN-

UA model demonstrates stronger resilience to imperfection, as the repetitive inference

steps allow for iterative error correction.

6.3.2 Model Power and Energy Consumption

The propagation loss and phase errors also influence p(trigger|N) and n(trial), leading to

changes in power and energy use. Fig. 6.12c depicts the variation in power and energy

due to phase errors. Most models experience a decrease in both as more FNs occur. The

only exceptions are the power of ONN-UA models and Bokun N = 8 model with � = 1.4.

In the earlier cases, the increase in n(trial) outweighs the savings from more FNs, and in
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(a) Accuracy vs. (�✓, ��) (b) Accuracy Distribution (c) Power/Energy vs. (�✓, ��)

Figure 6.12: Change in system accuracy, power, and energy consumption due to imperfect

operation conditions.

the latter case, the increase in FP precedes FN so Processor 2 is indeed triggered more

frequently.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this work, we aim to tackle the challenges aroused between the tight power budget

and high accuracy requirement for real-time face recognition from both algorithmic and

hardware architectural sides. The conventional face recognition pipeline is split into two

phases, one with an always-on face detector and the other being an event-driven face

recognition network. To further reduce the power consumption and inference latency of

the face detector, we introduced the energy-efficient ONNs which is an emerging technol-

ogy for computing matrix-vector multiplication in the optical domain. This multi-stage

electro-optic hybrid face recognition system with an always-on face detector achieves the

goal of reducing power, latency, and energy consumption by running energy-efficient

ONNs continuously during face detection and only waking power-hungry high-accuracy

DNNs when faces are present.

To verify the correctness and efficiency of the proposed design, we explored two real-

life scenarios of the system deployment, one requiring a subsampling process for locating

faces and one assuming center-aligned faces. In a lossless environment, the most accurate

model arises from the first scenario, reaching 97.2% accuracy in the LFW dataset with

two-layer 16 ⇥ 16 optical processors for face detection and pretrained FaceNet for face
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recognition. Compared to the same DNN implementation in electronics, it achieves an

11% reduction in power. The most power- and energy-efficient model arises from the

second scenario, with 45.2% and 65.6% reduction in power and energy but a worst-case

7% drop in accuracy.

However, real-world optical device operation encompasses various aspects of imper-

fection. The light coupling in the waveguide attenuates due to the optical insertion loss

and there is a constant imprecise mapping of trained phases to actual phase shifters due to

static factors such as fabrication variation and dynamic factors such as thermal crosstalk

or other sources of noise. Therefore, we took into account the imperfections in a sensi-

tivity analysis and discovered that there is a constant tradeoff in the FN and FP cases

of the ONN face detector. The tradeoff not only affects the accuracy values of different

phases of face recognition but also alters the entire system’s power and energy consump-

tion. Fixing the propagation loss to a realistic value of 0.6 dB per MZI, the most accurate

model identified with perfect operating assumptions experienced a worst-case 6.5% abso-

lute system-level accuracy drop as the phase programming error increased. Accompanied

by the drop in accuracy, we observe more FN cases made by ONNs and this eventually

brings down the power and energy consumption of the system as the power-consuming

digital DNN is activated less frequently.

7.2 Future Work

7.2.1 False Negative Reduction

In this work, we have already considered two methods for false negative reduction, the

modified IoU threshold and the weighted class methods. Although two methods have

demonstrated the ability to reduce FN cases, they are only used during the training pro-

cess of ONN and therefore consider only lossless operating environment. For future

work, FN reduction methods should also take care of the lossy environment during the

actual operation of ONN. For instance, for asymmetric topologies such as Reck, placing
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the output port for indicating label “0” or no face present at those experiencing more

propagation loss to ensure a higher chance of its reading lower than that of label “1”.

Moreover, noise-aware training with existing FN reduction methods is another avenue to

be considered.

7.2.2 Noise Resilient Model

Current designs of ONN are susceptible to imperfect operating conditions, especially

when the neural network sizes increase. Therefore, developing noise-resilient models is

crucial for ensuring optimal system performance in real life. Noise-aware training is one

of the options for such development. Indeed, prior work in [48] has already attempted

noise-aware training in fully connected layers implemented on ONN as part of the elec-

tronic CNN. Modeling the device imperfection by injecting Gaussian white noise, they

were able to achieve � 99% accuracy in MNIST classification. For higher fidelity noise-

aware training, we need to devise more precise modeling of the noise or imperfection

faced by ONN. Apart from noise-aware training, other conventional techniques such as

quantization and regularization on the ONN weights shall also be considered. The quan-

tization process allows ONN to adapt to the limited voltage source resolution and the

regularization technique can be deployed to penalize more on weight matrices which

leads to a susceptible ONN to the imperfect operating conditions [69].

7.2.3 Hardware Implementation and Hardware Comparisons

The current work serves as a proof-of-concept of using the electro-optic hybrid system for

face detection and face recognition. The experimental results are obtained from simula-

tions calibrated with empirically obtained data. In the future, potential hardware imple-

mentation of the system should be considered. This includes:

1. A direct deployment of the proposed system with fabricated optical meshes and the

proposed mobile GPU (Jetson Nano). This will include additional design in the in-
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terconnect and electronic control circuits for the synchronization and orchestration

of the components. Subsequently, we can perform more precise power, latency, and

energy consumption analyses based on the actual measurements.

2. Implementation of the equivalent software on other hardware platforms. The same

neural network architecture as the optical face detection can be performed on ex-

isting digital platforms, such as CPUs and FPGAs, and emerging technologies for

more thorough performance analysis. The event-triggered DNN face recognition

model can also be implemented on a wider spectrum of hardware platform selec-

tion, including more powerful GPU systems.

7.2.4 Resolve Fairness Concerns in Face Recognition Systems

Algorithmic fairness concerns have existed for a long time in computer vision machine

learning algorithms that directly interface with humans [70]. The algorithms can dis-

criminate against a certain person or a certain group of people based on their age, gen-

der, and demographic features. Algorithmic bias can be sourced from the datasets on

which the neural networks are trained. In this work, the ONNs are trained on the WIDER

face dataset, which has been proven to entail unbalanced distribution over genders, age,

and skin tone groups [71]. Additionally, the pre-trained FaceNet we used was trained

on the VGGFace2 dataset, which is yet another unbalanced dataset among age and race

groups [72]. Whether the aggregation of such two models in our design will deteriorate

the algorithmic fairness remains a question.

To address this issue, future work should consider either selecting a fair dataset such

as [73] or looking for ways to augment the existing dataset in use. Other algorithmic

fairness mitigation strategies should also be considered and incorporated into the ONN

training pipeline.
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Appendix A

Accuracy Variation in FFT

As shown in Table. A.1, the accuracy of ONN model decreases as a result of the reduced

Half-feature Length (L) in the FFT method.

Table A.1: Accuracy Variation with the Half-feature Length (L) in FFT

Dataset
(Image
Shape)

Trainable
Parameter

Topology Activation
L = 4 L = 3 L = 2

Validation
Accuracy [%]

Test
Accuracy [%]

Validation
Accuracy [%]

Test
Accuracy [%]

Validation
Accuracy [%]

Test
Accuracy [%]

MNIST
(28*28)

Weight - EO 97.27 97.31 96.44 96.42 91.67 91.68

Phase
Shifter
Angles

Clements
EO 87.85 91.07 90.03 90.25 75.42 74.48

cReLU 89.68 90.17 89.84 90.22 78.84 78.20

Reck
EO 90.37 91.92 90.71 91.00 79.23 78.62

cReLU 88.97 91.12 90.02 90.08 80.99 80.13

Bokun
EO N/A N/A N/A N/A 73.38 74.44

cReLU N/A N/A N/A N/A 77.05 77.62

Fashion- MNIST
(28*28)

Weight - EO 88.60 88.58 86.88 86.90 82.30 82.39

Phase
Shifter
Angles

Clements
EO 73.22 74.60 73.96 70.98 66.52 47.75

cReLU 67.62 70.49 71.14 62.77 63.46 60.30

Reck
EO 73.40 73.98 75.77 72.55 69.95 68.20

cReLU 66.18 59.30 72.20 69.92 65.72 61.45

Bokun
EO N/A N/A N/A N/A 46.07 54.91

cReLU N/A N/A N/A N/A 60.27 63.00

CIFAR-10
(3*32*32)

Weight - EO 67.95 66.64 68.60 66.93 65.55 66.93

Phase
Shifter
Angles

Clements
EO 64.33 63.72 63.12 65.08 59.39 60.48

cReLU 60.90 60.81 62.71 60.02 56.61 53.10

Reck
EO 64.62 63.16 63.76 64.58 56.81 56.62

cReLU 61.82 61.39 63.26 58.55 58.54 54.73

Bokun
EO N/A N/A N/A N/A 51.82 54.63

cReLU N/A N/A N/A N/A 50.02 50.95

The only exception applied to the case of Reck models with cReLU activation trained

on Fashion-MNIST dataset. The L = 4 case, corresponding to 64 features used as ONN

input, exhibits a trend of overfitting. Therefore, its test accuracy is exceptionally low.

77



Appendix B

Reconstructed Images from

Dimensionality Reduction

Figure B.1: MNIST images (upper row) and their reconstruction (lower row) with PCA

Figure B.2: MNIST images (upper row) and their reconstruction (lower row) from the

DAE with fully connected layers
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Figure B.3: MNIST images before (upper row) and after (lower row) Fast Fourier Trans-

form

Figure B.4: Fashion-MNIST images (upper row) and their reconstruction (lower row)

with PCA

Figure B.5: Fashion-MNIST images (upper row) and their reconstruction (lower row)

from the DAE with fully connected layers

Figure B.6: Fashion-MNIST images before (upper row) and after (lower) Fast Fourier

Transform
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