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Abstract   

 

Variation in short tandem repeats (STRs) is implicated in many diseases, often in the 

form of STR expansion disorders, and complex traits. Traditional PCR-based STR 

genotyping has low throughput, and recent advances in genomic sequencing 

technologies have resulted in the discovery of additional STR-phenotype associations. 

Short-read sequencing struggles to resolve variation in long STR tracts, making long 

reads an attractive prospect for whole-genome STR genotyping, especially with a 

technology such as circular consensus sequencing (CCS) which boasts both long reads 

and low error rates. However, current long read STR genotyping methods have been 

designed with high-error long reads in mind, and do not take full advantage of the 

sequencing accuracy possible with CCS. 

 

To address this gap, I develop a new long-read STR genotyping tool, called STRkit. 

STRkit uses a dynamic programming algorithm to realign candidate tandem repeats to 

each read and determine STR motif copy number, with several filtering steps to 

eliminate or re-process low-quality reads and alignments. From here, the software 

applies a Gaussian mixture model tuned for high-fidelity long reads to determine the 

most likely genotype in terms of copy number for the locus. Using STRkit, I show that 

CCS reads outperform nanopore-sequenced long reads and paired-end short reads for 

STR genotyping on a whole-genome benchmark. I also demonstrate that STRkit 

outperforms other long-read STR genotyping software when given either CCS or 

nanopore-sequenced long reads and can detect pathogenic STR expansions. 
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Overall, I show that high-fidelity long reads are useful for resolving STR copy number 

variation of varying magnitudes, especially when using appropriate STR genotyping 

software. For STR genotyping, one long read yields one copy number, which may in the 

future help analyze STR motif or copy number mosaicism and facilitate disentangling 

non-identical long STR allele genotypes. 
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Résumé 

 

La variation des répétitions en tandem courtes (STR) est impliquée dans de 

nombreuses maladies, souvent sous la forme de troubles associés à l'expansion des 

STR. Le génotypage traditionnel des STR basé sur la PCR a un faible débit mais les 

progrès récents des technologies de séquençage génomique ont permis de découvrir 

d'autres associations STR-phénotype. Cela dit, le séquençage à lecture courte a du mal 

à résoudre la variation dans les longs segments STR. Dans ce contexte, les 

technologies de lectures longues, telle que le séquençage par consensus circulaire 

(CCS) qui se targue à la fois de lectures longues et de faibles taux d'erreur, apporte une 

perspective attrayante pour le génotypage STR du génome entier. Cependant, les 

méthodes actuelles de génotypage STR avec des de données de lecture longue ont été 

conçues en tenant compte d’un haut taux d'erreur et ne tirent pas pleinement parti de la 

précision de séquençage possible avec le CCS. 

 

Dans le cadre de cette thèse, j’ai développé un nouvel outil de génotypage STR qui 

s’applique aux lectures longues, appelé STRkit. STRkit utilise un algorithme de 

programmation dynamique pour réaligner les répétitions en tandem candidates sur 

chaque lecture et déterminer le nombre de copies du motif STR, avec plusieurs étapes 

de filtrage pour éliminer ou retraiter les lectures et les alignements de faible qualité. À 

partir de là, le logiciel applique un modèle de mélange gaussien adapté aux longues 

lectures haute-fidélité CCS pour déterminer le génotype le plus probable en termes de 

nombre de copies pour chaque locus. En utilisant STRkit, je montre que les lectures 
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CCS sont plus performantes que les longues lectures de type Nanopore et les lectures 

courtes en paires pour le génotypage STR sur un génome entier de référence. Je 

démontre également que STRkit surpasse d'autres logiciels de génotypage STR à 

lecture longue lorsqu'il reçoit des lectures longues CCS ou de type Nanopore et peut 

détecter des expansions STR pathogéniques. 

 

Dans l'ensemble, je montre que les lectures longues à haute-fidélité sont utiles pour 

résoudre la variation du nombre de copies de STR de différentes magnitudes, surtout 

lorsqu'on utilise un logiciel de génotypage STR approprié. Pour le génotypage STR, 

chaque lecture longue donne un nombre de copies, ce qui pourrait à l'avenir aider à 

analyser le motif STR ou le mosaïcisme du nombre de copies et faciliter le démêlage 

des génotypes d'allèles STR longs non-identiques. 
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Chapter 1 Background 

 

1.1 Short tandem repeats: definition and structure 

 

Short tandem repeats (STRs), alternatively known as microsatellites or short sequence 

repeats (SSRs), are repetitive DNA elements which make up around 3% of the human 

genome (Lander et al., 2001), although ancestral STR-derived sequences may 

comprise as much as ~6.8% of the genome (Shortt et al., 2020). Structurally, they 

consist of a motif of anywhere from 1 or 2 to between 6 and 13 base pairs (bp) long, 

repeated multiple times. The number of times that a motif is repeated is known as the 

“copy number”.  Definitions vary slightly; Shortt et al. (2020) include motifs from 1-6 bp 

long in their definition, whereas Chiu et al. (2021) exclude homopolymers (i.e., 1 bp 

motifs); Lander et al. (2001) expand the definition to include motifs up to 13 bp long.  

 

STRs are of interest due to their unique mutation mechanisms, patterns, high rates of 

mutation and polymorphism at some loci (Ellegren 2004; Weber and Wong 1993), and 

because of their association or causal relationship with complex and Mendelian traits 

and disorders (Gall-Duncan et al., 2021), as well as DNA methylation and expression 

(Pretto et al., 2014; Gymrek et al., 2016). STRs have also been used in population 

genetics to examine population structure (Kang et al., 2010). 
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1.2 STR diversity: polymorphism, mutation, linkage, and imputation  

 

STRs on average mutate at a much higher rate than the rest of the genome and can be 

highly polymorphic; these polymorphisms occur most frequently in the form of changes 

in copy number (Ellegren, 2004), meaning many different length polymorphisms can be 

found for some STRs in the human population. Most STR copy number mutations are 

small, with an overall bias towards expansion (Ellegren, 2000; Mitra et al., 2021), which 

suggests a stepwise model for copy number mutation. Two main mechanisms of STR 

copy number mutation have been proposed: recombination and slippage (Gemayel et 

al., 2010), although the latter is favoured (Ellegren, 2004). Slippage occurs when, during 

DNA replication, one of either the template or elongating strand dissociates from the 

other strand and mis-pairs in a way which either adds or removes whole motif copies 

(Gemayel et al., 2010); usually, only one or two copies are added or subtracted 

(Ellegren, 2000).  STR mutation rates are heterogeneous; some loci mutate at a much 

higher rate (Ellegren et al. 2000, Gemayel et al., 2010). These rates correlate positively 

with allele size; long STR alleles tend to be more unstable (Ellegren, 2004).  

 

Due to their elevated mutation rate and tendency towards multi-allelic polymorphism, 

STRs can be useful for studying population history and structure, especially in closely-

related populations (Kang et al., 2010). Assessing STR mutation rate is important for 

this: calculating divergence time using a particular set of loci with population history 

models requires specifying the mutation rates of the loci as a parameter (Goldstein et 

al., 1994; Zhivotovsky et al., 2004). 
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STR polymorphism also has implications for genome-wide association studies (GWAS) 

which have been used to associate regions of the genome with complex phenotypes 

that are otherwise difficult to ascertain. GWAS typically use single nucleotide 

polymorphisms (SNPs) to find associations between genomic regions and a phenotype, 

relying on linkage disequilibrium with surrounding DNA to capture more variation 

(Uffelmann et al., 2021). Due to the tendency for STRs to have a high mutation rate, 

only a subset of STRs can be imputed using nearby SNPs, and SNP-STR imputation 

power is reduced with multi-allelic (versus bi-allelic) STR loci (Saini et al., 2018). 

Genotyping STRs directly, then, could capture a different set of linked genomic 

variation, and could be incorporated into GWAS to produce more powerful association 

tests. Hannan (2018) suggests that, indeed, STR variation itself may be implicated in 

the “missing heritability” problem, explaining some portion of complex trait heritability 

that we may have not yet elucidated. 

 

1.3 STR-associated disease and phenotype 

 

Many STR-associated disorders in humans are associated specifically with repeat 

expansion alleles in key loci. Expansions are STR alleles with a copy number 

significantly above what is observable in most or all wild-type alleles in the population 

distribution and can be in coding or untranslated regions of genes, or in intergenic 

regions; as a result, there are various mechanisms through which expansions can 

cause disease (Gall-Duncan et al., 2021). Examples of expansion-associated diseases 
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include Huntington’s disease (HD), caused by an expansion in a coding portion of the 

HTT gene; fragile X syndrome (FXS) and other fragile X-related clinical phenotypes, 

caused by variable-length expansions in the 5’ untranslated region (UTR) of the FMR1 

gene (Allen et al., 2021), and various forms of spinocerebellar ataxia (SCA; Brouwer et 

al., 2009). Disorders such as HD, which are typically hereditary, are also often 

characterized by a phenomenon called “anticipation”, where successive generations 

have progressively lengthened repeat tracts and often either switch from a non-

disordered “pre-mutation” state to a disordered “mutation” state or experience worse 

symptoms as continued expansion occurs within the pathogenic repeat count range 

(Gall-Duncan et al., 2021). Copy number and age of onset are negatively correlated in 

many expansion disorders, including HD (Igarashi et al., 1992; Duyao et al., 1993; 

Matsuura et al., 2000; Blauw et al., 2012; Bragg et al., 2017). Repeat count genotyping 

in these key disease-associated loci is therefore critical to assessing risk of pre-

mutation to full-mutation expansion in progeny and understanding disease genotype-

phenotype relationships. 

 

Fragile X-associated primary ovarian insufficiency (FXPOI) is an expansion disorder 

which has a more complex non-linear relationship between repeat expansion size and 

phenotype, and further highlights how studying STR copy number, and not just binary 

expansion status, is important. This disorder can occur when an allele of an STR with a 

CCG motif in the 5’ UTR of the FMR1 gene (GRCh38 coordinates: chrX:147912037-

147912111) has between 55 and 199 copies; however, peak risk occurs at an 

intermediate copy number of 85-89 (Allen et al., 2021). FMR1 expansions in this same 
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copy number range also can cause fragile X-associated tremor/ataxia syndrome 

(FXTAS; Leehey, 2009). With a copy number of ≥200, this same repeat expansion 

causes a third disease, Fragile X syndrome (FXS), and is linked to nearby DNA 

methylation (Sutcliffe et al., 1992; Alisch et al., 2013). 

 

Classical examples of expansion disorders such as HD or FXS result from expanded 

alleles in these specific critical loci, but phenotypes can be associated with the presence 

of expansions in a more complex fashion. Trost et al. (2020) found that rare tandem 

repeat expansions are more common in autistic children, suggesting a contribution of 

STRs to this complex phenotype. These expansions are not the only type of STR 

variation associated with autism; Mitra et al. (2021) found a link between autism and an 

increased quantity of small de novo STR mutation. Variation in tandem repeats has also 

been associated with DNA transcription through multiple different possible mechanisms 

(Hannan, 2018). Gymrek et al. (2016) found thousands of STRs which function as 

expression quantitative trait loci (eQTL), i.e., their copy number correlates with the 

expression of a particular transcript; they called these loci “eSTRs”.  
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1.4 Beyond simple sequence repeats: interruption, instability, and mosaicism 

 

An STR is defined by the presence of a repeating short motif, but there are a range of 

other factors which make precise definitions of specific loci more complicated. It may be 

hard to define the exact boundaries of STRs within the genome, due to imperfect motif 

copies, and there may be interruptions or multiple motifs in the same locus. These 

pattern disruptions can modulate an expansion disorder’s phenotype (Ishiura et al. 

2018, Corbett et al. 2019, Rafehi et al. 2019; Gall-Duncan et al., 2021).  

 

In HD, the associated STR region in the HTT gene is usually found in a form described 

by the pattern (CAG)nCAACAG (Genetic Modifiers of Huntington’s Disease [GeM-HD] 

Consortium, 2019; GRCh38 coordinates: chr4:3074877-3074940). Despite this 

trinucleotide expansion occurring in a coding region, where both CAA and CAG code for 

glutamine, the presence of one or two CAA interruptions at the end of the STR 

([CAACAG] {1-2}) is correlated with a delayed age of onset (GeM-HD, 2019). Thus, the 

number of uninterrupted CAG repeats is more powerfully associated with disease 

phenotype than number of glutamines the STR tract encodes; this strange association 

may give insights into the mechanism of HD. 

 

Age of onset in HD is associated with HTT expansion length, but this factor does not 

explain all variation. Swami et al. (2009) found that somatic instability in the expansion 

also contributes to age of onset – detecting this instability and representing the 

expansion requires capturing more than just a single copy number for the expanded 
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allele. In the FMR1 gene, researchers have also observed copy number instability. 

Pretto et al. (2014) found that mosaicism around the pre-mutation/full-mutation 

boundary of 200 repeats correlated with an increased expression of the gene product 

FMRP and a reduction in phenotype severity. They also discovered a positive 

correlation between methylation mosaicism and clinical outcome. Seixas et al. (2017) 

found a non-reference ATTTC STR insertion which segregates with SCA, while STR 

alleles of a similar length with only the ATTTT motif present were non-pathogenic. 

 

1.5 Genotyping STRs, past and present 

 

1.5.1 Traditional STR genotyping approaches: usage and limitations 

 

PCR with capillary electrophoresis is a common and effective way of genotyping STRs 

of interest, with Willems et al. (2017) describing it as the “gold standard” for STR 

genotyping. This, combined with certain highly polymorphic marker STRs, or “STRPs” 

(STR polymorphisms), provides a powerful tool for linkage-mapping genes of interest 

(Weber and Wong, 1993; Ellegren, 2004). However, it requires unique primer pairs in 

flanking regions for targeted loci and is low throughput – whole-genome surveying is 

effectively impossible, although multi-locus panels are available (Kedzierska et al., 

2018). Willems et al. (2017) found that between technical replicates, PCR genotypes 

were internally consistent around 98.5% of the time; while this is therefore not a perfect 

tool, the method sets a target for accuracy and repeatability when using DNA 

sequencing technologies for STR genotyping. For their study on mosaicism of an STR 
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expansion in the FMR1 gene, Pretto et al. (2014) used both PCR with electrophoresis 

and DNA Southern blot analysis. 

 

1.5.2 Genotyping STRs with genomic sequencing technologies 

 

In the past decade, the newfound affordability of short-read whole-genome sequencing 

(WGS), together with algorithms for repeat genotyping, has opened new avenues in 

STR analysis, genome-wide profiling, and association testing. LobSTR (Gymrek et al., 

2012) was an early tool in short-read STR genotyping and enabled high-throughput 

genotyping of 10s of 1000s of loci at a time, so long as the alleles in question were 

smaller than the length of a short read. This tool was later used to predict causal 

associations between the length of some specific STRs and gene expression (Gymrek 

et al., 2016). More recent work based on genome-wide STR surveying include the 

discovery of increases in small de novo STR mutation discussed in section 1.3 (Mitra et 

al., 2021), which used a framework built on the GangSTR genotyping method (Mousavi 

et al., 2019), and an association found by Tazelaar et al. (2020) between expansions in 

the ATXN1 gene and amyotrophic lateral sclerosis (ALS).  

 

The three STR genotyping methods mentioned above rely on catalogues of positions of 

STRs in the genome. These catalogues can be incomplete, which I discuss further in 

section 1.6.1. To address this limitation, Dolzhenko et al. (2020) introduced the 

ExpansionHunter Denovo (EHDn) software, which works with paired short-read 

sequencing data; Rafehi et al. (2019) used this tool to find an expanded repeat in the 
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RFC1 gene associated with CANVAS, and Trost et al. (2020) used it to discover an 

increase in rare expansions in autistic individuals. EHDn cannot assess copy number; 

instead, it reports significant increase in intra-repeat reads, i.e., read pairs in which one 

read entirely consists of repetitive DNA from an expanded STR allele. This mechanism, 

while clever, highlights a drawback in short read sequencing: despite high read 

accuracy and throughput, read size prevents precise STR copy number genotyping.  

 

Long read technologies such as Oxford Nanopore (ONT) ultra-long reads (ONT-UL; 

Jain et al., 2018) and Pacific Biosciences (PacBio)’s SMRT sequencing provide some 

advantages in sequencing longer STRs; the read lengths of these technologies allow for 

sequencing the entire length of these long repetitive regions. For example, Chaisson et 

al. (2015) used SMRT sequencing to resolve gaps enriched in STRs in the GRCh37 

reference genome. Multiple groups of researchers have created STR genotyping 

software for long reads; these include PacmonsTR (Ummat & Bashir, 2014), 

RepeatHMM (Liu et al., 2017 & 2020), Tandem-genotypes (Mitsuhashi et al., 2019), 

and Straglr (Chiu et al., 2021). Despite ONT-UL and SMRT sequencing technologies’ 

ability to span entire STR alleles with a single read, they suffer from high error rates 

(Wenger et al., 2019), which likely affect the genotyping of STR repeat sequences. 

More recently, PacBio’s high fidelity circular consensus sequencing (CCS) long-read 

technology has shown error rates more comparable to short read sequencing with small 

insertions and deletions such as those found in STR loci (Wenger et al., 2019) while 

maintaining a longer read size. This technology may allow for better resolving of STR 
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variation in longer STR alleles while maintaining the ability, like short read sequencing, 

to genotype small changes in copy number.  

 

Despite excellent performance from CCS when assessing different types of DNA 

variation, the technology is not without limitations. Currently, CCS is expensive, and 

because a single read is the product of several combined ‘subreads’, storing the original 

subread data is space-intensive. CCS reads also have challenges accurately capturing 

homopolymer sequences, which are long continuous sequences of the same base pair 

(Wenger et al., 2019); this may affect genotyping of STRs with motifs that contain a 

homopolymer, e.g., (AAAT)n. Liu et al. (2017) found that CCS reads reduced 

performance versus SMRT sequencing when STR genotyping using their tool, 

RepeatHMM, albeit with an older version of the CCS protocol. 

 

1.5.3 Limitations with existing sequencing-based STR genotyping methods 

 

All STR genotyping methods which use sequencing data have limitations. Some of 

these come from the sequencing method used; for example, as I have already 

discussed, there are types of repetitive DNA patterns short reads cannot easily resolve. 

Other limitations stem from implementation; for example, models which aim to reduce 

the impact of error from noisy long reads may do so at the cost of computational 

performance and, potentially, sensitivity. In Table 1, I show a list of long read STR 

genotyping software and some of their known limitations. Most of these methods, as 

well as all short read STR genotyping approaches which are not specific to expansions 
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and which resolve copy number, rely on user-provided STR genotype catalogues 

referring to coordinates in a particular reference genome. I discuss the pitfalls of relying 

on catalogues in section 1.6.1. 

Long read STR genotyper Sequencing method† Limitations 

PacmonsTR  

(Ummat & Bashir, 2014) 

PacBio non-CCS Relies on deprecated aligner (BLASR), 

which no longer appears on PacBio’s 

GitHub page 

RepeatHMM  

(Liu et al., 2019 & 2020) 

PacBio non-CCS & 

ONT with configurable 

hidden Markov model 

Computationally slower and may miss more 

calls than other approaches (Chiu et al., 

2021); limited support for heterogeneous 

repeat expansions; written in deprecated 

Python version (v2.7); limited to what is in 

catalogue 

Tandem-genotypes 

(Mitsuhashi et al. 2019) 

Any Requires realignment using LAST, which is 

a slow step (Chiu et al. 2021); does not 

check motif composition of insertions; uses 

crude k-means prediction for genotype 

calls; limited to what is in catalogue 

Straglr 

(Chiu et al. 2021) 

Any Uses TRF to determine read copy number, 

which may fail with disruptions or short 

alleles; limited support for heterogeneous 

repeat expansions 

Miscellaneous ONT-specific 

callers (Giesselmann et al., 

2019; Fang et al., 2022) 

ONT Use raw ONT signal data – not portable 

across sequencing technologies.  

†: CCS = circular consensus sequencing; ONT = Oxford Nanopore Technologies 

 

Table 1: Long read STR genotyping methods and their limitations.  
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1.6 Evaluating sequencing-based STR genotyping methods 

 

To evaluate STR genotyping approaches in a systematic way, individuals with ‘ground 

truth’ STR genotypes at known genomic coordinates are required to compare software 

output against; a list of these coordinates mapping to sequences in a reference genome 

serve as an “STR catalogue” specifying regions for software to genotype. 

 

1.6.1 Reference genomes and genome-wide STR locus cataloguing 

 

The UCSC genome browser (Kent et al., 2002) includes tracks of STRs (‘simple 

repeats’) generated with Tandem Repeats Finder (TRF; Benson, 1999) by running the 

program on a reference genome. The cataloguing of TRs using a reference genome is 

naturally limited by what sequences are contained in the reference; several parts of the 

latest Genome Reference Consortium reference genome, GRCh38, including many 

repetitive regions, are not fully resolved (Nurk et al. 2022). Another limitation of 

catalogue-based approaches comes from treating STRs as loci with a single motif; as I 

have discussed in section 1.4, some diseases are associated with the presence or 

expansion of a non-reference STR motif, in addition to or replacing the motif occurring 

in the reference genome.  

 

Improvements in cataloguing STRs genome-wide will likely come with the new CHM13 

telomere-to-telomere reference genome, which includes an enormous 112.9% increase 

in simple sequence repeat DNA (Nurk et al. 2022). The creation of STR databases and 
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curation approaches such as Illumina’s STR-finder (Dolzhenko et al. 2019), which 

specifically searches for polymorphic STRs, can also help more comprehensively record 

STRs of interest in the human population. 

 

1.6.2 The Genome-in-a-Bottle Consortium small variant benchmark 

 

The Genome in a Bottle consortium (GIAB) has published high-depth sequencing data 

for multiple individuals, including two child/mother/father trios: one Ashkenazim (HG002-

004) and one Han Chinese (HG005-HG007) (Zook et al., 2016). To better resolve trio 

genomic variation, these data include read-sets from a range of sequencing 

technologies at high depths of coverage, which have led to the production of benchmark 

variant callsets for the trios (Zook et al., 2019; Wagner et al. A, 2022; Wagner et al. B, 

2022). These benchmarks consist of a subset of variation in these individuals validated 

using multiple sequencing technologies and variant calling software. Among these 

benchmark datasets are a set of small SNVs and insertion/deletion (indel) variants 

(Zook et al., 2019; Wagner et al. A, 2022); some of these indels are copy number 

changes in STRs, although the tooling the consortium used to resolve indels in tandem 

repeats does not perfectly resolve all copy number variation (Wenger et al., 2019). The 

variant sets also include some instances of probable de novo STR mutation. 
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1.6.3 Using Mendelian inheritance patterns to evaluate STR genotyping 

 

Trio datasets such as those from GIAB provide another means through which genotype 

call quality can be assessed, using the pattern of Mendelian inheritance. The proportion 

of loci that are consistent with Mendelian inheritance in a callset, combined with the 

knowledge of instances of true de novo mutation from a benchmark “ground truth” 

variant set, allow estimates of reliability of genotyping software – given a set of alleles 

one knows are transmitted from parent to child, one can assess how frequently an STR 

genotyping method generates the same copy number allele for the child and parent. 

Mendelian inheritance tracing has been used by Gymrek et al. (2012) and Mousavi et 

al. (2019) to assess the performance of their respective STR genotyping software, and 

by Niehus et al. (2021) to do the same for their genomic deletion-identifying software. 

 

The inverse of the rate of Mendelian inheritance can be called ‘Mendelian inheritance 

error’, or ME, which STR genotyping methods should aim to get as close to 0 as 

possible with the sequencing data given (Figure 1). This assessment method alleviates 

some of the “burden of truth” from the variant truth set itself, since it is only required for 

knowing which loci are truly Mendelian-inconsistent in the trio, rather than precise 

genotypes; one expects that few de novo mutations are present in the benchmark set. 
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Figure 1: Assessing the rate of violation of Mendelian inheritance as a metric for 

genotyping quality for a set of calls for autosomal STR loci. 

 

1.6.4 A public dataset of PCR-derived STR genotypes 

 

Payseur, Place, and Weber (2008) published a dataset of 721 polymorphic STR (STRP) 

genotypes, in the form of PCR fragment sizes, for multiple HapMap project individuals. 

These loci were taken from the 5 centimorgan Marshfield STRP panel (Ghebranious et 

al., 2003). Of the individuals genotyped, two have been sequenced using both high-

coverage Illumina short read technology (Byrska-Bishop et al., 2022), and PacBio CCS 

at a roughly 5-7X coverage (Ebert et al., 2021). Using a technique developed by 

Pemberton et al. (2009), these PCR product sizes can be back-converted to copy 

number changes relative to a reference genome and can serve as an in-vitro-sourced 

benchmark callset for STR genotyping. This approach was used by Saini et al. (2018) to 

evaluate STR genotype imputation using single-nucleotide polymorphisms (SNPs).  
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1.6.5 Targeted CCS sequencing and a public pathogenic expansion dataset 

 

I have discussed possible benchmark datasets for STR genotyping; these sets are likely 

comprised of mostly wild-type polymorphism and small de novo mutations. However, 

performance on small variants does not necessarily correspond to performance in 

disease-causing expansions. Pacific Biosciences (PacBio) has published a targeted 

sequencing dataset with eight samples: four with expansions in the HTT gene, three 

with expansions in the FMR1 gene, and one control sample (accessed from 

https://downloads.pacbcloud.com/public/dataset/RepeatExpansionDisorders_NoAmp/ 

July 1, 2022). These individuals’ HTT and FMR1 genes are sequenced with PacBio 

“HiFi No-Amp” targeted sequencing technology to a high depth of coverage.  

 

1.7 Objectives and hypothesis 

 

In this project, I have two major aims. The first is to evaluate STR genotyping 

approaches for both short- and long-read technologies and compare their strengths, 

with a focus on examining the potential of CCS data for genome-wide STR genotyping. 

To evaluate these approaches, I will use the ground-truth datasets I have discussed to 

benchmark genotyping performance. The second aim is to develop a new STR 

genotyping method, designed specifically to take advantage of CCS’ high sequencing 

accuracy, and compare it against other genotypers to assess its performance using 

datasets with ground-truth STR genotypes available. By optimizing STR genotyping for 

high quality reads, I expect that some of the error compensation approaches used in 

https://downloads.pacbcloud.com/public/dataset/RepeatExpansionDisorders_NoAmp/
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other methods can be eliminated, resulting in reduced computation time and improved 

sensitivity to small copy number changes. In the above sections, I have emphasized 

how ascertaining an STR’s copy number can be important to understanding its 

causative effects or associations. My goal is to address some drawbacks in other long 

read STR genotyping approaches which hinder this, while maintaining the advantages 

long reads offer for resolving long, complex alleles. Given the realized potential of CCS 

in other areas like indel and structural variant detection (Wenger et al., 2019) and 

existing work by Liu et al. (2017) and Chiu et al. (2021), CCS reads should scale to 

whole-genome STR profiling. I do not aim to perform a comprehensive benchmarking of 

all STR genotyping and expansion detection approaches, nor solve all issues discussed 

in section 1.5.3, e.g., addressing every drawback of STR catalogues and existing 

reference genomes.  
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Chapter 2 Materials and Methods 

 

2.1 Reference genome and tandem repeat catalog 

 

I used the GRCh38 reference genome, and its corresponding catalogue of short tandem 

repeats as generated by the Tandem Repeats Finder program (Benson, 1999) available 

from the UCSC genome browser (Kent et al. 2002), as discussed in section 1.6.1. 

 

2.2 Benchmarking and validation datasets 

 

I used multiple different datasets and DNA sequencing technologies to build an overall 

picture of genotyping method performance across a range of STR sizes (Table 2).  

Dataset STRs captured Purpose 
Methods 

section 
Data citations 

PCR-derived STR 

genotype set 

Polymorphic  

15-115bp alleles; 

3 & 4 nt. motifs  

Comparison benchmark 

of wet lab-validated 

genotypes 

2.2.1 

Payseur et al. 

(2008); Pemberton 

et al. (2009); 

Fairley et al. (2020) 

Ashkenazim trio STR 

genotypes from small 

variant benchmark 

set (GIAB) 

Whole-genome 

STR set; non-

pathogenic alleles 

(0-300bp) 

Scaled-up comparison: 

Test whole-genome 

genotype capability and 

throughput at various 

depths of coverage. 

2.2.2 
Wagner et al. 

(2022A) 

PacBio HiFi targeted 

pathogenic 

expansion 

sequencing 

Pathogenic 

expanded alleles 

in HTT and FMR1 

Validation of STRkit’s 

performance with 

disease alleles of 

interest 

2.2.6 
Accessed from 

pacbcloud.com 

 
Table 2: Benchmarking datasets used in the thesis.  
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2.2.1 Generating a PCR-genotyped small STR truth set 

 

I accessed PCR and capillary electrophoresis-derived STR genotype data published by 

Payseur, Place, and Weber (2008), described in section 1.6.4. I downloaded 30X 

coverage Illumina and ~5x coverage PacBio CCS sequencing data from the 

International Genome Sample Resource (IGSR) portal (Fairley et al., 2020) for the 

NA19238 individual from the Yoruba in Ibadan (YRI) population. Pemberton et al. 

(2009) published a dataset of PCR primer sequences for Marshfield STRPs. They used 

these sequences to convert PCR fragment sizes to repeat counts through UCSC’s In-

Silico PCR tool (Kent et al., 2002) on the HG17 reference genome. Overlap between 

the STR genotype and primer sequence datasets allowed for the re-alignment of PCR 

primers for 155 STRPs onto the GRCh38 reference genome with in-silico PCR, giving 

expected PCR fragment sizes for this more up-to-date reference genome. Using these 

results and the formula published by Pemberton et al. (2009), I calculated relative copy 

number genotypes at these 155 loci in NA19238 to serve as a truth set. 

 

To reduce bias from non-repeat indels within the sequences flanked by the PCR 

primers, I used variant callsets generated using 30X coverage Illumina short read 

sequencing data and accessed from the IGSR portal to filter out loci for which a sample 

had at least one non-repeat indel within the bounds of the PCR primers. 
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2.2.2 Creating a genome-wide STR benchmark call set 

 

To benchmark genotyping methods and compare short and long high-accuracy reads, I 

used version 4.2.1 of the small variant benchmark set for the Ashkenazim trio (Wagner 

et al., 2022 A) to create a whole-genome STR copy number callset. The resulting 

genotypes are expressed as a change in copy number relative to the GRCh38 

reference genome. To create this truth set, I identified all variants in the GIAB 

benchmark set which overlapped a tandem repeat in the Tandem Repeats Finder (TRF) 

annotation track from the UCSC Genome Browser (Kent et al. 2002) for GRCh38. I then 

applied the following filtering and transformation steps to get a final catalogue of 

benchmark-quality short tandem repeat genotypes for the Ashkenazim trio: 

 

1. Sex chromosomes were removed to focus on only diploid loci and avoid having to 

incorporate karyotypic sex metadata. 

2. STRs in centromeres or segmental duplications, as defined by tracks in the UCSC 

genome browser, were removed – reducing low-confidence sequencing regions. 

3. STRs with TRF quality scores below 90 (out of a possible 100) were removed, to 

keep only a set of confidently-identified tandem repeats. 

4. Homopolymers were removed. 

5. STRs where TRF reported differences between motif size and repeat period were 

removed, to eliminate more complex repeat patterns. 

6. Variants in the short variant benchmark set which did not overlap an STR in the 

TRF catalogue were discarded. 
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7. Variants in the benchmark set which were not indel variants or did not contain at 

least an entire insertion or removal of the catalogued STR motif were removed. 

8. Variants in the benchmark set whose indel variants consisted of less than 80% 

copies of the catalogued STR motif (by base content) were removed. 

9. Indel sizes were converted to a copy number change relative to reference using 

the size of the motif as defined by TRF. Indels only contributed to copy number 

change if they mapped to within the boundaries of the STR as listed by TRF. 

10. Mendelian inheritance consistency was assessed for the trio. 

 

2.2.3 Calculating the root-mean-squared error (RMSE) of genotyping output 

 

I calculated root-mean-squared error (RMSE) for overall genotyping performance of a 

given genotyper, as well as RMSE binned by allele size, using Equation 1. 

  

𝑅𝑀𝑆𝐸𝐿 =  √ ∑(𝑐𝑙1  −  𝑡𝑙1)2  +  (𝑐𝑙2 − 𝑡𝑙2)2

𝑙 ∈ 𝐿

 

Equation 1: RMSE equation, where 〈cl1, cl2〉 are the sorted called copy numbers (relative 

to reference) for a bi-allelic locus (relative to reference, and 〈tl1, tl2〉 are the sorted true 

relative copy numbers, given by the truth set, for each locus l in called locus set L. 
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2.2.4 Calculating the binary accuracy of genotyping output 

 

I calculated binary accuracy for overall genotyping performance, as well as accuracy 

binned by allele size, using Equation 2. 

 

𝐴𝑐𝑐𝐿  =  

∑ ∑ {
1, 𝑐𝑙𝑖  −  𝑡𝑙𝑖 <  0.5
0, 𝑐𝑙𝑖  −  𝑡𝑙𝑖 ≥ 0.5

2
𝑖=1𝑙 ∈ 𝐿

|𝐿|
 

Equation 2: Binary accuracy equation, where 〈cl1, cl2〉 are the sorted called copy 

numbers (relative to reference) for a bi-allelic locus (relative to reference, and 〈tl1, tl2〉 

are the sorted true relative copy numbers for each locus l in a called locus set L. 

 

2.2.5 Generating subsampled alignments for GIAB trio individuals 

 

To generate different depths of genomic coverage of alignment files from the 

Ashkenazim trio, I used the following steps: 

1. I calculated the average depth of coverage for each alignment using the 

samtools depth -a command. 

2. I determined the fraction of reads needed for each desired genomic coverage level 

in the sub-sampling analyses (4, 6, 8, 10, 15, 20, 25, 30, 40, 50, 60x, the latter two 

only if available).  

3. I used these fractions as parameters for the samtools view --subsample 

command to generate each sub-sampled alignment file. 
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The following aligners were used for each sequencing technology by the original 

creators of the data: 

• Illumina 2x150bp and 2x250bp short read technologies: NovoAlign v1.15.1 

• ONT-UL: minimap2 v2.17 

except for use with the Tandem-genotypes method: LAST version 1418 

• PacBio CCS: pbmm2 versions 1.1.0 and 1.2.0 

except for use with the Tandem-genotypes method: LAST version 1418 

 

2.2.6 A PacBio HiFi Targeted Expansion Sequencing Dataset 

 

I accessed a dataset of Pacific Biosciences targeted sequencing of expansions from a 

repository in their GitHub organization: https://github.com/PacificBiosciences/apps-

scripts. The example dataset itself can be found at 

https://downloads.pacbcloud.com/public/dataset/RepeatExpansionDisorders_NoAmp/  

 

2.3 Comparisons to existing STR genotyping software 

 

2.3.1 Inclusion criteria for existing methods 

 

To select STR genotyping methods to benchmark CCS reads and my approach against, 

I followed these criteria of inclusion: 

 

https://github.com/PacificBiosciences/apps-scripts
https://github.com/PacificBiosciences/apps-scripts
https://downloads.pacbcloud.com/public/dataset/RepeatExpansionDisorders_NoAmp/
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• The method must support an alignment format which can be generated with 

readily-accessible software. 

• The method must be performant enough to genotype the entirety of our chosen 

locus catalog in a ‘tractable’ amount of time (in this case, <7 days). 

• The method must be able to genotype ‘non-expanded’ loci – it cannot just be an 

expansion detection tool; it should be able to resolve more subtle variation. 

• It must support genotyping arbitrary loci provided via a catalog file, rather than 

requiring pre-made models. 

• It must support all motif sizes, not just trinucleotide STRs. 

 

2.3.2 Parameter settings for comparison 

 

For the comparison of STR genotypers, the tools were run with the following parameters 

(only listed if they were non-standard, i.e., not specifying reference genome/alignment 

file/etc.): 

 

• ExpansionHunter: N/A 

• GangSTR: N/A (default bootstrap iterations: 100) 

• RepeatHMM: --SplitAndReAlign 0; --SeqTech Pacbio or Nanopore; --

MinSup 4; --RepeatTime 3 

• Straglr: --min_cluster_size 2; --min_support 4;  

--max_num_clusters 2 
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• STRkit: --min-reads 4; --min-allele-reads 2;  

--num-bootstrap 100 

o If PacBio CCS: --realign and –hq 

• Tandem-genotypes: --far=70; --output=2 

 

2.3.3 Generating LAST alignments for use with the Tandem-genotypes tool 

 

The program Tandem-genotypes (Mitsuhashi et al., 2019) requires as input read 

alignments generated by LAST (Kiełbasa et al., 2011). This aligner has many 

parameters which affect alignment time and quality. To generate read sets to use re-

align with LAST, I used Picard (Broad Institute, 2019) to convert BAM files into FASTQ 

files. For use with Tandem-genotypes, I followed recommendations from the tool’s 

authors, and ran LAST version 1418 with the following parameters: 

• last-train: -Q0  

• lastal: default parameters  

 

2.3.4 Benchmarking hardware and language versions 

 

I ran all STR genotypers written in Python with Python v3.8. Methods written in C++ 

were compiled with GCC 9.3.0. I ran genotyping software on Calcul Québec’s Béluga 

cluster using 1 core of an Intel Gold 6148 processor and as much memory as required. 
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2.4 Creating an STR calling toolkit 

 

To address limitations described in section 1.5.3 and make my genotyping approach 

and downstream analysis code available to other researchers, I created an STR 

genotyping and analysis software package, STRkit, written in the Python programming 

language and released as free and open-source software accessible at 

https://github.com/davidlougheed/strkit/ or in the PyPI Python package repository as 

‘strkit’.  

 

2.4.1 Genotyping approach 

 

I outline the general genotyping approach used in STRkit below. An implementation of 

the approach is included in the STRkit package as a sub-command; ‘strkit call’. 

 

1. An alignment software such as minimap2 (Li, 2018) or pbmm2 (a wrapper for 

minimap2 implemented by Pacific Biosciences for use with their sequencing 

technologies) is used to generate an aligned BAM file. 

2. For each STR in a provided catalogue, a corresponding DNA sequence from a 

user-provided reference genome is extracted, including flanking DNA, and the 

reference copy number is determined using a variation on the method described 

in step 6. Instead of aligning with both the 5’ and 3’ flanking sequence included at 

the same time, the 5’ flank is included and the 3’ boundary is allowed to expand; 

then, this process is repeated with the 3’ flank and the 5’ boundary. In this way, 

https://github.com/davidlougheed/strkit/
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the STR region is permitted to expand in either direction in the event of slight 

misalignment or a disagreement between the catalogue and STRkit’s method. 

3. For each STR in the catalogue, all reads which overlap the STR region (with 

flanking sequences on either side of a user-configurable length, 70bp by default) 

are extracted using the PySAM library (version 0.19.1; https://github.com/pysam-

developers/pysam). During this process, some filtering is applied: 

a. Supplementary reads are skipped; a flag is set if a primary and 

supplementary alignment for the read both map to the STR region (i.e., the 

read has a chimeric alignment, which may occur with large expansions.) 

b. Reads with no successful alignment are skipped. 

4. If a read is soft-clipped in the STR region and the user has provided the  

--realign command-line flag, a local realignment to reference is attempted, 

using the parasail library’s semi-global alignment algorithm (Daily, 2016). 

5. If, at this point, a read cannot not fully encompass the STR tract and flanking 

region, it is discarded. 

6. For each encompassing read, a series of candidate STR tracts of varying length, 

starting with a tract closest to the reference STR size ± any insertions or 

deletions in the alignment, are generated from the motif provided in the 

catalogue. Each of these candidate STR tracts are realigned using parasail, 

incorporating the 5’ and 3’ flanking sequences.  

7. The best-scoring copy number and alignment is kept for the read in question, 

resulting in a read → copy number map once every encompassing read’s STR 

tract copy number has been counted. If a user chooses to do so, motif-sized k-

https://github.com/pysam-developers/pysam
https://github.com/pysam-developers/pysam
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mers are tabulated for each read, which can later be amalgamated into peak-

level k-mer counts. 

8. For each read, a re-sampling weight is generated, corresponding to the 

estimated inverse probability of observing a read encompassing an STR tract of 

the same size (see section 2.4.2 for an explanation of what this accomplishes). 

9. Read copy numbers are resampled many times to generate bootstrap re-

samplings, according to the re-sampling weight calculated in the above step. 

10. A Gaussian Mixture model (GMM) the scikit-learn library (Pedregosa et al., 

2011), initialized via the K-means++ algorithm (Arthur and Vassilvitskii, 2007), is 

trained on each re-sampling of read copy numbers to derive estimates for the 

short and long allele copy numbers. 

11. Final genotype estimates and 95% confidence intervals for the short and long 

allele copy number are computed from the distribution of resampled copy 

numbers from step 9.  

12. Reads are assigned to allele peaks based on bootstrapped estimates of peak 

mean, standard deviation, and weight – the complete set of parameters 

characterizing a peak in a GMM.  

13. If a user chooses to do so, motif-sized k-mers are tabulated for each peak using 

the collected read-level k-mer data.  
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2.4.2 Correcting for STR allele size bias  

 

As STR allele size increases, it becomes less likely that a read of a size from a fixed 

distribution (i.e., from a given technology) will encompass the entire allele, introducing 

an allele bias to a set of reads for a particular locus. In non-targeted (whole-genome) 

sequencing, read size is independent of a given STR allele’s size. One can estimate the 

probability of a randomly selected read spanning an entire STR tract plus pre-specified 

flanking region, given that it overlaps the STR and there is sufficient depth of coverage 

of the locus. In Equation 3, 𝑚̅ is the average length of all reads overlapping the STR 

region (a surrogate for overall read size distribution), and t is the size of the STR region, 

with flanking sequence, in a particular read. Reads can then be re-sampled, weighted 

by the inverse of this probability.  

 

𝑝̂(𝑠𝑝𝑎𝑛 | 𝑜𝑣𝑒𝑟𝑙𝑎𝑝) =
𝑚̅ − 𝑡 + 1

𝑚̅ + 𝑡 − 2
 

Equation 3: Approximate probability of encountering a read large enough to span a 

given STR tract, used to mitigate the effects of large allele drop-out. 

 

In targeted sequencing, the same assumption that a realized read length is independent 

from STR tract size no longer holds since reads may always span only a targeted locus 

plus some surrounding sequence. In “targeted mode”, I instead treat the current read 

size as representative of all reads for that STR to perform re-weighting.  
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2.4.3 Visualizing calls in a web application 

 

As part of creating a visualization tool for STR genotypes, I used the igv.js library 

(Robinson et al., 2022) to display reads with their repeat counts in a genome browser 

context, and the Observable Plot library to display bar plots and histograms 

(https://github.com/observablehq/plot). The visualization tool is included as part of the 

STRkit package and available under the sub-command strkit visualize. 

 

2.4.4 Mendelian inheritance error calculator 

 

An estimate of rates of deviation from Mendelian inheritance serves as a measure of 

genotyping method reliability and sensitivity (see section 1.6.3).  In STRkit, I include a 

module named strkit mi to calculate rates of Mendelian inheritance error (ME) from 

the output of all STR genotyping methods included in the benchmarking sections of this 

project, for both binary ‘yes/no’ inheritance observations and parent-offspring 95% 

confidence interval overlap. For results obtained with this calculator, see section 3.3.4. 

To measure ME in trio genotyping calls, I perform the following steps: 

 

1. For each locus in the STR callset for the child in the trio, check if a corresponding 

call can be found in both parent callsets. If not, skip the locus. 

2. If the locus is in a user-specified exclusion set, e.g., for removing known de novo 

mutation, skip it. 

3. Add this locus to the set S of seen loci for this trio. 

https://github.com/observablehq/plot
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4. If (slightly different from step 1) a call failed in any of the three individuals, skip 

the locus (after it has been added to set S.) 

5. If the calls for the locus are consistent with Mendelian inheritance, add one to a 

counter c of consistent loci. Additionally, keep track of counters for binned allele 

size, with bins of size 10 bp., binning based on reference allele size. 

6. After all loci have been processed, return the total rate of ME as 1 – (c)/|S| and, 

in the same fashion, calculate rates of ME for each allele size bin.  
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Chapter 3 Results 

 

3.1 Selected STR genotyping software for benchmarking 

 

The final set of STR genotyping software included in the benchmark, as chosen using 

the criteria listed in section 2.3.1, is as follows: 

 

Short read methods:  

• ExpansionHunter v5.0.0 (Dolzhenko et al., 2017 & 2019) 

• GangSTR v2.5.0 (Mousavi et al., 2019) 

Long read methods: 

• RepeatHMM v2.0.3 (Liu et al., 2017 & 2020) 

• Straglr v1.3.0 (Chiu et al., 2021) 

• Tandem-genotypes v1.9.0 (Mitsuhashi et al., 2019) 

o LAST alignment was performed with version 1418 

• STRkit v0.7.0 (currently unpublished) 

 

3.2 STRkit genotype calls correlate strongly with PCR product sizes  

 

To validate that STR genotyping methods capture true STR variation, we examined 

correlations between STR genotypes calculated from sequencing data from the 1000 
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Genomes and Human Genome Structural Variant consortiums and our PCR-derived 

truth set, previously discussed in section 1.6.4. 

 

Using the method outlined in section 2.2.1, I generated a truth set of PCR-derived 

genotypes for one individual (NA19238) and 155 polymorphic STR loci. This dataset 

does not capture the full range of STR variation; rather, it focuses just on tri- and tetra-

nucleotide repeats, and all alleles are smaller than 115 bp (Figure 2). 

 

 

Figure 2: Distribution of allele and motif sizes in the PCR-derived STR genotype truth 

set. These loci are known to be polymorphic (Payseur, Place, and Weber, 2008).  
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I then compared calls from STR genotyping software and copy numbers derived from 

these PCR product sizes. At the same depth of coverage, long read methods show a 

stronger correlation with the truth set than short read methods and call a greater portion 

of the provided catalogue. GangSTR only achieved a correlation coefficient (r2) of 0.19 

before author-recommended filtering steps, which remove many erroneous calls and 

improve correlation (Figure 3). Among long read methods, Tandem-genotypes and 

our method, STRkit, achieve the highest r2 = 0.88.  

 

 

Figure 3: Correlations between a PCR-derived small STR genotype truth set and calls 

made from low-coverage genomic data for the NA19238 sample. A low-coverage 

Illumina dataset was created by subsampling high-coverage 30X sequencing data. 
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3.3 STRkit outperforms other STR genotyping methods on a whole-genome 

benchmark set 

 

3.3.1 Creating a genome-wide STR benchmarking dataset 

 

The set of alleles used in section 3.2 is small (n = 310) and does not capture the full 

range of STR variation in the genome; most alleles are less than 70 base pairs long 

(Figure 2). To create a benchmark containing genome-wide variation, I used the method 

outlined in section 2.2.2 to generate a set of STR copy number genotypes, relative to 

reference genome GRCh38, from the Ashkenazim GIAB trio. The final variant set 

contains 36113 loci and a variety of allele sizes (Figure 4), as well as various motif 

sizes, compositions, and complexity. In the HG002 individual, 13435 of these variants 

are homozygous non-reference, and 22678 are heterozygous (Table 3).  

 

 HG002 (Child) HG003 (Father) HG004 (Mother) 

Heterozygous 22678 23539 23615 

Homozygous alternate 13435 12574 12498 

 

Table 3: Breakdown of locus zygosity in my STR benchmark set, created from the 

Genome in a Bottle small variant benchmark set for an Ashkenazim trio. 
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Figure 4: Distribution of STR allele sizes (A) and copy number change relative to the 

GRCh38 reference genome (B) found in the Genome-in-a-Bottle small variant 

benchmark for an Ashkenazim trio.   
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3.3.2 STRkit minimizes error and maximizes accuracy on a high-coverage 

genome-wide STR benchmark 

 

Using the genome-wide STR benchmark truth set from section 3.3.1, I compared 

STRkit’s genotyping output with other long- and short-read genotyping software 

capable of whole-genome STR profiling (listed in section 3.1). I subsampled all 

alignment files across all sequencing technologies for individuals in the benchmark trio 

to 40-fold average genomic read depth using the approach described in section 2.2.5. I 

calculated two comparison metrics for 10bp-wide allele size bins: root-mean-squared 

error (RMSE; section 2.2.3) and binary accuracy (section 2.2.4) of allele copy number 

relative to the reference genome. 

 

In this benchmark evaluation, genotypes from STRkit and Tandem-genotypes had 

the lowest average error for most size bins (Figure 5 A); STRkit had the lowest overall 

error by a small margin (Appendix A, Table S5). STRkit was most accurate (Figure 5 

B). CCS reads gave the lowest error across the allele size spectrum; short read 

methods show substantially increased rates of error and lower accuracy as allele size 

increases. ONT-UL reads have a high baseline error rate and low accuracy across 

allele size. RepeatHMM failed to finish in the time allocated to it (5 days) when running 

with ONT-UL reads. Figure 5 C shows the proportion of the benchmark truth set 

catalogue called; the drop-off visible for GangSTR with 150bp Illumina reads above ~80 

bp is caused by filtering steps recommended by the authors of the tool to remove 
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inaccurate calls. With 250bp Illumina reads, GangSTR starts to miss longer alleles even 

without filtering. RepeatHMM and Straglr miss some shorter alleles with CCS data.  

 

Figure 5: Benchmarking results for a whole-genome STR truth set derived from the 

Ashkenazim trio GIAB short variant benchmark, using sequencing data at 40x genome-

average coverage for the HG002 sample. Shown is a comparison of RMSE (A), binary 

accuracy relative to reference (B), and proportion of catalogued loci called (C) by allele 

length and method. Bins are shaded by log-density of alleles in the truth set. 
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3.3.3 STRkit outperforms other long read STR genotypers when assessing intra-

locus copy number difference and classifying locus zygosity 

 

While the results in section 3.3.2 show overall rates of genotyping error, they only 

indirectly capture how well the different STR genotyping methods can distinguish 

between alleles within a locus – i.e., correctly predict zygosity. To interrogate this aspect 

of genotyping more thoroughly, I looked at the RMSE of estimated allele copy number 

difference with high-coverage sequencing (Figure 6 A) and performance on the zygosity 

classification task (Figure 6 B) in the whole-genome benchmark. 

 

CCS reads with either STRkit or Tandem-genotypes achieve the lowest overall intra-

allele copy number error, meaning they more precisely capture the difference in copy 

number between the shorter and longer STR allele within a locus (Figure 6 A). This is 

true even for relatively short alleles (~50bp). 

 

When assessing zygosity, RepeatHMM and Straglr significantly overestimate and 

indeed almost exclusively predict homozygosity, discarding intra-allele variation when 

reporting final genotypes. Inversely, Tandem-genotypes over-predicts heterozygotes. 

STRkit over-predicts heterozygotes to a lesser degree and outperforms all other long 

read STR genotypers with this classification task, achieving comparable performance to 

short read methods.  
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Figure 6: Comparison of STR genotyping performance when assessing copy number 

distance between alleles within a locus at 40x sequencing coverage for the HG002 

sample. (A) Average allele size difference RMSE by allele size (10bp bins). (B) Zygosity 

classification performance, where locus calls are treated as homozygous if they predict 

the same two copy numbers (or copy numbers within 0.5 repeats of each other in the 

case of Straglr, because it counts fractional repeats.) 

  



56 

 

3.3.4 STRkit improves tracing of parent-child allele inheritance in long read data  

 

Ascertaining de novo mutation has implications for population genetics and complex 

trait association studies. While results for the GIAB truth set from sections 3.3.2 and 

3.3.3 should correlate with sensitivity to de novo mutation, I wanted to assess this 

sensitivity more directly. To do this, I included a Mendelian error calculator in STRkit 

(see section 2.4.4 for the approach) to quantify how well a given sequencing 

technology/STR genotyper pairing follows allele transmission from parents to offspring. I 

used this calculator to compare rates of Mendelian inheritance error (ME) on the 

Genome-in-a-Bottle-derived whole-genome benchmark callset; a comparison by read 

technology and binned allele size using high-coverage sequencing is shown in Figure 7. 

Only loci which were consistent with Mendelian inheritance in the original trio ground-

truth callset were included in this comparison. Some results for Tandem-genotypes 

are missing due to the LAST alignment software not completing in the time allocated to 

it (5 days) for the HG002 individual. 

 

In this comparison, STRkit with CCS reads achieves low rates of ME across the 

spectrum of locus sizes, with a similar error rate to ExpansionHunter with short reads 

(Figure 7). With CCS reads, RepeatHMM and Straglr perform poorly, with around a 

64% and 75% rate of overall ME, respectively. All methods perform relatively poorly with 

ONT-UL reads, with STRkit performing best of those available. GangSTR performs 

significantly worse than ExpansionHunter with 150bp reads as allele size grows.  
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Figure 7: Mendelian inheritance error in the Ashkenazim trio by reference locus size 

(i.e., the size of the locus in the GRCh38 reference genome; 10 bp. bins) at 40x 

average depth of sequencing coverage. 

 

3.3.5 STR genotyping using long reads tolerates low sequencing depth 

 

The genome-wide benchmarking results examined in sections 3.3.2 and 3.3.4 are from 

high-coverage (40x) sequencing data. Sequencing at this depth of coverage is not 

always feasible due to cost, and existing sequencing datasets may not be available at 

this depth. To examine how STR genotyping methods perform at lower read depths,  

I ran the genotypers on subsampled alignments of individuals in the Genome-in-a-

Bottle-derived STR benchmark. For the description of how subsampled alignments were 

created, see section 2.2.5. I also tested runtimes for each method with each 

subsampled alignment to examine how sequencing technology, coverage depth, and 

algorithmic approach affect allele genotyping throughput. 
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Short read methods were affected more severely by loss of coverage, i.e., more 

sequencing coverage was required to achieve maximal STR genotyping performance 

with short reads in the whole-genome STR benchmark (Figure 8 A, B, C). At all depths 

of coverage, STRkit with CCS reads achieved the lowest overall genotyping error 

(Figure 8 A) and highest accuracy (Figure 8 B). STRkit performs the best at all 

coverage levels in terms of Mendelian inheritance error (ME) in both long-read 

technologies (Figure 8 C), although Tandem-genotypes calls were not available for 

higher levels of coverage with ONT-UL reads due to alignment timeout. For short reads, 

ExpansionHunter outperforms GangSTR, especially as coverage decreases. Rates of 

ME with STRkit on CCS reads continued to improve as coverage increases beyond 

30x, where other metrics do not improve much past this threshold. 

 

Short read STR genotyping software showed much higher computational throughput in 

terms of number of loci processed per second (Figure 8 D). Within long read methods, 

STRkit shows slightly worse computational throughput than Straglr, while producing 

better genotyping results in this benchmark. RepeatHMM has extremely low allele 

throughput, which was noted by the Straglr authors as well in their testing of other 

methods (Chiu et al., 2021), and did not finish in the time I was able to allocate to it 

when given Oxford Nanopore ultra-long reads. Tandem-genotypes was fastest for 

long reads, with the caveat that the alignment software required (LAST) is much slower 

than minimap2, which was used for other alignments, also noted by Chiu et al. (2021). 
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Figure 8: STR genotyping performance in terms of error (A), accuracy (B), ME (C), and 

computational throughput (D) by average depth of sequencing coverage for the HG002 

sample. Alignment files were subsampled to multiple different coverage levels. I 

excluded points from sub-figures A-C if more than 50% of the catalogue was not called.   
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3.4 STRkit detects pathogenic expansions in targeted CCS data 

 

In sections 3.2 and 3.3, I have examined STRkit’s genotyping capability with genome-

wide STR variation, and, by proxy in section 3.3.4, the method’s potential for small de 

novo mutation detection. Until now, genotyping of large pathogenic alleles has not been 

assessed. Most known STR-caused diseases are expansion disorders (section 1.3), but 

almost all genomic copy number variation within the GIAB benchmark is within 20 

repeat units of the reference genome (Figure 4: Distribution of STR allele sizes (A) and 

copy number change relative to the GRCh38 reference genome (B) found in the 

Genome-in-a-Bottle small variant benchmark for an Ashkenazim trio. B). To validate 

STRkit’s ability to genotype pathogenic loci, I obtained a public targeted expansion 

sequencing dataset published by PacBio (section 2.2.6) and corresponding expansion 

repeat counts provided from the Coriell Institute (https://www.coriell.org/; last accessed 

Oct. 4, 2022). In all samples except the control, STRkit found an expanded allele. In 

most cases, STRkit’s reported genotypes fell within the range reported by the institute 

or another source (Table 4), with some longer expansions showing greater repeat 

counts in sequencing data versus what is reported for the sample. There is visible 

mosaicism in the expanded HTT allele of sample NA20253 (Figure 9 A), which De Luca 

et al. (2021) also found using a repeat-primed PCR technique. There is also likely 

mosaicism in the NA14044 sample (Figure 9 B), noted by Chiu et al. (2021).  

https://www.coriell.org/
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Expanded Allele Genotype  
(from Coriell§ except where noted) 

Adjusted*† STRkit 

Genotype 
Notes 

Sample HTT FMR1 HTT* FMR1†   

NA13505  22/50 No expansion 22/51 30   

NA13509 15/70 " 15/75 30/31   

NA20253 22/96-103ª " 22/114 20 Some mosaicism visible 
and validated with PCR by 
De Luca et al. (2021) 
(Figure 9 A) 

NA14044 19/250 " 19/962 30 Large range of copy 
number in expanded visible 
in reads  
(Figure 9 B)  

NA13664 No expansion 28±3/49±3 16/17 31/54 “Upper limit of normal” 

NA06896 " 23/95-140 12/20 23/187 ‘Pre-mutation’ expansion 

NA07537 " 28-29/>200 12/17 29/339   

HEK293 N/A (control) N/A (control) 17/18 35/35 Control – no known 
expansions 

§ Accessed from https://www.coriell.org/ Oct 4, 2022. 
* The TRF catalog includes a tailing CAACAG as part of the HTT repeat, so I subtracted 2 from reported 

repeat counts for comparison against the Coriell-reported genotypes. 
† The TRF catalog includes an interrupting section (4 amino acids) in the FMR1 repeat, so I subtracted 

4 from reported repeat counts. 
ª Mean PCR genotype across 10 volunteer laboratories from Kalman et al. 2007. 

 

Table 4: Expanded HTT and FMR1 alleles as genotyped by STRkit.   

https://www.coriell.org/
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Figure 9: Instances of mosaicism in expanded HTT alleles captured by targeted CCS. 

NA20253 (A) has three visible peaks, at ~110, ~140, and ~180. The red and blue lines 

are STRkit’s best-guess peak calls; their poor fit is a result of the wide spread of 

expanded alleles within the sample. 
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3.5 Read-level visualization of copy number with STRkit reveals sequencing 

noise and STR instability 

 

Visualizations of read-level copy numbers, such as the histograms in Figure 9, can help 

researchers understand the extent of somatic instability of an STR within a particular 

sample, which has been implicated in, e.g., age of onset in Huntington’s disorder 

(Swami et al., 2009). To facilitate this and the analysis of results of STR genotyping 

more generally, STRkit includes a graphical visualization tool with a web-based 

interface that can show read-level copy number data for a given locus, as well as motif 

repeat k-mers and run parameters (Figure 10). I used this tool to visualize the extent of 

instability in targeted sequencing data in two expanded HTT alleles (Figure 9). To better 

show repeat expansions, I contributed code to the igv.js library (Robinson et al., 

2022) to show base-pair insertion counts and allow dynamic colouring of reads based 

on a property such as read-level STR copy number (Figure 10 B). Halman, Dolzhenko, 

and Oshlack (2022) developed a tool with similar goals, STRipy, to visualize short-read 

STR genotyping results from ExpansionHunter, although their method also includes 

links to literature about locus-associated disease and pathogenic expansion threshold 

information.  
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Figure 10: Web user interface for STRkit’s “visualize” functionality, showing data from 

an expansion in HTT sequenced using CCS from section 3.4. (A) The overview section, 

with a histogram of repeat counts by read, and a distribution plot of repeat motif 

sequences found in the alleles. (B) An igv.js genome browser, showing reads with 

expansion insertions (purple boxes).   
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Chapter 4 Discussion 

 

4.1 Comparing STR genotyping methods  

 

In this project, I set out to evaluate the potential of CCS long reads for genotyping STRs 

and develop a genotyping method which maximally takes advantage of the potential of 

these high-fidelity long reads. I designed a software package called STRkit for this 

purpose, with an approach that is more sensitive to small copy number changes, 

building on the foundations of existing short- and long-read STR genotyping software 

and trying to address problems encountered in my own and others’ use of these 

packages, such as RepeatHMM’s runtime and Tandem-genotypes’ costly realignment 

process (Chiu et al. 2021). 

 

To benchmark STR genotyping methods, including STRkit, I first wanted to show that 

they capture real STR variation. Using a truth set of small polymorphic STRs created 

using the method described in section 2.2.1, I compared correlations between PCR 

product size-derived STR genotypes and copy number output from STRkit and other 

genotyping methods given low-coverage sequence data from the NA19238 individual. 

All methods show a correlation between PCR and sequenced genotypes, with STRkit 

and Tandem-genotypes achieving the highest correlations (r2 = 0.88) at an average 

genomic depth of coverage of 5x (Figure 3). This result indicates that genomic 

sequencing, especially with these methods, captures real variation in repeat count 

validated with traditional laboratory techniques; in this case, using capillary 
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electrophoresis to assess PCR product sizes. Normally, PCR product sizes may not 

correlate exactly with copy numbers, since other non-STR copy number change indel 

variants may occur within the bounds of the PCR primer pairs. To eliminate this bias, I 

used variant callsets created from high-coverage short read sequencing data to skip loci 

with non-STR indels in these regions, as outlined in section 2.2.1. 

 

The PCR-genotyped benchmark STR set contains only short STRs (Figure 2); all alleles 

in the set are below 115 base pairs in length. A single Illumina 150bp short read can 

encompass any allele in the dataset with flanking sequence information. Pathogenic 

repeat expansions can be anywhere from ~100bp (e.g., at the lower end of the 

pathogenic HTT repeat expansion) to thousands of base pairs in, for example, SCA10 

(McFarland et al., 2015). The precise repeat counts of expanded alleles are often 

correlated with phenotype (Allen et al. 2021; Gall-Duncan et al., 2021). I thus decided to 

augment my testing with a much larger genome-wide truth set derived from a deeply-

sequenced trio of individuals with an available benchmark variant callset, published by 

the Genome in a Bottle consortium. 

 

In this genome-wide benchmark, CCS reads showed the greatest potential for 

genotyping STR alleles in the 0-200 base pair size range; this is most apparent in 

STRkit and Tandem-genotypes’ low average root-mean-squared error (RMSE) 

rates: while the error rate increased with allele size, it did so at a much lower rate than 

with short read genotyping (Figure 5 A). STRkit with CCS reads achieved the highest 

binary accuracy in the high-coverage sequencing benchmark (Figure 5 B, Table S5), 
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which I attribute to its sensitive peak calling approach. Here, STRkit is the only 

software using CCS reads to achieve parity with short read methods in terms of 

accuracy in smaller alleles, while also achieving overall better performance with longer 

alleles versus short read methods. RepeatHMM and Straglr both perform poorly in my 

RMSE and accuracy comparisons; when accounting for the results from my zygosity 

classification task (Figure 6 B), I surmise that these poor results are due to calling 

almost all loci as homozygotes, thereby effectively taking the average of two different 

copy numbers and missing small copy number heterozygosity in many loci. In both 

Illumina short read technologies, one can observe that error rate and accuracy both 

worsen as alleles expand past ~1/2 read length for the two read sizes (75bp and 125 bp 

thresholds for 150bp and 250bp reads, respectively) – this is an inflection point at which 

a short read which overlaps an STR allele is less likely to fully encompass it than not. 

Straglr shows poor performance with very small alleles in both long read 

technologies; when I investigated their method, I found that they used Tandem Repeats 

Finder (TRF) internally for finding STRs within long reads. For novel STR discovery, this 

makes sense; however, for STR genotyping, it can cause problems, as demonstrated 

here. TRF requires a certain score threshold before reporting a repeat, which small 

alleles (or, in the extreme case, the complete absence of an allele) would not reach, 

resulting in the call being missed or misreported. STRkit’s copy number assessment 

incorporates match scores for flanking regions (see section 2.4.1 for the full algorithm), 

which allows for correct genotyping of extremely small STR alleles, or even the 

complete deletion of an STR tract.  

 



68 

 

The presence of many heterozygotic loci in the benchmark dataset allowed me to 

evaluate the peak calling aspect of STR genotyping, i.e., determining alleles from a pool 

of read-level copy number data. Quantified intra-locus allele copy number difference 

error (Figure 6 A) shows that CCS reads and associated STR genotyping methods are 

the best of the technologies tested at differentiating allele copy number within a locus. In 

my zygosity classification task (Figure 6 B), STRkit stands out as comparable to short 

read methods such as ExpansionHunter, where other long read methods misclassify 

more often, with RepeatHMM and Straglr showing extreme bias towards calling 

homozygotes and Tandem-genotypes showing a tendency to over-call heterozygotes. 

Performance in this task has implications for measuring true STR variation within 

populations, as well as assessing STR mutation rate. It follows that methods which miss 

variation will under-report genetic diversity of STRs and mis-represent population allele 

distributions, if used for this purpose. In long read methods, the task of allele calling is 

somewhat independent of read-level copy number assessment; choices made by 

software authors here can affect the error trade-off between over- and under-reporting 

homozygotes. For example, I attribute RepeatHMM’s tendency to over-call homozygotes 

to its error model, which was designed for high-error long reads, and as a result may 

‘smooth over’ true variation when given lower-error reads. In their discussion of 

Straglr, Chiu et al. (2021) note that their results may be improved by preventing the 

Gaussian mixture model (GMM) implementation from wide distributions into a single 

copy number; my results confirm that Straglr tends to group disparate loci together 
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when using CCS data and could benefit from a more sensitive GMM when using such 

data, such as the one I used in STRkit.   

 

Methods which struggled to determine zygosity correctly and had high intra-locus allele 

error also performed poorly in my Mendelian inheritance error (ME) benchmark (Figure 

7, Figure 8 C). The root causes here are likely the same: variation is missed, meaning 

peak calling models frequently end up taking the average of two copy numbers when 

reporting alleles. Since only one allele of a locus from a parent is transmitted to a child, 

a parent’s average copy number within a polymorphic locus will frequently differ from 

the child’s, resulting in a high rate of ME for callers which over-call homozygosity. 

STRkit performs well in the ME benchmark, showing lower error than other methods 

with CCS data and GangSTR with short reads (Figure 7). Performance was comparable 

to ExpansionHunter with shorter alleles and appeared to be better than any short 

read method with longer alleles, although allele sample size is too low to say this 

conclusively. An expanded dataset with additional trios could help elucidate this. 

 

Rates of ME have implications for using STR genotyping software to detect likely de 

novo mutation: false positives when detecting de novo mutation should naturally be 

fewer if inherited alleles are correctly traced parent to child. De novo mutation detection 

is relevant to medical genomics and population genetics studies; Mitra et al. (2021) 

used sequencing-based STR genotyping to calculate the contribution of small de novo 

mutation events to autism, and better-resolved mutation rates can be used in population 

genetics modeling (Goldstein et al., 1995; Zhivotovsky et al. 2004). Naturally, the more 
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accurately an STR genotyper can trace the inheritance and mutation of alleles, the 

better it should be at estimating genome-wide and locus-specific mutation rates. As a 

metric, ME has limitations; it cannot quantify systematic bias or genotyping errors which 

are ‘inherited’ alongside the allele itself. Consider a “pathologically bad” STR genotyper 

which reports a copy number of 0 for every allele it receives: this would yield a perfect 

0% Mendelian error. However, when examined in context with other benchmarking 

results here, this concern is assuaged: all callers which perform well in terms of ME also 

achieve low error and high accuracy in the other GIAB benchmark, indicating that 

methods with low ME are correctly tracing parent-child allele inheritance.  

 

So far, I have discussed three different metrics for assessing genotyping performance: 

absolute genotyping error, accuracy, and Mendelian inheritance error. All three vary as 

a function of average genomic read depth (Figure 8 A, B, C); for both ONT-UL and CCS 

data, STRkit achieves the highest accuracy and lowest absolute genotyping error at all 

coverage levels. As one expects, performance tends to improve as coverage increases, 

and more data are available. The point at which performance asymptotes is sequencing 

technology-dependent; long read methods appear less affected by a reduction in base-

wise average coverage, and performance gain seems to asymptote at a lower coverage 

level. For multi-base DNA features like STRs, there is a difference between base-level 

average coverage as I use it here and “feature-level” average coverage; I discuss the 

differences between these and the difficulty of comparing coverages across sequencing 

technologies in section 4.3. 
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Coverage significantly affects allele throughput and thus computational runtime (Figure 

8 D). There is also quite a large performance spread between STR genotyping 

methods; Tandem-genotypes is the fastest overall, followed by both short-read 

genotyping tools. I believe this to be a combination of implementation choice and an 

inherent property of the data they process; both ExpansionHunter and GangSTR are 

implemented in C++, which is generally faster than Python. The performance gain of 

Tandem-genotypes, on the other hand, likely results from its approach; it does not 

examine the sequence itself, and simply reports the overall size change of an aligned 

region relative to the reference, rounded to a whole copy number change. In contrast, 

RepeatHMM, Straglr, and STRkit model STRs at a motif and copy number level, 

which should improve their ability to properly count copy number if small indel errors are 

present in individual motif copies. Uniquely among long-read STR genotypers, and 

inspired by short read methods, STRkit also re-samples read counts multiple times to 

calculate a genotype confidence interval. Tandem-genotypes requires realignment 

with the LAST aligner, which Chiu et al. (2021) found to be around half as fast as 

minimap2; this offsets some of the throughput it gains versus other long read methods. 

STRkit and Straglr both support parallelization for individual samples whereas 

Tandem-genotypes does not, so STRkit should be comparable to or faster than 

Tandem-genotypes for, e.g., small batches of samples where multiple cores can be 

allocated to each sample, when also accounting for alignment time. RepeatHMM’s 

extremely poor performance may stem from its implementation of a complex Hidden 

Markov model for determining copy number; these models should be more error-
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resistant for high error reads, but for CCS data they appear to be less relevant and 

computationally intractable at the whole-genome scale.  

 

4.2 STRkit’s genotyping performance and limitations 

 

Despite its moderate computational speed, STRkit’s improvement in genotyping 

quality over other methods at all depths of coverage with CCS makes this sequencing 

technology more powerful for STR genotyping. STRkit includes some unique features 

which may contribute to this performance; one such feature is STR tract re-weighting, 

described in section 2.4.2. As an STR tract increases in size, it becomes less likely that 

a read from a given technology will encompass the entire tract, with or without flanking 

sequences on either side. This leads to sampling bias if an STR genotyping approach 

uses only reads which span an entire STR locus, as all existing long-read STR 

genotyping methods discussed here do. A naïve use of read-level data to assess true 

allele size, mosaicism, or STR instability will place too much weight on short STR tracts, 

and not enough on longer ones (e.g., expansions), following this sampling bias; to 

counter this, STRkit samples longer alleles more frequently during the bootstrapping 

steps. Another feature to which I attribute STRkit’s accuracy is its handling of 

reference copy number. Most other STR calling methods (ExpansionHunter, 

GangSTR, Straglr, Tandem-genotypes) use the catalogue coordinates to calculate 

the repeat count of the STR in the reference genome, but their own method to calculate 

repeat count in samples; this creates a disconnect between the reference genome and 

the sample in cases of inexact repetition of motifs or fuzzy boundaries of STRs within 
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the reference sequence and can lead to systematic bias in reported relative copy 

number for these types of loci. I believe this to be the cause of ExpansionHunter’s 

poor accuracy on the GIAB benchmark (Figure 5 B). STRkit uses the same algorithmic 

approach to count copies in the reference and in reads from a sample, which should 

reduce this category of bias. This algorithm allows for some flexibility in catalogue 

coordinates to count imperfect copies beyond what the catalogue may include, which 

also captures slight misalignments of motif copy insertions or deletions to just outside 

catalogued STR boundaries. 

 

STRkit did not solve all issues with existing STR genotyping methods, as discussed in 

section 1.5.3; for example, it uses a catalogue-based approach, which generally 

depends on a complete reference genome to identify as many loci as possible and may 

miss loci which do not occur in the reference genome at all or may contain interruptions 

and non-reference repeat motifs; in contrast, Straglr has a mode which uses repeat-

like insertions to detect expansions without provided reference coordinates. I expect 

that with gradually increasing usage and annotation of the new Telomere-to-Telomere 

CHM13 reference genome newer, more complete STR catalogues can be deployed, 

which STRkit can then take advantage of. With non-reference repeat motifs, STRkit 

has some limited support for matching via IUPAC codes (e.g., N representing any of 

ATGC), but this requires knowledge a priori of what form a non-reference locus may 

take. STRkit still tolerates some interruption, because the alignment method penalizes 

the number of mismatches linearly and thus can compensate for error if the overall 
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alignment still scores well; however, if an interrupting motif is extremely disparate from 

the one in the catalogue, it may result in missed or inaccurate genotype calls. The latest 

versions of the ExpansionHunter tool (Dolzhenko et al. 2019) include a more 

advanced pattern-matching system which supports more forms of interrupted STRs, 

albeit requiring a priori knowledge to an even greater degree than using IUPAC codes 

with STRkit. 

 

4.3 Benchmarking limitations 

 

With an extensive comparison of existing STR genotyping methods and the 

development of a new one, I showed that CCS reads outperform short read sequencing 

for STR genotyping in many situations. However, short reads still serve as a useful STR 

genotyping resource. They are shown here to be very accurate for small alleles, and still 

useful for evaluating copy number in longer alleles in an approximate fashion (Figure 5), 

while being significantly more cost-effective than CCS as of time of writing – a factor 

which is not captured in the benchmark. GangSTR and ExpansionHunter’s more 

advanced algorithmic approaches allow genotyping beyond read length by combining 

data from multiple read pairs to find the most likely allele copy numbers, and given 

equal time, both tools can process more loci than any long read approach (Figure 8 D). 

Nevertheless, short reads fundamentally limit what STR variation can be captured and 

genotyped precisely, especially with, for example, non-reference motif interruptions 

(Dolzhenko et al., 2020), mosaicism, or somatic repeat instability – as multiple reads 

from a potentially heterogeneous STR tract must be combined. 
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The PCR-derived genotypes I used for the first benchmark do not capture this limitation 

of short reads, although they do reveal the poor performance of short read technologies 

at low coverage. As shown in section 3.2, all alleles in this benchmark fit within the span 

of a single short read. To capture a more representative set of alleles, I expanded the 

scope of validation and method comparison using small variant benchmark sets from 

the GIAB consortium; these data have their own caveats. Because alleles were 

extracted from a set of so-called “small” variants (i.e., indels not large enough to be 

classified as ‘structural variants’ by the consortium), the resulting STR genotype set is 

potentially missing larger STR expansions. Wenger et al. (2019) suggest that the GIAB 

tooling does not perfectly capture tandem repeat variation; however, Wagner et al. 

(2022 A) presented a new version of the GIAB small variant benchmark, which I used 

here, which claims to improve TR genotype calls. 

 

One overall limitation of the benchmarking I performed is the low number of individuals; 

for the PCR benchmark, one individual was used, and for the Genome-in-a-Bottle 

benchmark, I calculated a truth set for a single trio for use with Mendelian inheritance 

error calculation, and for just the offspring, HG002, for other benchmarking. Expanding 

the benchmark to more individuals would give more insight into rarer alleles such as 

uncommon expansions or deletions; for the PCR benchmark, this would require 

sequencing data for additional individuals to be made available in the IGSR portal. For 

the GIAB benchmark, there is a second trio available which I did not incorporate but 

which could be included in a future study. My benchmarking also did not examine 
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performance with specific motif compositions or regions in the genome; for example, to 

see if the struggles of CCS with homopolymers (Wenger et al., 2019) extend to 

homopolymer-containing STR motifs.  

 

Another limitation of benchmarking in this project is the use of a single aligner for each 

sequencing technology. Rajan-Babu et al. (2021) showed that choice of aligner impacts 

STR genotyping in short reads, and a method such as Winnowmap2 (Jain et al. 2022), 

which purports to be more sensitive when aligning long reads to repetitive DNA, may 

improve calling across many methods tested here.  

 

My benchmarking did not address the identification of pathogenic expansions within 

whole-genome STR genotype sets. I used exclusively high-coverage targeted 

sequencing for validating pathogenic expansion genotyping by STRkit (section 3.4). 

The whole-genome benchmark did, however, contain alleles in the pathogenic size 

range of some expansion disorders. In whole genome sequencing contexts, lower 

coverage may affect the ability of various methods to separate expansions from 

sequencing noise or genotyping error, and sequencing technologies themselves may 

behave differently between targeted and whole-genome sequencing protocols. 

 

Comparing across depths of coverage between sequencing technologies is difficult in 

general, and in both benchmark datasets there is limited interpretational use in 

comparing short and long read technologies at the same depth of coverage, beyond 

looking at overall trends in the performance/coverage curves shown in Figure 8. For 



77 

 

example, at four-fold depth of coverage, one expects four reads on average to overlap a 

given single base pair regardless of sequencing method. However, with long reads, 

depth of coverage for the entire STR element is greater, i.e., there is a greater 

probability that a longer read spans the element (Figure 11). This probability is a 

function of the sequencing technology-specific read length distribution and allele size. 

Single-ended long reads cannot be easily used for STR genotype assessment if they 

terminate in the middle of a perfect repeat; an STR genotyper can use a single allele-

spanning read to compute a copy number estimate, whereas a non-spanning read can 

only produce a lower bound on copy number. For example, given a simple sequence 

repeat of (CAG)n and an alignment like what is shown in Figure 11 B, if a read 

terminates inside the STR, giving a DNA pattern of (CAG)n-m, it cannot be known 

precisely how many repeats m exist between the read terminus and the true end of the 

repeat region. Further complicating coverage comparisons, each CCS read consists of 

data from multiple subreads (Wenger et al., 2019). This non-equivalence of 

quantifications of depth of coverage between technologies explains part of the steeper 

drop-off in performance as coverage decreases in short-read STR genotyping methods 

as compared to long-read methods (Figure 8), while illustrating a key benefit of accurate 

long reads for STR genotyping and somatic instability assessment: allele-spanning 

reads are abundant for all but the longest alleles, and one spanning read yields one 

copy number. 
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Figure 11: Nonequivalence of depth of coverage for STRs across short and long-read 

technologies. Reads which span the STR region are shown in pink.   
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Chapter 5 Conclusions and Future Directions 

 

Here, I present STRkit, an STR genotyping toolkit designed to work with high-fidelity 

long read technologies such as CCS and provide tools for researchers to explore STR 

variation at a genome-wide scale. I designed a workflow to generate an STR 

benchmarking dataset using Genome-in-a-Bottle’s public small variant benchmark data 

for an Ashkenazim trio and evaluated my method and others on these data and other 

public data. I found the CCS technology to be a viable candidate for genome-wide STR 

profiling when paired with the right software, outperforming Oxford Nanopore ultra-long 

reads across both benchmarks, and beating short read technologies with longer STR 

alleles. High accuracy long read technologies such as CCS should facilitate replication 

studies and new discoveries of associations between STR copy number and disease 

phenotype. I show that STRkit achieves low error and high genotyping accuracy on my 

benchmark datasets, comparing favourably to both other long- and short-read STR 

genotyping approaches, and is capable of genotyping pathogenic expansions implicated 

in tens of diseases affecting many people globally (Gall-Duncan et al., 2021). My 

method, with CCS data, achieves performance parity with paired-end short reads in 

zygosity classification tasks and tracing Mendelian inheritance, outperforming all 

existing long read STR genotyping approaches and demonstrating capabilities 

applicable to future de novo STR mutation detection studies. 

 

Currently, it is up to users of STRkit to perform downstream analyses with the 

generated callsets; however, in a more complete version of the software I aim to include 
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analyses pipelines to automate tasks that I foresee to be of interest: trio de novo variant 

detection, case-control cohort comparisons, and a genome and population-wide STR 

copy number distribution database for mutation and expansion detection. By 

incorporating these as software functions, I aim to assist researchers in more efficiently 

answering research questions related to STRs. To further this goal, I may need to push 

the genotyping accuracy of STRkit even higher – at genome-wide scales, greater 

statistical confidence becomes mandatory to mitigate the multiple testing problem. One 

way which I could augment the capabilities of my method using high-accuracy long 

reads would be to utilize genomic variation surrounding STR loci of interest to better 

resolve haplotypes and phase STR alleles with other forms of variation; allele peaks 

could then be better separated when close in copy number. STRkit’s computational 

performance could also be improved to allow for larger studies; short read STR 

genotypers outperform most existing long read ones due to a mix of programming 

language choice, implementation decisions, and limitations from the sequencing data 

itself; re-implementing parts of STRkit in a faster language could make it competitive 

with GangSTR and ExpansionHunter in terms of genotyping throughput. 

 

I have implemented a visual motif composition comparison tool in STRkit’s 

visualize function (section 3.5), to contrast motif compositions between alleles in a 

specified locus. An extension of this could add statistical tests for case/control analyses 

of motif composition differences, paralleling my proposed case/control STR copy 

number analysis pipeline; this is another task where low-error long reads should solve 

limitations imposed by short read sequencing. STR motif compositional changes in a 
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non-coding part of the DAB1 gene cause spinocerebellar ataxia (Seixas et al., 2017); 

this discovery could potentially be replicated using CCS and this proposed feature. 

 

Another potential extension for STRkit is mosaicism detection, which could use an 

approach like the one employed by Chiu et al. (2021) with Straglr. Figure 9A shows 

an example of HTT mosaicism captured by CCS, confirmed by De Luca et al. (2021) 

with PCR analysis, in a locus of a size that should be difficult to resolve with short reads 

given my benchmark findings. Currently, STRkit calls either one or two peaks from 

read data for all autosomes. In Straglr, any number of peaks may be called; 

implementing a similar feature for STRkit could allow for automatic detection of loci 

with more than one expansion peak and potentially, using CCS, replicate findings such 

as Swami et al. (2009)’s implication of somatic expansion instability in Huntington’s 

disease age of onset, or Pretto et al. (2014)’s discovery of an association between 

mosaicism in FMR1 and FXPOI phenotype, found using traditional techniques. This 

potential capability, and the realized potential shown in my other findings, stems directly 

from error rate and read length. When reads span an entire expansion, as long reads 

can, one read yields one copy number – but a complex expansion allele need not be 

represented entirely by a single copy number, opening the door for new types of 

genomic analyses and discoveries.  



82 

 

Chapter 6 References 

 

1. Alisch, R. S., Wang, T., Chopra, P., Visootsak, J., Conneely, K. N., & Warren, S. T. 

(2013). Genome-wide analysis validates aberrant methylation in fragile X 

syndrome is specific to the FMR1 locus. BMC Medical Genetics, 14(1), 18. 

https://doi.org/10.1186/1471-2350-14-18 

2. Allen, E. G., Charen, K., Hipp, H. S., Shubeck, L., Amin, A., He, W., Nolin, S. L., 

Glicksman, A., Tortora, N., McKinnon, B., Shelly, K. E., & Sherman, S. L. (2021). 

Refining the risk for fragile X–associated primary ovarian insufficiency (FXPOI) by 

FMR1 CGG repeat size. Genetics in Medicine, 23(9), Article 9. 

https://doi.org/10.1038/s41436-021-01177-y 

3. Arthur, D., & Vassilvitskii, S. (2007). k-means++: The advantages of careful 

seeding. Proceedings of the Eighteenth Annual ACM-SIAM Symposium on 

Discrete Algorithms, 1027–1035. 

4. Benson, G. (1999). Tandem repeats finder: A program to analyze DNA sequences. 

Nucleic Acids Research, 27(2), 573–580. https://doi.org/10.1093/nar/27.2.573 

5. Blauw, H. M., van Rheenen, W., Koppers, M., Van Damme, P., Waibel, S., 

Lemmens, R., van Vught, P. W. J., Meyer, T., Schulte, C., Gasser, T., Cuppen, E., 

Pasterkamp, R. J., Robberecht, W., Ludolph, A. C., Veldink, J. H., & van den Berg, 

L. H. (2012). NIPA1 polyalanine repeat expansions are associated with 

amyotrophic lateral sclerosis. Human Molecular Genetics, 21(11), 2497–2502. 

https://doi.org/10.1093/hmg/dds064 

https://doi.org/10.1186/1471-2350-14-18
https://doi.org/10.1038/s41436-021-01177-y
https://doi.org/10.1093/nar/27.2.573
https://doi.org/10.1093/hmg/dds064


83 

 

6. Brouwer, J. r., Willemsen, R., & Oostra, B. a. (2009). The FMR1 gene and fragile 

X-associated tremor/ataxia syndrome. American Journal of Medical Genetics Part 

B: Neuropsychiatric Genetics, 150B(6), 782–798. 

https://doi.org/10.1002/ajmg.b.30910 

7. Byrska-Bishop, M., Evani, U. S., Zhao, X., Basile, A. O., Abel, H. J., Regier, A. A., 

Corvelo, A., Clarke, W. E., Musunuri, R., Nagulapalli, K., Fairley, S., Runnels, A., 

Winterkorn, L., Lowy, E., Eichler, E. E., Korbel, J. O., Lee, C., Marschall, T., 

Devine, S. E., … Zody, M. C. (2022). High-coverage whole-genome sequencing of 

the expanded 1000 Genomes Project cohort including 602 trios. Cell, 185(18), 

3426-3440.e19. https://doi.org/10.1016/j.cell.2022.08.004 

8. Chaisson, M. J. P., Huddleston, J., Dennis, M. Y., Sudmant, P. H., Malig, M., 

Hormozdiari, F., Antonacci, F., Surti, U., Sandstrom, R., Boitano, M., Landolin, J. 

M., Stamatoyannopoulos, J. A., Hunkapiller, M. W., Korlach, J., & Eichler, E. E. 

(2015). Resolving the complexity of the human genome using single-molecule 

sequencing. Nature, 517(7536), 608–611. https://doi.org/10.1038/nature13907 

9. Chiu, R., Rajan-Babu, I.-S., Friedman, J. M., & Birol, I. (2021). Straglr: Discovering 

and genotyping tandem repeat expansions using whole genome long-read 

sequences. Genome Biology, 22(1), 224. https://doi.org/10.1186/s13059-021-

02447-3 

10. Corbett, M. A., Kroes, T., Veneziano, L., Bennett, M. F., Florian, R., Schneider, A. 

L., Coppola, A., Licchetta, L., Franceschetti, S., Suppa, A., Wenger, A., Mei, D., 

Pendziwiat, M., Kaya, S., Delledonne, M., Straussberg, R., Xumerle, L., Regan, B., 

Crompton, D., … Gecz, J. (2019). Intronic ATTTC repeat expansions in STARD7 

https://doi.org/10.1002/ajmg.b.30910
https://doi.org/10.1016/j.cell.2022.08.004
https://doi.org/10.1038/nature13907
https://doi.org/10.1186/s13059-021-02447-3
https://doi.org/10.1186/s13059-021-02447-3


84 

 

in familial adult myoclonic epilepsy linked to chromosome 2. Nature 

Communications, 10, 4920. https://doi.org/10.1038/s41467-019-12671-y 

11. Daily, J. (2016). Parasail: SIMD C library for global, semi-global, and local pairwise 

sequence alignments. BMC Bioinformatics, 17(1), 81. 

https://doi.org/10.1186/s12859-016-0930-z 

12. De Luca, A., Morella, A., Consoli, F., Fanelli, S., Thibert, J. R., Statt, S., Latham, 

G. J., & Squitieri, F. (2021). A Novel Triplet-Primed PCR Assay to Detect the Full 

Range of Trinucleotide CAG Repeats in the Huntingtin Gene (HTT). International 

Journal of Molecular Sciences, 22(4), Article 4. 

https://doi.org/10.3390/ijms22041689 

13. Dolzhenko, E., Bennett, M. F., Richmond, P. A., Trost, B., Chen, S., van Vugt, J. J. 

F. A., Nguyen, C., Narzisi, G., Gainullin, V. G., Gross, A. M., Lajoie, B. R., Taft, R. 

J., Wasserman, W. W., Scherer, S. W., Veldink, J. H., Bentley, D. R., Yuen, R. K. 

C., Bahlo, M., & Eberle, M. A. (2020). ExpansionHunter Denovo: A computational 

method for locating known and novel repeat expansions in short-read sequencing 

data. Genome Biology, 21(1), 102. https://doi.org/10.1186/s13059-020-02017-z 

14. Dolzhenko, E., Deshpande, V., Schlesinger, F., Krusche, P., Petrovski, R., Chen, 

S., Emig-Agius, D., Gross, A., Narzisi, G., Bowman, B., Scheffler, K., van Vugt, J. 

J. F. A., French, C., Sanchis-Juan, A., Ibáñez, K., Tucci, A., Lajoie, B. R., Veldink, 

J. H., Raymond, F. L., … Eberle, M. A. (2019). ExpansionHunter: A sequence-

graph-based tool to analyze variation in short tandem repeat regions. 

Bioinformatics (Oxford, England), 35(22), 4754–4756. 

https://doi.org/10.1093/bioinformatics/btz431 

https://doi.org/10.1038/s41467-019-12671-y
https://doi.org/10.1186/s12859-016-0930-z
https://doi.org/10.3390/ijms22041689
https://doi.org/10.1186/s13059-020-02017-z
https://doi.org/10.1093/bioinformatics/btz431


85 

 

15. Dolzhenko, E., van Vugt, J. J. F. A., Shaw, R. J., Bekritsky, M. A., van Blitterswijk, 

M., Narzisi, G., Ajay, S. S., Rajan, V., Lajoie, B. R., Johnson, N. H., Kingsbury, Z., 

Humphray, S. J., Schellevis, R. D., Brands, W. J., Baker, M., Rademakers, R., 

Kooyman, M., Tazelaar, G. H. P., van Es, M. A., … Eberle, M. A. (2017). Detection 

of long repeat expansions from PCR-free whole-genome sequence data. Genome 

Research, 27(11), 1895–1903. https://doi.org/10.1101/gr.225672.117 

16. Duyao, M., Ambrose, C., Myers, R., Novelletto, A., Persichetti, F., Frontali, M., 

Folstein, S., Ross, C., Franz, M., Abbott, M., Gray, J., Conneally, P., Young, A., 

Penney, J., Hollingsworth, Z., Shoulson, I., Lazzarini, A., Falek, A., Koroshetz, 

W., … MacDonald, M. (1993). Trinucleotide repeat length instability and age of 

onset in Huntington’s disease. Nature Genetics, 4(4), Article 4. 

https://doi.org/10.1038/ng0893-387 

17. Ebert, P., Audano, P. A., Zhu, Q., Rodriguez-Martin, B., Porubsky, D., Bonder, M. 

J., Sulovari, A., Ebler, J., Zhou, W., Mari, R. S., Yilmaz, F., Zhao, X., Hsieh, P., 

Lee, J., Kumar, S., Lin, J., Rausch, T., Chen, Y., Ren, J., … Eichler, E. E. (2021). 

Haplotype-resolved diverse human genomes and integrated analysis of structural 

variation. Science (New York, N.Y.), 372(6537), eabf7117. 

https://doi.org/10.1126/science.abf7117 

18. Ellegren, H. (2000). Heterogeneous mutation processes in human microsatellite 

DNA sequences. Nature Genetics, 24(4), Article 4. https://doi.org/10.1038/74249 

19. Ellegren, H. (2004). Microsatellites: Simple sequences with complex evolution. 

Nature Reviews Genetics, 5(6), Article 6. https://doi.org/10.1038/nrg1348 

https://doi.org/10.1101/gr.225672.117
https://doi.org/10.1038/ng0893-387
https://doi.org/10.1126/science.abf7117
https://doi.org/10.1038/74249
https://doi.org/10.1038/nrg1348


86 

 

20. Fairley, S., Lowy-Gallego, E., Perry, E., & Flicek, P. (2020). The International 

Genome Sample Resource (IGSR) collection of open human genomic variation 

resources. Nucleic Acids Research, 48(D1), D941–D947. 

https://doi.org/10.1093/nar/gkz836 

21. Fang, L., Liu, Q., Monteys, A. M., Gonzalez-Alegre, P., Davidson, B. L., & Wang, 

K. (2022). DeepRepeat: Direct quantification of short tandem repeats on signal 

data from nanopore sequencing. Genome Biology, 23(1), 108. 

https://doi.org/10.1186/s13059-022-02670-6 

22. Gall-Duncan, T., Sato, N., Yuen, R. K. C., & Pearson, C. E. (2021). Advancing 

genomic technologies and clinical awareness accelerates discovery of disease-

associated tandem repeat sequences. Genome Research. 

https://doi.org/10.1101/gr.269530.120 

23. Gemayel, R., Vinces, M. D., Legendre, M., & Verstrepen, K. J. (2010). Variable 

tandem repeats accelerate evolution of coding and regulatory sequences. Annual 

Review of Genetics, 44, 445–477. https://doi.org/10.1146/annurev-genet-072610-

155046 

24. Genetic Modifiers of Huntington’s Disease Consortium. (2019). CAG Repeat Not 

Polyglutamine Length Determines Timing of Huntington’s Disease Onset. Cell, 

178(4), 887-900.e14. https://doi.org/10.1016/j.cell.2019.06.036 

25. Ghebranious, N., Vaske, D., Yu, A., Zhao, C., Marth, G., & Weber, J. L. (2003). 

STRP Screening Sets for the human genome at 5 cM density. BMC Genomics, 

4(1), 6. https://doi.org/10.1186/1471-2164-4-6 

https://doi.org/10.1093/nar/gkz836
https://doi.org/10.1186/s13059-022-02670-6
https://doi.org/10.1101/gr.269530.120
https://doi.org/10.1146/annurev-genet-072610-155046
https://doi.org/10.1146/annurev-genet-072610-155046
https://doi.org/10.1016/j.cell.2019.06.036
https://doi.org/10.1186/1471-2164-4-6


87 

 

26. Giesselmann, P., Brändl, B., Raimondeau, E., Bowen, R., Rohrandt, C., Tandon, 

R., Kretzmer, H., Assum, G., Galonska, C., Siebert, R., Ammerpohl, O., Heron, A., 

Schneider, S. A., Ladewig, J., Koch, P., Schuldt, B. M., Graham, J. E., Meissner, 

A., & Müller, F.-J. (2019). Analysis of short tandem repeat expansions and their 

methylation state with nanopore sequencing. Nature Biotechnology, 37(12), Article 

12. https://doi.org/10.1038/s41587-019-0293-x 

27. Goldstein, D. B., Linares, A. R., Cavalli-Sforza, L. L., & Feldman, M. W. (1995). An 

Evaluation of Genetic Distances for Use with Microsatellite Loci. Genetics, 139(1), 

463–471. 

28. Gymrek, M., Golan, D., Rosset, S., & Erlich, Y. (2012). lobSTR: A short tandem 

repeat profiler for personal genomes. Genome Research, 22(6), 1154–1162. 

https://doi.org/10.1101/gr.135780.111 

29. Gymrek, M., Willems, T., Guilmatre, A., Zeng, H., Markus, B., Georgiev, S., Daly, 

M. J., Price, A. L., Pritchard, J. K., Sharp, A. J., & Erlich, Y. (2016). Abundant 

contribution of short tandem repeats to gene expression variation in humans. 

Nature Genetics, 48(1), Article 1. https://doi.org/10.1038/ng.3461 

30. Halman, A., Dolzhenko, E., & Oshlack, A. (2022). STRipy: A graphical application 

for enhanced genotyping of pathogenic short tandem repeats in sequencing data. 

Human Mutation, 43(7), 859–868. https://doi.org/10.1002/humu.24382 

31. Hannan, A. J. (2018). Tandem repeats mediating genetic plasticity in health and 

disease. Nature Reviews Genetics, 19(5), Article 5. 

https://doi.org/10.1038/nrg.2017.115 

https://doi.org/10.1038/s41587-019-0293-x
https://doi.org/10.1101/gr.135780.111
https://doi.org/10.1038/ng.3461
https://doi.org/10.1002/humu.24382
https://doi.org/10.1038/nrg.2017.115


88 

 

32. Igarashi, S., Tanno, Y., Onodera, O., Yamazaki, M., Sato, S., Ishikawa, A., 

Miyatani, N., Nagashima, M., Ishikawa, Y., & Sahashi, K. (1992). Strong 

correlation between the number of CAG repeats in androgen receptor genes and 

the clinical onset of features of spinal and bulbar muscular atrophy. Neurology, 

42(12), 2300–2302. https://doi.org/10.1212/wnl.42.12.2300 

33. Index of /public/dataset/RepeatExpansionDisorders_NoAmp. (n.d.). Retrieved July 

1, 2022, from 

https://downloads.pacbcloud.com/public/dataset/RepeatExpansionDisorders_NoA

mp/ 

34. Ishiura, H., Doi, K., Mitsui, J., Yoshimura, J., Matsukawa, M. K., Fujiyama, A., 

Toyoshima, Y., Kakita, A., Takahashi, H., Suzuki, Y., Sugano, S., Qu, W., 

Ichikawa, K., Yurino, H., Higasa, K., Shibata, S., Mitsue, A., Tanaka, M., Ichikawa, 

Y., … Tsuji, S. (2018). Expansions of intronic TTTCA and TTTTA repeats in 

benign adult familial myoclonic epilepsy. Nature Genetics, 50(4), Article 4. 

https://doi.org/10.1038/s41588-018-0067-2 

35. Jain, C., Rhie, A., Hansen, N. F., Koren, S., & Phillippy, A. M. (2022). Long-read 

mapping to repetitive reference sequences using Winnowmap2. Nature Methods, 

19(6), 705–710. https://doi.org/10.1038/s41592-022-01457-8 

36. Jain, M., Koren, S., Miga, K. H., Quick, J., Rand, A. C., Sasani, T. A., Tyson, J. R., 

Beggs, A. D., Dilthey, A. T., Fiddes, I. T., Malla, S., Marriott, H., Nieto, T., O’Grady, 

J., Olsen, H. E., Pedersen, B. S., Rhie, A., Richardson, H., Quinlan, A. R., … 

Loose, M. (2018). Nanopore sequencing and assembly of a human genome with 

https://doi.org/10.1212/wnl.42.12.2300
https://downloads.pacbcloud.com/public/dataset/RepeatExpansionDisorders_NoAmp/
https://downloads.pacbcloud.com/public/dataset/RepeatExpansionDisorders_NoAmp/
https://doi.org/10.1038/s41588-018-0067-2
https://doi.org/10.1038/s41592-022-01457-8


89 

 

ultra-long reads. Nature Biotechnology, 36(4), 338–345. 

https://doi.org/10.1038/nbt.4060 

37. Kalman, L., Johnson, M. A., Beck, J., Berry-Kravis, E., Buller, A., Casey, B., 

Feldman, G. L., Handsfield, J., Jakupciak, J. P., Maragh, S., Matteson, K., 

Muralidharan, K., Richie, K. L., Rohlfs, E. M., Schaefer, F., Sellers, T., Spector, E., 

& Richards, C. S. (2007). Development of genomic reference materials for 

Huntington disease genetic testing. Genetics in Medicine, 9(10), Article 10. 

https://doi.org/10.1097/GIM.0b013e318156e8c1 

38. Kang, L., Li, S., Gupta, S., Zhang, Y., Liu, K., Zhao, J., Jin, L., & Li, H. (2010). 

Genetic structures of the Tibetans and the Deng people in the Himalayas viewed 

from autosomal STRs. Journal of Human Genetics, 55(5), Article 5. 

https://doi.org/10.1038/jhg.2010.21 

39. Kedzierska, K. Z., Gerber, L., Cagnazzi, D., Krützen, M., Ratan, A., & Kistler, L. 

(2018). SONiCS: PCR stutter noise correction in genome-scale microsatellites. 

Bioinformatics, 34(23), 4115–4117. https://doi.org/10.1093/bioinformatics/bty485 

40. Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A. 

M., & Haussler, D. (2002). The Human Genome Browser at UCSC. Genome 

Research, 12(6), 996–1006. https://doi.org/10.1101/gr.229102 

41. Kiełbasa, S. M., Wan, R., Sato, K., Horton, P., & Frith, M. C. (2011). Adaptive 

seeds tame genomic sequence comparison. Genome Research, 21(3), 487–493. 

https://doi.org/10.1101/gr.113985.110 

42. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., 

Devon, K., Dewar, K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K., 

https://doi.org/10.1038/nbt.4060
https://doi.org/10.1097/GIM.0b013e318156e8c1
https://doi.org/10.1038/jhg.2010.21
https://doi.org/10.1093/bioinformatics/bty485
https://doi.org/10.1101/gr.229102
https://doi.org/10.1101/gr.113985.110


90 

 

Heaford, A., Howland, J., Kann, L., Lehoczky, J., LeVine, R., McEwan, P., … The 

Wellcome Trust: (2001). Initial sequencing and analysis of the human genome. 

Nature, 409(6822), Article 6822. https://doi.org/10.1038/35057062 

43. Leehey, M. A. (2009). Fragile X-associated tremor/ataxia syndrome: Clinical 

phenotype, diagnosis, and treatment. Journal of Investigative Medicine: The 

Official Publication of the American Federation for Clinical Research, 57(8), 830–

836. https://doi.org/10.2310/JIM.0b013e3181af59c4 

44. Li, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. 

Bioinformatics, 34(18), 3094–3100. https://doi.org/10.1093/bioinformatics/bty191 

45. Liu, Q., Tong, Y., & Wang, K. (2020). Genome-wide detection of short tandem 

repeat expansions by long-read sequencing. BMC Bioinformatics, 21(21), 542. 

https://doi.org/10.1186/s12859-020-03876-w 

46. Liu, Q., Zhang, P., Wang, D., Gu, W., & Wang, K. (2017). Interrogating the 

“unsequenceable” genomic trinucleotide repeat disorders by long-read 

sequencing. Genome Medicine, 9(1), 65. https://doi.org/10.1186/s13073-017-

0456-7 

47. Matsuura, T., Yamagata, T., Burgess, D. L., Rasmussen, A., Grewal, R. P., 

Watase, K., Khajavi, M., McCall, A. E., Davis, C. F., Zu, L., Achari, M., Pulst, S. M., 

Alonso, E., Noebels, J. L., Nelson, D. L., Zoghbi, H. Y., & Ashizawa, T. (2000). 

Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia 

type 10. Nature Genetics, 26(2), Article 2. https://doi.org/10.1038/79911 

48. McFarland, K. N., Liu, J., Landrian, I., Godiska, R., Shanker, S., Yu, F., Farmerie, 

W. G., & Ashizawa, T. (2015). SMRT Sequencing of Long Tandem Nucleotide 

https://doi.org/10.1038/35057062
https://doi.org/10.2310/JIM.0b013e3181af59c4
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1186/s12859-020-03876-w
https://doi.org/10.1186/s13073-017-0456-7
https://doi.org/10.1186/s13073-017-0456-7
https://doi.org/10.1038/79911


91 

 

Repeats in SCA10 Reveals Unique Insight of Repeat Expansion Structure. PLOS 

ONE, 10(8), e0135906. https://doi.org/10.1371/journal.pone.0135906 

49. Mitra, I., Huang, B., Mousavi, N., Ma, N., Lamkin, M., Yanicky, R., Shleizer-Burko, 

S., Lohmueller, K. E., & Gymrek, M. (2021). Patterns of de novo tandem repeat 

mutations and their role in autism. Nature, 589(7841), 246–250. 

https://doi.org/10.1038/s41586-020-03078-7 

50. Mitsuhashi, S., Frith, M. C., Mizuguchi, T., Miyatake, S., Toyota, T., Adachi, H., 

Oma, Y., Kino, Y., Mitsuhashi, H., & Matsumoto, N. (2019). Tandem-genotypes: 

Robust detection of tandem repeat expansions from long DNA reads. Genome 

Biology, 20(1), 58. https://doi.org/10.1186/s13059-019-1667-6 

51. Mousavi, N., Shleizer-Burko, S., Yanicky, R., & Gymrek, M. (2019). Profiling the 

genome-wide landscape of tandem repeat expansions. Nucleic Acids Research, 

47(15), e90. https://doi.org/10.1093/nar/gkz501 

52. Niehus, S., Jónsson, H., Schönberger, J., Björnsson, E., Beyter, D., Eggertsson, 

H. P., Sulem, P., Stefánsson, K., Halldórsson, B. V., & Kehr, B. (2021). PopDel 

identifies medium-size deletions simultaneously in tens of thousands of genomes. 

Nature Communications, 12(1), Article 1. https://doi.org/10.1038/s41467-020-

20850-5 

53. Nurk, S., Koren, S., Rhie, A., Rautiainen, M., Bzikadze, A. V., Mikheenko, A., 

Vollger, M. R., Altemose, N., Uralsky, L., Gershman, A., Aganezov, S., Hoyt, S. J., 

Diekhans, M., Logsdon, G. A., Alonge, M., Antonarakis, S. E., Borchers, M., 

Bouffard, G. G., Brooks, S. Y., … Phillippy, A. M. (2022). The complete sequence 

https://doi.org/10.1371/journal.pone.0135906
https://doi.org/10.1038/s41586-020-03078-7
https://doi.org/10.1186/s13059-019-1667-6
https://doi.org/10.1093/nar/gkz501
https://doi.org/10.1038/s41467-020-20850-5
https://doi.org/10.1038/s41467-020-20850-5


92 

 

of a human genome. Science, 376(6588), 44–53. 

https://doi.org/10.1126/science.abj6987 

54. Payseur, B. A., Place, M., & Weber, J. L. (2008). Linkage Disequilibrium between 

STRPs and SNPs across the Human Genome. The American Journal of Human 

Genetics, 82(5), 1039–1050. https://doi.org/10.1016/j.ajhg.2008.02.018 

55. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., 

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., 

Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-learn: 

Machine Learning in Python. Journal of Machine Learning Research, 12(85), 

2825–2830. 

56. Pemberton, T. J., Sandefur, C. I., Jakobsson, M., & Rosenberg, N. A. (2009). 

Sequence determinants of human microsatellite variability. BMC Genomics, 10(1), 

612. https://doi.org/10.1186/1471-2164-10-612 

57. Picard. (2019). [Java]. Broad Institute. https://github.com/broadinstitute/picard 

58. Pretto, D., Yrigollen, C. M., Tang, H.-T., Williamson, J., Espinal, G., Iwahashi, C. 

K., Durbin-Johnson, B., Hagerman, R. J., Hagerman, P. J., & Tassone, F. (2014). 

Clinical and molecular implications of mosaicism in FMR1 full mutations. Frontiers 

in Genetics, 5, 318. https://doi.org/10.3389/fgene.2014.00318 

59. Quilez, J., Guilmatre, A., Garg, P., Highnam, G., Gymrek, M., Erlich, Y., Joshi, R. 

S., Mittelman, D., & Sharp, A. J. (2016). Polymorphic tandem repeats within gene 

promoters act as modifiers of gene expression and DNA methylation in humans. 

Nucleic Acids Research, 44(8), 3750–3762. https://doi.org/10.1093/nar/gkw219 

https://doi.org/10.1126/science.abj6987
https://doi.org/10.1016/j.ajhg.2008.02.018
https://doi.org/10.1186/1471-2164-10-612
https://github.com/broadinstitute/picard
https://doi.org/10.3389/fgene.2014.00318
https://doi.org/10.1093/nar/gkw219


93 

 

60. Rajan-Babu, I.-S., Peng, J. J., Chiu, R., Birch, P., Couse, M., Guimond, C., 

Lehman, A., Mwenifumbo, J., van Karnebeek, C., Friedman, J., Adam, S., Souich, 

C. D., Elliott, A., Lehman, A., Mwenifumbo, J., Nelson, T., van Karnebeek, C., 

Friedman, J., Li, C., … CAUSES Study. (2021). Genome-wide sequencing as a 

first-tier screening test for short tandem repeat expansions. Genome Medicine, 

13(1), 126. https://doi.org/10.1186/s13073-021-00932-9 

61. Robinson, J. T., Thorvaldsdóttir, H., Turner, D., & Mesirov, J. P. (2022). igv.js: An 

embeddable JavaScript implementation of the Integrative Genomics Viewer (IGV) 

(p. 2020.05.03.075499). bioRxiv. https://doi.org/10.1101/2020.05.03.075499 

62. Saini, S., Mitra, I., Mousavi, N., Fotsing, S. F., & Gymrek, M. (2018). A reference 

haplotype panel for genome-wide imputation of short tandem repeats. Nature 

Communications, 9(1), Article 1. https://doi.org/10.1038/s41467-018-06694-0 

63. Seixas, A. I., Loureiro, J. R., Costa, C., Ordóñez-Ugalde, A., Marcelino, H., 

Oliveira, C. L., Loureiro, J. L., Dhingra, A., Brandão, E., Cruz, V. T., Timóteo, A., 

Quintáns, B., Rouleau, G. A., Rizzu, P., Carracedo, Á., Bessa, J., Heutink, P., 

Sequeiros, J., Sobrido, M. J., … Silveira, I. (2017). A Pentanucleotide ATTTC 

Repeat Insertion in the Non-coding Region of DAB1, Mapping to SCA37, Causes 

Spinocerebellar Ataxia. The American Journal of Human Genetics, 101(1), 87–

103. https://doi.org/10.1016/j.ajhg.2017.06.007 

64. Shortt, J. A., Ruggiero, R. P., Cox, C., Wacholder, A. C., & Pollock, D. D. (2020). 

Finding and extending ancient simple sequence repeat-derived regions in the 

human genome. Mobile DNA, 11, 11. https://doi.org/10.1186/s13100-020-00206-y 

https://doi.org/10.1186/s13073-021-00932-9
https://doi.org/10.1101/2020.05.03.075499
https://doi.org/10.1038/s41467-018-06694-0
https://doi.org/10.1016/j.ajhg.2017.06.007
https://doi.org/10.1186/s13100-020-00206-y


94 

 

65. Sutcliffe, J. S., Nelson, D. L., Zhang, F., Pieretti, M., Caskey, C. T., Saxe, D., & 

Warren, S. T. (1992). DNA methylation represses FMR-1 transcription in fragile X 

syndrome. Human Molecular Genetics, 1(6), 397–400. 

https://doi.org/10.1093/hmg/1.6.397 

66. Swami, M., Hendricks, A. E., Gillis, T., Massood, T., Mysore, J., Myers, R. H., & 

Wheeler, V. C. (2009). Somatic expansion of the Huntington’s disease CAG repeat 

in the brain is associated with an earlier age of disease onset. Human Molecular 

Genetics, 18(16), 3039–3047. https://doi.org/10.1093/hmg/ddp242 

67. Tazelaar, G. H. P., Boeynaems, S., De Decker, M., van Vugt, J. J. F. A., Kool, L., 

Goedee, H. S., McLaughlin, R. L., Sproviero, W., Iacoangeli, A., Moisse, M., 

Jacquemyn, M., Daelemans, D., Dekker, A. M., van der Spek, R. A., Westeneng, 

H.-J., Kenna, K. P., Assialioui, A., Da Silva, N., Povedano, M., … van Es, M. A. 

(2020). ATXN1 repeat expansions confer risk for amyotrophic lateral sclerosis and 

contribute to TDP-43 mislocalization. Brain Communications, 2(2), fcaa064. 

https://doi.org/10.1093/braincomms/fcaa064 

68. Trost, B., Engchuan, W., Nguyen, C. M., Thiruvahindrapuram, B., Dolzhenko, E., 

Backstrom, I., Mirceta, M., Mojarad, B. A., Yin, Y., Dov, A., Chandrakumar, I., 

Prasolava, T., Shum, N., Hamdan, O., Pellecchia, G., Howe, J. L., Whitney, J., 

Klee, E. W., Baheti, S., … Yuen, R. K. C. (2020). Genome-wide detection of 

tandem DNA repeats that are expanded in autism. Nature, 586(7827), Article 

7827. https://doi.org/10.1038/s41586-020-2579-z 

69. Uffelmann, E., Huang, Q. Q., Munung, N. S., de Vries, J., Okada, Y., Martin, A. R., 

Martin, H. C., Lappalainen, T., & Posthuma, D. (2021). Genome-wide association 

https://doi.org/10.1093/hmg/1.6.397
https://doi.org/10.1093/hmg/ddp242
https://doi.org/10.1093/braincomms/fcaa064
https://doi.org/10.1038/s41586-020-2579-z


95 

 

studies. Nature Reviews Methods Primers, 1(1), Article 1. 

https://doi.org/10.1038/s43586-021-00056-9 

70. Ummat, A., & Bashir, A. (2014). Resolving complex tandem repeats with long 

reads. Bioinformatics (Oxford, England), 30(24), 3491–3498. 

https://doi.org/10.1093/bioinformatics/btu437 

71. Wagner, J., Olson, N. D., Harris, L., Khan, Z., Farek, J., Mahmoud, M., Stankovic, 

A., Kovacevic, V., Yoo, B., Miller, N., Rosenfeld, J. A., Ni, B., Zarate, S., Kirsche, 

M., Aganezov, S., Schatz, M. C., Narzisi, G., Byrska-Bishop, M., Clarke, W., … 

Zook, J. M. (2022). Benchmarking challenging small variants with linked and long 

reads. Cell Genomics, 2(5), 100128. https://doi.org/10.1016/j.xgen.2022.100128 

72. Wagner, J., Olson, N. D., Harris, L., McDaniel, J., Cheng, H., Fungtammasan, A., 

Hwang, Y.-C., Gupta, R., Wenger, A. M., Rowell, W. J., Khan, Z. M., Farek, J., 

Zhu, Y., Pisupati, A., Mahmoud, M., Xiao, C., Yoo, B., Sahraeian, S. M. E., Miller, 

D. E., … Sedlazeck, F. J. (2022). Curated variation benchmarks for challenging 

medically relevant autosomal genes. Nature Biotechnology, 40(5), Article 5. 

https://doi.org/10.1038/s41587-021-01158-1 

73. Weber, J. L., & Wong, C. (1993). Mutation of human short tandem repeats. Human 

Molecular Genetics, 2(8), 1123–1128. https://doi.org/10.1093/hmg/2.8.1123 

74. Wenger, A. M., Peluso, P., Rowell, W. J., Chang, P.-C., Hall, R. J., Concepcion, G. 

T., Ebler, J., Fungtammasan, A., Kolesnikov, A., Olson, N. D., Töpfer, A., Alonge, 

M., Mahmoud, M., Qian, Y., Chin, C.-S., Phillippy, A. M., Schatz, M. C., Myers, G., 

DePristo, M. A., … Hunkapiller, M. W. (2019). Accurate circular consensus long-

read sequencing improves variant detection and assembly of a human genome. 

https://doi.org/10.1038/s43586-021-00056-9
https://doi.org/10.1093/bioinformatics/btu437
https://doi.org/10.1016/j.xgen.2022.100128
https://doi.org/10.1038/s41587-021-01158-1
https://doi.org/10.1093/hmg/2.8.1123


96 

 

Nature Biotechnology, 37(10), Article 10. https://doi.org/10.1038/s41587-019-

0217-9 

75. Willems, T., Zielinski, D., Yuan, J., Gordon, A., Gymrek, M., & Erlich, Y. (2017). 

Genome-wide profiling of heritable and de novo STR variations. Nature Methods, 

14(6), Article 6. https://doi.org/10.1038/nmeth.4267 

76. Zook, J. M., Catoe, D., McDaniel, J., Vang, L., Spies, N., Sidow, A., Weng, Z., Liu, 

Y., Mason, C. E., Alexander, N., Henaff, E., McIntyre, A. B. R., Chandramohan, D., 

Chen, F., Jaeger, E., Moshrefi, A., Pham, K., Stedman, W., Liang, T., … Salit, M. 

(2016). Extensive sequencing of seven human genomes to characterize 

benchmark reference materials. Scientific Data, 3, 160025. 

https://doi.org/10.1038/sdata.2016.25  

https://doi.org/10.1038/s41587-019-0217-9
https://doi.org/10.1038/s41587-019-0217-9
https://doi.org/10.1038/nmeth.4267
https://doi.org/10.1038/sdata.2016.25


97 

 

Appendix A: Supplementary data 

Tech Genotyper Acc. Acc. (95% CI) RMSE N 

Ill. 150bp 

GangSTR 93.1% 95.6% 1.74 77814 

GangSTR + Filter 94.1% 96.4% 0.78 76980 

ExpansionHunter 36.1% 36.6% 1.17 78578 

Ill. 250bp 

GangSTR 94.8% 95.8% 1.07 77618 

GangSTR + Filter 95.3% 96.2% 0.65 77092 

ExpansionHunter 36.2% 36.6% 2.04 78574 

ONT-UL 

RepeatHMM N/A N/A N/A N/A 

Tandem-genotypes 41.8% N/A 3.10 78578 

Straglr 16.4% N/A 3.37 78464 

STRkit 40.9% 81.3% 1.91 78578 

HiFi 

RepeatHMM  31.4% N/A 3.00 76856 

Tandem-genotypes 89.0% N/A 0.60 78572 

Straglr 31.6% N/A 2.33 78198 

STRkit 95.8% 97.9% 0.44 78578 

 

Table S5: Accuracy and root-mean-squared error (RMSE) by sequencing technology 

and STR genotyping software at 40-fold average depth of coverage. 


