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ABSTRACT

Multi-drug-resistant tuberculosis (MDR-TB) is defined as strains of tuberculosis

(TB) that do not respond to at least the two most powerful anti-TB drugs. Nowa-

days, MDR-TB continues to emerge and thus accurate assessment of the importance

of treatments for MDR-TB is a critical issue. MDR-TB is often treated with multiple

first and second line antibiotics.

Our data consists of individual patient data from 31 international observational stud-

ies which measured patient demographic information, medical history, medications

used and therapeutic outcomes. In this study, we defined an adjusted variable im-

portance metric to compare the apparent contribution of each medication to the

overall recovery rate among patients who are not known to be resistant to the given

antibiotic.

While individual studies are able to evaluate subpopulation-specific associations be-

tween treatment and outcome, our individual patient data network meta-analysis

(IPD-NMA) allows for a global perspective on average medication importance in the

treatment of MDR-TB.

To these ends, we develop identifiability criteria and apply targeted maximum like-

lihood estimation (TMLE) to estimate the adjusted recovery rate means for each

treatment amongst patients who were not known to be resistant to the treatment.

TMLE is a semi-parametric and double robust method. Throughout the analysis,

transportability is utilized to translate the estimation from studies where a given an-

tibiotic was used to studies where it wasn’t. Finally, we adopted a clustered sandwich
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estimator derived from the efficient influence function to compute variance estimates.

Simulation studies were conducted to assess the performance of our estimator and

verify the theoretical double robustness property. These simulations were also used

to evaluate the validity of the sandwich estimator for variance estimation and the

coverage rate of the derived Wald-type confidence intervals.

The results show that Ciprofloxacin has the greatest treatment importance, fol-

lowed by Amikacin and High-generation Quinolones. They also show that Para-

aminosalicylic acid, Pyrazinamide, and Group 5 level drugs are the least important.
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ABRÉGÉ

La tuberculose multirésistante est une souche de la tuberculose qui ne répond

pas au moins aux deux médicaments les plus puissants contre cette dernière. La

tuberculose multirésistante continue de se propager de nos jours, et par conséquent,

il est important de savoir évaluer avec précision l’importance des traitements pour

cette souche. La tuberculose multirésistante est souvent traitée par de multiples an-

tibiotiques de première et de seconde ligne.

Notre base de données se compose des données individuelles des patients provenant de

31 études observationnelles et contient des caractéristiques démographiques, l’historique

médical, les médicaments utilisés et les issues thérapeutiques. Dans cette étude, nous

définissons une métrique mesurant l’importance d’une variable afin de comparer la

contribution apparente de chaque médicament au taux de récupération global parmi

les patients qui ne sont pas connus pour être résistant à l’antibiotique donné.

Bien que les études individuelles puissent évaluer les associations spécifiques entre

le traitement et les résultats dans la sous-population, notre méta-analyse sur les

données individuelles des patients permet une perspective globale de l’importance

moyenne des médicaments dans le traitement de la tuberculose multirésistante.

Pour ce faire, nous avons développé des critères d’identification et appliqué l’estimation

par maximum de vraisemblance ciblée (TMLE) pour estimer le taux moyen de

récupération ajusté pour chaque traitement chez les patients qui ne sont pas con-

nus pour être résistants au traitement. TMLE est une méthode semi-paramétrique

et doublement robuste. Au cours de l’analyse, la transportabilité est utilisée pour
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transférer l’estimation des études où un traitement a été observé aux études où ce

traitement n’a pas été observé. Enfin, nous avons adopté un estimateur sandwich

dérivé de la fonction d’influence efficiente pour estimer leur variance associée.

Des études de simulation sont menées pour prouver la validité de notre estimateur et

vérifier la double robustesse de notre estimateur. En outre, ils montrent également

que notre méthode d’estimation de la variance est appropriée avec un taux de cou-

verture adéquat.

Les résultats montrent que la ciprofloxacine a la plus grande importance au traite-

ment, suivie de l’amikacine et des quinolones à haute génération. Ils montrent

également que les médicaments à base d’acide para-aminosalicylique, de pyrazi-

namide et de groupe 5 sont les moins importants.
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CHAPTER 1
Introduction

Multidrug-resistant Tuberculosis (MDR-TB) is a type of Tuberculosis (TB) that

is resistant to at least Isoniazid and Rifampin, the two most commonly prescribed TB

drugs [56]. MDR-TB is more challenging to treat than common TB, because MDR-

TB requires a combination of antibiotics, most of which cause serious side effects

[3]. Therefore, identification of the most effective antibiotic regimens for MDR-TB

is urgently needed.

In this setting, statistical analysis is complicated because patients with MDR-TB

usually take multiple treatments and each subject’s MDR-TB may be resistant to

various treatments. Nevertheless, many analyses have investigated treatment effec-

tiveness in MDR-TB [27, 46, 76]. In particular, meta-analysis is often employed to

obtain a global conclusion from numerous studies. In this analysis, we use individual

patient data (IPD) from multiple studies consisting of observations of over 9000 sub-

jects. Methodology for the estimation of treatment importance in MDR-TB using

IPD meta-analysis has not yet been well developed, and is complicated by the fact

that not all treatments were available in every study.

Randomized Clinical Trials (RCTs) are considered to be the “gold standard” in the

estimation of causal effects. In ideal circumstances, the difference in outcomes be-

tween the different treatment groups represents the relative effects of the treatment

[72]. However, RCTs are not always feasible due to their high cost, limited study
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participation, treatment contamination, and potential ethical issues. In terms of

MDR-TB, for example, forcing some patients to have certain medications to satisfy

the RCT implementation is not ethical, and it is very expensive to implement a RCT

with large samples due to the high cost of MDR-TB medications. On the other hand,

observational studies are easier to implement and may lead to valid conclusions on

a more diverse population. This thesis uses IPD from multiple observational studies

in order to investigate the treatment importance of multiple MDR-TB treatments.

The data source of meta-analysis can be either aggregated data (AD) or IPD. Be-

cause multiple antibiotics are available, network meta-analysis (NMA), which can

compare multiple treatment effects through both direct and indirect evidence, may

be an appropriate approach to analyze this type of data. Some researchers have used

AD to perform NMA [39, 45]. However, this kind of analysis has several disadvan-

tages. First, AD is dependent on the quality of reporting in the individual studies

and they do not allow for the investigation of subgroup effects if the included studies

did not report subgroup analyses. A standard random effects network meta-analysis

using IPD was performed by Ahuja et al. in 2012 to investigate relative treatment

effectiveness in MDR-TB [11]. The study suggested that the use of later generation

quinolones, ofloxacin, and ethionamide/prothionamide as part of multi-drug regi-

mens were associated with recovery from MDR-TB [11]. They used a mixed effects

model to compare the odds ratios of various treatments. However, the parametric

models used required assumptions such as the independence and normal distribution

of the within-group errors and they did not take into consideration the selection bias

arising from the usage of only a subset of treatments in each study. Under violation
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of the parametric modeling assumptions and if the usage of treatments across studies

was non-random, the results from such a study may be biased.

Targeted Maximum Likelihood Estimation (TMLE) was proposed by Van der Laan

and Rubin [83]. TMLE is based on semiparametric theory, which relaxes the strong

assumptions made by parametric models. It only requires the specification of certain

components of the likelihood [86]. By adopting TMLE, one can obtain a regular,

asymptotically linear estimator. Under correct specification of the certain compo-

nents, the estimator has the lowest asymptotic variance in its class of semiparamet-

ric estimators [86]. In addition, TMLE is doubly robust, meaning that if either of

the two model components is correctly specified, the estimator is consistent [86].

Furthermore, TMLE can incorporate flexible prediction methods in its estimation.

SuperLearner, an ensemble learning method, is often recommended to improve the

modeling in TMLE [86].

This thesis investigates MDR-TB treatment importance by conducting an IPD-NMA

using TMLE. Treatment importance here is defined as the difference between the av-

erage recovery rate of the patients who used the treatment and the average recovery

rate of all the patients while controlling for confounding and other treatments. As

such it is the nonparametric analogue of the coefficient of each treatment of inter-

est in an adjusted linear regression. Since different bacterial strains are resistant to

different antibiotics, we only used the data from the patients who were not or not

known to be resistant. Because many treatments were not available to the patients

in every study, we develop transport models to extrapolate the information from
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available studies to the unavailable studies. Transportability, whereby we can gener-

alize statistical conclusions from one population to another, is a concept formalized

by Pearl and Bareinboim [61].

While we can evaluate the treatment effects of MDR-TB in a causal way under some

assumptions, we believe that some of these assumptions do not hold in this setting.

For example, the time-ordering assumption states that the covariates precede the

treatment to be investigated, which precede the outcome. Given that the use of

other treatments can affect both the use of the treatment to be investigated and the

outcome, we regard other treatments as confounders. However, we cannot assume

a patient has had the treatment that we investigate ahead of all other treatments,

hence we define our parameter of interest as the treatment importance rather than

as a causal effect.

In Chapter 2, a comprehensive literature review is conducted. After introducing the

methodology in Chapter 3, Chapter 4 illustrates how to perform an IPD-NMA with

TMLE to investigate the treatment importance of MDR-TB. A simulation study

to evaluate the proposed estimator is conducted and described in Chapter 5. Two

methods are employed to calculate the variance of the estimators: a bootstrap that

accounts for the clustered nature of the data and the sandwich estimator approach.

We then discuss the limitations of this study and suggest some improvements to our

analysis in Chapter 6.
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CHAPTER 2
Literature Review

2.1 Multiple Drug Resistant Tuberculosis (MDR-TB)

Tuberculosis (TB) is an infectious disease caused by mycobacterium tuberculosis

bacterium (M.tb.). TB usually affects the lungs and is easily transmitted via the

airborne route [1]. Not everyone infected develops symptoms, but TB can be fatal

if treated improperly [1]. The World Health Organization (WHO) reported that as

of October 2016, TB is one of the top 10 causes of death worldwide [6]. In 2015,

10.4 million people were infected with TB and 1.8 million died from the disease [6].

In most cases, patients with active TB are treated by a six-month drug regimen

under the strict supervision of doctors [4]. Drug resistance emerges when anti-TB

medicines are used inappropriately, through incorrect prescription by health care

providers, poor quality drugs, and patients stopping treatment prematurely [6, 2].

Multidrug-resistant TB (MDR-TB) is a type of TB that is resistant to at least Iso-

niazid and Rifampin, the two most commonly prescribed TB drugs [56]. Individuals

may develop MDR-TB when resistant strains of TB are directly transmitted from an

infected person to an uninfected person. This mode of infection accounts for most

of the MDR-TB cases [56]. Globally in 2014, there were an estimated 3.3% of new

cases (480,000 people) and 20% of previously treated cases that developed MDR-TB,

with 190,000 deaths from the illness [5].

The treatment of MDR-TB may include the use of second line reserve drugs which
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are much more expensive, less effective and have more severe side effects than first

line drugs [19]. Using them also requires a longer treatment duration than using

first-line drugs [58]. MDR-TB is difficult to treat in some settings because medicine

is limited and expensive, appropriate drugs are not always accessible, and patients

experience many adverse effects from these treatments [4].

The relative effectiveness of different antibiotics for the treatment of MDR-TB has

so far exclusively been evaluated through observational studies usually with small

sample sizes [11]. However, a single study is usually not considered adequate to es-

tablish the effectiveness of the treatments. Combining multiple studies together can

give researchers more accurate and robust results, and allows for better investigation

of subgroup effects. The investigation of comparative drug effectiveness in MDR-TB

has been performed through the use of both aggregated data and individual patient

data sources from multiple studies [26, 76, 90]. An analysis of 9,153 MDR-TB pa-

tients in 32 populations was performed by Ahuja et al. in 2012. The study showed

that later generation quinolones, ofloxacin, and ethionamide/prothionamide as part

of multi-drug regimens were all associated with treatment success (with an alterna-

tive of treatment failure, disease relapse, or death) as were the combined use of four

or more likely effective drugs during the initial intensive treatment phase and the

use of three or more likely effective drugs during the continuation phase [11]. How-

ever, they did not adjust for the associations amongst the multiple treatments. In

addition, not all antibiotics were available in every study; ignoring this could lead to

potential between-study confounding of treatments (or selection bias). Furthermore,

their analysis used only parametric models that have strong assumptions which may
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not be true. We discuss various statistical approaches to the analysis of pooled data

in the next section.

2.2 Analysis of Pooled Data

2.2.1 Meta-Analysis (MA)

Meta-analysis (MA) is a formal quantitative method to systematically assess

existing studies in order to derive global conclusions about the research questions

of interest [10]. Results from a MA are generally more precise than those from an

individual study [10]. The main benefit of MA is to enlarge sample size, combine

results from similar studies, improve statistical power, and thus obtain a consistent

estimate [25].

However, MA also has its drawbacks. Statistically significant and positive results are

more likely to be published than their counterparts; this is called publication bias

[60, 22], and can result in biased results in the MA. In addition, the studies included

in the MA may have been conducted in different time periods and have different

exclusion criteria. The aggregation of such data could also produce misleading re-

sults [77]. The differences among studies can be due to multiple reasons, such as the

investigation of different populations, outcome definitions, intervention definitions,

study designs, and methods [66]. These differences often contribute to heterogeneity

in the effect estimation [37]. The challenge is then to decide how to incorporate this

heterogeneity in an appropriate way, which may depend on the aims of the synthesis

and the observed directions and magnitudes of the effects of the individual studies
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[40].

2.2.2 Aggregate Data Meta-analysis (AD-MA)

Traditional methods for meta-analysis use aggregate study-level data collected

from study publications or the authors. Such aggregate data often consists of treat-

ment effect estimates (odds ratios, risk differences, risk ratios, proportion and mean

differences, etc.) and their associated uncertainty (standard errors or confidence in-

tervals) [67]. The analysis of aggregate data is called Aggregate Data Meta-analysis

(AD-MA). In this kind of meta-analysis, the aggregate data are synthesized using

statistical methods to estimate some global effect. Generally, pooling the aggregate

data together is considered as leading to more robust statistical estimation than the

measures from any individual study, especially when some of the studies are too

small to draw valid conclusions [51].

Nonetheless, AD-MA may lack robustness for several reasons. AD-MA depends on

the quality of reporting of the original studies. Since researchers of AD-MA have

no access to the individual patient data, potential for bias in the individual studies

may exist. Furthermore, AD-MA has difficulty in dealing with the situation where

different studies used different measurement scales or classifications.

It is important to note that the treatment effect may vary across patient subgroups.

For example, a treatment may be more effective in younger patients and less so in

the elderly or vice versa. Investigating subgroup effects in AD-MA is challenging as

it requires that each study investigated the same subgroup [78].

Due to the above limitations and drawbacks of AD-MA, one cannot always easily
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interpret the results obtained from AD-MA, especially when the study designs are

not identical among the studies. Thus, using the individual patient data to perform

a meta-analysis is preferable if they are accessible.

2.2.3 Individual Patient Data Meta-analysis (IPD-MA)

An alternative and increasingly popular approach is individual patient data

meta-analysis (IPD-MA), whereby the raw individual-level data for each study, in-

stead of the published estimates of the effects, are used to conduct the analysis

[77, 67]. In the process of conducting IPD-MA, one must take the correlation within

studies into consideration since there may be observed or unobserved similarities

within studies. Therefore, studies may be considered as clusters in the analysis [67],

and must be accounted for no matter the approach used.

In the two-stage approach, each study is analyzed separately, and as similarly as pos-

sible. Next, the effect estimates are analyzed via an appropriate AD-MA to produce

a pooled result. In the one-stage approach, the IPD from all studies are analyzed

simultaneously to obtain the pooled result, during which the study clusters are taken

into account (e.g. via a mixed-effect regression model.) [67].

The two-stage approach is the most popular one because it is straightforward and

easy to implement [81, 68]. The one-stage approach may be a more accurate approach

because it takes both within- and between-study heterogeneity into consideration si-

multaneously [15]. However, it may increase the complexity of the statistical analysis

and modeling [67].

Both one-stage and two-stage IPD-MA can counterbalance some of the drawbacks
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of AD-MA as discussed in Section 2.2.2. The usage of IPD ensures that the data to

be used in estimation include only the relevant observations that are consistent with

the aim of study. In particular, they allow for the investigation of subgroup-specific

treatment effects. For example, suppose one wants to compare the relative effective-

ness of treatments a and b in male patients. AD-MA cannot achieve this goal if the

AD failed to report the treatment effectiveness in men. Compared to AD-MA, IPD

analysis allows for more flexibility in translating between the different measurement

or classification scales used in different studies [78]. Moreover, analysts can enforce

common models, inclusion and exclusion criteria, baseline factor adjustments, and

statistical methods in the pooled or second-stage analysis which may reduce het-

erogeneity. Also, missing and censored data can be addressed in a uniform way by

IPD-MA.

2.2.4 Individual Patient Data Network Meta-Analysis (IPD-NMA)

When more than two treatments have been used to treat the same disease and

were evaluated in different studies, one can use network meta-analysis (NMA) to

conduct a comprehensive analysis in order to compare the treatments [50]. One

approach, called pairwise meta-analysis focuses on comparing two treatments (e.g.

treatment a and b) at a time when more than two treatments are available. This

contrast is then made for each pair of available treatments [89]. Alternative ap-

proaches that compare three or more treatments have recently been developed [57].

One straight-forward method is indirect comparison of pairwise meta-analysis. For

example, consider a study that compares the drug effectiveness of treatments a and
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b, and another study that compares the effectiveness of treatments b and c, then one

can use indirect comparison of pairwise meta-analysis to analyze the comparative ef-

fectiveness of treatments a and c. A more complex extension is multiple comparison

modeling (often referred to simply as NMA) which allows for the simultaneous anal-

ysis of multiple studies involving different treatments [16, 50]. Multiple comparison

modeling is generally considered to be superior to both pairwise meta-analysis and

indirect comparison meta-analysis.

Mixed-effect models are often employed in analyzing IPD, given that they take

within- and between-study heterogeneity into consideration. NMA performed with

mixed-effect models can improve the accuracy of point estimates, infers the relation-

ships between interventions, and ranks the interventions according to their effective-

ness [16, 50, 38].

As with usual MA, NMA can be performed using both AD or IPD. NMA based

solely on AD is called aggregated data network meta-analysis (AD-NMA). The rela-

tive disadvantages of AD-NMA include those disadvantages associated with AD-MA

(see Section 2.2.2), but also include highly contested modeling strategies [34, 24].

However, performing Individual Patient Data Network Meta-Analysis (IPD-NMA),

which uses IPD to conduct NMA, may avoid these biases. Moreover, IPD-NMA

can account for between-study heterogeneity and incorporate multivariate models in

order to obtain more accurate results [42]. In addition, it can improve the precision

of the estimation over an aggregate approach [23].

Most IPD-NMA use standard statistical approaches and do not make direct refer-

ence to causal inference. As we are interested in integrating causal inference into an
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IPD-NMA as an extension of our methodological approach, we introduce fundamen-

tal causal inference concepts in the next section.

2.3 Causal Inference

This section contains a discussion of some fundamental concepts of causal in-

ference as relevant to this thesis. We begin with the counterfactual model, then

introduce the assumptions of causal inference, and explain propensity score and In-

verse Probability of Treatment Weighting (IPTW).

2.3.1 Counterfactual Model

The Rubin causal model (RCM) [72] is a framework to define causal effects

through the use of counterfactual (or potential) outcomes. The simplest data sce-

nario is defined as follows: observed data O = (X,A, Y ), where X are covari-

ates, A is some binary treatment and Y is the outcome of interest. In the RCM,

an individual i is considered to have had the potential to have been exposed to

two different interventions. Let Ai = 0 indicate that individual i received one

of the interventions and Ai = 1 indicate having received the other. Then the

two possible outcomes of individual i under exposure of or not are denoted as

Yi(Ai = 1) and Yi(Ai = 1) respectively. These are referred to as counterfactual

outcomes. We generally observe only one of these two counterfactual outcomes

for a single individual. Notwithstanding, in the RCM, the causal effect for in-

dividual i is defined as the contrast between Yi(Ai = 1) and Yi(Ai = 0). The

mean causal effect for the population is defined as E(Yi(Ai = 1) − Yi(Ai = 0)). If
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one’s interest is the causal effect in a certain group B, under some classical assump-

tions, which I describe later, the average causal difference in group B is defined as

E(Yi(Ai = 1)− Yi(Ai = 0)|B) = E(Yi(Ai = 1)|B)− E(Yi(Ai = 0)|B) [52].

Randomized Clinical Trials (RCTs) are the “gold standard” to estimate average

causal effects. In an RCT, treatments are randomly allocated rather than being

selected by the study participants [8]. The purpose of randomization is to ensure

that the characteristics of the participants in different intervention groups are sim-

ilar enough at the start of the comparison [79]. Under randomization, all known

and unknown factors in different intervention groups are the same in expectation.

No other study design allows researchers to balance these factors. As a result, the

average causal effect is estimated as the mean difference between the outcomes of

populations that received different treatments [79].

However, RCTs have some limitations. Because of their high cost compared to ob-

servational studies as well as the strict inclusion and exclusion criteria, the sample

sizes of most of RCTs are relatively small. As a consequence, randomization may

not perfectly balance all factors in different groups and the selected participants may

not represent the whole population of interest [33]. Moreover, some ethical issues

may exist in the planning of RCTs. For example, forcing some MDR-TB patients

to have certain antibiotics to satisfy the RCT implementation is not ethical if theses

antibiotics would not have been recommended by their clinicians given the partic-

ularities of their infection. Therefore, due to the high cost, small sample size and

ethical issues, RCTs have not been used in MDR-TB. Thus, observational studies are

currently considered to be the best source of information for evaluating treatment
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effectiveness for MDR-TB.

2.3.2 Causal Assumptions for Observational Studies

Observational data are generally easier to implement and less expensive to col-

lect compared to RCTs. However, causal effects are identifiable if and only if several

assumptions hold in the observational study. For the simple scenario described in

section 2.3.1, the following assumptions are required: (i) time-ordering, (ii) non-

interference, (iii) positivity, (iv) consistency, and (v) conditional exchangeability.

The first three assumptions allow for the definition of the counterfactual model and

marginal causal effect, and the last two assumptions allow for identifiability of the

causal effect. I discuss each assumption in turn below.

(i) The time-ordering assumption: The covariates precede treatments, which precede

outcomes [86]. Logically, it requires that the three components are separated and or-

dered by time. As an example of where this would not hold, consider two treatments

a and b that may be taken concurrently. Because the use of either treatment may not

be mutually independent, the treatment a may be regarded as a confounder when

we estimate treatment b’s causal effect relative to not taking treatment b. It would

not be valid to make the assumption that the patients necessarily received treatment

a first when no time-ordering exists. If we then wanted to estimate the causal effect

of treatment a relative to not taking a, we would be tempted to include b as a con-

founder, which would essentially require an opposing time-ordering assumption.

(ii) The non-interference assumption states that the potential outcomes of one in-

dividual are unaffected by the treatment assignment of other individuals [69, 20].
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This assumption, does not mean that all of the individuals are independent, it just

requires that the potential outcomes do not depend on the treatment assignment of

different units.

(iii) The positivity assumption means that for all individuals, there is a positive

probability of taking each treatment given the distribution of confounders, such that

Pr(A = a|X) > 0. This assumption is not guaranteed to hold in observational stud-

ies if some patients never have access to certain treatments. Even with access, some

treatments may rarely be taken by certain types of individuals. Due to this sparsity,

one might estimate zero or near-zero probabilities of treatment for some individuals.

These are referred to as “practical positivity violations” and may cause estimation

problems.

(iv) The fourth assumption is consistency [41]. We define individual i’s counterfac-

tual outcome Yi(Ai) under exposure a as the outcome that would have been observed

if individual i had received exposure a [18]. The consistency assumption states that

the observed outcome for individual i, Yi is the same as the counterfactual outcome

Yi(Ai), under an intervention, when the intervention is set to the observed exposure.

Mathematically, Yi = Yi(Ai), if Ai = a [18]. Rubin proposed an additional com-

ponent to the consistency assumption called “no versions of treatment” [21]. The

“versions of treatment” are the means to obtain the exposures. In the context of

MDR-TB, let A = a denote that a patient received the treatment a. This statement

assumes that all the patients who receive treatment A = a received it in the same

way [35]. That is, there should be only one version of treatment a. If there were mul-

tiple versions, say different versions, k, of receiving the treatment (e.g. intramuscular
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injection, intravenous injection, or oral etc.), then we should revise the definition of

individual i’s counterfactual outcome under exposure a as Yi(A = a,Ka = k), which

means the counterfactual outcomes are obtained through the kth version of a. Thus

the consistency assumption should be Yi = Yi(A = a,Ka = k), if Ai = a, no matter

the version Ka [84].

(v) The last assumption is conditional exchangeability, also called no unmeasured

confounding [20]. Mathematically, Y (A) ⊥⊥ A|X, which means that the counterfac-

tual outcomes are independent of treatment received, conditional on the measured

covariates (i.e. the treated and untreated individuals are conditionally exchangeable

within strata of the measured covariates). Essentially, we must believe that if the

patients in the treated group had not received the treatments, they would have had

the same outcomes on average as with the patients in the untreated groups who have

the same covariate values, and vice versa [35]. This is equivalent to saying that X is

sufficient to control for confounding. When treatment is not randomly assigned, the

reasons for receiving treatment are likely to be associated with some patient char-

acteristics, and so the distribution of confounders will generally vary between the

treated and untreated groups [35]. In making this assumption, the vital question is

whether X contains all relevant variables that are distributed unequally between the

treated and the untreated group. In reality, it is statistically impossible to ensure

there are no unmeasured covariates, but it is required to make causal claims [32].

Based on these assumptions, I discuss some basic concepts and ways to adjust for

confounding that are relevant to this thesis.
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2.3.3 Propensity Score and Inverse Probability of Treatment Weighting
(IPTW)

The propensity score is defined as the probability of receiving treatment a given

the covariates X: Pr(A = a|X) [70]. The propensity score can be used for control-

ling for confounding because treatment assignment is independent of the covariates

conditional on the true propensity score [70]. In addition, if the conditional ex-

changeability assumption holds, the counterfactual outcomes are independent of the

treatment assignment given the propensity score [70]. As a result, conditioning on the

propensity score is sufficient to control for confounding and to identify the marginal

causal contrast E(Yi(Ai = 1))− E(Yi(Ai = 0)).

Adjusting for confounding via the propensity score may be accomplished via inverse

probability of treatment weighting (IPTW). Under the causal assumptions, the av-

erage treatment effect can be written as E
(

Yi1(Ai=a)
Pr(Ai=a|Xi)

)

because:

E

(

Yi1(Ai = a)

Pr(Ai = a|Xi)

)

=E

(

Yi(Ai)1(Ai = a)

Pr(Ai = a|Xi)

)

by consistency

=E

{

E

(

Yi(Ai)1(Ai = a)

Pr(Ai = a|Xi)

)

∣

∣

∣Xi

}

by the law of iterated expectation

=E

{

E(Yi(Ai)|Xi)
E (1(Ai = a)|Xi)

Pr(Ai = a|Xi)

}

by conditional exchangeability

=E
{

E (Yi(Ai)|Xi)
}

=E(Yi(Ai)),
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where 1() is the logical variable, if the conditions in the braket is true, the variable

is 1, 0 otherwise.

Here, the outcomes are weighted by the estimated propensity score. By the Law of

Large Numbers, the estimator 1
n

(

∑n

i=1
Yi1(Ai=a)
Pr(Ai=a|Xi)

)

→ E
(

Yi1(Ai=a)
Pr(Ai=a|Xi)

)

[36], where

n is the total sample size. Because this method emulates the data that would have

been observed if the confounders had not been used to decide the probability of

treatment, we often say that this method removes confounding [35].

Again, practical positivity is essential for modelling the causal effect in this way

[36]. If this assumption is violated, then the above estimates may approach infinity

because the estimated propensity score is the denominator. For this reason, the esti-

mated propensity score is often truncated, though at the expense of finite sample bias.

2.4 SuperLearner

Prediction is important in statistics. One of an important components of this

thesis is to predict the recovery rate of MDR-TB patients. In this section, we de-

scribe a recently developed prediction technique that we use to these ends.

SuperLearner is an ensemble learning estimation method [64]. In general, we have lit-

tle knowledge of our data generating mechanism, so one might use machine learning

to adaptively learn a model from the data. Moreover, there may be several possible

models suggested by various experts, but none of which may be correct [64].

SuperLearner offers us a method that can combine several algorithms together by

weighting each algorithm to produce a “best” prediction [86]. One can include all al-

gorithms that may be useful in prediction in the SuperLearner library. SuperLearner
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fits each algorithm and calculates its estimated risk which represents its prediction

error (for example, mean squared error) using cross-validation [64]. To decide the

values of weights, each algorithm is first used to obtain cross-validated predictions of

the outcome. Then, the weights are estimated by running a restricted and intercept-

free regression of the true outcome on the cross-validated outcome predictions, which

minimizes the cross-validated risk of the ensemble prediction [64]. After obtaining

the weights of the algorithms, SuperLearner combines the full-sample predictions

using the weights in order to obtain the full-sample ensemble predictions [86].

The weights, which range from zero to one with the sum of the weights equal to one,

represent the importance of each algorithm in the final prediction [86]. For example,

if the weight for an algorithm is 0.5, then the prediction values of SuperLearner are

composed of 0.5 times the prediction values of this algorithm plus the weighted pre-

diction values of other algorithms. Hence, the researcher can be “adventurous” in

selecting the algorithms since an algorithm’s weight could be close to zero if it is not

beneficial for prediction [64]. V-fold cross-validation is used in SuperLearner because

it needs less computation than other types of cross-validation (like exhaustive cross-

validation), and it preserves the desirable finite sample and asymptotic optimality

properties [64].

What is the criterion for the “best” prediction? SuperLearner is a loss-based method,

using a loss function to assign a measure of performance to each candidate function

[85]. The loss function is selected based on the data type and the analyst’s prefer-

ence. Examples include the L1 absolute error loss function, the L2 squared error loss

function and the negative log loss function for a binary outcome [85].

19



Therefore, the SuperLearner algorithm provides an approach for combining several

algorithms together into an improved estimator, with the goal of optimizing predic-

tion, defined as a minimization of the cross-validated error.

2.5 Semiparametric Estimation

2.5.1 Semiparametric Models in Observational Studies

In this thesis, the goal is to develop a semiparametric approach for the analysis

of pooled observational data (i.e. pooled IPD). Parametric statistical approaches

for data analysis involve firstly assuming a parametric model and then estimating

the model parameters (using, for instance, maximum likelihood estimation). This

assumes that the parametric model chosen is representative of the truth, which is

untestable in most cases. If this assumption is violated, then the parameter itself

has questionable meaning. In addition, the estimation will be based on an incorrect

model, further confounding the results [86]. In addition, in parametric models, the

evaluation of the estimation performance is based on the overall fit of the whole

probability distribution rather than the probability distribution of the parameter of

interest, and thus may perform a suboptimal bias-variance trade-off [86].

Semiparametric models make fewer assumptions about the data-generating mecha-

nism by solely assuming parametric forms for subcomponents of the likelihood. Here,

we use the term semiparametric to indicate both nonparametric and semiparametric.

Let O represent the observed data that has probability distribution P0. Specifically

(as in our example), the dataset O contains the treatment, outcome and covariates.

The true data-generating distribution P0 is considered to be a component of the
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statistical model M, which is a collection of probability distributions. We write

O ∼ P0, and P0 ∈ M. The parameter of interest ψ can be regarded as a function of

the probability distribution P0 so that we can write the true value of parameter of

interest as ψ0 = Ψ(P0).

In causal inference, one usually wants to know the effect of a treatment. However, in

semiparametric statistics,there are parameters of interest that are not causal effects.

For example, the importance of various treatments and their ranking, as defined by

the residual marginal association between the treatment after adjustment for other

covariates may also be of interest. Here, importance can be defined depending on

the investigators’ interest. In particular, measures of treatment-outcome associations

where no causal assumptions are made are often referred to as variable importance

measures [86]. In the previous example, the data structure is O = (X,A, Y ), and the

importance of treatment a can then be defined as E(E(Yi|Ai = a,Xi) − E(Yi|Xi)).

Under the causal inference assumptions, this parameter could be written counter-

factually as E(Yi(Ai))−E(Y ) and be interpreted as the population mean difference

in the outcome obtained by treating everyone with treatment A = a versus no in-

tervention. But as discussed in section 2.3.2, the time-ordering causal assumption

would be violated if we have multiple treatments. The importance measures can be

estimated in semiparametric models and this thesis focuses on them as a parameter

of interest, denoted as ψ.
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2.5.2 Asymptotic Linearity and Influence Curve

In this section, I present some properties of semiparametric estimators and a

useful semiparametric tool to analyze the data.

Let P0 and Pn denote the true and empirical distribution, respectively, of the ob-

served data O1, O2...On, n independent and identically distributed random variables.

Let ψn be the estimate of the parameter of interest and ψ0 be the true value of the

parameter of interest. Then, a plug-in estimator is defined as ψn = Ψ(Pn). We

represent the estimator as a function of an empirical process (Pnf : f ∈ F) for some

class F of functions of O [86]; that is, the estimator maps a “vector” of empirical

means onto the estimate.

Estimators that are empirical means of a function of O1, O2 · On are called linear

in Pn, since they are asymptotically consistent and normally distributed due to the

central limit theorem. The functional delta method [87, 31] establishes the asymp-

totic linearity and normality of the estimator.

An estimator ψn is considered an asymptotically linear estimator if there exists a

function IC(Oi), such that E{IC(Oi)} = 0, and

n
1

2 (ψn − ψ0) = n− 1

2

n
∑

i=1

IC(Oi) + op(1). (2.1)

Here, op(1) is a term that converges in probability to zero as n goes to infinity and

E(IC(Oi) · IC(Oi)
T ) is finite and nonsingular [9]. This equation arises from a first-

order Taylor expansion of ψn = Ψ(Pn) [9]. Any asymptotically linear estimator has

a unique asymptotic influence curve [9].

The function IC(Oi) is referred to as the influence curve, which determines the
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asymptotic properties of semiparametric estimators because the asymptotic variance-

covariance matrix of the estimator is determined by the influence curve. By the

central limit theorem, we have that:

n− 1

2

n
∑

i=1

IC(Oi)
D−→ N(0, E(IC(Oi) · IC(Oi)

T )),

and by Slutsky’s theorem,

n
1

2 (ψn − ψ0)
D−→ N(0, E(IC(Oi) · IC(Oi)

T )).

Thus, one can estimate the influence curve IC(Oi) to estimate the standard error of

ψn. In another sense, the influence curve can be regarded as a measure of the influ-

ence of each observation on the estimator, and can assist in analyzing the robustness

of the estimator [86].

2.5.3 Local Efficiency and Efficient Influence Curve

An estimator ψn is considered to be regular if the distribution of n
1

2 (ψn − ψ0)

does not rely on the local data generating process [9]. The variance of any regular,

asymptotically linear influence curve has a lower bound and the semiparametric reg-

ular, asymptotically linear estimator with variance achieving this bound is said to

be locally efficient. However, we should note that this efficiency property holds only

when all required model components are correctly specified.

Equation (2.1) shows us that the asymptotic behaviour of the asymptotically linear

estimator is determined by its influence curve. Therefore, improvements of the ef-

ficiency of the estimator can be obtained by finding estimators associated with an
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influence curve that has minimal variance. The efficient influence curve, which we

denote IC∗(O), is defined as the unique influence curve of the parameter ψ with

minimal variance [9]. The semiparametric variance bound is a generalization of the

Cramér-Rao lower bound theorem that applies to parametric models. Thus, by find-

ing the efficient influence curve, one can derive an estimator attaining the asymptotic

minimal variance in its class of regular, asymptotically linear semiparametric esti-

mators with the same model space M.

2.5.4 Efficient Influence Curve Estimating Equation

Let f(Oi, ψ, Pn) denote some continuously differentiable function with parame-

ter of interest ψ that satisfies E(f(Oi, ψ, Pn)) = 0, where Pn is the estimates of the

density of O. Define h(ψ) = 1
n

∑n

i=1 f(Oi, ψ, Pn). Then the equation h(ψn) = 0 is an

estimating equation, and the estimator ψn that satisfies this estimating equation is

asymptotically linear under appropriate conditions [59, 86].

If we assign function f(Oi, ψ, Pn) to be the efficient influence curve IC∗(O,ψ, Pn),

then h(ψ) = 1
n

∑

IC∗(O,ψ, Pn), and the estimating equation h(ψn) = 0 turns to be

1
n

∑

IC∗(O,ψ, Pn) = 0, which is referred to as the efficient influence curve estimating

equation.

An estimator that solves this estimating equation achieves the minimum variance

bound when the necessary components of Pn are correctly modeled (called local

semiparametric efficiency) [80]. The variance of such a semiparametric estimator

can be estimated by 1
n

∑

(IC∗(O,ψ, Pn))
2 if the estimator consistently estimates the
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parameter of interest.

2.6 Targeted Maximum Likelihood Estimation (TMLE)

Targeted Maximum Likelihood Estimation (TMLE) was proposed by Van der

Laan and Rubin as a general framework for the estimation of statistical quantities

[83].

2.6.1 Roadmap of TMLE

To approach statistical estimation according to their proposed guidelines, one

may follow a “roadmap”. To begin with, one must define the research question, the

data structure O, the probability distribution P0, the model space, and the param-

eter of interest ψ0. Let M denote the statistical model space. M contains not only

the probability distribution P0, but also some nontestable assumptions placed on this

distribution. The parameter of interest ψ0 = Ψ(P0) can be regarded as a feature of

P0 , and the function Ψ maps P0 onto the parameter of interest.

The second step is estimation, which contains two procedures. The first step is an

initial estimation of the relevant models using an ensemble machine learning method

SuperLearner which we described above. Then, TMLE updates this initial esti-

mation, for the goal of balancing the bias and variance for the estimation of the

parameter of interest (described with technical details further on).

The inference step is our final step. One can estimate the variance of the estimator

empirically (i.e. using the influence curve) or with the bootstrap method. Then

we may interpret the parameter of interest under the nontestable assumptions if we
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believe them to hold or as an associational measure otherwise.

2.6.2 Example Algorithm

In order to illustrate the procedure of TMLE, we rephrase our simple example:

we have data O = (X,A, Y ), where X, A and Y are the covariates, treatment

and outcome respectively. We define our parameter of interest as ψ0 = Ψ(P0) =

E[E(Y |A = a,X)], which simplifies to the average causal effect of A on Y under

the causal assumptions. We denote the conditional mean of Y given A = a and X,

E(Y |A = a,X) as Q̄0 and the estimate of Q̄0 as Q̄n. In this case, the target parameter

Ψ(P0) only depends on P0 through a relevant (infinite-dimensional) parameter Q0 =

Q0(P0) of P0, so that we can also write ψ0 = Ψ(Q0). In this simple example, the

factorization of Q0 would be Q0 = (Q̄0, QX,0), where QX,0 is the true marginal

distribution of X.

Two components must be estimated in the initial estimation for this simple example.

The first is Q̄n, the initial estimate of Q̄0. The second component that needs to be

estimated is the propensity score Pr(A = a|X), which is denoted g0. Its estimate is

denoted gn. Both Q̄0 and g0 may be estimated via SuperLearner. The component

QX,0 is generally estimated using its empirical distribution.

The next step is to update Q̄n with gn, which is called the fluctuation step, we let

logit{Q̄∗
n(ε)} = logit{Q̄n}+

ε

gn
,

where ε is chosen such that the fluctuation minimizes a logistic regression loss function

L(Y, Q̄∗
n(ε)). Let εn denote the resulting estimate of ε. Specifically, εn is estimated
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by running a logistic regression of Y on 1(A=a)
gn

with offset logit{Q̄n}, and without

intercept. Then εn is the estimated coefficient of 1(A=a)
gn

.

The TMLE update step automatically solves the efficient influence curve estimating

equation. This occurs because the logistic regression update step minimizes a corre-

sponding loss function by solving the logistic regression score equations.

∂L(Y, Q̄∗
n(ε))

∂ε

∣

∣

∣ ε=0 = 0 =
1

n

∑

IC∗(O). (2.2)

Then Q̄∗
n(εn) is our updated TMLE estimator:

Q̄∗
n = Q̄∗

n(εn) = expit

(

logit{Q̄n}+
εn

gn

)

,

Finally, our estimator is obtained by setting ψn = 1
n

∑

Q̄∗
n.

To calculate its associated variance as we discussed in section 2.5.4, we may use the

efficient influence curve. The efficient influence curve for this simple example is [71]

IC∗(O) =
1(A = a)

Pr(A = a|X)
{Y − E(Y |A = a,X)}+ E(Y |A = a,X)− ψn

=
1(A = a)

gn
{Y − Q̄∗

n}+ Q̄∗
n − ψn.

Thus, the uncertainty about estimating ε is accounted for in the IC∗(O) estimation

by including the Q̄∗
n in IC∗(O). Under regularity conditions, the variance is esti-

mated by 1
n

∑

(IC∗(O))2 if the TMLE consistently estimates ψ0.
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2.6.3 Properties

SuperLeaner is expected to more closely approximate Q̄0 than the parametric

models. By combining TMLE updating procedure with nonparametric approxima-

tion of Q̄0 and g0, we aim to get an estimator that closely approximates the parameter

of interest.

TMLE is a substitution or “plug-in” estimator, and can therefore constrain the es-

timator to the target parameter’s model space. Substitution estimators are more

robust to outliers and sparsity which may cause an estimator to lie outside of the

possible range of the parameter of interest [83].

TMLE estimators are well-defined; they are constructed by minimizing the loss over

the statistical model, and thus have only one solution in the model space. In addi-

tion, the substitution estimator respects the global constraints implied by the sta-

tistical model and targeted parameter mapping. Furthermore, by incorporating Su-

perLearner, TMLE can avoid parametric assumptions.

The TMLE we described is a doubly robust as well as locally efficient estimator. An

estimator is doubly robust if when either at least one of the two component models

is correctly specified (consistent), the estimator is consistent for ψ0. In the simple

example, if the model for either g0 or Q̄0 is correctly specified, then the TMLE is

consistent. Local efficiency means that the estimator attains the minimal variance

bound when both g0 and Q̄0 are correctly estimated as we discussed in Sections

2.5.3 and 2.5.4. This is a result of the estimator solving the efficient influence curve

estimating equation as shown in equation (2.2) in section 2.6.2. When correctly

specified, the TMLE estimator is therefore the estimator with minimal variance in
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its class of regular, asymptotically linear semiparametric estimators. In particular,

IPTW (as defined in section 2.3.3) is less efficient than TMLE as it is in the same

class and has a larger asymptotic variance

2.7 Transportability

Generalization in statistics is the way to make statistical conclusions about a

much broader population than the sample actually represents [61]. It is not an un-

familiar concept in statistics because the data we obtain is always a sample of the

whole population and we desire to know the relationships of interest in a more gen-

eral population.

Transporting in this context is defined as transferring the statistical associations

measured in one population to another population [61]. Generalization is therefore

a type of transporting. If we deem that there are some similarities between the two

study populations, the one in which the full data can be observed, and the target

population where inference is of interest, then transporting may be used [13].

Causal effects and relationships between two variables are examples of statistical re-

lationships that can be transported. If one wants to obtain reliable results in a target

population, it is necessary to adjust for covariates during the transporting process

when there is heterogeneity across populations. Because these covariates can modify

the effect of the treatment and the outcome in both the study population and the

target population, they need to be adjusted for if we want to transport the causal

effect across the two populations [74].

A formal approach for analyzing transportability did not appear until 2011. Pearl
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and Bareinboim [61] established “licensing assumptions”, which are formal condi-

tions under which the transport of results across diverse environments is acceptable.

Multiple types of datasets can be addressed using transportability, such as data from

observational studies, RCTs conducted on a representative sample of the population,

nonrepresentative randomized clinical trials (with selection bias) and dissimilar pop-

ulations [13]. Each of these require different assumptions to implement transport.

In this thesis, we focus on the fusion of multiple observational studies.

Pearl and Bareinboim defined observational transportability as so: Given two popu-

lations, study population and target population–with their own probability distribu-

tions, their causal relationships and a set of assumptions—a statistical relationship is

said to be observationally transportable from one population to another if the statis-

tical relationship of the target population is identifiable from the above information

[61]. How to conduct transportability analysis from multiple populations has been

discussed [62, 14, 12].

Rudolph and Van der Laan developed a TMLE for transporting intervention effets

from one population to a target population [74]. They considered various definitions

of average treatment effects as their parameters of interest. One of the parameters

of interest was the E[{E(Y |S = 1, X,A = 1) − E(Y |S = 1, X,A = 0)}|S = 0],

where Y , S, X, A are outcome, population indicator (target and study), covariates

and treatment respectively. The parameter represents the average treatment effect

in the target population (S = 0). Their simulation study showed that the proposed

TMLE estimators have the double robustness property in this setting as well [74]. In

addition, the bias of TMLE estimators was often smaller than that of the competing
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approaches except when all the models were misspecified [74]. They showed these

estimators are applicable to observational studies. This work closed an important

gap by demonstrating an estimation approach for the transportability problem pro-

posed by Pearl and Bareinboim. [61, 74].
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CHAPTER 3
Objectives

In general, this work aims to provide a doubly robust and locally efficient esti-

mation method for estimating the treatment importance of multiple antibiotics for

treating MDR-TB. In particularly, the objectives of this thesis are threefold: theo-

retical, methodological and application-based.

Objective 1

The theoretical objective is to derive the assumptions necessary for the identifia-

bility of the parameters of interest (treatment importance) in different scenarios:

1) We demonstrate the identifiability of the treatment importance parameter under

the transportability framework in the context of the fusion of multiple observational

datasets with multiple treatments where any given treatment may not be available

in all studies. 2) In addition, we prove that the average treatment effect under the

causal framework is identifiable in under more stringent assumptions.

Objective 2

The methodological objective of this thesis is to develop a method for estimating

treatment importance using TMLE with transportability models in an individual

patient data network meta-analysis context with the existence of multiple treat-

ments and multi-drug resistance. The variance of the estimator is estimated using
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two different methods (clustered bootstrap and influence curve sandwich estimation).

Simulation studies are conducted to show the validity of the estimator and demon-

strate its double robustness statistical properties.

Objective 3

The application in this thesis considers the estimation of treatment importance for 15

antibiotics used to treat MDR-TB. Therefore, the conclusions may provide relevant

information for clinicians and guidance for further research on MDR-TB.
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CHAPTER 4
Study Summary

The data used in this thesis are MDR-TB IPD, which were collected from world-

wide MDR-TB studies after 1970. In this section, we first describe how the data were

collected and the relevant work that has been done previously. Then we provide a

brief description of the data.

4.1 Data Extraction

A detailed description of how the data were collected is presented in Ahuja et al.

(2012)[11]. Studies were identified from three previous systematic reviews [?, 58, 44].

We describe the objectives, inclusion/exclusion criteria, methods and results of these

systematic reviews and then illustrate the contribution of the work done by Ahuja.

et al.

4.1.1 Three Systematic Reviews

Orenstein et al. conducted a systematic review in 2009 [58] to investigate how

treatment success was related to treatment regimen, study methodology, and patient

population.

They included the studies with: 1) patients with MDR-TB; 2) treatment outcome

definitions specified by mycobacterial culture endpoints; 3) clearly defined treatment

protocols including second-line drugs; and 4) outcomes reported according to WHO

34



classifications of success, failure, default, and death. Studies in which all patients

had extensively drug-resistant tuberculosis (XDR-TB) were excluded.

The systematic review included 34 clinical reports (with 8500 patients) and the sub-

sequent analysis found that treatment duration longer than 18 months and directly

observed therapy were associated with a greater proportion of successfully treated

patients.

Another systematic review was performed by Johnston et al. in 2009 [44]. They es-

timated the pooled treatment outcomes of MDR-TB using 36 studies and identified

risk factors associated with poor outcomes in patients with MDR-TB.

The inclusion criteria of this systematic review were: original studies; reported in

English; reported treatment outcomes in a population of adults, culture-confirmed

MDR-TB patients; and reported outcomes presented in a format allowing for com-

parison with other studies. The exclusion criteria were: exclusive surgical series; and

exclusive use of first-line therapy in the treatment protocol.

The outcomes were defined in the same way following the WHO guidelines [43, 27].

This study included 36 studies encompassing 7575 patients. In addition to present-

ing the proportion with the defined treatment outcome, they also concluded that

factors associated with successful outcome were surgical intervention, no previous

treatment, and fluoroquinolone use. Factors associated with a greater likelihood of

a failed treatment outcome were: male gender, alcohol abuse, low BMI, smear posi-

tivity at diagnosis, fluoroquinolone resistance and the presence of an XDR resistance

pattern.

The last systematic review was conducted by Akcakir in 2010 [?]. The objectives of
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this study were: 1) to use MA to estimate the rates of treatment outcomes in MDR-

TB; 2) to explore the correlation between these outcomes and population, disease,

treatment characteristics and health setting.

The following criteria were applied to include: 1) studies that reported treatment

outcomes (with definition of success, failure, relapse, death or default) for MDR-TB

patients; 2) studies that contained at least 25 subjects; 3) studies that were pub-

lished in peer-reviewed journals in English, French, or Spanish and 4) studies that

were published after 1970. The exclusion criteria were: 1) studies reporting exclu-

sively on extensively drug-resistant tuberculosis and 2) studies reporting exclusively

on extra-pulmonary MDR-TB.

As a result, 74 articles which contained 64 unique cohorts (with 8046 individuals)

were analyzed in this study. The results showed the overall pooled rate of cumulative

treatment outcome and how those variables correlated with the treatment outcomes.

4.1.2 Previous Work

The Collaborative Group for Meta-Analysis of Individual Patient Data in MDR-

TB, founded by Dr. Dick Menzies, conducted an IPD-MA using the studies identified

in the above three systematic reviews in 2012. They aimed to assess how the type,

number and duration of treatments were associated with the treatment outcomes.

They set some additional specific criteria for this meta-analysis when the three sys-

tematic reviews were screened: the authors of the studies were still reachable; at least

25 patients treated for MDR-TB were included in the cohort; and, at least treatment

success (defined by WHO & Laserson Criteria [43, 27]) was reported.
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They identified 67 unique cohorts from the three systematic reviews. Authors were

contacted to participate in the IPD-MA. Authors who agreed to participate provided

both study-level information and patient level information.

Applying the inclusion/exclusion criteria, 2 authors refused to participate the study

and 34 studies were excluded for the above exclusion criteria. 32 cohorts were left

with 9153 patients. They estimated the odds of treatment success as opposed to

one of the three outcomes: 1) treatment failure or relapse; 2) treatment failure, re-

lapse or death; and 3) treatment failure, relapse, death or default. Random effects

multi-variable logistic regression via both penalized quasi-likelihood and adaptive

quadrature were used to estimate the adjusted odds and 95% CIs of treatment suc-

cess associated with different treatment covariates. Five covariates were included to

adjust the treatment effects: age, gender, HIV co-infection, extent of disease, and

past history of TB treatment. Missing values of these covariates were imputed by

the means of patients at the same center with non-missing information.

Specifically, they classified amoxicillin-clavulanate, macrolides (azithromycin, rox-

ithromycin, and clarithromycin), clofazimine, thiacetazone, imipenem, linezolid, high

dose isoniazid, and thioridazine as group 5 drugs. We have the same definition of

group 5 drugs in this thesis.

Results showed that the use of certain drugs was associated with treatment success

compared to failure or relapse. Similarly, they also investigated which groups of

drugs were associated with treatment success compared to other alternative combi-

nation of outcomes. In addition, in the initial intensive phase of treatment, the odds

of success were greater with the use of four or more drugs compared to the use of
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three or fewer treatments. In the continuation phase, the use of three or more drugs

was associated with a higher odds of success compared to use of two or fewer likely

effective drugs. Furthermore, longer duration of the initial intensive phase up to a

duration of 7.0 to 8.4 months and longer total duration of therapy up to 24.6–27.5

months were both associated with a greater odds of treatment success.

This study is the largest combined analysis of treatment of MDR-TB, and the first

IPD-MA of treatment outcomes in drug resistant TB. Using this data set, the Collab-

orative Group for Meta-Analysis of Individual Patient Data in MDR-TB investigated

further, and they also concluded that there is no improvement in treatment success

among patients taking Group 5 drugs [28]. Standard multivariable and propensity-

score based methods of adjusting for individual patient covariates yielded similar

effect estimates [29]. In XDR-TB patients, regimens containing more drugs than

those recommended in MDR-TB but given for a similar duration were associated

with the highest odds of success [26].

The collaborative group provided estimates of the impact of specific drugs, number

of drugs, and duration of treatment on clinical outcomes of patients with pulmonary

MDR-TB and assisted in the development of WHO clinical guidelines.

4.2 Data Structure

In our analysis, we use the same data as Ahuja et al. However, one of the 32

studies was not available because the author is not reachable. Thus, we have 31

cohorts left with a total of 9290 patients. As shown in Figure 4-1, with the same
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inclusion/exclusion criteria, they identified 93 studies from the three systematic re-

views, excluded 26 studies which contained the same or overlapping cohorts and

identified 67 unique cohorts. They excluded cohorts from the studies for the follow-

ing issues: no author response, no longer had access to data; inadequate outcome

data; refusals; no response following an initial contact; no data on drug sensitivity

testing; agreed to forward data-but data was never sent; cohort with less than 25

patients. In this study, 31 cohorts were included and within these cohorts, patients

with XDR-TB, extra-pulmonary TB and the patients without treatment information

were excluded. Consequently, 9290 patients were eligible to be included in this study.

With the data, we have the following information: study-level information: the pub-

lication year of each study, and the income group of the country of each study,

individual –level information: patients’ age, sex, HIV status, acid fast bacilli (AFB)

smear status at start of MDR-TB treatment regimen, past history of TB, cavitation

status of a patient, if the patients recover or not after receiving the treatment, 15

treatment usage indicator, and resistance status for each treatment.

Some missing data exist in the individual –level information. We deleted the missing-

ness in age and sex because they only accounted for 0.065% and 0.301% respectively

of 9290 subjects.
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CHAPTER 5
Methods

With the data described in Section 4.2, we aimed to rank the 15 treatments by

their importance. However, there were some major challenges that complicated the

design of the methods. One of them was that we have multiple treatments, so some

causal assumptions might be violated if we analyze the data in a traditional causal

way. In addition, patients may be resistant to different antibiotics, which made the

estimation more difficult because it would not make sense to investigate a treatment

using the data of the patients who were resistant to the treatment. Furthermore,

we have multiple studies, and not all of the treatments were observed in each study.

Moreover, we wanted to obtain a robust and efficient estimator, so the TMLE algo-

rithm was adopted in our analysis.

In this chapter, we first introduce the data structure, then state the assumptions

needed for estimation, along with the parameter of interest and its identifiability.

Then we also describe a related causal parameter of interest with required identifia-

bility assumptions. Next, we explain the models and algorithms used in our methods,

including the methods used to estimate the estimation variance. Finally, a detailed

illustration of how to conduct the analysis using the data is given.
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5.1 Data Structure

As we described in section 4.2, in our 31 studies, each patient i of study j has a

binary outcome Yij (Yij=1 if the patient recovered after receiving the treatments and

0 otherwise), indicators for the use of 15 treatments Akij (A
k
ij=1 if the patient used

the treatment k), where k=1...15 is the index of treatment, 2 study-level covariates

Vij, 6 individual-level covariatesWij, and resistance status Rk
ij (R

k
ij=1 if the patient i

was resistant to medication k). In addition, we introduced the treatment availability

Dk
ij. We say that the treatment k is available to individual i in study j if at least one

of the patients in study j used the treatment k and then Dk
ij=1, otherwise Dk

ij=0. In

terms of missing data, there are 2.8% missing values in the outcome Yij. We defined

an indicator for missing outcomes Cij such that if the outcome was missing (i.e.,

Yij =NA), we assign Cij as 1, otherwise 0.

Thus we define our data structure as

Oij = (Yij, Vij,Wij, , Cij, {Akij, Rk
ij, D

k
ij}; k = 1...15); i ∈ Sj, j = 1...31,

where Sj is the set of indices of subjects in study j. We assume the clusters are in-

dependent to each other but there may exist some correlation pattern within cluster.

Furthermore, we define the covariates needed to be adjusted as confounders when

estimating the variable importance of treatment k:

Xk
ij = (Vij,Wij, A

k∗

ij ; k
∗ 6= k).

We include in this set all study-level as well as individual-level covariates. We also

include {Ak∗ij ; k∗ 6= k} in this set as we believe that other treatment use is correlated
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with the use of the treatment under investigation and also affects the outcome.

Note that not all of studies include all the treatments. We therefore have no infor-

mation about certain treatments’ effects in some populations. In order to produce

an estimate of a generalized treatment effect that can be applied to a global pop-

ulation, we must assume a type of transportability. In particular, we assume that

the outcome models fit with only studies where a treatment was available are appli-

cable to all studies. We say “available study” to refer to studies where treatment

k was observed and “unavailable study” to denote otherwise. Thus, we make a

transportability assumption to extrapolate the estimate from the available studies

to unavailable studies. We define the counterfactual outcome and counterfactual

treatment exposure as Yij(D
k
ij = 1) and Akij(D

k
ij = 1), respectively. These are the

outcome and treatment exposure of patient i in population j if treatment k had been

available in population j.

5.2 Assumptions

The assumptions below are made for the identifiability and interpretation of

our parameter of interest. We say a parameter is identifiable if the parameter can

be derived from the observed data via available models [49]. Most of assumptions

below are similar to the traditional assumptions but not exactly identical. These

assumptions would allow us to interpret our parameter of interest in a non-causal

way.
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A1. Time ordering: Treatment use and covariates precede outcomes in time. More

specifically, the data-generating distribution conforms to a specific non-parametric

structural equation model.

A2. Positivity: In this context, we must make three positivity assumptions:

(a) There would be a positive probability of receiving the treat-

ment k, had the treatment k been available to study j, over the

distribution of confounders among the patients who are not

known to be resistant for the treatment k, i.e., Pr(Akij(D
k
ij =

1) = 1|Xk
ij, R

k
ij = 0) > 0, ∀Xk

ij s.t. Pr(X
k
ij, R

k
ij = 0) > 0.

(b) There is a positive probability for every study (given its

characteristics Vij) to have had access to treatment k, i.e.,

Pr(Dk
ij = 1|Vij) > 0, ∀Vij s.t. Pr(Vij) > 0.

The idea is that this probability will be used to balance out

the study-level covariates so that we remove the study-level

confounding.

(c) There is a positive probability of observing all outcomes given

the confounders among the patients who are not known to be

resistant for and use the treatment k, i.e., Pr(Cij = 0|Akij =

1, Xk
ij, R

k
ij = 0) > 0, ∀Xk

ij s.t. Pr(A
k
ij = 1, Xk

ij, R
k
ij = 0) > 0.
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A3. Consistency: We estimate treatment availability for the individual based on

the study-wide data. We must assume that the treatment and

outcome of the individual - had the treatment been available to

the individual - are the same when we observe that the treat-

ment was in fact available in their study. In other words:

(a) When treatment k is observed to be available in study j,

the counterfactual outcome is exactly the same with what

we would have observed had treatment k been available

to the individual. i.e., Yij(D
k
ij = 1) = Yij when D

k
ij = 1.

(b) When treatment k is observed to be available in study

j, the counterfactual treatment received by the indi-

vidual is exactly the same as what we would have ob-

served if treatment k had been available to the individual.

I.e.,Akij(D
k
ij = 1) = Akij when D

k
ij = 1.

The second consistency assumption may fail when not all

patients in the same study had access to the same treatments

(due to the studies being conducted across multiple centers or

over large periods of time). Then, it is possible that in studies

where treatment k was observed, a subject who did not, in

fact, received this treatment. These situations would have had

they personally had access to the treatment k. This issue may

also invalidate A3(a) in a similar way.
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A4. Exchangeability: The counterfactual outcomes are independent of treatment

availability and censoring of outcome conditional on confounders in the subset

of {Rk
ij = 0, Akij(D

k
ij = 1) = 1}. It is the same to say the observed treat-

ment availability and censoring of outcome provide no information about the

counterfactual outcomes conditional on confounders in the subset of {Rk
ij =

0, Akij(D
k
ij = 1) = 1}. I.e.,

Yij(D
k
ij = 1) ⊥⊥ {Dk

ij, Cij}|Xk
ij, R

k
ij = 0, Akij(D

k
ij = 1) = 1,

and therefore

Pr(Yij(D
k
ij = 1) = 1|Xk

ij, R
k
ij = 0, Akij(D

k
ij = 1) = 1)

=Pr(Yij(D
k
ij = 1) = 1|Dk

ij = 1, Cij = 0, Xk
ij, R

k
ij = 0, Akij(D

k
ij = 1) = 1).

This assumption may fail if the analyst did not account for a covariate which

was correlated with the outcome, and the treatment availability or the censoring

of the outcome simultaneously. For example, if the social economics status of

the patients was not included in the confounders, then it should be considered

as an unmeasured confounder and this assumption violated.

A5. The treatment availability is independent of confounders and resistant status

given the study-level covariates.:Dk
ij ⊥⊥ Xk

ij, R
k
ij = 0|Vij, such that,

Pr(Dk
ij = 1|Xk

ij, R
k
ij = 0) = Pr(Dk

ij = 1|Vij).
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This assumption says the study-level covariates are sufficient to explain the

treatment availability. We thus need to include all study-level covariates which

are correlated with the treatment availability.

A6. Independence: Studies are independent between each other and individuals in

a given study have an arbitrary dependence pattern.

A7. Missing at random: The missingness of outcomes is independent of the un-

observed outcome values, conditional on covariates and treatment use among

the patients who were not known to be resistant to the treatment k. I.e,

Cij ⊥⊥ Yij|Xk
ij, R

k
ij = 0, Akij.

5.3 Parameter of Interest

We incorporate a definition of treatment importance as our parameter of interest.

The treatment importance of treatment k is the average adjusted difference among

the patients who were not known to be resistant to treatment k if all patients used

the treatment k and the overall recovery rate.

ψk = E
[

E
(

Yij(D
k
ij = 1)|Xk

ij, R
k
ij = 0, Akij(D

k
ij = 1) = 1

)

− E
(

Yij|Xk
ij, A

k
ij, R

k
ij = 0

)

|Rk
ij = 0

]

.

Under the assumptions above, we rewrite our parameter of interest as:

ψk =E
[

E
(

Yij(D
k
ij = 1)|Xk

ij, R
k
ij = 0, Akij(D

k
ij = 1) = 1

)

− E
(

Yij|Xk
ij, R

k
ij = 0, Akij

)

|Rk
ij = 0

]

=E
[

E
(

Yij(D
k
ij = 1)|Xk

ij, R
k
ij = 0, Akij(D

k
ij = 1) = 1, Dk

ij = 1, Cij = 0
)

− E
(

Yij|Xk
ij, , R

k
ij = 0, Akij

)

|Rk
ij = 0

]

by A4
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=E
[

E
(

Yij(D
k
ij = 1)|Xk

ij, R
k
ij = 0, Akij(D

k
ij = 1) = 1, Dk

ij = 1, Cij = 0
)

− E
(

Yij|Xk
ij, R

k
ij = 0, Akij, Cij = 0

)

|Rk
ij = 0

]

by A7

=E
[

E
(

Yij|Xk
ij, R

k
ij = 0, Akij = 1, Dk

ij = 1, Cij = 0
)

− E
(

Yij|Xk
ij, R

k
ij = 0, Akij, Cij = 0

)

|Rk
ij = 0

]

by A3

=E
[

E
(

Yij|Xk
ij, R

k
ij = 0, Akij = 1, Cij = 0

)

− E
(

Yij|Xk
ij, R

k
ij = 0, Akij, Cij = 0

)

|Rk
ij = 0

]

(since Akij = 1 implies Dk
ij = 1)

=E
[

E
(

Yij|Xk
ij, R

k
ij = 0, Akij = 1, Cij = 0

)

|Rk
ij = 0

]

−E
[

E
(

Yij|Xk
ij, R

k
ij = 0, Akij, Cij = 0

)

|Rk
ij = 0

]

=τ k − µk.

Because E
[

E
(

Yij|Xk
ij, R

k
ij = 0, Akij = 1, Cij = 0

)

|Rk
ij = 0

]

and E
[

E
(

Yij|Xk
ij, R

k
ij =

0, Akij, Cij = 0
)

|Rk
ij = 0

]

are both estimable from the observed data, ψk is iden-

tifiable. This definition of treatment importance is analogous to the coefficient of

the treatment of interest in a linear regression that also adjusts for the other treat-

ments and covariates. However, we incorporate censoring and resistance information

into the definition and also do not prespecify an estimation method.

This parameter could also roughly be interpreted (if the additional causal assump-

tions hold, see Section 5.4) as treatment k’s contribution to the average recovery

rate in the population of individual who are not resistant to the treatment k, had

all of these patients been forced to use this treatment on top of all other treatments

they were initially given. If a treatment possesses a large treatment importance, it
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is likely an effective add-on medication. The treatment therefore should be recom-

mended more frequently than an antibiotic whose treatment importance is less.

For instance, assume a clinician has two options: to prescribe antibiotics a and b to-

gether or b and c together to a patient, and that the clinician believes that these two

combinations would have a similar effect. But if treatment a has a larger treatment

importance than treatment c, then the clinician is suggested to prescribe treatments

a and b together rather than the combination of b and c. Further, it is possible that

a treatment has a negative treatment importance. Suppose a treatment has strong

side effects or drug interactions. When all patients take this antibiotic possibly in

conjunction with other treatments, the average recovery rate may decrease. Since

this treatment may still be useful in particular circumstances, it may be inappro-

priate to say that this treatment is not important at all; rather, we would say this

treatment should be carefully used.

5.4 Causal Assumptions & Interpretation

We can also interpret our parameter of interest as the attributed recovery rate

(i.e., add-on effect) in a fully causal framework. However, the assumptions needed

are more stringent:

B1. Time ordering: Xk
ij precedes Akij and Akij precedes Yij in time: In particular,

when investigating treatment k, Ak
∗

ij precedes Akij, k 6= k∗, in time. Because we

regarded Ak
∗

ij as confounders which have an effect on Akij and Yij at the same

time, they need to be adjusted for in the analysis.
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B2. Non-interference: For each individual, the potential outcome depends only

upon whether or not he or she received the treatment and is independent of all

other individuals’ treatments, such that Yij(A
k
ij = 1) ⊥⊥ Aki∗j; where i

∗ 6= i.
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B3. Positivity: (a) There is a positive probability of receiving each of the

treatments over the distribution of Xk
ij among the pa-

tients who are not known to be resistant to this treat-

ment. i.e.,Pr(Akij = 1|Xk
ij, R

k
ij = 0, Dk

ij = 1) > 0, ∀Xk
ij s.t.

Pr(Xk
ij, R

k
ij = 0, Dk

ij = 1) > 0.

(b) There is a positive possibility of observing available stud-

ies over the distribution of study-level covariates, i.e.,

Pr(Dk
ij = 1|Vij = 0) > 0, ∀Vij s.t. Pr(Vij) > 0.

(c) There is a positive possibility of observing non-misssing

outcomes over the distribution of confounders among the

patients who are not known to be resistant for and use the

treatment k, i.e., Pr(Cij = 0|Akij = 1, Xk
ij, R

k
ij = 0) > 0,

∀Xk
ij s.t. Pr(A

k
ij = 1, Xk

ij, R
k
ij = 0) > 0.

Note that, because

Pr(Ak
ij = 1|Xk

ij , R
k
ij = 0, Dk

ij = 1) > 0,

then Pr(Ak
ij = 1, Xk

ij , R
k
ij = 0) = Pr(Ak

ij = 1, Dk
ij = 1, Xk

ij , R
k
ij = 0) is

non-zero for ∀Xk
ij , s.t.

Pr(Xk
ij , R

k
ij = 0, Dk

ij = 1) > 0.

Also note that

Pr(Ak
ij = 1, Cij = 0|Xk

ij , R
k
ij = 0)

=Pr(Ak
ij = 1|Dk

ij = 1, Xk
ij , R

k
ij = 0) · Pr(Dk

ij = 1|Vij) · Pr(Cij = 0|Ak
ij = 1, Xk

ij , R
k
ij = 0),

so we assume that all these three probabilities are positive.
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B4. Consistency: An individual’s potential outcome under the observed exposure

is precisely the observed outcome. i.e., Yij(A
k
ij = 1) = Yij when A

k
ij = 1.

B5. Exchangeability: Conditional on all measured confounders among the patients

who were not known to be resistant to treatment k, the patients who re-

ceived the treatment k and had missing outcomes have the same distribu-

tions of potential outcomes Yij(A
k
ij = 1) with those that did not, which means

there is no unmeasured confounding. Equivalently, Akij and Cij is condition-

ally independent of the counterfactual outcome, given Xk
ij and Rk

ij = 0. I.e.,

Yij(A
k
ij = 1) ⊥⊥ {Akij, Cij}|Xk

ij, R
k
ij = 0.

B6. Independence: See Assumption A6.

B7. Missing at random: See Assumption A7.

Note that if a patient uses the treatment k, the treatment is automatically available

in the study for the patient by the definition of treatment availability, i.e., Pr(Akij =

1) = Pr(Akij = 1, Dk
ij = 1). Thus, the counterfactual outcome in causal setting

Yij(A
k
ij = 1) = Yij(A

k
ij = 1, Dk

ij = 1).

Under the above assumptions, the attributed recovery rate ψkC is:

ψkC =E
(

Yij(A
k
ij = 1)|Rk

ij = 0
)

− E
(

Yij|Rk
ij = 0

)

=E
[

E
(

Yij(A
k
ij = 1)|Xk

ij, R
k
ij = 0

)

|Rk
ij = 0

]

− E
[

E
(

Yij|Xk
ij, R

k
ij = 0, Akij

)

|Rk
ij = 0

]

(By the law of iterated expectations)

=E
[

E
(

Yij(A
k
ij = 1)|Xk

ij, R
k
ij = 0, Akij = 1, Cij = 0

)

|Rk
ij = 0

]

−E
[

E
(

Yij|Xk
ij, R

k
ij = 0, Akij

)

|Rk
ij = 0

]

by B5

=E
[

E
(

Yij(A
k
ij = 1)|Xk

ij, R
k
ij = 0, Akij = 1, Cij = 0

)

|Rk
ij = 0

]
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−E
[

E
(

Yij|Xk
ij, R

k
ij = 0, Akij, Cij = 0

)

|Rk
ij = 0

]

by B7

=E
[

E
(

Yij|Xk
ij, R

k
ij = 0, Akij = 1, Cij = 0

)

|Rk
ij = 0

]

−E
[

E
(

Yij|Xk
ij, R

k
ij = 0, Akij, Cij = 0

)

|Rk
ij = 0

]

by B4

=τ kC − µkC .

Therefore, the causal parameter of interest is identifiable under the assumptions B.

However, as we discussed in section 2.3.2, in our application, it is not credible that

the treatments satisfy the time-ordering assumption. We have multiple treatments

that are not mutually independent. One treatment use may be regarded as a con-

founder when we estimate another’s treatment effect. In reality, it would not be valid

to assume that the patient received treatments in an ordered way. Therefore, rather

than interpreting our point estimates as the attributed recovery rate, we interpreted

them as the treatment importance, as described in section 5.3

Both parameter definitions lead to the same estimation procedures but different in-

terpretations.

5.5 Models & Algorithm

In this section, we first focus on estimating τ k using TMLE. An almost identical

procedure was applied to estimate µk (see Section 5.7 for details). (τ k and µk are

the same as we defined in Section 5.3) As we discussed in section 2.6.2, to proceed

with the TMLE algorithm, there are two quantities needed to be modeled: Q (con-

ditional expectation of the outcome) and g (propensity score). We describe how to

adapt these quantities in order to estimate τ k. We also show that either Q or g can
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separately be used to estimate τ k.

5.5.1 Outcome Model (Q Model)

We can use the Q model to construct a consistent estimator for τ k with the aid

of transportability and G-computation [41].

Our Q model for τ k is defined as:

Qτk
ij = Pr(Yij(D

k
ij = 1) = 1|Akij(Dk

ij = 1) = 1, Xk
ij, R

k
ij = 0),

which is the probability of having a successful counterfactual outcome conditional

on the counterfactual treatment exposure and covariates among the patients who

were not known to be resistant to treatment k when all the studies are available.

However, treatment k is not observed in all studies, therefore, we use transportability

(see Section 2.7) to estimate this probability.

Under the assumptions made above, we write Qτk
ij as:

Qτk
ij = Pr(Yij(D

k
ij = 1) = 1|Akij(Dk

ij = 1) = 1, Xk
ij, R

k
ij = 0)

= Pr(Yij(D
k
ij = 1) = 1|Akij(Dk

ij = 1) = 1, Xk
ij, R

k
ij = 0, Dk

ij = 1, Cij = 0) by A4

= Pr(Yij = 1|Akij = 1, Xk
ij, R

k
ij = 0, Dk

ij = 1, Cij = 0) by A3

= Pr(Yij = 1|Akij = 1, Xk
ij, R

k
ij = 0, Cij = 0)

(since Akij = 1 implies Dk
ij = 1)

This last probability is estimable taking only patients who were not known to be

resistant to treatment k for Qτk
ij . We can then fit a model for Qτk

ij to estimate the
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quantity:

τ k = E[E(Yij = 1|Akij = 1, Xk
ij, R

k
ij = 0, Cij = 0)|Rk

ij = 0].

We can use the data in the subset of subjects with {Akij = 1, Rk
ij = 0, Cij = 0} to

construct the model Qτk
ij and then predict on the patients in the subset of {Rk

ij = 0}.

Transportability is thus used to transport the estimation from available studies to

unavailable ones. One of the reasons that we use transportability is that we believe

patients in these two subsets share some similarities. Had we not believed this to

be the case, we could not attempt to generalize the treatment importance over all

study populations.

We use SuperLearner (see Section 2.4) to estimateQτk
ij = Pr(Yij = 1|Akij = 1, Xk

ij, R
k
ij =

0, Cij = 0) using the data in the subset {Akij = 1, Rk
ij = 0, Cij = 0}, and then

predict on the subset {Rk
ij = 0}. The prediction value is then defined as Qτk

nij,

which is the estimation of Qτk
ij . SuperLearner is adopted to better guarantee the

consistency of the TMLE (i.e. so that it is more likely that the model for Q is

correctly specified.). Finally, G-computation is conducted to estimate the quantity

τ k = E[E(Yij = 1|Akij = 1, Xk
ij, R

k
ij = 0, Cij = 0)|Rk

ij = 0].

τGcomp,kn =
1

nk

31
∑

j=1

∑

i∈Sj

s.t.Rk
ij=0

Qτk
nij,

where nk is the number of subjects who were not known to be resistant to treatment

k, and τGcomp,kn is the G-computation estimation of τ k.
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5.5.2 Propensity Score Model (g Model)

The g model, or propensity score model defined below enables us to use IPTW

(see Section 2.3.3) to estimate τ k.

We define the probability as:

gτkij =Pr(Akij = 1, Cij = 0|Xk
ij, R

k
ij = 0).

Under the assumptions described, we divide g model for τ k into three submodels:

gτkij =Pr(Akij = 1, Cij = 0|Xk
ij, R

k
ij = 0)

=Pr(Akij = 1, Dk
ij = 1, Cij = 0|Xk

ij, R
k
ij = 0)

=Pr(Akij = 1|Dk
ij = 1, Xk

ij, R
k
ij = 0) · Pr(Dk

ij = 1|Xk
ij, R

k
ij = 0)

·Pr(Cij = 0|Akij = 1, Dk
ij = 1, Xk

ij, R
k
ij = 0)

=Pr(Akij = 1|Dk
ij = 1, Xk

ij, R
k
ij = 0) · Pr(Dk

ij = 1|Vij)

·Pr(Cij = 0|Akij = 1, Xk
ij, R

k
ij = 0)

=gτk1ij · gτk2ij · gτk3ij.

The consistency of IPTW relies on the law of Large Numbers as shown below:

1

nk

31
∑

j=1

∑

i∈Sj

s.t.Rk
ij=0

Yij
1{Akij = 1, Cij = 0}

gτkij

nk→∞−−−−→ E

(

Yij
1{Akij = 1, Cij = 0}

gτkij

∣

∣

∣
Rk
ij = 0

)

.
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Note that gτkij > 0 by the positivity Assumption A2.

We then prove that the IPTW estimator is consistent to τ k as below:

E

(

Yij
1{Akij = 1, Cij = 0}

gτkij

∣

∣

∣

∣

∣

Rk
ij = 0

)

=E

[

E

(

Yij1{Akij = 1, Cij = 0}
gτkij

∣

∣

∣

∣

∣

Akij = 1, Xk
ij, R

k
ij = 0

) ∣

∣

∣

∣

∣

Rk
ij = 0

]

,

(by the law of iterated expectation),

=E

[

E

(

Yij1{Akij = 1, Dk
ij = 1, Cij = 0}

gτkij

∣

∣

∣

∣

∣

Akij = 1, Dk
ij = 1, Xk

ij, R
k
ij = 0

) ∣

∣

∣

∣

∣

Rk
ij = 0

]

,

(since Akij = 1 implies Dk
ij = 1),

=E

[

E

(

Yij(D
k
ij = 1)1{Akij(Dk

ij = 1) = 1, Dk
ij = 1, Cij = 0}

gτkij
∣

∣

∣

∣

∣

Akij(D
k
ij = 1) = 1, Dk

ij = 1, Xk
ij, R

k
ij = 0

) ∣

∣

∣

∣

∣

Rk
ij = 0

]

, by A3

=E

[E

(

Yij(D
k
ij = 1)

∣

∣

∣

∣

∣

Akij(D
k
ij = 1) = 1, Dk

ij = 1, Xk
ij, R

k
ij = 0

)

gτkij

· E
(

1{Akij = 1(Dk
ij = 1), Dk

ij = 1, Cij = 0}
) ∣

∣

∣

∣

∣

Rk
ij = 0

]

, by A4

=E

[E

(

Yij

∣

∣

∣

∣

∣

Akij = 1, Dk
ij = 1, Xk

ij, R
k
ij = 0, Cij = 0

)

gτkij

· E
(

1{Akij = 1, Dk
ij = 1, Cij = 0}

) ∣

∣

∣

∣

∣

Rk
ij = 0

]

, by A3

=E

[E

(

Yij

∣

∣

∣

∣

∣

Akij = 1, Xk
ij, R

k
ij = 0, Cij = 0

)

gτkij
· E
(

1{Akij = 1, Cij = 0}
) ∣

∣

∣

∣

∣

Rk
ij = 0

]

,
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(since Akij = 1 implies Dk
ij = 1),

=E

[E

(

Yij

∣

∣

∣

∣

∣

Akij = 1, Xk
ij, R

k
ij = 0, Cij = 0

)

gτkij

· E
[

E

(

1{Akij = 1, Cij = 0}
∣

∣

∣
Xk
ij, R

k
ij = 0

)] ∣

∣

∣

∣

∣

Rk
ij = 0

]

,

(by the law of iterated expectation),

=E

[

E

(

Yij

∣

∣

∣

∣

∣

Akij = 1, Xk
ij, R

k
ij = 0, Cij = 0

)

·
Pr(Akij = 1, Cij = 0|Xk

ij, R
k
ij = 0)

Pr(Akij = 1, Cij = 0|Xk
ij, R

k
ij = 0)

∣

∣

∣

∣

∣

Rk
ij = 0

]

,

=E

[

E

(

Yij

∣

∣

∣

∣

∣

Akij = 1, Xk
ij, R

k
ij = 0, Cij = 0

) ∣

∣

∣

∣

∣

Rk
ij = 0

]

,

=τ k.

In summary, we can use the IPTW estimator

τ IPTW,kn =
1

nk

31
∑

j=1

∑

i∈Sj

s.t.Rk
ij=0

Yij
1{Akij = 1, Cij = 0}

gτknij

to estimate τ k, where gτknij is the estimation of gτkij .

Note that we can also estimate τ kC with the assumptions in Section 5.4 using IPTW.

5.5.3 TMLE Algorithm

Even though either Q or g can be used to estimate τ k, it is less robust because

if Q or g is misspecified, then the estimation is biased. Thus we prefer to use a more

robust estimator. TMLE produces doubly robust and locally efficient estimation

based on both Q and g (see Section 2.6.3). This section elaborates on the details of
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the TMLE algorithm in our case.

After estimating the two models as discussed above, we can update Qτk
nij with gτknij

using a logistic regression as we described in section 2.6.2:

logit{Qτk*
nij (ε

τ )} = logit{Qτk
nij}+

ετ

gτknij
, (5.1)

where ετ is chosen such that the above fluctuation minimizes a logistic regression

loss function L(Y,Qτk*
nij (ε

τ )) =
∑31

j=1

∑

i∈Sj

s.t.Rk
ij=0

−(Yijlog(Q
τk*
nij (ε

τ )) + (1 − Yij)log(1 −

Qτk*
nij (ε

τ ))). We denote ετn as the estimate of ετ , and ετn is estimated by a logistic

regression:

glm(Yij ∼ −1 +
Akij

gτknij
); offset = logit(Qτk

nij). (5.2)

ετn is then the coefficient of the covariate
Ak

ij

gτknij

.

Recall that TMLE is a substitution estimator. Thus the estimate of τ k is

τTMLE,k
n =

1

nk

31
∑

j=1

∑

i∈Sj

s.t.Rk
ij=0

Qτk*
nij .

For the estimation of µk, we define the outcome model as

Q
µk
ij = Pr(Yij = 1|Xk

ij, A
k
ij, R

k
ij = 0, Cij = 0).

Since we only need to correct for censoring, the propensity score model is

g
µk
ij = Pr(Cij = 0|Xk

ij, A
k
ij, R

k
ij = 0).
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Following similar procedures, first we conduct a logistic regression

glm(Yij ∼ −1 +
Akij

g
µk
nij

); offset = logit(Qµk
nij), (5.3)

in order to estimate εµ. We define εµn as the estimate of εµ, which is the coefficient

of
Ak

ij

g
µk
nij

.

We then update Qµk
nij using the logistic regression fit

logit{Qµk*
nij (ε

µ
n)} = logit{Qµk

nij}+
εµn

g
µk
nij

, (5.4)

Then the estimator of µk is

µTMLE,k
n =

1

nk

31
∑

j=1

∑

i∈Sj

s.t.Rk
ij=0

Q
µk*
nij .

Finally, we get the estimate of the parameter of interest:

ψTMLE,k
n = τTMLE,k

n − µTMLE,k
n ,

where ψTMLE,k
n is the substitution estimate of ψk.

5.6 TMLE Asymptotics

TMLE is a semiparametric estimator, as described in Section 2.5. To better

understand the algorithm, we first write the estimator in its asymptotically linear

form (2.1):
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(nk)
1

2 (ψTMLE,k
n − ψk) = (nk)−

1

2

31
∑

j=1

∑

i∈Sj

s.t.Rk
ij=0

IC
ψk
ij + op(1),

where ICψk
ij is the value of the influence curve of ψk for subject i in study j.

By Central Limit Theorem we have that,

(nk)
1

2 (ψTMLE,k
n − ψk)

D−→ N(0, E(ICψk
ij · (ICψk

ij )T ), (5.5)

So that the large-sample properties of the estimator can be characterized by its

influence curve.

To obtain ICψk
ij , we first need to know ICτk

ij and ICµk
ij , the influence curve of τ

k and

µk respectively. In this case,

ICτk
ij =

1(Akij = 1, Rk
ij = 1, Cij = 0)

gτknij
(Yij −Qτk*

nij ) +Qτk*
nij − τ k, (5.6)

IC
µk
ij =

1(Ck
ij = 1, Rk

ij = 0)

g
µk
nij

(Yij −Q
µk*
nij ) +Q

µk*
nij − µk. (5.7)

We use the Delta method to show that ICψk
ij = ICτk

ij − IC
µk
ij [86] below.

Let φ be a function, which is differentiable at ψ and assume
√
n(φ(ψn) − φ(ψ))

converges in distribution,

√
n(φ(ψn)− φ(ψ)) =φ

′

ψ(
√
n(ψn − ψ)) + op by the Delta method

=
1√
n
φ

′

ψ

∑

IC(ψ) + op by asymptotic linearity

=
1√
n

∑

φ
′

ψIC(ψ) + op, by the continuous mapping theorem
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where φ
′

ψ is the derivative of φ(ψ) evaluated at ψ.

This means the influence curve of the transformed estimator φ(ψn) is φ
′

ψIC(ψ).

In our case, ψk = φ(τ k − µk) = τ k − µk, so φ
′

ψ = (1,−1).

Define ICτk−µk,ij as the influence curve of ψk. Thus,

IC
ψk
ij = Cτk−µk,ij = φ

′

ψIC(ψ) = (1,−1)IC(ψ) = ICτk
ij − IC

µk
ij .

Referring to section 2.5.4, let ICψk
ij denote the efficient influence curve of ψk, then

the efficient influence curve estimating equation in this case is:

1

nk

31
∑

j=1

∑

i∈Sj

s.t.Rk
ij=0

IC
ψk
ij = 0.

(5.8)

Recall from Section 2.6.2 that the TMLE update step in (5.1) and (5.2) auto-

matically solves the efficient influence curve estimating equation (5.8). This occurs

because the logistic regression update step minimizes a corresponding loss function

by solving the logistic regression score equations. This is done separately for the two

components

1

nk

31
∑

j=1

∑

i∈Sj

s.t.Rk
ij=0

ICτk
ij = 0,

and

1

nk

31
∑

j=1

∑

i∈Sj

s.t.Rk
ij=0

IC
µk
ij = 0,
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resulting in the solution to function (5.8).

5.7 Variance

Clustering is considered in the variance estimation. We assume that studies

are independent between each other and that individuals in a given study have an

arbitrary dependence pattern (see Section 5.2, assumption A7). Thus, ignoring the

clustering would cause bias in the estimation of the variance of the TMLE.

By Central Limit Theorem, with sufficient clusters, we can estimate the variance of

ψTMLE,k
n using the efficient influence curve of ψk in our example. Recall from (5.5),

the asymptotic variance of ψk is [52] (see Section 2.5.2)

(σkψ)
2 =

1

(nk)2
E











31
∑

j=1

∑

i∈Sj

s.t.Rk
ij=0

IC
ψk
ij











2

=
1

(nk)2

31
∑

j=1











∑

i,m∈Sj

s.t.Rk
ij=0

E(ICψk
ij · ICψk

ij )1(i 6= m) + E(ICψk
ij )21(i = m)











,

(5.9)

where ICψk
ij is defined in Section 5.6. Following the formula above, we can obtain

the variance estimation of ψTMLE,k
n in Section 5.3.3.

Note that the variance is being computed over clusters and according to Central

Limit Theorem, the approximation depends on a large number of clusters. We be-

lieve that 31 is large enough as we evaluated 30 clusters in the simulation study and

it produced adequate results.
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So far, we discussed the method of constructing a TMLE estimator and estimating

its associated variance. As mentioned before, the TMLE estimator is doubly robust,

which means either the Q model or the g model is correctly specified, the estimation

is consistent. More specifically, if either Qτk
ij or gτkij is correctly specified, the estima-

tion of τ k is consistent. In addition, if all of the models are correctly specified, the

TMLE algorithm produces an estimator that has the minimum variance among the

regular semiparametric estimators in its class.

5.8 Real Data Analysis

In this section, we describe the analysis that we performed based on the afore-

mentioned methods. We used RStudio (Version 1.0.44) for the data analysis and

utilized the parallel computing facilities from Compute Canada.

5.8.1 Data Preparation

Since we had only a few missing values in the variable sex and age (0.06% and

0.3% respectively), we dropped all subjects without this information. However, miss-

ing values accounted for 2.8%–27.1% in other covariates, so we added in a missingness

indicator for each of the other covariates[47, 54]. For example, HIV status is a binary

covariate (positive or negative). We then introduced 2 dummy variables indicating

HIV-positive and HIV-negative status into the model, so that the reference level is

a missing HIV status.
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5.8.2 Models and Estimation

As data are limited, we use a combination of parametric and nonparametric

models to estimate the Q and g probabilities. Table 5-1 gives the models used, the

estimation subset and the prediction subset for each of the quantities to be estimated

for the estimation of τ k.

Model for g

gτkij was estimated using either logistic regression or least absolute shrinkage

and selection operator (LASSO) for each of the three components. Referring to

section 4.5, gτk1ij is estimated on the subset of {Dk
ij = 1, Rk

ij = 0} using logistic

regression and predicted for all the subjects with Rk
ij = 0. For the estimation of

gτk2ij = Pr(Dk
ij = 1|Vij), there were only 31 data points (31 studies in total) that

could be used to fit the model because the patients in the same study shared the

same Dij and Vij. We therefore used LASSO in order to be able to include all

study-level covariates Vij. However, the treatments Ethambutol and Pyrazinamide

were only unavailable in one study, Kanamycin was unavailable in three studies, and

Ofloxacin was unavailable in four studies. Because of the difficulty of fitting the cor-

responding models, we considered gτk2ij; k ∈ {Ethambutol, Pyrazinamide, Kanamycin,

Ofloxacin} as constants, corresponding with 30/31, 30/31, 28/31, and 27/31 respec-

tively.

gτk3ij was estimated in the subset of {Akij = 1, Rk
ij = 0} and predicted on {Rk

ij = 0}

using logistic regression. Note that there were insufficient data to fit this model for

the treatment Amikacin as there were few censored observations. In this case, we
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Table 5–1: Model specification for the estimation of τ k.

Quantity Model Estimation Subset Prediction Subset

Qijτk = Pr(Yij = 1|Akij = 1, Xk
ij, R

k
ij = 0, Cij = 0) SuperLearnera {Akij = 1, Rk

ij = 0, Cij = 0} {Rk
ij = 0}

gτk1ij = Pr(Akij = 1|Dk
ij = 1, Xk

ij, R
k
ij = 0) logistic regression {Dk

ij = 1, Rk
ij = 0)} {Rk

ij = 0)}
gτk2ij = Pr(Dk

ij = 1|Vij) constant or LASSOb 31 data points c {Rk
ij = 0)}

gτk3ij = Pr(Cij = 0|Akij = 1, Xk
ij, R

k
ij = 0) logistic regressiond {Akij = 1, Rk

ij = 0)} {Rk
ij = 0)}

NOTE: aThe algorithm library of SuperLearner includes k-nearest neighborhood, random forest, logistic regression, and
generalized linear model with penalty maximum likelihood.
b For treatment Ethambutol, Pyrazinamide, Kanamycin and Ofloxacin, proportion

1(Dk
ij=1)

31 was used;
For other treatments, LASSO was used.
cBecause we included 31 studies in total, for each treatment, the patients in the same study share the same Dk

ij .
dFor treatment Amikacin, LASSO is used because of the sparsity of outcomes.
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again used LASSO instead of logistic regression.

Logistic regression for the g model was used to maintain the stability of the TMLE.

Because of the sparsity of the outcomes for these models, machine learning methods

might produce extreme values of estimation of the g model [75]. We used LASSO as

an exception when the logistic regression did not converge.

Multiplying each of the three values together for each subject, we obtained gτknij =

gτkn1ij · gτkn2ij · gτkn3ij, for the estimation of gτkij .

Model for Q

Qτk
nij was estimated using SuperLearner [63] (see Section 2.4). We used cluster-

specific cross-validation in SuperLearner, so that the cross-validation error is com-

puted by resampling the clusters. We estimated Qτk
nij with X

k
ij = (Wij, Vij, A

k∗

ij ; k
∗ 6=

k) as our covariates, in the subset of {Akij = 1, Rk
ij = 0, Cij = 0} and then predicted

on the subset of {Rk
ij = 0, Cij = 0}. In SuperLearner library, we included the al-

gorithms k-nearest neighbors [88], Random Forests [48], logistic regression [65] and

LASSO [30].

TMLE Algorithm

Following the TMLE procedure, we then fit a logistic regression (5.2) to estimate

ετn, and then we updated Qτk
nij with g

τk
nij using (5.1). Therefore, we got

τTMLE,k
n =

1

nk

31
∑

j=1

∑

i∈Sj

s.t.Rk
ij=0

Qτk*
nij
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as the TMLE for τ k.

Similarly, for the estimation of µk, we used logistic regression to obtain both Qµk
nij and

g
µk
nij. Q

µk
ij and gµkij were fit on the subset {Rk

ij = 0, Cij = 0} and {Rk
ij = 0} respectively,

and the predictions were made on the subset {Rk
ij = 0} for both. Hence, we obtain

values of Qµk
nij and g

µk
nij for all subjects with R

k
ij = 0.

Then we fit a logistic regression (5.3) to estimate εµn, and updated Q
µk
nij with g

µk
nij

using (5.4).

Therefore, we get

µTMLE,k
n =

1

nk

31
∑

j=1

∑

i∈Sj

s.t.Rk
ij=0

Q
µk*
nij

as the TMLE for τ k.

Then the estimate for the parameter of interest is:

ψTMLE,k
n = τTMLE,k

n − µTMLE,k
n .

5.8.3 Variance Calculation

Recall (5.6) to (5.9), the variance of ψTMLE,k
n , (σkψ)

2 is estimated by

1

(nk)2

31
∑

j=1

[

IC
ψk

Rk
ij=0,Cij=0

· (ICψk

Rk
ij=0,Cij=0

)T )
]

.

Implementing the same procedures for all of the 15 treatments, we obtain the esti-

mated treatment importance.
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CHAPTER 6
Simulation

This simulation study aims to: 1) demonstrate the consistency of our estima-

tor, 2) verify the double robustness of our estimator, 3) show that our method for

estimating the variance is appropriate, and 4) demonstrate the coverage of the Wald-

type confidence intervals computed with the estimated variance. The methods and

results are elaborated below.

6.1 Methods

6.1.1 Data generation

We simulated data with a similar structure to our real-life data, (excluding all

missing data and censoring). The sample size of each generated dataset is 9000,

comprising 30 study-clusters with 300 individuals in each cluster. We generated a

binary outcome of patient i in study j, Yij, three binary indicators of antibiotic use

Akij, k =1,2,3, one continuous study-level covariate Vij, one individual level continuous

covariate Wij, an indicator of resistance to antibiotic k, Rk
ij, and one continuous

unmeasured cluster-level variable Uij. As in the real dataset, we consider that not all

treatments are available in all studies (or clusters). We denote treatment availability

for treatment k as Dk
ij, k=1,2,3, and note that patients in the same study share a

same Dk
ij. Thus, the simulated data structure is

Oij = (Yij, Vij,Wij, Uij, {Akij, Rk
ij, D

k
ij}, k = 1...3)

i.i.d∼ PO; i ∈ Sj, j = 1...30.
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Note that Uij is not included in the data observed by the analyst. We denote

Dij = (D1
ij, D

2
ij, D

3
ij) to be the vector indicating treatment availability, and simi-

larly for Aij and Rij.

Two scenarios were investigated. In the first, treatment availability was completely

random and in the other one, treatment availability was dependent on the study-level

covariate. Table 6-1 shows the data generating mechanisms for these two scenarios.

In the first scenario, we first randomly and independently generated the study-level

covariate Vij with a Gaussian distribution, and individual resistance status Rk
ij with

a Bernoulli distribution. Then we generated the individual-level covariate Wij de-

pendent on Vij with Normal distributions, and study-level unmeasured variable Uij

(all the subjects in the same study had the same value of Uij, so we define Uj = Uij,

if i ∈ Sj, the same for Vij) dependent on Vij with Normal distributions. In the

process of generating the treatment availability Dk
ij, we first draw, for each study,

how many drugs are available to this study (with a minimum of one), and then we

generated which one(s) is(are) available to this study. For example, we sample a

number from 1 to 3, say 2. Therefore, for study j, we have 2 medications that are

available to this study. Then, we sample two drugs (say the first and the third) from

3 drugs. If the first and the third medications are available in study j, then vector

Rij= (1,0,1). Everyone in the same study shares the same Dij. Next, we generated

individual treatments where the probability of receiving Akij = 1 depends on Vij, Wij

and Rk
ij. We then forced Akij = 0 when Dk

ij = 0. Finally, the binary outcome Yij

was sampled from a Bernoulli distribution with probability dependent on Vij, Wij,

Uij and Akij(1 − Rk
ij), k = 1, 2, 3. See Appendix 1 for the data generating code for
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scenario 1.

In the second scenario, the probability of Dk
ij = 1 was dependent on Vij. See Ap-

pendix 2 for the data generating code for scenario 2.

6.1.2 Data analysis

Our parameter of interest in the simulation study is:

ψ1 = E[E(Yij|X1
ij, R

1
ij = 0, A1

ij = 1)|R1
ij = 0],

where X1
ij = (Vij, Vij, A

k*
ij ), k* 6= 1. (This corresponds to the first component of the

treatment importance parameter.) In order to find the true value of ψ1, we generated

data as above, but with sample sizes greater than 107, and forced all A1
ij equal to

1. Then we took the average of the generated Yij within the subset of individuals

who were not resistant to medication 1. After enlarging the sample size, the value

of E(Yij|R1
ij = 0),converged to a fixed value, which is regarded as the true value of

our parameter of interest.

We used logistic regressions to fit g11ij = Pr(A1
ij|D1

ij = 1, X1
ij, R

1
ij = 0) In the first

scenario. We took the proportion of D1
ij = 1 to be the estimate of g2ij, since in

this scenario, D1
ij is independently generated. In the second scenario, we modeled

g2ij = Pr(D1
ij|Vij) using a logistic regression. Then the TMLE algorithm was applied

to update the predicted values of Q1
ij. 1000 random seeds were drawn and stored.

1000 datasets were then generated from these seeds and the analyses conducted on

the datasets. See Appendix 3 for the modeling code.
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Table 6–1: The data generating mechanism of two scenarios.

Variable Generating Mechanism

Vij Vij ∼ N(mean = 0.3, sd = 0.3, n = 30)
Set Vij = Vij for all i in Sj

Rk
ij R1

ij ∼ Ber(p = 0.25, n = 300)
R2
ij ∼ Ber(p = 0.30, n = 300)

R3
ij ∼ Ber(p = 0.25, n = 300)

Wij Wij ∼ N(mean = 0.1Vij, sd = 0.1, n = 300)

Uij Uij ∼ N(mean = 0.2Vij + 0.1, sd = 0.5, n = 30)
Set Uij = Uij for all i in Sj

Dk
ij Scenario 1

Within the same study, a random number d=1,2,
or 3 of available treatments was generated.
Randomly select d treatments and set Dk

ij = 1 for these treatments.
Set Dk

ij = Dk
ij for all i in Sj

Scenario 2
D1
j ∼ Bin(logit(p) = 1 + 2Vij, n = 30)

D2
j ∼ Bin(logit(p) = 0.5 + 1.5Vij, n = 30)

D3
j ∼ Bin(logit(p) = 1.5 + 0.3Vij, n = 30)

Within the same study, D1
j +D2

j +D3
j > 0

Set Dk
ij = Dk

ij for all i in Sj

Akij A1
ij ∼ Bin(logit(p) = −0.75 + 2.4Vij + 1.8Wij − 0.1R1

ij, n = 9000)
A2
ij ∼ Bin(logit(p) = −1 + Vij + 1.7Wij − 0.15R1

ij, n = 9000)
A1
ij ∼ Bin(logit(p) = −1.5 + 1.7Vij +Wij − 0.16R1

ij, n = 9000)
Yij Yij ∼ Bin(logit(p) = 2 + 3.5Vij + 0.3Wij − 0.1Uij + 2.2A1

ij(1−R1
ij) +

0.12A2
ij(1−R2

ij) + 0.05A3
ij(1−R3

ij)
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In order to verify the double robustness property of our proposed estimator, we var-

ied the model specifications used to estimate g1ij = g11ij · g12ij and Q1
ij. In the first

scenario, Q1
ijand g

1
ij were misspecified as null models (the outcome regressed on the

intercept only). In the second scenario, the misspecification of g1ij implied that g12ij

was also assigned a null model. In order to save space, we only provide the code when

all the models in scenario 2 were correctly specified in Appendix 3 and all models

were misspecified in Appendix 4.

The standard error of the TMLE was estimated using the influence curve as discussed

in Sections 5.6 and 5.7. We then compared these standard error estimates with the

estimates of the standard error computed using a cluster bootstrap [17]. Then, the

coverage rates for different sample sizes were also calculated when all models were

correctly specified. In addition, to show that we need to account for clustering when

we estimate the variance, we also provided the coverage rates with the variance es-

timated with and without clusters taken into account.

6.2 Results

The true values for both scenarios were found to be 0.74 (up to two decimal

places). In the first scenario, we present the mean TMLE estimate with four different

model specifications: where both Q1
ij and g1ij are correctly specified (Qvgv); where

Q1
ij is correctly specified but g1ij is misspecified (Qvgx); where Q1

ij is misspecified

but g1ij is correctly specified (Qxgv); and where both Q1
ij and g1ij are misspecified

(Qxgx). For each of these scenarios, we also present the percentage of mean bias,

Monte-carlo standard error and sandwich estimator standard error in Table 6-2.

73



Table 6–2: Simulated estimation with different model specifications and their bias
percentage in scenario 2.

Situation
Model

specificationa

Average

Estimate
Bias (%)

Monte-Carlo

SE

Sandwich

estimator SE

1 Qvgv 0.74 0.0 0.035 0.033
2 Qvgx 0.74 0.0 0.035 0.033
3 Qxgv 0.74 0.0 0.040 0.038
4 Qxgx 0.80 8.1 0.033 0.031

NOTE: a v indicates the model is correctly specified and x indicates the model is misspec-
ified.

The table shows that when either the Q1
ij or g1ij model was correctly specified, the

estimate of the parameter was unbiased at this sample size. The estimate was biased

only if both of the models were misspecified. Similarly, Figure 6-1 contains the

boxplots of the simulated estimations with different model specifications. The red

line is the true value in scenario 1. We can see that when Q1
ij is misspecified and g1ij

is correctly specified, the estimate is consistent, although the variance is a little bit

larger than the estimates when Q1
ij is correctly specified. Unsurprisingly, the mean

estimate when all models are misspecified diverges from the true value. Also note

that the sandwich estimator slightly underestimates the Monte-Carlo standard error.

In addition, we used two estimation methods to calculate the associate standard

error when all of the models are correctly specified in scenario 1: constructing a

sandwich estimator by using efficient influence curves; and estimating by cluster

bootstrap [17]. As shown in Table 6-2, the sandwich estimator standard error was

0.033, while the estimation from cluster bootstrap was 0.032 (a difference of 3%).
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Table 6–3: Simulated estimation with different model specifications and their bias
percentage in scenario 2.

Situation
Model

specificationa

Average

Estimate
Bias (%)

Monte-Carlo

SE

Sandwich

estimator SE

1 Qvg1vg2v 0.74 0.0 0.035 0.033
2 Qvg1xg2v 0.74 0.0 0.034 0.032
3 Qvg1vg2x 0.74 0.0 0.034 0.033
4 Qvg1xg2x 0.74 0.0 0.034 0.032
5 Qxg1vg2v 0.74 0.0 0.035 0.036
6 Qxg1vg2x 0.76 2.7 0.032 0.033
7 Qxg1xg2v 0.80 8.1 0.027 0.028
8 Qxg1xg2x 0.81 9.5 0.028 0.026

NOTE: a v indicates the model is correctly specified and x indicates the model is misspec-
ified.

In the second scenario, where treatment availabilityDk
ij was dependent on study-

level covariate Vij, we must also model g12ij. Therefore, we have 8 different model

specifications to verify the double robustness property, which should hold only when

Q1
ij is correctly specified or when both g11ij and g

1
2ij are correctly specified. We again

used a logistic regression to correctly specify Q1
ij = Pr(D1

ij|R1
ij = 0) and a null model

to misspecify it. Other procedures were similar to scenario 1. The results are shown

in Table 6-3 and Figure 6-2.

The results show that when Q1
ij was misspecified, misspecifying either g11ij or g12ij

resulted in some bias (although in this data generating scenario, the misspecification

of g12ij resulted in less bias than g11ij). As expected, when Q1
ij or g1ij was correctly

specified, the results were unbiased. The bias was largest when all three models were

misspecified.

Table 6-4 shows the coverage rate of the Wald-type confidence intervals calculated
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Table 6–4: Coverage rate with different sample size.

cluster size subjects in each cluster coverage (%)

30 300 92
60 300 94
30 600 92
60 600 95

using the sandwich estimator of the variance for different sample sizes. We can see

that the coverage increases to the optimal rate with the sample size. In particular,

we see that the number of clusters drives the convergence, which corresponds with

the knowledge that the validity of the first-order estimation in this context depends

on the number of clusters (see Section 2.5). Therefore, usage of the efficient influence

function for the estimation of the variance is only effective with a sufficient number

of clusters.

Furthermore, the coverage rate when the variance is estimated with clusters was

91.3%, while the coverage rate when the variance is estimated without clusters was

42.5%, which showed us that we need to take clustering into consideration when we

estimate the variance of the parameter of interest.
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CHAPTER 7
Results

In this chapter, we present the data summary by descriptive statistics and re-

sults of the analysis of the MDR-TB data.

7.1 Data Description

The data set consists of 31 studies with a total of 9290 patients. Very few

observations were missing sex and age (0.065% and 0.301% respectively). For the

convenience of analysis, we dropped the observations with missing sex and age infor-

mation. As a result, 31 studies (9258 subjects) were included in this analysis. The

data consists of the outcome (defined as treatment success or not); drug treatments

used; two study-level covariates: the income group of the country of the study and

the year of the study; and 6 individual-level variables: age, sex, HIV status, acid

fast bacilli (AFB) smear status at start of MDR-TB treatment regimen, past history

of TB, and cavitation status of a patient. In addition, we also have the patients’

resistance status. The data contained resistance information for 8 treatments and we

defined the resistance status of patients of the other 7 treatments as not available.

Study level information including the numbers of patients and treatments used in

each cohort, and the mean (with standard error) or the number (with proportion) of

individual-level covariates, are presented in Figure 7-1. Some studies included only

3 treatments while others used all available treatments documented in the dataset.
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The publication year ranged from 1995 to 2009. The number of patients in differ-

ent studies varied from 43 to 2211, and the average number of patients in a study

was 300. Studies were conducted in countries that belonged to high, upper middle

and lower middle income groups. The range of the mean age of the participants

in each study varied from 31.1 to 47.6, while one pediatric study’s mean age was

only 7. 47.4% to 96% patients were male. Most patients were HIV-negative, and

just 9 studies contained HIV-positive patients. Furthermore, the proportions of the

patients with positive acid fast bacilli smear, past TB, and cavitation on X-ray all

ranged from 0 to 100%.

Individual level information for each covariate and outcome are shown in Table 7-1.

The year of study ranged from 1995 to 2009, with the median 2004 and inter-quartile

range from 2002 to 2004. The median age of patients was 38, with inter-quartile range

from 29 to 48. 404 (4.4%) and 3106 (33.4%) of patients came from low middle income

group countries and upper middle income group countries respectively as defined by

the World Bank [7], and the remaining 5780 (62.2%) patients came from high in-

come group countries. Male patients accounted for 32.1% with 6305 patients. The

number of patients with positive HIV, AFB smear, positive past TB, and positive

cavitation X-ray were 1193 (12.8%), 5836 (62.8%), 6489 (69.8%) and 4623 (50.0%),

respectively. In terms of outcome, 4847 (52.2%) patients had a clinically successful

outcome, while 260 (2.8%) patients failed to report their outcome.
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Table 7–1: Descriptive statistics of covariates and outcome.

Covariates Summary Missing N.(%)

Year of Study Median 2004
IQRa (2002,2004)

Age Median 38 28 (0.3)
IQR (29,48)

IGb N.(%) LM 404(4.4)
UM 3106 (33.4)
H 5780 (62.2)

Sex N.(%) Male 2979 (32.1) 6 (0.06)
Female 6305 (67.9)

positive HIV N. (%) 1193 (12.8) 1369 (14.7)
positive smear N. (%) 5836 (62.8) 1439 (15.5)
positive past TB N. (%) 6489 (69.8) 524 (5.6)
positive cavitation N. (%) 6489 (69.8) 2521 (27.1)
Success outcome N. (%) 4847 (52.2) 260 (2.8)

NOTE: aIQR: inter-quartile range.
bIG: Income group of the country of each study. LM indicates the country belongs
to the lower middle income group, UM indicates the country belongs to the
upper middle income group, H indicates the country belongs to the high income
group. rest of countries belongs to the high income group.

For each treatment, the number of patients who used the treatments and were

resistant to them are also provided in Table 7-2. The proportion of patients who used

a certain treatment ranged from 6.5% (Amikacin) to 70.6% (Ofloxacin). Among the

studies that had the resistance information, the number of patients who were resistant

to a certain treatment ranged from 480 (5.2%) to 4153 (44.7%).

7.2 Results of Analysis

As discussed in Chapter 4, out of 9290 patients, 9258 subjects in 31 studies were

analyzed after excluding observations with missing sex or age data.
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Table 7–2: The number and proportion of 9290 patients who used and are resistant
to the 15 treatments, respectively.

Treatment N. used (%) N. resistant (%)

High-generation quinolones 930 (10.0)
Ciprofloxacin 1031 (11.1)
Protionamide 3341 (36.1)
Amikacin 605 (6.5)
Cycloserine 5729 (61.9) 480 (5.2)
Kanamycin 5093 (55.0) 1821 (19.6)
Ofloxacin 6538 (70.6)
Group 5 level drugs 2205 (23.8)
Pyrazinamide 6263 (67.6) 2771 (29.8)
Ethambutol 4325 (46.7) 4130 (44.5)
Para-Aminosalicylic Acid 4005 (43.3) 1092 (11.8)
Capreomycin 1956 (21.1) 630 (6.8)
Ethionamide/Prothionamide 4005 (43.3) 1763 (19.0)
Streptomycin 1418 (15.3) 4153 (44.7)
Rifabutin 1371 (14.8)
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Following the procedures described in Chapter 5, the treatment importance of all 15

treatments was estimated with the TMLE algorithm, for which SuperLearner was

used to estimate the outcome model, and logistic regression and LASSO were used

to fit the treatment model. Table 7-3 shows the estimates, ordered by treatment im-

portance, with their associated influence curve based standard errors and confidence

intervals.

As shown in the table, Ciprofloxacin had the greatest estimated treatment impor-

tance, with a confidence interval not containing zero. Other treatments with at least

moderately large positive treatment importance were Amikacin, later-generation

quinolones, Capreomycin, Ethionamide, Streptomycin, and Cycloserine. Among

these, hypothesis tests for the treatment importance of Streptomycin and Cycloserine

also rejected the null where the null corresponded with (zero importance). Therefore,

we may infer that Ciprofloxacin would contributed the most to the average recovery

rate for treating MDR-TB in the context of multiple treatment use, and there is

evidence that Streptomycin and Cycloserine both have moderately positive treat-

ment importance. In contrast, Para-aminosalicylic acid, Pyrazinamide and Group 5

level drugs (defined in section 4.1.2) had negative importance in our analysis. Note

that the treatment importance of Para-aminosalicylic acid and Pyrazinamide were

only slightly less than zero, while the estimate for Group 5 level drugs was substan-

tially more negative. The estimated standard errors, based on the efficient influence

function, for these treatment importance estimates ranged from 0.017 to 0.102.
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Table 7–3: Treatment importance, associated standard error and confidence interval
of 15 treatment.

Treatment Estimate Standard Error Confidence Interval

Ciprofloxacin 0.134 0.056 (0.024, 0.243)
Amikacin 0.091 0.056 (-0.018, 0.200)
High-generation quinolones 0.084 0.102 (-0.116, 0.283)
Capreomycin 0.070 0.064 (-0.055, 0.196)
Ethionamide 0.068 0.040 (-0.011, 0.147)
Streptomycin 0.063 0.027 (0.011, 0.116)
Cycloserine 0.054 0.028 (0.000, 0.109)
Prothionamide 0.047 0.154 (-0.255, 0.348)
Ofloxacin 0.023 0.032 (-0.040, 0.085)
Ethambutol 0.020 0.022 (-0.022, 0.063)
Kanamycin 0.020 0.024 (-0.027, 0.067)
Rifabutin 0.014 0.071 (-0.125, 0.153)
Para-aminosalicylic acid -0.002 0.019 (-0.038, 0.035)
Pyrazinamide -0.005 0.017 (-0.038, 0.028)
Group 5 level drugs -0.035 0.037 (-0.108 ,0.038)

85



CHAPTER 8
Discussion

In this chapter, we aim to summarize the work that has been done in this thesis.

In addition, we elaborate on the contribution of this thesis, acknowledge the limita-

tions of our methods, and discuss future directions.

8.1 Summary of the work

The literature review introduced the current global MDR-TB situation. Then,

we briefly described meta-analytical methods, from traditional aggregated meta-

analysis to individual patient data network meta-analysis. Next, we discussed some

basic concepts in causal inference, most notably, propensity scores and Inverse Prob-

ability of Treatment Weighting, which are related to the TMLE algorithm. Super-

Learner, an ensemble statistical learning prediction method used in TMLE, was intro-

duced before describing the semiparametric theory behind TMLE. Several important

definitions were explained, including local efficiency and the efficient influence curve

of regular asymptotically linear estimators, which laid the foundation for deriving

the TMLE estimator and its asymptotic variance. An example TMLE algorithm was

described for the estimation of the average treatment effect with a binary exposure,

and its properties were discussed. Finally, a brief overview of transportability was

given, which paved the way for developing the methods used in this thesis.
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The MDR-TB data were introduced and summarized in Chapter 4. After elaborat-

ing on the source of the data, we described the structure of the data (IPD) in terms

of the studies, covariates, and treatments involved.

Then, the application of our methods was illustrated for the data set described above.

After defining the data structure, we presented the assumptions that are required in

order to identify the treatment importance parameter of interest. In addition, we

described a closely related causal parameter and its required identifiability assump-

tions. Furthermore, the TMLE algorithm and variance estimation for the MDR-TB

data were described.

A simulation study was conducted to demonstrate the consistency of our estimator

and the validity of our variance estimation. We found that our proposed estimator

can precisely target the parameter of interest without bias if all relevant models are

correctly specified. Influence curve based variance estimates performed similarly to

the variance estimated using cluster bootstrap (with a 3% difference) when all models

were correctly specified. In addition, the double robustness property of our estimator

was verified by modifying the model specifications. Two scenarios were generated:

independent and dependent treatment availability. In both scenarios, the estimates

were biased only if both the outcome and at least one component of the treatment

models were misspecified. Finally, the coverage of the estimator was presented; the

coverage rate was 92% when the number of clusters was 30 with 300 subjects in each

cluster. When we increased the sample size (60 clusters with 600 subjects in each

cluster), the coverage was approximately 95%.

Results from the MDR-TB data were described in chapter 7. In this section, we also

87



discussed the explanation and interpretation of our proposed parameter of interest

– treatment importance. Based on our analysis, Ciprofloxacin is the antibiotic that

has the greatest treatment importance in a non-resistant population, which suggests

that it is a more effective treatment for MDR-TB. Other antibiotics that were found

to have a relatively large treatment importance were Amikacin, later-generation

quinolones, Capreomycin, Ethionamide, Streptomycin. On the other hand, based

on our analysis, Para-aminosalicylic acid, Pyrazinamide and Group 5 level drugs

should not be recommended in lieu of other antibiotics, unless they must be used

for certain indications. The ranking of treatment importance is shown in Table 7-3,

which may be useful for clinicians and may guide future MDR-TB treatment re-

search.

The results are not entirely in line with the findings of The Collaborative Group for

Meta-Analysis of Individual Patient Data in MDR- TB [11], which used a similar

data extraction to analyze which antibiotics as part of multi-drug regimens were asso-

ciated with treatment success compared to failure, relapse or death during the initial

intensive treatment phase. They showed the use of later generation Quinolones,

Ofloxacin, Ethionamide/Prothionamide and Group 4 level drugs were more likely

effective. These antibiotics all had positive treatment importance in our analysis.

However, we focused on a different parameter of interest, and we focused on which

antibiotics contributed more to the average recovery rate (see Section 5.3), whereas

their study was interested in which drugs were associated with the treatment success.

We took other treatments’ effects and the overall recovery rate into account, whereas
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their study only explored the correlation between the individual treatments and out-

comes. Finally, we also adjusted for censoring, resistance status, and the selection

bias that may arise due to some treatments not being available in some studies.

Another study [28] conducted by this group showed that there was no improvement

in treatment success among patients taking Group 5 drugs, while our study showed

that Group 5 drugs ranked as the last in treatment importance.

8.2 Contribution & Limitations

Our analysis – in contrast to a traditional meta-analysis that targets more fre-

quently used parameters (e.g., risk differences or odds ratios between treatment pairs)

– investigated the treatment importance [53, 55] of the 15 antibiotic types observed

across studies of the treatment of MDR-TB.

Instead of analyzing the data study by study and then aggregating the results [10, 67],

we transported statistical information from available studies to unavailable studies

by incorporating the concepts of transportability and treatment availability (see Sec-

tion 2.7 and 5.1). We used the information from patients who used the treatment

of interest to analyze the relationships between covariates and outcome, and then

extrapolate these relationships to patients who did not use the treatment to obtain

a global estimate.

8.2.1 Parameter of Interest

Treatment importance, as we have defined it, is an interpretable quantity with a

calculation-friendly estimator. As we discussed in Chapter 5, treatment importance
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can be simply formulated as τ k−µk (where τ k represents the adjusted recovery rate

when all the patients using the treatment k, and µk is the overall recovery rate) for

treatment k under the set of reasonable assumptions we made. It is roughly analo-

gous to the coefficients of each treatment in a linear regression that adjusts for all

treatments and baseline covariates. We chose to estimate this parameter because

of the challenges in dealing with multiple treatment regimens in a causal inference

setting. As we described, making the causal assumption of variable ordering (i.e.

that the treatment follows covariates in time) when individually evaluating multiple

treatments lacked of validity.

Our parameter of interest was described in the literature [53, 55], and defined in our

context. Rather than the risk difference between two treatments, treatment impor-

tance is roughly the difference between the recovery rate if all the patients used the

treatment and the overall recovery rate.

Two challenges inherent to our data when we estimate treatment importance were

treatment resistance and the simultaneous use of multiple treatments. We analyzed

each treatment in the stratum of patients who were not resistant to that treatment

and considered all other treatments as confounders.

This parameter can then be interpreted as the contribution of a treatment to the

average recovery rate when everyone uses this treatment. The larger the treatment

importance, the more effective the drug is as an add-on medication. A medication

with a large importance should therefore be more commonly recommended by clini-

cians.

Additional causal assumptions are needed to interpret this parameter as an add-on
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effect. In either case, the parameter can be estimated through the same TMLE pro-

cedure. However, we do not believe these additional assumptions to be satisfied in

this context. The identifiability assumptions are laid out in section 5.4.

Furthermore, it is true that we could alternatively define treatment importance for

treatment k simply as the average recovery rate had all patients taken medication

k. However, note that the “baseline” for each antibiotic (the average recovery rate

where there is no treatment given) was different since we condition on not being

resistant to the treatment, and the collection of patients resistant to each drug is

distinct. Therefore, targeting this parameter would not yield comparable estimates,

and the resulting treatment importance ranking would be meaningless.

8.2.2 Missing Data

When we analyzed the data, we took a pragmatic approach to dealing with

missing covariates. We completely removed observations with missing data in sex

and age because the missingness was rare (0.3% and 0.06%, respectively). We ac-

counted for missing data in other covariates (ranging from 5.6% to 27.1% missing),

by introducing missing indicators. This approach allowed for unbiased estimation

when conditional exchangeability was satisfied conditional on the incomplete covari-

ates in addition to the missingness indicators which is sometimes considered to be

implausible [82]. A more robust approach might involve producing multiple impu-

tations prior to performing the TMLE analysis on each completed data set [93, 92].

However, we did adjust for the missing (or censored) outcome data, as the gk3 model

considered the probability of censoring given treatment, confounders and resistance
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status. This approach is valid under the outcome missingness at random assumption,

as described in the list of assumptions.

8.2.3 Adjustment Variables and Outcomes

We had the country of each study as one of the adjustment variables, which

is a study-level variable in our analysis. Including it as a country-specific indicator

covariate would have produced a large number of levels if we included them all.

Therefore, we categorized countries based on the income group, resulting in only

three levels. The other study-level covariate was published year of the studies. There

are many possible outcomes of a given treatment assignment, including completing or

not completing treatment, cure, death, and relapse. For the convenience of analysis,

we defined treatment success as completing treatment and being cured of the disease,

and considered all other outcomes as unsuccessful. We could have investigated other

outcome definitions as well, but the priority of this thesis was to provide a framework

for obtaining treatment importance estimates in this type of data. Nearly identical

analyses could be repeated on the differently defined outcomes.

8.2.4 Transportability

Transportability in this situation involved two main elements: 1) the generaliz-

ability of the treatment-specific outcome models, which were estimated in studies in

which the treatments were observed, and used to predict mean counterfactual out-

comes in studies where the treatments were not observed, and 2) the appropriateness

of estimating the probability at treatment availability of the study level. Transporta-

bility, in our specific context of data fusion, enabled us to obtain a global estimate

92



with the assumptions described in Section 5.2.

8.2.5 TMLE

To achieve robust estimation of treatment importance parameters, we made use

of the TMLE algorithm [53] in tandem with the concept of transportability [73].

One of the advantages of using TMLE is that it is a semiparametric method, which

allowed us to avoid some strong assumptions necessary for parametric models [86].

In addition, it has the very favorable double robustness and local efficiency proper-

ties. With the aid of SuperLearner, TMLE can provide precise estimates with lower

variance [86, 64, 85].

SuperLearner was preferred over the parametric regression approach partially be-

cause of its ability to adapt to the small numbers of events that occurred in the

analysis of certain treatments.

8.2.6 Models

In the estimation of the treatment and outcome models, we did not use a clus-

tered model such as a mixed model. SuperLearner is flexible in that it may place

larger weights on more complex models when the sample size and number of events

are greater, and may exclude models that are too complex (and may overfit) in these

settings. While the prediction models used within the SuperLearner did not respect

clustering, the cluster-specific cross-validation used to compute the model weights

did.

In terms of the study-level model gτk2 for the probability of treatment availability,
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to avoid the problem of rank deficiency, we assumed that given the study-level co-

variates, individual-level covariates were independent of treatment availability. We

believe that this is plausible because treatment availability (in a given region in a

certain time period) was also a study-level variable, and therefore each patient in a

given study shared the same treatment availability. We used logistic regression for

this model in order to avoid overprediction by a more flexible model and maintain

the stability of the TMLE. Because of the small sample size for this model, machine

learning methods might produce extreme values of estimation of the g model [75].

We used LASSO as an exception when the logistic regression did not converge.

8.2.7 Simulation Studies

The simulation studies we performed demonstrated the double robustness of our

estimator as well as the appropriate coverage rate of the sandwich variance estima-

tor based on the efficient influence function. We also showed the consistency of both

the sandwich and cluster bootstrap variance estimators. Therefore, we only used

the sandwich estimator in our data analysis as it was far less computationally com-

plex than running a bootstrap. Furthermore, the necessity of considering clustering

when estimating the variance was also briefly demonstrating in the simulated studies.

8.2.8 Confounding by Indication

We adjusted for many variables that describe the severity of TB (whether the

patients had prior TB for example), but confounding by indication may still exist in

the models we estimated. This type of confounding arises from the fact that patients
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who are given a medication are inherently different from those who are not [91].

This bias can be eliminated by using a RCT, but our data was obtained from an

observational study.

8.2.9 Heterogeneity Across Studies

We included 31 studies in the data. However, there might exist heterogeneity

across the studies. We transported the estimation from available studies to un-

available studies, assuming the studies were independent of each other. We did not

include some algorithms in the library of SuperLearner due to the data constraint

and the limitation of SuperLearner. We could develop a wrapper, such like gener-

alized estimating equation or generalized linear mixed model in SuperLearner that

can take heterogeneity across studies into account in the future.

8.3 Future work

There are many topics that may be worth exploring following this thesis. This

study is a fundamental step in understanding which antibiotics, on average, are im-

portant in the treatment of MDR-TB. However, we may also be interested in knowing

which antibiotics would be most effective for a specific patient given some measured

covariates. We would benefit greatly from understanding which patient character-

istics affect treatment success for different combinations of antibiotics, and which

treatment strategies would maximize the success of treatment for MDR-TB. To ac-

complish this goal, we may develop more complicated models, such as a propensity

score model for multiple treatment regimes, models that can automatically select
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the covariates for different regimes, and ensemble learning methods for obtaining

the optimal regime. These promising extensions could advance our knowledge of

data fusion and multiple treatment issues. The clinical contribution of our analy-

sis is important as well. It may provide insight for clinicians to tailor the choice

of treatments based on patient characteristics. More ambitiously, the identification

of optimal treatment regimens may lead to yet more successful patient outcomes.

Future work can be done by investigating which regimen is more effective based on

various patients’ characteristics, then clinicians can prescribe appropriate regimens

for different patients. In addition, if we know which characteristics are more im-

portant for the recovery of MDR-TB (the treatment duration or the adherence of

patients for example), the clinicians can then make efforts to intervene on them.
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APPENDIX A
Appendix 1

The code of generating the data in scenario 1

# Generate the data --Simulation

# Scenario 1: D is independent

N=9000;n=300; clusterN=N/n

study_id<-c(rep (1: clusterN ,each=n))

ind_id<-c(1:N)

v1_bar <-rnorm(clusterN ,mean =0.3,sd =0.3)

v1<-rep(v1_bar ,each=n)

#r1=1-->resistant to a1

r1<-rbinom(N,1 ,0.25)

r2<-rbinom(N,1 ,0.30)

r3<-rbinom(N,1 ,0.25)

D <-NULL

for (i in 1: clusterN)

{

#d_index: how many medications are accessible

d_index <- sample(x=c(1:3) , size =1)

d_zero <- c(0,0,0)
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#d: fill 1 into c(0,0,0), sample the positions of 1s with the

number of accessible medications

d <- replace(d_zero ,sample(c(1:3) ,d_index), 1)

D <- rbind(D, d)

}

d1_bar <-as.numeric(D[,1])

d1<-rep(d1_bar ,each=n)

d2_bar <-as.numeric(D[,2])

d2<-rep(d2_bar ,each=n)

d3_bar <-as.numeric(D[,3])

d3<-rep(d3_bar ,each=n)

w1<-rnorm(N,mean =0.1*v1 ,sd =0.1)

#u:study -level radom unmeasured confounding

u_bar <-rnorm(clusterN ,mean =0.2,sd =0.6)

u<-rep(u_bar ,each=n)

library(faraway)

a1_full <-rbinom(N,1,ilogit ( -0.75+2.4*v1+1.8*w1 -0.1*r1))

a1<-ifelse(d1==1,a1_full ,0)

a2_full <-rbinom(N,1,ilogit (-1+1*v1+1.7*w1 -0.15*r2))

a2<-ifelse(d2==1,a2_full ,0)

a3_full <-rbinom(N,1,ilogit ( -1.5+1.7*v1+1*w1 -0.16*r3))

a3<-ifelse(d3==1,a3_full ,0)
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y0<-rbinom(N,1,ilogit ( -2+3.5*v1+0.3*w1 -0.005*u

+2.2*a1*(1-r1 )+0.12*a2*(1-r2 )+0.05*a3*(1-r3)))

data_full <-data.frame(ind_id ,study_id ,v1 ,r1 ,r2 ,r3 ,d1 ,d2 ,d3

,w1 ,u,a1 ,a2 ,a3 ,y0)

BSD=data_full
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APPENDIX B
Appendix 2

the code of generating the data in scenario 2

# Generate the data --Simulation

# Scenario 2: D is dependent of V

N=9000;n=300; clusterN=N/n

study_id<-c(rep (1: clusterN ,each=n))

ind_id<-c(1:N)

v1_bar <-rnorm(clusterN ,mean =0.3,sd =0.3)

v1<-rep(v1_bar ,each=n)

#r1=1-->resistant to a1

r1<-rbinom(N,1 ,0.25)

r2<-rbinom(N,1 ,0.30)

r3<-rbinom(N,1 ,0.25)

d1_bar <- rbinom(clusterN ,1,ilogit (1+2*v1_bar))

d2_bar <- rbinom(clusterN ,1,ilogit (0.5+1.5*v1_bar))

d3_bar <- rbinom(clusterN ,1,ilogit (1.5+0.3*v1_bar))

D <- data.frame(d1_bar ,d2_bar ,d3_bar)

D <- D [sum(d1_bar+d2_bar+d3_bar)!=0,]
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d1_bar <-as.numeric(D[,1])

d1<-rep(d1_bar ,each=n)

d2_bar <-as.numeric(D[,2])

d2<-rep(d2_bar ,each=n)

d3_bar <-as.numeric(D[,3])

d3<-rep(d3_bar ,each=n)

w1<-rnorm(N,mean =0.1*v1 ,sd =0.1)

#u:study -level radom unmeasured confounding

u_bar <-rnorm(clusterN ,mean =0.2,sd =0.6)

u<-rep(u_bar ,each=n)

library(faraway)

a1_full <-rbinom(N,1,ilogit ( -0.75+2.4*v1+1.8*w1 -0.1*r1))

a1<-ifelse(d1==1,a1_full ,0)

a2_full <-rbinom(N,1,ilogit (-1+1*v1+1.7*w1 -0.15*r2))

a2<-ifelse(d2==1,a2_full ,0)

a3_full <-rbinom(N,1,ilogit ( -1.5+1.7*v1+1*w1 -0.16*r3))

a3<-ifelse(d3==1,a3_full ,0)

y0<-rbinom(N,1,ilogit ( -2+3.5*v1+0.3*w1 -0.005*u

+2.2*a1*(1-r1 )+0.12*a2*(1-r2 )+0.05*a3*(1-r3)))

101



data_full <-data.frame(ind_id ,study_id ,v1 ,r1 ,r2 ,r3 ,d1 ,d2 ,d3

,w1 ,u,a1 ,a2 ,a3 ,y0)

BSD=data_full
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APPENDIX C
Appendix 3

The code for model fitting (all models are correctly specified in scenario 2)

seeds <-as.vector(read.table("sim_seed.txt"))

results <-NULL

for (i in 1:1000){

set.seed(seeds[i,])

source("Generate_S2_30.R") #the code in Appendix 2

#################### g1 ##########

data.g1.a1<-data.frame(BSD$a1 ,BSD$a2 ,BSD$a3 ,BSD$v1 ,

BSD$w1 ,BSD$r1 ,BSD$d1)

g1.a1.glm <-glm(BSD.a1~BSD.v1+BSD.w1+BSD.a2+BSD.a3 ,

family="binomial",

data=data.g1.a1[which(BSD$d1==1 &

g1.a1.pre <-predict(g1.a1.glm ,newdata=data.frame(BSD$v1 ,BSD$w1 ,

##################### g2 ###########

g2.a1.glm <-glm(d1_bar~v1_bar ,family="binomial")

g2.a1.pre <-predict(g2.a1.glm ,type="response")

g2.a1.pre <-rep(g2.a1.pre ,each=n)

g.a1.pre_all <-g1.a1.pre*g2.a1.pre
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g.a1.pre <-g.a1.pre_all[which(BSD$r1 ==0)]

##################### Q ###########

interaction_a2<-BSD$a2*(1-BSD$r2)

interaction_a3<-BSD$a3*(1-BSD$r3)

data.Q1.a1<-data.frame(BSD$y0 ,BSD$a1 ,BSD$a2 ,BSD$a3 ,BSD$v1 ,

newdata <-data.frame(BSD$v1 ,BSD$w1 ,interaction_a2 ,interaction_a3)

Q1.a1.glm <-glm(BSD.y0~BSD.v1+BSD.w1+interaction_a2+interaction_a3 ,

Q1.a1.pre <-predict(Q1.a1.glm ,newdata=newdata ,type="response")

##################### TMLE #################

#(1)

y.a1 <- BSD$y0[BSD$r1==0]

h.a1<-as.numeric(as.logical(BSD$a1 ==1)[ BSD$r1 ==0])/g.a1.pre

e.glm.a1<-glm(y.a1~ -1+h.a1 ,offset=logit(Q1.a1.pre),family="binomial")

e.a1<- coef(e.glm.a1)["h.a1"]

#(2)

up.logitQ.a1<-logit(Q1.a1.pre )+(e.a1/g.a1.pre)

up.Q.a1<-ilogit(up.logitQ.a1)

#(3)

tau.Q.a1<-mean(up.Q.a1)

######### SD estimation ##############

diff.yQ.a1<- y.a1 -up.Q.a1

104



ic_a1<-h.a1*diff.yQ.a1+up.Q.a1 -tau.Q.a1

ic_a1.study <-split(ic_a1 ,study_id[BSD$r1 ==0])

var.san.a1<-sum(unlist(lapply(ic_a1.study ,FUN=function(x)

(length(BSD$a1[which(BSD$r1 ==0)])[1])^2

sd.san.a1<-sqrt(var.san.a1)

ci.san.a1<-c(tau.Q.a1 -1.96*sqrt(var.san.a1),tau.Q.a1

+1.96*sqrt(var.san.a1))

#coverage <-as.numeric(as.logical(0.741>ci.san.a1[1])&0.741

<ci.san.a1[2])

result <-c(tau.Q.a1 ,sd.san.a1)

results <-rbind(results ,result)

}

devout=paste("TMLE_Q_correct_g_correct_30. csv", sep="")

write.csv(results , devout , row.names = F)

#mean(est)

mean(results [,1],na.rm=TRUE)

#mean(sandwish estimator SD)

mean(results [,2],na.rm=TRUE)

#Monte -Carlo SD

sd(results [,1],na.rm=TRUE)
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APPENDIX D
Appendix 4

Code for model fitting (all the models are misspecified in scenario 2)

seeds <-as.vector(read.table("sim_seed.txt"))

results <-NULL

for (i in 1:1000){

set.seed(seeds[i,])

source("Generate_S2_30.R") #the code in Appendix 2

#################### g1 ##########

data.g1.a1<-data.frame(BSD$a1 ,BSD$a2 ,BSD$a3 ,BSD$v1 ,

BSD$w1 ,BSD$r1 ,BSD$d1)

g1.a1.glm <-glm(BSD.a1~1,family="binomial",

data=data.g1.a1[which(BSD$d1==1 & BSD$r1==0) ,])

g1.a1.pre <-predict(g1.a1.glm ,newdata=data.frame(BSD$v1 ,BSD$w1 ,

BSD$a2 ,BSD$a3),type="response")

##################### g2 ###########

g2.a1.glm <-glm(d1_bar~v1_bar ,family="binomial")

g2.a1.pre <-predict(g2.a1.glm ,type="response")

g2.a1.pre <-rep(g2.a1.pre ,each=n)

g.a1.pre_all <-g1.a1.pre*g2.a1.pre
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g.a1.pre <-g.a1.pre_all[which(BSD$r1 ==0)]

##################### Q ###########

data.Q1.a1<-data.frame(BSD$y0 ,BSD$a1 ,BSD$a2 ,BSD$a3 ,BSD$v1 ,

BSD$w1 ,BSD$r1 ,BSD$r2 ,BSD$r3 ,

BSD$study_id)[ which(BSD$r1==0 & BSD$a1==1) ,]

newdata <-data.frame(BSD$a2 ,BSD$a3)[ which(BSD$r1==0) ,]

Q1.a1.glm <-glm(BSD.y0~1,family="binomial",data=data.Q1.a1)

Q1.a1.pre <-predict(Q1.a1.glm ,newdata=newdata ,type="response")

##################### TMLE #################

#(1)

y.a1 <- BSD$y0[BSD$r1==0]

h.a1<-as.numeric(as.logical(BSD$a1 ==1)[ BSD$r1 ==0])/g.a1.pre

e.glm.a1<-glm(y.a1~ -1+h.a1 ,offset=logit(Q1.a1.pre),

family="binomial")

e.a1<- coef(e.glm.a1)["h.a1"]

#(2)

up.logitQ.a1<-logit(Q1.a1.pre )+(e.a1/g.a1.pre)

up.Q.a1<-ilogit(up.logitQ.a1)

#(3)

tau.Q.a1<-mean(up.Q.a1)

######### SD estimation ##############
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diff.yQ.a1<- y.a1 -up.Q.a1

ic_a1<-h.a1*diff.yQ.a1+up.Q.a1 -tau.Q.a1

ic_a1.study <-split(ic_a1 ,study_id[BSD$r1 ==0])

var.san.a1<-sum(unlist(lapply(ic_a1.study ,FUN=function(x)

sum(x %*% t(x)))))/

(length(BSD$a1[which(BSD$r1 ==0)])[1])^2

sd.san.a1<-sqrt(var.san.a1)

ci.san.a1<-c(tau.Q.a1 -1.96*sqrt(var.san.a1),tau.Q.a1+

1.96*sqrt(var.san.a1))

#coverage <-as.numeric(as.logical(0.741>

ci.san.a1[1])&0.741 <ci.san.a1[2])

result <-c(tau.Q.a1 ,sd.san.a1)

results <-rbind(results ,result)

}

devout=paste("/TMLE_Q_x_g1xg2v_30. csv", sep="")

write.csv(results , devout , row.names = F)

#mean(est)

mean(results [,1],na.rm=TRUE)

#mean(sandwish estimator SD)

mean(results [,2],na.rm=TRUE)

#Monte -Carlo SD

sd(results [,1],na.rm=TRUE)
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