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ABSTRACT

Dedicated Short-Range Communications (DSRC) technology is one of the most

promising vehicular technologies to enhance road safety and traffic efficiency. The

research and development of the DSRC relies heavily on tests and experiments, which

require the support of a configurable testbed. VSmart testbed is designed for DSRC

experiments in both indoor and outdoor scenarios. It utilizes Software Defined Ra-

dios (SDR), laptops and robots to emulate the real-world traffic. In addition, it

provides user-friendly human interface to manipulate the testbed. There are three

operating modes in the VSmart, simulation mode, stationary mode and full mode.

The user can choose one of the modes to conduct the experiment based on available

devices and experiment requirements. Detailed design and implementations of VS-

mart testbed are discussed in this thesis. Several use cases are provided to verify

and demonstrate the usability of VSmart testbed.
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ABRÉGÉ

La technologie des Communications dédiées à courte portée (Dedicated Short-

Range Communications en anglais, ou DSRC) est une des technologies les plus

prometteuses pour améliorer la sécurité routière ainsi que pour réduire le trafic.

La recherche et le développement du DSRC reposent sur l’expérimentation, ce qui

requière le support d’un banc de test configurable. Le banc de test VSmart est conçu

pour des expérimentations de DSRC dans des scénarios intérieurs ainsi qu’extérieurs.

It utilise des radios logicielles (Software Defined Radio en anglais, ou SDR), des ordi-

nateurs portables et des robots pour simuler les trafics dans le monde réel. En plus,

il a une interface conviviale et facile à utiliser et permet d’utiliser le banc de test

sans difficulté. Dans VSmart, il y a trois modes d’utilisation: le mode simulateur,

le mode stationnaire et le mode complet. Pour conduire son expérience, l’utilisateur

peut choisir le mode qui lui convient, en se basant sur la disponibilité d’équipements

et les exigences du test. La conception détaillée ainsi que l’implémentation du banc

de test VSmart sont sujets de thèse. Certains cas d’utilisation sont fournis pour

clarifier et démontrer l’utilité du VSmart.
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CHAPTER 1
Introduction

1.1 Overview

According to the statistics from World Health Organization (WHO), the total

number of global traffic fatalities is around 1.24 million per year [33]. Even in devel-

oped countries such as the United States and Canada, the number of vehicle crashes

remains unacceptable. The Traffic Safety Facts Research Note by the U.S. Depart-

ment of Transportation (DOT) shows that, the number of deaths and injuries caused

by vehicle crashes are around 33 thousands and 2.3 millions respectively every year

[40]. The total victims in Canada are also more than 166 thousands annually [7].

In order to avoid these tragedies, governments and the automotive industry have

been actively developing new vehicular technologies. Among them, the Dedicated

Short-Range Communication (DSRC) technology is one of the most promising ones.

DSRC is now under active development and deployment. In North America, U.S.

DOT leads the Vehicle Safety Communications (VSC) project, in partnership with

many vehicle manufactures and research groups, such as BMW of North America,

LLC, General Motors Corporation, Toyota Technical Centre USA Inc., etc., to design

and evaluate the DSRC standards [10]. U.S. DOT estimated that vehicle-to-vehicle

(V2V) communication based on DSRC could address up to 82% of all crashes in

U.S., which can save thousands of lives and billions of dollars [25].
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Table 1–1: DSRC Applications[10]
Safety application Non-safety application

Intersection Collision Avoidance Traffic Management
Public Safety Tolling
Sign Extension Information from Other Vehicles

Vehicle Diagnostics and Maintenance Other Potential Applications
Information from Other Vehicles

The primary motivation to deploy DSRC is to enhance traffic safety. A vehicle

equipped with DSRC devices can communicate with its neighbouring vehicles and

roadside units (RSUs). The DSRC technology enables a communication range up to

1000 meters. A DSRC-equipped vehicle broadcasts safety messages multiple times

per second. A safety message conveys basic information of the broadcasting vehicle,

such as location, speed, and acceleration. Neighbouring vehicles can use the received

messages to predict the collision threats. Besides, the RSU also distributes messages

to inform the vehicles of the current geometry of the road, the state of the intersection

and the other emergency situations. The exchanged messages between DSRC devices

should follow DSRC standards. However, it is the responsibility of manufactures to

implement the standards and the warning system.

In addition to safety messages, RSUs also deliver non-safety messages, which

provide services, such as navigation, parking, and infotainment. Table 1-1 shows the

different categories of each type of the applications [10].

The safety applications focus on the collision prevention. In [2], the U.S. DOT

provides a list of top crash imminent scenarios:

• Lead Vehicle Stopped

• Control Loss without Prior Vehicle Action

2



Figure 1–1: DSRC Collision

• Vehicle(s) Turning at Non-Signalized Junctions

• Straight Crossing Paths at Non-Signalized Junctions

• Lead Vehicle Decelerating

• Vehicle(s) Not Making a Maneuver - Opposite Direction

• Vehicle(s) Changing Lanes - Same Direction

• LTAP/OD at Non-Signalized Junctions

The above scenarios can be concluded into the three types of collisions: inter-

section collision, forwarding collision and loss-control collision. Figure 1-1 illustrates

DSRC collision avoidance in the scenarios.

In order to test and evaluate the V2V and vehicle-to-infrastructure(V2I) appli-

cations, U.S. DOT deployed a testbed in Oakland County, Michigan. The Michigan

testbed currently covers an area of 194 km2 including 121 km of roadways [35]. The

testbed allow researchers to conduct their vehicular onboard tests in the real world

3



Figure 1–2: Connected Vehicle testbed in Michigan[31]

scenarios. However, beforehand, prototyping and small scale tests are compulsory in

the research and development path.

In fact, it is not practical to make a vehicular onboard tests for the group, which

works on only one or a few aspects of DSRC research. Deploying a DSRC system to

a vehicle costs not only money but also the efforts. On the other hand, some research

groups are geographically far away from the testbed. It is difficult for them to utilize

the infrastructure. Thus, a small scale and portable testbed can improve the DSRC

research progress. To this end, this thesis designs and implements a testbed named

VSmart.

1.2 VSmart Testbed

VSmart testbed is a small scale V2V and V2I testbed, which can be used to

emulate the scenarios in the real-world traffic. It is easy to deploy and cost-effective.

The testbed has two different units, vehicle unit and infrastructure unit. A vehicle

unit is composed of a software-defined radio (SDR), a computer and a robot, while
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an infrastructure unit is made up by a SDR and a computer. In the testbed, the

SDR acts as communication module and the computer is the center processor. A

robot in the vehicle unit is the executor, which is able to emulate a moving car. The

testbed can be deployed in the indoor/outdoor environment whose area is between

25 m2 to 100 m2. The cost of a vehicle unit and an infrastructure unit are around

2,000 US dollars and 1,500 US dollars respectively. Compared with the real world

testbed, the cost of the VSmart testbed is acceptable for most of academic groups.

In addition, the VSmart testbed is based on Software Define Radio (SDR), which

makes the platform reconfigurable and programmable. Applications, algorithms and

even standards can be easily implemented and deployed. Hence, the VSmart testbed

has high reusability and extensibility. It reduces the efforts and time to develop a

DSRC testing platform and helps users focus on the research.

1.3 Thesis Contributions

There are four main contributions of this thesis:

• The thesis proposes the design of the VSmart testbed and elaborates the im-

plementation of the platform. It covers the description of both software and

hardware design in detail.

• The thesis describes the extensibility of the VSmart testbed. It allows users to

customize the functionalities.

• The thesis also introduces two use cases, collision avoidance and cooperative

adaptive cruise control, to verify the usability of the VSmart testbed.

• The thesis provides a list of future works for the VSmart testbed.

5



1.4 Thesis Structure

The rest of the thesis will be organized as follows. Chapter 2 introduces the

related works. It includes the overview of DSRC standards and an introduction of

SDR. Chapter 3 is the architecture overview of the VSmart testbed. The software de-

sign is elaborated in Chapter 4. Chapter 5 covers two use cases of DSRC application.

The thesis is concluded in Chapter 6.

6



CHAPTER 2
Background

2.1 The Overview of DSRC Standards

DSRC relies on standard-based interoperability among the devices by different

manufactures. The implementations have to follow the protocols defined by standard

institutes. It ensures that the equipment from different suppliers can communicate

without gap.

DSRC technology has been developed worldwide for many years and several

standards have been created in different regions, such as Europe, Japan and the

United States. The standards are all based on IEEE 802.11p and the designs are

similar. The thesis mainly focuses on the design of U.S. DSRC architecture, since

the VSmart testbed is standard-independent. Note that the DSRC mentioned in the

rest of thesis is in the U.S. standards.

There are four layers in the DSRC architecture, physical layer (PHY), data

link layer or media access control layer (MAC), Network/Transportation layer and

Application layer.

As illustrated in the Figure 2-1, PHY layer protocol and MAC layer protocol are

defined in IEEE 802.11p Wireless Access in Vehicular Environments (WAVE) [18],

which is an amendment to the IEEE 802.11 standard. Similar to IEEE 802.11a, the

WAVE 802.11p utilized the Orthogonal Frequency Division Multiplexing (OFDM)

modulation technique. In DSRC architecture, PHY layer and MAC layer compose
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Figure 2–1: DSRC Architecture[25]

the bottom stack, which provides data exchange functionality to the middle stack.

In order to accommodate the wireless communication to high-speed vehicles, three

new features are added to WAVE protocols as extensions to the IEEE 802.11. First

of all, a management frame for timing advertisement is added to synchronize the

time reference. Secondly, receiver performance is improved by channel rejection

requirements enhancement. Finally, to reduce interference, new channels are defined

in the protocol. The WAVE 802.11p uses channels of 10MHz bandwidth in 5.9GHz

band (5.850-5.925GHz).

The middle stack is Network/Transportation layer. This layer employs IEEE

1609, a family of standards for WAVE [32]. In the standards, IEEE 1609.2 de-

fines secure message formats and processing, while IEEE 1609.3 defines network

and transportation layer services to support the secure data exchange, and IEEE

8



1609.4 enhances IEEE 802.11 Media Access Control (MAC) to support multichan-

nel WAVE operations. IEEE 1609.3 includes the WAVE Short Message Protocol

(WSMP), which covers addressing and routing for the network layer. DSRC, on the

other hand, can support TCP/IP protocol as well. Thus, an application can choose

to use IEEE 1609 or TCP/IP protocol. However, since WSMP is bandwidth-efficient,

it should be used in the safety applications. For non-safety applications, TCP/IP

protocol may be a better choice because of its routing capability [25].

In the top layer, SAE J2735 DSRC Message Set Dictionary standard [22] is

designed for the V2V and V2I applications. The protocol defines the data formats,

which include message sets, data frames and data elements. It can be used in the

applications such as vehicle safety, emergency vehicle notification, automated tolling,

enhanced navigation and etc. Among the message set, Basic Safety Message (BSM),

Roadside Alert (RSA) and Probe Vehicle Message (PVM) are the most typical.

BSM conveys the basic vehicle information including location, speed, heading, brake

status, vehicle size and etc. DSRC-equipped vehicle broadcasted the BSM 10 times

per second. RSA is the message that sent from RSU to the vehicle to inform the users

about the emergency operations. PVM contains the data gathered by the vehicle and

transmitted to RSU. It includes traffic condition, weather and road surface condition.

Traffic Management Center (TMC) and information service provider will collect these

data. SAE J2945.1 specifies the minimum communication performance requirements

of DSRC message sets [25]. It covers the topics such as BSM transmission rate

and power, accuracy of data elements and channel congestion control. Besides, the

9



Figure 2–2: SDR Architecture[11]

application can utilize TCP/IP to define customized message like most of Internet

applications.

2.2 Software Defined Radio

Software Defined Radio is the radio in which some or all of the physical layer

functions are software defined [16]. A regular radio communication system imple-

ments the functions directly in hardware. In such a system, a special-purpose pro-

cessor does the signal processing. Therefore, it has only limited functionalities. In

opposite, SDR uses configurable components in the hardware design and leaves the

definition of functions to software. It utilizes the general-purpose processor, such as

Central Processing Unit (CPU) in personal computer (PC) , Microcontroller (MCU)

in an embedded system, to process the signal. Figure 2-2 depicts a typical SDR

architecture.

In the SDR architecture, an analog-to-digital converter (ADC) converts the

analog signal, which is gathered from antenna, to the digital signal and hands over

to a general-purpose processor. The rest of processing is defined in software. On the

10



Table 2–1: USRP product list [37]
Product Frequency range Real time band-

width
Host Interface Base price

(US $)
B200 70 MHz-6 GHz 56 MS/s USB 3.0 $675
B210 70 MHz-6 GHz 56 MS/s USB 3.0 $1100
N200 DC-6 GHz 50 MS/s Gigabit Ethernet $1515
N210 DC-6 GHz 50 MS/s Gigabit Ethernet $1717
X300 DC-6 GHz up to 200 MS/s GbE, 10 GbE, PCIe $3900
X310 DC-6 GHz up to 200 MS/s GbE, 10 GbE, PCIe $4800

contrary, the software-defined functions can generate data and deliver to antenna

by digital-to-analog converter (DAC) [28]. The architecture significantly improves

the hardware reusability of the radio system and ensures that the DSR system can

support varieties of applications.

The SDR developed rapidly in the last two decades. There are many commercial

off-the-shelf (COTS) SDR products today. Among them, Universal Software Radio

Peripheral (USRP) family is a range of the most competitive SDR products. It is

designed and sold by Ettus Research. Table 2-1 is a list of main products in USRP

family [37]. The implementation in the thesis uses the USRP B210.

In USRP, the baseband processor, as shown in Figure 2-2, consists of a millions

gate-field programmable gate array (FPGA) and a programmable USB controller

[5]. The baseband processor interacts with PC, in which, a software application is

able to handle the data. Hence, to fully use the USRP board, the FPGA need to

be programmed and the application on the PC side need to be developed. However,

programming the FPGA takes a bit of skill, and mistakes can fry the board perma-

nently [5]. On the other hand, it costs a lot of efforts to design and implement a

11



SDR application from scratch. GNU Radio takes care of both of the difficulties in

the development.

2.3 GNU Radio

GNU Radio is a free software toolkit for building software radios [5]. It is an

official GNU Project and funded by Eric Blossom. GNU Radio aims to create SDR

application with external RF hardware or simulation-like environment. A GNU Ra-

dio application is a flow graph, which consists of numbers of digital signal processing

(DSP) blocks. The signal in the application is treated as data flow, which flows

through the connected blocks for processing. The block in the application can be

implemented by using C++ or Python programming language. GNU Radio utilizes

Simplified Wrapper and Interface Generator (SWIG) tool to integrate C++ and

Python. Figure 2-3 shows a typical USRP transceiver flow graph.

With the help of GNU Radio, lots of wireless communication applications can

be easily implemented. For example, GNU Radio application can implement IEEE

802.11 standards to make the USRP work as WiFi station; it can also implement

GNSS receivers by following the GPS specification. In this thesis, GNU Radio is

utilized to create the VSmart testbed.

GNU Radio can support a wide range of COTS SDR platforms besides USRP.

These hardware platforms include Fairwaves UmTRX, Funcube Dongle, Great Scott

Gadgets HackRF, Microtelecom Perseus, etc. [36]. It provides a various of hardware

options to build the VSmart testbed. According to Eric Blossom in [5], the USRP

is the preferred solutions. However, it depends on the DSRC research topic. An
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Figure 2–3: USRP transceiver flow graph in GNU Radio [4]
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expensive hardware system can provide high quality communication performance,

while a cheap one can reduce the cost of the research.

2.4 Related Work

In order to test the effectiveness and performance of DSRC application, the

simulation or emulation work has to be performed. Many previous works focus on

the simulation. Thus, a great deal of traffic simulation tools are designed and imple-

mented [14, 9, 34, 15]. Most of them utilized NS-2, NS-3 or other network simulation

tools. However, DSRC system is a platform works with hardware and real world

scenarios. The hardware implementation is always less accurate than the simulation.

Hence, the simulation tools are not enough to evaluate the DSRC performance, and

testbed and prototype become necessary in the research experiments.

In the recent years, a few DSRC hardware testbed were proposed [29, 41, 13,

26, 42, 1]. Among them, NEC C2X [29] and Cohda MK2 [41] are two mature

products, but they are bound to hardware constraints and not suitable for research,

which may need dynamic modification of the protocols. On the contrary, [13] and

[1] implement the testbed with SDR, since it is reconfigurable. In [13], the authors

demonstrate that, in the algorithm evolution, to be more abstract means to be more

accurate and vice versa. Thus, they proposed a hardware testbed which adopts Xilinx

XtremeDSP-II kit as hardware platform and Mathworks Matlab as well as Simulink

to implement the software models. In [1], the authors built their DSRC prototype

on OpenAirInterface platform and introduced their software architecture. There

are three blocks in their architecture, Linux 802.11 subsystem, IEEE 802.11p driver

and IEEE 802.11p software-modem. Linux 802.11p subsystem contains an extension

14



for IEEE 802.11p. IEEE 802.11p driver bridges the Linux 802.11 subsystem and

hardware. The soft-modem is connected the hardware via an IOCTL link and a

dedicated OpenAirInterface driver.

However, the DSRC testbeds presented above are all about DSCR device itself.

In the real world testing, the device has to be deployed in a vehicle and connected

with the warning system. The testbed proposed in this thesis contains the entire

DSRC system. Namely, the VSmart testbed framework covers the design from PHY

layer to application layer. In the testbed, the USRP works as DSRC device, the robot

acts as a vehicle and the PC is the central processor. The researchers can conduct

the entire DSRC experiments in the laboratory with the help of VSmart testbed. It

is intuitive to use and easy to extend. A new application or a new algorithm can be

implemented in the platform with minimal efforts.
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CHAPTER 3
Overview of VSmart

3.1 The Overview of the Architecture

The VSmart is composed of two types of units, vehicle units and infrastructure

units. The vehicle unit has three subsystems, a transceiver, a processor and an

executor, and the infrastructure unit consists of a transceiver and a processor. The

transceiver is a SDR-based DSRC transceiver and has identical implementation in

both units. It provides wireless communication ability necessary to support the

functioning to the other subsystems. The processor in vehicle unit has three main

responsibilities:

1. It generates the basic vehicle messages to report the vehicle information.

2. It handles the received messages for emergency actions.

3. It is responsible to control the executor and the transceiver.

The executor is the driver of the robot. It controls the actuators of the robot to

fulfill the movement commands. The processor of the infrastructure unit probes the

message from vehicle units and handles the message for monitoring and measuring

purposes. In addition, it can send commands or information to the vehicle unit.

Figure 3-1 outlines an example of the architecture of VSmart.

As a DSRC testbed, the communication structure in VSmart has four layers and

can be divided into three stacks. In the bottom stack, PHY layer and MAC layer are
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Figure 3–1: Testbed components
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Table 3–1: VSmart testbed hardware list
Component Hardware and model

Software Define Radios USRP B210
Computers and laptops Inspiron 660, Thinkpad X60s, Acer V5-171

Robots iRobot Create

implemented in transceiver. The middle stack consisting of network layer, combined

with top stack, which is the application layer, are all encapsulated in the processor.

3.2 Hardware setup

In VSmart, computers and laptops act as the brain for both vehicle units and

infrastructure units. The SDR and the robot are functioning as two external hard-

ware components, which connect to the computers and laptops by the cables. They

are driven by the unit systems to accomplish different tasks. SDR is dedicated to

the wireless communications. It keeps sending the messages generated by the system

in the wireless channel. The SDR is under control of the transceiver. The robot is

responsible to carry the entire vehicle unit to perform the moving actions and it is

driven by the executor. As long as the vehicle unit needs to finish a moving task,

the processor creates a corresponding job and utilizes executor to actuate the robot.

Table 3-1 and Figure 3-2 show the hardware devices used in VSmart testbed.

SDR is a circuit board with wireless communication capability, which allows the

customized communication protocols and stacks to be developed and deployed. It

provides the researchers a fair platform to compare different algorithms of scheduling,

routing, rate adaptation and power control. In VSmart, the USRP B210 is adopted

as the communication board. It is connected to the computer thorough USB 3.0.

Furthermore, the USRP B210 is also powered by USB port, which enables the board
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(a) iRobot Create (b) USRP B210

(c) Laptop

Figure 3–2: VSmart Testbed Hardware
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Figure 3–3: DSRC Band Plan channel designations [25]

to be carried around with robot freely. The basic setting for the USRP includes the

frequency and sample rate. As described in the background, DSRC uses channels

of 10MHz bandwidth in 5.9GHz band. The spectrum are divided into 7 10MHz

channels and pairs of them can be combined into 20MHz channels. The channels,

on the other hand, are designated either control channel (CCH) or service channels

(SCH). Figure 3-3 illustrates the channel designations of DSRC [25]. Because of the

limitation of the hardware, the VSmart testbed is not able to have access to Universal

Coordinated Time (UTC). Hence, the channel switching is not implemented in the

testbed and a fixed channel is assigned. In VSmart, the channel frequency is set to

5.89 GHz and the sample rate 200 KHz.

The options for the robot are not as much as SDR. Indeed, the selection of the

robot is based on the experimental requirements. The basic configuration of VSmart

includes the use of iRobot Create [24]. The iRobot Create has a serial port for the

connection to the computer. The serial port is not convenient in the experiments with
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laptops, since most of the laptops don’t have the corresponding port. In VSmart, a

converter is used to convert the serial port into USB port, which makes the robot

more compatible with mainstream computers and laptops. The most important

actuator in the iRobot Create is the wheel actuator. It enables the mobility of the

vehicle unit. The maximum speed of the actuator can achieve 500mm/s.

3.3 Modes

The VSmart testbed can work in three modes, simulation mode, stationary

mode, and full mode. The simulation mode and stationary mode abandon the use of

some subsystems and hardware devices. Table 3-2 shows the subsystems and devices

used in each mode.

The simulation mode is used to simulate communications and movements of

DSRC-enabled vehicles without any hardware support. Both infrastructure unit

system and vehicle unit system are running in the same computer. In other words,

the unit instances are running as processes in the computer and the transceiver is

replaced by interprocess communication. The executor in the vehicle unit is virtual.

The user can obtain the information of the vehicle as well as control the vehicle by

using GUI applications in the infrastructure unit. The detail of these applications

will be elaborated in Chapter 4. This mode is suitable for rapid tests and experiments

of new vehicular communication technologies and protocols.

The difference between stationary mode and simulation mode is that the sta-

tionary mode utilizes the physical communication. Each unit has a SDR board for

wireless communication and uses the transceiver to drive the SDR board. This mode
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Table 3–2: The composition of different modes
Mode Hardware Subsystem

Simulation Computer Processor
Stationary Computer, SDR Processor, Transceiver

Full Computer, SDR, Robot Processor, Transceiver, Executor

is good for tests and experiments in real channels, but the movements of wireless

nodes are neglected.

The full mode uses all the software and hardware components. In this mode,

the vehicle unit has the property of mobility. The robot can move the entire system

physically, which can change the transmission range between different units.
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CHAPTER 4
Software Design

In full mode, each unit has two different processes, a transceiver process and a

processor process. These two processes control the transceiver subsystem and the

processor subsystem respectively. The connection between two processes utilizes the

interprocess communication (IPC) technique. In the vehicle unit, the executor is

also a part of processor process and the communication between the processor and

the executor is function invocation. A Processor can explicitly control the robot

via interfaces provided by the executor subsystem. Compared with full mode, the

stationary mode only disables the executor while the rest keeps the same. In simula-

tion mode, both transceiver and executor are disabled and the processor of different

units are running in the same computer. In order to introduce the software design of

VSmart concisely, this chapter mainly focuses on the full mode VSmart. However,

it is easy to deduce the other two modes by removing the corresponding subsystems.

High modularity and reusability are the two basic requirements of software de-

sign in VSmart testbed. The DSRC technology is still in the research and early-

deployment stage, and researchers may want to modify the protocols in their ex-

periments. On the other hand, there are more than one DSRC standards, which

may lead to different implementations of the bottom stack and the middle stack.

However, the top layer functionalities should remain the same despite the change of

the lower level protocols. Hence, it is important to separate different layers from
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each other. The design in VSmart testbed modularizes the different layers and the

functionalities to increase the reusability.

In practice, a researcher or an engineer may want to add new features to the

testbed for his experiments. It requires the testbed to have very good extensibility.

To meet the demand, the plugin design pattern is added to the testbed. It enables

the extensibility of the new functionalities.

As mentioned in section 2.3, GNU Radio supports both C++ and Python lan-

guages. For a better consistency of the testbed, it is more elegant to use one of them

as the primary language in the implementation. In this thesis, Python is selected

as the main programming language because of its simplicity and short development

cycle.

The rest of this chapter elaborates the software design of VSmart testbed.

4.1 Transceiver of vehicle unit and infrastructure unit

The subsystem transceiver is developed under GNU Radio development envi-

ronment. It drives the USRP for wireless communications in the testbed. Figure 4-1

is a component diagram of transceiver. In the transceiver, the component PHY and

MAC module implements IEEE 802.11 protocol for physical layer as well as MAC

layer. In [4], Bastian Bloessl et al. provide an implementation of IEEE 802.11 a/g/p

OFDM transceiver in GNU Radio. Besides, they release the open source project for

Wi-Fi transceiver based on GNU Radio. This thesis applies their code and makes

necessary modifications to meet the requirements of VSmart. Above the PHY and

MAC module, there is a controller module. It is used to control the parameters,

such as power, frequency, sample rate, and etc.. The modification of parameters is
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Figure 4–1: Transceiver Component Diagram

based on the request of the processor subsystem. USRP Driver is a built-in module

in GUN Radio. It is responsible to control the USRP board, especially the wireless

communication. The internal communicator is the implementation of the interpro-

cess communication, which is discussed in section 4.2.

4.2 Interprocess communication in vehicle unit and infrastructure unit

Due to the multi-process property of the testbed, an IPC mechanism is required

to exchange information between processes. There are many options for the IPC

mechanisms, which may have different performance. It depends on the application

to determine which IPC approach to adopt. The most frequently used IPC methods

include pipe, signal, shared memory, message queue, and socket. Among them,

the shared memory is the most efficient approach since the data exchange happens

only in memory. However, in the VSmart testbed, the socket-based mechanism is

employed because some experiments may require the infrastructure unit to provide

services that work across different hosts, and only the socket-based mechanism can

accomplish this job effectively and efficiently. Despite the detailed implementation of
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IPC, the VSmart implements the IPC as a separate module, internal communicator.

It can be replaced by any other implementation of IPC approach, which might be

preferred in some other experiments. For instance, some experiments require IPC

to be as fast as possible, and the internal communicator can be reimplemented

using shared memory. As showed in both Figure 4-1 and Figure 4-2, the internal

communicator exists in both transceiver and processor, so that transceiver process

and processor process can exchange the message directly.

4.3 The processor of vehicle unit

Figure 4-2 depicts the design of the processor of vehicle unit. The design of

processor utilizes several design patterns. At first, it uses a layer structure to handle

the packets from the transceiver, which follows the four-layer structure in DSRC

architecture. Secondly, the processor is also an event-driven system. It separates

the communication layers from the top application functions. The incoming message

is treated as a network event, which may trigger a series of operations in the unit

system. In addition, a plugin design in the processor ensures that a new feature can

be easily added. It significantly increases the reusability and extensibility of VSmart.

In order to handle the job execution sequence issues, a job scheduler is introduced in

the system. The scheduler utilizes batch-processing technique and interruptible job

design. Besides the above design patterns, a self-positioning system is also designed

to overcome the limitation in the hardware. The position of a vehicle unit can be self-

evaluated with the help of the self-positioning system. The positioning calculation

is based on the execution of the jobs. The following subsections will focus on the

design of the processor in vehicle unit.
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Figure 4–2: The processor components in vehicle unit
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4.3.1 Layer Structure

As presented in the section 2.1, DSRC is enabled by a four-layer system. The

VSmart testbed inherits the layer structure from DSRC. The transceiver covers the

bottom two layers and the processor is responsible for the remaining two, network

layer and application layer. In DSRC, network layer utilizes the WSMP and TCP/IP,

and application layer employs SAE J2735. However, to minimize the efforts of de-

velopment in the early deployment stage, the protocols are not fully implemented in

VSmart.

In the current implementation, network layer uses the existing IP packet cre-

ation/parsing library [12] for the addressing and forwarding. The routing functions

are not yet available. The application layer in the testbed adopts customized message

formats. In the implementation, the messages are wrapped with JavaScript Object

Notation (JSON) format and each message in the application layer can be viewed

as a JSON object. Furthermore, users can define new message formats through the

plugin design, which is covered in section 4.3.3.

4.3.2 Event-driven Design

Event-driven design is suitable for the layer-structured system. It allows a ser-

vice to fire an event, which may activate the operations in another service. This

design loosely coupled the software components. In the testbed, each layer can be

regarded as a service. The lower layer can create an event and trigger the appropri-

ate reaction in upper layer services. Thus, a combination of layer and event driven

design pattern fit perfectly for the architecture of the testbed.
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Figure 4–3: Class diagram of the event generator

In the system, an event generator module is built on top of the application

layer. The module parses the messages from application layer and generates the

corresponding events. The event will be then forwarded to the central processor

module, as showed in Figure 4-2, for further disposition. The event-driven design

adopts observer pattern as the event forwarding approaches. The central processor

module acts as observer and the event generator is the subject.

In the object oriented programming (OOP), the event is designed as an abstract

class. Every subclass matches up with a type of message. The subclass has to

implement a self parse method, which parses the messages from the application layer.

Figure 4-3 is the class diagram of the event generator module.

The design of event-driven system decreases the coupling between observer and

subject. As the observer, the central processor module has less knowledge about the
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low level services. The modification of the bottom layers will not affect the central

processor.

4.3.3 Plugin Design

In software architecture, a good design of the framework should allow users

to add their functional modules. The plugin design enables a system to exploit

new functionalities. To this end, the VSmart testbed is designed as an extensible

framework. Users are encouraged to develop and deploy their own features and

functionalities.

In VSmart, a customized plugin has three submodules, customized executor, cus-

tomized receiver and customized event. In the processor subsystem, a background

thread keeps invoking the same core procedures intermittently. These procedures are

composed of the internal functions, such as message broadcasting and location up-

dating, and external functions. The external functions are defined in the customized

executor submodule, which is developed by users. As an event-driven system, the

processing and generation of the event are the most elementary. An experiment plat-

form should have the capability to customize the event processing and generation

procedure. A customized receiver is able to handle the received event by a user-

defined method. Similarly, users are also able to define a customized event. The

customized event has to inherit the superclass event as described in Figure 4-3.

Every plugin module has to hook up with a corresponding configuration file, in

which the name and the path of the submodules are specified. In addition, all the

plugin modules are listed in the plugin initialization file, which guarantees that the

plugin loader can load the modules appropriately at the runtime.
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Figure 4–4: Sequence diagram of the plugin invocation procedures

Figure 4-4 depicts the sequence diagram of the invocation procedure in the

plugin design. The plugin invoker plays a role of the intermediary interface. The

central processor has very few knowledge about the implementation of customized

submodules.

Based on this plugin design, many DSRC applications can be emulated by cre-

ating a new plugin module. For example, to emulate an elementary cooperative

adaptive cruise control application, users can implement all three submodules in

plugin design. The targeted vehicle needs to use customized executor to generate

customized event messages. Upon receiving a customized event message from the

targeted vehicle, the following vehicle utilizes customized receiver to follows target’s

action. Another example is the collision avoidance. The receiver can predict the
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collision threat by calculating the relative distance between two vehicles when basic

vehicle message is received. These examples will be elaborated in Chapter 5.

4.3.4 Job Scheduler

Interruptible Job. In the testbed, one of the most fundamental operations

is to control the actuators, i.e., the robots. In the VSmart design, the Job class is

designed to describe the robot’s action execution. A Job has two important proper-

ties, time, which represents the duration of the execution, and action, which contains

the two parameters, linear velocity and angular velocity, for the physical movement.

During the execution, the parameters are sent to executor to drive the robot. In

many scenarios, the robot movement has to be paused for some reason. For in-

stance, in a collision avoidance scenario, the robot would be stopped if a collision

threat is detected. The current job has to be suspended until the collision threat

disappeared. Therefore, an interruptible design in the job scheduler is essential. To

be interruptible, a job must have the capability of saving the current execution state.

The most important states to save in the job are the remaining execution time and

the parameters. It is easy to have the action parameters saved, but the remaining

execution time has to be calculated. In fact, to actuate the robot, the driver only

needs to send the command with speed and direction. The robot will execute the

same command until the next received. Therefore, the execution time is managed

by the Job class. In order to manage the execution time, the monitor design pattern

[21] is utilized in the job execution. The technique is used in multithread synchro-

nization. It allows the threads to have mutual exclusions and the ability to wait

for a certain condition. When a job is executed, the job execution thread will wait
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Figure 4–5: Activity diagram of job execution

until the execution time expired. To interrupt the execution, the waiting thread has

to be waked up and calculate the executed time in order to save the current state

of the job. In Python, the Condition in threading module is an implementation of

monitor construct. Figure 4-5 is the activity diagram describing the procedure of job

execution.

Job scheduler. The executor may need to process a series of jobs and each of

them must be executed at a specific time. Thus, a scheduler is required to keep track

of jobs and invoke them appropriately. This design is called scheduled task design

pattern. It is used frequently in the real time system. There are many scheduling

algorithms, but only a few fits the vehicle task scheduling. First in first served (FIFS)

is the most straightforward approach. It is very similar to the batch processing. The

jobs are kept in a queue and executed in sequence. Another available strategy is

the multilevel queue. It can be used in path selection application. However, it may
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Figure 4–6: State diagram of job scheduler
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take a lot of efforts to design the scheduler since it is more complex. In VSmart,

the FIFS is adopted as the job scheduling strategy. To be able to schedule the jobs,

the scheduler must be interruptible as well. The pause of scheduler should not only

suspend the scheduling process but also the execution of the current job. In addition,

the resuming of the scheduler should handle the current unfinished job first and then

the rest. In the other hand, the scheduler also provides the job cancellation APIs.

It can be used to cancel the current job or even clear the queue. Similar to the

design of job execution, monitor pattern is also applicable in the interruption design

of scheduler. Figure 4-6 is the state diagram of the job scheduler, where the job

execution is described in Figure 4-5.

4.3.5 Self-positioning

The primary purpose of the development of DSRC is to enhance safety and

reduce collisions. In the collision avoidance applications, the key information is the

location of the vehicles. It is used to predict the collision threats. In fact, most of

DSRC safety applications and even some non-safety applications are location-based.

For instance, in the approaching emergency vehicle warning application, the position

of an emergency vehicle is reported to alert the driver; in the enhanced route guidance

and navigation application, the location information is used in the navigation system.

It is indisputable that the positioning module is crucial in the V2V system.

The VSmart testbed targets both indoor and outdoor environments. In the

indoor environment, the satellite navigation system, such as Global Positioning Sys-

tem (GPS), Beidou Navigation Satellite System (BDS), is inapplicable. There are

many accurate indoor positioning schemes, for instance, smartLOCUS [6], SpotON
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[20], LANDMARC [30], etc.. Unfortunately, they all require the assists of extra

infrastructures. In other words, if the users of the testbed have the related hard-

ware accessible, it is a good idea to utilize the above localization schemes as the

positioning module in the testbed. The current implementation of positioning sys-

tem is integrated within the processor of vehicle unit. It can be modified to invoke

existing localization schemes by overwriting the functions update primary and up-

date secondary.

In this thesis, a self-positioning scheme is designed to locate the vehicle unit.

Indeed, many state-of-the-art self-positioning schemes have been proposed [3, 8, 19].

The schemes take advantage of the target’s movements and locate it by calculating

the moving direction and distance. In VSmart testbed, the speed and direction of

the movement are a part of command to actuate the executor. They are applied to

implement a self-positioning module. As mentioned in the section 4.3.4, a job, which

is used to drive the robot from one location to another, keeps track of the execution

time and two parameters, linear velocity and angular velocity. If the previous location

is aware, the new position can be calculated by using the following algorithm.

Algorithm. This algorithm is related to the robot used in the current im-

plementation of the testbed. The robot adopted in this thesis is iRobot Create.

According to the documentation of the iRobot Crate, there are three cases in the

iRobot actuator command, which are illustrated in Figure 4-7. This algorithm keeps

track of the current position and heading information.
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(a) Case 1

(b) Case 2

(c) Case 3

Figure 4–7: Scheme
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Case 1: The angular velocity is 0. As illustrated in Figure 3-8 (a), the vehicle

moves linearly and only position information is updated:

�pos = �pos+ (linv × cos(h), linv × sin(h))× t, (4.1)

where �pos is the position of the vehicle in 2D space, linv is the linear

velocity, h is the current heading, t is the job execution time.

Case 2: The linear velocity is 0. As showed in Figure 4-7(b), only the heading

is refreshed in this case:

h = (h+ angv × t)%(2× π), (4.2)

where angv is the angular velocity.

Case 3: Neither the linear velocity nor angular velocity is 0. This case is a little

bit complicated. As illustrated in Figure 4-7(c), the path of the vehicle

is a circular arc. The heading of the vehicle can be obtained by the

same method in case 2. To be able to get a new position of the vehicle,

the coordinates are first transformed from cartesian coordinate system

to polar coordinate system, since the polar coordinate is suitable for

the angle and arc. In the polar coordinate system, the new position

can be obtained by calculating the new radial coordinate and angular

coordinate. Then, the position of the vehicle is transformed back to the

cartesian system. It is worth noting that, in the polar coordinate, the

original position is chosen as the pole and the original heading is the
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polar axis. Thus, the transformation to cartesian system is composed

of rotation and shift.

The following equation is used to calculate the vehicle coordinate in

polar system:

radius = linv ÷ angv, (4.3)

γ = angv × t, (4.4)⎧⎪⎨
⎪⎩

φ = γ/2,

r = 2× radius× sin(φ),
(4.5)

where radius is the radius of the arc, γ is the angular rotation of the

heading, (r, φ) is the coordinate of the polar system.

The next step is the transformation:

ϕ = φ+ h, (4.6)

�pos = �pos+ (r × cos(ϕ), r × sin(ϕ)), (4.7)

where Equation (4.6) is the rotation and Equation (4.7) is the shift and

convert. Figure 4-8 illustrates the coordinate transformation in case 3.

Periodical update. Indeed, there are two copies of location information in

the VSmart self-positioning module, feedback copy and periodicity copy. Feedback

copy is calculated based on the feedback of the job execution. In the job scheduler,

the observer design pattern is utilized to inform the self-positioning module of the

position and heading information once a job is finished or interrupted. In most of the

experiments, the execution time of a job usually lasts for a few seconds. It means
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Figure 4–8: Coordinate Transformation in Case 3

that the feedback copy is updated a few seconds a time. It is not acceptable in

the safety related scenarios such as collision avoidance. The use of periodicity copy

can settle this issue. The periodicity copy is updated periodically at a specific rate

and the rate can be adjusted based on the requirements. In VSmart, the rate is set

to 10 times per second. The update is proceeded in a separate thread, periodicity

thread. In the thread, the self-positioning module probes the job scheduler for the

currently executing job and calculate the position with the algorithm described in

last paragraph. The execution time for the algorithm is the interval of the probe,

that is 1/rate. Unfortunately, the periodical update has an accuracy issue. Figure 4-

9 is one of the cases in which the calculation of periodicity copy results an inaccurate

position. In the example, there are two jobs in the job scheduler. Job1 has a linear

velocity with -20 mm/s and is executed for 0.45 seconds. In Job2, the linear velocity

is 20mm/s and the execution time is 0.5 seconds. The arrows mark the moments

when the periodicity thread probes the currently executing job. The probe happens
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Figure 4–9: An example of the timeline of periodicity thread and job scheduler

every 100 milliseconds. It is easy to find out that, the vehicle should move 1 mm after

the execution of both Job1 and Job2, but the periodicity thread results 0 mm in the

end. It is obvious that either feedback copy or periodicity copy has its limitation.

Fortunately, they can make up for each other. In VSmart, the feedback copy can be

used to refine the periodicity copy and the periodicity copy can provide the position

information to the other modules more effectively and timely.

4.4 Executor of vehicle unit

The executor subsystem is the driver of the actuators in the testbed. It directly

controls the movement of the robot. The implementation of the executor heavily

depends on the use of the hardware. Different robots may have different programming

interfaces. Therefore, it is hard to have a universal implementation of the executor

subsystem. However, it is possible to provide a universal interfaces to the other

subsystems or modules. In this thesis, iRobot Create [24] is used as the actuators of

the vehicle units and the implementation of the subsystem has to follow the iRobot

Create Open Interface [23]. In fact, according to [23], the iRobot Create has five types

of actuators: wheels, speaker, LEDS, digital outputs and low side driver outputs.

Among them, the wheels actuator is the most important one in VSmart testbed. The
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command to trigger the actuators in iRobot Create includes two parts, the opcode

and the data bytes. The opcode is the operation code, which represents the start

of a specific command. The data bytes are the parameters for the execution details

of the command. The command for wheels actuator starts with the opcode 137

and is followed by four data bytes. The first two bytes represent the velocity of the

robot and the rest two represents the radius of the moving path. However, to make

the command more readable and provide a universal interface, the wheels actuator

command is wrapped in the API, go(linear velocity, angular velocity). There are

three cases in this API, which have been elaborated in the section 4.3.5. The map

of the parameters between the API and the command is described as follow:

command.velocity = API.linear velocity, (4.8)

command.radius = API.linear velocity/API.angular velocity (4.9)

There are some ongoing projects, which have implemented the open interface of

iRobot Create in Python language. Pycreate [27] is one of the best implementations.

The VSmart testbed utilizes the pycreate code in the executor subsystem.

Similar to the other modules, the executor subsystem can be reimplemented as

long as it follows the same interfaces

4.5 The processor of infrastructure unit

As introduced in the previous sections, the VSmart testbed has another impor-

tant unit, the infrastructure unit. In this section, the processor in the infrastructure

unit is discussed. Similar to the vehicle unit, the processor is the brain of the in-

frastructure unit. The applications as well as some data processing functionalities
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Figure 4–10: Object Diagram of the processor in the infrastructure unit

are implemented in this subsystem. There are many similarities between the proces-

sors in the vehicle unit and the infrastructure unit. First of all, they both have the

layered structure to handle the packets received from transciver. Secondly, they are

all event-driven systems and use the same design and interfaces in the implementa-

tion. Finally, the infrastructure unit also has the plugin design for the customized

functionalities. These have been covered in the section 4.3.

Figure 4-10 shows the object diagram of the processor of infrastructure diagram.

It has three important components, USRPConnector, PluginInvoker and the Back-

groundExecutor. USRPConnector is used to connect the processor with transceiver

subsystem. It can receive the packets from transceiver as well as forward the mes-

sage. It is wrapped by EventGenerator and MessageSender. The EventGenerator

can parse the packets and conduct the event generation. MessageSender is used in

the other modules of the processor to broadcast the message. In the processor, the

USRPConnector and EventGenerator are running in two separated threads for the

real time purpose. Another important component is the BackgroundExecutor. As an

essential part of the DSRC system, the infrastructure conveys the useful information
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Figure 4–11: Class Diagram of the processor in the infrastructure unit

to the vehicles. This procedure should be running in the background and executed

continuously. Therefore, a background thread is required in the processor. The func-

tions executed in the thread can be customized by the plugin design, which is similar

to the processor in the vehicle unit. PluginInvoker is used to invoke the customized

functions. The details of the plugin design is covered in the section 4.3.3.

4.6 GUI Design

Despite the implementation of the framework of DSRC, some Graphic User In-

terface (GUI) applications are implemented to simplify the process of the DSRC

experiments. In the current implementation, these functions include virtual map,

logger, remote control, the batch job editor and some exclusive commands, such
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Figure 4–12: Console in the infrastructure unit

as the mode switch for the robot, plugin loading and position reset. The GUI ap-

plications are hosted in the infrastructure unit as central controller of the entire

VSmart testbed. Most of these functions require communications with vehicle units.

Apparently, the messages for GUI applications are not defined in DSRC standards.

Therefore, the exclusive message formats are defined for the communications between

vehicle and infrastructure units. The rest of the section elaborates the detail of these

exclusive functions and the related GUI design.

Console. The console is the platform where the user can interact with the

processor. Figure 4-11 is the class diagram of the console. It depicts the relation-

ship between console and the processor in the infrastructure unit. Figure 4-12 is a

screenshot of a console. In the console, there are three elements, virtual map, logger,

and sider.
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The virtual map can track and display movements of the vehicle units. As long

as the infrastructure unit is within the transmission range of the vehicle unit, the

basic vehicle messages can be probed. After extracting the information from the

messages, the position is known and the vehicle can then be drew at the appropriate

location in the virtual map. With the help of the virtual map, users can visually

conduct and monitor experiments, even without the participation of the executor

subsystem.

Logger is a tool, which keeps track of received events and user’s actions. The

use of the logger can help the users to find the issues in the experiments more con-

veniently. The users can save the log to files for further exploration and comparison.

The sider is separated into three parts. The panel at the top is the status display

panel. It displays the information for the currently selected vehicle. The information

includes the name, the coordinate, and the action. The panel in the middle is

a list of vehicles within the transmission range and the bottom panel is a plugin

controller for the selected vehicle. As discussed in vehicle unit, users can implement

customized functions as plugins. In practice, a user may adopt several plugins in a

single experiment. The plugin controller allows the user to switch between different

plugins.

Remote Control. In VSmart testbed, the general way to control a vehicle

unit is to use the keyboard on the laptop. However, the operability is not satisfactory,

especially, when there is more than one vehicle running simultaneously. Therefore,

the remote control in the console is designed for manipulating the vehicles. There

are two ways to control the vehicle units from the console. The first one is to use the
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Figure 4–13: Remote control panel

Figure 4–14: Batch job editor

control panel. Figure 4-13 is the vehicle control panel. It is very straightforward and

operable. Another way is the Drag and Drop (DnD). The user can drag and drop

the vehicle unit icon in the virtual map to control the corresponding vehicle.

Batch job editor. Sometimes, an experiment may require the vehicle to exe-

cute a list of predefined jobs. The processor in the infrastructure provides a function

to edit a batch of jobs. The user can easily define a list of ordered jobs and submit to

the designated vehicle unit. The vehicle will then process the jobs in job scheduler.

Figure 4-14 is the GUI of batch job editor.
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Figure 4–15: Command and shortcuts to manipulate the vehicle

Command. A few common commands and shortcuts are also implemented in

the processor to manipulate the vehicle, such as, stop vehicle, reset vehicle, set the

position, load vehicle plugin, disable vehicle plugin, etc. In addition, users can also

define the customized commands in the infrastructure plugin. It will be automatically

loaded.
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CHAPTER 5
DSRC Use Cases

With the help of VSmart testbed, many popular use cases can be tested and

demonstrated. In this chapter, collision avoidance and cooperative adaptive cruise

control are introduced to illustrate the usability of the testbed.

The experimental setup of both use cases contains two vehicle units and an

infrastructure unit. Each of the vehicles is composed of a USRP, a laptop and an

iRobot. The infrastructure unit consists of a USRP and a desktop computer. The

vehicles are placed in a 5m × 5m space. The infrastructure unit is responsible for

remote control and monitoring.

5.1 Collision Avoidance

Collision avoidance is one of the most important applications in V2V systems.

There are many previous researches [38, 39] working on the design and analysis of

the collision avoidance application. In this section, an effective strategy and its

implementation are introduced.

To detect the collision, a vehicle has to know the position and the movement

information of its neighbours. A vehicle can obtain the information from basic vehicle

messages broadcast by its neighbours.

In Figure 5-1, �V 1 and �V 2 are the velocity of the Car1 and Car2 respectively.

p is the intersection point. L1 and L2 are the distance between p and the cars

respectively. With the following equations, the intersection point p can be found:
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Figure 5–1: Collision Detection

⎧⎪⎨
⎪⎩

�OP = �OC1 + t1 �V 1

�OP = �OC2 + t2 �V 2
(5.1)

where �OP is the coordinate of the intersection point p, �OC1 and �OC1 donate

the coordinates of the cars, �V 1 and �V 2 represent the velocity vector of the cars, t1

and t2 donate the time to move the vehicle to p from �OC1 and �OC1 respectively. In

the equations, the �OP , t1 and t2 are unknown and need to be solved.

The solution to the equations has five cases. Figure 5-2 illustrates five cases of

the solution. In the first three cases, the equations has either no solution or many

solutions. It indicates that �V 1 and �V 2 are parallel. In these scenarios, the distance

between the paths of the cars has to be determined to find out if there is a collision.

The distance can be calculated in the following equations:

�C2C1 = �OC1 − �OC2, (5.2)
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φ = arccos( �C2C1 · �V 1/(
∣∣∣ �C2C1

∣∣∣ ·
∣∣∣ �V 1

∣∣∣)), (5.3)

d path =
∣∣∣ �C2C1

∣∣∣× sin(φ), (5.4)

where �C2C1 is the vector from Car2 and Car1, φ is the angle between �C2C1 and the

velocities, d path is the distance between two paths.

With the help of the above equations, the cases can be analyzed as follow:

Case 1: �V 1 = k · �V 2 and d path > w, where w is the width of a car. In this

case, the path of Car1 is parallel to the path of Car2 and the d path is

larger than the width of a car, which is considered as the safe distance

between two paths. Thus, there is no intersection point.

Case 2: �V 1 = k · �V 2, d path < w and k > 0. In this case, the d path is smaller

than the safe distance and the vehicles move in the same direction.

If the vehicle ahead has a smaller speed, then a collision is expected;

otherwise, there is no collision.

Case 3: �V 1 = k · �V 2, d path < w and k < 0. In this case, the d path is smaller

than the safe distance and the vehicles move in the opposite direction.

If the vehicles has passed the intersection point, there is no collision;

otherwise, a collision is expected.

Case 4: The Equation (5.1) has only one solution and either t1 or t2 is less than

0. It means at least one of the vehicle has passed the intersection point

and it is safe for both vehicles to move forward.

Case 5: The Equation (5.1) has only one solution and both t1 and t2 are greater

than or equal to 0. Definitely, this case implies the possibility of the
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(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5

Figure 5–2: The cases in collision avoidance

collision. However, if the difference between t1 and t2 is larger than a

threshold, the vehicle is safe to go; otherwise, a collision is expected.

As long as the vehicle knows where and when the collision would happen, it

can take action to avoid it. For instance, the vehicle can slow down or pause the

actuator for a while. In this use case, the vehicle first slows down and then stops

fully if the threat still exists. The use case is implemented as a plugin in the pro-

cessor of the vehicle unit, called CAPlugin. As mentioned in section 4.3.3, a plugin

is composed by three modules. Since the use case utilizes the message from the

neighbours, the CustomizedReceiver has to be implemented. As the basic vehicle
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messages are of a built-in message type, the CustomizedExecutor and CustomizedE-

vent could be neglected. In CustomizedReceiver, there is a abstracted method, cus-

tomized event handler(processor, event), which is the interface defined for PluginIn-

voker. It has to be implemented in order to be called by the invoker. The following

pseudo code depicts the core procedure of the collision avoidance plugin.

s t op s i gn = False

s l ow s i gn = Fal se

def cus tomized event hand l e r (my speed , my posit ion , event ) :

ne igh speed = event . g e t speed ( )

n e i g h po s i t i o n = event . g e t p o s i t i o n ( )

i n t e r s e c t p o s i t i o n = f i n d c o l l i s i o n p o i n t ( my pos i t ion

ne i gh po s i t i on ,

my speed ,

ne igh speed )

i f i n t e r s e c t p o s i t i o n e x i s t s :

t ime normal = ca lc moving t ime ( my posit ion ,

i n t e r s e c t p o s i t i o n ,

my speed )

t ime s low = ca lc moving t ime ( my posit ion ,

i n t e r s e c t p o s i t i o n ,

my speed /2)

t ime ne igh = ca lc moving t ime ( ne i gh po s i t i on ,

p ,
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ne igh speed )

i f abs ( t ime s low − t ime ne igh ) <= thre sho ld :

i f not s t op s i g n :

stop ( )

s t op s i g n = True

e l i f abs ( t ime normal − t ime ne igh ) <= thre sho ld :

i f not s l ow s i gn :

slow down (my speed /2)

s l ow s i gn = True

else :

i f s t op s i gn or s l ow s i gn :

resume ( )

s t op s i g n = Fal se

s l ow s i gn = False

In the implementation, if the collision point p exists, the vehicle will slow down

or stop based on the time difference between itself and its neighbour. The experiment

shows that this use case works perfect in the testbed. However, if another vehicle

has the same strategy, both of them will stop and keep still since each will treat the

other as a threat.

5.2 Cooperative Adaptive Cruise Control

Cooperative Adaptive Cruise Control (CACC) is another very popular use case

of the DSRC. CACC allows a vehicle to follow the preceding one and maintain a
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fixed distance. The mechanism is that the vehicle can detect the action of the pre-

ceding vehicle and drive in a similar way. In fact, the CACC system is complicated.

There are many factors that need to be considered, for instance, platoon length,

fast traveling time, platoon merging behaviour, and damping behaviour in strong

acceleration and deceleration situations [17]. However, the main focus of this thesis

is not on the design of CACC systems or protocols. In this thesis, a simplified use

case is implemented as plugin. In the implementation, the vehicle strictly follows the

action of the preceding vehicle. Even though the use case is a simplified version, it

is enough to demonstrate the usability of the VSmart testbed. Users of VSmart can

extend the current plugin to a CACC system with full functionality..

The slave vehicle, which follows the preceding one, has to listen to the mes-

sages that are broadcasted by the preceding vehicle. Thus, the CustomizedExecutor

module in the plugin of the leading vehicle has to be implemented. It keeps broad-

casting the leading messages, which include the information of location, action and

timing. Similar to collision avoidance, the slave vehicle receives the messages and

passes them to the CustomizedReceiver for processing. The implementation of Cus-

tomizedReceiver module, in this case, handles the leading messages and actuates the

vehicle unit to follow the actions.

The following pseudo code is the core implementation of CustomizedExecutor

module in the plugin of the leading vehicle. The function execute is called by the pro-

cessor continuously based on the interval defined by the user. generate leading message

is the function which generates the customized leading message. The message format

is defined in the CustomizedEvent module.
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def execute ( ) :

msg = gene ra t e l e ad ing mes s ag e ( )

send to USRP (msg)

The pseudo code below is the most elementary implementation of Customize-

dReceiver in the slave vehicle. It retrieves the action information from the message,

and add it to the job scheduler.

def cus tomized event hand l e r ( event ) :

a c t i on = event . a c t i on

new job = Job ( ac t i on . name , ac t i on . arg1 , a c t i on . arg2 )

s e nd t o j o b p r o c e s s o r ( new job )

With the help of the plugins, the slave vehicle can follow the action of the

preceding one.
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CHAPTER 6
Conclusion and Future Works

6.1 Conclusion

This thesis analyzes the importance of the small scale DSRC testbed and dis-

cusses the design and implementation of the VSmart testbed in details. It describes

the hardware requirements for the platform construction as well as three subsystems

in the software design. The VSmart testbed has two kinds of units, vehicle unit and

infrastructure unit, and can be used in three different modes, i.e., simulation mode,

stationary mode, and full mode. Simulation mode works with processor subsystem

only, while stationary mode enables the transceiver on the base of simulation mode.

Full mode adds executor upon stationary mode. In the software design, the architec-

ture of the VSmart testbed is a combination of layered architecture and event-driven

architecture. In addition, plugin design pattern is integrated in the processor sub-

system, which significantly improves the extensibility of the entire platform. The job

scheduler design enables batch processing in the executor. It improves the efficiency

of the experiments by allowing users to predefine the jobs. Furthermore, to overcome

the shortage of lack of positioning system, the self-positioning module is designed

in the processor. It can precisely estimate the current location of the vehicle unit.

Beyond that, some experiment-oriented applications are designed in the infrastruc-

ture unit. A GUI is designed in the console, which allows the researcher to conduct

graphical manipulation over the testbed. The virtual map design increases the visual
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impression, because users can directly obtain the vehicle information over the map.

The remote control, logger and other applications in the infrastructure improve the

usability in the experiments.

6.2 Future Works

Implementation of the standards. In the thesis, the layered structure of

the testbed is introduced. The VSmart follows design of DSRC communication

stacks. Currently, the VSmart does not fully implement the standards, especially,

the middle stack and the top stack. The implementation of the standards can verify

the performance of the DSRC protocols.

Robustness of the transceiver. The VSmart utilizes the USRP B210 as

the hardware of the transceiver. The wireless communication over the USRP board

is sometimes unstable. There are many factors which can affect the performance of

the transceiver. For instance, both placement of the board and orientation of the

antenna can cause instability. It is acceptable in V2V and V2I communications, since

the units are continuously broadcast the messages. The lost of a few packages may

not cause a big issue in some experiments. However, the instability impact the use

of some experiment-oriented applications. One way to enhance the robustness of the

transceiver is to utilize the retransmission mechanism.

A scalable experiment-oriented testbed. Even though the purpose of the

design of VSmart is to build a small scale testbed, it is till possible to use multiple ve-

hicle units and infrastructure units in the same experiment. The experiment-oriented

applications are limited within a specific infrastructure unit because of the transmis-

sion range of the SDR. Therefore, for the experiment with multiple infrastructure
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units, the use of some experiment-oriented applications could be complicated. How-

ever, a central control station may overcome the difficulty. The central control station

can gather the information from all the infrastructure units and present to the re-

searchers. On the other hand, it can also control the entire testbed by a centralized

method. The central control station is one way to increase the scalability of the

testbed.
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List of Symbols

BDS Beidou Navigation Satellite System

CCH control channel

COTS commercial off-the-shelf

CPU Central Processing Unit

DnD Drag and Drop

DSP digital signal processing

DSRC the dedicated short-range communication

FIFS First in first served

GPS Global Positioning System

GUI Graphic User Interface

IPC inter-process communication

JSON JavaScript Object Notation

MAC medium access control layer

MCU Microcontroller

OFDM Orthogonal Frequency Division Multiplexing

PC personal computer

PHY physical layer

RSU roadside unit

SCH service channel
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SWIG Simplified Wrapper and Interface Generator

USDOT the U.S. Department of Transportation

USRP Universal Software Radio Peripheral

UTC Universal Coordinated Time

V2V vehicle-to-vehicle

VSC the Vehicle Safety Communications

WAVE Wireless Access in Vehicular Environments

WHO World Health Organization
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