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ABSTRACT

In this thesis, we consider inter-robot communication in robot convoying set-

tings. In particular, we investigate passive communication for radio-denied environ-

ments by using whole-body gestures performed by an underwater robot to provide

cues regarding future actions. We first focus on visually detecting and tracking the

3D pose of autonomous underwater vehicles to enable robust multi-robot convoying.

We follow the approach of tracking-by-detection, which combines the robust, drift-

free nature of object detection with the temporal consistency of tracking algorithms.

Our approach relies on a multi-output convolutional network that jointly predicts the

target robot’s presence in the image, its 2D bounding box, and its 3D orientation.

This, combined with camera intrinsic parameters and prior knowledge of the robot’s

scale, allows us to recover the full 6-degree-of-freedom pose of the target robot. We

then leverage the tracked pose to develop a visual communication protocol whereby

information is transmitted through codewords: a series of actions executed by the

swimming robot. These sequences are chosen to optimize robustness and transmis-

sion efficiency given the observability, natural activity of the robot and the frequency

of different messages. The observer robot then uses an adaptation of classical de-

coding methods to infer the transmitted message. To train our network, we rely

exclusively on synthetic images and we test our system on underwater datasets in

both pool and ocean settings. Our evaluation demonstrates successful generalization

of both the learned tracking model and the visual communication protocol to real

underwater footage of the target robot.
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ABRÉGÉ

Dans cette thèse, nous considérons la communication inter-robot dans les en-

vironnements de convoi de robots. En particulier, nous étudions la communication

passive pour les environnements sans radio en utilisant des gestes du corps entier

exécutés par un robot sous-marin afin de fournir des indices sur les actions à venir.

Nous nous concentrons d’abord sur la détection visuelle et le suivi de la pose 3D

de véhicules sous-marins autonomes afin de permettre un convoyage multi-robot ro-

buste. Nous suivons l’approche du suivi par détection, qui conjugue la nature robuste

et sans dérive de la détection d’objet et la cohérence temporelle des algorithmes de

suivi. Notre approche repose sur un réseau convolutionnel à plusieurs sorties qui

prédit conjointement la présence du robot dans l’image, son cadre de délimitation

2D et son orientation 3D. Ceci, combiné aux paramètres intrinsèques de la caméra

et à la connaissance préalable de la taille du robot, nous permet de récupérer la pose

complète à 6 degrés de liberté du robot. Nous exploitons ensuite la pose suivie pour

développer un protocole de communication visuelle dans lequel de l’information est

transmise via des mots de code (ou codewords): une série d’actions exécutées par le

robot nageur. Ces séquences sont choisies pour optimiser la robustesse et l’efficacité

de la transmission en fonction de l’observabilité, de l’activité naturelle du robot et de

la fréquence des différents messages. Le robot observateur utilise ensuite une adap-

tation des méthodes de décodage classiques pour déduire le message transmis. Pour

entrâıner notre réseau, nous nous basons exclusivement sur des images synthétiques

et nous testons notre système sur des jeux de données sous-marins en piscine et en
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océan. Notre évaluation démontre la généralisation réussie du modèle de suivi ap-

pris et du protocole de communication visuelle sur de vraies images sous-marines du

robot.
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CHAPTER 1
Introduction

1.1 Introduction

We present a vision-based robot-to-robot communication system that leverages

the rich geometric information recovered from 3D target tracking to unambiguously

transmit messages through gesturing in multi-robot convoying systems. The com-

munication protocol relies on a robot executing a set of gestures that are in turn

decoded by another robot from their visual appearance.

Humans commonly use gestures in various situations to communicate intent or

issue commands when other forms of communication are difficult. Some examples

include aircraft marshalling in aircraft ground handling as shown in Fig. 1–1, hand

gesturing by scuba divers or cyclists signalling their trajectory to drivers and fellow

cyclists. This behavior is not exclusively human and has been extensively studied in

the animal kingdom. One notable example is the ”waggle dance” used by bees to

communicate locations of food sources (von Frisch, 1993).

With the increased deployment of robots in constrained environments and rise

of robots with a variety of non-compatible custom hardware, gesturing can be seen

as a suitable universal communication method adaptable to many robotic settings.
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Figure 1–1: Airport marshaller requesting the aircraft to face him.

The gestures we use, represented by a sequence of pose configurations, are

treated as codewords in a code which accounts for different transmission costs asso-

ciated with each pose configuration. The code must be prefix-free (Huffman, 1952;

Dumitrescu, 2006) to ensure no codeword can be a prefix of another codeword, avoid-

ing ambiguity when decoding any message linearly. We formulate a generic commu-

nication protocol and design it to be applicable to any robotic setting where agents

are capable of executing different discernible pose configurations. These pose config-

urations can be executed by a subset of the robot such as with an arm or the robot’s

entire body. In this thesis, we limit our examples to the latter and we focus our

application and experiments in an underwater setting, where robot communication

is naturally more constrained and other communication methods require additional
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Figure 1–2: A typical convoy of two Aqua robots in position for visual communica-
tion.

hardware. In Fig. 1–2, we show two Aqua robots in a standard convoy setup where

visual communication can be used by the leading robot.

Our solution employs tracking-by-detection: the relative position and orientation

of a robot is detected at every frame, and integrated temporally via filtering. The

detector we employ is a convolutional neural network (CNN) trained on synthetic

images rendered using a CAD model of the robot. The trained network jointly uses

regression to compute an estimate of the robot’s orientation as a quaternion, as well

as a tightly fitting bounding box around the robot in the image plane. Given the

camera’s intrinsic parameters and the absolute scale of the robot, we can use the

detected orientation and bounding box to directly estimate the 3D translation of the
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target robot. In this way we acquire the full 6-degree-of-freedom (6-DoF) pose of the

target.

Training a convolutional network typically requires a large training dataset, but

manually labelling 3D ground truth on real images is labor-intensive, and requires

the labeller to learn to use sophisticated software tools. Thus, we opt to generate our

entire training data synthetically using a custom-designed underwater environment

designed in Unreal game development engine (EpicGames, 2018). We follow the

domain randomization approach of Tobin et al. (2017), and generate a large variation

of non-photo-realistic training images featuring the robot rendered with a variety of

textures and on different background patterns. We then test our trained model on a

test set of both synthetic and real images containing hand-labeled 3D poses. Only

having to annotate test set images substantially reduces our data management cost.

Overall, our detection method and training regime are widely applicable to many

multi-robot convoying systems, since a CAD model of the robot is usually readily

available and the only on-board sensor needed is a calibrated RGB camera.

We validate our system on the Aqua family of amphibious hexapod robots (Sat-

tar et al., 2008) shown in Fig. 1–4. Aquas are highly manoeuvrable and rely on six

actuated flippers to traverse underwater environments. Navigation and gesturing are

handled by the robot’s 3D autopilot (Meger et al., 2014) which relies on an on-board

inertial measurement unit (IMU) and pressure sensor to perform closed-loop control

over requested depth, attitude and thrust. Aqua’s controllers and sensor suite are

operated within the Robot Operating System (ROS) (Quigley et al., 2009) frame-

work. Our visual tracker and decoder rely on images captured by the front-facing
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Figure 1–3: Overview of the Aqua robot and functional block diagram showing its
main computers, cameras, and motors. Diagram was first published in Manderson
and Dudek (2018).

RGB camera and runs at frame rate on the robot’s laptop-grade dual-core Intel i3

CPU and Nvidia GPU Jetson TX2 (Manderson and Dudek, 2018). An overview of

the Aqua robot and a functional block diagram is shown in Fig. 1–3.

We conduct experiments both in simulation using the synthetic marine envi-

ronment designed in our custom Aqua simulator (Manderson et al., 2018) built on

Unreal and on real footage of the robot collected underwater in both marine and pool

settings. In our simulated runs, we analyze the robustness of our tracker by varying

the complexity of the trajectory executed by the target robot. For evaluating our

communication system, we analyze the visual decoder’s performance on both static

synthetic and real footage of the robot executing messages and on swimming trajec-

tories which include messaging. Experiments on real images show that our learned

model successfully generalizes and can be utilized to reliably implement multi-robot

convoying underwater with inter-robot communication support.
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(a) An Aqua robot pictured underwater in
Barbados

(b) An Aqua robot simulated in Unreal En-
gine

Figure 1–4: The Aqua robot: a highly maneuverable amphibious hexapod.

1.2 Contributions

The contributions of this thesis are summarized in the following list:

1. The design, associated analysis and evaluation of a visual tracking system that

relies on a pose estimation network and enables robot convoying.

2. The design, associated analysis and evaluation of a gesturing-based visual sys-

tem for inter-robot communication which relies on an optimal prefix-free en-

coding of poses and a visual decoder that is robust to ambiguity through a

flexible framework for assigning variable transmission costs.

3. The design, associated analysis and evaluation of a joint 3D object detec-

tion and pose estimation multi-output CNN network trained on synthetic data

which generalizes to real images with no manual modifications.
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1.3 Thesis Outline

This thesis is organized as follows. In Chapter 2, we present previous work

in visual tracking, pose estimation, synthetic to real learning as well as robot and

visual communication. In Chapter 3, we introduce our 3D visual tracking pipeline.

This pipeline includes our custom joint 3D object detection and pose estimation

network, our synthetic training datasets generated in Unreal and a summary of its

performance. In Chapter 4, we present our visual communication algorithm with an

overview of our prefix-free encoding of poses, visual decoder algorithm, the collected

synthetic and real datasets collected to evaluate the system and our experimental

results. Finally, Chapter 5 summarizes the system’s performance and limitations

and presents avenues for future work. This thesis and its tables and figures are taken

from work published by the author (Koreitem et al., 2018) and unpublished work

currently in review (Koreitem et al., 2019). The author is a full contributing and

lead author to both of these contributions.



CHAPTER 2
Background and Related Work

This thesis builds on related work from visual tracking, 3D object detection,

synthetic training, robot and visual communication and work in information theory

on optimal prefix-free encoding. A brief background summary of each of those areas

are discussed in the following sections.

2.1 Visual Tracking and Convoying

There is extensive literature on visual tracking. Motion-based methods have

been shown to be robust to slow moving objects (Jepson et al., 2003) and many

model-free tracking algorithms are designed to cope with unforeseen object instances.

For example, in Yu et al. (2008), the algorithm is initialized with a bounding box

around an arbitrary object to be tracked, and the algorithm is expected to adapt

to the target’s appearance changes throughout tracking. Our approach is closer to

model-based tracking, in which a model of the target is built ahead of time. Like

Manz et al. (2011), we use a CAD model of the target to train a discriminator but

instead of using hand-designed edge and vertex features, we train a convolutional

neural network (CNN) to recognize the target. Early non-CNN based methods for

8
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learning features for recognition used principal components analysis (Jugessur and

Dudek, 2000).

Our method falls in the category of tracking-by-detection. The target is first

detected independently at every frame, and the detections are then integrated via

tracking. This approach has been shown to effectively combine the temporal con-

sistency of tracking with the robust, drift-free nature of object detection (Andriluka

et al., 2008).

In the domain of visual convoying, fiducial markers have been added to the target

to make detection and tracking easier (Schneiderman et al., 1995a). However, this

approach is often susceptible to the marker going out of view, so we opt to directly

model the natural appearance of the target as in Giesbrecht et al. (2009). Explicit

signalling behaviors executed by the target has also been exploited to improve the

efficiency and robustness of multi-robot convoying (Dudek et al., 1995).

In Shkurti et al. (2017), Shkurti et al. demonstrate an underwater convoying

system based on tracking-by-detection that operates on the 2D position of the robot

in the image plane. In this work we track the 3D pose of the target, which allows

us to potentially leverage a more geometrically detailed motion model to better

predict the motion of the target, ultimately resulting in more robust tracking. This

is becoming especially relevant as Manderson et al. have successfully demonstrated

complex exploration behaviors on the Aqua robot in which the robot stays close to

corals while avoiding collision and barren uninteresting regions (Manderson et al.,

2018). Convoying under this setting requires visually tracking the robot while it
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carries out complex maneuvers and understanding the heading of the robot through

its orientation can be very beneficial.

Other approaches to tracking include the use of CNNs in 2D (Hong et al., 2015),

sparse vectors (Bao et al., 2012) and other techniques (Kristan et al., 2015), typically

based on 2D image models as well as unified 2D CNN frameworks for joint object

detection and tracking (Feichtenhofer et al., 2017). As in prior work (Kendall et al.,

2015; Koreitem et al., 2018), we regress the orientation as a quaternion using CNNs.

Using 3D pose information offers the distinct advantage of capturing the implicit

intent of the robot as it positions itself to take a certain heading. This results in a

better predicted motion model and thus more robust tracking. The notion of tracking

for motion prediction and estimation has been considered in several contexts and has

many applications (Ren and Beard, 2004; Leonard and Durrant-Whyte, 1991; Tribou

et al., 2015; Dudek and Jenkin, 2010; Schneiderman et al., 1995b; Ren and Beard,

2004).

2.2 3D Object Detection

Recently there has been substantial interest to move beyond 2D bounding box

detection and to infer 3D information about objects in the image. While earlier work

relies primarily on detecting hand-crafted features such as local feature descriptors

e.g. SIFT (Lowe, 2004), HOG (Dalal and Triggs, 2005) in the image and matching

them to features on known 3D object models (Collet et al., 2009) (Lim et al., 2013)

(Fidler et al., 2012), newer methods often leverage convolutional networks, either to

directly learn a mapping from pixels to pose information (Song and Xiao, 2016) (Li

et al., 2017), or to use features produced by the network to facilitate subsequent pose
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optimization (Izadinia et al., 2017). A variety of object representations have been

investigated, including 3D object centroids (Tobin et al., 2017), 3D bounding boxes

(Song and Xiao, 2016), 3D skeletons (Li et al., 2017), and CAD model instances

retrieved from a database (Izadinia et al., 2017).

In the target tracking domain, we are able to assume that the physical dimen-

sions of the target is known. We leverage this in our detection method, wherein we

train a network to output only the target’s orientation and 2D bounding box; we

then combine this information with the known scale to directly optimize the target’s

translation. As in Kendall et al. (2015), we regress the orientation as a quaternion.

2.3 Training on Synthetic Data

Modern object detectors based on convolutional networks are heavily dependent

on abundant training data. Compared to traditional detection tasks that typically

output only 2D bounding boxes in the image plane, 3D pose detection introduces

an expanded output space, which leads to even greater data requirements and much

more labor-intensive ground truth annotation procedures. Highly sophisticated soft-

ware tools are typically required to characterize the 3D pose of objects that appear

in images, which adds to the challenge of creating sufficient training data (Xiang

et al., 2016).

To sidestep the need for data labelling, there has been considerable interest in

using synthetic images rendered from CAD models as training data (Su et al., 2015)

(Movshovitz-Attias et al., 2016) (Sun and Saenko, 2014). Peng et al. find that a pre-

trained network that is fine-tuned on synthetic data can better adapt to new tasks

than directly training a network for the new task using few labeled real images (Peng
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et al., 2015). We take a similar approach by bootstrapping our network with weights

from the VGG network trained on ImageNet (Simonyan and Zisserman, 2014), and

retraining on synthetic data.

We are also inspired by the work on domain randomization by Tobin et al.

(2017), which demonstrates that when a model is trained on a large set of unrealistic

images that exhibit sufficient variability, the real world can simply be considered as

another variation. This approach is especially relevant for the underwater domain

since factors such as light absorption and reduced visibility caused by suspended

sediment are difficult to simulate. Our synthetic training data renders the target

robot using a variety of textures and an assortment of background patterns in order

to help our learned model generalize to real images.

2.4 Robot and Visual Communication

In marine environments, radio communication is often impractical or impossible

and several authors have examined interesting alternatives (Sutantyo and Levi, 2015;

Wang et al., 2017; Doniec et al., 2010). In Sattar et al. (2007), the authors employ

Fourier tags in order to explicit allow communication over the visual channel. In con-

trast, whole-body motions and activities are widely employed in the animal kingdom

and have also inspired several robotics efforts (Dudek et al., 2007, 1995; Nishimura

and Schwager, 2018; Jones and Andersson, 2013; Landgraf et al., 2011; Srinivasan,

2010; Baillieul and Özcimder, 2012; Raghunathan and Baillieul, 2008; Corke et al.,

2007)

Several authors have considered the utility and nature of gesture-based commu-

nications in robotics (Feil-Seifer and Mataric, 2005; Kortenkamp et al., 1996). There
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has also been some prior work on allowing robots to communicate via body move-

ment (Nakata et al., 1998) or mutual observation (Rekleitis et al., 2003; Roumeliotis

and Rekleitis, 2004). In (Dudek et al., 1995), gestures performed by a target robot

are used to communicate heading in a robot convoying setting. While the robot

behavior is important, a key aspect of this scheme is specifically engineering a set

of body markings (helical drawings) for the robot that wishes to communicate. In

addition, the vocabulary that is encoded is very simple and does not include any

provision for error correction.

While most of these methods rely on additional hardware, our system benefits

from RGB cameras, typically available on most platforms. In an underwater set-

ting, our method also benefits from being diver-friendly as gesturing is much more

interpretable by divers already occupied with their current dive plan.

2.5 Optimal Prefix-free Codes

Finding a minimal cost prefix-free code in which the encoding alphabet features

r symbols of unequal letter costs is a well-studied problem (Karp, 1961; Golin and

Rote, 1998; Bradford et al., 2002). Such an encoding represents a generalization of the

classical Huffman coding problem (Huffman, 1952) of constructing a binary (r = 2)

prefix code which minimizes the expected transmission cost. The generalization

relaxes the binary requirement for the encoding alphabet and introduces variable

costs for each encoding character (codebit). This is desirable when it is preferable

to minimize the average number of codebits and when codebits of the encoding

alphabet have a varied transmission cost such as in the Morse code {·,−}, as seen

in Fig. 2–1. In our setting, the variable cost is also an excellent way of penalizing
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Figure 2–1: Morse code is an encoding scheme used in telecommunication which uses
sequences of two signals of different transmission duration.

pose configurations that are energy intensive, harder to reliably detect and more

ambiguous during day-to-day operation of the robot.

Karp (1961) was the first to study the problem and proposed an exponential time

integer linear programming solution. Several methods to reduce algorithm run-time

of designing optimal prefix-free codes with unequal letter costs have been proposed

but all impose constraints on the problem. In Bradford et al. (2002), the authors

restrict the letter costs to a binary set. In Golin and Rote (1998), the authors propose

a dynamic programming algorithm to build the tree in a top-down fashion, where

the costs are integers. We implement the latter algorithm in our method due to its

flexibility with the cost requirements. The algorithm runs in polynomial time but it
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is still unclear whether the general problem with non-integer costs is polynomial-time

solvable or NP-hard.



CHAPTER 3
Visual Tracking

In this chapter, we present our vision-based approach for tracking the 3D pose

(translation and orientation) of an autonomous robot in underwater environments.

Our tracker enables robust multi-robot convoying, which has been studied exten-

sively in the robotics research community under a variety of settings ranging from

self-driving cars (Schneiderman et al., 1995a) to aerial drones (Lugo et al., 2013), but

relatively little in the marine context. In the context of automated surveillance of

marine ecosystems, convoying enables the deployment of highly configurable hetero-

geneous robot teams in which each robot collects data using different sensing devices.

In contrast to deploying a single highly-capable robot, this distributed approach is

more scalable and less prone to a single point of failure (Dudek et al., 1995).

While prior work has used fiducial markers on the target to simplify the visual

detection task (Schneiderman et al., 1995a), our method relies solely on the natural

appearance of the target. In comparison, our approach overcomes difficulties due

to the marker not always being visible as the target robot is seen from a variety of

poses. Moreover, in contrast to previous methods that require expensive hardware

such as mobile beacons (Chandrasekhar et al., 2006) or acoustic sampling (Corke

16
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et al., 2007) to achieve localization underwater, we capitalize on commodity RGB

cameras.

3.1 Joint Object Detection and Pose Estimation

We define a multi-output convolutional network that consists of a robot clas-

sifier, an orientation regressor (in quaternion form) and a bounding box detector.

We train the network on monocular images generated synthetically using the robot’s

CAD model and various backgrounds constructed in the Unreal (EpicGames, 2018)

game engine. The classifier simply outputs a probability p of the image contain-

ing the robot. The orientation regressor head of the network outputs the robot’s

orientation as a normalized quaternion vector q = (w, x, y, z). The bounding box

detector outputs a vector b outlining the diagonal coordinates of the bounding box:

(xmin, xmax, ymin, ymax). These coordinates are normalized with respect to the width

and height of the image to lie in [0, 1]. Note that directly regressing 3D relative

translation will prevent the trained network from operating on cameras with varying

focal lengths, so we compute it instead from the estimated orientation and bounding

box, as we will discuss later.

We design our pose estimation network using the VGG16 architecture as a base-

line as it has been demonstrated to perform well as a feature extractor, namely on

visual classification tasks (Simonyan and Zisserman, 2014). VGG is a convolutional

neural network architecture which achieves top-5 visual classification accuracy on

the ImageNet dataset (Deng et al., 2009), an image dataset of over 14 million images

hand-annotated with over 20 000 classes. While our task is not classification exclu-

sively, the VGG network acts as a good starting feature extractor. We use VGG
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weights from pre-training the VGG network on ImageNet. Our images are resized

to (224, 224, 3) to match ImageNet’s scaling. We discard the VGG fully connected

layers (FC) and augment the network for orientation regression with four FC-ReLU

layers, the bounding box regression with two FC-ReLU layers and classification with

two FC-ReLU layers.

The loss function we minimize combines the binary cross-entropy for the classifi-

cation, the L2-norm of the four coordinates of the bounding box and the L2-norm of

the orientation quaternion with lambda scale factors to balance the losses. Formally,

it is defined as:

L = λb ∗ Lb + λq ∗ Lq + λc ∗ Lc (3.1)

where the L2-norms are defined as

Lq =
1

2n

∑
x

||qgt − q||2 (3.2)

and

Lb =
1

2n

∑
x

||bgt − b||2 (3.3)

and the binary cross-entropy is defined as

Lc = −
∑
x

(pgt log(p) + (1− pgt) log(1− p)) (3.4)

To obtain the relative translation t∗ of the robot, we solve the following mini-

mization problem:
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t∗ = argmin
t
‖b− π(q, t)‖2 (3.5)

where b = (xmin, xmax, ymin, ymax) is the detected bounding box, and π(q, t) =

(xπmin, x
π
max, y

π
min, y

π
max) is the projected bounding box of the robot at translation t

with orientation q. Note that computing π(q, t) requires that the camera’s intrinsic

parameters and the robot’s absolute scale are known.

During convoying, we run a Kalman-Filter (Welch and Bishop, 1995) based

tracker on the follower robot to integrate the detected translation and orientation

of the leading robot and the bounding box over time. We use a PID controller to

interface with the autopilot on the follower so that it maintains a fixed pose relative

to the leader while both robots swim.

3.2 Evaluation

We first evaluate the pose estimation network in isolation on a real underwater

test set by measuring mean angle errors across the dataset as well as their distribu-

tions over angles. We then evaluate the tracking performance by analyzing the mean

orientation errors across entire trajectories of varying complexity using the Kalman-

Filtered pose and bounding box estimates. We do this on both synthetic and real

trajectories.

3.2.1 Pose Estimation Dataset

Our pose estimation dataset consists of a mixture of synthetic images generated

with Unreal Engine (EpicGames, 2018) and real manually annotated underwater im-

ages collected during field trials at McGill University’s Bellairs Research Institute in
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Barbados. Unreal Engine is a free-to-use C++ game development engine developed

by Epic Games, first released in 1998. More recently, it has become a popular plat-

form to develop simulations because of its high flexibility and powerful rendering and

physics engines. We restrict the training set to only use synthetic images generated

with Unreal. This setup highlights our goal of avoiding dependence on the tedious

manual annotation process by relying on easily generated synthetic data for training.

Our experiments display the network’s ability to generalize to real images.

Figure 3–1: Image samples from synthetic training data generated using Unreal.
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Unreal synthetic dataset

The training data consists of 50 000 synthetic images generated in Unreal (EpicGames,

2018) with 45 lighting variations (including varied angle and intensity), 2 robot chas-

sis materials (matte and shiny), 2 custom parts variations on the robot on 4 sets of

backgrounds, including a simulated custom-designed underwater world, a simulated

pool, and random textures. We opt to use synthetic images exclusively because of

our ability to generate a much larger dataset as opposed to using real footage and

also in order to have an unbiased separate real dataset for evaluation.

In order to increase the realism of the simulated environments, professionally

made photo-scanned assets and textures are used from Quixel Megascans (Quixel,

2018), including rocks, coral, sand, fish, and plant life. The simulated underwater

environment used for both dataset generation and evaluation are inspired by previous

footage and data from field trials in Barbados and is approximately 0.5km by 0.5km.

An image of the environment is presented in Fig. 3–2. The simulated pool environ-

ment is created to match the dimensions of the McGill University pool. Visual effects

within Unreal Engine such as Exponential Height Fogs and Post Process Materials

are added and tuned to mimic the visibility and hues of the real environments.

The Aqua CAD model is randomly placed in the field of view using a randomly

generated pose with [−85◦, 85◦] bounds on the three rotation axes (roll, pitch, yaw)

and [0.5m, 2.5m] bounds on the robot’s distance from the camera. These bounds

represent the realistic range of operation of the robot during convoying tasks. Image

samples of the training data are shown in Fig. 3–1.
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Figure 3–2: Aqua in the simulated underwater environment generated in Unreal.

Real underwater dataset

Our test set consists of 1 000 real images collected during underwater field trials

off the west coast of Barbados. The images are captured from diver-held GoPro

cameras and an Aqua robot’s on-board camera. We annotate the 6-DoF pose of

the robot in each of these images using a custom-built annotator, which allows the

user to mark keypoints on the robot assigned from the CAD model. The annotator

then iteratively fits a wireframe to the robot using its known dimensions in order to

generate the ground truth pose.

3.2.2 Trajectory Generation

Unreal synthetic trajectories

In order to evaluate our tracking performance in simulation, we generate a

dataset of synthetic videos showcasing the robot performing a variety of trajecto-

ries in the Unreal underwater environment. This allows us to quickly compare our
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tracker’s projected trajectory to the Aqua’s actual swimming path without the te-

dious process of annotating real underwater footage frame by frame.

In Unreal Engine, we use the custom-designed underwater world described in

Sec. 3.2.1 as the backdrop with a gamepad-controlled simulated Aqua model. About

2 meters behind the Aqua model, we place a simulated camera that serves as the

tracking camera. Default settings in Unreal Engine cause the camera to translate

and rotate perfectly with the object it is following, so we introduce artificial lag that

allows the target Aqua to partially escape the camera frame, but to never fully leave

the camera view. We then record four distinct videos of the Aqua maneuvering the

simulated underwater environment from the point of view of the tracking camera,

restricting different rotation axes for each. This provides us with trajectories show-

casing the robot rotating only along a) yaw, b) yaw and pitch, c) yaw and roll, and

finally d) roll, pitch, and yaw. Along with each saved frame from the tracking cam-

era, ground truth information including the 6-DoF pose and bounding box of the

target Aqua and the pose of the camera are stored as a ROS bag file and can be

replayed on the real robot if necessary.

Real underwater trajectories

We generate a dataset of underwater trajectories from footage captured by an

Aqua of a secondary target Aqua in a multitude of underwater environments in

Barbados. Unlike the synthetic trajectories, these real trajectories do not display

a high amount of variability across the roll and pitch axes and do not include as

much clutter. We opt to have higher variability in our simulation to increase the

robustness of the system and future-proof our system against future applications.



24

In each video, we annotate the ground truth 6-DoF pose every 10 frames using

our custom annotator and evaluate the trajectory errors over the annotated frames.

These trajectories are used in the next section to evaluate tracking performance.

3.3 Experimental Results

We summarize results from evaluating both the 3D detection and pose estima-

tion in isolation on our real images test set and the tracking performance on synthetic

and real trajectories.

Figure 3–3: Sample detections and pose estimates on test images.

3.3.1 Pose Estimation

Qualitative detection results showcasing the wireframe of the robot overlaid on

test images are presented in Fig. 3–3. The images used for this evaluation are real
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underwater images collected in Barbados from the test set described in Sec. 3.2.1.

We summarize the performance of our model on the test set in Tab. 3–1. The table

shows that pitch dominates the rotational error. The mean rotation error represents

the mean angle difference between the predicted and ground truth quaternions over

the dataset.

Table 3–1: Base metrics evaluated over the real underwater test set collected in
Barbados, referred to in Sec. 3.2.1.

Mean Rota-
tion Error

Mean Roll Er-
ror

Mean Pitch
Error

Mean Yaw Er-
ror

23.51◦ 7.29◦ 12.05◦ 5.87◦

We also measure the recall of the orientation estimate from the test set over

a number of θ thresholds, 30◦ usually being the default. Here, recall is simply the

number of angle predictions that have a rotation error of less than threshold θ over

the entire dataset. Our results are presented in Tab. 3–2.

Table 3–2: Orientation estimate recall for different θ thresholds.
60◦ 45◦ 30◦ 22.5◦ 15◦ 7.5◦

Recall 0.89 0.79 0.57 0.40 0.21 0.03

A plot of a randomly sampled subset of angle errors relative to their respective

angle value shows a concentration of errors below the 20◦ mean orientation error.

While pitch dominates the rotational error as per Tab. 3–1, Fig. 3–4 shows that

pitch errors tend to jump after the 50◦ pitch angle. This might be explained by the

loss of view of some important key features of the robot’s back. As the robot’s top

plate is plain aluminum with very little variation, our network might find it more
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difficult to extract enough features to distinguish pitch angles beyond this mark. The

behavior is slightly less present with the yaw axis and almost non-existent in the roll

axis which in particular maintains a good view of the back plates of the robot.
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Figure 3–4: Angle errors vs angle values for yaw/pitch/roll from a subset of the test
set.

3.3.2 Trajectories

We measure the root mean squared error (RMSE) of the translation and the

orientation of the target’s Kalman-filtered pose against the ground truth trajectories

that were generated in Unreal or annotated manually. For synthetic trajectories, we

restrict various axes of rotations in order to understand the impact of certain axes

on the orientation RMSE. The results of our evaluation are summarized in Tab. 3–3.
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We note that our calculated translation results in an average error of < 1m while

orientation RMSE is on average < 30◦, consistent with our test set evaluation.

As mentioned in Sec. 3.2.2, the real trajectories display a much lighter amount

of clutter and much more predictable paths with less variations across the roll/pitch

axes. This explains the overall inferior performance on the synthetic trajectories,

which include fish animations, heavy rocks and corals and a variety of textures.

However, the table demonstrates our system’s ability to robustly track the robot in

real underwater trajectories despite never training on real images.

Table 3–3: Kalman-Filtered pose errors over synthetic and real trajectories. The
tracking camera is located within a range of [0.5m, 2.5m] from the target.
Sequence Sequence

Length (s)
Translation
RMSE (m)

Orientation
RMSE

Roll
RMSE

Pitch
RMSE

Yaw
RMSE

Synth Y Only 68 0.60 21.76◦ 10.92◦ 8.44◦ 19.20◦

Synth Y/P 75 0.61 32.86◦ 29.11◦ 25.5◦ 17.37◦

Synth Y/R 70 0.79 21.65◦ 10.63◦ 14.52◦ 14.60◦

Synth Y/P/R 83 1.29 31.97◦ 26.57◦ 16.69◦ 16.93◦

Real BBD 1 70 0.72 17.59◦ 11.87◦ 4.59◦ 12.11◦

Real BBD 2 40 1.17 14.88◦ 11.74◦ 5.87◦ 7.12◦

Real BBD 3 30 0.40 20.96◦ 14.23◦ 7.19◦ 14.40◦

To better visualize the trajectories, we include plots of the ground truth tra-

jectories and tracked trajectories overlaid on the underwater environment for the

synthetic trajectories in Fig. 3–5. It is important to note that the tracking robot was

not using the pose estimates entirely to follow the target in this case. It is pre-set to

follow the robot within a certain window as explained in Sec. 3.2.2.
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(a) Yaw only trajectory (b) Yaw and roll trajectory

(c) Yaw and pitch trajectory (d) Yaw, pitch and roll trajectory

Figure 3–5: Plotted ground truth (green) and tracked (red) trajectories.



CHAPTER 4
Visual Communication

In this chapter, we leverage the rich geometric information recovered from 3D

target tracking for gesture-based communication. In robot convoying, (Dudek et al.,

1995) leverages gestures performed by the target to communicate its intended heading

to the follower, which makes the overall convoy more robust. Inspired by this line

of work, we design a visual communication system capable of transmitting generic

messages based on 3D gesturing.

Our visual communication system consists of two main components: 1) an op-

timal prefix-free encoding of poses where each codebit corresponds to an orientation

bin with a defined transmission cost and 2) a visual decoder which relies on our

CNN-based orientation regressor to detect the 3D orientation of the robot to in turn

decode the codeword.

4.1 Optimal Prefix-Free Encoding of Poses

We consider the problem of efficiently encoding a set of messages based on robot

pose configurations. These messages can include urgent announcements, commands,

and parameters to be passed between robots deployed in the field on a collaborative

task. An example list of messages are:

29



30

• HELP

• DANGER

• LOW BATTERY

• U TURN

• START MAPPING

• GO TO DIVER X

• DESCEND X METERS

• STOP

Let n be the number of messages we wish to encode and communicate using an

encoding alphabet Σ = {β1, ..., βr} which consists of r codebits.

Each codebit βi is associated with a transmission cost ci = T (βi) and a codeword

cw = {βi1βi2 ...βik} - a list of codebits from Σ. A codeword has a transmission cost

equivalent to the sum of the costs of its individual codebits:

T (cw) =
k∑
j=1

cij (4.1)

A code W is defined as the set of codewords cw1, ..., cwn and is considered prefix-

free if no codeword cw ∈ W is a prefix of another. For example, a code containing

codewords {β1, β1β4, β3β3} is not prefix-free as the first two codewords share the

same prefix. We can then define the cost of a code as the expected transmission cost

of a codeword:

C(W ) =
∑
i<=n

T (cwi) · pi (4.2)

where pi is defined as the probability of transmitting message i.

In order to choose codebits of the encoding alphabet Σ, the orientation space of

the robot is binned. The roll, pitch and yaw axes are each discretized into bins of

size θ◦r , θ
◦
p, θ

◦
y respectively. We then take the combinations of the bins from each axis
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to represent the codebits. Individual axes can be ignored as needed depending on

the robot capabilities. In this paper, we choose to forego the roll axis to maintain a

smaller number of codebits which is sufficient for our needs. For an example list of

codebits, please see Tab. 4–1.

Table 4–1: Example list of 9 codebits generated from binning of the yaw and pitch
axes with θp = θy = 60◦ and associated angles.

Codebit Roll (◦) Pitch (◦) Yaw (◦)

β1 0 -60 -60
β2 0 0 -60
β3 0 60 -60
β4 0 -60 0
β5 0 0 0
β6 0 60 0
β7 0 -60 60
β8 0 0 60
β9 0 60 60

To assign codewords to messages, we sort the messages by their probability, and

assign higher probability messages to codewords with lower transmission cost.

We define a transmission cost function that is based on three constraints:

T (βi) = p(βi) · ē(βi) · d(βi) (4.3)

where we define p, ē and d as:

• p(βi): the probability of a codebit in regular operation. This value allows us

to ensure high probability codebits are penalized and not used in our code so

that gestures are not confused with regular operation. In order to obtain this
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probability distribution, we run our pose estimator on footage of the robot in

operation and extract the histogram of orientation bins.

• ē(βi): the normalized mean error of the orientation regressor when executed on

the corresponding bin of the codebit. This helps avoid using difficult to detect

codebits in our encoding.

• d(βi): an application-specific value which can represent the time it takes to

execute a codebit, or other engineering restrictions in maintaining a certain

codebit, also normalized to [0, 1]. This penalizes gestures that are difficult to

execute.

where the input to each of these measures is the bin that corresponds to βi as

defined previously. Based on the calculated transmission cost, a cut-off could be

used to eliminate certain codebits from the encoding alphabet. A histogram showing

the probability of codebits in regular operation is presented in Fig. 4–1.

Given our list of codebits and their associated costs, we implement the optimal

prefix-free dynamic programming algorithm presented by (Golin and Rote, 1998) to

obtain the code-tree that minimizes the total cost of the prefix-free code. An example

code tree is presented in Fig. 4–2.

4.2 Visual Decoding of Poses

Using the codewords from the tree generated in Sec. 4.1, we can now execute

each encoded message on the robot. In order to simplify the decoding algorithm, we

insert a neutral codebit βz between every codebit in a codeword. This serves as a

marker to register when every codebit is executed. For example, codeword {β1β2}

becomes {β1βzβ2βz}. Fig. 4–3 shows Aqua executing the codeword {β4βzβ2βz}
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Figure 4–1: A histogram showing the codebits probabilities captured from 5 minutes
of footage of regular operation of the robot. We discourage the use of high probability
codebits in message encoding to prevent the false detection of gestures during regular
operation.

In order to get an orientation estimate, we rely on our pose estimator from

Chapter 3 trained on our training datasets as presented in Sec. 3.2.1. Once we

have an orientation estimate, we proceed to bin said estimate according to the bins

chosen in Sec. 4.1. To account for pose estimation errors and viewpoint variations,

the codebits are detected if they are within a bin of the target codebit angles with

the bin limits offset from the center by [−20, 20].

In order to decode an executed codeword, we obtain the filtered pose estimate on

every frame and bin the orientation estimate. We then check if the bin corresponds

to any codebits of the encoding alphabet. If we have detected a valid codebit that is
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Figure 4–2: An example optimal prefix-free code tree using the codebits from Tab. 4–
1 with r = 8 codebits and n = 15 messages. The leaves of the tree (highlighted in
gray) represent the final codewords that make up the code. The cost associated
with each codebit is defined in the following list: c = [1, 1, 1, 2, 2, 2, 3, 3] for codebits
[β4, β6, β8, β2, β3, β3, β9, β1, β7] respectively. The costs are the equivalent of the depth
level of the tree.

not identical to the previous detected ones, we check if this codebit βt is a prefix of

any of our codewords. If we are already tracking a candidate sub-codeword candt−1,

we instead check if candt = candt−1 ∪ βj is a prefix of a codeword in code W . If it is

a codeword in W , we have detected a message.

The prefix-free nature of the code means that codewords are non-ambiguous and

the transmission costs used to generate the code help to ensure that codewords are

not confused with regular pose configurations that occur on a normal execution of

the robot.

Note that this algorithm assumes the observer is mostly following the target and

looking at it from a limited viewpoint window, as shown in the training datasets of

the pose estimator. The observer can have translation offsets but generally assumes

the target is executing messages with a local frame of reference that is relative to its
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Figure 4–3: An Aqua robot performing codeword β4β2 in the pool with neutral
codebits βz in between.

camera. To better handle smaller viewpoint variations expected from any moving

observer, we update the codebit bin centers according to the latest neutral codebit

detected and its offset from its original neutral codebit center up to [−10◦, 10◦].

4.3 Experimental Results

We evaluate our system on both synthetic and real footage of the Aqua executing

codewords both statically and mid-swimming. We present our dataset collection

setup and the performance on these datasets in the following sections.

4.3.1 Visual Encoding Dataset

To evaluate our visual encoder, we prepare a dataset containing the Aqua ex-

ecuting codewords in both real pool trials and in the Aqua simulator (Manderson

et al., 2018). To create this testing dataset, we record both generated synthetic videos
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of a simulated robot and real videos of the physical robot executing the motions that

correspond to a subset of the codewords generated in Fig. 4–2.

Simulated gestures using Unreal engine

The synthetic testing data is comprised of recordings of the simulated robot

executing motions for each of the codewords listed in Tab. 4–2 within the realistic

simulated underwater environment, totalling 50 recordings per codeword.

To execute the motions, a controller within the Aqua simulator is fed a target

orientation offset, θβi , corresponding to a codebit along with the time allowed, ∆t,

for the Aqua to reach the target orientation.

Once the target is reached, there is a pause for approximately 1.5 seconds before

returning to the neutral orientation and continuing onto the next codebit or code-

word. This simple, idealized dynamics model gives a solid baseline for comparing

real world examples.

Variations to each execution of a codeword include a) a random starting orien-

tation within the simulated underwater environment with bounds of [−10◦, 10◦] for

roll, [−20◦, 20◦] for pitch, and [−180◦, 180◦] for yaw, b) random additions to the

target orientation for each axis with bounds of [−5◦, 5◦], and c) changes in speed of

the robot through random scaling of the amount of time allotted for each motion,

normally 2 seconds, with bounds of [.8, 1.2]. Each random variable is chosen with

uniform distribution.

Images of the synthetic Aqua performing a particular codebit in Unreal are

presented in Fig. 4–4.



37

Figure 4–4: Synthetic Aqua robot positioned according to codebit β1 (left) and β4
(right).

Gestures in the pool

In this section, we describe the generation and recognition of gestures using

the actual Aqua robot in a swimming pool. By working in a pool, we can evaluate

the possibility of our methods in the field and in a more realistic context while

still maintaining a domain simple enough in its logistics, and where data can be

systematically collected.

The resulting testing dataset used to evaluate visual encoding in this real world

setting consists of, on average, 10 recorded examples of the Aqua executing gestures

in the McGill University pool for each of the codewords listed in Tab. 4–3.

In order to execute the gestures corresponding to codebits on the physical Aqua,

a custom PID autopilot controller (Meger et al., 2014) is utilized. Given a target

orientation offset for a chosen codebit, the autopilot controller causes the Aqua to



38

rotate, stopping when the IMU reading indicates the Aqua is within 5 degrees of

the target angles. To prevent the Aqua from drifting and accidentally appearing to

execute an undesired motion, the controller maintains the neutral orientation for 3

seconds before a new motion is attempted, where the neutral orientation is considered

to be the orientation at which the Aqua starts executing a gesture.

Trajectories in simulation

An important evaluation of our method involves decoding messages from a robot

as it moves around its environment in regular operation. This evaluation ensures that

messages aren’t missed while performing basic navigation and ensures the decoder’s

ability to discern regular operation from messaging. In order to test our visual de-

coder’s performance in simulation, we generate a dataset of 10 synthetic videos show-

casing the Aqua executing gestures intermittently as it explores the custom-designed

underwater world described in Sec. 3.2.1. Each recording features 1 codeword re-

peated 5 times at random over the course of approximately 2 minutes of navigation.

To generate this data, we place a simulated camera approximately 2 meters

behind a simulated Aqua model. Default settings in Unreal Engine cause the camera

to translate and rotate perfectly with the object it is following, so we introduce

artificial lag to the camera’s rotation to simulate the delay that would occur in a real

trial as either a human or robot attempts to follow a gesturing Aqua. The videos

recorded by the simulated camera are stored in a ROS bag along with ground truth

information, including the 6-DoF pose and bounding box of the target Aqua and the

pose of the camera.
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4.3.2 Static Visual Decoding

In order to simplify our deployment and encoding alphabet, we forego the roll

axis and generate codebits by using 3 bins with θy = 60◦ and θp = 60◦, restricting

the orientation space to {−90◦, 90◦}. The corresponding codebit list is shown in

Tab. 4–1. We assign the neutral codebit to be βz = β5.

To derive the transmission cost of each codebit, we plot the probability of codeb-

its in Fig. 4–1 and a randomly sampled subset of angle errors relative to their re-

spective angle value in Fig. 3–4.

The dynamic programming algorithm we implement from (Golin and Rote, 1998)

optimally encodes n messages in O(nC+2) time and O(nC+1) space where C is the

highest integer cost assigned to a codebit. We restrict our evaluation on a simpler cost

list c = [1, 1, 1, 2, 2, 2, 3, 3] for codebits [β4, β6, β8, β2, β3, β3, β9, β1, β7] respectively.

This cost list is an integer cost list which is reflective of the order of the transmission

costs as opposed to their values. We generate the optimal prefix-free code-tree for

r = 8 and n = 15, as shown in Fig. 4–2 in roughly 4h of runtime.

To measure our decoding performance, we evaluate our decoder on the Unreal

and real underwater gestures datasets described in Sec. 4.3.1. We generate confusion

matrices for each dataset and summarize precision and recall values in the matrices

in Tab. 4–2 and Tab. 4–3.

On synthetic data, the visual decoder achieves a mean precision of 0.96 and

mean recall of 0.91. Note that the requirement for the robot to return to a neutral

codebit βz results in some missed detections of certain messages, as can be seen in

the False negatives (FNs) column.
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Table 4–2: Confusion matrix for codewords executed in Unreal. Class-specific recall
values are highlighted in grey.

β4β4 β4β2 β4β1 β4β7 β2 β1 β3 β7 FNs
β4β4 0.94 0. 0. 0. 0. 0. 0. 0. 0.06
β4β2 0.04 0.82 0. 0. 0.08 0. 0. 0. 0.06
β4β1 0.02 0.06 0.84 0. 0. 0.04 0. 0. 0.04
β4β7 0. 0. 0. 0.98 0. 0. 0. 0.02 0.
β2 0. 0. 0. 0. 0.94 0. 0. 0. 0.06
β1 0. 0. 0. 0. 0.04 0.86 0. 0. 0.10
β3 0. 0. 0. 0. 0. 0. 1. 0. 0.
β7 0. 0. 0. 0. 0. 0. 0. 0.90 0.10
Precision 0.94 0.93 1.00 1.00 0.89 0.96 1.00 0.98

Table 4–3: Confusion matrix for codewords executed in the pool. Class-specific recall
values are highlighted in grey.

β4β4 β4β2 β2 β1 β6 β8 FNs
β4β4 0.67 0. 0. 0. 0. 0.17 0.17
β4β2 0. 0.67 0.17 0. 0. 0. 0.17
β2 0. 0. 0.73 0. 0. 0. 0.27
β1 0. 0. 0.38 0.25 0. 0. 0.38
β6 0. 0. 0. 0. 0.83 0. 0.17
β8 0. 0. 0. 0. 0. 0.82 0.18
Precision 1.00 1.00 0.67 1.00 1.00 0.95

On real data, our visual decoder achieves a mean precision of 0.94 and mean

recall of 0.66. An explanation for the particularly worse performance of the system

in the real pool on codebit β1 is the imperfect execution of it by the physical robot.

Codebit β1 featuring both yaw and pitch variations were found more likely to over-

shoot and undershoot on pitch. Fine-tuning of the autopilot controller for such tasks

can help mitigate these errors. Most notably, codebit β1 executions tend to not pitch

enough and were at times more closely executed as codebit β2. Slight overshoot in

the yaw axis also lead to more false negatives than expected as the robot skipped
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the neutral codebit at times which is supposed to signal the end or transition of a

codeword. These errors in executions are typical of real systems deployed in the field.

A way to tackle these limitations is to use codebits that are more spread out in the

orientation space of the robot to allow some room for error.

4.3.3 Visual Decoding on Swimming Trajectories

We evaluate our system on synthetic swimming trajectories of the Aqua in order

to better understand the performance of the visual decoder in a deployment setting.

The dataset, described in Sec. 4.3.1, consists of typical swimming trajectories with

messages communicated at random times. The goal of this evaluation is to ensure

the reliability of the code even when the robot performs a variety of swimming

poses. We summarize the precision/recall values on these trajectories in Tab. 4–4.

Common false negatives are codebits β2 and β8 which represent basic left and right

yaw configurations. As shown in Fig. 4–1, these codebits have a high probability

of occurrence in regular deployment and our simplified cost structure did not fully

capture this cost. Using the more refined transmission cost defined in Sec. 4.1 would

help mitigate this issue and ensure these codebits are used less often individually. One

can also introduce a cut-off on the codebit probability p(βi) term of the transmission

cost and not rely on codebits with high probability.
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Table 4–4: Precision/Recall of the decoded messages on synthetic trajectories.
Trajectory Codeword Counts Precision Recall
1 β4β4 5 0.83 1.
2 β4β2 5 0.83 1.
3 β4β1 5 0.67 0.80
4 β4β7 5 0.71 1.
5 β2 5 0.83 1.
6 β1 5 0.71 1.
7 β8 5 0.67 0.80
8 β3 5 1. 1.
9 β7 5 0.83 1.
10 β8 5 0.63 1.

Mean 0.77 0.96



CHAPTER 5
Conclusion

5.1 Summary

In this thesis, we presented a tracking-by-detection method for tracking the 3D

pose of an autonomous underwater vehicle with an aim to improve and enable multi-

robot convoying and developed a vision-based communication system between robots

in radio-denied environments to robustify robot convoying.

Our tracking method relies on a 3D object detection and pose estimation multi-

output convolutional neural network that jointly predicts the target robot’s presence

in the image, its 3D orientation and the bounding box that encapsulates the target.

Combining this information with the robot’s known scale and the camera intrinsics,

we compute an estimate of the 3D translation of the robot in order to obtain the

full 6-degree-of-freedom pose. We trained exclusively on synthetic training data

generated in Unreal engine in order to bypass the tedious task of 3D pose manual

annotations. Our system demonstrates the ability to transfer its performance from

the learned model to a real underwater dataset and achieves a 23.51◦ mean rotational

error over the entire dataset. Using our pose estimation network, we then apply a

Kalman-filter on the pose and bounding box and evaluate our system on a variety of

43
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synthetic and real trajectories. In particular, we restrict various axes of rotation on

the synthetic trajectories in order to isolate the errors across the axes. Our system

achieves a mean translation RMSE of 0.79m and mean orientation RMSE of 23.09◦

over all the trajectories.

We then leverage our pose estimation network to develop a visual communica-

tion system that uses optimal variable-length prefix-free codes reliant on the robot

performing various full-body based pose configurations or gestures. This communi-

cation system minimizes the likelihood of false positive detection through a defined

transmission cost function that seed the selection of the encoding pose configurations

used. We demonstrate our system’s ability to decode messages on synthetically gen-

erated static and swimming sequences with a mean precision and recall of 0.96 and

0.91 respectively, and on real data with a mean precision and recall of 0.94 and 0.66.

5.2 Limitations

It is important to note that our pose estimation network is only trained on a

limited range of poses as described in Sec. 3.2.1, specifically the half-sphere where

the Aqua robot is facing forward away from the camera. We impose this restriction

as we are mainly focused on convoying applications where the back of the robot is in

the view at all times, as seen in Fig. 5–1. In order to generalize the pose estimation

network, some work needs to be done to ensure symmetry is handled correctly in

symmetrical robots such as the Aqua. In addition, this restriction extends to the

visual decoder whereas the bins are predefined and assumed to be from the same

half-sphere mentioned.
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Figure 5–1: A convoy of two Aqua robots showcasing the typical view of a follower
Aqua.

5.3 Future Work

While we focus our system on full-body gestures, the pose estimation network

can be extended to detect pose configurations of different subsets of a robot. For ex-

ample, in a dual-arm mobile manipulator platform such as the Baxter robot (Guizzo

and Ackerman, 2012) by Rethink Robotics, a visual decoder could be applied only

to the arm of the robot to recognize human-like arm-based gesturing.

As mentioned above, augmenting the visual decoder to be fully viewpoint in-

variant is left as future work.

Another interesting extension is the more formal support of detection and pose

estimation on images with a multitude of robots present. Leveraging the 3D pose

detected on different robots can allow us to track each robot independently and
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correctly decode messages from more than one robot and increase the collaboration

potential.

For Aqua, we expect to use this technique in underwater multi-robot convoying

missions to signal important messages and achieve more robust tracking, as well as

in more complex joint activity scenarios where diver intervention is preferably kept

at a minimum. More generally, the aforementioned limitations and suggestions for

improvement present many future avenues for exploiting visual gesturing for human-

friendly inter-robot communication across many robotic settings and domains. In

particular, communicating intent will be one key factor in the better integration of

robots as they continue to augment the human workforce and enabling body-language

is one exciting step in that direction.
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