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Abstract 

The density of stomata per area in leaves of different cultivars, including beans, is vital to 

understanding several physiological phenomena found in growing plants. Traditional stomata 

detection methods (e.g., the nail polish method) are labor-intensive and require significant 

training. A user-friendly platform was developed using a digital microscopy-based machine 

vision system to detect and count stomata per unit area of fresh leaves. Over 119 bean genotypes 

were used to compare nail polish and fresh leaf images collected from 10 random leaves 

representing each genotype. Our platform features a two-module model: a segmentation module 

using a transformer mechanism and a detection module based on YOLOv5, enhanced with a 

Vision Transformer (ViT) for improved accuracy. We randomly chose 246 images for the 

segmentation module as the dataset, utilizing 231 images for training, 10 for validation, and 17 

for testing. We randomly chose 211 images for the detection module, utilizing 148 images for 

training, 42 for validation, and 21 for testing. Compared to different machine learning methods, 

the stomata detection module developed here improved upon the Mask RCNN, YOLOv5, and 

traditional convolution neural network (CNN) methods’ performances by 16%, 11.2%, and 22.6% 

mAP (mean Average Precision), respectively. Additionally, our segmentation module 

outperformed YOLOv5 by 5% mAP. The nail polish image presents 95% mAP, and the fresh 

leaf microscopy image presents 93% mAP. System validation yielded a simple linear regression 

with a coefficient of determination (R2) of 0.87. This platform holds promise for more robust 

inspection, facilitating better genotype analysis and potentially boosting bean production. 
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Résumé 

L’amélioration de la production du haricot est cruciale pour l’approvisionnement 

alimentaire humain, et il est essentiel de comprendre la relation entre les génotypes de 

haricots et les caractéristiques des stomates. Les méthodes traditionnelles de détection des 

stomates, telles que la méthode du vernis à ongles, demandent beaucoup de travail et 

nécessitent une formation importante. Cette présentation rend compte du développement 

d'une plate-forme conviviale pour détecter et compter les stomates par unité de surface à 

l'aide d'un système de vision industrielle basé sur la microscopie numérique effectuant des 

mesures de feuilles fraîches. Plus de 119 génotypes de fève soya ont été utilisés pour 

comparer des images de vernis à ongles et de feuilles fraîches collectées pour 10 feuilles 

aléatoires représentant chaque génotype. Notre plateforme comprend un modèle à deux 

modules : un module de segmentation utilisant un mécanisme de transformateur et un 

module de détection basé sur YOLOv5 amélioré avec un Vision Transformer (ViT) pour une 

précision améliorée. Nous avons choisi au hasard 246 images pour le module de 

segmentation comme ensemble de données, en utilisant 231 images pour l'entraînement, 10 

pour la validation et 17 pour les tests. Nous avons choisi au hasard 211 images pour le 

module de détection, en utilisant 148 images pour l'entraînement, 42 pour la validation et 21 

pour les tests. En comparant différentes méthodes d'apprentissage automatique, la détection 

des stomates a présenté une amélioration de 16 % de la mAP (précision moyenne moyenne) 

par rapport à la méthode Mask RCNN, une amélioration de 11.2 % de la mAP par rapport à 

YOLOv5 et une amélioration de 22.6 % de la mAP en relation avec le réseau neuronal à 
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convolution traditionnel (CNN). De plus, notre module de segmentation a surpassé 

YOLOv5 de 5 % mAP. En effet, l'image du vernis à ongles présente 95% de mAP et 

l'image Fresh leaf microscopy présente 93% de mAP. La validation du système a donné 

une régression linéaire simple avec un coefficient de détermination (R2) égal à 0.87. 

Cette plateforme est prometteuse pour une inspection robuste, facilitant une meilleure 

analyse du génotype et potentiellement stimulant la production de fèves soya.  
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1. INTRODUCTION 

1.1 Thesis motivation 

Having been cultivated for centuries, the bean is an annual legume that originated in 

China (Intelligence, 2017). World bean production is predicted to increase by 2.2% annually 

to 371.3 Tg (terrogram=10!"𝑔) by 2030. (Masuda & Goldsmith, 2009). To achieve high 

production, many different genotypes have been developed (Fehr et al., 2003). Various 

studies have explored the selection and characteristics of bean genotypes for production. 

Finoto identified specific genotypes with high oil and protein content and those with the 

highest plant and first pod heights. (Finoto et al., 2021). Palmer highlighted the importance 

of bean accessions in bean improvement programs, emphasizing the role of sexual 

hybridization and selection in cultivar development (Palmer & Hymowitz, 2016).  

Collectively, these studies contributed to the understanding and improvement of bean 

genotypes for production. 

Stomata play an important role in plant growth and influence plant production. The 

closer to the top leaf, the greater the number of stomata per unit area (Lleras, 1977). Also, 

during the mature period, signaling from mature to developing leaves predetermines the 

potential of the developing leaf to maximize its photosynthetic potential during the early 

stages of development in the enclosed bud (Woodward et al., 2002). The placement of 

stomata may be coordinated with internal features in some organs (Nadeau & Sack, 2002). 
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Stomatal formation and patterning are regulated by the frequency and placement of 

asymmetric divisions (Le et al., 2014).  

 This thesis focused on investigating the number of stomata from different genotypes in 

beans to improve their production and quality and to reduce loss during transportation. 

1.2 Research problem 

 Stomata detection has been widely studied, mainly by the leaf surface cast method. 

(Brewer, 1992). However, as this method requires extra training and experienced operators, 

developing new techniques to quantify stomata from beans is essential. In this project, we 

sought to develop an innovative process that required less training and fewer human 

resources yet was robust enough to be utilized in the real world. This would allow us to gain 

a more comprehensive understanding of how genotype influences stomata structure and 

numbers. The project will help establish and improve the production of beans destined for 

both wholesale and retail markets; it has the potential to greatly benefit the Canadian 

agricultural sector by maintaining the visual and nutritional quality of beans. The bean 

industry faces challenges from climate change, with a warmer climate projected to benefit 

production but also bring increased precipitation deficits, particularly in the Canadian 

Prairies (Qian et al., 2022). New bean genotypes with greater or lesser stomatal numbers and 

altered patterns can accommodate these significant changes. 
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1.3 Hypotheses 

The fresh leaf microscopy method yields the same results as the nail polish method. Our 

model demonstrates a greater ability to calculate stomatal numbers than other models. 

Additionally, our platform is easily portable and user-friendly. 

1.4 Advantages of the S&D (Segmentation & Detection) model 

Our method achieves high precision in the completion of its tasks, with the main 

advantages of detecting stomata, segmenting the blurred portion of stomata images, offering 

robustness under multiple conditions, and being easy to use in a wide range of settings. 

Thus, our approach does not require specific and expensive equipment/hardware and 

extra training, making it a suitable alternative to assist producers in making decisions about 

legume crops. Further advantages of our methods include monitoring microscope areas and 

automated calculation, both of which provide valuable information so that the producer can 

improve production planning to minimize costs and maximize productivity. 

1.5 Project objective 

The objective of this research was to develop and evaluate a new method, the fresh leaf 

microscopy method, in comparison with the traditional nail polish method (traditional 

method) in terms of stomata numbers detected per unit area (𝜇𝑚" ) and determine if 

significant differences exist between the two methods. 
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2.  LITERATURE REVIEW  

2.1 Stomata detection methods 

Stomata detection and analysis are essential for understanding plant physiology and 

health, which is critical in plant biology and environmental research. Over the years, various 

methods have been developed to automate this process, ranging from traditional image-

processing techniques to advanced machine-learning approaches. Early efforts primarily 

utilized morphological operations and template matching, which, while foundational, relied 

heavily on manual counting of stomatal pores per unit area. This manual approach, although 

informative, has been critiqued for its inefficiency as well as its potential for inaccuracy 

(Bhaiswar et al., 2016). 

Infrared thermography emerged as an alternative method, effectively monitoring 

stomatal closure in grapevines (Jones et al., 2002). However, this technique has its 

challenges. Calibration drift in low-cost thermal imagers necessitates corrective procedures, 

and the presence of non-leaf material within the canopy complicates temperature analysis, 

highlighting the need for reference surfaces. Additionally, recent explorations into using 

shaded leaves rather than sunlit ones for detecting stomatal closure have introduced new 

approaches with advantages and limitations. For instance, the temperature of reference 

surfaces within the canopy can be influenced by the water status of the canopy itself, thus 

requiring further investigation. 
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To address the labor-intensive nature of manual stomatal detection, semi-automatic 

methods, such as those based on CARTA, have been proposed, particularly for specific plant 

species. (Higaki et al., 2014). These advancements have enabled higher throughput in 

stomatal analysis, resulting in  accelerating research in plant biology and environmental 

science. Nevertheless, the need for further automation led to the development of fully 

automatic methods grounded in machine vision. These methods focus on detecting and 

counting stomata. (Duarte et al., 2017), with some approaches extending to measure stomatal 

features like pore dimensions (Jayakody et al., 2017b). 

Despite these advancements, challenges remain. For instance, Jayakody's methods are 

susceptible to the appearance of stomata in training images, which limits their general 

applicability. Their techniques primarily generate bounding boxes around detected stomata, 

necessitating additional image-processing steps to analyze stomatal morphology fully. To 

address the practical needs of field research, mobile applications have been developed to 

enable real-time detection of stomata in situ (Liu et al., 2016). These mobile solutions 

represent a significant step forward, though continuous refinement and validation are 

required to ensure their reliability across diverse environmental conditions. 

Recently, with the development of deep learning, more and more methods based on deep 

learning have been published. Several studies have developed convolutional neural network 

models to accurately identify and count stomata across various plant species. Some methods 

achieve precision and recall rates above 90% (Bhugra et al., 2018; Ren et al., 2021) and can 
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measure stomatal traits such as pore length, width, and area with more than 90% accuracy 

(Song et al., 2020). Researchers have also developed user-friendly tools like Deep Stomata 

(Toda et al., 2018) and StomataCounter (Karl C. Fetter et al., 2019) to make these techniques 

accessible to plant biologists. These automated approaches significantly increase the speed 

and throughput of stomatal analysis compared to manual methods, enabling large-scale 

studies of plant responses to environmental stresses (Liang et al., 2021; Millstead et al., 

2020). Research by Jayakody et al. and Meeus utilized Cascade Object Detection (COD) 

algorithms with Histogram of Oriented Gradients (HOG) and Haar-like features to detect 

stomata (Jayakody et al., 2020; Meeus et al., 2019). However, this method is only partially 

generalizable to some plant species, and the performance of unseen test data was lower than 

that of training and validation sets. 

2.2 Transformer Mechanism 

Transformers have significantly revolutionized machine learning, particularly in natural 

language processing (NLP) tasks (Ghojogh & Ghodsi, 2020). The pioneering Transformer 

model was first introduced by Vaswani et al. (2017), marking a shift in how sequence data 

is processed. At the core of the Transformer's architecture is the self-attention mechanism. 

This breakthrough enabled the model to weigh the relevance of each word in a sequence 

relative to others, effectively capturing intricate contextual dependencies. This approach 

contrasts sharply with traditional recurrent neural networks (RNNs), which process inputs 

sequentially and thus, struggle with long-range dependencies. By processing entire 
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sequences in parallel, transformers leverage positional encoding to preserve word order 

information, which is crucial for understanding context. Multi-head attention mechanisms 

within the architecture allow the model to capture diverse relationships between words while 

feed-forward neural networks further refine these representations. Enhancements like 

residual connections and layer normalization contribute to the model's robust learning 

capabilities, enabling efficient training and the construction of deep, hierarchical 

representations. As a result, transformers have become a powerful tool for a broad range of 

applications, extending beyond NLP to areas such as vision and video processing (Zhang et 

al., 2023). Recent research has explored their ability to mimic complex cognitive functions, 

such as frontostriatal gating in human working memory (Traylor et al., 2024) and depth-

bounded symbolic reasoning (Brinkmann et al., 2024). Moreover, ongoing advancements 

include competitive ensembles of independent mechanisms (Lamb et al., 2021) and 

approaches to mitigate computational complexity (Chen et al., 2024). The versatility and 

efficacy of Transformers led to their successful application in various domains, including 

text summarization (Sanjabi, 2018), emotion detection, and chemical image 

recognition(Zhang et al., 2023), with models like BERT and GPT further pushing the 

boundaries of what these architectures can achieve (Gong, 2022). Despite these 

advancements, research continues to focus on enhancing the efficiency and performance of 

Transformers, ensuring their ongoing evolution in machine learning. 
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2.3 Different kinds of detection models in detecting stomata 

A well-known and traditional technique for detecting stomata in plants is in situ 

measurement using a microscope (Collins, 2007). In this method, a tool called ImageJ is 

applied to annotate the stomata from microscope images and then calculate them. 

Researchers must manually see and annotate all the images, which could be more effective 

and accurate. 

Several kinds of detection models have been utilized in stomata detection: (i) traditional 

methods that focus more on machine vision and signal processing, or (ii) machine learning 

methods that focus more on utilizing machine learning methods for detection.  

Traditional methods focus on developing automated methods for detecting and 

analyzing stomata in plant microscopy images. Oliveira presented a technique based on 

morphological operations (Oliveira et al., 2014). In this method, they built a platform that 

automatically detects and counts stomata in microscopic images of plant epidermis. To 

detect these automatically, they used morphological operations. However, this method 

requires manual counting of the number of stomata, which is difficult and time-consuming, 

especially when many samples must be analyzed. Moreover, this means that the process 

depends on expert experience.  

A method based on template matching developed by Laga et al. (2014) (Laga et al., 

2014), requires individuals to use template matching to detect individual stomata cells in 
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microscopic images of plant leaves and then performs local analysis within the detected 

stomata regions to measure morphological and structural features (e.g., stomata opening 

length and width and guard cell size). Although this method detects stomata successfully, it 

needs to detect the contrast between the stomata cell region and the surrounding background, 

which may limit the accuracy of stomata detection and measurement. Advanced image 

processing techniques like wavelet spot detection (Duarte et al., 2017) can detect and count 

stomata using wavelet analysis and spot detection in the CIELab color space, then segment 

stomata images using the Watershed Transform, with the initially detected spots as markers. 

However, this approach proved time-intensive and could have shown better results in 

complex background stomata images.  

A method based on level set segmentation proposed by Li et al. (2019) (Li et al., 2019), 

used level set theory and image processing technology, which does not require prior 

information about the stomata or plant type. Then, they accurately measured morphological 

features like major/minor axes, area, eccentricity, and opening degree. Moreover, it 

outperformed existing threshold and skeletonization-based methods in terms of versatility 

and accuracy. However, this method could have been better at analyzing tilted stomata 

images. 

Recently, machine-learning-based methods have been proposed. One of the most 

popular methods is based on a convolutional neural network (CNN). A convolutional neural 

network model (Mask R-CNN) showing potential in instance segmentation and detection 
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could automatically detect and measure stomatal pore parameters in microscope images of 

plant leaves (Song et al., 2020). They used a ResNet50 to extract the feature and added a 

pyramid network to enhance the result which a region proposal module was implemented to 

suggest candidate regions, while the RoIAlign operation was utilized to normalize region 

sizes and facilitate segmentation mask generation. However, this method showed poor 

results for small stomatal apertures, blurry images, impurities in pores, and it did not 

correctly identify non-stomatal pores. This method requires a high image quality and could 

be more robust. A simplified method for automated stomata detection and analysis using an 

imaging technique and a convolutional neural network (Millstead et al., 2020) involved 

developing an end-to-end solution for computerized stomata analysis, using a CNN for 

stomata detection and introducing a novel method for estimating stomatal pore boundaries 

and for calculating pore areas. However, this model’s efficiency depends on sample 

collection and imaging techniques. Also, the CNN-based stomata detection approach 

produced some false positives that could be due to limitations in the sampling technique or 

the high level of detail in the slide scanner images. Accordingly, this method may require 

further training samples to eliminate these. Moreover, the pore estimation algorithm had 

some incorrect estimations, with 26.27% (409 out of 1,557) images having the wrong result. 

A new clearing method and a deep learning-based detection model for automated stomatal 

analysis of bean leaves (Sultana et al., 2021b), added the essential step of incubating leaf 

samples in absolute ethanol for 1 hour as a fixation and dehydration step, then washing the 

samples with cold tap water. Finally, they transferred the samples into a clearing agent 
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consisting of a 1:1 (v/v) mixture of 95% ethanol and 6-14% sodium hypochlorite (NaOCl) 

for 1 hour to make the leaves transparent. These methods offer better results when compared 

with other methods. Still, the limitation of this method is the high quality or high resolution 

of the stomatal images needed to overcome detection failures. If the experimental setup 

changes, this stomatal identification model can be quickly retrained with little labeling effort. 

Moreover, the study used only one bean cultivar (Cheongja 3) to develop the new clearing 

method. In summary, further research is needed to apply the new clearing method to study 

stomatal traits like size, space, index, and other plant species beyond beans. An improved 

YOLO v5 deep learning model with an attention mechanism that achieves high precision 

and recall for automated detection of plant stomata was developed by Zhang et al. (2021) 

(Zhang et al., 2021). The YOLO v5 object detection model was used to introduce an attention 

mechanism (SE module) to the backbone network to improve precision and recall. This 

improved the loss function to avoid problems with selecting the best prediction box. They 

evaluated the improved model on a corn (Zea mays L.) leaf stomata dataset, achieving high 

precision (94.8%) and recall (98.7%); however, this model did not produce good results 

when applied to our dataset. 

2.4 ViT Mechanism 

ViT mechanism represents a significant shift in the approach to visual recognition tasks 

by adapting the Transformer architecture, originally designed for natural language 

processing, to process image data. ViT treats an image as a sequence of fixed-size patches, 
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similar to the way words are treated in text sequences. These image patches are flattened and 

linearly embedded before being fed into a standard Transformer encoder. Positional 

embeddings are added to retain spatial information within the patches. Unlike convolutional 

neural networks (CNNs), which apply convolutional filters to extract local features, ViT 

leverages the self-attention mechanism to model global relationships between patches, 

allowing for the capture of both local and global dependencies. This approach has been 

shown to outperform traditional CNNs on large-scale datasets, especially when pre-trained 

on extensive datasets such as JFT-300M. The simplicity of the ViT architecture, combined 

with its ability to leverage Transformer-based pretraining, has spurred a wave of research 

exploring the use of Transformers in various computer vision tasks, leading to the 

development of numerous ViT variants aimed at improving performance on smaller datasets, 

enhancing efficiency, and extending its applicability across different vision-based challenges 

(Dosovitskiy et al., 2020).  

Nowadays, ViT has been recognized as a revolution in computer vision tasks by 

leveraging attention mechanisms to capture long-range dependencies in images (Fu, 2022). 

The core components of ViTs include patch division, token selection, position encoding, and 

attention calculation (Zhou et al., 2024). Recent research has focused on enhancing these 

mechanisms to improve performance and efficiency. For instance, dynamic mapping re-

attention mechanisms have been proposed to assign attention weights adaptively (Labbaf 

Khaniki et al., 2023), while shift operations have been explored as simple alternatives to 

attention (Wang et al., 2022). ViTs have demonstrated remarkable robustness to occlusions, 
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perturbations, and domain shifts (Naseer et al., 2021). Visualization tools like EL-VIT have 

been developed to aid in understanding ViT operations (Zhou et al., 2023). Ongoing research 

aims to further enhance ViT efficiency through redesigned attention mechanisms (Heidari 

et al., 2024), highlighting the continued evolution of this powerful architecture in computer 

vision applications. 

2.5 Bean 

Bean, a crucial crop with significant economic and nutritional value as a major source 

of protein and oil, has become one of the most important crops worldwide (Specht et al., 

2014). Bean products are excellent replacements for meat and dairy products, specifically 

catering to vegetarians (Dwevedi & Kayastha, 2011). While its production is expected to 

increase due to rising demand (Hartman et al., 2011), challenges to its production include 

biotic and abiotic constraints and the need for improved yield (Board & Kahlon, 2011). 

Moreover, the use of genetically modified beans is a contentious issue (Dwevedi & Kayastha, 

2011). While the US, Brazil, and Argentina are the leading producers (Taheripour & Tyner, 

2018), there is the potential for increased production in other countries (Dourado et al., 2011).  
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Figure 1. Flowchart of bean processing 

In Canada, bean production has seen significant growth over the past few decades, 

particularly in Ontario, with a concomitant focus on developing short-season cultivars 

(Cober & Voldeng, 2012). However, the industry faces challenges from climate change, with 

a warmer climate projected to benefit production and increase precipitation deficits, 

particularly in the Canadian Prairies (Qian et al., 2022). The need for heat- and drought-

tolerant cultivars is required to adapt to these changes. Additionally, the industry has to 
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contend with viruses, such as the first report of bean pod mottle virus (Comovirus sp.) in 

Canadian bean plants (Michelutti et al., 2002). Despite these challenges, the industry 

continues to innovate, with ongoing efforts to improve soybean yield through breeding 

programs (Yoosefzadeh-Najafabadi & Rajcan, 2022). 

2.6 Different genotypes and their influence on beans 

With the development of gene editing technology, the genetic map of beans has become 

increasingly clear, with many more traits being discovered.  

A range of studies have highlighted the significant influence of different genotypes on 

the performance of bean plants. Studies have found that common bean (Phaseolus 

vulgaris L. ) genotypes respond differently to soil fertility and plant density (Haag et al., 

1978), and research continues on how genotype influences production and quality (Hampton 

et al., 1997). Recent research has emphasized the role of genotypes in determining the iron 

and zinc content of common beans and their adaptability to different environments. 

(Nwadike et al., 2014; Philipo et al., 2020). However, this research cannot be extended 

because of differences in soil quality in different regions. Also, some research focused on 

the faba bean (Vicia faba L.) and identified genotypes more tolerant to drought stress and 

stability across different agroecological zones (Siddiqui et al., 2015). What’s more, the 

research across three different agroecologies in Tanzania shows the influence of 

environment, genotype, and the genotype-environment interaction on common bean seed 

yield stability and adaptability of common bean landraces, lines, and improved varieties was 
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investigated (Philipo et al., 2021); However, this research was only representative of 

Tanzania which means the study has geographical limitations. Similarly, the interaction 

between genotypes, Rhizobium strains, and the environment was found to significantly affect 

common bean nodulation and productivity and its response to drought stress (Argaw & 

Muleta, 2017; Dastneshan et al., 2019). These studies collectively underscore the importance 

of genotype selection in bean cultivation. 

There are also a range of studies that have explored the genetic diversity and traits of 

common bean genotypes. Ekincialp and Şensoy (2018) found high genetic diversity among 

common bean genotypes, with distinct clusters based on origin, growth, and seed color; 

however, they did not present data on possible cross-pollination between genotypes due to 

the presence of wild bees in the study area. Cross-pollination led to some genotypes not 

clustering with the main Andean and Mesoamerican gene pools. Meanwhile, Nkhata et al. 

(2021) identified markers associated with bean fly resistance and other agro-morphological 

traits, while Basavaraja et al. (2020) highlighted the potential of specific genotypes for 

breeding programs. Rooting genotype was also emphasized in determining growth and yield 

(Wagara et al., 2011; White & Castillo, 1992) with Wagara et al. (2011) also identified 

potential sources of resistance to angular leaf spot. However, the genotypes tested were not 

resistant to all of the pathogens, indicating a high level of complexity in the pathogen 

population, and the resistant or moderately resistant genotypes were small-seeded types, 

which are less popular commercially. Additionally, Yan explored the impact of soil 

conditions on bean genotypes and discovered differences in phosphorus (P) efficiency (Yan 
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et al., 1995). However, Yan’s research did not explore the mechanisms of phosphorus (P) 

acquisition related to root traits, nor did it address the efficiency of P use, indicating a need 

for further studies in these areas. While Afzal identified salt-tolerant genotypes (Afzal et al., 

2022), lack of a standard growing environment makes replicability and consistent results 

across laboratories challenging. Previous studies have treated salinity tolerance as a single 

trait and used visual scoring, even though it is a polygenic trait with variability in agricultural 

soil can result in difficulty in performing field evaluations, increasing the coefficient of 

variation and leading breeders away from their objectives. Fageria et al. (2012) further 

highlighted the importance of soil acidity tolerance in bean genotypes (Fageria et al., 2012). 

These studies underscore the significance of genetic diversity and specific traits in common 

bean genotypes. 

2.7 Environment influences the expression of the bean’s genotype 

The expression of bean genotype (i.e., phenotype) is significantly influenced by the 

environment, particularly in yield and yield quality (Sözen et al., 2017). This interaction 

between genotype and environment can overestimate the influence of genetic parameters, 

affecting the selection of genotypes (Coimbra et al., 1999). However, Coimbra did not 

consider the interaction between genotype and environment, so it overestimated the 

prediction of genetic parameters like variance and heritability. Accordingly, direct selection 

led to superior genetic gains compared to indirect selection methods. The genotype-

environment interaction was inconsistent across different environment pairs and the 
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genotype-environment interaction was highest in the first environment, which limited the 

ability to extrapolate findings. The environment plays a major role in expressing various 

characteristics, including growth, yield, and yield components (Nwadike et al., 2014; 

Papastylianou et al., 2021). However, Nwadike ignored the need for further multi-location 

trials over multiple seasons to select the desired genotype properly. However, the interaction 

between genotype and environment can be small, making it easier to select superior 

genotypes (Pereira et al., 2015). The effectiveness of Rhizobium inoculation and the 

productivity of common bean genotypes are also influenced by this interaction (Argaw & 

Muleta, 2017). The Rhizobium isolates tested did not perform consistently across all 

locations and genotypes, indicating a limitation in the generalizability of the results. In 

addition, the results suggest the need to develop specific Rhizobium strains for different 

locations, implying that the tested isolates were insufficient for common bean production in 

the study locations. Furthermore, the environment can affect common bean genotypes' iron 

and zinc concentrations (Nchimbi–Msolla & Tryphone, 2010). Conducted at only two 

locations, the study had limitations: a randomized complete block design with 3 replications 

was used for 20 genotypes, and data analysis was limited to ANOVA, Duncan's multiple 

range test, and correlation techniques. Lastly, while Cirimwami et al. (2015) noted that the 

environment influenced the adaptability of biofortified bean genotypes, they ignored 

climatic, soil, and technical constraints that lead to low and variable bean production and 

significant genotype-environment interactions that reduce the effectiveness of selecting the 

best-performing genotypes. 
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2.8 Structure of stomata 

Stomata are essential structures in land plants, consisting of guard cells surrounding a 

pore, that regulate gas exchange and water loss (Merced & Renzaglia, 2017; Willmer, 1993). 

In bryophytes, stomata are found only on sporangia, while in vascular plants, they occur on 

leaves and stems (Merced & Renzaglia, 2017). Grass stomata have a unique four-celled 

structure with dumbbell-shaped guard cells flanked by subsidiary cells, allowing rapid 

responses to environmental cues (Cai et al., 2017). The development and patterning of 

stomata involve complex molecular mechanisms, including transcriptional networks and 

peptide signaling (McKown & Bergmann, 2018). The mechanical properties of guard cell 

walls, particularly their anisotropy, play a crucial role in stomatal opening (Marom et al., 

2017). Stomatal structure and function have evolved across plant lineages, from mosses to 

advanced grasses, with variations in anatomy, ultrastructure, and physiological responses 

(Lucas & Renzaglia, 2002; Serna & Fenoll, 2000; Willmer, 1993). 
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Figure 2. Different type of stomata (Prabhakar, 2004) 

Diagrammatic representation of stomatal types based on subsidiary cell arrangement. Numbers 1–24 

depict variations of paracytic stomata with distinct guard cells and subsidiary cells. Numbers 25–26 

represent stomata with distinct subsidiaries, while 27–28 lack clear subsidiary differentiation. 

Remaining numbers illustrate pericytic stomata with various orientations and arrangements of 

subsidiary cells (e.g., transverse, parallel, or oblique). 
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2.9 Function of stomata 

Stomata are epithelial openings in plant leaves and stems, which are structures unique 

to the plant epidermis. They facilitate the exchange of gases, allowing for the entry of CO2 

and O2, which are essential for photosynthesis and respiration (Levitt, 1976; Roberts, 1990). 

Stomata are generally regulated by movement through the opening and closing action of 

guard cells and play an important role in plant physiology (Willmer & Fricker, 1996). It is 

the main outlet for water vapor to be discharged from the plant body to the outside during 

transpiration. It is the channels for photosynthesis and respiration to exchange gases with the 

outside world. What’s more, stomata also regulate water loss through transpiration, closing 

to conserve water when necessary (Levitt, 1976; Roberts, 1990). The control of stomatal 

function is influenced by guard cell metabolism and osmoregulatory pathways (Lawson & 

Matthews, 2020). There remains a need for better understanding of the coordination between 

stomatal function, guard cell metabolism, and mesophyll photosynthesis. Thus, future work 

to produce new transgenic and nontransgenic lines with alterations in key genes involved in 

leaf osmoregulation is needed. The largely unknown role of guard cell chloroplasts and 

photosynthesis in stomatal function requires further research. 

2.10 Mechanics of stomata opening and closure 

The opening and closing of stomata in plants is controlled by guard cells. Each opening 

and closing of the stomata affect plant transpiration, photosynthesis, and respiration. When 

the stomata are open, the plant’s transpiration increases, which, by cooling the leaf, protects 
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the plant from the sun's heat. It also expels CO2, facilitating the plant's carbon assimilation 

and photosynthesis. (Levitt, 1976; Roberts, 1990). While most plants’ stomata have two 

guard cells, grasses have a unique four-celled "graminoid" morphology that allows for faster 

stomatal movements (Nunes et al., 2019). The stomatal aperture is controlled by changes in 

guard cell osmotic pressure and turgor (Araújo et al., 2011). However, the molecular 

hierarchy and signal transduction pathways involved in stomatal movement are not fully 

understood and require further experimentation and analysis. Additional components of the 

signal transduction pathways and effectors involved in stomatal responses must be identified 

through further genetic, molecular, and biochemical analyses. A more comprehensive 

understanding of the biochemical mechanisms and environmental cues underlying stomatal 

movement is needed. Environmental factors like light, CO2 concentration, and plant 

hormones influence stomatal behavior (Lawson & Matthews, 2020). Stomatal function, 

guard cell metabolism, and mesophyll photosynthesis still need further understanding. To 

do so, investigators need to generate new transgenic and non-transgenic lines with alterations 

in key genes involved in osmoregulation. These different lines allow researchers to 

investigate the specific role of genes involved in osmoregulation and how they impact guard 

cell function.  The largely unknown role of guard cell chloroplasts and photosynthesis in 

stomatal function requires further research. Climate change plays an important role in 

stomata function and is expected to impact stomatal development and function in the future, 

with significant consequences for global water and carbon cycles (Matthews & Lawson, 

2019).  
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Recent research identified key genetic and molecular mechanisms in stomatal 

development (Endo & Torii, 2019). Genetic modification of plants is restricted in many 

countries due to concerns about environmental disturbance. Some plant species are difficult 

to genetically engineer given their resistance to Agrobacterium, low regeneration capacity, 

and incomplete genome information. Exogenous manipulation of stomatal development 

using peptides is limited by the high cost of peptide synthesis, preventing large-scale 

agricultural applications. Understanding these processes may improve crop water use 

efficiency and productivity, which is crucial for sustainable agriculture in the face of 

changing environmental conditions (Endo & Torii, 2019; Nunes et al., 2019). 

2.11 Regression analysis model 

Regression analysis is a statistical method to model relationships between variables and 

make predictions (Yu et al., 2019). The regression model can be divided into general and 

Ridge models. The general regression model consists of systematic and irregular 

components, with the former explained by predictor variables and the latter representing 

unexplained variations (Glaser, 2004). The general regression model encompasses various 

models, including linear, polynomial, logistic, and Poisson regression, each suited for 

different data types and research questions (Gupta et al., 2017). However, regression models 

can suffer from underfitting and overfitting when dealing with complex datasets, which 

means Ridge and Lasso regression are considered the best models to address these issues. In 

contrast, Ridge regression is practical when data suffers from multicollinearity (high 
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correlation between independent variables) (Gupta et al., 2017). Lasso regression differs 

from Ridge regression by using absolute values instead of squares in the penalty function. 

Ridge and Lasso models are more widespread than traditional ones (Constantin, 2017). 

Regression analysis is widely applied in empirical research, particularly in actuarial science, 

finance, and higher education (Djehiche, 2011). To improve a model’s prediction reliability, 

one of the most common methods is to use quantitative data and validate models according 

to least squares method assumptions (Bethea & Rhinehart, 2019). 

Literature Summary Statement 

The measurement of stomatal density has the potential to become a vital tool in assessing 

soybean production in agricultural fields, as different soybean genotypes exhibit varying 

stomatal densities. The fresh leaf microscope method allows for direct, real-time 

measurement of stomatal density, offering a novel approach that has not been extensively 

explored in the literature. While numerous studies have investigated stomatal detection, few 

have specifically addressed soybean genotypes, color images, or fresh leaf microscopy. 

Existing methods tend to focus on other plant species, making them less applicable and 

transferable to soybean datasets. In situ measurements of stomatal density are critical for 

improving our understanding of plant physiology in real-world conditions, and our fresh leaf 

microscopy method represents an important step in this direction. To the best of our 

knowledge, no previous research has reported similar methodologies or results specific to 

fresh leaf stomatal measurements in soybeans.  
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3. MATERIALS AND METHODS 

3.1 Dataset and data pre-processing 

The leaves of different bean genotypes were sampled from December 2023 to June 2024 

from plants grown in the Raymond Greenhouse and Emile A. Lods Agronomy Research 

Centre, McGill University, Montreal, Canada (N 45° 25' 34'', W 73° 55' 43''). Ten leaf 

samples were taken for each genotype, and each sample was divided into two symmetrical 

parts, one for the nail polish method and the other for the fresh leaf microscopy method. 

Each sample was repeated on three occasions.  

Soybean was the variety of bean used in this study, and it has different genotypes and 

shows different traits. The light duration is 16 hours, fertilizer, and water once each month. 

We used the first unifoliate leaves for the experiment because these leaves are the newest 

and freshest ones. In the phenological stage of growth, the leaves are taken from the topmost 

fully expanded leaves. The sampled area is located on the leaves’ lower surface.  

3.2 Data augmentation 

    Data augmentation is a worldwide method in computer vision that aims to increase the 

number of images in a dataset. We processed the data using numerous data augmentation 

methods (e.g., rotation, shear, horizontal and vertical). 
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3.3 Nail polish method 

The cells in plant leaves are not distributed in a single layer but in overlapping layers 

(Ciha & Brun, 1975). Accordingly, it is hard to observe all layers if one is using an optical 

microscope (Larkin et al., 1997). Also, some results suggest that overlapping layers will 

cause harm to the optical microscope (Kalve et al., 2014). 

The nail polish method (Wu & Zhao, 2017), aims to fix the status of stomatal guard cells 

instantly and provides clear, stable, and almost permanent slides of epidermal impressions 

for measurement of stomatal aperture (Figure. 3). Compared with the leaf surface cast 

method (Brewer, 1992), this method is cheaper, requires less experience, and is easier to use 

in research. The nail polish approach does not require specific equipment or countless 

repetitions to collect stomata image data. It can be considered an alternative to microscopic 

data-collecting methods. 

Nail Polish method includes the following key steps: 

(i) Apply nail polish (Essie Clear Nail Polish, Longwear Gel Nail Polish Gel Couture, 

Essie, Clear) to the part of the leaf surface to be sampled.  

(ii) Wait for the nail polish to dry and use scotch tape to sample. This step separates the 

overlapping layers of cells into a single layer. 

(iii) Transfer the sample on the scotch tape (Amazon Basics Matte Finish Tape, BOPP 

film, Amazon Basics) to the slide.  



 38 

(iv) Mark the sample number. 

(v) Observing and counting by optical microscopy and machine learning model 

 

Figure 3. Steps of Nail polish method 

 

Figure 4. Nail polish image 

3.5 Fresh leaf microscopy method 

While chemicals emanating from nail polish can be harmful to some people, using the 

fresh leaf microscopy method, one need only cut leaves into slides and utilize a Dino-lite 
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microscope to observe (Figure. 5). Thus, our fresh leaf microscopy method approach does 

not require extra training and protection for the experimenter to collect stomata image data, 

making it a good alternative to improve data collection. 

Our method uses a digital microscope, such as Dino-Lite (AnMo Electronics 

Corporation , AM4113ZT, New Taipei City, Taipei, Taiwan) (Amazon.ca: Electronics)  

The AM4113ZT model offers adjustable magnification levels of up to 220x and is equipped 

with integrated LED lighting, providing clear and detailed images for both live observation 

and digital capture. Their compact design and USB connectivity make them highly 

convenient for fieldwork and small-scale laboratory settings. With advanced features like 

measurement software and polarization options, fresh leaf microscopy microscopes have 

become essential in various research fields, offering a reliable and cost-effective alternative 

to traditional optical microscopes. 

The fresh leaf microscopy method was implemented using the following steps: 

(i) Cut the sample from the lower surface of the leaves where it needs to be sampled 

(ii) Transfer it to the slide 

(iii) Observing and counting by Dino-lite microscope and machine learning model 
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Figure 5. Steps of Fresh leaf microscopy method 

 

Figure 6. Fresh leaf microscopy image 

3.6 S&D (Segmentation and Detection) model 

Our S&D model can be divided into 2 parts, the segmentation module, and the detection 

module. Each module is linked to a calculating module to obtain the result (stomata number 

per unit area) (Figure. 7). 
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Figure 7. Pipeline of model 

i. Segmentation Module Architecture 

To improve its performance, our segmentation module was comprised of two parts: 1) 

a YOLO-based segmentation model and 2) a transformer head before YOLOv5 

segmentation. 

• Transformer head 

Vaswani (2017) developed the first Transformer model (Vaswani et al., 2017). With a 

transformer head, a neural network can extract features more easily than traditional neural 

networks. A multi-scale strategy utilizes the higher-resolution maps inside our transformer 

decoder. Following the approach of (Jain et al., 2023), it would prove more straightforward 

to build a transformer head based on MaskRCNN, as demonstrated in our model architecture. 

In our model, we feed the object queries (𝑄) and the multi-scale outputs from the pixel 

decoder (𝐹#) as inputs. We use the features with different resolution values of the original 

image alternatively to update 𝑄 using a masked cross-attention (CA) operation, followed 

by self-attention (SA) and finally a feed-forward network (FFN). We perform talternate 
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operations 𝐿  times inside the transformer decoder. The final query outputs from the 

transformer decoder are mapped to a	(𝐾	 + 	1) dimensional space for class predictions, 

where 𝐾 denotes the number of classes and an extra +1	for the no-object predictions. To 

obtain the final masks, we decode 𝐹# with the help of an enum operation between 𝑄 and 

𝐹#$!. During inference, we follow the same postprocessing technique as (Cheng et al., 2022) 

to obtain the final panoptic, semantic, and instance segmentation predictions. 

YOLOv5 segmentation model 

The YOLOv5 module was applied for segmentation. We borrowed a transformer head 

to improve our segmentation result. We adopted mean average precision (mAP) as the 

indicator of detection accuracy: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	(𝑚𝐴𝑃) = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 

where 𝑇𝑃 is the true positives, which means a true segment result, 𝐹𝑃 indicates the false 

positives, which means a false segment result. 

The segmentation model’s loss is given as: 

𝑙𝑜𝑠𝑠 = 𝜆%&&'(;< < 𝐼#)
&*)[(𝑥# − 𝑥+A)" + (𝑦# − 𝑦+A)"]

,

)-.

/!

#-.
 (2) 
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where 𝑆"  is the number of grids into which the image is divided, 𝐵  is the number of 

bounding boxes predicted per grid, 𝜆%&&'( is a weighting factor that controls the importance 

of the coordinate loss relative to other components of the total loss. It's used to balance the 

impact of different parts of the loss function during training, 𝐼#)
&*) is the indicator function 

that is 1 if the 𝑗01 bounding box in grid and 𝑖 is responsible for the prediction of the object, 

and 0 otherwise, (𝑥# , 𝑦#) are the coordinates of the center of the predicted bounding box in 

the 𝑖01	grid, (𝑥+H	, 𝑦+A) are the coordinates of the center of the ground truth bounding box in 

the 𝑖01 grid , [(𝑥# − 𝑥+A)" + (𝑦# − 𝑦+A)"] is the loss term which calculates the squared error 

between the predicted and ground truth coordinates. 

ii. Calculate module architecture 

Our calculation module was designed to calculate the clear part of the raw image. The 

calculate blurred area Algorithm (Alg.1) followed the steps below: 

Algorithm 1. Calculate blurred area  

 

(Alg.1) 
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iii. Detection Module Architecture 

YOLOv5 detection model 

The YOLO algorithm can achieve rapid detection of targets (Redmon et al., 2016), 

detecting the object of interest by dividing images into grids, and processing grids with 

convolutional layers. This method can achieve real-time detection. However, in our project, 

the YOLO showed poor accuracy. This was attributable to the fact that without a detailed 

grid division, there tended to be several targets in the same grid (Comba et al., 2018; 

Palaniswami et al., 2011). 

ViT model 

To improve the performance of YOLOv5, we proposed the Vision Transformer (ViT) 

layer (Dosovitskiy et al., 2020) for feature extraction. ViT is a deep learning architecture 

that has achieved state-of-the-art performance on various computer vision tasks, including 

image classification, object detection, and semantic segmentation. This layer partitions an 

input image into non-overlapping patches of a fixed size. It projects each patch into a lower-

dimensional embedding space to produce a sequence of patch embeddings. The multi-head 

self-attention mechanism then computes a set of attention weights for each embedding, by 

evaluating its similarity to other embeddings in the sequence. By capturing long-range 

dependencies in the image, ViT enhances the detection of objects that span multiple regions, 

thereby improving detection accuracy. In summary, ViT uses a combination of patch 
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embeddings and attention mechanisms to effectively analyze images and identify complex 

objects that may be distributed across different regions. 

The loss function (Dong et al., 2022) can be defined as: 

𝑙𝑜𝑠𝑠 = 𝑙𝑜𝑠𝑠&*) + 𝑙𝑜𝑠𝑠%23 + 𝑙𝑜𝑠𝑠*&4 (3) 

 The confidence loss 𝑙𝑜𝑠𝑠&*) can be defined as: 

𝑙𝑜𝑠𝑠&*) =< < 𝐼#)
&*)(𝐶# log(𝐶#) + (1 − 𝐶#)log	(𝐶#))

,

)-.

3!

#-.

− 𝜆5&*)< < 𝐼#)
&*)(𝐶# log(𝐶#) + (1 − 𝐶#)log	(𝐶#))

,

)-.

3!

#-.
 

(4) 

where 𝐶# 	𝑖𝑠	confidence score of the	𝑖01	grid, representing the probability that an object is 

present. 

𝜆5&*) is the hyperparameter that balances the loss between the confidence scores of objects 

and non-objects. 

The classification loss, 𝑙𝑜𝑠𝑠%23, can then be defined as: 
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𝑙𝑜𝑠𝑠%23 =	< < 𝐼#)
&*)(𝑃# log(𝑃#) + (1 − 𝑃#)log	(𝑃#))

,

)-.

3!

#-.
 (5) 

where 𝑃# is the probability distribution over the classes for the 𝑖01 grid. 

The GLoU loss function (Rezatofighi et al., 2019) is used to express the position 

loss of the target box and the prediction box, 𝑙𝑜𝑠𝑠*&4. 

𝑙𝑜𝑠𝑠*&4 = 𝐿67&8 = 1 − (𝐼𝑜𝑈 −
|𝐶 − (𝐴 ∪ 𝐵)|

|𝐶| ) (6) 

where 𝐿67&8 is the generalized Intersection over Union loss, which measures the difference 

between the predicted bounding box and the ground truth bounding box 

𝐼𝑜𝑈 is the intersection over the Union, the area of overlap between the predicted bounding 

box and the ground truth, divided by the area of their union. 

𝐶 is the smallest enclosing box that contains both the predicted bounding box 𝐴 and the 

ground truth bounding box 𝐵. 

iv. Calculate module architecture 

Our calculation module was designed to calculate the clear part in the raw image. The 

Calculate Stomata per unit area algorithm, which generates a result of /0&9:0:	5<9*='
<5#0	:'=:

 

follows the steps (Alg.2). 
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The calculate module followed the format.  

Algorithm 2. Calculate Stomata per unit area 

 

(Alg.2) 

So, the total loss score in the S&D model can be calculated as follows: 

𝑙𝑜𝑠𝑠 = 𝜆!𝑙𝑜𝑠𝑠/=>=9=50:0#&5 + 𝜆"𝑙𝑜𝑠𝑠?=0=%0#&5 (7) 

Where 𝑙𝑜𝑠𝑠/=>=9=50:0#&5  equal the 𝑙𝑜𝑠𝑠  from format.2, and 𝑙𝑜𝑠𝑠?=0=%0#&5  equal the 

𝑙𝑜𝑠𝑠 from format.3. The 𝜆! and 𝜆" based on the definition, we define that if this is in the 

Fresh leaf microscopy images, we utilized the Segmentation module and Detection module 

so the 𝜆!=𝜆"=0.5, while in the Nail polish methods, we didn’t utilize the segmentation 

module, so the 𝜆!=0 while 𝜆"=1.  

v. Regression model 

Model Definition 

To investigate the relationship between the stomata number per area measured using 

two different methods, we developed a linear regression model. In this model, the dependent 



 48 

variable 𝑌	represents the stomata number per area obtained using the opt method, while the 

independent variable 𝑋 represents the stomata number per area measured by the Dinolite 

method. The linear regression model can be expressed as: 

𝑌 = 𝛽. + 𝛽!𝑋+∈ (8) 

Where the 𝑌 denotes the stomata number per area as measured by the opt method,  

𝑋 denotes the stomata number per area as measured by the Dinolite method,  

𝛽. is the intercept of the regression line,  

𝛽! is the slope of the regression line, 

∈ represents the error term, capturing the deviation of the observed values from the predicted 

values. 

Based on our data we chose The Least Squares Method to estimate the parameters 

of the regression model. This method is widely used to minimize the sum of the squared 

differences between the observed values and the values predicted by the model. The 

approach provides estimates of the regression coefficients 𝛽. and 𝛽! that best fit the 

observed data. 

Data Preparation 
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The data was organized into two columns for the regression analysis: one column for 

the stomata number per area obtained using the opt method (𝑌), and another for the stomata 

number per area obtained using the Dinolite method (𝑋). 

Parameter of model 

The SD (standard deviation) was calculated as: 

𝑆𝐷 = ;∑(𝑋# − 𝜇)
"

𝑛  (9) 

where 𝑛 means the sum number of the genotype.  

𝑋# means the genotype result.  

𝜇 means the average in all the genotype results. 

The SE (standard error) was calculated as: 

𝑆𝐸 =
√𝑆𝐷
𝑛  (10) 

 Also, the residuals can be defined as 𝑒# = 𝑦# − 𝑓# (forming a vector e),  

where 𝑦# is the observed value,  
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𝑓# 	is the predicted value from the regression model. 

So that the 𝑆𝑆'=3 was calculated as: 

𝑆𝑆'=3 = ∑ (𝑦# − 𝑓#)"# 	, (11) 

So that the 𝑆𝑆0&0 was calculated as: 

𝑆𝑆0&0 = ∑ (𝑦# − 𝜇)"# 	, (12) 

So that the 𝑅" was calculated as: 

𝑅" = 1 − //"#$
//%&%

	, (13) 

Network training and evaluation 

The tool LabelMe was used for image annotation. The dataset is randomly split into 

training validation and test groups with a rate of 7:2:1, which means our segmentation 

module dataset includes 123 images. With data augmentation, we utilized horizontal and 

vertical images as data augmentation methods, so each image has been augmented into 2 

images, for a total of 246 images. 231 images were utilized for training, 10 images for 

validating, and 17 images for testing.  
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Our detection module dataset includes 211 images, 148 images were utilized for training, 

42 images for validating and 21 images were employed for testing. The network training and 

validation were conducted on the Windows 11 operating system, and all the tasks from the 

training were carried out on a GeForce RTX 3080Ti graphics card. 

The experiment database comprises a total of 1446 images derived from 119 distinct 

genotypes, with each genotype represented by at least 10 repeated images. To ensure 

comprehensive representation, one or two images were randomly selected from each 

genotype, resulting in a complete dataset without missing genotypes. 

The batch size in the segmentation module is 16, the epochs we chose were 100, and the 

image size had been selected with 640 ((640,640,3), which means 640 pixel×640 pixel×3 

channels (Red, Blue, Green)) The batch size in the detection module is 4, epochs were 100, 

and the image size was selected with 640 ((640,640,3), which means 640 pixel×640 pixel×3 

channels (Red, Blue, Green)). 

Our code can be found in: https://github.com/empersun/YOLOv5forstomatadetection 

3.7 Experiment setup 

After we finished training our S&D model, we randomly chose 1329 Fresh leaf 

microscopy images, including 130 genotypes, to validate our Fresh leaf microscopy method 

and 1329 nail polish images, including the same 130 genotypes, to validate our Nail Polish 

method. Each image we collected from the same leaves in symmetrical parts.  

https://github.com/empersun/YOLOv5forstomatadetection
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4. RESULTS AND DISCUSSIONS 

4.1 Segmentation model result 

Model name Trans-YOLOv5 YOLOv5 Mask-RCNN 

mAP 89.4% 78.2% 73.4% 

Table 1: Segmentation result 

We evaluated the segmentation module's performance by computing its accuracy rates 

(mAP). The mAP increases from 78.2% to 89.4% with the transformer head. Figure 8 shows 

the segmentation result between our Trans-YOLOv5 model and Mask RCNN and YOLOv5 

model. 
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Figure 8. Segmentation Results: Segmentation result compares between Trans-YOLOv5, YOLOv5, and 

Mask-RCNN.  

The red mask means the blurred part and the black mask shows the cleared part. Our model 

significantly includes more details, making segmentation stomata images more accurate. 

We can observe that the segmentation results produced by our Improved YOLOv5 

model provide more information and exhibit lower loss compared to the previous versions. 

In this study, the segmentation model is designed to partition the image into two distinct 

regions: clear and unclear. The primary objective is to calculate the result based on the clear 

region using a detection model. A threshold of 40% is applied to determine the usability of 

the image. Specifically, an image is classified as unusable if the clear region comprises less 

than 40% of the total area. 
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4.2 Detection model result 

Model Name Trans-YOLOv5 YOLOv5 CNN 

mAP 97.7% 92.7% 75.1% 

Table 2. Detection module result 

We evaluated the performance of the detection module by computing its mAP. With 

the ViT head, the mAP increases from 75.1% to 97.7% 

 

Figure 9. Fresh leaf microscopy detection result 

We can observe that the detection results in the Fresh leaf microscopy image which was 

produced by our Improved YOLOv5 model presented almost all the stomata and ignored 

some seems-stomata.  
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Figure 10. Nail polish detection result 

The visual results show that our model can accurately identify and represent stomata 

placement and structure, even when the stomata may be slightly occluded. The boxes 

detected must be primarily located in the center of the stomata and not cover all pixels from 

the background or seems-stomata. This is important because the models are trained to detect 

the true stomata. Additionally (Figures 9 and 10) with fresh leaf microscopy and stomata 

results, our method successfully detects stomata. 

Figure.11 presents a scatter plot illustrating the linear relationship between two variables. 

Both the x-axis and y-axis represent the number of stomata in the image. Each data point is 

represented by a dot, with error bars indicating the measurement errors. The dashed line in 

the plot represents the linear regression fit, described by the equation y=0.99x+0.09. In 

general, if the range of 𝑅" between 0.5 ≤ 𝑅" ≤ 1 we can consider the data as regression 

(Allen, 2004). The coefficient of determination, 𝑅", is 0.99, indicating a strong positive 

correlation between the two variables. The standard error (SE) in our model is 0.40. The SE 
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from regression is consistent with measurement variability, supporting the reliability of the 

manual counting method detection results alongside the S&D model method detection result. 

Thus, these two data can be considered significant, which means the S&D model result and 

manual counting result are the same result. 

The statistical analysis involved in validating the reproducibility of stomata per image 

measurements used two methods: Manual and S&D model. Levene's test (p = 0.99) 

demonstrated no significant difference in variances, supporting the reproducibility across 

methods. An F-test (p = 0.49) compared variances between the methods and confirmed they 

were statistically comparable.  

These findings indicate that the S&D model and manual measurement methods produce 

consistent and reproducible results in stomata density measurements. The non-significant 

Levene's test result suggests that both methods maintain comparable precision across their 

measurements. Similarly, the F-test result indicates that there is no significant difference in 

the variances between the two methods, further validating their consistency. 

The statistical comparability of these methods implies that the S&D model can be 

confidently employed as an alternative to manual measurement. This is particularly 

beneficial for large-scale studies where manual measurement may be time-consuming. 

Given that the S&D model performs equally well in terms of variability, it presents an 

efficient and reliable tool for stomata analysis. Future studies can rely on these findings to 

choose the S&D model for rapid analysis without compromising on accuracy. 
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Figure 11. Regression analysis of detection result between S&D model and manual result 

4.3 Regression model result 

In this study, we employed a dual-microscopy approach to optimize the accuracy of leaf 

surface imaging. Our primary imaging tool, the Fresh leaf microscopy digital microscope, 

provides illumination from a lens-mounted light source. However, when used to observe 

slides, this setup leads to undesirable reflections that interfere with image clarity. Conversely, 
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traditional optical microscopes, which illuminate from below the sample, are well-suited 

for raw sample observations but face challenges with overlapping leaf cell structures. 

These overlaps can obscure key features such as stomatal pores, compromising image 

interpretation. 

The Fresh leaf microscopy zoom is between 839.7 to 850.1, which means the raw image 

area is between 161702 to 161791𝜇𝑚", and our optical microscope area is 284375𝜇𝑚". 

Figure.12 presents a scatter plot illustrating the linear relationship between two variables. 

Based on the provided dataset and regression analysis, the results indicate a strong linear 

relationship between stomata density measurements obtained from the nail-polish method 

and the Dino-lite method. The high values of the multiple R (0.93) and R-squared (0.87) 

suggest that the nail-polish method can reliably predict stomata density as measured by 

Dino-lite with approximately 87% of the variance in Dino-lite measurements being 

explained by the nail-polish method. 

The adjusted R-squared value (0.87) further confirms the model's robustness, indicating 

that the relationship holds consistently across the dataset. Additionally, the standard error of 

29.00 suggests a relatively low dispersion of residuals, implying accurate prediction by the 

regression model. 

The ANOVA results show a highly significant regression model with an F-statistic of 

787.11 (p < 0.001), providing strong evidence that the relationship between the two methods 
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is statistically significant. The coefficient for the nail-polish method is 0.81 (p < 0.001), 

indicating a strong positive relationship between the two methods. 

In conclusion, the analysis demonstrates that the two methods are highly comparable, 

with statistically significant linear correlations, minimal variance, and strong reproducibility, 

making both techniques viable for stomata measurement depending on the practical 

constraints of the research. However, it is important to note that the Dino-lite method detects 

approximately 10% fewer stomata compared to the nail-polish method, as indicated by the 

regression analysis. Despite this slight underestimation, the Dino-lite method remains a 

reliable alternative due to its strong correlation with the nail-polish method and ease of use 

in non-invasive measurements. 

Figure 12. Regression analysis result of nail polish method and Fresh leaf microscopy method  
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4.4 Discussion 

The S&D model demonstrated superior accuracy in object detection tasks, achieving 

89.4% accuracy compared to Mask-RCNN and 97.7% accuracy compared to CNN. This 

shows the model’s advanced integration of transformer techniques with the YOLOv5 

framework, leading to enhanced precision in detecting and segmenting objects. The high 

accuracy performance of the S&D model suggests that it is highly applicable for practical 

object detection and segmentation tasks, making it a valuable tool for real-world applications. 

Its effectiveness in various contexts highlights its potential for broad deployment in complex 

environments. However, the model still needs more data, including different periods of 

stomata, to optimize to reduce potential sources of error and variability in object detection 

to enhance model performance further. 

The regression model, analyzing the relationship between stomata density 

measurements from the opt and fresh leaf microscope methods, achieved the 𝑅" value of 

0.87. This indicates that the Fresh leaf microscopy measurements explain approximately 87% 

of the variation in the stomata number per area measured by the optical microscope method. 

The SE of 29.0𝑠𝑡𝑜𝑚𝑎𝑡𝑎/𝜇𝑚" suggest that while the model is accurate, inherent variability 

must be addressed. The strong correlation between the opt and Fresh leaf microscopy 

methods indicates that the regression model helps estimate stomata density. This model can 

be applied in field settings where the Fresh leaf microscopy method is used as an alternative 

to the opt method, especially when high precision is required. Additional data will be needed 
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to calibrate and validate the Fresh leaf microscopy method against the opt method, which is 

necessary to ensure its reliability and accuracy in various settings. and determine the reason 

for SD changes (e.g., which geno-pair, what kind of DNA fold will have a significant 

influence). Investigate sources of variability indicated by the high SD to improve model 

precision and reliability. Understanding and mitigating these factors will enhance the 

accuracy of stomata density measurements. 

The strong correlation between the nail polish method and the Fresh leaf microscopy 

method indicates that the Fresh leaf microscopy method is a reliable approach for estimating 

stomata density. While the model shows promise for practical applications, addressing 

variability and validating the model against other methods will further enhance its reliability. 

In conclusion, the strengths of the S&D model offer a robust framework for advancing 

stomata detection and calculation. Future research should focus on validating these findings, 

optimizing performance, and exploring integrated approaches to fully leverage these models' 

advantages in practical applications. 

Several previous studies have explored automated methods for stomata detection, such 

as AlexNet method (Jayakody et al., 2017a), MobileNet (Kwong et al., 2021), 

StomataCounter (Karl C Fetter et al., 2019) and plantprofile (Sultana et al., 2021a). However, 

AlexNet exhibited significant limitations in processing speed, requiring 30 to 40 minutes to 

analyze a single image, whereas our fresh leaf microscopy method delivers results within 3 

minutes. When we applied MobileNet to our database, the model's accuracy decreased 
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substantially due to its cross-application on images from different species, a challenge 

similarly faced by StomataCounter. Although PlantProfile achieved the highest accuracy of 

94.5% on nail polish images, its performance was adversely affected by the presence of color 

in fresh leaf microscope images. Also, these automated methods struggled primarily with 

effectively eliminating noise and adequately capturing the complexity of stomatal structures. 

As a result, they often misidentified non-stomatal structures as stomata or failed to detect 

actual stomata altogether. 

In comparison to previously published automated stomata detection methods, our 

approach demonstrates a high correlation (𝑅" = 0.87) between Dino-lite and Nail-polish 

techniques, with comparable variance based on Levene’s (p=0.49) and F-tests (p=0.06). 

While automated methods may boast higher throughput, our technique ensures robust 

reproducibility without significant variance, offering a balance between accuracy and 

method validity. Moreover, the consistency of the regression SE (1.68 stomata/µm²) and SD 

(13.27 stomata/µm²) further supports the precision of manual measurements when compared 

to advanced automated models. 
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5.  CONCLUSIONS AND RECOMMENDATIONS 

5.1 General conclusion 

This study aims to develop an innovative platform utilizing Fresh leaf microscopy 

technology and comparing its performance with traditional nail polish methods. We propose 

a novel model to segment and detect stomata, calculating their number per unit area. Our 

segmentation module integrates a transformer head, trained to optimize segmentation 

accuracy by minimizing loss points. Similarly, our detection module incorporates a Vision 

Transformer (ViT) mechanism, trained to enhance feature extraction and detection precision. 

The proposed stomata detection model offers improved accuracy, robustness against noise, 

and real-time detection capabilities for live legume crops. Experimental results demonstrate 

that our model effectively calculates stomata density from in-field images. Although this 

paper primarily addresses stomata calculation, the proposed model could be extended to 

other applications, such as "seem-stomata calculation" or other parts of live legume crops. 

Future work will involve testing the model on these extended applications as relevant data 

becomes available.  
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5.2 Suggestion for future work 

In this experiment, the fresh leaf microscopy method demonstrated its potential to 

become one of the most convenient ways for stomata detection. Recent studies have used 

live plants from 130 genotypes to make slides to take stomata images. Further research 

should focus on exploring and understanding other genotypes and determining if they 

would influence our regression analysis model.  Future research should examine how 

genotype influences stomata structure. Also, we invested leaves that are less than 

3*3𝑚𝑚" because the stomata in these leaves are not mature. We could develop our 

model further to find the unmatured stomata from small leaves and compare different 

genotypes' influence on stomata structures. More bean genotypes and high spectrum 

analysis may need to be included to provide a better understanding of the effects of genes 

on stomata numbers and quality. In addition, the different treatments in this experiment 

were done under room temperature storage. The shelf-life quality of bean leaves 

deteriorated within 2 to 3 days; therefore, it would be beneficial to test the effects of 

temperature on stomata structure and number of beans under different temperature 

conditions to determine how we can increase bean production.  
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