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Abstract

'I'his thesis studies the introduction of a priori structure into the design of learning sys-
tems based on artificial neural networks applied to sequence recognition, in particular to
phoneme recognition in continuous speech. Because we are interested in sequence analy-
sis, algorithins for training recurrent networks are studied and an original algorithm for
constrained recurrent networks is proposed and test results are reported. We also discuss
the integration of connectionist models with other analysis tools that have been shown to
be useful for sequences, such as dynamic programming and hidden Markov models. We
introduce an original algorithm to perform global optimization of a neural network / hid-
den Markov model hybrid, and show how to perform such a global optimization on all
the parameters of the system. Finally, we consider some alternatives to sigmoid networks:
Radial Basis Functions, and a method for searching for better learning rules using a priori

knowledge and optimization algorithms.




Résurné

Le sujet de cetta dissertation est I'introduction de connaissances dans le design de systémes
d’apprentissage de réseaux de neurones appliqués ala reconnaissance de séquences, partic-
ulierement la reconnaissance de plhonemes en parole continue. Pour Panalyse de séquences,
il est important de pouvoir estimer les parameétres de réseaux récurrents. Pour ce probleme,
plusieurs algorithmes sont évalués et un nouvel algorithme est proposé et testé. Afin
d’optimiser les performances, on considére I'intégration de ces réseaux avec d’autres méthodes
utiles pour la reconnaissance de séquences, telles que la programmation dynamique et
les chaines de Markov. Un algorithme original est introdnit et évalué pour faire une
optimisation globale d’un systéme hybride combinant réseau de neurones et chaines de
Markov. Finalement, certaines alternatives aux réseaux a sigmoides et rétropropagation
sont étudiées: les fonctions radiales de base, et une méthode pour chercher de meilleures

régles d’apprentissage avec des connaissances a priori et des algorithmes d’optimisation.
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Chapter 1

Introduction

This thesis studies the introduction of a priori structure into the design of learning systems
based on artificial neural networks (ANN) applied to sequence recognition, in particular to
the problem of phoneme recognition in continnous speech. Instead of considering an ANN
as a system learning from tabula rasa, we show that significant performance improvement
can be achieved if knowledge about a task is used to introduce structure and meaningful
representation into the design of such a learning system. Knowledge about a task includes

knowledge about existing solutions proposed for this task.

Contributions are made in three interrelatcd subtopics: how to improve generalization by
integrating ANN learning with domain knowledge, how to recognize sequences with ANNs,
in particular recurrent ANNs, and how to integrate ANNs into a hybrid system that uses a
sequence analysis method such as Hidden Markov Models (HMM). The desiga and test of an
algorithm for training a particular type of recurrent ANNs and the analysis and evaluation
of an algorithm for performing the global optimization of an ANN/HMM hybrid are the
main theoretical contributions of this thesis. In addition to applying these algorithms,
contributions of this thesis to the design of ANNs for sequence recognition concern the use

of a priori knowledge to better design ANNs in order to improve their generaiization.

There are several motivations for using ANNs. These models are interesting engineering

tools that can perform difficult tasks, such as those studied in this thesis. For example,
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they allow us to transform large input spaces into compact representations for speaker-
independent phoneme recognition. FFurthermore, using such computing architectures may
he motivated by the analogy between these models and the operation of real nervous sys-

tems.

The motivation for associating a priori knowledge and learning from examples is that such a
combination may be the optimal way to take advantage both of the available training data
and of prior knowledge about the task. This is justified by theoretical arguments that show
that good generalization cannot be obtained if the training set size is limited and the ANN
has an unbounded number of degrees of freedom. By restricting the transformations that
an ANN can perform using a priori knowledge, one reduces the variance of the functions
that can be obtained after the limited training data has been used. Experiments described
in this thesis show that it is often useful to take advantage of a priori knowledge about
the problem to be solved with the ANN. To build efficient recognition systems given the
limited amount of training data and training time available in general, it is important to
design carefully the preprocessing, input/output coding, architecture and post-processing

of the ANNs.

The study of recurrent networks is motivated by the advantages they offer when apply-
ing them to sequence recognition problems such as those considered in this dissertation.
Algorithms for recurrent ANNs are important for problems of sequence recognition such
as speech recognition because recurrence allows us to represent efficiently context. How-
ever, we found that even better performance can be obtained if these recurrent ANNs are

integrated with other sequence analysis tools, such as dynamic programming or HMMs.

In this introduction, we describe some basic characteristics of connectionist models (or
ANNs), introducing in particular the back-propagation and the Boltzmann machine algo-
rithms, since they have been among the most popular connectionist models and they are
used in the experiments described in later chapters. We also review results in learning the-
ory that justify the use of ANNs because of their expressive power and set some guidelines
as to their design in order get good generalization. Then we briefly introduce some issues

in automatic speech recognition.
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In the second chapter, we present a formal description of the back-propagation algorthm,
which is extended in Chapter 4 to the case of multi-layer ANNs with delays and recur-
rence. Some problems with back-propaga‘:on and possible solutions to these probiems,
such as acceleration techniques, are also discussed in the second chapter. We present some

experiments that compare online and batch learning when the size of the training set is

varied.

The integration of speech knowledge and learning from examples is the subject of the third
chapter. Experimental examples are used to illustrate several important design 1ssues: pre-
processing, input coding, architectural constraints, modularization, and output coding. We
describe experiments on an auditory model for ANN preprocessing and present interesting
results concerning the generalization of ANNs trained to recognize articulatory features of
vowels. The use of a priori knowledge. ev=n if imperfect, and of carefully crafted networks
is motivated by the need to reduce appropriately the V('-dimension (a measure of complex-
ity, see section 1.3.3) of those networks in order to improve their generalization when the

number of training examples is limited.

Chapter 4 deals specifically with the problem of sequence analysis and the use of ANNs for
that problem. An original algorithm for a particular type of recurrent ANN is described
and two other algorithms for arbitrary recurrent ANNs are compared. Finally, hybrids
of ANNs with dynamic programming and HMMs are considered. An application of an

ANN / dynamic programming hybrid to the analysis of amino-acid sequences is described.

The fifth chapter discusses some issues concerning the integration of ANNs with other tools
in a modular way. In particular, we are interested in methods of modeling the temporal
structure of a signal. We argue that it might be preferable to perform a global optimization
of such hybrids, which can be done if learning in each component of the hybrid system
depends on a common objective function, and its output is a differentiable function of its

inputs.

In Chapter 6, we present an important element of this thesis: a hybrid of ANNs and
HMMs with an algorithm for the global optimization of all its parameters. First we explore

how a probability density function could be expressed in terms of the output of an ANN.




'T'hen we show for several HMM optimization criteria and model types how to compute the
gradient of the optimization criterion with respect to the parameters of the ANN. Finally,
an experimental assessment of this method for plosives in continuous speech recognition
shows the advantages of using a hybrid and doing global optimization. These experiments
are done using some of the techniques described in Chapter 3. In particular, multiple ANN
modules are used for different discrimination tasks, with each module using specialized

preprocessing adapted to the task.

Finally, in Chapter 7, we consider alternatives to the standard back-propagation algorithm
such as Radial Basis Functions, and ideas on how to search for better learning algorithms

using a priori knowledge, as well as learning methods.

1.1 Biological Background

‘I'he human brain is an organ made of 10'° to 10'2 nerve cells called neurons. Neurons are
connected to each other through synapses. Each neuron has on the order of 103 synapses.
Most researchers [Byrn87] now accept that animal learning involves changes of synaptic
efficacy, i.e., a quantity which measures how much a neuron can affect another one through
a synapse. At chemical synapses, the presynaptic terminal of a neuron is very close (about
50 nm) to a postsynaptic dendrite of another neuron. When the pre-synaptic neuron fires,
neurotransmitters are released on the pre-synaptic side and the reaction of receptors on
the post-synaptic side provokes a local change in membrane voltage potential at the post-
synaptic site. Through there dendrites, the neuron integrates signals coming from other
neurons. When the voltage potential at the surface of a the cell body of a neuron reaches a
threshold, the neuron fires: an impulse or a series of impulses is transmitted along its axon

to other neurons.

Connectionist models are simplified models inspired from biological neural networks. They
involve homogeneous networks of simple processing units. A connectionist model can be
described by a graph (see Chapter 2) where each node represents a processing unit that
corresponds to a ueuron, and links or connections correspond to synapses. Each such unit

operates according to a very simple neuron model. Many of the currently used models have
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a feedforward architecture (i.e., their graph contains no cycles). However, the architecture
of the brain is not homogeneous and 1t is not feedforward: it contains many feedback
paths. Furthermore, many types of neurons, synapses and neurotransmitters have been
observed [Gard87, Byrn89, Tamg9]. In Section 7.2, we consider a way in which particular

neurotransmitters callez neuromodulators may propagate information that can be used to

adapt synaptic strengths.

Some connectionist learning algorithms are based on “batch™ training, that is, observation
of a fixed set of training patterns followed by a modification of the system parameters.
In contrast, le;uing in the brain is probably “online”, i.e., the brain adapts continuously,

depending on its environment.

Although adaptation is a very important feature of brains, learning in biological nervous
systems is not from a tabula rasa. Instead, each individual brain is constrained in its
structure and its potential functions. Genes somehow specify many of the architectural
characteristics of the brain, as well as innate behaviors. From a theoretical point of view
(see section 1.3), it makes sense to use a priori information about the environment to
constrain a learning system, especially if a hmited amount of training data, and time to
assimilate it, is available. This may be particularly important for newborns and youngsters,
who have had only very limited experience and yet must behave in such a way as to survive

until they are stronger and more experienced.

1.2 Connectionist Models

Connectionism can be described as the study of certain classes of massively parallel archi-
tectures composed of a large number of similar and simple processors, used for learning,
and in which most of the learned knowledge is associated to the connections among units
[RumeB6a]. These architectures are inspired from biological as well as psychological models,
but they are being applied to many Artificial Intelligence as well as engineering problems.
Although artificial and biological neural networks differ significantly in many aspects, they
generally share some interesting properties such as fault-tolerance [Moor&8)], learning from

examples, distributed processing, and associative storage of information (see [Rume86a] for
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a discussion about ANN properties).

Connectionist models, or Artificial Neural Networks (ANN), use fairly simple mechanisms
for both neuron operation and the modification of ~vnapses; these models can be used to
solve some difficult learning problems, including the problem (“hard learning”, [Hint87}) of
training hidden units' of the network when reinforcement or supervision is only available
to some neurons (output units). FEarly artificial neural network models [Rose57, Rose62)
were not able to solve that problem [Nils65, Mins69] because no efficient algorithm was
known to train a network with hidden units, which are required in order to learn non-linear
functions. Minsky and Papert [Mins69, Nils65] have demonstrated the limitations of single-
layer perceptron: they cannot separate classes that are non-linearly separable. However,

most problems of interest can be solved only with a non-linear transformation.

T'he more recent. more powerful, abstract models, such as those presented in the book
[Rume86a], can learn to perform non-linear mappings. They were used for automatic
speech recognition (see [Lipp89] for review), handwritten character recognition [LeC89c],
optimization [Hopf84, Pete90], robotics [Jord90, Pome8Y], financial expert systems (loan
applications evaluation, [Coll89]), and other Artificial Intelligence problems. Connectionist
models are based on simplifications of biological neural networks, but they often have non-
biologically plausible features. As Hinton points out [Hint87], a mathematically derived
algorithm such as back-propagation is not plausible as a biological model of learning for
many reasons. For example, the transmission of information in neurons and synapses is
in both a forward and a backward direction (which is required with the back-propagation
algorithm). Furthermore, extensions of the back-propagation algorithm to general recurrent
networks are either non-local in time or non-local in space (see section 4.3 for more details
on these questions). However, the back-propagation algorithm is one of the most powerful

training algorithms for ANNs.

From a statistical point of view, most connectionist models can be considered as techniques
to construct  often for classification problems — consistent non-parametric estimators
[Gema9l), for regressions, as well as probability distributions (see section 1.3.4). Other

techniques that have been used to construct non-parametric estimators include Parzen

'Hidden units are neither input (sensory) nor output (motor) units.

18



windows and Nearest Neighbor rules [Duda73], regularization methods [Wahb82, Pogg89)],
and decision tree methods (ID3 [Quin86), CART [Brei84]).

Some classes of connectionist algorithms will now be briefly described. More details on the
back-propagation algorithm can be found in Chapters 2 and 4. This algorithm was used in
most of the experiments described in this thesis. 'The Boltzmann machine algorithm was

used in the experiment described in section 3.2.

1.2.1 Back-Propagation

This is one algorithm to train a network with hidden units, such as in Figure 1.1. The

neuron output is assumed to be a differentiable function of its inputs. ‘Typically, this

function is represented as follows:

wo= f(Q_wy,y,) (1.1)
J

where y, is the output activation of unit i, that may correspond to the average firing rate
of a neuron, w,, is a weight that corresponds to the strength of the synapse that connects

neuron j to neuron 2. The function f(:) is a non-linear squashing function that is nsually

taken to be the logistic function, ranging in (0,1):

- | .
flx) = T exp(=2) (1.2)
or the symmetric sigmoid, ranging in (-1,1):
f(z) = tanh(z) (1.3)

In the experiments described in this thesis, we generally used a symmetric sigmoid for
hidden units and an asymmetric sigmoid for output units. This was motivated by the
faster convergence of networks whose inputs have zero mean [Le('90] and because it is

easier to interpret network outputs in the range (0,1).

In the back-propagation algorithm, the function f(-) has to be differentiable. ‘T'his allows us
to compute the partial derivative of a neuron’s output with respect to the output of neurons

which have influenced it. The principle of the algorithm is to use those partial derivatives
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.

Output Units

Hidden Units

Input Units

Iigure 1.1: Architecture of a multi-layer network trained with back-propagation.

in order to compute the gradient of a cost function with respect to the parameters of the
network, and then perform a gradient descent in the space of those parameters in order
to minimize that cost function. A commonly used cost function is the Least Mean Square
(LLMS) criterion, which is the sum of the squares of the differences between activations of

output units and target values for those units:
C= O.SEZ(y., — target,)? (1.4)
t t

where y, is the activation of output neuron ¢ for pattern ¢t and target,; is the corresponding
target output or desired value. In general, the target outputs are not chosen to be the
saturating values of the sigmoid (e.g., 0 and 1) to avoid resorting to infinite weights?.
Typical targets used in the experiments described in this thesis are 0.9 and 0.1 to indicate

“high™ and “low” target values respectively.

The LMS criterion is particularly well suited to the problem of regression estimation, in
which one wishes to estimate the parameters of a parametric function f(@,z), such that
the Fuclidean distance between that function and a target function f(z) is minimized. The

LMS critesion has the nice property that it is differentiable with respect to the function

4The sigmoid function reaches saturating values when its argument is —o0o or o,
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value. Such a criterion is not suitable for every application; in fact, its minimization does
not necessarily correspond to the minimization of classification error when an ANN is used
for classification (see [Bott91]). However, the true classification error is not a differentiable

function of the system parameters, and thus cannot be used to train an ANN with gradient

descent.

If the activations of the output units represent a probability distribution over binary
vectors?, then an alternative criterion is the cross-entropy [Hint87] between the desired
and actual probability distributions (conditional on the inputs of the networks):
C == targetylogy g + (1 — target, ) log,(1 = yur) (1.5)
t 1
The back-propagation algorithm was proposed in [Rume86b] but had been independently
discovered several times in varying forms and purposes [LeC'u85, Park&), Werb74]. It is

usually employed in a supervised mode, in which target or desired values are known for a

set of training examples, i.e., a set

St = {(Ir,Dr)} (1.6)

of pairs of input and output patterns is given. However, the algorithm can also be used for
reinforcement learning [Bart81, Bart83, Bart83)] as in [Jord90]. With reinforcement learning,
instead of a desired output for each pattern and output unit, the network is provided with
a scalar reinforcement signal (which may come only once in a while rather than after every
input pattern). For example, in the pole balancing problem [Bart83], the ANN receives
as input information about the position and the angle of the pole at every time step. Its
output controls the force applied at the base of the pole (to avaid falling down). It receives
negative reinforcement at the end of a training sequence, which is when the pole falls down
(due to the wrong “actions” of the network). 'The “forward model” of [Jord90] uses an
additional network that models the influence of the outputs of the first. network upon the
reinforcement, thus allowing us to compute the gradient of the desired reinforcement for

the outputs of the first network with back-propagation.

3Each real-valued output between 0 and | represents the probabihity that the corresponcding binary output

be 1.
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Output Units

Hidden Units

all connections are
symmetrical, except

those from the inputs,

if they are always
clamped to given
values.

Input Units

FFigure 1.2: Typical architecture of a Boltzmann machine. Connections and corresponding

weights are symmetrical.

Several extensions of the basic back-propagation algorithm for recurrent networks have been
proposed and some will be discussed in section 4.3. The actual equations for the learning
algorithm will be described in section 2.1. In addition, problems of convergence time and

local minima will be discussed in section 2.2.

1.2.2 The Boltzmann Machine

'T'his model was introduced in [Fahl83, Hint84]. The Boltzmann machine consists of a
network (see Figure 1.2) of stochastic units with boolean outputs that are connected through
symmetric connections (w,, = w,,). The network is recurrent and it is relaxed by simulated
annealing until it reaches a fixed point which should correspond to the global minimum of
an energy function. It can thus be considered as a generalization of the Hopfield model
[Hopf82], which has no hidden units. in the Hopfield model, all units are connected to
all other units, and they are used as inputs, as well as outputs. On the other hand, the
Boltzmann machine may have hidden units, allowing it to solve “hard-learning problems”

[Hint&7] that can’t be solved with a linear transformation.

Each unit may assume a value of 0 or 1. The output y, of the 7 unit is stochastically set
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to 1 according to a probability

1
D, = 1.7
P 1 +exp(—+2J m,JyJ) (1.7)

where w,, is the weight of the connection between units i and j, and T is a parameter called
“temperature”. The Boltzmann machine implements a Monte-Clarlo algorithm for reaching
a minimum of an energy function which measures the degree of “agreement™ among units,
i.e., two units ¢ and j maximally “agree” if y,y,w,, is large and positive. If the update rule
of equation 1.7 is applied iteratively while slowly decreasing the temperature, the network
converges to a point of “maximum agreement”. The simulated annealing guarantees this

state of low “energy” will be reached if the cooling is performed slowly enough [Gema8i].

Instead of decreasing a mean squared error, the Boltzmann machine learning algorithm
maximizes the likelihood of generating a target input/output discrete distribution. The
learning algorithm is based on gradient descent in the space of the weights in order to
minimize the Kullback information measure, a measure of the difference hetween two dis-
tributions: the statistical behavior of the network when the activations of the output units
depend only on the network state and inputs (phase 1), and when these activations are
fixed from outside with their target or desired values (phase 2). It is interesting to note that
this gradient can be expressed as a function of locally measurable quantities: the difference
between the probabilities of joint pre- and post-synaptic activation for the two phases, re-

(1) (2)

spectively Py, and p,;". The weight change that corresponds to descent in this gradient 1s

the following:

Aw, = €(p)) - pl})) (1.8)

where ¢ is the learning rate.

The algorithm runs very slowly on sequential machines, because the parallel nature of the
algorithm is not taken advantage of, and for each input pattern the simulated annealing
process has to be completed - in both phases when training. Furthermore, because of the
limited time usually allowed for the measurement of the joint probabilities of activations,
their estimation is imprecise, and thus the resulting estimation of the gradient is very noisy,

yielding a slow convergence [Hint87).

23




,.m*iﬁk‘\

1.3 Learning Theory for Connectionist Models

Althongh research on connectionist models has been carried out for only a few years (except
for the initial work on artificial neural networks of the late 50’s and early 60’s, for example
[Rose62]), many theoretical results have already been obtained that analyze mathematically
artificial neural network capabilities, complexity, generalization power and learning. Many
of these results are based on the use of statistical tools. See for example [Lipp87, Barr88,

Galls8, Barr89, Haus89, Tish89, Whi89b, Bau+89, Hint90].

1.3.1 Expressive Power

By expressive power, we mean a measure of the “number” of functions that an ANN
can approximate precisely. We have already mentioned that some hidden units were
required in order for an ANN to perform non-linear transformations. Many researchers
have studied the expressive power of several types of connectionist models. For example,
[Cybe89, Horn89, Funa89, Stin89] show that a feedforward neural network can perform
with arbitrary precision any continuous transformation, given enough hidden units. More

precisely, a single hidden layer is theoretically sufficient, except in some pathological cases.

Poggio and Girosi [Pogg89] show that a network of generalized Radial Basis Functions (see
section 7.1) can also approximate with arbitrary precision a smooth function. This type of
network has the advantage that it produces close to zero outputs in regions of the input

space that are very remote from the input examples.

1.3.2 Complexity of the Loading Problem

Although neural networks have great expressive power, it does not mean that it is easy
to find those network parameters that allow us to approximate a desired transformation
as well as possible. In fact, [Judd88] has shown that the so-called “loading problem” is
NP-Complete. The loading problem can be defined as follows. Given a set of examples of
input/output pairs and an ANN, is there any choice of network parameters (i.e., weights)

for which the examples are satisfied?
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However, results by [Baum89] suggest that finding the optimal weights could be done in
polynomial time with learning algorithms that are allowed to add units and connections
during learning. These types of learning algorithms are called constructive algorithms,
Examples of constructive algorithms® are the cascade-correlation algorithm of [Fahl191] and

the algorithm of [Plat91] for automatically allocating resources in a Radial Basis Functions

network.

On the other hand, empirical estimates [Hint87] indicate that the learning time for the

back-propagation algorithm on a serial machine grows approximately by O( N}), where N,,

is the number of weights in a network.

Furthermore, it is important to consider if we must find the global minimum of the cost
function, or whether it would be enough to obtain weights that correspond to a quasi-
optimal cost. It is usually observed that over-training often yields a loss in generalization.
Hence it might even be better not to reach the global minimum of the cost function for
the training set if our goal is to reduce errors on the underlying distribution sampled with
the training set. See [Chau90] and [Mor90b] on stopping short of convergence to improve

generalization.

1.3.3 Generalization

Generalization is a crucial question for learning algorithms. Indeed, a learning algorithm
would not be very useful if it would learn the training set perfectly but would not be able
to compute the expected ontput for new data in most cases, when the test datais sampled
from the same underlying distribution as the training data. One of the attractive features of
neural networks is that they seem robust: they tend to generalize well even when the inputs
to the network and the training data are noisy. For example, comparisons with symbolic
learning methods (e.g., ID3, CART), indicate that, in many cases, ANNs generalize better,

particularly in the presence of noise [T's0i91].

One of the measures of complexity or capacity of a learning system that is becoming

*However a polynomial convergence time has not been theoretically demonstrated yet for any of these

algorithms.
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popular in learning theory for ANNs is the Vapnik-Chervonenkis dimension (VC dimen-
sion). It measures the maximum number of dichotomies that can be induced by the
learning system. The notion of capacity was introduced by Cover [Cove65] and devel-
oped in [Vapn7l, Vapn82]. Reviews of this notion and related questions are presented in
[Devr8K, Blum8&7, Poll84, Haus89]. Results from learning theory indicate that, when the
number of training examples is finite, the generalization of a learning system depends on
its VC-dimension [Vapn82, Vapn71],i.e., on the number of functions it can perform, which
depends on the number of free parameters of the network, as well as on its architecture.
More precisely, theoretical analysis shows that the more training examples are available,
the better the generalization will be®, but the more complex the learning systems (e.g.,
more weights in a network), the more difference there might be between the training set
error and generalization error. This agrees with Occam’s razor principle, which suggests
choosing the simplest theory that explains our data (training set), in order to maximize
its generalization to new data. In this thesis, we sometimes use the term bias, as defined
mathematically in [Gema91] to describe the constraints and structure imposed on alearning
system in order to reduce its VC dimension. This may result in a non-zero error even when
an infinite training set is available. However, it may reduce the variance of such systems,
i.e.,, the average difference hetween networks trained with the same amount of data, thus
reducing the difference between training set error and test set error when the number of

training patterns is limited.

An interesting result [Bau+89] concerning the generalization of some neural networks gives
bounds on the number of training examples necessary in order to obtain an acceptable
generalization error. These results are for feedforward networks with hard threshold rather
than sigmoid units (because they are simpler to analyze), independently of the type of
algorithm used to train the network. If the error on the training set is less than § and the

number of examples N, is bounded as follows:

N = 0( X2 log(2)) (1.9)
Ne = 9(%) (1.10)

Shecause the desired function will be narrowed down more precisely in the space of the functions that
correspond to some parameter values for the system, constrained to functions that are consistent with the

training set,
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then with 2 confidence approaching certainty, the generalization error will be less than ¢,

where N, is the number of weights and N,, is the number of units in the network.

1.3.4 Approximation of Posterior Probabilities

In [Whi89b] it is shown that an ANN trained with the LMS criterion approximates the
conditional expectation E(D | X), i.e.,, the value of D that will be realized on average,
given a particular instance of X, where X and 1) are random variables representing the
input and desired output vectors, respectively. However, this can be obtained only if there
are enough hidden units and the training network converges to the asymptotic limit, that

is, the conditional expectation of the target given the input.

If the desired outputs D are continuous valued, then the ANN is performing regression
estimation and F{I? | X) is the best predictor of ) given X in the mean-squared error
sense [Gema91]. If the desired output D) is discrete with value 1 for class A and 0 for class
B, then the regression hecomes F(D =1 | X) = Pr(Class A | X) , 1e., the a posteriori

class probability conditioned on the input variable X.

If we allow the size of a network to grow with the number of available training examples,
then ANN models such as those trained with back-propagation can be considered non-
parametric estimators. Forexample, with the back-propagation algorithm, one can estimate

the conditional expectation E(D | X) as defined above (see also [Gema9t]).

The LMS criterion forces the average of the Jifference between actual and desired output
to be as close to zero as possible, but this may be at the cost of very large errors for values

of the inputs X that are unlikely to occur.

1.4 Automatic Speech Recognition

The major sequence recognition task considered in this thesis is that of automatic speech
recogmtion. An automatic speech recognition system is a system that can transform a raw

speech signal into a sequence of descriptors that characterize the spoken utterance well
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enongh so that a computer can use it to take decisions and perform appropriate actions.
The lowest level descriptors that such a system can recognize are often phonemes, of which
there are only a few dozen. Often, the objective is to recognize sequences of words. Special
application vocabularies may contain as few as several hundred words whereas an uncon-
strained human talker may attempt to use several tens of thousands of words. A speech
understanding system may use higher level information such as semantics and syntax in
order to recognize sentences, of which there may be an unbounded number of instances,

but which may be constrained by a particular grammar.

1.4.1 Characteristics of a Speech Recognition System

Let us consider a few characteristics of a speech recognition system that permit evaluating

its applicability.

o Vocabulary size. The vocabulary is the set of words that the system can recognize.
kxisting speech recognition systems have a performance that tends to degrade when
the number of words in the vocabulary increases. This can be explained by the greater
numberof pairs of words which can be confused (because the average distance between
words in the acoustic space is reduced). A related measure is the perplezityof a speech
recognition task [Lee 89], which is-proportivnal to the number of possible decisions at

each decision point, or the number of bits necessary to specify the next word.

Many researchers have decided to model sub-word units [Lee 89). This may permit
using a very large vocabulary, since the number of sub-word units that need to be
modeled is bounded even when we consider tens of thousands of words. This is
because each word can be defined as a combination of these sub-word units. In this
thesis, the sub-word units that have been considered are the most commonly used:
phonemes. Note that, sharing sub-words units may have the disadvantage that it
becomes more difficult to model within-word coarticulation, compared to modeling

each word separately.

o Speaker-independent / speaker-dependent recognition. Speaker variability is a very

important problem for automatic speech recognition. [Watr89] has shown, for ex-
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ample, in the case of formant frequencies for steady-state vowels, that whereas the
vowe's were clearly separable for a given speaker, there was a considerable overlap
in the formant frequency space when multiple speakers were considered. Although
the performance of current speaker-dependent speech recognition system can often he
acceptable, it is not the case for speclier-independent systems. 'I'wo research alter-
natives are being considered to deal with this problem. 'T'he first one is to perform
an automatic speaker adaptation [Brid91]. Some speaker-adaptation systems require
the talker to pronounce a given reference sentence. T'he other approach consists of
building a truly speaker-independent recognition system, that maps the acoustic sig-
nal into a description space that is independent of the speaker. T'his approach has

been pursued in the speech recognition experiments described in this thesis.

Continuous speech / isolated word recognition.

Isolated words are pronounced by leaving a short silence between each word. ‘T'hey
'
are much easier to recognize than continuous speech, for several reasons. Iirst, the
recognition problem is broken down into simpler problems: words can be considered
independently. Second, when pronouncing isolated words, talkers tend to have a
better, slower and clearer pronunciation, thus reducing within-word coarticulation.
Third, the problem of coarticulat on between words is almost eliminated (depending on
the pause beiween words). Unfortunately, pronouncing isolated words is not natural
nor comfortable for ordinary users. It is thus desirable to consider continuous speech
recognition systems, which can model coarticulation effects, i.e., the influence of left

and right phonetic context on the pronunciation of each phoneme.

1.4.2 Some Problems with Current Approaches

Coarticulation problems come from the acoustic variability of phonemes depending on their
phonetic context. In continuousspeech, this influence may span several phonemes and affect

contiguous words, especially short words.

The current approacheseither ignore coarticulation, i.e., considering one model per phoneme,

or model separately a very large set of diphones or triphones [Lee 89]. A diphone model is
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a model of all insiantiations of a phoneme in a given right or left context, i.e., considering
the left or right phoneme. For example /p-eh/,/p-ih/,/p-ah/ are different diphones for the
phoneme /p/ when it is followed by the phonemes /eh/, /ih/, or /ah/, respectively.

Another common characteristic of many speech recognition systems is that they model the
speech signal as a concatenation of independent segments, as in hidden Markov models
(see section 6.1). The psychophysics of speech production seem to indicate a different kind
of sequence: moving from one target to another in a space of articulatory features. In
that case, there are no clear cut boundaries between speech units, but rather a continuous
evolution of articulatory features going from the direction of and toward the direction of
targets that may correspond to phonemes or to other subphonemic events (see the temporal

decomposition of [Atal83]).

One of the problems with current approaches is their weakness at rejecting or modeling
words not in the training vocabulary. In fluent speech, talkers often pronounce non-words
such as “ah” ,“hmm”, or sounds made with the throat. There are often other noises in the
environment that make the observed signal more difficult to recognize. Robustness with
respect to noisy signal is thus an important feature of a desirable speech recognition system.

In addition, it is important to model sub-word units, in order to be able to characterize

words not in the training set (by modeling them as concatenations of sub-word units).

In experiments described in Chapters 3 and 6, we have attempted to address the problem
of coarticulation by choosing an output coding that is based on articulatory features. This
allowed us representing articulatory context in the network outputs, e.g. the horizontal
place of articulation of the phoneme that follows a plosive. This results in more compact

representations than one output or one model per diphone.

30




Chapter 2

The Back-Propagation Algorithm

The principle of the back-propagation algorithm was briefly introduced in section 1.2.1. I'his
algorithm was independently discovered by [Werb74]!, [Park85], [LeC'u85], and [Rume&6h).
It is based on the computation of the first derivatives of a cost function with respect to the
parameters of the network. Discrete gradient descent then allows convergence to a minimum
of the cost function, but not necessarily to the global minimum. Let us consider a simple
generalization of the original algorithm that allows one to use an arbitrary differentiable

transfer function F' for each unit.

2.1 Formal Description

Consider a network of units forming a directed graph G = (U, L), where I/ = {u,} is a set
of units, and L = {l,, : 3 link from unit s,, to unit i } where s,; is the unit number of
the jth input into rode i. That particular formalism was chosen to describe the network
graph in order to allow for multiple links with various delays between two units (Chapter
4). Units are either input units, hidden units or output units: the set of input units is Uy,

the set of hidden units is Uy, and the set of output units is Uy, so U = U, Uiy UlUq.

Let us consider for the moment the case of a static network, i.e., whose graph contains no

T Although in the case of [Werb74] the algorithm is not presented in the context of neural networks.
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computes E (@ |, YI )

Figure 2.1: Directed graph of an ANN for training with back-propagation. Units are nodes

of the graph, connections are links of the graph.

cycles. The cases of a recurrent network and of a network with delays will be discussed in

section 4.3.

Let us assume without loss of generality that the units of a static network are ordered in

such a way that if ¢ < j then there is no path in G from u; to u,.

2.1.1 Network Operation: Forward Phase

During a forward phase, when the #t? input pattern P, is presented at the input units, the
network computes a transformation that can be read out at the output units. Starting at

unit I, and until unit N,, each unit computes its activation as follows:

if u; € Uy,

» =P, e, the ith element of the #*h input pattern.

else,

% = Fi(6,,Y,), i.e., a parametric function of its inputs,




(2.1)

where y, is the output (also called activation) of unit u,, 8, is a set of parameters for the
function F,(-), and Y, is the set of activations of the units u,,, such that {,, € L, where s,,

is the node number of the source of link /,;.

The “standard” model [Rume86b] assumes that F,(-) = F(-) and is a sigmoid (equations

1.1, 1.2 and 1.3) of a weighted sum of the input activations of the unit u,:

F(w,Y,) = fQQwi,9a,) (2.2)
J

2.1.2 Network Learning: Backward Phase

The principle of the backward phase is to obtain the error gradient with respect to the
network parameters (BC ) by first computing the derivatives of the local cost 7y with

respect to each unit activation (d (t)) using the back-propagation formulae.

A differentiable cost function is defined as a function of the network output umts. For
example, the Least Mean Square (LLMS) criterion is defined as in equation 1.4. In that case,

the derivative of the cost function with respect to the activations of the output units is as

follows:

0(,-' - o
(?J t) Z()yt(:)=z Y. (wt) - targety) (2.3)

t wvu,clo
where target;; is the target or desired output value for unit i at time t.

In the back-propagation phase, units are considered in the reverse order of the forward

phase (from uy down to u;). The error gradient of a hidden unit u, € Uy; is computed as

follows, using the chain rule:

(I)Cg (?Ct f)y](t)
— = —_— 2.4
(1) ,E. ay,(t) Oui(t) (1)
For example, if the function y, = F),(-) has the form of equation 2.2 (a squashed weighted

sum), then

0 ’ 9r
Bagt) = (S, (25)

33




e

where 3, = 1.

The derivative of f(-) can be easily computed. In the case of an asymmetric sigmoid

(equation 1.2),
filz) = f(x)(1 - f(=)) (2.6)

whereas in the case of a symmetric sigmoid (equation 1.3),

Si(x) =0.5(1+ f(2))(1 - f(x)) (2.7)

Finally, the gradient with respect to the activations y can be used to compute the gradient

with respect to the parameters of F(-):

aC, _ 0C, dy(t)
80, ~ Oy(t) 08,

If the function y, = F,(-) has the form of equation 2.2 (a squashed weighted sum), then

dy(t)

Owy,

(2.8)

= f’(z Wik Ys,, (1)) v (2) (2.9)
k
where s;, = 1.

See section 2.2.1 for a discussion on the application of the error gradient, in particular

regarding stochastic vs deterministic parameter updating.

2.1.3 Weight Sharing

It is sometimes desirable to constrain a network by forcing some of the parameters used
for a unit u, to be shared by a unit u,. This is typically the case when u; and u; have a
different receptive field but should compute the same feature. In that case, weight sharing
[Lang88] may reduce the VC dimension of the network while still allowing the network to
perform the desired transformation. This usually results in improved generalization (see

section 1.3.3).

Weight sharing among parameters in a set § = {6,,} can be accomplished by simply aver-
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aging the gradient contributions from the various instances of the shared parameter:
ac
Ay =—e( Y. )15

125 0,

where C is the cost criterion, € is the learning rate.

2.2 Problems

(2.10)

The back-propagation algorithm is a simple algorithm that is easy to implement and it

allows us to train networks that have a great expressive power, i.e., that can be used to

perform a very large variety of transformations. However, it also has several weak

and problems. The most commounly reported problems are the following:

nesses

e Slow convergence: some learning tasks may require hundreds, or even thousands of
iterations on the training set in order to reach an acceptable cost. However, for
perceptual tasks with a very large training set and a lot of redundancy such as speech
recognition or handwritten digits recognition, we found that the required number of
training iterations may be as low as a couple of dozen and is usually below 100, if
appropriate parameters (such as learning rate and architecture) are chosen for the

network and stochastic gradient descent is used.

Local minima: gradient descent does not guarantee reaching a global optimum because
it may get stuck in a local minimum. This seems to happen most often in problems
such as XOR or parity, but researchers report that it does not appear to be a big
problem [Rume86b], particularly in many real world problems. This is borne out
in our experience with speech recognition, at least for static networks, in the sense
that many trials of initial weight values don’t yield significant variance as to the final

performance of the network.

Parameter setting: the user needs to decide on several parameters, such as learning
rate and the architecture of the network, including the number of hidden units. New
techniques are being explored to design automatically the architecture of the networks,
(e.g., with constructive algorithms [Fahl91] or pruning algorithms [Chaud0, Moze89,

Karm90]) and automatically control some learning parameters [Jaco8S].
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2.2.1 Acceleration Techniques
Stochastic Weight Update

There two basic ways to perform gradient descent: deterministic update and stochastic up-
date. In the first case, also called batch update, parameters are modified after the com plete

gradient of the cost function has been computed over all the training patterns:

aC;

A0 = —¢ -
! t d96;,

(2.11)

where Cy is the cost for pattern ¢, € is the learning rate, and 6, is a parameter of the

network.

Stochastic or online update consists in modifying the parameters after each pattern is

presented, using a noisy estimate of the gradient based on the local cost Cy:

A9, = -e%i (2.12)
1)

'I'he derivative of the cost for one pattern with respect to the parameters ,, can be consid-
ered a noisy estimate of the total gradient. Stochastic gradient descent has been studied for
adaptive signal processing (see for example [Ljun83]) and it converges almost surely under
certain conditions [Bott91, Whi91]. For ANNs trained with back-propagation, stochastic
update was found to be significantly faster than batch update in many instances, especially
in pattern recognition problems with a large training set (such as for speech or handwritten
digit recognition) [Bott90]. Several reasons may explain the improvements in convergence
time obtained with stochastic update. First, when the training set is large, it may contain
redundant information: if several gradient components g?c._} — contributed from different
patterns  are all pointing in a similar direction, then batch update wastes a lot of time
only to obtain a more precise direction. Yann Le Cun [LeC89a, LeC89b] suggests the follow-
ing extreme example to illustrate that notion. Suppose the training set is constructed out
of two copies of the same training subset. A batch update method would compute the same
gradients twice and then add them, thus performing redundant computations. However,
for a stochastic update method. a single iteration on this large training set would simply
be equivalent to twoiterations on the smaller training subset, thus allowing the network to

converge twice as fast.
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By modifying the weights more often, stochastic update allows us to “try” many more
weight values, making the search less deterministic and more exhaustive (in the vicinity of
the current weight values). Another advantage may come from the randomness introduced
by the noisy evaluation of the gradient used at each update step (based on very little data).
This noise may help escape from local minima. This noise is amplified by the learning rate.
Thus, starting with a large learning rate and slowly decreasing it, one might conjecture
that we can approacn the global minimum of the cost function, in a way that is perhaps

similar to simulated annealing (L. Bottou 90, personal communication).

In an experiment on vowel recognition using the T'IMIT database [Zue90a], the convergence
of batch update and online updat were compared. The experiments are performed with
a recurrent network with a single hidden layer. T'he hidden and output units are fully
connected to each other. There are also delays of 0 and 3 frames from the input. to the
hidden units and of 0, 2,4, 6, and R frames from the hidden to the output units. T'hese
experiments are performed with the 1990 version ot TIMI'T onthe recognition of 11 classes
of vowels (as in the experiment described in section 4.3.1). The networks are trained with
back-propagation through time. In Figure 2.2, one learly sees the impressive difference
between the two update methods. On the other hand, [Beck89] compared online and batch
training, as well as second order methods for a boolean function problem and found little

difference between the two methods.

Adaptable / Local Learning Rate

Many schemes have been proposed to accelerate convergence by 1) adapting the learning
rate, and 2) using different rates for different parameters. Forexample, R. Jacobs [.JacoX8|
proposes such a method, called delta-bar-delta rule, With this method, one increases the
rate associated with a parameter when the current gradient for that parameter has the
same sign as the decaying average of previous gradients and decreases this rate if the signs
are opposite. However, this method, like several acceleration methods, such as the use of
a momentum term [Rume86b], rely on exact evaluation of the gradient, i.e., batch update.
Consequently, the advantages they bring are often offset by the disadvantages of batch

update for complex pattern recognition problems with large training sets.
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Figure 2.2: Convergence of batch update (a) and online update (b) as the number of training

patterns is varied.
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An alternative explored in [Ben90a] is to control the learning rate indirectly, by controlling
the average weight change in each layer of the ANN. Experiments on small networks showed

significantly faster convergence with such an indirect control.

Use of Second Order Information

Several optimization methods using second order information have been explored in order to
improve convergence of back-propagation. Already in [Rume86b, Plau6}, it was proposed
to use a “momentum” term, i.e., add a fixed portion of the previous weight change to
the current one. This tends to reduce the zigzagging effect often observed with simple
gradient descent, by stabilizing the changes in the direction of average steepest descent.
Unfortunately, this acceleration due to momentum seems effective mostly with batch rather
than online update. The momentum method is actually related to the method of conjugate
gradients [Gill81], [Joha90] since in both cases the search direction is obtained through
a linear combination of successive gradients. In both cases, second order information is
obtained only indirectly and only the first derivatives are explicitly computed. On the other
hand, Newton and quasi-Newton methods directly use the second derivatives of the cost
with respect to the ANN parameters. Purely Newton methods seem usually impractical in
the case of large ANNs because they require computation and storage of the Hessian matrix,
which takes O(N2) space and for which inversion requires O(N3) operations (where N,,
is the number of weights in the network). The pseudo-Newton method (see [BeckR9])
only considers the diagonal of the Hessian, allowing a fast computation and inversion of
second derivatives. It also has the advantage that it can be used with stochastic update.
However, this method requires careful handling of the problem of near-zero or negative
second derivatives. The weight update equation of the Pseudo-Newton method is as follows:
ac

3w, y

| & | +n

Aw,, = —¢ (2.13)

where C is the cost to be minimized, w,, is a network weight, € is the learning rate, and p

is a parameter used to avoid infinite weight change near zero second derivative values.
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I'igure 2.3: Illustration of parameter coupling. Modifying the input weights of node a may
influence the gradient to node b and vice-versa, if they are both non-saturating for some

pattern.

Parameter Decoupling

One of the reasons why ANN training may be slow is that all the parameters (weights) are
strongly coupled. Even nodes that are not directly connected influence each other. Indeed,
if a node ¢ is reachable from two nodes a and b in the directed graph of the network, then
a change in the function of node a will change the inputs and the behavior of node ¢. This
will influence the gradient (%%) associated with node ¢. In turn this may influence the
gradient for node b (%%). If there are some patterns for which neither node a nor node b
are saturated (i.e., with a non-zero first derivative of the activation of the node with respect
to its input weights), then a change in node a’s weights will also influence the input weights

sf node b (see I'igure 2.3).

One of the consequences of this parameter coupling is that it makes the search in the space of
those parameters more difficult, i.e., the number of computations grows supralinearly (and
maybe exponentially) with the number of parameters (see Section 3.4 on modularization
and asymptotic training time). An obvious answer to this problem is modularization.

However, this usually implies that the system designer knows enough about the problem
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and its solution in order to design modules that can then cooperate together. An imperfect
modularization may have the disadvantage that a suboptimal solution is obtained, since

parameters are estimated separately, according to different optimization criteria.

What is proposed in the ANN design described later in this thesis is an intermediate so-
lution: first design and train some modules separately (or on top of each other), using a
priori knowledge to break up the problem into subtasks. Second, do a global optimization
of the complete system, by allowing all parameters to be tuned simultaneously in order to

minimize a single cost criterion (see chapters 5 and 6).

A different (and maybe complementary) solution is the use of network nodes that have only
a local response in their input space, such as Radial Basis Functions (RBI') (see [Ben9(b]
and section 7.1). In that case, the parameter coupling is only between neighboring nodes,

i.e., those that have overlapping responses.

Recently, several research groups [Nowl90, Jac9la, Jac91b] proposed an interesting net-
work model, called “Competing Experts” or "Mixtures of Local Experts”, which is a kind
of hybrid of competitive training and back-propagation, in which a particular type of mod-

ularization (over the input space) is performed automatically by the learning algorithm.

Acceleration vs Generalization

In some cases, techniques employed to accelerate convergence may have a detrimental effect
on generalization of the resulting network. For example Patrick Haffner [Haff89] performed
experiments in order to accelerate convergence which often yielded worse generalization
error. He compared various forms of the sigmoid which would prevent it saturating and thus
slowing down learning. Experiments were also performed with various ob jective functions,
showing there might be a similar trade-off. On the other hand a formula to control learning
rates for each unit such that the step size would be reasonably large with no danger of
overshooting was used with success. It ensures that the product of the norm of the local

gradient and the local learning rate is bounded.
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2.2.2 Local Minima

Since gradient descent methods use only locally available information to decide on the next
search direction, they may yield local minima of the cost function. On the other hand,
gradient descent is usually more rapid than methods that are more robust to local minima,

such as simulated annealing or genetic algorithms.

Stochastic Weight Update

As was mentioned in section 2.2.1, stochastic weight update may help to escape from some
local minima. This may happen because a noisy gradient is used instead of the true error
gradient for each parameter update. In fact, a local minimum of the total cost 3. C;is a
stable point of the algorithm only if this point is a local minimum for each C; [Bott91]. An
analogy between stochastic gradient descent (with decreasing learning rate) and simulated

annealing is studied in [Bott91].

Simulated Annealing

Instead of allowing only reductions in the cost function at each time step (which is the goal
of gradient descent), simulated annealing [Kirk83] allows some upward movesin order to get
out of local minima. The probability of making an upward move is controlled by a parameter
called “temperature”, by analogy with physical systems (cooling metals undergoing an
annealing process). Annealing starts with a high temperature that is gradually reduced. If
a proper schedule is chosen, the process will converge to the global minimum of the cost

function [Gema8d|.

Although simulated annealing is useful to escape local minima, it does so at a great com-

putational cost when compared with gradient descent.
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Genetic Algorithms

An interesting alternative to gradient based optimization methods is the set of optimization
methods called “genetic algorithms” (see [Holl75) and [Gold88]). Genetic algorithms are
learning algorithms inspired from several features of biological evolution. They consider a
population of solutions to a problem, encoded in artificial “chromosomes”. Fach member
of the population is evaluated using an evaluation function. The population undergoes
reproduction until a satisfactory performance is attained. During reproduction, one or more
“parents” are stochastically chosen to reproduce. This choice favors parents with highest
evaluation, i.e., best performance of the evaluation function. Operators are applied to
the chromosomes of the parents to produce children that are inserted into the population.
Standard operators are mutation, i.e., stochastically modifying one piece of information
in a chromosome, and crossover, i.e, combining corresponding pieces of information from
two parent chromosomes. Domain knowledge can be exploited to create operators which

iniprove the efficiency of the optimization procedure [Whi89a].

It should be noted that interesting gradient-descent/genetic-algorithm hybrids have been

proposed (see for example [Davi89] or [Whi89a]).

One of the advantages of genetic algorithms is that they are very resistant to local minima,
because they explore several points in parameter space simultaneously. Unfortunately, this
is at the cost of many evaluations of the error function (at all these points, each representing
a different individual). Hence in general, if gradient descent can lead to the global minimum,

it will probably do so faster than genetic algorithms or simulated annealing.
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Chapter 3

Integrating Domain Knowledge

and Learning from Examples

Connectionist models are very flexible in the design of architectures based on domain knowl-
edge and their integration with other problem solving tools. It is possible to use domain
knowledge in many aspect: of network design and thus to take profit of a priori knowledge,
as well as of learning from examples. Such knowledge may be used to impose constraints
on the network topology, on input and output, or on initial values for some of the system
parameters. These constraints, by reducing the VC dimension of the ANN, while still allow-
ing a good solution to be attained, may significantly improve the resulting generalization
of the ANN. However, in many cases, it is not easy to use that knowledge, thus the design
of ANNs also requires careful crafting and trial and error. The aspects of the design pro-
cess considered in this chapter are the following: preprocessing, input coding, architecture
constraints, modularization, and output coding. Experiments on speech recognition tasks
are described to illustrate the importance of each of these aspects of the design of ANNs.
To modularize the recognition system and to take advantage of knowledge specific to each
type of phoneme (such as plosives, vowels, fricatives), we have generally broken down the

phoneme recognition into networks specialized for particular tasks.
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3.1 Importance of Preprocessing Input Data

Preprocessing the input data for an ANN has appeared very important in many applications.
Considering, for exariple, automatic speech recognition, our work (see [Ben90a, Ben90c)) as
well as the resuits of others [Ross89] indicate that the choice of signal processing significantly
influences the performance of a recognition system. It is important to distinguish between
the choice of preprocessing, e.g., acoustic features, from the way these input features are
coded before being applied at the input layer of a network (see Section 3.2). We will review

in the following subsections some preprocessing techniques for automatic speach recognition.

3.1.1 Auditory Model

In the human auditory system, air pressure variations enter the outer ear and are me-
chanically transduced through the middle ear to the cochlea (inner ear). ‘T'hese pressure
variations from the middle ear reach the cochlea through the oval window near the base
of the cochlea, that is filled with a fluid called perilymph. The pressure variations pro-
voke fluid displacements (traveling waves) within the cochlea. 'I'hese waves appear to have
maximum intensity along the length of the basilar membrane, within the cochlea, as a func-
tion of the frequency distribution of the acoustic stimuli. On the basilar membrane, about
1500 inner hair cells perform the neural transduction of the acoustic stimuli. When there
are vibrations of the basilar membrane near a particular hair cell, its cilia are deflected,

provoking an intracellular voltage increase that propagates to the cell body.

In recent years, basilar membrane, inner cell and nerve fiber behavior have been exten-
sively studied by auditory physiologists, and knowledge about the auditory pathway has
become more accurate. Through a number of studies, considerable amount of data has
been gathered in order to characterize the response of nerve fibers in the eighth nerve of
the mammalian auditory system, using simple tones, tone complexes, and synthetic speech
stimuli [Delg80, Delg84, Youn79, Sach80, Mill83, Sine83, Kian65!. ‘These studies have heen

the basis for the development of a mathematical ear model by S. Seneff [Sene84].

The experiments described in this section with an ear model are based on the model pro-

45




posed by Seneff [Sene84, Sene85, SeneR6, Sene88b]. This model is structured into three
blocks. The first two blocks arc designed using knowledge of the rather well-known responses
of the corresponding human auditory stages [Sine83, Kian65]). The third one attempts to

extract important speech properties like spectral lines related to formants [Sene84, Sene85].

The speech signal is first sampled at 16 kHz, pre-filtered through a set of four complex zero
pairs to eliminate very low and very high frequency components. It is then analyzed, in
the first block of the model, by a 40-channel critical-band filter bank. For the experiments
described here, frequencies and bandwidths for zeros and poles of each filter were designed
almost automatically by P. Cosi [Cosi90] with an interactive technique developed by S.

Seneff [Sene85).

The second block of the model implements a non-linear mapping that is intended to capture
prominent features of the transformation from basilar membrane vibration, represented by
the outputs of the filter bank, to probabilistic response properties of auditory nerve fibers.
The outputs of the second block represent the probability of firing for a set of similar fibers
acting as a group. This block models four neural mechanisms. The first one corresponds to
transduction and is modeled with a half-wave rectifier. The rectified signal is then processed
by a module that models neurotransmitter release for the synapse between the inner hair
cell and its connected nerve fiber. A membrane model performs short-term adaptation at
that synapse [Gold85). Then a low-pass filter models the loss of synchrony in nerve fiber
behavior as stimulus frequency is increased. Finally, an automatic gain control unit models

the refractory phenomenon of nerve fibers.

The third block of the auditory model is a synchrony detector, which implements the known
“phase locking” property of the nerve fibers responding to low frequency periodic stimuli.
It enhances spectral peaks (or spectral lines) due to vocal tract resonances. If there is a
dominant periodicity in the signal, those channels whose central frequencies are closest to

that periodicity will have a more prominent response.

See [Cosi90, Ben89b] for a more detailed description of the auditory model we used and of
the experiments performed with this model. Unfortunately, our software implementation

of the auditory model was prohibitively slow: several hundred times real time. Thus our
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experiments with the auditory model were limited to those described in this section, section
3.3.1 and section 3.5. However, recent work by [Zue90b] indicates that it is possible with a

parallel implementation of the auditory model to get performances on the order of 3 times

real time with 16 DSP32C processors.

Comparison with the Fast Fourier Transform

Experiments were performed in speaker-independent recognition of 10 English vowels ex-
tracted from isolated words [Ben89b, C'0si90]. The Fast Fourier 'Transform (FI'T') and the
auditory model were compared as alternative preprocessors for a neural network recognizer.
When using 40 coefficients produced by an FF'I-based Mel-scale! 40-channel filter bank,
generalization error 2 (with new speakers) was 13.0%. On the other hand, the auditory
model yielded 4.6% generalization error on that task. However, as mentioned above, the
preprocessing time for the auditory model required two orders of magnitude more process-
ing time than for the FI'T. Errors were on a phoneme per phoneme basis and the recognized
phoneme was chosen based on Fuclidean distance between the target outputs corresponding

to each phoneme and the network outputs.

The speech material consisted of 5 pronunciations of 10 imonosyllabic isolated words con-

taining 10 vowels of American English:

{BEEP (/iy/), PIT (/ih/), BED (/eh/), BAT (/ae/), BUT (/ah/), BOOT (/uw/), PUT
(/uh/), SAW (/ao/), FAR (/aa/), FUR (/er/)}.

Vowels were automatically singled out with an algorithm proposed in [DeMo85a] and a
linear interpolation procedure was used to reduce the number of frames per vowel to ten.
The resulting 400 spectral coefficients were the inputs of the ANN (40 spectral coefficients
per frame x 10 frames). The voices of 13 speakers (7 male, 6 female) were used for learning,
with 5 samples per vowel per speaker. The voices of seven new speakers (3 male, 4 female)

with 5 samples per vowel per speaker were used for testing generalization.

!The Mel-scale compresses high frequencies logarithmically, like the Bark scale descnbed in the next

section,

2Generalization error is the error on an independent test set. Relative generalization in the difference

between the error on the training set and the error on the test set
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3.1.2 Bark Scale, Second Order Gradient and Other Features

The FIT is a widely used transformation from which acoustic parameters are computed.
'This transformation can be computed with high speed but it produces a linear frequency
scale (such that frequency resolution does not depend on frequency). In contrast, in the
auditory system many more inner hair cells respond to lower frequencies than to higher
frequencies. A perceptual measure of frequency resolution, called the Bark scale, was
defined [Zwic80] and can be used for speech analysis. It can be approximated by the

following relations:

f<H500Hz — B(f)=0.01f
f<1220Hz — B(f)=0.007f (3.1)
f>1220Hz — B(f)=6logf—32.6

where f represents the actual frequency and B(f) represents the Bark scale transformation
approximating human perception. Note that it is basically linear below 1200 Hz and then
compresses the high frequencies logarithmically. This transformation was used for the
design of the filters used to preprocess the speech signal in the experiments described in
sections 3.3.2 and 3.5.2. In these experiments, the signal S(t) was first pre-emphasized in
order to counteract the spectral falloff due to the glottal source in voiced speech, according

to the following formula [OSha87]:
Spre(t) = S(t)— aS(t - 1) (3.2)

‘This is a single-zero high-pass filter which may yield formants with similar amplitudes.
A value of 0.95 was used for . Afterwards, a 512-point FFT was computed every 5 ms
with 20 ms of the Hamming windowed (and pre-emphasized) signal. The power spectrum
computed with the FFF'T' was then smoothed with 32 masking filters. This preprocessing
was used on the TIMI'T database [Zue90a), for which the speech signal was sampled at 16
kHz. The overlapping triangular filters were equally spaced in the Bark scale described

above, with center frequencies ranging from 100 Hz to 7000 Hz [Ben91a)].

In addition to the Bark scale spectrum, several other features were considered in order to

help recognition. An approximation of a second order partial derivative of the spect-al en-

48




-

— 1

Figure 3.1: Sliding window used for detecting movements of spectral lines. Frequency is on

the vertical axis and time on the horizontal axis. Each grid element is 0.5 Bark by 5 ms.

ergy with respect to frequency and time is computed as in [FFlam91], which is a modification
of the feature proposed by [Stev75]. These feature are obtained by sliding a 20ms by 1.5
Bark window as shown in Figure 3.1 on the peaks of the time/frequency spectrogram. In
this way, 30 property detectors are introduced which have strong positive response for spec-
tral lines increasing in frequency and strong negative response for spectral lines decreasing
in frequency. Hence these detectors encode information about the movement of spectral
peaks of high energy, both in time and in frequency. Let us denote by X (f,) the spectral
energy in a frequency band centered at f and in a time interval centered at t. 'I'he gradient
operator is computed only for the spectral peaks between 300 and 4000 Hz. First, all the
local peaks are located in that frequency band. To rediuce the number of spurious responses,

this window is only applied at peaksof the Bark spectra. Second, (;(f,1) is computed as in

[Flam91]:

[ X(f = L=+ X(f= L= D)+ X(f+ L1+ )+ X(f+1,142)
“X(f+1L,t=-2)=-X(f+1L,t=-1D-X(f-Lt+1)=-X(f-1,t4+2)

G(f,t) =
W if E(t) > threshold and X (f,t) is a spectral peak

[ 0 otherwise

(3.3)
where FE(t) is the total energy of the signal in the window ¢, and the threshold discriminates
between speech sounds and silence. In the experiments performed with this approximation
of the derivative with respect to time and frequency, the gradient (i(f,1) is then smoothed

by averaging over the nine neighbors of the point (f,t) in the spectrogram.
Another feature derived from the spectrogram is the spectral slope, which describes the
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gross shape of the spectrum with an approximation of the first derivative of spectral energy
with respect to frequency. Seven slope features were computed as in [Klat82]. The spectral
power in the range 50-600 Hz is a good indicator of degree of voicing. This feature and
its time derivative were used to help discriminate among voiced and unvoiced phonemes.
The signal energy and its time derivative are very useful features found in many speech
recognition systems (e.g., SPHINX, [Lee 89]). Another time-domain feature *hat was found
useful is spectral dissimilarity [Fant73], a normalized dot product of consecutive spectral

frames that helps detect abrupt changes in the signal.

All of these features were normalized in order to span the range -0.5 to +0.5. Values outside
this range were clipped. This allowed us to use an efficient 1-byte/datum representation of
the preprocessed database, as well as making the mean and variance of each input feature
of the same order of magnitude. The lower and upper bounds were chosen to clip about

5% of the data.

Although all these features are highly correlated, experiments performed by Giovanni Flam-
mia [Ben91a, Flam91] show that they can improve performance of an ANN designed for the
recognition of plosive and nasal sounds in the TIMIT [Zue90a] database (continuous speech,
speaker-independent). Many of these features are also motivated by speech knowledge. For
example, the evolution of high frequency spectral lines between the burst of a plosive and
the consecutive phoneme are important acoustic cues for the recognition of the place of

articulation of stop consonants [Stev75, Blum79].

3.2 Input Coding

The experiments described in [Beng88, Ben90a) indicate that the way in which input fea-
tures are represented in the activations of the input layer influence generalization. In these
experiments, a network was trained to discriminate among three classes of vowels according
to their horizontal place of articulation (front, center or back). The speech data was pre-
processed as follows. Vowels were automatically [DeMo85a] extracted from isolated words
pronounced by multiple speakers. Spectral lines were extracted from the spectrogram of

the signal with an algorithm described in [DeMo85b] and based on thinning and on skele-
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tonization of the spectrogram, which is treated like an image. In the steady-state part of
the vowel, average values for frequency and energy are computed for each detected spectral
line. Thus the task is one of static classification. The input data for the neural network is

a set of energy/frequency pairs for the detected spectral lines.

The best results were obtained with the following coding scheme. The input units were
organized into a two-dimensional grid of energy and frequency. Frequency intervals were
divided according to a Bark scale and energy intervals were divided according to the ob-
served energy distribution. Frequencies were normalized by subtracting the frequency of
the lowest frequency spectral line® from the true observed frequencies of the other spectral
lines. The number of training examples (72) was particularly small. ‘To improve gener-
alization, a coarse coding scheme was carried out: in addition to exciting one node for
each energy/frequency input pair, neighboring nodes also received an input, with intensity
decreasing with distance in the grid. The generalization error with a Boltzmann machine
was 4.2%. If absolute instead of relative frequencies were used, the error increased to 5.6%.
If the energy was coded with a single analog value for each frequency interval!, the gen-
eralization error increased to 8.3%. If instead the coarse coding scheme was not used®,
the generalization error was 9.7%. Slightly worse results were obtained with a feedforward

network trained with the back-propagation algorithm [Ben90a).

A surprising result of these experiments is that the ANN generalization was very good,
although the number of training examples was very small compared to the number of
weights in any of the networks (several tens of thousands). We conjecture this may be
due to the input coding, as well as to the fact that training was stopped well before the
global minimum of the error function was reached, thus probably limiting the effective VC

dimension of the ANN (see [Chau90] and [Mor90b] on stopping short of convergence to

improve generalization).

3This low frequency spectral line should correspond to the fundamental frequency or pitch
*For that experiment, the frequency resolution was increased so as to keep a similar number of weights

in the network.

5In that case each energy/frequency pair corresponded to only one ON input node
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Iigure 3.2: Coarse coding scheme with which best results were obtained for the experi-
ments described in section 3.2 (vowel classification). The input grid represents frequency

(horizontal axis) and energy (vertical axis).
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3.3 Importance of Architecture Constraints on the Net-

work

Many experiments showed that the design of the architecture of an ANN has a significant
influence on its performance, regarding both generalization and convergence time. Several
experiments in this section illustrate this effect. Other experiments described 1n this thesis
also show the importance of architecture choices: see, for example, the experiments on
vowel recognition in TIMIT (section 4.3.1), the experiment on the analysis of amino-acid

sequences (section 1.4.2), as well as the experiments on the ANN/HNM and ANN/dynamic

programming hybrids (section 6.7).

3.3.1 A Nasal Consonant Discrimination Experiment

In a nasal consonant recognition experiment [Ben90c], a more than 5-fold improvement in
generalization was observed by improving the architecture of the ANN. The experiment was
performed on the discrimination of nasals /m/ and /n/in a fixed context,that of letters “m”
and “n”. The speech material consisted of 294 speech segments from 70 iraining speakers
(male and female with various accents) and 38 speech segments from 10 test speakers. T'he
speech signal was preprocessed with the auditory model and general synchrony detector
described in section 3.1.1, yielding 40 input features every 10 ms. Poor results were obtained
with early experiments, with a simple output coding with three nodes {vowel, m, n}. A
two-layer fully connected feedforward ANN with a window of two consecutive frames at the

input and 10 hidden units yielded 15% classification error on the test set.

Better results were obtained by considering observations on speech analysis showing that
the most important discriminatory information for the nasal sounds is available during the
transition between the vowel and the nasal. This suggested using the following output

coding, with four nodes:
{vowel, transition tc m, transition to n, nasal}.

Since the transition was more important than the steady-state, we chose a window of 4
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3 units for:
vowel, M, N
NET 2 10 dynamic units with
local feedback (BPS)

4 units for:
vowel, vowel->M, vowel->N, nasal

NET 1

10 units in
hidden layer 2

40 units in
hidden layer 1, with
local conneclivity

v frequency
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Flignre 3.3: Best architecture obtained for the recognition of nasal sounds in a fixed context
(see section 3.3.1). The first network is initially trained to recognize transitions from vowel

to nasal. The second one models the temporal structure of the output of the first one.

frames (instead of 2 frames) at (t, t - 10 ms, t - 30 ms, t — 70 ms) at the input. To reduce
the connectivity in the network, the architecture was modified to include a constrained
first hidden layer with 40 units, where each unit was meant to correspond to one of the
40 spectral frequencies of the preprocessing stage. Fach such hidden unit, associated to
the I"*M output coefficient of the auditory model synchrony detector, was connected (when

possible) to input units corresponding to

auditory model coefficients (FF — 2, F -1, F,F+ 1, F +2)

and frames (¢, t — 10 ms, t — 30 ms, t — 70 ms).

Experiments with the feedforward network (40 inputs - 40 hidden - 10 hidden — 4 outputs)
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(network 1 in figure 3.3) showed that, as expected, the strongest clues about the identity of
the nasal sound are those associated with the transition from vowel to nasal. Furthermore,
this information is available for only a very short segment of time, just before the start of
the steady part of the nasal. To extract this critical information, a second network was
trained on the outputs of the first one to provide a clear discrimination during the whole
duration of the nasal. This higher level network is a recurrent one with local feedback
trained with the BPS algorithm (see section 4.3.3), in order to learn about the temporal
structure of the task and keep the detected critical information during the length of the
nasal. With the 2-network architecture as shown in Figure 3.3, classification performance
reached a plateau of 1.1% classification errors on the training set. GGeneralization was very
good for this task, with only a 2.6% error rate on the test set. T'he dramatic improvement
due to the change in architecture may be enhanced by the small size of the training set.

In such cases, the structural bias imposed on the network has much more effect than when

the training set is very large.

3.3.2 Plosive Recognition

Experiments on plosive recognition on a continuous speech database (TIMI'T, [Zue90a))
were performed in collaboration with G. Flammia [Ben91a]. 'The task was the speaker-

independent recognition of the following 7 plosive sounds in continuous speech:

{/p/1¢1,/k[./b]\[d/./8],/dx/}

The best results for this task were obtained with a network with three layers of weights
in which the first hidden layer was constrained with a local connectivity both in time and
frequency, as shown in Figure 3.4. A recurrent network performed better than a static one
[Flam91]. The recurrent network yielded a decrease of generalization error from 35% to
30.7% on a plosive and nasal recognition task with the TIMIT database and its outputs

were much less noisy®. The input features are those described in section 3.1.2 and the

Sbascd on visual inspection of the network outputs
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Figure 3.4: Architecture used for the recognition of plosives, nasals and fricatives on the
TIMIT database. 'T'he first layer has a local connectivity in time and frequency. N is the

number of outputs.

output coding, based on articulatory features and representation of context, is described in

section 3.h.1.

3.3.3 Position-Invariant Low-Level Features

Several years of research on the application of ANNs trained with back-propagation to
handwritten character recognition by Yann Le Cun et al has yielded a highly constrained
architecture for this task [LeC89c]. The network has 4 layers of weights. The first hidden
layer units have a local receptive field and they are organized in groups (he calls kernels)
of units. All units within a group have the same receptive field and corresponding units
in different groups share weights (see section 2.1.3). Because of weight sharing the ANN
has only 9760 free parameters even though there are 64,660 connections. These constraints
are based on a priori assumptions about the nature of the task and its solution: low-level

features should be local in space and position-invariant. They yield significantly improved




generalization [LeC89a).

3.4 Modularization

Theoretical analysis indicates that the learning problem for a neural network may be NP’-
complete [Judd88]. On the other hand, empirical estimations [Hint87] indicate that the
learning time on a serial machine is approximately O(NJ), where N,, is the number of

weights in the network. Thus, significant improvements in learning time can probably be

attained by designing a modular system, applying the “divide and conquer” principle.

A modular system can be organized with modules in parallel and /or :n series. For example,
for the system described in chapter 6, multiple ANNs are specialized to particular types of
phonemes or phonetic features. Thus the first level of the system consists of a set of ditferent.
networks operating in parallel. Fach network on the first level computes different types of
phonetic features, thus transforming the speech signal into a form that is less speaker-
dependent. The operation of the second level is equivalent to a matnx multiplication (a
linear layer) that compresses the data from all the outputs of the first level modules in

order to feed it to a Hidden Markov Model (HM M), which constitutes the third level.

Waibel et al [Waib89] reported improvements in convergence time for a moduiar speaker-
dependent phoneme recognition system, using T'ime-Delay Neural Networks (''DNNs, see
section 4.2). In this system, phoneme recognition is performed with specialized networks
for phoneme subclasses. To merge the individually trained networks, “glue units” are
introduced and added to the concatenated subnetworks in order to learn discriminations
not learned by any of the individual subnetworks. Ior example, in the case of plosive
recognition, a {/p/,/t/./k/} network is merged with a {/b/,/d/,/g/} network and the glue
units learn about the voiced vs unvoiced discrimination that separates {/p/,/t/,/k/} from
{/b/,/d/,/g/} while the two subnetworks remain fixed. Finally, with a global tuning of all
the parameters, further improvement of the performance of the {/p/,/t/,/k/,/b/./d/./e/}

network is obtained.




3.4.1 Specialized Networks with Specialized Preprocessing

The modular system used in the ANN/HMM hybrid of Chapter 6 is based on the idea of
using specialized networks with specialized preprocessing. Each ANN performs discrimina-
tion among some phonemes or phonetic classes while the HMM allows an efficient modeling

of the temporal structure of the signal.

We first presented the idea of using specialized networks with specialized preprocessing in
[BenR9a). For the experiments described in [Ben89a), several networks are used depending
on the acoustic situation detected by an automatic segmentation program [DeMo85a]. For
example, the network MLN1 is executed when a non-sonorant interval is found, followed
by a sonorant interval. On the other hand, the network MLN2 is executed in situations
characterized by peaks and high energy valleys of the signal energy in which frication noise
has not been detected. Each network input is designed for the particular type of spectra
that is expected in the corresponding situation. The MLN1 network has 5 input windows,
each of which uses a different frequency and time resolution. For example, the first window
of MLNI has two time intervals of 30 ms before the non-sonorant to sonorant interval, and
four time intervals of 10 ms after that transition. For that window, the analysis is based
on 4 low frequency (100 Hz to 500 iiz) filters. Each filter receives as input a normalized
value of the energy in its time-frequency window. For each filter, there is a corresponding
input that is activated if a spectral line was detected (using the algorithms described in
[Merl86]) inside the associated time-frequency window. The experimental task was the
discrimination of the following ten often confused words (nine letters of the alphabet and

one digit), related to the often used “E-set”:
{“b”,“(‘”,“d”,“e","g",“k”,“p",“t”,“v”,“three”}

The experiments were performed with two pronunciations of each word by 80 speakers (40
males, 40 femaies). The data from 70 speakers were used as a training set while the data

from the remaining 10 were used for the test.

An overall error rate of 9.5% was obtained, with a maximum error of 20% for the letter “d”.
This result was much better than those previously obtained in [DeMo87], and comparable

to those obtained by [Bahl88] working only with male speakers on nine letters.
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Most of the errors represent cases that are difficult evenin human perception. Such cases are
confusions “b”—“e” and “d”—‘“e" representing a low evidence of burst and formant tran-

sitions in voiced plosives, confusions “b"—=%v"  “yP L UhY 4T L KRT ] Spt st H0 s ep”

.
“t” —“k” indicating wrong estimation of the place of articulation, and confusions *d” —“t"

“p”—“b”,“e” - “b”, indicating errors in the characterization of voicine.

[}

3.5 Output Coding

Most ANNs designed for phoneme recognition have a simple output coding scheme consist-
ing of one output unit per phoneme, with a high target for the output unit corresponding
to the target phoneme and a low target for the other units (see for example, the previ-
ously mentioned work of [Waib89]). In general, one can interpret the output activations of
the network as representing degrees of evidence. Using phonetic knowledge, we have ex-
plored coding schemes based on phonetic features related to speech production. Examples
of such features are horizontal and vertical place of articulation, voicing and nasality. Such
a representation is in general more conipact than the “one-output-per-phoneme” represen-
tation. Furthermore, it describes a more general space of phonetic characteristics, allowing

a network trained with some phonemes to generalize to new phonemes.

3.5.1 Articulatory Features for Vowels

In [Ben89b, Cosi90], we describe experiments on the recognition of horizontal and vertical
place of articulation for vowels. We found that these features were more difficult to learn
than a “one-output-per-phoneme” coding but yielded better generalization, especially for
new sounds that were not in the training set. Three separate networks were trained to
recognize horizontal place of articulation (with 5 outputs corresponding to 5 places), vertical
place of articulation (also called manner of articulation, with 5 outputs corresponding to 5
manners), and tenseness (with 2 outputs corresponding to ‘Tense and Lax vowels). Their
generalization errors were 4.6%. 5.7% and 54%, respectively. I'hese experiments were

performed with the speech material and the preprocessing described in section 3.1.1.




To interpret the network outputs, a weighted center of gravity for each of the three features
was computed. An interesting generalization experiment was performed as follows. Vowels
and diphthongs not in the training set were modeled according to expected evolution of the
above mentioned articulatory features when they are pronounced, based on descriptions
from theory or past experience and not learned by actual examples. Although HMMs could
have heen conceived for modeling the time evolution of the articulatory features, a simpler
classification method was applied in these experiments. Each new vowel or diphthong
model was simply described by a regular expression using symbols corresponding to different
quantized values of the weighted centers of gravity (e.g., strong front, weak front, central,
weak back, strong back) for the three features. Center of gravity is defined as follows:
cG =Y (34)
2
where g, is the i*! output corresponding to a certain articulatory feature, such as horizontal
place of articulation. The centers of gravity for horizontal and vertical place of articulation

were then quantized [Cosi90] using 5 symbols from the following alphabets:

A" = {1‘17 fscabvB}
Ay = {H,h, M 1, L} (3.5)
where I’ represents strong front, f, weak front, C, central, b, weak back, and B, strong

back. Similarly, for vertical place of articulation, I represents strong high, h, weak high,

M, medium, {, weak low, and I, represents strong low.

The following regular expressions were used to characterize the words containing the new

vowels and diphthong:

Letter A of the alphabet : (foh) * (F H)»

Letter [ of the alphabet : b+ CO)x(f+F h+ H)*

Letter O of the alphabet : (b+ B,l)x(b+ B,h + H)*

Diphthong /oy/ : b+ B O)*s(f+F,h+H) (3.6)
Diphthong /aw/ : (C,)x(b+ B,h + H)«

Letter U of the alphabet. : (f+Fh+H)x(b+B,h+ H)x

Letter Y of the alphabet : (b + B,h+ H)Yx(C,l+ LY»(f+ F,h+ H)x
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A 2-tuple represents a particular horizontal and vertical place of articulation. The asterisk
means “at least | repetition”, the symbol + here means logical disjunction while a con-
catenation of terms between parentheses means a sequence in time. A short sequence with
intermediate symbols was tolerated in transitions # — F, I, — Il and vice versa, e.g., for
the letter U, a transition of horizontal place of articulation through the value corresponding

to the symbol C is tolerated when going from f or I’ to bor B.

Recognition based on these models yielded 7.5% generalization error, thus providing evi-
dence that the ANN trained to recognize normalized values of horizontal and vertical place

of articulation reliably generates feature hypotheses about vowels and diphthong not used

for training,

Although very good results were obtained with articulatory featires for vowels from isolated
words, as described in the previous paragraphs, such good performance was not found in the
case of continuous speech. Fxperiments described in section 4.3.1 with the ‘TIMI'T" database
yielded better performance with the simpler “one-output-per-class” encoding scheme. This
may be because the target articulatory values that were used assume well-pronounced vowels
in isolated words whereas in continuous speech there is more variation and influence from
the context. This is an example of having weak knowledge about the problem. Better
performance may be obtained if target articulatory features were used that take the effect

of coarticulation into account.

3.5.2 Articulatory Features for Consonants and Representation of Con-

text
Plosive and Nasal Sounds

Experiments on some classes of phonemes (plosives, nasals, fricatives) were performed with
the preprocessing described in section 3.1.2. Various output coding schemes were com-
pared in [Ben91a]. It was found that a “one-output-per-phoneme” coding was worse than
using horizontal place, vertical place and voicing of the current phoneme. Furthermore,

using context-dependent output units improved performance even more. As described in
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[Flam91], on the recognition of the 10 ¢! ises of plosives and nasals /p,tk,b,d,g,dx,m,n,ng/,
generalization error was 36.4% with one output node per phoneme, but only 28.7% by cod-
ing with 7 nodes representing the following phonetic features: labial, alveolar, velar, flap,

voiced, stop, nasal.

By adding context-dependent output nodes, generalization error was further reduced to
27%. lor each of 4 horizontal places of articulation of plosives, 3 right contexts were
considered (front vowel, back vowel, non-vowel). In addition to these 12 nodes for horizontal
place of articulation, 2 nodes indicated voiced or unvoiced phoneme, and 6 nodes were used
for broad classification of phonemes (liquid, front vocalic, non-front vocalic, nasal, fricative,

silence).

The above experiments were performed with a 32-filter Bark-scale spectrum as described in
section 3.1.2. By adding the other features described in section 3.1.2. (24 second-derivative
detectors and 7 time-domain parameters, including spectral dissimilarity), the error was

further reduced to 24.9%,

Fricative Sounds

Experiments on the recognition of 11 fricative classes from the TIMIT database were per-
formed, using the architecture shown in Figure 3.1, preprocessing described in Section 3.1.2,
and output coding based on place and manner of articulation of fricatives. The following

11 classes were to be recognized:
/syz,ch,thf,shzhjh,dh,v,hh+hv/

The network had 69 inputs: 32 Bark-scale spectrum, 7 spectral slope, 24 spectrum gradi-
ent (time and frequency derivative), and 6 time-domain measurements (energies and their
derivatives, zero crossing). The 12 output nodes represented the following features: frica-
tive, plosive, nasal, liquid, labial, dental, alveolar, affricate, palatal, glottal, voiced, silence.
'The plosive, nasal, liguid and silence are used to allow the network to model the rejection

class (non-fricatives).

The architecture of the network for fricative recognition is sketched in figure 3.1. It is




a recurrent network with delays and 9224 weights. The network was trained with back-
propagation in time (see section 1.3.1). After 34 training iterations. training was stopped.
The training was performed on SI and SX sentences from 343 speakers from T'IMIT. T'he
test was performed on 77 new speakers of TIMIT 7. The performance was 24.5% frame errors
(on fricatives) on the training set. and 25.1% frame errors on the test set (with different
speakers). Insertion of fricatives in non-fricative sounds was 8.2% for the training set and
8.5% for the test set (on a frame-by-frame basis). Note that the relative generalization is

excellent (relative difference between the training and test set errors).

The most common errors were the following: voicing (/z/ — /s/, /v/ — [{/), place of

articulation ( /jh/ — /c/, [th/ — /f/ (less frequent), /zh/ — [sh/ (less frequent)).

3.5.3 Modulating the Targets

As it will be explained in section 4.3.5, supervision can be modulated. In section 4.3.% we
consider a simple boolean operator that controls whether any supervision is provided for a
given frame and output unit (see also [Jord88]). Another way to modulate the supervision
is suggested in [Kuh90a]. It uses knowledge about the relation hetween the shape of the
signal energy and the onset of vowels to provide accurate supervision to network outputs. In
that application (recognition of letters of the alphabet “b”, “d”, “e” or “v"), the evolution
of the target output follows an acoustic feature r(t) which is a shape-dependent energy

increase indicator, turning on at times when the vowel turns on.

"The training spcakers were those with imtial between “a” and “r” inclusively and the remaining were

used for testing.
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Chapter 4

Sequence Analysis

4.1 Problem Definition

Most applications of ANNs to pattern recognition are concerned with classification of static
patterns, i.e., the problem is to map input patterns (of fixed size) to an appropriate class.
However, there exist several interesting applications in which the input pattern is better
described asan ordered scquence of fixed-size sub-patterns. The sequences do not necessarily
have fixed length, thus methods for static pattern recognition are not easily applicable
to those problems. Let us call each of the elementary fixed-size patterns that compose a
sequence a frame. For some problems, it is required to produce a single classification for the
entire sequence. I'or many other problems, such as continuous speech phoneme recognition,
it is instead required to label each frame, i.e., to associate it to a particular class or state.
Without loss of generality, let us associate the ordering of the frames in the sequence to the
flow of time, allowing us to talk about past and future times as well as delays among frames.
'I'his association has also the advantage of relating to the way in which the information is

processed for such tasks, i.e., sequentially in time.

A simple approach to this type of problem is to assume that the classification associated
to the frame t depends mostly on the surrounding frames, for example in some interval
[t = L.t + R] of the sequence. In that case, one can use an input window of fixed size

It + 1. + 1 to scan the input sequence and produce a classification for each frame using a
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static classifier. For example, this is the approach that was employed in NetTalk [Sejn86).
in which an ANN maps orthographic descriptions of text into phonetic features used for
speech synthesis (in a text-to-speech system). In that case the window is 7 frames wide,
with each input frame describing one letter of the alphabet or a punctuation mark. This
type of ANN was also used in several experiments described in this thesis. See for example

sections 3.3.1 and 4.4.2.

This approach, however, has some drawbacks if a context of variable duration influences the
classification of a frame at time ¢, or if inputs and targets are not well aligned. Clonsequently,
we need less rigid methods to model the temporal structure of the sequence, or the influence
of context. A classical method to deal with this problem is to model the sequences with
finite-state machines, or more generally, with hidden Markov models (HMM). In that case,
it is assumed that the observations were generated by a system which could at any time be
in one of N states and that each such state is associated with a distribution on the input.

Section 6.1 explains in more detail what an HMM is.

To represent context, one needs a memory of the past. In ANNs, a memory can be provided
by introducing delays or feedback links in the network. With the formalism introduced in

section 2.1, a delay d,; can be associated to link [, as follows:
wn(t) = Fi(8,,Y.(t)) (4.1)

where y, is the output of unit w,, #, is a set of parameters {f,,} for the function Fi(-), and
Yi(t) is the set of activations {yi(t — d,,)} of the units u; at frames t —d,, such that [,; € I,

and k = s,,.

A recurrent network differs from a static network in the property thatits graph ¢ = (U, )
has at least one cycle, where U = {w} is a set of units, L = {{,; : 3 link in G from
unit s,; to unit i, with delay d,,}. Note that a recurrent ANN must have some delays as
well, otherwise there will be a cycle of zero delay in the network, which can’t be simulated

because it corresponds to a physically impossible situation.

With delays, we can use information from a fixed relative past (e.g., from frame t — 1),
when looking at current frame t). On the other hand. with recurrent networks, an input

frame from an arbitrarily long past may influence the computations for the current frame,
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Iigure 4.1: A recurrent network that retains a bit of information for an arbitrarily long

time, provided weights are large enough. It is just two soft NOR gates with delay lines.

In practice, the memory of a trained recurrent network is limited, but not by a hard limit.
'To realize that this is true, consider the network in Figure 4.1 that implements a flip-flop.
Since a flip-flop can be realized with 2 NOR gates and some delay lines, one can store a
bit for an arbitrarily long time in this recurrent network, provided the magnitudes of the
weights of the network are large enough !'. This large weight condition is required only
for networks of sigmoid units. In the case of threshold units. a regular flip-flop is realized.

However, 1o efficient method is known to train networks of threshold units when they have

one or more hidden layer?.

For the purpose of characterizing the various algorithms for recurrent network described

later in this chapter, let us define the following two notions:

¢ Local in Time: a learning algorithm is local in time if it can be executed as input

frames arrive, using only temporally local information (such as values of some variables

'However, training a network with large weights with gradient descent may be very difficult, because
saturated units, with output close to 1 or 0, send an almost zero gradient to the units that feed them, thus
considerably slowing down the training., This may help explain why recurrent networks tend to concentrate

on short-term context

‘However, see [Gros89] for an approach based on learning of internal representations that works with

threshold units
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in a fixed and small time window). Such an algorithm could be used for example with
an unbounded training sequence and could adapt the parameters of the network as

the sequence is presented, for a cost per frame that does not increase with the length

of the sequence.

e Local in Space: a learning algorithm is local in space if computations involving each
unit require only information concerning its immediate neighbors in the network.
Such an algorithm could be naturally executed with a parallel implementation of
the network. with each node corresponding to a physical processing umt, and the
communication cost per node depending only on the connectivity {fan-in, fan-out) of

the network, and not on the total number of nodes in the network.

4.2 Time Delay Neural Networks

For the recognition of isolated words, it 1s possible to use the following simple approach
to deal with variable length input sequences: transform the input sequence to a sequence
of fixed length. either by compressing or dilating the sequence with a simple linear inter-
polation scheme. This is the approach chosen for example 1n the experiments described in
sections 3.1.1 and 3.3.1. with vowels extracted from short 1solated words. This scheme may
allow a static ANN classifier to use all the input frames simultaneously. which in general
yields networks with a great number of imputs and thus a great number of free parame-
ters. Let us call that type of network a I'ype | network. Unfortunately, this approach. by
imposing very httle structure on the static recognizer, may yield poor generalization when
the training set is of hmited size (this is usually the case, see section 1.3). This may yield
networks that are for example sensitive to the alignment of the mput sequence. Further-
more, 1t can only be applied when each iput sequence corresponds to a single (or a fixed

number of ) class(es), as in the case of isolated word recognition.

Time Delay Neural Networks (‘'TDNN) were proposed in [Lang&88. Waib87]. They are based
on ANNs with time delays, and outputs averaged averaged over time, as illustrated n
Figure 4.2. The basic idea of TIDNNs is to impose some constraints on the Type | network

described in the previous paragraph by forcing the ANN to use the same set of learned
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internal features for all frames of the sequence. The learned internal features are the
functions performed by the hidden units on each hidden layer. Starting from a T'ype |
network, one can use weight sharing (see section 2.1.3) and local connectivity to constrain

the internal features to be time-shift mvariant. In addition, in order to account for the

possibly imprecise alignment between inputs and targets, the outputs are computed by
performing an average over time of the activations of the last hidden layer. This is already
a significant improvement over the T'ype | network but is still quite nignd in 1ts representation
of context: each output unit “sees” information from a fired window (or interval) of the

input sequence.

4.3 Recurrent Networks

To avoid the above-mentioned problem of fixed windows, one can introduce cycles in the
graph of the network. A recurrent network has this property: cycles 1 its graph allow it
to keep information about past inputs for an amount of time that is not fixed a priori, but
rather depends on its weights and on the input data. In Section 1.1 and lhgure 1.1, we
illustrated how a recurrent network may hold information for an arbitrary amount of time

by building a flip-lop with a recurrent network.

4.3.1 Back-propagation in Time

The time-unfolding algorithm was proposed in [Rume8Gb} and another version of it (from
discretized differential equations) can be frund in [Pear89]. This algorithm computes the
error gradient of an unconstrained discrete recurrent ANN. [t requires keeping a memory
of the activations of the umits evaluated during the forward phase (going forward in time)
in order to compute the first derivative of the cost with respect to the activations during

the backward phase {(backward in time).

To clarify our use of partial derivatives, let us define two types of partial derivatives, as in

[Werb88):
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and

e I'he conventional partial derivative ‘%:—j is calculated by differentiating the function u

as it would normally he written as a function of its direct arguments, without any

substitutions.

e 'T'he ordered derwative %%‘5 refers to the total causal impact, including direct and

indirect effects of » upon u.

Let us now consider a simple generalization of the time-unfolding algorithm based on the
generalized unit equation (4.1). T'o perform gradient descent or another gradient based op-
timization technique, such as conjugate-gradient, one has to compute the partial derivatives
of the cost ("), associated to each sequence p with respect to the parameters of the network
(here, the @,, associated to each unit u,). Gradient descent itself can be done following
equation 2.12 for stochastic update. for example. The total cost for the training set can be

decomposed as follows:
C=3 =) Cp (4.2)
P Pt
where (", refers to the #*" frame of the pt! training sequence. Since parameters 8,, only

affect 3,(t) directly (equation 4.1),

D*HC,  — 0C, (1)
98, < dy(t) 9,

(4.3)

T'he next important equation of the algorithm describes the actual back-propagation in
time, i.e.. the recursive computation (in the reverse time direction) of the ordered partial

derivatives of the cost function with respect to the activations of each unit:

I, 5 Dy Dyt + dk) ac,

2 = , el 1.4
— Dy,(1+ d) Oyd) Flueto 51 (4.4)

Dy (t)
where the symbol I, takes value | when ¢ is true and 0 otherwise. A proof of the validity of
the application of the chain rule as above can be found in [Werb74]. The last term of the
above equation takes the following value for output units when the optimization criterion
1s the minimization of the squares of the differences between outputs and targets (LMS):

aC,
(1)

= (5:(1) — target (1)) (4.5)

Let us now consider the special case of units that compute a sigmoid f(-) of the weighted

sum of their delayed inputs. Such a node operation was used in all of the experiments
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described in this thesis unless otherwise indicated.

W) = FQ ways,(t = du)) (1.6)
{
The required partial derivatives for equations 1.3 and 1.1 above are then the following:
dy. (1
AL = f’(z WYy, (t — dy1))y,,, (1 ~ 'lu) (1.7)
dw,, 7 !
and
Dy, (t+ d
—JJ(,()U—W-JL)- = f'(z WYy, (1= dy))wy, (1.8)
Ji 7 !

where s, = i.

The first derivative f/(:) can be efficiently computed from f(-) as in equations 2.6 and 2.7,

for the asymmetric and the symmetric sigmoid respectively.

The algorithm for back-propagation in time requires O(N,) operations per frame, and
O(L x N, + N,) total space. where /, 1s the maximum length of a sequence, N, 15 the
number of units in the network and N, 1s the number of weights (parameters) of the
network. The aigorithm is local in space but not local tn time. since we have to store all

past activations of the network units and run the algorithm backward in time,

Static versus Recurrent Networks Experiments

Speech recognition experiments were performed with recurrent ANNs trained with the
above described algorithm. Several architectures were compared, including architectures

with no recurrence. to evaluate the improvements hrought by recurrence 1n the network.

In experiments on the recognition of plostves and nasals in the TIMI'T database described
in [Ben91a], better generalization was obtained on that task with a recurrent network than
with a static network, with the preprocessing and output coding described in sections 3.1.2
and 3.5. respectively. T'he recurrent network had links from the output layer to one of the

groups of hidden units.

We will now describe in more detail further experiments on the recognition of vowels in the

TIMIT database. also performed with both recurrent and static networks. The task was
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Table 4.1: Comparison of various architectures and output codings for a vowel recognition
problem in continuous speech (‘"'IMI'T 90). Output coding scheme: I-1 means one phoneme

per class, form. means relative formant frequencies, place means horizontal and vertical

place of articulation,

rﬁxp. # hidden | # hidden | recurrent | # weights | output | % frame | % frame
# layers units network coding error error
scheme [ (train.) (test)

| 0 0 no 3883 1-1 61.1% 63.8%
2 1 200 no 8811 1-1 60.3% 61.4%
3 1 60 no 8531 1-1 60.2% 61.8%
1 | 20 yes 3031 1-1 48.5% 52.7%
5 2 40 yes 7811 11 47.0% 51.0%
6 3 60 yes 1675.) 1-1 16.4% 51.7%
7 3 60 yes 16739 | form. 62.9% 64.6%
8 2 40 yes 7811 | place 52.9% 55.6%
9 2 40 yes 10979 | place 50.7% 52.3%




the discrimination of the following 1 vowel classes (based on the grouping of phonemes

proposed by [LeeH 89]), in every context:

{eh. ao, aa, uw + ux, er + ix + axr + ax-h, ax, ih, ae, ah, uh, iy }

The training set was obtained by extracting vowels (based on the database segmentation)

from 1024 training SI and SX sentences of TIMI'T (1990 version) from the training speakers.

The 192 SI and SX sentences from the core test were used for evaluating generalization.

Training was stopped when no more significant improvement could be obtained on the

training set from one training epoch to the next. 'The mput to the neural network was

simply a 32-filter Bark-scale spectrogram (as described in section 3.1.2). Unless otherwise

indicated there were 11 outputs, one per vowel. The results are summarized in table 1.1,

2.

. No hidden units. Static network. Delays 0.2,1, ... 20 between the mput and the

output units. 3883 weights. 61.1% frame error on the trainmg set and 63.8% frame

error on the test set.

One hidden layer with 200 units. Static network. no delays. 8811 weights. 60.3% on

training and 61.4% on test set.

. One hidden layer with 60 units. Static network. Delays () and 3 between the mput

and the hidden units. Delays 0.2... 12 between the hidden and the output units, 8531

weights. 60.2% frame error on the training set and 61.8% frame error on the test set.

. One hidden layer with 20 units. Recurrent network. Hidden and output units are

connect to each other and to themselves recurrently with 1-frame delays, except for
the links from hidden to output. which have delays 0, 2, 41, 6, 8. "T'here are also delay
0 and 3 from the input to the hidden units. 3031 weights. 48 3% frame error on the

training set and 32.7% on the test set.

Two hidden layers with 20 units each. Recurrent network. Delays 0 and 3 from the
input to both hidden layer. Delays 0,2,4,6,8 from the input and both hidden layers to
the output. Single delay of 1 frame from the output to both hidden layers and from
each hidden layer to the other one. 7811 weights. 47% frame error on the tramming

set and 51% frame error on the test set.
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6. ‘I'hree hidden layers with 20 units each. Recurrent network. Delays 0,1,2,3 from
input to hidden units; 0,1,2....8 from input and hidden units to output; from hiddenl
to hidden2, from hidden?2 to hidden3, from hidden3 to hiddenl. and from output to
hidden units, a single 1-frame delay. 16739 weights. 46.4% error on the training set

and 51.7% error on the test set.

7. As the previous experiment, but using expected relative formant frequencies (F2-
F1,F1-1°0) as targets (which are related to place and and manner of articulation). 10

outputs. 62.9% frame error on the training set and 64.6% on the test set.

8. Same architecture as experiment 5, but using an output coding based on place and
manner of articulation of vowels. The 11 outputs are as follows: 5 nodes for horizontal
place of articulation, 5 nodes for vertical place of articulation, 1 node for indicating
the phoneme is a schwa ®. 52.9% frame error on the training set and 55.6% on the

test set.

9. As the previous experiment but using more delays to the output units (from the
hidden units: delays 0,1,2,.. 8; from the inputs: 0,2,4,... 16). 10979 weights. 50.7%

frame error on the training set and 52.3% on the test set.

Note the drastic improvement in using recurrence: from more than 61% frame error with
static networks to around 51% error with recurrent networks. One should also notice that
the use of articulatory features in the vowel targets does not seem to be as successful in that
case, when compared to the simpler “one-output-per-class” scheme. This may be explained
as follows. Ideal values of place and manner of articulation (or of formant frequencies)
were derived in simple settings such as short. well-pronounced isolated words. In contrast,
the speech signal of TIMIT is continuous and one may observe that the target formant
frequencies or place of articulation of vowels does not seem to be reached, most of the time,

because the vowel is too short and is very much influenced by left and right contexts.

Another static versus dynamic comparison was done, for the BPS algorithm described in

Section 1.3.1. There again, the recurrent network performed significantly better than the

R . . .
Previous expenments without the schwa node indicated many confusions involved one of the schwa

phonemes  Jer/, fax/, fix/. fux/, [faxt/ and [fax-h/.
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( 11 outputs ] delay 1

delay 1
delay T~
( 20 units (hiddenl) ] [ 20 units (hidden?2) ]
delay 1 j
delays O, 3 delays 0, 3

( ]

Best architecture obtained for vowel recognition in continuous speech on TIMI'T (experi-

ment #5 in Table 4.1).

static network.

However, in some cases in which relevant information in the input sequence is mostly local,
recurrence doesn’t help performance. This is the case of the broad classification network

used in the experiments of section 6.7.1.

4.3.2 Forward Propagation

Another algorithm for training recurrent networks with no restriction on the architecture
was independently proposed in various forms in [Kuhn87, Kuh90b] and [Will88]. This
algorithm avoids the back-propagation in time, which requires storing the complete sequence
of network activations. It achieves this by computing recursively and keeping in memory
during the regular forward pass partial derivatives which indicate how each weight of the
network influences each unit activation. A generalized derivation of this algorithm will now

be presented, using the already introduced formalism for describing recurrent networks.



To perform “frame-by-frame” online adaptation, one needs to compute the gradient of the
local cost €'y with respect to the system parameters {6,,}. The parameter gradient can be
first decomposed as follows, using the same conventions as in the previous section:

D*Cy  — OC: 9yt
28, ~ <= dyu(t) 96,

(1.9)

I'he first factor in the right hand side of the above equation is zero except for units for
which a target is provided at frame ?. In that case it is simply 3%7 = (yr(t) — targety,)

with the LMS criterion.

The partial derivatives of unit activation (yi(t)) with respect to every parameter (8;,) can

be computed recursively as follows:

D* yi(t) _ dy(t) 0%y, (t —dy) +6k0yk(t)
90, & Dyl —dw) 08, * 99,

(4.10)

'T'he first factor depends only on the definition of Fi(-) (see for example equations 4.5 and

4.7). The last term is non-zero only if k = 4.

This algorithm requires in the worst case O(N,N,, D) storage, where N, is the number of
units, N, is the number of network parameters 8, and D is the maximum delay between
two units. In the simple case in which D = 1 and a small fixed set of output units is used,
the storage requirement is Q(N,N,,.), where N, is the number of output units. The required
computing time is also prohibitive: it can be as bad as O(N}) in the worse case. This is
always worse than the O( N,,) of the algorithm for back-propagation in time, unless it allows
— when sequences are very long — to perform much more frequent parameter updates with
stochastic gradient descent, thus allowing a faster convergence (see section 2.2). Hence in
comparison with the back-propagation in time algorithm, this algorithm trades-off locality
in space and efficiency for locality in time, because the computation of the derivatives gwif;
is not local in space. However, the complexity of the forward propagation algorithm can
be limited as in the experiments described in [Kuh90a], for example by using only self-
loops. This is similar to the architectural constraint of the BPS algorithm, which relies on

combined forward and backward propagation of partial derivatives.
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4.3.3 BPS

The BPS algorithm was developed in collaboration with Marco Gori {Ben90c, Gorir9).
We proposed the BPS algorithm as an efficient algorithm for training a particular kind of
constrained recurrent ANN. The algorithm has been called BPS for Back Propagation for
Sequences, and operates on a simple class of recurrent ANNs in which dynamic neurons
— with a single feedback to themselves  have only incoming connections from the input
layer. This model is similar to the model of M. Mozer [Moze88] which was discovered
independently and is called “focused™ back-propagation. It is also somewhat related to the
forward propagation model when constrained to the same architecture (local feedbacks and

direct input connections to the dynamic units), as proposed in [Kuh90a).

In this model. two kinds of units are distinguished: static unit and dynamic unit. The first.

kind is as described in section 2.1:
n(t) = ) wiyya, (1) (1.11)
J
where f(-) is a non-linear function such as the sigmoid (equations 1.2 or 1.3).
Dynamic units compute their activation as follows:
Y(t) = j(z(1)) (1.12)
where the intermediate variable 2,(7) is defined as follows:
D
z,(t) = Zu,,,x,(f -7)+ Z wy Y, (1= d,,) (4.13)
T J

where s,, is the node number of the source of link ;, as defined in Section 2.1. The
summation over 7 is taken over some positive values, e.g., 7 = 1,2, ...1). 'The above equation
can be seen as the equation of an Infinite Impulse Response filter. The parameters o, ,
are called decays because they can be interpreted as exponential decay factors for the
intermediate variable z,. This i1s a generalization of the algorithm we presented in [Ben90c,

Gori&9), in which only a single time delay was considered.
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Gradient Computation

The error derivative can be expressed by

9*Cy  O+C, 0*,(2)
dw,,  0z,(t) Ow,

(4.14)

'This simple chain rule equation is also used to derive the back-propagation algorithm for
static networks (equation 2.8). It is not valid for an arbitrary recurrent network but it is
valid for the BPS architecture. Indeed, with an arbitrary recurrent network, the correct

gradient of the local cost Cy would be written

ote, 0*Cy Otz (t-T)

Jw,, h = dz (t-T1) Ow,

(4.15)

On the other hand, with the BPS architecture, z,(t—7) (7 > 0 and u, a dynamic unit) may
influence the local cost Cy, but only through the influence it has on z,(t). This influence is
taken into account in equation 4.16. On the other hand, if the inputs of the dynamic units
were not input units. it would be necessary to take into account all the influences of those
units on the error through all the dynamic units. The resulting equations would then be
closer to the forward propagation model described in the previous section, requiring many

more partial derivatives be stored and computed than with the BPS algorithm.

With the BPS architecture, the first factor of equation 4.14 can be computed as for static
networks (see Section 2.1), as we proceed along the sequence, instead of waiting for the end
of the sequence to back-propagate gradients (the forward propagation algorithm of section

1.3.2 has the same characteristic: locality in time).

I _ ] ()~ targetu) f(=(1) forw € Uo (4.16)

{ dr
dr'“) E, Syk=t %Eﬁ% = ZJ:a;k=l g’%%jw.?kf'(xl(t)) for U € U”

An interesting aspect of the BPS algorithm is that the second factor of equation 4.14 can

be computed recursively during the forward phase of the algorithm:

O*z,(t) _ dx,(t) D 9z,(t) Otz (t-T1)
Jdw,, B dwy, ~ Oz,(t - 1) ow,,
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D

otr(t—
= y,_l(f—d,1)+20‘,,——£—-(———1-—2

ow,,

(41.17)

The parameters a, ; describe the temporal response of the dynamic unit u,. For example,
with a single delay for the feedback, the impulse response of the unit is a discrete time de-
caying exponential (for the variable z). In general, the intermediate variable » corresponds
to the output of an arbitrary Infinite Impulse Response filter for the weighted input vector.
The a,; can be fixed a priori or they can be learned, again using back-propagation. The

gradient of the error with respect to these parameters can be computed as follows:

ItCy 0t Cy dta,(t)
doir  Oz,(t; Doy,

(4.18)

where the first factor is computed as in equation 4.15 and the second factor can be computed

recursively as follows:

dtz,(t) _ . dta(t-71)

60:,1‘ T + z,(t—1T1) (-1.19)

Oy ;

In the case of D = | (single delay), local constraints can be easily satisfied in order to
guarantee stabuity of the recurrent network. Each dynamic weight oy, 1s assumed te

depend on another parameter A;:
a,1(A,) = Btanh(A,) (4.20)

where B < | is a decay bound constant. It is interesting to note that by controlling i, one

can modulate the dynamics of the network: as ## — (), the network becomes static.

The gradient with respect to A, can be computed with the chain rule:

(?+C't _ (‘)+C't ()“t,l
D, Doy DA,

(1.21)

where the second factor can be computed as in equation 2.7.

Hence the BPS algorithm requires O((N,, + N,)D) storage and computation, where N,
is the number of weights, NV, is the number of units, and D is the maximum delay in the

network. For D = 1, the space and time costs are the same as for the back-propagation
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algorithm for static networks. On the other hand its space requirement is less than that
necessary with backpropagation through time (O(N,, + L¥,)). Furthermore, it has the
advantage of being both local in time and in space, since all the computations at each unit
can he performed with a fixed amount of storage and time per frame, independently of the
length of the sequence and of the rest of the network, except for the immediate neighbors
of the anit. For 1) > 1, additional storage and computations are required, growing linearly
with [J. Since the algonthm is local in time, it can be executed in an online mode, unlike
the backpropagation through time algorithm. In an online mode, the network weights are
update after each frame. In contrast. with the back-propagation through time algorithm,
the weights may be updated only after each sequence. If the sequences are long. the
advantage of online training may bhe significant (see discussion and experiments in Section

2.2.1 concerming stochastic vs deterministic gradient descent).

4.3.4 Experimental Assessment of BPS

Experiments were performed [Gori89, Ben90c] in order to compare the BPS algorithm with
back-propagation for static networks on a limited but difficult speech recognition task: the

discrimination between the two stop consonants /b/ and /d/ independent of the speaker.

At every time frame ¢ the ANN was fed with the output of a preprocessor that computed
91 parameters forev -, 10 ms of speech. Seventy-eight of these parameters are the outputs
of 2 framesof an *+ -1 | Mel-scale 39-frequency filter bank. one produced at ¢-10 ms

and one at f. The rewiait ng 16 parameters consisted of
o the zero-crossing rate,
e the energy of the signal (within 20 ms window),
¢ the energy of the derivative of the signal,
e a high to low frequency energy ratio (6 kHz - 9 kHz over 1 kHz - 4 kHz), for 4
intervals of 10, 5, 5 and [0 ms respectively around {.

Hence there was an overlap of information presented at successive frames. The experiments
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were performed on pronunciations of the letters *b™ and “d” of the alphabet, by 0 speahers
(30 males. 30 females). Each speaker pronounced the letters twice. The first 50 speakers

were used for training and the last 10 for testing.

Both the static network and the BPS network had 10 hidden units and 3 output umts
{/silence/./b/,/d/} and both were initialized with identical imtial (static) weights. The
BPS network used a single delay of 1 frame for the dynamic units. After convergence, the
static network performed with 6.9% error on the test set whereas the BPS network reached

3.45% error on the test set.

Hence. the recurrence provided by the dynamic units has helped the BPS network capture
important information about the temporal structure of the input signal, allowing 1t to

perform better than a static network with delays.

4.3.5 Supervision of a Recurrent Network Does Not Need To Be Every-

where

The environment for training a recurrent ANN is composed of a sequence of frames. The
supervision. consisting of imposing target values to networh outputs, 1s not necessarnly
associated with every frame. but can be arbitranly provided at one or many poimnts along
the sequence. Because of recurrence. future errors can be mfluenced by past inputs and
activations. Hence, the learming, as well as the recognition processes operate on sequences
and the ordering of these sequences is veryimportant. The target values can be represented
by a temporal sequence. To supervise the network at particular pointsin the sequence, the
L.MS cost function can be modified as follows:

C = Z Z (targety — 5.(1)) ey (1.22)

t 1el’y,

where ¢,; is a binary switch which specify that a target 1s provided at time points t and
for output units :. Note that. this is a particular case of the weighted LMS cniterion, in
which the covariance matrix ¥ for the Gaussian error between the targets and the outputs

is known (see also [Jord88]):

C =) (target, - y;)' ¥ ' (target, - y;) (4.23)
t
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where target, and y; are target and output vectors respectively.

The com putation of the error derivatives are the same as usual when ¢,y =1 but %%l =0

when ¢;s = 0, 1.e., there is no cost associated to the output of unit ¢ at time ¢,

4.3.6 Problems with Recurrent Networks trained with Back-Propagation

Let us consider some problems about recurrent networks trained with back-propagation:

¢ dymnamic instability: Our experiments with unconstrained recurrent ANNs indicate
that during training, units saturate more often than in the case of static networks.
The recurrent ANN is not really unstable if unit outputs are bounded (e.g., with a
squashing function), but in the case of saturation, learning ceases to occur because
the first derivative of a unit output (with respect to its weightsor its inputs) is almost

7zero.

¢ local minima: Although in theory a recurrent ANN could learn about the influences
of very remote past upon current error, this seems to require very large weights, which
slows down convergence. Hence in practice, it is often observed that the network
parameters fall in a local mmimum which corresponds to learning about the short

term influences of the inputs upon the error.

¢ biological implausibility: As mentioned in Section 5.1. one of the attractive fea-
tures of ANN models is their resemblance to the workings of the brain. However,
powerful learning algonthms such as back-propagation are not biologically plausi-
ble. First. the algorithm requires the transmission of information in neurons and
synapses in both a forward direction and a backward direction (see section 7.2 about
the search of more plausible learning algorithms). Furthermore, algorithms for recur-
rent networhs with arbitrary connectivity, such as, those presented 1n sections 4.3.1
and 1.3.2 are either non-local 1 time or non-local in space, which makes them bi-
ologically implausible. The BPS algorithm, is both local in time and in space but
has a constramed architecture. Note also that algorithms related to the Boltzmann

machine algorithm - including the more efficient mean field version of the Boltzmann
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machine [Hint89] - are both local in time and in space.

4.4 Hybrids

In sections 3.4 (modularization in the design of ANNs), 2.2.1 (parameter decoupling), and
5.2 (integrating ANNs with other tools). we have argued about the advantages of modu-
larizing a learning system?, using modules based on ANNs or other algorithms. Particular
cases of integration of ANNs with other algorithms for the recognition of sequences will
be considered here. Two major types of hybrids will be discussed: ANNs with dynamic
programming and ANNs with hidden Markov models (HMMs)® A learning algorithm for

the latter type of hybrid is proposed and evaluated in C‘hapter 6.

4.4.1 ANNs and Dynamic Programming

The principle of dynamic programming [Bell57] is to use recursively previously computed
information to reduce the complexity of a computation, typically a search among a large
number of paths. or taking a sequence of interrelated decisions. If the problem satisfies some
locality constraints, it can be hroken down into subproblems and each subproblem 1s solved
by using previously computed results for smaller subtasks. This may allow reduction of the
complexity of a problem which could require an exponential number of computations (if each
possible subproblem was solved separately) to a polynomial time complexity. Typically, this
requires storing the results of all subtasks of the previous level (e.g.. path length) 1n atable

and using them to compute the results of the next level of subproblems.

In the case of the application of dynamic programming (DP) to the analysis of sequences,

the problem can be expressed in one of the following forms.

=% H,L('m (4.24)
P

fwhen the traimng set and the computing resources are bounded and practcally wsnfficient to use a

completely unbiased ANN.
®Note that these two tools are actually related since recognition with HMM algorithims uses dynanne

programming,
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or

L
¢ = min ; Cot (4.25)

where p is a sequence {1,19,..11

4

}. The task in both cases is to compute C (and in the
second case maybe also provide the best path p that was found). However, in general the
total number of paths N, grows exponentially with L, for example N, = NE where N,
would indicate the number of possible statcs of the system, i.e., the number of possible
values for each i;. "I'he complexity of the problem can be drastically reduced when many
of the terms (' are identical, for example, if they depend only on the state i; at time t in

path p and on the previous state ,_; at timet — 1:
("pt = Ili50 Topertt Ui, (4.26)

or

Cvpt = (7'l(.l(_],i)ll>0Utt,t (4.27)

I, is a boolean indicator that takes value | when ¢ is true and 0 otherwise. T, and U, ; are
problem dependent quantities that respectively depend on the transition from the previous

state to the current state, and on the local state at the current frame ¢.

One can then express the above equations as follows:

C = ZS'J' (4.28)

or

C =min S, (4.29)
t

where §,; 1s a sum (or min) over sub-paths q, considering only the first ¢ frames:

$e=2 I, ._Cor (4.30)
)
or

St = min Z Cor (4.31)

r=t
Because of the locality of Cp, one can thus compute recursively (and efficiently)

N,
St = (Z Syt1Te )20 Uyy (4.32)
)




or

S"ot = Il)()( m}in{s |t.—] + ’I‘|‘J'f}) + l1|’( ( ‘-:;3)

When one needs to keep track of the required path (for the min case), the argmin of the

above equation is kept:
Py =argmin(S, (1 +Ti50) (1.31)
J

This gives a pointer to the best previous state. Hence the best path can be retrieved as

follows in a backward pass:

i, =argmins, f,
3

Iy = l)l(“,f+l (1.35)

In the Baum-Welsh algorithm for training HMMls. the sum of produects is used, with 7, |
representing state transition probabilities and U, , representing observation probabilities
These variables have the same meaning in the Viterbi algonthm (for traming HMMs)
except that a max of sums of log probabilities 1s used instead of the sum of produdts
of probabilities. 'The backward pass also provides the best path for the Viierbi training

algorithm and for recognition in HMNMIs.

In the dynamic programming approach used i sections 5.1.2 and 5.1 3.7, ), can be used
for costing transitions, including a duration cost®. associated to the number of consecutive
frames during which the state kept the same value. Hence 71 ,, may represent temporal
constraints, whereas {/,; is used to measure a local cost associated to heimng i state 1 at

frame t (e.g.. computed by or derived from the output of an ANN)

This algorithm can also be used to perform template matching with dvnamic time warping,
by computing a cost (" for each prototype that 1s a measure of distance hetween the 1 put
sequence and each prototype sequence. ‘I'he selected prototype 1s the one “closest™ to the
mput sequence according to that warped distance measure. In that case 7, , may constram

the warping to ship or repeat only a imited number of frames from the prototype and U/,

SHowever, as explaned i [Jouv88}, usmg expliat duration probabiities when ¢ hanging state may yield
snboptimal paths in some cases, because the cost function 1s no longer local it depends on deasions to be
taken 'n the future (when exiting a state) On the other hand, duration probabilitses as used i Section 67

greatly improved recognition performance,




is 2 measure of distance hetween the ' frame of the input sequence and the it! frame of

the prototype.

4.4.2 Analysis of Amino-Acid Sequences

As described in [Ben90f], we have used an ANN integrated with dynamic programming
to perform the recognition of immunoglobulin domains from amino acid sequences. The
ANN/DP hybrid was designed to identify proteins exhibiting such domains with minimal
rates of false positives and false negatives. The National Biomedical Research Foundation
(NEW) protein sequences were scanned to evaluate the performance of the system in recog-
nizing mouse immunoglobulin sequences. For such sequences, the recognition efficiency was
98.2% with an overall false positive rate of 7.3%. These results showed that ANN-based
search programs are well suited to search for sequences characterized by only a few well
conserved subsequences. By using the recognition system on previously unseen data it was
discovered that the Epstein-Barr virus envelope protein bears an Ig-like domain [Cash90],

thus demonstrating the usefulness of such a recognition system.

Problem Background

Domains are characteristic amino-acid subsequences found in many different proteins. Im-
munoglobulin (Ig) domains are sets of -sheets bound by disulfide bonds which exhibit a
charactenstic tertiary structure. Because proteins are assembled from different domains, it
is useful to be able to scan amino acid sequence databases to identify proteins that might
comprise a domain of interest. 'T'his capability would also be useful in the analysis of newly
sequenced protems. However, current search programs incorporating algorithms such as
the Wilbur-Lipman algorithm [Wilb83] or the Needleman-Wuusch algorithm [Need70] and
its modification by [Smit81] are ill-designed for detecting domains because they implicitly
consider each amio acid to be equally important. This is not the case for residues within
domains such as the Ig domain, since only some amino acids are well conserved, while
most are variable. Search programs incorporating algorithms that do not reflect this will

therefore not detect efficiently proteins bearing the domain of interest. A solution is to
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Figure 4.3: Architecture of the system for the recognition of lg domains in ammo-acid

sequences. The input window is 5 amino-acid long.

use statistical occurrence of a residue at a particular position [GribR7, Wang89, DeveR1],
Although programs based on this idea (Profile Analysis, [DeveR1]) can be applied, they
often suffer from a high rate of false negatives and positives, especially when there are
considerable variations in domain length to be accounted for. as in the case of Ig domains.
Perceptrons and other types of ANNs have been used previously in research on protem and
DNA analysis [Stor82. Bohrg8, Qian88, Holl89]. Our results indicate that they are well

suited for detecting complex pattern sequences such as those that characterize Ig domams.

System Design

The design of the ANN we described in [Ben90f] capitalizes on the following knowledge
about the particular task at hand: the Ig domain is characterized by several highly con-

served groups of amino acids whose lccations have been identified for certain well studied
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Ig proteins. In particular, the S-strands B, C, D, E and F of the Ig domain are very
well conserved segments of the domain [Wil88b]. Using this information, the design of
the system has focused on the recognition of sequences of four conserved sub-regions cor-
responding to f-strands B, C, E and I, here designated Pl to P4 respectively. Amino
acids in these segments are not necessarily all conserved, but in each sub-region (P1-P4),
they show a distribution very different from the distribution observed elsewhere in these
proteins. Hence the system was trained to recognize these distributions, with appropriate

temporal constraints. The recognition problem is thus divided into two subproblems:

1. Detect subsequences similar to P1, P2, P3 or P4.

2. Detect occurrences of P followed by P2, P3, and P4, in the right order and with

some duration constraints.

The first task is performed by an ANN trained with back-propagation, with 4 outputs
for each of the 1 regions of interest. 'I'he network is a simple static network with delays,
with 8 hidden umts that scan proteins with a window of 5 residues. Since each residue is
represented with 20 mput units (for 20 amino acids), there are 100 inputs to the network.
Better results were obtained with a multi-layer architecture than with no hidden layer. In
comparative experiments on the network itself, performance of the multi-layer network and

of the network with no hidden layer were 2.1% and 14.3% frame error. respectively [Ben90e].

The second stage of the system, based on the stream of outputs from the P1-P4 detector,
evaluates whether a region similar to the Ig domain has been detected. Dynamic program-
ming was used. with constraintson the order and the distance (duration) between detected
subsequences. A weak duration cost was defined for each interesting transition, with zero
cost for values within the bounds found within the training set proteins, and linearly in-
creasing cost for shortor or longer gaps. A cut-off value of the total cost computed for each
potential solution subsequence was used to accept or reject a subsequence. This value was

selected in order to optimize the trade-off between false positives and false negatives.

As a training set, a group of 30 proteins comprising bona fidec Ig domains was used [Wil88b).
Because of the small number of these sequences, the training set was artificially augmented

using knowledge about residue distributions in general, thus generating a very large number
g Y
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of pseudo-sequences. These sequences were generated by stochastically substituting residues
known to be in variable positions of the domain with variable residues found elsewhere in
the sequence. This was necessary in order to obtain good generalization. I'lis 15 a good
illustration of the concepts described in section 1.3 and in Chapter 3 about the use of
domain knowledge to reduce the effective VC-dimension of the ANN. Knowledge about the

problem was also used to modularize the system and combine the ANN with an appropriate

sequence analysis tool.

Results

The system was evaluated by scanning the National Biomedical Research PFoundation
(NBRF) protein database (NEW. version 19). By scanning 1718 proteins from this database,
191 proteins were identified as possessing at least one Ig domain. All proteins in the tram-
ing set were detected. Even though only human major histo-compatibility complex (MH(")
class I and Il proteins were included in the training set. both mouse H-2 class I and 1l pro-
teins were detected. Proteins from unseen species. such as bovine and rat transplantation
antigens were also detected. Recogmition of human and mouse immunoglobulin sequences
was used to measure recognition efliciency. The rate of false positive was 7T 3% . Most of
them possess features somewhat similar to those of true Ig domains and they score iow, 1 6.,
near the threshold (see [Ben90f] for a more detailed analysis). The recogmtion efficiencies
for mouse and human immunoglobulins were 98.2% and 93.8% re.pectively. By carefully
analyzing the results. an interesting discovery was made. The usefulness of this system was
demonstrated when the Epstein-Barr virus (EBV) envelope protem pli0 (NBRE filename

QQBE1) was discovered to bear an lg-hike domain by the ANN/DP hybrid [(‘ash90].

4.4.3 Phoneme Recognition

A dynamic programming algorithm can also be used to impose some temporal constraints
on the output of an ANN used for phoneme recognition. Robinson and Fallside [Robif0a]
obtained excellent results with a phoneme duration constraint in a dynamic postprocessor

for a recurrent ANN. We propose here a similar scheme in which we also incorporate statis-
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tical information about higram probabilities (conditional probability that phoneme 1 follows
phoneme j7), a priori frame-based class probabilities (probability of phoneme 2 at frame t), as
well as observation probabilities {conditional probability of network outputs given a class).
Several researchers have interpreted network outputs as probabilities [Bour88, Fran90] or
comhined them directly with duration probabilities [Robi90a]. We have instead chosen to
compute observation probabilities (based on a normal distribution or a mixture of normal

distributions), as described 10 equation 4.40.

The resulting cost function associated to each sequence is the following:

L
C = _ng P(s(t)) + log P(Y(t) | s(t)) +

t=1
yygat—1)(log P(s(t) | s(t = 1)) + log P(duration of s(t—1))) (4.36)
where 3(t) represents the state of the system, here the class of interest, e.g., a phoneme,
Y (t) is the vector output of the ANN at time ¢t. The dynamic programming algorithm finds

the sequence s(1),s(2),..s(1.) that minimizes” the cost C.

‘The training segmentation provided correct sequences s(1),5(2),...s(1) with which the re-

quired statistics were evaluated as follows (considering all the training sequences).

The bigram probabilities are estimated as follows:

].9 =pAsft—-1)=
Pistt) = plslt - 1) = g) = = e ) (4.37)
Zt s(t-1)=q

The duration probabilities can be modeled with a gamma distribution for each phoneme
(or class):

(st e=5

P(duration of phoneme s(t) =7)= = T(n) (4.38)

where » and @ are estimated as in [GGree60). The advantage of a gamma distribution over the
more common normal distribution is that it is more appropriate to model positive random

variables, such as duration.

"As already mentioned, the resnlting path may be suboptimal because of the non-locality of explicit
duration constraints (see [Jouv88]) It s however very useful in a dynamic prograniming postprocessor (see

experiments i section 6 7, table 6 1)
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The frame-based phoneme probability can be estimated as follows:

lyp=

P(s(t) = p) = 2'_7(_”_2 (4.39)

The observation probabilities were estimated with likelihood maximization, using a normal
distribution with diagonal covariance matrix for each phoneme.

exp(—0.5(Y(1) — s S5 (Y D) — 1))
(210 | X, /2

POY(1) | s(t) = p) = (1.10)

where n is the number of network outputs; i, and L, are evaluated as usual [Duda73).

It is possible to perform a global optimization of the ANN/dynamic programming hybrid.
There are several ways to do that. depending on how the two algorithms are combined.
For example, Patrick Haffner [Haff91] uses dynamic programnung to obtain the sequence of
output nodes that minimizes a cost computed by summing network outputs on the selected
path while respecting some temporal constraints. It s then possible to back-propagate
from that global cost, through those selected outputs, to all network parameters. On the
other hand, [Dria91] uses the resulting best path to provide actual targcts to the ANN. In
[Tebe9l], a related scheme is presented. Dynamic programming is used to mmimize a cost

which depends on how well networks associated to states predict the next input frame.

4.4.4 ANNs and Hidden Markov Models

Interesting papers have been pubhshed recently, describing attempts at combining ANNs
with HMMs. In some of the proposed approaches (e.g., [I'rand0, Brid90]) the activation
value of each output node of the network are used as observation probabilities. T'he ANN is
trained to compute these observation probabilties for the best sequence of states produced
by the alignment. In [Fran90] the input data are aligned with the model of the spoken
utterance using the Viterbi algorithm. This 1s used to provide a “ligh”™ target to nodes
corresponding to states being on the selected path at a given time,and a “low™ target to the
other network outputs. The approach proposed by Bridle [Brid90] consists of viewing the
HMM as a recurrent ANN with linear nodes and product nodes. Another ANN provides
observation probabilities and gradient descent 1s used to estimate network parameters (in-

cluding the parameters of the HMM). Other hybrid systems combining ANNs with HMMs
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[Bour88, Mor90a] theoretically require that the ANN parameter estimation has converged to
the global minimum in order to express the a posteriori probability I’(state | obseruvation).
Our previous work on hybrid models [Ben90d] used ANNs merely to compute an additional
set of symhols considered as ohservations for discrete HMMs. A vector-quantized codebook
was generated for these parameters and added to codebooks obtained for other popular
parameter sets. This did not require any assumption on the network outputs but had the

disadvantage that the ANN and the HMM were optimized separately.
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Chapter 5

Integrating ANNs with Other

Systems

In many applications, ANNs are integrated with other systems, either for preprocessing,
for performing alternative processing, or postprocessing. We consider the possibility of an

integration of ANNs with other systems to be an important quality.

For example, in section 3.1, we discussed the importance of preprocessing for ANNs applied
to automatic speech recognition. ANNs can also transform signals in parallel with other
tools: [Ben90d] describes the speaker-independent recognition of connected digits from the
TI/NIST database using an ANN as one of the modules providing symbols to a discrete
HMM. In addition to the ANN, standard preprocessing techniques (cepstrum, cepstrum
derivatives: often employed with HMMs) are used with vector-quantization (see [(iray81]
for a review) to provide other input symbols to the discrete HM M. The outputs of the ANN
are also discretized in order to provide discrete codes to the HMM. T'he role of the ANN
in this system is to discriminatc among types of sounds with which a simpler recognition
system (cepstrum + HMM) has difficulties (see also Section 4.4.4 about ANN/HMM hybrids

in general, and Chapter 6 about the global optimization of an ANN/HMM hybnd).

Another example of successful interaction of ANNs with other algorithms has heen imple-

mented in an application to handwritten digit recognition [LeC8)c] (see also section 3.3.3).
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In this system, the back-propagation network is followed by a statistical decision process

that acts as a postprocessor.

To introduce temporal constraints, Bourlard et al. [Bour88, Mor90a] integrate a multi-layer
perceptron (trained with back-propagation) with dynamic programming (more specifically,
the Viterbi algorithm). Several other researchers have combined ANNs with dynamic pro-
gramming. We have used such a combination for the analysis of amino-acid sequences and

for the recognition of phonemes (see sections 4.4 and 6.7).

5.1 Advantages and Disadvantages of Current Algorithms
for ANNs

An analysis of advantages and disadvantages of ANNs will help to motivate the use of
ANNSs with other systems. Such an analysis should help us to design hybrids that succeed

in profiting as much as possible from ANNs advantages, while attempting to circumvent

their disadvantages.

5.1.1 Advantages

e Flexibility: when comparing ANNs with other non-parametric inference tools, such
as k-Nearest Neighbor or Parzen windows, we found that ANNs are particularly well
suited to incorporate a priori knowledge with learning from examples. This is im-
portant in order to find the right equilibrium of bias and variance to maximize gen-
eralization given the size of the training set (see [Gema9l] for a discussion of the
bias/variance dilemma). In Chapter 3, we studied various ways to introduce such
bias or constraints into ANNs, while using the training data to tune the network pa-
rameters. In addition to allowing designers a ready integration of domain knowledge,
ANNs are also flexible regarding their integration with other tools. In Section 5.2,
we propose a method for integrating ANNs with other tools in a modular way and
performing global optimization. In Section 4.4 we discuss various hybrids for sequence

recognition and in Chapter 6 we describe and evaluate an algorithm for performing
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global optimization of an ANN/HMM hybrid.

e Robustness: As demonstrated in experiments described in this dissertation (see
chapters 3 and 6 in particular), ANNs seem to be able to generalize well in difficult
problems such as speaker-independent continuous speech recognition, which present
a lot of variability and noise. In addition to robustness to variations in the inputs,
ANNs can be robust to variations in the operation performed by each node. Because
of the distribuved representations usually found in the hidden layers of ANNs, physical
impiementations of ANNs are naturally fault-tolerant: if a synapse or a neuron fails,
it does not disrupt the whole network operation. Instead, performance is seen to
degrade gracefully as the number of faulty elements increases [Dzwo91, Stev90]. This

is a very attractive feature for VLSI parallel implementations of ANNs.

¢ Expressive power: Asshown by several authors, multi-layer networks can in theory
approximate arbitrary continuous transformations if the number of hidden units is
chosen in function of the precision of the approximation [{Cybe89, Horn89, Funa89,
Stink9]. Furthermore, because ANNs are non-parametric inferei:ce systems, they do
not make any explicit assumptions on theinput data (on the other hand, for example,
HMMs assume a certain statistical model for the input distribution corresponding to
each speech unit). This may be an important property for complex problems for
which proper statistical models are hard to identify. On the other hand, it is still

possible to introduce a priori bias in the design of ANNs.

¢ Discriminant learning: With the LMS criterion (used for example with the back-
propagation trained networks), the ANN models discrimination surfaces between
classes. On the other hand, with maximum-likelinood medels (e.g., HM Ms trained
with maximum likelihood estimation, or Boltzmann machines!), one models the com-
plete input/output distribution. An advantage of discriminant learning is that it
concentrates its efforts (and the use of parameters} for the ultimate goal of learn-
ing, that is, reducing classification error, which are usually due to confusions of one

class for another. The input probability density function for each class contains more

'Boltzmann machines in which the inputs are not clamped during the free running phase learn to generate
the joint input/entput distribution. On the other hand, if the inputs are clamped in both phases, the network

learns abont the conditional distribution of the output given the input.
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information than the corresponding discrimination surfaces between classes, thus it
requires less parameters to model discriminant surfaces than a complete input/output
distribution. For this reason, discriminant methods might perform better given the
same (too small) training set, (see Section 1.3.3 on the relation between the number
of parameters, generalization and training set size). However, there may be other
advantages with maximum-likelihood methods. For example, in the case of HMMs, a
fast estimation algorithm exists for maximum-likelihocd estimation (the Baum-Welsh
algorithm [Bahl83]) whereas discriminant learning (Maximum Mutual Information
Estimation) is performed with a much slower gradient descent. 'I'his quality of ANNs
(building precise discrimination surfaces) may explain their success at performing fine

spectral discriminations for phoneme recognition [LippR9]2.

o Large input space: Several experiments in speech recognition indicate that ANNs
trained with back-propagation can use a large input space with many correlated fea-
tures to their advantage (see Section 3.1 and [Ross83}). This can be very useful when
many such alternative input features are availabie and can be combined to help recog-
nition (see for example the experiments described in section 3.1.2 and [Ben91a}). In
contrast, other methods used for speech recognition, such as HMMs, which are model-
based methods, require a small number of observation (input) features in order to

generalize correctly given the relatively small? training sets usually available.

e Parallel Implementation: ANNs are attractive as computing machines because
they can be naturally implemented in parallel hardwate. Hence several research teams
are now working on such implementations, some in dhgita' VLSI [LeC'89d], some in

analog VLSI [Mead89)], and others with optical or electro-optical implementations

[Psal90).

e A Priori Knowledge about Learning Architectures: In the -ame way that
we found that a priori knowledge about a task was very helpful in designing ANNs
for this task, we can conjecture that using information about how the brain works
to constrain the design of learning algorithms may help us create systems that are

successful at solving the kind of problems that the brain can handle. Although current

2However, thic does not guarantee improved word recognition, as shown by the experiments of {Bour89]

3given the number of input features and the complexity of the task
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ANN models already incorporate some basic principles of brain operation, they have
many biologically implausible fcatures. In section 7.4, we argue abont using even
more biological constraints in the desizn of ANNs, in particular for their learning

algorithms.

Sharing of Internal Features and Distributed Representation: In an ANN
with several outputs receiving their inputs from the same hidden units, these hidden
units will tend tolearn functions that are useful for several of the output units. Thisin
general will lead to compact and distributed internal representations. The mapping
to these representations will require fewer degrees of freedom than if each class is
modeled separately (as for HM Ms, for example). In the frequent case in which the
outputs of an ANN represen. related concepts. the sharing of internal features may
improve generalization because fewer parameters are required and the function of
hidden units is more constrained, since each of them is trained with a greater number

of examples.

5.1.2 Disadvantages

¢ Training Time: Most current ANN models are very CPU-intensive, especially if

simulated on sequential machines. However, a lot of research effort is invested in
improving convergence time of current algorithms and creating faster learning algo-
rithms. See for example an alternative to standard back-propagation in Chapter 7,
as well as some acceleration techniques mentioned in section 2.2.1. Although train-
ing time is importart for developing a recognition system, 't is also important to
consider recognition time, which is generally short with AN Ns, especially if they are

implemented in parallel hardware.

Temporal Modeling: Although ANNs with delays and recurrence can in theory
be used to represent any temporal structure, the experiments described in Chapter
6 indicate that the architectures we are currently using are inefficient at capturing
some important aspects of temporal structure, such as the duration of a phoneme.
Similar observations have prompted many researchers, including ourselves, to look at

ways to combine ANNs with other tools that had been previously seen to be useful
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at analyzing the temporal structure of signals such as speech. Such combinations are

described in Chapters 4 and 6, in particular with dynamic programming methods and

with HMMs.

e Theoretical Underpinnings: More theoretical work is needed to analyze the ca-
pabilities of neural networks, and in particular of their learning algorithms (e.g.,
convergence proofs for ANNs with hidden units, and on the optimal choices of archi-

tectures).

5.2 Modularization and Global Optimization

As discussed in sections 3.4 and 2.2.1, modularization is a promising way to build complex
systems for learning to perform a task when not enough training data or training time are
available. It may significantly help the convergence, as well as generalization of ANNs.
Modularization allows incorporation of some a priori knowledge about the problem and its
solution, in particular about the task decomposition. In such a system, each module may

correspond to a particular subtask.

A practical question concerning modular systems is how to integrate all the modules to-
gether in the “best” possible way. An answer to this question comes from a common
definition of what is best: a global error criterion or cost function, i.e., a common goal of
learning for all the modules. If such a giobal cost function is defined, then in order to allow

the parameters of the modular system to be optimal for this cost function, one can perform

a global optimization of all these parameters.

5.2.1 Why Global Optimization is Necessary

[t is easy to imagine cases in which each module in a modular system is trained separately,
which is suboptimal for the given complete architecture, even though each module may

have reached a local optimum of its cost function.

Suppose a modular system contains two modules: network 1 and network 2, with outputs
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w(z) and p(yl(x)), respectively, and parameter sets 6, = {6,.} and 6, = {82} The
input of network 1 1s the input x of the system, and the input of nelwork 2 is yp(x), i.e.,
network 1 feeds network 2, as depicted in Figure 5.1. Let us suppose this architecture

design corresponds to an ideal function decomposition:

F(z) = f(g(z)) (5.1)
Consequently the target outputs for network 1 and network 2 when z is given as input are

g(z) and I(z), respectively. With the Least Mean Square criterion, for example, the costs

to be minimized by network | and network 2 are respectively
Ci = Er(l mi(z) - g(2) ?) (5.2)
Cy = Er(] g2(y1(2)) - F(z) |?) (5.3)

where Ep is expected value over the training set I'. At the end of training, assuming a local

optimum was reached but a zero mean square was not achieved*:

ac‘l _ ~

'007 =0 and 1 # 0 (5.4)
and

aC,

56-2-" =0 and C2 # 0 (5.5)

Since Cy # 0, there is in general a non-zero gradient %—%, i.e., there exists a way to keep 6,
fixed and chanze y; that would further reduce Cy, except in the trivially uninteresting case

in which the input y to network 2 does not influence its output y,.

Now since

(’)Cg _ 802 03]1

D, ~ Dy 00y, (5.6)
We have

aC, , 9Cy _

0_01: # OT“ - Oa (5‘7)

except in the uninteresting case in which 8; does not influence y;. Because of the previous
inequality, one can reduce the global cost C2 by further modifying 6, along the direction of
the gradient g%'l Hence separate training is suboptimal, because in general each module
cannot perform perfeetly the desired transformations from the preconceived task decompo-
sition. On the other hand, a final tuning based on the global optimization of the all the

parameters of network 1 and network 2 can find an optimum of the global cost Cs.

*This is generally the case for sufficiently interesting, thus complex, problems
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Iigure 5.1: Typical example in which global optimization is necessary: network | feeds

network 2 and the decomposition F(z) = f(g(x))is not learned perfectly by each module.

5.2.2 Global Optimization of a Modular System with Stochastic Gradient

Descent

The global error measure or cost function may depend directly on the outputs of one or
more modules, but all the modules directly or indirectly influence this cost. If we want to
use stochastic gradient descent as a learning method for one or more modules (as we have
done for training the ANNs described in this thesis), then the following characteristic of the
modules allows a global optimization. If we define a module as a subsystem having some
inputs and some outputs, then we require that it be possible to compute the first derivative
of each of the module’s outputs with respect to each of its inputs. Furthermore, if the
module is not static (e.r., it is a recurrent network), then one must he able to compute
the first derivative of each of the module’s outputs for frame { w.r.t each of its inputs for
previous frames 7 < t. If this derivative does not exist? it is not possible to perform gradient

descent, but other optimization methods may be applicable (e.g., simulated annealing,

5 For example, if the outputs are boolean functions of the inputs, this denvative is sero everywhere except

at certain points at which it is infinite
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genetic algorithms).

Let us briefly formalize these remarks. Consider a set of modules that are interconnected
in a graph, following the formalism introduced in section 2.1 for a static system and gen-
eralized in section 4.3 for a dynamic system. We will consider here the general case of an
arbitrary connectivity among and within modules, which thus could be recurrent, and of
input patterns which may be sequences (a static pattern is just a special case of a sequence

of length 1).

Without loss of generality, let us further decompose the modular structure in such a way
that each remaining module is memory-less, i.e., has no internal delay or recurrence: these
are solely represented with the connectivity of the graph ¢ = (M, ), where A is a set of
modules {m,} and L is a set of links {l,,: link from m,, to m, with delay d,;}. Such a

decomposition is illustrated in figure 5.2. Let us denote each module’s operation as follows:

y(l) = Fi(6,,Y(2)) (5.8)

where y, = (¥, %2, ..., ¥in, ) is the output vector of module i, F,(-) is a vector function for
module m, that depends on two sets: #, is a set of parameters {6,,} (e.g., weights of an
ANN) for module m,, whereas Y,(t) is the set of vector outputs y,(t — d,,) of modules my

at frames t — d,, such that I,, € L and k = s,,.

This formalism is a straightforward generalization to vectors of the one used to define
recurrent networks in Chapter 1. Such a modular sysiem can thus also be trained with
similar learning algorithms. For example, let us consider back-propagation in time and

stochastic gradient descent:

AP8,. =
v =",

(5.9)

where ‘—95% denotes an ordered derivative, as defined in section 4.3.1. When a particular

sequence p is presented, we wish to compute how the corresponding error C), is influenced

by all the parameters of the system:

0*C, Ayu(t)
oo,] Zzay.k(t) a9, (5.10)

‘The second factor in the above equation depends on the definition of module m,’s operation
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Figure 5.2: General modular system that can be trained with stochastic gradient

and back-propagation through time.
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(F.(+)). The first factor could be computed recursively by back-propagation in time:

(')+(_,'p _ Z (')+Cp aymn(t + qu) 8CP

_ : 5.11
(')y:k(l) i)yr1171(£ + qu) (')ygk(t) ()y,,'c(i) ( )

fng=t 1
T'he first factor is similar to the left hand side of the equation and can be computed
recursively. 'The second factor depends on the definition of F,,(-). The last term is zero
unless supervision 15 provided to the k'™ output of module i at time . In that case its
exact value depends on the choice of objective function. For the LMS criterion, it is as in

equation 4.0,

5.3 Suggestions for ANN Design

Tools other than ANNs were required in the hybrid systems of sections 4.4.2 and 6.7, even
though in theory they could learn any continuous mapping. It could be because of inherent
weaknesses in current ANN algorithms and architectures, or it could be because we have
not yet found ways to appropriately design such architectures and algorithms for A NNs.
A way to do that could be io learn how these other tools efficiently perform their task in

order to help us design ANNs that can do it as well or better.

In the experiment of section 6.7, an interesting result was obtained: by adding a dynamic
programming postprocessor, which requires as few as 22 free parameters (in its simplest
form, with the duration probabilities only), the total error of the system is almost halved.
The ANN is recurrent, with delays, and has over 20000 parameters. This suggests that such
simple temporal constraints as durations of phonemes are not efficiently captured by multi-
layer ANNs with commonly used architectures, even those with delays and recurrence. This
should encourage us either to search for better architectures for ANNs in order to model
temporal structure, or simply to construct hybrids, as we have done in chapters 4 and 6.
An extreme case of the first option is to view those non-connectionist tools such as HMMs
as very particular types of ANNs (with products, sums and recurrence), as did J. Bridle in

[H’.ldg()].
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Chapter 6

A Hybrid of ANNs and HMMs
with Global Optimization

In this chapter, we describe an ANN/HMM hybrid of which all the parameters can he
simultaneously estimated in relation to a single cost funrtion. As argued 1n Chapter 5,
hybrids and modular systems may be advantageous for both convergence time and gener-
alization performance. They may allow taking advantage of the strengths of the various
modules and algorithms. However, performing a glohal optimization of the combined sys-
tem allows the learning algorithms to yield a better value of the co<t function. In the
first section of this chapter we consider how the outputs of an ANN might he used to
express a probability density function. We choose to make some assumptions about the
form of the input distribution 1n order to obtain a computationally simple algorithm for
performing the global optimization of the ANN/HMM hybrd. Then we derive equations
for performing global optimization of an ANN/HMM hybrid m which the ANN supplies
observations to the HMNM. as shown in I'igure 6.2. We show how to compute the gradient
of the HMM optimization criterion with respect to the ANN outputs. At the end of this
chapter, we evaluate this new algorithm by comparing 1t with other systems. such as an
ANN/DP hybrid, an ANN alone or an HMM alone, with speaker-independent continuons
speech recognition. Stochastic gradient descent is used for the ANN parameters and two

alternatives for performing parameter update in the HMM within the hybrid are evaluated.
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It 15 found that the HMM parameters can also be advantageously updated with an online

algorithm.

6.1 Expressing a Density in Terms of a Continuous Trans-

formation of some Observations
Let Y and Y be random variables that take values in Q, C "= and Q, C R", respectively.
Suppose that V' is a determimstic parametric function of X':
Y = y(X;w) (6.1)

where ¥ and X are vectors of dimension n, and n,. respectively, and w is a set of pa-ameters.
let us suppose that Y has been ohserved and a parametric model has been assumed for
its distribution. and its probability density function (p.d.f.) is f,(y; @), where 8 is a set of

parameters,

6.1.1 Gradient Computation

We would like to express a probability density function for X in terms of Y, for example,

[r(ziw,0) = fy(y(z;w),0) g(x) (6.2)

If a cost function C is to be minimized and this cost function depends on [, we need in

general to compute 55 ‘" and ’" , Which depend on 5+ ’)p %— and -7L

M oo .
‘Té,' is simply

s _ f?f

since g(.r) is independent of 6.

In the case of maximum likelihood estimation (MLE), to estimate # we can solve the
following equation. as if only Y were considered,

o,

55 =" (6.4)

105

R



For example, when f, is a normal density or a Gaussian mixture, we obtain the nsual

maximum likelihood estimation or re-estimation formulae [Duda73, Rabi&9], in function of

Y.

Since g(x) may be influenced by w we may have to compute the gradient of f, with respect.
to w as follows:

dy
dw

0fx = i %ayl

Ow = 3y, Bw

g(z) + [y(y(ziw), ) (6.5)

where y, denotes the ith element of the vector y. When y(z;w)is non-linear, e.g., the output

of an ANN, w should be obtained by descending the gradient defined in equation € 5.

6.1.2 Integral Equation

For f; to be a proper p.d.f. for X, we have to find a non-negative function g(.r) such that

[ ftutaiw0) gla) de = 1 (6.6)

Unfortunately, this is an underdetermined integral equation in ¢g. In order to find the form

of a solution for g we will start from the equivalent integral for Y":

| swoydy=1 (6.7)

Let us first consider the simple case in which n; = n, = n. Then we can do a chauge of

variable y = y(x;w) in the above integral and obtain the following:

. (I)(ylay?a °"yn) _ .
~/$:2; f.,(y(:c,w),@) I m | (13? - l (()H)

Hence g{x) could be chosen to be the absolute value of the determinant of the Jacobian of

y with respect to z, evaluated at z.

Unfortunately, we are generally interested in transformations from @, C 2" to ©, C R™

that reduce the dimensionality of the data, i.e., ny < n,.
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6.1.3 Case of a Linear Transformation

T'o better understand the problem when n, < ng, let us consider the case in which y(z) is

a linear transformation from Q, C "= to Q, C {"v.
y="Tz (6.9)
where T is a n, X n, matrix.
Let us decompose T with a singular value decomposition:
T=UDV? (6.10)

where I/ and V* are square unitary! matrices of dimension ny X n, and 7., x n;, respectively.
D is a rectangular matrix of dimension ny, X n,, with zeros everywhere except in the

“diagonal” from (1,1) to (n,,n,). Let us call s the product of the singular values:

s =[] Du (6.11)

fn, = n,, then s = det(D) = det(T) and | s |=| det(é—fﬁﬁ—:%) |, since det(U) = det(V) = 1.

As shown in Figure 6.1 for the case n, = 1 and n, = 2, lines in ®2 are mapped by V! into
vertical lines in 2, then by D into points in R, then by U into points in R that represent
values of y:

y=TX = U(D(V'z)) (6.12)

Let us define an intermediate random variable Z, with values z € Q,,Q. C f"=, as follows:
z=V'z (6.13)
Thus y can be defined in terms of z:
y=UD:z (6.14)

Because D has only zeros after the column n,, y depends only on the first n, elements of

z. Let us decompose the variable Z into two variables Z’ and Z”, such that Z = (Z',Z2"),

'Unitary matrices have orthonormal columns, hence U'U = I and det(U) = 1.
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i.e.,

2= 2)
2” = (zNy+l“ 'zﬂx) (G.l‘l’))

Let us denote by €, and Q,~» the corresponding subspaces of .. In this way, we can

express the total derivative of y in function of the total derivative of 2/,

NY1s.ees
dydy;...dy,, =| 5((—1:——% | d2ydzy..d2y, =|s|dzidzy..dzy, (6.16)
L1y eeey Zny

or in shorter notation,

dy=| s|d? (6.17)

since the determinant of U is 1, and s is the determinant of the truncated matrix D’

obtained by keeping only the first n, columns of D. We can make a change of variable

y = UD'Z" in equation 6.7:

1= / So(y;0) dy = / SUD'2:8) s d2 (6.18)
Q!l Q,l

To account for Z”, the remaining dimensions of 7, we have to assume some distribution
along each hyperplane? of dimension n,—n, in &= that corresponds to a point y. In terms
of probabilities, this distribution is the p.d.f. for Z” when 2’ is given, and corresponds to

a conditional p.d.f. for X given that Y = y. Let us call that fonction h’,(2"):

/ W) d2" = 1 (6.19)

2

By specifying this p.d.f. we constrain sufficiently g(z) to allow us to find a solution similar

to equation 6.8. Let us multiply the integrals in equations 6.18 and 6.19 together:

U= fo, Wy(")d2" fo, f(UD'2;0) 5 do'

= fo, LUUD'2';0) h,(2") s dz (6.20)

Now we can make a change of variable 2 — z, z = V'z, hence UD'2' = UDV'z =Tz = y:

1= [ Sy(@);0) hygoy(z) 5 dz (6.21)

2¢.g. a straight line when n; = 2, as in Figure 6.1,
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Figure 6.1: Mapping from Q, to 2, going through the intermediate space Q, obtained by
singular value decomposition of the Jacobian of ¥ w.r.t. X. Here we consider a mapping

from %? to R, and either the mapping is linear or a is very close to b.

109




where hy;)(x) = h},(z"). Note that the Jacobian of the mapping r — = is 1.

Hence we have found how to express a solution in the case where y = T'x is a linear function
of x:
g(x) = hy(xr)s (6.22)

where s is the product of the singular values of 7" and hy(z) is a conditional p.d.f. for X

given Y = y, to be specified, for hypersurfaces of dimension n, — n, in ;.

6.1.4 Case of a Non-Linear Transformation

We will now attempt to generalize the solution previously obtained with tue change of

variable y = y(z) to the case ny < n,; and y(z) a non-linear transformation.

Let T be the Jacobian of the transformation ¥ — X. Let us suppose a singular value
decomposition for T', as before:

T =UDV? (6.23)

where U and V' are square unitary matrices of dimension ny x n, and n, X n, respectively.
D is a rectangular matrix of dimension n, X n,, with zeros everywhere except in the

“diagonal” from (1,1) to (ny.ny). Let us call s the product of the singular values:

s =] Du (6.24)

Let us again define an intermediate random variable Z of dimension n; that has the fol-

lowing property:
(215 22,0000 2n,) _
a(ml » £y -"vwn;)

vt (6.25)

where V! varies in function of z.

As for the linear case, let us decompose Z into Z' and Z":

2 = (21y.00s 2n,)

2" = (Zny41y e Zn,) (6.26)
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'I'hen we can perform the same changes of variables as in the linear case, except now s, U

and V! depend on z:

| = /n 0 dy = /ﬂ ) £,(UD'2";0) 5 d? (6.27)

We also have to specify a p.d.f. h.,(2") for Z" when Z'is given, i.e., a conditional p.d.f.

h,(z) for X when Y = y is given.

/n B (") d2" =1 (6.28)

We obtain again the form of the solution by multiplication of the two integrals in equations

6.27 and 6.28:
| = fn £,(3(2);8) hy(sy (2)s dz, (6.29)

i.e., we can choose g(z) as follows:

9(z) = hy(z)s(z) (6.30)

6.1.5 Choice of Distribution

Let us consider the following uniform distribution for 2”, when 2’ is given:

I( 2, 'f I " E AI i
ha(y = ) &) e 41=) (6.31)
0 otherwise

where A'(2') is a hypersurface in €2, that is spanned by (2,41, ..., 2n, ), i.€., that is orthog-

onal to the axes of (2,..

T'he constant I\ is defined as follows:

1

K= ey @
2!

(6.32)

Interestingly, the area of A’ C 2, is the same as the area of the corresponding surface A in

Q;, because the Jacobian of the mapping z — 2 is V¢, whose determinant is 1:

area(A') = /

dz" = / ds = / dz = area(A) (6.33)
(2',2")€A(2") A A

where A is the hypersurface in $2,, corresponding to a given 2’ and to all 2" € A’
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Choosing a uniform distribution and a certain K'(z’) is thus equivalent to assuming that the
domain of the random variable X covers a certain bounded volume, and that for each value

of Y, X is uniformly distributed along the hypersurface that corresponds to Y = y(r).

Unfortunately, when y(z) is a non-linear transformation, there does not appear to be any
easy solution to the problem of finding the approoriate constants A for each value of Y,

when the domain of X is given. One way to do so would be following:

1. Compute the function z(z): this requires to solve the simultaneous partial differentiai
equations given by %ﬁ:’—';"‘]—'% = V. This matrix equation can be transformed into n,

systems of functional equations for each z,, each with n, equations and n, variables,
2. Map the known domain Q, to Q, = z(€2,).

3. Compute the area of A'(2') (for all 2') that lie within Q,.

Although choosing a proper hy(z) remains an open problem, the following considerations
may justify a simple choice for this distribution. If ¥ = y(z) is the output of an ANN
which reduces the dimensionality of X, it means that some “components” of X have heen
discarded. These are precisely represented by Z", which is obtained by a non-linear mapping
from X as already described. } depends only on the first n, components of Z, that is Z’.
If we wish to use the output of the ANN for some classification task, then we are not really
interested in modeling® those aspects of the input data that correspond to variations along
Qzn. This may help justify the choice of an arbitrary distribution for Z” which requires
no parameters and simplifies the estimation of w. A choice of distribution which would

considerably reduce the computational complexity of the estimation of w is the following:

hy(z) = % (6.34)

where K is some constant that ensures that the integral of hy(x) over the bounded hyper-

surface A is equal to 1. In that case we can write the p.d.f. for X as follows:

fol@iw, 0) = fy(y(z;w); ) K (6.35)

3j.e., using some degrees of freedom.
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initial
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final state

gradieni: § observations

ANN

A

preprocessed
speech

Iigure 6.2: Basic architecture of the ANN/HMM hybrid: the ANN supplies observations
to the HMM; the HMM returns an error gradient to che ANN.

When trying to minimize or maximize f,, one can drop the constant k', whose precise value

is unknown in general, since its value does not affect the estimation of w or 6.

In this chapter we consider a hybrid of ANNs and HMMs. In analogy with the concepts
introduced in this section, X is the input of the ANN, i.e. the preprocessed speech signal,
and Y represents the output of the ANN and the observations of the HMM. To optimize the
ANN/HMM hybrid we must compute the gradient of a common cost function with respect
to all the parameters of the hybrid. These parameters are w and @ for the ANN and the
HMM, respectively. The cost functions that we consider for the hybrid can all be expressed
in terms of the likelihood of the observed data given some mordel. Hence to estimate the
parameters of the system we need to compute the gradient of this likelihood with respect
to these parameters. In sections 6.3 and 6.4 we show how to compute the gradient of the
likelihood of the HMM observations, Y. By the previous arguments, we can consider this
gradient to be proportional to the gradient of the likelihood of the input data X, when
making some assumptions about the distribution of X along hypersurfaces that correspond

to fixed values of Y.
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6.2 Hidden Markov Models

Hidden Markov Models (HMMs) are parametric stochastic models of non-stationary pro-
cesses. Although they have been known for many decades, efficient algorithms for estimat-
ing their parameters have been known only since the 60's [Baum63, Baum70). An HMM
models a stochastic process generated by an underlying Markov chain with a finite number
of states, and a set of distributions associated to each state in the model [Levi83]. lor
computational reasons, applications of HMMs to automatic speech recognition are gener-
ally limited to Markov chains of order 1, i.e., transition probabiiities depend only on the

current and the previous state.

An HMM can have N states ¢, q2, 43, .--qN, and it can be specified in terms of

e initial state probabilities 7y, 7y, ...mn, where 7, is the probability of being in state i

at time 0.

e astate transition matrix A = [a,,], where ¢, is the probability P(q, at t + 1| ¢, at. t).

¢ a random process associated to each state, described either by a discrete or a contin-

uous distribution: b,y = P(Yy | ¢, at t), where Y, is the observation vector at time

L.

Algorithms exist to estimate iteratively these probabilities (or the parameters of prehability
distributions). These algorithms are guaranteed to converge to a local maximum of a

criterion function. For example, the Baum-Welsh algorithm [Rabi89, Baum?70, Levi83]

performs maximization of the likelihood:
L=rPY!| M) (6.36)
where M represents the model, with all its parameters.

In the application of HMMs to speech recognition, two types of probhlems are distinguished:
isolated words (or units) recognition, and continuous speech recognition. In the first case,
a single model per word is used and the word corresponding to the model with greater

likelihood is selected during recognition. In the second case, several units are concatenated.
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During recognition, the most likely sequence of units can be obtained with an algorithm
based on dynamic programming. In the following sections, we derive equations for com-
puting the gradient of two HMM criterion functions (maximum likelihood and maximum

mutual information) for the problem of isolated and continuous speech recognition.

6.3 Definitions

Let ¥; be the vectorof ANN outputs at time 2. These outputs are considered as observations
of a continuous density HMM used in the scheme shown in Figure 6.2. Here, we assume
HMMs with a single final state per model. Let ¥;T be the whole observation sequence for
the HMM, T' is the length of the observation sequence, and Y; a particular observation,
made when the HMM i3 in the state §; at time t. Let a,, be the transition probability
from state ¢, to state ¢,. The probability that the HMM generates Y; in state S5; at time
t is denoted as b,y = P(Y; | §; = ¢,). Parameter estimation algorithms [Rabi89] allow one
to compute recursively with a dynamic programming procedure the following probabilities

for partial sequences (up to time ¢, from time ¢+ 1 on):

oy = P(Y tand S, = ¢ | model) = b;,tZaJ,aJ,t_l
7
s T v
By = P(Y 31| Se=q and model) =" ay,b, 04185041 (6.37)
J

with appropriate boundary conditions [Lee 89]. Y is the subsequence of observations from
frame a to frame b. If the task is to model isolated units (e.g., isolated words), there will
be multiple models w, one for each unit. For continuous speech recognition, unit models

(e.g., phonemes) are concatenated to make word and sentence models.

The likelihood that an HMM has generated the observation corresponding to the pronuncia-
tion of the unit wis L, = ay r, where F, is the final state for model w. HMM parameters
can be estimated with different criteria. Two popular criteria are Maximum Likelihood
(ML) and Maximum Mutual Information (MMI). Modeling with these two criteria is dis-
cussed in [Nada88]. Maximum Likelihood Estimation (MLE) is based on the maximization
of the criterion C expressed as Caqpp = L. For isolated unit modeling, ¢ represents the

pronounced unit. For continuous speech, ¢ represents the training model, a constrained
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model built from the concatenatation of the units corresponding to the training sentence.

6.3.1 Maximum Mutual Information Criterion

Training an HMM with the Maximum Likelinood criterion is based on the assumption
that the true input distribution is a member of the family of distributions covered by
the choice of model, i.e., the choice of model topology and the choice of the form of the
observation distributions. However, this assumption is not exact in general. With the
Maximuia Mutual Information (MNMI) criterion, one searches for parameters of the HMM
that minimize the recognizer’s uncertainty of what the correct word sequence is, given the
observations [Bahl87]. The resulting criterion has the advantage in comparison with MLE
of being discriminant, i.e., it attempts to model each class as it differs from the others,

rather than independently from the others.

Assuming we have a set of alternative models {model,} that could have generated the

observation Y{, the mutual information between the correct model ¢ and the observation
Y is

P(Y,T,model..)
P(Y,TyP(model,)

PV, | model,)
S POY | model,)P(mnodel,)

I = log( ) = log( (6.38)

In the case of Maximum Mutual Information Estimation (MMIE) for isolated unit modeling,

the following criterion can be used:

L.
7.

CuMmie = log(Il sotated) = log( (6.39)
where

L .
”tsolalcd = Ewch (().4())

Assuming equal a priori probabilities for each model, maximizing Cpagagsp; as in equation

6.39 also maximizes the mutual information [.

For continuous speech, we assume that an HMM is built by concatenating unit models.
During training, we consider a constrained model 7 that is made of the concatenation of

the units that form the training sentence. On the other hand. during recognition, no such
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knowledge is available and we use an unconstrained® model p, for example a loop model

[LeeH 89]. Hence, for continuous speech, Cparyg can be expressed as

L
CMMIE = log(IIconhnuou.o) = lOg(L—T), (641)
P
where
L
H continuous = 'L_T' (642)
”

L, = ag, r denotes the likelihood of the training model and L, = ag, r denotes the
likelihood of the recognition model. By optimizing one of the criteria described above
for the hybrid system, we can replace the usnal Least Mean Square criterion and direct

supervision of the ANN by a supervision which is derived from the temporal modeling in

the HMM.

6.3.2 Observation Probability

IFor the ANN/HMM hybrid, any continuous disiribution can be used as long as it is possible
to compute the derivative of b, ; with respect to the observations Y;. For the experiments
described in this chapter, we assume b,; can be represented by a Gaussian mixture as

follows:
Zy
| Lk

"= 2

where n is the number of observation features (i.e., the number of ANN outputs that are

e exp(~ (¥ = ) S5 (¥ — ) (6.43)

sent to the HMM). The transition probabilities a;,, normal distribution mean vectors y,
covariance matrices Ly, and gains Z; can be estimated as in [Rabi89)]. A derivative of the
cost function C with respect to b, ; can be computed and used for estimating the parameters

of the ANN as will be shown in the next section.

6.4 Estimation of ANN parameters

As the optimization criterion C depends on the parameters YT computed by the ANN, it

is possible to express C as a function of them and derive the following equation, using the

‘Tixcept for those constraints that could be introduced by a gramnar on some transitions (particularly

from unit to unit)
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chain rule:
ate Ot Ob, 4 6.10)
OV, & Bb, DY) (6.

where V), is the j!% element of the network output vector Y,. The negative of this gradient

can be used with back-propagation® to estimate the ANN parameters.

In the case of MLL, the derivative of ("yrppc With respect to b, ¢ is simply

OYCarrr O Lyt 0%y, (6.15)
Dor, b, Db ‘

where model is the training model (the correct word model, in the case of isolated units

modeling).

In the case of MMIE, the gradient of the optimization criterion C'agaryp; With respect to the

observation probabilities b, , can be expressed as

DHC 1Ot y
b~ H Ob, (6.16)

where II is defined as in equations 6.40 and 6.42 for isolated and continuous speech mod-

eling, respectively.

In the case of isolated units modeling (MMIFE), for states : that are in a unit model w, the
partial derivative on the right hand side can be expressed as follows:

a+”wululcd _ (bew — ”c) a+c’l‘m.’l‘

; = ; (6.47)
()b,_t Zw l’w ()h,'l
For continuous speech (MMIE), we have the following derivative:
1 _Jokn1 for state ¢ in training model T
OHcontmuous _ XFp, I' ab, g (648)
- NP . . - )
b, —%é-mic—%g—ﬂ‘-’ for state ¢ in recognition model p

l‘p. T v

In general, for every optimization criterion C that can be exprussed as a differentiable

function of the likelihood L, it is possible to compute %

By differentiating equation 6.43, 3—%% can be expressed as follows:

ab.’g _ Z Zk

| .
0_}/: = (27)" | Tx I)1/2(2 ity (pent — Yll))“xp(—i(yt - /lk)tle(yt — i) (6.49)
J i

k

51t replaces the usual @E/3Y,. = (Y — target ) for output units, as used in cquation 4 5, where target,,

would be the desired ontput at time ¢ for umt 3
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where di 1, is the element (1,j) of the inverse of the covariance matrix (£=') for the k4

Gaussian distribution and jig is the I*h element of the kth Gaussian mean vector jig.

I'hen, similarly to [Brid90], it is possible to compute the following derivative using equation
6.37, for any hidden Markov model. Here the symbol model can stand for any of the above
mentioned models, e.g., ¢ (correct word), w (any word) for isolated units modeling, or p

(recognition model). or 7 (training model) for continuous speech modeling.

a(}'Fmodf-lv'r — anl‘"md(,,,T aat,l
bt do,, Ob,,
t)a-]'t+] 80"mmiel'7‘
- a _
(Z On, BnJ,H )(2,: 20-1)
Zb”“"" ()(;,'i:c.ll Z“Jt“]t 1)
‘3“ 1 (6.50)
Nt

The equality on the previous line can be justified because the recursive definition of 3,

(see equation 6.37) is the same as the recursive computation of ——émdd—-

day,

_ _Twmodelr 7 r Z modrl'
=) _ayb J,r+1 (6.51)
da, 801, 41
with
Doy
detr T _
5 mode = ﬂFmodcl-T =1 (6.52)
nFmodrhT
50 we have:
()OF T
—Tmedet T = g, (6.53)

6an,t

6.5 Initialization of the ANN Weights

There are several ways for initializing the weights of the ANN. If initialization is with
random weights, training might be very slow because ANN training is in general slower

than HMM traming. and the HMM parameters depend on the transformation performed

by the ANN.
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6.5.1 Data Compressiocn and Deterministic Initialization

Another possibility consists of a deterministic initialization that would decrease the chance
of getting stuck in a local minimum (see [Irin90])®. Another advantage of a determimstic
initialization is that parameter estimation does not depend on random imtial conditions.
Different initial conditions may give rise to different networks. with very different perfor-
mances [Kole90]. A useful preprocessing step that the ANN can perform may consist of the
computation of the principal components of the input data. An interesting alternative is
the computation of linear discrimmants [Brow87). In both cases, it. 15 reasonable to model
the distribution of network outputs with a mixture of Gaussians with diagonal covaniance

matrices. This considerably reduces the number of parameters of the HMM.

The computation of the principal components can be split into two parts by decomposing
the principal components or the linear discriminants matrix .1 into the product of two

matrices, e.g., with an LU decomposition [Stew73]:

A= LU (6.54)

This decomposition leads to a 2-layer network with inputs connected to the hidden layer and
the hidden layer connected to the output layer. The hidden layer weight matrix 1s initialized
with ¢ I where ¢ is a small positive number, and the output layer weight matrix is imtialized
with U. By multiplying L by a small scalar we make sure that initially the weights of the
connections to hidden nodes are very small so that the input-output transformation of each
hidden node is almost linear. If the hidden units compute symmetric sigmoids, with output
ranging in the interval [-1,1] rather than [0,1], then the ANN output Y 1s approximately as

follows:

YrcLUX =cAX (6.55)

where X is the network input, which could be fed by a small number of spectral frames of

the input signal.

S A similar situation occurs for Radial Basis Function networks, which can be trained very fast if the

hidden layer is initialized using a cluster analysis of the input data (see Section 7 1)
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Initially the network settled as described perfoims a decorrelation of the input data over the
spectra and a few frames of speech. Indeed, we know that there is a degree of redundancy in
each spectrum, as well as in a set of adjacent spectra (the spectra normally change smoothly
over time). The network reduces the dimensionality of the input data so that the process
described by the network output can be better modeled by an HMM trained with limited

sample data.

'I'he advantage of the proposed scheme over a simple fixed linear transformation that com-
putes the principal components or the linear discriminants in a preprocessing phase is that
the function computed by the network can evolve with further training in order to optimize

the learning criterion, based on the reduction of the rate of recognition errors.

6.5.2 Initialization v/ith A Priori Targets

"To initialize the ANN, we can use prior knowledge about the task to modularize it and
bootstrap the modules such that their outputs approximate features of interest (see argu-
ments in Chapters 3 and 5). Rather than having a single ANN that computes the vector
Yy of parameters, we can have a hierarchy of networks, as shown in Figure 2. Such an
architecture is built on three levels. Level 3 contains the HMMs. Level 2 is made of a
single ANN that acts as an integrator of parameters generated by more specialized ANNs
or computed by other algorithms, like the ones of an ear model (see [CoheR9] or [Cosi90)).
Networks at level 1 are specialized to compute parameters that are particularly useful for
characterizing certain acoustic situations. As an example, a set of parameters may repre-
sent the acoustic cues useful for distinguishing between sonorant and non-sonorant sounds.
A network that computes these parameters may have some special acoustic features at the
input that are different from those feeding other networks. Networks at level 1 can be
added when systematic recognition errors have been noticed (for example a frequent confu-
sion between voiced and unvoiced plosives) and suitable time and frequency representations
can be conceived for the input of these networks {see for example [Ben89b]). The outlined
hierarchical system can be trained as described in sections 6.3 and 6.4. The gradient of the

optimization criterion can be back-propagated from level 2 to level 1.
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Initially, networks at level | can be trained separately as classifiers of certain phoneme sets.
An alternative would be to train networks explicitly as detectors of phonetic properties such
as place and manner of articulation. After level 1 networks are trained, the level 2 network
can be initialized so that it computes the principal components of the output of the level
1 modules. This approach has been chosen for the comparative experiments performed in

Section 6.8.

6.6 Some Extensions

The algorithms introduced above can be used even if the ANNs are recurrent. Networks
of this type can capture short-time temporal regularities with less parameters than a feed-
forward network with time delays (see Section 4.3). In general, the output of a recurrent
network is smoother than the output of a feedforward network sranning the input data. In
that case, the HMM temporal resolution could be reduced, thus reducing the number of
necessary parameters. In the experiments described in Section 6.8, the temporal resolution

of the ANN was 5 ms and that of the HMM was 10 ms.

ANNs trained as proposed can perform speaker adaptation. Forsuch a purpose, the network
has to map speaker-dependent observations into a speaker-independent representation. 'I'his
objective could be obtained by first training a hybrid system as previously described for
multiple speakers, and in a second step, adapting only some or all ANN parameters with
known or unknown sentences from the new speaker. If the sentences are known then a
constrained HMM can be used to adapt the ANN parameters. In such a system, the
ANN adaptation represents a tuning of the feature space to the new speaker, whereas the
temporal model remains unchanged. The gradient of the optimization criteria is still passed
from the HMM to the ANN, but HMM parameters remain unchanged. The ANN is trained
in such a way that different speakers tend to produce similar output parameters for the

same speech unit (see [Brid91] for a related speaker adaptation mechanism).
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6.7 Methodology

In summary, we have seen how to compute the gradient of a training criterion for HMMs
with respect to the parameters of the ANN. In particular we have considered the MLE and
the MMIL criterion for both isolated and continuous speech models. To implement such a

hybrid system, the following methodology can be applied.

1. First, ANNs are trained to recognize, for example, phonetically relevant features, such

as, place and manner of articulation.

2. Second, the ontput vector of these networks is compressed by principal component

analysis, in order to provide a smaller input vector for the HMM.

3. Third, a first estimation iteration computes initial values for the HMM parameters,

keeping the ANNs parameters fixed.

4. Finally, the global optimization procedure can be applied in order to tune the HMM

and ANN parameters.

In the next section, an application of this algorithm is described in more details.

6.8 Experimental Evaluation

A preliminary experiment has been performed using a prototype system based on the in-
tegration of ANNs with HMMs. The purpose of the experiment is to show the benefits
of an ANN/HMM hybrid and of its global optimization. The task is the recognition of
plosive sounds in every context and pronounced by a large speaker population. The TIMIT
continuous speech database (Zue, Seneff & Glass 90) has been used for this purpose. SI and
SX sentences from regions 2, 3 and 6 were used, with 1080 training sentences and 224 test
sentences, 135 speakers in the training set and 28 speakers in the test set’. The following

§ classes were considered: /p/,/t/,/k/,/b/,/d/,[g/,/dx/? [all other phonemes/.

“The training speakers were those whose initial was between “a” and “ inclusively. The remaining

speakers were used for testing

*The flapped alveolar plosive /dr/is considered as a distinct phoneme in the TIMIT database.
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Figure 6.3: Extension of the ANN/HMM hybrid to a hierarchy of modules, with three
levels.
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Speaker-independent recognition of plosive sounds in continuous speech is a particularly
difficult task because these sounds are made of short and non-stationary events that are
often confused with other acoustically similar consonants or may be included into other

unit segments by a recognition system.

6.8.1 Architecture

As discussed in [Ben89b, Ben90a, Ben91b] and Chapter 3, speech knowledge can be used to
design the input, output, and architecture of the system and of each one of the networks.
I'he approach that we have taken is to select different input parameters and different ANN

architectures depending on the phonetic features to be recognized.

T'he experimental system is based on the scheme shown in Figure 6.3. Rather than having
a single ANN that computes the vector Y of parameters, we have a hierarchy of networks.
FFor the HMM hybrid, the architecture is built on three levels. Level 3 contains the HMMs.
Level 2 is made of a single ANN that acts as an integrator of parameters generated by
more specialized ANNs: ANNI is a linear network that initially computes the principal
components of the concatenated ontput vectors of the lower level networks (ANN2 and
ANN3). At level I, two ANNs are initially trained to perform plosive recognition { ANN3)
and broad classification (ANN2) respectively. The preprocessing and topology of these
networks are similar to the networks described in [Ben91b] and their outputs describe
articulatory features such as the place and manner of articulation and a degree of voicing.

Input parameters are fed to the networks every 5 msec.

Broad Classification Network

‘T'his network was designed by Ralf Kompe and is described in [Ben91a]. The broad classi-

fication net (ANN2) has five outputs corresponding to five broad categories:
{non-nasal sonorant, nasal, plosive, fricative, silence }.

The twelve input nodes to ANNZ2 are the energies of five band-pass filtersin the time domain

covering the range up to 7 kHz, the signal total energy, and their six time derivatives. The




filters were TIR (infinite impulse response) Butterworth pass-band filters with the following
-3 dB bandwidth specifics: 150-350 Hz, 60-500 Hz, 500-2500 Hz, 2500-3500 Hz, and -1000-
7000 Hz. The non-linear phase response of the filters was not corrected. For the total energy
and for the filters in the 150-350 and 60-500 Hz bands, an input window of 20 ms was used.
A window of 5 ms was used for every other filter. The derivatives were computed by linear
regression over 9 consecutive frames (15 msec). T'he filter bandwidths were chosen based
on acoustic-phonetics knowledge (see for example [Stev81, OShaR7]). This wput feature
representation was found to perform better than other spectral representations based on

the computation of energies from the Fast Fourier Transform of a fixed analysis window

(see below).

ANN2 has four fully connected layers (12 30 - 15 5) but only time-delay links (from the
input at frame t and frame t — 20 ms to the first hidden layer, and from the second hidden
layer at frame ¢ and ¢ — 20 ms to the output layer), as it was found that recurrence did not
help its performance. Alsothere were direct links without any delay from the input layerto
the second hidden layer and the output layer, and from the first hidden layer to the output
layer. This architecture was optimized after some trials. T'he total frame error was 17.7%
on the test set and 17.6% on the training set. With a reduced set of classes obtained by
merging fricative with plosive and and nasal with non-nasal sonorants, a frame error rate
of 11.1% on the test set and 11.0% on the training set were obtained. This performance

compares favorably with other published works [Chig88, Clole88].

Plosive Network

The plosive recognition net (ANN3)is as described in sections 3.1.2 (inputs), 3.3.2 (archi-
tecture, see Figure 3.4), and 3.5.2 (output coding). ANN3 has time-delay links between the
input nodes and the hidden layer, and recurrent links between some of the hidden nodes
and theoutput nodes. It has two hidden layers, and the first hidden layer nodes have input
connectivity that is local in frequency. 1t has sixteen outputs with different instantiations

of each place node depending on the right context?, The 74 inputs to ANN3 are the out-

® Each of the four different places of articulation (labial, alveolar, velar, and flapped alveolar) corresponds

to two different nodes, depending on whether the following phoneme has a forward or backward place of
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puts of 32 Bark scaled ( logarithmic) triangular filters computed from the short-time Fast
IFourier T'ransform of the windowed signal, 30 property detectors approximating a second
order derivative over short intervals of frequency and time (as described in Section 3.1.2).
7 slope coefficients describing the frequency derivative of the spectrum, the total energy
and the voicing energy (in the 60-500 Hz band) and their time derivatives, and a measure
of distance (normalized dot product) between neighboring spectral frames. This particular
selection of input parameters is the fruit of some preliminary experiments [Ben91a). In
general, we have found that using many correlated input parameters and using specialized
ANN topologies with such a distributed output encoding improves both the phonetic clas-
sification performance and the convergence rate of the learning algorithm, when compared
to using the spectrogram only as input and the simpler “one output node per phoneme”

encoding.

Principal Components Network

Computing the principal components of a set of vector patterns results in a projection of
these vectors upon the eigenvectors of their covariance matrix. This is a rotation of the
axes so that they coincide with these eigenvectors. This is done to reduce dimensionality,
by keeping only the first few eigenvectors, when they are ordered by decreasing eigenvalue.

The first few eigenvectors account for most of the variance of the patterns.

After the covariance matrix has been computed and its eigenvectors evaluated, the input to
the principal components network (ANN1) are projected onto this lower dimension space
and the mean and variance in this space are computed and used to normalize the projected
data to have zero mean and unit variance. The linear network is then initialized so that it

computes this translated and scaled projection onto the principal component space.

ANNI initially computes the principal components of the concatenated output vectors of the
lower level networks, ANN2 (16 outputs) and ANN3 (5 outputs). Several choices of number
of principal components were tried and the best one that was found was 8. Experiments

with a simpler HMM topology yielded 78% accuracy with 21 inputs to the HMM, 82%

articulation  The remaiming cight nodes are labeled: unvoiced plosive, voiced plosive, vocalic front,vocalic

non-front, liquid, fnicative, nasal, silence,
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Table 6.1: Comparative Results: Neural networks alone, with Dynamic Programming, with

Hidden Markov Models. and with global optimization.

% rec | % ins | % del | % subs | % acc
ANNs alone 85 32 0.041 15 53 1
HMMs alone 76 6.3 2.2 22.3 69
ANNs+DP (no bigrams) 88 16 0.01 11 T2
ANNs+DP (bigrams) 88 11 0.01 l 71
ANNs+HMM 87 6.8 0.9 12 81
ANNs+HMM+global opt. 90 3.8 1.4 9.0 RG

accuracy with 10 inputs and 81% with 8 inputs.

Hence the linear network initialized to compute the translation scaling and rotation has 21|

inputs, 8 outputs and 176 weights (8x(5 + 16 + 1 (bias))).

6.8.2 Comparison of Post-Processors

For the dynamic programming (DP) hybrid, the outputs of the networks at level | are
indirectly used in the cost function of the dynamic programming optimization. That cost
function is based on the product of several probabilities (as described in Section 4.4.3):
a priori class probabilities, duration probabilities for each phoneme, bigram probabilities
(all estimated from the TIMIT labeling of the training set), and observation probabilities
conditional on each class (modeled with a maximum likelihood Gaussian mixture with

diagonal covariance matrix).

In the case of the HMM postprocessor, ANN1 computes 8 features for the continuous
densities HMM. The combined network (ANN14+ANN2+ANN3) has 23578 free parameters.

Each of the 11 HMM unit models ' had 14 states, 28 transitions, 3 self loops, without

10T improve its modehng, the rejection class was composed of four models  nasals, fricatives, non-nasal
sonorants, and silence. The recognition results are obtained by merging these four subdlasses, such that the

total number of classes to recognize is eight.
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explicitly modeling the state duration. Each HMM has tied distributions with 3 basic
different distributions characterizing the beginning, middle and final part of a segment
modeled by the unit. Fach of these distributions is modeled by a Gaussian mixture with 5
densities. ‘['he covariance matrix is assumed to be diagonal since the parameters are initially
principal components and this assumption reduces significantly the number of parameters

to be estimated.

'To assess the value of the proposed approach as well as the improvement brought by the
HMM or DP as postprocessors for time alignment, the performance of the hybrid systems
were compared with that of a simple postprocessor applied to the outputs of the ANNs.
The simple postprocessor assigns a symbol to each output frame of the ANNs by comparing
the actual output vectors with target output vectors and choosing the one with shortest
Fuclidean distance. This simple postprocessor then smooths the resulting string to remove
very short segments and merges consecutive segments that have the same symbol. This

system is denoted in Table 6.1 by ANNs alone.

To evaluate the advantages of using an ANN as a sophisticated preprocessor for the HMM,
the same HMM models were used to perform recognition (denoted in Table 6.1 by HMMs
alone), and using only a standard set of acoustic features as input to the HMM: 8 cepstral
coefficients, 8 cepstral derivatives, the signal energy and its derivative. Results using only

the cepstrum and the energy were slightly worse.

The comparative results on the test set for the various systems are summarized in Table
6.1. ‘The overall recognition rate (100% — %deletions — %substitutions) for the 8 classes
with the hybrid system after two training iterations is 90% on a total of 7214 phonemes,
and its accuracy (100% - %deletions - %substitutions - %insertions) is 86%. Note that
this is an important improvement over the performance obtained with an HMM trained
without global optimization (86% recognition and 81% accuracy), as well as in comparison
with the two ANN/DP systems (88% recognition and 72% accuracy without bigrams and
88% recognition and 74% accuracy with bigrams). Note that the biggest improvement
in comparison to the ANNs alone comes from modeling the durations rather than the
bigrams. The ANNs alone yielded 85% recognition but only 53% accuracy, because of the

high number of insertions (32%), mostly due to short plosive segments. The ANNs classify
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Table 6.2: Generalization as a function of the number of iterations and the HMM parameter

update method.

% rec | % ins | % del | % subs | % acc
Iteration 0 87.6 6.8 0.9 1.5 80.7
Iteration 1 (batch) | 87.1 | 3.6 | 22 10.7 | 83.5
Iteration 2 (batch) | 87.1 3.8 1.9 11 R34
Iteration 1 (online) | 89.5 1.0 1.3 9.2 8H.D
Iteration 2 (online) | 89.6 3.8 1.4 9.0 85H.8
Iteration 3 {online) | 87.6 3.6 2.4 10 R1.0

well but have a noisy output with many insertions. The HMM or DP duration modeling
eliminates most of these insertions because of their better duration and temporal structure
modeling. However, for the experiments with HMMs alone with cepstral input features (+
energy and their derivative), the performance was slightly worse than with the ANN/DP
hybrid, and remarkably worse than with the ANN/HMM hybrid  Within this globally
optimized hybrid, in addition to providing a good temporal model, the HMM provides
more appropriate gradient for the outputs of the ANN. With these “moving targets” for
the ANN, the hybrid systewn further improves its performance. It is interesting to note that
the effect of equation 6.49 is to generate a gradient that tends to bring the output of the
ANN closer to the means of the normal densities which are close to the ANN output, as

well as consistent with the the training string.

6.8.3 Batch vs Online Parameter Update for the IIMM

Our previous experience, as well as other results [Bott90, LeCa9a] (see discussion and exper-
iments in Section 2.2.1) indicate that online or stochastic update yields faster convergence
than batch update of ANN parameters, especially for pattern recognition problems such as
those in speech recognition. Comparative experiments performed with the hybrid system

indicate that better results can be obtained with ~nline update for the HMM as well as for

the ANN.
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In Table 6.2, the two update methods for the HMM parameters within the hybrid system are
compared. 'I'raditionally, the HMM parameters are updated after having compiled statistics
over the whole training set. The alternative update method used in the experiments is a

smoothed online parameter update:
0p=(1- a)p_1 +ab,, (6.56)

where 6, , is the new value of the " parameter after sentence p, a is a small constant!!,
and éh,, is the estimation of the parameter 6, given the observations in sentence p, using
usual HMM parameter estimation algorithms [Rabi89)]. Table 6.2 also shows the evolution
of generalization errors after one and two training iterations of the hybrid system with
global optimization. In the experiments, an error minimum was reached after only two
iterations. I urther training only reduced generalization. This fast training behavior is

typical of Continuous Densities HMMs.

6.9 Summary

A system has been proposed to combine the advantages of ANNs and HMMs for speech
recognition. T'he parameters of the ANN and HMM subsystems can influence each other.
We showed how to perform a global optimization of such a system by driving the network
gradient descent with quantities computed by the HMM parameter estimation algorithm.
Although the algorithm is based on making some assumptions about the distribution of the
input data for fixed values of the output of the ANN, the results of the above-described
experiments were encouraging. They indicate that global optimization of a hybrid ANN /
HMM system brings some important performance benefits and suggest that the possibilities
of such a hybrid system should be further explored. We have seen how such a hybrid system

could integrate multiple ANN modules, which may be recurrent.

"We used a = 0005, except for the variances of the observation distributions which were updated with
a senu-bateh algorithm, because the estimation of the second moment of the distributions requires more
observations:
o =(1- f})”-.p—l + Fovp.
where Nis the number of sentences, and 44,1,p is the estimation of the parameter @, given all the observations
Sfrom sentence I Lo sentence p, using standard HMM parameter estimation algorithms [Rabi89)]. This method

forces a slow initial adaptation of the variances but computes their final valuc using all the training data
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An interesting extension would be to perform speaker adaptation with the hybrid system,
This could be obtained by first training the system as previously described for multiple
speakers, and in a second step, adapting only the ANN parameters with known or unknown
sentences from the new speaker. in order to maximize the hkelihood of the data given the
global (ANN / HMM) model. In such a system, the ANN adaptation represents a tunimg

of the feature space to the new speaker, whereas the temporal model remains unchanged.

Although the ANNs used in the experiments were recurrent. they did not capture the
temporal structure of the speech signal as well as the ANN/HMM or the ANN/DP hybnd
systems. Note that very few parameters were used in the HMM or the DI postprocessors
to describe the temporal structure of the observations (transition probalilities or duration
probabilities. respectively). T'his may indicate that current ANN topologies and related
algorithms are inefficient in modeling temporal structures. It should be observed that
HMMs generally used for speech recognition have a left-to-night. structure rather than a full
connectivity from state to state. It may be possible to improve the way in which temporal
structures are modeled in ANNs by imposing appropriate constraints on their architecture

for the particular problem of learning to recognize sequences.
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Chapter 7

Radiél Basis Functions and Local

Representation

In Chapters 3, 5 and 6 we have considered modularization as a way to deal with the
problem of parameter coupling. In this chapter we consider another approach based on a
different type of node operation that yields a local rather than a distributed representation:
Radial Basis Functions (RBI'). Several phoneme recognition experiments are described
with such networks, showing that they can be trained more rapidly but may require more
memory resources than the “standard” sigmoid networks. Networks of RBFs with recurrent

connections and a hybrid of RBFs and sigmoids are also considered.

7.1 Radial Basis Functions Networks

Sigmoid units such as used in the previous chapters can be interpreted as computing the
sigmoid of a signed distance between an input point in the space of inputs of the unit
and a hyperplane in that space, defined by the input weights of that unit. Hence, input
points near the hyperplane produce an intermediate output of 0.5 or 0 (for asymmetric and
symmetric units respectively), while points far from the hyperplane yield values close to the
saturation values of the sigmoid (e.g., 0 and 1, depending on which side of the hyperplane

they lie), as illustrated in figure 7.1.
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Figure 7.1: Geometrical interpretation of RBI' vs sigmoid units.

On the other hand, Radial Basis Functions (RBI') units produce an output which depends
on the distance between the input point and a “prototype” point in the input space. T'he
output of an RBF network can be written as the weighted sum of the outputs of those RBF

units:
F(X)=) wyh(| X =P, |) (7.1)

where X is the input pattern vector, P, is the prototyre point (vector) associated to the

RBF unit u; and the basis function /(-) may be, for example, a Gaussian:

hir) =¢" (7.2)

The norm in equation 7.1 can be weighted by a matrix, equivalent to a linear transformation

on the input.

[Pogg89] showed that RBFs perform smooth function approximation arbitrarily well, i.e.,
approximate F'(X) with ¥(X,8) by hypersurface reconstruction, when given a training
set of examples {F(X),X} which may be noisy. This reconstruction is based on the use
of regularization [Tikh77]). More specifically, it imposes a smoothness constraint on the
resulting mapping. Poggio [PoggB9] suggests that the parameters of an RBI" network as

defined in equation 7.1 can be initialized efficiently (e.g., using K-means) and then tuned
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using gradient descent. Such “generalized RBFs” [PoggB9] are mathematically related to
the well known RBFs used for strict interpolation tasks. However, less units than training
examples are required in the “generalized RBFs”. This approximation scheme is also related

to methods such as Parzen windows, generalized splines and vector quantization.

7.2 Neurobiological Plausibility

A multidimensional Gaussian can be represented as the product of lower dimensional Gaus-
sians. This property suggests a way for neurons to compute RBFs. Gaussian radial basis
functions in one or two dimensions can be implemented as coarse coded receptive fields: a
dimension is represented as an array of neurons, each reacting only to values of the variables
in a certain range. What is required in addition to coarse coded receptive fields is the mul-
tiplication of signals. Some special type of synapse has two (or more) incoming inputs and
performs an operation similar to a product of the two incoming signals [Mel90]. Neurons
with such synapses are called sigma-pi neurons. Hence a RBF network could be imple-
mented with Gaussian receptive fields and sigma-pi neurons without explicitly computing

the exponential of the norm in equation 7.1.

7.3 Relation to Vector Quantization, Clustering, and Semi-

Continuous HMMs

RBI's are related to vector quantization (VQ) as follows (see [Gray84] for a review).system.
VQ partitions the input space into mutually disjoint regions (e.g., Voronoi polygons, sep-
arated by line segments at equal distance of neighboring cluster centers). VQ algorithms
cluster the input points into these disjoint regions and transform each input point to a
symbol associated to the corresponding cluster. This is similar to RBFs that would have
a boolean output, with a single RBF responding to a given input pattern. Instead, RBF's
represent the input pattern by a vector of proximity measures (between 0 and 1) over the

set of hidden units of the RBF network.
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Kohonen's neural network models for vector quantization [Koho88] also compute Fuclidean
distances of cluster centers to the input patterns. These algorithms can be seen as online
forms of the k-means algorithm [MacQ67)], often used for VQ. Kohonen's algorithms are
competitive algorithms in which only the unit closest to the input. pattern responds. In
particular, in the feature map algorithm, the units in competition dre laid out i a low-
dimensional spatial structure (e.g., a 2-dimensional grid) in which a neighborhood is defined,

such that adjacent units in that “map” respond to similar vectors.

Semi-continuous HMMs [Huan89] are more and more used for automatic speech recognition.
In these models, observation distributions are generated by a mixture of a set of Gaussians
common to all states. In the more classical discrete HMMs, observation distributions are
approximated by a non-parametric distribution over a set of common symbols generated
with VQ. On the other hand, with continuous densities HMMs, each state in the model is
associated to its private set of Gaussian densities. In semi-continuous HMMs, each state
is characterized by the coefficients of the mixture, i.e., the contributions of each Gaussian.
The probability distributions modeled by such mixtures are functionally equivalent to the

outputs of an RBF network, iowever the interpretation of outputs and the training methods

are different.

7.4 Methodology

The basic implementation advantages of RBF's derive from their representation: parameters
have a simple meaning with regard to the pattern examples. The following fast training
method was chosen to take advantage of this property in the experiments described in

Section 7.5 (see also [Pogg89)):

1. Initialize the parameters of the RBF units. That can be done by choosing a random
subset of the examples, or with the result of a cluster analysis, such as the cluster
centers produced by k-means or Kohonen’s LVQ2 algorithm [Koho8)]. These two
algorithms are simple to implement and yield acceptable results rapidly. In the ex-
periments, the k-means algorithm was used. This initialization step can be interpreted

as an unsupervised, competitive learning step which encodes the input pattern in a

136




local representation.

2. Initialize the output weights of the RBF network. This can be done with the Penrose
[Penr55) pseudo-inverse or with stochastic gradient descent. The latter seemed more
efficient as the number of training patierns increased. This step is a supervised
learning step and can also be accomplished very fast, since it is a linear problem with

no local minimum.

3. Perform a global optimization of all the parameters of the system. This can be
achieved efficiently with stochastic gradient descent since the output of an RBF unit
can be differentiated with respect to the adjustable parameters of the unit (cluster
mean and rotation matrix). Experiments described in the next section show that
this global tuning step indeed improves performance, confirming our previous the-
oretical (Section 5.2) and experimental (Section 6.7) results indicating that giobal

optimization of a learning system improves its performance (see also [Broo88]).

7.5 Experiments on Phoneme Recognition with RBFs

Several experiments were performed to evaluate the performance of RBFs in a difficult
speech recognition problem. The task was to recognize 39 phoneme classes from the TIMIT
continuous speech multi-speaker database. Complete SI and SX sentences from regions 2,
3 and 6 of TIMI'l were used, with 135 speakers in the training sets (292623 frames) and 28
speakers in the test set (61428 frames). The preprocessing for all the experiments described
in this section produced 24 spectral coefficients on the Bark scale (see Section 3.1.2), in
addition to the signal energy computed over a 20 ms window. These parameters were

computed every 10 ms and sent to the networks.

Unless specified the input window of the network was 4 consecutive frames, i.e., a 100-
dimensional input vector representing 40 ms of speech. Output units of the networks
were asymmetric sigmoids rather than linear units. This is equivalent since the sigmoid
is invertible but is it has the advantage that the outputs are limited to the range (0,1).
For the RBF units, only scaling was used in the Gaussian, because of the higher cost of a

complete rotation matrix.
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Table 7.1: Comparison of global k-means and k-means per class to initialize an RBF network

for 39 phoneme classes recognition on TIMIT.

lobal k-means 78 clusters, no class info 58.1% frame error (test. set)
g

k-means per class | 39 classes x 2 cluster/class | 52.2% frame error (test set)

7.5.1 Supervised vs Unsupervised Initialization

The k-means algorithm generates a set of clusters with input patterns associated to each
cluster. The cluster centers are used directly to initialize the centers of the RBI' units. The
variances of patterns within each cluster was used to initialize the scaling parameters of the

corresponding RBF unit (different for each dimension).

Should we use a completely unsupervised algorithm to find those parameters? Some points
from two classes may form two clusters that mostly overlap, such that the k-means algorithm
represents them with a single cluster. A simple but sub-optimal solution to that problem
is to apply k-means separately for cach of the classcs. Ver simplicity, a fixed number of
clusters per class was used. An empirical comparison for the experimental task of global
k-means (no class information used) vs k-means per class showed a significant improvement
with k-means per class (see table 7.1). The experiments were performed with 78 hidden
RBF units, and output weights were obtained with the pseudo-inverse procedure [PenrhH).
All other experiments with RBFs described in this section were therefore performed with

k-means per class to initialize the network.

7.5.2 RBFs vs Sigmoid Units

The next set of experiments are comparative experiments performed in order to verify that
the gain in training time obtained with RBF's is not lost in generalization. RBI's may be

trained faster for at least two reasons:

e A powerful initialization procedure exists for RBFs, whereas sigmoid networks are

initialized with random weights.
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Table 7.2: Comparison of RBF network and sigmoid network on the task of recognizing 39

phoneme classes in TIMIT.

Sigmoid net | RBF net (only init.) | RBF net (4 glob. opt.)

‘I'raining epochs 22 0 10
Generalization error 51.2% 52.2% 47.8%

e There is much less parameter coupling with RBF networks than sigmoid networks,
because RBI" unit have only a local response. Hence modifying the parameters of one
hidden wnit in an RBF network only influences the small subset of hidden units that

have a nearby cluster center, i.e., which response overlap.

Clomparative experiments were performed on the same task already described at the begin-
ning of this section, with the same target outputs and the same architecture for both an

RBF network and a sigmoid network. Both networks had 78 hidden units.

As shown in Table 7.2, the generalization error of the RBF net after initialization is almost
as good as that obtained with the sigmoid network. After 10 epochs of global optimization
(stochastic gradient descent on all the RBF network parameters: output weights, cluster
centers and spreads), the generalization error was reduced well below that of the sigmoid
network. Hence, with less training time an RBF network with the same number of hidden

units performed better than a sigmoid network.

7.5.3 Effect of Context and Architecture

Various architectures were explored to optimize performance on the phoneme recognition
problem, using multiple delays between the hidden units and the output units. In all of

these experiments there were four delays (0,1,2,3) between the input and the hidden layer.

Results are shown in Table 7.3. Note that the last experiment is with 3 clusters, .iass, i.e.,
117 hidden units. Using only the outputs of the RBF units at frame ¢ did not produce

as good results as using several links with various delays (e.g., 0, 2, and 4 frames). This
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Table 7.3: Comparison of various sets of delays between the hidden layer and the output

layer in RBF nets for 39 phoneme classes recognition on TIMIT.

#clusters/class | hidden—output delays | generalization error
2 0 52.2%
2 0,4 18.6%
2 0,4,8 17.7%
2 0,2,4 16.5%
3 0,2,4 45.6%

result agrees with speech knowledge: information about the changes in speech spectra is
very useful for classification of phonemes. Considering only one frame at a time makes
several classes overlap in the input space. However, using too many frames may result in

generalization problems.

7.5.4 Adding a Recurrent Hidden Layer and Combining RBFs with Sig-

moids

The improvement obtained as shown in Table 7.3 by providing more context with delay
links show the importance of context for the recognition of phonemes. However, as argued
in section 4.3, recurrent networks offer an interesting alternative to the representation of
context. This motivated the next experiment in which a recurrent hidden layer was added
to the best previously obtained network (5th experiment in Table 7.3). This experiment
was also an attempt at combining RBF units with sigmoid units, in order to evaluate if

such a hybrid network could perform better than the RBF or the sigmoid network.

T'he extra layer had 40 sigmoid units feeding the outputs with 3 delays (0, 6 and 12 frames),
and receiving its inputs from the 117 RBI' units with 3 delays (1,3 and 5 frames). It also
received recurrent inputs from the 39 output units, with 2 delays (0 and 4 frames). In
addition, each of these sigmoid hidden units had a self-loop with a fixed-weight decay of

0.93, which corresponds to a time constant (time to halve activation) of 9.5 frames. The
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initiai weights from these units to the outputs were set uniformly between -0.01 and 0.01,
g0 as not to disturb the network too much by the introduction of this layer. After a few
cycles of training, significant improvement was observed. Before the introduction of the
recurrent hidden layer the generalization error was 45.6%. After 11 epochs of stochastic
gradient descent (update after each sentence), the generalization error was reduced to 41.8%.

Relative generalization was good since the error on the training set was 40.9%.

However, the resulting network was very large, with about 54000 weights, and each epoch

required more than a day of CPU time on a UNIX workstation.

In spite of this problem, these experiments suggested interesting conclusions. First, alter-
native networks based on local representations, such as RBF networks, may offer faster
training than the standard networks of sigmoid units. Second, their initialization could be
improved if information about the class of each input pattern is used to compute initial
clusters. Third, performing a global optimization of the RBF network after the RBF units
and the output weights have been initialized lowers the error rate. Third, improving the
representation of context with delays and recurrence significantly improves performance.
Fourth, rombining the local representation units (RBFs) and the distributed representa-

tion units (sigmoid units) may yield improved performance.
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Chapter 8

Biological Constraints for the

Automated Design of a Learning

Rule

Up to this point in this thesis we have considered only basic variations of the back-
propagation algorithms to train ANNs. However, as discussed in section 2.2, this training
algorithm! has several weaknesses, including lack of biological plausibility. In this chapter
we consider an alternative to research based on the back-propagation algorithm. The pro-
posed approach is based on the desire to help the search for better learning algorithms for
ANNSs using automatic methods. One of the conclusions of this thesis is that the design
of ANNs for a complex task such as phoneme recognition is significantly improved if one
uses knowledge about the problem and its solution for many aspects of this design. On the
other hand ANNs themselves were originally designed by taking inspiration from knowl-
edge of neurobiology, psychology, mathematics and sometimes physics. When searching for
learning rules for ANNs, we propose to use even more knowledge of biology to constrain
that search, since the space of learning algorithms is so large. An automatized search for
such biologically constrained learning rules can be achieved by describing such rules with

parametric functions and estimating those parameters that minimize a cost. Some toy ex-

1Even though the network and unit operation are biologically plausible, the training algorithm is not.
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periments with gradient descent show that it is indeed possible to perform a “second-order
optimization”, i.e., learning a learning rule. The basic hypothesis behind the ideas and
experiments presented in this section is that it is possible to search for a synaptic learning
rule with learning algorithms. Because the space of learning algorithms is very large it is
proposed to use biological knowledge about synaptic mechanisms, in order to design the
form of this rule. The proposed method of finding the learning rule automatically relies on
the idea of considering the synaptic modification rule as a parametric function, which has
local inputs, and is the same in many neurons. The parameters that define this function
can be optimized with known learning methods. For the experiments described here, gradi-
ent descent was used to optimize the learning rules. Estimation of parameters of synaptic
modification rules consists of a joint global optimization of the rules themselves, as well as

of multiple networks that learn to perform some tasks with these rules.

Initial experiments are described in order to assess the feasibility of the proposed method
for very simple tasks. Experiments of classical conditioning for Aplysia (an invertebrate
commonly used in neurological studies) yielded a rule that allowed a network to reproduce
five basic conditioning phenomena: habituation, conditioning, blocking, second-order con-
ditioning, and extinction. Experiments with boolean functions yielded a rule for a network
with a hidden layer that could be used to learn some non-linearly separable transformations.
The rule was trained with a set of boolean functions and tested successfully on a different

set.

8.1 Optimizing a learning rule

In order to search for a learning rule, the following assumptions were made:

1. The same rule is used in many neurons 2,

2. There exists an input/output mapping (that may be stochastic) that corresponds to

the learning rule.

3. This mapping can be approximated with a parametric function.

2This constraint is relaxed to several rules for several types of neurons or synapses.
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Consider a network (that may be recurrent) of neurons and synapses (with strength u,),
and an optimization criteria C, which is a function of the behavior of the network, and
that is to be minimized. Let us assume that g% can be computed (for example, with
back-propagation, as described in Section 4.3). Let synaptic weight update at time t be
defined as follows:

w(t+ 1) = w(t) + Aw,(t) (8.1)

and let Aw,(?) be a function of local observable quantities, as well as of a set of parameters

0 shared by all (or a lot of) synapses:
Aw,(t) = Aw(local variables, ) (8.2)

For example, the synaptic change function used in experiments described in this section has
as local arguments a measure of presynaptic activity (ypr.), postsynaptic potential (£,00),
synaptic strength (w,) and of activity of a facilitatory neuron (or of concentration of a

diffusely acting neuromodulator) (ymodut) that modulates synaptic plasticity™:

Awt(t) = Aw(a"poat(n)(t)a ?/prc(t)(t - l), "’!(f)’ ymadul(x)(f)s 0) (8.3)

To perform gradient descent on 8 one computes the following derivatives:

9tC Z 0tC dtw(t)
09, “~ Jw,(t) 06,

(8.4)

3

where the ordered derivative ?%’5';@ (as defined in Section 4.3) can be computed recursively
. otw,(0) __ .
(with —M}—l = 0):
Mtw(t)  dtw(t—1)
a8, a0,

JdAw,(t)
a9,

+ (8.5)

Hence Aw,(-) must be a differentiable function, both of parameters # and of its inputs (e.g.,

T posts Ypre and ymodul)4-

To avoid that # be estimated as a function of a particular synapse, neuron or network

performing a particular task®, it is important that the function Aw(6) and the parameter

3Facilitatory ncurons have been modeled in [Hawk89b]. Ticy emit chomical substances, either very

locally or in large areas, that influence synaptic plasticity.

*The inputs of Aw,(-) may be influcnced by some other weight wy, ¢ g, through ypre, hence it may be
necessary to compute gﬁy—":',ﬁg-

5David Chalmers [Chal90] performed experiments on learning of a learning rule with genetic algorithms
for a single neuron learning boolcan linearly scparable mappings. He observed that for a rule to generalize

to new tasks, at least 10 “training tasks” were necessary.
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set @ that defines it be the same for all (or a large number of ) synapses, and that 8 be

estimated simultaneously with a population of networks learning to perform different tasks.

8.2 Conditioning Experiments

Preliminary experiments were performed in order to assess the feasibility of using gradient
descent to learn the parameters of a learning rule. The first task considered was the
simulation of some behavioral phenomena observed in a simple organism, Aplysia. The
architecture of the network used for this experiment (see Figure 7.3) was inspired from a
hypothesized circuit [Hawk89b, Hawk83] for the Aplysia gill- and syphon-withdrawal reflex

and its modification by tail stimulation.

T'he network model employed a very simple discrete-time neuron equation:

1
1 + C_(EJ w,_,y,(t—l))

¥ () = sigmoid(z,(t)) = (8.6)
The synapse model was also restricted to a simple transformation (see Figure 7.2). The
weight change was a linear function of the three external inputs of equation 3, as well as of

the following three products:

® Ypre X Ymodui: this type of term is hypothesized in the synapse model of [Hawk89b,
Hawk83] or [Done89).

® Ypre X Tpos: this is simply a Hebbian mechanism.

® Ypre X w: this term corresponds to a context-free decremental process, that was useful

to model habituation [Gluc87].

Biological knowledge or theories are thus used to bootstrap the function Aw(#) so that it
initially has access to a set of a priori subfunctions equivalent to known or hypothesized
synaptic modification mechanisms (see Figure 7.4a). This approach can be seen as a contin-
uation of our previous work that demonstrated the advantages of using prior knowledge in

the design of ANNs architectures, inputs and outputs. Here we wish to use prior knowledge



pre post modul

Legend
fixed weight s
variable weight ———
connection with delay

Figure 8.1: Structure of the simple learning rule used in experiments, with 7 free parameters.

for the design of ANN learning rules. Such knowledge comes mainly from neurobiological

data, but mathematical and information sciences can also guide us in such as design.

With the architecture in Figure 7.3 and the form for the learning rule of Figure 7.2, we

succeeded in estimating parameters of the learning rule that allowed the network to display

the following five behaviors:

¢ Habituation: Initially, CS1 and CS2 elicit a weak response. Presenting repetitively

CS1 or CS2 alone reduces that response even more.

¢ Conditioning: CS1 is followed by US. The response to CS1 gradually increases until

it saturates at a level slightly lower than US response.

¢ Blocking: After CS1 has been conditioned, CS1 and CS2 are paired and followed by

US. CS2 does not become conditioned.®

SHowever, in the experiments, there was a slight increase in the response to €S2, even though the target

value was a constant response. A similar behavior was obtained with Hawkins’s model [Hawk89b).
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Iigure 8.2: Architecture of the network used in conditioning experiments. Twc input
synapses from (Sl or CS2 to the facilitatory neuron are inhibitory and excitatory, with

delay 0 and delay I, respectively

o Second-order conditioning: After CS1 has been conditioned, it can be used to condi-

tion CS2 by presenting CS2 followed by CS1.

e Extinction: After CS1 or CS2 have been conditioned, a repetitive presentation of CS1

or (OS2 alone reduces their response to their original levels.

The learning rule of input synapses of the motor neuron was allowed to be different from the
learning rule of input synapses of the facilitator neuron. In general one may allow multiple
Aw(0) functions for diverse types of synapses or neurons that are observed. Various types

of synapses, neurotransmitter, pre-, epi- and postsynaptic mechanisms were, for example,

modeled in [Gard87].

The learning rule parameters were estimated in 1000 training epochs. A simulator that
allows product, summation as well as sigmoid nodes was used to perform experiments,
allowing to embed synaptic modification networks into the larger “task” network and forcing

parameters of the synaptic rule to be the same in various places with weight sharing.
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Table 8.1: Summary of results for the boolean functions experiments. I, stands for Linear

transformations, NL for Non-Linear transformations.

##training | type #epochs generalization

tasks of training | (for finding | (new tasks)
task the rule) L. NL

1 L 3 yes no

1 NL 15 yes no

4 L 5 yes no

5 4L, INL 100 yes yes

8.3 Boolean Function Experiments

The goal of these experiments was to explore in a very simple setting the possibility of
searching for a learning rule that could be used to train a network with hidden units.
These experiments are not meant to be biologically plausible. Instead they allowed us to
evaluate the applicability of our method to a computationally motivated problem. The
same form for the learning rule was used as in previous conditioning experiments (Figure
7.2). Fully connected networks with two inputs, a single output and | or 2 hidden units were
trained to perform linear and non-linear mappings. The solution chosen here for providing
information to hidden units about their contribution to errors 1s based on use of backward
paths, with neurons that may modulate synaptic change on corresponding forward paths
(Figure 7.4b). In simulations, a symmetric sigmoid was used for backward paths neurons.
However, using asymmetric neurons with an appropriate adaptable threshold can be shown
to be equivalent (see [Carl87] for activity-dependent threshold). Results are summarized
in Table 7.4. These experiments were performed in collaboration with Samy Bengio and

Jocelyn Cloutier.

In a more difficult additional non-linear mapping experiment with a 2-unit hidden layer and
no connection from input to output, the resulting rule was successful with 76% of initial
network weight values. Rule parameters were updated after each network training epoch,

which consisted of 800 input patterns. At the beginning of each epoch, the network weights
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Iigure 8.3: (a) Learning rule instantiated in every variable synapse of the network, designed

using prior knowledge. (b) Boolean functions experiments: forward connections are mapped
into a network that also contains a corresponding backward path. Neurons on this path

modulate synapses of forward connections.
were initialized randomly.

It is interesting to note a few things about these experiments. Convergence of rule pa-
rameters was very sensitive to ‘heir initial values. The best set of initial values we found
was equivalent to the delta rule for output units (i.e., 1 for the presynaptic X modulator
factor and 0 for others). However, it was necessary to further optimize all rule parameters.
Another interesting observation is that, as expected with results of [Chal90], generalization
to new tasks is improved if more tasks are used for training the learning rule. Finally, as
for the conditioning experiments, we were not able to make the rule converge unless the
parameter set # associated to forward paths neurons was allowed to be different from the
one associated to neuromodulating neurons. This indicates that multiple learning rules for
various types of neurons in a network may allow more powerful learning, as is suggested by

numerous neuron types and synaptic mechanisms in the brain.
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8.4 Is It Possible to Learn a Learning Rule?

In this section, an original approach to neural modeling was presented, based on the idea of
searching with learning methods for a parametric synaptic learning rule that is biologically
plausible, as well as yielding networks that can learn to perform computationally motivated
tasks requiring hidden units?. The networks architecture, as well as learning function have
been designed with constraints derived from biological considerations, thus using prior
information to help solve the problem. The experiments presented here deal only with very
simple cases, but results indicate that it is possible to learn a learning rule, and this should
encourage researchers to apply these ideas to more difficult tasks and more complex forms

for the learning rule.

7 An initial version of this proposal can be found in [Ben90g].




Chapter 9

Conclusion

T'his thesis addressed the question of the integration of a priori knowledge with learning from
examples, for systems based on artificial neural networks and applied to the recognition of
sequences. In particular, several problems in automatic speech recognition were considered,
such as the speaker-independent recognition of phonemes in continuous speech. The nature
of these tasks brought us to the analysis and the design of algorithms for recurrent networks
and the integration of artificial neural networks with other systems, such as hidden Markov

models, which are well suited for modeling sequences.

We found artificial neural networks to be flexible on at least two levels: the integration of
algorithms for learning from examples with prior information about a task, and the inte-
gration of these networks with other systems!. For the first point, we studied the following
aspects of network design in particular. The preprocessing and input coding were found to
be important and results indicated that artificial neural networks could take advantageof a
large input space, even when the input features were highly correlated or redundant. Differ-
ently from most others in the field of speech recognition with multi-layer networks, we used
output coding schemes that were more compact than the usual “one-output-per-phoneme”
scheme. Our approach is based on the use of phonetic or articulatory features of speech

signals. T'hese representations inspired from phonetics yielded better performance, except

'"Using ANNs in conjunction with other algorithms that have becn shown to be successful for the task is

also a way to use prior knowledge about this task



in the case of vowels in continuous speech?. Concerning the architecture of networks, mod-
ular systemsbased on prior knowledge of problem decomposition were found most effective.
This is in fact a particular case of useful local connectivity, which may improve both gen-
eralization and convergence, by adding useful bias and by reducing parameter coupling. In
general we preferred specialized networks (for particular types of phonetic discriminations),
which may have specialized inputs. Theoretical and experimental evidence were presented
that argue in favor of performing a global optimization of modular systems. We preferred to
perform such a step after the individual modules (neural or not) have been bootstrapped,

taking advantage of prior knowledge about problem decomposition.

To train artificial neural networks, in particular recurrent ones, we studied learning algo-
rithms. It was found that stochastic update converges much faster than batch learning.
An original algorithm for training a particularly interesting kind of constrained recurrent
networks was proposed and evaluated. However, we found that even with the more general
training algorithms, such as back-propagation in time, recurrent networks  at least with
the common types of architectures we studied -- are inefficient at capturing many aspects
of the temporal structure of training data. This was supported by experiments in which the
addition of a dynamic programming postprocessor with a few dozens free parameters to a
recurrent network with more than 20000 weights almost halved the total error. Hence one
should either search for more appropriate architectures or, as we did in this dissertation,
consider hybrids of artificial neural networks with other algorithms that have been shown

to model sequences well.

Given the objective of performing a global optimization of modular systems, we derived
an algorithm for jointly estimating the parameters of a hybrid of artificial neural networks
and hidden Markov models. This system was evaluated and compared favorably with ei-
ther neural networks alone, hidden Markov models alone, or other (simpler) postprocessors
for artificial neural networks. We also found that the global optimization step improved
performance (reduction of the phoneme error from 20% to 14% in the experiments), even

though the computation of the gradient in this algorithm makes some assumptions which

2That may be because classical descriptions of the articulatory features of vowels are based on the
pronunciation of short isolated words, for which vowels are “well-pronounced”  In our experiments, target

values derived from these data did not appear to be adequate
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may be wrong about the distribution of the inputs for fixed values of the ANN outputs.
We have found the form of a correct gradient for the parameters of the ANN in such a
hybrid. It depends on the product of the singular values of the Jacobian of the transfor-
mation performed by the ANN, as well as on the distribution of the inputs when given the
activations of the output units. Unfortunately, expressing such a distribution consistently

with the input data remains an open problem.

I'inally, some alternatives to the algorithms used in this thesis for training neural networks
were considered. Pirst we considered Radial Basis Functions networks, which are based
on local representations and were found to require less training time, mostly because of
a useful bootstrapping of the network parameters and because of a partial decoupling of

those parameters.

Second, we considered a drastic question concerning learning algorithms for neural networks:
is it possible to search for such algorithms, using both prior knowledge (about learning)
and learning from examples (here, examples are tasks to be learned with a certain net-
work architecture). This is a second-order learning problem: learning about learning rules.
Although it may seem infeasible, preliminary experiments indicated that it can be done.
They also showed the importance of using prior knowledge in the design of the form of a
learning rule and its initialization. Here, that knowledge is either biological, mathematical

or empirical.

To conclude, all these apparently varied contributions are related to the central theme of
this thesis: the integration of prior information with automated optimization, in particular,

for artificial neural networks and their application to sequence recognition problems.
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