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INTRODUCTION

There appeared in 1883 an article by Barlow [1] in Nature
in which the problem of the densest packlng of spheres 1s
discussed from the polnt of view of the physical chemist.
While Thue [2,3] may be credited with the earliest mathe-
matical formulation of a packing problem, namely that of the
densest packling of equal circles in the plane it was not
until H. Minkowski [4] had laid a firm foundation to the
Geometry of Numbers that wider interest was stirred in prob-
lems of this type. The results of subsequent investigations
up to 1953 have been assembled by L. Fejes Toth [5]. The
particular question with which we deal in this thesis has
already been investigated by L. Fejes Toth [6] and C. A.
Rogers (7). However our approach to the problem and its
formulation, the methods we develop and the precise results
we obtain are distinct from those of the latter.

The line of research which is continued here was
initiated by H. Zassenhaus [8)] and has been successfully
applied by N. Smith [9] to the packing of the star-shaped
domain | xy | < 1.

Motivated by the necessity of a compactness property
we define the concept of a quasi-Jordan polygon in terms
of which we introduce a more general definition of a packing,

more general in that the usual definition 1s comprehended




as a special case. Our main result, stated in Theorem 2,
consists of an inequality involving the number of polints of
the packing and the ‘'area' and 'perimeter' of the quasi-
Jordan polygon relating to it. The proof of the inequality
proceeds by induction. It depends primarily on the possi-
bility of decomposition of the packing (Theorems 3, 4) which
in turn depends on the decomposability of a quasi-Jordan

polygon as discussed in Theorem 1.



CHAPTER I

A convex Jordan curve,r', with a cenEEE of symmetry, O,
defines a function/u: R* xR*—> R,};(ﬁ)&): "—%‘—%‘l where Pe]’
and C_)F=- N_’,—E_ , A€ R . /U ~hag the properties.. of a distance
function:

(a) /U(R,P») = O since lF}J =0, |oPl» €>0;

— —

(b) x4 (R,R) >0 for P#P, since lPRl>0, loPlZz €>0,

(c) /pL(R)&)i/L(Qﬁ)by the central symmetry of /7

(@) (P, 0) + p(R,0) > M(RP);

() M(PQ): M(RS)1r PB = RS

—> —>

(£) e (PR)=Au(Re) i PR=APQ (r>0) .

A proof of (d) may be found in Bonnesen-Fenchel [10]. The
function,/i, is generally termed the "Minkowskl distance”

or "radlal distance" defined byfﬁ. A point set, E, in R 1is
sald to be admissible with respect to /' if the ) -—distance
between any two points of E is > 1.

Definition. 1: A guasl-Jordan polygon, II, 1s defined as
the image of a Jordan polygon, K, with vertilces ﬁ,---)P; 1)
under a unique mapping,é?, into the plane, of the domain K*
bounded by K which carries the triangles, 1,,..., Ta.z , of
a vertex triangulation of K* barycentrically into triangles,

1],...,314,, not necessarily proper, subject to the conditions:

1) Hereafter subscrlpts shall denote least positive residues
modulo n or modulo such other integer as will be clear from
the text.



a) © preserves the orientation of the triangles T,, ... , T,.;
b) The sum of the angles at ©P, in the triangles T; for

which T, has P, as a vertex is less than or equal to 360°
It follows from the uniqueness of € and conditions a) and b)
that if T, and T, have a common vertex T, and T, have no
interior points in common.

In addition we define:
(1) P, - OP, as the vertices of I;
(11) as the angle,“P,, at P;, the sum of the angles at P, in
the triangles T; for which T; has P; as a vertex so that
0°< “P, < 360°;
(111) :f: /M(P Fov ) + (R, F ) as the y-length of I;
(iv) I* LJ T as the quasi-Jordan domain bounded by II;
(v) the sum of the areas of T‘,..., T,.., as the area of II*;
(vi) as a (simple) path in II*, the image under & of a
(simple) path in K*.
From the definition of © it follows in accordance with

(vi) that a polygonal path in I* is the image of a polygonal
path in K*¥. We shall, when referring to a qualified subset
of I*, mean the image under © of a subset, so qualified,

of K* as for example in (i) and (vi) above.

Theorem 1: A simple path j.: F,Q\...Q;ﬁb in the quasi-

Jordan domain bounded by'ﬁ ...E, determines a pair of gquasi-

— —

Jordan polygons, P ...%;Q,Q,, ...Q, and P Q, .. QP ...5,.



Proof: The pre-image of A in K#*, a Jordan antecedent
of I under a mapping © is a simple polygonal path with end
points f and P; and vertices, Q,..,Qs. Amongst the latter,
Qi) Qi, satisfy ©Q, = G (k=l..,r) while the remainder,

Q¢ .,8{, are contained in the sides of the triangles in

)
the vertex triangulation of K*. The points Q, ..., R, deter—
mine a refinement of the triangulation of K* which is fur-
thermore a vertex triangulation of K* and K%, the domains
into which A divides K*. ©K, and 6K, are quasi-Jordan polys:
gons with verticesF, . P,08s,6Qs,, ) 0Q and F,0Q, -0Qs, P, B
respectively for the conditions of Definition 1 are satis-
fied. It remains to show that:

lemma 1: IfF...FR is a quasi-Jordan polygon and
Eq,ﬁ,ﬁﬂ are collinear, E~~ E--'R is a quasi-Jordan poly-
gon.

Proof: Clearly we may assume that the Jordan antece-
dent K* of F...P, 1is convex. 1In the triangulation of K*
let T',..., T, be all of those triangles which contain R .
let R ff, R .7, be the boundary of UT., . We introduce
a vertex trlangulation of the domain Kf bounded by the convex

polygon ﬁqﬁ+,ﬂ'“.F§%, in the following manner. Let P ve

N

a vertex amongst E"'w fi,, which is nearest to P._, P.., then
R,,E+,ﬂk shall be a triangle of the triangulation. In a
similar way, if R# r—\| , & trilangle may be determined in the
domain bounded by P, P .. Pw| having as one of its sides ﬂ,,ﬁh

g Jd




and, 1f R#| in the domain bounded by . F,

Continuing in this way

TR

Iy’
triangle one of whose sides is E*'%k .
there results a triangulation of Kg with the following pro-
perty. There exists a mapping,€9/, of Kt which coincides
with © onfi, Py, 8-‘,...,}3,_‘,- which maps K* onto UT.” and
which maps the triangles of the new triangulation of K? onto
triangles which satisfy the conditlions of Definition 1. ILet
é;abe a mapping which coincides with 6 on K* - Kt and with
6’ on K*. The domain bounded by P .. ,F: -+ B 1s a Jordan
antecedent under the mapping 6” defining the quasi-Jordan
polygon P; P-:—fi

Definition 2: We define [P , a pécking with respect
to /!, as a pair (E,Nl) where E is a finite point set and I
is a quasi-Jordan polygon for which Ii* contains E and whose
vertices are contained in E subject to: If BQE E and the
straight segment, PQ, is a path in II* then/é( (P)Q)Zl where

/A i1s the Minkowski distance deflned by AN




.

CHAPTER II1

Our principal result 1s the following:

Theorem 2: Let /© be a convex, centrally symmetric
Jordan curve,//& the Minkowski distance defilned thereby and
g>=af)7t) a packing with respect to J" . Then there holds

the inequality:

A . )
(1) F(m) = AT T FL2n

where A(Il*) is the area of NI*, M(I) the /Li—length of I, A
the determinant of the critical lattice with respect to I
and n the number of points in E.

We first prove (Is)' To do so we shall require

Iemma 2: If T, a triangle with admissible vertices, P,
Q, R, has a pair of sides of’/pt—length greater than 1 there
exists a triangle T' wlth admissible vertices for which

4(T7) < $(T)

Proof: ILet //4(P,Q) > 1, ’/a(P,R) > 1. Since P lies
. outside /' (Q) and J'(R) there exists
a neighbourhood of P with the same
property and in particular a point P!

—
for which QE/ = AQP (O<A<0.
Iet T' be the triangle with vertices P! Q, R. We have

A(T*) < A(T*) and since

(P R) & m(PLR) + M(PR),
/“<P:R)47a(p:Q)§ (PP Fa(rq) +/<A(P,R)



and M(T7) ¢« M(T).
Hence ¥ (7)< F(T).

At a later stage we shall require also the following
lemma the proof of which is similar to the above.

Iemma _3: If K, a convex quadrilateral with vertices
P, Q, R, S admissible, has a pair of opposite sides and
both diagonals of‘/a ~length greater than 1 there exlsts a
quadrilateral K' with admissible vertices such that F(K’)<3(K)

Q
Proof: Iet/u(ga)>l,/A(5,R)>l o Q
and of “P+<S and ‘Q+“R 1let Figa.
“cQ+“R>7 ., Since Q and R each '

lie outside both /*(P) and /J7(S) - l

there exist neighbourhoods of Q P | ] S
and R with the same property and, in particular, points Q'
and R' for which F5’= XFS\ (Oélq) and &-E/ - Ak . The
quadrilateral, K', with vertices P, Q', R', S is again ad-
missible while A (K'*) < A(K*). Moreover, since
o (R,8) s/u(R,s) +/LL(R,R’))
a(Ry) # (@GP & (RE) # 1 (Q,00) + (D5 8)

so that e (q) P+ (R58) 4 m(QS R)HM(8.S) € M@ MBS 4RI (59
ana MK’ < M(K).
Hence 3(K7 <3(K) .

We shall speak of K under these circumstances as being
reducible. More generally, if [P- (@) T) 1s a packing in
which E contains n points and there exists a packing IP/= (E’,’]TQ




in which E' contains n points and J(T) < () we shall
say [P 1s reducible. Two packings (E,II) and (E',II') will be
called equivalent if F(1M)=3(7") , E and E' containing
the same number of points.

Returning to the proof of (Is) let T be a triangle with
admissible vertices, P, @, R. By Lemma 2 a necessary condl-
tion that T be 1rreducible is that at most one side of T is

of/p«—length greater than 1. Assume then thaf/«(BG);A(GZR)=L

Referring to Figure 3, () a4
smb N s

F(Te) = 5 X (9t)+ 27 (4 42)+2. ,

The second derivative with respect Fig.3.

p
to xa), o >
/ sinB noh /_y’ A u’
F(x) = S22 [xlyr-g) + 24 4]+ (490D //
since Y/, y”< O and y{,y; >0 Re(x,4)

1t follows that & () 4Q. Under the circumstances if T (x)
is irreducible either x = 0 or‘/«(Q,R) =|. If x =0 then
/a(P,Q) = 2 and (13) is satisfied with equality. If‘/U(Q,R) =1
then (Is) wlll be established with the proof of

Iemma 4: The lattice,/\ , generated by 6%, 63 for which
/M(O,P) =‘/M(O,Q) = /u(P,Q) = 1 is admissible.

Proof: ILet P, and P, be distinct points 1in A . Ve

2) We are assuming throughout that f'is twice differentiable.
The possibillity of removing this restriction may be made to
depend upon that of smoothing the vertices of a convex poly-
gon in a suitable manner and the application of the "Aus-
wahlsatz" of Blaschke [11].



-~10~

must show that//A(Pl;Pl) > 1. There exists P; € A\ such
that ET;I)’_., - X\0P, B,B, = A, 0Q, Aand A, rational integers
—> —

0, BB = A0Q, (P ,PB) = | X,Ju(0,Q)
so that M (P ,B ) > 1 since |1,| > 1. Similarly, if A, = 0,
/LA(P, :PA) = ll(l 2 1.

Let A, and X, both be different from zero. If |L | # |A,]
let |y < [Al. stnce ut(R,R)+M (R, R)> MR R,

/(/( (P“ P&) "— ’k}l 2 \A-'L,)

not both zero. If A4,

(P R) 2 2= Al 2
It remains to consider the case in which || = |A,]. In this
3 - =
case P, P, = /\'(OP + 0Q).
- > > P
Referring to Figure 4, QP = OP — 0OQ
— > = > Fig.be
while Q'P = Q'O + OP = 0Q + OP.
Bu.t/é((P,Q) = 1 and & Z 2

A(B;QY) + 4(P,Q) 2 M(Q1,Q) = 2.
Thus/A(P,Q') > 1 and/M(P, »P,) 2 |A|. Hence /u(Pl,P,\) > 1.
This completes the proof of (13).

Theorem 3: If there exists a polygonal path, A = Q R, --Q

in II* for which:
(a) the interior polnts of the path are contained in the
interior of 1,
(b) the vertices and end points are contained in E,
(c) the sides are of//&—length 1,

then there exists 7\° , & slimple polygonal path in II* with
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end points @, and Q, and vertices a subset of those of A
satisfying conditions (a) - (c).

Proof: If A 1s itself a simple path then A, ,=A . Other-
wise 1t suffices to show that there exists a polygonal path,
X', in T* with end points Q, and Q, , whose vertices are a
proper subset of those of ) and which satisfies conditions
(a) - (c).

Assume that , 1s not a simple path. Then at least one
of the following holds:
(1) A pair of vertices of A , say Q; and Q, (j+k) coincide .3
(11) A pair of sides of ) , say QJQJH and QuQ,, 1ntersect.4)
In case (1) certainly |k-}| > 1. ILet R >}, then Q.- QjQx Qs

/
has the properties of A . In case (i1} ey Ry,

let Q6Q6+l and Dk 4 intersect at X.

Assume that Q,J-Qh 1s not a path in II* and F]ss,
/Q(Qj, Q) £ 1. Since Q;XQ, is a path

in I* we deduce, from the triangles i1n

the triangulation of II* which cover the Q; ay

path QJXQk that since they do not cover QJQk there exlists a
vertex, E% , of I 1n the interior of the triangle QJXQk.
Since/A((Qi,R% ) <1, QJR% 1s not a path and there exists

a second vertex Ps, of II in the interior of the triangle

3) That 1s, they have the same pre-image in the Jordan ante-—
cedent.

4) The paths in the Jordan antecedent, of which Q;Q;,, and
QQp,, are the lmages, intersect.
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—> —>
Q;XB;s where Q;Fy = AQ;Ps , Psy € XQg. Continuing the
argument we find a vertex Ps of II for which Q;Rs is a path
in I* but «(Q;,Ps) < 1 which is a contradiction. Hence,
either‘/H(QJ,Qk) = 1 and Q;Q, 1s a path in I* or/%«(Qs,Qk) > 1.
But by the same argument//J(QJH,Qk+,) > 1 while
/“(QJ’QA) +/M(QJH ’QkH) < /“(QJ»'QJH) + /«(Qh’Qh-H) = 2.
Hence//A(QJ,Qk) = 1 and Q;Qy 1s a path in I*. In that
[k~j | > 1,letting R>j, Q, ... Q;Qk -+ Qr has the properties
of X
We shall say that a pair of points of E are linked 1if
there exlists a path in II* satisfying conditions (a) - (c)
of Theorem 3 which has this pailr of points as end points.
A simple path in II* with the properties (a) — (c) of Theorem 3
will be called a linkage (of the end points). Of parti-
cular interest wlll be the set of points of E each of which
is linked to a particular vertex. We shall denote the set
linked to Py by L (P, ).
Theorem 4: A necessary condltion that (E,II) be irre-
ducible is that either
(a) there is a vertex of I which is an interior point
of a slde of II and whose pre-image in the Jordan
antecedent, K*, of II* 1s a simple polygonal path
joining a vertex of K to an interior point of a

side of K°/,

5) A special case of this 1is realized, when the angle at a
vertex, P, 1is zero, in the vertex preceding or following P.
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(b) there 1s a linkage between a pair of vertices of I,
or (c) (E,II) is equivalent to a packing in which (a) or (b)

holds.

Proof: Iet us assume the contrary. The negation of (b)
implies that L(P.) N L () =@ (i#j3izhssj=hns)
where P, ,... P; are the vertices of II. Hence there exists for
each point Q;, of L (P;) a neighbourhood V(Q;,, €.) in the
interior of II no point of which is linked to a point of
E - 5((PL) - P, and in particular a neighbourhood V/(ﬁ,:éL)
of P, no point of which is linked to a point of E = J(P;) - P, - B,
Further, let 51 = d(E - {P:}, 1), the distance between these
two sets 1n the usaal sense save that only stralght paths
in II* between theilr respective points are to be considered.
ILet 3L= min{;Q(Rj,H ~ P P = EiRHﬂ )|j=l,.ws}. The nega-
tion of (a) implies dy> 0. Let &; = min{ &y 6y, w; .v,%,%g‘
A mapping, 7, , of E and I under which E - {(P,) — P, re-
mains fixed T;P, ¢ V/(P.,E,) and TP, T;Q;, = P:Q.r and which
maps II into O =P, +.. P;, (P )Py, ..». Ps induces a

i aa(Piey, TR)21, (TR, P2,
transformation of (E,I) into (Z'E, ZI) which%}s again a
packing provided 7;II is quasi-Jordan. Furthermore, nelther
(a) nor (b) holdsin T,I. We note in particular that if P, @
in E, PQ not a path in I, ;PQ 1s a path in (Z;lI)* then
clearlyl/“(rP,ZIQ)_z 1. Por, under the circumstances there

exlsts a vertex of NI a neighbourhood of which intersects PQ

and no point of which is linked to both P and Q.
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In a similar way, the negation of (a) and (b) leads to
a mapping T;; of Il and E defined by local variation of the
vertices P, and Rj which, 1f 73; 1 is quasi-Jordan, lnduces
a transformation of (E,I) which is again a packing and
neither (a) nor (b) hold in T I.

The existence of a local variation of the above type

under which II remains quasi-Jordan will be ensured if

‘PL < 360° (c=1,...,s ). et us suppose “P. = 360°. If
R

¢
/N(PL'.., :P(‘) >/b((P(: ’Pc'-fl ) rotation

ofPLalm@/ﬂ(Q,P“,)F(&+,)in

Fr  Figq.é.
that sense which decreases “P,, (see Y

Figure 6) clearly decreases both
A(T) and M(I) hence also F(I) which P
is a contradiction. Thus'/x(Pc_‘,Pé) = /u(Pé,Pé+,), in
which case ¥ (II) remains fixed under a rotation of P; but
continuance of such a variation leads to a packing, (E',I'),
in which (a) or (b) holds and for which F(n') = F(I),
i.e. to condition (c).
Assume then that “P, < 360° (c¢=!,...,5 ). It remains
for us to consider the case in which 0° < ‘R; < 360 (¢=1,-3),
There exists amongst the triangles of the vertex
triangulation, one of which two sldes are contained in I,
say P,..P,P;,4 for which ‘P, < 180°. For there exists,
certainly, a triangle with a pair of sides in Il say P%” P P$+,.

v

If ‘R% < 180° our assertion ¢s valid. Otherwise we may replace
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I, for the purpose of this argument, by I' = P, ..., PQﬁ P$H,.”,Ps
having the trlangulation of II with the triangle Pvf.RvP$+,
removed; Either a trlangle of the type we seek exists in 0!

or we modify it 1n the same way as I. Continuing in this

way we come to a polygon I" = Py Py ... Py, 1€{<ip<. <igr €S
having the triangulation of II with all those of the type

P%_,RpR%+, removed. There exists amongst the remalnder

&

one, say P; P ,and “B < 180° , which as a triangle

P
b 4 VY+)
in the triangulation of II 1s of the asserted type.

This argument provides for the existence of a pair of

P, P; say, for which ('PL < 180°

congsecutlive sides, P, , P Ll

L)

and neither P;

twa P~y a@nd PP, nor P, P; and P, P,

intersect. At least one of'/ﬂ(qu ,P.) =1, /a(Pg,P£+,) = 1
holds. PFor otherwise application of ILemma 2 contradicts
the irreducibility of (E,I). Iet//x(Pé,P¢+,) = 1. We dis-

tinguish two cases according as:
P

A) Ppr <7T

B) ‘Pi.-H 27C .

Case A). By application of Lemma 3, at least one of
/M(P;,‘,PL), //Q(PL+,,P£+1) = 1. Iet‘/u(PC,,,PL) = 1 and

assume//x(PL+‘,Pg+l) > 1. We studﬁathe variation in §(I)
Lt Piay

resulting from a variation of
P,, along P, P,;,, under which
//4(P¢_,,Pi) and u(P;,P:,, ) each
remain equal to one. Referring

to Figure 7, we note that }(H)
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is a linear function with
positlive coefficients of x
and f&), f(x)- XYa = Xl
Noting that
Xy — Xy = X
(1) ggz‘— Y, = R
foe) = Xk - xy,
Denoting;f%,-aﬁL by 3¢, gf respectively (¢ =t,2 ) we find:
cl Lx,
-F(:x:) = —Y% "‘(h- x"il/) =
From equations (1), dx .
T= Cy-4)
°(zx| p 2 4 7\~
and RO T [T I
o( AL, . dx
f(x) 2y 58— elGEVul + -yl T

24/ 4 et VAN
A TN (‘4 i

O(x" ‘5 /(‘4! 52-)

)3 (‘5:-) ‘}

Since, if X,>0 #(Il) would be reducible by translation of

Pm-a towards P,,, holding P, fixed, we may assume X,<oO

and hence gﬁ > 0 . Returning to the expression for £ ()

1f 420, ui~y{ >0; if  y/<o, 4/l-4i <o,
vy

thus — S48 oo,

Y- 4
it y4/zo , k-xyl/>o, (4/-43)°>0;
trogico,  gi< Eh g (reomned ik, kosyico;
also (y/~4{)%o; thus, since yi <o, (‘r g‘/“i)a(%) yr<o;
if yizo, (4i—4)’>o, %’ao; if yl<o, (4(-4i)<o, gi'<o

and, since k-xyj >o, R — x4} (%7_)2‘ ”

(‘é 4i-42)°
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Thus f“(x) < O , and, by a suitable choice of dx ,
‘}(H) can be decreased. Let us assume, then,thaﬁ/u(th)EH)=L
We consider now the variation in '}(H) resulting from
a varlation of P, and P.,, under whichl/u(PL, sP. ),
//L(PL,PL+,), /U(PL+,, P.,, )} remain equal to 1.
() is an increasing
linear function of @ where
(see Figure 8) @ = T? XY= XY,

Noting that

(2) ) X=X, = X=-1
(3) etz 4 s
(4) @ = (T+x|)‘(§+@'"1)‘2{-l .

Subject to the constraints

(2), (3) and

(x)ﬂ,) ) (xl)gl))(xﬁ.)gl) e J'(Pic1)
q7has one degree of freedom. Choosing X as independent
variable and with %Z‘,j: (¢ =1,2 ) as before we find:

Q") = (rrx)y" + 2(4-4) B2 + G0 yy (F2) + [0y 4] 5

In virtue of (2) and (3),

de L 8 An (gl G- ()

80 that
(5 @) = 2 (¥-4Ky-g(4-g)”
+ ['@ + Qr+x.)g,f- (x+x’)£4|/](ﬂ,./- /)" ;Lu

3 .0

eI B[O )
[0yl g 104 gyl s

ot.t,
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£

P,,,P, B, + “P, >x

P,y > 7t and we may inter-

It suffices to assume that g,z&), i.e.
for otherwise “P,, P, P, + °
change the roles of P; , and P;,, and so on. Assume then that
>0 .

By an argument similar to that used in the proof of
Theorem 3 we find that/;i(PLﬂ yPisr) > 1. For otherwise there
is a point of E in the interilor

of P,, B, P;yy Piyp - The line

parallel to P; P, through such
a point, say @, which 1is nearest e
to B, P,,, cuts at least one of B Piea
P, ,P, Py, By, say P, P,, at X. Clearly QP; is a path
in I* and, since /7(P;), /7(P,,,) intersect at P,,, and a
point outside P;_, P Py, Py, , u(Q,P;,,) < 1. Hence there
is a point Q' in the triangle P_ ,,QX for which in turn
/u(QﬁPL+L) < 1. Continuing in this way we arrive at a con-
tradiction.

Returning to (5), since LPbd P,P.,, < 180°, x,>X and
Since/u(Pa-, ,Pi ) > 1, TO>X and, by (2), 2> X,
Hence
(6) yi >y >yl
ana 2 (4 -9/ Xy-94iXyi-g/)'< 0.
As to the coefficients of g" s 3/ and gf we find:
since Y-x §T—:—,§i>—3i, Y-xX >0,

(7) y + Qr-x)%>o,



_lo-

Y+ Orx)gl > eerx )yl

y +@+x,)yl - (x+x)yl > (e +xyi-y/)
'=(-r+xz)((£1’—g,’)

>0,

and from (6), (7)

C(r0gs #4710y~ 40)*(yi~4/)7 >0

also, since

ke B <yl -mgleg <o

~ [yl + 4] (4= 40 (4i-41) >0
In that Lj,”, ﬂ/”’ 4’ < 0 we have established that
gD”@c) <O
In particular for %4 in the neighbourhood of zero we see
that
%13& Px) =;%—<p’(ac) = (F-x)yl +E+X)Y #0
Thuls, by a suitable choice, as to sign, of dx, 0[CP< O and
3‘(11) may be decreased.
case B). We again consider the variation in F(I)
resulting from a variation of P, and P, ., under which
//1(3;, ,PL),//%(PL,P¢+,) and’/a(P£+.,P¢+l) remain constant.
In this case ?}(n) is a linear function of ¥ where (see
Figure 10)
W (x)= r«j,-(x.gz—xzy.)
C“'x%)ﬁf"Cf’x)ﬁl

it

since

b
\
<

(2) x,-2,-=

() ya-d = 4
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Ve = [(re)ylvy ] - [yl + 4] E-% =7

(1) x<o0, y>0 = }{>%’>o; Y>42>0,; x,<0,
g~y
4l -47

hence y,<o; =x>0; 4/>yi>y ; >0
and  (v-x)y/+y >0,
1If xXsx, , T-x,s0, (-x)y +y4,<0;

if x>x,,

-4
2 x:>'3) (r—x,)%’+g,,<o5

(11) xz20,420 = yl>y; y'<o; =>x, , G-x)>0;
l:iz>o »
$ayi”

X, > X, Y-X <0 (T—x)g_,’ +4 >0;

if x,<0, y,<0, y/<o,; g,’.;g,j; Or-x)y'+4, <0}

if x30, 4<0,  4/>0;  4iry¢l ; _‘3;:_‘&)0.) (r-x)g/+ <0

-4/
if r-x 20, @-x)y/+y=o0,
ifr-x<o, i:-i: 4/, &-xlyg/+y >0,
if x,20, 4,20, 4/<0y ylzy4’ _'?‘_7_'%_' <o
$,<4,, X,>Xa, v-3>0, —,,é:—;-“z" g,’) -2yl +y<0,
e BEsy, ex)y Hy <o)
(111) x30,y<o = y¢>o; />yl ¢4>0; ylayf; %%?;’,»O;
if Xx,20, X<x,; v-%x>04 yYi<o 3 Q-x)yl+ y<o,

if x,<0, 'd.'>0‘, if v-x<o, 6‘—90)3.,’-}-14_40;

if r-x>o0, ot > >45 -y +y <oy

3¢ -2y,
if x>0, G@-2)y+y >0,
1f v-2¢, <0, 2 i'. ﬂ (T-x,)a_/ tY,>0

(1v) x<o, y<o = wy<o; ¢>ul; 4>y ®>xi>a0;

’ ~ys
o>yi>ygl, 374,
%L’ﬂ!

Y-x>0, (r-x)y/ +4 <0;

r-x,<0, {r-x)y’+y >0



Thus Y/(x) <0 when y>o and W) > 0 when y<o
Hence 7# can be decreased by varying P; so as to decrease
LPéPbﬂ IQ+;. This completes the proof of Theorem 4.

Turning to the proof of (In), let the points of E in
a packing [P = (E,I) be enumerated and further, since 4 (1)
is invariant under a translation of [P 1let the first point
be the origin of a rectangular coordinate system with res-
pect to which the remainder have coordinates (x,Y ), (%*z, §=),

-, (Xn., » Yna ). This provides a correspondence between
a packing and a point £ = (,4,,%,4as « ++)XmsYam) 1N R**

Since M(I) > 2 k(P ,B;), B ,P € E, if B B | »kn
where H = sup |OP|, Pe/*(0), then ¥ (I) > M) > n .

We may therefore confine our consideration to the hypercube,
S: lx;j¢ Hn, Iqlg kn (i=t0n-1).

The points, E , are further restricted by the conditions
which define a packing. Since these are all expressible as
weak inequalities to be satisfied by continuous functions
of the coordinates of the points of E, f)mﬂmn restricted to
S,is contained in the union, T, of finitely many closed sets.
Thus T 1s closed and, since furthermore 1t 1s bounded, 1t
is compact.

Consider & as a function of £ . Certainly it is
bounded below. It has therefore a greatest lower bound and

indeed assumes an absolute minimum at E},e T. It suffices

to prove In for the packing (E,,0,) corresponding to Fo.



—20~

Iet us particularize In to I corresponding to m, the

(n,m)
number of points of E not in II. We apply induction over the
index set {(n,m) | o <m g,n-s} and assume that the in-
equalities {I(n',m') | n* <n, m* <m; n* <n, m' g,m} are
true.

By Theorem 4, II satisfles one of the conditions (a), (b)
or (c) of that theorem and it 1s sufficient to assume either
(a) or (b) holds. The vertex of condition (a) or the linkage,
,X, of (b) divides (E_,,I,) into two packings (E‘,H‘) and

(EZ’HZ) for which in case (a)

M(TR ) + M(IL) = M(L,)

n_ + n,

, n+1 ,

in case (b)

M(I,)

+

=2
~~

=
Y

L}

M(II,) + 2M(\)

n, + n, n + n(d),

and in both cases

A(L,) + A(I,) A(I,) ,

where n 1is the number of points of E in E; ({=1/,2 ) and

n(A) the number of points of E in A . Clearly, n(A) = M(A) + 1.
Applying the inductional assumption to (E,,I,;), (E,,I,):

A(m) , M(T)
At g tl=>n

A(T,) M(Tl},_) S
Atz ttEh

Adding, we have in case (a):

lq(_,ro M(m) +2 2 ;
~#ZT) + = +2 2> N+
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and in case (b):

ﬂgﬁ) 4_%@ +MA)+2 2 n+n(X)=n+M(A) +1.

Thus 1in both cases:

)

A(TT) M ()

and {I(n',m')‘ n' <n, m' {m; n* <n, m g_m.; implies
I(n m)* In particular, as a speclal case of the above argu-
2
nt ee that {I 3 {n n implies I .
ment we s (n,0)] 3 <0 <nf implies Ir, o)

Having already established I the proof of Theorem 2 1s

(3,0)
complete.

Corollary (Theorem 2): Let (E,II) be a packing in which
(1) = n, the number of points of E, and I is a Jordan
polygon. There 1s a triangulation of II* by triangles with
vertices the points of E, sides of//%—length 1 and area each
+A

Proof: When n = 3 II 18 a triangle which, from the proof
of (15), has sides of/a-length 1 so that ﬁgﬂ‘ = 3'%"'
and AT =% &,

For n > 3, referring to Theorem 2 we find that the
possibilities (a) and (c) of that theorem do not apply since
II is a Jordan polygon. Hence there is a llnkage between a
palr of vertices of II which divides it into a palr of Jordan
polygons II, and @I, and the packing (E,II) into packings (E,,I,)
and (E,,II,). ILetting V be thg/xi-length of the linkage,

n, and n, the number of points of El and E, respectively we

{

have: '}-(TI’,) F '}(—n;): ﬁéﬂ+ﬁ_§j@ + V+2



v,

Eﬁ(%ﬂ)-+§}(ﬂ}) = N+ Y +l

= h,+ N,

Hence y-(nl) = ng (¢ =1,2 ) and the corollary is appli-
cable to I, and II,. If it is valid for II, and NI, it is
valid for II so that applying induction over the same index

set as in the proof of Theorem 2, the corollary 1s established.
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