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ABSTRACT 

The performance of a device, for certain design parameters, can be modeled using finite 

element analysis (FEA); however, this can be computationally complex and time 

consuming. But because this performance can be modeled as a continuous function over 

the parameter ranges, it is efficient to combine FEA with interpolation to rapidly estimate 

the performance for any variables. While there exists many interpolation techniques; FEA 

can provide sensitivities at little extra cost, so these methods should take advantage of 

this information. In this thesis, a new adaptive interpolation scheme is proposed which 

uses radial basis functions (multiquadrics) while making use of sensitivities. Results 

demonstrate the greater accuracy of the new scheme compared to a previous multiquadric 

algorithm without sensitivities. Test cases include artificial functions, and an example 

combining FEA and the interpolation of the reflection coefficient for a rectangular 

waveguide containing a partial height metallic post. 



RÉSUMÉ 

L'exécution d'un dispositif, pour certains paramètres de conception, peut être modelée en 

utilisant l'analyse d'élément finie (AEF); cependant, ceci peut être computationnellement 

complexe et prendre beaucoup de temps. Mais parce que cette exécution peut être 

modelée comme une fonction continue par-dessus les gammes de paramètre, c'est 

efficace pour combiner AEF avec l'interpolation pour rapidement estimer l'exécution 

pour n'importe quelles variables. Il existe beacoup de techniques d'interpolation, mais 

puisque le coût d'obtenir des sensibilités par AEF est peu, ces méthodes devraient 

profiter de cette information. Dans cette thèse, un nouvel algorithme d'interpolation 

adaptif est proposé qui utilise les fonctions de base radiales (multiquadriques) en utilisant 

les sensibilités. Les résultats démontrent que le nouveau méthode est plus précis en 

comparaison avec un algorithme de multiquadrique précédent sans sensibilités. Les tests 

incluent des fonctions artificielles, et un exemple combinant AEF avec l'interpolation du 

coefficient de reflet pour un guide d'ondes rectangulaire contenant une poste métallique 

d'hauteur partielle. 
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1 Introduction 

1.1 Problem Statement 

Numerous multivariate problems in science and engineering have a continuous behavior 

over the range oftheir parameters. Often however, when studying these problems, 

obtaining the function value at any given point is not practical or too costly. Instead, the 

user is limited to having only a discrete amount of information on the variables and the 

corresponding behaviors at those points. 

A Response Surface Model (RSM) is a function capable of estimating the 

behavior of an objective function, anywhere over the parameter range, given the limited 

amount of data available. This can be accomplished either through interpolation or data 

fitting. Furthermore, this data is often irregularly spaced or "scattered" and the function 

must be able to handle this. 

Sorne examples of fields where scattered data interpolation arises are "medical 

imaging, meteorological or geological modeling, cartography, and computer aided 

geometric design" [1]. In the case of computer aided design, a good interpolation 

technique can be used to model circuits and microwave structures, by combining the 

accuracy of EM simulators with the speed of circuit simulators. The data points are first 

obtained from often costly EM simulations then interpolated over desired ranges to 

construct a RSM which estimates the function for any values of the design parameters. 

This can be used for optimization, and replace expensive simulations saving time and 

money. 

In this thesis a new adaptive interpolation technique for scattered data is 

introduced. It takes advantage of partial derivatives at the data points, where most other 

interpolation techniques do not include these, since they are generally not available. The 

algorithm also includes a method for adaptively sampling new data. The report will show, 
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through theoretical and practical exarnples, that this new method is more accurate than 

previous solutions. Sorne aspects of the work recently appeared in a conference 

publication [2]. 

1.2 Literature Review 

There is a large literature on the many methods of interpolating scattered data. This is to 

be immediately distinguished from data fitting. Interpolation requires that the surface 

pass through the data points. Data fitting, on the other hand, is primarily concemed with 

the smoothness of the overall surface which need only pass near the data points, like 

"best -fit" lines. 

Scattered data interpolation can be categorized into two general techniques: global 

methods and local methods. In global methods, the interpolating function over the whole 

space depends on the entire set of given data points: this can prove inefficient for a very 

large number of given data. In local methods, the interpolated space is divided into 

several functions, each only using "nearby" data points. Two excellent literature review 

papers are offered by Franke [3] and Amidror [1]. These papers review on the following 

methods for scattered data interpolation: 

• Inverse distance weighted method 

• Radial basis function (RBF) methods 

• Rectangle based blending method 

• Triangle (or Tetrahedrization) based methods 

Of the se four groups, only the first two are ofreal concem in this paper. Both are 

applicable to higher dimensions: a necessity for modeling in design space. The other two, 

rectangle and triangle based methods, in addition to being more complex and having 

greater storage requirements, are only really useful for up to two dimensions, thus not 

suitable for our purposes. 

Sections 1.2.1 and 1.2.2 discuss the first two methods, for problems where the 

data set is composed of n points. For c1arity, aIl equations in these sections will be 
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presented for two dimensions only, where the i-th point has coordinates (Xi, yJ, and 

objective functionf(x,y) at that point isfi = f(xiJ yJ. 

These equations can nevertheless, clearly, be generalized for P-dimensions. 

1.2.1 Inverse distance weighted methods 

Also known as Shepard's methods, inverse distance weighted methods are sorne of the 

most common forms of scattered data interpolation. Shepard' s method [4] represents a 

particular case of the more general technique known as Interpolating Moving Least 

Squares (IMLS) [5]. 

Shepard's method is a global technique using weights: interpolated points are 

more dependent on nearby data, and less affected by data points far away. The original 

formula is a weighted average of values of the mesh points. 

(1) 

A major problem with this techniquehowever is the resulting flatness at the data 

points. Sorne variations to Shepard's methods include changing the value of Il to 

manipulate the flatness: certain mesh points can even be given more influence by 

changing Il individually for each point. The method can also be made local by only using 

nearby data points to build the function, eliminating the effect of distant points. 

To resolve the problem offlatness at the data points, Shepard proposed a way to 

take advantage of partial derivatives, and even estimate these when they are not available. 

To do this, the value ofji in Eq. (1) is replaced by: 

(2) 

where ai and bi are the x- and y- partial derivatives at the mesh point. The result is a much 

more pleasing and continuous function. 
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Shepard's method is one of the most popular techniques. It is also easily 

extendable to higher dimensions. In its most basic form, there are certain shortcomings, 

perhaps the most important being the zero derivatives at every data point. The potential 

improvement using partial derivatives is shown in [6]. In Franke's tests [1], he did not 

examine Shepard's method using derivatives, but he did determine radial basis function 

methods to be the best technique when gradient information is not available. The question 

must then arise of how the "best" technique can be improved using partial derivatives. 

1.2.2 Radial basis function methods 

First introduced in the 1960's by Hardy [7], radial basis function methods have proven 

effective at interpolating scattered data. Franke showed that Hardy's multiquadric (HMQ) 

approach was the most impressive in terms of smoothness and fitting ability. The basic 

idea ofRBF is to choose sorne function Gk(X,y), so that for each data point we get: 

n 

J; = La;G;(x,y) (3) 
;=1 

It then remains to find the coefficients ai. As the name implies, the functions Gi will 

actually be associated with the distances between points (x, y) and (Xi, yJ. 

In Hardy's original method, Gi is a hyperboloid centered at (Xi, yJ: 

(4) 

The overall surface response can therefore be seen as summing circular two-sheet 

hyperboloids. The shape of the surface around any point is influenced by the sharpness or 

flatness of every conical surface around each data point. 

Here, h is a so-called "shift parameter" to be determined and optimized by the 

user. Though the method proves quite stable with respect to h, in terms ofmaintaining 

smoothness, its optimal value is not easily found. Choosing too small a value will make 

the hilltops "sharper", whereas giving h too large a value may cause it to overshadow the 

hyperboloid itself. Alotto et al. [8] used a bootstrapping technique to optimize the shift 

parameter: for this, they applied a "leave out one" method, to estimate the average 
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interpolation error. This method removes the user intervention, making the choice of h 

automatic. 

There are other possibilities for the basis function such as using paraboloids: 

(5) 

However, according to Hardy, using quadrics other than cones might displace the 

maxima and minima of the interpolated surface. It is therefore useful to know the position 

ofsome points having zero slopes. To take advantage ofthis new information, one 

suggestion made by Hardy would be to add a simple polynomial series to the 

multiquadric. The example given, in 1-D, is: 

(6) 
;=1 ;=1 

where n is the total number data points, and there are m points having zero slope. This 

can then be solved by differentiating the function to obtain: 

(7) 
;=1 ;=1 

The coefficients ai and hi can then be solved for, since we have a system of n + m 

equations and n + m unknowns. 

1.2.3 Using gradient information 

In Section 1.2.1, the term IMLS was introduced. This technique is applied in [9] where a 

P-dimensional quadratic is used for the basis functions with 1 + 2P + (P 2 - P)/2 terms 

(this differs from Shepard's method, where there is only one term). Weights ensure that 

data points far away from the sample point have minimal effect. With partial derivatives 

available, the author shows that with n data points and a large P, approximately PI2 data 
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points are required to get the same number of equations as unknowns. This is as opposed 

to P 2/2 which would be required if the derivatives were known. 

IMLS using gradients is shown to have a better RMS error estimate when 

compared to HMQ without gradients. However, based on Fig. 1 of [9], it does appear to 

have an undesirable oscillatory behavior, compared to the multiquadric RSM, which does 

not. 

In [10], another approach taking advantage of partial derivatives is taken in which 

the RSM uses inverse polynomial models. In addition to these inverse polynomial s, 

pseudo-points are extrapolated at the extremes of the input ranges, to be used as extra 

data. These pseudo-points are only associated, however, with the limiting values of the 

parameters: in a P-dimension, there are only 2P pseudo-points. 

In [11], the authors examine a curve-fitting technique which uses gradients. The 

authors use cubic functions for the fitting of the force and flux surfaces of an 

electromagnetic device. Though not an interpolation technique, this is yet another paper 

demonstrating how computation time is greatly reduced through the use of gradients. 

Few papers have tackled the idea ofusing partial derivatives toimprove 

interpolation, probably since theseare often not available. But when they can be obtained 

at little extra cost to the finite element analysis, the benefits of including them in 

interpolation should be explored. References [9] and [10] propose techniques which 

appear to show improvements; but at the same time they have their own drawbacks, such 

as an oscillatory behavior or not associating pseudo-points to the data points themselves. 

The purpose of this thesis is to explore a new technique that uses gradient 

information, and is more stable than previous solutions. Since Hardy's multiquadric 

technique seems to be the most impressive method when gradients are not available, it 

will be the basis of this new algorithm. 

1.2.4 Adaptive Sampling 

Because EM simulators are so computationally intensive, it is necessary to selectively 

sample data points to make the process more efficient. These points should be sampled 

adaptively so as to reduce the error between the interpolation function and scattering 

parameter behavior, while using the minimal amount of data. 
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There are several papers on adaptive sampling for interpolating S-parameters 

[12], [13], [14]. These papers focus on frequency as the main variable, but the concept 

should apply for multivariate problems. The S-parameters are first represented using 

rational functions then, using a suitable error estimate, the new sample point is 

determined. 

In [13] the author uses the Model Based Parameter Estimation (MBPE) and in 

[12] the frequency response is represented using Multidimensional Cauchy Rational 

Functions (MCRF). Sorne ways of estimatingthe fitting error are using two models that 

have different data sets, or two models which have different orders for the numerator and 

denominator. Once these functions are built, the point of maximum deviation between the 

two can be used at the new sampling point. Points are added until the two models 

converge to an acceptable value. 

When using different orders of the rational functions as an error estimate, the 

difference between these degrees is determined heuristically or fixed a priori. A solution 

to this is presented in [15], where a genetic algorithm determines this difference. The 

algorithm chooses those models which are closest together, so most likely to best 

represent the true function. 

In [16], the authors propose another adaptive technique for building P

dimensional models for microwave structures, called multidimensional adaptive 

parameter sampling (MAPS). In this paper, the new sampling points are chosen by taking 

the maximum deviation between the "best fit" and "second best fit" interpolation 

functions. 

In addition to adding new sample points to improve the overall RSM, they can 

also be added to explore the behavior of the RSM around its global extreme [17], [18], 

[19], [20], for optimization purposes. 

By progressively improving the accuracy of the optimum region, through the 

addition of several new points, the user can determine the optimum electromagnetic 

device. There are several ways to optimize the objective function, such as using an 

Evolution Strategy or Simulated Annealing. An important note is that the main purpose 

ofthese optimization techniques is to explore the global extreme. AIso, using these 

methods, there is a danger ofbecoming trapped.in a local minimum. Resolving this 
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requires a further optimization technique, such as adding a point in the most un-explored 

area. In [17], a cluster feature associated with their genetic algorithm allows the user to 

add new points around local minima that are potentially masking the global minimum. 

This way, not only the best point is considered and the overall Response Surface is 

improved. 

A three stage sampling process is used in [21] to search for the optimum. The first 

stage involves using Simulated Annealing to find minima of several HMQ interpolations 

that have different shift parameters. The second stage adds a point at the highest 

deviation between the HMQ interpolation having the smallest shift parameter and another 

HMQ with a given shi ft parameter. And finally, the third stage adds points in regions 

where the sample points are more widely spaced apart. 

In addition to taking advantage of partial derivatives, the algorithm presented 

implements a technique for adaptively sampling new data points. As will be shown, the 

method for doing this is inspired from the technique applied in [16]. The goal of adding 

these new sample points will be to improve the overall RSM, so not just exploring the 

optimum region. 

1.3 Outline 

In Chapter 2, we will examine the proposed interpolation technique. Similarly to [10], the 

algorithm uses pseudo-data points, but improves upon it by associating these points with 

every data point. 

In Chapter 3, the adaptive aspect of the algorithm will be explored, including an 

error estimate technique involving the original multiquadric method. 

Chapter 4 will present the results for several interesting examples, proving the 

effectiveness of the algorithm. These will include sorne theoretical and practical 

examples ofwaveguides. One practical example will involve coupling to a Finite 

Element solver to determine new sample points. 

Chapter 5 will conclude this thesis with final observations and remarks on 

potential further analysis ofvarious aspects of the algorithm. 
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2 Gradient Influenced Multiquadric (GIMQ) 

2.1 Introduction 

As mentioned in section 1.2.4, two papers [9][10] have tackled the problem ofhow to 

take advantage of gradient information. These previous solutions, however, have 

demonstrated their own drawbacks. [9] and [10] use variations ofIMLS and inverse 

polynomial models respectively, but in Franke's paper [3], it was determined that 

Hardy' s multiquadric technique was the most solid form of interpolation. For this reason, 

this will be our starting point. We will take the best technique and try to include the 

gradient information to make it better. 

In Hardy's method, we have n data points, along with their respective value./i. We 

can then apply Eq. (3) to each point, resulting in n linear equations with n unknown 

coefficients ai. In matrix notation, we are left with: 

f=Ma (8) 

Now, if we want to include partial derivatives, there is a new set of information. 

For each new point, in a P-dimensional problem, there are P partial derivatives. Ifwe add 

these to the vector f, we get a new vector F of size n(P+ 1): for each of the n points, there 

is the function value and P partial derivatives. 

We must now find new basis functions that exploit the benefits of having partial 

derivative information. These new basis functions will yield a fully determined n(P+ 1) 

by n(P+ 1) matrix and add flexibility and accuracy to the interpolàtion itself. 
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2.2 Using derivative information 

2.2.1 Pseudo-data points 

In [10], Malik et al. generate pseudo-points only at the extremes of the input ranges. This 

means there are only 2P pseudo-points in a P-dimensional problem, regardless of the 

number of data points, which in tum limits their contribution. 

Another approach suggested in the same paper is to generate several pseudo-data 

points around the actual data points. For example, in two dimension, a point (x, y) will 

have 8 pseudo-points generated around it: f(x - cp], y - CP2), f(x, y - CP2), f(x + cp], y - CP2), 

f(x - cp], y), ... The authors do not suggest a way offinding the optimal step sizes for 

these extra points, but these must be restricted so they don't overlap. 

From their tests, the authors of [10] concluded that for their particular examples 

generating pseudo-points around the extremes resulted in the most accurate model. An 

argument can be made, however, that having these virtual points associated with each 

data point is more reasonable and beneficial, in general. In addition to providing more 

weight around the data points, there would be new pseudo-points for each new sample 

point added to the data set, be it for optimization or improving the overall RSM. 

We suggest having one pseudo-point along each dimension at each point. 

Therefore, in two dimensions instead of having 8 extra points, we would instead generate 

only two. Taking our previous example of a point (x, y), the se extra points would find 

themselves at coordinates: (x - cp], y) and (x, y - CP2). 

Immediately, the problem of overlapping pseudo-point is much easier to solve 

since there are fewer of them. In order to reduce the chance of overlapping, the algorithm 

will use step sizes which vary for each point. 

One possibility is to set the step size at a fix ratio of the distance between a point 

a and its nearest neighbor b: the step size <l> may be lia - bill fJ . For our results, we will 

use a ~ value of 5: of course this number will have an influence on the RSM. 

Figure 1 illustrates an example of data points in two dimensions, with their 

pseudo-points. 
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Figure 1 - Position of data points and their pseudo-points 

Remark the following change in notation from Section 1.2.1 (used for the remainder of 

the report): 

X 
(i,w) 

k • 

• 
• 
• 

• 

Xw is the w-th component ofvector x. 

x(i) is the i-th point. 

ali) is the distance between the i-th point and its pseudo-points. 

X (i,w) - X (i) - 8 <D(i). k-th component of X(i, w) 
k - k k~ • 

The pseudo-points are represented as X(i,w), and are vectors having the component 

From our tests, as will be seen in Chapter 4, it appears that having a smaller step 

size between the parent points and their pseudo-points results in a smoother and more 
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accurate surface. This might be explained by the fact that aIl the data points (parent and 

pseudo) are concentrated around real information - the objective function and partial 

derivatives at the coordinates of the parent point. 

Interpolated points around the original data points will be more accurate than 

those further away. Therefore, pseudo-points which are doser to the parent point will be 

more precisely interpolated than ifthey are spread further away. Of course, pseudo-points 

are not evaluated as true data values nevertheless, but making them doser to the parent 

point does seem to have this effect on the surface. 

The optimal step size, though, is not necessarily as small as possible. Firstly, it 

must not be so small so as to render the matrix singular. Also, the pseudo-points should 

still be spread out enough so that the overall surface can make good use of them. 

The optimal value of the step size will vary depending on the RSM. And, the 

above explanation has not been mathematically proven to be valid, only hypothesized as 

reasonable. Further investigation would be required to find an optimum value of p. 

2.2.2 Proposed basis functions and solving the unknowns 

As stated in Section 2.1, ifwe use partial derivatives there are many more givens than 

unknowns. Since F now has n(P+ 1) elements, the matrix M must be a square matrix of 

the same size. But with the addition of pseudo-data points, there are now P+ 1 points for 

each of the n data points. Recall the original multiquadric, in two dimensions: 

f= tai~(xJ _XJ{il )2 +(x2 _X/l )2 +h2 

i=J 

(9) 

The new basis functions added are also two-sheet hyperboloid, but now centered 

at the pseudo-data points. In two dimensions, this results in the surface being re-defined 

as: 
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n ~---------------------" 1 (i) 2 . (i) 2 2 f= L.,.a3(i-I)+I-V(XI -XI) +(X2 -X2 ) +h + (10) 
i=1 

~( (i) ,nCi))2 ( (i))2 h2 a 3Ci- I)+2 XI -XI +'V + X2 - X2 + + 

~( (i))2 ( (i) ,nCi))2 h2 a 3Ci- I)+3 XI - XI + X2 - X2 + 'V + 

Now since our new M matrix has n(P+ 1) columns, the extra P = 2 rows per data 

point are obtained by taking the derivatives of the basis functions with respect to each 

dimension: 

(11) 

X - X (i) + <D(i) 
1 1 

X _XCi) 
1 1 

(12) 

So we have n(P+ 1) linear equations and n(P+ 1) unknowns. Equations (10), (11), 

(12) can be re-written in their general form for P-dimensions as: 
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(i) (i,q) n { . P } f = ~ a(p+l)(i-l)+l' g(~ - ~ ) + ~a(p+l)(i-l)+l+q • g(~ - ~ ) (13) 

and 

where, 

• 

• 

Inserting the locations (Xi, Yi) into the above equations and knowing their valuesf; 

as well as partial derivatives, we can solve the coefficients: 

(15) 

The surface model built from these coefficients is what we will caU the Gradient 

Influenced Multiquadric. 

2.3 Optimizing the shift parameter 

As in Hardy's multiquadric, the proposed new algorithmalso contains a shift parameter h 

that can affect the overall RSM; however, because the new algorithm is built using 

additional information, it is probable that the surface will be less sensitive to h. 

Without having access to the true function, there is no way to determine the 

optimum value of h. It is desirable though to automatically calculate if in a suitable way, 
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to remove any intervention from the user. In [22], several ways of choosing h for HMQ 

are reviewed, as well as the "leave out one" method which is implemented. 

2.3.1 Leave out one 

In [8], the authors use a bootstrapping technique to determine h. Their approach 

uses an error estimate technique known as "leave out one", similar to [22]. 

This error estimate is evaluated by rebuilding the surface n times, leaving out one 

of the n data points each time. For each surface, using a left-out point, the difference is 

taken between the omitted true value and the interpolated value at the coordinates of that 

omitted point. The idea is that the average error around the area of the omitted point is 

approximately the error between the true and interpolated value. 

The overall error of the surface, using all data points, is the root-mean-square of 

these individual differences. 

We apply this technique to optimize the shi ft parameter in the new algorithm. But 

each surface built using a reduced sampling set, still makes use of the partial derivatives 

of the remaining points. Note that in this case, for each point left out we also omit the P 

partial derivatives. Once again, the error ofthe overall RSM is the root-mean-square of 

the individual errors found for each "reduced" interpolated surface. 

2.3.2 Golden search algorithm 

Once we have a method for estimating error for a given h, the next step is to find the 

value of h that will minimize this error. The golden search algorithm [23] is a common 

method that can be found in many textbooks. 

The method involves evaluating the error for two different values of h. The range 

between them is progressively reduced in the direction of the smaller error, until the 

bracketing interval is sufficiently small, resulting in a quasi-optimum h. 

Note that unlike the HMQ method, the h of GIMQ may not take on the value of 

zero. This would lead to sorne elements within the matrix being divided by zero. 
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3 Error estimation and adaptive interpolation 

3.1 Error estimation 

The algorithm presented in Chapter 2 improves upon Hardy's multiquadric by making 

use of gradient information, so-called the GIMQ method. But once the model has been 

built, it is useful to have an error measure, to estimate the accuracy of the RSM. 

Section 2.3.1 describes a potential way of doing this, called "leave out one", used 

to optimize the shi ft parameter h. While this method certainly is a possible candidate for 

our error estimate, there is reason to explore other possibilities. 

Firstly, the "leave out one" estimates the error ofthe surface based on a very 

limited number of points. AIso, it does not distinguish any point as having more or less 

importance in its calculation, leaving the potential for a very large over-estimate of the 

error. As a crude example ofthis, observe Figure 2. 

interpolation with aU points l--f(X)1 leave out f(2) 
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Figure 2 - Leave out one overestimating error 
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From the figure above, we see that the point having coordinate x = 2 is the most 

isolated. Figure 2 Ca) shows the modelf(x) that includes aU data points. Figure 2 Cb) 

shows what the reduced model g(x) without that point might look like. As we can see the 
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error at that point can be very large. However that point actualIy is available in the data 

set, so the contribution of this difference in the error estimate will be more significant 

than it should be. 

Though it is more desirable to over-estimate the error than under-estimate the 

error, this over-estimate should still be relatively close to the true error. Because the 

"leave out one" uses the n sample points of the data set, it is difficult to ensure accuracy 

over the entire range of the surface. A better error measure would be to analyze the 

contribution of many points over the range of the surface. 

For this reason, we have come up with an alternative method which we believe to 

be more accurate, and will calI the "Mean Quadric Difference" (MQD). As we will see, 

another important bene fit is this error estimate takes into consideration a large number of 

points, rather than the limited number of sample points: this will prove to be very useful 

for adaption. 

In 1.2.4, we found that one way to estimate the fitting error is to take the 

difference between two interpolation models representing the same objective function. 

Since our algorithm is based on HMQ, it is convenient to use this as the second model 

with which to compare. 

To calculate the MQD, a regular grid is built having density proportional to the 

number of sample points, n. This density is also dependent on the number of dimensions, 

P. The number of regular grid points along each direction should be greater than 

approximate number of sample points along that direction: to determine the number of 

points along each direction of the grid, we used the folIowing formula: 

(16) 

Here, k is an integer greater than 1 (e.g. 3, 5, 10 ... ) which manages the number of 

grid points along each direction. To reducecomputation time, a smalIer k can be used for 

a larger number of dimensions. 

The objective function is evaluated at the grid points using both HMQ and GIMQ. 

The root-mean-square of aIl these differences estimates the average fitting error of our 

new mode!. 
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Using analytical functions, it was found that the MQD represents a better measure 

than the "leave out one". 

Another aspect of the MQD is that because it is an RMS of the errors at many 

points, we remove points that do not fit within the possible constraints of the problem 

(e.g. Xl < X2): behavior in un-desirable regions of the surface can be discarded as 

irrelevant to the interpolation and the error estimation. 

In addition to providing the user with an overaU error measure of the interpolated 

model, this method can be used to estimate the error of any interpolated point: instead of 

taking the RMS over the surface, the difference between HMQ and GIMQ is taken at a 

specifie point. This clearly would not have been possible with the "leave out one" 

method. 

3.2 Adaptive sampling 

The user is able to estimate the overaU fitting error of the interpolated surface using the 

MQD. But as shown in Section 1.2.4, this type ofmethod may also be used for adaptive 

sampling. 

Since the MQD calculates differences over a regular grid, the coordinates where 

the largest deviation is found can be used as a new point to be sampled. Note that this 

point will not necessarily be in the region of the surface where few points exist, but will 

more likely be in a region having a steep gradient. AIso, the coordinates of the point 

should fit within the constraints of the problem as mentioned in 3.1.1. This is somewhat 

similar to the second stage of the sampling process done in [24], as mentioned in 1.2.4. 

The algorithm is searching for the point which is the most "unreliably" interpolated. 

We will caU the error estimate at that particular point the "Peak Quadric 

Difference" (PQD). Ifone considers that the RSM is only as good as its worst point, this 

might be used as an alternative error measure to the MQD. The benefit ofthis is the user 

knows that no interpolated point on the regular grid, at least, will have an error greater 

than the PQD: it becomes a "comfort zone". Of course, there may exist a point where the 

error estimate is larger that than PQD, but off of the grid. Therefore, the grid should be 
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fine enough to find reliable coordinates of the PQD, but not so much so as to make 

computation time too great. 

There are benefits to each error measure: while the MQD better represents the 

fitting error of the overall surface, the Peak Quadric Difference may be more practical to 

the user. 

Individually, the shift parameters of the HMQ and GIMQ are still optimized using 

the "leave out one" method. The benefit of using the "leave out one" to optimize the shift 

parameter of the HMQ and GIMQ interpolations separately is that they remain 

independent of each other. Ifwe were to use the MQD to optimize the shift parameter of 

GIMQ, the two surfaces would converge, but the GIMQ might be deviating away from 

the true function, making this method less accurate. AIso, the GIMQ is likely to be more 

accurate on average, but it is conceivable that in sorne regions the HMQ is closer to the 

true objective function. Keeping the optimization of each interpolation independent 

allows us to remove any assumptions on the accuracy of the RSM. 

Because the two RSMs are built independently, the Peak Quadric Difference is 

more likely to be found in the most "unreliable" region. 

Finally, instead ofusing a fine grid, in the future we might also consider running 

an optimization algorithm over the parameter space to find the point having maximum 

quadric difference: this could potentially be a less expensive search method. 
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4 Results 

4.1 Artificial Test Functions 

4.1.1 I-D Example 

In order to dernonstrate the superiority of GIMQ over HMQ, let us first examine the 1-

dirnensional function: 

(17) 

This function is interesting because it has sorne regions with rapid variation, and other 

regions which are flatter. 

Using four scattered data points to construct the GIMQ and HMQ, we can see 

how inc1uding the gradients greatly irnproves the interpolation. The function and RSMs 

are plotted in Figure 3. 
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Figure 3 - HMQ and GIMQ of simple I-D test function 
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From the graph, it is clear how GIMQ better approximates the true function, 

compared to HMQ, because it not only matches the function at the data points, but the 

gradients as weIl. 

The GIMQ interpolation is able to capture the peak between data points x = 2.5 

and x = 3.2 because it considers the derivatives at these coordinates. Meanwhile, HMQ 

completely misses this peak. 

Also notable is the behavior of the RSMs beyond sample point x = 3.8. As we can 

see, because of the inclusion of the slope, the GIMQ will begin to descend, similar to the 

true function. HMQ, on the other hand is only trying to connect the points x = 3.2 and x = 

3.8, so that it has an ascending slope: it has no information that the objective function 

should be decreasing. 

For the adaption aspect of the algorithm, observe the behavior of the RSMs when 

the next four points are added one at a time at the PQD, in Figures 4 and 5. 
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(a) 5 data points (b) 6 data points 

Figure 4 - RSMs with 1 and 2 points added adaptively 

to original four data points of Fig. 3 
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Figure 5 - RSMs with 3 and 4 points added adaptively 

to original data points of Fig. 3 

In Figure 3, the PQD is found at x = 3 (added in Fig. 4 (a». It appears a better 

position for adding the new point would be around x = 1.5 or x = 4. But of course the true 

function is not available, and more importantly the PQD is still found in a region of rapid 

variation. Recall that the PQD is the point where the difference between the HMQ and 

GIMQ is greatest. In this case, HMQ has a greater effect on the location of the tirst 

adaptively sampled new point. 

As we can see in Figures 4 and 5, most ofthe new points were added in regions of 

rapid variation. Of the four points, three were added in the upper half of the spectrum (at 

x = 3, 4, 3.54) and only one was added in the bottom half (at x = 1.6). AIso, the GIMQ is 

almost indistinguishable for values above x = 2.5. 

At this point, it is important to note the importance of the shi ft parameter h. In 

Figure 4 (a), the HMQ is doser to the true function overall, especially between x = 0.5 

and x = 2.5. The GIMQ still matches the gradients at the sample points, but apparently, 

using the leave-one-out method has failed to generate the optimal h. We have already 

discussed the limitations of using the "leave-out-one" method, but due to its relative 

simplicity, we decided to use it. It would be interesting to explore other optimization 

methods for h in future research. 
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Ultimately, the goal ofthis algorithm is to use the gradients in an efficient way, 

and not the optimization of the shift parameter. However, to prove the superiority of 

GIMQ given the proper h, experimental values of the shift parameter were tested 

manually for the same set of data points in Figure 4 (a). We tried to manually optimize h 

for both the HMQ and GIMQ as best we could. 

Clearly, from Figure 6, the GIMQ has more potential in providing a better 

interpolation of the true function. 
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Figure 6 - RSMs for 5 data points and manually optimized shift parameters 

4.1.2 2-D examples 

The first 2-D objective function used to test the algorithm is one having sorne regions of 

changing variation, similar to the I-D example. The surface is plotted in Figure 7 and 

represents the objective function: 

2 sin(xy) , (18) 

between 0 < x < n and 0 < y < n. 
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Figure 7 - Visualization of a 2-D objective function defined by Eq. (18) 

Using regular 3 X 3 and 4 x 4 grids as sample points (totals of9 and 16 data 

points) to build the RSMs, we can compared the difference between the HMQ and 

GIMQ. As is c1ear from figures 8 and 9, the RSM that inc1udes gradient information is 

able to better represent the objective function compared to HMQ. 

Perhaps the most obvious difference in Figure 8, is that the GIMQ is able to 

capture the peak around point (2.8, 2.8), whereas the HMQ completely misses it. Similar 

to our 1-D example, this is due to the gradient information at (n, n) indicating a steep 

descending slope. 

In Figure 9 (a), we can see that using 16 points evenly spaced data points already 

gives a very good approximation ofthe objective function surface. HMQ using the same 

16 points, however, is still "unrecognizable" as the true objective function, as is evident 

in Figure 9 (b). 
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Figure 8 - RSMs with sam pie points spaced in 3x3 even grid 
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Figure 9 - RSMs with sam pie points are spaced in 4x4 even grid 

The effect of the adaptive algorithm is shown by plotting the contour lines of the 

2-D function in Figure 10. The program begins by building the RSM with only four data 

points, represented as squares in the corners of the sample space. Twenty points are then 
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adaptively added. They are indicated by circles in Figure 10, and are mostly located in 

regions ofrapid variation (lines close together). 

2.5 

>-1.5 

0.5 

0.5 1.5 2.5 

Figure 10 - A contour plot of a 2D test function. Adaptively added points indicated as circles, and 
initial points indicated as squares in the corners. 

We now compare the errors ofHMQ and GIMQ, by evaluating the RMS error of 

the surfaces using a 50 x 50 grid: this grid size was chosen so that there is not much 

difference in the estimation of the true error, ifwe were to use a finer grid. 

At the same time, we can also compare the se results to our errors measures, the 

Mean Quadric Difference (MQD) and Peak Quadric Difference (PQD). The results are 

shown in Figure Il. Note that the MQD is not evaluated using the 50 x 50 grid, but rather 

a grid where the number of points along each axis is defined by Equation (16) and for a k 

value 5: this is because the MQD results are those that would be returned to the user from 

the implemented pro gram. 

The RSMs use the same four initial points as in Figure 10, and the errors are 

evaluated with the RSMs adding an adaptively sampled point at each stage. 

The first thing we notice in Figure Il is that in the first few stages, there are still 

too few points to construct a reliable Response Surface. Therefore, although the RMS 

error ofHMQ at 4 points is smaller than the GIMQ error, neither interpolation can be 
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deemed useful. After two or three points have been added, the Response Surfaces begin 

to take shape, and we can see the GIMQ out-performing HMQ. The errors also appear to 

diverge, as more points are added: GIMQ is converging to the true function faster than 

HMQ. Also, it is possible that sometimes adding a point will decrease the quality of the 

interpolation in areas far away from the data points. The result is an increase in the 

overall interpolation error. 

Ifwe observe the MQD in Figure Il, it is relatively close to the true GIMQ error; 

however, in the early stages, it under-estimates it. After six points have been added to the 

initial four, we can see the MQD over-estimating the true error, which is better. At this 

point, GIMQ is pro vi ding a fairly good interpolation, and more error is introduced into 

the Mean Quadric Difference due to HMQ. 

Since it is difficult to predict when the MQD will over-estimate the error, observe 

the behavior of the Peak Quadric Difference in Figure 11. As we can see, the PQD is not 

as close to the true error of GIMQ as MQD, but at least it over-estimates this error at 

every stage . 
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Figure 11 - Comparison of HMQ and GIMQ errors 

and error measures for 2sin(xy) 
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Having already demonstrated the effect of having an optimal shift parameter for 

our interpolation, we can now examine another aspect of the GIMQ: the positioning of 

the pseudo-points relative to their parent points. 

In section 2.2.1, we referred to a parameter ~, representing the denominator of the 

fixed ratio of the distance between a sample point and its nearest neighbor. For the results 

of this thesis, we used a ~ value of 5, but as we explained this may not necessarily be the 

optimal number for an functions, and its value will have an influence on the RSM. 

To demonstrate this, we consider another objective function, still having regions 

of rapid variation, but also having regions flatter than those of Equation 18. The function 

we will use is: 

(19) 

The range of the sample space is 0 < x < 4 and 0 < y < 4. Also, the GIMQ is built 

using 25 points evenly spaced in a 5 x 5 grid, over the se ranges. The true function is 

plotted in Figure 12. Figure 13 shows the GIMQ using ~ = 5. 

4 

Figure 12 - Visualization of objective function defined by Eq. (16) 
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Figure 13 - GIMQ using 5x5 sam pie point grid and Il = 5 

Clearly, the RSM is capturing the general shape of the objective function, having 

the appearance ofthree peaks, with valleys in between, and a flatter region for low values 

ofx. 

We now examine the effect of setting P = 3, in Figure 14. 

Figure 14 - GIMQ using 5x5 sample point grid and Il = 3 

29 



Immediately notice this is a worse interpolation than that of Figure 13. Firstly, the 

peaks at x = 4 reach much higher values: the highest peak in the middle almost reaches 

40, whereas in Figure 13, this was aroundf= 22. Its actual value in the true function 

should be around f = 12. 

AIso, the RSM which uses ~ = 5 is a much smoother surface. Figure 14 even 

appears to have four peaks at x = 4, due to this unevenness. 

Finally, a ~ value of 10 is used in Figure 15. This is smoother than Figure 13, 

though less obvious than the difference between ~ = 5 and ~ = 3. AIso, the peaks are even 

closer to the true objective function. 

Using a 50 x 50 grid ofpoints, we can calculate the RMS error the three Response 

Surfaces. Results are summarized in Table 1. 

Figure 15 - GIMQ using 5x5 sample point grid and p = 10 

Table 1 - RMS error of GIMQ for different values of p 

p 3 5 10 
Error 6.01668 2.89568 1. 79147 
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As theorized in Section 2.2.1, it appears that having all data points (pseudo-points 

and parent points) concentrated around real information - the objective function and its 

gradients - results in a more accurate interpolation. As a reminder, the pseudo-points 

cannot be placed too close to the parent points, or the matrix will become ill-conditioned. 

4.1.3 3-D Example 

The final artificial test function was a function containing three variables. Using a regular 

grid with 3,4 and 5 sample points along each axis (for a total of27, 64 and 125 true 

points), the RSMs were built for the function: 

5 sin(2x + 1) sin(2y+ 1) sin(2z + 1) (20) 

Using a 50 x 50 x 50 grid ofpoints to sample the HMQ and GIMQ, the RMS errors were 

obtained. The results are shown in Figure 16. 
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···0··· HMQ 

o 50 100 159 

Number of true data points 

Figure 16 - RMS error ofHMQ and GIMQ for 3D test function, 

using 3 regular grids of data points 
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Clearly, GIMQ provides a much better interpolation of the objective function than 

HMQ, and is converging faster. Aiso notice that at 125 points, the GIMQ error is about 

an order of magnitude smaller than HMQ. 

4.2 Practical Examples - Waveguides 

Having studied the various aspects of GIMQ and HMQ for artificial test functions, we 

now apply the algorithm to real problems. 

As stated in the introduction, interpolation can be used to model microwave 

structures in a multi-dimensional space. Once the RSM has been built, it is easy to obtain 

a good approximation of the objective function at any coordinate. Finite Element 

Analysis (FEA), on the other hand; can be time consuming and inconvenient. However, 

FEA is able to provide gradient information at little extra cost [25]. Using all this 

information at several data points, a good representation of the S Il surface of a 

microwave device can be built. 

We will examine two waveguide examples. The first will use theoretical formulas 

for the Sll and its gradients, in a 2-D problem. Next, the algorithm will be coupled to a 

Finite Element solver to study the Sll of a complex 3-D device. 

4.2.1 Full-Height Post in Rectangular Waveguide 

Consider a full-height metallic post with circular cross section inside a rectangular 

waveguide. The axis of the post is perpendicular to the electrical field and in the middle 

of the waveguide wall. 

Figure 17 - Side view of metallic post in waveguide 
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Marcuvitz [26] pro vides formulas for the normalized susceptances of the 

equivalent pi network. Using these, it is possible to derive then equations for the 

magnitude and gradients ofreflection coefficient S11. This objective function will depend 

on the height of the waveguide, b, and diameter D of the post - these are normalized by 

the wavelength and so are dimensionless. 

The derived equation for the magnitude of SIl is: 

;r2 D 2 

whereA=--· 
2b 

(21) 

Using Equation (21) and a very fine grid over the design space (50x50), we 

ca1culate the RMS error. In this case, actually, the 2-D design space is triangular, based 

on the upper limit conditions defined by Marcuvitz. AIso, for the results, we avoid a 

divide by zero in Equation (21) by using minimum values of 0.05 and 0.015 for band D 

respectively. However, the RSM could have been built over the full range of the sample 

space by implementing the conditions: 

• IS111 = 1, when b = 0 

• IS11I=O,whenD=O 

This results in the following limiting conditions: 

0.05 < b < 0.2 D < 0.3b (22) 

The reflection coefficient ofwaveguide is plotted in Figure 18. 
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Figure 18 - IS111 of waveguide configuration in Fig. 17 

The initial three points were placed at the corners of the design space, and the plot 

shows the error for up to ten adaptively added points. The results are shown in Figure 19. 

Again, neither the HMQ nor GIMQ are assured a monotonie convergence. 
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Figure 19 - Error in the interpolation of reflection coefficient for a post in a waveguide 
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4.2.2 Partial-Height Post in Rectangular Waveguide 

Now consider a rectangular waveguide containing a post, having the configuration shown 

in Figure 20. Here, there are three dimensions: height (h), radius (r), position (s). There 

is, however, no analytical solution available for this problem. Instead, FEA can be used to 

solve the 3-D electromagnetic wave problem and find the reflection coefficient and its 

gradients [25]. 

The waveguide cross section has dimensions a x b, and the excitation frequency is 

10.3 GHz. The interpolated Response Surfaces were built within the following ranges: 

h 
0.05 < - < 0.95 

b 
0.05 < !...- < 0.22 

a 
0.16 < ~ < 0.84 

a 

As weIl, the 3-D design space is confined to the regions where: 

b 

Figure 20 - Partial height round metalIic post in WR-90 rectangular waveguide. 

b = 1.016 cm, a = 2.25b 

(23) 

(24) 

To evaluate the RMS error of the interpolated surfaces, a 13x13x13 grid was 

used. However, it is too expensive to fUll the FEA at aIl ofthese points to get the true 

solutions as reference. Instead, the initial RSM is first built using 36 data points which 
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are distributed in a fairly uniform manner. The algorithm was then run until 74 points 

were added adaptively, for a total of 110 data points. The HMQ and GIMQ containing 

110 data points was then used as the reference for calculating the RMS error of those 

Response Surfaces having much fewer points. The idea is that the interpolation 

approaches the true function as more data points are included. The results are shown in 

Figure 21. 

The graph ofresults shows us that GIMQ is out-performing HMQ. In fact, the two 

error curves appear to be diverging, so that GIMQ is converging to its reference much 

more rapidly. 
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Figure 21 - Error in the interpolation 

of the reflection coefficient for post shown in Fig. 19 

The design space considered for this problem, defined in Equation (23), was 

chosen so as to be a fairly smooth function. It was found that regions of resonance exist 

in the complete problem space, but these were excluded because interpolating these 

becomes much more difficult. The algorithm presented appears to be inadequate in 

handling these regions. To resolve this, one possibility might be to somehow include data 

points known to be the extremes. 
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To illustrate the resonance behavior, an example is presented in Figure 22. The 

plot shows IS III as a function of the post radius, for h = 0.8 cm and s = 1.125 cm. We can 

see the very sharp behavior around r = 0.665 cm. This is equal to ria = 0.291, which is 

out the range of our sample space, defined in Eq. (23). 
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r (cm) 

0.7125 0.8625 

Figure 22 -ISlll as function of radius, showing resonance around r = 0.665 cm 

In order to get an idea of the influence of the height and position, the reflection 

coefficient is plotted as a function of h and s, for r = 0.25 cm in Figure 23. 

As a side note, considering the general behavior of the reflection coefficient as a 

function of the height, radius and position, this is a more difficult function to interpolate 

compared to the 2-D analytic waveguide problem. Instead ofa simple sloping roofwith a 

slight curvature, as in Figure 18, this waveguide problem will have sorne more curves, 

more regions ofvarying flatness and steepness in 3-D. 
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Figure 23 - IS111 as a function of height and position 
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5 Conclusion 

From the results presented, it is clear that using gradients can greatly improve the quality 

of an interpolation. Hardy's multiquadric was already known to be one of the best multi

dimensional interpolation methods for scattered data. But when sensitivities, such as 

gradients, can be obtained at almost no extra cost using FEA, this is information should 

be included in the construction of the interpolation. 

Using the same basic RBF introduced by Hardy, the Gradient Influenced 

Multiquadric method proves to be a relatively simple yet effective way of including 

gradients as part of the response surface. 

Additionally, the inclusion of pseudo-points in the RBFs proved to be an easy 

way of completing the GIMQ matrix to make it solvable. Unlike previous methods, these 

were attached to each sample point, with a pseudo-point for each dimension. 

Another benefit of GIMQ is that combining it with HMQ leads to an easy way of 

determining where a new data point should be adaptively sampled. As shown in the 

results, this point will often appear in a region of rapid variation, so that when this point 

is added, knowing its slopes is that much more beneficial, since that region can be more 

accurately interpolated. 

Because GIMQ is based on HMQ, it suffers from one of the same major 

difficulties: choosing an optimal shi ft parameter h. As explained in [22], the choice of h 

can greatly affect the interpolation, and the authors review several techniques for 

choosing it. We used an optimization technique, known as "leave out one", but it was 

apparent that this is not always reliable in providing the optimal h. Nevertheless, "leave 

out one" was fairly simple to implement, and from our experiments it appears the 

inclusion of gradients makes the interpolation less sensitive to h than in HMQ. 

Another aspect of GIMQ that may be worth further exploration in the future is the 

positioning of the pseudo-points relative to the true sample points. It is not totally clear 

why having them closer to the data points seems to lead to a better interpolation, since 
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nothing is evaluated at the pseudo-points when building the matrix. But similar to h, their 

optimal positions will probably vary from function to function. For now, we use a fixed 

ratio between closest neighboring data points to position them, instead of a fixed 

distance. 

Despite the difficulty in choosing an optimum shift parameter, GIMQ does seem 

to have the potential to pro vide a better response surface for representing an objective 

function than HMQ, in sorne cases, with many fewer sample points. It also appears that 

GIMQ converges to the true function much faster than HMQ when new sample points are 

added, presumably since more information is being included. 

Finally, our examples were relatively continuous. The theoretical examples did 

have sorne regions with high gradients, but they were still smooth. We avoided problems 

having regions of very sharp changes in behavior, typical of resonance. As stated in the 

3-D waveguide problem, GIMQ appears to have sorne difficulty in dealing with this: this 

would have been even more significant if the reflection coefficients were represented in 

decibels, resulting in extremely high gradients around resonance. However, the 

importance ofthe difficulty in choosing an optimum h in these problems is still unclear. 

On the other hand, Padé series have proven successful in modeling frequency responses 

of resonant structures [27]: this might be the basis for further research in improving 

GIMQ for resonant structures. 
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