
MASTER-SLAVE REPLICATION,

FAILOVER AND

DISTRIBUTED RECOVERY

IN POSTGRESQL DATABASE

By

Mabrouk Chouk

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

AT

MCGILL UNIVERSITY

MONTREAL, QUEBEC

JUNE 2003

© Copyright by Mabrouk Chouk, 2003

MCGILL UNIVERSITY

DEPARTMENT OF

COMPUTER SCIENCE

The undersigned hereby certify that they hâve read and

recommend to the Faculty of Graduate Studies for acceptance a thesis

entitled "Master-Slave Replication, Failover and Distributed

Recovery in PostgreSQL Database" by Mabrouk Chouk

in partial fulfillment of the requirements for the degree of

Master of Science.

Dated: June 2003

Supervisor:
Dr. Bettina Kemme

Readers:

To my family.

IV

Table of Contents

Table of Contents v

1 Introduction 1

2 Overview of Database Concepts 5

2.1 Transactions 5

2.2 Database Replication 6

2.2.1 Database replication alternatives 6

2.2.2 Basic replication stratégies 7

2.2.3 Replication in commercial Systems S

2.2.4 Our work and current research 9

2.3 Database Recovery 10

2.3.1 Central recovery 10

2.3.2 Distributed recovery 13

3 The PostgreSQL Database System 16

3.1 Introduction 16

3.2 PostgreSQL Architecture 16

3.3 PostgreSQL Transaction Processing 19

3.4 PostgreSQL MVCC Concurrency Control

Protocol 20

3.5 PostgreSQL Write Ahead Log 21

3.5.1 Benefits of the WAL 22

3.5.2 Implementation of the WAL 22

v

3.5.3 PostgreSQL recovery with WAL 22

3.5.4 The WAL record format 23

3.5.5 The WAL interface 24

3.6 PostgreSQL commands 25

3.6.1 The IDU commands 26

3.6.2 The sélect command 26

3.6.3 The utility commands 26

4 The Spread Group Communication System 35

4.1 Introduction to Group Communication Systems 35

4.2 Virtual Synchrony 36

4.3 Extended Virtual Synchrony 37

4.4 Spread 38

4.4.1 Spread architecture 38

4.4.2 Spread Reliable Multicast Services 39

5 Synchronous Master-Slave Replication 42

5.1 Introduction 42

5.2 Replication in Postgres-RFR 43

5.2.1 The replication cycle 44

5.2.2 Replication at the master 45

5.2.3 Replication at the slaves 46

5.3 Implementation Détails 47

5.3.1 Replication State Machine 47

5.3.2 Replication levels and the writeset format 51

5.3.3 Replication message format 52

5.4 Replication by command 53

vi

6 Failover 6 3

6.1 Introduction 63

6.2 Failover Requirements "4

6.2.1 The configuration file 64

6.2.2 The System State 6 5

6.2.3 The élection of a new master 66

6.3 Implementation détails 67

6.3.1 Configuration file 67

6.3.2 Failover control structures 69

6.3.3 System configuration knowledge 70

6.3.4 Failover Séquence of Events 71

6.3.5 Failover control messages 74

6.3.6 Failover and active transactions 75

7 Distributed recovery 77

7.1 Introduction 77

7.1.1 Overview of distributed recovery 78

7.2 System-wide Transaction Identification 80

7.2.1 The UD properties 80

7.2.2 GTI solutions 81

7.3 Transaction information logging 83

7.3.1 Logging Alternatives 84

7.4 Distributed Recovery Steps 85

7.4.1 Establishing a distributed recovery communication channel . 85

7.4.2 Recovering site self synchronization 88

7.4.3 Switching from passive to active join 90

7.4.4 Election protocol of a peer site 92

7.4.5 More than one site is recovering 94

7.4.6 Sending the missed transactions to the recovering site 95

7.4.7 Control transition: from recovery to failover 96

7.5 Implementation détails 98

vii

7.5.1 Postgres-RFR modified architecture 98

7.5.2 The distributed recovery protocol 98

7.5.3 Postgres-RFR distributed recovery log 103

7.5.4 Logging séquence 104

7.5.5 Self synchronization of the recovering site 108

7.5.6 Distributed recovery messages 109

7.5.7 The tasks of the replication manager in our protocol 110

8 Conclusion and Future Work 116

Bibliography 119

vm

IX

Résumé

Les sujets traités dans cette thèse sont la duplication (replication) synchrone et de

type maître esclave (master-slave) de bases de données, la récupération-après-échec

(failover) du site-maître et le rétablissement-distribué (distributed recovery) d'un

groupe de serveurs de bases de données.

Notre solution de duplication permet la mise-à-jour (update) seulement sur le site-

maître. Cependant, les requêtes sont permises sur tous les sites. La mise-à-jour des

transactions est envoyée à tous les sites avant d'être commises (committed) sur le

site-maître. Pour ce faire, on exploite les sémantiques des systèmes de communi

cation de groupe. Dans ce travail, on garantit toujours l'existence d'un site-maître

dans le groupe, et cela est grâce à la récupération-après-échec dynamique du site-

maître.

Notre solution de rétablissement distribué assure la cohérence des bases de données

de tous les sites. Tout site introduit dans le groupe suivra un protocole où il va

chercher toutes les transactions qui ont été traitées avant son introduction, ou

pendant qu'il était en panne. Un nouveau site est prêt à partager les tâches du

système uniquement après avoir accompli avec succès la récupération-après-échec et

le mécanisme de rétablissement-distribué. La base de données utilisée dans notre

travail est PostgreSQL.

Abstract

The subject of this thesis is synchronous master-slave database replication, failover

and distributed recovery for a cluster of database servers.

Our replication solution allows updates on the master, and queries on ail sites.

Updates of transactions are sent to ail sites before they are committed on the master.

To do this, we take advantage of the semantics of group communication Systems.

With failover, there is always a master in the group. Distributed recovery ensures

that a site that has been introduced in the System brings its own copy of the database

to be consistent with the rest of the other databases. It does this by getting ail the

transactions it missed from another site while it was not in the group. It is only

after having successfully carried out failover and recovery mechanisms that a new

site is ready to share in the load of the system.

XI

Acknowledgements

There are a number of people that helped me realize this work, some with technical

expertise and some with 'not-so-technical' support, yet of paramount importance.

First and foremost, I would like to extend my deepest gratitude to my supervisor,

Dr. Bettina Kemme, for her constant stream of ideas that helped me finish this

work. She never stopped impressing me with her intelligence and her expertise. I

am also very grateful for her patience and motivation. I especially like to thank her

for encouraging me in those times where I felt that I was not capable of finishing this

work. Spécial thanks go to my research group members, namely Huaigu \Yu, Yisheng

Liu, Jiafeng Wu, Qifang Zheng, Xueli Li and Yi Lin. We had numerous meetings

where lots of concepts and ideas, around my work and theirs, were discussed. I hâve

learned tremendously in those meetings.

Other people greatly affected my motivation and enthusiasm to see this thesis come

to a successful conclusion. Thèse people did not help me technically, but provided

me with endless encouraging and support, although without knowing it sometimes.

In particular, I would like to extend my admiration to my mother Salha Ouaja. She

is the most patient, warm and caring individual I hâve known. Deep thanks also to

Khaled, Bannour, Dalila, Naziha, Naima and Fethi.

Spécial thanks go to my friends and relatives. They contributed to the successful

finishing of this work. In particular, I would like to thank Khalil, Hatem, Akram,

Anis, Slim and Nouri. Also, I would like to thank Mathieu, Yahid, Maud, Jean

Marie-eve, Caroline, Denisa and Ayako.

Chapter 1

Introduction

Over the last décade or so, we hâve witnessed tremendous growth in distributed

database Systems. Led by the explosive growth of computer processing power and

storage, distributed database Systems became widely spread. They hâve replaced

the traditional central and legacy databases. A key to this paradigm shift is the

concept of database replication. Database replication is the process of maintaining

a defined set of data in more than one location. Each copy of the database is called

a replica, and each may contain the full or a partial set of the complète set of data.

The replicas usually réside on différent machines, interconnected by a local area

network or a wide area network. An important issue in database replication is data

consistency, that is, that the différent replicas hâve the same value despite updates.

It requires to propagate changes performed on one replica to the other replicas. If

updates are allowed to be performed on any copy in the system, concurrent updates

on différent replicas hâve to be synchronized.

Database replication can be achieved using a master-slave approach, where the mas

ter is the coordinator of replication and the other sites are the slaves. Transactions

that do change data are applied only on the master, however transactions that

don't change data can be applied on ail sites. The master has to send the updates

of the transactions to the slaves, which hâve to apply them to their local copy of

the database when they receive them.

Because of the important rôle of the master in this work, mechanisms should be

put in place to ensure that there is always a master up and running. Failover in a

distributed System refers to the dynamic replacement of a new master if the old one

has failed.

Failover is motivated by the need for System reliability and availability. The impor

tance of thèse motivations vary widely from system to another. In some Systems,

they are of critical importance, and failure to ensure them may resuit in catastrophic

results. Examples include aircraft flight-control Systems, hospital patient monitor-

ing Systems, and financial on-line transactional applications. Thèse applications

require the underlying computer Systems to continue providing their services even if

the system endures hardware or software failures. Up to very recently. organizations

resorted to custom designing their fault tolérant Systems to ensure high reliability

and availability. However, as it became known, customized Systems are invariably

very costly, in terms of building and maintaining. They also do not track technology

trends.

In a distributed environment, databases can fail and recover. When a database in a

replicated database system fails, the database system has to be able to isolate the

failed server from the rest of the group. The process of excluding the failed site

should hâve little or no effect on the behavior of the system. When this site is ready

to rejoin the group, mechanisms should be in place to re-introduce the site back

into the group without interruption to the database system. There are two distinct

types of recovery mechanisms, namely central recovery and distributed recovery.

In central recovery, a database reverts to the last consistent state just prior to the

failure. This is done as follows: For each transaction executed prior to the failure

either ail or none of the changes of the transaction are reflected in the database

state. Transactions for which the user received the commit before the crash are

guaranteed to be reflected in the database state, and the changes of an aborted

transaction are guaranteed not to be reflected in the database.

Distributed recovery is the process by which the recovering site acquires the trans

actions it has missed while it was down. It is the process that brings the recovering

site to hâve the same data as the sites that are up and running. Distributed recovery

is différent from cental recovery. In central recovery, a database brings its copy to

a consistent state, regardless if other sites are présent in the group. In distributed

recovery on the other hand, the database has to bring its own copy to be identical

to the copies of the other sites. Central and distributed recovery are both necessary

and complementary to completely recover a particular site.

The objective of this thesis is to provide a practical solution to master-slave repli

cation, failover and distributed recovery. In the first step, we provide protocols to

the above concepts. We base our protocols on récent work in the research field

of distributed databases. We then provide a practical solution in the form of an

implementation to test the feasibility and correctness of our protocols. The imple

mentation part is carried out on the PostgreSQL database, version 7.2. We hâve

adopted the name Postgres-RFR to refer to the modified version of this database

that reflects the addition of the three new modules: replication, failover and dis

tributed recovery. This implementation provides helpful insights into the practical

issues of turning theoretical protocols into a working system. We were able to adjust

our approach to the spécifies of PostgreSQL without any conceptual changes to the

database. One important aspect in our work has been to find a modular design

that minimizes the changes that are necessary to the original system. In fact, the

majority of our implementation could be added to PostgreSQL as separate modules

and only few modules of PostgreSQL had to be changed. With this, we believe that

our approach can be integrated into a variety of différent Systems.

A key to the correctness of our solutions is the underlying group communication Sys

tem. To handle the large amount of communication between the database servers,

we used the Spread Group Communication System. Spread provides valuable ser

vices in the form of delivery guarantees, such as reliable message delivery, and group

memberships. Thèse services are of great importance to ensure the feasibility and

correctness of our protocols. Using Spread, we were able to focus on the correctness

of our protocols and were able to abstract the underlying communication semantics.

The présent thesis is structured as follows: Chapter 2 outlines important database

concepts that are pertinent to replication, recovery and failover. Chapter 3 descnbes

the modules of PostgreSQL database that will be modified to accommodate our

implementation. Chapter 4 gives an overview of the group communication system

used. Chapter 5 gives détails about the replication solution. Chapter 6 describes

failover mechanisms in détail. Chapter 7 is concerned about distributed recovery.

Chapter 8 gives final remarks and concludes this report.

Chapter 2

Overview of Database Concepts

In this chapter, we introduce important database concepts. Thèse concepts will

lay the foundation for our work in the following chapters. We will pay particular

attention to the requirements of replication and distributed recovery.

2.1 Transactions

A transaction is a séries, or list, of actions. The actions that can be executed by

a transaction include reads and writes of database objects. A transactions can also

be defined as a set of actions that are partially ordered, that is the relative order

of some of the actions may not be important. In addition to reading and writing,

each transaction must specify as its final action either a commit (i.e. complètes

successfully) or abort (i.e. terminate and undo ail the actions carried out thus far).

Transactions may also begin their actions with a begin (i.e. the point where the

transaction starts). An end is similar to a commit, and a rollback is similar to

abort.

Transactions must also satisfy four important properties. Thèse properties are some-

times referred to as the ACID properties.

1. Atomicity: opérations of ail transactions occur as an un-dividable unit.

2. Consistency: transactions hâve to be executed on a consistent database, and

will keep it that way.

3. Isolation: Execution of one transaction is isolated from that of another.

4. Durability: If a transaction commits, its effects persist, even in the case of

system failure (not necessarily média failures).

2.2 Database Replication

Database replication is a well studied field [7] with many contributions from the

research community [4] [5] [9] [15] [17] [18] [19] [20] [29] [30] , as well as from com

mercial research and development [14].

Replication is used for two purposes, namely to enhance system performance and

fault tolérance. Reading local data and therefore balancing the load on the system

usually improves performance. With replication, the data on available sites are ac

cessible even in case of failures. However, replication mechanisms for fault-tolerance

often lack performance and scalability. On the other hand, efficient and scalable

replication mechanism often lack fault-tolerance. This means that often only one

goal is achieved and the other is violated.

2.2.1 Database replication alternatives

Experts in the database industry classify database replication into four distinct

catégories depending on when replication occurs and where the updates are allowed

to take place [14].

Transaction updates are replicated in two différent ways: before the transaction

commits or after. Eagcr replication, also called synchronous replication, is the pro

cess of replication that takes place before the transaction commits, whereas lazy

replication, also called asynchronous replication, is the process of replication that

takes place some time after the commit.

Replication could also be designed so that updates are allowed only on one replica,

and read opérations allowed on ail sites. This is called primary copy replication.

The database server where the updates take place is usually called the master or

the coordinator, and the other database servers the slaves. Database replication

can also be designed so that updates take place on every replica, in which case, the

replication is denoted as update-every where replication or multi-master replication.

Figure 2.1 summarizes thèse alternatives.

Primary Copy

(Master)

Update-Everywhere

(Multi-master)

Eager

(Synchronous)

Updates allowed on one replica only
Updates propagated belore transaction commits

Updates allowed on ail replicas
Updates propagated belore transaction commits

Lazy

(Asynchronous)

Updates allowed on one replica only
Updates propagated after transaction commits

Updates allowed on ail replicas
Updates propagated after transaction commits

F i g u r e 2 .1 : Replication Schemes

2.2.2 Basic replication stratégies

One of the reasons for using replication is to increase database availability [7]. By

storing data at multiple sites, the database can operate even if some sites hâve failed.

In an idéal world where sites never fail, the database system can easily manage

replicated data. It translates each data read opération to a read on one copy of that

particular data, and translates a data write opération to a write on ail copies of the

data. This is the Read-One-Write-AU, or ROWA approach to replication.

Unfortunately, sites can fail and recover. This poses a problem for the ROWA ap

proach, because it requires that the database system processes each write opération

by writing into ail copies of that data, even if some hâve failed. If the database Sys

tem were to adhère to this write ail requirement, it would hâve to delay processing

writing into data until ail data copies are available.

Since there will be times when some copies of data are down, the database system will

not be able to efficiently satisfy the ROWA write ail requirement. For this reason,

there exists a more flexible approach to replication, namely Read-One-\v rite-All-

Available, or ROWAA approach to replication. The risk with the ROWA A approach

is that data copies might be out of date just after a site recovers from a failure. For

this reason, transactions are prevented from reading copies from sites that hâve

failed until those copies are brought up to date.

There exists another approach to replication, namely the quorum oriented replica

tion. In this approach, each site is assigned a non-negative weight. Each site knows

the weight of ail other sites. A quorum is any set of sites with more than half the

total weight of ail sites. Only the one component which has a quorum of sites is

allowed to process a transaction.

2.2.3 Repl icat ion in commercial Systems

Various database replication solutions exist in the industry. The major companies

that hâve replication products are Sybase, IBM, Oracle and Lotus Notes [1].

Sybase product is called Sybase Replication Server. It is used primarily to avoid

server bottlenecks by moving data to the clients. To maintain performance, asyn-

chronous, primary copy replication is used. The changes are propagated on a trans

action basis, and after the transaction commits. Capture of changes is done using

the log to minimize the impact on the running server. Replication takes place on a

subscript ion basis, where sites subscribe to copies of data, and changes are propa

gated from the primary as soon as they occur [32].

IBM has a similar product, IBM Data Propagator. The goal of the replication

mechanism is information warehousing and management, where complex views of

the data are provided for décision-support. Replication is asynchronous, primary

copy and there are no explicit mechanisms for updating. The IBM product uses a

capture/apply mechanism where the replicas hâve to request the changes from the

primary site to keep up to date. The system supports sophisticated features such

as sophisticated data replication, sophisticated optimizations for data propagation

and sophisticated views of the data [16].

Oracle product is called Oracle Symmetric Replication. The primary goal of replica

tion hère is fiexibility. It tries to provide a platform that can be tailored to as many

applications as possible. Asynchronous replication is the default but synchronous

replication is also possible. It provides several approaches to replication and the user

must sélect the most appropriate to the application. Changes to a copy are captured

by triggers, which exécute a remote procédure call (RPC) to a local queue and it

inserts the changes in the queue. Thèse changes take the form of an invocation to a

stored procédure at the remote site. Queues follow a FIFO discipline and a 2PC is

used to guarantee that the call makes it to the queue at the remote site [27].

Lotus Notes implements asynchronous lazy update everywhere replication in an

épidémie environment, where updates are propagated after the transaction commits.

Lotus allows to specify what to replicate to minimize overhead. It is a coopérative

environment, where the goal is data distribution and sharing. Consistency is largely

user defined and not enforced by the system [26],

2.2.4 Our work and current research

Our work is based on research in the field of database replication in gênerai as

outlined in 2.2, and specifically on the ideas presented in [18] and [20].

In [20], the authors develop and implement an eager update everywhere replication

tool that provides performance and scalability. Thèse are accomplished in three

steps. First, a theoretical framework, including a suite of différent replica control

protocols is presented. In a second step, the feasibility of the approach is validated

both by means of a simulation study and the intégration of the approach into an

existing database system. In a third step, an évaluation is presented regarding issues

like recovery and partial replication.

The basic mechanisms behind those protocols are to first perform a transaction

locally, deferring writes or performing them on shadow copies. At commit time ail

updates are sent to ail copies in a single message. Those updates are sent using a

total order multicast provided by group communication Systems (Chapter 4). By

10

obeying this total order whenever transactions conflict, the global serialization order

can be determined individually at each site.

In order to accelerate the exécution of the updates at the remote sites, the physical

values of the changed data items can be sent, which can simply be applied without

re-executing the opération.

2.3 Database Recovery

The goal of database recovery is to restore the failed database to the most récent

consistent state, both centrally and in a distributed manner. Database Systems

invariably undergo différent kinds of failures, including system failures and média

failures. Database experts refer to system failures when talking about recovery. The

solutions are mainly based on hardware redundancy. Therefore, média failures will

not be treated in this report.

There are two distinct types of recovery mechanisms, central recovery and dis

tributed recovery as introduced in Chapter 1. In central recovery, a database brings

itself to the last consistent state just before failing. Distributed recovery is the pro

cess by which the recovering site brings itself to a consistent state with respect to

the other sites.

2.3.1 Central recovery

In this report, failure occurs when the processors of the failed server stop working,

or when the actual process(s) of the database server crashes. Thèse are generally

referred to as system failures. The main memory of the failed site can be unrecov-

erable with a system failure. Its stable storage, however, remains intact. When the

server rejoins the group, parts of the data might be lost, and therefore the database

has to undergo central recovery to bring its own copy to a consistent state [7].

Central recovery is usually performed by a dedicated component of the database

called the recovery manager. The recovery manager is invoked as soon as the

11

database starts up. The recovery manager of the database guarantees two of the

important four ACID properties of databases (Section 2.1), mainly atomicity and

durability [7].

The recovery manager has therefore two main responsibilities as illustrated in Figure

2.2.

1. Aborted transactions that are still reflected in the database must be undone (T2

in the figure), and ail transactions that were active at the time of failure must

be aborted (T3 in the figure). This is the UNDO phase.

2. Committed transactions that were not propagated to stable storage must be

redone (Tl in the figure). This is the REDO phase.

System
Crash

CD
E5H

rmn

Tl
[" v

11 ri 11 ni i

Committed transaction

Aborted transaction

Unfinisfied transaction

T2
mmmmmi

T3

M
M

Il
ll
ll
ll
l

llllll llllllll

[i i imimimimimimi i i iMi imiP

Time
^ 1

F i g u r e 2.2: Transactions in the UNDO/REDO recovery protocol

Buffering and storing transaction changes

A page in the database field is a unit of information storage and retrieval, a dirty

page refers to a page whose changes are not yet reflected on stable storage. The

12

tasks of the recovery protocol dépend highly on how and when the database system

flushes dirty pages to stable storage. There are two considérations hère. The hrst

is whether any changes are flushed, i.e. forced to disk, before commit. The second

is whether a transaction is allowed to commit before its changes are flushed. This

gives the following choices [28]:

1. No-steal: pages modified by a transaction must be kept in the buffer up until

the end of the transaction. The buffer must be large enough to accommodate

dirty pages of even the longest transactions.

2. Steal: dirty pages can be written to the stable database before the end of the

transaction.

3. No-force: a transaction is allowed to commit even if its updates are not

written to stable storage. This avoids a séquence of very expensive disk writes.

4. Force: a transaction is allowed to commit only after its updates are written

to stable storage.

Database Systems strive to use the steal, no-force approach because of its efficiency

and optimum use of storage resources. The force approach, when compared to the

no-force one, has a poor response time. This is due to the fact that the database

server has to force to disk every write opération. However, the force approach

provides better and a straight forward way to ensure durability. In the same analogy,

the buffer manager steals frames from uncommitted transactions to enhance resource

usage efficiency. However, the price to pay hère is the increasing complexity to ensure

atomicity.

A central log is basically a read/append data structure maintained on stable storage

to survive failures. When a transaction updates an object, the database stores the

old version of the object, or before-image in database terminology. When a transac

tion aborts, the database copies the before-image to the current object location in

the database. This is usually referred to as UNDO, i.e. the changes of uncommitted

13

transactions are rolled back. When a transaction commits, or successfully updates

an object, the database stores the new version of the object, or the after-image.

This new version can be used by the database to REDO the changes of that par

ticular transaction during recovery. Therefore, the database stores two versions of

an object in the log, the before-image and the after-image. Additionally, when a

transaction starts, a begin record is appended to the log; and when a transaction

commits/aborts, a commit/abort record is appended to the log.

Types of recovery

Database Systems perform différent kinds of recovery, at system startup and during

normal processing. There are three scénarios when a database performs recovery of

transactions:

• Local UNDO during normal processing: whenever a transaction aborts, the

updates of that transaction are undone by installing the before-images.

• Global UNDO at restart after a system crash: transactions that were aborted

before the crash should be undone (an abort record will be found in the log),

and transactions that were active at the time of the crash should also be undone

(In this case, neither an abort nor a commit record will be found in the log).

Whenever pages on the disk hâve updates of the above two transactions, thèse

updates hâve to be undone by installing the before-images.

• Partial REDO at restart after system crash: transactions that committed

before the crash (a commit record will be found in the log). Whenever pages

on the disk do not hâve the updates of such transactions, the updates should

be redone by installing the after-images.

2.3.2 Distributed recovery

In a distributed recovery phase, a site has to seek support from another site to

get the transactions that it has missed while it was down. Distributed recovery

14

is discussed in détail in chapter 7. In this section we will introduce the necessary

principles to distributed recovery.

Transferring data from one site to another has been discussed in [19]. This paper

provides a discussion of online reconfiguration in replicated database Systems using

group communication. In that paper several protocols for database supported data

transfer are analyzed.

Distributed transactions are executed on more than one site. During a transaction,

some sites might fail. However, the effects of that transaction are all-or-nothing.

This is called atomic commitment. The main protocol to ensure atomic commitment

of distributed transactions is Two-Phase Commit (2PC) protocol [28]. This protocol

uses a spécial site that is called the coordinator that coordinates the communication

between the sites.

The Two-Phase Commit Protocol

Two-phase commit is an élégant protocol that ensures the atomic commitment by

insisting that ail sites involved in the exécution of a transaction agrée to commit

the transaction before its effects are made permanent. Figure 2.3 illustrâtes this

protocol. Initially, the coordinator writes a "begin-commit" record in its stable

storage, sends a "prépare" message to ail participant sites, and enters the WAIT

state.

When a participant receives a "prépare" message, it checks if it could commit the

transaction. If so, the participant writes a ready record in stable storage, sends a

"vote-commit" message to the coordinator and enters the READY state; otherwise

the participant writes an abort record and sends a "vote-abort" message to the

coordinator, If the décision of the site is to abort it can forget about that transaction,

since an abort décision serves as a veto (i.e. unilatéral abort). After the coordinator

has received a reply from every participant, it décides whether to commit or to

abort the transaction. If even one participant lias registered a négative vote, the

coordinator has to abort the transaction globally. So it writes an abort record,

15

Coordinator Participant

V R E V ^ .

„„ovg
N j O ^ . -

VOTE-COMMIT

write
abort

„.covi$?-ov.qS.fcV...--

(ABORTW----"—

ACK

Figure 2.3: The 2PC protocol

sends a "global-abort" message to ail participants sites, and enters the ABORT

state; otherwise, it writes a commit record, sends a "global-commit" message to

ail participants, and enters the COMMIT state. The participants either commit

or abort the transaction according to the coordinator's instructions and send back

an acknowledgement, at which point the coordinator terminâtes the transaction by

writing an end-of-transaction record to stable storage.

Chapter 3

The PostgreSQL Database

System

3.1 Introduction

PostgreSQL is an object-relational database management system. The first versions,

called Postgres, were developed at the University of California at Berkeley by Profes-

sor Michael Stonebraker. PostgreSQL is a descendant of this original Berkeley code.

It is now maintained by the open-source community. It is continuouslv upgraded

and new features are added. The current version is PostgreSQL 7.3. It supports

the SQL language and is a fully fledged database system. It has wide spread use

because of its rich capabilities, including numerous modem database features such

as almost ail SQL constructs, including subselects and transactions. Furthermore,

it has enriched functionality like user-defined types and functions.

3.2 PostgreSQL Architecture

PostgreSQL attributes its success mainly to its modem layer-based and modular

architectural design. At the highest level, it has a process-per-user client-server

16

17

architecture. The main process, i.e. the one that listens for client connections,

is called the postmaster, or the database server. When a client, or a frontend in

PostgreSQL terminology, connects to database server through its listening port, the

system forks a backend process, and from there on, the communication between the

frontend and the database is solely handled by the backend. Figure 3.1 illustrâtes

this top-layer architectural concept.

Client
(f rontend/ l ibpq)

postgreSQL engine

Step 1

Client
(frontend/libpq)

step 2

Client
(frontend/libpq)

postgreSQL engine

step 3

F i g u r e 3 . 1 : Pos tgreSQL archi tec ture

The communication between client and server is based on a message-based protocol.

The protocol is implemented over both TCP/IP and Unix sockets. There is only one

PostgreSQL postmaster running per system, however there are as many backends

as there are connected clients.

The underlying engine of PostgreSQL, however, is quite complex. It is based on vari-

ous distinct modules [10], to maintain a désirable modular aspect. This is illustrated

graphically in Figure 3.2.

At startup, PostgreSQL initializes the database by creating a template database,

the cache, the transaction log and various other system initializations. The post

master is basically a daemon that is launched at startup. The postmaster handles

ail user connections, manages system wide opérations such as startup, shutdown,

periodic checkpointing, statistics collecting, etc ... It resets the system if a backend

crashes and cleans after the crashed process. It also créâtes the shared memory and

18

main

{
postmaster

4
postgres

Query Evaluation Engine

t
Utilities

i

i

n

Catalog

Access methods

A

r

î
Storage

Nodes & Lists

F i g u r e 3.2: PostgreSQL architecture

sémaphore pools during startup for other subsystems to use.

The File and Access Methods subsystem provides support for various data access

methods, including hashing, heap for data rows, B-Tree for Lehman and Yao's btree

management algorithm [23], R-Tree for indexing of 2-dimensional data and index.

The Storage Management Subsystem manages various storage Systems. They in-

clude the shared buffer pool manager, the file manager, the sémaphores and shared

memory management, the large objects handler, the lock manager, the page man

ager and the storage disk manager. The only supported storage manager is the

magnetic disk manager. PostgreSQL uses the term resource manager as a global

name to refer to thèse managers. Every relation in the system is tagged with the

storage manager on which it résides. The storage manager switch code turns what

used to be filesystem opérations into opérations on the correct store, for any given

relation.

The Library subsystem provides data structures and functions shared by other sub

systems. Major components include utilities, regular expression and other support

functions. The utilities module includes support for built in data types and various

19

relation caches.

The Query Evaluation Engine contains the PostgreSQL backend main handler, as

well as the code that makes calls to the parser, optimizer, executor, and commands

functions.

3.3 PostgreSQL Transaction Processing

There are two types of transactions in Postgres-RFR, single statement transactions

and multiple statement transactions. A single statement transaction is not enclosed

between the conventional 'BEGIN' and 'END'/'COMMIT' clauses. Single statement

transactions are standalone, single line statements such as 'CREATE TABLE T

...'. PostgreSQL automatically créâtes a transaction before the exécution of the

statement, and terminâtes the transaction after the exécution. Multiple statement

transactions, on the other hand, can contain more than one SQL statement. They

hâve to be enclosed by the above clauses.

When a user connects to the database through a client, PostgreSQL launches a local

backend to handle the connection. The local backend is a process that listens for

commands from the user and acts upon them. Depending on the request, the local

backend starts a transaction and interacts with the database to fulfill the user's

request. This is represented schematically in Figure 3.3. The local backend acts on

every command issued by the user. If a transaction is not already started at the

réception of a command, the local backend starts one, by creating a new transaction

number, updating the lock table, the cache and memory control structures. For

every query, the local backend perforais basic parsing and créâtes a parse tree list.

It then processes every one of thèse parse trees by performing parsing analysis and

rule rewriting, and créâtes a query tree list. It then runs through thèse queries and

processes them one at a time.

20

Stateme

start a transaction
if one is not already
started

I

nfinite loop

Quit

Transaction command
(BEGIN/END/COMM1T/ABORT)

end/abort
transaction

parse user command
(create list of parse trees)

Utility

For every parse
tree item

UD1 command

Process Utility
command

Plan

ï
Process

End transaction
if single
statement

F i g u r e 3 . 3 : Transaction processing loop

3.4 PostgreSQL MVCC Concurrency Control

Protocol

PostgreSQL uses a multi-version concurrency control, or MVCC, to handle concur

rency. In PostgreSQL, MVCC entails that each transaction sees a snapshot of the

data (a database version) when it starts, regardless of what the other concurrent

transactions are doing. This enforces the isolation criteria of the ACID properties

(Section 2.1). With this protocol, readers and writers never block each other during

21

exécution. It is only at commit time that a concurrency mechanism is run to serialize

the updates to the saine row. The sensitive issue hère is that if two transactions start

out with the same tuple version and both update it, then a protocol is required to

store the combined effect of both transactions, with the second transaction properly

invalidating the update of the first logically concurrent transaction.

PostgreSQL offers two protocols [10] to the issue of concurrent updates to the same

row:

• Read committed level: allow the second transaction to use the new tuple as

input values. This requires changing tuple visibility.

• Serializable level: abort the second transaction ail together. The client appli

cation must redo the whole transaction, which will then be allowed to see the

new value of the tuple under strict serializable-behavior rules.

The above protocol requires storing multiple versions of every row. PostgreSQL

uses non overwriting storage management, which means that updated tuples are

appended to the table, and older versions are removed sometime later. Currently,

removal of long-dead tuples is handled by a spécial 'vacuum' maintenance command

that must be issued periodically.

3.5 PostgreSQL Write Ahead Log

Write Ahead Logging (WAL) is a standard approach to transaction logging. The

core concept is that changes to the database must be written only after those changes

hâve been logged, i.e. when log records hâve been flushed to permanent storage.

With WAL, data pages don't need to be flushed to disk on every transaction commit,

because in the event of a crash, the data could be recovered using the log. Any

changes that hâve not been applied to the data pages will first be redone from the

log records and then changes made by uncommitted transactions will be removed

22

from the data pages. Furthermore, the log has to be written before the transaction

commits.

3.5.1 Benefits of the WAL

WAL allows for a significant réduction in the number of disk writes, since only the

log file needs to be flushed to disk at the time of transaction commit. Furthermore,

the log file is written sequentially, and so the cost of updating the log is much less

than the cost of flushing the data pages.

3.5.2 Implementat ion of the WAL

WAL logs are stored in a spécial directory, the data directory, where ail the WAL

information as well as the user data is stored. The logs are stored as a set of segment

files, each 16 MBytes in size. Each segment is divided into 8 KBytes pages. Segment

files are given ever-increasing numbers as names, starting at 0000000000000000. The

numbers do not wrap, at présent, but it should take a very long time to exhaust the

available stock of numbers.

The WAL buffers and control structure are in shared memory, and are handled

by the backends. They are protected by lightweight locks, which are locks used to

manage access to data structures in shared memory. The demand on shared memory

is dépendent on the number of buffers. The default size of the WAL buffers is 8

buffers of 8 KBytes each, or 64 KBytes total.

3.5.3 PostgreSQL recovery wi th W A L

Central recovery with PostgreSQL uses the concept of checkpointing. Checkpoints

are points in the séquence of transactions at which it is guaranteed that the data files

hâve been updated with ail information logged before the checkpoint. At checkpoint

time, ail dirty data pages are flushed to disk and a spécial checkpoint record is

written to the log file. As a resuit, in the event of a crash, the recovery manager

23

knows from what record in the log it should s tar t the R E D O opération, since any

changes made to da ta files before that record are already on disk. After a checkpoint

has been made, any log segments writ ten before the undo records are no longer

needed and can be recycled or removed.

The postmaster spawns a spécial backend process every so often to create the next

checkpoint. A checkpoint is created once a predefined number of log segments hâve

been used, or once a predefined lapse of time, whichever cornes first. The default

settings are 3 segments and 300 seconds respectively. It is also possible to force a

checkpoint by using the SQL command CHECKPOINT.

When recovery is to be done, the backend first reads the checkpoint record; then it

perforais the R E D O opération by scanning forward from the log position indicated

in the checkpoint record. Because the entire content of da ta pages is saved in the

log on the first page modification after a checkpoint, ail pages changed since the

checkpoint will be restored to a consistent state.

3.5.4 The WAL record format

A record in the WAL is stored in two parts, the record header and the body. The

log record header contains seven fields as illustrated in Figure 3.4.

header data

xl crc xl_prev xl_xact_prev xl xi d xl len xl info xl rmid

where:

Figure 3.4: PostgreSQL WAL record structure

x L c r c : a CRC for this record (PostgreSQL internai functionality).

24

• xLprev: a pointer to a previous record in the log

• xl_xact_prev: a pointer to the previous record of the same transaction

• xljcid: the transaction ID

• xLlen: total length of the resource manager data

• xLinfo: flag bits, or control bits

• xLrmid: the resource manager for this record

This is illustrated graphically in Figure 3.5.

AU records of one transaction

previous
transaction
record

ST
Record 1 Record N- 2 Record N- I Record N

first record last record

Figure 3.5: Transaction central logging

3.5.5 The WAL interface

WAL is a logging mechanism that provides an interface to interact with it. This

interface is composed of variables and functions. At the heart of the WAL mechanism

is a control structure called the Control File. The control file holds important

information pertinent to WAL such as pointers to the last two checkpoint records,

and the database state at the time of shutdown, i.e. was the database properly

shutdown or was it as a conséquence of a crash. A second checkpoint is required in

the case when the last one is unreadable or corrupt. The following is a summary of

the important functions the WAL provides:

25

• XLoglnsert: This function takes a record and stores it in the log. This

function returns a pointer to the end of the inserted record.

• ReadRecord: This attempts to read a log record, at the specified location

• StartupXLOG: This must be called only once, and only at database startup.

When called, it reads the control file, and carries out the REDO/LTNDO central

recovery mechanism.

• ShutdownXLOG: This must be called only once, and only at database shut

down. When called, it clears the temporary log structures, such as the log

caches, and inserts a checkpoint in the log.

• CreateCheckPoint: This créâtes and forces a checkpoint record in the log.

• ReadCheckpointRecord: This reads a checkpoint from the log. WAL gives

the option to read up to the last two checkpoint records. This is useful if the

last checkpoint is corrupt or not valid.

• GetRedoRecPtr: This gets the record from which the REDO has to be

performed.

• GetUndoRecPtr: This gets the record from which the UNDO record has to

be performed.

• ReadControlFile: This reads the control file

• UpdateControlFile: This forces a copy of the control file to be written to

disk.

3.6 PostgreSQL commands

PostgreSQL has a wealth of commands to handle the user's request. There are

three types of commands in PostgreSQL, IDU, sélect and Utility commands. An

IDU command is one of three SQL commands that involve a write instruction to

26

the user's data. Thèse include Insert, Delete and Update. We will pay spécial

attention to PostgreSQL commands in the replication chapter (Chapter 5) of this

report, so a detailed description of ail commands is due in this section.

3.6.1 The I D U c o m m a n d s

There are three IDU commands, namely insert, delete and update.

1

2

3

Category

IDU commands

Command

INSERT

DELETE

UPDATE

Description

Create a new ro\v(s) in a table

Delete row(s) of a table

Update row(s) of a table

3.6.2 The sélect command

The 'SELECT' command will return rows from one or more tables.

1

Category

Select Command

Command

SELECT

Description

Retrieve rows from a table or view

3.6.3 The util ity commands

There are 65 Utility commands in total. Thèse commands provide transaction,

user, database, groups, tables, and views management, as well as user defined types,

triggers, functions, languages and séquences commands.

Transaction management commands

Users can set the behavior of constraint évaluation in the current transaction using

the 'SET CONSTRAINTS' command. They can choose to bave the constraints

checked at the end of each statement or until transaction commit. The 'SET

27

TRANSACTION' command sets the transaction isolation level. The isolation level

of a transaction détermines what data the transaction can see when other trans

actions are running concurrently. Transaction management commands are summa-

rized in the following table:

1

2

3

4

5

6

7

Category

Transaction

Management

Commands

Command

BEGIN

COMMIT

ABORT

ROLLBACK

END

SET CONSTRAINTS

SET TRANSACTION

Description

Start a transaction block

Commit the current transaction

Abort. the current transaction

Abort the current transaction

Commit the current transaction

Set the constraint mode of the current transaction .

Set the characteristics of the current transaction

User data management commands

PostgreSQL has a rich set of user's data management commands. Thèse include

database, table, view and index commands. The spécial 'VACUUM' command

reclaims storage occupied by deleted tuples. In normal PostgreSQL opération, tuples

that are deleted or obsoleted by UPDATE are not physically removed from their

table (updates create new versions of tuples instead of overwriting the old ones); they

remain présent until a VACUUM is done. Therefore it's necessary to do VACUUM

periodically, especially on frequently-updated tables. The 'LOCK' command allows

a user to control concurrent access to a table for the duration of a transaction.

PostgreSQL always uses the least restrictive lock mode whenever possible. The

'LOCK' command provides for cases when the user might need more restrictive

locking. A summary of thèse commands is provided below:

28

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Category

Database Commands

Table

Commands

View

Commands

Index Commands

Command

CREATE DATABASE

DROP DATABASE

VACUUM

CREATE TABLE

CREATE TABLE AS

DROP TABLE

ALTER TABLE

TRUNCATE

SELECT INTO

COPY

LOCK

CLUSTER

CREATE VIEW

DROP VIEW

CREATEINDEX

DROP INDEX

REINDEX

Description

Create a new database

Remove a database

Garbage-collect and optionally analyze a

database

define a new table

Create a new table from the results of a

query

Remove a table

Change the définition of a table

Empty a table

Create a new table from the results of a

query

Copy data between files and tables

Explicitly lock a table

Cluster a table according to an index

Define a new view

Remove a view

Define a new index

Remove an index

Rebuild corrupted indexes

User, group and access management commands

Only super-users are allowed to use the group and user management commands. The

'GRANT' command gives spécifie permissions on an object (table, view, séquence)

to one or more users or groups of users. Thèse permissions are added to those

already granted, if any. Users other than the creator of an object do not hâve any

access privilèges to the object unlcss the creator grants permissions. There is no

29

need to grant privilèges to the creator of an object, as the creator automatically

holds ail privilèges. The 'REVOKE' command allows the creator of an object to

revoke previously granted permissions from one or rnore users or groups of users.

Note that any particular user will hâve the sum of privilèges granted directly to him,

privilèges granted to any group he is presently a member of, and privilèges granted

to a spécial group called 'PUBLIC. Thèse commands are summarized below:

25

26

27

28

29

30

31

32

Category

Group Commands

User Commands

Access

Commands

Command

CREATE GROUP

DROP GROUP

ALTER GROUP

CREATE USER

DROP USER

ALTER USER

GRANT

REVOKE

Description

Define a new user group

Remove a user group

Add users to a group or remove users from

group

a

Define a new database user account

Remove a database user account

Change a database user account

Define access privilèges

Remove access privilèges

User-defined features commands

PostgreSQL allows function overloading; that is, the same name can be used for

several différent functions as long as they hâve distinct argument types. This fa-

cility must be used with caution for internai and C-language functions, however.

PostgreSQL allows users to register a new procédural language with a PostgreSQL

database. Subsequently, functions and trigger procédures can be defined in this new

language. The user must hâve the PostgreSQL super-user privilège to register a

new language. Creating a language effectively associâtes the language name with

a call handler that is responsible for executing functions written in the language.

Creating a trigger can be specified to fire either before the opération is attempted

on a tuple or after the opération has been attempted. If the trigger fixes before the

30

event, the trigger may skip the opération for the current tuple, or change the tuple

being inserted (for INSERT and UPDATE opérations only). If the trigger fires after

the event, ail changes, including the last insertion, update, or deletion, are "visible

to the trigger. Creating a TYPE allows the user to register a new user data type

with PostgreSQL for use in the current database. This requires the registration of

two functions (using CREATE FUNCTION) before defining the type. Creating an

AGGREGATE allows a user or programmer to extend PostgreSQL functionality

by defining new aggregate functions. Some aggregate functions for base types such

as min(integer) and avg(double précision) are already provided with PostgreSQL. If

one defines new types or needs an aggregate function not already provided, then this

command can be used to provide the desired features. Creating an OPERATOR

allows the user to define a new operator. The PostgreSQL rule system allows one

to define an alternate action to be performed on inserts, updates, or deletions from

database tables. Rules are used to implement table views as well. The semantics

of a rule is that at the time an individual instance (row) is accessed, inserted, up-

dated, or deleted, there is an old instance (for sélects, updates and deletes) and a

new instance (for inserts and updates). Ail the rules for the given event type and

the given target object (table) are examined, in an unspecified order. Creating a

SEQUENCE will enter a new séquence number generator into the current database.

This involves creating and initializing a new single-row table with the name seqname.

The generator will be owned by the user issuing the command. After a séquence is

created, the user has to use the functions nextval, currval and setval to operate on

the séquence.

Thèse commands are summarized below:

31

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Category

Function

Commands

Language

Commands

Trigger

Commands

Type

Commands

Aggregate

Commands

Operator

Commands

Rule

Commands

Séquence

Commands

Command

CREATE FUNCTION

DROP FUNCTION

CREATE LANGUAGE

DROP LANGUAGE

CREATE TRIGGER

DROP TRIGGER

CREATE T Y P E

DROP TYPE

CREATE AGGREGATE

DROP AGGREGATE

CREATE OPERATOR

DROP OPERATOR

CREATE RULE

DROP RULE

CREATE SEQUENCE

DROP SEQUENCE

Description

Define a new function

Remove a user-defined function

Define a new procédural language

Remove a user-defined procédural language

Define a new trigger

Remove a trigger

Define a new data type

Remove a user-defined data type

Define a new aggregate function

Remove a user-defined aggregate function

Define a new operator

Remove a user-defined operator

Define a new rewrite rule

Remove a rewrite rule

Define a new séquence generator

Remove a séquence

Curser management commands

Users can create cursors using the 'DECLARE' command, which can be used to

retrieve a small number of rows at a time out of a larger query. Cursors can return

data either in text or in binary format using the 'FETCH' command. The 'MOVE'

command allows a user to move a cursor position a specified number of rows. The

'CLOSE' command frees the resources associated with an open cursor. After the

cursor is closed, no subséquent opérations are allowed on it. Thèse commands are

summarized below:

32

Category Command Description

49

50

51

52

Curser

Commands

DECLARE

FETCH

MOVE

CLOSE

Define a cursor

Retrieve rows from a table using a cursor

Position a cursor on a specified row of a table

Close a cursor

Run time configuration commands

PostgreSQL allows users to change run-time configuration parameters, such as en-

coding, date style and time zones. The 'RESET' command restores run-time pa

rameters to their default values, and the 'SHOW' command will display the current

setting of a run-time parameter. This is summarized below:

53

54

55

Category

Run-time Commands

Command

SET

RESET

SHOW

Description

Change a run-time parameter

Restore the value of a run-time parameter to

a default value

Show the value of a run-time parameter

Notification commands

The 'LISTEN' command registers the current PostgreSQL backend as a listener

on any notify condition. Whenever the command 'NOTIFY' is invoked, either by

this backend or another one connected to the same database, ail the backends cur-

rently listening on that notify condition are notified, and each will in turn notify its

connected frontend application. A backend can be unregistered for a given notify

condition with the 'UNLISTEN' command. Also, a backend's 'LISTEN' registra-

tions are automatically cleared when the backend process exits. This is summarized

below:

33

56

57

58

Category

Notifications Commands

Command

LISTEN

UNLISTEN

NOTIFY

Description

Listen for a notification

Stop listening for a notification

Generate a notification

Session management commands

The following commands are used to display session parameters.

59

60

61

62

Category

Session

Commands

Command

CURRENT.DATE

CURRENT.TIME

CURRENT.TIMESTAMP

CURRENT.USER

Description

Miscellaneous commands

The 'COMMENT' command stores a comment about a database object. The 'EX-

PLAIN' command displays the exécution plan that the PostgreSQL planner génér

âtes for the supplied query. The exécution plan shows how the table(s) referenced

by the query will be scanned, either by plain sequential scan, index scan, etc. and if

multiple tables are referenced, what join algorithms will be used to bring together

the required tuples from each input table. The most critical part of the display is

the estimated query exécution cost, which is the planner's guess at how long it will

take to run the query. The 'LOAD' command loads a shared library file into the

PostgreSQL backend's address space. If the file had been loaded previously, it is

first unloaded. This command is primarily useful to unload and reload a shared

library file that has been changed since the backend first loaded it. To make use

34

of the shared library, function(s) in it need to be declared using the 'CREATE

FUNCTION' command. Thèse commands are summarized below:

63

64

65

Category

Miscellaneous Commands

Command

COMMENT

EXPLAIN

LOAD

Description

Define or change the comment of an object

Show the exécution plan of a statement

Load or reload a shared library file

Chapter 4

The Spread Group

Communication System

4.1 Introduction to Group Communication Systems

Group communication Systems, or GCS, are application-level multicast techniques

that provide a set of communication services. Thèse services include message guar-

antees in transmitting messages from one application to another across a network,

as well as group membership services. GCS provide two message guarantees, namely

reliable and ordered message delivery. Reliable means that messages are delivered de-

spite failures, and ordered delivery guarantees that messages are received in spécial

order, such as FIFO order.

The main drive for group communication research at the early stages were high

availability and fault tolérance [31]. A fault-tolerant system is designed to keep

running even after a fault has occurred. Fault-tolerant Systems use a variety of

tools to ensure high availability, including redundancy and replication mechanisms.

A number of early Systems were developed at this early stage, such as ISIS [8],

Horus [31], Transis [11], Totem [25], RMP [33] and Newtop [12]. Thèse Systems

were initially designed for local area networks and therefore had scalability and

35

36

security setbacks [3]. Récent work in this area focused on scaling and securing

group membership, in order to facilitate their deployment to wide area networks.

A group is a logical set of sites, or computers, that exchange messages between them

to perform distributed tasks. A site is said to be a member of a group if it is up

and running, and is able to send and receive messages within that group. A view

is a snapshot of the memberships of ail sites in the system at a particular moment.

A membership change, or view change, is a spécial message sent by the GCS to the

members that are up and running to advise them that some site(s) has joined or

left the group. When a site sends a message to the group, the GCS ensures that

it is received by ail members of that same group, including the sender. a technique

referred to as multicast.

4.2 Virtual Synchrony

Virtual Synchrony (VS) is a concept that was derived from the Virtual Synchrony

Model defined by Ken Birman, et. al. in their early work on the ISIS system [8],

one of the early group communication Systems. Virtual synchrony is able to handle

message omission failures, as well as fail-stop process failures. Virtual Synchrony

guarantees that membership changes within a group are observed in the same order

by ail the group members that remain connected. Moreover. membership changes,

or view changes, are totally ordered (Section 4.4.2) with respect to ail other régulai-

messages that the system has to handle. This means that every two members

that observe the same two consécutive membership changes, receive the same set of

regular multicast messages between the two changes.

Virtual synchrony states that:

1. There is a unique view in a properly functioning system, on which ail members

of that group agrée.

2. If a message m is multicast in view v before view change vc, then either no

37

member in v that exécutes vc ever reçoives m, or every member in v that

exécutes vc reçoives m before performing vc.

This définition imposes a total order (Section 4.4.2) between view changes and mul

ticast messages, but does not enforce any ordering between messages delivered in

the same view.

4.3 Extended Virtual Synchrony

A restriction to virtual synchrony is that it is not able to handle network partitions.

Due to the asynchronous nature of the system model, a safe conclusion as to which

of the messages were received by which members just before a network partition

occurs is impossible to confirm with VS. In fact, it has been proven that reaching

consensus in an asynchronous environment, with the possibility of even one failure is

impossible [13]. Hence group communication primitives based on Virtual Synchrony

do not provide any guarantees of message delivery that span network partitions.

Extended Virtual Synchrony (EVS) [24] is an enhanced Virtual Synchrony model

that tries to solve the above problem with network partition. Extended Virtual Syn

chrony divides the view change message into two parts, a transitional view change

message and a regular view change message. The transitional view change message

contains the members that move from the old regular view to the next regular view.

This protocol dictâtes that the GCS does not immediately deliver the view change

to the application, but rather switches into a transitional phase, and tries to recover

any lost messages, i.e. messages that were not delivered to ail view members, from

the previous view. This way, uniformity and consistency among members that are

still connected is achieved. Meanwhile it does not multicast new messages from the

application, but buffers them until the transitional phase ends and the new view

is established. The new view starts as soon as the GCS delivers the new member

ship change to the application. Only then that the GCS multicasts the buffered

messages.

38

4.4 Spread

Spread is a gênerai-purpose GCS for local and wide area networks [2]. It provides

reliable and ordered delivery of messages, as well as a membership service. Relia

bility is a gênerai terni used by the research community that encompasses F I tO ,

causal and total ordering of messages as detailed below. The system consists of a

server and a client library linked with the application.

Spread offers a secure many-to-many communication paradigm [3], where any group

member can be both a sender and a receiver of messages. Although designed to

support small to médium size groups, it can accommodate a large number of group

sizes, each spanning the Internet. Spread scales well with the number of groups used

by the application without imposing any overhead on network routers [2].

4.4.1 Spread architecture

The Spread system is based on a daemon-client model where clients connect to one

of the system daemons to gain access to the group communication services. The

daemons constitute the backbone, or system managers, which are responsible for

establishing the message network infrastructure, and provide basic membership and

ordering services. Clients usually connect using a small client library, and can réside

anywhere on the network [2].

Spread is highly configurable, allowing the user to customize the system according to

their needs. Spread can be confîgured to use just one daemon or to use one daemon

in every machine running group communication applications. The best performance,

in the absence of failures, is achieved when a daemon is on every machine.

AU daemons participating in a Spread configuration know the complète potential

memberships of ail members when started. The knowledge of the actual member-

ships of active daemons is gathered dynamically during opération.

Spread supports the Extended Virtual Synchrony model [24] of group membership.

39

As explained above, EVS can handle network partitions and re-merges, as well as

joins and leaves.

4.4.2 Spread Reliable Multicast Services

Spread provides three message delivery semantics, unreliable, reliable and uniform

reliable. It also provides four message ordering semantics, unordered, FIFO, causal

and total order [2].

The reliability semantics are:

• Unreliable: Unreliable message delivery is the simplest form of message ex

change. There is no guarantee that the message will be delivered to the in-

tended récipient. The sender transmits the message and if the target does not

receive the message, the sender will not re-transmit the message.

• Reliable: In contrast to the unreliable message guarantee, reliable messages

are guaranteed to be delivered to the application with Spread. Reliable mes

sages provide the following delivery guarantee: whenever a message is delivered

to a site and this site does not fail for sufficiently long time, then ail other

sites will deliver the message unless they fail. Reliable messages use the net

work layer, to achieve reliability. Each link in the network guarantees reliable

transport within a bounded time, in the absence of processor or network faults.

Thus end-to-end reliability is provided in the case where there are no faults,

because eventually every packet will make it across ail the links to ail the

daemons which need it.

• Uniform reliable: Uniform reliable delivery guarantees that whenever a site

N delivers a message to the application , ail other sites will deliver the message

unless they fail (even if N fails immediately after the delivery). This requires

that a message is not delivered before ail sites hâve acknowledged that they

hâve physically received the message. Hence it causes a higher delay than

reliable delivery.

40

The message ordering semantics are:

• Unordered: Unordered messages are delivered as soon as the complète mes

sage is received since they do not provide any ordering guarantees. Therefore,

their delivery is never delayed due to other messages.

• FIFO: FIFO messages provide the same reliability guarantee as reliable mes

sages. Spread assigns séquence values to messages to ensure FIFO ordering.

Spread guarantees that a FIFO message will be delivered only after ail mes

sages with lower séquence values hâve been delivered. Additionally. the mes

sages of each sender are delivered in the order they are sent.

• Causal: This delivery semantic guarantees that the message order préserves

the happens-before relation (after Lamport [22]). It includes FIFO order, and

guarantees that a response to a message is never delivered before the message

that caused it.

• Total: With total order, ail sites receive ail messages in the same total order.

independent of who sent them. Additionally, total order is consistent with

both FIFO and causal ordering, i.e. messages that contradict the causality or

the FIFO principles are not delivered.

Figure 4.1 illustrâtes the relative cost of the various services.

Not ail message guarantees can be combined with ail message orderings. In fact,

the only possible combinations are: unreliable/not-ordered, reliable/not-ordered,

reliable/FIFO, reliable/causal, reliable/total (called agreed in Spread terminology)

and uniform-reliable/total (called safe with Spread).

41

Ordering semantics Reliablity semantics

TOTAL

CAUSAL

FIFO

UNORDERED

Cost

Latency

UNIFORM RELIABLE

RELIABLE

UNRELIABLE

F i g u r e 4 . 1 : Reliable Multicast Services

Chapter 5

Synchronous Master-Slave

Replication

5.1 Introduction

The replication mechanism used in this work is a master-slave eager replication

where each site has a full copy of the database. Chapter 2 has a detailed explanation

of thèse ternis. The design of the replication module is adopted largely from work

by Bettina Kemme [21] and Win Bausch [6] performed on Postgres-R, the modified

system of PostgreSQL v6.4 with full replication functionality. We will call the

new system Postgres-RFR because it includes Replication, Failover and distributed

Recovery functionality. The original Postgres-R was based on PostgreSQL v6.4,

but the current version of PostgreSQL is 7.2 with a lot of changes, in particular

concurrency control and logging. Postgres-R is an update-everywhore synchronous

system, and many of the design features of that system were kept and preserved in

the new system.

42

43

5.2 Replication in Postgres-RFR

The architecture of Postgres-RFR is based on Postgres-R. It includes three dedicated

processes that are called the replication manager, the communication manager and

the remote backend. Thèse processes are created at system startup, and run as long

as the database is up and running. The gênerai architecture is outlined in Figure

5.1. As described below, the main function of the replication manager is to manage

the replication cycle. The communication manager handles ail message exchanges

between the database and the group communication system. The remote backend at

the slaves is responsible for applying the updates, sent by the master, at the slaves.

The remote backend will hâve further functionality at the master during distributed

recovery as described in Chapter 7.

Client
(frontend/libpq)

Postgres- RRF engine

1 <
f Local

\Backend

f Remote

\Backend

Postgres-RR1

postmaster)

) <

engine

/Replication \

v Manager J

CommunicationN

V Manager 7

Idle database One client connected to database

F i g u r e 5.T. Postgres-RFR architecture

Master-Slave replication means that IDU commands (section 3.6) are only allowed at

the master site. Queries, i.e. transactions that only display and don't change data,

are allowed everywhere, i.e. on ail sites including the master. Users hâve to know

which of the sites in the replication group is the master, and hâve to connect to it

directly to apply changes to the database. The master first exécutes the transaction.

44

At the end of the transaction, it sends ail changes to the slaves which apply them

to their copies.

5.2.1 T h e r ep l i ca t ion cycle

Replication in Postgres-RFR follows a cycle that starts and ends at the local back

end. As before, i.e. with PostgreSQL (Chapter 3), when a client application connects

to the database server, this latter forks a local backend to handle the interaction

between the user and the database. The transaction is identical to the transaction

processing with PostgreSQL if it only contains queries. Replication cornes in the

picture when there are IDU commands or Utility commands (section 3.6). Figure

5.2 illustrâtes the différent steps in the replication cycle.

X~^
(postmaster)

Master

Replication
Manager

3

Communication\
Manager

Slave

Postgres-RRF engine

Spread Group Communication System

Figure 5.2: Replication Cycle in Postgres-RFR

45

5.2.2 Repl icat ion at the master

Replication starts at the start of a transaction (Section 2.1). The writeset is sent at

the end of the successful ending of the transaction, i.e. the transaction does not get

aborted. This happens in two scénarios:

• When the user issues an explicit 'COMMIT' command or a 'END' command

(Section 2.1) at the end of a multiple statement transaction. Within such a

transaction, a 'ROLLBACK' or 'ABORT' will clear ail replication temporary

structures, and the cycle is never started.

• With a single statement transaction.

As illustrated in Figure 5.2, the steps of replication at the master site are the

following:

1. The user's client application interacts with the local backend through trans

actions. This is step 1 in the figure. In the figure, IDU statements and some

utility statements lead to the création of a writeset (Section 5.3.2). While

executing the transaction, the local backend collects the writeset to be sent to

the slaves. After the exécution of each IDU command, it collects the affected

tuples and adds them to the writeset. Alternatively, it simply adds the SQL

statement to the writeset (for détails, see Section 5.3.2).

2. The local backend opens a communication channel with the replication man

ager and sends the writeset. This communication channel remains established

until the user quits the client at the application level. In this case, it is torn

down. The same communication channel is used for any subséquent update

transaction from the client. This is step 2 in the figure.

3. When the replication manager receives the update transaction, in the form of

a writeset (section 5.3.2), it multiplexes it to the GCS (Chapter 4). This is

step 3 in the figure.

46

4. The GCS broadcasts the writeset to the Spread system in total order. This is

step 4 in the figure.

5. The GCS eventually receives the writeset back from the Spread system. This

is step 5 in the figure.

6. When the group communication manager receives back the writeset from the

Spread system, it simply forwards it to the replication manager. This is step

6 in the figure.

7. The replication manager simply advises the local backend by sending it a

spécial message (Section 5.3.3). The local backend needs this spécial message

to commit the transaction, in agreement with the synchronous nature of the

replication protocol. This is step 7 in the figure.

At the end of this cycle, the update transaction is committed at the master. Note

that the master site does not need a spécial confirmation message from the slaves.

Instead, by receiving its own writeset back (in step 6 above) the master can safely

assume that ail slaves will receive (and then apply) the writeset unless they fail.

This delivery guarantee is provided by the safe multicast of the Spread group com

munication system (see Chapter 4).

5.2.3 Replication at the slaves

At the slaves, the cycle of replication is quite différent, as depicted in Figure 5.2.

Transactions received from the master are processed in FIFO order. There is only

one remote backend to handle the processing of the writesets at the slaves. The

reason the backend exécutes writesets serially is simplicity and to guarantee serial-

izability. When the master sends a writeset of transaction T l before the writeset of

transaction T2, then the MVCC concurrency control (Chapter 2) guarantees that

T l is serialized before T2 at the master. Tl will arrive and has to be serialized

before T2 at. the slave. Theoretically, if they don't conflict, the slave could exécute

47

them concurrently or even T2 before Tl and we would still hâve serializability. Only

if they conflict, the slave has to exécute Tl before T2. But this would require to

check whether the two transactions conflict. Hence, by executing T l serially before

T2, we ensure that we always hâve serializability. Local clients that connect to a

slave are allowed some opérations, such as read opérations. Section 5.4 lists in détail

the opérations that are allowed on the slaves.

As illustrated in Figure 5.2, the steps of replication at the slave sites are the follow-

ing:

1 The Spread system delivers the writeset to the group communication manager of

the slave database server. This is step 5 in the figure.

2 The group communication manager forwards the writeset to the replication man

ager. This is step 6 in the figure.

3 The replication manager transfers the writeset to the only remote backend for

processing. This is step 8 in the figure.

4 The remote backend processes the writeset, and when finished, sends a 'ready'

(section 5.3.3) to the replication manager. This is step 9 in the figure.

5.3 Implementation Détails

5.3.1 Replication State Machine

Replication is governed by a state machine, that allows the replication manager

complète control over the replication mechanism. The replication manager plays a

central rôle in the replication mechanism. It is the process that acts as the mul-

tiplexor of writesets and other replication messages between the backends and the

group communication process. On the master, the state machine as seen by the

replication manager is illustrated in Figure 5.3.

4S

/MSG_WS_RECEIVED

(from GC)

Legend

O
IniDihbE

O
[nturoalutL

t u

— -+
Vtssjgesaiifromtfie

rcpBciDcirjtrunjfcl to

L' IJ l ' « . . l l . . ' • .] '.

•

Stswge sent &om the

locilbjckcnd todic

Rpfiaion rruruja

F i g u r e 5.3: Replication state machine at the master

At the master site, the replication manager is unaware of any local backend un-

til they request to connect to it. The first message sent by the local backend is

a 'MSG.OPENING' . After this, the replication manager changes the state of the

local backend to 'L_LOCAL_STATE\ The only reason why a local backend would

request a connection from the replication manager is to send a writeset to the

slaves. So, the local backend follows its connection request with the actual writeset

('MSG_WRITESET' in the figure). Upon receiving the writeset, the state of that

local backend becomes 'L.SEND_STATE'. At that stage, the replication manager

sends the writeset to the group communication manager. The latter broadcasts the

writeset to ail sites. Upon receiving the writeset back, the replication manager at

the master site permits the local backend to commit the transaction by sending it

a spécial message, 'MSG_WS_RECEIVED' and changes the state of the backend to

'LJDLE.STATE' . If the local backend, by command from the user, sends another

writeset to the replication manager ('MSG_NEW_TXN' in the figure), the above

loop is repeated. This goes on until the user disconnects the local backend. At tha t

49

time, the local backend sends a a 'MSG.CLOSING' and disconnects. The replica

tion manager changes the state of the backend connection to 'L_DESTROY_STATE'

to be recycled at a later stage.

The flow of events can be summarized graphically in Figure 5.4.

local backend
replication
m a n a g e r

Transaction start

Local Phase

Commit request

Send Phase

Commit

Idl e Phase

MSG NEW

group
communication

manager

broadcast

del i ver

F i g u r e 5.4: Flow of replication events at the master

At the slaves, the state machine is somewhat simpler, as there are only two states.

The state of the remote backend is always 'R_FREE_STATE' unless it is busy pro

cessing a writeset, in which case its state is 'R_BUSY_STATE'. The remote backend

advises the replication manager when it is finished processing a writeset by sending

it a ready message. The state machine is illustrated in Figure 5.5.

The flow of events is illustrated in Figure 5.6.

50

Legend

O
^ "^

I iHtubtiH

o N S

IntmHiJiJiL'

«DU

•
WnlsatnnsfBTul btfcc

IL::.I l h ,:.timl t\) IV

njplialionmjujga

•

MsstJC sut from the

• i i , . u l ' i . n : , , : k -i.,

iqiBcaâoo irurugcr

F i g u r e 5.5: Replication state machine at the slaves

Remote backend
repBcation

manager

group
communication

manager

de! i ver

F i g u r e 5.6: Flow of replication events at the slaves

51

5.3.2 Replication levels and the writeset format

Postgres-RFR uses two levels or replication, statement-level and tuple-level replica

tion.

In the statement-level replication, the entire SQL statement is replicated, as a text

string. The slaves hâve to apply the replicated string as though it was issued locally

by a local client. This has the advantage of keeping the query processing module of

PostgreSQL unaltered, since the statement will be copied to the writeset at a very

high level. With Tuple-level replication, the modified tuples are sent to the slaves

instead of the actual statement. On the master, the query must be executed to find

ail target tuples. Thèse tuples are then collected and then sent to the slaves. The

slaves use the indexes on the primary key to directly access the affected tuples and

apply the changes. The relations must hâve a primary key defined. In the case of

an insert, the entire new tuple is sent. In the case of an update, the primary key

and the changes attributes are sent. In the case of a delete, only the primary keys

are sent.

Postgres-RFR uses the good of both alternatives described above. IDU commands

can be replicated in two ways, however utility commands are always replicated in a

statement level manner. With an IDU command, the default replication mechanism

is tuple level, unless the collected number of tuples exceeds a certain predefined

number. If that number is exceeded, the tuples collected are discarded and the

statement is included in the writeset, instead of the tuples.

The writeset functionality is taken from the Postgres-R implementation. Only a

brief description is included hère. For a detailed description, refer to [6]. The

writeset is a message format that Postgres-RFR uses to propagate the updates

from the master to the slaves. The master uses one writeset per transaction. The

writeset is composed of fields that contain enough information to enable the slaves

to recreate the transaction, and apply it on their local database copy. The group

communication system handles ail the communication between the master and the

slaves, so writesets are also sent through thèse channels.

52

With statement-level replication, the writeset consists of a list of query strings and

a list of table names. In this case, a writeset contents consist of character data.

Table names are prepended to the respective query strings and sent to the slaves.

This allows the remote transactions to access table names without parsing the query

string. For tuple-level replication, tuple data hâve to be stored in the writeset. For

insert queries, only the new tuple has to be stored. Delete queries only require the

primary key values of the tuple to be deleted, and finally, update queries need the

primary key and the new tuple to be stored.

5.3.3 Replication message format

The gênerai message format is taken from the Postgres-R implementation, but since

the flow of exécution is différent in Postgres-RFR, the set of message types needed

differs from Postgres-R. Collecting and applying the writeset, both for tuple-level

replication and statement-level replication, was taken from the PostgreSQL imple

mentation. There are eight message types used to handle the master-slave replication

protocol. They are summarized in the table below.

53

1

2

3

4

5

Message type

MSG.OPENING

MSG.WRITESET

MSG-NEW.TXN

MSG.WS.RECEIVED

MSG.CLOSING

Description

A local backend always sends this message first if

it wants to connect to the replication manager

This message represents the actual writeset sent

by the local backend to the replication manager at the master,

and by the replication manager to the remote backend at the slaves

A local backend sends this message to the

replication manager if it has a new writeset to send

This message is sent by the replication manager to the local backend

after receiving the writeset back from the group communication system.

This is needed to allow the local backend to commit the transaction in

question

A local backend sends this message to the

replication manager when the user quits the client

6

7

8

MSG.READY

MSG.PROTO_ERROR

MSGJNVAL

The remote backend sends this message to the replication manager

after it finishes processing a writeset

This message format is included any time a message doesn't conform to

an expected message format

This is the default type for any newly created message container

5.4 Replication by command

So far, we focused on the replication mechanism, how the writeset is constructed

and how the slaves apply thèse changes. In this section we will look at which of the

vast set of Postgres-RFR commands is replicated.

As described above, Postgres-RFR commands could be divided into IDU commands

and Utility commands. IDU commands are replicated in a straight forward way,

either by tuple-level replication or statement-level replication. However, we need to

54

pay more attention to utility commands. Utility commands will only be statement-

level replicated. One of the reasons behind the complexity of utility commands is

the fact that numerous commands require the OS's support. To explain the idea,

consider the following example:

CREATE FUNCTION point(complex) RETURNS point

AS '/home/bernie/pgsql/lib/complex.so', ' complexJ,o.poinV

LANGUAGE C;

This example créâtes a function that does type conversion between the user-defined

type complex, and the internai type point. The function is implemented by a dy-

namically loaded object that was compiled from C source, by specifying the exact

pathname to the shared object file on the local machine. For PostgreSQL to find

a type conversion function automatically, the SQL function has to hâve the same

name as the return type, and so overloading is unavoidable. The function name is

overloaded by using the second form of the AS clause in the SQL définition above.

The C déclaration of the function could be:

Point * complex-tojpoint (Complex *z) {

Point *p;

p = (Point *) palloc(sizeof(Point));

p->x = z->x;

p->y = z->y;

return p;

}

The problem with replicating the above statement to the slaves is that we hâve no

guarantee that the dynamically loaded object exists on ail slaves; and if it existed

weather it would be in the same local path on ail slaves. Obviously, this should not

be expected. In cases like this, we hâve four solutions to handling thèse commands

55

as explained below. In the following, the terni allow means that the command can

be submitted locally to the particular site. Disallow means that the command can

not be submitted. If the client tries to submit such a command, the system will

return an error message. With replicate, we mean that the master will multicast the

statement to the slaves after local exécution.

1. Disallow on ail sites i.e. disallow in a replicated environment.

2. Allow on the master, replicate and disallow on the slaves. When replicating the

utility commands, the user has to make sure that the paths are correct, i.e.

consistent on ail sites.

3. Allow on the master and the slaves; do not replicate. The user (or administrator)

has to call the same command, manually, on ail sites to hâve uniformity of

data.

4. Implement a 2PC (Chapter 2) based replication where ail, or none, of the sites

apply the command

The décision on which of the above solutions to use is not easy. In ail of them there

is a cost involved.

Disallowing thèse commands on ail the sites is obviously a major restriction to the

rich and compétitive sélection of PostgreSQL utility commands. As described in the

following tables, a good number of utility commands would hâve to be disallowed

in this case, a major hit to PostgreSQL powerful database engine.

A slightly better alternative is to allow them on the master but not on the slaves,

and replicating them optimistically. That means that in the case of the example

above the user has to take the strenuous task of verifying the uniformity of the paths

on ail sites. This involves Connecting manually to ail slave servers in the group.

The third alternative avoids the above manually-exhaustive problem, by disallow

ing the replication mechanism, and allowing thèse commands to be invoked locally

56

by the user. This means that the responsibility of database consistency is put in

the hands of the user or the administrator. This solution is risky, as it should not

be expected from users to perform this task, and even if we allow them to do so,

inconsistency problems might arise. This solution also contradicts the automatic

replication solution we set out to achieve at the beginning of our work on Post

greSQL.

The last alternative involves running a 2PC protocol to ensure that ail or none

of the sites apply the command before committing it on the master. Out of ail

the solutions presented, this one guarantees database consistency and removes the

burden of the manual application of thèse commands by hand by the user. This

solution, however, is costly in terms of inter-site communication. It is also complex

to design and implement.

We propose to classify the utility commands into four sets. The first set included

the commands that could be allowed and/or replicated in a straight forward way.

The following table summarizes thèse commands.

57

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Command

BEGIN

COMMIT

E N D

ABORT

ROLLBACK

INSERT

DELETE

UPDATE

CREATE GROUP

DROP GROUP

ALTER GROUP

CREATE USER

DROP USER

ALTER USER

GRANT

REVOKE

TRUNCATE

COMMENT

SELECT

DECLARE

FETCH

MOVE

CLOSE

M a s t e r

Allow

II

II

II

II

Allow

II

II

II

II

II

II

II

II

II

II

II

II

Allow

n

n

n

n

Slave

Allow

II

II

II

II

Don't Allow

n

n

n

n

n

n

n

n

n

n

n

n

Allow

n

n

n

n

Repl i ca t e

No

II

II

II

II

Yes

II

II

II

II

II

II

II

II

II

II

II

II

No

II

II

II

II

C o m m e n t

Thèse commands should be allowed on ail

sites. They don't need to be replicated as

the database server on the slaves will add

thèse to every replicated transaction.

Thèse are the principle commands of our

replication protocol. They should only be a]

on the master and replicated.

Thèse are superuser commands and

should not be allowed on the slaves.They

should therefore be allowed only on the

master and sent to the slaves. This

facilitâtes the work of the database

administrators.

Thèse commands should be handled

similarly to User and Group commands.

This should be treated similarly to

'DELETE * FROM ...'

This command should be allowed on ail

sites, and not replicated.

Thèse commands are mainly used for

data retrieval, so they should be allowed

on ail sites, and not replicated.

58

24

25

26

27

28

29

30

31

CURRENT.DATE

CURRENT_TIME

CURRENT.TIMESTAMP

CURRENT.USER

EXPLAIN

LOCK

SET CONSTRAINTS

SET TRANSACTION

II

II

II

II

II

Allow

Allow

Allow

n

n

n

n

n

Don't Allow

Allow

Allow

//

//

//

//

//

No

Ycs

No

Thèse are session information commands,

and don't change any data. So, allowing

them on ail sites is safe.

This is similar to the session commands.

Locks don't need to be propagated as only

one process exécutes updates on the slaves

in a FIFO order.

This is a within-transaction-block

command, and should be replicated within

the writeset.

There is no need to propagate the

user-defined transaction isolation level as

transactions are applied by one process on

the slaves in a FIFO order.

The next set of utility commands involves commands that are not as straightforward

as the above commands. We provide a best-effort replication solution to them, but

there might be more options to consider. The following table summarizes thèse

commands.

59

32

33

34

35

36

37

38

39

C o m m a n d

CREATE TABLE

CREATE TABLE AS

DROP TABLE

ALTER TABLE

CREATE VIEW

DROP VIEW

CREATEINDEX

DROP INDEX

M a s t e r

Allow

II

II

II

Allow

n

n

n

Slave

D o i l ' t u l l o w

II

II

II

Don't allow

n

n

n

Repl lca to

Ycs

II

II

II

Yes

II

II

II

C o m m e n t

In our replication protocol, replicated

writesets are performed using a spécial

process that has superuser privilèges.

This means that a regular user will not

be able to access his/her own table(s)

on sites other than the one where they

created their table(s). To avoid this

problem we chose to send a comp-

limentary writeset that grants the right

privilèges to ail on the slaves. This

additional writeset is sent right after

the first, and is applied by ail slaves.

Thèse are similar to the

'CREATE TABLE ...' commands.

Indexes don't need to be replicated, as

they affect performance and not the

resuit of an IDU command. Since

indexes are expensive to maintain, one

might think of not replicating ail

indexes on ail sites. Instead, each slave

might specialize in a spécifie set of

queries, and hâve indexes that are

only useful for those queries.

60

40

41

42

43

44

45

(i)

CLUSTER

S E T

RESET

SHOW

VACUUM

COPY

COPY TO

Allow

Allow

II

II

Allow

Ailow

Don't allow

Allow

n

n

7

Allow

No

No

//

//

Yes

No

As far as we understand, this command might

overwrite some information, such as granted

privilèges, so we don't think that it is safe to allow

users to cluster tables on spécifie indexes. To

préserve user privilèges, this command should only

be allowed on one site, the master.

Setting local spécifie variables should be allowed on

the slaves for user's convenience, and so should

not be replicated.

This command cleans out old data that is no longer

needed. As far as we understand, this affects

performance (queries are faster after a vacuum) and

not the resuit of an IDU command. Therefore, we

could décide individually on each site when to

vacuum. On the other hand, vacuum deletes old

data, and might conflict with other updating

transactions. Allowing users to exécute this

command at random on the slaves might lead to

conflicts.

This is basically a read opération.

The next set of utility commands either allow an absolute path as input, or dépend

on other utility commands that allow that as their input. We disallowed them in

our implementation. The following table summarizes thèse commands.

61

45

(2)

46

47

48

49

50

51

52

53

54

55

56

57

58

C o m m a n d

COPY

COPY FROM

CREATE FUNCTION

DROP FUNCTION

CREATE LANGUAGE

DROP LANGUAGE

CREATE TRIGGER

DROP TRIGGER

CREATE TYPE

DROP TYPE

CREATE AGGREGATE

DROP AGGREGATE

CREATE OPERATOR

DROP OPERATOR

LOAD

M a s t e r

?

Il

II

II

II

II

II

II

II

II

II

II

II

II

Slave

?

II

II

II

II

II

II

II

II

II

II

II

II

II

Repl ica te

?

Il

II

II

II

II

II

II

II

II

II

II

II

II

C o m m e n t

An absolute path is required with this

command

When creating a function, the user has

the option of providing an absolute path

to it.

In creating a language, a call handler is

required, which should hâve been created

using the 'CREATE FUNCTION' command.

This utility command might dépend on

functions created using the

•CREATE FUNCTION' command.

A similar argument to 'CREATE TRIGGER'

applies hère.

A similar argument to

'CREATE LANGUAGE' applies hère.

A similar argument to

'CREATE LANGUAGE' applies hère.

A similar argument to 'COPY FROM'

applies hère.

The last set of utility commands are the troublesome cases. We are simply not

certain how to handle them. The following table summarizes thèse commands.

62

59

60

61

62

63

64

65

66

67

68

69

C o m m a n d

CREATE DATABASE

DROP DATABASE

SELECT INTO

CREATE RULE

DROP RULE

CREATE SEQUENCE

DROP SEQUENCE

LISTEN

UNLISTEN

NOTIFY

REINDEX

M a s t e r

?

Il

II

II

II

II

II

II

II

II

II

Slave

?

Il

II

II

II

II

II

II

II

II

II

Repl ica te

?

//

n

n

n

n

n

n

n

n

n

C o m m e n t

Users should not be adding and deleting

databases in a replicated environment.

Databases should be created before

launching the system in replicated

environment, i.e. in standalone mode.

This command is similar to an insert

command, and therefore should be

replicated. It also reads data.

Slaves might read différent values

than the master since transactions

start later on the slaves.

Rules can also fire upon sélect statements.

It is not clear if they should be allowed

on the slaves.

Séquence numbers should be handled with

care in a replicated environment. Unless

différent séquence numbers are allocated

for différent sites, this commands should

be disallowed. However, we believe this is

an inconvenience.

Thèse commands can be combined with

rules that are triggered by table

updates to notify frontends. It is

not clear how thèse commands should be

handled in a replicated environment.

This command can be used to recreate

ail system indexes of a specified

database, and as such should be

handled with great care.

Chapter 6

Failover

6.1 Introduction

Failover, in gênerai terms, is the mechanism by which an entity, such as a site, takes

over a task(s) from another entity in the case of an event(s). In this chapter, this

définition will be adopted for the spécifie task of the master of the group, the event

will be system configuration change (SCC), i.e. a change in the site constituents of

the group, and the take over will be the élection mechanism of the new master if the

old master failed. A system configuration change occurs in the event of a crash of a

site(s), the deliberate withdrawal of a site(s), the recovery of a site(s) after failure,

the introduction of a new site(s), network partition, and network merge. In the case

of this event, one of the following scénarios should happen:

• The master remains the same

• the master left the group, i.e. either failed or was deliberately withdrawn from

the group, and a new master must be chosen

• the master has not failed but a more powerful site has joined and should

become master

63

64

In order for the failover to work properly, a new protocol has to be designed. We

will refer to this protocol as the Failover Protocol. The protocol entails précise

instructions for the behavior that ail sites hâve to follow in the case of the SCC.

The protocol is executed whenever the configuration of the system changes in order

to détermine which site in the new configuration is the master. The protocol might

détermine that the old master remains master or that a new master is chosen.

After the exécution of the protocol it is guaranteed that each site in the system has

decided on the same site to be master. The failover protocol should be designed

to be self-contained and no manual input from system administrators should take

place.

In this chapter, we will try to address the above issues by giving détails about the

failover protocol. We will also cover implementation détails. But first we need to

look at the requirements of a failover protocol.

6.2 Failover Requirements

Failover is based on spécifie cornerstones that make up the 'work bench' of the

protocol. Thèse cornerstones include a configuration file, the system state, and the

élection of the new master.

6.2.1 The configuration file

The configuration file provides a priority listing of ail possible sites that can ever be

in the group. This file should provide a spécifie priority, or weight, for every one of

thèse sites. This file represents a référence for ail sites to consult in order to décide,

based on the priority, on the new site to be the master in the case of the SCC. The

configuration file is usually created by system administrators before launching the

system. An identical copy of this file is stored at ail sites, in a location known to

the database server. The database server can either load the contents of this file at

65

startup, or at the occurrence of the SCC. This is illustrated graphically in Figure

6.1.

event event

startup
Database y
system

\

m actic

LMII

^| action

configuration
l'île

Reading the configuration fi leonly ut startup

startup
Database [
s>rstem

Reading the configuration file each time the event happens

F i g u r e 6 .1 : When to read the configuration file

The advantage of reading the configuration file at system startup is that the file is

read only once, as opposed to many potential times as in the second case. However,

the startup takes longer and there is also the chance that the SCC may never happen,

which means that the failover mechanisms may never be needed. So even reading

the file only once becomes a waste of time in this case. Reading the file each time

also gives the system administrators the chance to adjust the file as they see fit,

so that the new and modified file gets read the next time the configuration change

happens.

6.2.2 The System State

On top of the configuration file requirement discussed in the previous section, the

system sites require more knowledge about the state of the system before and after

the occurrence of the SCC. The system state can be provided by the group com

munication system, or GCS (Chapter 4). In the case of the Spread system, for

66

example, the GCS maintains a view, i.e. snapshot, of the group at any time. In the

case of a SCC, a view change message is delivered to the application on each site to

alert them to the change. This view change message is composed of ail sites that

constitute the new configuration.

6.2.3 T h e élect ion of a new master

In gênerai, the sites that constitute the new configuration hâve to agrée within each

other if a new master has to be elected, or if the existing one remains as master

of the new configuration. There are two gênerai guidelines for this action. The

sites can exchange messages to come to a décision on what to do, or they can take

décisions based on accumulated knowledge.

The distributed élection by message exchange

Distributed élection protocols use message exchanges to come to a consensus, or

conclusion. In the case of choosing a master for the group, the sites can run a

distributed agreement to come to this décision. Distributed agreement protocols

are similar to 2PC protocols (Chapter 2) in the sensé that the protocol requires a

coordinator and participants.

Election by accumulated knowledge

The members of the group can décide on the site that should take over simply by

consulting a knowledge base. In the case of the master for example, sites can consult

with the configuration file, described above, to décide on which of the other sites

the administrator wants to take over the position of the new master. This knowl

edge base, as described above, can be acquired at system startup or each time it is

needed. The individual sites, in this case, perform the failover protocol without any

communication between them. The site that should assume the rôle of the master

assumes it right away. That particular site assumes also that there is no other site

67

in the new configuration that will share with it the new acquired responsibility. Ail

thèse décisions happen locally to the individual database servers. Election by ac

cumulated knowledge requires two things to work properly. The configuration file

and a snapshot of the new configuration. Sites compare the new configuration to

the référence file, and can corne to a uniform conclusion on the site that should

become master. This is différent from the distributed élection based on communica

tion, where individual sites only require the new configuration to come to the same

conclusion.

6.3 Implementation détails

The architecture of Postgres-RFR was not modified to accommodate the failover

protocol. So the architecture described in Chapter 5 was preserved. Failover is

mainly managed by the replication manager and the remote backend. To implement

failover, new control structures and messages were required. Furthermore, a new

user table was also added that contains the information about the différent sites in

the group. We refer to it hère as the hosts knowledge base.

6.3.1 Configuration file

The satisfy the configuration file requirement described above, a new configuration

file was introduced. This file is read at system startup, and never read again. The

file contains information about ail sites that the system administrators will ever

introduce in the system. If new sites should be introduced, the system has to be

shut down and restarted after the the configuration change.

Specifically, the configuration file contains the following information for each site:

1. The name of the site

2. The IP address of the site

3. The site priority

68

A high priority represents a site that the system administrators want to be the

master of the group. A low priority means that the site should join and remain as a

slave, unless ail sites with higher priorities are down. It is up to the administrators

of the database system to décide on a good priority for the sites, but things that

hâve to be considered include the available resources to the site, i.e. speed, memory

and hardware. The machine that is faster and has access to more memory than

others should be given a high priority, so that it takes the job of the new master.

It is also possible for two sites to hâve the same priority. In this case, our protocol

will choose the one that appears first in the log. Figure 6.2 illustrâtes graphically

an example of the use of the priority principle for a hypothetical system.

Administrator' s ordered hosts list

System group at time tl, site 2 is the master

110 45
6

20
8

15
9

11
10

11

• site id

• site priority

System group attime Û, sites 1- 8 down, site 9 is

9

11

the mastei

10

11
n
3

12

1

F i g u r e 6.2: The use site priorities to décide on the master

In the example, the system is composed of a potential set of 12 hosts, each of which

was assigned a priority as shown in the figure. Thèse sites were numbered from 1

to 12 for illustration. At time t l , only sites 2, 3, 6, 8, 9 and 10 are up. The master

of the group is therefore site 2, with priority 110. Some time later, sites 2,3,6 and 8

69

fail, and sites 11 and 12 are introduced. In this case, site 9 assumes the rôle of the

master because it appeared first in the log.

6.3.2 Failover control s tructures

The purpose of the new control structures is to provide a control mechanism for

sites crashing and re-entering the group. The main structures are two control lists,

the administrator list and the alive list, as shown graphically in Figure 6.3. Thèse

lists are maintained by the replication manager in main memory.

Head
AdminList Tail

Site 1
priority pi

Site 2
priority p2

Site 3
priority p3

Site N
priority pN

where pi > p2 > p3 > ... > pN

Head ActiveList Tail

Site a
priority pa

Siteb
priority pb

Site c
priority pc

Site k
priority pk

where pN > { pa. pb, pc pk) > pi
and {a. b, c, ... k) e {1,2,3 N)

F i g u r e 6 . 3 : Failover control s t ruc tu res

The administrator list is a static list containing the information from the configu

ration file. The list is ordered by priority, with the site with the highest priority

being at the head of the list. The ordering is a performance feature. It is intended

to accelerate the traversing and the locating of sites with a spécifie priority. Figure

6.3 illustrâtes the administrator list graphically.

The alive, or active, list is the data structure that holds information about ail the

sites that are up and running. The set of sites in this list is a subset of the complète

set of the administrator list. The alive list is not ordered, because it would be

expensive to maintain a dynamic list, such as this one, in an ordered state. Besides,

the ordering information is well provided by the administrator list. The alive list is

updated each time a new view change is received. It represents a précise snapshot

70

of the configuration of the complète system. It is also the set of sites considered for

choosing the master, each time the failover protocol is run.

6.3.3 System configuration knowledge

The system configuration knowledge is maintained by a user table, that we named

hosts. This table is updated by the remote backend, on instructions from the repli

cation manager. Database users can view this table, any time and at any site, to

see which of the sites are up and running, and which of thèse sites is the master.

This table has the following three columns:

1. The host name: this is the complète host name

2. The host ID: this is the ID of the machine

3. The host IP: this is the MAC address

4. The host type: this could be either 'M' for master, or 'S' for slave. At any

time, there is only one 'M'in the table, and that letter dénotes the only master

of the group.

This table can be viewed by users through the standard PostgreSQL psql interface,

'psql', and the programming interface 'libpq'. To enable this functionality, two new

backslash commands were added to the existing list of backslash commands of the

PostgreSQL interactive interface. To view the hosts table, a user has to issue the

following backslash commands:

• 'dh' for display hosts. This displays a list of ail active hosts in the system as

described above.

• 'sm' for show master. This displays a detailed information about the master.

71

6.3.4 Failover Séquence of Events

The failover mechanism is triggered by the view change delivered by the group

communication system. If the master of the group crashes, another site takes over

that rôle. Also, if a site with a higher priority is (re)introduced in the group, the

existing master lias to step down from that position to allow the new site to assume

the rôle of the master. But, what exactly is involved in the step of conversion? In

this section, we intend to answer such question.

The view change message

Before doing so, we'll look in détail at the view change message. In Postgres-RFR,

the view change message is a message sent by Spread to the group communication

manager (Chapter 5). The latter processes that message and forms another message

that the replication manager understands. This new message contains information

about the new configuration.

This latter message is composed of two sections, the header and the message body.

This is illustrated in Figure 6.4. The header of the replication protocol is the same

as in the message format introduced in Chapter 5 for uniformity purposes, i.e. to

keep message of the same format. The header is composed of the following fields:

• hostJd: the host ID was given the spécial value 0, so that the replication

manager can distinguish the view change message form the other received

messages.

• transJd: the transaction ID, just like the host ID, was also given the value 0.

The combination of two zéros at the beginning marks the view change message

uniquely.

• msg.type: the message type is 'MSG_VIEW_CHANGE'

• datalen: this is the total length, in bytes, of the data section of the message

72

hostjd Iransjd

msg_header

—

msgjype dalalen

data

^
•&

joined 1 joined 2 joined failed 1 failed 2

""- -^

. . .

SITE.IOINED hostjd hostjiame SITE.FAILED hostjd

failed j

host_name

F i g u r e 6.4: The view change message

The data part of the message is composed of two sections. The first lists the hosts,

or sites, that joined the group. Thèse are represented by the spécial 'SITE.JOINED'

type, the second lists the failed sites , and they are represented by the 'SITE_FAILED'

type. A host in the message is represented by its host name and its host ID.

The mas ter s ta te knowledge

Because the failover mechanism is designed for a dynamic environment, the indi

vidual database server has to be able to find out if its site is a master or a slave

at any time. This knowledge is required by ail the processes that take part in the

architecture of Postgres-RFR. For instance, when a client requests an IDU com

mand, the local backend has to décide weather the site is the master. Only then

the command is allowed, otherwise the command is rejected and the client receives

a corresponding error message. The shared memory contains a 'master-flag' that

is true if the site is the master, and false if the site is a slave. We chose to put

this information in a shared memory location at every site. Ail processes local to

one site that need to know if their site is a master or a slave, can simply consult

with this memory location. To avoid concurrency control, we allowed only one pro

cess to update this knowledge location, the remote backend. A new message type

'MSG_MASTER_CHANGE' (Section 6.3.5), had to be designed that is sent by the

replication manager, and instructs the remote backend to update that memory lo

cation. It is important to note the distinction between the 'master-flag' and the

hosts table described above. The flag is a control structure that is internai to the

73

system, i.e. the users hâve no access to it. However, the hosts table is intended for

display purposes, i.e. to provide a knowledge base that can readily be consulted by

the system users.

Converting from a slave to a master or vice versa

After the view change message is delivered, the failover protocol has to décide if the

master should be changed. If the view change message contains sites that (re)join

the group, then one of those sites should also be considered as a potential master.

In gênerai, a site converts from a slave to a master in two scénarios:

1. When the master fails, so another slave has to assume that rôle

2. When a site that has a higher priority joins the system

In the first case, i.e. when the master fails, the slave with the highest priority takes

over the rôle of the master. It changes its master-flag to 'true'. In the second case,

the joining site sets its master-flag to 'true' and the master to 'false'.

In the second case, the conversion does not take place immediately after the view

change since the joining site has to undergo recovery (as explained in Chapter 7).

In this case, once the new site has completely recovered, it will multicast a spécial

message to ail sites. Only upon delivery of this message that the master conversion

takes place. Apart from this view change message and this spécial message, there is

no further communication between the sites keeping communication overhead low.

The Master change message

The master change message is a message sent by the replication manager to the re

mote backend to update the shared memory location that holds the knowledge about

the site state (master or slave). This message has type 'MSGJVIASTER.CHANGE'.

Figure 6.5 illustrâtes this. The conversion type is either 'FROMMASTERTOSLAVE'

or 'FROMSLAVETOMASTER'. The rest of the data is the new master information.

74

msg_header data

msgjype datai en conversion_type master_id master_nume master_ip

F i g u r e 6.5: The master change message

Updating the client knowledge base

The client knowledge base is represented in our protocol by the hosts table. In order

to update this table to reflect the status of ail sites in the group, the replication

manager has to send appropriate messages to the remote backend to instruct it

to do that. This message, 'MSGJIOST.CHANGE' (Section 6.3.5), is sent by the

replication manager to the remote backend to instruct it to update the hosts table

with the information contained in the message. Updating this table can be either

removing, adding or updating site entries. The update is simply to change a slave

to a master, or a master to a slave.

6.3.5 Failover control messages

On top of control structures, new messages were required to handle the commu

nication between the différent processes in Postgres-RFR, namely the replication

manager, the group communication system and the remote backend. Note that in

our implementation, message exchanges take place in an asynchronous non-blocking

fashion. That means that processes never block waiting. Instead, buffered sockets

are used to buffer incoming messages, and later on processed. In our protocol, we

use three new message types to handle the failover mechanism. The following table

summarizes thèse message types.

75

1

2

3

M e s s a g e t y p e

MSG.VIEW.CHANGE

MSG-MASTER.CHANGE

MSG-HOST.CHANGE

D e s c r i p t i o n

This is the view change message that is sent by the group

communication system to the replication manager.

This constitute the trigger to our protocol.

This message represents the instruction sent by

the replication manager to the remote backend to

change the master status of the site.

This message represents the instruction sent by

the replication manager to the remote backend to add

or change an entry in the hosts table.

6.3.6 Failover and active transact ions

There are times where a site could be processing transactions, and at the same time

it changes its state, i.e. from a master to a slave or vice versa. IDU commands,

for example, are rejected on slaves, but accepted on the master. Since view change

message can arrive at any time, the database system has to properly handle active

transactions at the time of the change.

In the case where the site changes from a slave to master, the database can alert

the users that are actively processing transactions on its database. This way, users

can start sending commands that were not possible before the change, such as IDU

commands. With our implementation, this change happens transparently to the

users, and hence they are not alerted to the change.

In the case where the site changes from a master to a slave, the database system can

do two things: it can also alert users that are actively connected to the database,

but also has to rollback their uncommitted transactions if they contained commands

that are not accepted on slaves, such as IDU commands. Although this is incon

vénient to the users, the database system guarantees this way the consistency of

its data. Users hâve to restart their transactions on the master if they need to

make changes to the database. If their transactions do not contain updates to the

76

database, they can simply continue using the same site. With our implementa

tion, the local backends will simply fail by crashing in the case that the transaction

contains updates to the database, and users hâve to reconnect to the database to

perform their transactions. The local backend will not fail otherwise, and users can

finish their read-only transactions.

Chapter 7

Distributed recovery

7.1 Introduction

Distributed recovery is the mechanism that a database undergoes to bring its own

copy of data to be consistent with the other database group members. Distributed

recovery is différent from cental recovery. Central recovery brings the local database

back into a consistent state. After local recovery, the changes of ail transactions com

mitted before the crash are included in the database, the changes of ail transactions

that committed before the crash or that were active at the time of the crash are not

reflected in the database. After central recovery, the internai state of the database

is consistent. But it does not reflect the transactions that were committed in the

system while the site were down. For that, you need distributed recovery. Cen

tral and distributed recovery are both necessary and complementary to achieve the

above state.

There exists several options for distributed recovery. In a simple solution, the re

covering site simply gets a current and complète copy of the database from another

site, or a peer site. However, the database might be very large, and only a small

amount of data might hâve changed. A more efficient solution is for the recovering

site to receive only the updates of the transactions it missed during its downtime.

77

78

The peer site can collect such state by scanning its central log and retrieving the

redo logs of ail relevant transactions.

In [19] several stratégies of how to transfer state to the recovering site are proposed.

In our work, we follow a slightly différent approach, namely one where the recovering

site receives ail the transactions it has missed from a peer site. In this chapter we

will provide a detailed solution for this approach, and show how it is implemented.

7.1.1 Overview of distributed recovery

An gênerai overview of the distributed recovery is as follows.

• A site is (re)introduced in the system. It joins as slave.

• It then undergoes central recovery using the UNDO/REDO central log infor

mation (Chapter 2).

• It then joins the group, and as a conséquence receives a view change from the

group communication system (Chapter 4).

• From the moment it joins the group, it starts receiving writesets sent from the

master to ail the slaves. It then starts buffering thèse writesets as long as it

is in distributed recovery (Section ...).

• From the list of sites in the view change, it chooses a peer site to help in the

distributed recovery process (Section ...).

• It then establishes a communication channel with this site (Section ...).

• It then extracts from its distributed recovery log the identifier of the last

transaction it has processed prior to failing. In the case of a new site, this

identifier will be 0 (Section ...).

• It then proceeds to send this identifier to the peer site (Section ...).

79

• The peer site receives this transaction identifier, and extracts the updates of

the transactions that occurred after that particular transaction (Section ...).

• The peer site then proceeds to send thèse updates to the recovering site (Sec

tion ...).

• The recovering site applies thèse updates (Section ...).

• After it has finished with applying the updates received from the peer site, it

starts processing the writesets it has been buffering thus far (Section ...).

• When it has finished with the buffered writesets, it broadcasts a message telling

the other sites that it is now ready to share in the load of the database cluster

(Section ...).

• Ail sites then undergo failover mechanisms to décide if the newly recovered

site should be the new master, or if it should stay as a slave (Section ...).

During this recovery process the master of the group still process user transactions.

Ail sites, including the recovering site, still receive the broadcasted transactions from

the master. Therefore, the recovery process must be coordinated with the receiving

of transactions. That is, for new transactions sent by the master, the recovering

site, while it is still in recovery, either receives them from the peer site or it receives

them from the master, stores them in an intermediate queue and applies them after

the recovery process is finished.

Distributed recovery is based on important database concepts such as system-wide

transaction identificaation and logging. In this chapter, we présent the fundamental

concepts of distributed recovery. We will also présent implementation détails about

Postgres-RFR distributed recovery protocol.

80

7.2 System-wide Transaction Identification

In a localized and central database system, every transaction that is executed is

assigned a local identification identifier. This identifier is usually a unique num

ber. When we look at a replicated database system, thèse locally created identifier

numbers are no longer unique. If any system wide transaction control is required,

a functionality to uniquely identify transactions has to be integrated. System-wide

transaction identifier, or Global Transaction Identifier (GTI), refers to such func

tionality.

7.2.1 The UD properties

Any solution to the GTI problem has to satisfy two database properties: uniformity

and durability. We will dénote them as the UD properties in the rest of this paper.

Let's look at thèse in more détail.

1. Uniformity: any GTI issued for a particular transaction has to be uniformly

accepted and adopted by ail servers in the group. Failure to do so, for any rea-

son, by any server might jeopardize the consistency of the distributed database,

hence the uniformity property.

2. Durability: this is of paramount importance for fault tolérant Systems. A

GTI is durable if it persists despite system failure. If a GTI does not persist

in the case of failures, then the recovering site will not be able to globally

identifier the last transaction (s) it performed before failing. It will only be

able to locally identifier those transactions. Logging is the most common

solution to the durability of data. We will therefore adopt logging as our

primary means to ensure durability of the GTI.

The GTI problem is greatly simplified by the use of a master-slave protocol to

replication, compared to solutions for update-everywhere replication. In a master-

slave approach, the master is the only server that broadcasts the updates to the rest

81

of the group. It is only natural, therefore, that the master adopts the responsibility

of issuing and governing the GTI. There exists, however, other alternatives to this

conceptual design. In what follows, we présent four designs to the GTI problem

in a master-slave system. Handling the GTI problem in an update-everywhere

alternative to replication is beyond the scope of this report.

7.2.2 GTI solutions

It is important to distinguish between the system-wide transaction identifier, i.e.

GTI, and the local transaction identifier, i.e. LTI. The génération of the GTI of

a transaction should be independent of the choice of LTI on the différent sites. A

transaction has exactly one GTI but might hâve différent LTIs on the différent sites

of the replicated system. The génération of the GTI and the LGI are independent

of each other. In this section, we présent three alternatives to the GTI problem,

namely piggybacking, using a distributed agreement protocol, and using the group

communication system.

The piggyback solution

One of the options available to the master to enforce a unique GTI is to piggyback

the newly issued GTI on the broadcasted writeset belonging to this transaction,

message.

Uniformity is assured across ail database servers since GTI is directly attached to

the writeset and ail servers receive the same writeset. Durability is the responsibility

of the individual database servers. Once a writeset is received by a server, it has to

ensure that the GTI is logged. This method has the désirable feature that there is

no additional message over head.

82

A distributed agreement protocol solution

The distributed agreement protocol is a technique to dénote a message exchange

between two or more processes to ensure that a particular décision is reached by ail

members of the group. This is similar to the 2PC protocol described in chapter 2

in the sensé that the coordinator is the master, and the participants are the slaves.

The agreement would be to reach a décision on a GTI suitable for ail sites for a

particular transaction. It can be originally proposed by the master, and the slaves

hâve to vote if they accept it or not. This continues until ail sites come to a uniform

décision.

However, there is a high price for this solution: a communication cost. The number

of messages exchanged between the master and the slaves is in the order of about

three times the number of database servers.

Using the group communication system solution

Yet another alternative to the GTI problem is to take advantage of the semantics

of the group communication system. As we saw in Chapter 4, the total order

multicast guarantee of the GCS can be exploited to solve the issue of GTRs. Since

the total order guarantees the total ordering of messages passed through the system,

database servers could simply incrément the GTI with every arriving new writeset.

The GCS guarantees that even the sender, i.e. the master, will receive the writeset

back from the GCS. So, no spécial treatment is required for the master. Every site,

upon receiving the writeset from the GCS, assigns a new GTI to that particular

transaction. In order to make it easy for the servers, incrementing the GTI by 1 is

enough to guarantee the UD properties discussed above. The uniformity property is

assured by using a uniform incrémental value (' l ' is good enough), and the durability

property is assured by the individual recovery mechanism of the différent sites.

This solution is attractive in many ways. It does not need any additional resources, it

does not add any communication cost and it does not make the writeset functionality

83

any more complicated as we saw in the case of the piggybacking solution described

above. It will also work for update-everywhere replication since the total order of

messages also holds when more than one site sends messages.

However, it suffers a couple of drawbacks. The first is the total dépendance on the

underlying group communication semantics. That means any error in the group

communication could automatically resuit in system-wide database inconsistencies.

The second is the need for the recovering site to communicate with another site to

discover the current value of the GTI.

7.3 Transaction information logging

In this section, we discuss how the GTI can be used for distributed recovery, what

exactly should be logged by the sites, and how.

The GTI is of crucial importance in our distributed recovery protocol. It enables the

recovering site to décide on an important issue, namely the GTI of the last update

transaction processed before failing. It the informs a peer site about this GTI and

the peer site will send the recovering site the updates of ail transactions with higher

GTI.

In central recovery (Chapter 2), undo and redo information for every transaction

are logged, and for each terminated transaction either a commit or an abort record

is logged. We call this information the central log. In the following we assume a no-

force/steal strategy. Furthermore, each log-record contains the LTI. The distributed

recovery process must perform a matching of LTI to GTI to find the redo logs of the

transaction in the central log. An update message is formed that contains détails

about those transactions. Thèse messages are then sent from the peer site to the

recovering site.

Thus, distributed recovery requires the logging of two additional things: the GTI

ans the matching between the GTI and LTI.

84

7.3.1 Logging Alternat ives

In this section, we elaborate on the way the différent database Systems will log the

GTRs, and any other pertinent transaction information.

Combining with the central logs

It is possible to combine the central logging with the distributed logging in one

place. That is the central log can be modified to accommodate the extra transaction

information needed to perform distributed recovery, namely the GTI information.

For instance, each log record contains both GTI and LTI. This has the désirable

advantage of centralizing recovery logging in one place, which makes it simpler

to maintain and monitor. It also makes it simpler to implement. The existing

implementation is simply expanded to accommodate the extra information.

However, this removes the modularity of the différent recovery processes, namely

central and distributed. If a database is to be run a stand-alone manner, distributed

recovery mechanisms are of no use to it. This means that ail the extra resources to

manage distributed recovery requirements, i.e. memory and processing, are wasted,

and hence performance is affected. In other words, it is désirable to hâve the choice

between thèse différent modules at system pre-installation configuration, and this

can only be achieved by separating the two modules from one another.

Independent logging

As explained above, it is possible to separate the distributed recovery log from the

central log, and this makes recovery more modular. In this case, the distributed

recovery log must contain enough information to match GTI and LTI.

However, this will make the implementation more complex, and possibly redundant.

This is because existing code from the cental recovery module might not be efficiently

re-used, and new implementation has to be designed.

85

7.4 Distributed Recovery Steps

So far we analyzed the importance of GTI during normal processing. In this section,

we'll look at the différent steps in the distributed recovery itself. A site that has to

recover, first establishes the needed communication with another site that will assist

it in the process, and then at some point later, will be able to finish the process

on its own. That point in time, we refer to it as the self synchronization point.

Once it has accomplished that particular step, it becomes ready to share in the load

balancing of the system, or it actively joins the group, i.e. it either becomes a slave

and allows read-only transactions, or it becomes the new master (see Chapter 6).

7.4.1 Establishing a distributed recovery communication channel

The fundamental vehicle to replication and distributed recovery is message exchange

between the database servers. There is a clear distinction in the message exchanges

between replication and distributed recovery during normal processing. In the for

mer, messages are sent by one server, the master, and received by ail other servers,

including the sender. In distributed recovery, however, messages can be sent by any

server, and received by any other server, as explained below. Figure 7.1 illustrâtes

this graphically.

Slave Assisting site

Master O
Recovering site

. [Ol
O

Slave

O

o
Slave Slave

Replication message exchanges Distributed Recovery message exchanges

F i g u r e 7 .1 : Différence in message exchanges between Replication and Distributed Recovery

86

A reliable message médium is of paramount importance for distributed recovery pur-

poses. There are two methods that could be adopted for use to exchange messages

in the distributed recovery protocol, a dedicated channel and a shared channel. In

what follows, we analyze the advantages and drawbacks of each.

Using a dedicated communication channel

The dedicated communication channel should be totally isolated from the rest of

the replication communication channels. It could be established between the recov

ering site and the peer site as soon as distributed recovery is deemed necessary, and

abolished right after the process is finished. Figure 7.2 illustrâtes this idea graph

ically. This channel could be established to use TCP transmission protocol. We

don't believe that UDP is a suitable choice hère, because UDP does not guarantee

delivery.

Slave Slave

O
Master

Master
Assisting site Assisting site

Recovering site

Direct Communication Channel

Recovering site

Communicating using the GCS

F i g u r e 7.2: Communication options

The main advantage of using a dedicated communication channel is its indepen-

dence of the replication communication channels. The dedicated channel will not

get affected by failures, slowdown or congestion of the replication communication

channels. A dedicated channel implies that distributed recovery messages are pro-

cessed as soon as they are received by the recovering site. This, we believe, should

enhance performance.

87

There are some concerns to distributed recovery over a dedicated communication

channel. The first is a gênerai concern to any communication channel between two

computers over the internet: authentication. An important part of the establish

ment of this channel is a two-way authentication mechanism, where each of the two

servers has to provide its identity as well as prove its legitimacy to the other. An

other disadvantage to the dedicated channel design is the maintenance burden that

accompanies such channels. This includes, on top of connection and disconnection

management, tearing down of the channel, buffer management and required system

resource management.

Using the replication communication channel

In this case, both replication and recovery protocols share the same channel, i.e.

they use the group communication system (GCS). This is illustrated in Figure 7.2.

In a query-intensive system, i.e. the ratio of updates to queries is relatively low, and

a system where failures are not fréquent, this solution is adéquate. This is because

the load on the GCS is relatively low. The underlying GCS channels, however, can

be extensively used in the case of ann update-intensive system, where the ratio of

updates to queries is relatively high. So, sharing in a channel that is already busy

can act to the détriment of replication as well as distributed recovery.

The advantage of sharing the GCS channels is the ease to implement such a function

ality. Since most GCS not only support multicast messages, but also point-to-point

messages that can be used between the assisting site and the recovering site. There

should be no need to implement other authentication mechanisms, as the GCS

should handle this functionality.

However, this simplicity cornes at the price of performance and speed. It is very

désirable that the recovering site receives the recovery messages without any delays,

so that it can finish with this phase as fast as possible, and start sharing in the

load balancing of the entire database system. Sharing a communication channel

means that the recovering site will hâve to screen between messages received for

recovery purposes, and other messages such as writesets. In the least case, it will

hâve to process the headers of ail messages to perform this task. This is différent

from the dedicated channel where ail messages received on that channel are recovery

messages.

7.4.2 Recovering site self synchronization

A crucial and délicate step in the recovery process is self synchronization of the

recovering site. Self synchronization is the moment when a recovering site does not

need anymore the help of its peer site, and can finish the distributed recovery process

by itself. This moment occurs when the recovering site applies ail the updates that

were sent by the peer site, and has to switch over to applying the writesets received

from the master, and were buffered up to this point. The recovering site should hâve

been buffering the writestes received from the master when it was busy exchanging

messages with the peer site.

There are three alternatives to design the synchronization step. It can be designed

to use unbounded buffering, or to synchronize with the peer, or to use bounded

buffering.

Synchronizing with unbounded buffering

One of the buffering alternatives available to the recovering site is to buffer without

storage concerns the writesets sent by the master. As soon as the peer site fin-

ishes sending ail the missed updates, the recovering site scans through the buffered

writesets, looking for the last transaction it applied. It then starts applying the

transactions that came after that one. That particular transaction provides the

synchronization needed for the recovering site to start applying the master write

sets. Obviously, an endless buffer is adéquate for a system where updates are not

fréquent, but for a heavily accessed system, where the ratio of updates to queries

is high, this option is not appropriate. This is because the recovering site will need

89

to buffer ail thèse writesets, a process that can be expensive in terms of memory

requirements, especially if the recovering process takes a long time.

Using recovery-peer synchronization protocol

The recovering site can avoid buffering until the peer site exhausted ail its log

entries. At that point, by message exchange, the recovering site starts buffering

master writesets, but keeps receiving updates from the peer site. While doing so, it

constantly monitors the two message streams looking for its synchronization point.

On success, it switches over to applying the master updates and asks the peer site

to stop sending updates. This option is complex and involves continuous message

exchange between the two sites even after the peer site has no more updates to send.

Using a bounded buffer

A more feasible alternative that solves the problem of the unbounded buffer re

quirement is to use a bounded buffer that stores a predetermined number of master

updates. Once the buffer is full, it should start dropping some updates to accom

modate the new ones. The bounded buffer in this case could be implemented as a

FIFO list, where the oldest update is dropped to make room for the newest update,

when the buffer is full. Figure 7.3 illustrâtes the point. The recovering site has

to look for its synchronization point within its bounded buffer after applying the

updates from the peer site. Because it might hâve dropped updates from its buffer,

the job of localizing the synchronization point is not straight forward. The risk

hère is that this synchronization transaction might not exist in its buffer, i.e. it was

dropped. So for this option to work, the peer site must keep sending updates until

the recovering site is able to pin-point its own synchronization transaction, after

which, the services of the peer site are no longer required. The choice of the number

of transactions to buffer hère is of paramount importance. A too large a number

implies wasted buffer space but guarantees the synchronization step. A too small

number increase the risk of not finding a synchronization point but saves memory.

90

Bounded
Buffer

^
update 1

updates to be i gnored

update 2 • • • update i

updates to be appl i ed ^
— ^ • • ^

- 1 update i . . . update n

last update received from peer t I first update to be applied from buffer

Synchronization point

F i g u r e 7.3: A bounded buffer approach to self-synchronization

The choice of the optimum size of the bounded buffer dépends on many factors. The

update load on the system being the dominant one. Other factors include network

congestion, the speed of the peer site in sending the recovery messages, the speed

of the recovering site in applying them and the available memory resources to the

recovering site. For ail thèse hard to control reasons, it is a hard job to estimate the

right buffer size to use. To overcome this, a system could be designed so that the

size of the buffer could be decided by the system administrator at system startup.

The system administrator is someone who might hâve an idea about the load on the

system as well as the network state, and might be in a position to take an educated

décision on the parameter.

7.4.3 Switching from passive to active join

The introduction of a site into the system marks the beginning of its passive join.

When a site is introduced, it has to bring its database to a consistent state. This

phase is referred to as passive join phase. As soon as that particular site has suc-

cessfully updated its database, it undergoes a transition from passive to an active

join phase. A site starts sharing in the load balancing when it enters this phase.

Using the group communication services, a site receives a view change message from

the group communication system that includes ail the sites that are up and running

at that time, including itself. The réception of that message marks the beginning of

a passive join where the recovering site is not ready to process any updates from the

91

master. This phase continues until that site déclares itself as active by broadcasting

a relevant message to the group. A site enters an active join phase right after the

delivery of such a message. Being an active site means that the site has successfully

brought its database to the most current copy. During the passive phase, a site will

perform ail of the following jobs in the indicated order: Central recovery, Distributed

recovery, Failover mechanisms. This is illustrated by Figure 7.4.

Active
Join ,

à

Passive
Join

•

site shares in the load

failover

distributed recovery

central recovery

site starts up

Time

F i g u r e 7.4: Switch from Passive to Active

As soon as a site is ready to share in the load balance, it is important that the other

sites become aware of this. The fact that a recovering site has a consistent copy

of the database (with respect to the other sites), makes it a potential site to assist

other recovering sites. So, it is important to advertise this knowledge.

Broadcasting of a ready message

To advertise the fact that the recovering site is fully recovered, it can simply broad-

cast a 'I-am-ready' message at the end of its synchronization mechanism. Upon

receiving this message, ail sites update their knowledge base and consider the recov

ering site as active. This alternative minimizes the message overhead by keeping it

to an absolute one broadcast message, that is sent at the very end of the recovery

phase. Figure 7.5 illustrâtes this graphically.

92

Peer site

Recovering
site

Master site

Slave site

Slave site

Recovery phase

F i g u r e 7.5: Ready state broadcasting by the recovering site

7.4.4 Election protocol of a peer site

Performing distributed recovery requires the assistance of an active site in the same

group. There could be more than one other site that can fulfill this job, so a protocol

to choose the most adéquate has to be put in place.

The job of locating a peer host is not straight forward. This is because not every

host that is active at the time when a recovering site is looking for assistance is

capable of assisting in recovery. A host, for example, could be assisting another

third host recover. A host should not assist more than one other database recover,

unless of course, no other option is possible. In gênerai, a particular host could be

in one of the following states:

1. Assisting another host recover

2. Being assisted by another host in its recovery process

3. Looking for a peer host to assist in the recovery process

4. Waiting for a suitable host to be available for assistance

There are many mechanisms that can be used to choose this assisting, or peer, site.

In hère, we look at the most straight forward ones.

93

The Least-likely-to-be-the-next-master (LLNM) protocol

The most obvious choice for a this peer site is the one which is the least likely to

be elected as the new master, should the existing master fail. The reason behind

this choice is the idea that the master has already more work to do compared to

the slaves, in terms of replication, so we don't want to burden it with more work,

in terms of assisting in the recovery of newly introduced site.

The advantage of this protocol is straightforward. The master is relieved from the

task of assisting a recovering site, while at the same time, it might be quite busy

replicating data to the slaves. However, there are drawbacks to this protocol. A

master is usually chosen on the basis of processing speed and available resources.

So, the site that is the least likely to be elected as the next master will usually be

the slowest, and/or the one with a reduced amount of resources, in terms of memory

and storage. This implies that the distributed recovery process might take longer

with the choice of this site than with other sites, especially in a highly replicated

system, or if a large portion of the database needs to be sent to the recovering site.

This drawback can be avoided by the next protocol: the Most-likely-to-be-the-next-

master (MLNM) protocol.

The Most-likely-to-be-the-next-master (MLNM) protocol

The drawbacks of the LLNM protocol can be avoided by choosing a peer site that

is the most likely to be elected as the next master, should the existing master fail.

We abbreviate this protocol as the MLNM protocol.

The most forward advantage of this protocol is the fact that the peer site will

be chosen among the fastest machines in the group, or the one that has a access to

relatively décent resources. This implies that the distributed recovery process should

theoretically take less time than with the LLNM protocol. However, in a high failure

environment, we hâve no guarantee that a site chosen using this protocol will not

be required to take the master rôle, should the existing master fail in the middle

94

of the distributed recovery process. Therefore, préventive measures should be put

in place to account for this eventuality. This could be done either by temporarily

removing this site from the list of potential future Masters, or lowering its élection

likelihood for the position of future master. This, evidently, calls for complex control

and implementation.

The tie-breaker protocol

In ail the above protocols, one can be faced with the case where two, or more,

machines can fulfill the requirements of a peer site. This calls for a tie-breaker

protocol.

As discussed in Chapter 6, the choice of the master is totally at the disposition of the

people administering and maintaining the group. A master is chosen on a priority

scale that the system administrators draft at the launch of the system. Thèse

priorities that dictate the order of choosing the master takes many forms, the most

common is a configuration file. Two machines could possibly end up being assigned

the same priority by the system administrator, either willingly or inadvertently. It

is this scénario that calls for the tie-breaker protocol.

A straight forward approach to the tie-breaker situation is a random pick. Assum-

ing a choice is to be made among more than one machine, one of them is chosen

randomly. Another approach would be to choose the one that appears first in the

configuration file (Chapter 6). Note that one can think of numerous tie-breaker

protocols for this scénario, however, assuming that the priorities assigned to the in

dividual machines are accurate, the performance of the gênerai distributed recovery

protocol should not be significantly affected by choosing one or another.

7.4.5 More than one site is recovering

A site that is recovering is not necessarily the only one performing that particular

task. In a high failure system, more than one site could be undergoing a distributed

95

recovery. There are two concerns around this topic. Should this scénario be al

lowed to happen?, and if yes, should a peer site be allowed to assist more than one

recovering site at the same time?

It should be an easy task for the system administrators to find out when a site is

finished its distributed recovery process. Ail is required is to attempt to run a client

on the recovering machine, and depending on the implementation, the database

system can choose to allow client connections while in distributed recovery. So,

theoretically, the distributed recovery system can be designed not to allow multi

ple distributed recovery processes to take place at the same time. This could be

achieved, either by refusing a server startup, or leaving the control to the system

administrators to leave enough delay between introductions of machines into the

system.

7.4.6 Sending the missed transactions to the recovering site

The peer site, after receiving the last global transaction number from the recovering

site, extracts ail the updates that the recovering site has missed. It does this by

consulting its distributed recovery log, and getting ail the local transaction num

bers that it applied after the received transaction. The peer host then proceeds to

consulting its central recovery log to construct the message that will contain ail the

information required by the recovering site to bring its database up to date. There

are two ways available for a peer site to construct this message.

1. It can use the write set functionality of the replication module

2. It can send the portion of the log as a data stream, and the recovering site

should do the necessary parsing

Let's look at thèse two options in détail.

In the first case, the peer site has to form a write set, composed of ail the updates

of committed transactions. This list of write sets will hâve to be converted to a

96

byte stream and sent over to the recovering site using the communication channel

established beforehand. The recovering site will hâve to reconstruct the writesets

from the stream, and apply the updates using the replication functionality, using

the same mechanisms as a slave when receiving writesets from the master during

normal processing

In the second option, the peer site converts the relevant information in its local

log into a byte stream right away without the need for the replication system.

Upon receiving this stream, the recovering site will use the log interface to extract

and apply the transactions in the stream. In hère, the peer site might hâve to

send a copy of its distributed recovery log if transactions are non-idempotent. An

idempotent transaction is a transaction that if applied more than once, does not

leave the database in an inconsistent state. The problem arises from the fact that

a portion of a peer local log might contain records of transactions of no interest to

a recovering site. So a recovering site, when coming across a record in the local log

of its peer site, has to détermine if it should apply the changes of that particular

transaction, or if it simply should ignore it because it already applied the change. In

the case that the database can apply the same transaction more than once without

compromising consistency, a recovering site simply runs through the portion of the

log and applies each transaction regardless if it already did so for that particular

transaction. However, if that is not the case, a recovering site needs to receive both

the central recovery log, as well as the distributed recovery log of its peer to be able

to apply the transactions correctly.

7.4.7 Control transition: from recovery to failover

In a master-slave approach to replication, a site starts up as a slave and undergos

recovery mechanisms. Because it is possible for that site to be the new designated

master, either by the system administrators or by its default settings, a mechanism

should be devised to enable that site to take over the position of the new master.

We discussed this step in Chapter 6. The transition from recovery mechanisms to

97

failover should take place as soon as the recovery step is finished. This is because

a newly introduced site that is intended to be the new master should assume that

position as soon as possible. If the newly introduced site is supposed to stay as a

slave, then nothing should be done.

98

7.5 Implementation détails

In our implementation, we hâve chosen the following solutions as described in the

previous section:

• The distributed recovery log and the central log are separated from each other.

The distributed log keeps the GTI and their matching LTI.

• The recovering site uses a dedicated channel to communicate with the peer

site, for the purpose of getting the updates it missed while it was down.

• The unbounded buffer alternative is used for the purpose of the self synchro

nization.

• The remote backend of the peer site générâtes writesets and sends them to the

recovering site.

7.5.1 P o s t g r e s - R F R modified architecture

The architecture of Postgres-RFR, described in chapter 6 had to be modified to

accommodate for the distributed recovery protocol. Mainly, a new type of backend

used at the peer site to extract the data that must be transferred to the recovering

site, has been added to the architecture. This new backend was given the name of

recovery backend. The new architecture is outlined in Figure 7.6. In the figure, the

remote backend is also shown. Thèse two backends are created at system startup

and are kept alive as long as the database server is up and running.

7.5.2 The distr ibuted recovery protocol

The recovery backend has one main task, to get the data from the local log and send

then to the replication manager. The replication manager calls on this backend when

the site is required to assist another recovering site. The replication manager, in this

case, instructs the recovery assistant to extract the missed transactions so that it

99

(

X Remote
V _ B a c k e n d

X Recovery
V^Backend

Postgres- RRF

pos tmas ter J

engine

/ ' 'Repl ica t ion^X
*. Manager J

"Toinrau nicationx
V _̂̂ M a n a g e r ^ s

Figure 7.6: The modified architecture of Postgres-RFR

can send them to the recovering site. The interaction between the recovering site R

and the peer site P, during recovery, is described below, with figures 7.7 and 7.8 to

illustrate the protocol graphically. It is important to keep in mind that throughout

the whole recovery process, the replication manager of the recovering site R stores

ail incoming writesets received from the master site in a buffer.

1. The recovering site joins the system

2. The replication manager of the recovering site R extracts GTIiastl the GTI

of the last transaction that was processed before the crash by scanning its

distributed recovery log.

3. It then tries to locate a peer site P to assist in the recovery.

4. It requests a connection directly to the replication manager of the peer site P.

5. Upon success, it sends the GTRiast to the peer site P , in the form of a

'MSG_LAST_TXN' (see below)

6. The peer site P , upon accepting the connection request and receiving the

'MSG_LAST_TXN', looks in its logs and extracts the LTIs of ail transactions

whose GTI is higher than GTIiast-

7. It sends this list L of LTIs to the recovery backend.

100

8. For each élément in the list L, the following steps are performed:

8a. The recovery backend extracts the corresponding transaction from the

central logs, and forms a recovery writeset

8b. It then sends thèse writesets, one by one, to the replication manager

8c. The replication manager forwards the recovery writesets to the recovering

site R, through the direct communication channel

8d. The replication manager of the recovering site R, once it receives the

recovery writeset, forwards it to the replication backend for processing

8e. Upon success, the replication backend sends a spécial 'MSG_STEPACTION

message to be forwarded to the recovery assistant of the peer site P.

8f. the replication manager simply forwards this message to to the peer site

P .

8g. The recovery assistant, upon receiving this message, forms the next re

covery writeset, and starts the loop over again.

9. When there is no more transactions to be sent, the recovery assistant sends a

'MSG_NOMORETXNS' to the replication manager.

10. The replication manager of the peer site P forwards this message and imme-

diately after, tears down the communication link and cleans away ail the data

structures used for the purpose of recovery.

11. When the replication manager of the recovering site R receives this message,

it tears down the other end of the connection, and forwards the message to

the replication backend for processing.

12. The replication manager of the recovering site R then proceeds to process the

buffered writesets that were being buffered ail along the above steps. So, one

by one, it forwards thèse writesets to the replication backend to be applied.

13. When there is no more buffered writesets, it simply broadcast a 'MSG_SITEREADY'

to ail the sites

101

Recovering site Peer site

Recovery Rvplicutio replication group
backend n backend manager communication

manager

System
startup

gctGTI

group replication Replication

communication manager backend
manager

Recovery

backend

request connection

send GTI

get missed
txns

send txn list

repeat
séquence

apply
recovery

writeset

forward
wnetset

message

continue

forward
wnetset

apply

recovery
writeset

forward wnetset

forward i lessage

forward wrietset

forward message

te ar down
connection

send wnetset

torm
recovery

forward message

send wnetset

form
recovery
writeset

sendno- more
txns message

te ar down

connection

continued on next page

F i g u r e 7.7: The distributed recovery protocol (1/2)

102

continuée! from previous page ...

Recovering site Peer site

Recovery Replicatio replication group
backend n backend manager communication

manager

group replication Replication Recovery
communication manager backend backend

manager

repeat

séquence

apply

writeset

apply

wnteset

forward

wnteset

send

message

ready

forward

writeset

send

message

ready

•

•

•

update site

state

perform

failover

mechanism

get
buffered

wnteset

get
buffered

wnteset

send

message

si te ready

forward

message k

broadeast

message

si te ready forward

message

update site

state

perform

failover

mechanisn

F i g u r e 7.8: The distributed recovery protocol (2/2)

103

14. When any site, including the recovering site R, receives this message, they

simply update that particular site from the recovering list (section 7.5.7) to

the active list.

15. It might be désirable that R becomes the new master (e.g. it is the biggest

machine in the group). Such takeover is handled by the failover mechanism

explained in chapter 6. Hence, every site starts the failover mechanism to

décide whether R should be the new master.

7.5.3 Postgres-RFR distributed recovery log

We adopted the approach where the distributed recovery log is separated from the

central log. The distributed recovery log is managed by the replication manager.

The following information is logged for every transaction that passes through the

system, i.e. replicated.

1. The GTI: This is the globally unique identifier of the transaction. It is the

same across ail active sites.

2. The LTI: this is the locally unique identifier of the transaction. It is not

necessarily unique across the entire system.

3. A dirty/final bit: this is a binary number that indicated that the record of

the transaction in question is dirty or is a final record. A dirty record, as

explained below, refers to a transaction that has not been committed yet on

this site.

4. The backend identifier: the backend process, whether local or remote, that

executed the transaction on the local copy of the database

5. The database identifier: the présent database ID. Currently, it is assumed

there is only one replicated database, but future versions will allow several

replicated databases. In this case, such information is needed.

104

6. The identifier of the first record of the transaction in the central recovery log.

7. The identifier of the last record of the transaction in the central recovery log.

The location of the log is chosen to be the same as the central database logs, for

simplicity reasons. Central logs (Chapter 2) of PostgreSQL are based on a tree

structure, where nodes represent databases, and files represent transaction sets.

However, in our implementation, we use only one file for logging. This should make

it easier for the replication manager to perform the logging, yet the problem with

this approach is that the file can get very large.

7.5.4 Logging séquence

There are eight instances where logging takes place in our protocol, 4 during normal

processing and 4 during recovery. To satisfy the durability property, two records

per transaction hâve to be logged, a dirty record and a final record. A dirty record

is a record of a transaction not yet reflected on the database. A final record, on the

other hand, represents a committed transaction. In four instances, a final record is

logged. In four instances as well, a dirty record id logged. The following scénarios

trigger a record in the log during normal processing:

1. On the master, when the replication manager receives a writeset from a local

backend, it writes a dirty record

2. When the replication manager receives back the writeset from the group com

munication system at the master. This triggers a final record.

3. When the replication manager of the slave receives the broadcasted writeset.

This triggers a dirty record.

4. At the slave, when the replication manager receives the message-ready from

the replication backend, it writes a final record.

105

Figure 7.9 illustrâtes the logging instances during normal processing.

The following scénarios trigger a record in the log during distributed recovery:

5. When the replication manager of a recovering site receives a recovery writeset

from the peer site, on the dedicated communication channel. This triggers a

dirty record.

6. When the replication backend sends a 'MSG.STEP_ACTION' to the replica

tion manager of a recovering site. This triggers a final record.

7. When the replication manager of a recovering site forwards a buffered writeset

to the replication backend to process. This triggers a dirty record.

8. After processing a buffered writeset, the replication backend of a recovering

site sends the message-ready to the replication manager of a recovering site.

This triggers a final record.

Figure 7.10 illustrâtes the logging instances during recovery.

Dirty vs final record

In our protocol, a recovering site only considers the final record when searching for

GTIiast in its distributed recovery log. The same applies for the peer site when

searching its distributed recovery log to extract the GTIs of the transactions the

recovering site missed while it was down. However, during normal processing, each

site records two records for every processed transaction that contains update state

ments. In this section, we'll elaborate on the usefulness of the dirty record.

To explain this, we need to revisit the failure cases that can occur to a database

during normal processing. In gênerai, a database of a slave can fail at any moment,

but the moments that are of particular interest for this section are the following:

1. A site can fail when the replication manager receives a writeset from the

master, but before it transfers it to the remote backend for processing.

106

Master site

Local

backend

rqilir;ilH»i ftroup
manager communication

mariage

process I send
writeset I recovery

info

Slave 9te

group replication Résiliation
communication manager backend

manager

broadeaa
writeset

^Vorward
^ writeset

i - H * n J

Imsgready

process
wnteset

m& dirty record was logged

"1 final record was logged

F i g u r e 7 . 9 : L o g g i n g i n s t a n c e s d u r i n g n o r m a l p r o c e s s i n g

Recoveripg site

Replicatio replication

a backend ma

Recovering site

Replicatio replication
n backend manager

apply

recovery
writeset

forward
wnetset

recovery
wnteset
from peer

ô

send

message

continue

forward
message

Ç\ dirty record was logged

"1 final record was logged

apply

buffered
writeset

forward
wnetset

wnteset
from
buffered
writesets

Ô

send
"iessage|
ready

F i g u r e 7.10: Logging instances during recovery

107

2. A site can fail after the replication manager transfers the writeset to the remote

backend, but before the remote backend applies the changes of the writeset on

the database

3. A site can fail after the remote backend finishes processing the changes, but

before it alerts the replication manager about that, by sending it a confirma

tion.

4. A site can fail after the replication manager receives the confirmation from the

remote backend.

When the replication manager of a slave receives a writeset from the master, it forces

a dirty record in the distributed recovery log. This dirty record contains only a newly

generated GTI, i.e. no corresponding LTI. If the database fails at this point, the

distributed recovery log shows that it actually received a writeset from the master,

whose changes might not hâve been reflected on the database. Upon recovery, the

replication manager has no guarantee that the remote backend has processed this

writeset, because a corresponding final record does not exist in the log. In this case,

the replication manager can still ask for the updates of this particular GTI from a

peer site, but has to verify that thèse updates hâve been applied on its database or

not. It can do this as follows:

1. First, the recovering site has to get the updates of this particular GTI from

the peer site, i.e. the GTI of the transaction for which the recovering site does

not hâve a final record in its distributed recovery log.

1. It can then revisit its distributed log, and extract the LTI of the LGIiast, i.e.

the corresponding LTI of the last GTI for which there is a final record.

2. It can then send this LTI to the remote backend, together with the received

updates.

3. The remote backend can extract ail the transactions processed on the database,

whose LTI is greater than the received LTI.

108

4. The remote backend can then compare the extracted transactions to the trans

action received from the replication manager, and décide if that transaction

was processed.

5. The remote backend can then process the actual changes if they were not

reflected on the database, otherwise, it has to ignore the transaction. If it

décides to proceed to process the updates, it sends the corresponding trans

action information, including the LTI, to the replication manager so that this

latter logs the information in the distributed recovery log.

6. The distributed recovery mechanism continues as explained above.

The above protocol was not implemented. It is a difhcult task to compare updates

of two transactions to décide if they are identical or not. The above discussion

explains the core reason behind the need for a dirty record, in summary, a dirty

record provides extra information to the recovering database about transactions that

were active when the site fails, and whose changes might not hâve been reflected on

the database. It provides the starting point, i.e. the GTI, of thèse transactions to

investigate them further. The rest of the failure cases listed above, as well failure

case that can arise during recovery, follow a similar discussion.

7.5.5 Self synchronization of the recovering site

An important step in our protocol is the synchronization step where the recovering

site finishes receiving updates from the peer site, and starts processing the buffered

writesets. In hère, we will elaborate on this.

In our implementation, a recovering site joins the group and immediately starts

buffering, in an unbounded buffer, ail the writesets received from the master. It

then proceeds to extract the GTIiast from its distributed recovery log and sends it

to the peer site. When the peer site receives the GTI\ast from the recovering site, it

extracts from its distributed recovery log, in one step, the GTIs of the transactions

that are greater than the received GTIiast. The recovering site receives the updates

109

of those transactions, and applies them on the database. Then, it processes, in FIFO

order, ail the buffered writesets. Our implementation works as long as the peer site

did not process anymore transactions after receiving the view change message from

the group communication system concerning the new site, the recovering site, joining

the group.

To elaborate on this subtle point, let's use an example. Suppose that the view

change message v was delivered after ail sites processed transaction number T100.

Suppose also that the recovering site R has a GTIiast of T90. If during the time

that the recovering site R was extracting this GTIiast from its distributed recovery

log, a new writeset was multicasted by the master, then ail sites will assign the value

of T101 to the GTI of this transaction. Obviously, R will buffer this wrietset, and

P will apply it on its local copy of the database and therefore will force a record in

the distributed recovery log that has a GTI of T101. When P receives a GTIiast of

T90, it will send to the recovering site the updates of T91 to T101 inclusive. R will

apply thèse updates, and when finished will proceed to apply T101, again, because

it was buffered in its unblounded buffer. This is a problem, as the recovering site

will be applying the same transaction twice. Unfortunately, we don't account for

this scénario in our protocol, so our protocol works only if no more transactions are

processed by the system between the time a recovering site starts recovery and the

time it finishes, by broadcasting a ready message (Section 7.5.7).

7.5.6 Distributed recovery messages

In our protocol, we use seven new message types to handle the recovery mechanism.

The terms dirty and final are explained in section 7.5.4.

110

1

2

3

4

5

Message type

MSG-LAST.TXN

MSG-RECOVERYJNFO

MSG.TXNLIST

MSG.NOMORETXNS

MSGJ3TEP_ACTION

Description

This is the first message sent by the recovering

site to the peer site to start the recovery protocol

This message is sent by either the local

or remote backend to the replication manager to flush a dirty log

The replication manager of the peer site

sends this message to the recovery assistant to start forming the transactions

This message represents the end of the recovery

protocol

Our protocol is implemented in a 'step' manner

controlled by the recovering site. See Figure 7.7

6

7

MSGJCLOG.FAILURE

MSG-SITEJREADY

Failure to read the distributed log results in this message, either at the

recovering or peer site

A recovering site has to broadcast this message to ail sites in the group at

the end of recovery

7.5.7 The tasks of the replication manager in our protocol

In our implementation, the replication manager plays a central rôle in the distributed

recovery algorithm. It has the rôle of coordinating the whole process from searching

for a suitable peer to synchronizing the application of the missed updates.

In summary, the replication manager performs the following functions in the dis

tributed recovery process:

1. Locate a suitable peer host to assist in the distributed recovery process

2. Establish a communication channel with a peer host

3. Localize the last global transaction and send it to the peer

111

4. Receive the missed updates from the peer

5. Buffer ail incoming writeset messages sent from the master of the group

6. Transfer the missed updates to the remote backend to be applied on the

database

Locating the peer host

The protocol of choosing a peer host relies on the idea that the idéal peer is a site not

likely to be chosen as a master for as long as it is busy assisting another site recover.

We can only make a best effort approach in regards to this scénario. However, if

this case happens, that site should come to the rescue and become a master, even

while assisting another site recover.

To satisfy the above condition, the peer site should be chosen to be the site that

is active in the group, and has the lowest priority. Recall that the system adminis

trators hâve to update the hosts configuration file before starting any server. This

file contains ail the site information as well as their priorities. Refer to the failover

chapter for détails about the system administrator's hosts configuration file.

It is important to note that the choice of a peer host by a recovering site, and the

peer host realization of its new responsibilities, ail happen without any message

exchange. The way will do that is by having ail sites maintain enough information

about ail sites in the system to be able to take informative décisions like thèse. That

information is in the form of three management lists that ail sites maintain. The

lists are:

1. An administrator list: this is an ordered list of ail sites that can possibly be

introduced to the system. The ordering is according to priority, with the site

with the highest priority is located at the head of the list.

2. A active list: this is an ordered list of ail sites that are active at any time. See

Chapter 6 for détails.

112

3. A recovering list: this is the list of sites that are recovering at any time

At system startup, the replication manager reads the administrator list from the

configuration file, the active list is formed with the help of the view change of the

group communication system and the recovering list is started out as being empty.

Figure 7.11 illustrâtes an example of an administrator list, an active list and a

recovering list for a hypothetical system.

Head AdminList

where pi > p2 > p3 > ... > pN

Head ActiveList

Head

where pN > { pa, pb, pc pk(> p!
and (a, b, c. ... k) e (1, 2, 3 N)

v RecoveringList ^ Taii

Site i
priority pi

Sitej
priority pj

where pN > (pi. pj) > pi
and (i , j | s {1. 2, 3 N)
and (i, j) i {a, b, c, .. , k)

F i g u r e 7 . 1 1 : Hosts management lists

Tail

Site 1
priority pi

Site 2
priority p2

Site 3
priority p3

Site N
priority pN

Tail

Site a
priority pa

Si teb
priority pb

Site c
priority pc

Si tek
priority pk

The only ordered list is the administrator list. The others don't need to be ordered.

With the above data structures, locating a potential peer site could be performed

by traversing the administrator's list from the tail, and checking for the first active

host.

113

Establishing a dedicated communication channel

After deciding on a suitable peer host, a communication channel has to be estab

lished between them to transfer information. As described before, there are two

methods we can use hère for communication, using the group communication ab

straction using a direct socket-enabled channel between the two hosts.

In the second case, a socket-enabled communication channel can provide for the

direct and unhindered message transfer between the two sites. The replication

manager of the recovering site has to establish this connection channel with the

replication manager of the peer site.

Once a communication channel is established, a recovering site is ready to read its

log files to décide on the updates it has missed during the downtime.

Localizing the GTIiast and sending it to the peer

This step relies on the recovery log that is maintained by the replication manager.

At this stage, the recovery manager will extract the information about the GTIiast.

Note that the GTIs are unique and consistent with ail sites. This is because ail

messages delivered by the group communication system are totally ordered at ail

sites. So ail sites will give the same GTI to the same message across the group. This

is of fundamental importance to our protocol, as the synchronization mechanism is

based on the fact that ail updates are delivered in the same total order at ail sites.

A recovering site will look in its log and extract the GTIiast, it then proceeds to

sending it to its peer site. The peer site will use this number to décide on which of

the transactions the recovering site has missed while it was down.

There is a case when the replication manager can not find the GTIiast- This occurs

with a new site that has never been introduced before. In our protocol and in this

case, the GTIiast gets assigned the value of 0. The replication manager still sends

this null value to the peer site in the same manner as with a non-null value. The

peer site treats this null value just the same way as any other value. This means

114

that it will look in its logs and retrieve ail the transactions with GTI's greater than

0. Obviously, ail transactions in its logs will get retreived, as it should be case.

Although this is the conceptual design of our protocol, this particular case was not

tested.

Receiving the missed updates

The peer site sends the missed updates on the dedicated communication channel,

so the replication manager receives them as soon as they are sent. Figure 7.7 above

illustrâtes the message exchanges in our protocol. The replication manager forwards

thèse writesets to the replication backend as soon as received, and monitors the

progress. The replication manager checks the header of thèse messages, however,

to see if the 'NO_MORE_TXNS' message is received. This last message represents

the end of the message exchange between the two sites, and both tear down the

connection with this particular message.

Buffering the master writesets

The replication manager has to buffer the updates broadcasted by the master of

the group. Section 7.4.2 outlines the various buffering alternatives the replication

manager can do.

In our implementation, we use an unlimited buffer approach. Even though this

might not be the optimum solution, but our focus was on the correctness of the

algorithm than its performance and efficiency. The buffers were designed to be a

linked list, where writesets are buffered on a FIFO order, i.e. the head of the list is

the first received writeset. Later, when it is time to apply thèse writesets, they will

be processed in a FIFO order also. Note that buffering of writesets happen ail along

the recovery processing. This means that our protocol is not blocking, i.e. buffering

of master writesets and peer site communication take place in parallel.

115

Broadcasting the ready message

We chose to broadcast the site-ready message to advertise the knowledge that the

recovering site is ready to share in the load of the system. This means that even

the recovering site is not aware of itself unless it receives this site-ready message. It

only acts to clean out the recovery data structures after getting this back from the

group communication system. This makes our code uniform across ail sites, and no

spécial handling was required for the recovering site.

Chapter 8

Conclusion and Future Work

In this thesis, we accomplished three tasks. We provided a master-slave solution

to database replication, a failover mechanism to guarantee that there is always a

master in the group, and a distributed recovery solution to enable a recovering site

bring its own copy of the database to a consistent state with respect to the rest

of the databases in the group. We PostgreSQL database and the Spread group

communication system to carry out our implementations.

Our replication solution uses a synchronous approach, i.e. before transaction com

mit, to propagate the updates of transactions to the slaves. The database on the

master collects the updates of the transaction in a spécial message. When the

transaction is ready to commit, the master sends this message to the slaves. The

slaves hâve to apply thèse changes on their local copies of the database. We paid

particular attention to PostgreSQL utility commands in our replication solution.

We provided a detailed breakdown of ail thèse commands, and provided différent

replication alternatives to handle the rich capabilities of thèse commands.

Our replication work is centered around the underlying group communication Sys

tem. We used Spread for this purpose because of its rich set of message guarantees

and its group membership service. In particular, we exploit the total order seman-

tic of Spread to guarantee the serializability of the multicasted transactions. The

116

117

group membership service of Spread is used to trigger distributed recovery of a newly

introduced site.

Our failover solution guarantees that there is always a master in the group. This is

important to our replication protocol, as it is based on a master-slave strategy. Our

failover protocol relies on the accuracy of the system administrators in providing

a detailed list of the sites that constitute the distributed system. We provided an

interface for users to find out which of the sites of the group is the master, and to

hâve a listing of ail sites that are up and running.

Our distributed recovery solutions starts as soon as the recovering site joins the

group. We had to extend the central and site-specific identification of transactions

to a global system-wide level. We used the concept of global transaction identifi

cation to enable sites to référence transactions on a system-wide level. Basically,

our protocol is a séquence of steps that the recovering site has to perform to bring

its own database to a consistent state with the rest of the databases. First, it has

to décide on the last transaction it processed before its downtime. It then chooses

a site among the sites that constituted the view change message to assist in the

distributed recovery. It then communicates with this site and gets from it ail the

transactions it missed while it was down. Ail along, the recovering site has to buffer

the updates that are continuously being sent by the master. The recovering site

processes thèse buffered updates, after finishing with the peer site.

Although our solutions hâve worked in most database scénarios, there are many

venues for improvements and future work.

One improvement that can be applied to our replication solution is to provide a

distributed agreement approach to replicating some of the utility commands of Post

greSQL. Many of thèse commands dépend on parameters that are only known locally

to a site, and an distributed agreement is required to ensure that ail sites come to

the same décision concerning thèse commands.

Our distributed recovery solution can be greatly improved. Among the many pos

sible enhancements, we list the following:

118

• Exploit the distributed recovery log parameters, such as the dirty record, to

handle some database failure cases.

• Enhance the structure of the distributed recovery log: make a tree-structure

to the log, instead of a sequential one-file logging scheme.

• Provide a bounded buffer approach to buffering the updates that are received

from the master.

• Combine the central log with the distributed log to centralize ail recovery

logging.

• provide a better management of the case when more than one site is recovering.

The next step of this project is to migrate our solutions to an update-everywhere

approach to replication. In an update-everywhere replicated environment, every site

can process updates from the users. With this, users don't hâve to locate the master

and connect to it to perform updates, they can do that from any site in the group.

Another important, yet complex, improvement to add would be to handle network

partitions. With our solutions, it is possible to hâve more than one master if there

are network partitions. This is known to be a very complex distributed problem,

which is the subject of active research.

Bibliography

[1] Gustavo Alonso, Parallel and distributed databases course notes, Department

of Computer Science, ETH Zurich (2002),

http://www.inf.ethz.ch/department/IS/iks/education/PDDBS/Summer02/foils/L6n.pdf.

[2] Y. Amir and J. Stanton, The Spread wide area group communication Sys

tem, Johns Hopkins University, Center of Networking and Distributed Systems

Tech. Rep. 98-4 (1998).

[3] Yair Amir, Cristina Nita-Rotaru, Jonathan Stanton, and Gène Tsudik, Scaling

secure group communication Systems: Beyond peer-to-peer, Proc. of DISCEX3,

Washington DC (2003).

[4] Yair Amir and Ciprian Tutu, From total order to database replication, ICDCS

(2000).

[5] Todd A. Anderson, Yuri Breitbart, Henry F. Korth, and Avishai Wool, Repli

cation, consistency, and practicality: Are thèse mutually exclusive?, SIGMOD

Conférence (1998), 484-495.

[6] Win Bausch, Integrating synchronous update-everywhere replication into the

PostgreSQL database, Master's thesis, ETH Zurich, 1999.

[7] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman, Concurrency

control and recovery in database Systems, Addison-Wesley, Massachusetts, 1987.

119

120

[8] K. Birman, R. Cooper, T. Joseph, K. Marzullo, M. Makpangu, K. Kane,

F. Schmuck, and M. Woods, The ISIS System Manual, Version 2.1, Dept.

of computer science, Cornell University, September 1993.

[9] Luis-Felipe Cabrera and Jehan-Franois Paris, Proceedings of the First Work-

shop on the Management of Replicated Data, IEEE Computer Society Press,

1990, ISBN 0-8186-2085-4, Houston, Texas, USA (November 8-9, 1990).

[10] PostgreSQL development group, PostgreSQL project, (2002),

http://developer.postgreSQL.org/.

[11] D. Dolev and D. Malki, The Transis approach to high availability cluster com

munication, Communications of the ACM 39 (1996), no. 4, 64-70.

[12] Paul D Ezhilchelvan, Raimundo A Macdo, and Santosh K Shrivastava, New-

top: A fault-tolerant group communication protocol, International Conférence

on Distributed Computing Systems (1995).

[13] M. H. Fischer, N. A. Lynch, and M. S. Paterson, Impossibility of consensus

with one faulty process, Journal of the ACM 32(2) (April 1985), 374-382.

[14] J. Gray, P. Helland, O. O'Neil, and D. Shasha, The dangers of replication and

a solution, ACM SIGMOD (1996), 173-182.

[15] JoAnne Holliday, Divyakant Agrawal, and Amr El Abbadi, The performance

of database replication with group multicast, FTCS (1999), 158-165.

[16] IBM, IBM database replication, 2002,

http://www-3.ibm.com/software/data/dpropr/pres9/index9.html.

[17] B. Kemme and G. Alonso, A suite of database replication protocols based on

group communication primitives, Proc. of ICDCS, Amsterdam, Holland (1998).

[18] B. Kemme and G. Alonso, Don't be lazy, be consistent: Postgres-R, a new way

to implement database replication, Proc. of the 26th International Conférence

on VLDB, Cairo, Egypt (September 2000).

121

[19] B. Kemme, A. Bartoli, and O. Babaouglo, Online reconfiguration in replicated

databases based on group communication, Proc. of IEEE International Confér

ence on Dependable Systems and Networks, Goreborg, Sweden (June 2001).

[20] Bettina Kemme and Gustavo Alonso, Database replication based on group com

munication, Technical Report No. 289, ETH Zrich, Département of Computer

Science (1998).

[21] Zachary Kurmas, A survey of tradeoffs between guarantees in reliable multicast,

Technical report, Collège of Computing's Systems, Georgia Tech (1998).

[22] L. Lamport, Time, docks and the ordering of events in a distributed system,

Communications of the ACM 21 , 7 (1978), 558-565.

[23] Yao S. B. Lehman, P. L., Efficient locking for concurrent opérations on b-trees,

ACM Transactions on Database Systems 6, No. 4 (1981).

[24] L. E. Moser, Y. Amir, RM. Melliar-Smith, and D. A. Agarwal, Extended virtual

synchrony, Proc. of the ICDCS, Poznan, Polland (1994), 5665.

[25] L. E. Moser, P. M. Melliar-Smith, D. Agarwal, Y. Amir, R. K. Budhia, and C. A.

Lingley-Papadopoulos, Totem: A fault-tolerant multicast group communication

system, Communications of the ACM 39 (1996), no. 4, 54-63.

[26] Lotus Notes, Lotus Notes database replication, (2002),

http://www.lotusnotes.com/Software.nsf/Home70penForm.

[27] ORACLE, Oracle database replication, (2002),

http://www.orafaq.org/faqrepl.htm.

[28] M. Tamer Ozsu and Patrick Valduriez, Principles of distributed database Sys

tems, Prentice Hall, New Jersey, 1999.

[29] Esther Pacitti and Eric Simon, Update propagation stratégies to improve fresh-

ness in lazy master replicated databases, VLDB Journal 8(3-4) (2000), 305-318.

[30] Fernando Pedone, Rachid Guerraoui, and Andr Schiper, Exploiting atomic

broadcast in replicated databases, Euro-Par (1998), 513-520.

122

[31] R. V. Renesse, K. P. Birman, and S. Maffeis, Horus: A flexible group commu

nication system, Communications of the ACM 39 (1996), no. 4, 76-83.

[32] Sybase, Sybase database replication, (2002),

http://www.sybase.com/products/middleware/replicationserver.

[33] Brian Whetten, Todd Montgomery, and Simon Kaplan Dagstuhl, A high per

formance totally ordered multicast protocol, Seminar on Distributed Systems

(1994).

