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PREFACE 

In his paper "An Elementary Theory of the Category of Sets" [6J , 

F. W. Lawvere has shown that by starting from the primitive notions of 

category theory, the notions of set theory can be recaptured. He 

obtained a characterization of the category of sets as a complete cate-

gory satisfying a finite set of elementary axioms. 

In this thesis we consider an analogous problem for the category 

of topological spaces and continuous mappings. 

The first chapter is devoted to the construction of an element-

ary theory of this category. We introduce the notions of discrete 

space, subspace, open subspace,and we state elementary axioms involving 

these notions. An important role in defining "open subspace" is played 

by an axiom which implies the existence of an object with three endo-

morphisms. 

In Chapter II we prove a metatheorem which gives a character-

ization of the category of topological spaces. This metatheor~m says 

that any complete category, satisfying our elementary system is equi-

valent to the topological category. The proof shows that the traditional 

construction of this category, its translation in Lawvere's system and 

our axiomatization lead essentially to the same thing. An alternative 

and direct proof is indicated. The role played by the final elementary 

axiom of our system in obtaining an equivalence of categories appears 

clear from this proof. This axiom is more complex in character th an the 

others. When it is deleted, a full embedding into the category of 

topological spaces is obtained. 

-_ ... __ .... _--_._- -----------------
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1. 

PRELIMI NARI ES 

The notion of abstract category in the sense of Eilenberg-

Maclane [1) is assumed to be known. We note that the definition of 

this notion can be formalized [7] , using a langu~ge with one sort of 

variable symbols (the mappings), two unary function symbols (domain 

and co-domain) and one ternary relation symbol (composition). Moreover, 

aIl the axioms which form this definition are elementary, i.e. aIl 

quantifiers range over individual variables. 

We shall use the notation of Lawvere. An object is defined 

as being a mapping which is also a domain or co-domain. In order to 

distinguish objects from general mappings, we shall denote them by 

f 
capital letters. The symbolA~B stands for: "f is a mapping whose 

domain is A and whose co-domain is B". Whenever we have a pair of mapp­

ings f, g such that A~B~C , the mapping resulting from the com-

position of f with g will be denoted by fg. 

Diagrams such as 
k 

f 

are said to be commutative if h = fg, respectively fg = hk. 

Familiarity is assumed with the basic notions of category 

theory as encountered in the standard texts (2) , [aJ , [9]. Another 

prerequisite is [6] . 

We shall use the follawing notations, where the equality 

symbol is actually an abuse of language. The expressions containing 



(.: 

(j 

_._--~-

it are to be interpreted as follows: 

* k = Eq(f,g) means: k 1s an equalizer of f with g 

q = Coeq (f,g) means: q is a coequalizer of f with g 

A = L A· means: 
jE. J J 

there exists a family of mappings 

{Aj ij )~j~J such that A, 1ij~ j€J is a sumo 

A =llIAj means: there exists a family of mappings 

jE:J 

2. 

{A _p-,J::.,' -~) AjJ. such that A, \Pj J j t: J forros a product. 
JEJ 

(In the case of two objects Al' A2 we write A = Al + A2 respectively 

A = Al x A2)' 

For every pair of mappings Al~X, A2~X the unique 

mapping for wh1ch the diagram below commutes will be denoted by <f ,g). 

f~AI 
/ . tri 

X-~1:~»>.A1 ><·A,. . ! r~ 
g At. 

Every equalizer of a pair of mappings will be called a regular 

monomorphism and every coequalizer will be called a regular epimorphism 

[5J. 
f 

An object P is projective if for every epimorphism A~B 

and mapping P~B there exists a mapping h such that the diagram below 

is commutative. 

* Sometimes the word kernel ia uaed in place of equalizer. 



Cj 

--.~-

f 
A ~B 

g 
hf;thg. 

---- ----- --_._"-_._-.--_. ------ ----- - -_._-------------, 
3. 1 

An object G is a generator if for every pair of mappings 

h 
such that f# g there exists a mapping G~A such that 

We shall denote bytS the category of sets and by 5'the category 

of topological spaces and continuous maps. 
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4. 

CHAPTER l 

AN ELEMENTARY THEORY OF THE CATEGORY OF TOPOLOGICAL SPACES 

In what follows we list a number of elementary axioms, all of 
U':-' 

which hold for Jf and we prove from them a number of theorems. 

The first group of axiome will be formed by those which define 

an abstract category. 

The next group ofaxioms is a part of Lawvere's elementary 

system for the category of sets [6] • 

Axiom 1. There exists an initial and a terminal object, every pair of 

objects has a product and a sum, every pair of mappings has an equalizer 

and a coequalizer. 

The above axiom implies the existence of pullbacks and pushouts. 

f Also, for every mapping A~B we can carry out the following construction 

k Pl )A f 
) :B 

il 
) B + B k* > K* K )AxA 

) q\ 
) 

P2 Jq* 
i 2 

Q- -71 
h 

where k • Eq(Pif, p2f); k* = Coeq (fil' fi 2) 

q = Coeq (kPl' kP2); q* = Eq (ilk*, i 2k*) 

and h is the unique mapping for which the above diagram is commutative. 

The mappings q, q* are called respectively, the regular coimage 

of f and the regular image of f. We write q a Coim f and q* = lm f. 

We shal1 use the following property of q*: 

Proposition 1. The regular image of a mapping f is the smallest regular 

monomorphism through which f factors, i.e. if f factors through a regular 

r' 
1 

i 
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5. 

monomorphism y, then there exists a mapping z such that q* = zy." 

Proof: Suppose that f is a mapPing(A~B)SUCh that f = xy and 

y a Eq (u, v). Let t be the unique mapping in the diagram be10w such 

VI' 

i l t " ~u ~x." t* 

1. , 

A~f J} B----i2~:8+B k* >K 
~ q* 

Zl 
X 1 Y ... 

C 
Since fi1t = fu =xyu = xyv = fi 2t, there exists a mapping t* such that 

k*t* = t. Therefore, q*u '" q*ilt = q*i1k*t* = q*i2k*t* = q*i 2t = q*v. 

But y = Eq (u, v), hence there exists a mapping z such that 

zy'" q* q.e.d. 

Corollary. f is a regu1ar monomorphism if and on1y if f = lm f. 

To simp1ify our notations, fo11owing Lawvere, we aha11 make 

the fo11owing assumption. 

Assumption. There exists a unique initial and a unique terminal object. 

The initial object will he denoted by 0 and the terminal object by 1. 

Definition 1. x is an e1ement of A, written x € A, if and on1y if 

Adom 2. The object 1 is a projective generator. 

We note that an immediate consequence of this axiom is that if 

A has exactly one element, A '" 1. 

l' 
r 
1 
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6. 

The fact that 1 is projective means that the epimorphisms 

are ante mappings. In the system ofaxioms given by Lawvere for the 

category of sets this assumption was redundant since it fol10wed from 
c;J 

the axiom of choice. Lawvere's axiom of choice does not ho1d for J 
~ 

but in ~ epimorphisms are onto mapp1ngs, so we inc1uded this in our 

a,dom. 

The fo11owing proposition is an immediate consequence of 

Axiom 2. 

Proposition 2. Let f be a mapping with domain A and co-demain B. 

Then: 

i) f is an epimorphism if and on1y if for every xE B there exists 

a y E A such that yf = x. 

ii) f is a mono~orphism if and on1y if for every pair of e1ements 

x, Y of A ',l1!ch that x~y, we have xf~yf. 

Defini tion 2. A mapping f is a bijection if and on1y if it 1s both 

an epimorphism and a monomorphism. 

f 
Definition 3. A mapping A~B is ca11ed a constant mapping if there 

f u 
exists a u ~ B such that A~B = A~1 ~B. 

Axiom 3. Every non-zero object has elements. 

t 
We remark that for every oject A~O the mapping A--41 1s an 

epimorph1sm since by the ab ove axiom there exists an x E A such that 

xt = 1. This implies that if A~O; x, y ~ Band x-:FY, the constant 

mappings A --+ 1 ~ B, A ~ 1.-.4B are different. 

--------------- --------------

v .. 

r 
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7. 

Axiom 4. Every e1ement ~f a sum A+B can be factored through one of 

the two injections i A, i B, i.e. if xE A+B there exists a t such that 

Axiom 5. There exists an object with more than one e1ement. 

Definition 4. 2=1+1. 

The fol1owing propositions are immediate consequences of the 

axioms [61. 

Proposition 3. 

Proposition 4. 

o has no e1ement. 

io 
The two injections io and il' 1:=:::t 2 are different 

il 
and they are the on1y elements of 2. 

Proposition 5. If xeA + B, then x cannot be factored through both 

injections i A and iB' i.e. at most one of the equations x = tiA and 

x = t~B has a solution t. 

Proposition 6. The injections i A and i B are monomorphisms. 

Proof: If A = 0, this is c1ear. If A~O, by Axiom 3 there exists 

xEA. Let f be the unique mapping for which the diagram be10w commutes. 

Then iAf = A and hence i A is a monomorphisme Simi1ar1y i B is a mono­

morphism q.e.d. 

The next group ofaxioms invo1ve the notion of discrete space 

1 
1 
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which we define as follows: 

Definition 5. An abject A is called a discrete space if for every 
fx x E A there exists a mapping A---+).2 such that for every y f A, yj:x, 

we have xfx ~ yfx• 

Clearly the objects D,lare discrete spaces. AIse 2 is dis~ 

crete since 2 has only two elements and the identy on 2 satisfies the 

property of f in the above definition for each one of them. 

Axiom 6. For every object A, there exists a discrete space lAI together 
tA with a m;apping 1 A 1 ) A such that for every discrete space Band 

f mapping B ~ A, there exists a unique mapping h for which the diagram 

below is commutative. 

Since lAI, tA is a solution of a universal mapping problem, 

the object 1 AI is defined up to isomorphism and the operation 1 is 

functorial. (The mapping IAI~A is a reflection [9] of A into the 

discrete spaces, and the functor 1 1 is an adjoint of the inclusion 

functor.) 

If A is a discret~ space, the mapping A satisfies the property 

of tA in the above axiom and hence we write 1 A 1 = A = tA. 

Proposition 7. The mapping 1 A 1 ~ A is a bijection. 

Proof: By Proposition 2, in order to show that tA is a monomorphism, 



c 

() 
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it is suffieient to prove that for every pair x, y of elements of A 

sueh that xtA = Y tA' we have x = y. This follows fram Axiom 6 sinee 

I is diserete and henee the mapping xtA (= Y tA) must factor uniquely 

through tA' tA is aiso an epimorphism. This follows from Proposition 

2, the faet that I is diserete and Axiom 6. 

Corollary. The funetor 1 1 is faithful, i. e. for every pair of mapp-

ings A~ B, A ~ B sueh that 1 f 1 = 1 g l , ~V'e have f = g. 

Proof: If 1 f 1 = 1 g 1 then tAf = 1 f 1 t B = 1 g J t B = tAg and sinee tA is 

an epimorphism, f = g. 

In the following theorem we study some properties of the 

diserete spaees. 

Theorem 1. a) If A ~ B is a monomorphism and B is diserete, then 

A is diserete. 

b) 

e) 

If A and B are diserete, then A + B ia diserete. 
h 

If B~Q is a regular epimorphism and B is diserete, then Q is 

diserete. 

Proof: a) Suppose x e A and eonsider u = XIll. Then u E Band sinee B 
f ia diserete, there exists a mapping B u) 2 sueh 'that for every 

v(B, v;l!u we have vfu;tufu' Let fx = mfu' If yEA and y~x, sinee 

m is a monomorphism, we have ym~XIll (= u) and henee yfx = ymfuF xmfu= 

xfx' q.e.d. 

b) Sinee A and B are diserete, we have A = 1 AI = tA' B = 1 B' = tB' 

Consider the pair 1 A + BI , tA+B defined by Axiom 6. 
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A+B 

u Since A + B is a sum, there exists a unique mapping A + B ~ i A + BI 

such that iAu = liAI, iBu = liBI and hence iAutA+B = iA' iButA+B = iB. 
Therefore, utA+B = A + B which imp1ies that u is a monomorphism~ 

By a), Bince 1 A + Blis diserete, we have that A + B is discrete. 
f 

e) Suppose h = Coeq (f, g) where A ~ B. Since B is discrete, by g 
Axiom 6 there exists a unique mapping q for which the diagram be10w is 

connnutative. 

Then fqtQ = fh = gh = gqtQ and sinee t Q is a monomorphism it fo11ows 
u that fq = gq. This imp1ies the existence of a unique mapping Q----+IQI 

sueh that hu = q. Therefore, hutQ = qtQ = h and sinee h is an epi­

morphism utQ = Q. It fo11ows that u is a monomorphism and sinee Q 
is diserete, by a), Q is diserete. q.e.d. 

The category of diserete topo1ogiea1 spaees, being isomorphic 

to the category of sets, satisfies Lawvere's axioms [6]. It is there-

fore natura1 to inqui~e which among them are a1ready satisfied by the 

"dis crete spaees" (Definition 5) and to formu1ate the remaining ones 

for such objects. A quick look at the axiome for the eategory of sets 

! 
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tells us that we need to add the axioms of exponentiation, infinity 

and choice. 

Axiom 7. For every discrete spaces A and B, there exists a discrete 

space BA and a mapping A x BA __ e_~) B (called the eva1uation mapping) 

f 
such that for every discrete space X and mapping A x X ~B, there 

exists a unique mapping X ~ BA for which the diagram be10w is 

commutative. 

AxX 

Axh l~ 
AxBA e )B 

The e1ements of BA are in one-ta-one correspondence with the 

mappings from A ta B. This consequence of the above axiom is obtained 

PA 
by taking X = 1 and remarking that A x 1 ) A is an isomorphisme 

Using Lawvere' s notation, we shall denote by Cf] E BA the unique mapping 

for which the diagram be10w commutes. 

A x 1 ) A 

A x[f] i ! f 
A ':. BA ___ ~) B 

e 

The operation ~ can be extended to a functor which is contra-

I f 
variant in the exponent. For every pair of mappings A ~ A and 

B g} B', the action of the induced mapping -sA gf) B,A' on lu] E BA 

ia Cu] (gf) .. [fus]. 



-"-. 

~ _._. " ••••• _ .... ' ;·"·_' .... t .. ··~,,.·-:,_. ··.~.··.·l .- ..... _...._. ____ .. _. ____ . __________ ._' ___ .. ___ . __ .. _ .... , ______ ........ ___ .. __ ............... _ ,~._ ......... ,... ~_ .~ •. H ...... , ....... _._ ... ' ...... '''_ ~ _. ~ ___ ..... 0 ••• 

c: 

() 

12. 

Axiom 8. There exists a discrete space N together with mappings 

o s 
l~N and N )N such that for every discrete space X, xoE X 

and mapping X~k, there exists a unique mapping N ~X for which 

the diagram belaw commutes. 

s 
N----~> N 

o~i 
1/ x: 1 x 
~-!, U ~ 

o X-----7) X 

Axiom 9. If A and B are dis crete spaces and A has at least one 
f 

element, then for every mapping A--7 B, there exists a mapping g 

such that fgf = f. 

Theorem Schema. If ~ is a theorem of the elementary the ory of the 

category c: sets and ~ is obtained from ~ by replacing "object" with 

"discrete space", th en ~ is a theorem in our system. 

Proof: It suffices to prove the theorem for the case when ~ is an 

axiome In the case of Axiom 1 this follows from Theorem 1 and the fact 

that the functor 1 l, being an adjoint, preserves products and equal­

izers. In the case ofAxiom 7 [6J , this follows from Theorem 1 and 

Axiom 4. The fact is clear in all the remaining casea. q.e.d. 

For the development of our theory we shall need the following 

propositions obtained from the above schema. 

Proposition 8. 
f 

For every pair of discrete spaces A, B a mapping A~B 

is an isomorphism if and only if it is a bijection. 

proposition 9. If f is a mapping with discrete demain and co-domain, 

_________ -0 _-., ______ _ 

1 

: : 
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13. 

and f = qhq* is the standard factorization of f, then h is an isomorphism. 

The above proposition fol1ows from the Theorem schema (0 is 

taken to be the factorization theorem in Lawvere's system) and the 

observation that q is actual1y the regu1ar discrete coimage of f and q* 

is the regu1ar discrete image of f. 

m 
Proposition 10. Every monomorphism A ~ D into a discrete space D 

m' 
has a complement, Le. there exists a monomorphism A'---) D such that 

D, m, m' form a sumo Moreover m has a characteristic function D~ 2, 

il * 
Le. m = Eq (f m' D ~ 1 ~ 2). 

Proposition 11. A mapping f is a mon~morphism (epimorphism) if and 

on1y if f is a monomorphism (epimorphism). 

Proof: Since 1 1 is faithfu1, it ref1ects monomorphisms and epimor-

phisms [9J , Le. if f is mono (epi) then so is f. Since 1 1 is an 

adjoint functor, it must preserve monomorphisms. This fo11ows from 

the fact that an adjoint functor preserves pu11-back diagrams [9J and 

f is a monomorphism if and on1y if the diagram be10w is a pul1-back. 

A 

/~ 
A B 

~/ 
A 

1 t remains to show that l '1 preserves epimorphisms. Suppose f is 

an epimorphism. By Proposition 2, in order to show that 1 f 1 is epi 

it will suffice to prove that 1 f 1 is surjective. Both tA and f are 

* We assume that a fixed 1abe1ling of the injections into 2 has been 
io 

chosen, i.e. 1-----;).2. 
i ' 1 

.. _-----~_.-----_ .. _-_ .. _._- _. - - --_.----".--

1 

, 
1 
1 
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surjective and hence for every y e IBI, there exists xE 1 AI such that 

xtAf = ytB E B. Therefore x 1 f 1 t B = xtAf = ytB and since t B is a 

monomorphism x 1 f 1 = y. q. e. d. 

Corollary. 
d 

For every discrete space D and bijection D ~A we have 

Proof: 
d 

Since D is dis crete , D = 1 DI = t
D 

and hence D --~) lA 1. The 

above proposition together with the fact that cl is a bijection implies 

that Idl is a bijection. But D and lAI are discrete and hence by 

Proposition 8, Idl is an isomorphisme q.e.d. 

Theorem 2. The functor 1 1 preserves regular coimages. 

Proof: Consider the construction of the regular coimage q of a mapping 

f 
A~B. 

(A x A, Pl' P2 form a product, k = Eq (PIf, P2f ) , q = Coeq (kPl' kP2) 

and X denotes the unique mapping for which q). = f). 

Let us apply to the above construction the functor / 1. 

Since 1 1 preserves products and kernels, the regular (discrete) coimage 

of 1 f 1 is a mapping c = Coeq (lkPII, IkP21). Since IkPlq / = /kP2ql, 

there exists a unique mapping t such that ct = Iql. We obtain the 

following diagram. 

i 
1 

r 



( 
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We want to show that t is an isomorphism. For this, since C, 

1 Q 1 are discrete, by Proposition 8 it will suffice to show that t 

is a bijection. C1ear1y q is an epimorphism, ~ Proposition 11, Iq 1 

is an epimorphism and hence so is t. It remains to show that t is a 

monomorphism. Suppose x, y E. C and xt = yt. We shall prove tha t x = y. 

Since c is an epimorphism by Proposition 2, there exist u elA11 

v E lAI such that uc = x, vc = y. Consider z = (u, v)E lA x AI. 

Then z 1 Pl fi = u 1 f 1 = uctl >'1 .. xt 1 À 1 = yt 1 ~ 1 = vct 1 >"1 = vif 1 = z 1 P2f 1. 

Since 1 k 1 = Eq (lp1f \, 1 P2f \) , there exists a w E IK 1 such that wlk 1 = z. 

But c Coeq (lkP11, 1 kP2\) and hence we have x = wlkP11c = wlkP21c = y. 

q.e.d. 

Corollary. If q is the regu1ar coimage of f, then the mapping ~ such 

that f = qÀ is a monomorphism. 

Proof: By the above theorem, q is a regu1ar (discrete) coimage of 

J fi. This together with Proposition 9 implies that 1 ~ 1 is a monomor-

phism. q. e. d. 

It may easi1y be seen that the dual of the above coro11ary a1so 

cf 
ho1ds in J. This fo11ows from the fact that the forgetfu1 functor 

from 5( into t> preserves regu1ar images and ref1ects epimorphisms. In 

order to carry out this informa1 argument in our system we shou1d first 

show that 1 preserves regular images. It is the author's feeling 

that this cannot be proved from the axioms giv~n so far. We therefore 

add the fo11owing axiom, which 1s a weaker form of the statement dual 

to the above corollary. 

.. - ._---_._--_. __ ._---- ---- .. _-_.- - ._- - ..... _-_ .. _-------_._------
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1 
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Axiom 10. Every monomorphism can be factored into an epimorphism 

followed by a regular monomorphisme 

Proposition 12. If q is the regular coimage of f, q* is the regular 

image of f,and h is the unique mapping such that f = qhq*, then h is 

a bijection. 

Proof: By the above corollary the mapping À = hq* is a monomorphism 

and hence h is a monomorphisme Since q is a epimorphism, clearly q* 

1s a regular image of À • By the above axiom À = er" where e is an 

epimorphism and r is a regular monomorphisme According to Proposition 

1 there exists a z such that q* = zr. 

A À) B 

~h ~2if*r 
e IZ 

t­
C 

il k* 
===::! B + B ---+) K* 

i2 

On the other hand eri1k* = ~ ilk* = À i2k* = eri2k* and since e is 

an epimorphism, we have riik*= ri2k*. But q* = Eq (i1k*, i 2k*). 

Therefore there exists a mapping w such that wq* = r. From this and 

q* = zr it follows that wzr = rand zwq* = q*. Since rand q* are 

, monomorphisms we have wz = C and zw = I. Consequently h is an epimor-

phism and this completes th~ proof. 

Corollary. If q* is the regular image of f and À is the unique 

mapping for which f = À q*, then À is an epimorphism. 

Theorem 3. The functor 1 1 preserves sums. 

- ----------------

1 

1 

1 
1 

1 

1 

1 
1 

1 

i 
1 

i 
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Proof: Suppose A + B, iA' i B form a sum of A, B and let 1 A 1 + 1 BI, 

ilAI' i
lBI be a sum of lAI, lB 1. By Theorem 1 b) IAI+ IBI is 

discrete. Let t be the unique rnapping such that ilAlt cl iAI and 

il Bit = 1 i B 1. 

We shaH prove that t is an isomorphism and hence 1 A + BI, 1 i A l ,liB 1 

forro a sumo Since both 1 A 1 + 1 B 1 and 1 A + B 1 are discrete, by 

Proposition 8 it will suffice to show that t is a bijection. In order 

to prove that t is surjective consider xe 1 A + BI. Then xtA+B E A + B 

and hence by Axiom 4,xtA+B factors through one of the injections i A, i B• 

Suppose xtA+B = uiA, uEA. Then x = Ixt
A+BI = lu IliAI c lu l'Af and 

lui ilAIE lA 1 + IBI which proves that t is surjective. t is a1so 

injective for suppose x, y é 1 A 1 + 1 BI and xt .. yt. By Axiom 4 both 

x and y must factor through one of the injections into 1 AI + 1 BI. 

Because of syrnmetry we need only consider two of the four possible 

cases. If x = ui lAI and y = vi lBI then utAiA c UiIAlttA+B = xtt
A+B = 

yttA+B = vil BlttA+B .. vtBiB• Let w = utAiA = vtBiB• Then wE A + B 

and w factors through both i A and i B which contradicts Proposition 5. 

This leaves us with the case x = ui l A 1 and y = vil AI' Then u 1 i A 1 = 
uilAlt = xt = yt = vilAlt = vliAI. But i A is a monomorphism because 

1 1 

1 

1 

1 

1 
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it i9 an injection into a sum and hence ! i A ' is a monomorphism. This 

imp1ies that u = v and hence x = y. q.e.d. 

Theorem 4. The func tor 1 preserves regu1ar images. 

Proof: We on1y need to prove the theorem for mappings which are mono-

morphisms. The genera1 case will fo11"ow from Theorem 2 and its 

corollary. 
m 

So suppose A-----1 B is a monomorphism. Consider the con-

struction of the regu1ar image of m: 

m il k* 
A ) B:::;::::::; B + B > K* 

\ /' i 2 
e '~ / q* 

l 

k* = Coeq (mil' mi 2) 

q* = Eq (i1k*, i 2k*) 

m = eq* 

By the coro11ary of Proposition 12 the mapping e is an epimorphism. Let 

us app1y to the above construction the functor 1 Since 1 pre-

serves kernels and by the preceding theorem 'B + B 1 = 1 B 1 + 1 BI, in 

order to show that Iq*1 is the regular image of Iml it will suffice to 

prove that k* = Coeq (Imill, !mi21). 
c 

Let 1 B 1 + 1 B 1 ~ C be the coequalizer of 1 mil', 1 mi21 • By 

Theorem l c) C is discrete. Let t be unique mapping for which ct = lk*l. 

il 
k* A m) B ) BtB ) K~ 

~ 

t~l~1 
i 2 

It*E l'K' tA t B 
t
I 

1 il! 

lA 151 ; 1 Bit! BI 1 k* 1 )IK'*I 

~I~ 1 i 2 1 
1 

~ /t 1 el Iq*1 
l Cf 



f 
i 
\ 

1 
1 

f 
1 
1 

t 
\ 

i 

-._~-----

( \ 

( 

19. 

We shall prove that t is an isomurphism by showing that t 

is a bijection. Since ct • Ik* 1 and 1 1 preserves epimorphisms, t 

is an epimorphism. t i9 also a monomorphism because t is injective. 

To see this consider x, y E C such that xt = yt. Since c is an epi-

morphism there exists xl' Yl~ IBI+IB 1 such that xlc = x, Ylc III y. 

Let z '" x1tB+B' w = yltB+B; z, w ~ B + B. Then zk* = xltB+Bk* '" 

xllk*ltK* = x1cttK* = xttK* and wk* ~ yltB+Bk* = ylcttK* = yttK*. 

Since xt = yt we have that zk* = \~k*. By Axiom 4, z and w must factor 

through one of the injections, il' i 2• From the four possible situ-

ations we need only consider two since the other two can be treated 

similarly. Suppose z III uil and w = vi2 where u, v E B. Let b be the 

unique mapping for which the diagram below commutes. 

milb = m = mi2b and since k* '" Coeq (mil' mi2), there exists a unique 

mapping " such that k* À '" b. 

This implies that u = ui1 b • zb III zk* ~ '" wk* À '" wb = vi2b = v, and 

hence ui1k* '" zk*. wk* ~ vi2k* '" ui2k*. Since q* '" Eq (ilk*, i 2k*), it 

follows that there exists a u1 € l such that u = ulq*. Since e is surjective, 

i 

! 
1 
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20, 

there exists a E-A such that ae '" ui and henc.e am = aeq* '" u, Therefore 

x'" xlc:l Izlc = luillc == lallmllillc and y = Ylc = Iwlc" lui21c = 

lallmlli2lc. But c '" Coeq (Imi l !. Imi21), so lmillc '" 1 mi21c ,'. x'" y, 

Consider now the case z '" uil , W = vil' We have zk* '" wk* 

and hence u = uilb = uilk*À= zk*~ '" wk*~ = vilb '" v. Therefore z '" w 

which implies x = y. q.e.d. 
cr 

In J a subspace of a topological space (X, "t) is a topological 

space (A, tA) where A is a subset of X and ~A is the topology induced 

by "t on A. The inclusion mapping i is continuous and clearly the map 

i ~ 
(A, "tA) ---~) (X, "6) is a monomorphism. in (). Rence, to every 

subspace of (X,~) we can associate a monomorphism defined on it and 

wi th codomain (X, ~). Not every monomorphism into (X, ~) has as domain 

a subspace (or a space isomorphic to a subspace) of (X, 't). For example 

consider the space (A,~) where $ is the discrete topology on A. If 

we denote by j the inclusion map A S X, then j is continuous, the 

map (A, & ) j 1 (X, ~) is a monomorphism in '!! but (A, ~) is not 

necessarily a subspace of (X, 1:;). This shows that the notion of mono-

morphism is not restrictive enough to define "subspace" in our system. 

The notion which appears to be suitable for this purpose is that of 

extremal monomorphism and was introduced by Isbell [3] • 

Definition 6 (Isbell). A monomorphism f is called extremal if for 

every factorization f = em where e is an epimorphism and m a mono-

morphism, e must be an isomorphisme 
c! 

It can easily be seen that in 'J the monomorphisms associated 

with subspaces are extremal and every extremal monomorphism has its 

domain isomorphic to a subspace. This justifies the following definition. 

r ' 
1 
~ 

1 , 
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Definition 7. A mapping is called a subspace of an object X, written 

a ~ X, if a is an extremal monomorphism whose co-domain is X. 

Clearly X, 0 --7 X and every x t: X are subspaces of X. Also 
m 

for every discrete space D and monomorphism A --~) D, m is a subspace 

of D. 

Definition 8. A mapping a is a subspace of a mapping b, written a~ b, 

if a'. and b have the same co- domain X, a 6: X, b 6 X and there exists 

a mapping h such that the diagram below commutes. 

Clearly the mapping h above is a subspace of B. 

The use of ~ for a more general situation creates no 

ambiguity. If a E b and a is an element we write aE'b. 

The following theorem will provide an alternative definition 

- 'for subspaces. 

Theorem 5. A monomorphism is regular if and only if it is extremal.* 

Proof: Suppose a is a regular monomorphism, i.e. there exists f and g 

such that a • Eq (f, g) and assume that a = em where e is an epimorphism 

and m is a monomorphisme Then emf a af = ag • emg and since e is epi, 

mf • mg. Since a • Eq (f, g) there exists a v such that m = va. 

* l t foUows from the proof of the theorem that regular always implies 
extremal. The proof of this implication was given by lsbell C3J • 

1 , 
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a f 
A ) X ___ -')~ Y 

~,/m 
B 

g 

Therefore m· ... vern and since m is mono ve = B. Similarly ev .. A and 

hence e is an isomorphism which proves that e is extremal. 

Suppose now that a is an extremal monomorphism. By Proposition 

12, a = qhq* where q is the regular coimage of a, q* is the regular 

image of a and h is a bijection. Let e c qh. Then a = eq* where e 

is an epimorphism and q* is a monomorphism. Since a is extremal, e 

must be an isomorphism which implies that a is regular. q.e.d. 

We shall use the ab ove theorem to prove sorne properties for 

the subspaces. 

Definition 90 If aS X, b ~ X and the diagram below is a pull-back 

diagram, 

then the mapping ua (c'vb) is called the intersection of a with band 

is denoted by an b o 

Theorem 60 The intersection of two subspaces of ~Ln object X is a 

subspace of X. In fact, if a c Eq (al' a2) and b = Eq (b l , b2), then 

an b .. Eq «al' bl>, (a2' b2> ). 
Proof: Suppose a a Eq (al' a2) and b = Eq (bl , b2) and consider 

k = Eq ( <al' bl >, <a2, b2> ). We shaH prove that k = an b. 

., 
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For this we need two mappings u and v such that u, v, a, b form a 

A 

/~ 
K k) X 

~)' 
.B 

Since kal = kflPy = kf2Py = ka2 there exists a mapping u such that 

k c ua. Similarly kb l = kb2 and hence k = vb for sorne v. If for 

s t 
two mappings T ~ A and T ~ B we have that sa = tb, th en 

sa~y • saal = saa2 = saf2Py and saflPz = sab l = tbb l = tbb 2 = sab 2 = 
saf2pz' Since y x Z, PY' Pz form a product it follows that safI = saf2• 

But k = Eq (fI' f2)' Therefore there exists a unique mapping À such 

that sa = À k. 

T -
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Hence sa= À ua and since a is a monomorphism s = À u. Also tb = sa .. 

À k = >.. vb and since b is a monomorpnism t = À v which proves that 

k = a ra b. 

Definition 10. If b s:. y and X f) Y then an inverse image of b 

through f is a mapping A ~ X with the property that there exists 

a mapping c such that the diagram below is a pu1l-back diagram. 

c 
A - - - - - -) B 

·1 lb 
X )Y 

f 

-1 
Whenever a is an inverse image of b, we write a = f (b). 

Theorem 7. If b ~ Y and X f) Y , then the inverse image of b 

through f is a subspace of X. 
-1 In fact, if b = Eq (u, v) then f (b) .. 

Eq (fu, fv). 

Proof: Let a = f-l(b). Since b is a monomorphism, a is a monomorphism 

[9] We sha11 prove that a = Eq (fu, fv). C1early afu = cbu = cbv .. 

afv. Suppose À is a mapping such that ,\ fu = À fv. Since b = Eq (u, v), 

there exists a mapping r for which À f .. r b. This implies the exist­

ence of a unique 0 wi th the properties À .. Oa and ('.. Oc. 

T 

---~>B 

lb 
X -~f-~)Y 

ullv 
z 

.~--:---~---------•• -.-.------- ----~------_._-.--.-. --________________ • _____________ '· __ 4·' ____ _ 
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It fo11ows that a = Eq (fu, fv). q.e.d. 

Proposition 13. Suppose aS X, b is a monomorphism with co-domain X 

and 1 biS Iii 1. Then there exists a mapping u such that b = ua. 

Proof: Since a S X there exists f, g such that a • Eq (f, g). 1 biS 1 a 1 

means that there exists a mapping d with the property 1 bill dia 1 • 

Therefore 1 bf r 1: 1 b 1 1 fi"" dia 1 1 fi = d 1 af 1 and 1 bg 1 .. 1 b 1 ~ g 1 Il dia Il g 1 

= d lagl., But af = ag and hence Ibfl = Ibgl. By the faithfu1nese 

of 1 we must have bf = bg. Therefore there exists a u such that b .. ua. 

q.e.d. 

Proposition 14. If b S X and a Ë X, then b S a if and on1y if, for 

every x E: X, xE: b implies x E- a. 

Proof: We remark that this proposition is a theorem in Lawvere's 

system and hence,'by the Theorem scheme, for discrete spaces it is a1so 

provab1e fromour axioms. Suppose that for every x E X, if xE- b, then 

xE. a. Then for every x el XI, x El b 1 implies x El al. By the above 

remark we must have 1 b 1 ~ 1 al, whi.ch together with Proposition 13 implies 

the existence of a u. such that b 1: ua. Since a and b are subspaces of 

X, we have b ~ a. The opposite implication is obvious. 

We. shall now investigate the re1ationship between the regu1ar 

subobjects* of an object X and the subobjects of 1 Xl. 

Consider the restriction of the functor 1 1 to the subspaces 

of an object X. Since 1 1 preserves monomorphisms, 1 1 carriesthe 

* By a (regu1ar) subobject of X we mean an equiva1ence c1ass of 
(regu1ar) monomorphisms into X. 

.. _-_._-_ .. __ .. __ ._-_._------~--
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subspaces of X into monomorphisms with co-domain 1 XI. If u S. X, 

v S X and u ';t v (i. e. u S v and v s: u) then 1 u! S 1 vi. Hence 

carries a regular subobject of X into a subobject of 1 xl. 

26. 

Consider the mapping lmf, LE. the regular image of a mapping 

f. d Clearly tint S X. In particular if D ---») 1 X 1 is a monomorphism 
t 

and 1 X 1 __ X-I' X is the mapping def1ned by Axiom 6, then lm (dt:x:) E. X. 

Consider the application lm (-tx) from the monomorphisms IX 1 to the 

subspaces of X. If d and d'are monomorphisms with co-domain 1 X 1 

such that d ~ d' then by Proposition 13 lm (dtX) ~ lm (d' t x)' Therefore 

lm (-tx) carries a subobject of Ixl into a regular subobject of X. 

Let us make the convention to write À ... tx whenever À is a 

mapping satisfying the property of tx in Axi9m 6. 

The following proposition shows that the applications 1 and 

lm (-tx) are inverse to one another. 

Proposition 15. For every object X, discrete space D and monomorphism 
d D~ IXI, we have IIm (dtx) 1'" d. If a S; X, then lm (taltx) '" a. 

Proof: By the corollary of Proposition 12, dtx III À q* where q* .,. lm (dt
x

) 

and X is an epimorphism. Since both d and tx are monomorphisms, ~ is 

also a monomorphisme Therefore À is a bijection. 

D ) IX 1 
d 

Since D is dis crete and À :i.s a bijection, by the corollary of Proposition 

Il, À satisfies the property of t
I 

(Axiom 6) and hence we may write 

-- ----;----------- ----------T,-
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'X .. t l • It follows that 1 Il ... D and hence lml (dtx) 1 .. d. Suppose 

now that a is a subspace of X. By the above resu1t lm (Ialtx) • laI 

which immediately imp1ies that lm (Ialtx) .. a. 

We shall next define "open subspaces" in our system. The 

notion of open set is primitive in topo10gy. In order to recapture 

this notion in our system, we shal1 enrich our language by adding to 

it a new undefined term namely an individual constant which we shal1 

denote by o. 

·Definition 11. E is the co-domain of the mapping o. OUr next axiom 

will make precise the meaning of o. 

Axiom 11. The object E has exactly three endomorphisms and 0 is an 

element of E. 

~ is a mode1 of the above axiom because we can interpret E 

as a space with two points 0, 1 and three open sets (the empty set 

and the sets { 0 land t 0, Il ). Clear1y this space has exactly three 

endomorphisms, i.e. the identity and the two constant mappings. We 

shall interpret 0 as the open point of this space. 

Proposition 16. The object E has two elements. 

Proof: Clearly E~ 0, E # 1 and hence E has at leasttwo elements. 

lt follows from Axiom 3 that two different elements of E generate 

different constant endomorphisms of E. Also if t is the ~apping from 

E into l, th en tx:;t. E for a11 x E E (otherwise E • 1). This together 

with the fact that E has only three endomorphisms, implies that E has 

exactly two elements. q.e.d. 
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We sha11 denote by c the e1ement of E different from o. In 
c:' 
J there is a one-to-one correspondence between the open subaets of a 

topologieal spaee X and the mappings X~ E namely, for every open 

subset A of X we consider the mapping 

if x E A 

if x, A 

Clearly the eorrespondence A ----7~A is one-to-one. It is 

also onto because if X ~ E ia a continuous mapping then A .. 'Il -1 (0) 

is open and 't' A = 0/. This shows that the following definition of 

"open subspaees" is adequate. 

Definition 12. A subspace a of X is eal1ed open if there exists a 

mapping X ~a) E sueh that a = Eq (fa' X ~1..2.....t E). 

C1ear1y the mappings 0 -----1 X and X are open subspaees of X 

and 0 is an open subspace of E. 

The following proposition says that every mapping ia "continuous". 

Proposition 17. f For every mapping X ---1) Y, if b is an open aubspace 

of Y, then the inverse image of b through f is an open subspace of X. 

Proof: Since b is open in X there exists a mapping ~b such that 

b :0 Eq (o/b' Y~j ~E). Let a:o f-1(b) and 'Pa • f't'b. '!hen by 
f 0 0 

Theorem 6, a = Eq (f 'Pb' X----j Y --7 1 ~ E) • Eq (lJI a' X ~ 1 ~E) 

and hence a is open. q.e.d. 

Proposition 18. Every monomorphiam with dis crete eo-domain D is an 

open subspace of D. 

Proof: Let a ~ D. By Proposition 10, a has a charaeteristic funetion 

f 
1 
1 

1 
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We shall prove that il is open and hence by Proposition 17, a is open. 

Let f be the unique mapping for which the diagram below commutes. 

... -_. ------_ .. _- '" .. 

-1 Clearly f (0) c il and since 0 is open,by Proposition 17 il is open. q.e.d. 

Having defined the notion of open subspace, we now want to make 

each object X into a "topologica1 space". Since the open subspaces of 

X are in a one-to-one correspondence with the mappings X-----+E, we 

must make sure that we have enough such mappings to guarantee the 

properties satisfied by the open subsets of a topological space. For 

instance,the intersection of two arbitrary open subsets must be open. 

We shal1 see later that by postu1ating the existence of sorne mapping 

of E x E into E, the ab ove property can be proved in the resulting 

system ofaxioms. 

The fol1owing observation motivates our next axiome Consider 
cr 

the product E x E, Pl' P2' In ~ the interpretation of E x E is the 

product space. The open subsets of this space are: the empty set, 

the total set, Pl-l(o) = {Co, 0), (0,1)1, P2- l
(0) = {Co, 0), (1, o)J 

and the set Pl-l(o) n P2~l(o) = i (0, o)t. Since E x E must have five 

open subspaces, we should have five mappings from E x E into E. The 

axiome stated so far guarantee the existence of only four such mappings, 
Pl 0 

i. e. E x E :==~~==:~ E and E x E ~ 1 ~ E. We need an additional 
P2 c 
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-1 n -1 { } mapping corresponding to the open set Pl (0) P2 (0) a (0,0) . For 

this reason we add to the system the fo11owing axiome 

Axiom 12. The unique mapping (0, 0) for which the diagram be10w 

commutes is an open subspace of E x E. 

Theorem8. The intersection of two open subspaces of an object X 

is an open subspace of X. 

Proof: Suppose that a and b are open subspaces of X. This means 
'Va 

that there exists mappings X ~ E such that the diagrams below 
'Pb 

are equalizer diagrams. 

a 't'a 
A--~~ X .) E 

~l~ 
t 0 

b ~b 
B --~, x~ 1 -----! E 

t 0 

Clearly <. to, to) = t (,0, 0). This together with Theorem 6 implies 

a () b = Eq «lYa ' 'Pb'> ,t (0,0». Let k = afl b. We must show 

'Pk that k is open and hence we seek a mapping X ) E such that 

k = Eq (~k' to). Since by Axiom 12 (0, 0) is open, there exists 
t l 

0 

a mapping "V(o, 0) such that <0, 0) = Eq (~o, 0)' E x E ~ 1 ~ E). 

Le t ~ k = ( 'Pa' 0/ b > '1'< 0, 0 > . 

--------- ." 

~ 

r 

1 

i 

\ 

1 

1 

! 
! 

1 

1 

1 
j 
j 
'~ 

1 
! 
j 
~ , 
1 

i 
1 



r 
\ 
t 
i 

1 
1 

1 
1 ( 

-- "- _. ---~ ... _--- -------------------------------------

1 
1 

U 1 
1 

r 

B t. "" ' \fla p. 
~ /" ~~ <.,.> l 

1"""" o~ E 

k \fJ k = k( lVa , lJl b> f (0, 0) = kt (0, 0) \fJ(0, 0) = kto. 

31. 

Suppose y~k = yto for some mapping Y~X. Therefore y(o/a' ~ b>~<o~O> 

= yto = y('I' a' 'fJ b ) t'o and since (0,0> = Eq (0/<0, 0>' t'O) , 

< 0 , 0> \I} \IJ y(o/a' 'f'b'> = Y~l ~E x E. But Y~l = yt , so y(Ta' Tb> = 

yt<o,o) and, since k = Eq «..0/ a' 'f'b>' t(o,o», there exists a 

unique u such that uk = y which proves that k = Eq (4'k' to). q.e.d. 

In order to define a Itopo10gy" on each object X by open 

subspaces, an arbitrary union of such subspaces must be open in X. 

Since this property is not e1ementary, we shall define the IItopo10gy" 

of X by an "interior operationll on the subspaces of X. 

In ~ the interior of a subset A of X is the 1argest open 

subset of X contained in A. This definition has an e1ementary counter-

part in our system and it makes sense once we know that for every 

a ~ X we do have a 1argest open subspace of X contained in a. The 

next axiom guarantees exact1y this. 

Axiom 13. For every a ~ X, there exists an open subspace a O of X 

such that: 
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ii) for every open 8ubspace b of X such that b S a, we have 

Clearly aO is determined up to an isomorphisme If a is open 

we may write aO = a. Consequently (aO)O = aO and XO = X. By the 

definition of aO we also have aO S; a. Hence, to show that "0" i8 an 

"interior operation" we need only verify that it is distributive with 

respect to intersection. 

Proposition 19. If a S X, b S X, th en (a n b)O = aO n bO. 

Proof: aO and bO are open subspaces of X and hence by Theorem 8 

aO fl bO is open. According to the definition of intersection aO n bO Si aO 

aO fl bO s: b. This implies that aO n bO San b. We shaH show that 

aon bO is the largest open subspace of af'l band hence aon bO = (an b)o. 

Suppose that c is an open subspace of X such that c San b. Clearly 

cG a, c ~ band hence ( since c is open ), c ç aO and c ç bO. This 

implies that c S aO n bO. q.e.d. 

In the system ofaxioms stated so far every abject has a 

f 
"topology" and every mapping X ---4) Y is "continuous" with respect 

to the topologies on X and Y. We now need an axiom ta the effect that 

we have enough "continuous" mappings in the system. Since we may think 

of 1 as being a forgetful functor built into the system, any mapping 
d 

1 X 1 ~ 1 y 1 may be interpreted as a set mapping. Supposing d is 

-1 continuous with respect to the topologies of X and Y, i.e. d carries 

open subse~of Y into open subsets of X, d must be the set-mapping of 

---------
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sorne mapping from X into Y. This forms the content of our next axiome 

Axiom 14. Let X and Y be objects and 1 X 1 ~ 1 y 1 a mapping with 

the following property: whenever v is an open subspace of Y and u 

is a subspace of X such that d-lelvl) = lui, then u is also open. 

Then there exists a mapping X f ~ Y such that 1 fi = d. 

We note that since 1 preserves pull-back diagrams we have 

1 f -l "" 1 -1 N (v) 1 = 1 u and hence by Proposition 13, f (v) = u. 

We also remark that by the faithfulness of 1 1, the mapping 

f, whose existence is postulated in the above axiom, is unique. 

Our final elementary axiom will grant the existence of enough 

"topological spaces" in our system. In order to state this as an 

elementary axiom, we shal1 introduce sorne definitions and notations. 

We reca11 that every monomorphism m with discrete co-domain 
~ il 

Dhas a characteristic function D m )2, i. e. m= Eq clfm, D~l ~2). 

By the exponentiation axiom there exists a unique mapping m* suèh that 

the diagram below commutes. 

Dx 1 PD ) D 

1< 
'V 

1 ~m 
::: 

D m* 

e 
D x 2D ) 2 

Clearly, if m and n are isomorphic monomorphisms into a 

discrete space D th en ~ m = ~ and hence m* = n*. Moreover, for 
n 

every x ~ 2D, there exists m S D such that x = m*. The correspondence 

m ) m* induces a boolean structure on the elemençs of 2D with the 

----------------------------
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operations (\ , U , ' defined as follows: 

m*n n* El (m () n)*, m*U n* = (m U n)*, (m*) , = (m')* 

(m' denotes the complement of m) and 0* = (0 ~D)*. 

If X is an object and uS X we shall write u* = lul*. 

We shall later make use of the following property of the 

(contravariant) exponential functor 2D, defined on 'the discrete spaces: 

If f is a mapping with discrete domain D and discrete co-domain 
f -1 D'and m is a monomorphism into D, then m*2 = (f (m»*. 

Definition 13. If D is a discrete space, a mapping 2D I) 2D is 

called an interior operation on D if 

i) 1 2 = l 

ii) D*I = D* 

(1 2 = l 1) 

iii) for every x € 2D, xI () x = xl 

iv) for every pair x, y E 2D, (x n y)I = xl n yI. 

Every interior operation defined on a set S determines a 

topology and every topology on the set S determines uniquely an 

interior operation. For this reason, in our system, we must have as 

many "topological spaces" X on a "set" D (i. e. X = D), as we have 

interior operations on D. This condition may be formulated as follows: 

Axiom 15. For every dis crete space D and every interior operation l 

on D, there exists an object X such that 

i) 1 X 1 = D 

ii) for every subspace u of X, u*I = (UO)*. 

We remark that the object X whose existence is stated in the 

above axiom is determined up to isomorphism by the interior operation 
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l on D. For,if X and Y are two objects corresponding to the same 

interior operation l on D, the identity on D = IX 1 = IYI may be 1ifted, 
f according to Axiom 14, to a mapping X --~} Y which has an inverse. 

Suppose that X is an object determined according to Axiom 15 

by an interior operation l on D. Then u is an open subspace of X if 

and on1y if u* l = u*. This fo11ows from the fact that u is open in 

X if and on1y if UO • u. 

The above axiom is the final elementary axiom of our system. 

We may deve10p this e1ementary theory and recapture in the system 

various topologica1 notions and theorems. 

--------_ .. _- '_.' ---.... _--
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CHAPTER II 

THE CHARACTERIZATION METATHEOREM 

It i8 the purpose of this chapter to show that the e1ementary 

system ofaxioms which we have constructed, together with one non­

e1ementary axioin, form a characterization of ~ • 
The proof of this resu1t is informa1 but it cou1d easi1y be 

forma1ized within a sufficient1y strong set the ory or presumab1y in 

the category of categories [7 J • 

Our discussion will be restricted to local1y sma11 categories. 

By thiswe mean categories with the property that for every pair of 

objects A and B, the class of aIl mappings from A to B is a set. 

The Characterization Metatheorem. If 'e is a locally small category 

such that: 

i) ~ is a mode1 of the e1ementary axioms 1 - 15. 

11) for every family t Aj J j (: J of objects of 'l 
there exists a sum and a product in~. 

Then, ~ is equivalent to ct. 
Proof: Let ~ be the full subcategory of ce whose objects are a11 the 

dis crete spaces. By the Theorem Schema, ~ is a model for the elementary 

axioms of Lawvere's system. 

Since ~ has arbitrary products and the functor 1 1 : ce ) 2J 
is product preserving,Sb must have products. 

By Theorem lb), the sum of two discrete spaces is discrete. 

The proof of Theorem l b) can a1so be used to show that if t Aj ~ j.E: J 

" --.---------
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is a family of discrete apaces and LA., {i.\ form a sum, then 
jf::J J J j j e- J 

j~J Aj is discrete. This, together with the fact that arbitrary 

sums exist in '8 ,implies that 9l has arbitrary sums. Hence,.all 

axioms of Lawvere for the category of sets hold for Cj) and conse,quently 

the functor HI :50 
categories (6) • 

Consider the category ~ defined as follows: 
oJ 

The objects of J~ are ordered pairs (D, I) consisting of an 

abject Df~ and an interior operation 1 on D. 

The morphisms of ~ with domain (D, 1) and co-domain (D', l') 

are mappings D f ) D' in ~ satisfying the continuity condition with 

respect to the interior operations l, l'. By this we mean that for 
~ 

D:' f f every x ~ 2 such that xI' = x we have x2 1 = x2. This condition may 

be written in the compact form Il.2fl = 1'2f. 

Clearly ~~ is a category. 

pairs of the form (D, 2~. (Clearly, 

operation on D.) 

The identi ties in CJ'g) are ordered 

the mapping 2D is an interior 

We shall prove that ~ is equivalent to sr by showing that ~ 
~ c;' d 

is equivalent to "'1) and that J'9) is equivalent to J . 

Consider the functor HI:~ --~)S. Hl is both faithful and 

full. (This follows from the proof of Lawvere's metatheorem [6) .) 

Suppose XE '8, D = 1 X 1 and let s be the function defined on 

HI (2D) such that s(x*) = (XO)*. Then s is a morphism in ~ and since 

Hl is full there exista a mapping 2D __ ~I~~) 2D auch that s = HI(I). 

Furthermore, if x is a subspace of X we have x*I = (XO)* for,x*l = 

HI(I)(x*) = s(x*) = (XO)*. This a1so implies that x is open in X if 

---_._--_ ... _------------------------------------- -----.-. '--
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and on1y if x*I = x*. l is an interior operation on D, because: 

i) C1ear1y s2 = sand hence H1 (I 2) = (Hl (I») 2 = s2 = s = H1 (1) 

and so 1 2 = l since Hl is faithfu1. 

ii) D*I = X*I :: (XO)* = X* = D* 

Ui) For every x* € 2D (x ~ X), we have x*I n x* = (XO) * fl x* = 

(XO () x)* = (XO)* = x*I. 

iv) For every pair of e1ements x*, y* of 2D (x, y ~ X) we have 

x*I n y*I. 

38. 

We define a functor F: " ~ ~ as follows: F(X) = (D, 1), 

where D :: 1 X 1 and l is the interior operation on D, obtai!1ed above. 

If X f ) Y and F(X) = (D, 1), F(Y) = (DI) Il) then the 

mapping D 1 fi ) DI is in ~ To see this, consider yS Y and let 

-1 ° x :: f (y). Since yO is open in Y, by Proposition 17, x is open in 

X and hence x*I = x*. The functor 1 preserves inverse images, so 

-1 Ifl ° Ifl we have Ifl (lyOI) =Ix-·l and hence y*I'2 = (y)*2 :: X*. There-

fore y*I 1 21 f '1 :: x*I :: x* = y*I 121 fi. This equality ho1ds for all 

DI Ifl ffl·. r;! 
y*E2 andhenceI ' 2 1=1 1 2 ,i.e.lflE-:S~. LetF(f)::lfl. 

C1ear1y F: ~ ) ~ is a functor. We shall now define a functor 

G: S'm )~. For this consider (D,I)E-~ and let X be the object 

assigned by Axiom 15 to the pair (D, 1). (X is unique1y determined up 

to isomorphism.).· We define G(D,I) = X. If D d) DI is a morphism 

in cr~ fram (D,I) into (DI ,II), and X = G(D,I), Y = G(DI ,II), then d 

satisfies the condition in Axiom 14 with respect to X and Y. ln order 

to prove thi,s we first note that 1 xl:: D, IY 1 :: DI. Furthermore, if 

v is an open subspace of Y, then ~lear1y v*II :: v*. Suppose u is a 

r ' 



r 
t 
[ 

(: 

39. 

-1 1 subspace of X such that d (Ivl) = lu • Then, since d E ~ , we have 

f f f 2 f v*2 l .. v*2 = u* and hence u*I ... v*2 l = v*2 ... u*. This implies 

that u is open in X. According to Axiom 14 there exists a (unique) 

f mapping X--~)Y such that 1 fi ... d. Let G(d) = f. C1ear1y, G 

is a functor. We sha11 show that F ° Gand G ° Fare natura11y 

equivalent to the identities on ~ and ~ respectively. Suppose 

X .. G(D,I). Then for every x S X we have x*1 ... (Xo)*. Let F(X) .. (D,l'). 

By the definition of l' for every x S X, x*l' = (XO)* and hence x*I = 
(XO)* = x*I' for aU x* fi 2D which implies that l .. l'. Therefore 

F ° G(D,I) ... (D,I) for aIl (D,I), i.e. F ° G ... ~ Suppose (D,I) = 

F(X). Clearly for aIl x ~ X, we have x*I .. (XO)*. Let G(D,I) = Y. 

Then 1 YI ... D and y*I ... (yO)*. Since both X and Y = G 0 F(X) satisfy 

Axiom 15 with respect to the pair (D,I),they are solutions of a universal 

mapping problem and so we have G ° F(X) ~ X and this isomorphism 1s 

natural. Therefore, F: 'C -----)\ is an equivalence of categories. The 

proof of the metatheorem will be complete once we show that ~ 1s 

equivalent to sr . 
Metatheorem. Let ~ be any locally small category such that i) 1s a 

model of Lawvere's system ofaxioms for the category of sets. Then ~ * 
is equivalent to ~. 
Proof: Since ~ is a model of Lawvere's system, for every object D~~ 

the lattice of subobjects of D is complete, i.e. for every family of 

subobjects of D there exists a union and an intersection. Let (D,I) E ~ 

and let ctD .. i a ~ D , a*I III a* J. Clearly D é ~ and 0 ." D E ~ 
Since l is an interior operation on D, if a, b E lro then a fl b lE ~. 

* ~~ is constructed from 50 as in the previous metatheorem. 
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trD is also closed under arbitrary unions for let {aj ~ je J be a family 

of elements of Oi;. 'rhen.U aj ~ D and clearly ( U aj)*I 5 (U aj)*. 

40. 

J~J jE J iEJ 

Also ai* = ai*I =- ( U aj)*I for a11 i{ J and hence ( U aj)* ~ (Uaj)*I. 
j~J U U j~J jO 

But this implies that (U aj)*I .. ( a.)*, Le. aj €Cio. For every 
j~J j~J J j~J 

a ç D let Va = { x e- Dix E a }, 1. e. x E Va if there exists a mapping h for 

which the diagram below is commutative. 

unions. 

A 

~~ 
h ~ D 

\/x 
1 

V U 'b is closed under finite intersections and arbitrary 
jt Jaj ' 

Hence ~ defines a topology on H'(D). Let F(D,I) = (H'(D), b). 

If D f ) DI is a morphism in ~ , H' (f) is eontinuous because if 

Val~ 't'and a = f-l(al)' clearly (H'(f»)-l(Val ) ={XIXf E: val} = Va 

f f 
and since al*I' = al*, we have a*I = al*2 l = a l *2 = a* which means that 

Let F(f) = H'(f). 
G;! 

Clearly F thus defined is a funetor from ~ 

Sinee HI is faithful, F is faithful. Since H' is full, for every 

eontinuous function cJ..: (H' (D) , ~) ) (H' (D'), 't') there exis ts a mapping 

D ~ DI such that cl.. = H' (f). The continuity of 0/. implies that f E. ~ 
-1 -1 

because if al Ç, D', al *I = al * and a = f (al) then Va = oi. (Val). But 

Val Et' and sinee r::I., is continuous Va ELand henee a*I = a*. Therefore 

f f ~ 
al *2 l ... a*I = a* = al *2 and henee f € ~~. 111i9 means that F is full. 

To show that F is an equivalence it will suffice to prove that 

for every topologieal spaee (X,~) there exists an objeet (D,I) in ~ 

._-_. -----_._--- .. __ ._~-- .. 
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such that (X,~) g: F(D,I). Let (X, 't) f cj and let D CIl [x 1 E,<:l) • 

For every open subset U of X let L 1 av) D be the mapping 
'U 

induced by the inclusion U S X. The family (.j' = {au\u is open in xJ 
is closed under fini te intersection and arbitrary unions. cr defines 

an operation on the elements of 2D (a* ) ( U a )*) which can be 
a caU 

lifted to an interior operation l on D such thatUa*I =.a* if and only 

if a E (j. Then F(D,I) = (Hl (LXI) , t,) is isomorphic to x. Indeed 

the map i: X--~) Hl(Lxl) which associates to every x € X the 

ix )" 
injection 1 --~)'"Xl is one-to-one, onto and since for every open 

subset U of X, i(U,) a: V ,i is a homoemorphism. q.e.d. 
av 

The proof of the characterization metatheorem shows that the 

three constructions of the topological category, i.e. the traditional 

construction, the translation of this construction in Lawvere's system 

and our axiomatization lead essentially to the same thing. 

We give below an outline of an alternive direct proof of the 

characterization metatheorem. 

The functor Hl: ce ~ Jean be lifted to a functor F: cg ~ Cj 

in the following way: 

Let C be an object of ~ and for every subspace a of Clet 

Va = { x E C 1 x E a !. Then ~ =~ Va 1 a ~ C, aO = a 5 defines a top-

ology on H1(C). l t can easily be seen that if C f ) C' is a 

mapping in ce then Hl (f) is continuoue. Let F (C) = (Hl (C), t ) and 

F(f) = Hl(f). Clearly F ia a functor and because Hl is faithful so is 

F. F is also full. To prove this we consider a mapping F(C) ~ )F(C') 

in CJ' and we apply to it the forgetful functor U ,i. e. Hl (C) U(Â), H' (C') 

is a mapping in ~. Since for every objecc C ~ ~ , the mapping 

-,------ ... -_ ... -
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1 e 1 ~ e is a bijection, Hl (te) is an isomorphisme Let r be the 

unique mapping for which the diagram below commutes. 

Since Hl: ~ --~) J is full there exists a mapping d such that HI (d) 

= r- . It can be shown that d satisfies the condition in Axiom 14 with 

f respect to e and Cl and hence there exists a mapping e ----~) Cl su~h 

that 1 f 1 = d. It is easy to see that F(f) = À which proves that F is 

full. Renee F is an embedding. 

We note that Axiom 15 was not used when proving that F is an 

embedding. 

To complete the proof of the metatheorem it suffices to show 

that for every topological space X there exists an object A ~ ~ with 

the property F (A) ~ X. In order to sh ow this, we make use of the 

following proposition obtained by S. Baron as an application of the 

embedding lemma [4 J : 

"Every topological space can be embedded in a product of 

copies of the indiscrete space with two points and the topological 

space with two points and three open subsets." 

We first remark that Axiom 15 guarantees the existence of 

an "indiscrete sI>ace" with two pointsIE,.in our system. It is easy 

to see that F(E) is a space with two points and three open subsets, 
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F(Ë) is an indiscrete space with two points. Furthermore, using Axiom 

15 we can show that F preserves products and equa1izers. 

The proof will be comp1eted once we show that for every sub-

space X of a topo1ogica1 space F (C), there exists a subspace a of C such 

that X is the image of F(a) in F(C). 

F(A) 
\ '-...F(a) 

\\t '. "s F (C) 

~ G;. 
X 

This fo11ows from the fact that every subset of H1 (C) determines a 

subset of H1 (ICI) which in turn is determined by a monomorphism into 

ICI. C1ear1y to every such monomorphism there corresponds a subspace 

a of C which has the required property. 

., 
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