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ABSTRACT 

Trophic interactions, in some form, exist in all natural communities; thus, understanding 

the factors that allow for the long-term coexistence of predators and their prey is an important 

first step towards the management of sustainable ecological systems.  It is well known that the 

presence of within-individual and within-species variation for traits that affect trophic 

interactions can have substantial impacts on community dynamics.  However, the generality of 

such effects has been obscured by disparate sources and trophic locations of traits as well as by 

the existence of many disparate traits that can exhibit variation.  In this thesis, I use mathematical 

models to compare the effects of distinct phenomena related to within-individual and/or within-

species variation.  I pay particular attention to their dynamical consequences and abilities to 

promote the coexistence of trophically linked populations.   

First, I assess whether the presence of within-species variation for defense traits can 

„rescue‟ entire communities that are being threatened by environmental change.  I compare the 

potential for evolutionary rescue (through genetic diversity) and plastic rescue (through 

phenotypic plasticity) by analyzing their differential ability to produce persistence and stable 

coexistence in model food webs.  Furthermore, my analyses consider whether these effects are 

dependent on the trophic location of variation.  I find that within-species variation for defense 

traits can rescue entire communities.  However, both the source and trophic location have 

significant impacts on the rescue potential of within-species variation.  Plasticity promotes 

persistence and stable coexistence more than genetic diversity; variation at the second highest 

trophic level promotes stability and persistence more than variation at the autotroph level; and 

more than variation at two trophic levels.    



xiii 

  

I then use models of bitrophic systems to investigate how different categories of plastic 

defenses affect model predictions.  In natural systems, there are three major categories of plastic 

defenses: pre-encounter defenses, post-encounter defenses, and post-consumption defenses.  

However, most investigations into the effects of plastic defenses (including the second chapter of 

this thesis) are limited to the dynamical consequences of a single category of defense.  

Furthermore, the few previous comparative studies that exist have produced conflicting results.  I 

show that plastic defenses can decrease the risk of extinctions due to population oscillations and 

that clear hierarchies exist at both low and high carrying capacities.  Pre-encounter inducible 

defenses are most likely to promote stable coexistence at low carrying capacities, whereas post-

encounter and post-consumption inducible defenses are most likely to promote stable 

coexistence at high carrying capacities.   

Finally, I investigate the dynamical consequences and prevalence of plasticity in 

predators.  The widely used Holling type 2 functional response assumes that the components of 

predation (i.e. attack rate and handling time) are unaffected by changes in prey density.  

However, a growing body of empirical and theoretical research suggests that plasticity in 

predators can allow these components to depend on prey density.  In this study, I explore a 

variety of functional response equations that correspond to situations where prey density-

dependent attack rates and/or handling times are likely relevant to natural systems.  Using a 

combination of theory and systematic review of published empirical datasets, I evaluate the 

prevalence and dynamical implications of these functional responses.  Of the 144 datasets that 

had previously been attributed to the type 2 functional response, AICc analyses indicate that 142 

datasets are best fit by consumption equations that incorporate prey density-dependent attack 

rates and/or handling times.  In terms of the community dynamics and stability properties of 
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systems facing nutrient enrichment, I find that some, but not all, models that incorporate prey 

density-dependent attack rates and/or handling times are capable of making categorically and 

fundamentally different predictions than models that incorporate the type 2 functional response.  

I interpret these findings to mean that predictions of frequent or inevitable destabilization may be 

overstated.  This investigation also highlights the importance of rechecking accepted principles 

in ecology. 

These studies indicate that within-individual and within-species variation for traits that 

affect trophic interactions may, in general, promote the persistence and stable coexistence of 

trophically linked populations.  However, taken as a whole, this thesis shows that proper 

evaluation of the dynamical consequences of variation critically depends on its origin, trophic 

location as well as the specific traits that exhibit variation.  
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RÉSUMÉ 

 Les interactions trophiques, de quelque forme, existent dans tous les communautés 

naturelles; donc, comprendre les facteurs qui permettent la coexistence des prédateurs et leurs 

proies à long-terme est une première étape vers la gestion de systèmes écologiques durables.  Il 

est bien connu que la présence de variation de trait intra-individuelle et intra-espèce qui affectent 

les intéractions trophiques peut avoir des impactes considérables sur la dynamique de la 

communauté.  Cependant, la généralité de tels effets a été obscurcie par des sources et locations 

trophiques de traits disparates et par l‟existence de traits qui démontrent ou qui créent de la 

variation.  Dans cette thèse, j‟utilise des modèles mathématiques pour comparer les effets de 

phenomènes distinctes liés à la variation intra-individuelle et/ou intra-espèce.  Je prête attention 

particulièrement à leurs conséquences dynamiques et leurs abilités de promouvoir la coexistence 

de populations reliées par le réseau trophique. 

Premièrement, j‟évalue si la présence de variation intra-espèce pour des traits de défense 

peut „sauver‟ d‟entières communautés qui sont menacées par des changements 

environnementaux.  Je compare le potentiel de sauvetage par l‟évolution (à travers la diversité 

génétique) et de sauvetage plastique (à travers la plasticité phénotypique) en analysant leur 

capacité différentielle de produire une stabilité dynamique et persistance dans des réseaux 

alimentaires modèles.  De plus, mes analyses considèrent si ces effets sont dépendent sur la 

localisation trophique de la variation.  Je trouve que la variation intra-espèce pour des traits de 

défense peut sauver d‟entières communautés.  Pourtant, la source et la location trophique ont des 

impactes significatifs sur le potentiel de sauvetage de la variation intra-espèce.  La plasticité 

favorise la stabilité et la persistence plus que la diversité génétique; la variation au deuxième plus 
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haut niveau trophique favorise la stabilité et persistence plus que la variation au niveau de 

l‟autotrophe, et plus que la variation à deux niveaux trophiques. 

 Ensuite, j‟utilise des modèles avec des systèmes bitrophique pour examiner comment des 

différentes catégories de défense plastique affectent les prédictions de modèles.  Dans des 

systèmes naturels, il y a trois majeur catégories de défense plastique: des défenses pré-rencontre, 

des défense post-rencontre, et des défenses post-consommation.  Néanmoins, la plupart des 

examinations dans les effects de défense plastique (incluant le deuxième chapitre de cette thèse) 

sont limités aux conséquences dynamique d‟une seule catégorie de défense.  De plus, les 

quelques études comparatives antérieures qui existent ont produit des résultats contradictoires.  

Je démontre que les défenses plastiques peuvent réduire les risques d‟extinction grâce aux 

oscillations de populations et que des hiérarchies distinctes existent à une basse et haute capacité 

limite.  Il est plus probable que des défenses pré-rencontres favorisent une stable coexistence à 

une basse capacité limite, tandis que des défenses post-rencontre et post-consommation ont une 

tendance de favoriser une stable coexistence à une haute capacité limite. 

 Finalement, j‟ai examiné les conséquences dynamiques et prévélence de plasticité dans 

les prédateurs.  La réponse fonctionnelle Holling type 2, largement utilisée, présume que les 

composants de prédation (i.e. taux d‟attaque et la durée de la manipulation) ne sont pas affectés 

par des changements dans la densité de proie. Toutefois, un nombre croissant d‟études 

empiriques et théoriques suggère que la plasticité dans les prédateurs peut permettre ces 

composants de dépendre sur la densité de proie.  Dans cette étude, j‟explore une variété 

d‟équations de réponse fonctionnelle qui correspond à des situations où le taux d‟attaque et/ou la 

durée de la manipulation dependants de la densité de proie sont pertinent aux systèmes naturels.  

En utilisant une combinaison de théorie et un examen systématique d‟ensemble de données 
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empirique publiées, j‟ai évalué la prévalence et l‟implication dynamique de ces réponses 

fonctionnelles.  Parmi les 144 ensembles de données qui ont été attribué à la réponse 

fonctionnelle de type 2, une analyse de AICc a indiqué que 142 ensembles de données sont 

mieux ajustées par des équations de consommation qui incluent le taux d‟attaque et/ou la durée 

de la manipulation dependants de la densité de proie.  En termes de dynamique de la 

communauté et de propriétés de stabilité de systèmes faisant face à l‟enrichissement en nutrients, 

je trouve que certains, mais pas tous, modèles qui intègrent le taux d‟attaque et/ou la durée de la 

manipulation dependants de la densité de proie, sont capable de faire de différentes prédictions 

catégoriques et fondamentales que les modèles que intègre la réponse fonctionnelle type 2.  

J‟interprète que nos résultats veulent dire que les prédictions de déstabilisation fréquente ou 

inévitable peuvent être surestimé.  De plus, ces recherches soulignent l‟importance de revérifier 

des principes acceptés en écologie. 

Ces études indiquent que la variation intra-individuelle et intra-expèce de traits qui 

affectent les interactions trophiques peut, en général, promouvoir la persistence et la coexistence 

stable de populations reliées par le réseau trophique.  Cependant, pris dans son ensemble, cette 

thèse démontre que l‟évaluation appropriée des conséquences dynamiques de variation dépend, 

de manière cruciale, sur son origine, sa location trophique et les traits spécifiques qui présentent 

de la variation. 
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CHAPTER 1 

INTRODUCTION 

 

 

This thesis is focused on the traits that control the interaction of predators and prey; 

specifically, how allowing these traits to vary within and among conspecific individuals affects 

the coexistence of trophically linked populations.  Throughout this thesis, I use theoretical 

predator-prey models to explore the boundaries of stable coexistence with respect to increased 

carrying capacity and natural mortality rate; these model parameters serve as proxies for 

important, yet extrinsic, forces that threaten many ecological communities.  The original research 

presented in this thesis is divided into three sections.  First, I assess how the trophic level and the 

source of intraspecific variation for anti-predator defensive traits affect persistence and stable 

coexistence in multi-trophic model communities.  I then investigate the dynamical consequences 

of different forms of inducible anti-predator defense traits.  Finally, I use a combination of theory 

and systematic review of empirical data to look at the prevalence and dynamical consequences of 

predators that exhibit prey density-dependent attack rates and/or handling times. 

 

1.1 Predator-Prey Interactions and Predictive Ecology 

In natural systems, many different biotic and abiotic factors can affect species‟ 

abundances and dynamics, such as seasonal temperature fluctuations (Hallett et al. 2004), diurnal 

cycles (Stich & Lampert 1981), disease (Ostfeld & Keesing 2000), intra-and inter-specific 

competition for resources (Schoener 1983; Chesson 2000), intraspecific competition for mates 
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(Dobson 1982), predation (Gause, Smaragdova & Witt 1936).  Despite the diversity of these 

forces, from a theoretical ecology standpoint, they can be generalized into two categories: factors 

that affect births and factors that affect deaths (Lotka 1925; Volterra 1926; Rosenzweig & 

MacArthur 1963).  Predator-prey interactions are particularly interesting because the birth of 

predators requires the death of prey, and therefore, predation creates a bridge between the 

aforementioned categories.  Furthermore, predators, in some form, exist in virtually all 

ecological systems (Hairston, Smith & Slobodkin 1960).  Thus, it is not surprising that predation 

has been, and continues to be, a major focus of theoretical ecologists who use models to 

illuminate key aspects of species interactions (Lotka 1925; Volterra 1926; Rosenzweig & 

MacArthur 1963; May 1973; McCann, Hastings & Huxel 1998; Fussmann 2008; Abrams 2009).  

While models have generated great insights (Fussmann et al. 2000; Yoshida et al. 2003; Yoshida 

et al. 2007; van der Stap et al. 2009), the ultimate goal of predictive ecology (i.e. the accurate 

prediction of dynamics in natural/field conditions), still seems almost impossible (Lawton 1999).  

Even in simple systems under highly controlled conditions, it is extremely difficult to make 

accurate predictions of trophic interactions (Fussmann et al. 2000; Yoshida et al. 2003).  It seems 

that the failures of current models must be due to some overlooked, but crucial, biological 

phenomena (Roy & Chattopadhyay 2007).  Thus, a critical step towards the goals of predictive 

ecology must be to use theory to identify and resolve the gaps in our knowledge of species 

interactions.  One such underexplored, yet important area, centers on the consequences of 

phenotype variation within an individual and/or between different individuals (Miner et al. 2005; 

Jones et al. 2009).  In this thesis, I explore this topic with respect to variation in traits that control 

the interaction of predators and prey. 
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1.2 Intraspecific and Intraindividual Variation 

Classically, the theoretical ecology framework treats all members of a population as 

functionally (and mathematically) interchangeable (Miner et al. 2005).  However, few, if any, 

naturally occurring systems consist of truly homogenous populations.  Instead, the expression of 

phenotypic traits may vary between different individuals and even within a single individual‟s 

lifetime; these phenomena are known as intraspecific and intraindividual variation, respectively 

(Skulason & Smith 1995; Yamauchi & Miki 2009; Briffa, Bridger & Biro 2013).  Ecologists 

have long been aware that age/stage structure has the capacity to generate intraspecific and 

intraindividual trait variation, and that such variation can govern population dynamics (Leslie 

1945).  However, more recently, there has been growing recognition of the profound effects 

generated by two other sources of trait variation: genetic diversity and adaptive phenotypic 

plasticity (Shimada, Ishii & Shibao 2010).   

Genetic diversity, the occurrence of multiple alleles within a population, can increase the 

number of phenotypes present in a population.  Adaptive phenotypic plasticity occurs when the 

expression of phenotypic traits is influenced by environmental cues in a way that allows 

phenotypes to better match environmental conditions, without causing any changes to a 

population‟s underlying genetic structure (Via & Lande 1985; Via et al. 1995).  An important 

theme of this thesis is the comparative dynamical consequences of genetic diversity vs. adaptive 

phenotypic plasticity for traits that control the interaction of predators and prey.   

Several important distinctions exist between genetic diversity and phenotypic plasticity.  

First, theory predicts that plasticity can be an exceptionally effective way for populations to 

adapt to environmental stress (reviewed in (Tollrian & Harvell 1999)) because plasticity can 

allow faster adaptations than genetic diversity (Chevin, Lande & Mace 2010).  Plasticity creates 
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both intraspecific and intraindividual variation, and therefore, traits may change within a 

generation.  On the other hand, genetic diversity is limited to the production of variation between 

different individuals, and changes in trait expression are always transgenerational (Cortez 2011; 

Yamamichi, Yoshida & Sasaki 2011).  Nevertheless, genetic diversity is a fundamental 

requirement for rapid evolution, which can result in phenotypic adaptation, even over fairly short 

time scales (Bell & Gonzalez 2009; Bell & Gonzalez 2011).  Second, for many asexually 

reproducing populations, plasticity may allow phenotypes that are maladapted to the current 

environment to reappear when conditions are favorable, whereas phenotypic extinction may be 

permanent if trait variation comes from genetic diversity (Kovach-Orr & Fussmann 2013).  

Third, through novel mutations and natural selection, genetic diversity may provide for a wider 

range of phenotypes than phenotypic plasticity (Barrett & Hendry 2012); furthermore, previous 

research has shown that genetic diversity can also give rise to wider ranges of phenotypic 

plasticity (Scheiner 1993). 

 Despite fundamental differences, both sources of phenotypic expression are highly 

prevalent (Via & Lande 1985) and can produce rapid phenotypic adaption, which may be 

especially important given the current period of unprecedented rapid global change.  

Specifically, many populations and species will be unable to cope „geographically‟ with 

environmental change by adjusting their distributions and must, instead rely on rapid phenotypic 

adaptation to be „rescued‟ from extinction (Chevin, Lande & Mace 2010; Barrett & Hendry 

2012).  Rescue by phenotypic adaptation occurs when the frequency of traits within a population 

changes in a way that increases the probability of population persistence.  While the role of 

evolutionary rescue for isolated populations is well known, Kovach-Orr & Fussmann (2013) 

showed that both genetic diversity and phenotypic plasticity can provide rescue of entire trophic 
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communities.  Rescue was accomplished by allowing for differences in the expression of traits 

that affect the interaction of predators and prey.   

Exploring the consequences of intraspecific and intraindividual variation for defensive 

and/or offensive traits is especially relevant to our understanding of biological systems because 

both variation and predator-prey interactions are present in virtually all biotic systems (Hairston, 

Smith & Slobodkin 1960; Via & Lande 1985).  In this thesis, I consider three categories of traits 

that can affect the interaction of predators and prey: genetic diversity for defense traits in prey 

(i.e., prey traits that reduce predator feeding ability), phenotypic plasticity for defense traits in 

prey, and phenotypic plasticity for offense traits in predators (i.e., predator traits that increase 

predator feeding ability).  Due to temporal constraints and because my study of plastic offense 

traits was largely driven by a systematic review of empirical data sets, none of which contained 

information on genetic diversity, this thesis does not include an investigation of genetic diversity 

for offense traits.   

Previous research has shown that genetic diversity for defense can alter community 

dynamics.  For example, Yoshida et al. (2003) found that traditional models could not account 

for the long out of phase oscillations observed in their highly controlled chemostat experiments; 

however, models that incorporated rapid evolution of defense traits in the prey species, Chlorella 

vulgaris, produced predictions that exactly matched experimental observations.  Genetic 

diversity for defense can also allow for increased species‟ persistence, if genetically distinct 

populations‟ abundances fluctuate asynchronously; this phenomenon is a form of compensatory 

dynamics known as "cryptic dynamics" (Jones & Ellner 2007).   

Both theory and experiments have shown that a specific form of phenotypic plasticity, 

inducible defenses, can significantly enhance the persistence and stable coexistence of small 
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food webs (Vos et. al. 2004a, van der Stap et. al. 2009).  Such stabilizing effects
1
 can be 

attributed to the ability of inducible defenses to create a negative feedback loop between predator 

density and prey defense: as predators become more abundant, prey exhibit greater defenses, 

which reduces the likelihood of overexploitation and prey escape (Ramos-Jiliberto & Garay-

Narvaez 2007; Ramos-Jiliberto et al. 2008; Kovach-Orr & Fussmann 2013).  

On the other hand, optimal foraging theory suggests that predators should try to 

maximize energy intake while minimizing energy output and risk (MacArthur & Pianka 1966).  

Thus, from an evolutionary perspective, the expression of predator traits should, at least partially, 

depend on prey (Abrams 1982).  Inducible offenses, which allow predator traits to better match 

environmental conditions, are typically considered in the context of traits that affect predators‟ 

ability to consume different prey types (Miner et al. 2005; Kopp & Gabriel 2006).  For example, 

the snail Lacuna variegata produces sharp teeth when its diet and habitat consist of pure kelp and 

blunt teeth when its diet includes epiphytes (Padilla 2001).  However, predator traits can also 

depend on the density of a single prey type (Jeschke 2006; Okuyama 2010; Kishida et al. 2014).  

For example, the adult form of the predatory salamander, Hynobius retardatus will 

metamorphose faster, develop a larger gape, and exhibit higher activity levels if, as a larva, it is 

exposed to high densities of its prey, Rana pirica (Kishida et al. 2014).  Kishida et al. (2014) 

also showed that the induction of these traits results in a 30% decrease in prey survival; 

therefore, these offenses are likely important factors in natural communities.  Nevertheless, 

previous empirical investigations of resource uptake and mathematical models of predator-prey 

dynamics, have regularly assumed that predator trait expression is constant and independent of 

                                                
1 In this thesis, I adopt a concept of stability that distinguishes between deterministic extinction, cyclic coexistence, 

and stable coexistence.  A detailed introduction follows in section 1.5. 
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prey density (Murdoch, Briggs & Nisbet 2003; Turchin 2003; Miner et al. 2005; Okuyama 

2010).   

This thesis expands on the aforementioned work and explores the dynamical 

consequences of genetic diversity for defenses, inducible defenses, and inducible offenses.  In 

my Chapter 2, I compare the effects of inducible defenses and genetic diversity for defense.  In 

Chapter 3, I explore different categories of inducible defense and find that they can have 

fundamentally different dynamical consequences.  In Chapter 4, I combine theory with a 

systematic review of empirical data to determine the prevalence and dynamical consequences of 

inducible offenses. 

 

1.3 Descriptions of Predation 

Solomon (1949) first proposed the term “functional response” to describe the specific 

relationship between the number of prey present and the number of prey consumed over a given 

time interval, per predator.  Although early functional response equations could qualitatively 

describe real predator-prey relationships, they were purely phenomenological (Gause, 

Smaragdova & Witt 1936; Ivlev 1961; Jassby & Platt 1976).  Such phenomenological 

descriptions eventually gave way to mechanistic models.  Mechanistic functional responses 

incorporate independently measurable components that correspond to specific aspects of the 

predation process; such as the rate at which predators encounter and successfully attack prey 

items or the amount of time required to physically manipulate and consume captured prey 

(Murdoch 1973).   

The most commonly used mechanistic functional responses are the Holling type 1, 2, and 

3 functional responses (Holling 1959; Holling 1966; Jeschke, Kopp & Tollrian 2002) (Fig. 1.1).  
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The type 1 functional response f 1 (x) equation produces a curve that is monotonic, linear, and 

saturating (Fig 1.1).  This functional response represents the simplest possible relationship 

between predators and prey: consumption increases linearly with prey density before sharply 

leveling off at a maximum consumption rate.  In terms of community dynamics, the type 1 

functional response is widely seen as the most stabilizing of the Holling type functional 

responses (Turchin 2003).  The equation for the increasing region of the type 1 functional 

response is presented here:  

𝑓1 𝑥 = 𝑎 𝑥           (1.1) 

where x is the density of the prey population.  The rate at which predators successfully attack 

prey, a, is assumed to be constant and independent of prey density (Murdoch 1973); additionally, 

a determines the slope of the type 1 functional response.  The linear nature of this functional 

response is due to the assumption that processes such as handling or digesting prey can occur 

without any reduction in time spent on active foraging (Jeschke, Kopp & Tollrian 2002).  

Although the belief that predators must have a maximum consumption rate is widely accepted 

(Morin 2011), many dynamical models that use the type 1 functional response, do not 

incorporate a maximum consumption rate (Turchin 2003).  As shown in Chapter 4, the absence 

of a maximum consumption rate can have meaningful impacts on model predictions; 

furthermore, this absence is likely responsible for the view that the type 1 functional response is 

extremely stabilizing
2
. 

The type 2 functional response f 2 (x) equation produces a curve that is monotonic, non-

sigmoid, and saturating (Fig 1.1).  In other words, consumption eventually approaches a 

                                                
2 type 1 functional responses that incorporate a maximum consumption rate would still promote stability more than 

type 2 functional responses. 
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maximum but does so at a decelerating rate.  The equation for the type 2 functional response is 

presented here: 

𝑓2 𝑥 =
𝑎 𝑥 

1+𝑎 𝑕 𝑥
           (1.2) 

where x and a follow the descriptions given above and h is the handling time, which is the 

amount of time required to physically manipulate and consume captured prey before searching 

for new prey items.  In the type 2 functional response, both a and h are assumed to be constant 

and independent of prey density (Murdoch 1973).  Because the type 2 functional response 

incorporates handling time, as the rate of consumption increases, predators must spend more 

total time handling prey and less total time searching for new prey.  Furthermore, predators are 

assumed to be perpetually hungry, but limited by the rate at which they handle prey and the 

maximum consumption rate is determined by 1/handling time.  Additionally, the type 1 and type 

2 functional responses are almost identical at very low prey densities (e.g. when x=0, the slope 

of both curves is equal to a. see lower left hand corner of figure 1.1) and/or very low handling 

times (e.g. when h=0, f 2 (x)  simplifies to   f 1 (x)) .  However, in terms of community dynamics, 

the type 2 functional response is seen the least stabilizing of the Holling type functional 

responses (Rosenzweig 1971; Murdoch, Briggs & Nisbet 2003; Alexander et al. 2012).      

 The type 3 functional response f 3 (x)  equation produces a curve that is monotonic, 

sigmoid, and saturating (Fig 1.1).  In other words, as prey density increases from 0, consumption 

first increases at an increasing rate, then switches to increasing at a decreasing rate, and finally 

approaches a maximum.  The most commonly used formulation for the type 3 functional 

response that incorporates handling time is: 

𝑓3 𝑥 =
𝑎 𝑥  𝑥 

1+𝑎 𝑥  𝑕 𝑥
  , where 𝑎 𝑥 = α 𝑥         (1.3) 
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and where x and h follow the descriptions given for Equation 1.2 and the attack rate a(x) 

increases linearly with prey density according to α x.  Attack rate may be positively correlated 

with prey density because as prey density increases, a decreasing proportion of prey are able to 

utilize refuges; thus, a higher proportion of prey are vulnerable to predation.  Additionally, 

optimal foraging theory suggests that predators may refrain from actively pursuing prey, when 

those prey are present at low density (MacArthur & Pianka 1966).  This is often attributed to 

narrow-minded predators that are actively pursuing a separate, more abundant, prey species 

(Heidarian, Fathipour & Kamali 2012); however, it is also possible that predators reduce search 

effort in an attempt to balance energy expenditure and energy intake (Abrams 1982).  Although 

the type 3 incorporates an increasing attack rate, it also incorporates handling time; therefore, as 

prey density increases, predators must spend more total time handling prey and less total time 

searching for new prey.  Furthermore, as seen in the type 2 functional response, handling time 

limitation in the type 3 functional response results in a maximum consumption rate that is equal 

to 1/handling time.  In terms of community dynamics, the type 3 is often seen as stabilizing and 

may even help prevent the overexploitation and eventual extinction of some species (Alexander 

et al. 2012). 

While the type 1, 2, and 3 functional responses appear to have very different functional 

forms, all three can be described by a single equation: 

𝑓(𝑥) =
𝑎 𝑥𝑝

1+𝑎 𝑕 𝑥𝑝
         (1.4) 

where  x, a, and h follow the descriptions given for Equation 1.2 and p is a variable that allows 

for scaling between the type 2 and 3 functional responses (i.e. when 0<p≤1, Equation 1.3.4 

simplifies to the type 2 functional response; when p>1, Equation 1.4 becomes the type 3 

functional response).  Additionally, when p=1 and h=0, Equation 1.4 simplifies to the type 1 
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functional response.  Although Equation 1.4 can be transformed into any of the three original 

Holling type functional responses, it does not address the concerns of many ecologists, who 

question the biological realism and relevance of the type 1 and 3 functional responses (Abrams 

& Allison 1982).  

 Although a large body of empirical work supports the existence of the type 1 functional 

response (Jeschke 2004), this evidence is often discounted for two reasons.  First, many predator 

prey interactions that are best described by the type 1 functional response, may actually be „truly‟ 

type 2 functional responses; this argument is based on the fact that at low prey densities, the type 

1 and 2 functional responses are almost indistinguishable.  In fact, one can easily find examples 

of experiments that produce linearly increasing consumption rates but not saturation (Mohr & 

Adrian 2000; Kushner & Hovel 2006; Parajulee et al. 2006; Long & Whitefleet-Smith 2013).  

While this is only circumstantial and inconclusive evidence against the type 1 (e.g. the majority 

of type 2 functional response datasets also fail to test prey densities that cause saturating 

consumption (Kovach-Orr et al. unpublished manuscript), it does cast doubt on type 1 functional 

responses.  Second, only one class of predators, filter feeders, has been shown to exhibit type 1 

functional responses (Jeschke 2004).  However, less than half of filter feeder species actually 

exhibit type 1 functional responses (Jeschke 2004).  Thus, it seems highly likely that the 

prevalence and therefore, relevance, of the type 1 functional response has been historically 

overestimated.  

 Like the type 1, the type 3 functional response has received support from [an albeit 

smaller body of] empirical studies (Jeschke 2004).  It is widely accepted that sigmoid functional 

responses (e.g., the type 3) play important roles in complex systems (e.g., multiple prey species, 

spatial heterogeneity, etc.).  However, the type 3 functional response has been criticized as being 
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unrealistic in more simple systems (i.e. bitrophic food chains in a homogenous environment) 

(Abrams & Allison 1982).  Instead, the type 2 functional response is favored as the most 

reasonable description of consumption in these systems (Murdoch, Briggs & Nisbet 2003; 

Turchin 2003).  This represents the dominant view that the components of the functional 

response (i.e. handling time and attack rate) are rigid, unchanging, constants (Murdoch, Briggs & 

Nisbet 2003; Turchin 2003).  Nevertheless, there is growing sentiment that these rigid 

components are being used for historical reasons or out of convenience, which has lead 

researchers to question if these components actually are constants (Jeschke 2004; Fussmann, 

Weithoff & Yoshida 2005; Jeschke 2006; Okuyama 2010; Braza 2012).  It is particularly 

important to address such concerns because terms that can serve equally well as descriptors of 

species interactions frequently lead to drastically different outcomes in a dynamical context 

(Fussmann & Blasius 2005).  In this thesis, I first investigate the consequences of allowing 

evolutionary and plastic change to prey traits that control the components of the type 2 functional 

response.  I then combine theoretical analyses with a systematic review of empirical data to 

determine the prevalence and dynamical consequences of inducible offenses that result in prey 

density-dependent attack rates and/or handling times.  

 

1.4 Base Model 

Ecologists use mathematical models to formalize specific aspects of species interactions- 

for instance, the uptake of prey by a predator, to predict population dynamics within 

communities of interacting species, and to gain insight into complex natural processes and 

systems.  Such models are created by making simplifying assumptions that allow for faster, 

cheaper, and more convenient model analysis.  However, extremely simple models, such as the 
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Lotka-Volterra model of bitrophic food chains, are easy to analyze, but incapable of 

demonstrating real biological patterns, and therefore, offer only limited insight into real 

biological systems (Turchin 2003).  Thus, the utility of simplifying assumptions must be 

balanced with the need for models to accurately reflect nature.  The simplest predator-prey 

model that is capable of realistic dynamic behavior, is often believed to be the classical 

Rosenzweig-MacArthur (R-M) model of bitrophic food chains (Rosenzweig & MacArthur 1963; 

Turchin 2003; Fussmann & Blasius 2005).  The theoretical work presented in this thesis is 

largely based on the R-M model, which is presented here: 

d 𝑥

d𝑡
= 𝑥  𝑟  1 −

𝑥

𝐾
 −

𝑎 𝑦 

1+𝑎 𝑕 𝑥
        (1.5a) 

d𝑦

d𝑡
= 𝑦  

𝜀 𝑎 𝑥 

1+𝑎 𝑕 𝑥
−𝑚𝑦          (1.5b) 

where the prey x, experience a maximum growth rate r, and grow logistically to a carrying 

capacity K.  Predators y, consume prey with a Holling type 2 functional response (i.e. Equation 

1.2) (Holling 1966), which has attack rate a and handling time h.  Predators convert prey 

biomass with efficiency ε and experience a natural mortality rate my . 

From a historical standpoint, the R-M model serves as both the standard for bitrophic 

analyses and the foundation for more complex community models (McCann & Yodzis 1994; 

Fussmann & Heber 2002).  In addition to being widely used and accepted, the R-M model 

framework is advantageous because it allows for straightforward evaluation of the relationship 

between stable coexistence and the extrinsic factors that control prey carrying capacity and 

natural predator mortality rates (Vos et al. 2004).   

Carrying capacity and natural mortality rate are particularly relevant for three reasons: 

First, given the current rate of global environmental change, it is important to explore how 
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ecological communities may respond to increased environmental stress (Bell & Gonzalez 2009; 

Barrett & Hendry 2012).  Increases in natural mortality rates are the most general population-

level effect of increased environmental stress (such as flooding, oil spills, aquatic acidification, 

pesticides, or any other factors that increase mortality).  Carrying capacity is a proxy for nutrient 

enrichment, a major environmental change in many aquatic ecosystems due to increased 

fertilizer run-off (Tilman et al. 2001).  Furthermore, the bottom-up effects of nutrient enrichment 

can destabilize predator prey dynamics, a phenomenon known as the “paradox of enrichment” 

(Rosenzweig 1971).   

Biologically, destabilization due to enrichment occurs through the mechanism of “prey 

escape”; whereby top down control is too weak to prevent nutrient enrichment from causing an 

increase in prey density, which subsequently leads to an unsustainably large predator density; 

this eventually results in a small predator population that is unable to exert significant top down 

control on prey (Turchin 2003).  Rosenzweig (1971) uncovered this phenomenon using graphical 

analysis of population zero net-growth isoclines (ZNGI).  Such ZNGIs depict how the population 

densities of predators and prey affect the growth rates of predators and prey.  The prey ZNGI 

approximates an inverted parabola, where predator densities above the prey ZNGI cause a 

reduction in prey density and predator densities below the prey ZNGI cause an increase in prey 

density.  It is important to note that for any given predator density, increases and decreases in 

prey density can also potentially affect prey growth.  On the other hand, predator density has no 

effect on the predator ZNGI;  predators experience positive growth for all prey densities above 

the predator ZNGI and negative growth for all prey densities below the predator ZNGI.  The 

intersection of the prey ZNGI and predator ZNGI determines the equilibrium densities of each 

population.  When this intersection occurs to the right of the maximum of the prey ZNGI, the 
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system will eventually exhibit stable coexistence of predators and prey.  However, when the 

intersection occurs to the left of the maximum of the prey ZNGI, the system will exhibit sustain 

oscillations or unstable coexistence.  One possible explanation is that intersections to the left of 

the maximum allow for a larger range of predator and prey densities for which predators and 

prey simultaneously experience positive or simultaneously experience negative growth rates; and 

that this, in turn, enables predators and prey to more easily “overshoot” their equilibrium 

densities.   

Second, because prey “escape from the control of predators”, changes to the background 

mortality rate of predators can have significant impacts on how systems respond to enrichment 

(Vos et al. 2004).  However, this relationship is non-linear and in many cases unintuitive; 

therefore, it is necessary to evaluate these forces simultaneously (Vos et al. 2004; Kovach-Orr & 

Fussmann 2013). 

Third, while the paradox of enrichment was original conceived as the unintuitive result 

that adding nutrients to a system could result in population oscillations, and therefore, lower 

minimum densities (Rosenzweig 1971; Roy & Chattopadhyay 2007), researchers have also been 

puzzled by the significant discrepancy between model predictions and observations of natural 

systems (Jensen & Ginzburg 2005).  Destabilization due to enrichment is readily observed in R-

M based models and simple laboratory communities (Fussmann et al. 2000; Becks et al. 2005), 

however, more complex natural systems rarely, if ever, exhibit the predicted dynamics (Jensen & 

Ginzburg 2005; Roy & Chattopadhyay 2007; Becks & Arndt 2008).  Instead, natural systems are 

relatively stable in the face of nutrient enrichment (Murdoch et al. 1998; Vos et al. 2004; Jensen 

& Ginzburg 2005).   
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The mismatch between observations of natural systems and model predictions has 

received a great deal of attention over the past 40 years (Jensen & Ginzburg 2005) and it is now 

accepted that discrepancies must be due to certain phenomena which are absent in highly 

simplified systems (Roy & Chattopadhyay 2007).  In fact, many theoretical and experimental 

model systems that more accurately reflect field observations do so by allowing certain traits to 

vary within and/or between individuals.  However, these advancements have relied on 

incorporating diverse phenomena, such as spatial heterogeneity (Scheffer & Deboer 1995), 

inducible defenses (Vos et al. 2004), genetic diversity (Mougi & Iwasa 2011), inedible prey 

(Grover 1995), unpalatable prey (Genkai-Kato & Yamamura 1999), and predator interference 

(Arditi et al. 2004) into the R-M model.  Because these phenomena represent distinct biological 

processes, it is highly likely that they may promote stable coexistence to different degrees and 

over different ranges of conditions.  Therefore, in order to understand natural systems, we must 

thoroughly explore each of these phenomena.  While ecologists have made great strides in some 

areas, research is only beginning in others; furthermore, we still know very little about their 

comparative effects.  This is especially true in multitrophic models; however, even in bitrophic 

systems, many phenomena remain underexplored.  In thesis, I first compare the effects of 

different sources (i.e., genetic diversity vs. phenotypic plasticity) and trophic locations of defense 

traits that vary between conspecific individuals.  I then use bitrophic models to explore how 

different categories of plastic defenses (i.e. inducible defenses) affect the stable coexistence of 

predators and prey.  In my final research chapter, I explore the prevalence and dynamical 

consequences of intraindividual inducible predator offenses. 
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1.5 Notions of Stability 

One of the principal concerns of ecologists is the stability of populations and 

communities (MacArthur 1955).  This interest often stems from the perception that in natural 

settings, instability is correlated with negative ecosystem effects such as species invasions (Elton 

1958), loss of biodiversity (Tilman 1996), extinctions (Inchausti & Halley 2003), and reduced 

ecosystem productivity (Lehman & Tilman 2000).  However, creating a unified definition of 

“stability” has proven to be extremely difficult because stability can exist at different levels (e.g., 

population vs. community stability) and in many different forms (Ives & Hughes 2002).  

Previous studies have used stability metrics based on ecosystem productivity (Tilman 1996), the 

persistence, resilience, and/or coefficient of variation of genotypes and/or species abundances 

(Huisman & Weissing 1999; McGrady-Steed & Morin 2000; Descamps-Julien & Gonzalez 

2005; Rooney et al. 2006; Ives & Carpenter 2007), and the range of environmental conditions 

where communities exhibit different system behaviors (i.e., stable coexistence
3
, cyclic 

coexistence, chaos, and deterministic extinction) (Gonzalez-Olivares & Ramos-Jiliberto 2003; 

Vos et al. 2004; Ramos-Jiliberto, Duarte & Frodden 2008; Ramos-Jiliberto et al. 2008).    

Conceptually, it is easy to understand that these metrics are not interchangeable and a 

system can be classified as “stable” by one metric and “unstable” by another.  For example, 

Huisman & Weissing (1999) showed that under some conditions, chaotic population dynamics 

can lead to the coexistence of many different competing species of phytoplankton.  Using 

definitions based solely on community level persistence or ecosystem productivity, this system 

would likely be classified as “stable”; however, using definitions that consider system behaviors 

and/or species abundance, this system would be classified as “unstable”.  Therefore, one must 

                                                
3
 In Chapter 2, I use the term “dynamic stability” in place of “stable coexistence”.  Prior to the publication of 

Chapter 2, I was not aware of the ambiguity associated with the term “dynamic stability”. 
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cautiously chose the definition of stability that is most appropriate for the system and questions 

at hand. 

In this thesis, I consider stability and instability in terms of the range of environmental 

conditions that allow communities of predators and prey to exhibit different system behaviors.  I 

pay particular attention to stable coexistence
4
 because previous research indicates that in natural 

settings, temporally stable populations tend to have less of an extinction risk than oscillating 

populations (Pimm, Jones & Diamond 1988; Inchausti & Halley 2003).  I focus on the 

community level because organisms rarely exist in single, isolated populations; instead, they 

exist in assemblages of populations and trophic levels.  While it is important to understand the 

theoretical basis for the persistence and stability of single populations (e.g. evolutionary rescue), 

exploring stability at the community level more realistically reflects the conditions that 

organisms face in the wild.  As detailed in Section 1.4, currently, nutrient enrichment and 

increased natural mortality are major issues facing ecological systems.  Understanding the 

mechanisms that can allow communities to be robust to a wider range of these environmental 

stressors is extremely important given our current rate of global environmental change. 

 

1.5.1 Evaluation of Stability (Bifurcation Theory) 

 In this thesis, I am primarily interested in three system behaviors: deterministic 

extinction, cyclic coexistence, and stable coexistence.  Bifurcations are simply the boundaries 

between these regions of fundamentally different dynamics (Vos et al. 2004).  For example, the 

region of stable coexistence is separated from the region of deterministic predator extinction by 

the transcritical bifurcation.  On the other hand, the region of stable coexistence is separated 

                                                
4 In Chapter 2, I also consider “persistence” which I define as the cyclic coexistence of populations that maintain 

minimum densities significantly above 0. 
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from the region of cyclic coexistence by the supercritical Hopf bifurcation.  Bifurcation diagrams 

offer a way to visualize how these boundaries change across multiple dimensions.   

Recently, there has been growing interest in the relationship between carrying capacity 

and the breadth of stability, i.e. the range of mortality rates where stable coexistence occurs at a 

given carrying capacity (Kretzschmar, Nisbet & McCauley 1993; Vos et al. 2004; van Voorn et 

al. 2008; Kovach-Orr & Fussmann 2013) (Fig. 1.2).  The breadth of stability can also be thought 

of as the distance between certain bifurcations (e.g., the Hopf and the transcritical bifurcations), 

at a given carrying capacity.  Previous research has shown that the specific nature of this 

relationship can be used to classify models into fundamentally different categories of model 

stability known as “weak”, “strong”, and “complete” stability (Kretzschmar, Nisbet & McCauley 

1993; van Voorn et al. 2008).  Weak stability occurs when the breadth of stability decreases, and 

eventually approaches 0, as carrying capacity approaches infinity (Fig. 1.2 a, b).  It is well 

known that the classic Rosenzweig-MacArthur model predicts weak stability for bitrophic food 

chains (Rosenzweig 1971; Vos et al. 2004; van der Stap, Vos & Mooij 2007; Kovach-Orr & 

Fussmann 2013).  

Strong stability occurs when the breadth of stability is unaffected, or even increases, as 

carrying capacity is increased (Fig. 1.2 c, d) (Kretzschmar, Nisbet & McCauley 1993; Vos et al. 

2004; van Voorn et al. 2008).  Strong stability has been predicted by models that incorporate 

phenomena such as inedible prey where edible prey maintain a constant percentage of total prey 

density (Kretzschmar, Nisbet & McCauley 1993), inducible defenses (Vos et al. 2004), and 

invulnerable prey (Abrams & Walters 1996).  Complete stability can be seen as the limit case of 

strong stability, in that complete stability occurs when systems do not exhibit limit cycles 

anywhere in the mortality-carrying capacity parameter space (Fig. 1.2 e).  Complete stability has 
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been predicted by models that incorporate constant proportion prey refuges (Maynard Smith 

1974) but see (McNair 1986); wasteful killing, where predators kill prey with a type 1 functional 

response, but consume prey with a type 2 functional response (Turchin 2003); and inedible prey, 

where edible prey maintain a fixed population density and all nutrients above some value are 

absorbed by the inedible prey (Grover 1995).  

While stable coexistence in systems exhibiting complete stability is generally more 

robust to parameter choice (i.e., cyclic coexistence does not exist in the mortality-carrying 

capacity parameter space) than stable coexistence in systems that exhibit strong stability 

(although see (McNair 1986)), both forms of stability allow for stable coexistence as carrying 

capacity approaches infinity.  On the other hand, the distinction between weak and 

strong/complete stability is of special interest because the classic R-M model predicts weak 

stability for trophic systems, whereas stable coexistence in natural communities is generally 

robust to changes in carrying capacity (Murdoch et al. 1998).  Finding and understanding the 

mechanisms that may have allowed natural systems to tolerate past and present environmental 

stress is a crucial first step towards mitigating the consequences of future environmental change.   

Bifurcation analysis is a powerful tool that can provide information about ecologically 

important attributes such as the strength and endpoint of stabilization as well as the parameter 

ranges for which stabilization occurs.  Through bifurcation analysis, previous research has 

identified phenomena that may promote stable coexistence in natural systems, such as genetic 

diversity (Yamamichi, Yoshida & Sasaki 2011), reciprocal plasticity (Mougi & Kishida 2009), 

negative density dependence (Ramos-Jiliberto 2003), in addition to the aforementioned 

phenomena that produce strong and/or complete stability.  In my second and third chapters, I use 

bifurcation analysis to show that different types of defense traits, as well as different sources and 
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trophic locations of variation for those traits, can have considerable influence on stable 

coexistence in the mortality-carrying capacity parameter space.  I highlight some of the 

conditions where these different traits, sources, and trophic locations are most and least effective 

at promoting stable coexistence.  In my fourth chapter, I use bifurcation analysis to show that 

empirically supported inducible offenses can promote stable coexistence and even strong 

stability in the mortality-carrying capacity parameter space.   

 

1.6 Chapter Overview  

Although we are beginning to understand how genetic diversity and phenotypic plasticity 

influence community dynamics, we still know very little about the comparative effects of their 

many possible manifestations.  Previous work on the dynamical consequences of intraspecific 

variation for prey defenses often focused on the effects of a single source of variation and single 

type of prey defense; while this practice may be suitable for the description of a specific 

empirical predator-prey interaction, it cannot be employed to establish some degree of generality.  

Furthermore, the few studies that have directly investigated the comparative effects of genetic 

diversity and phenotypic plasticity have focused on variation at a single level in simple food 

chains and webs.  On the other hand, inducible offenses have received far less attention and 

while theory predicts that such offenses should be relatively common, no study has used 

empirical data to address the general prevalence of this phenomenon.  Throughout this thesis, I 

investigate the dynamical consequences of intraindividual and intraspecific variation for traits 

that affect the interaction of predators and prey.  Specifically, I compare trophically linked 

communities that have homogenous populations vs. communities consisting of populations that 

possess: different sources and trophic locations of variation for prey defenses (Chapter 2); a 
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single source of variation (phenotypic plasticity) but different categories  of prey defenses 

(Chapter 3); inducible offenses (Chapter 4).  Additionally, in Chapter 4, I use empirical data 

taken from a wide range of systems to investigate the prevalence of inducible offenses. 

 In Chapter 2, I compare the potential for evolutionary rescue (through genetic diversity) 

and plastic rescue (through phenotypic plasticity) by analyzing their differential ability to 

produce persistence and stable coexistence in model food webs.  I also evaluate how the trophic 

location of variation affects rescue potential.  I find that plasticity promotes stable coexistence 

and persistence more than genetic diversity.  Furthermore, stable coexistence of genetically 

diverse populations occurs for a limited subset of defense-cost combinations.  Contrary to the 

conclusions of previous studies, variation at the second highest trophic level promotes stable 

coexistence and persistence more than variation at the lowest trophic level; and more than 

variation at two trophic levels.  Our study shows that proper evaluation of the rescue potential of 

intraspecific variation critically depends on its origin and trophic location. 

 In Chapter 3, I assess whether different categories of inducible defenses produce 

disparate dynamical consequences for bitrophic communities.  This study is a result of the 

emergence of different mathematical formulations of inducible defenses that reflect different 

mechanistic views about how defenses affect predator-prey interactions.  Although two previous 

studies had partially addressed this topic, they produced conflicting results.  Nevertheless, our 

results indicate predictable, definitive, and consistent relationships between the category of 

inducible defense, the effectiveness of defense, and stable coexistence in the mortality-carrying 

capacity parameter space.  Furthermore, we show that inducible defenses can decrease the risk of 

extinctions due to population oscillations and that clear hierarchies exist at both low and high 

carrying capacities.  This study does not address the dynamical consequences of genetic diversity 
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for different categories of defenses.  As I show in Chapter 2, for most cost-benefit combinations, 

genetic diversity for defense results in the cyclic coexistence of predators and prey; however, for 

some cost-benefit combinations, genetic diversity can produce high levels of stable coexistence.  

Therefore, a true comparison must test many different cost-benefit combinations; this was 

determined to be too computationally and temporally expensive. 

 In Chapter 4, I explore inducible offenses using a variety of functional response equations 

that incorporate prey density-dependent attack rates and/or handling times.  Using a combination 

of theory and systematic review of published empirical datasets, I evaluate the prevalence and 

dynamical implications of these functional responses.  Of the 144 datasets that had previously 

been attributed to the type 2 functional response (a model that does not incorporate inducible 

offenses), AICc analyses indicate that 142 datasets are best fit by consumption equations that 

incorporate prey density-dependent attack rates and/or handling times.  In terms of the 

community dynamics and stability properties of systems facing nutrient enrichment, I find that 

some, but not all, models that incorporate prey density-dependent attack rates and/or handling 

times are capable of making categorically and fundamentally different predictions than models 

that incorporate the type 2 functional response.  I interpret these findings to mean that predictions 

of frequent or inevitable destabilization may be overstated.  This study also highlights the 

importance of rechecking accepted principles in ecology. 
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1.8 Figures  

 

 

Figure 1.1.  The Holling type 1 (black-solid line), 2 (grey-dashed curve), and 3 (black-dashed 

curve) functional responses.  Prey density (x) is shown on the x-axis.  Consumption ( f (x) ) is 

shown on the y-axis.  Parameterizations are as follows a=0.5, h=1. 

 

 

  



- 36 - 

 

 

Figure 1.2.  Bifurcation diagrams of a bitrophic food web.  Carrying capacity (K) is shown on 

the x-axis, and mortality (my) is shown on the y-axis.  The white area is the region of 

deterministic predator extinction.  The black area is the region of stable coexistence; it is 

separated from the region of predator extinction by the transcritical bifurcation; above the 

transcritical bifurcation, the predator cannot maintain positive growth.  The grey area is the 

region of cyclic coexistence (i.e. limit cycles); it is separated from the region of stable 

coexistence by the Hopf bifurcation.  The range of mortality rates where stable coexistence 

occurs (i.e. the size of the black area) at a given carrying capacity is known as the “breadth of 

stability”.  (a) Weak stability: as carrying capacity approaches infinity, the breadth of stability 

approaches 0.  (b) Weak stability: the presence of genetic diversity has lead to a second band of 



- 37 - 

 

stable coexistence: however, as carrying capacity approaches infinity, the breadth of stability for 

both bands approaches 0.  (c) Strong stability: as carrying capacity approaches infinity, the 

breadth of stability approaches a value greater than 0, however, limit cycles exist for some 

parameter values.  Furthermore, for any given mortality rate, increasing carrying capacity will 

eventually cause sustained oscillations.  (d) Strong stability: like figure 1.2c, the breadth of 

stability approaches a value greater than 0; however, for some mortality rates, increasing 

carrying capacity cannot cause sustained population oscillations. (e) Complete stability: limit 

cycles are absent for all combinations of carrying capacity and mortality.   

 

 

. 
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CHAPTER 2 

EVOLUTIONARY AND PLASTICITY RESCUE IN MULTITROPHIC MODEL 

COMMUNITIES 

 

Caolan Kovach-Orr & Gregor F. Fussmann (2013).  Evolutionary and plasticity rescue 

in multitrophic model communities.  Philosophical Transactions of the Royal 

Society B: Biological Sciences. (368) 1610. DOI: 10.1098/rstb.2012.0084   

 

 

Note: Chapter 2 was originally published in a British scientific journal; in order to maintain 

continuity with that publication, British spellings are used throughout this chapter. 

 

2.1 Abstract 

Under changing environmental conditions, intraspecific variation can potentially rescue 

populations from extinction.  There are two principal sources of variation that may ultimately 

lead to population rescue: genetic diversity and phenotypic plasticity.  We compared the 

potential for evolutionary rescue (through genetic diversity) and plastic rescue (through 

phenotypic plasticity) by analysing their differential ability to produce dynamical stability and 

persistence in model food webs.  We also evaluated how rescue is affected by the trophic 

location of variation.  We tested the following hypotheses: (i) Plastic communities are more 

likely to exhibit stability and persistence than communities in which genetic diversity provides 

the same range of traits.  (ii) Variation at the lowest trophic level promotes stability and 



- 39 - 

 

persistence more than variation at higher levels.  (iii) Communities with variation at two levels 

have greater probability of stability and persistence than communities with variation at only one 

level.  We found that (i) plasticity promotes stability and persistence more than genetic diversity, 

that (ii) variation at the second highest trophic level promotes stability and persistence more than 

variation at the autotroph level and (iii) more than variation at two trophic levels.  Our study 

shows that proper evaluation of the rescue potential of intraspecific variation critically depends 

on its origin and trophic location.  

 

Key words: Evolutionary rescue, phenotypic plasticity, genetic diversity, inducible defense, 

rapid evolution, multitrophic communities.  
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2.2 Introduction 

In the current period of unprecedented rapid global change, ecological communities are 

experiencing abrupt and sustained environmental stress.  Many populations and species will be 

unable to cope “geographically” with environmental change by adjusting their distributions and 

must rely on rapid phenotypic adaptation to be rescued from extinction (Chevin, Lande & Mace 

2010; Barrett & Hendry 2012).  Rescue by phenotypic adaptation occurs when the frequency of 

traits in a population changes in a way that increases the probability of population persistence. In 

nature, rapid phenotypic change can be based on two principal sources of trait variation: genetic 

diversity and phenotypic plasticity (Shimada, Ishii & Shibao 2010).  In the present theoretical 

study, we compare these two sources of intraspecific variability for their differential ability to 

preserve populations that face changing environmental conditions and interact with one another 

in food webs. 

Theory predicts that rapid evolution can rescue populations that are threatened by 

significant and sustained environmental change (Gomulkiewicz & Holt 1995).  In this 

evolutionary rescue scenario, natural selection changes allele frequencies in populations so that 

phenotypes are better adapted to novel conditions, thereby maintaining or restoring a positive 

population growth rate.  Genetic diversity – the raw material for natural selection and, ultimately, 

evolutionary rescue – arises either from pre-existing variation or de novo mutations that occur 

during rescue.  Evolution must be rapid because allele frequencies need to be re-adjusted before 

the expression of maladaptive alleles leads to the demise of the population.  A recent 

experimental study using yeast showed that evolutionary rescue could be accomplished over as 

few as 25 generations (Bell & Gonzalez 2009; Bell & Gonzalez 2011). 
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The second source of intraspecific variation, adaptive phenotypic plasticity, leaves a 

population‟s genetic structure unchanged but allows the environment to influence the 

development of individuals‟ phenotypes (Via & Lande 1985; Via et al. 1995).  Plasticity is found 

in many different ecosystems and at all trophic levels (Skúlason & Smith 1995; Lass & Spaak 

2003).  Theory predicts that plasticity can be an exceptionally effective way for populations to 

adapt to environmental stress (Barrett & Hendry 2012); reviewed in (Tollrian & Harvell 1999).  

Plasticity can occur within a generation, while evolution is always transgenerational; therefore, 

plasticity will likely allow faster adaptations than genetic diversity (Chevin, Lande & Mace 

2010).  In many cases, plasticity may be capable of providing most or all of the adaptive trait 

change required for populations to avoid extinction (Barrett & Hendry 2012). 

Our study of “rescue” differs from previous research in two ways.  First, many studies on 

rescue evaluate variability in the traits that explicitly determine an individual‟s fitness given a 

specific environmental stress (Bell & Gonzalez 2009; Chevin et al. 2013; Kirkpatrick & Peischl 

2013; Martin et al. 2013).  However, in nature, environmental change may often produce several 

novel stressors, and only a small fraction of populations‟ variability will be pre-adapted to any of 

them (Barrett & Hendry 2012).  Therefore, we decided to look at how variability, in general, 

increases the chance of rescue in the face of the general effects of environmental stress, which 

we believe are an increase in mortality and bottom-up effects of changes in carrying capacity.  In 

particular, we focus on variability in a specific class of traits: those involved in defence against 

predation.  Variation in defensive traits can occur prior to environmental change, and therefore, 

may contain pre-adaptations that help populations persist following a change (Vos et al. 2004a; 

Vos et al. 2004b).  Defensive traits can mitigate mortality effects by reducing the impact of 

predation and, through costs, mitigate the bottom-up effects of nutrient enrichment.  
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Furthermore, defensive traits occur at multiple levels and have been shown to have very different 

effects depending on their trophic location (Vos et al. 2004a; Vos et al. 2004b; Ramos-Jiliberto 

et al. 2008).   

Secondly, we consider rescue in the framework of food web dynamics; that is, rather than 

focussing on the persistence of single, isolated populations or species, we evaluate the potential 

for rescue of ensembles of populations in specific model food web assemblages.   While it is 

important to establish theoretical and empirical benchmark values of selection strength, critical 

population size, etc. that are necessary for single population rescue, we feel that our approach 

more realistically reflects the natural community context under which population rescue 

commonly happens in the wild.  Previous studies have shown that within species diversity affects 

food web dynamics (Fussmann & Heber 2002; Yoshida et al. 2003; Jones et al. 2009); here we 

examine how different sources of this horizontal diversity contribute to the persistence and 

rescue of whole communities. 

We use two criteria to assess the likelihood of rescue: community persistence and 

dynamic stability.  Persistence means that at least one phenotype/genotype from each trophic 

level maintains positive abundance over the period of model evaluation (i.e., the opposite of 

extinction).  Persistence is in obvious ways related to evolutionary rescue:  if, for instance, a 

community containing plasticity displays persistence over a wider range of parameter values than 

a community with genetic diversity, we would conclude that phenotypic plasticity enhances the 

likelihood of survival and that the potential for plastic community rescue is greater than that of 

evolutionary community rescue.  Within the set of persistent dynamics, we use “dynamic 

stability” as a secondary, more refined criterion for rescue potential.  Dynamic stability refers to 

dynamics characterised by stable equilibria as opposed to intrinsically unstable dynamics 
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characterised by regular or irregular population oscillations.  We believe that the relative 

frequency of stable equilibria vs. oscillations correlates with the likelihood of community rescue.  

Our major argument is that in natural settings, temporally stable populations tend to have less of 

an extinction risk than oscillating populations (Pimm, Jones & Diamond 1988; Inchausti & 

Halley 2003). 

Both genetic diversity and phenotypic plasticity have been shown to increase the 

likelihood of persistence of trophic communities in theoretical and experimental systems.  Most 

of the evidence derives from predator-prey studies in which prey express traits that provide 

different degrees of protection from predation.  Trait variability arises either from the existence 

of several genotypes with different defence levels or from a plastic, inducible defence.  Genetic 

diversity can increase population persistence if one or more of the phenotypes are well suited to 

the new environment (e.g., (Reusch et al. 2005)) and/or if genotypes fluctuate asynchronously; 

the latter phenomenon is a form of compensatory dynamics known as "cryptic dynamics" (Jones 

& Ellner 2007; Yoshida et al. 2007).  Similarly, inducible defences can significantly enhance 

persistence and dynamic stability of small communities when subjected to nutrient and mortality 

stress (Verschoor, Vos & van der Stap 2004; Vos et al. 2004a; van der Stap et al. 2009).  The 

impact on community persistence seems to be greatest when plasticity is expressed at the 

autotroph level (van der Stap et al. 2007; Ramos-Jiliberto et al. 2008). 

Although we are beginning to understand how genetic diversity and plasticity affect 

community persistence, we know little about their comparative effects and interaction.  Studies 

comparing the effect of the two sources on communities have focused on variation at a single 

level in simple food chains and webs (Abrams 2009; Cortez 2011; Yamamichi, Yoshida & 

Sasaki 2011).  These studies have found that plasticity is more stabilising than genetic diversity 
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(Cortez 2011; Yamamichi, Yoshida & Sasaki 2011), that plasticity can increase the maximum 

mortality that predators can withstand (Abrams 2009) and that plasticity cannot produce all of 

the dynamics seen with genetic diversity (Cortez 2011).  Despite these findings, no studies have 

attempted to generalise how the trophic level of variation affects persistence and stability by 

comparing the two sources at multiple trophic levels.  

In our study, we explored the potential for rescue in community models with alternative 

sources (genetic vs. plastic) and different trophic locations (autotroph vs. herbivore) of 

variability (Fig. 2.1). We specifically tested the following hypotheses: (i) Plastic communities 

are more likely to exhibit stability and persistence than communities where genetic diversity 

provides the same range of traits. (ii) Variation at the lowest trophic level promotes stability and 

persistence more than variation at higher levels. (iii) Communities with variation (either of 

plastic or genetic origin) at two levels have greater likelihoods of stability and persistence than 

communities with variation at only one level.  

The results of our food web analyses did not allow us to reject our first hypothesis (i): 

plasticity promotes persistence and stability more than genetic diversity.  However, we reject 

hypotheses (ii) and (iii) by showing that variation at the herbivore level is more stabilising than 

variation at the autotroph level or at multiple levels.  These results question the generality of 

previous findings which implicate variation for defence in the autotroph as the key driver of 

community dynamics (van der Stap et al. 2007; Ramos-Jiliberto et al. 2008).    

 

2.3 Methods 

We analysed ten model food webs that vary in the degree, origin and trophic location of 

intraspecific variation for morphological defences (Fig. 2.1).  These webs are based on, and 
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parameterised for a rotifer-algal system (Scenedesmus sp., autotrophic phytoplankton; 

Brachionus spp., herbivorous rotifers; and Asplanchna sp., carnivorous rotifers (Verschoor, Vos 

& van der Stap 2004; Vos et al. 2004a)).  This system allows for phenotypic variation at the 

autotroph and herbivore levels.  Newly produced autotroph algae can be induced by the 

herbivore to form defensive colonies (Verschoor, Vos & van der Stap 2004), and newly 

produced herbivorous rotifers can be induced by the carnivorous rotifer to grow long 

posterolateral spines  (Gilbert 1966; van der Stap et al. 2007).  In our model food webs, genetic 

variation covers the same trait range (undefended or fully defended) as plasticity, but phenotypes 

are produced by genotypes that are fixed for either trait value. 

Webs 1 through 4 (Fig. 2.1) have no intraspecific variation and serve as controls with 

either no defence (web 1) or constitutive, fixed defences (webs 2-4).  Webs 5 (“autotroph 

genetic”) and 6 (“autotroph plastic”) incorporate genetic diversity and plasticity, respectively, at 

the autotroph level.  Webs 7 (“herbivore genetic”) and 8 (“herbivore plastic”) incorporate the 

same sources of variation at the herbivore level.  Finally, webs 9 (“two levels genetic”) and 10 

(“two levels plastic”) have variation at both herbivore and autotroph levels. 

We adapted the equations for our model from Vos et al. (2004a).  Yamamichi, Yoshida, 

& Sasaki (2011) analysed a related equation system for a flow-through chemostat scenario.  Our 

formulation for food webs with plastic variation (“plastic webs”) represents the effects of 

phenotypic plasticity by allowing plastic individuals to produce individuals in one of two 

discrete phenotypic populations (one population is undefended and the other is defended; both 

are linked by a “reproductive switching term” S).  Plastic webs are derived from food webs with 

genetic diversity (“genetic webs”)  by adding S and a term to describe the production of new 

individuals by the non-focal phenotype (see Appendix 2.A for detailed equation systems for all 
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ten model food webs).  Genotypic diversity is modelled for asexual reproduction and is therefore 

mathematically equivalent to having two distinct species at each of the respective trophic levels. 

In contrast, phenotypic plasticity allows a phenotype to channel part of its future reproductive 

output into the opposite phenotype.  The most complex food web model with phenotypic 

plasticity at the autotroph and herbivore levels (web 10) consists of five coupled differential 

equations: 

𝑑𝑃𝑢

𝑑𝑡
= 𝑟  1 −

𝑃

𝐾
 𝑆𝑃 𝐻 𝑃 −  𝑓𝐻 𝑃  𝐻 +  𝑚 𝑃𝑢       (2.1a) 

𝑑𝑃𝑑

𝑑𝑡
=  1 − 𝜇  𝑟  1 −

𝑃

𝐾
  1 − 𝑆𝑃 𝐻  𝑃 −   1 − 𝛽  𝑓𝐻 𝑃  𝐻 +  𝑚 𝑃𝑑    (2.1b) 

𝑑𝐻𝑢

𝑑𝑡
= 𝜖 𝑃𝑢 +   1 − 𝛽  𝑃𝑑  𝑓𝐻 𝑃  𝑆𝐻 𝐶  𝐻 −  𝑓𝐶 𝐻 𝐶 + 𝑚 𝐻𝑢     (2.1c) 

𝑑𝐻𝑑

𝑑𝑡
=  1 − 𝜇  𝜖  𝑃𝑢 +   1 − 𝛽  𝑃𝑑   𝑓𝐻 𝑃   1 − 𝑆𝐻 𝐶   𝐻 −  (1 − 𝛽) 𝑓𝐶 𝐻 𝐶 + 𝑚 𝐻𝑑  (2.1d) 

𝑑𝐶

𝑑𝑡
=  𝛾  𝐻𝑢 +  1 − 𝛽  𝐻𝑑    𝑓𝐶 𝐻 −𝑚  𝐶         (2.1e) 

with 𝑃 = 𝑃𝑢 + 𝑃𝑑   ;    𝐻 = 𝐻𝑢 + 𝐻𝑑  

with switching functions S and functional response functions 𝑓: 

𝑆𝑃 𝐻 =  1 +  
𝐻𝑢+𝐻𝑑

g𝐻
 
𝑏𝐻
 
−1

         (2.1f) 

𝑆𝐻 𝐶 =  1 +  
𝐶

g𝑐
 
𝑏𝐶
 
−1

         (2.1g) 

𝑓𝐻 𝑃 =
𝑣𝑃𝐻

1+𝑕𝑃𝐻 𝑣𝑃𝐻 𝑃𝑢+𝑕𝑃𝐻 𝑣𝑃𝐻 𝑃𝑑
        (2.1h) 

𝑓𝐶 𝐻 =
𝑣𝐻𝐶

1+𝑕𝐻𝐶 𝑣𝐻𝐶𝐻𝑢 +𝑕𝐻𝐶 𝑣𝐻𝐶𝐻𝑑
        (2.1i) 

Pd and Pu are the densities of the defended and undefended autotrophs, Hd and Hu are the 

densities of the defended and undefended herbivores, and C is the carnivore density. Pd and Pu 

grow logistically to a joint carrying capacity K, which applies to the sum of the two phenotypes. 
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S is a decreasing, sigmoid function that takes values between 1 and >0; it describes the 

reproductive investment towards producing undefended types (as a fraction of the whole 

population‟s growth rate r); this investment decreases with increasing densities of “inducers” at 

the next trophic level up; conversely, the investment towards producing defended types increases 

with inducer densities according to (1 - S).  gH and bH determine the shape of SP(H); gH is the 

density of herbivores that produces equal investment in defended and undefended phenotypes, 

and bH describes the steepness of the function (analogously for gC and bC). ε and  are the 

herbivores' and carnivore‟s conversion efficiencies. ß is the defence level; as ß increases, (1 - ß) 

decreases and therefore the functional response of predators on defended types is diminished.   

reflects the cost of defence, such that a high  corresponds to high costs and a low growth rate. 

(See Table 2.1 for a full list of parameters and their values). 

Our model formulation differs in three ways from Vos et al.’s (2004a).  First, we 

implement defence by multiplying attack rate by (1 - ß) and dividing handling time by (1 - ß) 

[note: the (1 - ß) terms in the denominator cancel each other].  We believe this to be the most 

correct way to implement defence because in our system, defences in the herbivore center around 

the production of long posterolateral spines,  these spines decrease the likelihood of successful 

attack (decrease attack efficiency) and also increase handling time by both wasting time on 

unsuccessful attacks (Jeschke, Kopp & Tollrian 2002) and by requiring more time to manipulate 

the herbivore into a position where it can be consumed.  Vos et al. (2004a) implemented  defence 

through increasing handling time of predators on defended prey; however, handling time is only 

present in the denominator of the functional response equation, which is identical for both  prey 

types; thus, defended and undefended prey obtain the same benefit under Vos et al.’s (2004a) 

formulation (Kovach-Orr et al. unpublished manuscript).  Additionally, defences bases entirely 
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on attack efficiency are not particularly applicable to our algal / rotifer system (Vos et al. 2004a).  

While it is true that decreasing attack efficiency by the same rate we increase handling time is 

arbitrary, it seems no less arbitrary than any other relationship between handling time and attack 

rate.   We prefer our formulation because defended prey receive a greater benefit from defence 

than undefended prey, although, the presence of defended prey does benefit the undefended prey 

through the direct interaction of the defended prey and predator (Kretzschmar, Nisbet & 

McCauley 1993).   Secondly, our mortality term represents increased environmental stress and 

affects all species equally, as opposed to Vos et al. (2004a), who manipulated mortality of the 

carnivore while leaving other trophic levels‟ mortalities static.  Our analyses show that this 

assumption produces results that are qualitatively similar to those for a system where each 

species has its own mortality and only carnivore mortality is affected by environmental change 

(data not shown).  Finally, Vos et al. used a switching function that mimics direct transfer or 

migration between populations of defended and undefended types.  In contrast, our switching 

function distributes total population growth rate among types.  This is a more realistic 

description of the mechanism of defence induction of aquatic invertebrates that cannot switch 

between defended and undefended states during their lifetime (Yamamichi, Yoshida & Sasaki 

2011). 

 

2.3.1 Model Analysis 

We mathematically analysed the potential for community persistence in the context of 

varying environmental carrying capacity and natural mortality.  We chose carrying capacity 

because it is a proxy for nutrient enrichment, a major environmental change in many aquatic 

ecosystems due to increased fertiliser run-off (Tilman et al. 2001) , and because the bottom-up 
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effects of nutrient enrichment can destabilise predator-prey dynamics (Rosenzweig 1971).  We 

chose to manipulate mortality because increased natural mortality is the most general population-

level effect of increased environmental stress (such as flooding, oil spills, aquatic acidification, 

pesticides, or any other factors that increase mortality).  The production of defensive traits is 

typically costly for the prey and incorporated into models as a trade-off between defence  and 

cost .  We followed this convention but evaluated all biologically relevant trade-off 

combinations rather than limiting our analysis to predetermined categories of trade-off curves 

(concave up, linear, and concave down). 

We used two mathematical/computational approaches to analyse our model food webs: 

numerical simulations and numerical bifurcation analysis.   

 

2.3.1.1 Numerical Simulations 

At all parameter combinations, we evaluated our models for persistence and dynamic 

stability.  Initial population densities were: undefended and defended autotrophs each equal to 

half of carrying capacity, undefended and defended herbivores each equal to 0.5 mg C L 
-1 

, and 

carnivores equal to 0.25 mg C L 
-1

.  To avoid transient dynamics, we evaluated simulations from 

time t = 1000 until t = 21,000.  For persistence vs. extinction, a population was considered 

extinct if, at any time 1000 ≤ t ≤ 21,000 its density was below 1.6 × 10
-4

 mg C L
-1

 (~ 1 carnivore 

individual per 3,000 ml (Verschoor, Vos & van der Stap 2004)).  We considered a community to 

persist, if at least one population from every trophic level was always above this threshold.  Note 

that extinction can occur either because the carnivore has a zero equilibrium (trivial equilibrium) 

or as a consequence of extinction through extreme oscillations (Fussmann 2007).  For stability, 

we used the same numerical simulations as above, but also evaluated the maximum and 
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minimum population density from t = 14,000 to t = 21,000.  If the difference between the 

maximum and minimum was less than the equivalent of 1 individual carnivore per 300 ml (1.6 × 

10
-3

 mg C  L
-1

), the food web was considered to be stable.  Note that this operational evaluation 

of stability scores oscillatory dynamics with minute amplitude as factually stable. 

We used parallel computing (Guillimin cluster at CLUMEQ: 160 parallel threads) for 

numerical simulation of food web dynamics with MATLAB (MATLAB 2009).  We quantified 

differences between food webs by calculating the frequency of persistence and dynamic stability 

over 296,960 combinations of mortality m (29 intervals), carrying capacity K (40), defence level 

of defended phenotype ß (16), and costs for the defended phenotype  (16) [See Table 2.1 for 

ranges and interval sizes].   

 

2.3.1.2 Bifurcation Analysis 

Bifurcation analysis can provide deeper insights into the mechanisms underlying the 

distributions of persistent and stable dynamics.  For instance, bifurcation analysis can reveal why 

variation at a certain level increases the potential for stability more than variation at a different 

level.  All bifurcation diagrams were produced using numerical bifurcation software (PyDSTool 

2008).  While our numerical simulations were performed for K = 0.25 to 19.75 mg C L
-1

, our 

numerical bifurcations were evaluated for K=0 to 50 mg C L
-1

.  

 

2.4 Results 

Table 2 shows the average frequencies of persistence and stability for all food webs (see 

Fig. 2.1) and across all combinations of carrying capacity K, mortality m, cost of defence , and 

defence value .  We found a positive correlation between the two measures that we used to 
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quantify the potential for community rescue (R
2
 = 0.57, for n = 10 food web types in Table 2.2).  

That is, food webs with a high frequency of persistence also tended to display higher frequencies 

of dynamic stability.  Residual variation was almost entirely due to the differences between food 

webs with genetic vs. plastic variation.  In “plastic webs” (webs 6, 8, 10) more than half of the 

food web parameterisations that persisted in our simulations did so at dynamic equilibria, while 

oscillatory dynamics dominated in persisting “genetic webs” (webs 5, 7, 9; Table 2.2). 

In our model simulations, food webs with constitutive, fixed defences were generally less 

persistent and less dynamically stable than webs that did not feature defences at any trophic level 

(webs 2-4 vs. web 1).  Food webs with intraspecific variation were more persistent and stable 

than their specific counterparts with no variation, i.e., variable defences at the autotroph level led 

to increased persistence and stability over webs that had permanently fixed defences for 

autotrophs (webs 5 & 6 vs. web 2); the same was true for defences introduced at the herbivore 

level (webs 7 & 8 vs. web 3) or at both levels (webs 9 & 10 vs. web 4).  Variability did not 

generally increase persistence but did on average increase stability in comparison to webs that 

were entirely undefended (webs 5-10 vs. web 1) (note: webs 5 and 9 showed reduced persistence 

and stability when compared to web 1); both the source (genetic or plastic) and trophic location 

of the variation critically influenced the magnitude of stability and persistence, and therefore the 

potential for rescue.    

 

2.4.1 Effect of the Source and Trophic Location of Variation 

In general, plasticity was more effective than genetic diversity at increasing the 

frequencies of persistence and stability in our model food webs (Table 2.2).  Plasticity yielded 

1.1 times more persistence and 3.8 times more stability than genetic diversity.    In genetic 
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diversity webs (webs 5, 7, 9), almost all persistence was in the form of unstable, oscillatory 

dynamics; only 17.8% - 21.9% of persistence manifested as stability (Table 2.2).  Plastic, 

persistent webs tended to be much more stable with 60.9%-80.6% of persistent dynamics being 

equilibria (Table 2.2).  Using a specific simulation example, Fig. 2.2 demonstrates how this 

observed effect can contribute to population and community rescue.  In web 1, with no variation 

for defence, the community exhibits regular oscillations at low carrying capacity (Fig. 2.2a) ; 

when carrying capacity is increased, the carnivore is quickly eliminated.   In web 7, the 

community is at equilibrium at low carrying capacity, demonstrating an effect of diversity (Fig. 

2.2b); when carrying capacity is increased, the web shows damped oscillations and slowly 

approaches equilibrium.  In web 8, increased carrying capacity causes damped oscillations that 

quickly reach equilibrium (Fig. 2.2c). 

We found that variation at the herbivore level had the greatest impact on persistence and 

stability, regardless of the source of variation (Table 2.2).  Webs 7 and 8 are the only webs that 

increased in both persistence and stability when compared to web 1.  This means, interestingly, 

that variation at the herbivore level alone is more conducive to persistence and stability than 

when the same variation is introduced in combination with variation at the autotroph level. 

At the autotroph level, we found that plasticity was less likely to promote persistence 

than genetic diversity (Table 2.2); however, plasticity was far more likely to promote stability.  

On the contrary, we found that plasticity at the herbivore level promoted both stability and 

persistence compared to genetic diversity.  Finally, we found that genetic and plastic variation at 

two trophic levels promoted approximately equal levels of persistence, however, plastic variation 

promoted stability far more than genetic variation.    
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2.4.2 Bifurcation Analyses and Strong versus Weak Stabilization 

So far, we have presented the results of our numerical simulations as frequencies of 

persistent and stable dynamics. We now turn to bifurcation analysis, which can provide deeper 

insights into the mechanisms underlying the distributions of persistent and stable dynamics.  

Figure 2.3 illustrates our general framework of evaluation, using a simpler version of our model:  

the classic bitrophic Rosenzweig and MacArthur (Rosenzweig & MacArthur 1963) predator-prey 

system (Fig. 2.3a), the bitrophic system with genetic diversity in the autotroph (Fig. 2.3b), and 

with plasticity (Fig. 2.3c).  The carrying capacity-mortality diagram shows two bifurcation lines: 

a transcritical bifurcation (black line), above which persistence is not possible, since the predator 

cannot maintain a positive growth rate; and a Hopf bifurcation (red line), which denotes the 

transition from stable equilibria (above) to oscillatory dynamics (below). We analysed how 

plasticity and genetic diversity affect the location of these bifurcation lines.  Figure 2.3 also 

demonstrates two categorically distinct patterns of stabilisation (“weak” and “strong” 

(Kretzschmar, Nisbet & McCauley 1993)) which we introduce because they turn out to be 

strongly associated with the source of variability that we apply in our model food webs.  Weak 

stabilisation occurs when the transcritical and Hopf bifurcations are moved apart, but still 

approach the same asymptote; thus the area of stable equilibrium is larger, but still finite (Fig 2.2 

b).  Strong stabilisation occurs when the transcritical and Hopf bifurcations approach different 

asymptotes (Fig 2.2 c) (Kretzschmar, Nisbet & McCauley 1993).  Only strong stabilisation 

allows stable dynamics at some infinite parameter values (e.g. infinite carrying capacity).  In the 

genetic web, we were only able to find weak stabilisation (through the presence of a new finite 

set of Hopf bifurcations).  In the plastic web, we found strong stabilisation. 
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We now present the results of the bifurcation analysis for the tritrophic model.  Because 

we cannot graphically present the results for all combinations of defence level  and cost of 

defence  that we analysed, figure 2.4 shows typical bifurcation diagrams for each of the ten 

food web configurations (µ = 0.5, ß =0.5, K: x-axis, m: y-axis). While all bifurcations in figure 

2.4 are qualitatively typical, these parameters maximize the stability of webs 6 and 10 (Appendix 

2.B-2).  The bifurcation plot for the control web without variation (web 1) shows a single finite 

stability band (“weak stability”; Fig. 2.4 (1)).  As carrying capacity increases, mortality must also 

increase in order for the community to maintain equilibrium.  This continues until m = 0.533, at 

which point the transcritical and Hopf bifurcations converge and stability becomes nearly 

impossible. Bifurcation plots for food webs with fixed defences (webs 2-4) are qualitatively the 

same but the transcritical bifurcation is shifted downwards (i.e., in the presence of the defended 

autotrophs or herbivores, the carnivore can tolerate less mortality), in agreement with results 

given in Table 2.2.  We were unable to find strong stabilisation in any of the food webs with 

genetic diversity, i.e., the transcritical and Hopf bifurcations always converged at high carrying 

capacity resulting in finite areas of stable dynamics (Fig. 2.4 (5), 2.4 (7), 2.4 (9)).  On the 

contrary, we found strong stabilisation was possible in all of the food webs with plastic 

variability (Fig. 2.4 (6), 2.4 (8), 2.4 (10)).   

Specifically, genetic variation at the autotroph level (web 5) produces a single finite 

stability band (Fig. 2.4 (5)); its area and position are nearly identical to those in web 1 because 

the defended type is eliminated.  Plastic variation at the autotroph level (web 6) can produce a 

narrow infinite stability band (indicating strong stabilisation), which exists between m = 0.345 

and m = 0.365 (Fig. 2.4 (6)). 
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Genetic variation at the herbivore level (web 7) can produce one or two finite stability 

bands (Fig. 2.5); the second band only exists in 14% of the µ-β parameter range.  Outside of this 

parameter range, this web looks very similar to web 1 (Fig. 2.4 (7)) because the defended type is 

eliminated.  Between the two stability bands, the community exhibits stable limit cycles; 

therefore, the three lower bifurcations are Hopf bifurcations (supported by numerical simulation 

analysis).  The lower band contains both defended and undefended types and is possible because 

of predator-mediated coexistence.  Plastic variation at the herbivore level (web 8) produces a 

single, broad and infinite stability band (Fig. 2.4 (8)); the transcritical bifurcation reaches its 

asymptote at m = 0.533 and the Hopf bifurcation reaches its asymptote at m = 0.305.  When we 

consider variation at both the autotroph and herbivore levels, the genetic web (web 9) produces a 

single finite stability band (Fig. 2.4 (9)); this band is nearly identical to web 1 because the 

defended types are eliminated.  Plastic variation (web 10) produces one infinite stability band 

(Fig. 2.4 (10)); this band occurs at lower mortalities than the band in web 8.    

 

2.5 Discussion 

The principal concern of our study was to investigate how genetic diversity and 

phenotypic plasticity differentially contribute to the rescue of communities facing environmental 

change.  “Evolutionary rescue” through rapid evolution or through the use of standing adaptive 

genetic variation (Barrett & Schluter 2008) is currently receiving a lot of attention (Orr & 

Unckless 2008; Bell & Gonzalez 2009; Bell & Gonzalez 2011; Bell 2013; Gienapp et al. 2013; 

Kirkpatrick & Peischl 2013; Martin et al. 2013; Osmond & de Mazancourt 2013), but rescue by 

evolution only considers one of the two potential sources of phenotypic diversity.  Our ultimate 

goal must be to evaluate the likelihood of species survival through local adaptation in a changing 
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environment.  A realistic assessment of rescue potential will allow for a combination of genetic 

and plastic sources of phenotypic variation. 

A few recent theoretical studies have compared how population dynamics change when 

either genetic or plastic variation is introduced (Abrams 2009; Cortez 2011; Yamamichi, 

Yoshida & Sasaki 2011).  In our study, we adopted a similar framework of analysing dynamic 

stability, but placed an emphasis on persistence vs. extinction, i.e. on dynamic consequences that 

can be interpreted in relation to evolutionary or plastic rescue of populations and whole 

communities.  We also paid particular attention to the trophic level at which genetic or plastic 

diversity are introduced into food webs and how this affects the potential for rescue. 

The results support our hypothesis (i) and confirm previous findings that plasticity is 

significantly more likely to promote stability than genetic diversity (Abrams 2009; Cortez 2011; 

Yamamichi, Yoshida & Sasaki 2011).  There are three possible explanations for why plasticity 

promotes stability: (1) Plasticity allows phenotypes that are maladapted to the environment to 

reappear when conditions are favourable, whereas in genetic webs, phenotype extinction is 

permanent.  This would apply to our study if the abiotic environment was actively changing 

during simulations (it is not) or if there was a strong effect of initial conditions.  We took steps to 

limit the impact of initial conditions and believe the reintroduction of phenotypes could only be 

minimally responsible for the disparity between genetic and plastic webs.  (2) Plasticity allows 

prey to adapt to predator density changes faster than genetic diversity (Cortez 2011; Yamamichi, 

Yoshida & Sasaki 2011).  Yamamichi, Yoshida, & Sasaki (2011) showed that the relative 

abundances of prey phenotypes in plastic webs are able to change much faster than in genetic 

webs and that slowing the plastic response speed reduces the likelihood of stability.  Although 

speed certainly plays a role in the observed differences between plasticity and genetic diversity, 
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we believe there is an even greater driver for the observed differences:  (3) The reproductive 

switching function, S, in plastic webs creates an obligatory negative feedback loop between 

predator density and predator efficiency (Ramos-Jiliberto & Garay-Narvaez 2007) that buffers 

predator and prey populations from extinction.  If the predator becomes very abundant, prey 

defence increases, causing predator efficiency, and ultimately, predator density to decrease (thus 

stabilising the food web by moving it further from the Hopf bifurcation); on the other hand, if 

predators approach extinction, prey defence decreases, causing predator efficiency, and 

ultimately, predator density to increase (thus reducing the risk of predator starvation).   In plastic 

webs, the relative abundances of the prey phenotypes are entirely controlled by the density of the 

predator.  At sufficiently high predator density, the switching function will cause the defended 

prey type to persist, even if the costs outweigh the benefits. Genetic webs also have a feedback 

loop, but it is not obligatorily “negative”, because changes in the relative abundances of prey 

phenotypes are driven by a combination of costs, natural mortality, and predation.  The defence 

is adaptive if the per-capita growth rate of the defended type is higher than that of the 

undefended type; that is (for the autotroph) 
1

𝑃𝑑

𝑑𝑃𝑑

𝑑𝑡
>

1

𝑃𝑢

𝑑𝑃𝑢

𝑑𝑡
 , which leads to 

𝛽

𝜇
>

𝑟 1−
𝑃

𝐾
 

𝐻𝑓𝐻 (𝑃)
 .  As a 

special case, we can consider the situation of a rare defended mutant invading a population 

containing only undefended prey (i.e. a situation with 𝑃𝑢 = 𝑃 and 𝑃𝑑  approaches 0).  Assuming 

the community is at a stable equilibrium (otherwise the analysis becomes more difficult), we can 

set 
𝑑𝑃𝑢

𝑑𝑡
= 0, from which follows 𝐻∗𝑓𝐻 𝑃

∗ = 𝑟  1 −
𝑃∗

𝐾
 −  𝑚.  Plugging this into the above 

result yields 𝜇 < 𝛽  1 −
𝑚

𝑟 1−
𝑃∗

𝐾
 
 .  [Here, * denotes equilibrium densities in the absence of 

defended prey; note that at equilibrium   
𝑚

𝑟 1−
𝑃∗

𝐾
 
 must be between 0 and 1.]  In general, whether 
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the defence is adaptive depends not only on predator but also on prey density (because the effect 

of costs is reduced due to the density-depended regulation term).   Therefore, our interpretation 

of effects of costs is limited.  

While maladaptive phenotypes persist in the plastic webs, they are eliminated from the 

genetic webs; thus, the parameter range where negative feedback loops are possible is much 

smaller for genetic webs.  If genetic diversity were constrained to cost-benefit combinations that 

fall along continuous trade-off curves due to adaptive evolution prior to the rescue event, such 

that only beneficial adaptations exist, the potential for evolutionary rescue would, on average, 

actually decrease for webs 5 and 9, but increase for web 7 (Appendix 2.B).  Webs 5 and 9 are 

only stable when the defended type is eliminated, adaptive evolution would allow the defended 

type [s] to persist, which, in turn, could cause the extinction of the carnivore.  On the other hand, 

because both genotypes can persist in web 7, adaptive evolution can increase stability.   

Furthermore, we found that plasticity, but not genetic diversity, can lead to strong 

stabilization and therefore, plasticity can resolve the paradox of enrichment.  Strong stabilisation 

has been shown to occur in model food webs exhibiting ecological attributes such as inducible 

defences, inedible prey, predator feeding thresholds, or predator interference (see (van Voorn et 

al. 2008; Bontje et al. 2009)).  Predator interference works in a similar fashion to inducible 

defenses; the transcritical bifurcation remains unaffected because at very low predator density, 

there are not enough predators to induce prey/to interfere with each other.  As the system 

approaches the Hopf bifurcation, the additional predators reduce predator efficiency, either 

through interfering with other predators or by inducing defended prey.  While these are 

fundamentally different processes, they both operate under the framework of creating negative 

feedback loops with changes in predator density.    
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A word of caution needs to be added when applying our results to natural communities.  

Genetic diversity in our study was only allowed to operate within the same confines of trait space 

as phenotypic plasticity, i.e. genotypes could not exceed the trait variation that was provided 

through plasticity.  Our finding that plastic rescue is more likely than evolutionary rescue is valid 

within this limit of evolvability.  It is, of course, conceivable that at some point, evolution will 

generate genetic variation that exceeds the limits of plastic response (Barrett & Hendry 2012).  A 

possible scenario is that phenotypic plasticity takes the role of provisional response, rescuing 

populations from initial and fast environmental change of low to intermediate intensity, while an 

evolutionary, genotype-based response needs to take over if stress is severe and long lasting. 

The second important result of our study is that the trophic location of variation can 

constrain the potential for rescue of populations and communities.  Both phenotypic plasticity 

and genetic diversity can occur at any trophic level (from the autotroph to the top-carnivore).  

Contrary to previous findings that variation will generally contribute to rescue (Vos et al. 2004a; 

Vos et al. 2004b; Jones & Ellner 2007; Yamamichi, Yoshida & Sasaki 2011), we found that 

variability at the herbivore is particularly likely to contribute to community rescue, and reject 

hypothesis (ii) that attributes the highest rescue potential to variability at the basal, autotroph 

level (van der Stap et al. 2007; Ramos-Jiliberto et al. 2008). 

Variation in the herbivore is special because the presence of two herbivore phenotypes 

allows for two distinct relationships between carnivore dynamics and mortality/carrying 

capacity.  In web 7 (genetic variation in the herbivore), this can create two finite bands of 

stability separated by an area of oscillations (Fig. 2.5b): in the upper band, only undefended 

herbivores are present in the population, and in the lower band, both undefended and defended 

herbivores are present.  In web 8 (plastic variation in the herbivore), the additional herbivore 
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phenotype allows for a wide, strongly stable band: at the upper boundary of the band, all 

herbivores are undefended, whereas at the lower boundary, all herbivores are defended; Vos et 

al. (2004a) obtained a similar result for a bitrophic plastic web.  Variation at the herbivore level 

is able to create these special types of stability through a negative feedback loop that offsets 

changes in carnivore density with changes in herbivore defence. 

Variation in the autotroph operates under the same fundamental principles; it allows the 

autotroph to offset changes in herbivore density with changes in autotroph defence.  Why, then, 

doesn‟t variation at the autotroph level generate the same degree of rescue potential as variation 

at the herbivore level (compare webs 5, 6 vs. webs 7, 8)?  The reasons are different for each 

source of variation.  In the genetic case, the increased rescue potential of web 7 (genetic variation 

in herbivores) derives from equilibrium coexistence of defended and undefended genotypes and 

carnivore (the lower stability band in Fig. 2.5b), which is possible due to the diamond 

configuration of the food web (McCann, Hastings & Huxel 1998).  At the autotroph level, 

equilibrium coexistence of the two genotypes, herbivore, and carnivore is impossible because of 

apparent competition (Holt 1977), so that the stability properties of web 5 are essentially the 

same as those of the tri-trophic food chain (web 1).  In the case of plasticity, trophic cascade 

dynamics prevent autotrophic plasticity from having the same impact as herbivore plasticity.  

Plasticity in the autotroph lowers the transcritical and Hopf bifurcations, whereas plasticity in the 

herbivore only lowers the Hopf bifurcation.  The transcritical bifurcation defines the minimal 

productivity of a system, at a given mortality, that is necessary to support the carnivore.  

However, productivity must be transferred “up” the food web, and so one can think of the 

transcritical bifurcation defining the minimal herbivore density of a system, at a given mortality, 

that is necessary to support the carnivore.  When we consider plasticity in the herbivore, as the 
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food web approaches the transcritical bifurcation, carnivore density goes to zero, so all 

herbivores become undefended, carnivore efficiency increases, thus decelerating carnivore 

extinction.  When we consider plasticity in the autotroph, as carnivore density goes to zero, 

herbivore density increases, which causes increased defences in the autotroph, which decreases 

herbivore density and accelerates extinction of the carnivore.  Furthermore, the Hopf bifurcation 

for web 6 occurs at higher mortality values, and is therefore closer to the transcritical bifurcation, 

than the Hopf bifurcation for webs 8 or 10.  The Hopf bifurcation for web 6 is so high because 

web 6 is less effective at countering increases in carnivore density.  This being said, plasticity in 

the autotroph still enhances stability compared to the undefended tri-trophic chain (web 1) 

because it makes herbivore density more robust to changes in carnivore density. 

Contrary to our expectations in hypothesis (iii), variation at the herbivore level alone 

produces more stability and persistence than variation at two levels (Table 2.2).  For the case of 

genetic variation, the defence and cost values that allow predator-mediated herbivore coexistence 

in web 7 cause the extinction of the defended herbivore when they are also present in the 

autotroph (web 9).  Therefore, stability for web 9 is only possible when web 9 simplifies to the 

tri-trophic food chain (webs 1 or 2) (Fig 2.4); furthermore, this implies that stability in web 9 is 

only possible under the same carrying capacities and mortalities where webs 1 and/or 2 are 

stable.  For the case of plastic variation, the addition of plasticity at the autotroph level affects 

web 10 through the same mechanisms described for web 6:  plasticity in the autotroph effectively 

lowers the transcritical and Hopf bifurcations of web 8 to produce web 10.   

The effect of two-level plasticity is sensitive to the concrete parameterisation of the food 

web model.  Table 2.2 shows the two-level plastic web has less stability than the herbivore-

plasticity-only web.  Nevertheless, for 75% of the parameter combinations, plasticity at two 
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levels was nearly as stable as plasticity at the herbivore level alone (Fig. 2.4 (8), 2.4 (10), 

Appendix 2.B); however, for the remaining 25% of parameter combinations, observed at 

moderate and high defence levels, web 8 is far more stable than web 10 (Appendix 2.B).  In this 

range, the Hopf bifurcation of web 10 approaches the x-axis; however, there is little stability 

because the transcritical bifurcation is also very close to the x-axis (data not shown).  Similarly, 

the Hopf bifurcation of web 8 approaches the x-axis; however, there is greater stability because 

the transcritical bifurcation is not affected by plasticity at the herbivore level (data not shown).   

Furthermore, our assumption that  and  are identical for both trophic levels probably 

restricts the range of outcomes, however, the authors feel that testing different trade-offs at 

different levels was outside the scope of this study. 

In summary, we found that variation did not generally promote rescue; rather, rescue 

potential depended on the trophic location and source of variation.  While plasticity increased 

stability regardless of trophic location, genetic diversity only had this effect when present 

exclusively at the herbivore level.  Our results suggest that variation for defence at the second 

highest trophic level should have a greater impact on rescue than variation at lower levels.  

Variation for defence traits creates negative feedback loops with changes in predator density: 

when defence is present at the second highest level, the negative feedback loop works to 

maintain the top-level.  When defence is present two levels below the top, it can create a positive 

feedback loop with changes in top-level density.  Defence could also potentially create a 

negative feedback loop for changes in top-level density, if present three or five levels below the 

top; however, we suspect that this effect would diminish with trophic distance. 

  We acknowledge that some of our interpretations and conclusions are specific to 

introducing variation in the form of an inducible defence trait; this is particularly true for 
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arguments involving indirect top-down and bottom-up effects in food webs. However, only a 

small fraction of populations‟ variability will typically be pre-adaptive to novel stress (Barrett & 

Hendry 2012) and environmental change may produce more than one novel stressor.  Defence is 

a general, variable trait, occurs at multiple trophic levels and may or may not serve as a pre-

adaption that helps populations persist following a change (Vos et al. 2004a; Vos et al. 2004b).  

Overall, we feel that by modelling defensive traits we were able to provide a more general 

treatment of evolutionary and plastic rescue of communities than by concentrating on traits that 

are directly adaptive to environmental change or stress.    

 

2.6 Acknowledgements 

We acknowledge support by the James S. McDonnell Foundation.  We thank Matthijs 

Vos, Yony Bresler, Emily Vogt, the two anonymous reviewers, and the Fussmann lab for their 

suggestions  and comments on this manuscript.  We are grateful to CLUMEQ (Consortium 

Laval, Université du Québec, McGill and Eastern Québec)  and Compute Canada for the use of 

the Guillimin Cluster.  We also thank Andrew P. Hendry and Rowan D.H. Barrett for the term 

“plastic rescue”.    

 

  



- 64 - 

 

2.7 References 

Abrams, P.A. (2009) Adaptive changes in prey vulnerability shape the response of predator 

populations to mortality. Journal of Theoretical Biology, 261, 294-304. 

Barrett, R.D.H. & Hendry, A.P. (2012) Evolutionary rescue under environmental change. 

Behavioural responses to a changing world: Mechanisms and consequences (eds U. 

Candolin & B.B.M. Wong). Oxford University Press, Oxford, UK. 

Barrett, R.D.H. & Schluter, D. (2008) Adaptation from standing genetic variation. Trends in 

Ecology & Evolution, 23, 38-44. 

Bell, G. (2013) Evolutionary rescue and the limits of adaptation. Philosophical Transactions of 

the Royal Society B-Biological Sciences, 368. 

Bell, G. & Gonzalez, A. (2009) Evolutionary rescue can prevent extinction following 

environmental change. Ecology Letters, 12, 942-948. 

Bell, G. & Gonzalez, A. (2011) Adaptation and evolutionary rescue in metapopulations 

experiencing environmental deterioration. Science, 332, 1327-1330. 

Bontje, D., Kooi, B.W., van Voorn, G.A.K. & Kooijman, S.A.L.M. (2009) Feeding threshold for 

predators stabilizes predator-prey systems. Mathematical Modelling of Natural 

Phenomena, 4, 91-108. 

Chevin, L.-M., Gallet, R., Gomulkiewicz, R., Holt, R.D. & Fellous, S. (2013) Phenotypic 

plasticity in evolutionary rescue experiments. Philosophical Transactions of the Royal 

Society B-Biological Sciences, 368. 

Chevin, L.M., Lande, R. & Mace, G.M. (2010) Adaptation, plasticity, and extinction in a 

changing environment: Towards a predictive theory. Plos Biology, 8. 



- 65 - 

 

Cortez, M.H. (2011) Comparing the qualitatively different effects rapidly evolving and rapidly 

induced defences have on predator-prey interactions. Ecology Letters, 14, 202-209. 

Fussmann, G.F. (2007) Chaotic dynamics in food web systems. Complex population dynamics: 

Nonlinear modeling in ecology, epidemiology and genetics (ed. K.J. Blasius B., Stone 

L.), 1-20. World Scientific Publishing Co. Pte. Ltd., Toh Tuck Link, Singapore. 

Fussmann, G.F. & Heber, G. (2002) Food web complexity and chaotic population dynamics. 

Ecology Letters, 5, 394-401. 

Gienapp, P., Lof, M., Reed, T.E., McNamara, J., Verhulst, S. & Visser, M.E. (2013) Predicting 

demographically sustainable rates of adaptation: Can great tit breeding time keep pace 

with climate change? Philosophical Transactions of the Royal Society B-Biological 

Sciences, 368. 

Gilbert, J.J. (1966) Rotifer ecology and embryological induction. Science, 151, 1234-&. 

Gomulkiewicz, R. & Holt, R.D. (1995) When does evolution by natural selection prevent 

extinction. Evolution, 49, 201-207. 

Holt, R.D. (1977) Predation, apparent competition, and structure of prey communities. 

Theoretical Population Biology, 12, 197-229. 

Inchausti, P. & Halley, J. (2003) On the relation between temporal variability and persistence 

time in animal populations. Journal of Animal Ecology, 72, 899-908. 

Jeschke, J.M., Kopp, M. & Tollrian, R. (2002) Predator functional responses: Discriminating 

between handling and digesting prey. Ecological Monographs, 72, 95-112. 

Jones, L.E., Becks, L., Ellner, S.P., Hairston, N.G., Yoshida, T. & Fussmann, G.F. (2009) Rapid 

contemporary evolution and clonal food web dynamics. Philosophical Transactions of 

the Royal Society B-Biological Sciences, 364, 1579-1591. 



- 66 - 

 

Jones, L.E. & Ellner, S.P. (2007) Effects of rapid prey evolution on predator-prey cycles. 

Journal of Mathematical Biology, 55, 541-573. 

Kirkpatrick, M. & Peischl, S. (2013) Evolutionary rescue by beneficial mutations in 

environments that change in space and time. Philosophical Transactions of the Royal 

Society B-Biological Sciences, 368. 

Kretzschmar, M., Nisbet, R.M. & McCauley, E. (1993) A predator-prey model for zooplankton 

grazing on competing algal populations. Theoretical Population Biology, 44, 32-66. 

Lass, S. & Spaak, P. (2003) Chemically induced anti-predator defences in plankton: A review. 

Hydrobiologia, 491, 221-239. 

Martin, G., Aguilee, R., Ramsayer, J., Kaltz, O. & Ronce, O. (2013) The probability of 

evolutionary rescue: Towards a quantitative comparison between theory and evolution 

experiments. Philosophical Transactions of the Royal Society B-Biological Sciences, 368. 

MATLAB (2009) Version 7.9.0.529 (r2009b). The MathWorks Inc., Natick, Massachusetts. 

McCann, K., Hastings, A. & Huxel, G.R. (1998) Weak trophic interactions and the balance of 

nature. Nature, 395, 794-798. 

Orr, H.A. & Unckless, R.L. (2008) Population extinction and the genetics of adaptation. 

American Naturalist, 172, 160-169. 

Osmond, M.M. & de Mazancourt, C. (2013) How competition affects evolutionary rescue. 

Philosophical Transactions of the Royal Society B-Biological Sciences, 368. 

Pimm, S.L., Jones, H.L. & Diamond, J. (1988) On the risk of extinction. American Naturalist, 

132, 757-785. 

PyDSTool (2008) Version 0.87. Department of Mathematics and Statistics, Georgia State 

University, Atlanta, Georgia. 



- 67 - 

 

Ramos-Jiliberto, R. & Garay-Narvaez, L. (2007) Qualitative effects of inducible defenses in 

trophic chains. Ecological Complexity, 4, 58-70. 

Ramos-Jiliberto, R., Mena-Lorca, J., Flores, J.D. & Morales-Alvarez, W. (2008) Role of 

inducible defenses in the stability of a tritrophic system. Ecological Complexity, 5, 183-

192. 

Reusch, T.B.H., Ehlers, A., Hammerli, A. & Worm, B. (2005) Ecosystem recovery after climatic 

extremes enhanced by genotypic diversity. Proceedings of the National Academy of 

Sciences of the United States of America, 102, 2826-2831. 

Rosenzweig, M. (1971) Paradox of enrichment - destabilization of exploitation ecosystems in 

ecological time. Science, 171, 385-&. 

Rosenzweig, M.L. & MacArthur, R.H. (1963) Graphical representation and stability conditions 

of predator-prey interactions. American Naturalist, 97, 209-&. 

Shimada, M., Ishii, Y. & Shibao, H. (2010) Rapid adaptation: A new dimension for evolutionary 

perspectives in ecology. Population Ecology, 52, 5-14. 

Skúlason, S. & Smith, T.B. (1995) Resource polymorphisms in vertebrates. Trends in Ecology & 

Evolution, 10, 366-370. 

Tilman, D., Fargione, J., Wolff, B., D'Antonio, C., Dobson, A., Howarth, R., Schindler, D., 

Schlesinger, W.H., Simberloff, D. & Swackhamer, D. (2001) Forecasting agriculturally 

driven global environmental change. Science, 292, 281-284. 

Tollrian, R. & Harvell, C.D. (1999) The ecology and evolution of inducible defenses. Princeton 

University Press, Princeton, N.J. 



- 68 - 

 

van der Stap, I., Vos, M., Kooi, B.W., Mulling, B.T.M., van Donk, E. & Mooij, W.M. (2009) 

Algal defenses, population stability, and the risk of herbivore extinctions: A chemostat 

model and experiment. Ecological Research, 24, 1145-1153. 

van der Stap, I., Vos, M., Verschoor, A.M., Helmsing, N.R. & Mooij, W.M. (2007) Induced 

defenses in herbivores and plants differentially modulate a trophic cascade. Ecology, 88, 

2474-2481. 

van Voorn, G.A.K., Stiefs, D., Gross, T., Kooi, B.W., Feudel, U. & Kooijman, S. (2008) 

Stabilization due to predator interference: Comparison of different analysis approaches. 

Mathematical Biosciences and Engineering, 5, 567-583. 

Verschoor, A.M., Vos, M. & van der Stap, I. (2004) Inducible defences prevent strong 

population fluctuations in bi- and tritrophic food chains. Ecology Letters, 7, 1143-1148. 

Via, S., Gomulkiewicz, R., De Jong, G., Scheiner, S.M., Schlichting, C.D. & Van Tienderen, 

P.H. (1995) Adaptive phenotypic plasticity - consensus and controversy. Trends in 

Ecology & Evolution, 10, 212-217. 

Via, S. & Lande, R. (1985) Genotype-environment interaction and the evolution of phenotypic 

plasticity. Evolution, 39, 505-522. 

Vos, M., Kooi, B.W., DeAngelis, D.L. & Mooij, W.M. (2004a) Inducible defences and the 

paradox of enrichment. Oikos, 105, 471-480. 

Vos, M., Verschoor, A.M., Kooi, B.W., Wackers, F.L., DeAngelis, D.L. & Mooij, W.M. (2004b) 

Inducible defenses and trophic structure. Ecology, 85, 2783-2794. 

Yamamichi, M., Yoshida, T. & Sasaki, A. (2011) Comparing the effects of rapid evolution and 

phenotypic plasticity on predator-prey dynamics. American Naturalist, 178, 287-304. 



- 69 - 

 

Yoshida, T., Ellner, S.P., Jones, L.E., Bohannan, B.J.M., Lenski, R.E. & Hairston, N.G. (2007) 

Cryptic population dynamics: Rapid evolution masks trophic interactions. Plos Biology, 

5, 1868-1879. 

Yoshida, T., Jones, L.E., Ellner, S.P., Fussmann, G.F. & Hairston, N.G. (2003) Rapid evolution 

drives ecological dynamics in a predator-prey system. Nature, 424, 303-306. 

 

  



- 70 - 

 

 

2.8 Tables 

Table 2.1.  Definitions and default values of model variables and parameters (obtained from Vos et al. 

(Vos et al. 2004b)) 

parameter value interpretation 

r 1.42 d-1 intrinsic rate of increase of autotrophs 

K 
0.25 to 19.75 mg C L-1 

by [0.5]* carrying capacity 

m 

0.025 to 0.725 d-1                

by [0.025]* mortality 

vPH 0.77 L d-1 mg C-1 herbivore search rate on autotrophs 

vHC 2.71 L d-1 mg C-1 carnivore search rate on herbivores 

hPH 0.5  d-1  handling time of herbivores on autotrophs 

hHC 0.83  d-1  handling time of carnivores on herbivores 

ε 0.36 conversion efficiency of herbivores 

γ 0.5 conversion efficiency of carnivores 

β 0 to 0.9375 by [0.0625]* defence level of defended phenotypes 

µ 0 to 0.9375 by [0.0625]* cost of defence as decrement in growth rate  

S(H) 1≥ S(H) > 0 plastic reproductive switching function for autotrophs 

S(C) 1≥ S(C) > 0 plastic reproductive switching function for herbivores 

gH 0.06 mg C L-1 half saturation constant for plastic switching in autotroph 

gC 0.02 mg C L-1 half saturation constant for plastic switching in herbivore 

bH 2.05 shape of plastic switching in autotroph 

bC 1.5 shape of plastic switching in herbivore 

* marks   the interval size for β, µ, m  and K. 
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Table 2.2.  Frequencies of persistence and equilibrium dynamics across 286,720 food web 

simulations.  Average percentages for ten food web categories that differ in degree, trophic 

location and source of variability.  Persistence: percent of simulations with ≥ 1 population 

persisting at each trophic level.  Equilibria: percent of simulations with stable, non-

oscillatory dynamics.  Only simulations exhibiting persistence were analysed for stability 

but percent values are given as the fraction of all 286,720 simulations. 

web # 

trophic level   

of defence 

trophic level 

of variation 

source of 

variation 

persistence 

[%] 

equilibria         

[%] 

1 none none none 24.05 4.74 

2 autotroph none none 4.06 1.27 

3 herbivore none none 5.02 0.91 

4 both levels none none 2.37 0.58 

5 autotroph autotroph genetic 19.63 3.66 

6 autotroph autotroph plastic 14.06 8.56 

7 herbivore herbivore genetic 25.49 5.59 

8 herbivore herbivore plastic 37.74 23.89 

9 both levels both levels genetic 20.13 3.58 

10 both levels both levels plastic 20.45 16.49 
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2.9 Figures 

 

Figure 2.1.  The ten tri-trophic model food webs used in the analysis of the effects of the source 

and trophic location of variation.  Each individual circle represents a population expressing a 

single phenotype.  Autotroph populations are at the bottom level of each food web, herbivores at 

the intermediate level and the carnivore at the top.  The autotrophs‟ and herbivores‟ shape 

identifies the presence of defence (smooth circles are undefended, jagged circles are defended).  

A dashed horizontal arrow denotes the presence of plasticity.  Solid lines indicate feeding links.  

Webs 1-4 have one genotype with fixed phenotypic expression; web 1 has no defence, web 2 has 

defence at the autotroph level, web 3 has defence at the herbivore level, web 4 has defence at 

both the autotroph and herbivore levels.  Webs 5 and 6 have genetic and plastic variation, 
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respectively, at the autotroph level. Webs 7 and 8 have genetic and plastic variation, respectively, 

at the herbivore level.  Webs 9 and 10 have genetic and plastic variation, respectively, at both the 

autotroph and herbivore levels. 
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Figure 2.2. Time series of (a) web 1 with no 

variation and no defence (b) web 7 with 

genetic variation and (c) web 8 with plastic 

variation at the herbivore level.  At the 

vertical dashed line, carrying capacity 

increases during the simulation, mimicking 

the sudden onset of environmental change. 

Black line denotes carnivore; red line denotes 

sum density of herbivores.  Web 1 displays 

non-equilibrium dynamics before the change, 

both webs with variation display stable 

equilibrium dynamics before the change      

(K = 5); the increase in carrying capacity    

(K = 8) causes the extinction of the carnivore 

in web 1 (a), slowly damped oscillations of 

herbivores and carnivore in web 7 that 

eventually return to equilibrium (not shown) 

(b), while web 8 quickly returns to 

equilibrium (c). m = 0.25, β = 0.5, m = 0.5. 
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Figure 2.3. Bifurcation diagrams of a bitrophic food web. Carrying capacity (K) is shown on the 

X-axis, and mortality (m) on the Y-axis.  The higher (black) line is the transcritical bifurcation; 

above the transcritical bifurcation (white area), the herbivore cannot maintain positive growth.  

The lower (red) line is the Hopf bifurcation; below the Hopf (dark grey area), population 

dynamics are unstable.  Between the transcritical and Hopf bifurcations (light grey area), the 

undefended autotroph and carnivore populations are persistent and stable.  In the yellow area, 

both autotroph populations and the herbivore are persistent and stable. (a) The classical 

Rosenzweig-MacArthur (Rosenzweig & MacArthur 1963) model. (b) Weak stabilisation: a new 

set of Hopf bifurcations are produced, but still reach the same asymptote at high carrying 

capacity. (c) Strong stabilisation: the transcritical and Hopf bifurcations are moved apart and 

approach different asymptotes, thus creating a region of stability extending to infinite carrying 

capacity. 
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Figure 2.4.  Bifurcation diagrams of all 

ten food webs.  Each numbered plot 

refers to its corresponding numbered 

food web in Fig. 2.1.  The higher 

(black) line is the transcritical 

bifurcation; the lower (red) line is the 

Hopf bifurcation.  In the light grey 

area, the carnivore persists, at 

equilibrium, with one herbivore 

population and one autotroph 

population; in the yellow area, both 

undefended and defended autotrophs 

exist at equilibrium with herbivores and 

carnivores; in the green area, both 

herbivore populations persist, at 

equilibrium, with the autotroph and 

carnivore;  in the blue area, both 

herbivore populations and both 

autotroph populations persist, at 

equilibrium, with the carnivore; see Fig. 2.3 for description of other colours stability properties.  

Note that the transcritical and Hopf bifurcations converge at high carrying capacity for all webs 

except 6, 8, and 10 (the plastic webs). Note the similarity of webs 5, 7, and 9 to web 1.  β = 0.5, 

µ =0.5   
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Figure 2.5.  Bifurcation diagrams of web 7 (with genetic variation at the herbivore level).  

Description and parameter values as in Fig. 2.4, except for cost µ in Fig. 2.5.b .  (a)  In the stable 

band, the defended herbivore is extinct.  (b) µ = 0.15.  Note the presence of a new second set of 

Hopf bifurcations; the upper band is identical to the band in (a); however, the lower band 

corresponds to an equilibrium with predator-mediated coexistence of defended and undefended 

herbivores.  Between the upper and the new lower stability band, dynamics are characterised by 

oscillations   
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2.10 Appendices 

Appendix 2.A- Differential Equation Systems for the Ten Food Web Models Listed in 

Table 2.1 and Figure 2.1  
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No variation.  Autotroph undefended.  Herbivore undefended. 
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Web 2 

No variation.  Autotroph defended.  Herbivore undefended. 
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Web 3 

No variation.  Autotroph undefended.  Herbivore defended. 
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Web 4 

No variation.  Autotroph defended.  Herbivore defended. 
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Web 5 

Genetic variation.  Autotroph defended.  Herbivore undefended. 
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Web 6 

Plastic variation.  Autotroph defended.  Herbivore undefended. 
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Web 7 

Genetic variation.  Autotroph undefended.  Herbivore defended. 
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Web 8 

Plastic variation.  Autotroph undefended.  Herbivore defended. 
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Web 9 

Genetic variation.  Autotroph defended.  Herbivore defended. 
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Web 10 

Plastic variation.  Autotroph defended.  Herbivore defended. 
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Appendix 2.B- Supplementary Figures 

The frequency of (1) Persistence; (2) Dynamic stability; (3) Stability given persistence across 

different costs ( μ:y axis) and benefits ( β:x axis).  Warmer colours signify higher frequencies of 

persistence or equilibria, respectively [note: the scale changes in (2.B.3)].  The number in the 

lower right hand corner corresponds to the number of the food web. 
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Appendix 2.C-Expanded Details for Table 2.2    

 

 Frequencies of persistence and equilibrium dynamics across food web simulations where μ>β.  

Average percentages for ten food web categories that differ in degree, trophic location and 

source of variability.  Persistence: percent of simulations with ≥ 1 population persisting at each 

trophic level.  Equilibria: percent of simulations with stable, non-oscillatory dynamics.  Only 

simulations exhibiting persistence were analysed for stability but percent values are given as the 

fraction of all simulations where μ>β.     
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CONNECTING STATEMENT 

The work presented in Chapter 2 used tritrophic models to discern the comparative 

effects of different sources and trophic locations of variation.  I considered stable coexistence 

(i.e., dynamic stability) and persistence (i.e., non-extreme amplitude cyclic coexistence) as 

proxies for „rescue‟.  In Chapter 3, I deeply explore the dynamical consequences of inducible 

defenses by looking at how the category of defense affects model predictions.  In order to 

accomplish my goals, I use a simpler bitrophic system and consider community dynamics in the 

more traditional framework of stable coexistence instead of „rescue‟.  However, the results 

presented in Chapter 3 could very easily be applied to a study of community rescue.   

  

. 
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CHAPTER 3 

 

DYNAMICAL CONSEQUENCES OF INDUCIBLE DEFENSE TRAITS 

 

Caolan Kovach-Orr, Matthijs Vos, & Gregor F. Fussmann (soon to be submitted to Journal of 

Animal Ecology).  Dynamical Consequences of Inducible Defense Traits. 

 

 

3.1 Abstract 

In natural systems, there are three major categories of inducible defense: pre-encounter 

defense, post-encounter defense, and post-consumption defense.  However, most investigations 

into the effects of plastic defenses are limited to the dynamical consequences of a single category 

of defense.  We use models of bitrophic systems to investigate how different categories of 

inducible defense affect model predictions in the predator mortality-carrying capacity parameter 

space.  Our findings help to harmonize the conflicting results produced by previous comparative 

studies.  We show that plastic defenses can decrease the risk of extinctions due to population 

oscillations and that clear hierarchies exist at both low and high carrying capacities.  Pre-

encounter inducible defenses are most likely to promote stable coexistence at low carrying 

capacities, whereas post-encounter and post-consumption inducible defenses are most likely to 

promote stable coexistence at high carrying capacities.   

 

 



- 95 - 

 

Key words: inducible defenses, model specification, strong stability, functional response, 

predator-prey 
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3.2 Introduction 

Inducible defense is a special form of adaptive phenotypic plasticity; it allows prey that 

have encountered predators to express defense traits without any changes to the underlying 

genetic structure of the prey population (Harvell 1990).  Inducible defenses have been 

documented across a wide range of habitats and taxa (reviewed in (Havel 1987; Karban 1997; 

Tollrian & Harvell 1999)); and defenses can arise from changes in morphological (Gilbert & 

Waage 1967), behavioral (Lampert 1989), physiological (Harvell 1990), or chemical traits 

(Rhoades 1985). 

In this paper, we are concerned with how inducible defenses affect predator-prey 

population dynamics.  It is intuitively understandable that inducible defenses can promote the 

stable coexistence of predators and prey because such defenses create negative feedback loops; 

i.e., when predators are abundant, the induction of defenses provides prey with refuge from 

predation, and when predators are sparse, the decay of defenses provides predators with 

resources (Vos et al. 2004a; Miner et al. 2005; DeAngelis 2013; Kovach-Orr & Fussmann 2013).  

This general reasoning has been confirmed by empirical and theoretical studies that found 

inducible defenses to be stabilizing, either by preventing extinction of the prey or by dampening 

oscillatory predator-prey dynamics to small amplitude fluctuations and equilibria (Ramos-

Jiliberto 2003; Verschoor, Vos & van der Stap 2004; Vos et al. 2004a; Ramos-Jiliberto, Frodden 

& Aranguiz-Acuna 2007; Ramos-Jiliberto & Garay-Narvaez 2007; van der Stap et al. 2009; 

Cortez 2011; Yamamichi, Yoshida & Sasaki 2011; Kovach-Orr & Fussmann 2013).  On the 

other hand, theoretical studies have used many different mathematical formulations to 

incorporate inducible defenses into ecological models, reflecting different mechanistic views 

about how the defense affects the predator-prey interaction. This paper explores whether the use 
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of alternative inducible defense formulations leads to different predictions in dynamical 

predator-prey models. 

Categorizing inducible defenses by changes in morphological, behavioral, physiological, 

or chemical traits is of great operational value but is not a key distinction when it comes to 

translating the defense mechanism into mathematical language (Miner et al. 2005).  For instance, 

a behavioral change in a fish that results in hiding behind ocean rocks may have an impact that is 

very similar to that of a physiological color change in an octopus that results in being 

camouflaged as a rock.  Conversely, the same morphological defense (e.g., the long 

posterolateral spines of the rotifer Brachionus calyciflorus that can be spread apart upon physical 

contact with a predator (Gilbert 1966) may have very different effects depending on whether the 

specific predator experiences increased handling time or reduced attack rate due to the defense – 

or varying degrees of both.  In the dynamical context of our study, we therefore classified 

inducible defenses based on how they affect the predator-prey interaction, rather than adopting 

the traditional scheme.  Broadly speaking, we distinguish three categories of inducible defense: 

(1) Pre-encounter defenses, which decrease the predator‟s attack rate (Ramos-Jiliberto, Frodden 

& Aranguiz-Acuna 2007).  (2) Post-encounter defenses, which increase the predator‟s handling 

time (Ramos-Jiliberto, Frodden & Aranguiz-Acuna 2007).  (3) Post-consumption defenses, 

which decrease the predator‟s conversion efficiency.  Inducible defenses that are combinations of 

these categories are also possible.  Some commonly observed effects of inducible defenses 

emerge as special cases of these three categories.  Defenses can allow prey to completely avoid 

predation (i.e., the attack rate on defended individuals drops to 0); prey can completely disrupt 

the predators consumption process (i.e.; handling time on defended individuals effectively goes 

towards infinity); prey can be nutritionally worthless (i.e., conversion efficiency on defended 
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individuals drops to 0), or even be toxic to predators (i.e., conversion efficiency on defended 

individuals becomes negative, as is seen with cyanobacteria and Daphnia (Lampert 1981)). 

In our study we link biologically plausible defense mechanisms to commonly used 

mathematical formulations.  Our goal was to systematically compare the dynamical 

consequences of incorporating these mechanisms into the same benchmark predator-prey model.  

Although all inducible defenses will stabilize the dynamics in some way, we expected 

differences in many ecologically important attributes such as the strength and endpoint of 

stabilization or the parameter ranges for which stabilization occurs.  Some preliminary work on 

this topic has been done prior to our study (Vos et al. 2004a; Ramos-Jiliberto, Frodden & 

Aranguiz-Acuna 2007; Garay-Narvaez & Ramos-Jiliberto 2009; Kovach-Orr & Fussmann 2013), 

but a comparative investigation is needed because many theoretical studies claim to study the 

general effect of inducible defenses in a given dynamical model context, but offer only one 

specific mechanistic implementation (Vos et al. 2004a; Vos et al. 2004b; Cortez 2011; 

Yamamichi, Yoshida & Sasaki 2011; Kovach-Orr & Fussmann 2013).  It appears that this 

practice may be suitable for the description of a specific empirical predator-prey interaction but 

cannot be employed to establish some degree of generality. 

To evaluate how different categories of inducible defenses affect the stable coexistence of 

predators and prey, we used mathematical models of bitrophic systems based on Vos et al. 

(2004a).  We performed bifurcation analyses to establish the relative presence of stable 

coexistence vs. oscillatory dynamics with respect to ranges of two model parameters: predator 

mortality and carrying capacity.  We used predator mortality because it determines the force of 

top-down control on the system, and carrying capacity because it affects bottom-up control (Vos 

et al. 2004a). As our results will show, it is important to consider both of these parameters 
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simultaneously (i.e., investigate the mortality-capacity parameter plane) because the region of 

stable coexistence has a complex, interactive relationship with these parameters, and evaluating 

stable coexistence in only one dimension can produce potentially misleading predictions.  

 

3.3 Models 

In our analyses, the prey species can either be constitutively undefended (i.e. all prey are 

undefended, regardless of predator density) or inducibly defended (i.e. the proportion of 

defended individuals is directly dependent on predator density).  These analyses of inducible 

defense are based on, and parameterized for, a “real” rotifer-algal system that exhibits inducible 

defenses (Hessen & Vandonk 1993; Verschoor et al. 2004; Vos et al. 2004a; van der Stap et al. 

2009).  Constitutively undefended prey can be modeled using parameter values, based on units of 

carbon per liter, and rates, measured in time related units, that correspond to the undefended prey 

state (Table 3.A.1).  This system can then be investigated using a Rosenzweig-MacArthur 

(Rosenzweig & MacArthur 1963) model of bitrophic predator-prey systems that has been 

modified to include density-independent prey mortality (Vos et al. 2004a) : 

d𝑥

d𝑡
= 𝑥  𝑟  1 −

𝑥

𝐾
 −

𝑎 𝑦 

1+𝑎 𝑕 𝑥
−𝑚𝑥       (3.1a) 

d𝑦

d𝑡
= 𝑦  

𝜀 𝑎 𝑥 

1+𝑎 𝑕 𝑥
−𝑚𝑦          (3.1b) 

where the prey x experience a maximum growth rate r, grow logistically to a carrying capacity K, 

and have a natural mortality rate mx .  Predators y, consume prey with attack rate a, handling time 

h, convert prey biomass with efficiency ε , and experience a natural mortality rate my . This 

classic model is particularly well known for its tendency to destabilize from stable coexistence to 
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sustained oscillations as carrying capacity, K, increases, a dynamic behavior known as the 

“paradox of enrichment” (Rosenzweig 1971).  

 Inducible defenses can be incorporated into system (3.1) by the addition of a second prey 

population and induction/decay functions that allow prey to switch between undefended and 

defended phenotypes (Vos et al. 2004a): 

d𝑥1

d𝑡
= 𝑥1  𝑟1  1 −

𝑥1 + 𝑥2

𝐾
 −

𝑎1𝑦

1 + 𝑎1𝑕1𝑥1 + 𝑎2𝑕2𝑥2

−𝑚𝑥1 − 

              𝑖 𝑥1  1 −  1 +  
𝑦

𝑔
 
𝑏

 
−1

 + 𝑖 𝑥2  1 +  
𝑦

𝑔
 
𝑏

 
−1

      (3.2a) 

d𝑥2

d𝑡
= 𝑥2  𝑟2  1 −

𝑥1 + 𝑥2

𝐾
 −

𝑎2𝑦

1 + 𝑎1𝑕1𝑥1 + 𝑎2𝑕2𝑥2

−𝑚𝑥2 + 

    𝑖 𝑥1  1 −  1 +  
𝑦

𝑔
 
𝑏

 
−1

 − 𝑖 𝑥2  1 +  
𝑦

𝑔
 
𝑏

 
−1

      (3.2b) 

 

where index 1 relates to the undefended population and index 2 relates to the defended 

population.  Prey grow logistically to a joint carrying capacity K, which applies to the sum of the 

density of the two phenotypes.  The induction and decay of defenses follow sigmoid functions 

with a maximum rate of induction or decay i.  The predator density g at which induction or decay 

reaches half of its maximum rate and a scaling parameter b control the shape of these functions.  

As y approaches 0, the rate of induction approaches 0, while the rate of decay approaches i; as y 

approaches infinity, the rate of induction approaches i , while the rate of decay approaches 0.   

   

d𝑦 

d𝑡
= 𝑦  

𝜀1𝑎1𝑥1 + 𝜀2𝑎2𝑥2

1 + 𝑎1𝑕1𝑥1 + 𝑎2𝑕2𝑥2
−𝑚𝑦    (2c) 1 (3.2c) 
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 In system (3.2), prey are considered defended if a1>a2 (pre-encounter defense), 

h1< h2 (post-encounter defense), or ε1> ε2 (post-consumption defense) [note: it is also possible 

that prey exhibit a combination of these defenses].  The original rotifer-algal system, on which 

our parameterization is based, only exhibits post-encounter inducible defenses (colony 

formation) that result in increased mortality for the defended prey (Table 3.A.3).  To investigate 

pre-encounter and post-consumption inducible defenses we standardized the relative change in 

the defense trait and applied this change to the respective parameter for each category of 

inducible defense (Tables 3.A.2 and 3.A.4).  Although this represents just one parameterization 

for each category of inducible defense, our results provide insights into the kind of changes 

produced by inducible defenses; additional analyses are provided in Appendix 3.B.  For each 

category of defense, we also investigated the limit case where the defense is completely 

effective.  For pre-encounter inducible defenses this occurs when a1 > a2 and a2 =0 (representing 

a defended prey population that can completely avoid predators), for post-encounter inducible 

defenses this occurs when h1 < h2 and h2 → ∞ (representing a defended prey population that fully 

disrupts the predation process), and for post-consumption inducible defenses this occurs when 

ε1> ε2 and ε2  ≤ 0 (representing a defended prey population that is nutritionally worthless or even 

toxic to predators).  

 

3.4 Model Analysis 

We analyzed a model that lacks inducible defenses, three different categories of inducible 

defenses (pre-encounter, post-encounter, and post-consumption inducible defenses), as well as 

their limit cases, for their impact on the stable coexistence of predators and prey.  In the my - K 

parameter space, the region of stable coexistence is separated from the region of deterministic 
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predator extinction by the transcritical bifurcation.  Specifically, at any given K, predator 

mortality rates above the transcritical bifurcation cause deterministic predator extinction.  The 

region of stable coexistence is separated from the region of coexistence on stable limit cycles by 

the supercritical Hopf bifurcation.  Specifically, at any given K, predator mortality rates below 

the Hopf bifurcation cause oscillatory dynamics.  The relationship between carrying capacity and 

the breadth of stability, i.e. the change in distance between the transcritical and Hopf bifurcations 

over a range of K values, can be used to classify models into fundamentally different categories 

of model stability known as “weak” , “strong”, and “complete” stability (Kretzschmar, Nisbet & 

McCauley 1993; van Voorn et al. 2008).  Weak stability occurs when the Hopf bifurcation 

approaches the same asymptotic limit as the transcritical bifurcation, as carrying capacity 

approaches infinity (i.e. the size of the breadth of stability approaches 0) (Fig. 3.1 a, b).  Strong 

stability occurs when the Hopf bifurcation approaches a lower asymptotic limit than the 

transcritical bifurcation, as carrying capacity is increased (i.e. the size of the breadth of stability 

never approaches 0) (Fig. 3.1 c, d) (Kretzschmar, Nisbet & McCauley 1993; Vos et al. 2004a).  

Complete stability can be seen as the limit case of strong stability, in that complete stability 

occurs when systems do not exhibit limit cycles anywhere in the my -K plane (i.e. the Hopf 

bifurcation is absent) (Fig. 3.1 e) (van Voorn et al. 2008).   

Important differences in system behavior can also arise at finite values of K for model 

systems that exhibit weak or strong stability.  For instance, models may differ in the carrying 

capacity that is required to cross the Hopf bifurcation as my   0 (i.e., stable coexistence gives 

way to sustained oscillations); when predators consume prey with a type 2 functional response 

(as in systems (3.1) and (3.2)), this model property corresponds to the minimum carrying 

capacity that can produce sustained population oscillations.  Additionally, because models may 



- 103 - 

 

differ in their specific relationship between carrying capacity and breadth of stability, it is 

important to identify the conditions that allow different models to have relatively larger or 

smaller breadths of stability.  Therefore, in order to visualize the breadth of stability at finite 

values of K, we created bifurcation diagrams, which can illustrate how the breadth of stability 

changes at biologically plausible parameter values.  Because of the complex nature of inducible 

defense systems, it is not possible to generate exact analytical solutions for finite values of K.  

Therefore, we used MATLAB (2013) and the associated package MatCont (Govaerts & 

Kuznetsov 2013) for numerical bifurcation analysis of all bitrophic models. 

At extreme values of K, bifurcation analyses become computationally expensive; 

therefore, in order to show the dynamical consequences of inducible defenses at extreme values 

of K, we turned to numerical simulations of time series which show dynamics for a single 

parameter combination.  These simulations were performed using MATLAB (2013).  Initial 

population densities were x1 = x2 =10
5
 mg C L

-1
, and y=100 mg C L

-1
.  Carrying capacity was set 

equal to 10
6
 mg C L

-1
.  To avoid transient dynamics, we evaluated stable coexistence in 

numerical simulations from t=900,000 to t=1,000,000.  If there was less than a 1% difference 

between the maximum and minimum populations‟ densities over this range, the system was 

considered to exhibit stable coexistence. 

 

3.5 Results 

We start by showing that the presence and nature of inducible defenses can affect model 

predictions of stable coexistence at low (i.e. finite) carrying capacities.  Table 3.1 shows the 

carrying capacity that is required to cross the Hopf bifurcation as my   0 (i.e., equilibrium 

dynamics give way to stable limit cycles) for models with no defenses as well as models that 
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incorporate inducible defenses.  When compared to the no defense model, it is immediately clear 

that pre-encounter inducible defenses allow for stable coexistence at higher carrying capacities 

and, therefore, have the potential to mitigate the destabilizing effects of nutrient enrichment 

(Table 3.1; Fig. 3.1, intersection of K axis with the blue curve).  On the other hand, post-

encounter inducible defenses can intensify the impact of enrichment by allowing the Hopf 

bifurcation to occur at lower values of K than the model that lacks defenses (Table 3.1).  

Incorporating post-consumption inducible defenses has very little effect on the Hopf bifurcation 

as my  0 (Table 3.1); in fact, the slight difference between models with no defenses and post-

consumption inducible defenses is almost entirely due to the costs associated with defended 

phenotypes (i.e. increased mortality) (Appendix 3.B).   

The K value for which the Hopf bifurcation occurs as my  0 is an initial assessment of 

stabilization through induced defenses; bifurcation analyses offer a more complete picture of the 

boundaries of stable coexistence across the whole my-K parameter space.  (Note: the transcritical 

bifurcation is identical for all models because as equilibrium predator density approaches 0, the 

decay function approaches its maximum, and all prey become undefended.)  As K increases, 

model predictions diverge rapidly and no longer predict similar boundaries of stable coexistence 

for the cases of no defenses and post-consumption inducible defenses (Fig. 3.1 a, d).  In fact, the 

breadth of stability for the model with no defenses rapidly shrinks relative to any of the inducible 

defense models (Fig. 3.1); the values of my and K where the Hopf bifurcations intersect are given 

in Table 3.2.   

Important distinctions exist between the different classes of inducible defenses.  As 

carrying capacity increases, the breadth of stability for pre-encounter inducible defenses 

decreases and eventually becomes smaller than the breadth of stability for post-encounter and 
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post-consumption inducible defenses (Table 3.2; Fig. 3.1 b, c, d).  For values of K > 14.2 mg C 

L
-1

, the breadth of stability is larger for post-encounter than pre-encounter inducible defenses, 

and vice versa for smaller values of K (Table 3.2).  A similar critical point exists at K = 10.9 mg 

C L
-1 

for pre-encounter vs. post-consumption inducible defenses, whereas the Hopf bifurcations 

for post-encounter and post-consumption inducible defenses never intersect (Table 3.2; Fig. 3.1 

c, d); the breadth of stability is always greater for post-consumption inducible defenses.  

In addition to the differences in model predictions at finite values of K, the presence and 

nature of inducible defenses also affects stable coexistence at infinite values of K.  It is well 

known that system (3.1) is incapable of producing strong stability (Rosenzweig 1971; 

Kretzschmar, Nisbet & McCauley 1993; Vos et al. 2004a; Kovach-Orr & Fussmann 2013).  Vos 

et al. (2004a) derived that post-encounter and post-consumption inducible defenses allow for 

strong stabilization as K approaches infinity, as long as 
𝜀2

𝑕2
<  𝑚𝑦 <  

𝜀1

𝑕1
  .  Our results support 

that very strong post-consumption inducible defenses (i.e. ε2 ≤ 0 ) will lead to stable coexistence 

for all 𝑚𝑦 <  
𝜀1

𝑕1
 , as K approaches infinity (Fig. 3.2 b); however, only trivial stable coexistence 

occurs when h2 equals infinity (Fig. 3.2 c).  Specifically, when h2 equals infinity, the presence of 

any defended prey will cause the predators‟ consumption of both prey types to equal 0.  This, 

combined with the fact that in system (3.2) the presence of the predator causes at least some prey 

to be defended, makes it intuitively understandable that if h2 equals infinity and my >0,  predators 

and inducibly defended prey cannot coexist.  

Our analyses have also identified that the limit case of pre-encounter inducible defense, 

where defended prey completely avoid predators (i.e. a2=0) , allows for not just strong, but 

complete, stabilization.  Numerical time series (Fig. 3.3 a, b) show that when a2=0, system (3.2) 

does not exhibit the Hopf bifurcation for any my ≥ 0, even at extreme values of K (Figs. 3.2 a, 3.3 
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a, b); although Fig. 3.3 only includes two predator mortality rates and one extreme value for K, 

we have confirmed that other predator mortality rates and higher carrying capacities also produce 

stable coexistence (data not shown).  On the other hand, even very small positive values of a2 

cannot produce complete, or even strong, stability (Fig. 3.3 c).   

 

3.6 Discussion 

Previous work has shown that inducible defenses have the potential to promote stable 

coexistence in the my -K parameter space (Vos et al. 2004b; Ramos-Jiliberto, Frodden & 

Aranguiz-Acuna 2007; Ramos-Jiliberto & Garay-Narvaez 2007; van der Stap, Vos & Mooij 

2007; Cortez 2011; Yamamichi, Yoshida & Sasaki 2011; Kovach-Orr & Fussmann 2013).  

Furthermore, inducible defenses have been shown to offer a potential resolution to the paradox 

of enrichment by promoting stable coexistence at extreme levels of K; a result that has been 

corroborated by laboratory studies (Verschoor, Vos & van der Stap 2004; van der Stap et al. 

2009).  However, previous work has also shown that under some conditions, the presence of 

inducible defenses can impede stable coexistence, even when compared to systems without 

inducible defenses (Yamamichi, Yoshida & Sasaki 2011; Kovach-Orr & Fussmann 2013).   

Surprisingly, little attention has been given to the effect of different categories of 

inducible defenses.  The few comparative studies that do exist have indicated that systems 

without inducible defenses are less likely to exhibit stable coexistence than systems with pre-

encounter (Vos et al. 2004a; Ramos-Jiliberto, Frodden & Aranguiz-Acuna 2007), post-encounter 

(Vos et al. 2004a; Ramos-Jiliberto, Frodden & Aranguiz-Acuna 2007), or post-consumption 

(Vos et al. 2004a) inducible defenses.  However, these studies have produced conflicting 

predictions of which category of inducible defense is most likely to promote stable coexistence.  
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Vos et al. (2004a) concluded that post-encounter and post-consumption inducible defenses are 

more likely to promote stable coexistence than pre-encounter inducible defenses.  Furthermore, 

Vos et al.’s (2004a) analytical solutions imply that increasing the effectiveness of post-encounter 

and post-consumption inducible defenses will further promote stable coexistence.  On the other 

hand, Ramos-Jiliberto, Frodden & Aranguiz-Acuna (2007) compared pre-encounter and post-

encounter, but not post-consumption, inducible defenses and found that post-encounter inducible 

defenses create more rich (i.e., variable) dynamics than pre-encounter inducible defenses.  

Additionally, Ramos-Jiliberto, Frodden & Aranguiz-Acuna (2007) found finite increases to the 

effectiveness of pre-encounter and/or post-encounter inducible defenses will first promote and 

then potentially impede stable coexistence.   

Our analyses indicate that two factors contributed to the discrepancies between the 

conclusions of Vos et al .(2004a) and Ramos-Jiliberto, Frodden & Aranguiz-Acuna (2007).  

First, unlike Ramos-Jiliberto, Frodden & Aranguiz-Acuna (2007), Vos et al.’s (2004a) 

comparative study of different forms of inducible defenses did not consider dynamical 

consequences at low levels of enrichment; instead, Vos et al.’s (2004a) analyses were limited to 

the effects of inducible defenses as carrying capacity approached(s) infinity.  This is especially 

important in light of our results, which indicate pre-encounter inducible defenses transition from 

most likely to least likely to promote stable coexistence as carrying capacity increases (Fig. 3.1 

b, c, d.  Table 3.1).   

Second, Ramos-Jiliberto, Frodden & Aranguiz-Acuna (2007) used a fundamentally 

different approach towards natural mortality rates and incorporated negative density dependence 

in both predators and prey.  Specifically, in Ramos-Jiliberto, Frodden & Aranguiz-Acuna‟s 

(2007) model, the natural mortality rate was equal to 0.1 × population density.  Such self-
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limitation may make sense for some systems (Agusti 1991; Kirk 1998; Burns 2000); however, 

we feel Vos et al.’s (2004a)/our model is more appropriate for the study of stable coexistence 

and enrichment for three reasons.  First, imposing self-limiting mortality rates constrains the 

biological relevance of model predictions.  Not all populations experience increased mortality in 

the face of increased conspecific density; in fact, many populations have been shown to exhibit 

the exact opposite phenomenon: positive density dependence (Milinski 1984; Getz et al. 1993; 

Kohler & Huth 1998; Kie 1999).  On the other hand, some populations do exhibit self-limiting 

mortality rates; however, the intensity of self-limitation can differ between populations (Harvell 

1990; van der Stap, Vos & Mooij 2006).  This is especially important because models with high 

levels of self-limitation may not capture certain phenomena – for example, if the prey population 

is self-limited to low density, prey may be unable to escape predator control.   

Second, negative density dependent mortality rates are generally stabilizing (Ramos-

Jiliberto 2003);  however, we are more interested in the role that different forms of inducible 

defenses may play in promoting the stable coexistence of more „at risk‟ populations that do not 

have the benefit of self-limiting mortality rates.  

Third, because mortality rate is directly dependent on only population density in Ramos-

Jiliberto, Frodden & Aranguiz-Acuna‟s (2007) model, one cannot isolate the effects of 

environmental changes that directly result in increased natural mortality rates.  Natural mortality 

rates can be increased indirectly, but only if environmental changes result in increased resource 

availability and/or decreased predation.  Furthermore, because the predator mortality rate 

increases with predator population density, incorporating self-limitation creates a „bizarre‟ 

phenomenon where the frequency of defended prey is always positively correlated with the 
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predator mortality rate.  While these phenomena may co-occur, they are fundamentally separate 

processes, and therefore deserve individual consideration.  

Although predator mortality rate is not explicitly tied to the frequency of defended prey, 

these forces do interact in the Vos et al. (2004a)/our model framework.  For example, because 

increased predator mortality results in fewer predators, fewer prey exhibit defenses.  In fact, for 

high levels of enrichment, this relationship can allow for stable coexistence.  Specifically, it 

allows inducibly defended prey to limit the predator population to very low densities (data not 

shown); this mitigates the destabilizing effects of enrichment because predators are unable to 

overexploit prey, and therefore, prey escape does not result in sustained oscillations.  This 

phenomenon is the basis for the ability of all three categories of inducible defense to promote 

stable coexistence at high levels of enrichment.  Both post-encounter and post-consumption 

inducible defenses reduce the maximum resource uptake rate of predators; therefore, they also 

lower the asymptotic limit of the Hopf bifurcation, as K approaches infinity (Vos et al. 2004a) 

this, in turn, allows post-encounter and post-consumption inducible defenses to create strong 

stability (Vos et al. 2004a).  Furthermore, at high K values, as post-encounter and post-

consumption inducible defenses become completely effective (i.e., approach their limit cases), 

the band of cyclic coexistence at low my becomes increasingly small and the band of strong 

stability becomes increasingly large.  On the other hand, pre-encounter inducible defenses 

(where a2 ≥ 0) cannot create strong stability because they do not affect the asymptotic limit of 

the Hopf bifurcation as K approaches infinity (Vos et al. 2004a). 

A different mechanism governs the stable coexistence of predators and prey at lower 

predator mortality rates.  Low mortality rates can allow predators to grow to high density, even 

when all prey are defended; this, in turn, causes predators to overexploit prey, a subsequent 
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reduction in predator density, which is followed by prey escape, and ultimately, sustained 

population oscillations.  Upon visual inspection of figure 3.1 (a, b, c, d), it becomes immediately 

clear that post-encounter, but not pre-encounter or post-consumption inducible defenses can 

result in population oscillations at lower values of K than the model without inducible defenses 

(also see Table 3.1).  To the best of our knowledge, no previous work has shown that 

incorporating inducible defenses may promote or impede stable coexistence [compared to no 

defenses] depending on the implementation of defense.   

At low predator mortality rates and carrying capacities, post-encounter inducible defenses 

accelerate destabilization due to enrichment because increased handling time forces predators to 

approach their maximum consumption rate at lower prey densities; thus, increases in prey 

density are not met with increases in consumption and prey can more easily escape predator 

control (Turchin 2003; Kovach-Orr et al. unpublished manuscript).  Furthermore, the low 

predator mortality rate allows unsustainably high predator densities, which perpetuates cyclic 

coexistence.  On the other hand, reducing the attack rate (i.e. pre-encounter inducible defense) 

causes predators to approach their maximum consumption rate at higher prey densities; thus, 

increases in prey density are bet with increases in consumption and prey can less easily escape 

predator control at low levels of enrichment.  While reducing the conversion efficiency (i.e., 

post-consumption inducible defense) does affect the absolute resource uptake rate, it has no 

effect on the relationship between prey density and consumption rate.   

Furthermore, in Appendix 3.B, we show that increasing the effectiveness of pre-

encounter and/or post-encounter inducible defenses will continuously intensify these effects.  

Therefore, post-encounter inducible defenses cannot promote stability at high K values without 

impeding stability at low values of K.  On the other hand, fact, our results indicate that as a20, 
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the K value (of the Hopf as my  0) approaches infinity (Fig. 3.3, Appendix 3.B).  Because the 

Hopf bifurcation never enters the positive my-K parameter space, the system will not exhibit 

sustained oscillations for any combinations of predator mortality rate and carrying capacity (Fig 

3.3): a phenomenon known as complete stability (van Voorn et al. 2008).  Surprisingly, this 

implies that strong stability is not a pre-requisite for complete stability.   

Our analyses also show that for my > 0, stable coexistence is impossible for the limit case 

of post-encounter inducible defense (i.e. h2→∞), where it is all but guaranteed for the limit cases 

of pre-encounter and post-consumption inducible defenses (Fig 3.3 a, b).  Interestingly, all three 

of the limit cases (a2=0, h2 →∞, and ε2 ≤ 0) result in predators being unable to absorb biomass 

from defended prey; however, very strong post-encounter defenses (i.e. h2 →∞) also prevent 

predators from absorbing biomass from undefended prey.  While such scenarios with very strong 

inducible defenses may apply to non-selective predators, such as filter feeders, in other cases this 

scenario is purely pathological.  Specifically, optimal foraging theory dictates that consumption 

of defended prey should not occur if energy gained consuming defended prey is equal to 0. 

We acknowledge that our analyses consider simplified systems and natural communities 

are much more complex.  For instance, it is possible that prey exhibit a combination of inducible 

defenses (Van Buskirk & McCollum 2000; Kovach-Orr & Fussmann 2013) or different forms of 

costs (Via & Lande 1985; Via et al. 1995); however, the specific nature of costs has been shown 

to have little effect (Ramos-Jiliberto 2003) and we believe that it is important to understand 

simple systems before investigating more complex communities and processes.  Nevertheless, 

our results indicate predictable, definitive, and consistent relationships between the form of 

inducible defense, the effectiveness of defense, and stable coexistence in the my -K parameter 

space (Appendix 3.B).  Furthermore, we showed that inducible defenses can decrease the risk of 
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extinctions due to population oscillations and that clear hierarchies exist at both low and high 

carrying capacities (Table 3.1; Fig. 3.1). 

From a biological perspective, all three categories of inducible defense are likely relevant 

to natural communities.  The effectiveness of pre-encounter inducible defenses at finite carrying 

capacities, and the realization that pre-encounter inducible defenses include behavioral changes 

in addition to morphological, chemical, and physiological changes, suggest that this form of 

inducible defense may have the largest impact on the stable coexistence of predators and prey.  

Nevertheless, the ability of inducible defenses to promote stable coexistence will ultimately 

depend on both the biology of the organisms in question, as well as the abiotic factors of carrying 

capacity and predator mortality rate.   
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3.10 Figures 

 

Figure 3.1.  Bifurcation diagrams of (a) system (3.1) with constitutively undefended prey.  (b-d) 

system (3.2) with inducibly defended prey.  (b) pre-encounter inducible defense (i.e. attack rate).  

(c) post-encounter inducible defense (i.e. handling time).  (d) post-consumption inducible 

defense (i.e. conversion efficiency).  Carrying capacity (K) is shown on the x-axis, and predator 

mortality rate (my) is shown on the y-axis.  The white area is the region of deterministic predator 

extinction.  The black area is the region of stable coexistence; it is separated from the region of 

predator extinction by the transcritical bifurcation; above the transcritical bifurcation, the 

predator cannot maintain positive growth.  The grey area is the region of cyclic coexistence (i.e. 

limit cycles); it is separated from the region of stable coexistence by the supercritical Hopf 
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bifurcation.  The range of mortality rates where stable coexistence occurs (i.e. the size of the 

black area) at a given carrying capacity is known as the “breadth of stability”.  (a,b) Weak 

stability: as carrying capacity approaches infinity, the breadth of stability approaches 0.  (c,d) 

Strong stability: as carrying capacity approaches infinity, the breadth of stability approaches a 

value greater than 0, however, limit cycles exist for some parameter values.   
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Figure 3.2- Bifurcation diagrams of system (3.2) with the limit cases of inducibly defended prey.  

(a) pre-encounter inducible defense (i.e. a2 = 0).  (b) post-encounter inducible defense (i.e.          

h2 infinity).  (c) post-consumption inducible defense (i.e. ԑ2 = 0).  Carrying capacity (K) is 

shown on the x-axis, and predator mortality rate (my) is shown on the y-axis.  Description of 

colors as in Figure 3.1.  (a, c) Complete stability: increasing carrying capacity does not cause 

sustained population cycles, regardless of predator mortality rate.  (b) Trivial stability: predators 

cannot survive for any predator mortality rate greater than 0.  
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 Figure 3.3- time series for 

system (3.2) at extreme values 

of K (K=1,000,000). dashed red- 

undefended prey.  solid red - 

defended prey.  solid black- 

predators.  (a, b) a2 = 0 (a limit 

case of pre-encounter inducible 

defense), which exhibits 

complete stability.  (a) my = 0 

(which shows that the Hopf 

bifurcation never enters the 

system). (b) my = 0.71.             

(c) a2 = 0.01, my = 0.71 , stable 

coexistence is not possible.  

Compare panels  (b) and (c) to 

show that strong/complete 

stability is not possible if a2 > 0 .  

Note that the y-axis is in log 

scale, and the y-axis                   

in (c) covers a larger range than 

in (a) or (b) .    
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3.11 Appendices 

Appendix 3.A – Supplementary Tables with Parameter Values for Each Category of Inducible 

Defense 
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Appendix 3.B – Effectiveness vs K value required to cross Hopf bifurcation as my0    

Relationship between inducible defense effectiveness (y axis) and the K value (x axis) 

required to cross the supercritical Hopf bifurcation as my 0 for models built using system (3.2).  

(1) Pre-encounter inducible defenses;  (2) Post-encounter inducible defenses; (3) Post-

consumption inducible defenses.  Effectiveness and carrying capacity increase from the bottom 

left hand corner to the top right hand corner.  For all three figures, the minimum effectiveness 

shown corresponds to the parameterization used to model undefended prey (given in Table 

3.A1).  Carrying capacity- defense effectiveness parameter combinations that fall into the black 

shaded area produce stable coexistence, parameter combinations that fall into the grey shaded 

area produce cyclic coexistence.  Note that increasing effectiveness of pre-encounter inducible 

defenses will increase the K value required to cross the Hopf bifurcation as my 0; the opposite 

is true for post-encounter inducible defenses.  The effectiveness of post-consumption inducible 

defenses has little impact on the K value required to cross the Hopf bifurcation as my  0 ;  

however, as effectiveness becomes extremely effective (i.e., ԑ2  0), post-encounter inducible 

defenses are shown to increase the K value required to cross the Hopf bifurcation as my 0.    
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Figure 3.B.1 – pre-encounter inducible defenses  
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Figure 3.B.2 – post-encounter inducible defenses  

 

Figure 3.B.3 – post-consumption inducible defenses  
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CONNECTING STATEMENT 

In the previous two chapters, I have shown the dynamical consequences of intraspecific 

variation for prey defenses, and that model predictions are sensitive to the origin, trophic 

location, and the category of defense traits.  I now turn my attention to the another type of 

variation for traits that affect the interactions of predators and prey: inducible predator offenses.  

In Chapter 4, I use a combination of theory and systematic review of published empirical data to 

investigate the dynamical consequences and prevalence of intraindividual variation in predators.  

Specifically, I consider inducible offenses that allow predator attack rate and/or handling time to 

become functions of prey density.   
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CHAPTER 4 

 

PREY-DENSITY DEPENDENT ATTACK RATE AND HANDLING TIME: PREVALENCE 

AND COMMUNITY LEVEL CONSEQUENCES  

 

Caolan Kovach-Orr, Michael Cortez, Matthijs Vos, & Gregor F. Fussmann (soon to be re-

submitted to The American Naturalist).  Prey-density dependent attack rate and handling 

time: prevalence and community-level consequences 
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4.1 Abstract 

The widely used Holling type 2 functional response assumes that the components of 

predation (i.e. attack rate and handling time) are unaffected by changes in prey density.  

However, a growing body of empirical and theoretical research suggests that these components 

should depend on prey density.  In our study, we explore predator inducible offenses using a 

variety of functional response equations that correspond to situations where prey density-

dependent attack rates and/or handling times are likely relevant to natural systems.  Using a 

combination of theory and systematic review of published empirical datasets, we evaluate the 

prevalence and dynamical implications of these functional responses.  Of the 144 datasets that 

had previously been attributed to the type 2 functional response, AICc analyses indicate that 142 

datasets are best fit by consumption equations that incorporate prey density-dependent attack 

rates and/or handling times.  In terms of the community dynamics and stability properties of 

systems facing nutrient enrichment, we find that some, but not all, models that incorporate prey 

density-dependent attack rates and/or handling times are capable of making categorically and 

fundamentally different predictions than models that incorporate the type 2 functional response.  

We interpret our findings to mean that predictions of frequent or inevitable destabilization may 

be overstated.  Our study also highlights the importance of rechecking accepted principles in 

ecology. 

 

Key words: inducible offense, functional response, predator-prey, strong stability, paradox 

of enrichment 
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4.2 Introduction 

Ecologists use mathematical models to formalize specific aspects of species interactions 

– for instance, the uptake of prey by a predator.  In many cases, a number of mathematical 

expressions can satisfactorily describe the process of species interactions and ecologists have 

settled on using one or a few of them for historical reasons or out of convenience.  The same set 

of descriptors of species interactions is typically put to use in dynamical models of interacting 

populations, where they form the interaction terms linking differential or difference equations; 

for example, the type 1, 2, and 3 functional response equations (Holling 1959; Myerscough, 

Darwen & Hogarth 1996).  As previously shown, the mathematical description of the species 

interaction becomes crucially important if the task at hand is prediction of community dynamics 

because terms that can serve equally well as mechanistic descriptors of species interactions 

frequently lead to drastically different outcomes in a dynamical context (Fussmann & Blasius 

2005). 

In this paper, we are primarily concerned with the attack rate and handling time 

components of predation.  Attack rate is defined as the rate at which a predator encounters and 

successfully captures prey (Murdoch 1973).  Handling time is the amount of time required to 

physically manipulate and consume captured prey (Murdoch 1973).  Optimal foraging theory 

suggests that predators should try to maximize energy intake while minimizing energy output 

and risk (MacArthur & Pianka 1966).  Thus, from an evolutionary perspective, the components 

of the functional response (attack rate and handling time) should, at least partially, depend on 

prey density (Abrams 1982); however, it is often assumed that these components are constant 

and independent of prey density (Murdoch, Briggs & Nisbet 2003; Turchin 2003).  Such “static” 

parameterizations occur in a number of popular mathematical predator-prey descriptions, such as 



- 134 - 

 

the “type 2” functional response, and are implicitly employed in classical and basal community 

models, such as the widely used Rosenzweig-MacArthur (R-M) model for bitrophic predator-

prey interactions (Rosenzweig & MacArthur 1963).  From a theoretical standpoint, the R-M 

model serves as both the standard for bitrophic analyses and the foundation for more complex 

community models (Fussmann & Heber 2002; Rooney et al. 2006); however, the R-M model 

rarely, if ever, accurately describes the dynamics of predator-prey interactions under natural field 

conditions (Jensen & Ginzburg 2005).  Specifically, the R-M model predicts that as the carrying 

capacity of the prey increases, stable coexistence will become practically impossible, a 

phenomenon known as the “paradox of enrichment” (Rosenzweig 1971); instead, natural systems 

are relatively stable under enrichment (Murdoch et al. 1998; Vos et al. 2004; Jensen & Ginzburg 

2005).  Despite the lack of empirical support for the R-M model, it remains a paradigm of 

community ecology, and theorists have tried to resolve the mismatch between theory and 

observation by expanding the R-M model (Jensen & Ginzburg 2005).  Advancements have relied 

on incorporating phenomena such as inducible defenses, reciprocal plasticity, genetic diversity, 

inedible prey, unpalatable prey, predator interference, and spatial heterogeneity into basal (more 

simple) predator-prey models (Grover 1995; Scheffer & Deboer 1995; Jansen 2001; Yoshida et 

al. 2003; Arditi et al. 2004; Vos et al. 2004; Mougi & Iwasa 2011; Yamamichi, Yoshida & 

Sasaki 2011); however, the disagreement between theory and natural systems remains a debated 

topic because many of these solutions are considered system specific (Roy & Chattopadhyay 

2007).   

On the other hand, many of these phenomena can be modeled using functional responses 

that incorporate prey density-dependent components (PDCs), e.g. functional responses where the 

handling times and/or attack rates change with prey density.  For instance, under certain 
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circumstances, the presence of prey refuges (spatial heterogeneity) can cause attack rate to 

become an increasing function of prey density because as prey density increases, a decreasing 

proportion of prey can hide from predators (Murdoch & Oaten 1975); this, in turn, can produce a 

sigmoid functional response (Oaten & Murdoch 1975).  A positive correlation between prey 

density and attack rate is also seen in systems with inducible defenses (Hammill, Petchey & 

Anholt 2010).  

However, phenotypic plasticity within a single predator can create inducible offenses that 

allow for PDC functional responses in the absence of spatial heterogeneity or multiple prey types 

(Kishida et al. 2014).  For instance, handling time can become a decreasing function of prey 

density when predators abandon and/or only partially consume prey (Okuyama 2010).  Such 

“wasteful killing” can confer an evolutionary advantage (Maupin & Riechert 2001; de 

Mazancourt & Schwartz 2012) and has been observed across a wide range of systems (Sandness 

& McMurtry 1972; Johnson, Akre & Crowley 1975; Samu & Biro 1993; Tripler et al. 2002; 

Fantinou et al. 2008; Trubl, Blackmore & Johnson 2011); for example, during salmon runs, 

brown bears discard the majority of the carcass and selectively consume brain tissue for its high 

nutritional value (Gende et al. 2004).  Although wasteful killing causes per unit mass conversion 

efficiency to decrease, it allows increases in total predator energy intake and the strength of top 

down control.  Only a handful of experiments have directly looked at the relationship between 

handling time and prey density, but the majority have found a negative correlation (Okuyama 

2010).  Additionally, inducible offenses can affect a wide range of other traits.  For example, the 

adult form of the predatory salamander Hynobius retardatus will metamorphose faster, develop a 

larger gape, and exhibit higher activity levels if, as a larva, it is exposed to high densities of its 

prey, Rana pirica (Kishida et al. 2014).  Kishida et al. (2014) also showed that the induction of 
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these traits results in a 30% decrease in prey survival; therefore, these offenses are likely 

important factors in natural communities.  Our investigation focuses on inducible offenses that 

create PDC functional responses in bitrophic systems. 

How might functional responses that incorporate PDCs affect dynamics in simple 

communities?  Okuyama (2010) showed that incorporating decreasing handling times into the R-

M model can extend the range of carrying capacity where stable coexistence exists, for finite 

values of carrying capacity.  Sigmoid functional responses are predicted to promote stable 

coexistence by reducing the likelihood of overexploitation and prey escape at low prey densities 

(Oaten & Murdoch 1975).  Despite these important findings, no previous study has analyzed the 

effects of multiple PDCs across a wide range of functional response shapes; a surprising fact, 

given that model predictions are so sensitive to the shape of the functional response curve 

(Armstrong 1976; Williams & Martinez 2004; Fussmann & Blasius 2005) and that incorporating 

PDCs can create functional response curves that are saturating, non-saturating, monotonic, 

sigmoid, unimodal or some combination (Fig. 4.1).   

In our study, we employed a variety of functional response equations that correspond to 

situations where PDCs are likely relevant to natural systems; using a combination of theory and 

systematic review of empirical studies, we analyzed their potential to help resolve the 

discrepancy between model predictions and field data.  As part of this analysis, we explored the 

dynamical effects of type 2 functional responses (i.e., with prey density-independent 

components) versus functional responses that contain PDCs (referred to as “PDC functional 

responses”); using published studies, we also investigated the occurrence and prevalence of type 

2 and PDC functional responses over a wide range of predator-prey interactions that have been 

previously classified as “type 2”. 
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Through AICc analyses, we find that the vast majority (99%) of empirical datasets are 

best fit by PDC equations; although, the type 2 functional responses can serve as an adequate 

descriptor of predator uptake for 61% of the empirical cases we consider.  In terms of 

community dynamics and stability properties, our results indicate that some, but not all, models 

that incorporate PDCs are capable of making categorically and fundamentally different 

predictions than models that incorporate the type 2 functional response.  Specifically, PDCs are 

capable of producing strong and complete stability.  Because the shapes of functional responses 

play an important role in the dynamical stability of ecological systems, we interpret the 

prevalence of PDC functional responses to mean that predictions of frequent or inevitable 

destabilization may be overstated. 

 

4.3 Models 

Here we present a generalized Rosenzweig-MacArthur type model (Rosenzweig & 

MacArthur 1963): 

𝑑𝑥

𝑑𝑡
= 𝑟 𝑥  1 −

𝑥

𝐾
 − 𝑓 𝑥  𝑦         (4.1a) 

𝑑𝑦

𝑑𝑡
= 𝜀 𝑓 𝑥  𝑦 −  𝑚𝑦  𝑦         (4.1b) 

where x and y are the densities of prey and predator populations, respectively,  r is the maximum 

growth rate of the prey, and K  is the prey carrying capacity.  The predator consumes prey at a 

per capita rate determined by the functional response  f (x), converts prey biomass into new 

predator biomass with efficiency ε, and experiences a natural mortality rate  my.  The conversion 

efficiency ε, can be scaled out of the system by a rescaling of time and predator density (see 

Appendix 4.A), hence we set ε equal to 1 in our analyses.  
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 The R-M model is traditionally evaluated using a mechanistic version of the Holling type 

2 functional response (Oksanen et al. 1981):   

𝑓 2 𝑥 =  
𝑥  𝑎

 𝑥 𝑎  𝑇𝑕  + 1
          (4.2a) 

where a is the attack rate and Th is the handling time; both of these variables are assumed to be 

constant and independent of prey density (Figs. 4.2b, 4.2c) (Murdoch 1973) .  The type 2 

functional response is a monotonic, non-sigmoid, saturating curve (Fig. 4.2a ); for these 

functional responses, as prey density increases, consumption is strictly increasing, but at a 

decreasing rate, and approaches a limit (Fig. 4.2a) (Holling 1959). 

Incorporating PDCs into functional response models can have a variety of impacts on the 

shape of the functional response curve; these effects can depend on which component is prey-

dependent as well as the specific relationship between the component and prey density.  Due to 

the breadth of this variety, we focus on specific mathematical formulations that can give rise to 

different classes of functional response shape.  Broadly speaking, we identified five classes of 

functional responses that represent the situations that are likely relevant to biological systems.   
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  Functional Responses that are Monotonic, Non-Sigmoid, & Saturating (Fig. 4.2d) 

- Although PDCs are incorporated, these curves are very similar to type 2 curves in that 

consumption is strictly increasing, non-sigmoid, and approaches an asymptote.  Furthermore, the 

type 2 can be considered a degenerate case of this class where the components of the functional 

response are constants.  On the other hand, PDC curves of this class can be created by 

incorporating a decreasing attack rate and/or handling time that approaches a value greater than 0 

at high prey densities.  Because our systematic review indicated that curves of this class that 

incorporate a decreasing attack rate fit more datasets than a decreasing handling time (data not 

shown), we used a curve based on decreasing attack rate:  

𝑓 3 𝑥 =  
𝑥  𝑎 (𝑥)

 𝑥 𝑎 (𝑥) 𝑇𝑕  + 1
  , 𝑤𝑕𝑒𝑟𝑒 𝑎 𝑥 = 𝛼 (𝑒−𝑥 + 1)    (4.2b) 

and where a(x) is the attack rate function and α is a constant (Fig. 4.2e ).  In the attack rate 

function, exp(-x) is offset by a value of 1 so that the attack rate does not approach 0 at very high 

densities.  Handling time is held constant (Fig. 4.2f  ). 
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  Functional Responses that are Monotonic, Non-Sigmoid, & Non-Saturating (Fig. 

4.2g) – Like the previous functional responses, these consumption curves are still concave down, 

increasing functions of prey density; however, unlike the previous functions, these curves have 

no upper limit (Rosenzweig 1971; Abrams 1982; Okuyama 2010; Braza 2012); this is 

phenomenologically similar to the curves described by log(x) or √x.  Non-saturating behavior 

occurs when handling time is allowed to asymptotically decrease towards 0 at high prey 

densities.  While, in the limit, infinite consumption is impossible, non-saturating functional 

responses can provide valuable insights into situations where saturation occurs at such high prey 

densities that saturation becomes irrelevant (see discussion).  We used a natural logarithm-based 

function to describe handling time: 

𝑓 4 𝑥 =  
𝑥  𝑎

 𝑥 𝑎  𝑇𝑕  𝑥  + 1
  , 𝑤𝑕𝑒𝑟𝑒 𝑇𝑕 𝑥 =

𝑐

ln  𝑥+1 +1
     (4.2c) 

and where Th (x) is the handling time function and c is the maximum handling time (which 

occurs at low prey densities) (Fig. 4.2i ).  Prey density, in the logarithm function, is offset by a 

value of 1 so that the curve can pass through the origin, and the logarithm function is offset by a 

value of 1 to prevent handling time from approaching infinity at very low prey densities.  Attack 

rate is held constant (Fig. 4.2h ). 
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  Functional Responses that are Monotonic, Sigmoid, & Saturating (Figs. 4.2 j, m) 

– In contrast to the previous functional responses, at low prey densities, these curves are concave 

up, increasing functions (i.e. consumption increases at an increasing rate); however, as prey 

density increases, these curves become concave down, increasing functions that approach 

asymptotic limits (i.e. they start to resemble f2 (x) at high prey densities).  These curves can be 

created by incorporating increasing attack rates or decreasing handling times.  The most widely 

known equation of this class is the Holling type 3 functional response (Fig. 4.2j ): 

𝑓 5𝐴 𝑥 =  
𝑥 𝑎 (𝑥)

 𝑥 𝑎 (𝑥)  𝑇𝑕  + 1
  , 𝑤𝑕𝑒𝑟𝑒  𝑎 𝑥 = 𝛼 𝑥     (4.2d) 

and where the attack rate increases linearly with prey density according to α x (Fig. 4.2k ), and 

handling time is held constant (Fig. 4.2l ).   

On the other hand, these curves can also be obtained for some decreasing handling time 

models.  We used an exponential-based function to describe handling time (Fig. 4.2m):    

𝑓 5𝐵 𝑥 =  
𝑥  𝑎

 𝑥 𝑎  𝑇𝑕  𝑥  + 1
  , 𝑤𝑕𝑒𝑟𝑒 𝑇𝑕 𝑥 = 𝑒−𝑥 +  𝑐      (4.2e) 

and where c is a constant that is greater than 0, but less than, or equal to, exp(-2).  In Th (x), c+1 

is the maximum handling time and c is the minimum handling time (Fig. 4.2o ).  Attack rate is 

held constant (Fig. 4.2n ).  We include this formulation because it offers a novel mechanism for 

the production of a sigmoid functional response.   
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  Functional Responses that are Monotonic, Sigmoid, & Non-Saturating (Fig. 4.2p) 

– Responses of this class are concave up, increasing curves at low prey density and switch to 

concave down, increasing functions at higher densities, but do not approach an asymptotic limit.  

These curves can be created by incorporating an attack rate that increases with prey density and a 

handling time that decreases towards an asymptotic limit of 0 at high prey densities.  We used a 

combination of  f4 (x) and  f5A (x) to create this function: 

𝑓 6 𝑥 =  
𝑥  𝑎(𝑥)

 𝑥 𝑎(𝑥)  𝑇𝑕  𝑥  + 1
  𝑤𝑕𝑒𝑟𝑒 𝑇𝑕 𝑥 =

𝑐

ln 𝑥+1 +1
 𝑎𝑛𝑑 𝑎 𝑥 = 𝛼 𝑥  (4.2f) 

and where attack rate follows the description given for f5A (x) (Fig. 4.2q) and handling time 

follows the description given for  f4 (x) (Fig. 4.2r ). 
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 Functional Responses that are Unimodal (Fig. 4.2s)  - Like the type 2, these 

curves are concave down, increasing functions at low densities; however, at some positive prey 

density, consumption peaks and becomes a decreasing function of prey density.  These curves 

can be created by incorporating an attack rate that decreases towards an asymptotic limit of 0 

(very quickly) or a handling time that increases as prey density increases.  Because our 

systematic review indicated that curves of this class that incorporate an increasing handling time 

fit more datasets than a decreasing attack rate (data not shown), we used a curve based on 

increasing handling time.  Nevertheless, while certain mechanisms can allow handling time to 

approach 0, the authors are unaware of any mechanisms that force handling time to increase 

towards infinity with increasing prey density; therefore, we chose a logarithm-based function 

that allows handling time to increase towards an upper limit: 

𝑓 7 𝑥 =  
𝑥  𝑎

 𝑥 𝑎  𝑇𝑕  𝑥  + 1
  , 𝑤𝑕𝑒𝑟𝑒 𝑇𝑕 𝑥 =

𝑐
1

ln  𝑥+1 
+1

      (4.2g) 

and where the attack rate is held constant (Fig. 4.2t ),  c is the maximum handling time (which 

occurs at high prey density), and 0 is the minimum handling time (which occurs at low prey 

density) (Fig. 4.2u ).  Prey density, in the logarithm function, is offset by a value of 1 so that the 

curve can pass through the origin.  The inverse of the logarithm function is then offset by a value 

of 1 to prevent handling time from approaching infinity.  Note that at high prey densities, this 

curve becomes a concave up, decreasing function that approaches an asymptotic limit greater 

than 0, but less than the maximum consumption rate (which occurs at low to moderate prey 

densities).  
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4.4 Methods 

4.4.1 Ecological Consequences of PDC Functional Responses (Theory) 

We analyzed how the different functional response equations affect community level 

dynamics; specifically, we were interested in three system behaviors: deterministic predator 

extinction, stable coexistence of predators and prey, and cyclic coexistence of the two species.  

Our analysis focused on the dynamics that arise for different combinations of mortality, my, and 

carrying capacity, K.  We chose my and K, because my represents the force of top-down control 

on the system, and K represents enrichment and hence the force of bottom-up control (Vos et al. 

2004).  Recently, there has been growing interest in the relationship between carrying capacity 

and the breadth of stability, i.e. the range of mortality rates where stable coexistence occurs at a 

given K  (Kretzschmar, Nisbet & McCauley 1993; Vos et al. 2004; Kovach-Orr & Fussmann 

2013) (Fig. 4.3).  Previous research has shown that the specific nature of this relationship can be 

used to classify models into fundamentally different categories of model stability known as 

“weak” , “strong”, and “complete” stability (Kretzschmar, Nisbet & McCauley 1993; van Voorn 

et al. 2008).  Weak stability occurs when the breadth of stability decreases, and eventually 

approaches 0, as carrying capacity is increased (Fig. 4.3a).  Strong stability occurs when the 

breadth of stability is unaffected, or even increases, as carrying capacity is increased (Fig. 

4.3b)(Kretzschmar, Nisbet & McCauley 1993; Vos et al. 2004).  Complete stability can be seen 

as the limit case of strong stability, in that complete stability occurs when systems do not exhibit 

limit cycles anywhere in the my-K parameter space (Fig. 4.3c)(van Voorn et al. 2008).  The 

distinction between weak and strong/complete stability is of special interest because the classic 

R-M model predicts weak stability for bitrophic systems, whereas stable coexistence in natural 

systems is generally unaffected by changes in carrying capacity (Murdoch et al. 1998).  To 
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explore if simple bitrophic systems with type 2 vs. PDC functional responses produce 

qualitatively similar regions of stable coexistence, we analyzed how the breadth of stability 

changes when the R-M model is modified with different formulations of f (x).   

We provide analytical solutions for the breadth of stability as K approaches infinity for 

the functional response equations, where possible.  However, because of the complex nature of 

some PDC functional responses, some of our results are limited to partial analytical solutions or 

are in the form of implicit functions that must be solved numerically to find the breadth of 

stability.  In order to visualize the breadth of stability at finite values of K, we created bifurcation 

diagrams, which can offer deep insights into how and why the breadth of stability changes at 

biologically plausible parameter values.  Because it is not possible to use analytical methods to 

produce bifurcation diagrams for our  PDC functional response models, we used MATLAB 

(2012) and the associated package MatCont (Govaerts & Kuznetsov 2013) for numerical 

bifurcation analysis of all of our R-M based models.  To produce bifurcation diagrams, we chose 

a particular parameterization of   f 2 (x) (attack rate=1, handling time= 0.1); we then used 

nonlinear least squares methods to maximize the phenomenological similarity of the PDC 

functional responses to f 2 (x) over the range x=0 to x=90 (Fig. 4.1, see Table 4.C1 for parameter 

values) (Fussmann & Blasius 2005).  Note that given the parameter values chosen, f 2 (x) 

approaches an asymptotic limit of 10 and that at a prey density of 90,  f 2 (x) is equal to 9.  

 

4.4.2 Systematic Review of PDC Functional Responses  

In order to establish the prevalence of PDC functional responses, we performed a 

systematic review of empirical data.  This review analyzed 144 experimental functional response 

datasets from 47 peer-reviewed articles published between January 1, 2010 and December 31, 
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2012 (see Appendix 4,D).  These datasets come from a wide variety of bitrophic systems, 

including aquatic, marine, terrestrial, microbial, arthropod, fish, bird, and mammal communities.  

To obtain articles, we searched the ISI Web of Science website using the terms “functional 

response” AND [“type II” OR “type 2”].  Datasets were included only if data were obtained from 

pairwise predator-prey interactions, the authors had fit monotonically increasing curves to the 

data (i.e. type 2, Ivlev, Rogers, etc), and the authors had not concluded that alternative models 

(i.e. type 3, decreasing handling time, etc.) were viable.  Additionally, we excluded 

approximately 25 articles/datasets because they included transformed data, non-original data, 

data that were behind a pay wall we could not access at McGill University, and/or datasets from 

experiments with non-ecological objectives, such as experiments that investigated the effects of 

drug toxicity on functional response.   

We used Plot Digitizer v 2.5.1 (Huwaldt 2011) to digitize and extract functional response  

data from PDF versions of published, peer-reviewed articles.  Each data point was counted only 

once.  We used the statistical program R (R-Core-Team 2013) and the associated package 

minpack.lm  (Elzhov et al. 2013) to perform nonlinear least squares tests on the fit of the 

functional response equations to the extracted data.  Model selection was performed using 

modified Akaike Information Criterion analyses (AICc), which corrects for small sample size, on 

the output of the nonlinear least squares tests (Akaike 1974; Hurvich & Tsai 1989).  To 

determine the best-fitting equation for each dataset, we identified the equation that produced the 

most negative AICc value for that dataset.  In order to rectify the number of PDC functional 

response equations compared to the type 2, we used AIC weights analyses (Johnson & Omland 

2004; Wagenmakers & Farrell 2004).  This allowed us to infer how much more likely the best 

fitting equation is than other equations.  Using two datasets as examples, figure  4.4 demonstrates 



- 147 - 

 

the ability of our methodology to determine the best fitting model in situations where PDC and 

type 2 functional responses both provide adequate fits (Fig. 4.4a) and in situations where the best 

fitting model is clearly superior to other models (Fig. 4.4b).  Additional data analyses are 

provided in Appendix 4.B.  

 

4.5 Results 

4.5.1 Systematic Review of PDC Functional Responses 

Our systematic review provided an estimate of the prevalence of PDC functional 

responses among the 144 datasets that had previously been categorized as type 2 functional 

responses.  Using AICc analysis of the fits produced by nonlinear least squares methods, we 

determined that only 2 datasets (1.4%) are best described by f 2 (x) and only 41 datasets (28%) 

are best described by „true‟ monotonic, non-sigmoid equations (Table 4.1).  Additionally, 

although increasing handling time models produce unimodal consumption curves, over the range 

of prey densities tested in each dataset, the functional response was strictly increasing for 35 of 

the 36 datasets best fit by f 7 (x).  Therefore, over the range of prey densities considered, 76 

datasets (53%) are best fit by „monotonic, non-sigmoid‟ curves.  Surprisingly, 67 datasets (47%) 

are best fit by monotonic, sigmoid functional responses, and f 5A (x), the type 3 functional 

response, nearly tied with f 7 (x), the „unimodal‟ functional response, for having the lowest AICc 

value for the most number of datasets (Table 4.1).  Furthermore, 58 datasets (40%) are best fit by 

functions that have no upper limit (Table 4.1).  When AIC weights are considered, no dataset is 

more than twice as likely to be truly a type 2 than truly a PDC functional response, whereas 56 

datasets (39%) are more than twice as likely to be truly a PDC functional response than truly a 

type 2 functional response (Table 4.1), with major contributions from f 4 (x), f 5A (x), and f 6 (x) 
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(Table 4.1).  In other words, although the type 2 was an adequate model for 61% of datasets, 

PDC functional responses were adequate or more than adequate for 100% of datasets.  

Additional analyses are provided in Appendix 4.B.  

 

4.5.2 Ecological Consequences of PDC Functional Responses (Theory)  

The R-M model based on f 2 (x), the type 2 equation, is only capable of producing “weak 

stability” because, at high carrying capacities, the mortality rate for which dynamics switch 

between limit cycles and stable coexistence approaches the same asymptotic value as the 

maximum mortality rate that the predator can withstand (Figs. 4.5 a, b).  In other words, stable 

coexistence of predator and prey becomes effectively impossible as K increases because the 

breadth of stability shrinks towards zero (see Appendix 4.A).  On the other hand, replacing the 

type 2 with PDC functional responses, even those that appear almost indistinguishable from the 

type 2 at low to moderate prey densities (Fig. 4.1), can have significant impacts on model 

predictions (Fig. 4.5).  Specifically, the use of equations f 4 (x) , f 5A (x) , f 5B (x), and f 6 (x) can 

produce strong stability (Figs. 4.5 f, h, j, l ).  In Appendix 4.A, we derive sufficient conditions 

under which the R-M model has a non-narrowing breadth of stability for our classes of 

functional responses.  We show that saturating functional responses always lead to weak stability 

at high mortality rates.  We also show that many different formulations of monotonic, non-

saturating functional responses can yield strong stability; however, the mere absence of 

saturation does not prevent weak stabilization from occurring.  Instead, a non-narrowing breadth 

of stability arises at high mortality rates when a monotonic, non-saturating functional response 

satisfies either: 

lim𝑥 → ∞ 𝑓′  𝑥 → 𝑐 > 0        (4.3a) 
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or 

lim𝑥 → ∞  𝑥 𝑓′  𝑥 + 𝐴 → 𝑐 > 0 , where 𝐴 = 𝐴 𝑥 =
𝑥 𝑓 𝑥 

𝑓 𝑥 −𝑥 𝑓 ′  𝑥 
       (4.3b) 

Both f 4 (x) and f 6 (x) fulfill these conditions.  See Appendix 4.A for additional discussion.  

Replacing f 2 (x) with f 4 (x) results in a smaller region of stable coexistence at low 

carrying capacities and predator mortality rates, which indicates that models built on f 4 (x) are 

more sensitive to enrichment at these parameter combinations than models built on f 2 (x)  (Figs. 

4.5 a, e).  However, at higher K and my, systems based on f 4 (x) exhibit a greater breadth of 

stability than those built on f 2 (x) (Figs. 4.5 b, f  ).  In fact, as K approaches infinity, models built 

on f 4 (x) are capable of producing strong stability, with the breadth of stability approaching the 

constant:    
𝜀

𝑐
 ln  2       (Fig. 4.5 f  ) (Appendix 4.A).   

On the other hand, R-M models built on f 5A (x) and f 5B (x) exhibit weak stability at high 

my  (Figs. 4.5 h, j); however, at low my, these models can produce strong stability through a 

separate band of stable coexistence (Figs. 4.5 g, h, i, j).  For f 5A (x) (the type 3 functional 

response), the breadth of stability approaches the constant:  
1

2 𝑇𝑕
  (Fig. 4.5 h) (Appendix 4.A).  

Because of its complex mathematical nature, the implicit analytical solution of f 5B (x) must be 

evaluated numerically; results are given in Table 4.C2.  Note that as a increases and/or c 

decreases, the breadth of stability increases.  Despite these findings of strong stability, models 

built on f 5A (x) and f 5B (x) do not promote stable coexistence across all parameter combinations.  

Specifically, at high my, models built on f 5A (x) predict a smaller breadth of stability than models 

built on f 2 (x) (Figs. 4.5 a, b, g, h).  At very low my, systems that incorporate f 5B (x) exhibit a 

separate band of cyclic coexistence (Figs. 4.5 i, j); at low K, this band reduces the breadth of 
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stability and results in predictions of destabilization at lower K than predicted by models that 

incorporate  f 2 (x) (Figs. 4.5 a, i).  

The monotonic, sigmoid, and non-saturating functional response, f 6 (x), is capable of 

producing two bands of strong stability, one at high my and another at low my (Figs. 4.5 k, l ).  As 

K approaches infinity, the breadth of stability of the upper band approaches the constant: 

   
𝜀

𝑐
 ln  2       (Fig. 4.5 l) (Appendix 4.A).  Due to the complex nature of f 6 (x), the solution for 

the breadth of the lower band of stable coexistence must be found numerically using very high 

values of K; results are given in Table 4.C3.  Note that as a and/or c decreases, the breadth of the 

lower band of stability increases.  Because the breadth of the upper band of stability also 

increases as c decreases (but is unaffected by changes in a), the total breadth of stability 

increases as a and/or c decreases.   

In spite of the strong stability produced by sigmoid and non-saturating equations that 

satisfy Equation 4.3, unimodal and monotonic, non-sigmoid equations that do not satisfy 

Equation 4.3 (i.e. f 3 (x) and f 7 (x)), are only capable of weak stability.  Therefore, the predictions 

of models based on these equations are not fundamentally different from the predictions of 

models based on the type 2 (Figs. 4.5 a-d, m, n).  Although, from a quantitative point of view, 

predictions based on these PDC functional responses may differ from those based on the type 2; 

for instance, when one considers models based on f 7 (x) at very low my, stable coexistence is 

present over a greater range of K than in models built on f 2 (x) (Figs. 4.5a, m).  The opposite is 

true for models based on f 3 (x) (Figs. 4.5 a, c).  
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4.6 Discussion 

It seems that the type 2 functional response, in addition to the R-M model, has become an 

ecological axiom: “an assumed property that can only be overturned by proof it does not exist” 

(Jensen & Ginzburg 2005); however, a growing body of literature indicates that the components 

of the functional response may depend on  prey density (Abrams 1982; Abrams 1989; Hammill, 

Petchey & Anholt 2010; Okuyama 2010) and that prey density-dependent components may play 

important roles in ecological communities (Lundberg & Astrom 1990; Jeschke 2006; Abrams 

2010; Okuyama 2010).  Furthermore, through adaptive phenotypic plasticity, predators may 

exhibit inducible offenses in the presence of a single prey population (Kishida et al. 2014).  We 

used a combination of theory and systematic review to investigate the dynamical consequences 

and prevalence of PDC functional responses across a wide variety of bitrophic predator-prey 

interactions. 

Through our own use of model selection criteria, we found widespread support for PDC 

functional responses, which is especially important in light of the fundamentally different 

predictions of models that incorporate PDC functional responses and those that incorporate the 

type 2.  It is well known that in models that incorporate type 2 functional responses, as K 

approaches infinity, the breadth of stability always approaches 0, and thus, destabilization due to 

enrichment (i.e. the paradox of enrichment) is almost certain (Kretzschmar, Nisbet & McCauley 

1993; Vos et al. 2004; Yamamichi, Yoshida & Sasaki 2011).  Our results indicate that inevitable 

destabilization also occurs for unimodal functional responses and monotonic, non-sigmoid 

functional responses that do not satisfy Equation 4.3 (see Appendix 4.A).  However, for models 

using sigmoid and/or non-saturating equations (that do satisfy Eq. 4.3), it is possible to avoid 

destabilization in the my-K parameter space.  Even in simple bitrophic systems, incorporating 
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these functional responses can allow the breadth of stability to remain constant with increasing 

carrying capacity, a concept known as “strong” stability (Kretzschmar, Nisbet & McCauley 

1993).  These results confirm previous findings that incorporating sigmoid functional responses 

can counteract the destabilizing effects of enrichment (McNair 1986; Yodzis & Innes 1992).   

On the other hand, while previous studies have shown that monotonic, non-sigmoid, non-

saturating equations (that satisfy Eq. 4.3) can promote stable coexistence (Rosenzweig 1971; 

Okuyama 2010), ours is the first to show that these functional responses can produce strong 

stability.  However, four important distinctions exist:  (1) Strong stability is distinct from 

“complete” stability (the total absence of limit cycles).  PDC functional responses cannot 

eliminate the potential for limit cycles; instead, they can reduce the extent of this instability.  In 

contrast, some phenomena can produce complete stabilization in enriched systems: constant 

proportion prey refuges (Maynard Smith 1974) but see (McNair 1986); wasteful killing, where 

predators kill prey with a type 1 functional response, but consume prey with a type 2 functional 

response (Turchin 2003); and inedible prey,  where edible prey maintain a fixed population 

density and all nutrients above some value are absorbed by the inedible prey (Grover 1995).  

However, while systems exhibiting complete stability are more robust to parameter choice (i.e., 

cyclic coexistence does not exist in the my –K parameter space) than those that exhibit strong 

stability (although see (McNair 1986)), the dynamic stability of natural systems facing 

enrichment can be explained without invoking phenomena that produce complete stability 

(Abrams & Walters 1996; Vos et al. 2004; Roy & Chattopadhyay 2007; Kovach-Orr & 

Fussmann 2013).  Many previously identified solutions to the paradox of enrichment, such as 

inedible prey where edible prey maintain a constant percentage of total prey density 

(Kretzschmar, Nisbet & McCauley 1993), inducible defenses (Vos et al. 2004), and invulnerable 
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prey (Abrams & Walters 1996) also fail to eliminate the potential for limit cycles.  While these 

phenomena can prevent destabilization due to enrichment for some range of mortality rates (or 

transition rates, in the case of invulnerable prey), limit cycles and deterministic extinction exist 

outside of these ranges.   

(2)  In systems that utilize sigmoid and/or non-saturating functional responses, two 

separate mechanisms can allow for strong stabilization.  Sigmoid functional responses produce 

strong stabilization because at low predator mortality rates, top down control forces prey to 

densities that correspond to the “concave-up/accelerating” section of the functional response.  

The effects of accelerating predation mimic the effects of linear predation (i.e. the type 1 

functional response) by buffering the system against overexploitation and prey escape (Oaten & 

Murdoch 1975).  On the other hand, non-saturating functional responses result in increased 

consumption at high prey densities, which allows predators to maintain higher population 

densities compared with models that use equivalent saturating functional responses.  Increased 

consumption is especially important at high mortality rates because it can allow predators to 

avoid deterministic extinction and increased predator density strengthens top-down control, 

which buffers the system against prey escape.  The combination of these effects results in strong 

stability at high mortality rates (Figs. 4.5 f, l).  While it is true that for any given mortality rate, 

increasing carrying capacity will eventually lead to destabilization for models using monotonic, 

non-sigmoid, non-saturating functional responses, our results show that for any given carrying 

capacity, there is a non-negligible range of mortality rates where stable coexistence is possible 

(Figs. 4.5 e, f, k, l).  This is distinct from the predictions of models that use type 2 functional 

responses, where the breadth of stability quickly decreases and approaches a value of 0, with 

increasing carrying capacity (Figs. 4.5 a, b).   
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(3) Sigmoid functional responses can be produced by incorporating an increasing attack 

rate and/or decreasing handling time (Figs. 4.2 j, m); in fact, the type 3 functional response can 

be rearranged so that the sigmoid shape comes from a prey density-dependent handling time 

instead of attack rate (see Appendix 4.B).  On the other hand, non-saturating functional 

responses can only be produced if handling time asymptotically approaches 0 as prey density 

increases; therefore, strong stabilization, at high mortality rates, can only occur if handling time 

approaches 0 (Figs. 4.5 f, l ).  (4) The inclusion of PDCs does not unilaterally promote stable 

coexistence.  For certain combinations of predator mortality and low carrying capacity, some 

PDC functional responses result in limit cycles while stable coexistence is observed with the type 

2 functional response (Fig. 4.5); although, as carrying capacity increases, the strongly stabilizing 

PDC functional responses (f 4 (x), f 5A (x), f 5B (x), and f 6 (x)) do have more stable coexistence (Fig. 

4.5).  Despite the fact that under some conditions, PDC functional responses can hinder stable 

coexistence, we found that the majority of datasets (69%) are best fit by PDC functional 

responses that promote strong stability (Table 4.1, Fig. 4.5).  Thus, PDC functional responses 

may help bridge the gap between theoretical predictions and observations of natural systems.  

Some of the conclusions drawn from our work rely on the assumption that handling time 

can approach 0 for two PDC functional responses, f 4 (x) and f 6 (x).  Although this phenomenon is 

possible under some circumstances – for instance, many filter feeders exhibit linear (i.e., type 1) 

functional responses (Jeschke 2004) – for our equations, as prey density approaches infinity, 

consumption will also approach infinity.  We do not wish to imply that “true” non-saturating 

functional responses can exist in real predator-prey systems; at some high prey density, predators 

will become unable to increase consumption with increasing prey density and consumption will 

approach an asymptote.  However, we believe that the use of f 4 (x) and f 6 (x) is justified because 
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they provide useful examples of situations where saturation occurs at such high prey densities 

and consumption rates that imposing a limit becomes unnecessary.  In an attempt to fully 

understand the 32 datasets that are best fit by f 4 (x), we tested many different equations where 

handling time decreases towards an asymptotic limit greater than 0 (data not shown).  For these 

32 datasets,  f 4 (x) was superior to all but one alternative: a functional response model built on  f 4 

(x) , but where handling time increased by a constant, given by:  

  𝑓 4𝐵 𝑥 =  
𝑥  𝑎

 𝑥 𝑎  𝑇𝑕  𝑥  + 1
  , where 𝑇𝑕 𝑥 =

𝑐

ln  𝑥+1 +1
+  𝛽  (4.4) 

and where β is a constant and all other variables are the same as f 4 (x).  However, it is not until β 

is less than, or equal to, 10
-20

, that the statistical fit of this alternative surpasses that of  f 4 (x).  For 

these 32 datasets, the maximum consumption rate predicted by f 4B (x) is, on average, 19 orders of 

magnitude (2.8 × 10
19 

) times higher than the maximum predicted by the type 2 (median =1.7 × 

10
18 

).  Over biologically plausible prey densities, model predictions are virtually identical for     

f 4 (x) and f 4B (x) (Fig. 4.6).  Therefore, the distinction between a functional response that 

saturates at implausibly high values and one that never truly saturates is far less meaningful than 

the distinction between these functional responses and a functional response that saturates at 

relatively low values; nevertheless, this does indicate that non-saturating predation cannot create 

“true” strong stability. 

We acknowledge that our analysis of the prevalence of inducible offenses that create 

PDC functional responses is limited because we excluded datasets where the functional response 

had been categorized as something other than type 2 (i.e. type 1, 3, or 4 functional responses).   

However, we believe that type 1 functional responses fall outside the scope of our analyses 

because type 1 functional responses are exclusive to a specific class of predators: filter feeders 

(Jeschke 2004).  Furthermore, the type 3 and 4 functional response equations often incorporate 
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prey density-dependent components (Holling 1966; Gentleman et al. 2003).  On the other hand, 

our analyses were constrained to specific biological relationships and therefore, a small subset of 

potential functions; yet, despite these constraints, our results overwhelmingly support PDC 

functional responses.  Furthermore, our goal was not an exhaustive analysis of every possible 

phenomenon, but rather to determine if PDC functional responses, and therefore inducible 

offenses, are likely a common occurrence and to evaluate how incorporating PDCs affects model 

predictions.   

In summary, we found that PDC functional responses outperform the type 2 in two 

important ways: first, almost all “type 2” datasets (99%) are best fit by PDC functional 

responses; second, for the majority of datasets (69%) , models built on the best fitting functional 

response produce strong stability, which is more consistent with observations of natural systems.  

Our findings are especially exciting because many previous solutions to the mismatch between 

theoretical predictions and field observations have widely been seen as system specific (Roy & 

Chattopadhyay 2007).  While our study does not fully resolve the paradox of enrichment, our 

results suggest that inducible offenses that create PDCs are a common, if not pervasive, property 

of predator-prey interactions, and that predictions of frequent or wide spread instability are 

overstated.  In order to better describe predator-prey interactions, we recommend that statistical 

evaluations of functional response data involve model selection criteria (e.g., AIC analysis) of a 

wide variety of alternatives to the type 2.  Additionally, our study highlights the importance 

rechecking accepted principles in ecology.  All ecological models are built upon other models; if 

we do not fully comprehend low complexity models, how can we expect to predict dynamics in 

natural communities? 
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4.9 Tables 

Table 4.1.  Fit of functional response  models to empirical datasets.  Rows 1 and 2: The number 

(and percentage) of datasets best fit by each equation.  Rows 3 and 4: The number (and 

percentage) of datasets for which the AIC weights analysis indicates a fit to one of the PDC 

models ( f 3 (x) through f 7 (x) ) that is at least twice as likely as the fit to the type 2 equation           

(f 2 (x) ). 

 

functional response f 2 (x) f 3 (x) f 4 (x) f 5A (x) f 5B (x) f 6 (x) f 7 (x) 

# of datasets best fit 2 7 32 35 6 26 36 

% of datasets best fit 1.4% 4.9% 22.2% 24.3% 4.2% 18.1% 25.0% 

# of best fit datasets 

where model is 2 (or 

more) times as likely as 

the type 2 

- 1 13 24 0 13 5 

% of best fit datasets 

where model is 2 (or 

more) times as likely as 

the type 2 

- 0.7% 9.0% 16.7% 0.0% 9.0% 3.5% 
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4.10 Figures 

 

 

Figure 4.1:  Holling type 2 (grey- dashed curve) and prey density-dependent component  (PDC) 

(black- dotted curves) functional responses.  Prey density (x) is shown on the x-axis.  

Consumption  ( f (x) ) is shown on the y-axis.  Type 2: a =1, Th = 0.1.  The six PDC functional 

response curves depicted represent the curves with maximum phenomenological similarity to the 

type 2 curve over the range of x=0 to x=90.  Under the current parameterization,  f 2 (x) 

approaches an asymptotic limit of 10 and that at a prey density of 90,  f 2 (x) is equal to 9.  Note 

that only five PDC curves are discernible due to the strong similarity of two curves.  Parameter 

values for PDC functional responses are given in Table 4.C1. 
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Figure 4.2: Holling type 2 and prey density-dependent component (PDC) functional responses.  

Prey density (x) is shown on the x-axis.  Functional response curves (left column), attack rates 

(middle column), and handling times (right column) are shown on the y-axis.  (a-c)  f 2 (x) , the 

type 2 - a monotonic, non-sigmoid, saturating functional response.  (d-f)  f 3 (x) - a PDC 

monotonic, non-sigmoid, saturating functional response.  (g-i)  f 4 (x) - a PDC monotonic, non-
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sigmoid, non-saturating functional response.  (j-l)  f 5A (x), the type 3 - a PDC monotonic, 

sigmoid, saturating functional response.  (my-o)  f 5B (x) - an alternative PDC monotonic, sigmoid, 

saturating functional response.  (p-r)  f 6 (x) - a PDC monotonic, sigmoid, non-saturating 

functional response.  (s-u)  f 7 (x) - a PDC non-sigmoid, unimodal functional response.  Note that 

because  f 7 (x) is based on the curve produced by f 2 (x)  (a strictly increasing function), the 

unimodal behavior (decreasing section) occurs at prey densities that are much higher than 

presented in figure 4.2.  Parameter values as in figure 4.1. 
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Figure 4.3:  Bifurcation diagrams of a bitrophic food web.  Carrying capacity (K) is shown on 

the x-axis, and mortality (my) is shown on the y-axis.  The white area is the region of 

deterministic predator extinction.  The black area is the region of stable coexistence; it is 

separated from the region of predator extinction by the transcritical bifurcation; above the 

transcritical bifurcation, the predator cannot maintain positive growth.  The grey area is the 

region of cyclic coexistence (i.e. limit cycles); it is separated from the region of stable 

coexistence by the Hopf bifurcation.  The range of mortality rates where stable coexistence 

occurs (i.e. the size of the black area) at a given carrying capacity is known as the “breadth of 

stability”.  (a) Weak stability: as carrying capacity approaches infinity, the breadth of stability 

approaches 0.  (b) Strong stability: as carrying capacity approaches infinity, the breadth of 

stability approaches a value greater than 0, however, limit cycles exist for some parameter 

values.  Also see figure 1.2c.  (c) Complete stability: limit cycles are absent for all combinations 

of carrying capacity and mortality   

  



- 170 - 

 

 

 

Figure 4.4:  Examples of empirical consumption data (black- filled circles) with best fit PDC 

(black- dotted curves) and type 2 (grey- dashed curves) functional responses. (a) Although both  

f 2 (x) and f 4 (x)  can provide adequate descriptions of uptake,  f 4 (x) is 1.13 times more likely 

than  f 2 (x) to be the correct functional response (Jalali, Tirry & De Clercq 2010).  (b) The PDC 

functional response,  f 5A (x), is 29.68 times more likely than  f 2 (x) to be the correct functional 

response (Fathi & Nouri-Ganbalani 2010).   
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Figure 4.5: Bifurcation 

diagrams of 

Rosenzweig-MacArthur 

models based on 

different formulations 

of functional response.  

Carrying capacity (K)  

is shown on the x-axis, 

and mortality (my) on 

the y-axis.  The left 

column shows 

bifurcations for K 

values between 0 and 

100, the right column 

for K values between 0 

and 500.  For 

description of colors, 

see figure 4.3.  (a, b)  

The classic R-M model 

based on f 2 (x) 

exhibiting weak 

stability: the breadth of 

stability is negatively 
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correlated to carrying capacity, K.  (c, d)  The R-M model based on f 3 (x) exhibiting weak 

stability.  (e, f )  The R-M model based on f 4 (x) exhibiting strong stability at high mortality rates.  

(g, h)  The R-M model based on f 5A (x) exhibiting strong stability at low mortality rates.             

(i, j )  The R-M model based on f 5B (x) exhibiting strong stability at low mortality rates.              

(k, l )  The R-M model based on f 6 (x) exhibiting strong stability at both high and low mortality 

rates.  (my, n)  The R-M model based on f 7 (x) exhibiting weak stability.  Parameter values as in 

figure 4.1. 
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Figure 4.6: Bifurcation diagrams of Rosenzweig-MacArthur models based on (a)  f 4 (x) – a PDC 

monotonic, non-sigmoid, non-saturating functional response and (b)  f 4B (x) – a PDC monotonic, 

non-sigmoid, functional response that approaches a maximum at “extreme” values.  For 

description of colors, see figure 4.3.  Parameter values of  f 4B (x) are given in Table 4.C1;  

parameter values of  f 4 (x) as in figure 4.1. 
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4.11 Appendices 

Appendix 4.A – Computing the breadth of stability 
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Appendix 4.B – Signatures of density-dependent components 
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Appendix 4.C – Figure parameters 
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CHAPTER 5 

CONCLUSIONS 

5.1 Overview  

Although the impact of intraindividual and intraspecific variation on ecological dynamics 

has been recognized for some time now, early considerations of these phenomena were limited to 

the investigation of variation created by age/stage structure (Leslie 1945).  While age/stage 

structure may be widespread, on its own, age/stage structure cannot account for much of the 

variation seen in natural populations.  More recent theoretical and empirical investigations have 

illuminated the existence and profound effects of trait variation that allows for rapid phenotypic 

adaptation (Fussmann, Ellner & Hairston 2003; Yoshida et al. 2003; Jones et al. 2009; Kishida et 

al. 2014).  Many studies have found that rapid phenotypic adaptation can significantly enhance 

the persistence of populations and communities facing environmental stress (van der Stap, Vos & 

Mooij 2007; Mougi & Kishida 2009; Bell & Gonzalez 2011).  However, the disparity of the 

sources, trophic locations, and traits that can exhibit or create variation has impeded our ability 

to draw general conclusions about the ecological consequences of rapid phenotypic adaptation.  

The need to understand the comparative effects of such disparate phenomena has led to the 

development and evaluation of mathematical models presented in this thesis.  In Chapter 2, I 

compared the dynamics and rescue potential generated by genetic diversity for defenses and 

plasticity for defenses; using multitrophic models, I was able to discern how the trophic location 

of variation for defenses can affect stable coexistence and, therefore, rescue.  In Chapter 3, I 

investigated the effects of different categories of inducible defenses.  In Chapter 4, I used a 

combination of theory and a systematic review of empirical data to determine the dynamical 

consequences and prevalence of inducible offenses.  The key conclusions of these chapters are: 
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Chapter 2: Both the source (genetic or plastic) and trophic location of variation for defenses 

critically influence the magnitude of persistence and stable coexistence, and therefore the 

potential for rescue.  Specifically, plastic defenses are more likely than genetic defenses to 

promote these properties.  Furthermore, our results suggest that variation for defense traits at the 

penultimate highest trophic level should have the greatest impact on stable coexistence, 

persistence, and rescue. 

 

Chapter 3:  Inducible defenses can decrease the risk of extinctions due to population oscillations 

and clear hierarchies exist at both low and high carrying capacities.  Furthermore, our results 

indicate predictable, definitive, and consistent relationships between the form of inducible 

defense, the effectiveness of defense, and stable coexistence in the predator mortality – carrying 

capacity parameter space.  Pre-encounter inducible defenses are most likely to promote stable 

coexistence at low carrying capacities, whereas post-encounter and post-consumption inducible 

defenses are most likely to promote stable coexistence at high carrying capacities.  Ultimately, 

the ability of inducible defenses to promote stable coexistence will depend on the biology of the 

organisms in question, as well as the abiotic factors of carrying capacity and predator mortality 

rate.   

 

Chapter 4:  Nearly all predator-prey interactions that had been previously attributed to the type 2 

functional response are best described by models that incorporate inducible offenses in the form 

of prey density-dependent attack rates and/or handling times.  In terms of the community 

dynamics and stability properties of systems facing nutrient enrichment, we found that some, but 
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not all, models that incorporate prey density-dependent attack rates and/or handling times are 

capable of making categorically and fundamentally different predictions than models that 

incorporate the type 2 functional response.  Our findings indicate that predictions of frequent or 

inevitable destabilization may be overstated.  This study also highlights the importance of 

rechecking accepted principles in ecology. 

 

5.2 Contributions & Outlook 

This thesis identifies and explores specific forms of intraindividual and intraspecific 

variation that have the potential to promote the persistence and stable coexistence of trophically 

linked populations.  Because these phenomena may play a role in mitigating the effects of global 

environmental change, understanding their different mechanisms is an important first step 

towards the sustainable management of ecological systems.  In this sense, my work expands our 

general knowledge concerning these phenomena.  My specific contributions are detailed below. 

While the results presented in this thesis generally corroborate the conclusion that 

intraspecific and intraindividual variation will promote the persistence of ecological populations 

and communities, I found that the extent of stable coexistence depends on the source, trophic 

location, and specific traits that exhibit or create variation.  My work highlights the importance 

of evaluating stable coexistence in the mortality – carrying capacity parameter space.  

Furthermore, through the framework of weak and strong stability, I have been able to distill 

complex relationships between stable coexistence and different forms of trait variation.   

In spite of strong theoretical arguments against the use of the Holling type 2 functional 

response (Abrams 1982; Jeschke, Kopp & Tollrian 2002; Abrams 2010; Okuyama 2010), and 

despite the fact that even in simple systems, under highly controlled conditions, it is extremely 
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difficult to make accurate predictions using models that incorporate type 2 functional responses 

(Fussmann et al. 2000; Yoshida et al. 2003; Jensen & Ginzburg 2005), the type 2 functional 

response is often hailed as the “true” functional response for most systems (Jeschke, Kopp & 

Tollrian 2002; Turchin 2003; Jeschke 2004).  In Chapter 4, we provide empirical evidence  that 

corroborates previous theoretical concerns with the use of the type 2 functional response.  

Furthermore, through my own theoretical analyses, I show that the predictions of models that 

incorporate some, but not all, forms of inducible offense are more in line with observations of 

natural systems with respect to nutrient enrichment. 

The concept of „rescue‟ has typically been thought of in terms of adaptive traits that 

allow the survival of single, isolated populations facing harsh environmental conditions.  While 

community dynamics have typically been investigated in terms of the mechanisms that allow 

whole communities to persist in harsh environmental conditions, rapid phenotypic adaptation 

generated through intraspecific and intraindividual variation has been incorporated into such 

analyses relatively recently (Yoshida et al. 2003; Vos et al. 2004).  My work has shown that 

investigations of rescue can, and should, consider the rescue of whole communities because there 

are fundamental similarities between population rescue and community dynamics.  Furthermore, 

through our study, Gregor Fussmann and I were able to show that plasticity, in addition to 

genetic diversity, can rescue populations and communities; at the suggestion of Rowan Barrett 

and Andrew Hendry, Kovach-Orr & Fussmann (2013) coined the term “plasticity rescue”.  
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