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PREFACE

In his paper "An Elementary Theory of the Category of Sets" [6] ,
F. W. Lawvere has shown that by starting from the primitive notions of
category theory, the notions of set theory can be recaptured. He
obtained a characterization of the category of sets as a complete cate-
gory satisfying a finite set of elementary axioms.

In this thesis we consider an analogous problem for the category
of topological spaces and continuous mappings.

The first chapter is devoted to the construction of an element-
ary theory of this category. We introduce the notions of discrete
space, subspace, open subspace,and we state elementary axioms involving
these notions. An important role in defining "open subspace" is played
by an axiom which implies the existence of an object with three endo-
morphisms.

In Chapter II we prove a metatheorem which gives a character-
ization of the category of topological spaces. This metatheorem says
that any complete category, satisfying our elementary system is equi-
valent to the topological category. The proof shows that the traditional
construction of this category, its translation in Lawvere's system and
our axiomatization lead essentially to the same thing. An alternative
and direct proof is indicated. The role played by the final elementary
axiom of our system in obtaining an equivalence of categories appears
clear from this proof. This axiom is more complex in character than the
others. When it is deleted, a full embedding into the category of

topological spaces is obtained,
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PRELTMINARTES

The notion of abstract category in the sense of Eilenberg-
MacLane [1) is assumed to be known. We note that the definition of
this notion can be formalized [7] , using a language with one sort of
variable symbols (the mappings), two unary function symbols (domain
and co-domain) and one ternary relation symbol (composition). Moreover,
all the axioms which form this definition are elementary, i.e. all
quantifiers range over individual variables.

We shall use the notation of Lawvere. An object is defined
as being a mapping which is also a domain or co-domain. In order to
distinguish objects from general mappings, we shall denote them by
capital letters. The symbol»A——E——éB stands for: "f is a mapping whose
domain is A and whose co-domain is B". Whenever we have a pair of mapp-
ings £, g such that A-—E—aB-gLéc , the mapping resulting from the com-
position of f with g will be denoted by fg.

Diagrams such as

k
C C——D
s T
A~—————33B A3
£ £

are said to be commutative if h = fg, respectively fg = hk.
Familiarity is assumed with the basic notions of category
theory as encountered in the standard texts [2] , (s8], [9] . Another
prerequisite is [6].
We shall use the following notations, where the equality

symbol is actually an abuse of language. The expressions containing
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it are to be interpreted as follows:

*
k = Eq(f,g) means: k is an equalizer of f with g

[}

q = Coeq (f,g) means: q is a coequalizer of f with g

;%—J Aj means: there exists a family of mappings

i.
{Aj'—J>A_}J'éJ such that A, iijs jel is a sum,

A =-H—Aj means: there exists a family of mappings
jeyg
{A—-ﬂj_—_; Aj} el such that 4, &pj} jeJs forms a product.
(In the case of two objects Ay, Ay we write A = Ay + A, respectively
A= Al X Az).
£
For every pair of mappings Aj——X, Az—g—-)x the unique

mapping for which the diagram below commutes will be denoted by <f,g'>.

AEvery equalizer of a pair of mappings will be called a regular
monomorphism and every coequalizer will be called a regular epimorphism
[5].

An object P is projective if for every epimorphism A-—-f—)B
and mapping P—g-)B there exists a mapping h such that the diagram below

1s commutative,

——y
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An object G is a generator if for every pair of mappings
£

h
A__,’ B such that f#g there exists a mapping G——>A such that

g
hf#hg.

c-J
We shall denote byLS the category of sets and by J the category

of topological spaces and continuous maps.
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CHAPTER I

AN ELEMENTARY THEORY OF THE CATEGORY OF TOPOLOGICAL SPACES
sl e S ULULLLAL SPACRS

In what follows we list a number of elementary axioms, all of
which hold for E7-'and we prove from them a number of theorems.

The first group of axioms will be formed by those which define
an abstract category.

The next group of axioms is a part of Lawvere's elementary

system for the category of sets [6] ,

Axiom 1. There exists an initial and a terminal object, every pair of
objects has a product and a sum, every pair of mappings has an equalizer
and a coequalizer.

The above axiom implies the existence of pullbacks and pushouts,

Also, for every mapping A-—E-—QB we can carry out the following construction

P iy *
K.___EL__, A x A.——-—JL-Q A .;.li..., B———>34+3 “"‘E'i’K*
q
Q- - 91
h

where k = Eq(pif’ pzf); k* = Coeq (fil, fiz)
q = Coeq (kp;, kp,); q* = Eq (LK%, 1,k¥)
and h is the unique mapping for which the above diagram is commutative,
The mappings q, q* are called respectively, the regular coimage

of f and the regular image of £, We write q = Coim f and q* = Im f,

We shall use the following property of q¥*:

Proposition 1. The regular image of a mapping f 1s the smallest regular

monomorphism through which f factors, i.e. if £ factors through a regular
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monomorphism y, then there exists a mapping z such that q* = zy,.
- £
Proof: Suppose that f isg a mapping(A-———éB)such that £ = xy and

y = Eﬁ (u, v). Llet t be the unique mapping in the diagram below such

that u = 1. t, v = izt.

1™ ‘ 1.K
u 4 \\ -
v ] ~
It \\
£ il ' N
A—mm—m—— B"__i_,""’B-#B -—-*——>K

Since filt = fu = xyu = xyv = fizt, there exists a mapping t* such thgt

k¥t = t, Therefore, q*u = q*i t = qi_k¥t* = q*i k¥*t* = g t = gy,

1 1 2
But y = Eq (u, v), hence there exists a mapping z such that

2

Zy = g% q.e.d.

Corollary. f is a regular monomorphism if and only if f = Im f.

To simplify our notatioms, following Lawvere, we shall make

the following assumption.

Assumption. There exists a unique initial and a unique terminal object.

The initial object will be denoted by O and the terminal object by 1.

Definition 1., x is an element of A, written x € A, if and only if
x

lﬂAu

Axiom 2. The object 1 is a projective generator,

We note that an immediate consequence of this axiom is that if

A has exactly one element, A = 1,

e,
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The fact that 1 is projective means that the epimorphisms
are onto mappings. In the system of axioms given by Lawvere for the
category of sets this assumption was redundant since it followed from
the axiom of choice. Lawvere's axiom of choice does not hold for J
but in J epimorphisms are onto mappings, so we included this in our
axiom.

The following proposition is an immediate consequence of

Axiom 2,

Proposition 2, Let f be a mapping with domain A and co-domain B.
Then:
i} £ is an epimorphism if and only if for every x€B there exists
a y €A such that yf = x.
ii) £ is a monomorphism if and only if for every pair of elements

X, ¥y of A such that x£y, we have xf £yf.

Definition 2. A mapping f is a bijection if and only if it is both

an epimorphism and a monomorphism,

£
Definition 3. A mapping A—3B is called a constant mapping if there

£ u
exists a u€B such that A—>B = A—>{ ~>B.

Axiom 3, Every non-zero object has elements.

We remark that for every oject A#O0 the mapping A—L.H is an
epimorphism since by the above axiom there exists an X € A such that
xt = 1. This implies that if A30; x, y€B and X#y, the constant

X
mappings A—>p{ — B, A—>1{ —y-)B are different.
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Axiom 4, Every element of a sum A+B can be factored through one of

the two injections iA’ ig, i.e. if x€ A+B there exists a t such that
X = tiA or x = tiB.

Axiom 5. There exists an object with more than one element.

Definition 4. 2=1+1,

The following propositions are immediate consequences of the

axioms [6].

Proposition 3, 0 has no element,

io

Proposition 4. The two injectionms i, and i, 1=—3 2 are different
L

and they are the only elements of 2.

Proposition 5. If X€ A + B, then x cannot be factored through both

injections iA and iB’ i.e. at most one of the equations x = tiA and

X = tiB has a solution t.

Proposition 6, The injections i, and iB are monomorphisms.

Proof: If A =0, this is clear. 1If A70, by Axiom 3 there exists

x€A. Let f be the unique mapping for which the diagram below commutes.

Then 1Af = A and hence ip is a monomorphism. Similarly iz is a mono-

morphism q.e.d.

The next group of axioms involve the notion of discrete space
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which we define as follows:

Definition 5. An object A is called a discrete space if for every
£
x € A there exists a mapping A——-i,&z such that for every yé€A, YEX,
we have xf, # yfx.
Clearly the objects 0, 1 are discrete spaces, Also 2 is dis-

crete since 2 has only two elements and the identy on 2 satisfies the

property of f in the above definition for each one of them,

Axiom 6. For every object A, there exists a discrete space JA| together
t

with a mapping IAI—A-AA such that for every discrete space B and

mapping B-—f—-}A, there exists a unique mapping h for which the diagram

below is commutative,

ta
Al —2— s
L
h \\ f
B

Since |A |, ty, 1s a solution of a universal mapping problem,
the object |Al is defined up to isomorphism and the operation P 1 ois
functorial. (The mapping lAliaA is a reflection [9] of A into the
discrete spaces, and the functor | | is an adjoint of the inclusion
functor.)

If A is a discrete space, the mapping A satisfies the property

of t, in the above axiom and hence we write lAl=4A= ta-

t
Proposition 7.  The mapping IAI-A—) A is a bijection,

Proof: By Proposition 2, in order to show that t) is a monomorphism,




Q)

it is sufficient to prove that for every pair x, y of elements of A
such that Xty = ytp, we have x = y, This follows from Axiom 6 since

1 is discrete and hence the mapping Xty (= ytA) must factor uniquely

through tp. ta is also an epimorphism. This follows from Proposition

2, the fact that 1 is discrete and Axiom 6.

Corollary. The functor | | is faithful, i.e. for every pair of mapp-
ings A—f>B, A%B such that {£1=|g|, we have f = g.
Proof: If Ifl= Igl then tAf =i1fltg =gl tp = tpg and since t, is
an epimorphism, f = g,

In the following theorem we study some properties of the

discrete spaces.,

Theorem 1. a) If A-ﬂ—-)B is a monomorphism and B is discrete, then
A is discrete.

b) If A and B are discrete, then A + B is diécrete.

c) If B——h-)Q is a regular epimorphism and B is discrete, then Q is
discrete.

Proof: a) Suppose x€A and consider u = xm. Then u€B and since B
is discrete, there exists a mapping B—fu—)z such that for every
VvE€B, v£u we have vfujufu. Let £ =mf . If y€A and Y#%, since

u

m is a monomorphism, we have ymExm (= u) and hence yiyx = ymf # xmf =

xfy. q.e.d.
b) Since A and B are discrete, we have A = |A] = tps B=1IBI= tg-

Consider the pair | A + B| , tA+B defined by Axiom 6.
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A+ B

t
i A A+B iB

A‘~—>|A+Bl&———3
“‘A' “‘B'

u

Since A + B is a sum, there exists a unique mapping A + B —3{A + B|
such that iju = IiAI, igu = |ip| and hence iguty p = 1 iBUtA+B = ip.
Therefore, ut,.p = A + B which implies that u is a monomorphismT
By a), since |A + B | is discrete, we have that A + B is discrete,

£
c) Suppose h = Coeq (f, g) where A_____;B. Since B is discrete, by

g

Axiom 6 there exists a unique mapping q for which the diagram below is

commutative,
tq
Q| ————¢q
r~ ////,/z
\\
q g h

Then fth = fh = gh = gth and since tQ is a monomorphism it follows
that fq = gq. This implies the existence of a unique mapping Q-—:LélQl
such that hu = q. Therefore, hth = th = h and since h is an epi-
morphism th = Q. It follows that u is a monomorphism and since Q

is discrete, by a), Q is discrete. q.e.d.

The category of discrete topological spaces, being isomorphic
to the category of sets, satisfies Lawvere's axioms [6]. It is there-
fore natural to inquire which among them are already satisfied by the
"discrete spaces" (Definition 5) and to formulate the remaining ones

for such objects. A quick look at the axioms for the category of sets
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tells us that we need to add the axioms of exponentiation, infinity

and choice.

Axiom 7. For every discrete spaces A and B, there exists a discrete
space ]?»A and a mapping A x BA -e—>B (called the evaluation mapping)
such that for every discrete space X and mapping A x X—f——)B, there
exists a unique mapping X-L) B% for which the diagram below is
commutative.

AxX

Axh

X
]
1
|
|

v

xBA & 3B

A
The elements of BA are in one-to-one correspondence with the
mappings from A to B. This consequence of the above axiom is obtained
by taking X = 1 and remarking that A x 1 -p—A—)A is an isomorphism,
Using Lawvere's notation, we shall denote by [f] éBA the unique mapping

for which the diagram below commutes.,

Pa
AX] —0 3 A
|
Ax'[fJ: lf
v oA
AxB ——338
e

The operation BA can be extended to a functor which is contra-
f
variant in the exponent. For every pair of mappings A'—— A and

g gf A A
B——B', the action of the induced mapping BA—% 33'% on {ule B

is [u] (gf) = [fug].
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Axiom 8, There exists a discrete space N together with mappings

o
1—>N and N-——§—€>N such that for every discrete space X, x,€ X
and mapping X-—5€>X, there exists a unique mapping N-—§€>X for which

the diagram below commutes.

N—2 3§
0 H !
/: !
1 X | b ox
\l '
v u v
%o e X
Axiom 9, If A and B are discrete spaces and A has at least one

f
element, then for every mapping A——9 B, there exists a mapping g

such that fgf = f.

Theorem Schema. 1If @ is a theorem of the elementary theory of the

category ol sets and § 1is obtained from @ by replacing "object" with
"discrete space", then § 1is a theorem in our system.
Proof: It suffices to prove the theorem for the case when @ is an
axiom. 1In the case of Axiom 1 this follows from Theorem 1 and the fact
that the functor | l, being an adjoint, preserves products and equal-
izers. 1In the case of Axiom 7 [6] , this follows from Theorem 1 and
Axiom 4. The fact is clear in all the remaining cases. q.e.d,

For the development of our theory we shall need the following

propositions obtained from the above schema.

f
Proposition 8. For every pair of discrete spaces A, B a mapping A——3B

is an isomorphism if and only if it is a bijecticn.

Proposition 9. If f is a mapping with discrete domain and co-domain,

e e e e e e ——— S L T, 7L P YA o s e e e

e emataaci
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and f = qhq* is the gtandard factorization of f, then h is an isomorphism,
The above proposition follows from the Theorem schema @ is

taken to be the factorization theorem in Lawvere's system) and the

observation that q is actually the regular discrete coimage of f and q* :

is the regular discrete image of f.

m
Proposition 10. Every monomorphism A ——3 D into a discrete space D

ml
has a complement, i.e. there exists a monomorphism A'—) D such that
D, m, m' form a sum, Moreover m has a characteristic function D-TELQ 2,
i, *
i.e. m = Eq ('fm, D—>1——2).

Proposition 11. A mapping f is a monomorphism (epimorphism) if and

only if f 4is a monomorphism (epimorphism).

Proof: Since bl ois faithful, it reflects monomorphisms and epimor-

phisms [9] » 1.e. if f is mono (epi) then so is f. Since | | is an

adjoint functor, it must preserve monomorphisms. This follows from ’
the fact that an adjoint functor preserves pull-back diagrams [9] and

f is a monomorphism if and only if the diagram below is a pull-back,
A
/ \
A B
\‘ /
A
It remains to show that | | preserves epimorphisms. Suppose f is

an epimorphism, By Proposition 2, in order to show that | £] is epi

it will suffice to prove that | £| is sur jective. Both tA and f are

&

* We assume that aifixed labelling of the injections into 2 has been

o
chosen, i,e, 1 — 2,
4
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surjective and hence for every y €IB|, there exists x€1A] such that

gy
ke -

xtyf = ytg € B. Therefore x | £] t5 = xt,f = ytp and since ty is a

monomorphism x| £ | = y. q.e.d.

d
Corollary. For every discrete space D and bijection D —3 A we have
~
- tAn
Proof: Since D is discrete, D= |D}| = tD and hence D -—S—-9|A|. The
above proposition together with the fact that d is a bijection implies

that {d| is a bijection. But D and |A| are discrete and hence by

Proposition 8, |d| is an isomorphism. q.e.d.

Theorem 2. The functor | | preserves regular coimages.
Proof: Consider the construction of the regular coimage q of a mapping

A -—Ei-é B.

K—-i_>AxA—p___l:;A —i—ns
Py q\\s /;1
Q” M
(A x A, py, Py form a product, k = Eq (p, £, Pof), q = Coeq (kpy, kp,)
and A denotes the unique mapping for which qA= f),
Let us apply to the above construction the functor | | .
Since | | preserves products and kernels, the regular (discrete) coimage
of | £| is a mapping ¢ = Coeq (1kpyt, lkpyl). Since |kp1q | = Ikpqu,
there exists a unique mapping t such that ct = |qil . We obtain the

following diagram.

Lkl 1P (1
IK———IA*A|_____JA| — 8|

A
X c\’m“"a((}\l
C %

[

(i
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We want to show that t is an isomorphism., For this, since C,
| Q| are discrete, by Proposition 8 it will suffice to show that t
is a bijection. Clearly q is an epimorphism, By Proposition 11, |q|
is an epimorphism and hence so is t. It remains to show that t is a
monomorphism. Suppose X, y&€C and xt = yt, We shall prove that x = y,
Since c is an epimorphism by Proposition 2, there exist u€lAl,
v €1A} such that uc = x, ve = y. Consider z =<¢u, v)€|A x Al.
Then z | p;f| = u FE£1] = uctidl = xtiA|= ytINl= vetIXl=v]f| =z |p2f|.
Since | k| = Eq Upyfl,s |p2f|), there exists a w € |K| such that wik| = z.
But ¢ = Coeq (lkpql, |kP2|) and hence we have x = wlkp|c = wlkpzlc =y,

q.e.d.

Corollary., 1If q is the regular coimage of f, then the mapping \ such
that £ = qk is a monomorphism,

Proof: By the above theorem, ¢ 1is a regular (discrete) coimage of

I £], This together with Proposition 9 implies that| Al is a monomor-
phism. g.e.d.

It may easily be seen that the dual of the above corollary also
holds in fr. This follows from the fact that the forgetful functor
from Er into Qf preserves regular images and reflects epimorphisms. In
order to carry out this informal argument in our system we should first
show that | | preserves regular images, It is the author's feeling
that this cannot be proved from the axioms given so far. We therefore
add the following axiom, which is a weaker form of the statement dual

to the above corollary.
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Axiom 10. Every monomorphism can be factored into an epimorphism

followed by a regular monomorphism.

Proposition 12, If q is the regular coimage of f, q* is the regular

image of f and h is the unique mapping such that f = qhq*, then h is

a bijection,

Proof: By the above corollary the mapping A= hq* is a monomorphism
and hence h is a monomorphism. Since q is a epimorphism, clearly q*
is a regular image of X . By the above axiom A = er.uhere e is an
epimorphism and r is a regular monomorphism. According to Proposition

1 there exists a z such that g* = zr.

1 k*
A——A—?B:B+B——)K"‘
N

4 2
17 g%
Iz r
|
€ v
C

On the other hand erilk* =A 11k* = A izk*

it

erizk* and since e is
an epimorphism, we have riik*= rizk*. But q* = Eq (i1k*, izk*).
Therefore there exists a wmapping w such that wq* = r, From this and

q* = zr it follows that wzr = r and zwq* = g%, Since r and q* are

" monomorphisms we have wz = C and zw = I. Consequently h is an epimor-

phism and this completes the proof.

Corollary. If q* is the regular image of f and A is the unique

mapping for which £ = A q*, then A is an epimorphism,

Theorem 3. The functor | | preserves sums,
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Proof: Suppose A + B, iA, ig form a sum of A, B and let |A |+ {BI,
i|A|’ i|B| be a sum of |A}, |B|. By Theorem 1 b) |A ]+ |B] is

discrete. Let t be the unique mapping such that i|A|t = | iAI and

t

1A A > A

: AN

1Al

Voo t ~N

|Al+|Bl-"- >A+R Atl —A+B
‘.IBI { H

|81 = ? B

{B

We shall prove that t is an isomorphism and hence {A + B, | iA |, H.Bl
form a sum. Since both |A| + |B| and A + B | are discrete, by
Proposition 8 it will suffice to show that t is a bijection. 1In order
to prove that t is surjective consider x€|A + B| . Then Xty » €A+ B
and hence by Axiom &4, Xt).p factors through one of the injections %,, iB‘
Suppose Xty p = uiy, u€A, Then x = IxtA+Bl = {u | IiAl = lulimt and
Ju] ilAle IA |+ 1B} which proves that t is sur jective. t is also
injective for suppose x, y e Al + I1B| and xt = yt. By Axiom 4 both

x and y must factor through one of the inje;:tions into A [ + | B].

Because of symmetry we need only consider two of the four possible

cases, If x = ui and y = vi

N then ut,i, = ui = xtt =

IBI ATA T A 1Ptaen = X p
yttA+B = VilBlttA+B = vtBiB. Let w = utA A= vtBiB. Then we¢A + B

and w factors through both iA and iB which contradicts Proposition 5.
This leaves us with the case x = UilAl and y = VilAl . Then u |iA| =
ui|A|t = Xt = yt = VilAIt = v|iA|. But 1, is a monomorphism because
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it is an injection into a sum and hence liAl is a monomorphism, This

implies that u = v and hence x = y. q.e.d.

Theorem 4. The functor | | preserves regular images.

Proof: We only need to prove the theorem for mappings which are mono-
morphisms. The general case will follow from Tﬁeorem 2 and its
corollary. So suppose A-—-EL—Q B is a monomorphism. Consider the con-
struction of the regular image of m:

i

1 *
A——-—m———}B"""*,B+B-—k—-)K* k* = Coeq (mil, miz)
\ i
\ 2 .
o \M ,///Z; q* = Eq (le*, izk*)

1 m = eq¥*

By the corollary of Proposition 12 the mapping e is an epimorphism. Let
us apply to the above construction the functor | | . Since | ! pre-
serves kernels and by the preceding theorem |B + B| = | B} + |B!, in
order to show that |q¥| is the regular image of |m| it will suffice to
prove that k* = Coeq (Imill, Imizl).

Let [B |+ |B I—fL—rC be the coequalizer of [miq], lmizl. By

Theorem 1 ¢) C is discrete. Let t be unique mapping for which ct = | k¥*|,

il‘
m —_— ke /#
A——B8 3 88— K
RN

ty 5%

_——-—_>|11I ok |
* [ 3
1B 1B+ BlI——| K¥|

1z o
|q*| c s t

tK*
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We shall prove that t is an isomurphism by showing that t
is a bijection. Since ct = |k*| and| | preserves epimorphisms, t
is an epimorphism. t is also a monomorphism because t is injective.
To see this consider x, y € C such that xt = yt. Since ¢ is an epi-
morphism there exists X1, ¥q € IBI+IB | such that X1¢ = X, y¢ = y.
let z = xltB+B’ W= yltB+B; zZ, wé& B+ B, Then zk¥* = xltB+Bk* =
xq | k¥ s = XpCttp, = xttys and wk¥ = yltB+Bk* =y otty, = Yttpg.
Since xt = yt we have that zk* = wk*., By Axiom 4, z and w must factor
through one of the injections, i, i5. From the four possible situ-
ations we need only consider two since the other two can be treated

similarly. Suppose z = ui1 and w = viy where u, v & B. Let b be the

unique mapping for which the diagram below commutes.

N

B+B----> B

1,4/'
. B
B

milb =m= mizb and since k* = Coeq (mil, miy), there exists a unique

mapping A such that k*)\ = b,

B
x
B
\\)\
b \

\
A m B i1 ' \\*
—_— - )B+B—TK

2

This implies that u = uilb m zb = zk* \ = wk*\ = wb = vi,b = v, and
hence ui k* = zk* = wk* vijk* = ui k¥, Since q* = Eq (1,k*, ik¥), it

follows that there exists a u; € T such that u = u;q*. Since e is surjective,
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there exists a €A such that ae = Yy and hence am = aeq* = u, Therefore

x=x¢= |zl = Iuillc = lajjmlilijlc and y = yi© = |wlc = Iuizlc =

|a||m||izlc. But ¢ = Coeq (|mi,|, [mis|), so |migle nlmizlc . X =y,

Consider now the case z = uil, W= vil. We have zk* = yk*

and hence u = uilb = u'ilk*)\= zk* \ = wk*)\ = vilb = v, Therefore z = w

which implies x = y. q.e.d.

cl
in J a subspace of a topological space (X, %) is a topological

space (A, 7'A) where A is a subset of X and "ZA is the topology induced

by ¢ on A. The inclusion mapping i is continuous and clearly the map
i ) 8"

A, 'T'A) ~——— (X,"%) is a monomorphism.in . Hence, to every

subspace of (X,0) we can associate a monomorphism defined on it and

with codomain (X, U). Not every monomorphism into (X,'D) has as domain

a subspace (or a space isomorphic to a subspace) of (X, ¥). For example

consider the space (A, S) where S is the discrete topology on A. 1If
we denote by j the inclusion map A € X, then j is ' continuous, the
map (A,S)—j—; (X, %) is a monomorphism in Tbut (A, $) is not
necessarily a subspace of (X, T). This shows that the notion of mono-
morphism is not restrictive enough to define "subspace" in our system,

The notion which appears to be suitable for this purpose is that of

extremal monomorphism and was introduced by Isbell [3] .

Definition 6 (Isbell). A monomorphism f is called extreﬁal if for
every factorization f = em where e is an epimorphism and m a mono-
morphism, e must be an isomorphism.

It can easily be seen that in J the monomorphisms associated

with subspaces are extremal and every extremal monomorphism has its

domain isomorphic to a subspace. This justifies the following definition.
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Definition 7, A mapping is called a subspace of an object X, written
aC X, if a 1s an extremal monoﬁorphism whose co-domain is X.

Clearly X, O —— X and every x€ X are subspaces of X. Also
for every discrete space D and monomorphism A——T——) D, m is a subspace

of D.

Definition 8, A mapping a is a subspace of a mapping b, written aC b,
if a and b have the same co-domain X, a € X, b € X and there exists
a mapping h such that the diagram below commutes,

N
A

X

B>

Clearly the mapping h above is a subspace of B.

The use of & for a more general situatl:ion creates no
ambiguity, If a& b and a is an element we write a €b.

The following theorem will provide an alternative definition

~for subspaces.

Theorem 5. A monomorphism is regular if and only if it is extremal.*
Proof: Suppose a is a regular monomorphism, i.e. there exists f and g
such that a = Eq (f, g) and assume that a = em where e is an epimorphism
and m is a monomorphism. Then emf = af = ag = emg and since e is epi,

mf = mg, Since a = Eq (f, g) there exists a v such that m = va,

* It follows from the proof of the theorem that regular always implies
extremal. The proof of this implication was given by Isbell [3] .

e e i
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YA

Therefore m'= vem and since m is mono ve = B. Similarly ev = A and
hence e is an isomorphism which proves that e is extremal.

Suppose now that a is an extremal monomorphism. By Proposition
12, a = qhq* where q is the regular coimage of a, q* is the regular
image of a and h is a bijection. Let e = gh. Then a = eq* where e
is an epimorphism and q* is a monomorphism. Since a is extremal, e
must be an isomorphism which implies that a is regular. q.e.d.

We shall use the above theorem to prove some properties for

the subspaces.

Definition 9. If a€ X, b< X and the diagram below is a pull-back

diagram,

e,
NB/

then the mapping ua (= vb) is called the intersection of a with b and

P

is denoted by a ) b,

Theorem 6, The intersgction of two subspaces of an object X is a
subspace of X. 1In fact, if a = Eq (al, az) and b = Eq (bl’ by), then
aNb = Eq_( <ap,s by, {ay, bo> ).

Proof: Suppose a = Eq (al, az) and b = Eq (bl’ b,) and consider

k = Eq ( (al, b1> s <82, b2> ). We shall prove that k = a {) b.

— s caang
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For this we need two mappings u and v such that u, v, a, b form a

pull-back diagram and k = ua. Let f; =  aj, b;> and £, = Cay, by).

Since ka1 = kflpy = kfzpy = kaz there exists a mapping u such that
k = ua., Similarly kby = kb2 and hence k = vb for some v. If for
t
two mappings T —2 JAand T -—> B we have that sa = tb, then
saﬁpy = saa; = saap = s.afzpy and saflpz = sab1 = l:bb1 = t:bb2 = sab2 =

safzpz. Since Y x Z, Pys P, form a product it follows that saf, = safz.

1
But k = Eq (f, f3). Therefore there exists a unique mapping A such

that sa = A k.

e ixzog
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Hence sa = A ua and since a is a monomorphism s = A u. Also tb = sa =
Ak = >\ vb and since b is a monomorphism t = A v which proves that

k=af)b.

Definition 10. If bS Y and X—-f—-)Y then an inverse image of b

through £ is a mapping A—2 5 X with the property that there exists

a mapping c such that the diagram below is a pull-back diagram.

 —————Y
£

Liby.

Whenever a is an inverse image of b, we write a = f

Theorem 7. I1f b€ Y and X—f—)Y , then the inverse image of b
through £ is a subspace of X. 1In fact, if b = Eq (u, v) then f-l(b) =
Eq (fu, fv).

Proof: Let a = f'l(b). Since b is a monomorphism, a is a monomorphism
[9] . We shall prove that a = Eq (fu, fv). Clearly afu = cbu = cbv =
afv. Suppose A is a mapping such that A fu = A fv. Since b = Eq (u, v),

there exists a mapping jt for which Af = Mb. This implies the exist-

ence of a unique O with the properties A = 6a and /'1- 6c.

e e e e




It follows that a = Eq (fu, fv). q.e.d.

Proposition 13. Suppose a & X, b is a monomorphism with co-domain X

and |b|S|al. Then there exists a mapping u such that b = ua.

Proof: Since a © X there exists f, g such that a = Eq (£, g). |bl& |a]l
means that there exists a mapping d with the prope;ty |b| =dl al .
Therefore |bfl=Ibl £l =dlallfl =dlafl and |bg| = |b|!g| = dlallg]
= d |ag| .. But af = ag and hence |bf| = |bg| . By the faithfulness

of | | we must have bf = bg. Therefore there exists a u such that b = ua.

q.e.d.

Proposition 14. If bE X and a € X, then b & a if and only if, for

every x€X, x€b implies x€a.
Proof: We remark that this proposition is a theorem in Lawvere's
system and hence,"by the Theorem scheme, for discrete spaces it is also
provable from our axioms, Suppose that for every x€X, if x€&b, then
x€a. Then for every x €1X|, x €|b| implies x €la}] . By the above
remark we must have |bl|C€la] , which together with Proposition 13 implies
the existence of a u such that b = ua. Since a and b are subspaces of
X, we have b & a. The opposite implication is obvious.

We shall now investigate the relationship between the regular
subobjects* of an object X and the subobjects of | X| .

Consider the restriction of the functor | | to the subspaces

of an object X. Since | | preserves monomorphisms, | | carries the

* By a (regular) subobject of X we mean an equivalence class of
(regular) monomorphisms into X.

T e Satsig
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subspaces of X into monomorphisms with co-domain 1XlI. IfugXx,
vE&Xand u®v (i.e. u v and vE u) then |ulc(v|. Hence | |
carries a regular subobject of X into a subobject of { X | .

Consider the mapping Imf, j.e. the regular image of a mapping
f. Clearly Imf € X, In particular if D --—d—-)|X| is a monomorphism
and (X -——) X is the mapping defined by Axiom 6, then Im (dty) € X.
Consider the application Im (-ty) from the monomorphisms {X| to the
subspaces of X. If d and d' are monomorphisms with co-domain | X {
such that d ¥ d' then by Proposition 13 Im (dtx) 2 Im (d't ) Therefore
Im (-t ) carries a subobject of |X[ into a regular subobject of X.

Let us make the convention to write A = t, whenever A is a
mapping gatisfying the property of tx in Axiom 6,

The following proposition shows that the applications | | and

Im (~ty) are inverse to one another,

Proposition 15. For every object X, discrete space D and monomorphism

D—3—3 I X, we have | In (dt L1 =d IfaSX, thenIn (jajty) = a.
Proof: By the corollary of Proposition 12, dt, = A q* where g* = Im (dt »
and A is an epimorphism. Since both d and ty are monomorphisms, N\ is

also a monomorphism, Therefore )\ is a bijection.

Im (dty)

D“—)IXI

Since D is discrete and A ig a bijection, by the corollary of Proposition

)\ satisfies the property of t (Axiom 6) and hence we may write

e e e e ~p
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A= tr. It follows that | I | = D and hence Iml(dtx)l = d, Suppose
now that a is a subspace of X. By the above result Im .(laltx) | g
which immediately implies that Im (Ialtx) = g,

We shall next define "open subspaces" in our system, The
notion of open set is primitive in topology. 1In order to recapture
this notion in our system, we shall enrich our language by adding to
it a new undefined term namely an individual constant which we shall

denote by o,

Definition 11. E is the co-domain of the mapping o. Our next axiom

will make precise the meaning of o,

Axiom 11. The object E has exactly three endomorphisms and o is an

element of E,

ﬁl is a model of the above axiom because we can interpret E
as a space with two points o, 1 and three open sets (the empty set
and the sets{o} and {o, 13 ). Clearly this space has exactly three
endomorphisms, i.e. the identity and the two constant mappings. We

shall interpret o as the open point of this space.

Proposition 16. The object E has two elements,

Proof: Clearly E# 0, E# 1 and hence E has at least two elements.
It follows from Axiom 3 that two different elements of E generate
different constant endomorphisms of E. Also if t 1s the mapping from
E into 1, then tx 2 E for all x ¢ E (otherwise E = 1). This together
with the fact that E has only three endomorphisms, implies that E has

exactly two elements. q.e.d.
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We shall denote by c the element of E different from o. In
Cj there is a one-to-one correspondence between the open subsets of a
topological space X and the mappings X ———> E namely, for every open
subset A of X we consider the mapping -

(o}
YA (x) = ‘{

1 1fx;/A

if x € A

Clearly the correspondence A -———)‘VA is one-to-one, It is
also onto because if X-——\P—}E is a continuous mapping then A = ‘P-l(o)
is open and "PA = ‘{) . This shows that the following definition of

"open subspaces' is adequate.

Definifion 12. A subspace a of X is called open if there exists a

mapping X—q}—ae E such that a = Eq ("Fa, X—-—)l-o—iE).
Clearly the mappings O —— X and X are open subspaces of X
and o is an open subspace of E.

The following proposition says that every mapping is "continuous".

Proposition 17. For every mapping X—i—aY, if b is an open subspace

of ¥, then the inverse image of b through f is an open subspace of X.
Proof: Since b is open in X there exists a mapping ka such that
b=Eq (Y, Y—>1 —23E). Let a= £ (b) and P_ = £Y,. Then by

f
Theorem 6, a = Eq (fY,, X—— ¥ —> 1 —E) = Eq (Y,, X—> { —>F)

and hence a is open. q.e.d.

Proposition 18. Every monomorphism with discrete co-domain D is an

open subspaceof D.

Proof: Let a € D. By Proposition 10, a has a characteristic function

e i
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i -
kPa’ i.e. a = Eq ((f’a, D —— 1-—-]=-)2). It follows that a = ‘P 1 (11).
We shall prove that‘i1 is open and hence by Proposition 17, a is open.

Let f be the unique mapping for which the diagram below commutes.

1
[o]
ill
2-E L3k
%T/
1

Clearly f-l(o) = 1, and since o is open,by Proposition 17 i, is open. q.e.d.
Having defined the notion of open subspace, we now want to make

each object X into a "topological space". Since the open subspaces of

X are in a one-to-one correspondence with the mappings X ~——E, we

must make sure that we have enough such mappings to guarantee the

properties satisfied by the open subsets of a topological space. For

instance,the intersection of two arbitrary open subsets must be open.

We shall see later that by postulating the existence of some mapping

of E x E into E, the above property can be proved in the resulting

gystem of axioms.

The following observation motivates our next axiom. Consider
the product E x E, P1s Pp. In thhe interpretation of E x E is the
product space. The open subsets of this space are: the empty set,
the total set, pl-l(o) = {(o, o),.(o, 1)}, pz-l(o) = {(o, o), (1, o)}
and the set pl'l(o)/\ pzfl(o) = {(o, o)}. Since E x E must have five
open subspaces, we should have five mappings from E x E into E. The
axioms stated so far guarantee the existence of only four such mappings,

P1 o
—e ) —
i.e. ExE ) E and EXE ——p 1 ) E. We need an additional

Py c
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mapping corresponding to the open set pl-l(o) N pzﬂl(o) ={(o,o)}. For

this reason we add to the system the following axiom.

Axiom 12, The unique mapping <o, o) for which the diagram below

commutes is an open subspace of E x E.

E
A X
s} p]_
1=~=-3ExE
©s
P
o w 2
E

Theorem 8. The intersection of two open subspaces of an object X

is an open subspace of X.

Proof: Suppose that a and b are open subspaces of X. This means

Yo
that there exists mappings X _"'3 E such that the diagrams below

Yu
are equalizer diagrams.

\Pa \Vb
A——x O F B—-—-b——ex__,"'r' s

t o t 0

Clearly ( to, to} = t {0, 0) . This together with Theorem 6 implies
aNb=Eq ((\Va, wb> , t€0, 00 ). Let k=alNb., We must show
that k is open and hence we seek a mapping Xq)—k—) E such that

k = Eq (k}’k, to). Since by Axiom 12 (o, o) is open, there exists

a mapping ‘-V o such that <o o) = Eq (LI/

0}’
Let Yy <‘P Yo¥., 03"

t! o
Ex E~—1—9E).

sag
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kW, = Y, YL ‘}'<°’ 0y = kt<o, 0) Y. oy = kto.

Suppose yl{)k = yto for some mapping Y—I{—3 X. Therefore y(\l)a, \V b ‘f’(o‘o)
Ee (Yo, o3 £'0)
ye,s0 Yo, ¥ L) =
yt €0,0) and, since k = Eq ((\Va, ‘l’b) » t{0,0)), there exists a

= yto = y(\lla, \Pb) t'o and since (o, o)

Y(“l)a, Y}b> =Y >1<°"L>}EXE. But Y —1

1]

unique u such that uk = y which proves that k = Eq (Ll-’k, to). q.e.d.

In order to define a "topology" on each object X by open
subspaces, an arbitrary union of such subspaces must be open in X.
Since this property is not elementary, we shall define the "topology"
of X by an "interior operation" on the subspaces of X.

In §J the interior of a subset A of X is the largest open
subset of X contained in A. This definition has an elementary counter-
part in our system and it makes sense once we know that for every

a € X we do have a largest open subspace of X contained in a. The

next axiom guarantees exactly this.

-Axiom 13, For every a &£ X, there exists an open subspace a® of X

such that:
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i) a°€ a

ii) for every open subspace b of X such that b € a, we have
b €a°,

Clearly a° is determined up to an isomorphism. If a is open
we may write a° = a. Consequently (a°)°® = a° and X° = X. By the
definition of a° we also have a® & a. Hence, to show that "o'" is an

"interior operation" we need only verify that it is distributive with

respect to intersection.

Proposition 19, If a& X, b €X, then (anN b)° = a° N b°.

Proof: a° and b° are open subspaces of X and hence by Theorem 8

a’ N b° is open. According to the definition of intersection a°f) b° € a°
and a°) b°S b°. Also a®° € a and b° € b. Hence a°N b° € a and

a®N b° € b. This implies that a°f) b€ a N b. We shall show that

a®l b° is the largest open subspace of a/l b and hence a°f) b° = (aN b)°.
Suppose that c is an open subspace of X such that ¢ &€ a N b. Clearly

cC a, ¢ € b and hence ( since ¢ is open ), ¢ € a® and ¢ € b°. This

implies that ¢ € a° N b°. q.e.d.

In the system of axioms stated so far every object has a
"topology" and every mapping X-—f—} Y is "continuous" with respect
to the topologies on X and Y., We now need an axiom to the effect that
we have enough "continuous" mappings in the system. Since we may think
of | | as being a forgetful functor built into the system, any mapping
I X l—d—) | Y| may be interpreted as a set mapping. Supposing d is

continuous with respect to the topologies of X and Y, i.e. d"1 carries

open subsetsof Y into open subsets of X, d must be the set-mapping of




33,

some mapping from X into Y. This forms the content of our next axiom.

d
Axiom 14. Let X and Y be objects and |X]~—1Y]| a mapping with

the following property: whenever v is an open subspace of Y and u
is a subspace of X such that d'l(lvi) = lu], then u is also open.
Then there exists a mapping X-——ii——Q Y such that (£ = d,

We note that since | | preserves pull-back diagrams we have
1£71 (v)1£ lu | and hence by Proposition 13, f'l(v) 2y,

We also remark that by the faithfulness of | |, the mapping
f, whose existence is postulated in the above axiom, is unique.

Our final elementary axiom will grant the existence of enough
"topological spaces" in our system. In order to state this as an
elementary axiom, we shall introduce some definitions and notations.

We recall that every monomorphism m with discrete co-domain
D has a characteristic function D-—leL—}Z , L. e. m = Eq (LPm, D1 -3192).
By the exponentiation axiom there exists a unique mapping m* such that

the diagram below commutes.

Dx1—02=>D ,p
] =
]
1

D | x ! wk ? .
]
v e

Dx 2Y————— 2

Clearly, if m and n are isomorphic monomorphisms into a
discrete space D then (fm = \fn and hence m* = n*, Moreover, for
every x € 2D, there exists m € D such that x = m*, The correspondence

m ——— m* induces a boolean structure on the elements of 2D with the

e




operations f\, U , ' defined as follows:
¥ ¥ = (m N n)*, wU k= (mUn)*, (mk)' = (m')*
(m' denotes the complement of m) and O% = (0 ———) D)*,
If X is an object and u € X we shall write u* = fuf*,
We shall later make use of the following property of the
(contravariant) exponential functor 2D, defined on the discrete spaces:
If f 1s a mapping with discrete domain D and discrete co-domain

D' and m is a monomorphism into D, then m*Zf = (f~1(m))*.

Definition 13. If D is a discrete space, a mapping 2D__2L_,zD is

called an interior operation on D if
1) 12=1 (2 =1 1)

ii) DM = D*

iii) for every x € 2D, xI N x = xT

iv) for every pair X, v € ZD, N yI==x1n yI.

Every interior operation defined on a set S determines a

topology and every tobology on the set S determines uniquely an
interior operation. For this reason, in our system, we must have ag
many "topological spaces" X on a "set" D (L.e. X = D), as we have

interior operations on D. This condition may be formulated as follows:

Axiom 15, For every discrete space D and every interior operation I

on D, there exists an object X such that
1) Ixi=0>
1i) for every subspace u of X, u* = (u®)*,
We remark that the object X whose existence is stated in the

above axiom is determined up to isomorphism by the interior operation

LN e
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I on D. For,if X and Y are two objects corresponding to the same
interior operation I on D, the ldentity on D = |X| = | Y| may be lifted,
according to Axiom 14, to a mapping th—)Y which has an inverse.
Suppose that X is an object determined according to Axiom 15
by an interior operation I on D. Then u is an open subspace of X if
and only if u* I = u*, This follows from the fact that u is open in
X if and only if u® = yu,
The above axiom is the final elementary axiom of our system,
We may develop this elementary theory and recapture in the system

various topological notions and theorems.

-y
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CHAPTER 11

THE CHARACTERI ZATION METATHEOREM

It is the purpose of this chapter to show that the elementary
system of axioms which we have constructed, together with one non-
elementary axiom, form a characterization of ‘f .

The proof of this result is informal but it could easily be
formalized within a sufficiently strong set theory or presumably in

the category of categories [7].

Our discussion will be restricted to locally small categories.

By this we mean categories with the property that for every pair of

objects A and B, the class of all mappings from A to B is a set.

The Characterizafion Metatheorem., 1If % is a locally small category
such that:

i) te is a model of the elementary axioms 1 - 15.

ii) for every family iAj}j&J of objects of ‘&

there exists a sum and a product in ‘8

Then, "@ is equivalent to G«T

Proof: Letf() be the full subcategory of t6whc>se objects are all the

discrete spaces. By the Theorem Schema, 9) is a model for the elementary

axioms of Lawvere's system,

since % has arbitrary products and the functor | | ; §—— @

is product preserving,% must have products.,
By Theorem 1 b), the sum of two discrete spaces is discrete.

The proof of Theorem 1 b) can also be used to show that if{Aj}
jed

ey
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is a family of discrete spaces and ZAj,
jed

jeZJ Aj is discrete. This, together with the fact that arbitrary

{1.}] form a sum, then
jeq

sums exist in @ , implies that % has arbitrary sums., Hence, all
axioms of Lawvere for the category of sets hold for @ and consequently
the functor le@ 5 (I-I1 (@ = { X ] X € D}GS) is an equivalence of
categories [6]) .

Consider the category C«._Z; defined as follows:

The objects of ccf; are ordered pairs (D, I) consisting of an
object Dé@ and an interior operation I on D.

The morphisms of% with domain (D, I) and co-domain (D', I')A

are mappings D—f—) D' in @ satisfying the continuity condition with

respect to the interior operations I, I'. By this we mean that for

1
every x € 20" such that xI' = x we have x2fI = x2f. This condition may
be written in the compact form 1t2f1 - I'2f.

Clearly % is a category. The identities in 3;) are ordered
pairs of the form (D, 2D). (Clearly, the mapping 2D is an interior
operation on D.)

W ' g ¢

e shall prove that is equivalent to J by showing that
g ¢’
is equivalent to ‘3;3 and that J‘D is equivalent to J .

Consider the functor H*: %) ——58. H! is both faithful and
full. (This follows from the proof of Lawvere's metatheorem [6] .)

Suppose Xé€ ‘e, D=|X| and let s be the function defined on
Hl(ZD) such that s(x*) = (x°)*. Then s is a morphism in Q9 and since
H1 is full there exists a mapping ZD—I—) 2D such that s = Hl(I).

Furthermore, if‘ x 1s a subspace of X we have x*I = (x°)* for’ X*I =

Hl(I) (x*) = s(x*) = (x°)*, This also implies that x is open in X if

|
|
1
|
1
|
|
|
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and only if x*I = x*, I is an interior operation on D, because:
i) Clearly 82 = g anci hence H1(12) = [HI(I))2 =s2=35= Hl(I)
and so 12 = I since ! is faithful,
1i) D} = X# = (X°)* = X* = D
iii) TFor every x* ¢ 2P (x € X), we have x*I N x* = (x°)* N x* =
&N x)* = (x°)*% = x¥,
iv) For every pair of elements x*, y* of 2D (x, y € X) we have
N YL = EAYM = xNy)° * = (x°N ¥°)* = &°)*N(Y°)* =
X*¥L N y*1,
We define a functor F: ‘@ -———)% as follows: F(¥) = (D, 1),
where D = | X| and I is the interior operation on D, obtained above.

If X—2—3Y and F(X) = (D, 1), F(¥) = (D', I') then the

mapping Dﬂ—a D' is in% .« To see this, consider y € Y and let

X = f-l(y°). Since y° is open in Y, by Proposition 17, x is open in
X and hence x*I = x*, The functor | | preserves inverse images, so
[£1 _ £l _

we have |f |'1(| y°1) =Ix% and hence y*1'2 (y°)*2
|f|I I £l

fore y*1'2 = x¥L = x* = y¥I'2' "', This equality holds for all

x*, There~

y* € 2" and hence I'Zlfll = I'2‘f|; i.e, Iflé":;m . Let F(f) = [£f].
Clearly F: ‘e —)%is a functor. We shall now define a functor
G: 8:‘0*—) ‘@ For this consider (D,I)e% and let X be the object
assigned by Axiom 15 to the pair (D, I). (X is uniquely determinied up
to isomorphism.) - We define G(D,I) = X. 1If D—d-aD' is a morphism
in ‘Ef'@ from (D,I) into (D',I'), and X = G(D,I), Y = G(D',I'), then d
satisfies the condition in Axiom 14 with respect to X and Y. 1In order
to prove this we first note that |X| = D, |Y| = D'

« Furthermore, if

v is an open subspace of Y, then clearly v3L' = v*, Suppose u is a

|
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subspace of X such that d-l(lvl) = ju|. Then, since de% , we have

vx2'1 a vx2f = u% and hence uM = vi2f12 = yiof

= u*, This implies

that u is open in X. According to Axiom 14 there exists a (unique)
mapping X—f—)Y -such that | f1 = d. Let G(d) = f. Clearly, G

is a functor. We shall show that F o G and G o F are naturally
equivalent to the identities on % and ‘g respectively. Suppose

X = G(D,I). Then for every x € X we have x*I = (x°)*. ILet F(X) = (D,1').
By the definition of I' for every x € X, x*I' = (x°)* and hence x*I =

(x°)* = x*1' for all x* ¢ 2D which implies that T = I'. Therefore

F o G(D,I) = (D,I) for all (D,I), i.e. Fo G = % . Suppose (D,I)
F(X). Clearly for all x € X, we have x*I = (x°)%, Let G(D,I) = Y.
Then | Y1 = D and y*I = (y°)*. Since both X and Y = G o F(X) satisfy
Axiom 15 with respect to the pair (D,1), they are solutions of a universal
mapping problem and so we have G o F(X) & X and this isomorphism is
natural. Therefore, F: f-——-)‘J; is an equivalence of categories. The
proof of the metatheorem will be complete once we show that cf@ is

equivalent to SJ .

Metatheorem, Let Q be any locally small category such that D is a
model of Lawvere's system of axioms for the category of sets. Then % *
is equivalent to 5,' .

Proof: Since ﬁ) is a model of Lawvere's system, for every object Dé@
the lattice of subobjects of D is complete, i.e. for every family of
subobjects of D there exists a union and an intersection. ILet (D,1) E%
and let U] -{a €pfam = a*}. Clearly D € Uj and 0 ——p € (V.

Since I is an interior operation on D, if a, b€ 0;) then aN b€ (?;)

* ?J‘.D is constructed from D as in the previous metatheorem.
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(‘i O/D is also closed under arbitrary unions for 1et{ } be a family

jeJd
of elements of U/ Then \Z.)] ay = € D and clearly (jU aj)*I c (1U i
J €
Also aj* = aj*I ¢ (U a; )*’I for all i€ J and hence ( U )*C (Uaj)*l.
jeJ jed jeJ
aj € 0/ For every

a)*

But this implies that (jU aj)*I = (jUa )*, i.e.
€J

a& D let v, —{x € Dix € a}, i.e. x €V, if there exists a mapping h for

which the diagram below is commutative,

T A e S T e e S o N e e A S Ry D P Pl P PP o . e ST T TRTTY

Let C = Va|aeo'}. Since H'(D) =VD€'E » Vg f\Vb=V Nb and

P~

Vo, =V U s T 1is closed under finite intersections and arbitrary
j€J 23 a3
unions. Hence '\5 defines a topology on H'(D). Let F(D,I) = (H'(D), ¥ ).
i 1f D—)D' is a morphism in % , H'(£) is continuous because if
xf €V 1} \A

and since al*I‘ = a1¥*, we have a*I = a1*2f1 = al*zf = a* which means that

Va ¢ U and a = £ ap), clearly [H'(f)J-l(Val) ={

V, € % . Llet F(f) = H'(f). Clearly F thus defined is a functor from ?lz

into g’ . Since H' is faithful, F is faithful, Since H' is full, for every
continuous function ol : (H'(D), B) —> (H'(D'), B') there exists a mapping
D -—f—}D' such that ol = H'(f). The continuity of of implies that £ 6%
because if a; € D', ay* = ay* and a = f_l(al) then V, =of -1(Val). But
Vale %' and since of is continuous Vaé'Z: and hence a*I = a*, Therefore

£

al*ZfI = g% = g% = a1*2 and hence fﬁcfm . This means that F is full.

To show that F is an equivalence it will suffice to prove that
v

for every topological space (X, %) there exists an object (D,I) in o)
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such that (X,%) & F(D,I). Let (X,%)€ 3 and let D = Zx 1e9 .

e

For every open subset U of X let ZUI QaIL—,;D be the mapping
induced by the inclusion U € X. The family = '{aulu is open in X}
is closed under finite intersection and arbitrary unions. 0’ defines
an operation on the elements of 2D (a*—ﬁ ( Ua )*) which can be
lifted to an interior operation I on D such thagusa?ﬂ: = a* if and only
if an.’. Then F(D,I) = (Hl(z:xl), Ty is isomorphic to X. Indeed
the map i: X—uo Hl(le) which associates to every x € X the
injection 1 —{xﬁgl is one-to-one, onto and since for every open
subset U of X, i(U) = Vav » 1 is a homoemorphism. q.e.d.

The proof of the characterization metatheorem shows that the
three constructions of the topological category, i.e. the traditional
construction, the translation of this construction in Lawvere's system

and our axiomatization lead essentially to the same thing.

We give below an outline of an alternive direct proof of the

characterization metatheorem.

The functor Hl:‘g ——}Qgcan be lifted to a functor F: @ —_— 63)
in the following way:

Let C be an object of ‘@ and for every subspace a of C let
v, =«ix€ C,x € a} . Then T =iVa| ac€c, a° = aS defines a top-
ology on Hl'(C). It can easily be seen that if C—f-) C'is a
mapping in (g , then Hl(f) is continuous. Iet F(C) = (HI(C), %) and
F(f) = Hl(f). Clearly F is a functor and because Hl is faithful so is
F. F is also full. To prove this we consider a mapping F(C) L)F(C')
in Gf and we apply to it the forgetful functor U , L.e, Hl(C)M)H'(C')

is a mapping in Qg . Since for every object C ¢ '@ » the mapping




O

42,

t
lcl -—jl—é C is a bijection, Hl(tc) is an isomorphism. Let ’& be the

unique mapping for which the diagram below commutes.

Hl(tg)

HE(1C 1) ———— HL(C)

| =

|

r : U(N)

[}

v ~

B (le')) —————3 wleen

Since Hl:Ea ——>§ is full there exists a mapping d such that H'(d)

= /L « It can be shown that d satisfies the condition in Axiom 14 with

respect to C and C' and hence there exists a mapping C -—Ei——9 C' such

that | £ 1= d. It is easy to see that F(f) = A which proves that F is
full. Hence F is an embedding.

We note that Axiom 15 was not used when proving that F is an
embedding,

To complete the proof of the metatheorem it suffices to show
that for every topological space X there exists an object A &‘e with
the property F(A) £ X. In order to show this, we make use of the
following proposition obtained by S. Baron as an application of the
embedding lemma (4] :

"Every topological space can be embedded in a product of
copies of the indiscrete space with two points and the topological
space with two points and three open subsets."

We first remark that Axiom 15 guarantees the existence of
an "indiscrete space" with two points,i,,in our system. It is easy

to see that F(E) is a space with two points and three open subsets,




s, |

F(E) is an indiscrete space with two points. Furthermore, using Axiom

15 we can show that F preserves products and equalizers.

The proof will be completed once we show that for every sub-
space X of a topological space F(C), there exists a subspace a of C such

that X is the image of F(a) in F(C).

F(4)

\ F(a)
%4 “ \ F(C)

7

<=

This follows from the fact that every subset of Hl(C) determines a
subset of Hl(lcl) which in turn is determined by a monomorphism into
ICl. Clearly to every such monomorphism there corresponds a subspace

a of C which has the required property.
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