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Abstract

Let f he a cusp fonn of weight 2 and level lV. Let K be an imaginary

quadratic field of discriminant - D, and A an ideai class of K. We obtain

precise f('rmulas for the special values of the L..functions associated to the

Rankin convolution of f and a theta series associated to the ideal class A~ in

terms of the Petersson scalar product of f with the theta series associated

to an Eichler order in a positive definite quaternion algebra. Our work is an

extension of the work done by Gross [7]. The central tools used in this thesis

are Rankin's method and a refonnulation of Gross of work of Waldspurger

concerning central critical values.
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Résumé

Soit f une forme parabolique de poids 2 et de niveau .!.V. Soit [( un corps

quadratique imaginaire de discriminant D, et A une classe d'idéaux de [<

On donne une formule pour les valeurs spéciales de la fonction L associée à

la convolution de Rankin de f et d'une série theta associée à la classe A, en

terme du produit scalaire de Petersson de f et d'une série theta associée à

un ordre d'Eichler dans une algébre de quaternions positive définie. Cette

thèse est une extension d'un travail de Gross [7]. L'ingrédient essentiel y est

la méthode de Rankin et les travaux: de vValdspurger sur les valeurs centrales

critiques de fonctions L.
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Introduction

In this thesis we study certain L-series of Rankin type. These L-series are

of great signifieanee in the study of elliptic curves. \Ve will obtain the special

values of these L-series in terms of theta series associated to sorne definite

quaternion algebras. Here we review these L-series and related tapies.

An elLiptic curve E over a field F is a curve (one dimensional variety) of

genus one~ contained in P2(F), the projective plane over F. In affine coordi

nates the defining equation of the curve E~ defined over Q, is an equation of

the form

(0.1)

•

where A, B E Q. For any number field F we let E(F) be the set of solutions

to the equation (0.1) in ]P2(F). This set is indeed an abelian group with a

natural composition law. \Ve have:

Mordell-Weil Theorem [14, page220] For any number field F the group

E(F) is a finitely generated abelian group.

By the above theorem we have

for sorne non-negative integer r, which we caU the (algebraic) rank of E over
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F. The rank r tums out to be a mysterious number and there are quite a

number of fascinating conjectures conceming that number.

The theory of elliptic curves over Q, and in particular the rank, is closely

related to the theory of modular forms through the Shimura-Taniyama-Weil

conjecture [14, page 362] and the Birch and Swinnerton-Dyer conjecture [14,

page 362]. If E is an elliptic curve over Q, then

LF(E, s) = L cF(n)n- S

n~O

is an L-series which somehow records the number of elements in E (Fp ) for

various primes p in its coefficients [14] . The Shimura-Taniyama-\Veil con

jecture, which after [16] can be called a theorem (in most cases), says that

the inverse Mellin transform of LQ ( E, s) which is defined as

is a weight 2 cusp fonn for the congruence subgroup ro{1V) of SL2 (ZL where

LV is a positive integer called the conductor of E.

The Birch and Swinnerton-Dyer conjecture predicts that the algebraic

rank r of E over F is indeed equaI to the analytic rank of E over F which

is defined ta be the order of vanishing of LF(E, s) at 1. This conjecture aIso

predicts a value for the quantity

1
. LF(E, s)
lm ---:-------:-
s~l (s - l)r

in terms of sorne subtle algebraic invariants of E. There is a great deaI of

evidence for this conjecture. See for example [14] for a list of such evidences.

9
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In chapter 1 we have given sorne background materials which will be used

later on. In chapter 2 we review quaternion algebras, which are used in our

main result in chapter 4. In chapter 3 in which we will follow the methods

of [8], we define the Rankin L-series LA(f, s) as

LACj,s) = E
m>l

(m,N)=L

•

Here

is a cusp form in S2ew(ro(N)), A is an ideal class of the imaginary quadratic

field 1< of discriminant - D, rTn = rACm) is the number of integral ideals of

norm m in the class A and € is the Dirichlet character associated to 1<. (See

section 3.1).

The L-series LA(/, s) extends analytically to an entire function of sand

satisfies the functional equation

(see Theorem 3.1). Our main result will give the value LA(f~ 1) in terms of

the Petersson scalar product of j and a theta series associated to Eichler

orders in a definite quaternion algebra. See [2], [1land [5] for sorne of the

applications of this result. Note that for any character X on Pic(0)

LK(j, X, s) = E X(A)LACj, s),
AePic(O)

10
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where () is the ring of integers of K. Using this fact we will be able to

calculate LK(f, x, 1). \Ve will use Rankin method to obtain a formula for

LA (f,l) as Petersson scalar product (on ro(.LV» of f with a modular form

<I> A (Theorem 3.8). We will conclude chapter 3 with explicitly calculating the

coefficients of <PA (Theorem 3.14). Our main result is proved in chapter 4

(Theorem 4.19), where we prove that the theta series <I>A is indeed a multiple

of the theta series (JA associated to Eichler orders in a definite quaternion

algebra (Proposition 4.18). Our main result (Theorem 4.19) was first proved

by Gross in the special case where .LV and D are both prime [7]. A proof for

the more general case, where D is not necessarily prime, has been suggested

in [7] without any details.
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Chapter 1

PreliIninaries

1.1 Theta series of imaginary quadratic fields

Let K be an imaginary quadratic field of discriminant -D, and let 0 = OK

be the ring of integers of K. vVe denote by u = u(-D) the cardinality of

Ox /(±1), where OX is the group of units of O. Then u = 1 except when

D = -3 or D = -4, where u = 3 and 2 respectively. Let h = h( -D) be the

class number of [< and A be a fixed ideal class of o. For any ideal class B

we define the theta series Es(z) as

where b is any ideal in the class 8 and N is the norm function. The following

result was proved by Hecke [Il] .

12
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Theorem 1.1 Es is a modular form ofweight 1 forfoCD), with character

f. , where f. is the character of (ZIDZ) x defined by

The following facts will he used later:

Proposition 1.2 

(i) rB(O) = 2~.

(ii) For any m ~ 1 , rs(m) is the number of ideals of 0 of norm m in the

class B.

Proof: (i) is clear.

(ii) : From the definition of rs(m) we see that 2urô (m) is the number of

À E b with

N(À) = mNb.

For each À E b with N(À) = m.Nb, the ideal (A)b-1 is an ideal of OK in

the class B- 1 and

Conversely, if c C OK is an ideal in the class B-L with N(c) = m, then

cb is a principal ideal. i.e, cb = (À) where À E b. Nloreover,

N(A) = N(c)N(b) = m.N(b)

13
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This gives a bijection

{À E b : N(>..) = mNb}/Ox ~ {e: e E B- 1 ,Ne = m}

Now (ii) is a consequence of the bijection

{b: bEB,Nb=m}~{b:bEB-1,Nb=m}

in which b I---t b , where b is the complex conjugate of b.

vVe also define

00

E(z) = L EB(z) = L R(m)qm
B m=O

(1.2)

•

where the sum is over ail ideal classes 8 of CJ. Then from the above propo

sition, R(O) = 2:' where h is the class number of K and for m ~ 1, R(m) is

the number of ideals of 0 of norm m.

1.2 Poisson summation formula

In our calculation we will use the Poisson summation fonnula several times.

Recall that the Fourier transform on R is the operator on Lebesgue integrable

functions given by

Î(u) =i: f(t)e- 2ritudt

For example if J(t) = e-7rt2 then jeu) = e-7rU2
•

If f is also continuous and j is integrable , then the Fourier inversion fonnula

says that

14
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If we define the space of Schwartz functions on IR. as:

dkf
SOR) = {f E coo(lR)IP(t) dtk is bounded for aIl k ~ 0 and all polynomials P L

then the Fourier transform is a bijection on S(R).

The Poisson summation formula in the one-dimensional case is:

Theorem 1.3 If f is in S(R) then

00 oc

L f(x + n) = L Î(n)e2
r.inx

n=-oo n=-oc

Proof: See for example[12, page 211].

We wish to have a similar formula in higher dimensions.

The standard n dimensional toms is defined as:

A function f on Tn can he viewed as an n-periodic function on JR11

f(x + k) = f(x) for x E JR11, k E zn .

Then standard theory of Fourier series on L 2 (rn) says that for any f E L 2 crn),

fCx) = L Î(k)e27rik.x

kEZ n

where k· x = ktx, the inner product of k and x :

(1.3)

•
and

15
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vVe need to develop the Fourier series of n-periodic functions which are not

necessarily on standard toms, but on r / A where A is an arbitraI)~ lattice

in ]Rn. These are the functions f on r such that

f(x + w) = f(xL x E Rn , W E A.

Let

A = Zw l + Z W 2 + ... + Zwn ,

where w l, W2 ... ,Wn is a basis for R,n and

'Ve define

Then for k E zn

Therefore 9 is a function on Tn, the standard toms. Hence by (1.3)

g(x) = L g(k)e27rikox,
kEZ n

where

g(k) = { f(Pl\x)e-21rikoXdx = ~ ( f(x)e-21rik:'P~lxdx~
Jm S lTI\.

where 7':\ = p'\(P) is a fundamental region for 7:\, and S = det PA is its

volume.

But

16
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Henee

g(k) = ~ r f(x)e-27ri«P,O-lk)oxdx.
s i TA

vVe define A= (Pi)-lzn, and for w' = PAtk in Â we set

-, If 2-'f(w) = g(k) = S 17 f(x)e- 7r1W OXdx.
T.\

Then

f(PAx) = g(x) = L g(k)e2rikox
kEZ n

implies that

f(x) = L j«P.U-lk)e27rikoP-tx
kEZ n

= L j«P'U-lk)e27ri(P-tk)ox
kEZn

=L j (w') e27riJ.u' °X 0

w'EA

Sa :

Theorem 1.4 Let A be a lattice in ~. Set 7:\ = an lA and let S he the

volume of TA. ALso set

A = {w' Er: w' . wEZ, for aU w in A }.

Let f he a function in L2(T:d. Then f can be expanded into a Fourier series

f(x) = L Î(w')e27riw'
ox

w'EA'

where for w' E Â we define

17
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Proof: Everything was proved except the fact that Â defined in this the

orem is indeed the lattice (PlU -1zn. The proof of this fact is a direct calcu

lation.

Theorem 1.5 (Poisson summation formula) Let f be a function in S(Rn) ~

the space of Schwariz functions on ]Rn ~ and define

for T E Rn. Then for any lattice A in ]Rn we have

~ 1 ~ - ? .:_JL..J f(x + w) = S ~ f(w')e-7r
u.J·x

wEi\. wlEA

where Sand Â are as in the previous theorem.

Proof: Define

g(x) = L f(x + w).
wEi\.

Then 9 is a function on Ti\. = Rn / A and by the previous theorem~

g(x) = L fJ(w')e27riw"X~

wlEA

where

18
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Since w'.w is an integer we have

as required.
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Chapter 2

Quaternion algebras

2.1 Introduction

In this chapter we will review sorne facts about quaternion algebras. The

main reference for this chapter is [15]. Let F be a field with charF =1= 2.

Definition 2.1 A quaternion algebra H over F is a 4-dimensional alge

bra over F of the form

H = F + Fi + Fj + Fij

where ,p = a, j2 = b, ij = -ji and a, b E FX.

vVe will write H = {a, b}F . For h = x + yi + zj + wij in H we define

ïi = x - yi - zj - wij.

20
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vVe then define the reduced trace tr(h) and the reduced nonn n(h) of Il. by

tr(h) = h + ïi = 2x

For any h, k E H and a"B E F we have

(i) h is invertible iff n(h) #= 0

(ii) n(hk) = n(h)n(k)

(iii) tr(ah + pk) = o:tr(h) + {3tr(k)

(iv) h satisfies the quadratic polynomial

(x - k)(x - h) = x 2
- tr(h)x + n(h).

Examples

(i) The algebra of Hamilton quaternions is the quaternion algebra over Q

defined by

H = {-l, -l}Q = Q + Qi + Qi + Qij,

which is a division algebra.

(ii) The algebra /1,1/(2, F) of a1l2 x 2 matrices with entries in F is a quaternion

algebra. Indeed .N/(2, F) = {l, 1}F by setting

i = (0 1) ,j = ( 1 0),ij = (0 -1).
1 0 0 -1 1 0

Then for h = (~~) E 1\1[(2, F) we have

h = (!c ~b)

21
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tr(h) = a + d

n(h) = ad - be.

A quadratic aIgebra over F is an F -algebra which is two-dimensionaI as

an F-vector space.

Proposition 2.2 [15, corollary I.2.2J If L is a quadratic algebra over F

contained in H, then there exists u E H such that H = L + Lu: where

u 2 = () E K X
: um = mu, for aU m E L, and ü = -u.

Notation: \-Vith the notation above, we write

H={L,8}.

Theorem. 2.3 [15, corollary 1.2.4/

(i) A quaternion algebra over F is either a division algebra or isomorphic to

lvl(2, F).

(ii) The quaternion algebra {L: 8} is isomorphic to Af(2, F) if and only if

L ~ Fœ F, or () is the norm of an element of L.

2.2 Orders and ideals

In this and the following sections F will denote either a p-adic field or a

number field, and OF will be the ring of integers of F.

Definition 2.4 An ideal of H is a finitely generated OF-submodule 1 of

H such that l ®OF F ~ H.

22
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Definition 2.5 An element h E H is called an integer if it satisfies the

following equivalent conditions:

(i) The ring OF[h] is a finitely generated OF-module.

(ii) The norm n(h) and the trace tr(h) of h are in OF.

Definition 2.6 A subset R of H is called an order if it satisfies the fol

lowing equivalent conditions:

(i) R is an ideal of H which is also a subring of H.

(ii) R is a subring of H containing OF, FR = H, and every element of R is

an integer of H.

See [15, Proposition 1.4.2] for the equivalence of (i) and (ii).

An order R of H is called a ma..ximal order if it is not contained in any

other order of H. The intersection of two maximal orders is called an Eichler

order. Given an ideal 1 of H the subsets:

Ri(1) = {h EH: hl c I}

Rr (l) = {h EH: 1h c I}

are orders of H, and are called the left order and the right arder of 1 respec

tively. We also define the inverse of l as:

1-1 = {h EH: 1hl ç I}.

Then

1-1 = {h EH: Ih ç Ri(l)} = {h EH: hl ç R,.(I)}.

23
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Definition 2.7 Given an order R we define,

(i) R V = {x EH: t(xR) C OF}-

(ii) (RV)-l is called the different ideal of R.

(iii) The reduced norm n((RV)-I) is called the reduced discriminant of Rand

is denoted by disc(R).

Proposition 2.8 [15, lemma 1.4· 7J If {ell e2, e3l e4} is an OF-basis for

an o'rder

of H, then

2.3 Quaternion algebras over local fields

Theorem 2.9 (Classification) [15, Theorem 11.1.1J Quer any local field

F =P C there exists a unique quaternion division algebra H (up to isomor

phism).

If F is not archimedean, then

H = {LuT' 7f},

where LUT is the (unique up to isomorphism) unramified quadratic extension

of F (in a separable closure Fs of F), and 7f is a uniformizer in F. The

valuation v on F can be extended to a valuation w on H by setting web) =
v(n~h» for h E H.

24
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The notations are as in the previous theorem:

Theorem 2.10 .

i) [15, lemma II.1.5J The valuation ring Rw is the unique maximal order

of {LuT, 7r}.

ii) [15, Theorem 11.2.3J: The maximal orders of lvI(2, F) are the conju

gates of lvI(2, OF) .

iii) [15, lemma 11.2.4J Any Eichler order of lvI(2, F) of level1ïn is conjugate

ta

2.4 Quaternion algebras over global fields

Let F he a numher field. We let PF he the set of places of F. For p in PF

we denote the completion of F at p by Fp • For any F-algebra L we denote

where the tensor product is over F. If in particular L is a quadratic field

extension of F then L p is a field if and only if p does not split in L. If H is

a quaternion algebra over F then by theorem 2.3, ( for each p E PF ), Hp is

either a division algebra or is isomorphic to lvf(2, Fp ).

25
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Definition 2.11 The quaternion algebra H over F is said to be ramified

at the place p of F (alternatively p is said to he ramified in H) if Hp is a

division algebra. If Hp is isomorphic to 1.\;[(2, Fp), then H is said to be spLit

at p.

vVe denote the set of places of F which are ramified in H by Ram(H).

Theorem 2.12 [15, Theorem III.3.1J

i) The set Ram(H) is finite with even cardinality.

ii) H = At'I(2, F) if and only if Hp = 1\'1(2, Fp) for aU places p of F.

iii) If S is a finite set of places of F with even cardinality, then there

exists a unique (up to isomorphism) quaternion algebra H over F with

S = Ram(H).

vVe define the (reduced) discriminant of H by

disc(H) = II P
pERam(H)

p finite

Theorem 2.13 [15~ Theorem III.3.8J A quadratic extension L of F can

be embedded in a quaternion algebra H over F if and only if Lp is a field f01"

aU p E Ram(H). (I.e., aU p E Ram(H) are inert or ramified in L.)

2.5 Quaternion algebras over Q

A quaternion algebra H over Q has the form

H = {a,bh~:= Q +Qi +Qi +Qij,

26
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where

i 2 = a, j2 = b, ij = -ji~

with a, b E Q. The algebra H ramifies at 00 if and anly if a and b are both

negative. If H ramifies at 00, then H is said to be a definite quaternion

algebra. If H splits at 00, then H is said ta be indefinite. vVe define the

Hilbert symbol (a~ b)p by

{

1 if {a, b} splits at p
(a, b)p =

-1 if {a, b} ramifies at p.

Then we have,

Theorem 2.14 [151 page37] Let p be an odd rational prime and a, b E Q.

Then

(a,b)p = { 1
c;)

if P f ab

if p f a and p Il b~

,

•

where C;) is the Legendre symbol1 and p Il b means that plb but p2 f b.

Definition 2.15 For any lattice L of H and any prime p 'We define

Lp is called the localization of L at p.

The following proposition gives us a dictionary between global and local

lattices.

27
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Proposition 2.16 [15, proposition 111.5.1JLet .X" be a lattice of H. There

is a bijection between the set of lattices L of H and the set

{(Lv) : Lp is a lattice of Hp, Lp = ..':v for almost aH finite primes p}

of sequences of lattices, in which

L t-----7 (Lp )

(Lp ) ~ HnCnv finite L p )

A property (*) is called a local property for lattices if for every lattice L

of H, the lattice L has the property (*), if and only if Lv has the property

(*), for aIl primes p. \Ve have:

Proposition 2.17 [15, page 82] The following properties for a lattice L

are aU local propeTties:

i) L is an ideal.

ii) L is an order.

iii) L is a maximal order.

iv) L is an EichLer order.

Definition 2.18 The level of an Eichler order L is defined as

L= II Lv,
vfinite

where Lv = pOp is the level of L p •

28
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The foUowing criterion is a very useful one:

Proposition 2.19 [15, corollaryIII.5.3] An order R of H is a maximal

order if and only if

disc(R) = disc(H).

29
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Chapter 3

Special values of L-functions

3.1 Introduction

In this chapter we will study the special values of a certain L-series of

Rankin type. Our main reference in this chapter is [8), and we will follow the

methods used in [8] in our proofs.

First we recall sorne notations from section 1.1: [( is a quadratic imag

inary field of discriminant -D, and 0 is its ring of integers. vVe let A be

a fLxed ideal class of 0 and set u = u( -D) and h = h(-D). The Dirichlet

character associated to K is defined as:

which is an odd primitive character of conductor D [13, page 201]. The
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modular form associated to A is defined as

where a is any integral ideal in the class A. By theorem 1.1, EA(z) is a

modular form of weight 1 and level D, with character f. \Ve also define

h oc

E(z) = L EB(z) = L EB(z) = ? + L R(rn)qm ,_u
B BEPic(O) m=L

where PicCO) is the class group of O.

Now let f E S2CW(ro(N)), where J.V is a positive integer with (J.V, D) = 1

. Here S2cW(r0 (lV)) is the space of cusp forms of weight 2 of level J.V which

are orthogonal (with respect to the Petersson product) to all oldforms. \Ve

recall that a modular fonu of level J.V is called an oid form if it it is in the

span of the forms g(dZ) with 9 of level .N"L < J.V and dJ.VL 1 JV. \Ve also recall

that the Petersson inner product of f with any modular fonn 9 of level lV is

defined as:

(z = x + iy).

•

The space S2eW (ro(N) is spanned by the newforms (Hecke eigenforms), but

we do not assume that f is a newfonn. \Ve let

he the Fourier expansion of J, and

~an
L(!, s) = L.J n S
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be the Hecke L-series of f. Given these data, the Dirichlet series LACf, s)

is defined as the product of the Dirichlet L-function

L(N}(2s - 1, E) = L ~~ll
m=l

(m,N}=l

and the convolution of L(f: s) with the zeta function Lrn>o TA(m)m-s • i.e.

LA(J,s)= L :,~llf~m.
m>l m=l

(mJl) = 1

Here we have set Tm = rA(m).

(3.1)

•

Theorem 3.1 fB, page 267] With notations as abover the Dirichlet se

ries LACf, s) extends analytically to an entire function of s, and satisfies the

functional equation

The above theorem shows that if E(JV) = +1, then LACj, s) vanishes at s = l.

In this case [8] gives a fonnula for the derivative LACf, 1). In the ease when

EC1V) = -1, [8] gives a fonnula for LACf, 1). We will follow the methods used

in [8] to give the formulas for LA(f, 1) in the case when E(lV) = -l.

In section 3.2, following [8], we use Rankin's method to obtain a formula

for LA(f,s) as Petersson sealar produet (on fo(JVD» of f with the product

of a theta series and a non-holomorphie Eisenstein series. Then we will trace

down the result to get LACf, s) as a Petersson product (on ro(lV» of f with

a rnodular fonn ~s. In section 3.3 we will calculate the coefficients of ~s
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•

in the case where D is prime. For the more general case where D is not

necessarily prime, but D =3 (mod4), we will state the final result without

proof, referring to [8} for details.

3.2 Rankin's method

In this section we give an integral representation for LAC!, s) using Rankin's

Therefore

(47ir'r(s) f:: a.;;;.m = E" (f:: lLm.ïme-41rT11Y) yS~Y
m=l a m=l y

A direct calculation shows that the last expression is equal to
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where FND is a fundamental domain for the action of fo(.LVD) on f). For

1 = ( ~ d) E r 0 (lVD) we have

f(~fZ) = (cz + d)2 fez)

E A(7Z) = €(d)(ez + d)EA(z)

Im("'(z) = y
lez + dl2

Now using these equalities and the invariance of the measure œ;~Y under

SL2 (R) 1 we get

Therefore

f}
€(d) yS-LE f(z)EA(z) - d 2s_2 dxdy .

(
F"D ez + lez + dl (3.2)..,=± :;)eroc\ro(ND) ,~

Definition 3.2 For given lvI ~ 1 the Eisenstein series E AID (S1 z) of weight

1, Level AlD, and charaeter € is defined by

E MD (S1 z) =
m~l

(m,M)=L
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Now from (3.2), we get

(41i)-Sr(s) ~ €(m) ~ Umrm =
L..J m 2s- L L..J mS
m=L m=L

(m.N)=L

J! 00 €(m) €(d) yS-l

F.vD f(z)EA(z) ~ m 2s- L L (cz + d) lez + dl2s_2dxdy
(m,N)=l (:;)Efoc\fo(ND) (3.3)

Hence we have proved :

Proposition 3.3

(41i)-Sf(s)LA(f, s) = (f, EA(z)END(S - 1, z»ro(ND)

= J! f(z)EA(z)END(S - 1, z)dxdy.
FND

The method we just used to express the convolution of the L-series of two

modular forms as a scalar product involving an Eisenstein series \Vas first

used by Rankin and Selberg in 1939 and is commonly referred to as "Rankin:s

method" .

\Ve now trace do\vn the result given in the previous proposition to write

LA(f, .'i) as a Petersson scalar product over r0 (N).

Definition 3.4 For any modular form 9 of weight 2 and Level ND we

define,

•
where for 'Y = (~ ~ ) ,

Tr~D{g} = L gI2"/:
"YEfo(ND)\fo(N)
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•

(gI2"'f) (Z) = (det "()(ez + d)-2g (az + ~) .
ez+

It is easy ta see that TrZD {g} is a modular form of levell.V.

Lemma 3.5 With notation as above, we have

Proof:

Cf, 9 )ro(ND) =!! f(z)g(z)dxdy
F.vD

L !! f(z)g(Z)y2dx~y
')Ero(ND)\ro(N) ')F.v 'Y

~ li - y2 dxdy
- L..J j(-YZ)9(7Z) le- dl4 2

')Ero(ND)\fo(N) F,v '" + y
-r=( : ~)

L !! f(-yz)(cz + d)-2g (-yZ)(CZ + d)-2dxdy
')Ero(ND)\fo(N) FN

7=(:; )

L !! f(z)(gln)(z)dxdy
')Ero(ND)\fo(N) FN

Now we have:

Lemma 3.6

Proof: This follows froID proposition 3.3 and lemma 3.5.
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LelIllDa 3.7 For l\l[ > 1 we have:

1
EMD(S, z) = '2 '" €(d) yS = ~ 1L(r)€(r) (~) SE

D
S. l'v[ z).

L.J ez + d lez + dl 2s L- r2s+ 1 JI ( . r .
c,dEZ rllH

c::o (MD)
(d,MD)=l

•

where Ji. is the lVIobius funetion.

Proof: The first equality is a direct result of the definition. vVe prove the

second one. First suppose JIJ is square-free. vVe prove the lemma in this case

using induction on the number of prime divisors of 1\1!. If l\l! is prime, then

l '" €(d) yS
EMD(S, z) = 2" L.J ez + d lez + dl2s

c,dEZ
c=O (MD)
(d,MD)=l

l '" €(d) yS l "'" f(~!d) yS
- '2 L.J ez + d lez + dl2s 2 L..J ez + l\l[d lez + llId[2s

c,dEZ c,dEZ
c=O (MD) c=O (MD)

l '" f(d) yS l "'" f( l'v!d) yS
= '2 L.J eN!z + d leN[z + dl 2s - '2 L..J cAlz + 1\![d IC1'v[Z + LvIdl 2s

c,dEZ c,dEZ
c=O (D) c=O (D)

-s f(lV[)= l'v! ED(s, l'vIz) - AI2s+1 ED(s, z).

Now suppose that Al = Kp is square-free, and suppose we have

"'" JL(r)€(r) ( r )S K
EKD(S, z) = L..J r 2s+1 K ED(s, -;:-z) .

rlK

37



•
Then

~ f(Pd) yS

L z cz + pd lez + pdj2s
c,dE

c:=O (l...[D)
(d.KD)=l

1

2

~ f(d) yS

L cz + d lez + dl25
c,dEZ

c:=o (MD)
(d,KD)=l

1
-

2

f(d) yS 1 f(pd) yS

E c:pz + d Icpz + dl 25 2 E cpz + pd Icpz + pdl2s
c,dEZ c,dEZ

c::o (KD) c:=o (KD)
(d,KD)=l (d,KD)=l

=p-sEKD (s, pz) - ;~L EKD(S, z)

= -5~ j.l(r)f(r) (!.-)S ED(s. [(p z) _ f(p) ~ JL(r)f(r) (!...-)5 ED(s. K z)
P L r 2s+ 1 K 'r p2s+l L r 2s+ 1 K . r

rlK rlK

E tL(r)€(r) ( r )5 ( J.\;I) E j.l(rp)f(rp) (rP )5 E ( AI))= - E D s. -z + - D S,-Zr 2s+ l lvI ' r . (rp )25+ l j\;1 rp
rlK rlK

= ~ tL(r)€(r) (.!:..-) SE ( Al)
L r2s+ l 1.\;1 D S, r z .
rlM

1 ~ f(d) yS
EMD(S, z) = 2 L

d
Z cz + d lez + dl 2s

c, E
c::o (MD)
(d,MD)=l

1
-

2

In the case where i.V! is not necessarily square,...free, we have

where ~~Il is the product of distinct prime d.ivisors of Al. Hence

rlM
r square-Cree

•

(
}yIl) S 1\;1

EUD(S, z) = 1."1 EA.-hD(S, J."I
l
z)

= (/vIL) S ~ JL(r)f(r) (~) S ED(s AlI j\lI z)
Atl L..J r 2s+ 1 j\lIl ' r A;[l

rlMI

/-ler )€(r) (.!..-) S E ( At[)
r2s+ L Atl D s, r z
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Since f-L(r) = 0 for r not sqnare-free , we have

~ f-L(r)€(r) ( r ) S J.vf
E~[D(S, z) =~ r 25+ 1 J.\tf ED(s, -;-z).

rlM

Now we can prove :

Theorem 3.8 Define the Eisestein series ED(S~ z) of level D and weight

1 and character € as,

1 ~ €(d) yS
ED(s, z) = 2 L.J ez + d lez + dl 2s '

c,dEZ
Die

and let

<I>s(z) = Tr~~D (EA(z)ED(s, J.Vz» .

Then, with notations as in section 1, we have

Proof: Using the previons lemma we have

If rlN and T > 1, EA(Z)ED(s - 1, r: z) is of level NrD. Since (J.V, D) = 1, a

complete set of coset representatives in ro(ND)\ro(lV) is a complete set of

coset representatives in ro(NrD)\roC~) as weIl. Hence
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which is of level ~ . Therefore, since by our assumption f E S!iew(r0 (iV) ) ,

for rliV if r > 1 we have

Now using lemma 3.6 we have

This proves the theorem.

3.3 Special values

In this section we calculate LACj, 1) by computing the Fourier coefficients

of cI>o defined in theorem 3.8. This calculation has been done in [8] for the

case when D = 3 (mod4). Using the same methods as in [7] we will do the

calculation for the special case when D is a prime number. For the more

general case we will state the result from [8] without proof. Therefore except

in the last theorem, the number D will be assumed to be prime.

By theorem 3.8 we have

On the other hand by [7, page 154] we have

21r
ED(O, z) = vnE(z)
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•
where as before

E(z) = L EB(z).
BEPic(O)

Therefore we have:

Proposition 3.9 If D is prime, then

where

GA = TrZ D {EA (z)E(lVZ)}.

Ta calculate the Fourier coefficients of G.A, first we need sorne lemmas :

Lemma 3.10 .

1) If "( = (~ ~) is in SL2 (Z) and e ~ O(mod D), then

(E 1 )(z) = t(e) E (z + c*d)
A l! iv'Ï5 AD'

where c· is an inverse for c(mod4).

2) If! = (~ ~) is in r 0 (lV) and c ~ 0(rnod D) 1 then

Proof: 1) The D matrices

•
._(0 -1){3l -

1 j
j = 0, ... , D - 1
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represent aIl non-trivial right cosets in ro(D)\ro(l) [12, page 259]. For each

o ~ j < D we have

and hence

EAllfij = EAI, (: ~l) G~).
l

Using the Poisson summation formula( theorem 1.5), it can he shown that

Renee

whieh rneans that 1) holds for {3j ,j = 0, ... , D - 1. Now

(3.5)

1•

for sorne 0 ~ j < D and sorne (~~) E ro(D). Henee

42



•
But from 3.5 we see c = cS and -, + cj = -"( + Jj = d, which means that

cj = d(mod D), since DII> Hence j = c·d. This completes the proof for 1).

2) we have

E(Nz)I,r= (El, (~ :)) (::) (z)
L

(
Na lVb) (( a lVb)) (LV= El!. (z) = EIL

C d C/IV d 0
!.

Now since E = LB E B , from 1) and the above equality we have

:) (z)

•

E(lVZ) 1 '" = f.(C/LV) E(lVZ + lVc-d) = f.(c/!.V)f.(c) E(lV(z + c·d»
L y iVD D i..JD D

as required.

Lemma 3.11 The D + 1 cosets of fo(J.VD)\fo(lV) are represented by (Ô ~)

and matrices '"'f = (~~) E fo(lV) with c ~ O(mod D) and j = c·d running

through the D residue classes in ZID'L.

Proof: f o{1V) acts transitively on PL (Z/DZ) by

(u, v) (: :) = (au + cu, bu + dv)

for (u,v) E lI\(Z/DZ) and (~~) E ro(lV). The group r o(1VD) is the isotropy

group of (0,1) E lP\(Z/DZ). Therefore we have a bijection

f o(J.VD)\fo(lV) -7 P1(Z/DZ)

(: :) ~ (0, 1) (: :) = (c,d).
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But

{

(O~ 1)
(c, d) =

(l,c*d)

This proves the lemma.

Now we can prove:

Proposition 3.12

if c =O(mod D)

if c ~ O(mod D).

•

where 9A(Z) = EA(z)E(lVZ).

Proof: By lemma 3.10 for each coset representative

given in Lemma 3.11 we have

9AI2,(Z) = (EA k"'()(z)(E(lVz) Il 'Y)

= €(c) E (Z + j) €(lV)€(C) E(lV(Z + j»
i "jfj A D i"jfj D

=-€c;)9A(z;j).

Therefore

Using this proposition, now we prove:
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Proposition 3.13 The Fourier coefficients of GA - L:=o Crnqm are

given by:
h Dm/N

Cm = TA(;:) + E r A(Dm - nlV)cS'(n)R(n)
n=l

if (n, D) = 1

{

-E(N)
where cS'(n) =

1 - €(N) if (n, D) :1 1

Proof: Let gA(Z) = EA(z)E(iVZ) = L:=o bmqm.

shows that
0-1 . 00

1 ,- (z+J) ~b m
D L gA -n =~ mDq .

j=O m=O

Hence by previous proposition we have

By the definition of gA we have

A. direct calculation

•

bm = ErA(m -llV)R(l).
l~O

For m > 1, we have TA(m) = r A(Dm) and hence R(m) = r(Dm). Hence

bm = ErA(mD -lDN)R(lD) = LTA(mD - llV)R(l).
l>O l>O
- Dil

Therefore

Cm. = ETA(mD - liV)R(l) - €(lV) L r A(mD - l1V)R(l)
l>O c>o
DIl -

mDIN

= E TA(mD - nN)cS'(n)R(n)
n=O

h mD/N
= r A(;;) + L TA(mD - niV)cS'(n)R(n) ,

n=l
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since R(O) = 2: by definition.

Theorem 3.14 With our notations as in section 1, if D =3(mod 4) and

€(N) = -1, then

where

<I>A = L bm,Aqm,
m~O

is a modular form of weight 2 and levellV, with

rA(m)h ~
bm,A = u + L..J rA(mD - nlV)6(n)R[AnI(n).

O<n~mDIN

Here n is any integral ideal of <:) satisfying

N(n) =-lV (mod D),

[An] is the genus class of the ideal class A{n}, and R[An](n) is the number

of integral ideals of 0 of norm n in the genus class [An]. Also c5(n) = 2..\n,

where .Àn is the number of primes dividing both D and n.

Proof: First let D be prime. Then for n ~ 0, c5(n) = c5'(n), where c5'(n) is

as defined in proposition 3.13. On the other hand, since in this case there are

no elements of order 2 in Pic(0), there is only one genus class for o. This

means that

R[An](n) = R(n)

for aIl n ;::: O. Therefore for D prime the theorem follows from propositions

3.9and 3.13. For the proof in the general case, see [8, proposition IV.5.6].
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Chapter 4

Theta series in quaternion

algebras

4.1 Notations and basic assumptions

vVe recall that lY = lY-N+ is a positive integer, where lV- = PtP2 ... Ps is

the product of an odd number of distinct primes and (1Y-, lY+) = 1. Let K

be a quadratic imaginary field of discriminant - D and 0 = OK the ring of

integers of K. vVe set

Do = { DD/4 if D =0 (mod 4 )

if D =3 (mod 4 ),

•

and

w={ V-Do if D = 0 (mod4)

l+'fD if D =3 (mod 4).
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Then we have

0= Z+Zw.

Let H denote the (unique up to isomorphism) definite Quaternion algebra of

discriminant - N-. vVe assume that,

- Pb [12, ... , Ps are all inert in K. i.e, for i = 1,2, ... 5,

{
(;~) = -1 if Pi ;6 2

-D =5(mod8) if Pi = 2 .

- AlI prime divisors of lV+ are split in 1<.

4.2 Description of H

Our first goal is to give a concrete description of H which will he useful in

doing calculations relative to K. For this we choose a prime q ;6 2 such that

q =-lV- (mod D).

We need the following

Lemma 4.1 With notations as above, we have
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Proof: First suppose that D and _iV- are both odd. Then D = 3 (mod4)

and hence (~l) = -1 and also (~~) = -1. Therefore,

Now suppose that Pl = 2. Then by our assumptions D = 3 (mod8)~ (-;1) =
-1, and CV--~2) = 1. Hence

Finally, suppose that D is even. Then D =0 (mod4). If Do = D/4 is odd,

then Do = 1 (mod4), and we have

Here we have used the facts that q =-lV- (mod4) which implies (~1) 

-(~:), and that (-:-0) = (~~) = -1. If D =o(mod8) we set D" = D18.
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Then using (N~) = -1, (~) = C;-), and (~l) = -C~~), we have

(-:) =(~l)G)(~") =(~1)G)(-1)(D'~-')(9)U,,)

= -1 (D'~-L)(~) (-1) (2) (-lV-)
( ) q q 1)"

= -1 (D'~-L)(~) (-1) (2) (-1) (lV-)
( ) q q D" D"

= -1 (D'~-l) (~+.V~-l) (-1) (2) (-1) (D")
( ) q q D" lY-

= _ (-1) (D'~-l) (?+'V~-l)(-1) (-21)")1)" iV-

( D'>L) (9+N-.,-1+l) (-D) (D'~-l) (ttF-)= - (-1) - - - lV_ = (-1) = l,

since q = -lY- (mod 4).

Remark: The above lemma is indeed a result of the fact that E is a character

with modulus D [3, page 237].

Proposition 4.2 The definite quaternion algebra H of discriminant -lY-

can be written as

H = K+[<j,

where j2 = -lY-q, and aj = jii for aU a E [<. Here (-) denotes the complex

conjugation.

Proof: vVe have

K +Kj = Q+Qi +Qj +Qij

where i 2 = -D, j2 = -N-q, ij = -ji. First we note that by section 2.5 the

algebra K + Kj is a definite quaternion algebra. i.e., it is ramified at 00. By
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theorem 2.14, for any odd prime p, the algebra K + Kj is ramified at p if

and only if (-D, -N-q)p = -l, where for rational numbers a and b,

{

1 P f ab
(a, b)p =

(:) P f a, p Il b.

First we have by our assumptions,

(-D, -N-q)Pi = (~~) = -1 for i = 1,2, ... , s with Pi # 2 .

For any prime divisor p =F 2 of D we have q =-J.Y- (mod p), and hence

Finally by the previous lemma,

Therefore

{p: P [lV-, P is odd}u{oo} C Ram(K+Kj) ç {p: p jlY-, P is odd}U{2, oo}.

By theorem 2.12 Ram(K + Kj) has even cardinality. Hence K + Kj is

ramified at 2 if and only if 2 1 lY-. Therefore K + K j is ramified exactly at

Pb . .. , Ps and 00. This completes the proof of the proposition.

4.3 Maximal orders in H

We wish no\v to give a concrete description of a fLxed maximal order in H.
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First we let

where

w={,j D/2=J Do îfD=O(mod4)

l+~ if D = 3 (mod4).

Lemma 4.3 RI is a non-maximal order in H with

Proof: 1t is easily seen that RI is closed under multiplication and hence it

is an arder by definition 2.6. By proposition 2.8 the discriminant of Ri is

where

is a Z-basis for R l •

If D = 0 (mod4),

2 0 0 0

0 2D' 0 0
ITT (eiej)! =

0 0 2N-q 0

0 0 0 2N-qD'

If D = 3 (mod4),
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2 1 0 0

1 D+l 0 0
ITr (~ëj)1 =

-2-

0 0 2J.V-q lV-q

0 0 lV-q iV-q D+l
- 2

Therefore r

disc(Rd = lY- Dq.

•

By proposition 2.19 every maximal order in H has disc(H) = J.Y- as its

discriminant. Hence R1 is not maximal.

Now we define

where q is a prime ideal of OK containing q.

Ta prove that R N - is a maximal arder we need:

H, and let
4.

e~ = LaSieS for i = 1,2,3,4,
i=l

where frsi E Q for i, s = 1,2,3,4. Then

where fr = (ast) .
1~s~4
1~t~4
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Proof: We recalI that by definition

Tr (e~~) = L osiotjTr(esëd·
s,t

Thus

This proves the lemma.

Now \ve can prove:

Lemma 4.5 Let

where

{

(q, a + w) if D =0 (mod 4)
q=

(q, a;1 + w) if D =3 (mod 4),

with a odd and a2 =-D (modq), is one the prime ideals of OK containing

q. Then R N - is a maximal arder of H.

Proof: First we assume D =0 (morl 4). Then we have
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and

(v' Dtq-' - 2q~(Zq+Z(a-v Do»)

- 2 ql
DO

(ZqV Do + Z(oV Do + Do) ) .

For Q + I3j E RN - we have:

{3 = 2 ql
DO

(mqv Do + n(av Do + Do»

Q = q{3 + À = q{3 +m' + n' yi Do

where À E OK, m, n, m', n' E Z.

Renee

Ci + {lj =À + qf3 + {3j

=m' + n'V Do + 2~o (mqv-Do + n(av Do + Do»)

+ 2qlDO (mqv Do + n(av Do + Do») i

=m' +n'v Do + 2~om (qV-Do + V Doi)

+ 2~Oq n ( Doq + aV-Doq + aV Doi + Doi) .

e2=J-Do

e3 = 2~o (qV Do + V-Dai)

e. = 2~Oq (Doq + aqv-Do + Doi + aV Doi).
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Thus using the previous two lemmas we have,

where

1 a a 0

1 a 1 a a 1 1
S=-- =---= --

4D5q 0 q a 1 4Doq Dq

Doq aq Do a

Therefore,

Ta prove that R N - is a maximal arder it remains ta show that R N - is closed

under multiplication. Let x = )., +q/3+ /3j ~ y = ).,' +q,B' + [3'j he two elements

in R N - where )." )/ E OK, .8,/3' E (vi D) -1 q-L, ).' = m' + n'~ Do. Then

xy = ).,).,' + (q).,{3' + ).,{3'j) + q({3/3'j + q{3,8')

+ (q).,' /3 +~,(3j) + (-lV-qf3~' + qf3j3'j).

vVe have ).,X E R N -, q).,{3' + ).,{3'j E R N -, and

q).,' f3 + ~'.8j = q (X' + 2n' J Do) {3 + 5.'pj

= (qX'f3 + 5.'{3j) + 2n' J -Doqf3 E R N -·

Using the fact that -lV = q + cD for sorne cE Z, we have

q(f3f3'j + qf3{3') + (-N-q{3,8' + q/3.B'j)

= q{3f3'j + q2 f3/3' + q2/3/3' + q(3jj'j + cDq{3~'

= q2{3(f3' + il') + q{3({3' + j3')j + cDq{3jj'
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since (3' + iJ' = ~ , we have q(3({3' + jj') E (.J=I5) -1 q-1. Renee

q2{3({3' + /3') + q{3({3' + ,B')j E R,v-.

'Ve also have

Therefore,

Thus we have proved the lemrna for the case where D = 0 (mod4).

The proof in the case where D =3 (mod 4) is sirnilar. For the disc(R,v-) in

this case we have

where,

1 0 0 0

1 0 1 0 a 1
s= qD2 - -

-q 2q -1 2 qD

-a+D aq -a+D a-2-q -2-

This completes the proof of the lemma.

4.4 Matrix representations for H

Here we give sorne matrix representations of H and its localizations which

will be useful in our calculations. For this, we consider H as a 2-dimensional
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vector space on K with{l,j} as a basis. The algebra H acts on itself by

multiplication on the right. This action gives us an algebra monomorphism

where

for a~ {3 E K.

Let p be a rational prime which splits in K. Then

If we fL"'\: À as one of the two roots of -D in Qp, then we get an algebra

isomorphism,

K p ~QpœQp

a+b../ D~(a+bÀ,a-b).)

for a, b E Qp [4, theorem 9.1.1].

The conjugation on Kp simply switches the components in the direct sum:

Ca, b) = (b, a),

for a, b E Qp. Using this we have the Qp-algebra isomorphism

In the same fashion as for definition of cp above, we can define the Qp-algebra

monomorphism,
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Composing this with the homomorphism

we get an isomorphism:

vVe have proved:

Theorem 4.6 Let p be a rational prime which splits in K and À be a fixed

root of -D in Qp. Then the map

given by:

cpp(a + [3j) = ( al + a2
À

-lV-q(bL - b:u\)

for a + {3j E Hp, (a, 13 E K p), with

a = al +a2v' D, {3 = bl +~J D (ah a2,bL,b2 E Qp),

is a Qp -algebra isomorphism.

4.5 Eichler orders and their ideals

Now we can give a concrete description of an Eichler order in HoC level N+.

For this we let ')1+ he an ideal of OK of norm lV+. We set

:= {a + {3j:
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Then we have,

Lemma 4.7 R is an Eichler order of H contained in R N - and of level iV+ .

Proof: By proposition 2.17, it is enough to prove that for every rational

prime p, if P f lV+, then Hp := R ® Zp is a maximal arder in Hp and if

pe Il lV+, then Rp is an Eichler order of level pe in Hp. If p f iV+ then it is

clear that Elp = (RN-)p is a maximal arder of Hp. If pe Il iV+ , then since p

splits in K, by theorem 4.6 we have the isomorphism,

Elp '::::t. ( Zp Zp ) = ( Zp Zp ) ,
-N-qq-llV+Zp Zp pezp Zp

which means that Rp is an Eichler order of level pe, by theorem 2.10. There

fore, using proposition 2.17 we get the result.

A left ideal of R is a Z-lattice 1 in H such that

Rt(l) = {h EH: hl c l} = R.

Given two left ideals l, J of R we define

Hom(l, .1) := {h EH: Ih ç .I}.

vVe are interested in those left ideals of R which are generated by ideals of

o. Indeed for any ideal b of 0, the product Rb is a left ideal of R. NIore

precisely,

Lelllllla 4.8 For any ideal b of 0 with (b, V-D) = 1, we have,

Rb = {a + jJj :
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Praof: Let x = a + {3j E R where a E (V D)-l, /3 E (V D)-lq-l']t+

and a = q{3 (modOK ). Then for b = m + nv D E b we have

xb = ab + I3bj,

ab - q{3b = ab - qf3(b - 2nv-D)

= (a - q(3)b + 2nq/3v-D E OK'

Conversely, let x = a + {3j, Q E (,j D)-lb,.8 = .j~D E (,j-D)-lq-l'Jt+b

with J.l E q-l, li = m - nv-D E b and a = qjJ(modOK ). Then assuming

a = q{3 + À with À E OK we have,

. J.L(b - 2nv-D) J.lb.
x = À + qj3 + {3l = À + q ~ + ,j Dl

, ( J.L' J.l)= À - 2nJ.l + ,j D + V D b,

with /-L' = qJ.L E q C O. Now

J.l' J.l.
Fl5 + ,j D J E R,

and

J.l'b b
À - 2nJ.l' = Q - ~ EOn Fl5 = b.

-D -D
Hence x E Rb.

This proves the lemma.

Our next step is ta give a description for Hom(Rb, Rba) for ideals a and

b of OK. We have
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Lemma 4.9 Let a and b be split prime ideals of OK which are prime to

(v' D). Then

Hom(Rb, Rba) = {'" + .Bi : '" E (J Df'a, fJ E (J D) -1q-'<.n+b- I bii,

'" =qfJ (mod Op), for p 1D }.

Proof: Let 1 he the set in the right hand side of the above equality. By

•

lemrna 4.8 we have

Rb = {a + j3j : a E (v' D) -lb, {3 E (V-D) -1q-1~b, a =q{3 (mod b-1) } !

and

Rba = {Q + {3j : a E (v' D) -Iba, {3 E (v' D) -1q-l'J'rbo, ct =q{3 (mod b-1) } .

Let a and b be rational primes such that (a) = aa and (b) = bb in OK. At

any prime p :f:. a, b we have

and hence

(Hom (Rb, Rba))p = Ip = Rp.

If a :f:. b, then using theorem 4.6, at a we have,

and
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and hence

For b we will have,

and

Hence,

If a = b, then

and

Thus,

•

(Hom (Rb, Rb1.))b t'V (bZb tZb
)

b2Z b Zb

Now using proposition 2.16 we get the result.
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Lemma 4.10 Let D' > 0 be a divisor of D, and n' = (D', vi D) be the

integral ideal of OK of norm D'. Then

{

~ -1 r-r=\ -1
Rn' = a + {3j: a E (v -D) i)', {3 E (v -D) i)'q-J.~,

a =q,B(mod Op) for p 1 D / D'

and Cl! - -q,6(mod pOp) for p 1 D'},

where for any rational prime p 1 D we set p = (p, vi DL and Op is the

localization of the ring 0 at the prime ideaL p.

Praaf: Let 1 be the set in the right hand side of the above equality. By

proposition 2.16 it is enough to show that

for aH rational primes p, where for a lattice L in H we define

If P f D', then (Rn')p = Ip = Rp. Let p 1 D'. Then n~ = pOp +..; DOp =

(vi D)Op = Pp, and
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Hence

(RIJ')p - R"pp = {(a + I3j)(.j D): a, ,8 E p;l, a = q,B(mod Op) }

- {(a.j D) - ((3..1 D)j: a, ,B E p;l, a =qf3(mod Op) }

- {a+ 13j : a, 13 E Op, a =-ql3(mod Pp)}
- I p

This completes the proof of the lemma.

Definition 4.11 For any positive divisor DI of D we define

RD' = {a + 13j: a E (..1 D)-l, 13 E (..1 D)-lq-l 'Jt+,

a =éD' (P)ql3 (mod Op), for ail p 1 D },

where for any prime divisor p of Dl we set p = (P, v'- DL

{

1 pl D/DI

~D'(P) =
-1 pl DI,

and Op is the localization of 0 at the the prime ideal p.

ft is readily seen that Ri = R = RN+,N- is the Eichler order defined before.

In fact, we have,

LeInIIla 4.12 Let DI he a positive divisor of D. With the above notations,

i) The lattice

R~:'" = {a + I3j: aE (..1 D)-l, (3 E (V D)-lq-l,

a =éD'(P)q(3 (mod Op) for ail p 1 D}
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is a maximal order in H.

ii) The lattice RD' is an Eichler order of levellV+ in R?r'-.

Proof: The proof is similar to the proof of lemma 4.5 using a local argument.

Lelllllla 4.13 With notations as in the two previous lemmas we have

Hom( Rll ~ Ri}') = RD' .

Proof: vVe prove the lemma using a local argument. Let p be a rational

prime. If p f D' then,

and hence

Let p 1 D'. Then

(Ri)')p = {(1' + ,Bj: (1', (3 E Op, a = -q{3(mod pp)}

and

(RD')p = {(1' + {3j: (1' E (vi D)-l, {3 E (vi D)-l, (1' = -q{3 (mod Op)}.

Let x = a' + {3'j E (Ri)')Pl Y = (1' + f3j E (RD')p- Then

xy = (a' + f3'j)(a + (3j) = (aa' - lVqiJf3') + (a'{3 + ii{3')j.

from (1" =-q,B'(mod pp) and (1' =-qf3(mod Op), we have aa' = q2{3{3'(mod Op)

and q(1"{3 = qa,B'(mod Op). Hence

Cia' - lVqiJf3' - a(1" + q2iJ{3' =ac/ - q2{3{3' = 0 (mod Op),
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and

ci{3 + ii{3' =o.',B - 0.{3' =0 (mod Op).

\Ve also have

00.' - lVq~l3' + q(ci(3 + iil3') - 0.0.' + q2jj{3' + q(o.'(3 + ii{3') _

o.'Ca + q(3) + q{3'(o. + q{3)

(0. + qfJ)(o:' + q{3')

Hence

- 0.'(0. + q(3) + q{3'(a + q/3)

- 0 (mod pp).

xy E (RlJ')p

•

This means that (RD')p C (Hom(lù1', RlJ'))p. Since (RD')p is a ma.ximal

order, we have

Now the lemma follows from proposition 2.16.

4.6 The main identity

vVe are now ready to state and prove our main theorem. As before, A is a

fLxed ideal class of 0 and Il is an Integral ideal in A. For any Ideal class B of

o we Let b be an Integral ideal in B. "Ve define the theta series

(J = ~ e2rip(x)'T
A~ ~ ,

xEHom(Rb,Rba)

where for x E Hom(Rb, Rba) the integer p(x) which we cali the degree of x

is defined as
N(x)

p(x) = N(Hom(Rb, Rba))"
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By [6] fJA,B is a modular form of weight 2 and level IV = lY-1V+ ~ and is

independent of the choices of a and b in the classes A and B. To make the

calculation easier we will choose a and b to be prime ideals which are split

in K. Now we define

fJA = L fJA•B = L r(m)e2
r.imT.

8 m~O

Our main result (theorem 4.19) will be proved by showing that f}A = 2U2<PA,

where <PA is the theta series in theorem 3.14. This will be done by computing

the Fourier coefficients of fJA and comparing with those of <PA.

Remark:

i) Theorem 4.19 was proved by Gross in the case where IV and D are both

prime [7]. A proof for the more general case where D is not necessarily prime

has been suggested in [7]. The suggested proof needs ta be modified, since

the formula on the top of page 162 is incorrect.

ii) Hatcher has given similar formulas for the special values of L A (!, s) in

the case where l.Y and D are prime, and f is of arbitrary weight [9]. Theo

in [la] she has extended her result ta arbitrary D, using Gross' method. Her

argument in the last paragraph on page 341 appears ta be incornplete. The

proof can be completed using an argument similar ta the one "re use in the

proof of proposition 4.17.

For any divisor D' > 0 of D we let il' = (D', J D) and {i)'} he the ideal

class of il'. We note that

L fJA• ('l'lB·
BEPic(O)
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Hence
1 1

(JA = 29 L E (JA,{~'}B = 29 L L (JA.{~/}B~
D'ID BEPic(O) BEPic(O) D'ID

where 9 is the number of prime divisors of D. This simple observation will

prove crucial in our calculations. So we record this as~

LeIllIlla 4.14 For any divisor D' > 0 of D we let D' = ( D', J D) and {D'}

he the ideal class of i)' in (). For ideal classes A and B define

(J- - ~ (J ~ () 27rimT
A,B - ~ A,{~'}B =~ TA..B me.

D'ID m~O

Then we have

1 L -(JA=- (JAB
29 '

BePic(O)

Now we calculate r A,B(m) for a given m > 0 and an ideal class B.

Lemma 4.15 Let B be an ideal class of 0 and m ~ 0 an integer. We have

where for any ideal l of 0 and any rational number s 1 t 1(s) is the number

of elements of norm s in the ideal I, and for any integer n > 0

c5(n) = fI 2
p prime
pl(n,D)

Proof: We let a and b he integral prime ideals in the classes A and B

respectively, such that N(a) = A and N(b) = B bath split in K. Then

(J - ~ e2"lfip(X)T
A,{i)'}B - L-J '

xEHom(RêYb,Ri"ba)
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and

OA,B = L L e2~ip(X)T.

D'ID xEHom(Ri.l'b,Ri.l'ba)

A local argument using lemma 4.13 shows that

Hom(Ri>'b, Ri)'ba) = Hom(RD' b, RD' bal = {Q + {lj : QE (J-D)-la,

{l E (J-D)-lq-lm+b-'bn, cr =€D,(P)q{l (mod Op), for all p 1 D },

where for each prime divisor p of D we set p = (P, J D). If x = a + j3j

with p(x) = m he an element in Hom(RD'b, RD'ba), for sorne D' 1 D, we set

a' = V Da, (3' E V D{3. This gives us a solution to the system

a' E a

N(a') + lV-qN(f3') = mAD.

(4.2)

This is because N(Hom(RD'b, RD'ba» = A and hence

p(X) = N(x) = N(o.) + qN-N({3) = m.
il .4

vVe need to see how a solution to the system (4.2) contributes to elements in

Hom(RD'b, RD' baL for various divisors D'. We start with a solution (a', (j')

to the system (4.2L \Vith qN({3') = n and N(a') = mAD - lV-no vVe set

Dl = (D, n).

From #(0.') + lY-qN({3') = mAD and the fact that q = -lV-(mod D) we

have

•
N(a') = q2N(f3') (mod D).
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This implies that for any prime divisor p of D,

cl = rypq{3' (mod pOp), (4.3)

where ryp E {l, -1} and p = (p, J D). If p 1 Dl then (4.3) is valid for both

ryp = 1 and ryp = -1. But if p 1 D/D I , then (4.3) is valid only for one choice

of1]p. We let

D' = II p,
plDIDt
Tfp=-l

and x = ",a:..D + J:-Dj. Since for any prime divisor p of D we have

cl {3'
.J=l5 - rypq .J=l5( mod Op),

-D -D

we have

H (RD' D"& RD' Dit )xE om , &a,

for any divisor D" of Dl. The number of divisors D" > 0 of Dl is den).

This means that every solution (cl, {3') to the system (4.2) with qN({3) = n,

contributes den) to rA,S(m). The number ofsuch solutions (a',{3') is

ta (mAD) if n = 0

if 0 < n < mADN-

if n = m.4D
N-

Adding up the contributions to rA,S(m) from aIl n, gives the result.

\Ve use the above lemma to prove:

Lemma 4.16 For m > 0

•
rA.B(m) = 4u2 L: r A(mD - IVn)<5(n)rA{q~+-l}BZ (n),

O$n:s;mJ'
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where r A and r A{q'Jl+- L }B2 are defined in (1.1), and c5"(n) is as in lemma 4.15.

Proof: With notations as in the previous lemma, from the definition of

ta (-) and r A ( -) and the proof of proposition 1.2 we have

where 2u = w is the number of units in o. SiInilarly

since

Renee, from the previous lemma we have,

r A,B(m) = 4u2

If we set l = A~+' we get the result.

Now we ean calculate the coefficients of

8A = L r(m)e21riTnT
•

m2:0

Proposition 4.17 For m > 0,

rem) = 2urA(m)h + 2u2 L r A(mD - nlV)c5"(n)r[An)(n)
n~l

where h is the class number ofO, c5"(n) is as defined in lemma 4.15, the ideal

n is any integral ideal of 0 with

•
N(n) =-lV (mod D),
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[An] is the gen1J.S class of the ideal class A {n} and 'r[An) (n) is the number of

integral ideals of 0 in this genus class.

Remark: Since any two ideals with the same norm (mod D) are in the same

genus, the genus class [An] in this proposition is independent of the choice

of n, and r[An] (n) is equal to R(n) or 0 depending on whether or not there is

an ideal of norm n in [An].

vVe DOW prove the proposition.

Proof: By lemma4.14,

rem) = 2~ L rA,B(m).
BEPic(O)

By lemma 4.16

rA,B(m) = 2UTA(mD)29 + 4u2 L rA(mD - nlV)c5(n)TA{q'Jt+-L}BZ (n).
n~l

Hence

But

L r A{q'.Jl+-J.}BZ (n) = 29-
1
T[l1q')l+-L](n).

BEPic(O)

Therefore, using the fact that rA(mD) = rA(mL we have

rem) = 2UTA(m)h + 2u2 L TA(mD - n.LV)6(n)1·[l1q~+-L)(n).
n~l

Now we note that

[aqm+-J.] = [aq'J1+] = [An].
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This is because, clearly [iJt+-~] = ['Jl+], and [q~J = [nJ, since

N(q~+)=N(n) = -J.Y (mod D).

This complete the proof of the proposition.

Comparing proposition 4.1ï and theorem 3.14 we have

Proposition 4.18 With notations as in (4.1) and theorem 3.14 we have,

Finally we have our main result:

Theorem 4.19 Let [< be a quadratic imaginary field of discriminant

-D = 1 (mod4), and let A be an ideal class of !(. Let f be a modular form

of weight 2 and level N = J.V+ J.Y-, where J.V satisfies the conditions stated in

section 4.1, and let LACf, s) be as defined in (3.1). Then we have

where u is hall the number of units in the ring of integers of K, and f)A is the

theta series associated to K and an Eichler order of Level J.V+ in the (unique)

quaternion aLgebra of discriminant IV- as defined in (4.1).
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