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Abstract 

This t.hf'sis studiell the introduct.ion of a priori structure into the design of learning sys­

tE'ms basf'd on artificial neural networks applied to sequence recognition, in particular to 

phon('me rE'cognit.ion in eontinuous spE'eeh. Recause we are interest('d in SE'qllence analy­

sis, algorithms for training rE'current nE'tworks are studied and an original algorithm for 

ronstrainf'd rE'current nE'tworks is proposed and test results are rE'ported. We also diseuss 

thE' intE'gration of ronnE'ctionist models with othE'r analysis tools that have been shown to 

1)(' USE'ful for seqUE'nces, such as dynamie programming and hidden Markov models. We 

int.rodurf' an original algorit.hm to perform global optimization of a neural network / hid­

c!E'n Markov modE'1 hybrid, and show how to perform su eh a global optimization on ail 

t.hE' paramE'tNs of thE' system. Finally, we eonsider sorne altE'rnatives to sigmoid networks: 

Uadial Hasis FUllctions, and a method for searching for better learning rules using a priori 

knowlNlgf' and optimization algorith ms. 
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Résumé 

LE' sujet de cett2 dissertation E'st. l'Int.roduction dE' connaissanCf>g dans If> df>si~n d(' sySt.i>lllflS 

d'apprE'ntissage de n'SE'aux de nE'uronf>S applicl'lÉ>S à la rE'connaissallcP d(' sÉ>qllf>ncf>s, p;-H!.ic­

llliÈ>rE'mE'nt la reconnaissance dE' pIiOIlÈ>IlH'S en parol(' cont.inuf>. Pour l'ilnalysf' !If> S('CP1PhCP'>, 

il est important. de pouvoir E'st.imer Ips parampf.r(>s dE' r~s(>allx rE'CllrrPIlt.s. POlif Cf> prohlf.llw, 

plusiE'llrs algorithnH's sont ~valllés et un nouvpl algorit.hnH' f>St. proposf. f'1. t.pst,~. Afin 

d 'opti misE'r lE's performances, on consid èrE' l'intpgration dp CN; r(lspa \1 x avpc c1'a lit. rps III i-t.hodf's 

utiles pour la reconnaissance de s~qllE'ncE's, t.E'lIps que I?, progr:'llllll1iltioll dyn<II11lqUf' (lI. 

IE'S chaînE's de Markov. Un algorit.hmE' original E'st int.rodllit Pt. (>valllP pour faIT(> UIW 

optimisation globale d'un systèmE' hybridE' combinant r~sE'au dE' Ilf'UrOIlPS f't chaÎIIC>s df> 

Markov. Finalement, cE'rt.aines altE'rnatives aux r~seaux à sigmoidps f>t. rÉ>t,ropropagat.ioll 

sont É>tudi~s: tE'S fonctions radialE's de basE', E't \1I1E' mÉ>t.hodf> pour chPrchf'r de IllPil1c>ufPS 

règles d'apprentissage avec des connaissances a priori pt c1ps algorit.hl11Ps d'opt.imisat.ion. 
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Chapter 1 

Introduction 

This thesis studies the introduction of a priori struct.ure into thE' dE'sip;n of lE'arninp; syst.f'IllS 

based on artificial nf>ural networks (ANN) appliE'd t.o SE'qUf>ncE' rE'cop;nit.ioll, in part.ÏC'lIlar t.o 

thE' problem of phoneme rE'cognit.ion in continuous sr('('ch. Insf,f'a(1 of ronsidf'rinp; an ANN 

as a system learning from tabula rasa, WE' show that slgnificant IwrforlllancE' improvf>llH'nt. 

can be achieved if knowledgE' about a task is USE'd to introclucE' structurE' and nH'aningflll 

represE'ntation into the design of such a lE'arning systE'lll. KnowlE'dgf' about a t.ask incllldf's 

knowledgE' about existing solutions proposE'd for this task. 

Contributions are made in three interrelat{"d subtoplcs: how to improvf' gf'lwralization hy 

integrating ANN learning with domain knowlE'dge, how to r('cognizE' SNIUf'ncE'S with ANNs, 

in particular recurrent ANNs, and how to intE'grat.E' ANNs into a hybrid syst.E'1ll t.hat. USf'S a 

sequence analysis method sueh as Hidden Markov ModE'ls (HMM). Thf' dE'sig:-. and tf'st of an 

algorithm for training a particular typE' of reClIrrE'nt ANNs and thE' analysis and f'valuat.ion 

of an algorithm for performing the global optilllization of an ANN/JIMM hybrid arf> t.11f' 

main theoretical contributions of this thE'sis. In addition to applying t.hf'sf' algorit.hms, 

fontributiohS ofthis thesis to the design of AN N 1'1 for SE'(I'IE'ncf' rE'fogn itlon ronCE'rn thf' u l'If' 

of a priori knowledge to bE'tter design ANNs in orcier to improvE' thf'ir gE'nNaiizat.ion. 

There are sever al motivations for using ANNs. ThE'SE' modE'ls arE' int.E'fE'st.ing f'ngin('('ring 

tools that can perform difficult tasks, such as those studiE'd in this thE'sis. For exalllplE', 

13 



t.hey allow ilS to transform largf' input spares into compact representations for speaker­

indf'ppndf'nt phonE'me rf'rognition. Furthermore, using su ch computing architectures may 

bE' motivatE'd by the analogy between these models and the operation of real nervous sys­

t.E'OlR. 

Thf' motivation for associatin~ a priori knowledge and learning from f'xamples is that such a 

rombination may be t.he optimal way to take advantage both ofthe available training data 

and of prior knowlE'dgf' about t.hE' task. This is just.ified by t.hE'oret.ical argument.s that show 

t.hat good gf>nf'rali7,ation rannot be obtained if the training set size is limited and the ANN 

has an un bou ndE'd nu m bf'r of degr~s of fref'doJll. By restricting the transformations that 

an ANN ran pNform using a priori knowledgE', one reduces the variancE' of the functions 

that ran bE' obtained aft.E'r thE' Iimit.ed training data has been used. Experiment.s described 

in t.his tllE'Ris show that. it is often USE'ful t.o take advantage of a priori knowledge about 

t.hf' problf'1ll to bE' solvE'd with the AN "1. To build efficient recogn it.ion systems givp.n the 

limit.E'd amount. of t.raining data and training time available in general, it is important to 

dE'Rign rarE'fully tllE' prE'prorE'RRing, input/output coding, architecture and post-processing 

of thE' ANNR. 

Thf> Rtudy of recurrellt nE'tworks is motivated by the advantages they offer when apply­

ing thf>m to RNjUE'IlCe rE'cognition problems such as those considered in this dissertation. 

Aigorithms for rE'currE'llt ANNs are important for problems of sequence recognition such 

as RpE'f'r11 rE'rognition hf'causE' rE'currence allows us to represent efficiently context. How­

E'Vf>r, we found that. eVf'n better performancE" can be obtained if these recurrent ANNs are 

intf>gmtf>d with ot.hE"r SE"qUf'ncf' analysis tools, such as dynamic programmillg or HMMs. 

ln this int.rodurtion, we describe some basic characteristics of connectionist models (or 

ANNs), introduring in particular thE' back-propagation and the Bolt~mann machine algo­

rithms, sincE' tlH'Y havE" hE"E"n among the most popular conllectionist models and they are 

URf'd in t IlE' E'xpNiments describE"d in later chapters. We also review results in learning the­

ory t.hat just.ify t.hE' USE" of ANNs herause of their exprE'ssive power and set sorne guidelines 

as to thE'ir dE"sign in ordf'f gE"t good gE"neralization. Then we briefly introduce sorne issues 

in aut.omatir spE"E'ch rE"cognition. 

14 



In t.hE' second chaptf'r, WE' prE'sE'nt, a formai dE'srript,ion of t.hE' bark-propagalion algortthm, 

which il" E'xtE'ndE'd in ChaptE'r ,\ to t.hE' rasE' of tllulti-laYN ANNs with dl'Iays and rf'rllr­

rence. SornE' problems with bark-propaga'.I~n and possiblE' solut.lons t.o t.hf's<, prohlf'llls, 

such as acrE'leration terhniquE's, arE' also disCllSSE'd in t.1lE' spcond chaptN. Wp prf's('nf. SOIlW 

expE'rinwnts that comparE' o11linp and bat.ch lE'arning whpn tllP SIZf' of Hw t.raining Sf'!. is 

variE'd. 

The intE'gration of spE'ech knowlE'dgE' and lE'arning from E'xam plE's is t.1lE' su b jf'rt, of t.hE' t.lmd 

chapter. Experinwntal exarnplt's arE' uSNI to illustratE' sE'vNal important. dE'sign ISSUf'S: prf'­

procE'ssing, input. roding, arrhitE'ctural ronstraint.s, modularizat.ioll. and output. roding. W<' 

describe E'xperimE'nts on an audit.ory lllodE'I for AN N prE'pror('ssing and IHf'Sf'nt. IIItNf'st.ing 

rE'suits ronrNning the gE'lH'ralization of ANNs t.rainE'd to rE'cogni7.f' art.irulatory fpaturf's of 

voweis. The USE' of a priori knowlE'dgE'. E'V"'1l if impE'rfE'rt, and of rar('fully rraft.E'd lU't,works 

is rnotivatNI by thE' nE'ed to rNlIlrE' appropriatE'ly thE' VC-dinwnsion (a Ilwasurf' of cOlllplpx­

ity, set> sE'ction I.:J.:1) of t.hosE' nE't.works in ordE'r to imIHOV(' t.hpir g('nprall7.ation whf'n t.hf' 

numbpr of training examplE's is limit,E'd. 

ChaptE'r t1 deals specifically with the problem of SE'CjupncE' analysis and t.1l(> USE' of AN Ns for 

that problE'lll. An original algorithm for a partirular typE' of rf'rurrE'nt ANN is df'srrilwd 

and two other algorit.hrns for arbitrary recurrE'nt ANNs arp comparE'd. Finally, hyhrids 

of ANNs with dynamir programming and HMMs arE' considE'rpd. An application of an 

ANN / dynarnic prograrnming hybrid to tllE' analysis of amino-and sPqUf'IICf'S is dE'srrilwd. 

The fifth chapter discusses somE' issues concE'rning tllE' intE'gration of AN Ns wlth othE'r tools 

in a modular way. In particular, we arE' int.f'rE'stE'd in nwthods of modE'ling t.!l(' tf'lllporal 

struct.ure of a signal. We argue that it might bE' prE'ff'rahlE' to pNform a glohal optimi7.at.i<Jn 

of such hybrids, which can be donE' if learning in E'ach compOllPnt of tlw hyhrid systE'1lI 

depends on a cOlllmon objective funct.ion, and its output is a diffN('ntiahlE' funrtlon of it.s 

input.s. 

In Chapter 6, we present. an important elE'rnent I)f this tlwsls: a hybrid of AN Ns and 

HMMs with an algorithm for t.he global optimi7.ation of ail it.s paranlf'tE'rs. First w(' explorE' 

how a probability density function could be E'xprE'ssE'd in tNms of thE' out.put. of an AN N. 
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Th~n w~ show for s~vNal HM M opt.imizat.ion crit~ria and mod~1 typE'fi how to compute the 

gracJi~nt of th~ opt.imization rrit.~rion with rE'spect to the parametNs of th~ ANN. Finally, 

an pxpf'rinH>ntal asspssm~nt of this mf>thod for plosives in continuous spE'E'ch recognit.ion 

shows t.hp aclvant.agps of using a hybrid and doing global optimization. ThE'SE' E'xperiments 

arf> dOIlf> using 50111(> of t.he tf>chnicj1lE's desrribE'd in Chapter 3. In particular, multiple ANN 

modllips arp IISPc! for difff'rf>nt discrimination t.askfi, with ~ach module using specialized 

prf>IHOCpssing adaptpd to thE' task. 

Finally, in Chaptpr 7, Wf> considf'r alternatives to the standard back-propagation algorithm 

such aH Hadial Hasis Fllnctions, and idea5 on how to search for bettE'r learning algorit.hms 

uHing a priori knowlf>dgf>, as WE'II as learning mE'thods. 

1.1 Biological Background 

ThE' human brain is an organ madp of 1010 to 1012 nprve cells called ncurons. Neurons are 

ronnE'ctpd t.o E'ach Ot.hN through synapses. Each neuron has on the order of 103 synapsE's. 

Most rpsparchPrs [HyrnH7] now d('CE'pt that animal learnillg involves changes of synaptic 

pfficacy, i.P., a Cluantity which mE'afiUreS how mueh a neuron can affect another one through 

a HynapSE'. At r11E'mical synapses, the presynaptic terminal of a neuron is very close (about 

!)O nm) to a post.synaptir dendrite of another neuron. When the prp-synaptic neuron lires, 

nE'lIrotransmittNs ar~ relE'asE'd on the prE'-synaptic side and the reaction of receptors on 

thp post-synaptir side provokE's a local changE' in mE'mbranê voltage potential at the post­

synapt.ir sit.E'. Through thpro dpndrites, thE' neuron integrates signaIs coming from other 

nE'lIrons. WhE'1l thE' voltagE' potE'ntial at thE' surface of a the cell body of a neuron reaehes a 

thrpshold, thE' llE'uron firE's: an impulse or a series of impulses is transmitted along its axon 

to otlwr nf>1I rons. 

ConnE'ctionist modE'ls arE' simplified models inspirE'd from biological neural networks. They 

involvE' homogE'IlPolIS llE'tworks of simple procE'ssing units. A connectionist model can be 

dE'HcribE'd hy a graph (SE'E' ChaptPr 2) where each node represents a proeessing unit that 

corr('sponds to a 1IE'lIron, and links or connections correspond to synapses. Each sueh unit 

opE'ratE's according to a vE'ry simplE' neuron modet. Many of the currently used models have 
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a feE'dforward arrhitE'rtllrE' (i.E'., thE'ir graph contains no cyrlE's). 1I00\E'vf'r, t hl' arrhitf'ct url' 

of thE' brain is not homogE'nf'olls and If. is not fN'dforward: it routains man)' fl'('(lhark 

pat.hs. FurthE'rmorE', many typf'S of nE'llrons, synapsE'S and nl'lIrotrausllllttl'fS havl' ht'l'n 

obsNVE'd [GardH7, HyrnH9, TamH9]. In SE'rtion 7.2, WE' considE'r a way in wlllch part.iclliar 

nE'IHotransmittE'rs callp~: nE'uromodulat.ors may propagat.E' information that cali hl' 118l'II 10 

ada pt synapt.ir strengt.hs. 

SomE' ronnectionist lE'arning algorit.hms are basE'd on "hatch" t.raÏllIlIg, t.hat is,ohsf'rvat.ion 

of a fixed SE't of training pattE'fns folloWE'd hy a modification of thf' systE'1ll pa ra lllt't.NS. 

In contrast, le:\IlLÎng in the brain if> probably "onlilw", i.E'., tllE' brain adapt.s continuolIsly, 

depE'nding un its environmE'nt.. 

Although adaptation is a VE'fy important ff'atllfE' of brains, lE'arlling in hiologlcal nl'rvous 

systE'tnS is not from a fablll(l rr/811. InstE'ad, E'ach individllal brain is cOlIstraillE'eI in its 

structurE' and its potE'ntial fUllrtions. GE'nE's sOIl1E'how spE'cify Illall)' of t.lw archit.('ct.llral 

chararteristirs of the brain, as WE'1l as innate Iwhavlors. From a t.1lE'orE't.kai point. of viE'W 

(see sf'ction 1.3), it makE's SE'nse 1.0 U"E' a priori informat.ion aho1Jt. t.1lE' E'IlVironnwllt. t.o 

cOllstrain a learnillg system, E'spf>rÎally if a IlInitE'd arnount of trainIng dat.a, and tml(' t.o 

assimilate it., is availablf>. This may hE' partic1Jlarly important for Iwwhorns and youlll?;st.l'rs, 

who have had only very IimitE'd expE'rienre and yet must bE'havE' in surh a way as to slJrvivp 

until they arE' strollger and morE' f>xperi('nred. 

1.2 Connectionist Models 

Connertionism can bf> described as the study of certain r1assE's of massivE'ly parallE'1 arrhi­

tecturE'S composed of a large numbE'r of sim;h-.r and simplf> prOCE'SSOrR, 1JSE'd for If>arnilll?;, 

and in whirh most of the learnf>d knowledge is assoriatE'd to tllE' conlwrtions amollI?; Ilnit.s 

[Rume86a]. Thf>sf> architecturE's are inspired from hiologiral as wf>1I as psyrhological modf'ls, 

but thf>y are being appliE'd to mally Artifirial IntE'lIigE'ncE' as WE'II as f'nl?;lnE'flflllg prohlf'lllfi. 

Although artificial and biological neural nE'tworks dlffE'r sil?;nifirant.ly in many aspE'rt.s, t.hf'y 

generally flhare some interE>sting propertlE's such as falllt-tolE'ranrf> [MoorHH], If'arning from 

examplE's, distributed processing, alld associativE' storagE' of information (SE'E' [U IImE'H()a] for 
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a discussion about AN N propf>rtips). 

Connf>d,ionist modf>IR, or Artifirial Nf>ural NetworkR (ANN), use fairly simple mechanisms 

for hot.h nf>uron ol)(>ration and thf> modification of "vr'apses; thf>Sf> models can be used 1.0 

solVf> somf> difllcult If>arning problf>ms, including thE' problem ("hard learning", [Hint87]) of 

training hiddf>n unitR I of thf> nf>twork whE'n rf>inforcE'ment or supervision is only available 

1.0 ROIllE' nE'urons (output unitR). Early artifidal neural nf>twork models [Hose57, ROSE'62] 

Wf>rE' not ablE' to solvf> that problf>m [Nils65, Mins69] bE'cause no efficient algorithm was 

known 1.0 train a nE'twork with hiddf>n units, whkh are requirf>d in ordf>r to lE'arn non-linear 

funrtionR. Minsky and PapE'ft [Mins69, Nils65] hav(> demonstrated the limitations of single­

layE'r IH'rCE'ptron: thE'y fannot sf>paratE' classes that arE' non-linE'arly sE'parable. However, 

most problf>ms of intE'fE'st can bf> solved only with a non-Iinf>ar transformation. 

Thf> morE' rE'CE'nt. mOI'f> pOWE'rful, abstract models, such as those presentf>d in the book 

[n u mE'H6a], can lE'arn to perfOl'lll non-linear mappings. They were used for automatic 

RJlf>f>rh rE'cognition (SE'{> [Lipp~9] for rE'view), handwritt(>n character r(>cognition [LeC89c], 

optimization [HopfH4, PE'tE'90], robotks [Jord90, PomE'89], financial E'xpert systems (loan 

applications f>valuation, [CoIIR9]), and other Artificial Intelligence problems. Connectionist 

1ll0dE'ls are basf>d on simplifications of biological neural networks, but they often have non­

biologkally plausiblE' fE'atllrE's. As Hinton points out [Hi!lt87], a mathematically derived 

algorithm such as bad-propagation is not plausible as a biological model of learning for 

many rE'asons. For E'xamplE', the transmission of information in neurons and synapses is 

in bot.h a forward and a backward direction (which is rE'quirE'd with the back-propagation 

algorit.hm). FllrthE'rmorE', <,xt.E'nsions of the back-propagation algorithm to gE'neral recurrent 

nE'tworks arE' E'itllf>r non-local in timE' or non-local in space (SE'(> section 4.3 for more details 

on t.h(>sE' qu(>stions). HOWE'vf>r, the back-propagation algorithm is one of the most powerful 

training algorithms for ANNs. 

Front a stat.ist.iral point of vj(>w, most connectionist models can be considered as techniques 

to construct often for classification problems - consistent non-paramE'tric estimators 

[(;E'ma~H), for r(>gressions, as wf>1I as probability distributions (see section 1.3.4). Other 

tf>chniquE's that havE' bE'E'n USE'd to ronst.rllct non-parametrk estimat.ors include Parzen 

1 Hiddl'II IInib. an' l\I'Ith('r input (M'nt.ory) nor output (motor) \lnits. 
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windows and Nearest Neighbor rulE's [Duda73], rE'gularization nwt.hods [WahbH2, pogg~nJ, 

and dE'cision t.reE' lllE'thods (103 [QuinR6], CAUT [HrE'iR-t]). 

SornE' rlassE's of con llE'rtionist algol'it.h ms will 1l0W hE' briE'fty dE'scralH'd. Morp dpt.ails on t ht> 

back-propagation algorithm ran hE' found in ChaptE'rs 2 and -1. This alg<'fithm was uspd in 

rnost of thE' experinwnts dE'srrihE'd in t.his thE'sis. ThE' Holtzmann marhint> algorit.hm was 

USE'd in the experiment dE'srrihE'd in sE'rtion 3.2. 

1.2.1 Back-Propagation 

This is one algorithm to train a network with hidd(>n unit.s, sueh as in FigurE' 1.1. Tht> 

nE'llron output is assulllE'd to be a diffE'rE'ntiahlE' fllnrtion of it.s inputs. Typirally, this 

fllnct.ion is rE'presented as follows: 

YI = f(L: 1/J1)Y) 

) 

( 1.\ ) 

wherE' YI is the output activation of unit i, that may rorrE'spond t.o tht> aVNagE' firing rat.t> 

of a nE'uron, wl ) is a weight that corrE'sponds 1.0 thE' st.rE'ngth of t.hE' synapst> t.hat connE'cts 

neuron j to neuron 1. The function J(.) is a non-linE'ar squashing funetion that. is usually 

takE'n t.o hE' the logistic funetion, ranging in (0,\): 

1 
J( x) - -------,-----:­

, - 1 + E'Xp( -x) 

or the syrnrnetric sigmoid, ranging in (-1,1): 

J(x) = tanh(x) 

( 1.2) 

( 1.:1 ) 

In thE' experimE'nts descrihE'd in this thesis, we gE'nE'rally USN\ a symmE't.rie sigmoid for 

hidden units and an asymnwtrir sigmoid for output unit.s. This was motivat.E'c1 by thE' 

fastE'r convergence of networks whose inputs havE' l.E'ro mE'an [LE'CnO] and hf>eausE' it. is 

easier to interpret. network outputs in the range (0,\). 

In the hark-propagation aigorithlll, the function J(.) has 1.0 hE' c1ifTE'rf>ntlahlt>. This allows us 

to comput.e the partial derivativE' of a nE'uron's output with rE'spE'rt t.o thE' output of nE'urons 

which havE' influenced it. The principlE' of tht> algorithm is to ust> thosp part.ial dNivativPI! 
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Output Units 

Hidden Units 

Input Units 

FigurE' 1.1: Architecture of a multi-Iayer net.work trained with back-propagation. 

in ordN t.o comput.E' thE' gradiE'nt of a cost funct.ion with respect to the parameters of the 

nE'twork, and thE'n perform a gradient descent in the space of those parameters in order 

t.o minimize t.hat cost function. A commonly IlsE'd cost function is the Least Mean Square 

(LMS) critf>fion, whirh is t.he sum of the squares of the differences bet.ween activations of 

out.put units and t.arget valuE's for those units: 

C = 0.5 L L(Ylt - targetl,)2 
t 

(1.4 ) 

whE'rE' Ylt is thE' activation of out.put neuron i for pattern t and targetlf is thE' corresponding 

targE't. output. or dE'sirE'd valuE'. In general, the target out.puts are not chosen to he the 

sat.urat.ing valllE's of thE' sigmoid (e.g., 0 and 1) to avoid resortin~ to infinite weights2• 

Typiral targE't.s IIsE'd in thE' E'xp"rimE'nts described in this thesis are 0.9 and 0.1 to indicate 

"high" and "Iow" t.argE't valllE's rE'spectivE'ly. 

ThE' LMS critE'fion is partirularly WE'lI suitE'd to the prohlem of regression estimation, in 

whirh onE' wishE's to E'st.imat.E' the parametE'rs of a parametric function Î(9, x), su ch that 

thE' EllrlidE'an dist.ancE' hE'twE'E'n that. funct.ion and a targf>t function f(x) is minimized. The 

LMS crit(>1'ion has thE' nirE' property that. it. is diffE'rentiahle with respect to the function 

1T11I' tligll10id rundion n'a('h('" I<aturating vaIncs wh('n its argument is -00 or 00. 
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valuE'. Sueh a critE'rion is not suitablf' for pvpry application; in fart. its minimilation do('s 

not necE'ssarily corrE'spond to t.1lE' minimization of c1a!';sifiration Prror wlwn an ANN is Il'>4,11 

for r1assifiration (spE' [Hott91]). HOWE'VN, thp truE' c1a!';sifiration E'rror is not a ditfE'rpntiahlt' 

function of thE' systf'1l1 paranH'tprs, and thus cannot hf' Ilspd to train an ANN with gratlif'nt 

descE'nt. 

If the activations of the output units rpprflsf'nt a probability distrihution OVN hinary 

veetors3 , then an alternativE' rrlt.Nion is t.1l(> rross-E'ntropy [HlIltS7]lwt.w{l4'n th(l d('sir(ld 

and actual probabilit.y distributions (rondit.ional on t.h(l input.s of th(l n('t.works): 

c = - L L targd It 10/?;2 Ylt + (1 - target 1') lo/?;:z( 1 - Ylt) 
t 

The hack-propagat.ion al/?;orithm was proposf'd in [HullH'S(,b] hut had h('(>n ind(llwIHI(lntly 

disrovered several t.inH's in varyin/?; forllls and purposfls [l.fI('uH!), ParkS:I, WNb7-l]. II. is 

usually employed in a supNvised modE', in whirh tar/?;E't. or d(lsir(>d valuf''l ,Hf' known fflr a 

set of training examplE's, i.f'., a set 

ST = {rh, DT)} ( 1.1;) 

of pairs of input and output pattNns is /?;iven. Howf>vf>r, the al/?;orit.hm can also h(l USN! for 

reinforcement learning [Hart81, Hart.S:l, HartH!)] as in [.Jord90]. Wit.h rpinforrf>llwnt.If'Mning, 

instf'ad of a d(lsirE'd output. for (lach pattf'rn and output. unit, thE' Ilf't.work is providf'cl wlt.h 

a scalar reinforcenlE'nt signal (whirh may COlllfl only onre in a whilf> rat.hN t.han aft.pr f'VPry 

input pattE'rn). For examplE', in thf> polf> halanring problE'1ll [Bart.S:I], t.he ANN rE'cpivf'S 

as input information about the position and t.he an/?;If> of t.he polE' al. f'VNy t.illlf' st.f'p. !ts 

output controls the force appliNJ at the basf> of the pole (to avold fallitl/?; clown). II. rf'rf'ivps 

negative rE'inforeemE'nt at the (lIHI of a training sequf>nre, whirh is whf't1 t.hf' polf' falls clown 

(due to the wrong "actions" of thf' nf>t.work). Th(l "forward modpl" of [.Jord!Hl] IJSf'S an 

additional network that models thE' influ(>ncf> of t.hf> out. pu t.s of dJ(> fi rst. nf't.work Il pon ttlf' 

reinforcem(>nt., th us allowin/?; us to comput.f> thf> /?;radif>nt. of tlJ(> df'SlrNl r(>inforcf'lll(>nt for 

the outputs of the first. network with bark-propagation. 

3 Each rcal-valucd output bctw('('11 0 Mul 1 repn'h('lIt~ the proballlhty th dt tlH' «)rr('I>pOlICIIII g hillMy output 

be l. 
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Figurf' 1.2: Typkal archit.E'rt.llrf' of a Boltzmann machine. Connections and corresponding 

WE'ight.s arE' symnlE'trkal. 

SE'vE'ral f'xt.E'nsions of t hE' basic bacJ..-propagation algorith m for recurrent nE'tworks have been 

proposf'd and SOIllE' will be disCUSSE'd in section 4.3. The actual equations for the learning 

algorit.hm will 1)(> dE'scribE'd in sf'ction 2.1. In addition, problems of convergence time and 

loral minima will 1)(' disrussE'd in sE'ction 2.2. 

1.2.2 The Boltzmann Machine 

This modE'1 was introdurE'd in [FahI83, Hint84]. The Boltzmann machine consists of a 

1lE't.work (SE'E' FigurE' 1.2) of stochastic units with boolE'an outputs that are connected through 

symlllE't.rÎr rollnE'rtions (11'1) = lU)I)' The network is recurrent and it is relaxE'd by simulated 

anllE'alinp; unt.il it. rE'arhE's a fixE'd point whirh shollld correspond to the global minimum of 

an E'nE'rgy funrt,lon. Il. lan thus hE' considE'rf'd as a generalization of the Hopfield model 

[HopfR:l], whkh has no hiddE'n units. in the Hopfield model, aU units arE' connected to 

ail othE'r unit.s, and t.hE'Y arE' used as input.s, as weil as outputs. On the other hand, the 

Holt.zlllann marhinf> may havE' hiddE'n units, allowing it to solve "hard-Iearning problems" 

[Hint.~ïJ that ran't hE' solvE'd with a linE'ar transformation. 

Earh unit may assumE' a valuE' of 0 or 1. ThE' output YI of the i th unit is stochastically set 
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to 1 arrording to a probability 

( 1. 7) 

where 11),} is the weight of the ronnpction b(>twppn units i and j, and T ifl a paranH't,pr rallE'd 

"tempPrature". The Boltzmann machine implemenr.s a Mont.e-Carlo algorithm for rf'arhinJ?; 

a minimum of an energy funct.ion whirh nlE'afllJres the dE'grE'E' of "ap;repment." among u nit.s, 

Le., t.wo units i and j maximally "ap;reE''' if y,y)w,) is large and pOflit.IVfl. If t\lE' upclate rull' 

of equation 1.7 is appliecl iterativply while fllowly derreasing t.llP t.emperat.lI re. thE' npt,work 

convergps to a point of "maximum agreemf'nt". The simulat.pd annealinJ?; J?;uarant.('Ps t.his 

state of low "E'nPrgy" will he rearhed if the foolinp; is performed slowly f'nouJ?;h [CemaR.lj. 

InRtead of decreasing a mean squarE'd error, t.hE' Holtzmann marhine learninJ?; al/!;orit.hm 

maximizps t.he likelihood of gpnprating a targpt in put./out.put dis<T(>t(> dist.ribut.ion. The 

lE'arning algorit.hm is hased on gradient desrent in t.he spacf' of t.he weight.s III orclf'r t.o 

minimize t.he Kullback information measurE', a mE'asurE' of t.he diffE'rence bet.wppn t.wo diS­

tributions: the statistical behavior of the network whpn thE' activat.ions of t.he out.put. lInit.s 

depend only on thE' nE'twork statE' and inputs (phasE' 1) , and when t,hpse act.lvations arp 

fixed from outside wit.h thpir targpt or desirE'd values (phasp 2). It is int(·rpst.ing 1.0 not.f' t.hat. 

this gradient can be expressE'd as a fllnction of 10ralIy nlPasurable qllant.it.ips: t.h(> difT(>fPllC'P 

between the prohabilities of joint prp- and post-synaptic act.ivat.lon for t.hp t.wo phasps, re· 

spectively p!;) and p~;). The weight change that rorresponds t.o dE'scpnt. in this gradient. IS 

the foIlowing: 

( 
(2) (1) 

~ w') = f p'} - p') ) ( 1.R) 

where f is the learning rate. 

The algorithm runs very slowly on sequential machines, hecause t.he paralIel naturf' of t,1H' 

algorithm is not taken advantagE' of, and for E'ach input pattern tllE' simulated annealillg 

proress has to hE' completed -- in hot.h phasE's whE'/l t.raining. Fllrt.hE>fI1lOrE>, bf>callsf' of t.hf' 

limited timE' usually allowed for the measllrpment of thp JOInt. prohabilitlf's of activations, 

their ~stimation is inrprecise, and thus t.he reslliting E'stimation of the gradiE'llt. is VNy nOIRy, 

yielding a slow convergence [Hint87]. 
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1. 3 Learning Theory for Connectionist Models 

Althollgh ff>sf>arrh on ron nf>rtionist models h as been rarried out for only a few years (excf>pt 

for t.11f> init.ial work on artifirial nf>ural networks of the late 50's and early 60's, for example 

[HOSfl62]), many throrf>tical rf>slIlts hav€' already been obtained that analyze mathematically 

artifirial n{'lIral network rapabilities, romplexity, generalization power and learning. Many 

of thf>sf> rE>slllts arf' hasf>d on the use of statistical tools. See for example [Lipp87, Barr88, 

GallHH, HarrR9, HallsR~), Tish89, Whi89b, Rau+89, Hint90]. 

1.3.1 Expressive Power 

Hy f>XllfE>Ssive power, we mf'an a measure of the "number" of functions that an ANN 

ran approximate prf>cis('ly. We have already mentioned that some hidden units were 

rE>qllirNI in order for an ANN to perform non-lin('ar transformations. Many researchers 

hav(' st.lldif>d t.he expressive power of several types of connectionist models. For example, 

[Cyht>R9, HornR9, Fllna89, StinR9] show that a feedforward neural network can perform 

wit.h arbitrary precision any rontinuous transformation, givt>n enough hidden units. More 

prerisf'ly, a single hiddf>n lay('r is theoretically slIfficient, except in sorne pathological cases. 

Poggio and Gil'osi [pogg89] show that a network of g€'neralized Radial Basis Functions (see 

sf'rt.ion 7.1) ran also approximate with arlJitrary precision a smooth fllnction. This type of 

network has tlw advantage that it produces close to zero outputs in regions of the input 

spart> that arE' very rE'mot(' from the input examples. 

1.3.2 Complexity of the Loading Problem 

Althollgh IWllfal net.works hav(' great expressive power, it does not mean that it is easy 

to find thost> n('twork parameters that allow us to approximate ft desired transformation 

as wt>ll as possiblt>. In fart, [.Jlldd88] has shown that the so-called "Ioading problem" is 

NP-Compl€'te. The loading prohlem can be defined as follows. Given a set of examples of 

input/out.put pairs and an ANN, is there any rhoire of network parameters (i.e., weights) 

for whirh t.ht> f'xampl('s are satisfied? 
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However, results by [Raum89] suggE'st that finding thE' optimal WE'ights cOllld hE' dont' in 

polynomial time with If'arning algorithms that arf' allowE'd to add units and ronnf'ct.ions 

during learning. TIH'sE' typf'S of lE'arning algorithms arf' rilllf'd f'O/18t/'Urti,,{' algorit.hms. 

Examples of constructive algorithms4 arE' thE' casradf'-rorrE'lation algorit.hm of [FahIHl) and 

the algorithm of [Plat91] for automatically allocating rE'SOtJrrE'S in a HacHaI Hasis Fu nct.ions 

network. 

On the other hand, f'mpirical E'st.imates [Hint87] indicate that. t.hE' lE'arning t,illlE' for t.1U' 

back-propagation algorithm on a sE'rial machine grows approximatE'ly hy O( N;!,), WhNE' N", 

is the number of weights in a network. 

Furthermore, it is important to ronsidE'r if we must find thE' global minimulll of t.h(' cost. 

function. or whether it would hE' pnough to ohtain weights that corrE'fl\lOncl to a quasi­

optimal cost. It is uSllally observed that over-training oftf'n yiplds a loss in gE'llE'rali7.atioll. 

Henee it might even be bettcr not to reaeh thE' global minimum of tllP cost. fUllct.ion for 

the training set if our goal is to rf'duce E'rrors on thE' undNlying (listribution silmplE'd wit,h 

the training set. See [Chau90] and [Mor90b] on stopping short. of conVE'rgE'ncE' to improvE' 

generalization. 

1.3.3 Generalization 

Generalization is a crucial question for learning algorithms. IndE'E'd, a lE'arning algorit.hm 

wOllld not he very llseful if it would learn the training set pE'rff'rtly but would not hE' ahlE' 

to compute the expect('d output for new data in most casE'S, wh('n tilt' tNit, data is samplE'C) 

from the l'lame underlying distribution as thE' training data. OnE' of th .. attractiv(' fE'atlHt's of 

neural nE'tworks is that they s(>('m robust: thE'Y tE'nd to gE'nE'falizE' WE'II f'v('n wh('n t.hf' input.s 

to the network and the training data are noisy. For E'xampl .. , comparisons with symholic 

learning methods (e.g., 103, CAU'!'), indicatE' that., in many rasf'S, ANNs gf'nf'fali7.~ h .. u,f'r, 

particularly in the preSE'nre of noise [Tsoi91]. 

One of thE' measures of complexity or rapacity of a lE'arning systE'm that is becoming 

4110wever a polynomial convcrg('nc(' time Ital> Ilot h('(,11 t}\('(lr(·ti<:ally dI'1JI0flhtrdt(·d y(·t (or any of th('h(' 

algorithms. 
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popular in lE>arning theory for ANNs is the Vapnik-Chervonenkis dimension (VC dimE>n­

sion). It mE>asurE'S the maximum llumber of dichotomiE's that can be induced by the 

lE'arninp; system. The notion of rapadty was introduced by Cover [CoVE'65] and devel­

opE'd in [Vapn71, Vapn82]. Heviews of this notion and related questions are presented in 

[J)E'vrRR, HlumR7, Poll84, "aus89]. Results from learning theory indicate that, when the 

numher of training examplf's is finitE', the generalization of a learning system depends on 

its VC-dimE'nsion [Vapn82, Vapn71], i.f'., on the flumber offunrtions it can perform, which 

dE'pE>nds on the nllmbe.· of frPe paramett'rs of the network, as weil as on its architecture. 

MorE> prf'dsE>ly, thf'oretical analysis shows that the more training examples are available, 

thf' bE>ttf'r thE> gE'neralization will bf'5, but the more romplex thf' learning systems (e.g., 

morE> wf'ights in a network), the more difference therE' might be between the training set 

f'rror and gE>neralization error. This agrees with Occam's razor principle, which suggests 

rhoosing thE> simplest theory that explains our data (training set), in order to maximize 

its gE>neralization to new data. In this thesis, we sometimes use the term bias, as defined 

mathE>mat.irally in [Gema91] to describe the constraints and structure imposed on a learning 

systE>m in ordE>r to reduce its VC dimension. This may result in a non-zero error even when 

an infinitf' training set is available. HowevH, it may reduce the variancE' of such systems, 

i.E'. , thE> aVE'ragE> diffE'fenC'e betwe~n networks trained with the same amount of data, thus 

rE'dllrÎng the diffE'fE'llre between training set error and test set error when the number of 

training patterns is limited. 

An interf'sting rE'sult [Rau+89] concE'rning the generalization of sorne neural networks gives 

bonnds on t.he number of training examples necessary in order to obtain an acceptable 

gE'nE'ralization error. These rE'sults are for feedforward networks with hard threshold rather 

than sigmoid units (hecausE' they are simpler to an alyze) , independentlyof the type of 

algorithm USE>d to train thE' JlE'twork. If the error on the training set is Jess than j anà the 

numhE>r of E'xamples Ne is boundE>d as follows: 

Ne = O( N w log( Nu)) 
l l 

(1.9) 

(1.10) 

bllt'call~t· tht' dt'Ioin·t\ function will be narrowro down more preciscly in the space of the Cunctions that 

<tlrr('ltporn) to 10010(' paralllcter valuc!> for thc system, constraincd to funetions that are consistent with the 

tmining M·t. 
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tht>n with ? confidence approac hing certai nt y, thE' gE'nt>ra!i7.atioli Nror will hE' lE'sS t.ha n f, 

where Nw is the number of weights and Nu is thE' numlH'r of units in t.hf' 1IE't.work. 

1.3.4 Approximation of Posterior Probabilities 

In [\Vhi89b] it is shown that an ANN trainf'd with t.ht> LM~ rritNion approximatE's thf' 

conditional expectation E(D 1 X), i.e., the value of D t.hat. will hE' rf'ali7.NI on aVNagf>, 

givE'n a particular instance of X, where X and /) arf' random vanablf's rE'prf"sE'nting thE' 

input and desired output vE'ctors, respertivf"ly. HOWf'VN, this can hE' ohtainE'd only if t.1lf'rE' 

are E'nough hidden units and the training nE'twork conVE'rgf'S to t.hE' asympt.ot.ic limit., .. ha .. 

is, the conditional expectation of thf' targeot givf'n thf' input. 

If the dE'sired out.puts D arE' rontinuous valued, thf'n thf' ANN is pf'rforminp; r('!?;rf'ssion 

estimation and E(D 1 X) is the best predirtor of f) !?;ivf'n X in thE' Illf>all-squarpcl Nfor 

Sf'nse [Gema91]. If tht> desired output f) is discrE'te wit.h valuf' 1 for class ft and () for dass 

B, then the regression hecomE's E(D = 1 1 X) = Pr(Class Il 1 X) , I.t>., t.hE' a post.f'riori 

c1ass probability conditioned on t.he input variablE' X. 

If we allow the sizt> of a network to grow with th(' numbN of availablE' traininp; t>xamplf's, 

tht>n ANN modt>ls such as those trained with bad-propagation can bf' ronsidf'rNI non­

parametric estimators. Foft>xample, with tht> hack-propagatioll algorithm, onf' l'an E'stimat.f' 

the condition al expectation R(D 1 X) as definE'd abovf' (Sf't> also [GE'ma91]). 

The LMS criterion forces the average of the ,liffE'f('nce between art.ual and desirf'd output 

to be as close to zero as possiblE', but this may be at tht> cost of Vf'fy largf' E'frors for valuf>s 

of the inputs X that are unlikely to occur. 

1.4 Automatic Speech Recognition 

The major sequence recognition task considf'rE'd in thÎfl thf'ilis is that of automatÎc spf'f'ch 

recognition. An autom~tic speech recognition system is a Rystem t.hat can transform a raw 

speech signal into a sequenct> of descriptors that characterize tllf' spokf'n utterance weil 
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E'noll~h SO that a rom putE'r can USE' it to take deriRions and pE'rform appropriate actions. 

Thp lowpst IpVE'1 descriptors t.hat such a system can recognizE' are oftpn phoTlcmcs, of which 

thE'r~ arE' only a fpw d07.E'n. Oft(>n, t.hp objective is to rpcogni7,(> sequ(>ncE'S of ",ords. Special 

application vocahlllari(>s may contain as f(>w as several hundred words wher(>as an uncon­

strailwd human talkE'r may att(>mpt to use several tens of thousands of words. A speech 

flTld"r,<;taudmg system may usp higher levpl information such as semantics and syutax in 

ordN to recogni7,p scntences, of whirh thpre may be an unbounded numhE'r of instances, 

but whirh may bp constrained bya particular grammar. 

1.4.1 Characteristics of a Speech Recognition System 

LE't. liS considE'r a few characteristics of a speech recognition system that permit evaluating 

its applicahility . 

• Voca bulal'y size. The vocablliary is the set of words that the system can recognize . 

• ;xisting speech recognition systems have a performance that tends to degrade when 

thE' numb(>r ofwords in the vocabulary increases. This can be explained by the greater 

numberof pairs ofwords whirh can be confused (because the average distance between 

words in the acollstic spacE' is reduced). A related measure is the pcrplexityof a speech 

rt>cogliition task ["E'e 89], whirh is.proportiunal to the number of possible decisions at 

E'arh dE'cision point, or t.h(> nl/mber of bits necessary to specify the next word. 

Many rpsearchf'rs havE' decided to model sub-word ullits [Lee 89J. This may permit 

using a Vf'ry largE' vo('abulary, sinee the number of sub-word units that need to be 

modelE'd is bOl/ndpd even when we eonsider tens of thousands of words. This is 

bE'rausE' E'ach word can be dpfined as a combination of these sub-word units. In this 

thE'sis, thE' sub-word Ilnits that have been considered are the most commonly used: 

phollE'mE's. Note that, sharing sub-words uuits may have the disadvantage that it 

hE'rollH's more difficult to model within-word coarticulation, compared to modeling 

earh word separat,E'ly. 

• SpE'akE'r-indepf'ndE'nt / spE'akE'r-dependent recognition. Speaker variability is a very 

important problf'/ll for automatic speech rE'cognition. [Watr89] has shown, for ex-
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ampl~, in the rase of formant frE'qut'nri~s for st~ady-st.af,E' \'o\\'f'I:>. that whprt'as tht"' 

vowP'., wer~ rlt'arly sE'parahlE' for a ~i\'~n spE'ak~r. thE'rE' was a cOllsidNahlp oVl'rlap 

in th~ formant. frE'quE'nry RparE' WhE'1l multiplE' SpE'akNS \\'{'fE' l'OllsidNE'd, Alt.holl~h 

the performanrf' of CllrrE'nt 8pf'akN-dt'pE'ndt'nt sp~E'rh rf'ro~lIltion systE'1ll can Offf'lI hl' 

acceptablt', it is Ilot the casE' for spNJ:.,.r-illdt'p~ndf'nt syl"tt"'IllS, 'l'wo rE'sf'arch altPr­

natives are bE'ing ronsidPfNI t.o dt'al wit h this problt'Ill. Tht, fi rRI. 011(> is f,o pNforlll 

an a utomatic 81}ca~'cr adaptation [Hrid91]. Som~ SpE"a kN-ada pt.at.ioll syst.f'IllS rE'qlli n' 

the talker to pronounce il !l;ivE'1l rt'ft'fE'llc~ SE'ntE'llre. Tht' OthN approach ronsists of 

building a truly spt'aker-indt'pE'ndE'nt rerognition systE'm, that. maps t.ll(' aroustlr SI/?;­

nal into a description spart' 1.hat is indppE'ndE'nt of thf' Spf'akN. This approarh has 

been purslled in the spPE'ch rt'co{!;lIition expt'filllPnts dt'srrilH'd ill t.his tht'sis . 

• Cont.inuous speech / isolated wonl recognition. 

IsolatE'd words arf' pronollncf'd by leaving a short flilellrE' l)(>twf'f'1I parh word. Tlwy 
• 

are rnuch easier t.o rE'rognizt' than continuous spE'E'ch, for sE'vf'fal rE'asolis. First., t.h" 

recognition problem is brokt'n down into simplE'r prohlE'ms: words ran hE' ronsid('f('(1 

independently. St'cond, wht'n pronounring i80latt'd 'yords. talkE'rs tE'lId 1.0 havE' a 

better, slower and c\E'arer pronunriation, thus reduring wlthin-word roart.ÎCulat.ioll. 

Third, thE' problem of ('oarticulat on bctwccn words is almost. E'limlllat('c! (dl'pf'nding on 

the pause be~.weell words). Unfortullately, pronollnring isolatE'd words is ilOt. nat.llral 

nor comfortable for ordinary Ilsers. II. is thu8 dE'sirablE' to ronsidE'r cont.inuolls spE'f'ch 

recognition systems, which can modl'\ roart.it"ulat.ion effE'cts, Le., t.1H' illfllll'nr~ of lE'ft. 

and right phonetic context on the pron u n dation of ~ach phonf'Illt'. 

1.4.2 Sorne Problerns with Current Approaches 

Coarticulation problems come from t.he acollfltic variability of phollellws depE'nding on t.lH'ir 

phonetic context. In continuous speech, this infl UE'nce may span sE'vpral phonpmE's a.nd affE'ct. 

contiguous words, E'specially short words. 

The cllfrent approaches either ignore coarticulation, i.E'., ronsidNing ont' modE'l pE'r phon(lmE', 

or model separately a very large st't of diphoncs or triphoncs [LE'e ~91. A dipllOnc mOc\E'1 iR 

29 



( 

a modpl of aIl inSl.ant.iat.ions of a phonpme in a given right or Ipft. context, i.e., considering 

t,!lP I .. ft or right phonpme. For pxamplE' /p-E'h/,/p-ih/ ,/p-ah/ are differE'nt diphones for the 

phonemp /p/ whf'n it is folloWE'd by t.he phonf'mes /eh/, /ih/, or /ah/, rE'spect.ively. 

AnothE'r rommon rhara<:teristir of many speeeh recognition systems is that they model the 

spE'E'rh signal as a conratpnation of i12dependcnt segments, as in hidden Markov models 

(SE'E' sE'rtion 6.1). ThE' psychophysirs of speE'ch prod urtion seem to indicate a different kind 

of SNllIE'nrE': moving from onE' targf't to another in a space of articulatory features. In 

that rasf', there arf' no dpar cut bOllndari .. s between speech units, but rathPf a continuous 

pvolut.ion of art.irulatory featurE's going from the dirE'ction of and toward the direction of 

1,;ng .. t.s that may rorrE'spond to phonpmes or to other subphonemic events (see the temporal 

dE'romposition of [AtaI83]). 

One of tl1(' problpms with eurrent approaches is their weaknE'ss at rE'jecting or modeling 

words not. in thE' training vorabulary. In fluent speech, talkers often pronounce non-words 

Slich as "ah" ,"hmm", or sounds made with the throat. There are often other noises in the 

f'nvironmpnt t.hat. make the obsE'rved signal more diffirult to reeognize. Robustness with 

rpsp .. rt to noisy signa! is th us an important fE'ature of a desirable speech recognition system. 

ln addit.ion, it is import.ant to mode! sub-word units, in order to be able to characterize 

words not. in th .. training set (by modeling them as concatenations of sub-word units). 

ln expprimE'nts dpsrribed in Chapters 3 and 6, we have attempted to address the problem 

of roartirlliation by rhoosing an out.put coding that is based on articulatory features. This 

allow .. d liS representing articula tory context in the network outputs, e.g. the horizontal 

place of articulation of the phoneme that follows a plosive. This results in more compact 

rppresE'ntations than one output or one model per diphone. 
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Chapter 2 

The Back-Propagation Algorithlll 

The principle of thE' back-propagation algorithm was briE'fly introdurE'd in sE'rtion 1.2.1. This 

nlgorithrn was independently disroverE'd by [WNb7·1]' 1 [l-arkH!)], [LE'CuH;,], and [Hul1lPRfih]. 

It is based on the computation of t.1lE' first derivativ('s of a rost funrt.ion wit.h r(lspprt. t.o t.hE' 

paramE'ters of thE' Iletwork. DiscrE'tp gradient dE'scen t thE'n allows rOllvNgE'nr(l t.o a Illin i IllU III 

of the rost function, but 'lot nE>cE>ssarily to thE' global minimum. LE't us rOllsidN a simplE' 

gE'neralization of the original algorithm that allows onE' to USE' an arbitra ry diffNftll tiahlE' 

transfer function F for each unit. 

2.1 Formai Description 

ConsidE'r li network of units forming a directed graph r; = (If, q, WhNE' Il = {u l } is a SE't. 

of units, and L = {l,) : 3 link from unit st) to unit i } WhNE' .'ll) is thE' unit numbN of 

the jth input into l'ode i. That particular formalism was ('hosE'n to dftsrribE' thE' nE't,work 

graph in order to allow for multiple links with various dE'lays hE'twE'('n two unit.s (ChaptoN 

4). Units are either input units, hidden units or output units: thE' SE't of input units is (Jr, 

the set ofhidden units is UH, and thE' set ofoutput units is (fo, so (f = (f/ U IIH U (Jo. 

Let Ils consider for the moment the case of a static nE'twork, i.ft., whosE' graph rontains no 

1 Although in the case of [Werh71] the algorithm if; not pn'lI('nh'd in UI!' (Ol1h'xl of Il<'lIral n('tworkK. 
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unit u 1 

computes ~ (0 i' YI ) 

link ~j 

Figure 2.1: f)ir~rtE'd graph of an AN N for training with hack-propagation. Units are nodes 

of t.he graph, connections are links of the graph. 

cyrlE's. The cases of a rcctlrrent net.work and of a network with delays will he discussed in 

sf'ction 4.:J. 

LE't us assume without loss of gE'nerality that the units of a static network are ordered in 

such a way that if i < j then there is no path in G from Il) to Ua. 

2.1.1 Network Operation: Forward Phase 

Du ring a forward phase, whf'n the tth input pattern PI, is presented at the input units, the 

Ilf'twork ('omput~s a transformation that can he read out at the output units. Starting at 

unit 1, and until unit Nu, each unit computes its activation as follows: 

if /li E lI/, 

y, = 1'1,.\ ,i.e., the i th element of the tth input pattern. 

else, 

y, = Fi( (J" Y,) , i.e., a parametric function of its inputs, 
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whE're YI is the output (also callE'd act.ivation) of unit. Il,, (JI is a s('t of paranwt.Ns for thE' 

funct.ion F.(.), and y. is thE' SE't of activations of thE' units 1t 8 'J such that. II) E IJ, WhN(' '~') 

is thE' node number of the sourcE' of link II)' 

ThE' "standard" modE'l [RulllE'R(,b] aSSUIllE'S that. F.(·) = F(.) and is a sip;moid (E'quat.iolls 

1.1, 1.2 and 1.:l) of a WE'ight('d sum of t.he input artivations of t.h(' unit Il.: 

(2.2) 

2.1.2 Network Learning: Backward Phase 

The prindple of the backward phase is to ohtain t.hE' E'rror gradl('nt wit.h r('sp('d. to t.hE' 

network parall'eters (If.) by first comput.ing t.h(' dE'fivat.ivE's of t.1lE' local l'ost, Ct wit.h 
'J 

rE'spect to each unit activation (â~,~t)' using thE' back-propagation forlllllla('. 

A diffE'fent.iable cost function is dE'finE'd as a fUllct.ion of thE" Iwtwork output UllItS. For 

example, the Least M('an Square (LMS) critE'rion is dE'finE'd as in E'qllat.ion 1.,1. In that. cas(', 

the derivative of the cost function with rE'spE'ct t.o thE' activations of t.hE" output units is as 

follows: 

ae '" aCt '" ~'" ~( ) = L.J!Cl () = L- L..J (YI(t) - targrt.d 
vy. t t (ly. t t, Cf l.u,E 0 

(2.:l) 

where targetit is the target or dE'sirE'd output valuE' for unit i at tinlE' t. 

In the hack-propagation phase, unit.s arE' considerE'd in thE" rE'VE'rsE' ordN of tllE' forward 

phase (frC\m UN down to ut>. The error gradient of a hiddE'n unit Il. E Uu is computE'd as 

follows, using the chain rule: 

(2.'1) 

For example, if the function Vl = f~(·) has the form of equation 2.2 (a sqll<lshed WE>ightpd 

sum), then 

(2.!) ) 
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Th~ dNivativf' of f(·) can he easily computed. In the case of an asymmetric sigmoid 

(Nluation 1.2), 

l'(x) = f(x)(l - f(x» (2.6) 

whNf'as in the rase of a symmetrir sigmoid (E'quation 1.3), 

J'(x) = 0.5(1 + f(x»(l- f(x» (2.7) 

Finally, thE' gradient with respect to the activations y can be used to compute the gradient 

wit h rE'sp~ct to the parameters of F(·): 

{JCt {JCt oy,(t) 
OfhJ aV, (t) {JOI; 

(2.8) 

If thf' funrtion YJ = FJ(') has thE' form of equation 2.2 (a squashed weighted sum), then 

(2.9) 

S~E' sf'ction 2.2.1 for a discussion on the application of the error gradient, in particular 

rE'garding storhastic vs detf'rministir parameter updating. 

2.1.3 Weight Sharing 

ft is somE'timE's desirable to constrain a network by forcing sorne of the parameters used 

for a unit IL, to hE' shared by a unit uJ ' This is typically the case when Ui and ui have a 

ditTf'rE'nt. r~reptive field but should compute the same feature. In that case, weight sharing 

[LangR8] may redurE' the VC dimension of the network while still allowing the network to 

pE'rform thE' desirE'd transformation. This usually results in improved generalization (see 

sE'rt.ion 1.3.3). 

Weight sharing among parameters in a set S = {(J,}) can be accomplished by simply aver-
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aging thE' gradient contrihutions from tllE' various instanrE'S of thE' shart'd parallwtt'r: 

(Je 
~O'J = -f( L 00 )1 1 .'; 1 

O,}ES 1) 

whE're C is the cost critNion, f is thE' lE'arning rat.E'. 

2.2 Problems 

(1.\ Il) 

The back-propagat.ion algorithm is a simplE' algorithm that is E'asy to implE'llH'nt ancl il. 

allows us to train nE'tworks that have a grE'at exprE'ssive pOWN, i.E'., t.hat. can hE' IIs('cI t.o 

perform a very largE' variE'ty of transformations. How(,vE'r, il. also has sE'vf'ral wE'akn<>ss(ls 

and problE'ms. Tht' most commonly rt'portE'd problE'ms arE' t.h(' following: 

• Slow convergence: somE> learning t.asks may feqllirE' hllndrf'ds, or E'VE'1l t.hollsands of 

iterations on the training SE't ln ordE'f to rE'ach an aC(,E'pt.ahlp rost.. HOWE'VN, fOf 

perceptual tasks with a v('ry largt' t.raining s('t. and a lot of rf>dllndancy :;lIch as spf'l'ch 

recognition or handwritten digits r('cognition, we found t.hat. t.ht' rNlllirt'cI nllllllwf of 

training iterat.ions may be as low as a cou pit' of dozE'n and is IIsllally bE'low 100, if 

appropriate pa rametNs (sllch as I('arni ng rate and a rchit.('rt. Il re) arE' chos('n for t.hE' 

network and stochastir gradiE'nt desc('nt is IIsed. 

• tocal minima: gradient dE'scpnt doE's Ilot guarantt'e rE'aching a global optim Il III IwcallsP 

it rnay get stuck in a local minimum. This SE'E'J11S to happ('n most oftf>n in prohlf'llls 

such as XOit or parity, but rE'sE'archers report that it do('s not. appE'iH to b(' a hig 

problem [ltume86h], particularly in many rE'al world prohl(,llls. This is hornf' Ollt 

in OUf experience with speech recognition, at lE'ast for statie n('tworks, in th(' s('ns(' 

that many trials of initial WE'ight valuE's don't yiE'ld significant varianr(' as to th(' final 

performance of the network. 

• Parameter setting: the IlSN nE'eds to dE'rid(' on sE'veral paranlE'tNs, sllch as I('arnillg 

rate and the architecture of the network, incJllding thE' numh('r of hlddE'n units. Nf'W 

techniques are being explored to design autorna tically the arr h itf'ctll rE' ofthf' n('t works, 

(e.g., with constructive algorithrns [rahI9l] or pruning algorithms [ChaIl90, Mozf'~9, 

Karm90]) and autornatically control sorne I('arning paralllf't.E'rs [.Jaco~~l. 



2.2.1 Acceleration Techniques 

Stochastic Weight Update 

ThNf> two hasic ways to perform gradient df'srent: dctcrmini.~tic update and stochastic up­

(J(lfc. In thE' tirst rasE', also ralled hatrh update, paramE'ters are moditied after the complete 

graeJif>nt of thf> cost function has bE'en computE'd over ail the training patterns: 

~(J17 = -( L ?(J~t 
t iJ 1) 

(2.11) 

WhNf> Ct is thf> rost for pattf>rn f, f. is thE' learning rate, and (JI) is a pararneter of the 

Ilf'twork. 

Stochastir or onlinE' u pdatE' consists in rnodifying the parameters aftE'r each pattern is 

prf'sf>ntE'd, \Ising a Iloisy estirnate of the gradit'nt based on the loral cost Ct: 

taCt 
~ (JI) = -f. ôB 

1) 

(2.12) 

Thf> eJf>rivative of thE' cost for one pattern with respert to the parameters (JI) can be consid· 

Nf'eJ a noisy f>stimatE' of the total gradient. Stocha.stir gradient descent has been studied for 

adapt.ivE' signal prorE'ssing (sE'e for E'xample [Ljun83]) and it converges almost surely under 

rNt.ain conditions [Rott91, Whi9lJ. For ANNs trained with back-propagation, stochastic 

IIpdat.f> was found to be signifkantly faster t.han batch update in rnany instances, especially 

in pattNn rf'cognition problE'ms with a large training set (such as for speech or handwritten 

digit rf'cognit.ioll) [Rot.t90J. Several rf'asons may explain the improvements in convergence 

timf> ohtainf'd with stochastic update. First, when the training set is large, it may contain 

rf'dllneJant information: if several gradient components ~f' - contributE'd from different 
IJ 

pat.t.Nns arf> ail point.ing in a similar direction, then batch update wastes a lot of time 

only t.o obtain a morf' precisE' direction. Yann Le Cun [LeC89a, LeC89b] suggest.s the follow­

ing f>xtrE'nH' examplE' to ilIl1strate that notion. Suppose the training set is constructed out 

of t.wo ropiE's of t.ht' sanlf> training sllbset. A batch update method would compute the same 

gradif>nts twice and tht>n add t.h(>m, thus performing redundant computations. However, 

for a storhastic IIpdate mE'thod. a single iteration on this large training set would simply 

1)(> f'quivall'nt to two iterations on thE' smaller training subset, th us allowing the network to 

ron \'f>rgE' t,wic(> as fast. 
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Hy modifying the weights mort> oftE'n, storhastic update allows Ils t.o "try" man}" ll1orf' 

weigh t values, making the SE'a rc h IE'SS dE'tNministic and morE' E'xha lIsti\'E' (i Il t.hE' viri Il it.y of 

the currE'nt weight values). Anotlwr advantag(' may COIllE' frolll t.lu" randollllwsS int.rodufI'Il 

by the noisy evaillation of thE' gradient used at E'ach IIpdatf' stf'p (hasf'd on VNy liulf' (lata). 

This noisE' may lwlp escape from local minima. This noisE' is amplifif'd by t.1lt> lE'arnin~ rail'. 

Thus, starting with a large learning ratt> and slowly dE'crE'asing it., onE' mi~ht. conjf'ct.llrf' 

that we can approacl: the global minimum of thE' l''ost function, in a way that. is pf'rhaps 

similar to simulated ann.~aling (1" Hott.oll 90, personal rommunicat.ion). 

In an experiment on vowel rE'cognition Ilsing thE' TIMI'!' databasE' [ZlIE'HOaj, t!w conVE'r~f'ncf' 

of batrh update and onlinE' updat l ' Wf're eompared. Thf' f'xpE'rimf'nts art> p('rfornH'd wit.h 

a recurrE'nt network wit.h a singl,. hiddE'n layf'r. 'l'IlE' hidelf'n and output. 1Il1it.s ,HP fully 

connectE'd to eaeh other. There ,Ire also dE'lays of 0 and :l framf's from t.hE' illl)Ut. t.o t.hl' 

hidden units and of 0, 2,4, 6, and ~ franws from thE' hiddf'n 1.0 t.llf' output units. 'l'IH'Sf' 

experiments are performE'd wit.h thE' 1990 wrsion of TIMIT on thE' r(>eoglllt.ioll of 11 ("1<lsSl's 

of vowels (as in the experiment. dE'snibed in sE'ct.ion 4 .. 1.1). 'l'lu' nf'tworks art> t.rained wit.h 

back-propagat.ion through timf'. In Figure 2.2, OllE' .. 1E'arly SE'f'S t.lw impr(>ssivr cllfff'rf'ncr 

between the two update nH'thods. On thE' Oth('f hand, [Hp("kRO] C'Olllpar{'d onlinl' and hat.C'h 

training, a~ welI as second order 1l1E'thods for a bool('an funet.ion problE'1l1 and found litt.lr 

ditference between the two method~. 

Adaptable / Local Learning Rate 

Many schemes have been propos{'d to accelNate conv('rgencE' by 1) adapt.ing thr If'arlllng 

rate, and 2) using different rates for different paramE'tNs. For pxam plp, H . .J arohs [.J acoHHj 

proposes sllch a 1l1E'thod, called delta-bar-dE'lta rul(>. With this nwthocl, onE' incrrasE's t.hl' 

rate associated with a parameter when thE' cnrrent gradiE'nt for t.hat paraml't.E'r has t.hr 

same sign as the decaying aVf'ragE' of prE'vious gradiE'nts and dE'crpas(>s this ratE' if t.hf' sigllH 

are opposite. However, this ll1f'thod, Iike sE'veral arcplE'ration Illrthods, such as t.hf' IIS{' of 

a momcntum term [lhlm('86bj, rely on exact. ('valuation of th{' gradiE'nt, i.P., hat.ch Il pclat.l'. 

Conseqllent.ly, thE' advantagE's thE'Y bring arE' often offset by t.he disaclvantagrs of batC'h 

upclate for complex pattern recognition problE'ms with largE' t.raining s{'ts. 
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An alternative explored in [Ren90a] is to control the learning rat.E> indirE>rt.ly, Ily ront.rolling 

thE> average weight change in each layer of thE> ANN. EXpNim(lllt,s on smallnE>t.works show(ld 

signifkant.ly fast.er ronVE>rgenrE> wit.h such an indirect. control. 

Use of Second Order Information 

Severa1 optimization methods using sE>rond order information haVE> bE>en E>xplor(ld in ord(lr t.o 

improve convergence of hark-propagation. Already in [HUIllE'H6b, Plalll-Hi], it. was proposNI 

to use a "momentum" terlll, i.e., add a fix('d portion of t)lE' prf'violls wf'ight. changt> t.o 

the rllrrent one. This tends to redure the zigzagging E'ffE'rt. oft.f'n ohSNVE'd wit.h simplt> 

gradient dE'scent, by stabilizing the changes in the cl!rertion of (1/'''''OfJ(' st.t>ept>St, dt>sct>nt.. 

Unfortunately, this acceleration due to mOllwnt.um S(l(l/llS effect,lvE' Illost.ly wit.h hat.ch rat.hN 

than online update. The monwntum /llet.hod is actually relat.f'd t.o t.11f' Ilwt.hod of ronjugat.t' 

gradients [GiIl81], [Joha90] since in both cases t.1lE' search direct.ion is obt.ain(leJ t.hrough 

a linE'ar comhination of SuccE'ssive gradients. In bot.h rases, sf'rond ordN informat.ion is 

obtained only indirectly and only t.he first derivatives are explicit.ly romput.(ld. On tlw ot.lH'r 

hand, Newton and quasi-Newton met.hods directly use the second (INivat.lvf's of t.h(l cost. 

with respect to thE' ANN para/lleters. Purely Newton Ilwt.hods Sf'elll uSllally IInprart.ical in 

the case of large ANNs hecausE' they requirE' computation and storagE'ofthE' HE'ssian matrix, 

which takes O(N~) space and for which inVNsion rE'quirE's O(N~'J) 01lE'rat.ions (whf'rf> Nit! 

is the number of weights in the nE'twork). The pSE'udo-NE'wt.on Ilwt.hod (Sf>(' [Berk~!}]) 

only considers the diagonal of thE> Hessian, allowing a fast computation and inVNsioll of 

second derivatives. It also has the advantage that it can IlE' USf>d with stochastir updat.e. 

However, t.his met.hod requÎres careful handling of the problE'1ll of llE'ar-zf'ro or llf'gat.Îvf' 

second derivatives. The weight updatE' equat.ion of thE' Pseudo-Newt.on Ilwthod is as follows: 

(2.1:1 ) 

where C is the cost to he minimized, l1J I ) is a network WE'ight, f is the If!arning rat.E', and Il 

is a parameter used to avoid infinite weight changE' nE>ar zero second dE'rivativ{> valuf's. 

39 



( 

•• •• •• •• 
•• •• 

.. ~ ... 
•• •• . " • • • • • • 

---.~.activation propagated 
in forward pass 

• ••••••• ..,gradient propagated 
in backward pass 

thick lines indicate 
---I .... ~causal path by which 
Il Il' Il ~changes in node 8 

can influence 
parameters of 
node b 

fo'igurf' 2.:1: Illustration of parameter coupling. Modifying the input weights of node a may 

influencf' t.he gradient to node b and vice-versa, if they are both non-saturating for sorne 

pattNn. 

Parameter Decoupling 

Onf' ofth~ reasons why ANN training may he slow is that ail the parameters (weights) are 

strongly coupled. EVf'n nodes t.hat are not directly connected influence each other. Indeed, 

if anode c is f(~achable from two nodes a and b in the directed graph of the network, then 

a changE' in the function of node a will change the inputs and the behavior of node c. This 

will inflllf'ncf' the gradient (~) associated with node c. In turn this may influence the 

gradif'nt. for node b (~). If there are sorne patterns for which neither node a nor node b 
aYb 

arf' satllrat.f'd (i.E'., with a non-Zf'ro first derivative ofthe activation of the node with respect 

t.o it.s input. wf'ights), then a change in node a's weights will also influence the input weights 

.~f nodE' b (set> Figure 2.3). 

Onf' ofthE' conSf'qUE'nc~s ofthis parameter coupling is that it makes the search in the space of 

t.hosf' paramE'tE'rs morE' difficult, i.E'., t.he number of computations grows supralinearly (and 

maybf' f'xponf'ntially) with tllf' number of parameters (see Section 3.4 on modularizat.ion 

and asymptotir training timf'). An obvious anSWE>r to this problem is modularization. 

HOWE>vE>r. this IIsllally impliE's that the system designer knows enough about the prohlem 
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and its solution in order to design modlllf's that ran thf'n rooperat.f' t.ogf>t.hf>r. An impNf(lrt. 

modularization may have the disadvantagE" that a sllhoptimal solut.ion is ohtailwd, sinrE" 

parameters are est.imated sE"parat.E"ly, arcording to diffNE"nt opt.imi7;at.ion nit.Nia. 

What is proposed in the ANN dE"sign df>scrihE"d latN in this t.hE"s:s is an intt>rlllf'diat.f' so­

lution: first design and tl'ain some modules sf'parately (or on top of E"arh ot.hE"r), usin~ a 

priori knowledge to break up the prohlf'm into sllbtasks. Sf>cond, cio a global ol,flmization 

of the complete system, by allowing ail parametNs to he tunE"d simult.anrously in ordN t,o 

minimize a single rost critf'rion (see chaptf'rs 5 and 6). 

A different (and maybe complE"mE"ntary) solution is thf> USE" of nf>t.work nodf>s t,hat havf> only 

a localresponse in their input spare, surh as Uaclial Hasis Fuudions (IlHF) (sef> [Hf>nHOhj 

and section 7.1). In that. case, the paramE"tE"r roupling is only bE"twt'(>n nf>ighboring nocl(>s, 

Le., t.hose that have overlapping rf'sponses. 

Recently, several research groups [NowI90, .Ja('91a, .Jar91 h] proposE"f1 an int.f>rf>sting n(>1.­

work model, called "Compf'ting Bxperts" or "Mixturt>s of Local Expt>rt.s", whirh is a kind 

of hybrid of competitive training and back-propagat.ion, in whirh a part.irular t.ypf> of Illocl­

ularization (over the input spare) is performed aut.omat.irally by thf> If>arning algorit.hm. 

Acceleration vs Generalization 

In sorne cases, techniques employed to accelerate convt>rgenct> Illay havf' a dt>t.rimt>ntal f>ff(>rt. 

on generalization of the resulting nt>twork. For examplt> Patrick Haffnf'r [HaffRH] pf>rforlllf>d 

expf'riments in order to accelerat.e conVf>rgence whirh oftf>n yit>ldt>d worSf> gf>IINalizat.ioll 

error. He rompared various forms of thp sigmoid whirh would prf>v(>nt it sat.urating and thus 

slowing down learning. Experitnt>nt.s Wf>rt> also pNfofl1wd wit.h various objf>rt.ivf> funrt.ions, 

showing there lllight be a similar trade-off. On thf> Ot.hN hand a formula 1.0 ront.roll(>arning 

rates for each unit such t.hat the step sizE' would be rt>asonably large wlt.h no dangN of 

overshooting was used with success. It emHlfes that the prod uet of thf> norm of thf> loral 

gradient and the loral learning rate is bouncled . 

41 



( 

2.2.2 Local Minima 

Sinr{' gradit>nt df'sct>nt methods USE' only locally available information to decide on the next 

s{'arch dirt>rtion, thE'y may yit>ld local minima of the cost function. On the other hand, 

gradiE'nt dE'sr{'nt is IIsllally more rapid than methods that are more robust to local minima, 

surh as simlliated annealing or gE'nE'tic algorithms. 

Stochastic Weight Update 

As was mE'ntiont>d in spction 2.2.1, stochastic weight update may help to escape from sorne 

loral minima. This may happE'n hE'rause a noisy gradient is used instead of the true error 

gradiE'nt for E'ach pararnE'ter update. In fact, a local minimum of the total cost L Ct is a 

stablE' point of thp algorithm only if this point is a local minimum for each Ct [Bott91]. An 

analogy bE'tween stochastic gradient rJescent (with decreasing learning rate) and simulated 

annE'aling is st.udied in [Rott91]. 

Simulated Annealing 

InstE'ad of allowing only rE'duct.ions in the co st function at each time step (which is the goal 

of gradi{,llt dE'scent), simulatE'd annealing [Kirk83] allows sornE' upward movE'S in order to get 

out of local minima. ThE' probability of making an urward move is controlled by a parameter 

rallE'd '"tE'mperaturE''', by analogy with physical systems (cooling metals undergoing an 

annE'aling procE'ss). Annealing starts with a high temperature that is gradually reduced. If 

a propE'r srhedulE' is rhosen, the process will converge to the global minimum of the cost 

fllnrt.ion [GE'matH]. 

Alt.hough simulatE'd annealing is llSefll1 to escape local minima, it does so at a great com­

putational cost whell romparE'd with gradient descent. 
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Genetic Algorithms 

An interE'sting alternative to gradiE'nt hasE'd optimizat.ion mE't.hods is t.hE' SE't. of opt.imizat.ion 

methods called "genetic algorithms" (see [Holl75J and [GoldRRJ). CE'nE't.ir algorit.hms arE' 

learning algorithms inspired from sevE'ral ft>atllrE's of hiologiral E'volut.ion. TllE'y ronsid.'r a 

population of solutions to a problE'm, E'nrodE'd in artifirial "chromosonlE's". Each Ilwmht>r 

of the population is evaluated using an evaillation funrtion. Th{' population undNgOE'S 

reproduction until a satisfact.ory pE'rformanre is at.t.aint>d. I>lIring rE'produd.ion, onE' or morE' 

"part>nts" are stochastically rhosen to rt>produce. This choÎcE' favors l>arE'nt.s wit.h higllE'st. 

evaluation, i.e., hest performance of the evaillation fllnrtion. OpNat.ors art> appliNI 1.0 

the chromosomes of the parE'nts to prodllct> rhildrE'n t.hat. art> insNt.NI int.o t.hE' populat.ion. 

Standard operators arE' mutation, i.E"., storhastirally modifying onE' piE'cE' of informat.ion 

in a chromosomE', and crossover, i.E', combining rorrespondlllg piE'rf's of illformat.ion from 

two parent chromosomes. Domain knowledgE' can hf' E'xploitE'cI t.o rfflat.fl 0llf'rat.ors which 

inlprove the efficiency of the optimization prorf'dllre [WhiHnaJ. 

It should be not.ed t.hat. intE'rE'sting gradient.-dE'srf'ntjgE'nE'tic-algorithm hyhrids havE' !.{'('Il 

proposed (see for example [DaviSnJ or [WhiHna)). 

One of the advantages of gE'netic algorithms is that t.hfly are VNy rE'sistant to local minima, 

herause they explore several points in paranlE'ter space simllltanE'ously. () nfortunat.flly, t.his 

is at the cost of many evaluations of the error funrtion (at a.1I these point.s, E'ach rt>prE's(lnting 

a different individual). Henee in gE'neral, if gradient descE'nt ran IE"ad to thE' glohal minimum, 

it will prohahly do so faster th an genetie algorithms or simlllated annE"aling. 
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Chapter 3 

Integrating Domain Knowledge 

and Learning from Exarnples 

ConnE'rtionist models are very flexible in the design of architectures based on domain knowl­

edgE' and their integration with other problem solving tools. It is possible to use domain 

knowledge in many aspect:. of network design and thus to take profit of a priori knowledge, 

as wf>1I as of lE'arning from examples. Such knowledge may be tlsed to impose constraints 

on t.hE' net.work topology, on input and output, or on initial values for sorne of the system 

paramE'ters. These constraints, by reducing the VC dimension ofthe ANN, while still allow­

ing a good solution to be at.tained, may signjficant.ly improve the resulting generalization 

of t.hE' ANN. However, in many cases, it is not easy to use that knowledge, thus the design 

of ANNs also rE'quires careful crafting and trial and error. The aspects of the design pro­

Cf'SS rOllsidf'rE'd in t.his rhapt.f'r are t.hE' following: preprocessing, input coding, architecture 

ronstraints, modulari7.ation, and output coding. Experiments on speech recognition tasks 

arE' desrribE'd to illustrate the import.ance of each of these aspects of the design of ANNs. 

'1'0 Illod ulari7.e the recogn ition systE'm and to ta.!~e advantage of knowledge specific to each 

typE' of phonE'lllf' (such as plosives, vowels, fricatives), we have generally broken down the 

phonE'mE' rE'cognition into networks specialized for particular tasks. 
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3.1 Importance of Preprocessing Input Data 

Preproressing the input data for an AN N has appearf'd vE'ry import.ant in many applirat.ions. 

Considering, for exal'1ple, automatir spE'E'rh rE'cognition, our work (SE'E' [BE'n~)()a, HE'n90r]) as 

weil as thE' results of others [HossR9] indiratE' that tIlt' rhoire of signal IlfOrE'ssing signifirantly 

influf'nces the performance of a rf'rognitioll systf'm. It is important. to distinguish bf't,w(,f'n 

the choice of preprocessing, e.g., aroustir featurE's, from thf' way thpsp input f('aturE's arp 

coded before being applied at thE' input layer of a nE'twork (SE't' SE'rtion :1.2). Wf' will r('vi('w 

in the following su hsections somE' preprocessing techniquE's for automat,ic spf'~rh rE'rognit,ion. 

3.1.1 Auditory Mode) 

In the human auditory systE'm, air pressure variations f'ntN thE' outN E'ar and arf' IlW­

chanically transduced through thf' middle ear to thp rorhlf'a (inlwr f'ar). ThpsE' prf>Ssur(' 

variations from the middle ear rf'arh thE' corhlpa through t.hE' oval window nE'ar tlH' hasf> 

of the cochlea, that is fillE'd wit.h a fluid ra lied pprilymph. Thp \HE'SSUrf' variat.ions pro· 

vokf' fluid displacenlPnts (traveling waves) within t.hp rorhlpa. TlwsE' wavf'S apppar to havf> 

maximum intensity along the If'ngth oftlw basilar I1wmbranE', wit.hin t.hf' rorhlpa, as a funr­

tion of the frequf'nry distributIon of thE' •• coustir stimuli. On thE' basilar llwmhrallf', abOlit. 

1500 inner hair cells perform thE' neural transduction of thE' aroustir st.imuli. Wh ... n thNf> 

are vibrations of the basilar membrane near a partirular hair r{'lI, its rilia are df'f)f'rted, 

provoking an intracellular voltage increase that propagatE's to t.hE' (('II hody. 

In rerent years, basi\ar membrane, inner cell and nf'rvE' fibpr behavior haV(' bf'f>n f>xtf'n­

sively studied by auditory physiologists, and knowlpdgE' about. thE' audit.ory pathway has 

become more accu rate. Throllgh a nllmber of studif's, fonsidf'fablE' amollnt. of data has 

been gathE'red in order to charactE'rize thf' responsf' of nE'rVf' fi bE'rs in t.hp pighth nf'TVf' of 

the mammalian auditory sy!ltpm, using simple tone!l, tone romplf'xPs, and synthf'tir spf'f'rh 

stimuli [Df'lg80, Delg84, Youn79, Sach80, MiIIR3, SinpR3, Kian(j;;;. Thf'fif' stlldips havp bf'{ln 

the basis for the development of a mathematiral ear modf'\ by S. Sf'nf'ff [Spnf'~H]. 

The experiments described in this section with an ear moclp\ arE' basN! on t.he modf') pro-
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pospd by Seneff [SpnpRti, SeneR5, Spne86, Sene88b]. This model is structured into three 

blocks. The firt1t t,wo hlocks ar() dpsignpd using knowledge ofthe rather well-known responses 

of thp rorrpsponding human auditory stages [Sine83, Kian65]. ThE' third one attempts to 

pxtrart important spPech propNtiE's likp spectrallines related to formants [Sene84, Sene85]. 

ThE' speE'rh signal is first sam pied at 1() kHz, pre-filtered through a set. offour complex zero 

pairs to pliminatp very low and vpry high frequenry components. It is then analyzed, in 

thp first blork of the model, by a tiO-rhannel critical-band filter bank. For the experiments 

dpscribpd here, frpquencies and bandwidths for zeros and poles of each filter were designed 

almost automatirally by P. Cosi [Cosi90] with an interactive technique developed by S. 

SE'npff [Spnp8;']. 

Thp sprond block ofthe model implpml'nts a non-linear mapping that is int(>nded to capture 

promin(>nt f(>atures of thp transformation from hasilar membrane vibration, represented by 

thp outputs of the filter bank, to probabilistic response properties of auditory nerve fibers. 

Th(> outputs of t.he second block represent the probability of firing for a set of similar fibers 

acting as a group. This blork models four neural merhanisms. The first one corresponds to 

t.ransduction and is modeled with a half-wave rectifier. The rectified signal is then processed 

by a module that models neurotransmitter release for the synapse between the inner hair 

rell and it.s ronnE'rtf'd nerve fiber. A membrane model performs short-term adaptation at 

that synaps(> [Gold85]. Then a low-pass filter models the loss of synchrony in nerve fiber 

bE'havior as stimulus frE'quency is increas(>d. Finally, an automatic gain control unit models 

t.he rpfrart.ory phenomenon of nerve fibers. 

Th(> third blork of the auditory model is a synchrony detector, which implements the known 

"phasE' lorking" propE'rty of t.hl' nerve fibers responding to low frequency periodic stimuli. 

It l'n hancE's spE'ctral pE'aks (or spcctrnllines) due to vocal tract resonances. If there is a 

dominant pNiodicity in the signal, those channels whose central frequencies are closest to 

thllt pE'riodirity will have a more prominent response. 

St>e [Cosi90, 8en89b] for a more detaited description of the auditory model we used and of 

th(> pxppriments performed with this model. Unfortunately, our software implementation 

of thE' auditory model was prohibitively slow: several hundred times real time. Thus our 
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experiments with the auditory 11l0dE'1 WE're Iimited to thosp dE'srribE'd in t.his sE'ction, sE'ct.ion 

3.3.1 and section 3.5. HowE'ver, rE'rE'nt work by [ZuE'90b] indiratE's t.hat it is possiblE' wit.h a 

parallel implementation of t.hE' auclitory modE'1 to gE't performancf's on thf' urdf'r of:l t.inH's 

real time with 16 DSP32C procf'ssors. 

Comparison with the Fast Fourier Transform 

Experiments were performed in spf'akf'r-inclE'pE'ndE'nt rE'rognition of 10 English \lOWE'ls f'X­

tracted from isolated words [Bf'n89b, Cosi90]. ThE' Fast Fourif'r Transform (FrT) and t.hE' 

audit.ory model were comparf'd as alt.f'fnat.ive prf'Procf'ssors for a nE'lIral Iwt.work rf'cogni7.N. 

When using 40 coefficif'nt.s producf'cl by an FFT-based Mf'I-sralf'1 ,1()-rhannf'1 filt.f'f hank, 

gE'nf'ralization error 2 (wit.h new spf'akf'rs) was 1:1.0%. On t.hE' ot.lwr halld, t.hf' alldit.ory 

model yielded 4.6% generalizat.ioll error on t.hat. t.ask. Howf'ver, as nwnt.iOlwcl ahovf', t.hf' 

preprocessing time for the audit.ory model rE'quirf'd two ordf'rs of magnit.ud(> morE' procf'SS­

ing t.ime than for the FFT. Errors WE'reon a phOllf'lllf' per phonE'lllf' hasis and thE' rf'cognizpc! 

phonE'me was chosen basE'd on Euclidf'an dist.ancE' bE'twE'f'n thE' targf't. outputs corrf'spondill~ 

to each phoneme and t.he network outputs. 

The speech material ('onsistf'c1 of;) pronundat.ions of 10 monosyllabic isolat(>c1 words ('on­

taining 10 vowels of Ameriran English: 

{BEEP (/iy!), PIT (lih!), BED (/E'h/), HAT (laE'f), HUT (fahj), HOOT (fuw!), PUT 

(juh!), SAW (/ao!), FAR (faaj), FUn. (IN!)}. 

Vowels were automatically singled out with an algorit.hm proposeel in [Df'MoH!)a] and a 

linear interpolation procedurE' was used to rE'durE' t.hE' nUl'lbf'f of franws pN vowf'1 to t.f'n. 

The rE'sttlting 400 spectral coefficiE'nts were t.hE' inputs of t.hf' AN N ((10 spf'ctral (,of'ffirif'nt.s 

per frame x 10 frames). The voices of 1:1 Spf'akNS (7 male, (, ff'mal(» WNE' uSf'd for If'arning, 

with 5 samples per vowel per spE'akE'r. The voirE'S of seVE'n nE'W spE'akE'rs (:J malf', -1 ff'lllalf') 

with 5 samples per vowel pE'r speakE'r werE' u'iE'd for tE'sting gf'nNalizat.lon. 

1 The Mel-scale compres~es high fre<lu('lIci('h logarithlllicollly, lik(· th(' Rark M 011(· d"h( nh('d UI tll!' rll'xt 

section. 

2 Generalization error il> the error 011 ail IIIdep('lId('1I t tt",t M't. R(·latlv(· g('"l'r,lli tati()11 ih tlw diff"r"I1( f' 

between the error on the training s('t and the ('rror on t}lf' tt,,,t hf'l 
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3.1.2 Bark Scale, Second Order Gradient and Other Features 

ThE' FFT is a widE'ly used transformation from which acoustic parameters are computed. 

This transformation can be computed with high speed but it produces a Iinear frequeney 

sralE' (such that frequE'ncy resolution does not depend on frequency). In cont.rast, in the 

audit.ory systE'm many more inner hair cells respond to lower freqllencies than to higher 

frE'CIIIE'nriE's. A perrE'ptual mE'asure of frequency resolution, called the Bark seale, was 

definE'd [ZwicHO] and ran be lIsed for speeeh analysis. It can be approximated by the 

followi ng relations: 

/ < 500 Hz -. BU) = 0.01/ 

/ < 1220 Hz -. BU) = 0.007/ (3.1 ) 

/ ~ 1220 Hz - BU) = 6log/ - 32.6 

whE'fe / represents thE' actual freqllE'ncy and B(f) represents the Bark seale transformation 

approximating human pE'rception. Note that it is basieally Iinear below 1200 Hz and then 

rom prE'sses the high freque'ldE's logarithmically. This transformation was used for the 

dE'sign of thE' filters IlsE'd to preprocess the speech signal in the experiments deseribed in 

sE'rtions :L3.2 and :1.5.2. In these experiments, the signal Set) was first pre-emphasized in 

order t.o rount.eract the spectral falloff due to the glottal source in voiced speech, aecording 

to thE' following formula [OSha87]: 

Spre(t) = S(t) - aS(t - 1) (3.2) 

This is a singlE'-zero high-pass filter which may yield formants with similar amplitudes. 

A valut' of 0.95 was used for 0'. AftE'rwards, a 512-point FFT was computed every 5 ms 

with 20 ms of the Hamming windowE'd (and pre-emphasized) signal. The power spectrum 

rOlllputE'd with thE' FFT was then smoothed with 32 masking filters. This preprocessing 

was IISE'd on thE' 'l'IMIT databasE' [ZlIe90a], for which the speech signal was sam pied at 16 

kHz. ThE' oVE'r1apping t.riangular filters were eqllally spaced in the 8ark scale described 

abovE', with rentN frt'quendE's ranging from 100 Hz to 7000 Hz [Ben91a). 

ln addition to thE' Mark sralE' spectrllm, several other features were considered in order to 

hE'lp rE'cognition. An approximation of a second order partial derivative of the speet~al en-
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Figure 3.1: Stiding window used for deterting mOVE'mE'nts of spect.rallinE's. FrE'quE'nry is 011 

the vertical axis and time on the horizontal axis. Earh grid E'1E'1lH'lIt is O.r. Hark by fi ms. 

ergy with respect to frequenry and time is comput.E'd as in [FlamHI), whirh is a modifirat.ion 

of the feature proposed by [Stev75]. ThE'se fE'at.urt' art' oht.aint'd by sliding a 20ms by I}, 

Rark window as shown in Figure :U on thE' pE'aks of tht' tillwjfrE'qllE'llcy spE'rt,rogram. In 

this way, 30 property detectors are introdllred whirh havE' strong positivE' fE'SpOnSE' fOf spE'r­

trallines increasing in freqllE'ncy and stronp; nE'gativE' rE'sponsE' for spE'rtral lillE's dE'('fE'asinp; 

in frE'qllency. HencE' these dE't.ert.ors E'nrodE' information about tllf' I1WI'('/II('ui of spE'rtral 

pE'aks of high energy, both in time and in frf'quE'nry. LE't liS dE'notf' by .'\ (J, t) t.hE' spprt.ral 

energy in a freqllency band rf'nterf'd at f and in a tim~ int.f'fval cf'nt.f'fE'd at, 1. TIlf' gracliE'nt. 

opNator is computed only for tllE' spectral pf'aks betw(>(>n :JOO and 'I()()() Ih. First., ail t.llf' 

local peaks are located in that frf'quf'ncy band. '1'0 rE'durE' the numbf'fofspllrious rE'sponsE'S, 

this window is only applied at pcaksof the Hark spf'rtra. Sf'rond, (,'(J, t) if! romput.E'd as in 

[Flam91]: 

GU,t) = 

X(/-1,t-2)+X(f-l,t-l)+X(J+ l,t+ 1)+X(f+ l,t+2) 

-X(f+ l,t-2)- X(f+ l,t-l)- X(f-l,t+ 1)- X(f-I,tt2) 

if f;(t) > thrcshold and X(f,t) is a spf'rtralllf'ak 

o otherwise 
(:J.:J) 

where E(t) is the total energy of the signal in the window t, and thE' thrcs/lOld disrriminat.PR 

between speech sounds and sil t> Il CE'. In thf' E'xperimE'nts pE'rformE'd with this approximation 

of the derivative with respect to timp and frf'quenry, the gradiE'nt. GU, t) is t.hf'n Rmoothf'c! 

by aVf'raging over the nine neighbors of thf' point (J, t) in thE' spprtrogram. 

Another featllre derived from the spectrogram is the spE'rtral slopf', whirh dE'srribf>s the 
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gross shapE' of the spectrum with an approximation of the first derivative of spectral energy 

with rE'spE'rt to frNluency. Seven slope fE'atures were computed as in [Klat82]. The spectral 

pOWE'r in thE' rangE' 50-600 H7. is a good indicator of degrE'e of voicing. This feature and 

its timE' dNivative WE're USE'd to hE'lp discriminate among voiced and unvoiced phonemes. 

ThE' signal E'nE'rgy and its timE' dE'rivative are very useful features found in many speech 

rE'cognition systE'ms (E'.g., SPHINX, [Lee 89]). Another time-domain feature 1,hat wasfound 

I1sE'ful is spectral dissimilarity [Fant7:J), a normalized dot product of consecutive spectral 

framE's that hE'lps detE'ct abrupt changes in the signal. 

Ali of thE'se featlJfE's were normalizE'd in order to span the range -0.5 to +0.5. Values outside 

this rangE' were r1ipped. This allowed us to use an efficient l-bytejdatum representation of 

tlw prE'prOrE'SsNJ databasE', as weil as making the mE'an and variance of each input feature 

of thE' samE' order of magnitudE'. The 10wN and upper bounds were chosen to clip about 

!)% of thE' data. 

Alt.hollgh ail thE'sE' featurE's are highly correlated, expE'riments performed by Giovanni Flam­

mia [HE'n91a, Flam91] show that they can improve performance of an ANN designed for the 

rE'cognition of plosive and nasal sounds in the TIMIT [Zue90a] database (continuous speech, 

spE'akE'f-indE'pendent). Many ofthese features are also motivated by speech knowledge. For 

E'xamplE', tllE' evollltion of high frE'quency spectral lines between the burst of a plosive and 

thE' ronsE'cutivE' phonenlE' are important acoustic eues for the recognition of the place of 

art.irulation of stop consonants [Stev75, R1um79]. 

3.2 Input Coding 

ThE' E'xpE'rimE'nt.s dE'srribE'd in [Heng88, Ren90a] indirate that the way in which input fea­

tllrE'S arE' rE'prE'sE'ntE'd in the activations of thE' input layer influence generalization. In these 

E'xpE'rinlE'nts, a nE'twOl kwas trainE'd to discriminate among three classes of vowels according 

to t.hE'ir horizont.al plan) of art.iculat.ion (front, center or back). The speech data was pre­

prorE'ssE'd as follows. VOWE'ls WE'rE' aut.omatically [DE'M085a] extracted from isolated words 

pronollnrE'd by multiple spE'akers. Spectral lines were extracted from the spectrogram of 

thE' signal with an algorithm desrribed in [DE'M085b] and based on thinning and on skele-
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tonization of thE' spectrogram, whirh is trE'ated IikE' an imagE'. In t.hf' stf'ady-st.atf' part of 

the vowel, averagevaluf's for freqllency and enf'rgy are romputE'd for f'arh dE'tf'ct.f'd spf'rtra! 

tine. Thus the task is one of st.at.ic c1assificat.ion. ThE' input dat.a for t.hf' nE'lIral nf't,work is 

a SE't. of E'nE'rgy jfreqllE'ncy pairs for the detertf'd spE'rtral linE's. 

The best results were obtainE'd wit.h thE' following mding srhE'nw. ThE' input. llllit.s Wf'rf' 

organized into a two-dimensional grid of E'1lE'rgy and frNIIIE'nry. Frf'quE'nry int.f'rvals W('ff' 

divided according to a Bark scalE' and E'nf'rgy int.f'fvals w('rE' dividf'<1 i'lrrordillp; t.o t.hf' oh­

served E'nergy distribution. FrE'quE'nciE's werE' normalizE'd by suhtrart.lIlg tllf' frf'qll('nry of 

the lowest frequency spectral tille:! from the true observE'd frE'qllE'nrif's of t.hE' ot.hE'r spf'ft.ral 

tines. The numbE'r of training E'xamplE's (72) was part.irularly small. '1'0 imIHOVf' gf'nN­

alizat.ioll, a coarse coding schenlE' was carriE'd out: in adclltion t.o f'xrit.inf,!; onE' nocif' for 

each E'nergy jfrequE'ncy input pair, neighboring nodE's al80 rE'rE'ivf'cI an input, with int.f'n8it.y 

decrE'asing with dist.ance in thE' grid. ThE' gE'nE'ralizat.ion E'rror wit.h a Bolt.zmann marhinf' 

was 4.2%. If absolut.e instE'ad of relat.ive frE'quencies WE'rE' USE'd, t.hE' f'rror inrrf'a~:;('c1 t.o !'i.(i%. 

If the energy was mdE'd wit.h a singlE' analog valuE' for E'arh frNluE'nry inf.Nval", t.hf' f,!;('I\­

eralization error increased t.o 8.:1%. If instE'ad t. he roarR(' rod i ng srllE'll1E' was Ilot. lHiE'd rI, 

the generalization error was 9.7%. Slightly WOrRE' result.R Wf'rE' obt<lillf'd wit.h a fE'E'c1forw<lrd 

network trained with the back-propagatioll algorit.h m [Hf'n90a]. 

A surprising result of t.hese expf'ri Ilwnts is that t.1lE' AN N gE'llflf<llb:at.ion waR Vf'fy good, 

although the number of training examples was Vf'fy small mlllparN) to t.hE' numlwr of 

weights in any of the networks (several tens of thousands). Wf:' fonjf:'ftllrf' this may hE' 

due to the input coding, aR weil as to thE' fart that training W<lR stOppNj WE'II bE'forf' thf' 

global minimum of the error fUllrtion was fE'arllE'd, thuR prohably lillllting thE' E'ff('rtiv(' VC 

dimension of the AN N (see [Chau90] and [Mor90b] on stoppi ng short of mnvNgenrE' 1.0 

improve generalization). 

3This low frcq\l{'lIcy spectral linc ~h()lIld ('orr(':,p'lIIc1 to tll<' fil Il cl 11111('11 t.ll fr('qu('/I< y or 'I/teh 

4 For that experimcllt. the fr('qm'/lcy n'solutio/l wa.~ ill< f(·a.~('d hO as to k('('p <1 himilar 1I111I1I)('r of w(·ighlH 

in the IIctwork. 

51/1 that case (,11ch c/I('rgy /freqllC'lIcy JMir corr(·hJ!oncl(·d to only on(' ON in pllt /lotl(· 
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amplitude 

The amplitudelfrequency 
grid is coarse coded: 
each cell's grey level 
represents the input 
acti vation of a node. A 
black cell corresponds to a 
spectralline (freq.+energy). 

Neighboring cells also receive 
activation, decreasing with 
distance. 

frequency 

• 
FigUfE' 3.2: Coafse coding scheme \Vith which best results were obtained fOf the experi­

lllE'nts d~scribed in section 3.2 (vOWE'1 classification). The input grid represents frequency 

(hori7.011 tal axis) and energy (vertical axis). 
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3.3 Importance of Architecture Constraints on the Net­

work 

Many E'xperimE'nts showed that tllf' dE'sign of thf> architE'cturE' of an ANN has a signific(llit. 

influence on its performance, rf>garding hoth genNalization and ronv('rgrIlCf> t.illw. S('vNal 

expf'rimE'nts in this sf'ction illllst.ratE' this E'fff>ct. Othf>r E'Xlwrinwllt.s d('srribE'cl III t.his t.lwsis 

also show the importance of architE'ct Il re choicf>s: SPP, for pxam pIf>, th., f>X pNimf>1l t.s on 

VOWE'I recognition in TIMIT (sf>ct.ioll I\.:J.I), t,hf> expf>rimE"nt on t.hE" analysis of alllino-arid 

sequences (section '1.4.2), as WE"II as thE' E"xpNimf'nts on thE" ANN/IIMM and ANN/dynamir 

programming hybrids (section (i.7). 

3.3.1 A Nasal Consonant Discrimination Experiment 

In a naRal consonant recognition f'xpf'rinH'nt [Hen90r], a mOff> than ;,-fol<l improvf>llwnt in 

generalization was obRerved by improving thf> architE'rturf' of thf> AN N. 'l'Il(> f>XIWrinwJlt. was 

performed on the discriminat.ion of nasals Jml and Jnl in a fixf>c! ront.f>xt, that of Ir!.tNs "Ill" 

and "n". The speech material ronsistf>d of 2~)tI <>pE'E'('h sf>gnH'ntf. from ïn training spf>akf'fs 

(male and ff>male with variolls aC(,f'nts) and :lH RpeE'('h sf'gmf'nts from 10 t.pst <;ppakNs. Thr 

speech signal was preprocE'ssf'd with the auditory Illoclf>l and gf>n('ral synrhrony df>t.('rtor 

described in section a.!.I, yif'lding 1\0 input ff>atures eVf>ry 10 ms. Poor ff>sults wNf>obt.aillf'd 

with early experiments, with a Rimple output coding wit.h thrrf> nodf>'l {vowf'l, m, n}. A 

two-Iayer fully connected ff'f'dforward AN N with a window of two ronSf>rutIVf> franws at t.h(· 

input and 10 hidden units yiE'ldE'd 15% c1assificat.ion Nror on thE' tf'st Sf>t. 

Better results were obtained by ronsidE'ring obsE"rvations on sp('E"rh analysis showing t.hal, 

the most important discriminatory information for thE' nasal Rounds is availa hiE' during l,lu' 

transition betwE'en the vowel and thE' naRal. This suggE"st.f>c1 using thE' followinl?; out.put 

coding, with four nodes: 

{vowel, transit.ion t.e m, transition to n, nasal}. 

Since the transition was more important than the Rteady-stat.E', we chosE" a winclow of 1\ 
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Figure :J.:I: "est architecturE' obtained for the recognition of nasal sounds in a fixed context 

(st>t> sE>ct.ion 3_:1.1). The first net.work is initiallt t.rained t.o recognize transitions from vowel 

t.o nasal. The st'cond one models thE' tE'mpol'al structure of t.he out.put of the first one. 

framE>s (instE>ad of 2 frames) at (t, t - 10 ms, t - 30 ms, t - 70 ms) at the input. To reduce 

tht> ronnt'ct.ivit.y in the network, the architE'cture was modified to include a constrained 

first hiddE'n layE'r wit.h 40 units, where each unit was meant to correspond to one of the 

~() spE>ct.ral frequE'nries of the prt'processing stage. Each sueh hidden unit, associated t.o 

tht' /.'th output. cOE'fficient ofthe audit.ory model synchrony detector, was connected (when 

possiblt') to input unit.s corrE'sponding t.o 

audit.ory modE>1 cOE'ffirient.s (F - 2, F - 1, F, F + 1, F + 2) 

and framE's (t, t - 10 ms, t - 30 m$, t - 70 ms). 

Expt'rimE'nts with tht> feedforward network (~O input.s - 40 hidden - 10 hidden - 4 outputs) 
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(network 1 in figure 3.3) showed that, as expectE'd, the stron~est rlUE'S ahout. tllE' ident.ity of 

the nasal sound are those associatE'd with thE' trallsition from '/owt'I to nasal. Fu rt,IlE' rIlIHrt'. 

this informat.ion is availablE' for only a very short. sE'gnH'nt of t.ill\(>. just. lH'fore t.ht> st.art of 

the steady part of the nasal. '1'0 E'xtract this critiral information, a sE'cond Ilt't.work was 

trainE'd on the outputs of the first. one to providE' a rlE'ar discrimination durin~ thE' wholt' 

duration of the nasal. This higllPr IE'vE'1 nE'twork is a rE'curr('nt. OllE' with local f('('(lhaf~ 

trainE'd with the HPS algorithm (SE'E' sE'ct.ion 4.3.:1), in ordN 1.0 I('un about. t.h., t.(,Ill\loral 

structure of the task and kE'E'p thE' dPtE'ctE'd crit,iral information during thE' It"ngth of t,IH' 

nasal. With the 2-net,work architE'cturE' as shown in FigurE' :1.:1, r1as!Hfication Iwrformanc(' 

reachE'd a plateau of 1.1 % classification Nrors on thE' training st't. GE'nPrtllization was VN,V 

good for this task, with only a 2.(i% E'rror ratE' on thE' tE'st SE't. Th(' dralllatic improvt"lll('nt. 

due to the changE' in architecturE' may bE' E'nhallcE'd by thE' small siz(' of t.ht" t.rainlng 8f'1.. 

In su ch rases, the structural bias imposed on t.hE' nE'twork has ll1urh morE' t>fft"ct than wlwn 

the training set is very largE'. 

3.3.2 Plosive Recognition 

Experiments on plosive recognition on a continuous spE'E'ch dtlt.abasE' ('l'lM 1'1', [ZuE'!}()aj) 

WE're performed in collaboration with G. Flammia [HE'n91a). ThE' task was t.I\(> SpE'akN­

independent recognition of the following 7 plosivE' sounds in cont,inuous spt>E'ch: 

{lpl ,/t/,jkj ,jbj ,jdj ,jgj,jdxf} 

The best results for this task WE'rE' obtainE'd with a nE'twork with thrt>E' layNs of WE'ights 

in which the first hidden layer was constrainE'd wit.h a local conn('ct.ivity hot.h in timE' and 

frequency, as shown in Figure 3.4. A rE'CurrE'nt nE'twork pNfornwd bf>f.tN than a statÏf 0/1(' 

[Flam91). The reCl1rrent nE'twork yiE'Ided a dE'CfE'aSE' of gE'llf>ralizat.ion Nror from :l:)% to 

30.7% on a plosive and nasal recognition task with the TIMIT databasE' and its outputs 

were much less noisy6. ThE' input fE'atures are thosE' d~Rcrjh~d in RE'ction :1.1.2 and th(' 

6basro on vi&ua! insp<,ction of the lI(·twork output!! 
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FigurE' :lA: Arrhitt"cturE' USE'd for thE' recognition of plosives, nasals and fricatives on the 

TIMIT dat.abasE'. The first layer has a local connertivity in time and frequenry. N is the 

numbE'r of outputs. 

output roding, basf'd on articulatory featurE's and rE'presentation of context, is described in 

s{'rtion a.5.1. 

3.3.3 Position-Invariant Low-Level Features 

SE'vNal yE'ars of rf'searrh on the application of ANNs trained with back-propagation to 

handwrittE'n rharartN rE'rognition by Yann Le Cun et al has yielded a highly constrained 

archit.E'rt.llrEl for t.his t.ask [LE'CH9c]. ThEl network has ~ layers of weights. The first hidden 

layN units haVE' a local rE'rept.ive fiE'ld and thE'y are organized in groups (he caUs kernels) 

of unit.s. Ali \Init.s within a group have the same rE'cE'ptive field and corresponding units 

in diffNf'nt. groups ... hol'(, W('19hts (SE'e section 2.1.3). Because of WE'ight sharing the ANN 

has only 9760 frE'E' pa ramE'tE'rs eVEln though thpre arE' 6~,660 connections. These constraints 

art" h?sE'd on a priori assllmptions about the nature of the task and its solution: low-level 

fE'at.urE's should IlE' local in spacf' and posit.ion-invariant. They yield significantly improved 
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g~neralization [LeCR9a]. 

3.4 Modularization 

Thf>or~tical analysis indicates that t.hE' I~arning prohl~m for a m'u rai 1lE't.work may hf> N P­

complE't.e [Judd88]. On thE' othE'r hand, E'mpirical t'st.imatiollS [lIint.H7] inclicat.E' that. t.ht> 

learning time on a sE'rial machinE' is approximatf'ly O(N,:!,), wlwrf> N", is t.hE' nillulwr of 

weights in the network. Thus, signifi('ant improvf'nlE'nts in lE'arning t.imE' ('an probahly Iw 

attained by d~Bigning a modular systf'm, applying t.h~ "dividE' and cOnfjUN" prillrÎplp. 

A modular systE'm ('an bE' orgalli7,E'd with modulps in parallE'1 and/or ln sf'fif's. For t>xa III pit>. 

for the system dE'scribf'C! in chapt.E'f H, Illult.iplp A NNs arf' spt>riall7,NI t.o partlrular t.ypf'S of 

phonemf's or phonet.ir fE'aturE's. Thus thE' first If>Vf>1 ofthf> systt>1ll consis!s of a SE't. of ditfN('nt. 

networks operat.illg in parallel. Each 1lE't.work on t.hE' first. lt>v('1 fOlllpUt.('S difff'ff'nt. t.ypps of 

phonE'tic featurE's, thus transforming t.hE' spt'f>ch signal into a forlll thal. is lE'sS spt'akN­

depf'ndf'nt. ThE' opE'rat.ion of tllE' SE'('on<l IE'VE') is NIUivalE'nt. to a matrlx mult.iplicat.ion (a 

Iinf'ar layer) that comprf'SSE'S thE' data from ail tllE' outputs of tht' first. lt>vE'1 modulf's in 

order to fef'd il. 1.0 a Hiddf'n Markov ModE'1 (H MM), whirh ('onst.itutE'S tll(' t.hird lE'v(,1. 

Waibf'1 E't al [Waib89] reportf'C) improvenlE'nts in ronvprgE'nc(' tllllE' for a Illoduiar Sp('il~f'f­

df'pendellt phoneme recognition systE'm, using TlmE'-Df>lay Nf'ural Nt>tworks (TDN Ns, Sf'(, 

section 4.2). In this system, phonf'lllf' rf('ogllltioll is pf>rfornlf'd wlth spf'rÎali7,f'C1 nptworks 

for phonfme subclasses. '1'0 mNgf' tllf' individually traÎllf'd Ilt>tworks, "gillf' ullit.s" art> 

introduced and added 1.0 the concatE'nated subllE'tworks in ordN 1.0 It>arn discrinllllat,iollf> 

not If'arned by any of the individllal subnE'tworks. For E'xamplt>. in t.hf' cast> of plosivt' 

recognition, a {jp/,/t/,/kf} nf'twork is lllE'rgf'C1 with a {jh/,/d/,/g/} Ilf't,work and t.1lE' gillp 

units learn about. the vOÎCf'd vs unvoÎrf'C1 discrimination that sf'parat('s {jp/,/t/,/k/} from 

{/b/,/d/,/gf} while the two subnE'tworks rf'main fixf'd. l'inally, with a global t.llning of ail 

the parameters, furt.her improvemf'nt of thf' pprformancE' of t.11f' {/ p/ ,ft/ ,/k/ ,/h/,f d / ,/~/} 

network is obtainf'd. 
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3.4.1 Specialized Networks with Specialized Preprocessing 

Thf> nlodular systf>m uSf>d in thE' ANNjHMM hybrid of Chaptf>f 6 is based on the idea of 

using IIpE'cializE'eJ networks with spE'dalized preprocessing. Each ANN pE'rforms discrimina­

tion among Rom(' phonE'nlf>s or phonf>tic classes while the HMM allows an t>fficit>nt modeling 

of thE' tE'mporal structure of the signal. 

Wf> fi rst prf>st>ntE'd tlw idf>a of using spE'rialized networks with specialized preprocessing in 

[HE'n~,ma]. For thE' E'xperiments dE'scribed in [8en89a], several networks arE' used depending 

on thE' acoustic situation dE'tE'ct('eJ by an automatic segmentation program [DeMo85a]. For 

E'xamplf', thf> nE'twork MLNI is E'xE'cuted when a non-sonorant interval is found, followed 

hy a sonorant intE'rval. On the othE'r hand, the nf'twork MLN2 is eXE'cuted in situations 

charactE'rizf>d by pE'aks and high E'nNgy vallE'ys of the signal E'nergy in which frication noise 

has not. bE'f>n c1E'tE'ctt>d. Each nE'twork input is designE'd for the particular type of spectra 

that is E'xpf>ctE'd in tlw corrE'sponding situation. The MLN 1 network has 5 input windows, 

E'ach of whïch USE'S a diffNE'nt frequE'ncy and time resolution. For example, the first window 

of M LN 1 has t.wo t.inw int.ervals of 30 ms bE'fore the non-sonorant to sonorant interval, and 

four tinw intE'rvals of 10 ms aftf'f that transition. For that window, the analysis is based 

on ~ low frf>quency (100 Hz to 500 :iz) filtE'rs. Each filter receives as input a normalized 

v!\luE' of tl\(' enE'rgy in its timE'-frequency window. For each filter, thE're is a corresponding 

input that is actlvat('eJ if a sp('ctral line was detectE'd (using the algorithms desrribed in 

[MNI8()]) insidf' t.hE' associatE'd t.imE'-frE'cI'lf'ncy window. The experimental task was the 

discriminat.ion of thE' following t.E'n oft.en confused words (nine letters of the alphabet and 

OllE' digit), rE'lat,E'c1 to thE' oftE'n used "E-set": 

{"b", "c", "d" , "E"', 4.g .. , "k", "p", "t", "v", "three"} 

ThE' f'xpE'rimf>lIts WE'rf' pE'rfofllwd with two pronunciations of each word by 80 speakers (40 

malE's, ,10 fE'lllalE's). ThE' data from 70 speakers were used as a training SE't while the data 

from t.hE' rf'maining 10 WE're IIsE'd for the test. 

An oVE'rall t>rror ratE' of 9.5% was obtained, with a maximum error of 20% for the letter "d". 

This rE'slllt. was mllch bf't.ter than t.hose prf'viously obtained in [DeM087], and comparable 

to t.hose obtained by [8ahI88] working only with male speakE'rs on nine letters. 
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Most ofthe errors represent cases that are difficult eVE'n in human llE'rcf'ption. Such casf'S élrt' 

confusions "b"-"(''' and "d"-+"(''' r('pr('s('nting a low E'vid('nrE' of burst. and formant. t.ran-

sitions in voiced plosives, confusions "b"-"v", ",," ..... "b", "d"-"h", "p"-"t.", "t,"-"p", 

"t" -+"k" indicating wrong E'st.imat.ion ofth(' place of artÎrulat.ion, and confusions "d" - "t.", 

"p" -+ "b", "e" -+ "b", indicating Nrors in t.he rharact.('rizat.ion of voiril1~. 

3.5 Output Coding 

Most. ANNs designed for phoneme rE'cognition have a simpl(' out.put. coding srh('mE' fOnsist.­

ing of onE' output. unit pE'r ph()nemE', with a high targE't. for t.hE' out.put unit. corrf'sponding 

to thE' target phone me and a low targ('t for th(' othE'r unit.s (SE'f' for t>xamplf', 1,11f' pr('vi­

ously mE'ntioned work of [WaibR9]). In gt>nE'ral, on(' ran intt'rprf't tllf' out.put. act.lval,ions of 

t.he nE't.work as reprE'senting dE'grt>f's of E'videncE'. lIsing phollf'tir knowlf'dgf', Wf' havE' f'X­

plorf'd coding schf'mf's based on phonE'tic ft>aturE's rt>latt>d t.o spf'f'ch product.ion. Examplf's 

of such features are horizontal and vNtical plact> of articulation, voiring and nasality. Surh 

a represent.at.ion il' in gE'nE'ral morE' conlpact than t.hE' "onE'-output.-pf'f-phonf'Illf''' rf'IHE'Sf'n­

tation. Furt.hermorf', it df'srribE's a morE' gt>nE'ral spacE' of phol1f't.ir rharart.prist.lcs, allowing 

a network trained with some phonE'mE's to gE'nE'rali7,E' to nE'W phonE'llH's. 

3.5.1 Articulatory Features for Vowels 

In [Ben89b, Cosi90], we describe E'xperiments on t.h(' recognition of horizontal and vf'rt.iral 

place of articulation for VOWE'ls. We found that thesE' fpaturE's WNE' morE' diffirult to Iparn 

than a "onp-output-per-phonE'me" coding but. yieldE'd bf'ttf'r gf'nf'ralizat.ion, pspf'rially for 

new sound,.; that were not in the training SE't. Thrf'E' spparat.f' nE'tworks WPrE' trainpd to 

recognize hori7.0ntal place of articulation (with 5 ou t. puts corrE'spond i ng to !} plarf'R), vE'rt.iral 

piacE' of articulation (also callE'd mannE'r of articulat.ion, wit.h 5 outputs corrE'sponding t.o !} 

mannf'rs), and tenSf'ness (with 2 outputs corresponding to TE'nsE' and Lax vowf'ls). ThE'ir 

generalization errors werE' 4.6%. ;'.7% and 5.4%, rE'spE'ct.ivE'ly. ThE'sE' f'xpPrim('ntr; WE'rE' 

performed with the speech material and the prE'prorf'!'ising desrribt>c1 in sf'rtion :1.1.1. 
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'1'0 int.prprE't the npt.work outputs, a wpighted cpntE'r of gravit y for E'arh of the three features 

was romputE'd. An intE'fE'st.ing gE'nE'Talization expE'rimpnt was pE'rformE'd as follows. VOWE'ls 

and diphthongs not in thp training SE't WE're modelE'd according to expE'cted evolution of the 

abovE' mpntionE'd art.iculatory fpatures when they are pronounred, based on descriptions 

from t.hpory or past. pxperienrE' and not It"\arned by actual examples. Although HMMs could 

havE' bE'pn ronrE'ived for modE'ling thE' timE' evolution of the articulatory features, a simpler 

classifiration met.hod was appliE'd in thE'se pxperiments. t:ach new VOWE'1 or diphthong 

modpl was simply dpsrribpd by a fpgular pxpression \Ising symbols corresponding to different 

quant.izpd valuE's of t.hE' weight.pd rpnt.E'TS of gravit y (e.g., strong front, weak front, central, 

wpak hark, strong bark) for thp thrpE' featurE's. CentE'f of gravit y is dpfinpd as follows: 

(3.4 ) 

whE'rE' YI is thp ,th output corresponding to a cE'rtain articulatory feature, such as horizontal 

plarp of articulation. Thp centprs of gravit y for horizontal and vertical place of articulation 

wprp thpn quantized [Cosi90] using 5 symbols from the following alphabets: 

Ali = {F,I,C,b,B} 

Av = {H~h,M,I,L} (3.5) 

whE'TP Jo' rE'prE'sE'nt.s strong front, l, wE'ak front, C, central, b, weak back, and B, strong 

hark. Similarly, for vE'Ttiral place of articulation, Il represents strong high, h, weak high, 

M, mE'dium, 1, wE'ak low, and l, rE'prE'sents strong low. 

ThE' followi ng rpgula r pxpressions wprE' used to characterize the words containing the new 

VOWE'ls and diphthong: 

LpttE'r A of t.hp alphabet: 

I,pttpr lof t.he alphabpt : 

LE'ttE'r 0 of thE' alphabet. : 

Diphthong joy j : 

(f, ") '" (F, li )'" 

(b+ C,l). (f + F,h + Il)* 

(b+B,/).(h+B,h+H)* 

(b + B, l) • (f + F, h + H)* 

Diphthongjawj: (C,l).(b+ B,h+ Il)* 

LE'ttE'T li of thE' alphabet. : (/ + F, h + Il) '" (b + B, Il + Il). 

l.E'ttE'T Y ofthE' alphabE't: (b + B, Il + Il). (C, 1 + L). (f + F, h + I/)* 
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A 2-tuplt' represent.s a particular horizont.al and vE'rt.ical plact' of art.iculation. Tht' astNisk 

mt'ans "at. It'ast. 1 rt'petition " , tht> symbol + ht'rt> tnf'ans IOf?;ical disjunct.ion whilt' a ron­

cat.~mation ofterms bt>twef'n part'nt.ht'st's IllPans a st'qUf'nrt' in t.inH'. A !'hort. St'qllt'IlCt' with 

int.E'rmediate sym bols was tolE'rated in transit.ions /1 - F, l, -+ 1/ and vict' Vf'fsa, t'.~., for 

the letter U, a transit.ion of horizontal plact' of articulation throuf?;h thE' valliP corrt'spondinf?; 

to tht' syrnhol C Îs tolt>rated wlwn going from f or f' to b or H. 

Uecognition based on thest:! modE'ls yit'Idt'd 7.5o/il gt'nf'ralization ('rrOT, t.hlls providill~ ~'vi­

dence that the A NN trained to rt'cognizt' normalizE'd valut's of horizont.al and vE'rt.ical plarf' 

of articulation reliably generates ft'at.lITt' hypothE'st's about vowf'ls and dipht.hong not ust'd 

for training. 

Alt.hough very good rE'slIlts were obtainE'd with artirulatory ft>at 11 rE'S for vowt'Is froln Îf,olat.('d 

words, as desrrihf'd in the prE'violls paraf?;raphs, such f?;ood pE'fformanct> was not found in t.ht' 

case of continuolls spet'ch. Expf'finlE'nt.s dt'scribt'd in Sf'ctioll ,I.a. l wit.h t.ht' TIMIT dat.ahaH{' 

yielded het.tt'T performance with the simplt'r "onE'-outpu"-pE'f-c1ass" f'nmdinf?; Sdlt'Illf'. ThIS 

may be bt'cause the target artirulatory valut's t.hat Wf'fP USE'd assllm(' wf'lI-pronouncf'd vowf'l~ 

in isolated words whf'fE'as in ront.inuolls spt>t'ch t.hE'rt> is morE' variat.ion and influf'llcf' from 

the context. This is an examplt' of havlIlg wt'ak knowlt'dgt' about. t.hfl prohlflln. Bf'!.tflr 

performance may be obtaint'd if t.argt't articulatory ft>aturt>s \\oerfl IIst>d t.hat. takt' t.ht' ('fT('ct 

of coarticulation into account.. 

3.5.2 Articulatory Features for ConEonants and Representation of Con-

text 

Plosive and Nasal Sounds 

ExperimE'nts on sorne classes of phonemes (plosivt>s, nasals, fricativf's) W{lffl pf'rformflcl with 

the preprocessing described in st'ction :U.2. Various output coding srllf'nws Wf'ffl rom­

pared in [Ben91a]. It was found that a "one-output-per-phonPIllf''' mclinp; was worsp t.han 

using horizontal plact>, vertiral placfl and voicing of the currf'nt phOnfll1lf'. Furthf'rlnorf', 

\Ising contt'xt-dependent outpllt 1luits improvt'd pf'rforrnanc(' flVfln morfl. As dflScribt'd in 
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[Flam!H], on thfl rflmgnition of thp 10 cl, ,ses of plosives and nasals jp,t,k,b,d,g,dx,m,n,ngj, 

gpnf'falizat.ion prror was a(),t\ % with one output node per phoneme, but only 28.7% by cod­

ing wit.h 7 nodfls r('prespnting t.hfl following phonetic featurfls: labial, alveolar, velar, flap, 

VOiCNI, stop, nasal. 

My adding cont('xt-deppndpnt output nodes, generalization error was further reduced to 

27%. For f'arh of" horizontal plarps of articulation of plosives, 3 right contexts WPfe 

ronsidNPd (front vowel, back vowel, non-vowel). In addition to thflse 12 nodes for horizontal 

placfl of articulat.ion, 2 nod('f! indkated voiced or unvoicf'd phoneme, and 6 nodes werE' used 

for hroad classifiration of phonE'llles (liquid, front vocalic, non-front vocalic, nasal, fricative, 

silE'nrE' ). 

Thf' abovf' f'xperillwnts W('ffl performed with a 32-filt('f Rark-scale spectrum as described in 

sertion ;U .2. Hy adding the other ff'at.ures described in section 3.1.2. (24 serond-derivative 

dE'tf'rtors and 7 time-domain paranwters, including !ipectral dissimilarity), the error was 

furt.hf'f reducfld to 24.9%. 

Fricative Sounds 

Expf'rilllf'nts on the rE'cognition of Il fricative ('lasses from the TIMIT database were per­

formfld, using tht' archit.flcturf' shown in Figure 3.1, preprocessing described in Section 3.1.2, 

and output. coding based on plarfl and mannE'r of articulation of fricatives. The following 

11 c1a!isPs werfl to bf' rE'rogni7.E'd: 

/s,7.,rh,t.h.f,sh,zh,jh,d h ,v ,hh+ hv / 

Thf' Iletwork had ()9 inputs: 32 Hark-srale spectrum, 7 spectral slope, 24 spectrum gradi­

E'nt. (t.inH' and frf'qlJf'ncy df'rivative), and 6 time-domain measurements (energies and their 

df'fivatives, 7.f'fO rrossing), The 12 output nodes represented the following features: frica­

tiVfl, plosivf', nasal, liquid, lahial, df'nt.al, alvt'olar, affricate, palatal, glottal, voiced, silence. 

Thf' plosivf', nasal, liquid and silenre are used to allow the network to model the rejection 

r1ass (non-frirativf's). 

Thfl arrhitf'rturf' of thf' nf'twork for fricative recognition is sketched in figure 3.1. It is 



a rE'rllrrent nE'twork with delays and n:l2·1 WE'ight.s. ThE' nE't.work was trailH'd wit.h hark­

propagation in tinlE' (SE'E' sE'rt.ion ·I.:U). AftE'r :H training itE'rat.ions. t.raining was stoPIH'd. 

ThE' t.raining was pNformE'd on SI and SX SE'nt.E'ncE'S from 3·13 spE'akPrs from TIMlT. Thf' 

t.E'st was performed on 77 new SpE'akNS ofTIMIT 7. ThE' pNformancE' \Vas 1·Ui% fralllt' Nrors 

(on fricat.ivE's) 011 t.hE' t.rai ning SE't.. and 25.1 % framE' E'rrors on t.11t' t.('st. st't. (wit.h diffN('n t. 

spE'akers). Insertion of fricativE's in non-fricativE' sounds was R.2% for t.1lE' t.raining SE't. and 

8.5% for t.hE' test SE't (on a framE'-by-framE' basis). Not.E' that. t.hE' rE'lat.ivE' gE'll('rali~at.ion IS 

excellent. (relat.ive diffE'rE'nce bE'twE'E'n tllE' training and tE'St. SE't. E'rrors). 

ThE' most common errors WE'fE' t.hE' following: voiring (/1,1 -+ 11'01, jv 1 - If!), piacE' of 

artirllltlt.ion (jjhj ...... Icj, Ithl ~ Ifl (IE'SS frequE'nt), I~hl -> /shl (l('s1'o frE'CIIIE'nt.». 

3.5.3 Modulating the Targets 

As it. will be explained in sE'ction '1.:U>, supE'rvision can bE' modulat.E'd. In st'ct.ion 'I.:U·) w(' 

ron1'oidE'r a simple boolE'an operat.or that cont.rols whE'thE'r any slllwrvi8ion i1'o provid('d for a 

given frame and output unit (SE'E' also [.TordRR]). AnothE'f way to Illodlllat.(' t.ht' 1'oUlwrvi1'oion 

is slIgge1'otE'd in [Kuh90a]. It USE'S knowlE'dl",E' about t.1lE' rt'Iat.ion Iwt.wE'E'n t.1H' 1'ohapf' of th(' 

signal E'nergy and t.hE' onset of vowels t.o providE' arcu rat.t' supE'rvi1'oion t.o lIt'twork ou t. put1'o. 1 n 

that application (recognition of lettNs of the alphabE't "b", "d", "E''' or "v"), t.hE' E'volllt.ion 

of the targE't out.put follows an acoustir feat.urE' rU) which i1'o a shapE'-d(,pf'nclE'nt. ('nNgy 

incrE'ase indicator, turning on at. timE's when thE' vowt>1 tllrns on. 

7The training speakcrs werc tho!o(' with ilIItial bdwc('n "a" and "r" induhivl'ly and tlH' rt'U1aining WI·rt· 

uscd for t<,sting. 
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Chapter 4 

Sequence Analysis 

4.1 Problem Definition 

Most. applicat.ions of ANNs to pattE'rn recognition are concerned with c1assifiration oIstatic 

pat.t.Nns, Le., thf' problem is to map input patterns (of fixed size) to an appropriate c1ass. 

HOWE'VN, thE're exist several intE'resting applications in which the input pattern is better 

cl E'sr ri bE'cI as an orderE'd scqucnrc of fixed-size su b-patterns. The sequences do not necessarily 

ha\'(' fixE'd lE'ngth, thus methods for static pattern recognition are not easily applicable 

to t.hosE' problE'ms. LE't us cali E'arh of the elementary fixed-size patterns that compose a 

s('qUE'nc(' a !m11!c. For some probl('ms, it is required to produce a single classifiration for the 

('ntirE' s('qllE'l1r('. For many othN problE'llls, such as continuous speerh phoneme recognition, 

it. is inst.E'ad reqllirf'd to label E'ach franw, i.e., t.o associate it to a part.icular c1ass or state. 

Withollt. loss of gE'nE'rality, let us assoriatE' the ordE'fing of the frames in the sequence to the 

flowof timr. allowing us to talk about past and future times as well as dclays among frames. 

This association has also the advantage of relating to the way in which the information is 

JHorE'ssE'd for su rh tasks, i.e., sequentially in time. 

A simplE' approarh to this typE' of problem is to assume that the classification associated 

t.o thE' framE' t dE'pE'nds mostly on thE' surrounding frames, for example in some interval 

[t - l"~ t + H] of t.hE' SE'qUE'nrE'. In that. casE', one can use an input windotv of fixed size 

li + /, + 1 to scan thE' input. SE'qu('ncE' and producE' a classification for each frame using a 
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static c1assifiE'r. For exampl~, this is thE' approach that was E'mploy(lo in Nf't.Talk [Sf'.in~(iJ. 

in which an ANN maps orthographie dE'srriptions of tf>xt into pholwt.ir ff>at.ltrE's :rst>d for 

spef'rh synthE'sis (in a tE'xt-to-spE'E'rh systE'm). In that rasE' t.hE' wlndow is 7 frrtllws wult>. 

with each input framE' deserihing one lE'ttE'r of thE' alphabE't or a pllnrt.uation mark. This 

type of ANN was also IIsE'd in sevpral expNimE'nts dE'srrihE'd in this tlwsis. St>t> for E'xamplt> 

sections 3.3.1 and 4.4.2. 

This approach, however, has somp drawbacks jf a rontext ofvariahlt> duration influf>l!rps t.1l(' 

classification ofa frame at time t, or if inputs and targets arE' not wf'1I aligllE'd. ConsE'qu<,nt.ly, 

we need If>sS rigid methods to modE'1 thf> tf>mporal structure of thE' s<'qllE'nrE', or tllE' influt>nrt> 

of rontf>xt. A dassical method to deal with this problE'm is to modpl tht> spqut>nrps wit.h 

finitE'-state machines, or morE' genE'fally, with hiddE'1l Markov lllo<!pls (II MM). In t.hat. raRf', 

it is assumed that the observations wer<, gellE'ratE>d hy a systE'm whirh muid at any t.illl(' h(' 

in onE' of N states and that earh surh statE' is assoriatE'd with a distrrblltion on t.hE' input" 

SE'rtion 6.1 explains in more dE'tail what an HMM is. 

To represent context, one neE'ds a mE'mory of the pasto In ANNs, a mE'mory ran hE' provid('d 

by introducing delays or feedbark links in the nE'twork. With thE' formalism introdur<,d in 

section 2.1, a delay d'J can be assoriatE'd to link l'J as follows: 

y,(t) = I·~((J" l',(t» 

where y, is the output of unit 1t" (JI is a SE't of parametE'rs {(J'J} for thf' funrtion F,(,), and 

Yi(t) is the set of activations {Yk(t - d,))} of the units Uk at framE's t - d'J surh that l'J E l, 

and k = 8'J' 

A recurrent network differs from a static nE'twork in the propf'fty that Its graph a = (U, ") 

has at least one cycle, wherE' U = {u,} is a set of units, L = {l'J : 3 link in G from 

unit 8'J to unit i, with dE'lay d,)}, Note that a rE'rurr~nt ANN must. havf' somf' dplays as 

weil, otherwise there will be a ryclE' of liNO delay in the network, whirh ran't 1)(> flimulat('d 

because it corrE'sponds to a physirally impossible situation. 

\-Vith delays, we ean use information from a fixE'd relativE' past (E'.g., from framp t - /J, 

whE'n looking at eurrent framE' t). On thE' other hand. with rE'currpnt nptworks, an input. 

frame from an arbitrarily long past. may influpnre tllP computations for thp rurrpnt framf'. 
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Figllrf' -1.1: A rE'currE'nt network that retains a bit of information for an arhitrarily long 

t.inH', providE'd weights ar .. largE' enough. It is just two soft NOn gates with dE'lay lines. 

ln prôct.irf', t.hE' m .. mory of a trained rE'curr .. nt nE't.work is limit,E'd. but not. bya hard limit. 

'1'0 rE'alizE' t,hôt this is t.ruE', considf'r tllE' network in FigurE' 4.1 that implE'mE'nts a flip-flop. 

Sinr(> a flip-flop ran b .. rE'alizE'd with 2 NOR gatE's and somE' delay IinE's, onE' can store a 

bit for an arbitrarily long t.im .. III t.hiF rE'Current network, provided thE' magnitudes of the 

WE'ights of t.h .. llE'twork are largE' .. nough 1. This large WE'ight condition is required only 

for nf'tworks of sigmOld IInits. In thE' rase of threshold IInits. a rE'gular flip-flop is realized. 

1I0wE'wr, 110 E'ffiriE'nt method is known to train llE'tworks of threshold units when they have 

on(> or morf> h iddE'11 laYE'r2• 

For t.hE' pllrposE' of rha rartE'rtzing the various algorithms for rerurrent nE'twork described 

latf'r in this chapter, It>t us dt>finE' the following two notions: 

• Local in Time: a lE'arning algorithm is local in time if it can be executed as input 

franlt's a rrivt>, usi ng on Iy tt>m porally local information (sud as values of some variables 

t How('v('r, training .l n('twork with large \V('ight!l with gra(\a('nt dt'SCLllt may he v('ry difficult, becausc 

hllttlrah,<1 IInits. \Vith olllput c1o~(' to 1 or 0, M'IUI an alll108t zero gradient to the Ulllts that fecd them, thus 

(o",,"l('rah\~' ~\o\Villg t!own th(' training. TIll!> may Il('lp explain why f('('urrent networks tend to conccntrate 

011 "lIort-It'nn (Ollh'xt 

J How('wr. M'C [(;1():.~9] ror an approach ha. .. ed 011 I('arning of IIIterna,\ repr('S('ntations that works with 

t 11 r(·I>lwJ.\ \liai lI> 
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in a flxf>d and sm ail tint{' window). Such an alp;orit.hm coulel IH' USE'd for E'xamplE' with 

an unboundE'd traininp; SE'qllE'nCf> and muId adapt. t.hE' paranl('t('fs of t IH' nE't.wor~ as 

thE' SE'qUE'IlC(, is prE'sentE'd, for a cost. pN fran\{' t.hat doE's not in('fE'asE' wit.h .. Il(' I.'np;th 

of thE' SE'qllf>ncE' . 

• Local in Space: a learning alp;orithm is local in SPOcE' if computations involving l'arh 

unit reqllirE' only information conc('rnin,:?; its ImnlE'diatE' n(,lp;hhors III th(' n('twnrt... 

Snch an algorit.hm could bE' nat.llrally E'x(,cIl tNI with a parallE'1 Illlpl(,llll'ntatioll of 

the network. with E'ach nodE' corr('sponding to a jlhysical prorp'isinp; 11111 t,. and Ihl' 

communicatIOn cost pE'r nodE' df'pE'nding only on tllE' ronnl'rtl\'ity Uan-In. fan-ouI) of 

thE' nf'twork, and not on t.llE' tot.al nUlllllf'r of lIodE''i ln tll(' 1If't\\Ork. 

4.2 Time Delay Neural Networks 

For thf' rE'cognition of isolatE'd words. il. IS possiblE' 1.0 IISf' thE' followllIg simplE' approarh 

to deal with variablE' If'np;t.h input Sf'qllE'nres: transform t.hE' input <,NIUf'nc(' 10 a 1'\('(lu(>lIrp 

of fix('(1 If'ngth. f'it.lwr by comprf's'iing or dilating t.hE' SE'qUE'nrp \\olt h a ..,llllplp lilH',1r Int('f­

polat.ion sch(,IlH'. This is t.hf' approarh cho'iE'n for E'xamplE' III t.llP PXpf'fII11('nl'l dp1'1rnbl'd ill 

sertions :J.1.\ and ;L,'). I. wit.h vow('ls ext rart.('d from short. l'iola t NI \\'0 rd 'i. 'l'Ill.., ..,C hPIIH' Illay 

allow a st.atle ANN r1asslfier 1.0 Il'le ail thf' IlIpUt. fralllE's silllllltallpou'ilj. wlllCh III gl'npral 

yields nE'tworks wit.h a p;rE'at nUllllwr of Input.s and thus a grl'at nUlllllPr of frN' par,II1W­

ters. LE't ilS rail that typf> of nE"twork a TypE" 1 n('t.\\oork. lInfortullatl"'ly, t.11I'i aIIIHoa('h. lIy 

imposinp; very ht.t.IE" st.ruct.urE" on thf> st.at.ir r('rognj;;~f'f, may YI('ld poor g(>IIPfall/,at.loli whf'1I 

the training s('t. is of 111ll1t.f'd SI7,(' (thls i'i Il'illally t.1lf' ('a'lE'. Sf'f' "P('IIOII l.:q. Thl'i 1ll.IY ylf'ld 

11f>t.works t.hat. arE' for E'xamplE' s(,I1'ilth (' t.o ÜP allgnlllf'nt. of thf> III pllt ,",PqlH'Il(,(·. Fllrt.hf'r­

more, It ran only 1)(> appllE'd WhE'll ('arh Input SNIUf>n('E' corrl"''>polld'l to <l ~1I1gl(> (or a fiXf>d 

numbE'r of) r1ass(E's), a'> in th(' ca<;f> of Isolatf'd word rf'cognit.lon. 

TimE' J)E'lay NE"ural NE'tworks (TDNN) WNE' proposE'd in [l.angH~. WalbH7]. TIH'y arl' haspd 

on ANNs wlth tinlE' dE'lays, and outputs aVf'ragf'd aVf'ragE'd OVPf t.11llf', a'i illu,>t.rat.NI III 

FigurE' ,1.2. ThE' basic idE"a of TDN Ns is t.o impo'iE' 'l011H> const.raint.'i on t.ltl"' Typf' 1 Iwl.work 

desnihE'd in t.hE' preViOll'l parap;raph hy forcing t.h4=' ANN t.o U'if' tllf' ..,allw '>('1. of IparnN) 
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intE'rnal fE'aturE's for ail framE's of thE' SE'qut>ncE'. ThE' lE'arnE'd intf'rnal ft'aturf's art' tilt' 

funct.ions pE'rformE'd by thE' hiddE'n unit.s on E'ach hiddE'n layE'f. Start.ln~ from a T~'pf' 1 

nE'twork, onE' can IlSE' WE'i~ht sharin~ (SE'E' sE'ction 2.1.:l) and local conlwct.ivily t.o conslrain 

thE' int.E'fnal fE'at.urE's t.o bEl tI11l('-8/II/t l//I'arum'. In addit.ion, in ordf'f to arrollnt for 1 hl' 

possibly imprerisE' ali~nnH'nt bf>t.wf'f>n input.s and t.ar~E't.s, tilt' olltpUt.S arf' comput,f'd Ily 

pE'fformin~ an aVE'fa~E' OVE'f t.imE' of t.11f' act.ivations of thE' last IlIddf'n layPf. This is alrf'illly 

a si~nificant imprm'E'mE'nt OVE'f tllf' TypE' 1 nE'twork but is still qllilp fI~1I1 in Ils rf'prf'st'nlalinn 

of ront.E'xt: each output unit "Sft>S" information from a fiJ'('c/ "'lIu/OII' (or intt'rval) of "lU' 

input seqUE'ncE'. 

4.3 Recurrent Networks 

'1'0 avoid thE' abovE'-nH'ntionNJ problE'1ll of fixE'd windows. onf' can int roducf' cyclf'h ln 1 hp 

graph of t.hE' lH't.work. A rE'currE'nt. nf'twork has till'i propE'fty: ryclf'h ln 11.<; ~raph alluw it 

to kf'E'p informat.ion about. pa.,t inputs for an amollnt of t.inH' that. IS not. fixl'd a priori. huI. 

rathf'r df'pf'IHls on its wf'i~hts and on t.11f' rnp"t data. In Sf'ctl!)n 1.1 and ('I~urf' 1.1, Wl' 

illllstratE'd howa rf'CllrrE'nt nf't\\-ork may hold information for an arllltrary aillOli nt uf tinlf' 

by bllildin~ a fllp-flop wit.h a rf'currE'llt. nE'twork. 

4.3.1 Back-propagation in Time 

ThE' t.imE'-unfolding algorithm was propoSE'd in [numE'~H)b] and anot.hf'r vPrslon of il. (from 

disCfE'tizE'd diffE'fE'ntial Nluations) can hE' fr"lnd in [pE'arH!l]. This al~orit.hlll COIll(lIlt.pS t.hl' 

E'rror gradiE'nt of an ullconstrallH'd disrrf'tf' rf'currE'nt ANN. It rf'qlllrp<; kf'(lpln~ a IlH'lllory 

of t.hE' activations of thf' "llItS E'\'aluatf'd durlng tlw forward pha.,f' (gOlng forward in t.illH') 

in order t.o computE' tllf' tirst dE'fivatiw of thE' co.,,, wlth rf'sppct tu thp actlvat.lon~ dUfilIg 

thE' backward phase (backward in 1.1111(». 

'1'0 c1arify our use of partial dE'fivativE's, lE't us df'finE' two typE'S of partial dPrivativps, as in 

[WerbR8]: 
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• 'l'hf' ronvpnt.ional part.ial dPrivativp ~ is ralrulat.pd by diffprpntiat.ing t.he function u 

as it wOllld normally OP writ.tf'n as a function of its dirprt arguments, without any 

substit.ution<; . 

• Th .. ordcrnJ drrlvatrvc ~ rpfprs to the total causal impart., indllding direct and 

indirprt pffprts of 1) upon lI. 

Lpt. us now ronsidN a simplf' gpnN?li7.at.ion of thp timp-unfolding algorithm based on the 

gpn(·rali7.f'd unit Pflllat.ion (1.1). '1'0 pNform gradipnt. df'srpnt or anothN gradipnt based op-

t.imi7.at.ion t.f'rhni(Jllf', surh as ronjllgatf'-gradif'nt, onf' has to romput.f' thp partial derivativE's 

of t.11f> cost. ('" assoriat.pd t.o f'arh spqupnrp p wit.h rpspprt to thf' paranlE'tNs of t.he network 

(hf'ff', t.hf' (l,) assoriat.pd t.o f'arh unit. u,). Gradient dpsrpnt it.splf ran bp donE' following 

('(luatlOn 2.1'2 for storhastir updatp, for pxamplt>. Thp t.otal rost. for t.h{' t.raining spt can be 

df'rolll pos('d as follows: 

(4.2) 
p P t 

whPrp ('pt rpfprs t.o thp t'h franw of th{' pth t.raining s{'qllenrp. Sinre paramet.ers (J.) only 

affprt llt(t) dirprtly (pqllation '1.1), 

()+('p _ L a+cp ()y,(t) 

(J(I,) - t Oy, (t) IJBt ) 
( 1.3) 

TIIf> npxt. import.ant. Nillat.ion of t.1lE' algorit.hm dpsrribps thp act.ual bllck-propaglltion in 

Ume, i.f' .• t.hp recursive comput.at.lon (in t.h{' rE'Vf'rs{' tinlP dlrect.ion) of the ordered partial 

dNivat.iv{'s of th{' rost funrt.ion with rf'spert to tllE' artivat.ions of earh unit.: 

()+('p _ L {)+('p ()y)(t + d)k) 1 OCp 

()y,(t) - _ ()y){t + d)k) ()y,(t) + u,EUo ()y,(t) 
Il),,-, 

(4..1) 

wllf>rp t.h{' s)'mhol Il t.akf's valu{' 1 Whf'll (' is t.ru{' and Ootherwist". A proof of the validity of 

t.hE' applJrat.ion of tllf> chain rllip as aho\'(' ran be found in [Werb7'1]. Thf' last term of the 

ahon' f'quatioll takp<; thf' following vaille for output units wh en the optimi7.ation criterion 

IR t hf' minimi7.atioll of thp squarf'S of thf' diffNf'nrf'S betwf;'t'n outputs anrJ target.s (LMS): 

(J('p 
-:---) ) = (y,(t) - targct,(t)) ( !J, (t . 

(4 . .5 ) 

I.t't. ilS now considt'f thE' sp{'rÎal raSf> of units t.hat rompute a sigmoid f(·) of the weighted 

sllm of t.Jl{'ir dE'la)'E"d inputs. Such a nocif' opE"fation was USE'd in ail of the experiments 
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df'srribed in t.his t.hf'sis unlf'ss otlwrwisf' illdicatf'ci. 

YI (1) = f( L: Il'., YII" (t - rl.d) 
1 

( 1.(;) 

Thf' rf'qllirf'd partial df'fivativf's for f'qllat.ions ·1.:1 and ·L·I ahovt> art> t.hf'n t.11f' followill~: 

CU) 

and 

( I.H) 

Thf' first. df'fivatlvt> f'(.} ('an 1)(> f'ffirif'lllly ('ompult>d from J(.) as in t>quat.ions :Ui and 2.7, 

for t.he asym nwtrÏf and t.hf' sym nwt ric sip;moid rf'slw('livf'ly. 

Tlw algorit.hm for ha('k-propa~at.lon ln tinH' rf'fjuirf's O( N w) 0lwralions l'N fralllf', and 

O( L x Nu + NU'} total spacf'. whf'rf' " IS Ill(' maximum If'np;th of a SPCJllf'IICt>. :V" I~ th.­

nllmhf'f of Ullits ln t.11f' Ilf'twork and Nil' le; t.hf' numlwr of wf'l~hls (paralllf'lf'r'i) of 1114-

net.work. Thf' algorithm is lo('al in spacf' but not local ~n t.illlf'. l'>lnct> WP han 1.0 SIOff' ail 

past. a('t.ivations of tllf' nf'twork units and rUIl thf' alp;orit.hm ha('k\\ard III t1l1U'. 

Static versus Recurrent Networks Experiments 

Spf'f'ch re('ognition f'xpf'finlf'nts Wf'ff' IWrfornlf'd wit.h rf'('urrf'llt. A N N~ t ralllf'd wit.h t.hp 

above df'Rrribf'd alp;orithm. S('vf'ral architf'ctIHf'S WNf' comparf>d, Inrludillp; arrll1tf>('t.urp~ 

wit.h no rf'currf>Il('f'. to f'valuatf' th<, impro\'f>Illf>lIls hroup;ht hy rpCllrrf'IICP III th(' 1H't.work. 

In f'xpf'fimf'ntR on thf' rf'cognitioll of plosl\'f's and nasale; in thf> TI~'1IT datahas(' clf'f!crihNI 

in [Hf'n91a], hf'tt.f'r gf'nf'rali7.ation was oht.ainf'd on t.hat. t.ask wit.h a rf>currf>nt. npt.work t.hall 

wit.h a statir nf'twork, with thf' prf'IHOcf'ssing and out.put. rodlllg dpe;crilwd ill s('ct.iolls :J.I.2 

and a.5. rf'spf'ctivf'ly. Thf' rf'CIHrf'nt nf'twork had links from tllf' output. layN t.o onp of t.11f' 

groups of hldd{'n unlt.s. 

We will now desrrihf' in more df'tai) furt.hf'r f'xpf'rilllf'nt.'i 011 t.ht> n·cognit.ioll of vowt»s in t.11(> 

TIMIT databas{'. also pf'rfornlf'd with hoth rf'('urrf'nt and stat.ir Ilf'tworkc;. Th(, taflk was 
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'l'ahlE' 1.1: Comparison of various architecturE's and output codings for a vowel recognition 

prohlE'm in continuous sp~ch (TIMIT 90). Output coding schemE': 1-1 means one phonE'me 

pN class, form. nwans rE'lativE' formant frE'quE'ndE's, p/o('(' lllE'ans hori7,Ontal and vert.ical 

piacE' of a rt.iru lat.ioll. 

E'Xp. # hidMn # hiddf'n rf'CU rrE'n t # weights output % framE' % framE' 

# layE'rs units nf'twork coding error error 

schE'me (train.) (test) 

1 () () no 3R83 1 -1 61.1% 63.8% 
--

:l 1 200 no 8811 1- 1 60.3% 61,4% 

:J 1 (iO no 8531 1- 1 60.2% 61.8% 

·1 1 20 yE'S aO:J 1 l- I 48.5% 52.7% 
1------

!) 2 '10 yf'S 7811 1 1 <17.0%' 51.0% 

(j a fiO )'E'S 167:>,) 1- 1 46.4% 51.7% 

7 :1 60 yf'S 16739 form. 62.9% 64.6% 

H 2 ·10 yE'S 7811 place 52.9% 55.6% 

9 :l -10 )'E'S 10979 place 50.7% 52.3% 
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the discrimination of th(' following II vowf'1 r1assf's (basf'd on t.ht' grouping of phOlWIlWS 

proposf'd by [Lee" Sg]), in f'Vf'ry ront,f'xt.: 

{eh. ao, aa, uw + UX, er + ix + axr + ax-h, ax, ih, aE', ah, uh, iy } 

ThE' training set was obtainE'd hy f'xtract.ing VOWf'ls (basE'd on thE" dat.ahasf' sf'gnwnt.at.ion) 

from 1021 training SI and SX Sf'ntf'nr(>s of TI M IT ( Hmo vNsion) from t hf' t.raining speakNs. 

The 192 SI and SX Sf'nt.E'ncf'S from t.1l(' core t.E'st, WNE' USE"d for f'valuating gf'nf'rali7.ahon. 

Training was st.oppf'd wht'n no morp "Ignlfirant improvf'nwnt. rouIt! hf' ohtallwd on t.h{' 

t.raining SE"t from OIW t.raining f'porh to thf' nf'xt.. ThE' mpllt. t.o tlu' 1lf'lIral Ilf't.work was 

simply a 32-filtN Mark-srale spertrogram (as dE'srrihE'd in s('rtion :J.l.~). llnlf'ss ot.!wrwis{' 

indicatE'd thE'rE" W('fe Il outputs, OI1P pE"r \'OWE"1. Thf' rpsults arp summaril.f'd ln t.ahlf' ·1.1. 

1. No hiddf'11 units. Statlc l1f'twork. Dplays O.~.'I, ... ~() IH't.w(,f'n tllf' IIlput. and thf' 

output units. aSS:l wf'ights. 61.1o/t, franw Nror on t.11f' trallling spt "nel fi:l.H% fr .. nw 

error on thE' tf'st sPt.. 

2. Onf' hiddell layN with 200 unit.s. St.at.if Iletwork. no d(>lays. HSII wf'ights. {jO.:l% on 

t.raining and ()l Ao/c on tf'St. SE"t .. 

3. Onf' hiddE'n layN wit.h (iO units. Statir nE'twork. Df'lays 0 and :J hf'twf'f'1I t.hf' IIIput 

and thE' hlddpn unit.s. DE'lays (U ... l~ bE"twPf'n tht' hiddf'n and thf' output units. H!):H 

WE'ights. (iO.~% framE' f'rror on tll(' trailllng Sf't and ()t .H<,i{. franlf' f'rror 011 thp h'~t "pt.. 

4. One hiddE"n layN with ~() ul1it... Uf'rurrE"nt nf't,work. IIlddf'1I and out put. 11111t S Mf' 

connect to f'ach othf'r and t.o tlwmsf'lvf's rE'rurrf'nt.ly wit.h I-fralllf' (h·lay~, f'x('{'pt for 

the links from hiddpn to output.. whirh ha\'f' dE'lays n, 2, ·1, (i. H. Tllf'rp arp also dl'Iay 

o and :l from thE' input to thE' hidden units. :W:Jl wf'ight.~. ·IH :-,% franw f'fror on thp 

training SE't and .i2.7% on tll(' t.pst <;f't. 

.5. Two hlddE"1l layNs with 20 units f'arh. Hf'currE"nt nf'twork. 1)f'lays () and :J from t.hl' 

input to both hiddE'n layN. DE'lays O,2,'1,(i,S from thf' Input. and hot.h IlIcldPII layprs t.o 

the output. Singl(> dE'lay of 1 framE' from thf' out.put to hoth 11Iddf'1I lay(>r~ alld from 

f'arh hidden layf'r 1.0 thf' othf'f onE'. 7~11 wf'ight.s. 17o/r, framf' f>fror on t.hf' t.ralrllng 

set an d .51 % frame Nror on tll(' tf'st SE't. 



\ .. n. Thrf'f' hiddf'n laYNS wit.h 20 unit.s f'arh. Hf'current network. Of'lays 0,1,2,3 from 

input to hiddf>n units; O,I,2, ... H from input and hiddf'n units to output; from hiddf'nl 

t.o hiddf'n2, from hlddf'n2 t.o hiddf'n:!, from hidden3 to hiddf'n 1. and fl'Qm output to 

hicldf'n unit.s. a singlf' I-franlf' df'lay. 16739 wf'ights. 46.4% t'fror on thf' training Sf't 

and r, 1.7% Nror on thf' tf'st Sf't. 

7. As thf' prf'vious f'xpt'finlf'n t., but using expectf'd relative formant frf'quencies (F2-

Fl,F1-FO) as t.argf'ts (which arf' rf'lated to placf' and and mannf'r of articulation). 10 

outputs. (i:'U)% franlf' f'fror on thf' training Sf't and 64.(,% 011 the test Sf't. 

H. Samf' architf'cturf' as f'xpt'fimf'nt 5, but using an output coding basf'd on place and 

man nN of articulation of VOWf'ls. Thf' Il output.s arf' as follows: !) nodf's for horizont.al 

placf' of articulation, 5 noclf's for vf'ft.ical placf' of art.iculat.ion, 1 nodf' for i ndicati ng 

thf' phonf'lllf' is a schwa:l. 52.9% frame f'rror on thf' training Sf't. and 55.6% on the 

tf'st Sf't. 

~). As tllf' pr(>vious f'xpf'rinlf'nt but using morf' delays to thf' out.put units (from the 

hidclf'1I \1 nit.s: c!f'lays (1,1,2, .. S; from the inputs: 0,2,4,... 16). 10979 wf'ights. 50.7% 

franH' f'rror on t.hf' training Sf't and 52.3% on thf' tf'St. Sf't .. 

Not.f' tlw drastic improvf'mf'nt. in using rf'currf'ncf': from morf' th an 61% framf' error with 

stat.ic Iwt.works t.o arou nd 51 % f'rror with rf'ru rrf'nt nf'tworks. One should also notice that 

t.hf' USf' of art.Îrulatory ff'aturf's in t.lw vowf'1 target.s dof's not Sf'em to be as succf'ssful in that 

casf', wlH'n romparf'd t.o the simplf'f "onf'-output-per-c1ass" schemf'. This may be explained 

as follows. Idf'al vahlf's of placf' and mannN of articulation (or of formant frequenCÎE's) 

WNf' df'rivf'fl in simplf' sE'ttings such as short. well-pronounred isolatf'd words. In contrast, 

thf' spE'E'ch signai of TIMIT is rontinuolls and onE' may obsf'rvf' that the target formant 

frf'C)IIf'nrÎf's or placf' of articulation of vowf'ls doE'S not Sf'f'm to be rf'arhed, most of the time, 

Iwcausf' tht> vO\\'f'1 is t.oo short and is Vt'fy Illllch influf'nced by left and right contexts. 

Anothf'f stalÎr Vf'fSUS dynamir romparison was dOlW, for thf' HPS algorithm described in 

Sf'ction I.:t 1. Thf'ff' again. thf' rf'Currf'nt network pf'fformf'd significantly bet.ter than the 

,IPrt'VIIIU" l'Xpl'rlllll'nho WlthOll1 Ihl' "dlwa !loti,· IIl1licatcII many <,onfu!>iollh illvolv(·d OIlC of the lichwa 

pIlOIlI'III\'lo Il'rl, 1.,x/. Ih/. Iux/. laul dnd lax-h/. 



delay 1 
r-~----~--------~ 

inputs 

HE'st arrhitecture obtained for VOWE'I rE'cognition in cont.inuous spppch on 'l'lM 1'1' (E'xpNi­

mE'nt #5 in Table .1.1). 

st.atir network. 

HowE'vE'r, in some casE'S in which rE'lE'vant. information in thE' input, sE'quence is most.ly local, 

rE'currE'nce doesn't hE'lp performance. This is the case of the broad c1assifirat.ion 1lE't,work 

used in the experiment.s of sE'ction (L 7.1. 

4.3.2 Forward Propagation 

Anot.her algorithm for training r('current nE'tworks with no r('st.rirt.ion on t.lu> arrhit.('rt,IIf{· 

was indepE'ndently proposE'd in various forms in [Kuhn~7, l\uhHOhJ and [Wi"H~J. This 

algorit.hm avoids thE' bark-propagation in tinH', whirh requires st.oring t.hf' cOlllpl('t,(' S('(III('I1Cf' 

of network act.ivat.ions. ft. achieves t.his by romput.ing rerllrsivf>ly alld kE'('ping in nWlllory 

during the regular forward pass partial dNivat.ives whirh indirat.f' how f'arh wf'lght of tl)(· 

network influences earh unit. artivation. A genNah7.f'd derlvation of t.llIs algorit.hm will now 

be presented, using the already int.rodured formalihm for desrrd>ing rf'rurr('llt. nf'tworks. 
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'1'0 pl'rform "framl'-hy-framl''' onlinl' adaptation, one needs to compute the gradient of the 

loral rost Ct with rl'spl'rt to thl' systl'm paraml'tl'rs {BI)}' The parameter gradient can he 

tirst. dl'romposl'd as follows, llsing t.hl' sa me convl'ntions as in thl' previolls section: 

(4.9) 

Thf' first fartor in thE' right hand sidf' of the ahovE' equation is zero except for units for 

whirh a targl't is providE'd at framl' t. In that case it is simply a~~ft) = (Yk(t) - targetkt) 

wit.h t.hl' LMS rrit.l'rion. 

ThE' partial df'rivat.ivE's of unit artivation (Yk( t)) with respert to l'VE'ry par:\meter (Bi]) can 

t)f> rom put.l'd rl'ru rsivE'ly as follows: 

( 4.10) 

ThE' first fart.or dl'pl"nds only on thl" dE'finition of l'~d') (see for exampll" equations 4.5 and 

il. 7). 'l'hl" last t.E'rlll is non-7,f'fO on Iy if k = i. 

This algorit,hrn rNIUirE's in tllf' worst rasl" O(NuN,.J) storage, where Nu is the numher of 

units, Nw is t.hl" nUlllht'r of nt't.work paraml"tNs B, and D is the maximum delay betwl"en 

t.wo units. In thl" sim pif' rasf' in whirh D = 1 and a small fixed set of output units is uSl"d, 

tht> st.oragt> rt>quirf'llH"nt is O(NoNu'), wht>rf' No is the numbf'rofoutput units. The required 

rompllting timl" is also prohibitive: it can he as bad as O(N~) in the worsl" case. This is 

always worsl" than thf' O( N w) of thl" algorithm for back-propagation in time, unless it allows 

- whl'n Sl'qUf'nrl'S ar.' VNy long - to perform much more frequent paraml"ter updates with 

storhastir gradlE'nt. df'sfl'nt, thllS allowing a fastN convergence (see sl'ction 2.2). Hence in 

romparison wit.h thl' hark-propagation in timl' algorithrn, this algorithm trades-off locality 

in sparl' and f'ffirif'nry for lorality in time, hl'callse the computation of the dl'rivatives 3~~J 

is not. loral in sparl'. Howl"vf'r, thl" romplt>xity of t.ht> forward propagation algorithm can 

ht> limit.t>d as in tht> t>xp<>rilllf'nts d{'srribed in [Kllh90a], for example by using only seIf­

loops. This is similar to tht> architf'ctural constraint. of the BPS algorithm, which relies on 

romhinf'd forwarrl and backward propagat.ion of partial derivat,ives. 
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4.3.3 BPS 

Tht' HPS algorithm was dt'vt'lopE'd in rollaborat.ion wit.h Marro (~ori [Bf>n!)()r, Gori~!)]. 

W{> propost'd thE' HPS algorit.hm as an E'ffiriE'nt algorithm for training a part.irlllar kind of 

const.rained recurrt'nt ANN. ThE' algorithm has bf'E'n rallf>d HPS for Bark Propagat.ion for 

SE'qut'nces, and opE'fat.E's on a simplf' rlass of rE'rurrf>nt ANNs in whïrh (IY'l(lIIur urU/'olls 

-- with a single ff'f'dbark 1.0 t.1lE'msf'lvf's havE' only inroming ronlH'rt.lons from tht' input. 

layE'r. This modf>\ is simi\ar to thf> modf>\ of M. MOZN [Moz<,xx] whirh was (lisrovN('c! 

indE'pt'ndf'nt.ly and is cal\ed "forllsf>d" hark-propagat.ion. It is also sonlE'what. r(llat.(lc! to t.h(l 

forward propagation model whf>n ronstrainE'd to t.hE' samt' arrhit.<,rt.urf> (Ioral f(>flc1harks alld 

dirf'rt input ronnt'rt.ions t.o t.hf> dynamir units), as proposf>d ill [h:uh!lOa). 

ln this modE'l. two kinds of units arf> distingilisllf'd: statir unit. and dynamÎc unit.. Thf> first. 

kind is as describNj in sE'rt.ion :l.I: 

YI(t) -= f(E 111 1)11",) (t» 
J 

whNt' f(·) is a non-Iinear funrtion surh as thE' sigmoid (f'Clllations I.:l or I.:q. 

Dynamir units romput.e thE'ir act.ivat.ion as fol\ows: 

VI(t) = j(x,(t» 

whE're the interolE'diate variahlf> J: l(t) is dE'fi nE'd as follows: 

D 

x,(t) = Enl,Torl(t - T) + L "'I}!J.,'J(t - rI,) 
T ) 

(·1.11 ) 

(.I.I:l) 

whE're '~IJ is the node number of thE' ."oU1'rc of Iink Il)' as d('fin('d III S('rt.ioll 2.1. T!I(' 

summation OVE'f T is taken over sonlf> positiv(' valllt's, E'.g., T = 1. 2, ... 1). Th(' abovE'f'(llIat.ion 

ran he Sf'f'n as thE' E'qllation of an Infinitf' Implll'if' Uf'spons(' filf,f'f. 1'h(' paralllf'tf'rs H"T 

are ral\E'd decays berallsf' t.hE'Y l'an bf' intNpr('tf'Cj as f'xpollf'ntlal dpray fart.orf1 for t!lf' 

intE'rmediate variable x l' Th is IS a gt'lIt'ra\izat.ion of t.1lE' algorit.h III Wf' IHf>Sf'll tpd in [U(,Il!Hk, 

GoriR9), in which only a singlE' t.inlf> dE'lay was ronsidf'rE'd. 
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Gradient Computation 

Thp prror dprivativp can bp pxprE'ssE'd by 

(4.14) 

This simplE' rhain rulp f>quat.ion is also uGed to dprive the hack-propagation algorithm for 

st.at.ir npt,works (pquat.ion 2.R). It is not valid for an arhitrary recurrent network hut it is 

valid for thE' HPS arrhitprturp. IndpE'd, with an arbitrary recllrrent network, the correct 

gradipnt of t.hE' loral rost, Ct would be wriUen 

;~+('t = L ~~ ô+x,(t - T) 
()w'J T9 ôx,(t - T) ôW'J 

(4.15) 

On t.hp otllPr hancl, wit.h the H PS arrh itE'ctu re, x, (t - T) (T > 0 and u, a dynamic unit) rnay 

inf1ut'nrt' tht' local cost Ct, but only through the influence it has on x,(t). This influence is 

t.akpn int.o arcollnt. in E'qllation ,LW. On t.he othpr hand, if the inputs of the dynamic units 

WPf(' not input units. it would hp nE'rpssary to take int.o account ail thE' influences of those 

units on t.hp prror throllgh ail t.hE' dynamir units. The rE'sult.ing equations woulcl then he 

rloSN to th(> forward propagation modE'1 dpscribed in the previous sertion, rpquiring many 

Illor(' partial c1PfivatlvPs bp storpcl and computed than with the HPS algorithm. 

\VIth t.hp BPS afchitE'ctllfP, the first factor of E'quation 4.1,' can be computE'd as for static 

nE'tworks (s(>p SE'ction 2.1), as WE' proceed along the SE'quence, instead of waiting for the end 

of t.hp s(>(lu(>nc(' t.o hack-propagatE' gradiE'nts (the forward propagation algorithm of section 

·L:J.:.t has t.hp saillE' characterist.ir: loralit.y in time). 

()+('t 

(}J',(t) 

An int.E'rpsting aspE'ct. of t.hp HPS algorit.hm is that t.he second factor of E'quation 4.14 can 

hE' rom IlIlt.E'd fE'CU rsively du r:ng thE' forward phase of the algorithrn: 
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(,I.I ï) 

The parameters O.,T describE' thE' tE'mporal rE'sponsE' of thE' dynamir unit, Il,, For E'xalllplf', 

with a single delay for the fE'E'dbark, the impulse ft'spOnSE' of thE' unit. is a disrrE'tE' t.imf' c!(l­

caying E'xponE'ntial (for thE' variable x), ln gE'neral, t.hE' intNIllt>diat,t> variahlt> J' fOrrE'spOlllls 

to the output of an arbitrary Infinit.t> Impulst> UE'spons(' filtE'r for t.ht> wPlghtf't! input, Vf'ct,or, 

Th(' 0"'1' can be fixed a priori or t.IH'Y can bE' learned, again using bark-propagat.ioll, Thp 

gradient of the error with r(,spE'ct to these paramett>rs ran bt> romput,('d as follows: 

ü+Ct ü+Ct a+x,(t) 

ÜOï,1' üx,{lj OO"T 
(,I.I H) 

where the first factor is computed as in equat.ion /1.1!) and the 8t>rOI](1 fact.or ("an hE' ("ompuf,(l(1 

recu rsively as follows: 

(,I,W) 

In thE' case of D = 1 (single delay), lo("al ronstraint.s can bt> E'asily sat.isfiE'd in ordN 1.0 

guarantee stabllity of the rE'currE'nt n(>twork, Each dynamÎc wt>ight fr,,1 IS assulllf'd t,f' 

depend on another param('t.er '\,: 

0',,1('\,) = Btanh(À,) 

where B :5 1 is a decay bound constant. It is inter(>sting to notf' t.hat by fOntrolling /J, 011(> 

can modulate the dynamics of the Ilf'twork: as /J -+ n, th(> n(>t,work hE'("onlf's stat.ir. 

The gradiE'nt with respect. t.o '\, can b(> computE'd with the chain fillE': 

DtCt ()+Ct On, 1 -- - ----' 
1)". l)n,,1 {},\. 

(~.21 ) 

where th(' second factor can be computed as in t'qllation 2.7. 

"E'nce the HPS algorithm rE'quirE's 0« Nw + Nu)D) storage and computation, whNP Nw 

is the Illlmber of weights, Nu is the number of IInits, and D is the maximum dplay in the 

llE'twork. For D = 1, the spacf' and time costs are thf' l'lame as for thE' hack-propagation 
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1 .. algorithm for static IlPtworks. On t.IH' othE'r hand its spare rNluirf>llwnt is lE'sS than t.hat 

Ilf>rp!>c;ary wlth harkpropagatloll t.h rough timE' (O( NUI + LN,J). FurthNmorf>, it has the 

advantagp of !JPlllg both lOfai in t.inw and in spaCf>, sincE' ail thE' computat.ions at each unit 

ran hf> perforJl!pd Wlt.h a fixpd amount. of storage and timf' pE'f frall1f'. Indf>pf>ndelltly of the 

Ipngt.h of t.hE' SNllIPllfE' and of t.hf> rE'st. of thE' nf>t.work, E'XfE'pt for thE' immE'diate nE'ighbors 

of thf' HIlIt.. For /) > l, addit.ional st.oragf> and computations are rpqlllfE'd, growing Iinearly 

wlth f). SincE' t.hf> algorlthm is local III t.lme, it can be E'xerutf'd in an onlinE' mode, unlikE' 

tlH' haC'kpropagatioll through tinw algorithm. In an onlinf> modf', the network weights are 

IIpdatf' aftf'f f'arh /1'(/m('. In cont.rast.. wit.h the baC'k-propagat.ion through time algorithm, 

t.hf' wf'ights Illa)' 1)(> IIpdatf'd only aft.f'f f'ach Sf'qllencf'. If thf' Sf'q'Jf'IlCeS are long. t.he 

advantagf' of onllllf' t.raining may'hf> slgndkant. (Sf'f' disC'ussion alld f'xpenlllf'nts in Section 

:l.:.U ronCf'rlllng stoC'hastlc vs df'tf'rmillist.ir gradlf'nt descf'nt). 

4.3.4 Experimental Assessnlent of BPS 

Expf'fimpnt.s WNf' pprfofllwd [GoriR9, HE'n90c] ill ordf'r 1.0 comparf' t.he HPS algorithm with 

baC'k-IHopagat.ion for stat.ic nf'tworks on a Iimit.E'd but difficult spE'ech recognition task: thf' 

dlscriminat.ion llf't.wf'f>n tllf' t.wo st.op C'onsonant.s Ibl and Idl indf'pE'ndent. of t.he speaker. 

At. f'Vf>ry tinlf' framf' , t.hf' ANN \\-as fNf wit.h the output of a prf'proC'E'ssor that. computed 

~) 1 paranH'tf'rs f(1I' P\ . , 10 ms of sl)(,f'rh. Sf'ventY-f'ight. ofthese paranwters ME' the out.put.s 

of:l framf's of an l '-1 1 Mf'l-scale 39-frf'quenc)' fHt.f'r bank. onf' producf'd at t-l0 ms 

and 011f' at t. Thf' rf'ldail ng \6 pdramf't.f'fs consisted of 

• the 7.E>ro-rroc;sing rat.p, 

• the f'nNgy of t.hp signal (within :lO ms window), 

• 1. he E"nf'rKV of thE" derivat.ivt' of tllP signal, 

• a high 1.0 low frequ(,llcy (,llNgy plf,io (6 kHz - 9 kHz ov('r 1 kHz - 4 kHz), for 4 

int.E'r\'als of \<'.!l, a and 10 ms r('spf'rtively arollnd t. 

U('n('(' therf' was an owrlap of information presE'llt('d at suC'cpssive frames. ThE' experiment.s 
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Wf'rp performE'd on pronunriations of thf' IpttE'rs "b" and "d" oftht> alphahpt. hy fi() s(wakt'r~ 

(30 malE's. 30 femalE's). Each spE'akE'r pronollncE'd thp lE'UNS t.WICE'. Thf' fir"t rIo s(wakl'rs 

Wf'rf' uSf'd for training and thf' last 10 for testing. 

Roth thE' statif llE'twork and tlw BPS nE't.work had 10 hiddpn IInlts and :! outpllt IInll.; 

{/silf'ncf'j.jhj,jd/} and hoth \H'n' initializE'tI with idpntical illlliai (st.atlC) \\'PI~hts. Tht' 

HPS nE'twork IlsE'd a singlE' dplay of 1 framE' for thE' dynamir units. AfIN ronvN~('nc('. t.ht' 

statir nE'twork perfornwd witl. (}.9% E'rror on t.1lE' tpst SE't. whprpas t Il(' BPS Ilptwork rf'arhpt! 

3.'1.1% error on thE' test SE't. 

HencE'. tllE' rf'CllrrE'ncE' providf'd by tht> dynamic IInit.s ha.:; hplp('(1 1 h(' BPS 1H't,work caplllfP 

important. information about thE' tE'lllporfll structllrE' of the input slgllfll. allowlII~ It 10 

perfofm bE'tter thflll a statir nE'twork with dplays. 

4.3.5 Supervision of a Recurrent Network Docs Not Need To De Every­

where 

ThE' pnVirOIlI11E'nt for training a reCllrrE'nt ANN is rompospd of il "'('f(lIpnrp of fralllf's. Thf' 

sllpNvision. consisting of impo<;ing targpt. valuE's t.o nE't\\-ork olltplltS. IS not npcPi->'iartly 

assoriatE'd wlth <'VE'ry framf'. but Cfln tH' flrhit rartly provld<,d at Ollf' or III a Ily pOIIlt.:-. al()n~ 

thf' SE'q UE'1l CE'. Hf'causE' of rE'CllrrE'ncE'. futllrE' E'frors can 1)(> InflllPIlCf'd hy pa ... !. input... alld 

activation s. HE'nre. the lea rn Ing. flS w{'11 as t h{' rf'cogn it ion prorp<;sps opf'fa t p 011 <;(>(lu('I1('('s 

and thE' ordE'ring of thE'sE' SE'qllE'ncpq is VE'ry important. ThE' tarp;!'1 .... alll(·s ran IH' rpprfl<,pnt.pr! 

by a tf'mporal sPqUE'IlCP. '1'0 C;UPE'f\'I'lf' the 11f't.work at. partlfular pOlnt.'i III t.hf> <;eqIlPIlCP. t.h(· 

Ll\'1S cost fUl1ction call 1)(' 1l10dlfiE'd as follow<;: 

C = L L (torqrt lt - JJI(t)2('d 
t 1 E l '() 

w)wrE' Clt is a binar)' switch whlch slwclfy that a targpt 11'1 provldf'd ilt. t.illlf> poinb f illHI 

for output units l. Notp that. this is a partlcular casp of t.hr wpightpd LM S rrlt.prioll, in 

whirh the covariancE' matrix ~ for tlH' Gallsslan Prror Iwtwrpn tllf' t.al'g<'t.,> alld tltp outpllts 

is known (sep also [.JordHH]): 

c = 2)target t - Ydt~t'(targett - Yd 
t 
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wlwr(' targett and YI arf' tar~!'t and output Vf'rtors rf'spE'rtively. 

'l'Il!' rom puttltlon of thf' f'fror d!'rlvativ('s are thE' samf' as IIsual wll!'n Ctt = l but ffi = 0 By, 

wh!'n Cat =- 0, I.P., thNf' is no rost assoriated to thf' output of unIt 1 at timE' t. 

4.3.6 Problems with Recurrent Networks trained with Back-Propagation 

I,f>t us considf>r SOIllf> problf'ms ahout rf>Current networks tralned with back-propagation: 

• dynamic instability: Our expE'finlf'nts with unconstrained rf>rurrf'nt ANNs indicate 

that. during t.raining, units saturat.E' morf> oftf'n t.han ln thf' rasf' of static nf'tworks. 

Thfl r!'currf'nt. ANN is not rf'ally unstahl!' If unit outputs tif!' boundf>d (f'.g., with a 

squaslllnp; funrtion), but in thf' ras!' of saturation, I!'arninp; rE'asf'S to occur because 

t. hfl fi fSt. dPrivativf> of a unit 011 t put. (wit h fE'Spf'ct to it.s wf'iJ?;ht.s or Its inputs) is almost 

7.f'ro. 

• local minima: Alt.houp;h in t.hrory a rpcurr('nt ANN could If>arn about t.he influE'nces 

of Vf>ry r('ll1ot.(' past. Il pon rtlfrf'nt E'rror, this s(,f'ms to rE'q Il i rf' Vf'ry la rgf' WE'ig h ts, wh ich 

slows clown convNgf'nCE'. Hf'ncf> in pract.ic(', it is oftf'1l ObSNVf'd t.hat the network 

paranH'tN"i fall ln a loral IlllnlmUIll whlch corrf'sponds to If>arning about thE' short 

f,f>rm influf>lIc(>s of t.1lf' inputs 11 pon t.hp f'rror. 

• biologieal implausibility: As l1l!'ntIOIlE'd in Sf'ctlOn 5.1. OllE' of thE' attractive fpa­

tUfflS of ANN 111001f'ls is thf'ir rf'sPlllhlanr!' to thf' workings of thf' brain. Howt'ver, 

powNful Iparning algonthms surh as bark-propagation arf' Ilot biologirally plausi­

blE'_ First. thr algorithm rf'qllirrs thf' tran"mi""ion of informatIon in neurons and 

synapsps in hoth a forward (I!rprtlon and a backward dlrf'ction (Sf'e SE'rtlOn 7.2 about 

thp srarrh of ll1orf' plauslhlr If'arnin)!; algorithms). Furthf'rmore, algonthms for r!'cur­

r('nt nrt.wol'\..s \\ith arhltrary conll!'ctlvit.y, such as, thosf' prps!'Ilf,f'd ln sE'ctions 4.3.1 

and ·I.:L~ art' rlthf>r nO'1-local ln timf' or non-local in spacf', which makf's tllE'm bi­

olo~irally illlplauslblf'. ThE' BPS al)!;orit.hm, is bot.h local in till1f' and in spacf' but 

has il ronstralnNI arclllt!'rturf'. Not(' also that algorit.hms rf'latf'd t.o t.h(' Boltzmann 

machinf> algorit.hm - Illrluding t.hE' mor(=' f'ffiri('nt mean fif'ld vNsion of t.1lE' Boltzmann 



machine [Hint89]- are both loral in time and in spacE'. 

4.4 Hybrids 

In st'ctions 3..1 (modlliarization in the dE'sign of ANNs), 2.2.1 (paranH'tN df'collpling), and 

5.2 (integrating ANNs with othf'r tools). we havp arguf'd about tllf' advantagf's of modu­

larizing a lE'arning systE'm4, \Jsinl!; 1ll0dllips hased on ANNs or otlH'r all!;orithms. PartlclIlar 

casE'S of intt'gratlon of ANNs with ot.llf'r algorithms for thE' rf'rogllition of Sf'quenrl's will 

be ronsiderE'd here. Two major t.ypes of hybrids will be disrussNI: ANN" wit.h dynamir 

programming and ANNs with hidden Markov models (H~Ir-.lsf' A If'arnilll!; algorit.hm for 

tlU' latter typf' of hybrid is propo'lE'd and E'valuatE'd in Chaptf'r (i. 

4.4.1 ANNs and Dynamic Progranuning 

ThE' principlE' of dynamir prop;ramllling [HE'II.r;7] is to USf' rE'rursivf'ly prf'vlously cOllll'lItpd 

information to redurE' tllf' complE'xity of a computat.lOn, typlcally a sf'arrh aillong a I,lrgp 

numhE'r of paths. or taklllg a SE'(IUE'nCf> {If intf'rrf>latNI df>risiolls. If t.hf' prohlplll sat.l~fi(·s ~onH' 

lorality cOllslralllt'i. Il ran IH' hrokE'n do\"ll Into subproblf'lll'l and f'arh 'lubprobll'Ill I~ ~()I\'(·d 

by using prE'vlou'lly comput.NI rpsltlts for "maliN ~lIbt<l"ks. 'l'Ill" lIl<ly allo\\ rl'dllrt.loll of t.1J(· 

romplE'xit.yofa problE'1ll whirh rould rE'qulrf> an f>xpOnf>llllal nlllllhf'rofrOlllputatlolh (Ifpach 

possible subproblf'1ll was solwd sE'paratf>ly) to a polynomial tllllf' cOlllplf>Xlty. TYPlcally, t.hi!-> 

reqllirf's st.oring t.hE' rE'slllts of ail slIbt.asks of t.llf' prp"IOIIS 1f>\,pl (f>.g .• path 1f'lIgth) III a !ahlf> 

and tl'ling thf'1ll to romput(' thE' rf>'lults oftlw nf'xt 1 ('\"(' 1 ofsllbprohlf'Ill~. 

In t.1H' casE' of tlw appliration of dynamir progralllming (IW) 1.0 t.hE' analysis of SNIIlf'IICf>'l, 

thE' problelll ran bf' E'xprE'ssf'd in Ollf' of t.hf' following forms. 

4wh(,1\ t llC trallllllg ~d dnd tlu' C (Jill putlllg r("~()u rc ('~ ,If(' hou ndc'cI dlld prM IlC ,Lily 11I~lIm( il"/I t tu Il''1" d 

cOIllJllddy 1I11bidM'd AN ~. 
~Nolc tlld( tht'h(' two loolh M(' actll,L1ly rt'ldtC'cI biJl(C' r!"(ognitioll with HMM algorlthfllh !lM'''' dYJlIUlI1C 

prograllllTll ng. 



or 
L 

C = min E Cpt 

" t 

( 4.25) 

wtwrf' p is a SE'Clupncp {ll,l2, •• Ir,}. The task in both casps is to compute C (and in the 

sprond case mayhe also provide thE' hpst path p that was found). However, in general the 

tot.al nllrnhN of pat.hs Np grows E'xponpntially with L, for f'xarnple Np = Nf, where N
6 

wOllld indicaf,p thp numhf'f of possihlp states of thp system, i.P., tllP number of possible 

vaillps for parh lt. TllP complpxity of thE' problpm can be drastirally fpduced when many 

of t.lw tprm8 ('pt arE' idpntical, for pxample, if they dpppnd only on thp stat.e it at time t in 

pat.h p and on thp prpviolls <;tat.p It-I at time t - 1: 

( 4.26) 

or 

r· ('/' )/I>Olj t'pt = Il.'1_1,t It,t ( 4.27) 

f( is a hoolpa n indlrat.or that t.akps vôlup 1 whpn c is trlle and Ootherwise. TI,},t and Ut,t are 

problplll c!plwnc!f'nt. qllantitlPs t.hat ff'sppctivf'ly depE'nd on thf' transition from the previous 

stat.f' t.o thf' rUffPnt statf', and on thf' local state at thf' CUffPnt frame t. 

Onf' can thpn PXIHE'8S thf' ahove eqllations as follows: 

or 

C = min Sc,l, 
• 

WhNf' 8.,t 18 a sllm (or Illin) OVN sllb-paths q, ronsidf'ring only the tirst t frames: 

or 

S. t = "" II CgT , L.J T<=t 
g 

81,t = mJn E ('gT 

r<=t 

Bf'raus{' of t.hp localit.y of Cpt, one can t.hus romputp recursively (and E'fficiently) 

N. 

8 1 ,t = (L 8J,t-17~,},d'>o U.,t 
J 

(4.28) 

(4.29) 

( 4.30) 

(4.:l1) 

( 4.32) 



or 

( I.:J:\) 

WhE'n onE' needs to kE'ep trark of thE' rE'quirE'd pat.h (for thE' min rasE'), t.ht> argmin of tht' 

above eqllation is kE'pt: 

Pl,t = argmin(8),t-t + 'l'I,),t) 
) 

This givE's a pointE'r to thE' bE'st prE'vious statE'. HE'nrE' thE' lW8t. pat h ran hE' rE't.ri('vNI as 

follows in a backward pass: 

ir, = arg min 8),1. 
J 

. /' It = 11+I,t+ t 

In the Hallm-WE'lsh algorithm for training Jf~I~ls. t.hE' sum of products is IIS{l(1, wlt.h 'J',,) 

rt'prE'sE'nting statt' transition probahiltt.IE''l and U"f rE'prf'sE'nt ln).!; oh,,{lfvatlon prohahillt IP~ 

Tht'sf' variablf'8 havf' tllE' sanlE' Illt'aning in thp VitNbl algont hm (for training Il t\t t\b) 

exrE'pt that a max of 8ums of log probablltt.iE's l'l u'lNI il1'ltpad of tllP <;11111 of prodlJ( b 

of probahiltt.ips. Thf' backward pa'lS <11.,0 pro\"ldf'<; tlH' lH'st. pdth for thp VllfOrI" t.ralllln).!; 

algorithm and for rE'cognltlon ln Ht\.Hls. 

ln the dynamic programmin~ approarh u8NI ln "f'ctions ;).1.2 and ,"',.1 :1. '1;.),1 l'an hp u"f'd 

fOf costing t.ransitions. IJlrlllding a dllration l'Ost.f>. assoClélt. ... d 10 t.hp nllllllH>r of COIlf>pcUtIVP 

framf'<; during whlch thE' stalE' kf'pt t.hf> sanw valuE'. Il ... ncp '/.",/ lIla} rf'prf'''PIlt. t.Plllporal 

ronstraints, whf>rE'as (f"t is USf>d t.o ll1t>asurf> a local ro"f a,,~oClat(>d to I/Plllg III st.at.p 1 al. 

franH' t (E'.g .. computf'd by or df'rl\'t'd from t.hE' out.put of ail ANN) 

This algorit.hm ran alr;o bf> USE>d t.o !lrrform trlllplatp IlldtCItII1f!; with dVl1l1lllic t.IIllP warplll,!!;, 

by romputing a ro"f. (' for E'arh prototypf> that IS él Ilwasurp of dl"I<lI1("(> 1H't.wP(>1l I,ltp III put. 

Sf>qUE'nrf> and f'<lrh prototypt> 'lf'qUf>nrp. Th ... 'iplf>ct('d prototypP 1'> t.lu' 011(> "c1osp"t" to t.lw 

IIlput SNIIlf>I1Cf' arrordlng to t.hat WélflH'd dlst.ancf' 1lH'<I'lllrf>. III that Cél"(> '1
'
'/ Illay (C)n~t.rélill 

t.1lE' warping 1.0 Shlp or repeat only a hlllltf'd IlUrnhf>f of franw, from th ... protntypp and (1,,/ 

6HoweV('T, a~ ('Xpl.UlH·d III [Jou"HH), IIhlll~ ('X pl\( Il dUT.IlIOII l'rob.dHlltlf·h wll<'l1 (IIMI~III~ ht.ll,' III.IV Yl<'ld 

buboptlllltll pathb in 100111(' (aM'b, h('(,lllb" tll!' (Ohl fun<lio/l I~ 110 IOIlJ!.('r 10(dl il t!('!"'lIdh 011 <1('(11010111'> lu IJI' 

tak"n 'II tll(' flltllr(' (wll(,11 ('xlting d ht.ll<·) 011 th(' olh('r h,lllt!, duratloll proh.IIHIIll<·1'> dh uM·d III ~'" llOIl fj 7 

gre.llly improvpd f('(ogllillOli p"rforlll.ul(('. 
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is a nWaSUfE' of distancE' netwf>f>n thE' tth frame of the input sequence and the i th frame of 

thE' prototypE'. 

4.4.2 Analysis of Amino-Acid Sequences 

As df'srrihE'd in [BE'n90fj, we have used an ANN integrated with dynamic programming 

to pf'fform thE' rf'rognition of immunoglobulin domains from amino acid sequences. The 

AN N / DP hybrid was dt'signf'd to idf'ntify proteins exhibiting SU eh domains with minimal 

ratE'S of falsE' positivt>s and falst> nf'gativf's. The National Biomedical Rt>st>arch Foundation 

(NEW) protf'in SNIUf'ncE'S WNf' sranllf'd to evaluatE' thf' pf'rformanef' of the system in recog­

nizing mOURf' Illlmulloglobulin SNIIlE'llrE'S. FOf SU rh SE'qUE'nres, thE' recognition efficieney was 

HX.2% wlth an oVf>rall falsp po'iitivE' ratf' of 7.:1%. Thesf' results showf'd that ANN-based 

sf'afch programs ar(> WE'II suitE'd to sE'arch for sequencE'S charactE'fizE'd by only a few weil 

conSNVNI su bs(>q11(>11 Cf'S. By IIslng thE' rf'cognition systE'm on prf'viollsly unSf'en data it was 

diSfOVf'ff'd t.hat. tllf' Epfitf'in-Harr virus f'llvf'lope protE'În bE'ars an Ig-Iike domain [Cash90], 

thus df'lllOllstrat.illg thE' USE'fulllf'sS of such a recognition systE'Jl1. 

Problem Background 

Domains arf' chéHart.f'rist.ir amillo-arid subsf'quE'ncE's found in many different prot.eins. Im-

1lllilIOglohulin (Ig) domains arf' SE'ts of j3-sllf'E'ts bound hy disulfidE' bonds which exhibit a 

rharactE'flst.ir tE'rtiary structurE'. BE'caust> prot.E'ins are assE'mbled from diffNf'nt domains, it 

is IISPfll1 to 1)(' ahJ(> to sran amino arid Sf'(IIIt'llrf' datahast's to identify protf'ins that Illight 

co III prisE' a domaill of IIltNt'st. This rapability would also be Ilseflll in thE' analysis of newly 

!'.f'CjuPllc('d protf'lns. HOWPVN. rurrPIlt. sE'arch programs incorporat.ing algorithms such as 

tl\(' Wtlhur-Liplllall algorithm [WilbH:I] or th(> NE'E'dlE'lllan-WlIlIsch algorithm [NeE'd70] and 

it.s modification Ily [SmltSi] arE' ill-dE'signf'd for df'tf'ct.ing domains because t.hf'y implicitly 

ronsldf'f (>arh a mlno acid t.o 1)(> f'qllally import.ant.. This is not thE' rasE' for rE'sidues within 

domains surh as thE> Ig domaln. Slncf' only SOIllf' amino ands are WE>II fOnsNved, while 

\Host il rE' varia blE'. SE'a rrh programs inrorporating algorithms that do not rE'flect this will 

t.hNPfor(> not df'tE'rt. E'ffirif'ntly prot.E'ins bE'aring tht> domain of interE'st. A solution is to 
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DynamÎC 

Programming 

Post-Processor 

Output units: detecl the presence 
in the input stream of a certain type 
of subsequence. 

hidden layer 

20 units: 1 unit per amino-acid input units 

FigurE' ,1.3: Arcltit.E'c\.tJrE' of thE' systE'1ll for thE' rE'cognit.ion of Ig c10lllains in allllllo-acid 

seqUE'IlCE'S. ThE' input. willdow is !) amino-arid long. 

USE' st.atistiral OCCUffE'I1C(, of a fE''iidIH' at. a part.irulaf position [<inhH7, Wan~H!). I)pvPI-!·1]. 

Although program'i ha'iE'd on this i<!E'a (Profile Analysis, [1)E'\,pf\l]) ran h" applipd, t.11f·Y 

oftE'n suffE'r from a high ratE' of fal·lE' IwgativE's and posit.IVE's. ri'oJH'CI'llly 'Ahf'1l tlrPf" aff' 

considE'rablE' variations ln dOlllain lE'ngth to IH' arcountE'd for. a~ III t.1r!' e,,~p of If!; c\olllalll .... 

PE'frE'ptrons and ot.hE'r typE'S of ANN" havE' I)f'E'n uspd IHE'vloll'ily ln fP.,f>areh ull ploI('11I and 

DNA analysis [StofH2. HohrHH, QlanHH, HoIIHH]. Our rrf>lrlt'i illdieaU' tlr,ll t.lu·y Mf' w(·11 

suit.E'd for dE'tE'cting romplE'x pattrrn Sf'qllE'neE'S slIeh as t.hoi'of' t.hal eharact.Nll.p Ig domaine:;, 

System Design 

ThE' design of t he AN N WE' clesrri bE'cI in [HE'nf.)On capitali7.E's on t.hE' following knowlpdJ?;p 

about the particular task at hancl: thE' Ig domain is charaetNi7.E'd by sf'vrral highly 1'011-

sE'rved groups of amino acicls whoRE' 1crat.ions havE' bE'E'n iclE'ntifiE'cI for eNtaln w(·11 stlldiNj 

R7 
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Ig prot~ins. In particular, th~ j3-strands H, C, D, E and F of the Ig domain are VNy 

wf'11 consNvf'd sf'gnwnts of th~ domain [WilRRh). Using this information, the design of 

thf' syRt.~m has fOCUSf'd on t.hf' rf'cognitlon of ReqUf'nCf'S of four conservro sub-regions cor­

r(>sponding to {J-st.rands H, C, E and F, hNf' df'signated Pl to P1 f(>spf'ctively. Amino 

arids in thf'sf' sf'gmf'llts arf' Ilot nf'cf'ssarily ail cons~rved, but in each sub-region (PI-Pt1), 

t,hf'y show a distribution Vf'ry diffNf'nt from the diRtrihution observf'd elsf'where in thf'se 

protf'ins. "pncf' thp systf'm was trainpd to rf'rogniz~ these distributions, with appropriate 

tf'mporal ronstraints. Thp r(>cognition problem is thus divided into two subproblems: 

1. ()f't(>ct subs~q lI('ncf'S simllar to Pl, 1'2, 1'3 or 1'1. 

2. Df't,f'ct occllrrpnrf'S of PI followpd by 1'2, P3, and 1"1, in the right order and with 

SOIllf' d uration constraints. 

Thp lirst task is pf'rfornlf'd hyan ANN trainf'd with hack-propagat.ion, with 4 outputs 

for pach of t.lw 1 fpgions of intf'r(,fit. ThE' n(ltwork iR a simplE' st.at.lc l1(ltwork with dE'lays, 

vnth H hiddpl1 Ul1lts that scan protE'ins with a window of !) ff"ilduE's. Sincp pach ff'sidue is 

rf'prf'sf'ntf'd wlth :,w Input unit.s (for 20 amino arids), thNf' arf' 100 inputs to t.hf' network. 

Hf't.t.f'f ff'sults Wf'ff' ohtainE'd with a mlllt.i-laYf'r architf'cturf' than \\-ith no hidden laYN. In 

comparativp E'XpNIIllE'nts on tllf' nf'twork itsf'lf. pNformancf' of t.hf' mult.i-laY(>f nf't.work and 

of t.hf' Ilf'twork with no hiddf'n layf'r w(>fp 2.1% and ·L3o/c frame prrOf. respectivply [Hf'n90e]. 

Thp second stagf' of the system. based on thf' st.rf'am of output.s from thf' P1-P4 detf'ctor, 

evaillat.f's whf'thrr a r('glon similar to t.hp Ig domain has hf'f'n det.f'ct.ed. Dynamir program­

mlllg \\-as IIsed. \'vith const.raints on t.hp ordf'f and th(' dl'itanre (dllrat.ion) between detected 

slIhsE'C(urnc('s. A w('ak dUfat.ioll m.:;t was df'fillf'd for f'ach intNf'sting transition, with zero 

rost for valllf's wlthin thE' hounds found wlt.hin the training Sf't. prof,f'lnR, and linearly In­

ff(laSlng l'Ost fOf short, r or longf'f gaps. A rut-off valuf' of t.hf' t.otal cost. computf'd for eaeh 

potf'nt.ial fiolut.IOIl Sil bs('quenc(' was uRed t.o arr('pt. or rejf'ct a subsequ('nce. This value was 

sel('cf,('c! in ordE'r to opt.imlzE' thE' tradf'-off hE'twf'E'n falsE' positives and false nE'gatives. 

As a t.raining SE't. a group of:Hl proteins comprising bana fide Ig domains was IIsed (Wi188b]. 

BE'CatlSf of t.hf' small numllPr of t.hf'sE' SE'qufnCE'S, t.hE' training s('t was artifirially augmf'nted 

using kno\\'lf'dgf' ahout. rf'sidue distributions in genE'ral, t.hus generating a Vf'ry large number 
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ofpflE'udo-sE'qllenres. ThE'sP SE'qupnrE'S WNE' ~E'nNatE'd hy flt.orhastlrally suhstltutin~ rf'sidups 

known to hE' in variablE' positions of t.lH' domain with variahlE' rpsllluflS fOllnd f'ISt'whNI' in 

thE' seqUE>nrE'. This was nE>Cf'ssary in ordE'r 1.0 ohtain ~ood ~(,llt'rah7.,ltion. l'IIIS IS a ~ood 

iIIustrat.ion of t.lw ronrE'pts dE'srrilwc! ln sE>rt.ion 1.:, and in ChaptN :, about. tlH' liS .. of 

domain knowled~E> to rE'dllcE> thE' E'fTE'rti"f' \'C-dinH'nsion oft.hE' ANN. I\nowlf'd~f' about t.hf' 

problE>m wafl also USE'd to modulari7.E' thE' systE'm and rom binE' t.hf' :\ N N wit h an appropriatt' 

sequE'nce analysis tool. 

Results 

ThE> flystE>1ll was (>valuatE>d by srannin~ tll{' National BionH'cllral Hps('arrh !-'oundation 

(N H Il F) protE'in da ta baSE> ( NEW. vf'fsion I!)). By sra n n i Il~ 1 j' 1 X pn>IPi II~ from t.llIs da t ,11)1\.,1', 

191 protE'infl W{'f(> idE'nt.ifi{'(1 a<; possfl<;<;in~ at Ipast. onf' Ig domaill. Ali prntf'ill<; ln t.1 .. , tralll­

ing SE>t WNE' dE>tE>ctE'd. EVE'n though only human maJor Illsto-compatdllhty rOlllplpx (1\111<') 

r1ass 1 and Il protf'ins Wf'fE> inrilldf'd in t.ll{' t.raining <;f't,. hoth mou.,p 11-2 (l,Ii>" 1 and Il pro-

tE'ins W{'fE' dE'tE'rt{'(1. ProtE'ills from IIn<;ppn spprif's. <;lIch as bO\'IIIP and rat trall"l'lant.at.ioll 

antigE'ns WNE' also dE>tE>rt.NI. HE'ro~nltlon of human and 1ll01l<;P IlllmllllOglol!uhll ~f'qupn('l's 

was IIsE'd to lll{'asurE> rE'ro~nition pfliClf'nry. Thp ratf' of falsp IHNlivp w,,~ j' :IIX. f\.lo.,t. of 

thE'm pOSSE's:-. fE'at.u rf'S sonH'what simllar 1.0 t.ho<;p of t.rUf> I~ domaills and t.hl'y ~rorl' Îow, 11' .• 

nE'ar the t.hrf'shold (Sf'E' [HE'n90fj fOf a mOft' df'tailpd analy<;I',). 'l'hl' ff'CO,l?;llllI011 .. mClf'nClf'~ 

for mousE' and human immllno~lobulins \H'rf> 9X.'2<;{ and n:l.x(/{. n ... ppctlvl'ly. By raff·flllly 

analy7.tn~ thE' rE'sults. an IIltE'fE'sting disco,,(-'ry was madf>. Thp lJ~dll"IP"<; of t.hl~ ~'y~I,('1ll was 

demonstrat.f'd whE'1l t.hE' EpstE'ln-Harr VirilS (EBV) f'1l\'f'lopp pro1Pln Il 110 (N BU F fi h'lIi1IIlf' 

QQBEl) was disco"{'ff'd to IH'ar an I~-"kf' dnmain hy t.hp ANN/DP hybrid [('a~h!)()]. 

4.4.3 Phone me Recognition 

A dynamir programJ11in~ alp,orithm ran alflo hE> IIR('(J to imposp sonl{' tplllporai rOllstraint.f. 

on t.he out.put of an ANN USE'd for phonE'J11f' rE'rognitlon. Uohinson and Fallsiclf' [Unbi!)Oa] 

obtained excE'1l4~nt resllits wit.h a phonE'lllE' c1urat.ion ronstrilint. III a dynamir post.prorrssor 

for a recurrE'nt ANN. WE' propOSE' hNE' a similar srhE'llw in wlllrh WP al[o,o inrorporat(' St.ilt.iS-

H9 
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t.iral informat.ion abolit higram probahilitiE's (conditional prohability that phont>me l follows 

phonf'mE' j), a priori franH'-basE'd rlass prohahilities (probability of phonE'mE' 1 at frame t), as 

wpll as ohsprvatlon prohahilitif>" (conditlonal prohahility of nf'twork outputs given a c1ass). 

SpvNal rpsparchNs havf' intNprf'tf'd nptwork outputs as probanilitiE's [HourR8, Fran90] or 

comhinf'd thplll dirpctly wit.h duratlon probabilitiE's [Hobi90a]. We have instead chosen to 

computp ohsPfvatioll probahilitif'f) (hasE'd on a normal distribution or a mixture of normal 

distrihutlons), as c/p,>crll)('d IP Pfluat.ion ,1.'10. 

ThE' rE'sulting rost. function assoriatE'd to each SE'qUE'nrE' is the following: 

T. 

C = - L log l'(,.;(t)) + log P(Y(t) 1 .~(t» + 
t:::: 1 

18 (1)#.,(t_I)(log l'(.<;(t) I.~(t - 1» + log l'(duration of s(t - 1») (4.:16) 

WhNE' .'I(t) rE'prpsE'nts thf' !lfntc of thE' systE'm, hE'rE' the dass of intNE'st, e.g., a phoneme, 

}'(t) is thE' vf>dor out.put. of thE' ANN at tinlE' t. Thf' dynamic programming algorithm finds 

thp sP(jupncp .~(I),..,(:l), ... 8(L) t.hat minimi7.E's7 thE' rost C. 

TllP training sf>gllH'nt.at.ion provided corrE'rt SE'qUE'nres s( 1), .~(2), ... s( L) with which the re­

quirpd st.atistlrs WPrP E'valuatf'd as follows (ronsidPfing ail th(' training sf'quences), 

Thp bigram prohabilitiE's arp f'st.imatE'd as follows: 

( 4.:17) 

ThE' duration probabilitips can be modelE'd with a gamma dist.ribution for each phoneme 

(or rlass): 

( 4.:18) 

whNP" and (} arf' E'sti mat.f'd as in [GrE'E'GO]. The advant.age oh gamma dist.ribution OVE'r the 

morE' romlllon norlllal dist.ribution is that il. is morE' appropriate to modpl positive random 

variahlps. SU rh as durat.ion. 

7 A~ aln'ad,' IlII'nlioll('d, th(' r(,~lIltlllg path lIIay be sllboplullal bC<'ause of lhe non-Iocality of explirit 

dur.llion (()1I~trdilllh (w(' [JOIIVS!\j) Tt Ih hmvI'v('r v('ry IIscful in a dynamir progralllllling postproccssor (sec 

(''(llI'rlllIl'lIlt> III M'( lion li ï. tahll' li 1) 
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The frame-based phonE"nw probahility can be f'stimatf'd as follows: 

"(s(t) = p) -= LI/ .• (I)=/> 
/, 

( ·1.;\9) 

Thf' observation probahilitif's WE"l'f' f'st.imat.f'd with likE"lihood Illaxinuzatlon, IIsinp; a normal 

distribution with diagonal covariancf' mat.rix for f'ach phOIlE"IlW. 

1 

f'Xp( -O.!l(Y(t) -llp)I~;1 (YU) - Ji,,) 
P(Y(t) 8(t) - Il) - -----

, - - ((211)IlI~pl)'/:.! 
(·1.10) 

whE'rE" 11 is thE" numbE'r of nf'twork out.put.s; Ill' and ~p arf' f'valIl alf'd as IIsual [Dudaï:\]. 

1t is possible to pE'rform a global opt.imizat.ion of tht' ANN/dynamic prograllllllillp; hyhrlci. 

ThE'rE" arf' sflveral ways to do th<tt. df'lwnd:ng on how thf' two alp;orilhms arp colllhilwll. 

For f'xamplf', Patrick HaffnE'r [Ham)l]lIsf'S dynamic progralllllllllg 10 ohtain Ihp <;pqlll'nrl' of 

output. nodf's that minimizf's a cost rompllt.NI hy sUlllllling 1H't.work out p!lfe, 011 tlH' i'lplprtl'(1 

path whilf' rf'spf'ct.ing somfl t.f'1ll poral coll<;t.r<tint.s. It:'\ thf>1\ pos:-.ihl(' tn hark-plop.lg.ltf' 

from that global cost, throllgh thosfl sf'lf'ctE"d OUt.pllt<;, 1.0 aIl Iwlwork \lrlf.lllwlpr<;. On t hp 

othf'r hand, [Dria~)I]lIsE"" t.hf' rf's,J1t.ing Iwst pat.h 10 IHOVldf> <tclual '(lrqtl., to thfl ANN. III 

[Tebf'~H], a rf'latE"d schE"l1lf' is IHE"SE"ntf'C1. Dynamic prop;ralllllllng is IIsf'd t.u Illillimll.p .1 rosI 

whlch depf'nds on how Wf'll nf'tworks assonatf'd 1.0 <;t.at.ps prhlJct t.hp I1PXt. input fraI\H'. 

4.4.4 ANN s and Hidden Markov Models 

IntE'resting papflrs havE" bf'f'n puhhshf'd rf'cf'lItly, dpsrrihing attpmpt.s at. ('olllhlllillg ANN., 

with HMtvls. In somfl of 11lf' propospd approarhf's (E".g., [Fral\!)(), BrHI!)()]) Ihp a( t.lvat.iull 

valut" of E"arh output nodf' of thE" llE"twork (lff' USf'O as oh<;Prvatloll pro!>a hllit W"'. Thf' AN N ih 

t.raint"d t.o rom pli t.f' tllf's(=, obsNvation probabilltir<; for t.hr IH>"t. Sl'q!l('II\f' of ... I.lff>'i produCl'c\ 

by thfl alignnlf'nt. [11 [Fran9n] t.hf> input data arf' ali)?;llrd \\ It.h tllf' lJ\odf'1 of t hf> 'l'Ukf>1I 

ut.t.f'ranrt" IIsin~ t.1lf' VitE"rhi al)?;onthm. This I~ 11<;('<1 1.0 IHovIClp a "111)?;h" tMgf>1 to lIodf>:-' 

rorrflsponding to stat.f'S lwing 011 thf' <;plf'rt.(l(1 path al. a 1!;lvpn t.iIlH·, and <1 "Iu\\''' targpt. t.u t.IH· 

OthN nE"t.work outputs. Thf' approarh !HOP0<;N] hy Bridlp [BrIC]!)!)] C(JII"'J~t" of VIPWllIg t.11f· 

HMM as a rflClurflnt ANN with IIIlf'ar nodf's ancl produrt lIodps. AnothPr ANN prnvidps 

obsNvation probahilities and gradlPnt. dp<;rent. 1<; IISf>d to f'<;t.llnatp nptwnrk parall\(>t.Pf~ (in­

cilldin)?; tllP paran1f'tf'rs ofthf' Hl\.ll\.l). OthN hybrid systPIHs comIJlni!l~ ANN, wit.h IIMM" 
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[BollrHH, Mor90a] tlworptirally rpciIIi rE' that thE' ANN paramE'ter estimation has convergE'd to 

thE' glohal Inlllimum III ordf'r to E'XIHE'SS thE' a postE'riori probabilit,y I)(state 1 observation). 

Our prE'violls work 011 hyhrid lllodE'ls [HE'1l90d]uSE'd ANNs mE'rE'ly to computE' an addition al 

Sflt ofsymhols rOllsidNPd as ohSNvations for discrE'te H~:IMs. A vE'ctor-quantized codebook 

was gf'llf'ratE'd for thf'sf' paralllf'tPrs and addE'd to codE'books obtainf'd for other poplliar 

parallH'tPr SE'ts. This did not rf'qllirf' any assumption on thE' net,work outputs but had the 

disadvantagf' that. t.hE' ANN and t.hE' HMM WPre optimized separatE'ly. 
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Chapter 5 

Integrating ANN s with Other 

Systems 

In many applications, ANNs arE' intE'gratE'd with otlwr s}'stf'ms, <'Ithf>r for prE'proc<,ssing, 

for pf'rforming altNnative procf'ssing, or post.procf'ssing. W<, cOllsidf'r t.1l(' possibilit.y of ail 

intf'gration of ANNs with ot.ll('r systE'IllS to 1)(' an important qllality. 

For E'xam pif', in sf'ct.ion :1. 1 , WE' discussf'd t.hE' i m port.a n CE' of IHfllHOC<'RSi ng for AN N R a pplif'd 

to aut.omatic spf'ech rE'cognit.ion. ANNs can also t.ransform si~nals 111 parall<,1 with Ot.hN 

tools: [Bf'n90d] df'scrillf's tllf' SpE'akN-indE'pE'IHIE'nt rE'cognitlon of conllf'ctf'd dlgit.s from t.hf' 

TI/NIST dat.abase using an ANN as onE' of the 1l10dulf's providing symhols to a disrrpt.f' 

H I\:I M. In addition to th(' ANN, standard IHf'IHOCf'ssing t,('chnlqll(l-; (c<'pst.rlllll, cppst.rllill 

derivativf's: oftE'1l E'mploYf'd with Hr..IMs) 'Hf' IIspd wlth vpct.or-qllélntl/',\l.ioll (<;pp [(;rayH1] 

for a rf'vif'w) to providf' Ot.hN input. symbols to thf' di<;Cff'tf' IIMf\,1. 'J'lu' ollt.pllts of t.ltf' ANN 

are also discretized in ordN to IHOVldE' dlscrf'tf' codf's 1.0 thf' If MM. 'l'Il(' rolf' of t.hp AN N 

in this systf'1ll is to (hsrriminat( among typpe; of f>OlInds wlth whirh a simplN rpcognitioll 

system (Cf'pRtrum + HMM) hasdifficultlf's (sf'f'aIRoSf'ctlon ,jA.t1 aIJout. ANN/IIMM ltyhridR 

in gE'neral, and Chapt.f'f () abOlit tllf' global optinllZat.ion of an ANN/HMM hyhnd). 

Anol,her f'xample of saccE'ssflll intf'rartion of ANNR with otllPr algorit.hme; haR hfl<'!l implp­

mf'ntf'd in an application to handwrittf'1l digit rf'cognition [Lf'CH!k] (flP(, al80 8f'ct.ion :L:L:q. 



In this systE'm, t.hE' bark-propagation nE'twork is folloWE'd hy a statistiral dE'dsion prorpss 

that acts as a postprocessor. 

To int.roduce temporal ronstraints, Hourlard et. al. [Hour88, MorHOa] intE'grat.t' a tllult.i-Iaypr 

percE'pt.ron (trained wit.h hack-propagation) with dynamk programming (morE' spt'rifically, 

the Viterbi algorithm). Several othN rE'SE'arChNS havE' combinE'd AN Ns wit.h dynamic pro­

gramming. "'Te havE' used such a. rombination for t.hE' analysis of amino-acid st'C!UE'ncE'S and 

for t.he recognition of phonE'tnE's (SE'E' sect.ions 4,4 and 6.7). 

5.1 Advantages and Disadvantages of Current Aigorithms 

for ANNs 

An analysis of advant.ages and disadvantages of ANNs will hE'lp to Illot.ivat.f' t.11E' IIS(' of 

ANNs with ot.her systems. Such an analysis shollid hE'lp liS t.o dE'sign hybrids that f.llrc(l(l(1 

in profiting as I1lllch as possible from ANNs advantagE's, whil(l att.pmpting to rirculllvt'nt 

thE'ir disadvantages. 

5.1.1 Advantages 

• Flexibility: when comparing ANNs with othE'r non-paramet.ric inff'fE'ncE' tools, such 

as k-Nearest Neighbor or Par7.en windows, we fOllnd that AN Ns arE' partirularly wpll 

suited to incorporate a priori knowledge with lE'arning from exam plE's. This is im­

portant in order to find the right eqllilibrium of hias and varia.ncE' to maximi7.E' gE'n­

erali7.ation given the size of the training set (SE'E' [CE'ma91] for a discussion of thE' 

bias/variance dilemma). In Chapter :1, we stlldiE'd variolls ways to introd uce such 

bias or ronstraints into ANNs, whilE' using thE' training data to tunf> t.1lE' nt'twork pa­

rameters. In addition to allowing designers a ready int.f>gration of domain knowlf'dgE', 

ANNs are al80 flexible regarding t.heir intE'gration wit.h ot.lwr tools. In St'ction !).2, 

we propose a met.hod for integrating ANNs with ot.her t.ools in a modular way and 

performing global optimization. In Section 4.'1 we diseuss variolJs hybrids for Sf>CjuencE' 

recognition and in Chapter 6 we rJesrribE' and evaillate an algorithm for performing 
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global optimi?ation ofan ANN/HMM hybrid. 

• Robustness: As demonstratpd in eXI,priments described in this dissertation (Bee 

rhaptprs :~ and (i in particular), ANNs seem to be abl{> to generali;7,e weil in difficult 

problpms such as sppakpr-in dppE'ndent continuous speech rpcognition, which prf'sent 

a lot of variability and noise. In addition to robustness to variations in the inputs, 

ANNs can bp robUBt to variations ÏIl thE' oppration performed by each node. Because 

of t.hp dist. ri bUT.pd reprpst>nt.atiolls Ilsually found in the hiddE'1l layers of A NN s, physical 

implE'nwntations of ANNs ar{> naturally falllt-toIPfant: if a synapse or a neuron fails, 

it dops not disrupt th(l wholE' Ilptwork operation. Instead, performance is seen to 

dE'gradE' grarf'fully as thp lIumbE'r of falllty elements increases [Ozw091, Stev90). Thi~ 

is a vE'ry attractive featurE' for VLS! parallE'1 implementations of ANNs. 

• Expressive power: As shown by several allthors, multi-Iayer networks can .n theory 

approximatE' arbitrary conti Il IIOUS transformations if the Humber of hidden units is 

chospn in function of thE' precision of thp approximation [Cybe89, Horn89, Funa89, 

StinR9). Fllrthprmore, bpcause ANNs are non-parametric inferel~ce systems, they do 

not make any explicit assumptions on the input data (on the other hand, for example, 

"MMs assllmp a certain statistical modE'1 for the input distribution corresponding to 

(>ach speech unit). This may be an important property for complex pr'.}blems for 

which propE'r statistical models are hard to identify. On the other hand, it is still 

possible to introdllce a priori bias in the dpsign of ANNs. 

• Discriminant learning: With the LMS cri te ri on (Ilsed for example with the back­

propagation trained nf'tworks), the ANN models discrimination surfaces between 

c1assE's. On thE' other hand, with maximum-Iikelihood models (e.g., HMMs trained 

with maximum Iikelihood estimation, or Boltzmann machines l ), one models the com­

pletE' input/output distribution. An adva'ltage of discriminant learning is that it 

ronCE-ntrat{>s it.s E'iforts (and the use of parameters) for the Illtimate goal of learn­

ing, that is, rE'during classification error, which are usually due to confusions of one 

dass for anothE'r. ThE' input probability density fllnction for each dass contains more 

1 Roltzlllann llIachin,,~ in whi< h th" inputs are not damped during tlle Crce rllnning phase It>arn to gcnerate 

th(· joint inpl1t/I'utput \Ii~trihuti()n, On tlle oth('r hand, irthc inputs are clampro in both phases. the network 

I('aml> ahout tll(' ('onditional dilotrihl1tion of the output givcn the input. 
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information than thE' rorrf'spondin~ discrimination surfar('s h('twE'E'n rlass('s, t.hus il. 

requires less paranwtE'fS to modf'1 discriminant surfarf's than a rompl(lt.E' input/oulput. 

distribution. For this ,.t>ason, discriminant mE'thods mi~ht l)(lrform b('t.t.N ~i\'('n t.llt, 

same (too small) tfaining SE't. (SN> SE'rtion 1.:1.:1 on tllE' fE'latioll Iwtw(l('n thp Illllllbt'r 

of parametf'rs, gf'neralization and training Sf't siz('). HOWf'VN, t.hNf' ma}' 1)(> Ot.hN 

advantages with maximllm-likE'lihood mf'thods. For f'xampl(', in t.hE' cas(' of UMMs, a 

fast estimation algorithm E'xists for maximum-likE'lihood f'st.imation (th(' Hallm-Wf'lsh 

algorithm [RahI83]) WhNE'aS discriminant If'arning (Maximum M lI1.ual Informal.lon 

Estimation) is perfofl1lE'd wit.h a Illllch SIOWN ~radi(>nt. dpsc('nf .. This qllalit.y of ANNs 

(building preris(> discrimination surfarf's) may f'xplain t.hf'ir surrE'SS at. Iwrforming fillt' 

spectral discriminations for phOnf'lllE' rE'cognition [l,ippH9]2. 

• Large input space: Sf'vE'ral f'xpNimf'nts in spE'f'rh r('ro~nit.ion incliratE' t.ha1. ANNs 

trained with hack-propagation ran USE' a largf' input spacE' with many rorrE'laf.('d fNI­

tures to their advantagE' (sE'e Sf'rtion :J.l and [HossH9]). This ran 1)(> VNy IIspful wh('n 

many sueh alternative input ff'aturE's are available and ran bf' rom hinN! 1.0 ht'Ip rf'ro,:;­

nition (see fl)r exampl(> thl? eXpl?rillll?nts desrril)(>d in s('ct.ion :U.2 and [B('n!)Jaj). In 

contrast, otlwr methods IIsed for SIWE'ch ff'cognition, such as J1MMs, which ar(' lllocl('l­

basE'd methods, requirE' a small numbE'f of obsE'rvation (input) fE'at.urE's III ordf'r t.o 

generalize eorr(>ctly given the r(>lativf'ly small3 training sets usu:llly availabl(>. 

• Parallel Implementation: ANNs are attractivE' as romputin1!; marhinE's Iwcl\lIst' 

they can be naturally implemented in parallf'l hardwalf'. Hf'nrf> sevNal rf'seardl t('31llS 

are now working on su rh implE'mentations, sonl(> in dl~it.a' VLSI [I,f'CR~)cI}, somf> in 

analog VLSI [Mead89], and otllE'fS with opt.ical or f'1(>rtro.optical implE'lllE'ntations 

[PsaI90]. 

• A Priori Knowledge about Learning Architectures: ln tlw ."Ial11f> way that. 

we found that a priori knowledgE' about a task was VE'ry hl?lpful in d(>si~ning ANNs 

for this task, we ean conjecture that using information abOlit how thE' bmm works 

to eonstrain thf> dE'sign of learning aigorithllls rnay help liS rrE'ate syst.f'IllS t.hat. ar(> 

succf>ssful at solving the kind ùf problems that. the hrain ran han(IlE'. Altholl~h clJrrpnt 

2Howcvcr, thiE dm'" Ilot guaranl('c improv('d ward r('cognitioJl, lU! "howll hy tlll' ('xpNinll'lIt" of [RourS!J] 

3 g iven the number of input fcatur('s and LIu' (ompJ{'xity or tlH' til.hk 
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AN N modf'ls alrE'ady inrorporat.e sorne basic principles of brain operation, they have 

many hiologiréllly implausihle fcatures. In sE'r.tion 7A, we arguf' abolit using eVf'n 

morf' biologiral const.raintfl in t.he desi~n of ANNs, in particular for their learning 

algorit.hrns. 

• Sharing of InternaI Features and Distributed Representation: In an ANN 

with "f'veréll outputs recf'iving their inputs from the same hidden units, these hidden 

units will tend to learn functions that ar(> useful for severa! ofthe output units. This in 

):;enera! will lead to compact and distributed internai rE'presentations. The mapping 

to thesf' representations will require fewer dE'grees of freedom than if E'arh class is 

model('(1 SE'p<HéltE'ly (as for HM Ms, for examplE'). In the frequE'nt case in which the 

out.puts of an ANN reprE'SE'Ilt. relatE'd courepts. the sharing of internai f0atures may 

improve generéllh"ation bE'cause fewer parameters are rE'quired and tlw function of 

hiddE'n units is more constrained, sincE' (>ûch ofthem is trained with a greater numher 

of examples. 

5.1.2 Disadvantages 

• Training Time: Most cnrrent ANN models are very CPU-intensive, especially if 

simulatE'd on sequential machines. However, a lot of research effort is invested in 

improving ronvNgence tinw of current a!gorithms and creating faster learning algo­

rithms. B('€ for E'xamp!E' an alternative to standard hack-propagation in Chapter 7, 

as WE'II as some acce!eration tee h niques mentioned in section 2.2.1. A!though train­

ing tinw is important for dE'veloping a recognition system, :t is also important to 

considf'f recognition time, which is generally short with ANNs, especially if they are 

implE'mE'ntf'c! in paralle! hardware. 

• Temporal Modeling: Although ANNs with delays and recurrence can in theory 

he tlSE'd to represent any temporal Rtrueture, the experiments described in <;hapter 

(i indiratE' that the architectures we are cltrfE'ntly using are inefficient at capturing 

some important aspects of tE'mpora! structure, such as the duration of a phoneme. 

Sirililar ohsE'fvations havE' prompted many researehers, including ourselves, to look at 

ways to rombilH:' ANNs with other tools that had bf'en previously seen to be usefu! 
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at analyzing thE' tf'mporal strurture of sip;nals such as spperh. Surh romhinat.ions arp 

desrrihed in Chapters ,\ and 6, in part.irlliar wit.h dynamir pror-;r<1l1lminp: nH't.hods and 

with HMMs . 

• Theoretical U nderpinnings: Mor(' thf'or('tiral work is n ('('(1 ("(1 10 a nal)'7.(· tilt' ra­

pabilities of nE'ural net.wol'ks, and in part.irular of tlwir Ipantlng al~orit.hllls (fI.g., 

conVE'Tgenrc pronfs for A NNs with hiddE'n units, and on thf' opt.imal rhoÎrf's of arrhi­

tect u rE'S ). 

5.2 Modularization and Global Optimization 

As discussed in sections 3.'1 and 2.2.1, modularizat.ion is a promising way to huild ('omplflx 

systE'ms for learning to perform a task when not E'nough t.raining dat.a or t.raining t.inlt' arp 

available. It may signifirantly help thE' ronvergE'nr(', as wf'1I as gE'IH'ralization of AN Ns. 

Modularization allows incorporation of some a priori knowlE'dp;f' about. t.hE' prohlpm and Its 

solut.ion, in l'articular about the task deromposition. In surh a syst.E'Ill, E'a('h modulf' Illay 

corrE'spond t.o a particlllar subt.ask. 

A practical !juestion ('oncf'rning modular systE'ms is how to intf'gratp ail t.hE' mod 1I1f'8 1.0-

gether in the "Iwst" possible way. An anSWf'r to this qUf'stion romf'S from a r07nmOIl 

definition of what is best: a global Nror rritNion or rost funrtion, i.f'., a rOIll/llon goal of 

learning for ail the modulf's. If su rh a global rost fllnrtion is df'finNI, t.lwll in orclPT to allow 

the paramE'ters of the modular syst(,111 to bf' optimal for this rost fUllrtion, OllE' can Jlf'rform 

a global optimization of ail thE'se para metNS. 

5.2.1 Why Global Optirnization is Necessary 

Tt is easy t.u imagine casp.s in which f'ach modulE' in a modular RystE'm is trainE'd fiE'parat,ply, 

which is suhoptimal for the given romplE'te arrhiterturE', E'VE'n though E'ach mod ule may 

have rt>ached a local optimum of its cost fllnction. 

Suppose a modular systf'm contains two modules: nt>twork 1 and network 2, with out.puts 

9R 



( 

( 

1Jdx) and lJ2{yl(x)), rf'spf'ctivf'ly, and paramf'ter SE'ts 0, = {Olt} and 02 = {92d. The 

input of n(>t.work 1 IS t.hf' input x of thf' systE'tn, and the input of network 2 is YI (.1:), i.E'., 

n(>twork l ff'(>ds Iwt.work 2, as d(>pictf'd in Fip;urf' !). \. lA us SUppOSE' this architecture 

df'sign corrpsponds to an idE'al function dt'composition: 

F(x) = f(g(x» (lU) 

Consf'fjllently thE' targE't outputs for nE'twork 1 and network 2 whe!1 x is givE'n as input are 

g( x) a nrl F( x), rE'spf'ct.ivE'ly. With thE' Lf'ast Mf'an Square criterion, for example, the costs 

t,o hf' minimizE'CJ hy Ilf'twork 1 and nE'twork 2 are respectively 

CI = f;T(I YI (x) - g(x) 12) 

C2 = ET(I Y2(YI(X»- F(x) 12) 

(5.2) 

(5.3) 

wllf'rE' f;r is E'xpectE'd va.lue OVE'T thE' training set T. At the end of training, assuming a local 

optimum was reachE'd but a ZE'TO mean square was not achievE'd 4 : 

ac ao/, = 0 and Cl ". 0 (5.4) 

and 
8C 
a02~ = 0 and C2 ". 0 (5.5) 

SincE' C 2 ".0, therE' is in general a non-zE'TO gradient ~, Le., there exists a way to keep O2 

flxE'd and chan,~e YI that would furthf'T reduce C2, E'XCE'pt in the trivially uninteresting case 

in which thf' in put y, to network 2 dof's not influf'nce its output Y2. 

Now sin('E' 

WE' havE' 

8C2 8C2 8Yt 
8(", = I)y, 8011 

(5.6) 

(5.7) 

E'XCf'pt in t.hf' unintE'rf'sting case in which 01 dof'S not influf'nce YI. Recause of the previoUf'1 

inf'qllality, onE' ('an rf'ducE' thf' global cost C 2 by /urther mo(lI/ying 0, along the direction of 

thE' gradiE'nt ~fl. HE'ncE' sE'parate t.raining is suboptimal, because in general each module 
< " 

can not. lwrform 1)('/jr('(ly t.hE' dE'sirE'd t.ransformations from the preconceived task decompo­

sit.ion. On thE' othE'T hand, a final tuning basf'd on the global optimization of the aIl the 

paranlf'tf'Ts of Ilf'twork land nE't.work 2 can find an opt.imum of t.he global cost C2• 

4Thi:. il- gt·JI(·rd.lI)' tht· (a.~(' for Iollffinl'Iltlv Înh·r<.'Sting, thus complex, probll'ms 
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f(g(x»=F(x) 
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" " 

.' ,.' Jt'" ~upcrvision' 
, g(x) 

Input. x 

FigurE' 5.1: Typical E'xample in which global opt.imizat.iol1 is Ij(>rf'ssary: nf't.work 1 ff'f'ds 

nE'twork 2 and thE' decomposit.ion /"(a:) = f(,q(.r)) is not lt>arl\f'd pNff'rt.ly hy E'ach Illodulf'. 

5.2.2 Global Optimization of a Modular System wit,h Stochastic Gradient 

Descent 

The global E'rrOf Ilwasu re or !'Ost. fu I1ct.ion may dE'pE'nd dirE'ctly on t.h(l out put.s of 01H' or 

more modulE's, hut all t.hE' modules dirE'ctly or indir(lrtly influ(lnrf' this ('Ost.. If Wf' wallt. 1.0 

use stochastic gradi(lllt dE'scE'nt as a l<>arning lllE'thod fOf OIW or morE' llIodulE's (as Wf' hav.' 

donE> for training thE' ANNs dE'srrihE'd in t.his tlH'sis), thE'n thE' following rharart.Ni"t.ir of t.hf' 

modulE's allows a global opt.imintion. If Wf:' dE'filw a modulE' <If; a slIbsyst.f'1ll havillg somp 

inputs and somE' out.put.s, thE'n WE' rE'CluirE> that it hE' possiblE' 1.0 romput.(l t.hf' first. df'rivat.iVf' 

of each of the module's output.s with respf:'rt to "arh of its Input.s. Furt.lwrmOff', If t.lu' 

module is not static (e.ç., it is a rE'rurrf'nt nptwork), tlwn OIH' must hE' ahlf' t.o rOlllput.f' 

the first derivativE' of E'a('h of thE' module's OUt.putf: for framE' 1 w.r.t p(trh of it.s inputs for 

previous frames T ~ t. If this dE'rivativE' doE's not. f'xist!i it. is not posslblp t.o pNform ~radif>llt. 

descent, but other optimization methods may hE' appli('ahlf:' (E'.g., silllulat.f>d annf'alillg, 

5 For example, if the outputs are boolean fUllctlonb of the inputl->, titi" d('nvdtIV(' ih œro l'v('rywll('f(' ('XC f'pt 

at certain points at wllich it is infinih' 
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J!;f'npt.ir al~orithllls). 

Lf't. liS brif'fl)' formali~(' thf'sf' rf'marks. ConsidN a set of modulE's t.hat arE' intNconnertE'd 

in a graph, followin~ t.hf" formalism introduced in sf'ction 2.1 for a st.at,k system and ~f'n­

Nali7.fld in SE'rtlon 4.:' for a dynamic syst.em. \VE' will ronsicler herf' t.hf' ~f'nf'ral casf' of an 

arhit.rary ronllf'ctlvity amollg and within modules, whirh thus could be rf'current, and of 

input pattNns whirh may \)(' Sf'qUf'n('f'S (a static pattf'rn is just a spf'rial casf' of a seqUf'llrf' 

of If>ngth 1). 

Wit hOllt loss of gf'nf'ralit.y, If't us further decompose the modular structlHf' in such a way 

that parh rf>maining modul(' is m('mory-Iess, i.f'., has no intf'rnal c1elay or rf'rurr('nrf': th('se 

ar(' sol('ly r('IHt'sflnf,NI wit.h tlw rOllnt'rtivity of th(' graph G = (AI, L), where 1\1 is a SE't. of 

Illodul('s {m,} and L Îs a Sf't of links {li}: link from m .•• ] to 111, with d('lay d,}}, Such a 

df'rom posit.ion is illust.ratNI in figu rf' 5.2. LE't us df'not(' E'ach mod ule's opf'rat.ion as follows: 

y,(l) = F,(O., F,(t» (5.8) 

WhNE' YI = (Y,I, Y,2, ... , YIN.) is the output vector of module i, FI(') Îs a vector function for 

modul(' ml that dE'pE'ncls on t.wo set.s: 0, is a set of parameters {O,}} (e.g., weights of an 

ANN) for modul(' m., whf'rE'as Ya(t) is thE' set of VE'ctor out.puts Yk(t - dl}) of modules mk 

at franlf's t - dl] su ch t.hat il; E l, and k = s,)' 

This formalism is a straightbrward gt>nerali~atioll to vectors of the onE' used to define 

rf'rllrr('llt nE'tworks in ChaptE'r·1. Such a modular syhtem can thus also he trained with 

similar If'arlling algorithms. For E'xample, lpt us consider back-propagat.ion in time and 

storhastir gradi('lIt df'scE'nt: 
ô+c 

f:j.POI} = -( --p 
ôOI ) 

(5.9) 

wh('r{> t~;:' d('notE's an ordE'rt>d dE'rivative, as dE'finpd in section 1.3.1. WhE'n a particular 

Sf'qll{>nrp 1) is prE'sf'nt.E'd, w(' wish t.o compute how the corresponding error Cp is influenced 

by ail thE' param('tE'fs of th(' systf'm: 

(5.10) 

Tht> second fact.or in th(' ahovt> equation depf'nds on the definition of modulE' m, 's operation 
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I 

module u 
SI) 

module u, 

computes ~ (0 l' YI 

inputs and outputs 

Figure 5.2: Ge nE' rai modular systE'1l1 that ran hE' t.rail1E'cJ wit.h st.orhastir gradif>nt c!f>s("f>llt 

and bark-propagation through t.imE'. 
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(F.(·)). Thf> tirs!. fart.or rou1d \H' rom put.f>d r{'cu rsivf>ly hy back-propagation in time: 

(5.11 ) 

Thp first fac·tor is silllliar 1.0 thf' Ipft hand sicle of the ('quation and ran be computNl 

rf'rllrsivf'ly. 'l'h(' sf>rolld fartor c!f'pf'nds on thf' cletinition of Fm(')' The last tNm is Zf>ro 

IInlf's~ SUpNVIf>ioll IS pro\'ldNj to thf> ~.Ih output of modulf> i at tinw t. In that case its 

f>"art. valuf> c1f'IH'IHls on t.hf' choirf' of objf'rtive funrtion. For the LMS critf'rion, it is as in 

Nluatlon ·l.Il. 

5.3 Suggestions for ANN Design 

1'ools ot.hf'r than ANNs W(>ff' rf'C(uirN) in thf' hybrid systems of sections 4.4.2 and 6.7, ('ven 

t.hough III t.h('ory t.he)' could If'arn any continuous mapping. It eould be becausf> of inherf>nt 

wf'aknf'ssf>s in rurrf'llt. ANN algorithms and archit.f'rtllres, or it could be becallse we have 

not yf>t. founo ways to appropriatf'ly of'sign such arrhitecturf's and algorit.hms for ANNs. 

A way to cio t.hat could be to If>arn how thf>se other tools efficient.Iy perform their task in 

ordN to hf'I p us df'sign AN N S t.hat can do it as weil or hetter. 

ln thf> f'xpf'filllf'nt of sf'ct.ion (i.7, an intf'festing result was obt.ained: by adding a dynamic 

programming postproressor, whirh requÎres as few as 22 (ree parameters (in its simpkst 

form, with thf' dllration prohahilitif's only), the total error of the system is almost halved. 

Th., AN N is rf'CU rrE'nt., with d{'lays, and has over 20000 l'arameters. This suggest:; that sueh 

simplf' tf'mporal ronstraints as dllrations of phonemes are not efficientIy captured by muIti­

layN ANNs with cornlllonly llsed architE'ctllres, even those with delays and recurrence. This 

sllOuld encouragf' us E'ithN to search for better architectures for ANNs in order to model 

tf'mporal structurE', or sim ply to construct hyhrids, as we have done in chapters 4 and 6. 

An f'xtr{'me case of the first option is to view those non-connectionist toob <;uch as HMMs 

as VNy particular t.yp{'s of ANNs (with products, 5ums and recurrenee), as did J. BridIe in 

[M: .090]. 
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Chapter 6 

A Hybrid of ANNs and IIMMs 

with Global Optimization 

ln thiR chapter, Wf' df'RcribE' an ANNjHMM hybrid of whlch ,III tlH' puallwtNs n\1l Ill' 

RimultanE'ollsly E'Rtimat.t>d in rf'lation to a Rlnglf' cost funrtiOIl. Ac; ar~II(>(1 III ('hapt.N r" 

hybrids and modlllar systt>ll1s may \'t> advantagpous for hot h COnVN~f'nCf' tillH' alld ~('IIN' 

ali7.at.ion pNforll1ancf'. Tlwy may allow taklng ad\'ilnta~f' of tlH' strf'lI~thfo, of tllf' varlOIlS 

modult>s and algonthms. HOWf'VN. pNforming a ~Iohal optlllli7.ation of IhE' cOlllhillPc! l'lys· 

tE'm allows tht> It>arning aigoflthlll'i to yif'ld a hf>tlPr vaillE' of thf' co~1 flll1cl.lOII. III tllf' 

first st>ction of thls chaptN \\of' con"idf'r how thf> olll.put" of "Il ANN 1l1l~hl IH' Il'-0('<1 ln 

expresR a probabillty dt>nsity functlon. \Vt> choo,>p to makp flO Il H' aq"olllllptioll'\ ahollt. t.h!' 

form of the input dic;tnbutlon ln ordN to obtain a romplltaliollillly fo,llllplp algorlt.hlll for 

pE'rforming tll(' global optiml7.ation of tllE' ANNjJl1\I1\1 hyhml. '1'1]('11 WP dPrJvP f'qllatloll~ 

for performing global opt.imi7.ation of an ANNjH1\nl hyhncl III wlllch t.hp ANN sllppll!'~ 

observations to t.IH' H 1\11\1. as c;hown in l'lgUft> (j,2. Wt> c;how how t.o COlllpllt.P th!' gradif'lIf. 

of thE' HMTvl optimizatioll critNIOIl \\Itll rf'spf'ct to thp ANN Olll.pllt<;. At thp ('lId of thi~ 

rhaptN, \VI'- f>valuatf> tilis IIt>W algorlthm by cornparing .t wlth ot.hN ... y ... f.PIll .... <,lIch a~ ail 

ANN/DP hybrid, an ANN alollE' Of ail H1\I1\1 alont>, wlth "TwakPr'IIICJf'pf'ndpllt contlnUOIIS 

spE'f'ch rt>cognitlon. Stochastic gradit>ll~ dt>c;cE'llt is 1I~(l(J for th{> ANN paranlf'tNfi and two 

altE>rnativE's for pt>rforming parall1t>tN updatt> in th .. U1\IM withill thf> hybrirl arp pvalIl atf'd. 
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II. I~ fnuncl t.hat tlll' IIMM paranwt('rs ran also bp advant.agrously updat.f>d wit.h an online 

algorit hm. 

6.1 Expressing a Density in Terms of a Continuous Trans­

formation of sorne Observations 

1.('1. \' and }' 1)(> randolll variaolps that t.akp valuE>s in Or C J~".r and Oy C ~Tly, respectively. 

Su ppOSE' that )? is a dptE'rmilllst.lc pcHnlllPtric funrtion of X: 

r = y(X;...;) (6.1 ) 

WhN(' )? and X arp v('rtors of dlllwn<;ion 11'1 and 11,. rE'spprt.ivf>ly, and w is a spt. of pa 'anlPt.E'rs. 

J,Pt. us SUppOSf> t.hat. }' nas bp('n OhSPrVNI and a paramf>t.ric modf>1 has hf'E'n assumed for 

ItS distribution. and its prohahility df'l1sit.y fUllrtion (p.dJ.) is /y(yjO), whf>rf> 0 is a set of 

paranH't.f>rs. 

6.1.1 Gradient C0l11putation 

\Vp would likp to (>xprpss a probabllit.y dt'Ilsity fUllrtion for X in t.prms of Y, for example, 

/r(:r;w,fJ) = /y(y(x;w),O) g(x) (6.2) 

If ri rost. fUI1Ctloll C is t.o hp miniml7.NI and this cost function depends on fT, we need in 

O"(,llpral to rOl11I>l1tf' <K: and !]S.,' whirh dE>pf>nd 011 <Je a/x and a/x. 
n ,/8 (1",' DJz' 118' -a.;; 

#ô is simply 

Slnr(l .rJ(.r) is illdE'pf>ndf>nt of (J. 

a/x _ ô/y ( \ 
iJ(J - iJ(J 9 X) (6.3) 

111 thf> ('asp of maxil11um likE>lihood t'stimatio'l (MLE), to estimate 0 we can solve the 

followinJ?; f'fluat.ion. as if only Y Wf'fE' cOl1sidNed, 

a/y = 0 
aB 

10.1 

(6.1) 

~ 
1 



For example, whE'1l I y is a normal dE'nsity or a Gallssian mixt.urp. Wf' ohtain t.ll{' uSllal 

maximum lik~lihood estimation or r(>-E'st.imation formlllaE' [Duda/:I. HahiHnJ. in funrt.ion of 

Y. 

Sinr(l g(x) may be influE'llced hyw WE' may have t.o romput.E' thp ~radif'nt. of IJ with r('sp('rt. 

to w as follows: 
Ô/x ~ a/y âlla iJg 
~ ~ L.... -;--;-) g(x) + 1f/(Y(x;w),O)-;-) 
uW 1=1 0Y, (W ( W 

whNe Y, denotes the i th elt>mt>nt of thE' Vf'rtor y. WhE'n vIx; w) is nOIl-IiIlE'ar, ('./1;., thf' out.put 

of an ANN, W should be oht.ainE'd by dt>scE'nding t.he gradif'nt df'nll('d in ('(Juat.ion (: :1. 

6.1.2 Integral Equation 

For Ir to hE' a proper p.d.f. for X, WE' have t.o find a 1l0n-nE'gativE' funrt.ioll g(.r) such t.hat. 

( fy(.lJ(.1:;w);O)g(x)d.r= 1 Jox 
«(Ln) 

UnfortunatE'ly, this is an underclE'tE'rminN] int.E'gral E'quat.ion in fI. III ordPr to find t.1H' forlll 

of a solution for 9 we will start from the e(Juivalent int.E'gral for Y: 

( ff/(Y;O) dy = 1 Ju y 

(fi.7) 

Let ilS first consider the simple casE' in which 7/x = ny = 71. ThE'n WE' ran do a chall)!;f' of 

variable y = y( Xj w) in the abovE' integral and obtain the following: 

(fi.H) 

Henre g{x) coulcl he chosen to be t.hE' absoÎutf' valuE' of thE' dE't.f'rminant of thE' .Jacohian of 

y with respect to x, evaluat.ed at. x. 

Unfortllnately, we ar(l generally intPr(lstE'd in transformations from nr C ~?nx to ny C 'f~nll 

that r(lduce the climensionality of the data, i.e., ny < nT. 
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6.1.3 Case of a Linear Transfurmation 

'1'0 hE'tter undf'rBtand the problem when ny < nr , let us consider the case in which y(x) is 

a IinE'ar transformation from Hr C ~n .. to n" c ~nll. 

y = Tx (6.9) 

whE're T is a ny X 7t:r, matrix. 

Lt't us decompose T with a singular value decomposition: 

T = UDVt (6.10) 

whE'fe U and VI are square unitaryl matrices of dimension n" x ny and T. x X n,r, respectively. 

D is a rectangular rnatrix of dimension n" X nr , with zeros everywhE're except in the 

"diagonal" from (1,1) to (ny,ny). Let us cali s the product of the singular values: 

nll 

S = IJDu (6.11 ) 

Ifn r = n ll , then.~ = det(D) = det(T) and 1 s 1=1 det«(!:::::::: ) 1, sincedet(U) = det(V) = 1. 

As shown in Figure 6.1 for the case ny = 1 and nr = 2, tines in ~2 are mapped by V t into 

vE'rtkal linE's in R2, then by D into points in R, then by U into points in ~ that represent 

valuE's of y: 

y = TX = U(D(Vtx» (6.12) 

LE't us define an intermediate random variable Z, with values z E Hz, nz c Rn." as follows: 

(6.13) 

Thus y ('an be defined in terrns of z: 

y = UDz (6.14) 

"('causE' D has only zeros after the column n ll , Y depends only on the first ny elements of 

::. LE't us decompose the variable Z into two variables Z' and Z", such that Z = (Z',Z"), 

t Unitary matrict'h have orthonormal colttmlls, hence U'U = 1 and det(U) = 1. 
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.,.' - (" _ - rI· 

.. " - (Z .. - nu+:- , Zn.>:) 

Let UR den ote by Oz, and Oz" the corresponding subspacE's of Hz. In t.his way, WE' ran 

express the total derivative of y in function of thE' total derivativE' of ::', 

«).I fi) 

or in shorter notation, 

dg =1 s 1 dz' (fi.l ï) 

since the determinant of U is 1, and s is the determinant of thE' trllnrat,f'd Illatrix D' 

obtained by keeping only the first fly columns of D. W{l ran makE' a chanp;f' of variablE' 

y = lJ D'z' in equation 6.7: 

1 = 1 fy(y;8) d?/ = 1 fy(U D'z';8).'1 dz' 
Jn y Jn" 

().IR) 

To account for Z", the remaining dimensions of Z, we hd.vE' to aSSllnH' SOIllE> distribution 

along each hyperplane2 of dimension Tt x - ny in :RTl.>: that rorresponds to a point. y. 1 n tE'fIllS 

of probabilities, this distribution is the p.d.f. for Z" when Z' is givE'll, and rorr<,sponds t.o 

a rondit.ional p.d.f. for X given that Y ::: y. Let us rail that fonct.ion "~,( z"): 

l h~, (z") llz" = 1 
n,,, 

«i.I9 ) 

By specifying this p.dJ. we constrain sufficiently !J(X) to allow us to find a solution similar 

to equation 6.8. Let us multiply the integrals in equations (UR and (j,19 togf'ther: 

1 = r h' (z") dz" r , CU f)'z" fJ) ,~ riz' Jn." z' Jn" Jy , 

= Jn. /y(U D'z'; fJ) h~,(z") ,~ (lz (6.20) 

Now we can make a change of variable z -> x, Z = VIX, hE'nce U D'z' ::: U DV'x = Tx = y: 

((),21 ) 

2e,g, a straight line when R% = 2, as in Figure 6.], 

108 



( 

( 
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a 

a b y 

b' 

--~r-~--~-------zl 

FigurE' ().1: Mapping from {lx to {ly, going through the intermediate s}>ace Oz obtained by 

Ringular value decomposition of the Jacobian of Y w.r.t. X. Here we consider a mapping 

from ~2 to ~, and either the mapping is linear or a is very close to b. 
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where hy(x)(x) = h~/(z"), NotE' that the .Tarohian of t.hE' mapping :r -> :: is 1. 

Henre we have found how to exprE'SS a solution in thE' rase whf'fE' y = T:r is a linE'ar fllnrtion 

of x: 

«(,.22) 

wherE' s is the product of the singular valuE's of T and "II(X) is a conditional p.dJ. for .\' 

given Y = y, to be specified, for hypersurfares of dimE'nsion nx - n" in Ur. 

6.1.4 Case of a Non-Linear Transformation 

We will now attempt to generalize the solut.ion prE'viously obtainE'd with tUE' rhangl' of 

variable y = y(x) to the case ny < nx and y(x) a non-linear transformatior •. 

Let T he the Jacobian of the transformation Y -> X. LE't us SUppOSE' a singlllar valul' 

decomposition for T, as before: 

T = UDV t 

where U and V t are square unitary mat.rices of dimension 1/.y x l1y and U x x n,n rE'spert.ivl'ly. 

D is a rectangular mat.rix of dimension ny x n;r, with ZPros E'VerywhNE' E'xrE'pt. in tllE' 

"diagonal" from (1,1) to (ny. ny). LE't us cali s the product. of t.hE' singular vallJ(>s: 

ny 

S = II Dai (n.24 ) 

Let us again define an intermediate random variable Z of dimE'nsion 1/,x that has thl' fol­

lowing property: 
ô( lI, Z2, ... , Z"z) = V t 

B( XI, ·1:2, ... , Xn,r) 
(fL2!) ) 

where V t varies in fuuction of x. 

As for the linear case, let us dE'compose Z into Z' and Z": 

Z" = (znll+l' ... , znz) (H.26) 
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Thf>n "Ne ran perform the same changeR of variables as in the Iinear case, except now s, U 

and V t dE'pE'nd on x: 

1 = f /y(y;8)dy = f /y(UD'z';9).<jdz' 
JOli Jo./ 

(6.27) 

We also have to specify a p.dJ. h~/(z") for Z" when Z' is given, i.e., a conditional p.d.f. 

hll(x) for X when Y = y is given. 

1 h~, (z") dz" = 1 
n,,, 

(6.28) 

We obtain again thE' form of the solution by multiplication of the two integrals in equations 

H.27 and 6.28: 

1 = ( f,,(y(x)j8) hy(x)(x)s dx, 
ln" 

i.e., we ran choose g( x) as follows: 

g(x) = hll(x)s(x) 

6.1.5 Choice of Distribution 

LE't liS ronsider the following uniform distribution for z", when z' is given: 

" {K(Z') if (z',z") E A'(z') 
hz,(z ) = 

o otherwise 

(6.29) 

(6.30) 

(6.31) 

where A'( z') is a hypersurface in nz that is spann€d by (Znl/+I' ... , zn",), Le., that is orthog­

onal to thE' axes of Oz/' 

Thf> ronstant 1\" is defined as follows: 

J( ( z') = -:;--_1--:-_ 
fA'(z') dz ll 

(6.32) 

IntE'rE"stingly, thE' area of A' C Oz is the same as the area of the corresponding surface A in 

Hx, bE"cause the J acobian of the mapping x -+ z is V t , whose determinant is 1: 

arE'a(A') = 1 dz" = f dz = f dx = area(A) 
(z',Z")EA/(z/) JAl J A 

(6.33) 

wht'rE" il is the hypt'rsurface in Hx, corrE'sponding to a given z, and to aIl z" E A'. 
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Choosing a uniform distribution and a rf'ft.ain I{(z') is t.hus ~quival(>nt. t.o assuming that t.hl' 

domain of the random variablE' X rOVE>rR a rert.ain boundE'd volumE', and that. for ~arh valul' 

of Y, X iR unifol'mly distribut.E'cl along t.h hypf'fsurface that. rorrf'sponds to r = y(.r). 

Unfortllnately, when y(x) iR a non-linear transformat.ion, tlwrE' do(>s not appf'ar to \)(> any 

easy solution to the problern of finding the approoriatE' constants 1\ for E'arh valUt> of l', 

when the domain of X iR given. OnE' way to do so would b(> following: 

1. Comput.e the function z(x): thiR rE'quires to solvE' the simult.anl'ous t1art.ial difff'ft>nt.iai 

eqllations given by ~aa Zl, ",Zn = VI. This matrix t>quatiolt ran hE' t.ransforlllt>d int.o lIJ 8{x lt .. ,rn.r 

syst.ems of fUllctional E'qllationR for E'arh z., ~arh with nr Nluat.ions and tir variahlf's. 

2. Map the known domain nx to n z = z(n;z,). 

3. ComputE' the ar€'a of A'(z') (for ail z') that liE' wit.hin f!z. 

Alt.hough choosing a proper hy(x) rernains an op~n problE'lll, t.hE' following ronsidf'fat.ions 

rnay justify a simple choice for this dist.ribution. If Y = y(x) is th(> OhtpUt. of an ANN 

which redures the dirnensionality of X, it. meanR that som~ "roJl1pon~nts" of X hav~ hl'f'n 

discarded. These are precisely repreRented by Zll, whirh is obt.aÎllE'd bya non-lin(lar mapping 

from X as already described. l" dependR only on the firRt lIy compolwnt.R of Z, t.hat is Z'. 

If we wiRh to use the output of the AN N for SOlllf> classafication taRk, thE>n Wf' arf> not r~ally 

interested in mOllelinff those aRp€'cts of thE' input data that rorreRpond to variations along 

0Z/I. This may help justify the choice of an arbitrary distribution for ZIf whirh r(lquirf's 

no parameters and simplifies the estimation of w. A choir~ of distribution which would 

considerably reduce the computational complexity of thE' estimation of w is thf> following: 

}; 
hy(x) = -( ) 

,~ .1' 

where J( is sorne constant that ensures that the integral of hll (:1:) over thE' hound(>d hypN­

surface A is equal to 1. In that case WE' can write thE' p.dJ. for X as follows: 

fAx;w,O) = fy(y(x;w);O)I< 

3i.c., using sorne degrecs of frc('dorn. 
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Figtlr~ 6.2: Rasic architecture of the ANNiHMM hybrid: the ANN supplies obsE'rvations 

to the HMM; the HMM returns an error gradient to the ANN. 

WhE'1l t.rying t.o minimizE' or maximize Ix, one can drop the constant K, whose precise value 

is unknown in gE'nE'ral, sincE' its value does not affect the estimation of w or (J. 

ln this chaptl'f WE' ronsider a hybrid of ANNs and HMMs. In analogy with the concE'pts 

introducE'd in t.his sE'ction, X is thE' input of the ANN, i.e. the preprocessed speech signal, 

and Y repres~nts th~ output of the ANN and the observations of the HMM. To optimize the 

ANN/HMM hybrid we must compute the gradient of a corn mon cost function with respect 

to ail the paramett'rs of thE' hybrid. These parameters are w and (J for the ANN and the 

HMM, rE"sp~ct.ively. ThE' cost. functions that we consider for the hybrid can ail be expressE'd 

in t.E'rms of t.hE' IikE'lihood of the observed data given sorne model. Hence to estimate the 

paranwt.ers of thE' t'lystem we 1H'l'd to compute the gradient of this likelihood with respect 

t.o t.h~!w paranlE'ters. In sections 6.3 and 6.4 we show how to compute the gradient of the 

IikE'lihood of thE' HMM obsE'fvations, Y. By the previous arguments, we can consider this 

gradi~nt to be proportional to t.he gradient of the likelihood of the input data X, when 

making som~ assumptions about the distribution of X along hypersurfaces that correspond 

to fix~d valu~s of)'. 
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6.2 Hidden Markov Models 

HiddE'n Markov ModE'ls (H l\.I~ts) arE' paranH'trir st.orhast.k modt'Is of non-stationary pro­

(,~SSE'S. Although thE'y have bE'en known for many dE'radE's, E'ffiriE'nt algorithms for E'stilllat.­

ing thE'ir parameters havE' bE'E'n known only sinrt' thE' 60's [Baum{i:J, Baum70]. An lI~tl\t 

modE'ls a storhastic procE'SS gE'nf'fatE'd byan undf'flying Markov rhalll with a finitt' nUlllhN 

of states, and a SE't of distri b'.Jtions assoriatE'd to E'arh stat.E' in thE' modE'1 [LE'viS:I]. For 

computational reasons, afiplirations of HMMs to automatir sp<'E'rh rE'rognit.ion arE' gl'nN­

al1y Iimited to Markov chains of ordN l, i.E'., transition probahiiit.iE's dE'IWncl only on t.ll(' 

currE'nt and the prE'vious state. 

An HMM can have N statE'S fJI,'lz,fJJ, ... fJN, and it. ran bE' slwrifiE'd in t.NIllS of 

• initial state probabilitiE's 11'1,11'2, ... 1I'N, where 11', is thE' probability of bE'ing in st.atf' i 

at time O. 

• a state transition matrix A = [al)]' wherE' al) is the probability P(qJ al. 1 + 1 1 ql at.l). 

• a random process aRRorÏatE'd 1.0 each Rt.ate, deRrrihE'd E'it.hE'f by a disrrE'tE' or a ront.in­

uous distribution: bltt = P(Y t 1 ql at 1), whE're Y t is t.hE' obsf'fvation VE'rt.or at. t.inH' 

t. 

Algorithms exist to estimate iteratively thE'se prohabilit.iE's (or the paramE't.f'fs of prchahilit.y 

distrihut.ions). These algorithms arE' ~uarant.eed t.o conVE'rgE' to a loral maximu III of a 

critE'rion funct.ion. For examplE', the Haum-WE'lsh algorithm [nabiH~), Bau III 70, Ll'viH:J) 

performs rnaximization of the Iikelihood: 

/, = P(Y[ 1 M) (n.:W) 

where M represents the model, with ail its paramE'tE'rs. 

In t.he application of HMMs to spE'erh recogllltion, two typE'S of prohlE'tns are distinguislH'c1: 

isolated words (or units) recognition, and cont.inuous spE'ech rE'cognition. In tllE' first rasf', 

a single model per word is ulied and thf' word rorrE'sponding to thE' modf>1 wit.h grE'at.('f 

likelihood iR selected during f('cognition. In t.he s('cond rasE', sE'vf>ral unit.s arE' conratf'nat.NJ. 
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During rf>rognit.ion, thf> most Iikply Sf>qUE'nce of units can bE' obtainpd with an algorit.hm 

haRE'r! on dynamjr programming. In thE' following Rections, we dt>rive equations for com­

puting t.hf> gradit>nt of t.wo HM M rritt>rion funrtions (maximum IikE'lihood and maximum 

rnnt,nal information) for thE' problern of iRolatf'd and cont.inuouR speech recognition. 

6.3 Definitions 

l,E't Yt bE' thE' VE'ctor of ANN output.s at time t. These outputs are considered as observations 

of a continuons dE'nl'li ty HMM uspd in the scheme shown in FigurE' 6.2. Here, we assume 

HMMI'l with a l'linglf> final statE' ppr mode!. Let lIt be the whole observation sequence for 

thf> HM M'I T il'l tllf> If>ngth of the obl'lervation seqJE'nCf>, and YI a particnlar observation, 

Illadp whE'n thf> HMM i:; in the statf> St at timE' t. Let a.) he the transition prohability 

from statf' q. to stat,f' qJ' ThE' probability that the HMM generates Yi in statEo St at time 

1 is df>not.f>d as b.,t = P(l'i 1 St = q.). Parameter estimation atgorithms [Rabi89] allow one 

t.o comput.f> recu rsively with a dynamic programming procedure the following probabilities 

for partial seqUf>nCf>S (up to time l, from time t + Ion): 

O'.,t = pey : and St = q. 1 model) = bi,t L aJ.O'),t-l 

) 

P.,t = pey tr,1 St = q. and mode!) = L a,)b),t+l,Bj,t+l 
) 

(6.37) 

with appropriate boundary conditions [Lee 89]. Ya" is the subsequence of observations from 

framf> a t.o frame b. If the task is to modet isotaterl units (e.g., isolated wordR), there will 

hE' multiplE' modE'ls w, one for each unit. For cont.inuouR speech recognition, unit models 

(f>.g., phOIlf>llles) arf> concatE'natf>d to make word and sentence models. 

Thf> likf>lihood that an HM M has gf>nf>rated the observation corresponding to the pronuncia­

tion of thf> unit w is I,w = a~, ... , 1', where Fw is the final state for model w. HMM parameters 

can bp f>stimatf>d with difff>rE'nt criteria. Two popular criteria are Maximum Likelihood 

(ML) and Maximum Mlltllal Information (MMI). Modeling with these two niteri.J. is dis­

cussf>d in [Nada8R]. Maximum Likelihood Estimation (MLE) is hased on the maximization 

of thf> rritNion C f>xpressed as CAlLE = Le. For isolated unit modeling, c represents the 

pronouncf>d u nit.. For cOIlt.iIIUOUS spef>ch, c rf>presents the training model, a constrained 
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rnodE'1 built from t.hf' roncat.pnat.ation of t.hp units rorrpspondin~ to thE' t.raining Sf'ntf'nrl'. 

6.3.1 Maximum Mutual Information Criterion 

Training an HM M wit.h t.he Maximum Likf'lthood critprion is haRN) on t.ht· aSsUIllI)tion 

t.hat. thE' truf' input distribut.ion is a nwmlwr of thf' family of dist.rihutions roV('f('c! hy 

t.he choice of modf'l, i.e., thp rhok(> of modf'1 t.opolo~y and t.hE' rholr(' of t.h(' form of thp 

obsNvation distributions. HOWf'VN, this assumption is \lOt. f'xart in ~P\lNal. With tlH> 

MaximuL1 Mut.ual Information (Mf\lI) rritPrÎon, onE' sf'arrhf's for p;lIanH't.Ns of thf' HMM 

t.hat. minimizE' tllE' rf'rognizE'r's unrNtainty of what. tllE' rorrprt. word SNIIIE'IW' is, p;ivpn tlH' 

obsE'rvations [HahIHi]. The rf'sltltin~ rritNion has t.hE' advantap;f' in romparisoll wit.h M LE 

of bf'ing disrriminant, i.f'., it attf'mpts to modE'1 puh rlass ac:; il. difTNS from t.1H' Ot.hNS, 

rathPr t.han indE'J>E'ndf'ntly from tllE' othNS. 

Assuming we havE' a SE't of altE'rnat.ivE' modf'ls {1TImlf1w} t.hat could havp j!;(>nNatpd t.hp 

obsE'rvat.ion Yf, t.hE' mut.ual informat.ion bf't.wf't'n t.hf' rorrf'rt Illockl {' and t.hl' ohsPrvat.ion 

l' YI is 

( (i.:vq 

In the rase of Maximum M ut.uallnformation Estimation (M MIE) for isolatf'd unit modplinp;, 

t.he following crit.erion ran bf' l1sed: 

where 

Li" 
CM!l'flE = 10g(IIuolatl'd) = log( LI) 

w 'w 

((j.40) 

Assuming equal a priori probabilit.iE's for each modf'l, maximizinj!; CMMlE as in equat.ion 

6.39 also maximizes the mutual information J. 

For cont.inuolls sp('('rh, we assume that an H MM is built by C'onratpnating unit modpls. 

During training, WE' ronsider a const.rained modE'1 T that is lIladf' of thp ronraf.('nation of 

the units that form the training sentence. On thE' othE'r hand. during r('('OfJfHfwn, no surh 
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knowlf'dgf' is available and Wf' use an unconstrained4 model p, for f'xample a loop model 

[Lf'(>H H9]. Hf'ncf', for continuous spf'ech, CMM lE can be expressed as 

whf'rf' 

Lr 
CMMIF: = log(lIcontmuou6) = loge L)' 

p 

LT 
IIconhnuou3 = L" 

(6.41) 

(6.42) 

LT = aFr , T df'notE's the Iikf'lihood of the training model and Lp = 0Fp , T denotes the 

likf'lihood of the rf'rognition model. My optimizing one of the critE'ria described ab ove 

for thf' hybrid systf'm, WE' ran rf'place the usual Least Mean Square criterion and dirE'ct 

Rupf'rvision of thE' ANN by a RupE'rvision which is derived from thE' temporal modeling in 

t.hf' HMM. 

6.3.2 ObservRtion Probability 

For t.hf' ANNjHMM hybrid, any continuousdisi.ribution can he used as long as it is possible 

to compute tll(> df'fivative of be,t with respect to t]te observations Yi. For the experiments 

dE'scribf'd in this rhapter, we assume be,l can be represented by a Gaussian mixture as 

follows: 

'" Zk 1 r t -1 ( 
bllt = 7 «21r)n 1 Ek 1)1/2 exp( -2(}t - JLk) Ek (Yi - Pk» 6.43) 

whE'Tf' n is the number of observation features (i.e., the numher of ANN outputs that are 

SE'nt. to the HMM). The transition prohabilities ai), normal distribution mean vectors Pk, 

covariance mat.rirf's ~k. and gains Zk can he estimated as in [Rabi89]. A derivative of the 

cost. funct.ion C wit.h respE'ct to be,t ran hf' comput.ed and used for estimating the parameters 

of t.h(> ANN as will be shown in t.he next section. 

6.4 Estimation of ANN parameters 

As tht> opt.imization rriterion C depends on the parameters yt computed hy the ANN, it 

is possiblE' t.o E'xprE'SS C as a function of them and derive the following equation, using the 

4 Exn'pt for thos(' mn~.traints that muId be introduced by a grammar on sorne transitions (particlllarly 

from nnit to unit) 
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chain fulf': 
iJ+(' _ E iJ+C éJbl,t 
m~t - 1 abl,t Dl~t 

( fi. 1 1 ) 

whf'rf' }~I is t.hE' jI" E'1E'mf'nt. of t.hE' 1lE't.work output VE'ct.or l't, ThE' 1H'~tltiv(> of this ~radil'Ilt 

can hf' ust>d wit.h bark-propagation'; 10 E'st.illlalE' t.hE' ANN paranwlNs, 

ln thE' casE' of MLE, thE' derivativp of C,\fLl:: wit.h rpspE'rt t.o "1,1 is silllply 

wherp modcl is t.hE' t.rainin~ modE'1 (111(' rorrf'ct. wonl modpl, in t.hl' rasl' of isolat.l'd units 

modE'ling). 

In t.hE' ra'\<" of Ml\'1IE, t.hE' ~radiE'nt. of t.llP optimi7.at.ion critl'rion (''''M/E wit.h rps\lPct. t.o t.hp 

observat.ion probahilities "I,t ran hp i'xprl'sspd as 

1 ()+ II 
(n,·Hi ) 

whf're II is dpfined as in Nluations (iAO and ()A2 for isolatpd and continuous sl)(lprh 1110(1-

eling, respectivE'ly. 

In t.hE' casE' ofisolated units modE'lin~ (MMI~~), forstatps 1 t.hat. arE'in a unit. mod('1 w, 1.11(' 

partial derivative on the right hand sidE' ran hE' E'xprf'ssE'd as follows: 

a+ lIlsu/a/cd 

Obl ,/ 

(Ilcw - Ile) Ô+arw,1' 

Lw Lw ()hl,1 

For continuous spE'ech (MM lE), WE' havf' t.1lE' following derival.ivE': 

â H con/I7lUOlH 

al'I,t { 

1 ne> f' " 
--~ 
"'Fp , l' Db.,1 

"'1' 1 D"Jo",]' 
--~ 

fI l'p, l' ,lb •. 1 

for statf' 1 in t.rainin~ modE'1 T 

for statf' 1 in r('cognit.ion Illoc!pl f' 

(G,47) 

(fiA H) 

In gf'nf'ral, for every optimi7.at.ion rritf'rion C that can \)(> E'Xp"~iiSE'd as a differ('ntiablf' 

fllnction of t.he likelihood L, il. is possible t.o compute fJfi. 

By differentiating E'qllation 6.4:l, ~b)~.1 ran hE' f'xprE'ssf'd as follows: 
, )1 

sa replace!> the mmal DE/ay), = P'}I - turf/cl)&) for output unit", .u. uhf'd in ('qudtioll -1 5, whN(' tllrytl)1 

wou Id b" tltt' dcsired output at tilll(' t for lIIl1t J 
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WhNP dk,/) is tlH' f'lptnf'nt (lJ) of th invf'fsf' of thf' rovarianrf' matrix (~-I) for thE' k th 

Caussian dist.rihutioll and IIJ../ is t.h" lth E'1E'mE'nt of t.hE' kth Caussian mean vect.or Itk. 

TIIf'n, similarly to [Hrid!)()], it. is possiblf' t.o rompute the following df'rivativf' \Ising equat.ion 

(j.:J7, for any hidclf'1l Markov mot/do Hf'rf' tllf' symhol mOl/cl ran stand for any of t.he ahove 

1llf'1I tion('d lllodf'ls, f'.g., (' (rorrf'rt. wonl), w (any word) for isolated units modeling, or p 

(rf'rognit.ion modf'I). or T (t rai ni ng moclf>l) for contin uous spf'f'ch modeling. 

aO',. T 
Cmod,." 

(().50) 

Thf' E'qualit.y on thE' prf'violls lillE' ran he just.ifiecl hf'('ausE' the recursive definition of fil,1 

(Sf'E' E'quation 6.:17) is the same as t.h" recursivE' comput.ation of ôOJojf,'Qdc: /•
T

: 
CV.,t 

BrtL' r L ortF' r C,noo"" _ b tnodf"l' 
- al) ),1+1 

Bal t Ba) t+l ') , 
(6}j1) 

wit.h 
Do:" r r,uod,,' , (J 1 
f) = Fmode/.T = 

Op T mod,.I' 

(6.52) 

SO Wf> havf>: 

(6.53) 

6.5 Initialization of the ANN Weights 

ThNf> arf' sf'vf>ral ways for init.ializing the wf:>ight.s of t.he ANN. If initialir.ation is with 

random WE'ight.s, t.raining might he very slow hecau:-,e ANN training is in general slower 

than UMM trallling, and the UMM paramf:>ters depend on the transformat.ion performed 

by thE' ANN. 
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6.5.1 Data Compression and Deterministic Initialization 

Anothf'r pORsihility COIH;ist.R of a dE't.f'rministir init.iali7:at.ion fhal \\'oult! c\('crE'a::;E' tIlt' dlancp 

of get.ting Rtuck in a local 1:1inimulll (RPf' [lrin90])t>. Anot.lH'r advanttlg{' of a d('t.Nlllinlstir 

initialization is that paramf't.f'r E'stimatlon dof's not dp\wnd on randolll ÎlII ti al ronditi()II~. 

Différf'nt initial conditions may gi"f' risf' t.o diffNf'lIt tl<'t,works, \Vit.h VNy ditTNf'nt. JlNfnr­

ma n Cf'S [Kole90]. A I1sE'flll prf'procpssi ng stf'p that t hE' AN N ca n \wrforlll llIay con sis\' of thE' 

computation of thf' principal romponf'nts of T,he input. dat.a. An int.f'rf'stlIIg alt,f'rlwt.iVt' is 

thf' computation of IinE'ar discrimllwnt.s [HrowH7]. In hot.h cas{'s, II. IS r{'a~ol\ahl{' t.o 111011('1 

thf' diRtrihution of Ilptwork outputs with a mixtllrf' of Caussians wit.h dia/!,ollal l'ovarlaIlCf' 

matriCf'R. This consl<!Prably rpdllcE's thE' l1umlJE'r of p'lfan1Ptf'fS of th{' IIMM. 

Thf' computation of the principal compollf'nts can 1JE' split. into two part.s hy d{'composing 

the principal cOmpOn(llltR or thE' Iinf'ar discriminant.s mat.rix ..1 int.o t.h(l producl. of two 

matriceR, (l.g., with an LU d(lcompo8ition [Stf'Wn]: 

il = /,lI (n.!'i4) 

This d(lCOmpoRit.ion leadR to a 2-layer Il(ltwork wit.h input.s COIlIl<'ct<,d to thE' hidd('n layN and 

the hidd(ln layer conn(lct(ld t.o the output laY(lr. 'l'Il(> hidd(lll lay(lr w<,ight mat.rix 18 initiali,;pd 

with f. L whNe c is a small positivE' number, and thE' output layN WE'ip;ht. lllil1.rix is 1I11t.lall7.f'd 

with U. Hy Il1l1ltiplying IJ bya sm ail Rcalar Wfl makE' SI1rE' t.hat. lI1it.lally thf' wf'ight.s of t.hp 

connE'ct.ions to hidden nod(ls arfl vE'ry small so that t.hE' input-output transformation of f'ach 

hiddE'n nodE' is almost Iinear. If the hidd(ln units comput(l syll1lllf'tric slgllloids, with output. 

ranging in the int.(lrval [-1,1] rathE'r than [0,1], tl1(>n t.h(l ANN out.put Y IS approxilllflt,(>ly fiS 

follows: 

Y::::;:(LUX =(;\X (().!j!j ) 

where X is t.he Ilt'twork input, which could he ft'cl by a small number of spE'ctral frall1(>s of 

the input signal. 

6 A hirnilar situation on.urs for I{.l!lial B;u,Ï!. FUJI( tlon 1I(·tworkh, whi(" (.UI 1)(' lr,linl'd very f;""t if tl ... 

hitld('n layer is initidli.ted ubing a c111ht('r analYhih of th\' input ddtd (M'(' S('( lion 7 1) 
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Init.ially thf' nE'twork Ff't.tled as dE'scribed pE'rfOi ms a decorrf'lation of the input. data OVf'r the 

sp(>rt.ra and a f('w frames of sp(>(>ch. IndeE'd, we know t.hat thE're is a degree of redundancy in 

(>ach sllf'rtrulll, af> w(>11 as in a f>(>t. of adjacE'nt. spl'ctra (thE' f>pE'ct.ra normally change smoot.hly 

OVN timl'). ThE' 1lE't.work rf'{luc(>s tllE' dinlE'nsionality of the input data so that the process 

d(>scrillf'd hy t.h(> llE't.work output can be better modeled by an HMM trained with limited 

sam pIE' dat.a. 

Tlw advant.ap;e of thr proposl'd schl'me over a simple fixed Iinl'ar transformation that com­

put.l'S the principal components or the Iinl'ar discriminants in a preprocessing phase is that 

th(> fu ndion romputl'd by thf' network l'an evolve with further training in ordl'r to optimi1.e 

thl' Il'arning rrit.l'rion, based on the reduction of the rate of rl'cognition errors. 

6.5.2 Initializatioll with A Priori Targets 

'1'0 init.iali7,f' t.hf' AN N, WE' ran use prior knowlpdge about the task to modularize it and 

hoot.strap thf' lllodulE's su ch t.hat t.heir outputs approximat.e fE'at.ures of int.erest (see argu­

Illf'nts in Chapt.Ns 3 and 5). Itat.her th an having a single ANN that computes the vector 

y t of paranlE'ters, Wf' can have a hierarchy of networks, as shown in Figure 2. Such an 

arrhitf'cture is huilt on thrre levE'ls. Level 3 contains the HMMs. Level 2 is made of a 

Ringlf' ANN th al. aets as an intE'grator of parameters gE'nerat.ed by more specialized ANNs 

or romputl'd hy othN algorithms, like the ones of an f'ar model (see [Cohe89] or [Cosi90]). 

Nf'tworks al. I(>v(>l 1 are sperialized to compute parametf'rs that are particularly useful for 

charartf'rizing r(>rtain acoustir situations. As an example, a set of paraml'ters may repre­

s(>nt thl' aroustir rtJ(>s useful for distinguishing betwef'n sonorant and non-sonorant sounds. 

A nl't-work that. computE's t.hl's(> paramE'ters may havl' sorne special acoustir features at the 

input. that. arE' diffE'r(>nt from those feeding other nE'tworks. Networks at level 1 can he 

addl'd whl'n syst(>matic rl'C'ognition errors have heen noticed (for example a frc!quent confu­

sion IH'twf'f'n voirpd and unvoiced plosivl's) and ImitablE' timE' and frequency representations 

can 1)(' conrE'ivE'd for thE' input of thesE' networks (see for example [Ben89b]). The outlined 

hiNélfrhiral systE'tn l'an be t.rainE'd as described in sE'ctions 6.3 and 6.4. The gradient of the 

optimizat.ion rritf'fion can be back-propagated from level 2 to level 1. 
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Initially, networks fit lE'vel L can hE' trainE'd sE'paratE'ly as r1assifiE'fs of cf'rt.ain phOnE'llH' St't.s. 

An altE'rnative would he to train nE'tworks E'xplicitly as dE't.E'ct.ors of phont't.ic propl'rtiE's such 

as place and mannE'f of art.iculat.ion. Aft,E'r IE'vE'1 1 nE't.works arE' train('d, th(' IE'\'E'I 2 n('t.wnrk 

can he initializE'd so that. it computE's t.1lE' principal componE'J1ts of t.11E' output. of t.hE' 1E'''(l1 

1 modules. This approach has l)pen chosE'n for thE' comparat.ivE' E'xpE'finwnt.s pl'rfornwd in 

Sect.ion 6.8. 

6.6 Sorne Extensions 

The algorit.hms int.roduced abovE' ran be USE'd E'ven if t.he ANNs arE' rl'CllrrE'nt.. Nf'tworks 

of this type can capture short-time tE'mporal rE'glllaritiE's wit.h lE'sS paralllE't.Ns than a f{'('d­

forward network wit.h time delays (see SE'ct.ion 4.:J). In gE'nE'ral, t.hE' out.put. of 11 l'(lCllrr(lnt, 

llE'twork is smoother th an tl1E' output of a fE'E'dforward llE'twork sranninp; thE' Input dat.a. ln 

that case, t.he HMM temporal rl'solution muid hE' rE'duced, thus rE'dufÎng tht' nUlllhN of 

necessary parameters. In thE' expE'finwnt.s dE'srrihE'd in Sect.ion (i.H, t.1H' tplllporal r{'solllt.ion 

of t.he ANN was .5 ms and that. of the "MM was 10 ms. 

ANNs trainE'd as proposed can perform speaker adaptation. For such a purposp, th{' Iwt.work 

has to map speaker-dependE'nt observations into a spE'akE'r-indE'pE'ndent rE'I)fE'sE'ntation. This 

objE'ctivE' could be obtainE'd hy first training a hyhrid systE'1ll as prE'viOllsly c1t'scrilwc! for 

multiple spE'akers, and in a second step, adapting only som/? 01' (Ill A NN l)(17'mnrlrr's with 

known or unknown sentences from the nE'W speakpr. If tllE' SE'nt.ences arE' knowlI t.lwn 11 

constrained "MM can be used to adapt thE' ANN paranwters. In such a systE'lll, thl' 

ANN adapt.ation represents a tuning of the feat.ure spacE' to t.he new slwakN, whE'fpas thp 

temporal model remains unchanged. The gradient of thE' optimization rritE'fia is still passpd 

from thE' HMM to the ANN, but HMM parameters rE'main unchangE'd. Th(=> ANN is traillPd 

in such a way that different speakers tend to prOdUfE' similar output paramE'tE'l's for tlw 

same speech unit (see [Brid91] for a relatE'd speaker adaptation nwchanism). 
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6.7 Methodology 

ln summary, Wf> havp SE>en how to compute thE> gradient of a training critprion for HMMs 

with rE>spprt to tlH' paranwters of t]w AN N. In particular we havE> considerpd t.he MLE and 

thp M Tv! lE rritf>rion for both isolated and continuous sppech models. To implf>ment such a 

hyhrid syst.pm, th(> following methodology can be applied. 

1. First, ANNs arptrained to rer.ognize, forexample, phonetically relevant featurps, such 

as, plar(> and manner of artkulation. 

2. Sf>cond, t.hf> out.put v(>ctor of tllPse networks is compressE>d by principal component 

analysis, in orclN to providE> a smaller input vector for the HMM. 

:J. ThireJ, a first pstill1ation iteration computes initial values for the HMM parameters, 

keE>ping thf> ANNs parameters fixed. 

4. Finally, th(> glohal optimization procedure can he applied in order to tune the HMM 

and ANN paramE>ters. 

ln the nE>xt sE>ction, an application of this algorithm is descrihed in more detaiJs. 

6.8 Experimental Evaluation 

A prE'liminary E'xpPrirnent has been performed using a prototype system based on the in­

tpgration of ANNR with HMMs. Thp purpose of the experiment is to show the benefits 

of an ANN/HMM hybrid and of its global optimization. The task is the recognition of 

plosÎvf> Rounds in E'VPry rontpxt and pronounced by a large speaker population. The TIMIT 

ron t.i n IIOUS Spf>E'C h cl atabase (Zue, Selleff & Glass 90) has been used for this pl1rpose. SI and 

SX SE'ntE'nCPR from rpgions 2, 3 and 6 were used, with 1080 training sentences and 224 test 

spntE'llcE's, 1:15 spE'akers in th(> training set and 28 speakers in the test see. The following 

R r1aSSE'S WPTP considNE>d: /p/,/t/,/k/,/b/,/d/,/g/,/dx/8, /all other phonemes/. 

'Tht' trdilling ~I)('ak('r/o wcrc lhol>(' wh%c initial was bctwc(,11 "a" and ur" inc1usiv('ly. The remaining 

1-l'l'llkt'r~ W('f(' IIM'l.1 for \(':.llllg 

~ 'l'lu' 0'11'111,.1 dl\'('ololf l'I%i\'c Id]'1 i:. cOII~itlcr('d as a dihtinct phoneme in the TI MIT database. 
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Figure 6.3: Ext.ension of t.he ANN/HMM hybrid t.o a hiNarchy of modulE's, with t.hr('e 

levels. 
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Sppakpf-indpp(lnclf'nt f(l('ognition of plosiv(l sounds in continuous sp(lech is a particularly 

diffirult task bprause th(lsEl souncls are made of short and non-stationary f"vents that are 

oftpn ronfus('cl wit.h othN acollstirally similar consonantfl or may be indud(lcl into other 

lJ nit s(lgmf'nts by a ff'cognition syst(llll. 

6.8.1 Architecture 

As disrussf'd in [Bf'nH9b, Aen90a, Aen91b] and Chaptef 3, sp(lech knowledge can be used to 

design thp input, output, and architecture of thE' system and of each one of the networks. 

'l'Il(' approarh that wp hav(l tahn is to sE'lect diffN(lnt input parameters and different ANN 

a rchit,(lrtu ff'S dE'IWnding on tllf' pholletic f(latures to be recognized. 

'l'Il(' (>xllf'rinwntal syst(lm is basecl on thf' srheme shown in Figure 6.3. Rathf"r than having 

a singlp A NN that complltE's the vector Y of paramE'tE'fs, we have a hiNardly of networks. 

For thp H MM hybrid, the archit(lctllre is built on thref' levels. Level 3 rontains the HMMs. 

Levf'l 2 is macle of a single ANN that arts as an intf'grator of paranl(ltf"rs generated by 

1110r(l spf'cializ(l(1 AN Ns: AN NI is a li near network that initially computes the principal 

componf'nts of the conrat(lnatf'd output vectors of the IOW(lf level nE'tworks (ANN2 and 

ANNa). At. lE'vEll l, two ANNs are initially trained to perform plosiv(l recognition (ANN3) 

and broad r1assification (ANN2) respectively. The preprocessing and topology of these 

networks arf' similar to the networks dt'scribed in [Aen91b] and their outputs deseribe 

articulatory f(laturf's such as the place and manner of articulation and a degrE'e of voicing. 

ln put paralllf'tE'rS étre fed to thf' networks every 5 msee. 

Broad Classification Network 

This Ilf'twork was desigllE'd by Ralf Kompe and is described in [Ben91a]. The broad c1assi­

ficat.ion npt. (AN N2) has flve outputs corresponding to five broad categories: 

{non-nasal sOllorant., nasal, plosive, fricative, flilenre }. 

Tl'p tWf'lvp input nodes to ANN2 arE' t.he enE'fgies offive band-pass filters in the time domain 

covNing t.hf' rangE' up to 7 kHz, the signal total el\E'rgy, and their six time derivatives. The 
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filt.ers werE' nu (infi nitE' impulsE' rE'sl)onsE') Hut.t.E'rworth pass-band filf,Ns wit h t.hl' following 

-3 dB bandwidth spE'cifics: 150-:lilO H7., nO-ilOO Hz, ilOO-2!)OO Hz, 2!)O()-:I!iO() .17., and ,1000-

7000 Hz. The non-linE'ar phasE' rE'sponsE' oft.hE' filt.E'rs was not. rorrf'ctE'd. For t.1lE' tot.al (>n(>r~y 

and for thE' filtE'rs in the 150-3,1)0 and (i()-5()() JI7; bands, an input window of 20 ms was IlSP'1. 

A window of 5 ms was USE'd for E'VE'ry othE'r filtE'r. 'l'hl' df'rivnt.iVf'S \\'Nf' ('omplltpd hy Iint'r\f 

regrE'ssion ove!' 9 consE'cutivf' fralllE's (,15 msE'c). ThE' filt,E'r halHlwidt hs w(>rE' chosf'1l hast'd 

on acoustic-pllOnetirs knowlf'clge (RI'E' for E'xamplE' [StE'vRl, OShaHïJ), This Input f(>at.llfI' 

reprE'sentat.ion was found to pt>rforlll bE'ttt'r than otlH'r spNt.ral rE'prpsl'lIf,ations hasf>cI on 

the ('ulllputation of energiE's from thf' Fast Fou rif'r Transform of a fiXNI il n alysis wi IIdow 

(see bE'low). 

ANN2 has four fully connE'('tf'd layNs (12 :10 15 li) but. only t.illlf'-dE'lay links (from t.ht' 

input at franH' t and frame t - 20 ms t.o t.he first hiddl'n layer, and frolll t.hE' s(>('oIHI hiddt'II 

layer at frame t and l - 20 ms t.o thl' out.put layer), as if. was found that rE'CII rrf'nct' did not, 

help it.s performance. Also th(>fE' WNE' di re('t lin ks without. a ny dt'Iay from t.h(> i Ilput layt'f 1.0 

the 8E'('ond hiddE'n layer and the output layer, and from tllE' first hiddf>n layE'r t.o t.hf' output, 

layer. This architecturE' was optimizE'd aftE'r somE' trialfi. ThE' tot.al framE' E'rror was 17.7% 

on the tE'st SE't and 17.(i% on thf' training SE't. With a rE'dllcE'd SE't of ('lassE's oht.ain('d by 

merging fricative with plosive and and lU/sal with llOll-IW.'wlso/101.,tnfs, a franH' (lfror rat,r 

of 11.1% on the tf'fit. set and 11.0% on t.he training SE't. W(>ff' obtailwd, This prrformal1cE' 

compares favorably with other published works [ChigRR, Colf'HH], 

Plosive Network 

The plosive recognition nE't (A NN3) if, as describE'd in fif'ctions :U.2 (inputs), :1,:1.2 (archi­

tecture, Sf'e Figure 3.4), and 3.5.2 (output roding). ANN:J has time-df'lay lin ks lH'twE'en t,hr 

input nodes and the hiddE'n layer, and rE'ctrrrent links hetwE'rn sornf' of tllP hiclclNl noclrs 

and the output nodes. It hafi two hidden layf'fs, and thE' fi rst hicldpll layE'r nor!E's havp in pu" 

connectivity that ifi local in frequE'ncy. lt has sixt.l'E'n output.s with dilf('fE'nt inst.antiat.ions 

of each place noclE' depending on thf' right ('ontextu. The 71\ inputs too ANN:J arE' t.ht> out-

9 Each of the four difrcrent places or articulation (lahial, alvcolar, vf'lar, alld flaPllf'd alv~'olar) corrffliJHl'ltlH 

to two ditrC'rent 1I0dcb, dcp('ncling on wh(·ther t}1I' foJlowing pllOlH'ITIC hM" forw,ml or hac kw.trd plan' of 
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puts of :12 Hark scalf'd ( logarit.hmic:) t.rianglllar filt.f'rs complltE'd from thE> !;hort-time Fast 

Fourif'r Transform of t.hE' window(>d signal, 30 prop(>rty det.(>ctors approximating a sE'cond 

ordN d(>rivat.iv(> OVf'r short int.E'rvals of fr(>quf'nc:y and time (as df'scrihE'd in Section 3.1.2). 

7 slopf' cOf'fficil'nts df'scribing tht' frE>qtlf'ncy df'rivativf' of tht' spec:trufIl, thE' total en(>rgy 

and t.11f' voiring t'nf'rgy (in tht" (jO-f)OU Hz band) and their time derivatives, and a measure 

of c1istancf' (norlllalizf'd dot product) betw(>en neighboring spectral fram(>s. This particular 

sE>lf'ction of input. paralll{'tns is th(> fruit of sorne preliminary f'xperim(>nts [Reng1a]. In 

gt"nf'ral, Wf' havE' found that using many corrf'latE'd input pararneters and using specializf.ld 

AN N t.opologiE's wit.h such a dist.ributed output encoding improvf's both the phonetic clas­

sification pf'rforlllancf' and the convergence rate of thE' I(>arning algorit,hm, whE'n compar(>d 

to using thf' SIH'ct.rogram only as input and the simpler "onE' output node per pholl(>me" 

E>llcoding. 

Principal Components Network 

Computing thE' principal componf'nts of a set of vector patterns results in a projection of 

t.hE>Sf' Vf'ctors upon 1.11(> eigenvectors of their covariance matrix. This is a rotation of the 

aXE>S so that thf'y coincide with these eigf'nvectors. This is done to reduce dimensionality, 

by kf'f'ping only tllf' fi rst few E>ig(>nvf'ctors, when they are ordered by decreasing eigenvalue. 

ThE> first. ff'w f'igf'nvf'ctors acc:ount for most of the variance of the patterns. 

A ftf'r t.hf' covariancf' matrix has hf'en computed and its eigenvectors evaluated, the input to 

t.11E> principal compont"nts net.work (AN NI) are projf'cted onto this lower dimension space 

and th(> Illf'an and variancf' in this spaee are computf'd and used t.o normalize the projected 

data t.o havt" Z(lro I1lf'an and unit variance. The Iinear network is then initialized so that it 

computf's this translatE'd and scal(>d proj(>ction onto the principal eomponent space. 

AN N 1 initially computE's thf' principal eomponents ofthE' concatenated output vectors ofthe 

lowf'r lf'vf'1 nE'tworks, ANN2 (16 outputs) and ANN3 (5 outputs). Several choices of number 

of principal <"omp01H'nts w(>rf' tried and the best one that was found was 8. Experiments 

wit.h a simplN HM1\'1 topology yi(>lded 78% accurary with 21 inputs to the HMM, 82% 

a.rti( ulatio:: TIl(' (('lIhlilllllg ('ight Ilml('b art· lahcl(!(l: ullvoiccd plosivc, voiccd plosivc, vocalic (ront,vocalic 

linn-front. liquid, frH Ilti\'(·. Il ilS al , "ilcl\«', 
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Tahle 6.1: ComparativE' Hesults: Neural Ilet.works alone. with I>ynalllic Progralllllling, with 

HiddE'n Markov t\lodels. and wit.h ~Iobal ort.imizatioll. 

9\'. f(lC % ins % dei % su bs % acr 

ANNs alollE' R,i) :i:l 0.0·1 1 fI ;,:J 

HMMs alolle in n.:l 2.2 22.:J (iH 

ANNstDP (no bigrams) RH 16 O.C)! Il 'l2 

ANNstDP (bigrams) RH 1·1 0.01 Il Î·I _.-
ANNstHMM R7 n.8 0.9 12 HI 

ANNstHMMtglobalopt.. 90 :l.S 1.,1 9.0 Hfi 

accuracy with 10 input.s and 8·1% with R inputs. 

Henee the linear Iletwork initiali7.ed t.o comput.e thE' translation scaling and rotation has 21 

inputs, 8 output.s and 176 weights (Hx(5 + J() + 1 (bias»). 

6.8.2 Comparison of Post-Processors 

For the dynamic programming (1)1') hybrid, the outputs of th(l n<,tworks al. l<,v('1 1 ar<, 

indirE'ctly used in the cost fUlletion of the dynamic programming optimization. Thal. cost 

fUllction is based on the prod \let of several probabilities (as descrilw<! in SE'ction 4.4.:J): 

a priori class probahilities, du ration prob<l hilit.ies for e<leh nhOIH'IlH', bigr<llll proha hiliti('s 

(aU estimated from the 'l'IMIT labeling of the training set), and ohsNvation l>rohahilit.if's 

conditional on earh c1ass (modeled with a maximum likE'lihood Caussian mixturE' wit.h 

diagonal covariance matrix). 

In thE' case of the HrvlM postpror('ssor, ANNI e(,mput.es H f(>at.lIr(>s for the fOllt.ill1l0llS 

densities HM M. The comhined net.work (A NN 1 tA N N2tANN:I) has 2:J!)7H fr(>f> paranH'tNs. 

Each of the Il HMM unit models 10 had 14 states, 2R transit.ions, :1 s(>lf loors, withollt 
------------------------------

lOTo improvc itb III oddlll g, th!' r('j<,ctioll da...,b Wdh (O/llJl()&(·<J of four /IIodd.., IIdbdl.." fril dtiv(,h, r,oll-'hU"il 

bonorants, and silencc. The r('cognitlOlI rehlrltb arc obtaim'd hy IIl!'rging th('&(' (our bllill I<UlM'h, hUI Ir t"dt tlu' 

total nllmber of cla.~~(·& to rc('ognize is eight. 

128 



( 

(·xplicit.ly modf'linp; thf' stat.f' durat.ion. Each HMM has t.if'd dist.ributions with 3 basic 

difff'rpnt. distributions rharartNizinp; tlu> hE"p;inninp;, middlE' and final part of a segnlPnt 

1ll0df'lpd hy th(' unit. Each of thpsp distributions is modf'lE'd by a Gaussian mixture with 5 

d('nsitips. Thp rovarianrp mat.rix is aSSUI1lNJ to be diagonal sincE' thE' paramf'tE'rs are initially 

principal componf'nts and this assulllptioll rE'ducE's sip;nificantly the number of parameters 

1.0 h(> pstllll a 1.(>(1. 

'1'0 assf'SS thE' valuf' of the proposf'd appr03rh as WE'II as thE' improvement bl'ought by the 

IIMM or DP as postprocE'ssors for time alignmpnt., thE' performancE' of the hyhrid systE'ms 

WNP romparpd with that of a simplE' post.processor appliE'd to the outputs of the ANNs. 

The simplE' postproc('ssor assigns a symbol to f'aeh output frame of the ANNs by comparing 

I,h(' art.ual output vect.ors with tarp;et. output vectors and choosing t.he one with shortest 

Eurlidf'an distanc<'. This simplE' post.proressor then smoot.lls tllE' resulting string to remove 

very short. sE'p;Ill('nts and lllE'rp;es consecutive sE'gments that have the samE' symbol. This 

syst.PIll is dpnot('d in Table 6.1 by ANNs a/one. 

'1'0 pvaluatp thE' advantagE's of using an ANN as a sophisticatE'd preprocessor for the HMM, 

tllE' l'lame HMM modE'ls WE'fE' us(>() to perform recognition (denoted in TablE' 6.1 by Hlv/Ms 

(i/one), and IIsinp; only a st.andard set of acoustic fE'atl1rE"s as input. to the HMM: 8 cepstral 

cOf'fficiE"nts, H cE'pstral dE'fivativE's, the signal enE'rgy and its derivative. RE'sults using only 

t.hE' Cf'}) st. ru III and tllE' E'nE'fgy WE're slightly worse. 

Thf' comparativE' rE'sults on tllE' tE'st set for the varions systems are summarized in Table 

fU. TIlf' oVE'rall rE'rognition ratE' (100% - %dE'letions - %substitutions) for the 8 classes 

\\'ith thE' hyhrid systE'm aftN two training iteratioils is 90% on a total of 7214 phonemes, 

and its accu racy (100% - %delE't.ions - %substitlltions - %insertions) is R6%. Note that 

t.his is an important improvE'mE'nt over the performance obtained with an HMM trained 

wit.hout global optimi7.ation (R()% recognition and 81 % accllracy), as weil as in comparison 

with thE' t.wo ANNjDP systE'IllS (88% recognition and 72% accuracy without bigrams and 

HH% rE'rognition and 7,1% acruracy with bigrams). Note that the biggest improvement 

in comparison to the ANNs alone comes from modeling the durations rather than the 

big ra ms. ThE' AN Ns alonE' yiE'lded 85% rE'cognition but only 53% accuracy, because of the 

high numbE'r of insNtions (:12%), mostly due to short plosive segments. The ANNs classify 
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TablE' ().2: GE'IlNali7.ation as a function of thE' numbE'rofit.E'rat.ions and t.hE' H~I~I paranwlf'f 

update mE'thod. 

% rer % ins % dE'I % su hs % acc 

ItNation 0 87.() G.H 0.9 lUi HII. j 

ItE'I'ation l (batrh) 87.1 :J.G 2.2 10.7 S:Ui 

Iterat.ion 2 (bat.rh) H7.1 :U~ U) Il H:lA 

1 tE>ration l (onli nE» H9.!> ' LO I.a 9.2 sr).;) 

ItNation 2 (onlinE') 89.() :l.H 1..1 9.0 Hr)}{ 

ItNation :J (onlinE') H7.() :u; 2.'1 10 H·U) 

weil but havE> a noisy output with many insE'rtions. ThE' Hf\IM or IW durat.ion modf'lin~ 

eliminates 1ll0st of thE'se insertions bE'causE' of tllE'ir bE>t.t.E'r durat.ioll and t.('rnporal st.ruct.urt' 

modE'ling. However, for the expE>riments with HMMs alolH' wit.h cf'pst.ral input ff'at.urps (+ 

enNgy and thE'ir dE'rivativE'), thE' IwrforlllanrE' was slight.ly worsf' t.h'lll wit.h tht' AN Njl>P 

hybrid, and rE'markably worsE' t.han with thE' ANNjHf\If\1 hyhrid Wlt.hin IIIIS glohally 

optimizE'd hybrid, in addition to providing a good tE'mporal lllodE'l, the UMM JHOVIc!PS 

more appropriate gradient for t.hE' out.puts of thE' AN N. With tllf'sf' ·'movill).'; t.arp;f'I,s" for 

the ANN, thE> hybrid system further improvE's its pNformancE'. 1 .. is illt.f'ff'still).'; t.o not.(' t.hat. 

thE' effect of E>quation 6A9 is to gE>nE'ratE' a J!;radiE'nt t.hat tf'llds to hring tllf' out.put. of thf' 

ANN c1osE'r to the lllE'ans of tllE' normal dE'nsitiE's which arE' c1osf' 1.0 t.he AN N out.put, a~ 

weil as consistE'nt with t.h(=' the t.raining string. 

6.8.3 Batch vs Online Parameter Update for the UMM 

Our previous experi(='nce, as Wf>1I as other results [HottnO, Lf'C~!)a] (s{,f' discussion and E'xp('r­

iments in Sectioll 2.2.1) indicate that online or st.ochastic updatf' ylf'lds fastN convN).';f'IlCf' 

than hatch update of AN N parameters, E'spE>CÎally for pattf'fll rf'ro).';11It.ion prohlt'Ills '>!Irh aH 

those in speech recognition. Comparativt' expE'fimE'nts pE'ffortllf'd with thE' hylmd syst.elll 

indicate that bettE'f results can bE' obtainE'd with nnlinE' upclatf' for thf' HMM as weil as for 

the ANN. 
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ln Ta hlf> (i.2, t. hf' t.wo Il pdatE' Iiwt.hodsfor t.hE' HM M parameters within t.he hybrid system arf' 

romparNl. Tradit.ionally, thf> HMM pararnf'ters are updated after havingcompilE'd statist.ics 

OVN t.hf> wholf' t.railllllJ!; Sf't. ThE' altNnat.ivf' IIpdate mE'thod used in t.he expNiments is a 

HIllOOthf'd onlilw parametN upelat.f': 

(J"p = (1- n)8"p_1 +oiJ"p (6.56) 

wlwrf> fi"p is thf' nf>W value of t.he llh paramE'ter aft.E'f SE'ntence p, 0: is a pmall constant ll , 

and Ô"p is thf' f'stimat.ion of thE' parameter fi, given thE' observations in sentf'nce p, using 

usual HMM paranlf'tf'r E'stimation algorithms [Rabi89]. Table 6.2 also shows the evolution 

of gf'IlNali7.at.ion ('rrOfS after onf' and two training itNations of thf' hybrid system with 

global optimi7:ation. In t.IH' E'xpNinlE'nts, an error minimum was reached after only two 

itNatiolls. FurtliN t.raining only reduced gf'lleralization. This fast. training behavior is 

t.ypical of Cont.in1/o1/s ))f'nsities HMMs. 

6.9 S urnmary 

A system has beE'1l proposed to combine the advantages of ANNs and HMMs for speE'ch 

rE'rognition. ThE' paranlf't.ers of thf' AN N and HMM subsystems can influence each other. 

Wf' shoWE'd how t.o pf'fform a global optimization of such a system by driving the network 

gradif'nt df'scf'nt. wit.h quant.it.ies computed by the HMM parameter estimat.ion algorithm. 

Although t.1lf' algorit.hm is based on making some assumptions about the distribution of the 

input data for fixed values of the output of the ANN, the results of thE' above-described 

E'xpf'rimf'nts Wf'ff' E'ncouraging. They indicate that global optimization of a hybrid ANN / 

HM M systf'm brings some important performance hE'nefits and suggest that the possibilities 

of such a hyhrid syst.em should be fur t.hf'f explored. WE' have seen how such a hybrid system 

rould int.E'gratE' lllult.iplE' ANN modules, whirh may be recurrent. 

Il \VI' IIM'tl ()' = n onri. ('X( ('pt for tl\{' varidllCCIo of thl' observation di!>tributioll& which wt!re IIpdated witl! 

li M'nll-haleh ,llgmithlll, l}('('aus(' th(' elolilllation of the second moment of the distributions reqllires more 

()hM'rvdti()II~: 

fT,." = (1 - *)17'."_1 + *Ô' •. I.P' 

wl\('f(' N i" th(! Il Il IIII)('r of M'nt('lIc(,h, and Ô".l.p is the cstimation of the paramctcr fT, given ail the ob/lervutÎons 

/rom .• 1 fI'fIICt 1 10 .11'fI/t'flC!' 1'. Il!ling standard II M M paranl<'ter l'stimation algorithms [Rabi89]. This metltod 

forc('l'o a !llow initml .ul.lptation of th(' variallres but computt'S t1lcir filial valllc using ail the training data 
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An intE'rE'st.ing E'xtt:'nsion would bp to pNform SpNlkN adaptation with tht> hybrid systt'Ill. 

This rould hE' obtainE'd by fir<;t training thE' systt'Ill as prt'\'iollsly dt''lnilH'd for Illllltiplt' 

speakE'rs, and in a sE'('ond stE'p, adaptlll?; ollly thr "SS I)(/I'nmcfcr ... \\ it h kllowll or IIl1kllown 

SE'ntE'ncE'S frolll t.hE' IIE'W spE'akE'r. in ord(>j t.o maximlzE' t h(' Ilkt'hhoot! of t.ht' data J?;i\'t'Il tIlt' 

global (ANN j Hl\tM) modE'1. In su('h a systE'lll, thf' ANN adaplclllon rt'prt'.,t'nls il tUlllnp; 

of t.hE' fE'aturE' spacE' to tllE' nE'W SIWakt'f, whE'fE'as t.hf> tt'mporal Illodt'I rf>mains un('hall~I'(1. 

Alt.hough t.hE' ANNs uSf'd in thf' E'XIWrimE'llts WNf' rE'Cllrrf>nl, tll('y did Ilot ('apt,urt· t.hf> 

temporal st.ru('turE' of thE' spE'E'ch f'ignal as wf>1I ai" tllE' ANNjlll\Il\1 or III(' ANN/DP hyhrl!l 

systems. Note that VNy fE'w paramE'tE'rs WE'rE' \lsE'd in thE' Hl\ll\l or t.lu' DP postproct'ssors 

to des('ribe thE' tE'mporal stru('t.urf' of thE' ohsE'rvat.ions (t.ran'\itlOll prohahllitlt's or durcllion 

probabilities. respE'('tivE'ly). TllIs Illay IlldiratE' that. ('urrf'nt. AN N topolo~l(,s ,wd rplat"d 

algorithms are inE'ffiriE'llt. in modE'ling tf'lllporal st.rllctllr(>s. If ~hollld Iw OhSNV('d thilt 

HMMs generally USE'd for spE'E'ch rf>('ognit.ion havE' a I(>ft-to-rtgh t . .,t.rucf,urf> rat.lwr t.ha" il full 

connE'ctivity from st.atE' to statE'. It. may he possiblf> to iIllIHOV(> tht' Wily in whirh tt'mporal 

st.ructures arE' modelE'd in ANNs by imposing appropriatE' constraint.s on t.hf'ir archit.(>cl.urt' 

for the part.icular problem of lE'arning to recogni7.f' SNIIlE'nCE'!'i. 
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Chapter 7 

Radial Basis Functions and Local 

Representation 

ln ChaptNR :l, 1) and 6 we have considered modularization as a way to deal with the 

prohlE"m of paramE'tN coupling. In this chapter we consider another approach based on a 

ditfNE"nt tYlw of nodE" operation that yields a local rather than a distributE"d representation: 

Haclial Hasis FUllctions (HHF). Several pholleme recognition experiments are described 

with such 1H't.works, showing that they can be trainE'd more rapidly but may require more 

llH'mory rE"sourc('s than thE" "standard" sigmoid nE"tworks. NE"tworks of RBFs with reCUffE"nt 

ronnE"ctions and a hybrid of HHFs and sigmoids'are alw considE"red. 

7.1 Radial Basis Functions N etworks 

Sigmoid units such as USE'd in the previous chapters can be interpreted as computing the 

sigmoid of a sigllE'd distance bE"tweE'n an input point in the space of input.s of the unit 

and a hypNplanE' in that spacE", dE'fined by the input weights of that unit. Renee, input 

points nE'ar thE" hYlwrplanE" produce an intermediate output of 0.5 Of 0 (for asymmetric and 

symmE"trÎc units rE'spE"ctivE'ly), while points farfrom the hyperplane yield values close to the 

saturation valuE"s of thE' sigmoid (E".g.,O and 1, dE'pE"nding on whkh side of the hyperplane 

thE'Y 1iE'), aS illust.ratE"d in figurE" 7.1. 
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input point 

unit parameters 
describe a hyperplane 

Sigmoid Unit 

input 

point 

unit parameters 
describe a point (and a 

transformation or scaling matrix) 

RBF Unit 

Figure 7.1: Geometriral interpretation of RHF Ils sigmoid unit.s. 

On the other hand, Radial Hasis Funrtions (HRF) unit.s produrp an out.put. whïch c!(lIWnds 

on the distance between the input point and a "protot,ype" point. in t.he input sparf>. TIH' 

output of au RBF network ran be writ.ten as t.h(> weight.(>d sum of t.hE' output.s of thosE' H Bio' 

uuits: 

(7.1 ) 

where X is the input pattern vector, PJ is the prototyre point (vertor) assoriat('d to t.lw 

RBF unit Uj and the basis fuuction h(·) may be, for E'xamplE', a Gaussian: 

!ter) = e- r 2 
( 7.2) 

The norm in equation 7.1 can be weighted by a matrix, E'quivalf'nt to a linE'ar transformation 

on the input. 

[Pogg89] showed that RBFs perform smooth function approximation arbitrarily wf>lI, i.P., 

approximate F(X) with F(X, fJ) by hypersurfacf> rpronst.rurtion, whf>1l givE'n a t.raining 

set of examples {F(X),X} which may hE' noisy. This rE'ronstrurtlon is ba<;(l(J on thE' IHlf' 

of regularization [Tikh77]. More specifically, it imposes a smoothn(lss ronstraint. on thf' 

ff'sulting mapping. Poggio [Pogg89] suggE'sts that thf' paranlE'tE'fs of an If B F nf'twork aR 

definf'd in equation 7.1 can be initialized effiriently (e.g., usi ng K- mE'ans) an cl thE'n t Il npd 
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ufiing gradi~nt descent. Such "g(lneralized RHFs" (J>ogg89] are mathematically related to 

t.h~ w~1I known RH Fs used for strict interpolation tasks. However, less units than training 

~xampl(>s are requir~d in the "g(>neraliz~d RBFs". This approximation scheme is also related 

to m(>thodR Ruch aR Parzen windows, generalized splines and vector quantization. 

7.2 Neurobiological Plausibility 

A multidinwnsional Gaussian can be represented as thE' product of lower dimensional Gaus­

sians. This property suggefits a way for neurons to compute RBFs. Gaussian radial basis 

functions in one or two dimensions can be implementE'd as coarse coded receptive fields: a 

dimE'nsion is represented as an array of neurons, each rf'acting only to values of the variables 

in a cNtain rangE'. What is required in addition to coarse coded receptive fields is the mul­

tiplication of signais. Sorne special type of synapse has two (or more) incoming inputs and 

p~rforms an op~ration similar to a product of the two incoming signais [MeI90]. Neurons 

with such synapses are called sigma-pi neurons. "ence a RBF network cou Id be imple­

mented with Gaussian receptiv(> fields and sigma-pi neurons without explicitly computing 

the exponf'ntial of the norm in eqllation 7.1. 

7.3 Relation to Vector Quantization, Clustering, and Semi­

Continuous HMMs 

HRFs arE' r~lat(>d to vector quantization (VQ) as follows (see [Gray84] for a review).system. 

VQ partitions the input space into mutually disjoint regions (e.g., Voronoi polygons, sep­

aratf'd by line segnwnts at equal distance of neighboring cluster centers). VQ algorithms 

dllst.f'r the input points into thf'se disjoint regions and transform each input point to a 

symhol associat.ed to the corresponding clllster. This is similar to RBFs that wou Id have 

a hoo1ean out.put, with a single RBF responding to a given input pattern. Instead, RBFs 

r~prt'sf'nt th~ input pattern by a vector of proximity measures (betwe(ln 0 and 1) over the 

SE't. of hidd(>n units of t.he RBF network. 
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Kohonen's neural network models for VE'ctor quantization [KohoRR] also comput,E' Eurlid.'an 

distances of duster centers to th(' input. pattE'rns. ThE'sE' aigorit.hllls rail IlE' SE'E'n as ontint' 

forms of the k-mE'ans algorithm [MarQ67], often USE'd for VQ. 1\0hol1(,l1's algorit,hms éU(' 

competitive algorithms in which only the unit cloSE'st to t.hE' input. pat.t.Nn rt>sponds. In 

particular, in the fE'at.urt> map algorit.hm, thE' units in compf'tit.ion arE' laid out. il. a low­

dimE'nsional spat.ial struct.urE' (e.g., a 2-dimE'llsional grid) in whirh a nt>ighborhood is dE'finf'cI, 

such that adjacent units in that "map" r('spond t.o similar VE'ctors. 

Semi-continllous HMMs [Huan89] arE' more and more used for automat,ic sp'-E'rh rt>cognition. 

In thE'se models, observation distributions are genNatE'd by a mixturt> of a SE't of Gaussians 

common to aH statE's. In thE' more classical discrt>tE' HMMs, obsE'rvat.iol1 distributions ar.­

approximated br a non-parametrir distribution OVN il s.-t of ('ommoll symbols g('llf'rat.-d 

with VQ. On the other hand, with continuous densitiE's HMMs, ('a('h stat..- in tIlt' mod.-I is 

associated to its private set of Gaussian d('nsities. In s.-mi-collt.iIlIlOIlS HM Ms, E'arh st.at,(' 

is characterized by the coefficients of the mixturt>, i.e., th.- rOlltriblltions of E'arh Gallssian. 

The probability distributions modE'led by surh mixturE's art> fUllrtionally E'(Juival.-nt. t.o t.1lt' 

outputs of an RBF network, howt>ver t.he intE'rprt>tation of outputs and t,IlE' training Illt't,hods 

are different. 

7.4 Methodology 

The basic implementation advant.ages of RRFs derivt> from t.ht>ir rf>prt>sf>lltation: paramt>tt>rs 

have a simple meaning with regard to the pattern examples. The following fast training 

method was chosen to take advantage of this propE'fty in tllE' E'xp('fimf'nts desrrihed in 

Sect.ion 7.5 (see also [Pogg89]): 

1. Initialize the parameters of the RHF units. That can he donf' by rhoosing a random 

sllbset of the examplt>s, or with the result of a rluster analysis, such as the c\ustN 

centers produced by k-means or Kohollt>n's LVQ2 algorithm [Koho~m]. These two 

algorithms are simple to implement and yield acct>ptable rf>sults rapidly. In thE' f'X­

periments, the k-means algorithm was USE'd. This initiali7.ation st.-p ran be intE'rpretpd 

as an llnsupervised, competitive learning step which E'neod.-s thE' input pattE'rn in a 
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Im'al repr(>sentation. 

2. Initialize the output w(>ightR of the n,8F network. This can be do ne with the Pen rose 

(p(>n r!)!)] ps(>udo-inverse or wit h stochastic gradient descent. The latter scemed more 

effki(>nt as the number of training pat,erns increased. This step is a supervised 

I(>arninp; Rt(>p and can alRo be arromplished very fast, since it is a linear problem with 

no local minimum. 

:J. Perform a global optimization of all the parameters of the Fystem. This can be 

arhieved effici(>ntly with stochastic gradient descent since the output of an RBF unit 

can be differentiated with reRpect to the adjustable parameters of the unit (c1uster 

m(>3n and rotation matrix). ExpE'fiments desnibed in the next section show that 

this global tuning step indt>ed improves pt>rformance, confirming our previous the­

or(>tical (Section 5.2) and exp(>rimental (Section 6.7) results indicating that global 

optimization of a learning system improves its p(>rformance (see also [Bro088]). 

7.5 Experiments on Phoneme Recognition with RBFs 

St>vNal exp(>riments were performed to evaluate the performance of RRFs in a difficult 

spf'(>ch recognition problem. The task was to recognize 39 phoneme classes from the TIMIT 

rontinuol/s spt>ech multi-speaker database. Complete SI and SX sentences from regions 2, 

:1 and 6 of TIMI'I were used, with 135 speakers in the training sets (292623 frames) and 28 

spt>akers in the test set (61428 frames). The preprocessing for ail the experiments described 

in this s(>ction produced 24 spectral coefficients on the Bark seale (see Section 3.1.2), in 

addition to the signal energy computed over a 20 ms window. These parameters were 

computed every lO ms and sent to the networks. 

Vnless specified the input window of the network was 4 consecutive frames, Le., a 100-

dimensional input vector r(>presenting 40 ms of speech. Output units of the networks 

WNe asymmetrir sigmoids rather than linear units. This is equivalent since the sigmoid 

is invf'rtible but is it has th(> advantage that the outputs are limited to the range (0,1). 

For the Il BF nnits, only scaling was used in the Gaussian, because of the higher cost of a 

fomplt't.{' rot.ation matrix. 
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Table 7.1: Comparison of global k-nH'ans and k-mE'ans pE'r c1ass to init.iali7.E' an IHW nE't.work 

for 39 phoneme c1assE's rt>cognition on 'l'IMIT. 

global k-means 78 clustf'fs, no c1a'ls info 58.1 % framE' E'rror (tE'st. spt.) 

k-mE'dnS per class 39 classE's x 2 c1ust.t>r/c1ass 52.2% framE> E'rror (t.PRt spt) 

7.5.1 Supervised vs Unsupervised Initialization 

The k-means algorithm genE'rates a set of c1usters with input pattE'rns assoriatE'c1 t.o E'ach 

clustE'r. The cluster centers are USE'd dirE'ct.ly to initiali7.E' thE' CE'nt.E'rS of t.hE' n HF unit.s. ThE' 

variances of patterns within each clllster was USE'd to initiali7.E' thp scaling pa ra mE't.NS of th(' 

corresponcling RBF unit (diffNent for E'ach dinH'nsion). 

Should we use a completcly unsupervised algorithm to find thosE' paranwtE'rs? Somp points 

from twoclasses mayform two clust.E'rs that mostly oVNlap, such that. t.lw k-Ilwans algorithm 

reprE'sE'nts them with a single clustE'r. A simplE' but sub-optimal solution to t.hat. problt>111 

is to apply k-mcans separafdy for cach of the clas.~cs. For simphcity, a fix(>d numlwr of 

c1usters per c1ass was used. An empiriral romparison for thE' E'xpf'finwnt.al task of global 

k-means (no class information used) vs k-mpans per c1ass shoWE'd a significa nt improv(>IlH'nt 

with k-means per class (sE'e table 7.1). The E'xpNiments wert> pNfornlf>d wit.h 7H hidd(>n 

RHF units, and output weights were obtainE'd with thE' pseudo-invprst> pfOCE·d UfE' [PE'nr;);)]. 

Ali other experiments with R8Fs describE'd in this section were therE'forE' pE'rformE'C1 wit.h 

k-means per c1ass to initialize tll(> network. 

7.5.2 RBFs vs Sigmoid Units 

The next set of experiments are comparative experiments performed in order to verify that 

the gain in training time obtained with RHFs is not lost in generali7.at.ion. IUWs may hE' 

trained faster for at least two reasons: 

• A powerful initialization proced ure exists for R8Fs, whereas sigmoid networks are 

initialized with random weights. 
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TablE> 7.2: Comparison of RRF network and sigmoid network on the task of recognizing 39 

phonE>me r1assE>s in 'l'IMIT. 

Sigmoid net RRF net (only init.) RRF net (+ globo opt.) 

Training E>porhs 22 0 10 

GE>nE>ralization Nror 51.2% 52.2% 47.8% 

• ThNe is murh less parameter coupling with RBF networks than sigmoid networks, 

bE>cause ftHF unit have only a local response. Hence modifying the parameters of one 

hiclckl' l.nit in an RBF network only influences the small subset of hidden units that 

havE> a nearby c1uster rE>nter, Le., which response overlap. 

Comparative expE'riments WNe performed on the same task already described at the begin­

ning of this section, with tht> same target outputs and the same architecture for both an 

Il R F nE'twork and a sigmoid network. Both networks had 78 hidden units. 

As shown in Table 7.2, the gE'neralization error of the RBF net after initialization is almost 

as good as that obtained with the sigmoid network, After 10 epochs of global optimization 

(storhastic gradlE'nt descent on ail the RBF network parameters: output weights, c1uster 

fE>ntNs and sprE'ads), the generalization error was reducd. weil below that of the sigmoid 

npt.work. Hence, with less training time an RBF network with the same number of hidden 

units pNformed better than a sigmoid network. 

7.5.3 Effect of Context and Architecture 

Vario1ls ~rrhiterturE's were explored to optimize performance on the phoneme recognition 

prohlE>m, \Ising multiple dE>lays between the hidden uuits and the output units. In ail of 

thE'st> E'xpNinl(>nts t.here WE're four delays (0,1\2,3) between the input and the hidden layer. 

Ut>SU!t.s arE' shown in Table 7.:J. Note that the last experiment is with 3 clusters; ~tass, i.e., 

117 hiddE'n unit.s. Using only the output.s of the RBF units at frame t did not produce 

as good rE's1llts as using sevE' rai links with various delays (e.g., 0, 2, and 4 frames). This 
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Table 7.3: Comparison of various sets of delays between thE' hidden layer and the out.put. 

layer in R,8F nets for 39 phoneme dasses recognition on TIMIT. 

#c1usters/c1ass hidden-+output d elays generalization error 

2 0 52.2% 

2 0,1 4R.6% 

2 0,4,8 47.7% 

2 0,2,4 '16.5% 

3 0,2,4 45.6% 

result agrees with speech knowledge: information about the changes in speE'rh spE'rtra is 

very useful for classification of phonemes. ConsidNing only OllE' franH> at a t.inw makE's 

several classes overlap in the input spaCE'. HowE'ver, using too many franws may rE'slIlt in 

generalization problems. 

7.5.4 Adding a Recurrent Hidden Layer and Combining RBFs with Sig­

moids 

The improvement obtained as shown in Table 7.3 by providing more rontE'xt with dE'lay 

links show the importance of context for the recognition of phonE'llws. HOWE'VN, as arg1J(·d 

in section 4.3, recurrent networks offer an interesting alternativE' to thE' rE'prE'sentation of 

context. This motivated the next experiment in which a rerurrent hidden layf'r was addNJ 

to the best previously obtained network (5th expE'riment in TahlE' 7.:1). This E'xpE'fiment. 

was also an attempt at combining RRF UllltS wlth slgmold UllIts, ln ord('f to evaluatE' If 

such a hybrid network could perform better than the Il RF or the slgmoid nE'twork. 

The extra layer had 40 sigmoid units feeding thE' outputs with :1 dE'lays (0, () and 12 framE's), 

and receiving its inputs from the 117 RHF units with :1 delays (l, :J and r, frames). It also 

received recurrent inputs from the 39 output units, wÎth 2 delays (0 and -1 framE's). In 

addition, each of these sigmoid hidden lInits had a SE'lf-loop with a fixed-wE'ight dE'cay of 

0.93, which corresponds to a time constant (time to halvE' activation) of 9 . .1 framE's. The 
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initiai wpights from these units to t.he outputs were set uniformly bet.ween -0.01 and 0.01, 

so as not to dif;turb the n{-twork too mllch by the introduction of this layer. After a few 

cydps of training, significanf. irnprovement was observed. Before the introduction of the 

rpcurrpnt hidden layer the gpneralization error was 45.6%. After Il epochs lIf stochastic 

gradi('nt descent (update after each sentence), the g('neralization error was reduced to 41.8%. 

Uf'lativp generalizat.ion was good since the error on the training set was 40.9%. 

HOW('VN, th(' resllltillg network was very large, with about 54000 weights, and each epoch 

rf'(llIired mor(' than a day of CPU tirne on a UNIX workstation. 

ln spit(' of this problern, th('se exp('rirnents slIggested interE'sting conclusions. First, alter­

nat.iv(' n('tworks based on local representations, such as RBF networks, may offer faster 

training t.han the standard networks of sigmoid units. Second, their initializat.ion could be 

irnprov('d if information about th(' class of each input pattern is used to compute initial 

c1l1stE'rs. Third, perforrning a global optimization of the RBF network after the RBF units 

and t.hp output WE'ight.s have been initialized lowers the error rate. Third, irnproving the 

repres('ntat.ion of context with delays and recurrence significantly irnproves performance. 

Fourth, rornbining the local representation units (RBFs) and the distributed representa­

tion unit.s (sigmoid units) rnay yield improved performance. 
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Chapter 8 

Biological Constraints for the 

Automated Design of a Learning 

Rule 

Up to this point in this thesis we have considpr('d only basic variations of tll(' hark­

propagation algorithms to train ANNs. However, as discuss('d in s('rtion 2.2, this tmining 

algorithm 1 has several weaknesses, including lack of biologiral plausibility. In this rhapt.N 

we ronsider an alternative to research based on th(' bark-propagation algorit.hm. 'l'Il(' pro­

posed approach is based on the desire to hplp thp s('arch for b('ttN I('arning algorithms for 

ANNs using automatic m('thods. One of the conclusions of this tlwsis is that the d('sign 

of ANNs for a complex task such as phonp/lle jl>rognition is signifirantly improvt>d if ont> 

uses knowledge about the problem and its solution for many asp(>rts of this d(lsign. On tlH' 

other hand ANNs themselves were originally d('sign('d by taking inspiration from knowl­

edge of neurobiology, psychology, mathematirs and som(>tim('s physirs. Wh(>n RParrhing for 

learning rules for ANNs, we propose to use eV(ln more knowledg(> of biology to constmm 

that search, sinee the spaee of learning algorithms is so largE'. An automatiz('d sf'arch for 

such biologically constrained learning rul('s can b(l arhieved by d(lsrrihing such rul(ls with 

parametric functions and estimating those paramet('rs that minimiz(l a rost. Som(> toy f'X-

1 Ev('n though the network and unit operation are biologi('ally plalll,ihl!', tlH' trdining algorith III iH /lOt. 
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pNimE'nts with gradiE'nt dE'scE'nt. show that it is indeed possible to perform a "second-order 

optimization", i.P., learning a IE'arning rule. The basic hypothesis behind the ideas and 

E'xperimpntR prE'spntE'd in thiR Rection is that it is pORsible to search for a synaptic learning 

rulE' with lE'arning algorithms. HE'cause the space of learning algorithms is very large it is 

proposE'd to USE' biological knowledge about synaptic mechanisms, in order to design the 

form of this rulE'. ThE' proposed Ilwthod of finding thE' learning ru le automatically relies on 

thE' idE'a of considE'ring the synaptic modification rule as a parametric function, which has 

local inputs, and is the same in many neurons. The parameters that define this function 

can be optimized with known lE'arning methods. For the experiments described here, gradi­

E'nt dE'scE'nt was USE'd to optimizE' the learning rules. Estimation of paramE'ters of synaptic 

modification rulE's consists of a joint global optimization of the rules themselves, as weil as 

of multiplp networks that learn to pedorm sorne tasks with these rules. 

Initial experiments are described in order to assess the feasibility of the proposed method 

for VNy simple tasks. Experiments of classical conditioning for Aplysia (an invertebrate 

commonly used in nE'urological sturlies) yielded a rule that allowed a network to reproduce 

fivE' basic conditioning phenomena: habituation, conditioning, blocking, seC'Ond-order con­

ditioning, and extinction. Experiments with boolean functions yielded a ru le for a network 

wit.h a hiddE'n layer that could be uspd to learn sorne non-linearly separable transformations. 

ThE' rulE' was trained with a set of boolean functions and tested successfully on a different 

set. 

8.1 Opt.imizing a learning rule 

ln order to search for a learning rule, the following assumptions were made: 

1. The same fuie is used in many neurons 2. 

2. ThE're exists an input/output mapping (that may be stochastic) that corresponds to 

thE' learning rule. 

a. This mapping can be approximated with a parametric function. 

lThill co""traint il, rclaxed to !><,veral filles for several typ<'s of ncurons or synapses. 
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Consider a nE'twork (that may hE' rE'CU rrE'nt) of nE'1I rons and synapsps (wit.h st.rE'ngth ",.), 

and an optimization criteria C, whirh is a funrtion of thE' hE'havior of t.1U' 1lE't.work. and 

that is to he minimizE'd. LE't us assumE' that ~ ran hE' complltNI (for ~xamplE'. wit.h 

hack-propagation, as descrihed in SE'rtion 4.3). L~t synaptic w(light. updat.E' at. t.inlE' t hE' 

defined as follows: 

(ft! ) 

and let ~w,(t) he a function of local ohservable quantities, as weil as of a set of 1)(1,·am('flT.'I 

o shared hy aU (or a lot of) synapses: 

~w,(t) = ~w(local tJariables,O) (H.:.!) 

For example, the synaptic change funrt.ion USE'd in expE'rim~nt.s dE'srrihE'd in t.his sE'rt.ion has 

as local arguments a measurE' of presynapt.ir act.ivit.y (Yprr), post.synapt.ir potE'nt.ial (.r.po~d. 

synaptic strength (lV I ) and of activit.y of a facilit.at.ory n~ur()n (or of ronCf'nt.rat.ion of a 

diffusely acting neuromodulator) (Ymodud that modlllatf's synaptir plast.iriti': 

To perform gradient descent on 0 one computE's thE' following dNivativ(ls: 

ô+C = E a+c l1+w l (t) 
DB; Dw,(t) DO) , 

(H.:') 

(8.4 ) 

where the ordered derivative a+ao,(t) (as dE'fined in Sertion 4.:l) can 1)(> complltf'd rE'curf'livf'ly 
J 

(with a+;:,,(o) = 0): 
) 

(8.:' ) 

Hence ~w,(·) must he a differentiable fllnction, hoth of parameters (J and of it.s inputs (E'.g., 

X post, Ypre and Ymodu/ yi. 

To avoid that 0 be estimated as a funct.ion of a partirlliar synapsE', nE'uron or nE'twork 

performing a particular task5, it is important t.hat the funrtion ~w((J) and the paramE'tE'r 

3 Facilitatory neuron& have bC<'n modelcd in [H awk89hJ. T i,cy ('mit dl< mi( al kil hkt.ul( ('h, (·itllf'r vpry 

locally or in large areilS, that inflll('n("c synapti<. pldhtinty. 

4The inputs of ÂIlJ,(.) may be inflllcnccd by hOIl1(' otlrN wcight "'J' (' g, throllglr Ypr<, Il('n«' it rn,tY 1)(' 

nect>ssary to compute o(}t.w,(t). 
Ypre 

5 David Chalmcrs [ChaI90] pcrforIIIed expcrimenth on Icarning of a Icarning rul<' with g(·/I(·ti( algorithrnH 

for a single neuron It>arning bool('an liJwarly bcparable mappingh. H(· OhhCrV(·d tlrat for a rul(· to g('/I('rali:w 

to new tasks, at lca&t 10 "training ta.hk&" w('rc ncccssary. 
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set (J that. defi nes it be the samE' for ail (or a large number of) synapses, and that (J be 

E'stimatE'd simultanE"ously with a population of networks learning to perform different tasks. 

8.2 Conditioning Experiments 

PrE'liminary E'xperimE'nts Wf>r(\ pNformed in order to assess the feasibility of using gradient 

dE'RcE'nt to IE'arn the paramE'ters of a learning rule. The first task considered was the 

simulation of sorne behavioral phenomena observed in a simplE' organism, Aplysia. The 

architE'ctllre of thE' network used fo" this experiment (see Figure 7.3) was inspired from a 

hypothE'si7.E'd circuit [Hawk89b, Hawk83] for the A1J1ysia gill- and syphon-withdrawal reflex 

and its modification by tait stimulation. 

Th€ nE'twork modE'1 E'mployed a very simple discrete-time neuron equation: 

y.(t) = sigmoid(x.(t» = Œ: 1 
) 

1 + e- 1 W'Jy,(t-1 ) 
(8.6) 

ThE' synapsE' modE'1 was also restricted to a simple transformation (see Figure 7.2). The 

weight change was a Iinear function of the three external inputs of equation 3, as well as of 

thE' following thr.-e prodllcts: 

• Yprf! X Ymodu/: t.his type of term is hypothesized in the synapse model of [Hawk89b, 

Hawk83] or [Done89]. 

• Ypr(' X Xp03t: this is sim ply a Hebbian mechanism. 

• Yprc X w: this term corresponds to a context-free decremental process, that was useful 

t.o modE'1 habituat.ion [Gluc87]. 

Hiologiral knowlE'dge or theoriE's are thus used to bootstrap the function ~w(8) so that it 

initially has accE'SS to a set of a priori subfunctions equivalent to known or hypothesized 

synapt.ic modification mechanis111s (see Figure 7.4a). This approach can be seen as a contin­

uation of our prE'viouR work that demonstrated the advantages of using prior knowledge in 

thE' dE'sign of ANNs arrhitecturE's, inputs and outputs. Here we wish to use prior knowledge 
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Figurt' 8.1: Structureofthe simplE' lE'arning rule uSf'd in f'xpNillwnts, wit.h 7 frE'E' parallwt.Ns. 

for the design of ANN learning rules. Such knowlE'dgE' COIlWS mainly from Ilt'urohiological 

data, but mathematical and information sciencE's can also guide liS in such as dE'sigll. 

With the architecture in FigurE' 7.3 and the form for thE' If'arninp.; rttl(' of FigurE' 7.2, Wf' 

succeeded in estimating parametE'rs of the learning mit' that. allowf'd th(' nE't.work to display 

the following five behaviors: 

• Habituation: Initially, CSt and CS2 E'lidt a wt'ak rE'sponse. PrE'st'nt.ing repetit.ivt'Iy 

CSt or CS2 alone reduces that response even more. 

• Conditioning: CS! is followed by US. Tht' rt'sponse to CSl gradually incrE'ases until 

it saturates at a level slightly lower than US rf'sponsE'. 

• Blocking: After CS 1 has hf'ell conditiont'd, CS 1 and CS2 ar(> pairf'd and follow(>d hy 

US. CS2 does not b~come conditioned.6 

6HowE'ver, in the experirn!'nts, there w;u, a "light inrr(';u,(' in th!' r('hpOllh(' to CS2, ('VI'fI t1lOugh t)lI' tMgI·t 

value was a constant response. A "irnilar bchavior was ohtainl,<1 with Hawkillh':; 1II0111·) [H .t.wkf!!Jb]. 
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Figure R.2: Architecture of the network used in conditioning experiments. Two input 

synapses from CS 1 or CS2 to the facilitatory neuron are inhihitory and excitatory, with 

cJelay 0 and d('lay l, respectivE'ly 

• S('concJ-order conditioning: After eSt has been conditioned, it can he used to condi­

tion CS2 by presenting CS2 followed by est. 

• Extinction: AftN CSl or CS2 have heen conditioned, a repetitive presentation of eSt 

or CS2 alonE' reduces their response to their originallevels. 

Th(' I('arning rule of input synapsE'S of the motor neuron was allowed to be different from the 

lE'arning miE' of input synapses of the facilitator neuron. In general one may allow multiple 

~w(8) functions for divNse types of synapsE'S or neurons that are observed. Various types 

of synapsf'S, n(,IIrotranslllitter, !}fE'-, epi- and postsynaptic mechanisms were, for example, 

modf'I('d in [Card87l. 

ThE' \f'arning rule paramE'tNs w('re E'stimated in 1000 training epochs. A simulator that 

allows product, summation as weil as sigmoid nodes was used to perform experiments, 

allowing to embE'd synaptir modification networks into the larger "task" network and forcing 

paramf't.('rs of thE' synapt.ir rule t.o be the same in various places with weight sharing. 
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Table 8.1: Summary of rE'slIlts for the boolE'an fllnctions E'xpE'rinlE'nts. L AtandA for Lint'ar 

tranAformations, NL for Non-LinE'ar transformations. 

#training type #epochs gE'nE'rali7.ation 

tasks of training (for finding (nE'w tasks) 

task tlw rulE') 1, NI, 

1 L 3 yes no 

1 NL 1.') yE'S no 

4 L 5 yes no 

5 4L,lNL 100 yes yE'S 

8.3 Boolean Function Experiments 

The goal of these experiments was to explorE' in a VNy simplE' st'Uing thE' possihilit.y of 

searching for a learning rule that could hE' USE'd to train a 1H't.work wlt.h hidd('n nnit.s. 

ThesE' E'xperiments are not mE'ant to be biologically plansilM. InstE'ad t.lwy allow('(1 ilS t.o 

evaluate the applicability of our method to a complltationally mot.ivatNI probl(,lll. Th(' 

same form for the lE'arnlllg rule was used as in prE'violls conditioning E'xpNinwnts (Figu r(' 

7.2). Fully connected nE'tworks with two inputs, a single output and 1 or 2 hiddf>1l unit.s WNf> 

trained to perform linear and non-linE'ar mappings. ThE' solut.ion chos(>n Iwr(> for providillg 

information to hidden units about their contribution to ('frors IS basf>d on USE' of harkward 

paths, with neurons that may modulatE' synaptic rhangE' on rorrE'sponding forward pat.hs 

(Figure 7.4b). In simulations, a symmetric sigmoid was useel for barkwarel paths nE'IJrons. 

However, using asymmetric nE'urons with an appropriatE' adaptablE' t.hrE'shold ran hE' shown 

to be equivalent (see [Carl87] for activity-dE'pE'ndE'nt. threshold). H('sults arE' summari7.E'd 

in Table 7.4. These experimE'llts WE'rE' p('ffortllE'd in collaborat.ion wlt.h Sailly B('ngio alHI 

Jocelyn Cloutier. 

In a more elifficult addition al non-linE'ar mapping expE'rimE'nt with a 2-lInit hiddE'n layN and 

no connection from input to output, the reslliting rule was slIc(,E'ssful with 7(,% of initial 

network weight values. Rule parameters WE're updatE'eI after each Iwtwork training E'porh, 

which consisted of 800 input patterns. At the beginning of earh epoch, thE' nE'twork wpights 
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FigurE' 8.3: (a) Learning rule instantiated in every variable synapse of the network, designed 

us;n,; prior knowlE'dge. (h) Boolean functions experiments: forward connections are mapped 

into a nE'twork that also contains a corresponding backward path. Neurons on this path 

Illod ulatE' syna pSE'S of forward connections. 

wE'fe initialized randomly. 

ft is intE'fE'sting to note a few things about these experiments. Convergence of rule pa­

ramE'tE'rs was very sensitive to 'oheir initial values. The best set of initial values we found 

was E'quivalent to the dE'lta rule for output units (i.e., 1 for the presynaptic X modulator 

factor and 0 for others). However, it was necessary to further optimize ail rule parameters. 

AnothE'r intE'fE'sting observation is that, as expected with results of [ChaI90], generalization 

to nE'W tasks is improved if more tasks are used for training the learning rule. Finally, as 

for t.hE' conditioning experiments, we were not able to make the rule converge unless the 

pa ra mE't.E'r set 9 assoriat.ed to forward paths neurons was allowed to be different from the 

one assoCÎatE'd to neuromodulating fleurons. This indicates that multiple learning rules for 

varions typE'S of IH'urons in a network may allow more powerfullearning, as is suggested by 

IlUIllE'rOUS llE'uron typE'S and synaptic mechanisms in the brain. 
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8.4 Is It Possible to Learn a Learning Rule? 

In thiB section, an original approach to neural modelinp; was prE'sent.E'd, basE'd on t.he idpa of 

searching ,/ith learning mcthods for a paramE'tric synapt.ic IE'arning rulE' that. is hiologirally 

plauBible, aB weil as yielding nE'tworkR that ran lE'arn to pE'rform romput.at.ionally motivaf,NI 

tasks requiring hidden units7 • ThE' nE'tworks arrhitE'rturE', as WE'II as If'arniny, funrtion havp 

been designed with constraintB dNivE'd from biologiral considNations, th us using prior 

information to help solve the problE'm. The expE'rimE'nts presE'nted hf'fE' deal only wit.h VN)' 

simplE' casE'S, but result.s indir:at.e that it. is possiblE' to lE'arn a lE'arning rule, and t.his shoulcl 

enrourage researchers to apply thE'se ideas to morE' diffirult t.asks a nel morE' romplex forms 

for t.he lE'arning fuIe. 

7 An initial version of tllis proposaI can be fOUlul in [Ren90g). 
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Chapter 9 

Conclusion 

This t.hesis addressed the question of the integration of a priori knowledge with learning from 

t>xam plE's, for systems based on artificial neural networks and applit>d to tht> recognition of 

s(>quenrE's. In partirular, several problems in automatic spE'E'ch recognition were considered, 

snch as tht> speaker-independt>nt recognition of phone mes in continuons speech. The nature 

ofthE'se tasks bro\)ght us to the analysis and the design ofalgorithms for recurrent networks 

and thE' intt>gration of art.ifirial neural networks with other systems, su ch as hidden Markov 

modE'ls, which are wt'II suited for modeling s~quences. 

Wt> found artificial nenral networks to be flexible on at least two levels: the integration of 

algorithms for learning from t>xamples with prior information about a task, and the inte­

grat.ion of tlwse networks with other systems l . For the first point, we studied the following 

aspprts of Ilt>twork design in particular. The prt>processing and input coding were found to 

\w import.ant and rt>sults indicated that artificial neural networks could takeadvantageofa 

Im'gr lnlmi s/Klee, evt'n wh~n tht> input features wt're highly correlated or redundant. Differ­

E'ntly from most. othNs in the fit>ld of speech r~rognition with multi-layer nE'tworks, we used 

out.put roding sclH'llles t.hat were more compact than thE' usual "one-output-per-phoneme" 

srhpm~. Our approarh is bas<>d on the use of phonetic or articulatory features of speech 

signais. Tht>se r~pr('s('ntations inspirE'd from phonetics yielded better performance, except 

llh,ing A NN" in (onjunction with othcr algorithrns that have becn shown to he sllccessful for the task is 

.llhl) a way tu \lM' pnOf knowlcdgc ahollt Hu" t;u,k 
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in the rasE' of vowels in continuolls speE'ch2• ConcE'rning thE' archif,E'cf,urf> of nE'f,works, mod­

ular sy.qtems basE'd on prior knowlE'dgE' of problE'm dE'romposit.ion W('fE' found most E'ffprt.ivp. 

This is in fact a partirular rasE' of uSE'fulloral connE'ctivity, whirh may improvE' hot.h t?;PII­

eralization and convergence, hy adding USE'ful bias and hy rE'durillg 1)(/,'umrfr,' coup/mg. In 

gE'nE'ral we preferred specialized networks (for partirular typE'S of phollE'f,;(' discriminat.ions), 

which may have spcriali:cd inlHlts. ThE'oretiral and E'xpE'rinlE'ntal ('vidf'IH E' W('ff> Ilr(,sE'nt,E'd 

that argue in favor of pE'rforming a global ol)fimi:ation of modular syf.tE'llls. Wf' IHE'f('rrE'd to 

perform su ch a step after thE' indivi dual mod ulE's (n('llral or not) havE' bE'E'1I hootst rappNI, 

taking advantage of prior knowlE'dge ahout problE'1ll dE'romposi~.ion. 

To train artific:ial neural networks, in part.iclllar rE'currE'nt onE'S, WE' st,lIdiE'd I('arllint?; alt?;o­

rithms. It was found that stochastic updat.E' ronvNgE'S Illuch fast.E'r t,hall hatrh I('arllillt?;. 

An original algorithm for t.raÎ11ing a particularly intE'rE'stint?; kind of rollst.rainf>d rE'currpnt. 

networks was proposE'd and E'valuat.ed. How('vf>r, WE' found t.hat. (,VE'II with thE' morE' gE'IINal 

training algorithms, such as back-propagation in timE', rE'CIHfE'nt Iwt.works al. lE'ast. wit.h 

the cornmon types of architE'ctures WE' stlldied -- arE' in('ffirif>nt at capt.uring many aspprt.s 

of thE' temporal structllreoftraining dat.a. This wassllpport.E'd hy(,XpNiIlWllt.S in which t.hE' 

addition of a dynamir programming post.procf>ssor with a fE'w d07.E'115 fr('E' paranwt.E'r5 t.o a 

reCIHrE'nt nE'twork with more than 20000 WE'ights almost halvE'd thE' tot.al E'ffor. 1If'lIcE' 011(' 

should eithE'r searrh for more appropriatE' architE'ct.llrE's or, as WE' did in this dlssNtat.ion, 

consider hybrids of artificial neural networks with othE'f algorit.hms that havf> hE'E'1l shown 

to model Sf'quences WE'II. 

Given the objective of performing a global optimization of mod ular systE'I1lS, WE' dE'rivpcl 

an algorithm for jointly estimating the paramf>tE'rs of a hybrid of artificial IH'ural nE't.works 

and hidden Markov models. This system was evaillatf'd and fOmparf'd favorahly with E'i­

ther neural nf'tworks alone, hiddE'n Markov rnodf'ls alonE', or ot.h('f (simplf>f) post.proc(,sAors 

for artificial neural nptworks. WE' also found that thE' glohal optimi7.at.ion st,f>p improv(>d 

pE'rformance (reduction of thE' phoneme flfror from 20% to 11% III thE' f>xpPrinwnt.s), f'v(>n 

though the computation of the gradiE'nt in this algorit.hm makf's sornE' assllmptions which 

2That may be bccauh(' c1assical !I('b('U"',lOlIlo of tlt(' arllc IIlator~ f('alIlH'h of VOWdh M(' .,,,,,('(1 011 tlll' 

pronlln<'Ïa.tion of short Isolalcd wordh, for which vowcls au' "w('lI-prOlwllllc.t·d" 1/1 our ('xpC'rirncnth, targl't 

vailles dcrivcd from tltt.'se dala dlCl nol appcar lo he adeCJualc' 
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may bE' wrong abuut the distribution of the inputs for fixed values of the ANN outputs. 

Wf' havf' found thE' form of a correct gradient for the parameters of the ANN in such a 

hybrid. ft df'pends on the prodllct of the singular values of the Jacobian of the transfor­

mat.ion pf'rformed by t.he ANN, as wf'1I as on the distribution of the inputs when given the 

activations of the output units. Unfortunately, expressing such a distribution consistently 

with the input data rf'mains an opE'n problem. 

Finally, sorne altE'rnatives to the algorithms used in this thesis for training neural networks 

Wf'fE' C'Onsidf'rf'd. First we considered Radial Basis Functions networks, which are based 

on local rf'prf'sE'ntations and were found to require less training time, mostly because of 

a usef1l1 bootstrapping of thf' network parameters and because of a partial decoupling of 

thosE' paramf'ters. 

Sf'cond, we considered a drast.ic question concerning learning algorithms for neural networks: 

is it possible to sCa7-ch for such algorithms, using both prior knowledge (about learning) 

and lE'arning from examples (here, examples are tasks to he learned with a certain net­

work archit.f'cture). This is a second-order learning problem: learning about learning rules. 

Alt,hough it may Sf'em infeasible, preliminary experimf'nts indicated that it can be done. 

Thf'y also showed thp. importance of using prior knowledge in the design of the form of a 

lf'arning rulf' and its initialization. Here, that knowledge is either biological, mathematical 

or f'm pirical. 

'1'0 condudf', ail thesE' apparently varied contributions are related to the ff'ntral theme of 

this thE'sis: the integration of prior information with automated optimization, in particular, 

for artificial neural networks and their application to sequence recognition problems. 
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