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Abstract

We review the geometric quantization of the moduli space M of flat SU(2) connections on a compact

Riemann surface in the real polarisation of Weitsman [Wei92][JW92]. We also use the methods of [RSW89] to

construct a line bundle over the toric variety P associated to the moment polytope of Jeffrey and Weitsman’s

integrable system on the moduli space, which is compatible with the prequantum line bundle onM. There is

a degeneration of the moduli space to this toric variety due to Biswas and Hurtubise [BH21], and we discuss

how this degeneration might be used to prove results about the real and Kaehler polarisations of the moduli

space.

Résumé

Nous donnons un survol de la quantification géométrique de l’espace de modulesM des connexions SU(2)

plate sur une surface de Riemann compacte, dans une polarisation réelle de Weitsman [Wei92][JW92]. Aussi,

nous utilisons les méthodes de [RSW89] pour construire un fibré en droites sur la variété torique P associée

à l’application moment de le système intégrable de Jeffrey et Weitsman sur l’espace de modules, qui est

compatible avec le fibré en droites préquantique surM. Il y a un déformation de l’espace de modules à la

variété torique, donnée par Biswas et Hurtubise [BH21], et nous discutons de la façon dont cette déformation

peut être utilisée pour prouver des résultats concernant les polarisations réelle et complexe de l’espace de

modules.
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Chapter 1

Introduction

Moduli spaces of principal G-connections on Riemann surfaces have been a topic of much mathematical

research, both due to their interesting complex geometry and their connections with gauge theories in

physics. Of particular note are unitary connections (G = U(n) or SU(n)), as unitary groups arise as the

structure groups of the gauge theories of bosons in the standard model, and have particularly tractable

moduli spaces. A pioneering work in this area is that of Atiyah and Bott [AB83], which we will reference

frequently.

Understanding the quantization of these gauge theories is a ongoing area of research. One notable work in

this area is a paper of Jeffrey and Weitsman [JW92] which discusses the geometric quantization of the space

M of flat SU(2) connections on a compact Riemann surface. In their paper, they describe a real polarization

of M by decomposing the surface into trinions, or pairs of pants. At the boundary of two trinions in the

decomposition, one has a closed curve in the surface, and a real polarization of the moduli space can be

given by the holonomy of connections around these curves. These holonomies also give rise to Goldman

flows, which almost give a toric Hamiltonian action on the space, but there are singularities for connections

A which have a holonomy that is central in SU(2) around one of the decomposition curves. Their paper

counts the number of Bohr-Sommerfeld points in M, showing that it is given by the Verlinde dimension.

If their real polarizaton had been a smooth fibration, then a theorem of Sniatycki could be applied which

says that the dimension of the quantization is given by the number of Bohr-Sommerfeld points inM. This

would match the known result for the Kaehler polarization ofM, that the dimension of the quantization is

given by the Verlinde dimension [Fal94]. Unfortunately, due to the singularities at connections with central

holonomies, this is not the case.

In order to complete the proof, one can try and build a smooth moduli space which is a toric variety,
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with a prequantum line bundle whose sections are the same as those which we wish to compute. Hurtubise

and Jeffrey [HJS05][HJ00] construct a moduli space P using symplectic implosion, which is a toric variety,

with a Hamiltonian system having the same moment polytope as that of the Hamiltonain system on M.

Furthermore, they also give a holomorphic description of the moduli space. Mehta and Seshadri [MS80]

proved that unitary connections on a punctured Riemann surface with fixed holonomy at the fibres are in

correspondence with the parabolic vector bundles on the unpunctured space. Considering a trinion as a

thrice-punctured Riemann surface, we can study the moduli of unitary connections on a trinion in terms

of parabolic vector bundles. Since we want to study unitary connections with any holonomies, we have to

find a space P which includes all the parabolic structures with any holonomies, and this space will allow

us to include the singular fibres of the real polarisation, at the cost of considering instead framed parabolic

sheaves. Finally, Hurtubise and Jeffrey exhibit an isomorphism between P and P.

Therefore, we have the moduli space (M, ω) with prequantum line bundle (L,∇) for which we wish to

compute the dimension of the polarisation, and the parabolic moduli space P , for which the dimension of

the polarisation of a corresponding line bundle can be computed using the theory of toric varieties. It was

expected that for toric varieties, an analogue of Sniatycki’s theorem would hold, saying that the dimension

of the polarisation is given by counting Bohr-Sommerfeld points. For toric varieties, the dimension of

the Kaehler polarisation is given by the number of Bohr-Sommerfeld points, so such a result would prove

that these polarisations have the same dimension for toric varieties. However, Hamilton proved that for

toric symplectic manifolds, the dimension of the real polarisation is strictly less then that of the Kaehler

polarisation, and that the difference is related to the singularities of the polarisation [Ham10]. To understand

why this is the case, we aim to study the relationship betweenM and P .

The relationship between the spacesM and P is given in terms of a degeneration of the smooth Riemann

surface to the punctured one, and the induced degeneration of the moduli spaces. Biswas and Hurtubise

[BH21] provide a model for the degeneration of the Riemann surfaces and a corresponding degeneration of

the moduli space of vector bundles. The degeneration of surfaces is a family over a neighbourhood of 0 in

C of Riemann surfaces, which are smooth for t ̸= 0 and which approach the punctured surface at t = 0. For

the corresponding degeneration of moduli spaces, at t = 0, one obtains P and at t ̸= 0 we have the moduli

spaceM of holomorphic vector bundles which we hope to quantize.

Thus, the aim of this thesis is to construct the corresponding real polarisation and prequantum system

on P , and investigate the relationship between the real and Kaehler quantisations on M and those on P .

This document proceeds by introducing the moduli space M of unitary connections on a Riemann surface

(Chapter 2), then describing the geometric quantization of this space in the real polarisation of Jeffrey

and Weitsman (Chapter 3). Then we review the construction of the spaces P and P, the toric variety of

representations with weighted frames and of framed parabolic bundles introduced by Hurtubise and Jeffrey
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(Chapter 4). Afterwards, we describe the degeneration of Biswas and Hurtubise, and how we can use

Chern-Simons theory to build a bundle on P which naturally comes from the prequantum line bundle on

M (Chapter 5). Finally, we conclude with a summary of the results and potential avenues for continued

research (Chapter 6).
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Chapter 2

Moduli Spaces of Flat Connections

Given a Riemann surface Σ and a unitary group G = U(n) or G = SU(n), we are interested in the moduli

spaceM of connections on a principal G bundle over Σ, up to gauge equivalence. A detailed study of these

spaces was made by Atiyah and Bott [AB83], from which we take much of the following discussion.

Thanks to the work of Narasimhan and Seshadri and Donaldson [Don83][NS65] there are multiple ways in

which one can viewM. One equivalence is between flat unitary connections and irreducible representations

of π1(Σ) into G. Gauge equivalence for the connections is accounted for by a quotient: Hom(π1(Σ), G)/G.

Another equivalence is with holomorphic SL(n,C) bundles over Σ, which we think of as Dolbeault operators

∂E on a smooth complex vector bundle E. Different aspects of the geometry ofM become clear in different

pictures, so we will explain each of them here.

2.1 Flat Connections as Fundamental Group Representations

We begin with the correspondence between flat connections and representations of the fundamental group.

For a Lie group G, given any G-connection A on a manifold Σ, the holonomy of A around a loop γ based

at p ∈ Σ gives us a map HolA(γ) : Loops(p,Σ) → G. Generically, the holonomy is not invariant up to

homotopy, so this map does not pass to a map on π1(Σ)→ G. However, if one restricts to flat connections,

which are those whose holonomy around any contractible loop is trivial, then one can pass to the quotient

to get a map HolA(γ) : π1(p,Σ)→ G. Picking a different basepoint or trivialization conjugates the resulting

morphism in G, so that we can associate to any flat connection A a map π1(Σ)→ G up to conjugation. This

holonomy representation determines A up to gauge equivalence.
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Let A denote the space of flat connections on the trivial principal bundle P = G×Σ, let G = C∞(P,G)G

be the gauge group, and let Φ : A → Hom(π1(Σ), G)/G denote the map taking A to HolA.

Lemma 2.1. The map Φ is injective up to conjugation in G. That is, for any two connections A,B ∈ A,

if Φ(A) = Φ(B), then A ∼= B mod G.

Proof. Suppose A,B ∈ A are flat connections with Φ(A) = Φ(B) mod G. Explicitly, given any loop

γ ∈ π1(Σ) based at p ∈ Σ, there exists an h ∈ G such that

h−1HolA(γ)h = HolB(γ). (2.1)

To prove the lemma, we construct a gauge equivalence f ∈ G between A and B. For any q ∈ Σ pick a curve

σ : p → q. Then for any g ∈ G denote by ΠA
σ g the parallel transport of g along σ. Let f(q) = ΠB

σ

(
ΠA

σ

)−1

for all q ∈ Σ, which we will show gives the required gauge equivalence. First we must show f is well defined;

if τ is another curve from p→ q then:

f(q)ΠA
τ = ΠB

σ

(
ΠA

σ

)−1
ΠA

τ

= ΠB
σ

(
ΠA

σ

)−1
ΠA

σHolA(δ
−1 ◦ τ)

= ΠB
σ HolB(σ

−1 ◦ τ)

= ΠB
τ

f(q) = ΠB
τ (Π

A
τ )

−1

Therefore f is well defined, and moreover this calculation shows it takes A-horizontal vectors to B-horizontal

vectors. It is easy to see f is smooth, and since it maps horizontal vectors to horizontal vectors, it must be

an isomorphism of connections between A and B.

This lemma tells us connections are determined up to gauge equivalence by their holonomy. Note that

the proof did not use flatness of A or B, so it is true for all connections. To complete the correspondance

betweenM = A/G and Hom(π1(Σ), G)/G, it remains to show that given any map ϕ ∈ Hom(π1(Σ), G) one

can find a connection whose holonomy matches ϕ.

Lemma 2.2. The map Φ : A → Hom(Π1(Σ), G) is surjective.

Proof. Let ϕ : π1(Σ) → G be a group homomorphism. The universal cover Σ̃ of Σ is a π1(Σ) bundle

π : π1(Σ)× Σ→ Σ. Then at a point x ∈ Σ̃, π1(Σ, π(x)) acts on Σ̃ by monodromy, and π1(Σ) acts on G by

γ · g = ϕ(γ)g. (2.2)

Thus, define a principal G-bundle over Σ by quotienting out this action:

P = Σ̃×G/π1(Σ). (2.3)
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The monodromy action is proper and free on the universal cover, and left multiplication in G is proper and

free, so this quotient is a well-defined smooth manifold. Finally, one can put a connection on P with the

correct holonomy. To do so, define a connection on Σ̃×G by picking the horizontal bundle in T (Σ̃×G) to

be all vectors of the form (v, 0); those with no G component. Then π1(Σ) preserves this space and the image

in the quotient is a horizontal bundle defining a connection A on P .

Let γ be a loop in Σ starting at x. Then let γ′ : [0, 1]→ P be defined by

γ′(t) = (ψ(γ), γ(t))). (2.4)

If this is horizontal, then HolA(γ) = γ′(t) = ψ(γ) which completes the proof. If we lift under the quotient of

π1(Σ) we get γ̃ ∈ Σ̃×G with

γ̃(t) = ((v(t), γ(x)), ψ(γ)) (2.5)

and d/dt(γ̃) = (v′(t), 0), meaning γ′ is horizontal. Note finally that since ψ is a group homomorphism,

HolA(γ) = HolA(e) = 1 for any contractible loop, so A is flat.

Combining the previous two lemmas we have:

Theorem 2.3. The map Φ :M→ Hom(π1(Σ), G)/G taking A to HolA(−) mod G is a bijection

Thus, one may identify the set of flat connections with the set Hom(π1(Σ), G)/G. To build a moduli

space, we want to endowM with a topology and some geometric structure. If π1(Σ) is finitely presented as

π1(Σ) = ⟨a1, ..., aN | R1, ...RN ⟩, (2.6)

then consider Hom(π1(Σ), G) as a subset of GN by taking the generators to their images under any homomor-

phism. This lets Hom(π1(Σ), G) inherit a topology from the Lie group topology on G, and Hom(π1(Σ), G)/G

can be given the quotient topology.

Geometrically, Hom(π1(Σ), G) corresponds to G[a1, ..., an]/⟨R1, ..., RN ⟩, so when G is an algebraic group,

Hom(π1(Σ), G) is a variety. ThenM = Hom(π1(Σ), G)/G is a quotient variety.

2.2 Unitary Representations on a Riemann Surface

Now we specialize to a compact connected Riemann surface Σ of genus g, and G = U(n). Then the

fundamental group is

π1(Σ) = {a1, b1, ..., ag, bg | Πg
i=1aibia

−1
i b−1

i = e}. (2.7)
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Define ξ : U(n)2g → U(n) by ξ(A1, B1, ..., Ai, Bi) = Πg
i=1AiBiA

−1
i B−1

i . ThenM = Hom(π1(Σ), U(n))/U(n)

is ξ−1(e)/U(n) ⊂ U2g/U(n) and inherits a quotient topology from the topology of U2g. In general, M is

not smooth, but the subset ofM consisting of irreducible representations will be a smooth manifold.

Lemma 2.4. Let ρ(ai) = Ai, ρ(bi) = Bi, for the generators (a1, b1, ..., ag, bg) of π1(Σ). Then a representation

ρ : π1(Σ)→ U(n) is reducible if and only if all elements in the set {A1, B1, ..., A2, B2} pairwise commute.

Proof. Suppose the Ai, Bi all pairwise commute. Then by the spectral theorem for unitary matrices, they

are all simultaneously diagonalizable. Thus they share at least one eigenspace W , which is invariant under

all the Ai and Bi, and so ρ is reducible.

On the other hand, suppose ρ is reducible. Since unitary representations are semisimple, we can write

the representation as
⊕k

j=0Wj , with each Wj an irreducible subspace which is invariant under ρ. Then each

Wj must be an eigenspace of each matrix Ai and Bi, and thus the matrices have the same eigenspaces and

are simultaneously diagonalizable. Since simultaneously diagonalizable matrices commute, this means the

Ai and Bi pairwise commute.

Let R denote the subset of M consisting of reducible representations, and Ms denote the subset of

irreducible points. The condition that [A,B] = 0 is a closed condition, soMs is open inM and R is closed.

Lemma 2.5. R is compact.

Proof. Let p : Hom(π1(Σ), U(n)) →M denote the quotient by U(n). Let R̃ = p−1(R). Then R̃ ⊂ U(n)2g

is closed and thus since U(n) is compact, R̃ is compact. Then R = R̃/U(n) is also compact.

Using this one can characterize the topology of R.

Theorem 2.6. The reducible part R of the moduli spaceM is homeomorphic to

T 2g/W (T ), (2.8)

where T ⊂ G is a maximal torus and W (T ) is its Weyl group, acting by the 2g-diagonal action.

Proof. Let {ai, bi}gi=1 generate π1(Σ). For [ρ] ∈ R, let Ai = ρ(ai) and Bi = ρ(bi). By Lemma 2.4,

ρ ∈ R implies the Ai and Bi pairwise commute, and are hence contained in some maximal torus T , thus

(A1, B1, ..., Ag, Bg) ∈ T 2g. To pass to the quotient [ρ] under conjugation by U(n), we need to quotient the

Weyl group W (T ). Thus [A1, B1, ..., Ag, Bg] ∈ T 2g/W (T ). Diagrammatically, we have:

Hom(π1(Σ), U(n)) T 2g

M T 2g/W (T )

p q
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Since the topology of Hom(π1(Σ), U(n)) and T 2g are their subspace topologies in U2g, the upper arrow is

continuous. Its composition with the quotient q gives a continuous map Hom(π1(Σ), U(n)) → T 2g/W (T ),

and by the universal property of the quotient topology, this means the mapM→ T 2g/W (T ) is continuous.

Next we show the map is bijective. For surjectivity, given any (t1, ..., t2g) define ρ(ai) = t2i−1 and ρ(bi) =

t2i. The torus’ commutativity [ti, tj ] = 0 guarantees ρ(ai) will be a well-defined reducible representation of

π1(Σ). For injectivity, if ρ and ρ′ map to [A1, ...Bg] and [A′
1, ..., B

′
g] which are equal in in T 2g/W (T ) then

it means there is an element t ∈ W (T ) for which A′
i = tAit

−1 and B′
i = tBit

−1. Therefore ρ′ = tρt and so

[ρ] = [ρ′].

Finally, since W (T ) is finite, T 2g/W (T ) is Hausdorff; since R is compact, our mapping is a continuous

bijection from a compact space to a Hausdorff space, hence a homeomorphism.

When G or π1(Σ) is Abelian, M = R and therefore Theorem 2.6 determines the entire moduli space.

When G = U(1) which is Abelian, T = U(1) = C∗ and W (T ) = e so:

M = R ∼= (C∗)2g. (2.9)

In this case,M is the Jacobian variety of Σ, and equation 2.9 is the well-known result that the Jacobian of

a compact connected Riemann surface is a torus.

When Σ has genus 1, π1(Σ) = Z2 which is Abelian. Then

M = R ∼=
T 2

W (T )
. (2.10)

Now we would like to address the irreducible points. In general,M0 will be a smooth manifold [AB83, §7]

but here we only prove it for G = SU(2).

Theorem 2.7. When G = SU(2),M0 is a smooth manifold of (real) dimension 6g − 6.

Proof. This proof follows that of Michiels [michiels˙moduli˙nodate]. The strategy is to first show the map

ξ is submersive onM0, so that ξ−1(e) is a smooth manifold, and then prove thatM0 is a quotient of ξ−1(e)

under a free action of a compact group with dimension dimSU(2). This will give a dimension count of

dimM0 = dim(ξ−1(e))− dim(SU(2)) = (2g − 1) dim(SU(2))− dim(SU(2)) = 6g − 6. (2.11)

Proving ξ : SU(2)2g → SU(2) is submersive requires showing the rank of ξ is 3 at all irreducible points. Let

(A1(t), ..., Bg(t)) = (A1 + ta1, ..., Bg + tbg) for some (A1, ...Bg) ∈ SU2g and some (a1, ..., bg) ∈ su(2)2g. Then

composing with ξ gives the curve

t→ γ(t) :=

g∏
i=1

Ai(t)Bi(t)Ai(t)
−1Bi(t)

−1. (2.12)
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We compute the differential, first considering just one factor:

d

dt
|t=0Ai(t)Bi(t)Ai(t)

−1Bi(t)
−1 = AdBiAiB

−1
i

(ai) + AdBiAi(bi)−AdBiAi(ai)−AdBi(bi)

= AdBiAi

(
(AdB−1

i
− 1)ai + (1−AdA−1

i
)bi

)
Then the derivative of the entire product is given by the product rule:

d

dt
|t=0γ(t) =

g∑
i=1

[
Ad(

∏
j>i AjBjA

−1
j B−1

j )
−1

BiAi

(
(AdB−1

i
− 1)ai + (1−AdA−1

i
)bi

)]
. (2.13)

Fixing one value of i ∈ 1, ..., g, we can take aj = bj = 0 for i ̸= j, to obtain

dξ(a1, ..., bg) = Ad(
∏

j>i AjBjA
−1
j B−1

j )
−1

BiAi

(
(AdB−1

i
− 1)ai + (1−AdA−1

i
)bi

)
. (2.14)

If for any i the map g2 → g:

(a, b)→ (AdB−1
i
− 1)a+ (1−AdA−1

i
)b (2.15)

is surjective, then by varying ai and bi one obtains all of g, implying ξ would be surjective. Therefore, if

instead ξ does not have full rank at an irreducible point (A1, ..., Bg), then for all i the above map g2 → g is

not surjective.

For G = SU(2), the non-surjectivity of this map implies that Ai and Bi commute. If either is ±1 then

they commute. Otherwise, (Ad−1
Bi
−1) and (1−Ad−1

Ai
) have images given by the two planes perpendicular to

the rotation axes of AdBi
and AdAi

. Since their sum is not surjective and dim g = 3, their sum is dimension

2, meaning these planes coincide. Hence AdAi
and AdBi

share the same axis of rotation, implying Ai and

Bi commute.

Since we can repeat this argument for each i, we conclude that if ξ is not full rank at (A1, ..., Bg) then

[Ai, Bi] = 0 for all i and hence we can simplify the differential to

dξ(a1, ..., bg) =

g∑
i=1

[
AdBiAi

(
(AdB−1

i
− 1)ai + (1−AdA−1

i
)bi

)]
. (2.16)

Since [Aj , Bj ] = 0, the jth term in this sum has image given by the plane perpendicular to Ai (which is the

same as that of Bi). Furthermore, because dξ is not full rank, we must have that for each j, the image is

the same plane, as otherwise by the same dimensional count as above we’d have a contradiction. Thus, the

{Ai, Bi}gi=1 all pairwise commute and so (A1, ..., Bg) is reducible. By the contrapositive, ξ : G2g → G is a

submersion on the irreducible points.

The action of SU(2) on ξ−1(e) by conjugation is not free since −1 acts trivially. Thus we define an

action of SU(2)/±1 by conjugation, which does act freely. Suppose [C] ∈ SU(2)/±1 acts trivially on

(A1, ..., Bg) ∈ ξ−1(e). Then C commutes with all Ai and Bi, and since the point is irreducible, there is some

pair in (A1, ..., Bg) that does not commute; call that pair (X,Y ). Then C commutes with X and Y , which
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do not commute with eachother, so AdX and AdY have different rotation axes, and AdC cannot have both;

C must be ±1. Thus the action of SU(2)/±1 on ξ−1(e) is free.

Finally, the quotient SU(2)/±1 ∼= SO(3) is compact, andM0 = ξ−1(e)/SO(3). Since ξ is a submersion

and SO(3) is a compact group acting freely on it, the quotient M0 is a smooth manifold, with dimension

6g − 6 as computed at the beginning of the proof.

Now that we have some understanding of the moduli spaceM, we will pass to a holomorphic description

ofM in terms of semi-stable holomorphic vector bundles over Σ.

2.3 Semi-stable Holomorphic Bundles

When Σ is a Riemann surface, one can use its complex structure to augment the study of M. Differential

forms on a Riemann surface have a splitting, Ω1(Σ) = Ω1,0(Σ) ⊕ Ω0,1(Σ) which induces a splitting on

the space A of connections on complex vector bundles E over Σ. As we will discuss, the (0, 1) part of a

connection A ∈ Ω1(Σ) ⊗ gl(n,C) defines a holomorphic structure on E, and we can describe the moduli

spaces of connections in terms of holomorphic structures.

Definition 2.8. A holomorphic structure on a complex vector bundle E is a choice of trivializations {Uα, ϕα}

for E, such that the transition functions

Tα,β = ϕα ◦ ϕ−1
β : E|Uα∩Uβ

→ E|Uα∩Uβ
,

are biholomorphic.

An equivalent and convenient characterization is as follows. Given a holomorphic structure, in every

chart {Uα}, with local frame {e1, ..., en} for E, one can define a local operator taking a section s = siei to

∂E(s) = ∂(si)⊗ ei,

where ∂ is the usual Cauchy-Riemann operator on C. Let us check this operator is well defined globally on

E. On the intersection Uα ∩Uβ , with local frames {ei} and {fi}, we have s = siei = s̃ifi, with s
i = Tαβ

i
j s̃

j .

Since Tαβ is biholomorphic, we have:

∂E(s) = ∂(si)⊗ ei = ∂(Tαβ
i
j s̃

j)⊗ fi

= Tαβ
i
j∂(s̃

j)⊗ fi.

Hence ∂E transforms with Tαβ and it is globally well defined. We call ∂E the Dolbeault Operator corre-

sponding to the holomorphic structure on E. Conversely, if we have a differential operator ∂E : Γ(E) →
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Ω0,1(Σ)⊗Γ(E), we can define a holomorphic structure on E as operator defines local holomorphic structure

by defining s to be holomorphic if ∂E(s) = 0, and these local structures can always be glued to give a global

structure when Σ is a Riemann surface [AB83, §5].

Therefore, in order to study the space of holomorphic structures on E, we can equivalently study the

space of Dolbeault operators on E. In a smooth local trivialization of E, we can write

∂E = ∂ +B,

where ∂ is the usual Cauchy-Riemann operator and B ∈ Ω0,1(E,End E).

On an arbitrary complex manifold, there may be an obstruction to B’s integrability, which lives in Ω0,2(Σ).

However dimΣ = 1, so Ω0,2(Σ) = 0 and there is no constraints on B. Therefore the set of structures is

an affine complex space with translations Ω0,1(M,End E). We want to consider only equivalence classes of

hermitian vector bundles, so we want to quotient out the action of Aut(E) = C∞(Σ, GLnC) by change of

basis. It is the space of such isomorphism classes, N(n, k), that we wish to describe.

In order to put geometric structure on this space, we need to add an additional constraint.

Definition 2.9. Let the slope of a bundle E be

µ := deg(E)/rank(E),

where deg(E) denotes the first Chern class of the line bundle detE. Then E is said to be stable if, for every

proper subbundle F of E, µ(F ) < µ(E). If the inequality is not strict, E is semi-stable.

The Narasimhan-Seshadri correspondance tells us that to study the moduli space of flat U(n) connections,

one should restrict their focus to the subspace of semi-stable bundles.

Theorem 2.10 (Narasimhan-Seshadri). Let Σ be a compact connected Riemann surface with g ≥ 2 and

G = U(n). Then

1. There is a correspondence between representations ρ up to conjugation and semi-stable holomorphic

bundles E of degree zero up to gauge equivalence.

2. E is stable if and only if ρ is irreducible.

Proof. The original proof of Narasimhan and Seshadri [NS65] is algebraic, and there is more recent proof of

Donaldson [Don83] using the Yang-Mills functional on connections.
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This theorem in combination with Theorem 2.3 tells us that there are three equivalent sets we can use

to describe the moduli space of flat connections. We can look at flat connections, representations of the

fundamental group, or semi-stable holomorphic bundles.

For this reason, we will restrict our attention to only the subset of N(n, k) consisting of semi-stable

bundles; Nss(n, k). In particular, motivated by Theorem 2.10, we will denote the space of degree 0 semi-

stable SL(n,C) bundles asM. The next result tells us that Nss(n, k) has a well-defined geometric structure.

Theorem 2.11. For a compact connected Riemann surface Σ of genus g, there exists a connected complex

projective variety Nss(n, k) of semi-stable holomorphic bundles. When n and k are co-prime, Nss(n, k) is a

smooth manifold.

Proof. Originally proven by Mumford [Mum04], see also an outline given by Thaddeus [Tha21, p. 4].

Remark: For g = 0 there are no stable holomorphic bundles. It is a theorem of Grothendieck [Gro57,

Theorem 2.1] that any holomorphic bundle E over P1 can be written as E ∼= ⊕rankE
i=1 O(ni), which lets us

verify that E is at best semi-stable, which occurs when all the ni are equal.

Now let us focus only onM. Just as in the representation picture, we will writeM0 to denote the stable

bundles. M0 is a smooth manifold [AB83, §7], and we can talk about its geometry. Being degree 0 means

that the line bundle detE is topologically trivial, and a choice of global trivialization gives us an SL(n,C)

structure on E. To preserve this trivialization, we will restrict Aut(E) and End E to their intersections in

SL(n,C) and sl(n,C) respectively.

An important property of stable bundles which we will make use of is the stable implies simple lemma:

Lemma 2.12 (Stable implies simple). If E is stable, then H0(Σ,End E) = C, and H0(Σ, sl(E)) = 0.

Proof. Suppose f ∈ H0(Σ,End (E)), λ ∈ C. Then ker(f) and im(f) are subsheaves of E and we have the

exact sequence

0→ ker(f)→ E → im(f)→ 0, (2.17)

therefore c1(ker(f))c1(im)(f) = c1(E) and rank(ker(f))+rank im(f) = n. Then either µ(ker(f)) or µ(im(f))

must be greater than or equal to µ(E), and hence either ker(f) = E or im(f) = E since E is stable.

Now for 1 ∈ H0(Σ,End (E)), the argument above applied to f − λ1, λ ∈ C shows that f = λ1 and

therefore H0(Σ,End (E)) = C. Since 1 is not traceless, it is not in sl(E), and hence H0(Σ, sl(E)) = 0.

Since stability is an open condition, one may consider deformations to compute the tangent space. At

a bundle (E, ∂E) with holomorphic structure given by transition functions Tα,β , we can consider deforming
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the holomorphic structure to

Tα,β(ϵ) = Tα,β + ϵtα,β , (2.18)

where tα,β is a Čech 1-cochain in End (E) and ϵ2 = 0. For this to remain a well-defined holomorphic

structure, we require that Tα,β(ϵ) satisfies the cocycle condition for all ϵ. That is, on Uα ∩ Uβ ∩ Uγ ,

Tα,β(ϵ)Tβ,γ(ϵ) = Tα,γ(ϵ)

(Tα,β + ϵtα,β) (Tβ,γ + ϵtβ,γ) = (Tα,γ + ϵtα,γ)

Tα,βTβ,γ + ϵ(tα,βTβ,γ + Tα,βtβ,γ) + ϵ2tα,βtβ,γ = Tα,γ + ϵtα,γ

using that ϵ2 = 0 and Tα,β satisfy the cocycle condition, we have

Tα,γ + ϵ(tα,βTβ,γ + Tα,βtβ,γ) = Tα,γ + ϵtα,γ

tα,βTβ,γ + Tα,βtβ,γ = tα,γ .

This condition tells us that tα,β is a 1-cocycle in the sheaf End (E). When we quotient the action of of

Aut(E), we find that the tangent space to N(n, k) is H1(Σ,End (E)). Similarly, if we include an SL(n,C)

structure, we get the tangent space ofM, TEM = H1(Σ, sl(E)).

Theorem 2.13. If Σ has genus g ≥ 2 and E is stable, then dimH1(Σ,End E) = n2(g − 1) + 1, and

dimH1(Σ, sl(E)) = (n2 − 1)(g − 1).

Proof. We can compute the dimension of H1(Σ,End (E)) via Hirzebruch-Riemann-Roch.

dimH0(End (E))− dimH1(End (E)) =

∫
Σ

ch(L)Td(Σ), (2.19)

where ch(V ) is the Chern character and Td(Σ) is the Todd class of TΣ. We know from the stable implies

simple lemma (2.12) that H0(End E) = C. For a compact Riemann surface, the Todd class is 1+c1(TΣ)/2 =

1 + (1− g) = 2− g, and for a vector bundle V the Chern character is rank(V ) + c1(V ).

Since End E = E ⊗ E∗, its rank is n2 and its Chern class is

c1(End E) = (rankE)c1(E) + (rankE∗)

= nc1(E)− nc1(E)

= 0

Using these computations, equation 2.19 becomes

c1(End (E)) + rank(End (E))(1− g) = dimH0(End (E))− dimH1(End (E))

dimH1(End (E)) = 1− n2(1− g) = n2(g − 1) + 1.
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For H1(Σ, sl(E)), we instead have from Lemma 2.12 that the dimension of H0 = 0 and rank sl(E) = (n2−1)

so we obtain:

dimH1(sl(n,C)) = 0− (n− 1)2(1− g) = (n− 1)2(g − 1).

When E has a hermitian metric h : E ⊗ E → C, the conjugate Hodge star ⋆̄ : Ω0,1(Σ) → Ω1,0(Σ)

combined with h allows us to define a hermitian inner product on H1(End (E)). First h defines a metric on

End E; if A,B ∈ End E, let

g(A,B) = Tr (A†B), (2.20)

where † is defined in terms of h, by h(Ae, e) = h(e,A†e) for all e ∈ E. Then for any α = A⊗ a, A ∈ End E

and a ∈ Ω0,1(Σ), we define:

∗̄Eα = g(A,−)⊗ ∗̄a, (2.21)

and

⟨α, β⟩ =
∫
Σ

α ∧g ∗̄Eβ =

∫
Σ

g(A,B) a ∧ ∗̄b. (2.22)

In a local co-ordinate chart where α = Adz and β = Bdz, this takes the form

⟨α, β⟩ =
∫
Σ

Tr (A†B) dz ∧ dz̄. (2.23)

The relationship between this space of connections and the space of holomorphic vector bundles is described

by the Narasimhan-Seshadri theorem (2.10). In one direction, given a flat connection A on P , inducing a

connection on the associated bundle E, we can decompose A = A0,1+A1,0. This allows us to take ∂E = A0,1

as a complex structure on E corresponding to the flat connection A. The Narasimhan-Seshadri theorem

guarantees that this structure will define a stable bundle, and also gives the converse direction; that flat

stable structures ∂E define flat unitary connections A.

2.4 Symplectic Picture

Another description of the moduli spaceM is in terms of a symplectic reduction, which makes the symplectic

structure more clear. We will be considering an infinite dimensional symplectic manifold and taking a

symplectic quotient, which requires more careful consideration then we provide here. Rigorous details of this

picture can be read in Atiyah-Bott [AB83].

Again let Σ be the compact connected Riemann surface of genus g. Consider the trivial principal G =

SU(2) bundle P , over Σ and let A denote the space of smooth principal connections on P . In a fixed
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trivialization P ∼= G × Σ, a connection is determined by a form A ∈ Ω1(Σ) ⊗ g. A connection is flat if and

only if it has zero curvature, 0 = FA := dA+A∧A. The gauge group G = Hom(Σ, G) acts on A as follows:

for g ∈ G,

g ⟳ A := g−1Ag + g−1dg. (2.24)

Therefore to find the moduli space of gauge equivalence classes of connections, we want to consider a quotient

A/G. This quotient will not be finite dimensional in general, so we want to impose the further constraint

that FA = 0.

The vector space A has a natural symplectic structure, which comes from the inner product (the Killing

form) on the Lie Algebra g, K : g⊗ g→ C. If A = α⊗X and B = β ⊗ Y then we can define

ω(A,B) =

∫
Σ

K(X,Y )α ∧ β. (2.25)

If A were a finite dimensional symplectic manifold, to obtain the quotient of the flat connections A0 with

FA = 0 by G, we could check that FA is a moment map for the action of G and that ω is preserved by the

action, to then obtain the symplectic quotientM = F−1
A (0)/G = A0/G. Although A is infinite-dimensional,

this process still works, and yields a finite dimensional moduli space.

Theorem 2.14. The symplectic structure ω defined above is invariant under the action of G on A. Fur-

thermore, the curvature FA is a moment map for this action.

Proof. Atiyah and Bott [AB83, §9], at the end of section 9.

Then we consider the moduli space of flat connections by symplectic reduction:

M = A // G = F−1(0)/G = A0/G. (2.26)

Symplectic reduction also gives us a symplectic structure on the quotient space M, such that under the

pullback by the quotient map, q : A0 → M, we recover the symplectic form ω for A. This symplectic

structure on M will be called the Atiyah-Bott symplectic form when we need to distinguish it from other

forms onM.
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Chapter 3

Geometric Quantization when

G = SU(2)

In Chapter 2, we built the spaceM of flat SU(2) connections on a compact connected Riemann surface Σ

of genus g ≥ 2, which is a complex projective variety with dimension 3g − 3. Furthermore, M is equipped

with the Atiyah-Bott symplectic form ω, and in Section 3.1 we will equipM with a prequantum line bundle

(L,∇) overM with curvature 2πiω.

This system has two notable polarisations one can use to perform a geometric quantization. There is a

Kaehler polarisation, whose quantization is known to have dimension computed by the Verlinde formula,

and there is a real polarisation introduced by Weitsman [Wei92]. Jeffrey and Weitsman discuss the Bohr-

Sommerfeld geometric quantization ofM with this real polarisation. Bohr-Sommerfeld quantization typically

requires a compact symplectic manifold (M,ω) and line bundle L, with a real polarization of M . A real

polarization of M is a map π : M → B onto a manifold of half dimension, such that ω|π−1(b) = 0 for all

b ∈ B. Supposing π : M → B is also a fibration, there will be a finite set of Bohr-Sommerfeld points bi for

which L restricted to the fibers Lbi of π possesses global covariant constant sections. Let Jπ denote the sheaf

of sections of L which are covariant constant along the fibres of π. Then the Bohr-Sommerfeld quantization

of a prequantum system (M,ω,L) (for π) is the vector space

H =

dimM⊕
i=0

Hi(M,Jπ). (3.1)

Here we aim to compute the dimension of H. If Bs is the set of all Bohr-Sommerfeld points, and for each

b ∈ Bs Sb is the space of global covariant constant sections of L|π−1(b), then Sniatycki [Śni77] proves that
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there is a natural isomorphism:

H ∼=
⊕
b∈Bs

Sb. (3.2)

Since each Sb is one dimensional, counting dimH boils down to counting the Bohr-Sommerfeld points.

For the prequantum system on M we’re considering, the above theorem does not apply because M is

not a smooth manifold and the polarisation we will describe is not a fibration. Sniatycki’s theorem simply

provides inspiration for investigating the Bohr-Sommerfeld set inM, and Jeffrey and Weitsman show that

Bohr-Sommerfeld fibres are associated to marked trivalent graphs satisfying the quantum Clebsch-Gordan

conditions, and the number of such graphs is called the Verlinde dimension, counted by the Verlinde formula

[JW92, Thm. 8.1].

3.1 Prequantum Line Bundle on the Moduli Space

A key part of a prequantum system is the prequantum line bundle L with curvature 2πiω. Let us build such

a bundle over our moduli spaceM, following the paper of Ramadas, Singer and Weitsman [RSW89]. Given

a connection 1-form A on a 3-manifold M , we can define the Chern-Simons action:

CS(A) =
k

2π

∫
N

A ∧ dA+
2

3
A ∧A ∧A, k ∈ Z. (3.3)

Under a change of gauge g ·A = g−1Ag + g−1dg, the Chern-Simons action transforms as

CS(g ·A) = CS(A)− k
∫
N

dTr
(
(dg)g−1 ∧A

)
− k

3

∫
N

Tr ((g−1dg) ∧ (g−1dg) ∧ (g−1dg)). (3.4)

The third term on the right side will always be in 2πZ, and the second term is a total derivative which we

can integrate using Stokes theorem over the boundary.

Using this action, we will define a function Θ : A× G → C. Pick any 3-manifold N for which ∂N ∼= Σ.

Given a pair (A, g) ∈ A×G, we can always lift it to a choice of (Ã, g̃) on N , since π1(SU(2)) = π2(SU(2)) = 0.

We define Θ as

Θ(A, g) = exp
[
iCS(Ã)− iCS(g̃ ·A)

]
. (3.5)
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Equation (3.4) lets us simplify this;

Θ(A, g) = exp(iCS(g̃ · Ã)− CS(Ã))

= exp

−ik ∫
N

dTr
(
(dg̃)g̃−1 ∧ Ã

)
− 2πκ

 , κ ∈ Z

= exp

−ik ∫
Σ

Tr (dg g−1 ∧A)

 .
Note that in the last equality, we use that the lifted pair (Ã, g̃) restricts to (A, g) on ∂N = Σ by definition.

This computation shows us in particular that Θ(A, g) is well defined, as it does not depend on our choice of

N or the lifting. One can further check that Θ is a cocycle:

Θ(A, g)Θ(g ·A, h) = Θ(A, gh). (3.6)

Thus we are ready to define L.

Definition 3.1 (Chern-Simons Prequantum Line Bundle). For (A, z) ∈ A×C, let (A, z) ∼ (g ·A,Θ(A, g)z)

under any g ∈ G. Then define

L = A× C/ ∼, (3.7)

which is a complex line bundle onM = A/G. Since Θ is U(1) valued, it is a hermitian line bundle.

Recall the Atiyah-Bott form, before quotienting out gauge transformations, is the form

ω(α, β) =
i

2π

∫
Σ

Tr (α ∧ β) (3.8)

on A. We can write it as ω = dσ, where σ is the one-form

σ(α) =
i

4π

∫
Σ

Tr (A ∧ α). (3.9)

Identifying u(1) = iR allows the form σ ∈ Ω1(A0,C) to define a connection one-form on A0×U(1). We want

to check that σ agrees with the pull-back of a unitary connection on L with curvature ω, under the map

A0 → A0 × 1 ↪→ A0 × U(1)→ L. (3.10)

The last map comes from quotienting out the action of G. For σ to pass to L, we want that

σA(α) = σAg (α) mod G, (3.11)

where mod G means the infinitesimal of G by adding dΘ(α, g). We compute

σAg (α) =

∫
Σ

Tr
[
(g−1Ag + g−1dg) ∧ α

]
=

∫
Σ

Tr
[
g−1Ag ∧ α

]
+

∫
Σ

Tr (g−1dg ∧ α)

= σAg (α) + dΘ(α, g).
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Therefore, the connection σ passes to a connection on L, with curvature ω.

There is another construction of a prequantum line bundle for M, the determinant line bundle LD of

Quillen [Qui85]. Ramadas, Singer and Weitsman prove that

Theorem 3.2. The line bundle L defined above is isomorphic to the determinant bundle LD as a hermitian

line bundle with connection onM.

Proof. Ramadas, Singer, Weitsman [RSW89, Theorem 2]

3.2 Polarisation of the Moduli Space

As before, let Σ be a compact Riemann surface and M the moduli space of flat G = SU(2) connections

on Σ. Following Jeffrey and Weitsman [JW92], we describe an action of T 3g−3 on M. Let C be a closed

oriented curve in Σ and pick a basepoint y ∈ C. We can define a function f̃C : A → R by

f̃C(A) =
1

2
holC(A), (3.12)

where holC(A) means the holonomy of A around C from y to y. Since the holonomy is G invariant, this

passes to fC :M→ R. Σ admits a decomposition into trinions or pairs of pants, which are copies of a disc

with two holes:

D = {z ∈ C | |z| ≤ 2} − {z | |z − 1| < 1/2} ∪ {z | |z + 1| < 1/2}, (3.13)

with marked points on the boundary of D.

(a) One decomposition for surfaces of genus g ≥ 2. (b) A different decomposition for g = 2.

Figure 3.1: Decomposition of a surface Σ into 2g − 2 trinions.

Suppose we are given such a decomposition of Σ into 2g−2 trinions Dγ , γ ∈ {1, 2, ..., 2g−2}, joined along

their boundaries and with the marked points on the boundaries coinciding for any trinions with non-trivial

intersection. Then the boundary circles of Dγ give a collection Ci, i ∈ {1, 2, ..., 3g − 3} of closed oriented

curves in Σ for which we get corresponding functions fi = fCi
:M → R using the above definition. Since

these functions are the trace of SU(2) matrices, they can be described by cosine of angles θi,

θi(A) = cos−1(fi(A)), (3.14)
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where θi is taken to lie in [0, π]. This defines a map θ = (θ1, ..., θ3g−3) :M→ R3g−3. These θi are smooth

on Ui := θ−1
i (0, π) ⊂ M, which is open and dense. Thus, the Hamiltonian flows of each θi are defined on

Ms =
⋂3g−3

i=1 Ui ⊂M. These Hamiltonian flows are periodic with constant period, which means they induce

a torus action onMs. Explicitly, if we let Xi denote the Hamiltonian vector field of θi, defined by

ιXi
ω = dθi, (3.15)

and let etXi be the corresponding vector field flow, then the action is given by g = (α1, ..., α3g−3) ∈ T 3g−3

acts by

A→ eα1X1+...+α3g−3X3g−3A. (3.16)

The Lie algebra of T 3g−3 is R3g−3 and we interpret θ(A) as being dual by ⟨θ,X⟩ =
∑
θiXi. Then

d (⟨θ(A), X⟩) = d
∑

θiXi =
∑

Xidθi = ιXω, (3.17)

which means θ is the moment map for the torus action. These functions fi also give us a real polarization

ofM. Let B ⊂ R3g−3 be the image of the fi,

B = {(fi(E), ..., f3g−3(E)) | E ∈M}, (3.18)

then the fibers of the map π = (f1, ..., f3g−3) foliate the smooth locus of M, and the generic fibre is a

Lagrangian subvariety.

Alternatively, one can describe the polarization using the picture of connections as representations of the

fundamental group π1(Σ). First, a preliminary result. Let T ⊂ SU(2) be a maximal torus.

Definition 3.3. A connection A on Σg is said to be adapted to a trinion decomposition (a.t.d.) if there

is a tubular neighbourhood Vi ∼= (−1, 1) × S1 of each boundary circle Ci in the decomposition, such that in

co-ordinates (s, θ) for Vi,

A|Vi = Xidθ, (3.19)

where Xi is a constant element in t = Lie(T ).

Theorem 3.4. For all y ∈ π−1(b), there exists an adapted to trinion decomposition connection A in the

gauge equivalence class y mod G.

Proof. First, any boundary circle C in a trinion decomposition has tubular neighbourhood V ∼= C × [−1, 1]

and co-ordinates (s, θ) in which the connection y takes the form:

y = R(s, θ)dθ + S(s, θ)ds, (3.20)

for some R,S ∈ C∞(Σ, su(2)). Suppose we have a gauge transformation h(s, θ) with ∂sh(s, θ) = 0, h(0, 0) = 1

and
∂h

∂θ
−Rh = 0. (3.21)
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Then the θ component of h · y will be

h−1

(
∂h

∂θ
−Rh

)
= 0. (3.22)

Such an h must exist as equation (3.21) is four linear first order ODEs for the components of the matrix

h. One must only check that this solution will be an SU(2) matrix for all s as required. At θ = 0, h = 1,

and the derivative is −R(0, 0) ∈ su(2); therefore the solution starts in SU(2) and its derivative for all time

is an su(2) matrix, so the solution remains in SU(2). Notice that h(0) ̸= h(2π) so this gauge transformation

exists on [0, 2π]× [−1, 1] but it does not pass to V .

Now let H = h(0, 2π). By the maximal torus theorem there exists some constant gauge transformation

on V bringing H into T , so we reduce to H ∈ T . Let X ∈ t be the element such that exp(2πX) = H−1 and

define f(s, θ) = exp(θX). Then ∂sf = 0, ∂θf = Xf and

f · h · y = f−1Xfdθ + f−1h−1

(
∂h

∂θ
−Rh

)
f + S(s, θ)ds = Xdθ + S(s, θ)ds. (3.23)

Furthermore fh(0, 0) = 1 and fh(0, 2π) = H−1H = 1 so the gauge transformation fh satisfies the periodic

boundary condition and is well defined on V . Thus it remains to find a gauge transformation sending the

ds component to zero. Such a transformation must satisfy

∂k

∂s
− Sk = 0, (3.24)

with k(−1, θ) = 1 and ∂θk = 0. As before equation (3.24) is four first order ODEs with a unique solution,

and the same argument as before shows k will be in SU(2). The s co-ordinate has no periodic boundary

condition, so k immediately passes to V , and the composition g = kfh gives us our gauge transformation

on V putting y in the desired form.

Repeating this process for each boundary circle Ci in our decomposition gives a set of local gauge

transformations gi on each Vi. Complete Vi to a cover {Ui} of Σ and let gi = 1 on the additional sets added.

Within each Vi, pick a smaller tubular neighbourhood Wi, and let {ϕi} be a partition of unity for {Ui} with

ϕi = 1 on Wi. Define the global gauge transformation g =
∑
giϕi. Then for all i, (g · y)|Wi

= Xidθi and so

g · y is an a.t.d. representative for y mod G.

This lets us define subgroups of G = SU(2), which correspond to stabilizers of flat connections. Suppose

A is an a.t.d connection. Then the stabilizer of A|Ci in G(Ci) = Hom(Ci, G) consists of constant maps, and

can thus be identified with a subgroup Hi in G. If θi(A) ∈ {0, π}, then holCi
(A) = ±Id and so Hi = G.

Otherwise, Hi = T .

We can describe the fibre π−1(b) using these subgroups. Suppose A is a.t.d. and [A] ∈ π−1(b). Let

τi ∈ Hi for each circle Ci, i ∈ (1, 2, ..., 3g − 3). Then define the map

ψA :

3g−3∏
i=1

Hi → π−1(b) (3.25)
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as follows. Denote the trinions composing Σ as Dγ , γ ∈ 1, 2, ..., 2g − 2. For any circle Ci, let Dγ(i), Dγ′(i)

be the trinions on either side. For τ = (τ1, τ2, ..., τ3g−3), choose a collection of maps ζγ : Dγ → g such that

for every Ci, ζγ(i) and ζγ′(i) are constant on a tubular neighbourhood of Ci, and such that

ζγ(i)|Ci
= τiζγ′(i)|Ci

. (3.26)

Here, adopt the convention that the orientation of the tubular neighbourhood is v ∧ w, where w is tangent

to the oriented circle Ci and v is transverse to ci and pointing into Dγ(i), thus away from Dγ′(i).

Now we define a connection Aτ on Σ by defining Aτ on each trinion: Aτ |Dγ
:= ζγ ⟳ A|Dγ

. Finally define

ψA(τ) = [Aτ ]. Next we ask, for τ, τ ′ ∈
∏3g−3

i=1 Hi, when are Aτ and Aτ ′ gauge equivalent?

Let Jγ be the stabilizer of A|Dγ
under G|Dγ

= Hom(Dγ , G). Since A is a.t.d., this also consists of constant

maps. Jγ = Z(G) = {±Id} if the holonomy is an irreducible representation of SU(2), and otherwise Jγ = T

(resp G) if the holonomy reduces to T (resp Z(G)).

Jeffrey and Weitsman prove the following lemma and theorem:

Lemma 3.5. If τ, τ ′ are in
∏3g−3

i=1 Hi, then [Aτ ] = [Aτ ′ ] if and only if there is a set of gauge transformations

Φγ : Dγ → G such that:

1. Φγ ∈ Jγ for all γ.

2. For each boundary circle Ci, we have

Φγ′(i)|Ci
τi = τ ′iΦγ(i)|Ci

.

Theorem 3.6. The map ψA :
∏

iHi → π−1(b) is surjective and the group
∏

γ Jγ has a natural action on∏
iHi so that

π−1(b) =

(∏
i

Hi

)
/

(∏
γ

Jγ

)
. (3.27)

Proof. Jeffrey and Weitsman [JW92], lemma 2.4 and theorem 2.5 respectively.

3.3 Moduli of Connections on a Trinion

In order to build the moduli spaceM by gluing together connections defined along a trinion decomposition,

one must first understand the possible connections on one trinion D, denoted M(D). As in Section 2.2,

M(D) can be described by the set Hom(π1(D), G)/G. For a trinion,

π1(D) = {[C1], [C2], [C3] | [C1][C2][C3] = 1} , (3.28)
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where Ci are the three boundary curves of the trinion. We can again define the holonomy angle functions,

first letting θ̃i : Hom(π1(D), G)→ [0, π] be

θ̃i(ρ) = cos−1

(
1

2
Tr (ρ[Ci])

)
, (3.29)

and these maps will descend under the quotient by G to maps θi : M(D) → [0, π]. Then Jeffrey and

Weitsman prove [JW92, Proposition 3.1]:

Theorem 3.7. The map θ = (θ1, θ2, θ3) :M(D) → [0, π]3 sends M(D) bijectively to the set satifying the

inequalities

|θi − θj | ≤ θk ≤ min(θi + θj , 2π − (θi + θj)), (3.30)

for every i, j, k a cyclic permutation of 1,2,3. These inequalities define a convex polytope in R3.

Figure 3.2: The polytope defined by the inequalities (3.30), generated using Geogebra.

Using this result, and the gluing process described in the last section, the image ofM under the holonomy

angles θ1, ..., θ3g−3 are the values satisfying the inequalities (3.30) on every trinion. Applying a theorem of

Guillemin and Steinberg [GS83] to this case, one obtains:

Theorem 3.8. Suppose x ∈ π(M) ⊂ B (equation 3.18) Then

• The Hamiltonian vector fields corresponding to the functions θi are linearly independent on the fibre

π−1(x), if and only if x is a point where all the inequalities (3.30) are strict.

• In general, the number of linearly independent Hamiltonian vector fields on the fibre π−1(x) is equal to
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3g− 3− s, where s is the number of independent linear equations out of the following satisfied by θ(x):

θiσ(1)(γ)(x) + θiσ(2)(γ)(x)− θiσ(3)(γ)(x) = 0, (3.31)

θi1(γ)(x) + θi2(γ)(x) + θi3(γ)(x) = 2π. (3.32)

where σ : 1, 2, 3→ 1, 2, 3 is any cyclic permutation. These inequalities correspond to (3.30).

Furthermore

Lemma 3.9. Let x ∈ M(D) and let θ(x) be the holonomy angles of x around the three boundary curves of

D. Then x corresponds to a conjugacy class of reducible representations of π1(D) if and only if at least one

of the equations (3.31),(3.32) above is satisfied.

Motivated by this lemma, define interior triples in [0, π]3 to be those for which none of the equations is

satisfied, i.e those on the interior of the convex polytope. These triples correspond to points inM(D) which

are conjugacy classes of irreducible representations of π1(D). Theorem 3.8 tells us that the fibre π−1(x) is

a torus of dimension 3g − 3 if and only if θ(x) is an interior triple.

Theorem 3.10. Let x ∈ B and let A be a flat a.t.d. connection whose gauge equivalence class is in π−1(x).

Further, assume that on every trinion the holonomy angles of x is an interior triple. Then the fibre π−1(x)

is identified with T 3g−3/(Z2)
2g−2 under the map ψA defined in equation (3.25).

Thus, the fibres corresponding to interior triples, which are the generic fibres, are tori of dimension 3g−3.

3.4 Counting Bohr-Sommerfeld Points

With this real polarization of the moduli space, Jeffrey and Weitsman proceed to count the number of

Bohr-Sommerfeld points. In this section we will summarize the results that we want to use going forward.

Definition 3.11. Let (M, ω) be a symplectic manifold with prequantum line bundle L and polarisation

π :M→ B. A point b ∈ B is called a Bohr-Sommerfeld point if L|π−1(b) possess a one-dimensional family

of global covariant constant sections.

The quantization of a prequantum system is H =
⊕dimM

i=1 Hi(M,Jπ), where Jπ is the sheaf of sections of

L covariant constant along the fibres of π. Sniatycki’s theorem [Śni77] proves that when the polarisation of

a symplectic manifold is a fibration, the dimension of H is given by the number of Bohr-Sommerfeld points.

Although this result does not apply here, it still provides motivation for counting the Bohr-Sommerfeld

points.
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One characterization of the Bohr-Sommerfeld points is as the set of points b whose fibres Lb = π−1(b)

satisfy the property that if π1(Lb) is generated by a set of loops, then the holonomies of the prequantum

connection around those loops are all equal to 1. A basis of loops can be obtained in terms of a basis of a

lattice of functions Λ on B, called the period lattice.

Definition 3.12. For α ∈ T ∗
xB, let vα denote the vertical vector field along the fibre Lx defined by π∗(α).

Let fα denote the diffeomorphism of the fibre Lx induced by flowing along vα for time 1.

Then the period lattice in T ∗
xB is the set of α whose corresponding fα is trivial.

This is a lattice of dimension m, and one may show that there is a neighbourhood U of any point x ∈ B

on which there exist functions {Hi} forming a lattice Λ under addition, such that the period lattice for all

x ∈ U is given by {(dHi)x′} [Dui80]. This lattice will also be referred to as the period lattice.

Let {µ̃i} ∈ C∞(B,R) be a basis of the period lattice, and define µi = µ̃i ◦ π ∈ C∞(M,R). Then the

Hamiltonian flows of the µi have period 1, and the fundamental group π1(Lx) is generated by the loops

γi which are the period 1 trajectories of the Hamiltonian flows of µi. The functions (µ1, ..., µm) define a

moment map for a torus (S1)m action on on M, preserving the Lagrangian fibration [JW92, §4]. These

functions correspond to a set of action variables to pair with our θi angle variables onM. The period lattice

is important, as Jeffrey and Weitsman show that the Bohr-Sommerfeld points correspond to integer values

of a set of functions generating the period lattice [JW92, §5].

For Σ a connected compact Riemann surface of genus g, fix a trinion decomposition {Dγ}, and label the

boundary loops of Dγ as Ci1(γ), Ci2(γ) and Ci3(γ). We call a boundary loop Ci separating if removing it

disconnects Σ. Recall the co-ordinates θi for the points x ∈M defined in equation 3.29.

Theorem 3.13 (Jeffrey and Weitsman, Theorem 8.1). The set P bs of Bohr-Sommerfeld points in B for the

line bundle Lk is given by the points x ∈ B satisfying the conditions:

1. For each boundary circle Ci, θi(x) =
πli
k for some li ∈ {0, 1, ..., k}, with li even if Ci is separating.

2. For each trinion Dγ , li1(γ) + li2(γ) + li3(γ) ∈ 2Z.

From theorem 3.8, we know that (θ1, ..., θ3g−3) is the image of a point x ∈ B if and only if the conditions

(3.30) are satisfied for the triple (θi1(γ), θi2(γ), θi3(γ)) corresponding to each trinion Dγ . We can represent

a trinion decomposition as a trivalent graph, with a vertex for each trinion and an edge for each boundary

circle. Therefore, a Bohr-Sommerfeld point gives a labelled trivalent graphs, where the integer li is assigned

the edge corresponding to boundary circle Ci. The set of Bohr-Sommerfeld points then corresponds with

labelled trivalent graphs whose labelling satisfy certain conditions. Expanding out the conditions of Theorem

3.13 at each vertex with edges labeled l1, l2 and l3, one has:
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1. |l1 − l2| ≤ l3 ≤ l1 + l2,

2. l1 + l2 + l3 ≤ 2k,

3. l1 + l2 + l3 ∈ 2Z.

This gives the final result of Jeffrey and Weitsman:

Theorem 3.14 (Jeffrey and Weitsman, Theorem 8.3). Consider a fixed trinion decomposition of a compact

connected Riemann surface Σ of genus g. It gives rise to a trivalent graph, and a real polarisation of the

moduli space M of flat SU(2) connections on Σ. There is one-to-one correspondence between the Bohr-

Sommerfeld points of the polarisation and the set of integer labellings of the edges of the graph satisfying the

conditions 1,2 in 3.13 and equation 3.30.

(a) The symmetric decomposition and graph. (b) The asymmetric decomposition and graph.

Figure 3.3: Decompositions of a genus 2 surface and the corresponding trivalent graphs.

Example: Let Σ be the compact Riemann surface of genus 2, which has two trinion decompositions into

two trinions. Replacing the trinions with vertices and the boundary circles with edges, we obtain the graphs

in Figure 3.3. Let us use Theorem 3.13 to find the number of Bohr-Sommerfeld points for the line bundle L

over Σ with respect to the polarisations defined by these decompositions. For the symmetric decomposition,

conditions 1 and 2 are the same at each vertex, so it suffices to consider them at one vertex. Since k = 1,

each label must be either 0 or 1. Their sum must be even, which leaves us with four possibilities:

(l1, l2, l3) = (0, 0, 0), (1, 1, 0), (0, 1, 1), or (1, 0, 1). (3.33)

Finally, one can check that each of these labellings satisfies |l1 − l2| ≤ l3 ≤ l1 + l2, so these are all valid la-

bellings. Therefore Theorem 3.13 tells us that there are four Bohr-Sommerfeld points of L in the polarisation

defined by the symmetric decomposition of Σ.
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For the asymmetric decomposition, the conditions at each vertex must be checked separately, as they are

different. Denoting the edges at the two vertices by l1i and l2i , we have that

(l11, l
1
2, l

2
3) = (l1, l1, l3), (l21, l

2
2, l

2
3) = (l2, l2, l3). (3.34)

Once again since k = 1 each label must be either 0 or 1. Their sum at each vertex must be even, which means

2l1 + l3 and 2l2 + l3 must be even. This forces l3 to be zero, and we’re left with the following possibilities:

(l1, l2, l3) = (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0). (3.35)

Once again, one can check that each of these labellings satisfies |li1 − li2| ≤ li3 ≤ li1 + li2, (i = 1, 2) and is

therefore a valid labelling of the graph. Thus Theorem 3.13 tells us that there are also four Bohr-Sommerfeld

points of L in the polarisation defined by the asymmetric decomposition of Σ.

For higher values of k, a computer-assisted search finds that the number of labellings of these two graphs

agree, and is equal to 10, 20, 35 for k = 2, 3, 4 and so on.

One important consequence of this theorem is that the number of Bohr-Sommerfeld points can be com-

puted by counting points in the intersection of the period lattice Λ with the moment polytope defined by

equation 3.30. In the next chapter, we will discuss the construction of another moduli space P which is the

toric variety corresponding to this moment polytope. From the theory of toric varieties, we know there is

a line bundle over P corresponding to the polytope, with a basis of sections given by the Bohr-Sommerfeld

points. It will then remain to show that this line bundle over P corresponds to the prequantum line bundle

overM in a way which preserves the space of sections.
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Chapter 4

Moduli Spaces of Parabolic Bundles

4.1 Extended Moduli Spaces of Connections

Let G be a unitary Lie group and let Σ be a compact connected genus g Riemann surface. Recall (Section

2.2) that the moduli space of flat connectionsM can be constructed as representations Hom(π1(Σ), G)/G,

which has its subset topology as ξ−1(e)/G ⊂ G2g/G, where

ξ(A1, B1, ..., Ag, Bg) =

g∏
i=1

AiBiA
−1
i B−1

i . (4.1)

Now let us generalize to the case where Σ is permitted to have n punctures, {pi}ni=1. Fix a point p in a

neighbourhood of p1, and let c1 be a loop around p1 based at p. For each i ̸= 1, let ci be a loop around pi

in Σ, based at a point qi in a neighbourhood of pi, and let {di}ni=2 be curves di : p → qi in Σ. The path

kj = djcjd
−1
j is a loop based at p, and thus the fundamental group of Σ can be written [HJ00, Eqn. 2.2]:

π1(Σ) =

〈
ai, bi, c1, kj

∣∣∣∣ g∏
i=1

(aibia
−1
i b−1

i )c1

n∏
j=2

kj = e

〉
. (4.2)

Thus, we will redefine ξ : G2g+2n−1 → G to be

ξ(a1, b1, ..., ag, bg, c1, ..., cn, d2, ..., dn) =

g∏
i=1

(aibia
−1
i b−1

i )c1

n∏
j=2

djcjd
−1
j , (4.3)

and consider the set Hom(π1(Σ), G)/G, equipped with the subset topology ξ−1(e)/G ⊂ G2(g+n)−1/G.

Suppose {Ci}2g−g
i=1 is a trinion decomposition for an unpunctured surface Σ̃. Then, if we collapse a curve

Cj down to a single point pj , we obtain a new surface Σ with one puncture, which we desingularize into

two punctures. From Proposition 3.4, any element A in M can be represented by an adapted to trinion
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decomposition (a.t.d.) connection (Def. 3.3), meaning that A’s holonomy around the curve ci corresponding

to the point pi is in the maximal torus t. As a representation, this means we can choose a conjugacy class

of A with holonomy around ci in the fundamental alcove ∆ ⊂ t. If we repeat this for some n curves in the

trinion decomposition, the moduli spaceM becomes the T -extended moduli space

MT := {
[
(Ai, Bi)

g
i=1, C1, (Dj , Cj)

n
j=2

]
∈ G2g+n−1 × exp(∆)n | ξ(Ai, Bi, Dj , Cj) = 1}. (4.4)

We can also define the G-extended moduli space:

MG := {[(Ai, Bi)
g
i=1, C1, (Dj , Cj)j=2n ] ∈ G2g+n−1 ×Gn | ξ(Ai, Bi, Dj , Cj) = 1}, (4.5)

and the map exp : ∆→ exp(∆) induces an inclusionMT ⊂MG.

Theorem 4.1. The spaceMG is a smooth manifold, isomorphic to G2(g+n−1).

Proof. The relation ξ = 1 allows us to write C1 as a function of the other variables, which exhibitsMG as

the graph of a smooth function G2(g+n−1) → G.

The conjugation action of G gives an action onMG, where an element σ ∈ G acts by

Aj → σAjσ
−1, Bj → σBjσ

−1

Dj → σDj , C1 → σC1σ
−1

For the punctures l = 2, ..., n, there is also an action of G corresponding to changing the trivialization of the

underlying bundle near the punctures. An element σ in the lth copy (l = 2, ..., n) of G acts by

Dl → Dlσ
−1, Cl → σClσ

−1. (4.6)

This action ofGn onMG restricts to give an action onMT . Next we would hope to giveMG some symplectic

structure. It turns out, the appropriate structure is that of a quasi-Hamiltonian G space. It is known that

MG has a 2-form ω invariant under the Gk action, and an equivariant moment map Φ :MG → G, given by

(Ai, Bi, Dj , Cj)→ C−1
k [AMM98].

4.2 Imploded Cross-Sections

To proceed, we will state some definitions and results about imploded cross sections, from e.g.[AMM98] and

[JZ20]. The imploded cross-section is meant to take a quasi-Hamiltonian G × G space and reduce it to a

quasi-Hamiltonian G × T space in two steps, similarly to a symplectic reduction. First, one restricts via

the moment map to the fundamental alcove in t, and then one reduces the right G-action to a T -action by

quotienting out the stabilizers of the maximal alcove in t.
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Definition 4.2. For a quasi-Hamiltonian G × G-space M with moment map Φ, and fundamental alcove

∆ ⊂ g, we define the imploded cross section

Mimpl :=
∏
σ

Φ−1(σ)

[Gσ, Gσ]
, (4.7)

where σ ranges over the faces of ∆, and Gσ is the stabilizer of σ under the action of G by conjugation at a

point in the interior of σ.

Example: Consider the double D(G) := G×G, which is a quasi-Hamiltonian G×G space with the action

(g1, g2) · (a, b) = (g1ag
−1
2 , g2bg

−1
1 ), (4.8)

and moment-map Φ : D(G) → G × G given by Φ(a, b) → (ab, a−1b−1). Let us introduce new co-ordinates

u = a and v = ba for D(G), in which the action becomes

(g1, g2) · (u, v) = (g1ug
−1
2 ,Adg2v), (4.9)

and the moment map becomes

Φ(u, v) = (Aduv, v
−1). (4.10)

For G = SU(2), T = S1, the implosion D(G)impl is smooth, isomorphic to S4, and is a quasi-Hamiltonian

G × T -space. We only give a sketch here, the details can be found in [HJ00, Prop 2.29]. For SU(2), the

fundamental alcove is ∆ = [0, 1], which has three faces, σ0 = (0, 1), and σ± = ±1. For σ0, we have Gσ0
= T

and hence [Gσ0 , Gσ0 ] is trivial. For σ±, Gσ = G = [Gσ, Gσ]. For each face σ of ∆, the imploded cross-section

has a stratum that is a quasi-Hamiltonian G× T -space [AMM98, Theorem 5.1].

For the interior σ0, we have Φ
−1(σ0) = {(u, v) ∈ D(G) | v−1 ∈ σ0} = G×σ0, hence Φ−1(σ0)/[Gσ0

, Gσ0
] =

G× σ0. For the other faces σ±, Φ
−1(σ±) = {(u, v) ∈ D(G) | v−1 = ±1} = G, hence Φ−1(σ±)/[Gσ± , Gσ± ] =

G/G = 1. Therefore the imploded cross section is

D(G)impl = (G× σ0)
∐

1
∐

1. (4.11)

One can identify this with S4 by projecting the cylinder (G × σ0) ∼= S3 × (−1, 1) to S4 without the north

and south poles, and then identifying the two points with the poles.

The interior stratum (G × σ0)’s quasi-Hamiltonian structure is inherited from that of D(G), and one

must check explicitly that it extends to the other two points. The residual G× T action on G× σ0 is given

by

(g, t) · (u, v) = (gut−1, v), (4.12)

with moment maps ΦG(u, v) = (uvu−1) and ΦT (u, v) = v−1.

To compute the imploded cross-section of our extended moduli spaces, we will use the following result,

which tells us that D(G)impl is a universal implosion [HJ00, Prop 2.32]:
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Theorem 4.3. Let M be a quasi-Hamiltonian H × G-space, where G = SU(2), and let D(G)impl be the

imploded cross-section of D(G). Then

Mimpl =M ×D(G)impl // G = (m, ξ) ∈M ×D(G)impl | Φ(m) = ΦG(ξ)/G. (4.13)

The space Mimpl is a quasi-Hamiltonian H × T space, and it is smooth over the locus of points (m, ξ) ∈

M ×D(G)impl where the stabiliser of the G-action is trivial.

Next we will construct the symplectic implosion of the spaceMG which is a quasi-Hamiltonian Gn-space.

There is an action of G associated to each curve in our trinion decomposition for Σ, with moment map Φj

given by just C−1
j . Performing the implosion once for each puncture, the resulting space MG

impl will be

denoted P , and it is a Hamiltonian Tn space.

After imploding the first n− 1 punctures (j = 2, ..., n), we obtain the set(Ai, Bi, C1,W2, ...,Wn) | Ak, Bk, C1 ∈ G,Wj ∈ D(G)impl,

g∏
j=1

[Aj , Bj ]C1

n∏
j=2

ΦG(Wj) = 1

 . (4.14)

In terms of the (u, v) co-ordinate for D(G), Wj = (u, v) with u = Dj and v = Cj . To finish the imploded

cross-section, it remains to implode the cross-section for the action of the first copy of G appropriately. Let

W1 = (1, C1) in G×G and define an action of G by

(Ak, Bk,Wj = (uj , vj))→ (gAkg
−1, gBkg

−1, (guj , vj)). (4.15)

Then the final imploded cross-section P becomes [HJ00]

P =

(Ak, Bk,W1, ...,Wn) |
g∐

j=1

[Aj , Bj ]

n∐
j=1

ΦG(Wj) = 1

 . (4.16)

There is a natural map fromM to P :

Lemma 4.4. There is a surjective map ϕ : M → P which is a bijection over the interior (∆0)n of the

moment polytope.

Proof. For each puncture pk, the corresponding imploded cross-section is given by the strata

Φ−1
k (σ)/[Gσ, Gσ] (4.17)

for each face σ ∈ ∆ in the fundamental chamber of the k-th copy of G. The inverse image Φ−1
k (∆) are those

elements with C−1
k ∈ T , and therefore the elements in

⋂
k Φ

−1
k (∆) is exactlyM. Then the quotient map on

each strata defines a surjection ϕ :M→ P . Over the interior ∆0 of each implosion, the quotient is trivial

so ϕ is the identity map, which is bijective.
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Theorem 4.5. Over (∆0)n, ϕ :M→ P is a symplectomorphism.

Proof. Hurtubise and Jeffrey [HJ00, Proposition 2.37].
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Now associated to the compact Riemann surface Σ we have a symplectic variety P of representations

with weighted frames, which is toric for G = SU(2) and has a prequantum line bundle LP corresponding

to L on M. Now we will go in detail on the other half of Jeffrey and Hurtubise’s construction, building

the complex variety P of framed parabolic bundles over a singular curve Σ̃ corresponding to contracting the

loops in a trinion decomposition of Σ. We will see that P and P are diffeomorphic, meaning that we can

compute sections of prequantum line bundles over P using the structure of P .

First we see how to embedM into projective space using determinants, as this construction will have us

transform the data ofM from holomorphic bundles over Σ to sheaves, which is the perspective we will use

to construct P.

4.3 Projective Embedding of M

The moduli M of flat SL(n,C) bundles can be embedded into projective space using the sections of the

determinant bundle over M. There is a construction of this embedding due to Bhosle [Bho89], which we

describe following Thaddeus and Gieseker [Tha96, §7][Gie77].

First, fix a line bundle L of sufficiently high degree so that for all E ∈ N(k, d), E⊗L is globally generated,

and redefine E as E ⊗ L. Then, for some large N we can write E as a quotient:

ϕ : ON → E. (4.18)

This quotient induces a map from ∧k(ON ) → ∧k(E) and the SL(k,C) structure induces an isomorphism

µ : ∧k(E) ∼= Lk. Hence, a quotient of the trivial bundle induces an element β̂ in

V1 := Hom(H0(∧k(ON )), H0(L2)). (4.19)

Now to pass toM we quotient by GL(k,C). Suppose we have ϕ2 = Λ−1ϕ1Λ. Then

β̂2 = µ(∧kϕ2) = µ(∧kΛ−1ϕ1Λ) = detΛµ(∧kϕ1) = detΛ β̂1. (4.20)

Therefore the orbits of GL(k,C) correspond to equivalence classes in P(V1). It is this mapping, which we

will denote ι :M→ P(V1), which we claim is an embedding.

Lemma 4.6. The map ι :M→ P(V1) is injective.

Proof. Suppose (E1, ∂E1
) and (E2, ∂E2

) are holomorphic vector bundles for which β̂1 = ι(E1) = ι(E2) = β̂2.

Since the SL(k,C) structure is unique up to C∗, this means that

∧kϕ1 = λ ∧k ϕ2 (4.21)
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for some λ ∈ C∗. Fixing a local trivialization of E1, E1|U ∼= U × Ck, and picking a local frame e1, .., ek,

choose any sections s1, ..., sk ∈ ON |U so that ϕ1(ei) = si. Let s = s1 ∧ s2 ∧ ... ∧ sk. Then

e1 ∧ ... ∧ sk = ϕ1(s1) ∧ ... ∧ ϕ1(sk) = ∧kϕ1(s) = λ ∧k ϕ2(s) = λϕ2(s1) ∧ ... ∧ ϕ2(sk) (4.22)

Since {ei} was a local frame, the left-hand-side is non-zero, and the right-hand-side is also non-zero. Therefore

{ϕ2(si)} is a local frame trivializing E2 on U . This map ei → ϕ2(s2) gives an isomorphism of E1 with E2.

Note that this isomorphism is not unique as we could have picked other sections s̃i with ϕ1(s̃i) = ei.

Theorem 4.7. The map ι :M→ P(V1) is an embedding.

Proof. From the lemma, we know ι is injective, and thus it remains to show that dι is injective. We give a

proof following Thaddeus [Tha96, Prop 7.1].

Recall that the tangent space TϕM = H1(End E) (Section 2.3), for ϕ : ON → E. Before quotienting

GL(k,C), the map ι was given by the sending ϕ→ β̂ ∈ V1 which is essentially ϕ→ ∧kϕ. Thus, we expect the

derivative TϕM→ V1 to be essentially ψ → ∧k−1ϕ ∧ ψ, for ψ ∈ TϕM. Precisely, if we deform the quotient

map ϕ to ϕ+ ϵψ with ϵ2 = 0, then we have

∧k(ϕ+ ϵψ) = ∧k(ϕ) + ϵ ∧k−1 ϕ ∧ ψ. (4.23)

Then taking the GL(k,C) quotient gives the map dι. Hence to show dι is injective, we want to show that

∧k−1ϕ∧ψ = 0 only if ϕ+ ϵψ = ϕ mod GL(k,C). To show this, we use the following linear algebraic lemma

[Tha96, Lemma 7.2]

Lemma 4.8. If ϕ : Cn → Ck is a linear surjection and ψ : Cn → Ck is a linear map, then ∧k−1ϕ ∧ ψ = 0

if and only if ψ = fϕ for some f ∈ End Ck with trace zero.

This lemma tells us that if ∧k−1ϕ ∧ ψ = 0 then ψ = fϕ and hence ϕ+ ϵψ = ϕ(1 + ϵf). Then since f is

traceless, 1 + ϵf is in GL(k,C), so dι is injective.

4.4 Parabolic Vector Bundles

Given a trinion decomposition of the Riemann surface Σ, let us fix the holonomies around each boundary

loop. If we think of each trinion as a thrice-punctured sphere and consider the space of connections with

fixed holonomies on the trinion, then due to Mehta and Seshadri (cite) there is a correspondence between

the moduli of π1(Σ) representations into SU(n) and that of rank-n holomorphic bundles with an SL(n,C)

structure and a parabolic structure at the punctures of Σ, which we call a parabolic bundle. Under this cor-

respondence, the eigenvalues of the holonomy get translated into a set of weights for the parabolic structure.
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We want to consider the moduli space of connections with all possible holonomies, and therefore we will

want to fit all these moduli of parabolic bundles together, and in such a way that we can even include the

θi = 0, π cases, which will correspond to weights 0 and 1. This is the construction of Hurtubise and Jeffrey

which we will describe in the next section. First we lay out the basic definitions and results about parabolic

bundles.

Definition 4.9. A parabolic bundle over a complex manifold Σ is a holomorphic vector bundle E over

Σ with a parabolic structure, which is a point of marked points {p1, ..., pn} and for each point, a flag of

subspaces in the fibre Epk
.

In particular if E has rank 2, then a parabolic structure on E is a choice of points {pk} and a sheaf

homomorphism α : E → S where S :=
⊕

k Cpk
.

There is an adapted notion of stability for parabolic vector bundles.

Definition 4.10. Let γ1, ..., γn ∈ [0, 1] be a set of weights. For a subbundle (not necessarily proper) F of E

we set µi(F ) = 1 if Fpi
⊂ kerαi, and µi = 0 otherwise. Define σ(F ) = 1

rk(E) if F = E and 0 otherwise.

Then we say a pair (E,α) is stable with respect to γ if

rk(E) deg(F ) < rk(F )

(
deg(E)−

n∑
i=1

γi

)
+ rk(E)

n∑
i=1

(1− µi(F ) + σi(F ))γi. (4.24)

If the inequality is not strict, (E,α) is semi-stable.

Let us summarize some important results about weighted parabolic bundles.

Lemma 4.11. If (E,α) is a parabolic bundle semi-stable with respect to weights γ, then:

1. The kernel of α is torsion free, and the torsion subsheaf of E is non-zero only at the pi, equalling 0 or

C at each pi.

2. If γi > 0, then αi ̸= 0.

3. If γi < 1, then E is torsion free at pi.

4. If γi ∈ (0, 1), one has a parabolic structure at pi, and if all the weights are in (0, 1), then (E,α) is

stable with respect to γ, if and only if it is stable with respect to weights (1− γi)/2 and (1 + γi)/2.

5. If (E,α) is locally free at pi and α ̸= 0, then for γi = 0, there is a family (Et, αt), t ∈ C, of semi-stable

pairs such that (Et, αt) ∼= (E,α) for t ̸= 0, and α0 = 0.

6. If (E,α) is locally free at pi and α ̸= 0, then for γi = 1, there is a family (Et, αt), t ∈ C, such that

(Et, αt) ∼= (E,α), t ̸= 0 and E0 has torsion at pi.
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Proof. Hurtubise and Jeffrey [HJ00, Lemma 4.3]

One consequence of this lemma is that when γi ∈ (0, 1), the set of semi-stable parabolic bundles is

torsion-free. The weights γi will correspond to holonomy angles of flat SU(2) connections around curves in

a trinion decomposition, and so weights in (0, 1) correspond to non-central holonomies. There are two edge

cases to consider: when γi = 0, the parabolic structure vanishes, and when γi = 1 we acquire torsion. To

fit all connections with all possible holonomies into a moduli space, each of these cases will need to be dealt

with.

4.5 Moduli of Framed Parabolic Bundles

Here we construct a moduli space of parabolic vector bundles. This section closely follows Hurtubise and

Jeffrey [HJ00, §4]. From now on, we restrict our attention to G = SU(2). Let Σ be a compact connected

Riemann surface with n punctures {pi}ni=1. Fix a line bundle L of sufficiently high degree so that for all

E ∈ N(k, d), E ⊗ L is a globally generated sheaf (and redefine E = E ⊗ L). Then for some large N we can

write E as a quotient of the trivial sheaf on Σ:

ϕ : ON → E. (4.25)

Just as in Section 4.3 we have a mapping β̂ taking E to the vector space V1 := Hom(H0(∧k(ON )), H0(L2)).

Now we add the parabolic data. At a point pi, the map αi : E → Cpi pulls back to α̂i = αi ◦ ϕ in

V2 := H0(ON )∗. Since we are only interested in αi up to (independent) scaling, the parabolic bundle (E,α)

represents an equivalence class in

Z := P(V1)× P(V2)× ...× P(V2), (4.26)

where there are n copies of P(V2), one for each puncture. Then letting M̃ denote the set of parabolic vector

bundles on Σ, and ι̃ : M̃ → Z denote the map taking (E,α) to (β̂, α̂), we get a closed subvariety X = ι̃
(
M̃
)

in Z.

Now we also have weights γ = (γ1, ..., γn) for the parabolic structure. These vary the choice of polarization

of X, namely the choice of line bundles on which the action of SL(N,C) linearises. Let us recall what this

means:

Definition 4.12. Given a linear algebraic group G and a G-variety X, a line bundle p : L → X linearises

if there is an action of G on L such that for all l ∈ L, g ∈ G,

p(g · l) = g · p(l), (4.27)

and which restricts to a linear isomorphism Lx
∼= Lg·x on fibres.
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In this case G ∼= SL(N,C) which acts on V1 and each copy of V2.

Let π1 : Z → P(V1) and π2,i : Z → P(V2) denote the projections to the first factor and to the i-th factor

of Z respectively. Let

L0 = π∗
1(O(N)), and L1,i = π∗

1(O(N − 1))⊗ π∗
2,i(O(2)). (4.28)

Then the linearisation corresponding to weights γ = (γ1, ..., γn) is

Lγ = (L0)
s0 ⊗ (⊗n

i=1(L1,i)
s1,i) , (4.29)

where s0(γi) = s1,i(1− γi).

In summary, for each set of weights γ, we have a corresponding moduli space of parabolic bundles that

are semi-stable with respect to those weights, with γi ̸= 0, 1. Next we will fit these spaces together, and in

such a way that we can include γi = 0, 1. To do this, we put a (P1)n-bundle over X,

Y = P(L0 ⊕ L1,1)⊕ P(L0 ⊕ L1,2)⊕ ...⊕ P(L0 ⊕ L1,n). (4.30)

We endow Y with the natural polarisation O(1, 1, ..., 1). Now Y contains all the stable points for the various

choice of weights, which correspond to the various possible holonomies of the unitary connections. We still

need to account for gauge equivalence, which suggests we take the SL(N,C) quotient. This is not quite

correct, as one must make an adjustment to account for the possibility that γi = 0, 1.

Consider a weighted parabolic bundles as a quadruple (E,αi, Ai, γ), where αi : E → Cpi
is the parabolic

structure, Ai is a subspace of Epi
, with Ai = kerαi whenever αi ̸= 0 (equiv. γ ̸= 0), and γ are the weights

as usual. For γi ̸= 0, we have not added any new information and when γi = 0 we are adding a projective

class Ai for the parabolic structure even as the map vanishes. On the other hand when γ1 = 1, the sheaves

can acquire torsion. To handle this, we first need

Lemma 4.13 (H& J Lemma 4.11). Let Et, t ∈ C be a family of coherent rank 2 sheaves over Σ, with Et

locally free at p for t ̸= 0, and with E0 having torsion subsheaf Cp near p. Let ϕt ∈ H0(Σ,∧2(E)∗) be a

family of SL(2,C) structures on Et. Then ϕ0 vanishes at p.

Proof. If z is a local co-ordinate on Σ on an open set containing p, such that z(p) = 0, one can obtain Et

locally (up to reparameterization) from the exact sequence

O (0,tk,z)−−−−−→ O ⊕O ⊕O −−−→ Et (4.31)

for some integer k. Then the SL(2,C) structures ϕt are multiples of e∗1 ∧ (−ze∗2+ tke∗3), which vanishes when

z = t = 0.
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Since Y is a projective bundle, one can freely tensor with line bundles and write Y as the bundle

Y =

n⊕
i=1

P
(
π∗
1 (O(−1))⊕ π∗

2,i (O(−2))
)
. (4.32)

In this form, when γ ̸= 1 there is a natural lift of a parabolic bundle (E,α) ∈ X to Y , given by

Ê =
(
(β̂, α̂2

1), (β̂, α̂
2
2), ..., (β̂, α̂

2)
)
, (4.33)

which we want to extend to the torsion case where γ = 1. When there is torsion at say pi (γi = 1), one can

rescale the torsion subsheaf of E, modifying α̂2
i to cα̂2

i for some c. This rescaling should remain in the same

equivalence class, and if β̂ ̸= 0 then since β̂ is not rescaled this would not be the case. Therefore we want

that the i-th component of the lift of E in Y should be (0, α̂2
i ). This is achieved as follows; recall that β̂ is

defined by composing

∧2(ON )
ϕ−→ H0(Σ,∧2E)

ξ−→ H0(Σ, L2) (4.34)

where ϕ : ON → E is a quotient defining E. Recall that E was defined as E0 × L for some bundle E0

with SL(2,C) structure defining a map ξ : H0(Σ,∧2(E0)) → H0(Σ,O). Therefore, we have a commutative

diagram:

H0(Σ,∧2(E0)) H0(Σ,O)

∧2(E0)|pi C

ξ

evO

ξpi

ev∧2(E0) (4.35)

Thus one has ξ = ev−1
O ◦ ξpi ◦ ev∧2(E), and so for γi = 1 we use this definition to define ξpi at the torsion

points of E. Then, from Lemma 4.13, one has that β̂i vanishes when there is torsion at pi. Using this

definition we can define a lift for all (E,α) ∈ X to Y by Ê =
(
(β̂, α̂2

1), (β̂, α̂
2
2), ..., (β̂, α̂

2)
)
.

Next Hurtubise and Jeffrey analyse which elements of Y are stable or semistable as weighted parabolic

bundles. In Lemma 4.13 we saw that torsion in the kernel of αi destabilised (E,α) ∈ X. The same is true

in Y :

Lemma 4.14 (Hurtubise and Jeffrey, Lemma 4.13). A semi-stable element y ∈ Y corresponds to a parabolic

bundle (E,α) with no torsion in the kernel of α.

To allow the αi to go to zero but still preserve the information of which projective class we have at pi,

we define a new map. Let (E,α) ∈ X with SL(2,C) structure ϕ. Then we can map (E,α, ϕ)→ Y by

(E,α, ϕ)→
n⊕

i=1

(
(ϕ(pi)

N , ϕ(pi)
N−1α2

i

)
, (4.36)

and we define Ŷ to be the closure in Y of the image of this map. In this closure, one obtains the points

with αi = 0. Then since ϕ(pi) ̸= 0, Lemma 4.13 guarantees E is torsion free at pi. The next proposition

addresses stability:
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Theorem 4.15 (Hurtubise and Jeffrey, Prop. 4.14). Let

y = ((b1, a1), (b2, a2), ..., (bn, an)) (4.37)

be a point in Ŷ . Let Γ(y) be the set of γi ∈ [0, 1] such that γi = 0 if ai = 0 and γi = 1 if bi = 0. Then y is

semi-stable if and only if for one element γ ∈ Γ(y), π(y) ∈ X is γ-semi-stable.

Therefore semi-stable elements in Ŷ all project down to semi-stable elements of X for some choice of

weights, and the GIT quotient Ŷ // SL(N,C) corresponds to equivalence classes of quadruples (E,αi, α̂i, ϕ)

where (E,α) is a parabolic bundle, α̂i is a subspace of E|pi (which is the kernal of αi when αi ̸= 0) and ϕ

is an SL(2,C) structure. However this is not quite the final moduli space we want to construct, as we have

added the extra information of α̂i when αi = 0. At these points, α̂i ∈ P1 = P(E|pi
). We want to collapse

these extra P1s. To do this, embed V1 into W1 = V ⊗N
1 so that a non-zero element l in L0 = π∗

1(O(N)) can

be thought of as an element in W ∗
1 by taking v1 ⊗ ...⊗ vn to l(v1)l(v2)...l(vn). Similarly, embedding V2 into

W2 = V ⊗N−1
1 ⊗V2⊗V2 allows us to think of non-zero elements in L1,i as elements of W ∗

2 . Then this maps Ŷ

to a subvariety Ỹ in
∏n

i=1 P(W1 ⊗W2), and the map collapses the unwanted P1s while being an embedding

otherwise.

Finally, we let P = Ỹ // SL(N,C) be the geometric quotient, and we call it the moduli space of framed

parabolic bundles.

Remark: Here the quotient is meant to be taken in the sense of Geometric Invariant Theory; the resulting

space consists of the stable and semi-stable orbits of the SL(N,C) action on Ỹ , where stable means the orbit

is closed and the stabiliser is finite, semi-stable means 0 is not in the closure of the orbit, and unstable means

0 is in the closure. These definitions agree with Definitions 2.9 and 4.10 for vector bundles and parabolic

sheaves.

4.6 Framed Parabolic Bundles on a Trinion

To understand the moduli space of framed parabolic bundles on a (punctured) Riemann surface, one can

mirror the construction of section 3 and decompose the punctured Riemann surface into trinions. Towards

this end, let us compute P for one trinion D, a copy of P1 with three marked points. Up to a birational

map, let the three marked points be z = 0, 1,∞.

Lemma 4.16. A degree-0 framed parabolic sheaf (E,α) on D which is semi-stable must fall into one of four

cases:

1. E is trivial; E ∼= O ⊕O.

42



2. E is torsion-free but not trivial, and E ∼= O(1)⊕O(−1).

3. E has torsion at one point p, and E ∼= O ⊕O(−1)⊕ Cp.

4. E has torsion at two points p1, p2, and E ∼= O(−1)⊕O(−1)⊕ Cp1
⊕ Cp2

.

Proof. Suppose that E has no torsion. Then E ∼= O(j)⊕O(−j), j ∈ Z. If E is semi-stable with respect to

some weights γ, the semi-stability condition is that for all subbundles F of E,

2 deg(F ) ≤ rk(F )

(
0−

n∑
i=1

γi

)
+ 2

n∑
i=1

(1− µi(F ) + σ(F ))γi, (4.38)

where we recall that σ(F ) = 1
rk(E) if F = E and 0 otherwise, and µi(F ) = 1 is Fpi

⊂ kerαi and 0 otherwise.

Consider F = O(j). The equation becomes

2j ≤
n∑

i=1

γi − 2µi(F ). (4.39)

Since γi ≤ 1, This can never be satisfied for j ≥ 2, and therefore E = O ⊕O or E = O(1)⊕O(−1) are the

only choices which can yield a semi-stable parabolic sheaf.

When E has torsion at one of the marked points, say p, then let E′ = E/Tor(E). which is a bundle with

E ∼= O(j − 1)⊕O(−j). Let F = O(j − 1)⊕ Cp. Then the stability condition for E and F is

2j ≤
3∑

i=1

γi − 2µi(F ) (4.40)

The right-hand side is at most 3, and therefore if j ≥ 2 then the sheaf O(j−1)⊕Cp is destabilising. Therefore

we must have E′ ∼= O(−1)⊕O, and E ∼= O(−1)⊕O ⊕ Cp.

If E has two torsion points, then E′ ∼= O(−j) ⊕ O(j − 2) If j ≥ 2, then O(j − 2) ⊕ Cp1 ⊕ Cp2 will be

destabilizing. If j = 0, then F = O ⊕ Cp1
⊕ Cp2

has stability condition

4 ≤
3∑

i=1

γi − 2µi(F ). (4.41)

The left hand side is at most 3, so F is destabilizing. So E′ ∼= O(−1)⊕O(−1) is the only semistable choice,

and E ∼= O(−1)⊕O(−1)⊕ Cp1
⊕ Cp2

.

Finally, if E has torsion at all three marked points, E′ = O(−j) ⊕ O(j − 3). Then from Lemma 4.11,

γi = 1 for all i, µi = 0 for all i. Therefore the stability condition for the subsheaf F = O(j−3)⊕C0⊕C1⊕C∞

becomes

2j ≤ −3 + 2(3) = 3 (4.42)

This rules out j ≥ 2. For j = 0, 1 the subsheaf O(−j)⊕Tor(E) will be destabilizing; the stability condition

is

2(3− j) ≤ 3. (4.43)
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Hence there are no semi-stable sheaves E with torsion at three points.

Theorem 4.17. For all degree-0 semi-stable parabolic sheaves (E,α) over D, E⊗O(1) is generated by four

global sections. In particular, there is an exact sequence:

O(−2)⊕O(−2) Az+Bz−1

−−−−−−→ O(−1)⊕4 −→ E → 0. (4.44)

With A,B represented by 4×2 matrices. The map O(−2)⊕O(−2) Az+Bz−1

−−−−−−→ O(−1)⊕4 is injective as a map

of bundles away from the torsion points of E.

Proof. From the lemma, E ⊗ O(1) falls into one of four cases, each of which is a quotient of O⊕4. In each

case, the sequence defining E ⊗O(1) can be written as a direct sum of the following exact sequences:

1. O(−1) ↪→ O⊕2 ↠ O(1)

2. O(−1)⊕2 ↪→ O⊕3 ↠ O(1)

3. 0 ↪→ O ↠ O

4. O(−1) ↪→ O ↠ Cp.

In any case, E⊗O(1) is generated by four global sections, and the kernel is O(−1)⊕O(−1). Thus tensoring

with O(−1) to recover E, we obtain the claimed exact sequence.

Since E is rank 2 away from torsion, and E = O(−1)⊕4/im(Az + Bz−1) by exactness, at every point p

without torsion im(Az + Bz−1)|p = im(Ap + Bp−1) has dimension 2. The domain O(−2) ⊕ O(−2)|p has

dimension 2, and so by rank-nullity theorem the kernal of Ap+Bp−1 has dimension 2− 2 = 0 and is hence

injective.

The 4×2 matrices A,B depend on E and in fact determine E. The parabolic structure α = (α0, α1, α∞)

is realized as maps O(−1)⊕4 → Cpi
for which im (O(−2)⊕O(−2)) ⊂ kerαpi

. These maps are represented

by row vectors V0, V1, V∞ in C4 satisfying the conditions:

V0A = 0, V1(A+B) = 0, V∞B = 0. (4.45)

Finally, the framing (SL(2,C) structure) is determined by the isomorphism

∧2(E) ∼=
(
∧2O(−2)⊕O(−2)

)∗ ⊗ ∧4O(−1)⊕4, (4.46)

so the data of A,B, V0, V1 and V∞ determines a framed parabolic bundle.
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There is an action of GL(2,C)×GL(4,C) on this data, by

(g,G) · (A,B, V0, V1, V∞) = (GAg−1, GBg−1, V0G
−1, V1G

−1, V∞G
−1), (4.47)

and the orbits of this action are the isomorphism classes of framed parabolic bundles we are interested in.

We define four functions which are projectively invariant under this action:

x = det(A,B), y = det

V0B
V1A

 , z = det

V0B

V∞A

 , w = det

V1B

V∞A

 . (4.48)

The action of (g,G) on these functions pulls out the determinants of g and G, so we can instead consider

just the orbits of equivalence classes of (x, y, z, w) mod C∗ under the action of SL(2,C)× SL(4,C).

Theorem 4.18. The map Φ : P|D taking a framed parabolic sheaf (E,α) to the class [x : y : z : w] as defined

in equations 4.48 is an isomorphism of P|D with P3.

Lemma 4.19. A point in P|D defined by (A,B, V0, V1, V∞) is semi-stable if and only if one of the co-

ordinates x, y, z or w is non-zero. This tells us Φ is well defined.

Proof. If (A,B, V0, V1, V∞) defines an unstable bundle, we want to show that all the co-ordinates vanish.

Suppose the closure of (A,B, V0, V1, V∞)′s orbit under SL(2,C) × SL(4,C) contains (0, 0, 0, 0, 0). First

suppose the orbit itself contains 0. Then there is G ∈ SL(4,C) such that ViG
−1 = 0, and since G is

invertible this means Vi = 0 for all V0, V1, V∞; this makes y, z, w all 0. Furthermore, if g ∈ SL(2,C) such

that GAg−1 = GBg−1 = 0 then A = B = 0 by invertibility of G and g. Hence x = 0; so if the orbit contains

0 then x = y = z = w = 0.

Now suppose that 0 is in the closure of the orbit. This means there is a sequence of matrices (Gi, gi)
∞
i=1

that approaches matrices that send (A,B, V0, V1, V∞) to 0. By the previous argument, either G or g is

not invertible, or all the co-ordinates x, y, z, w equal 0. Since the determinant is a continuous function

on SL(n,C), the limit of the determinant is the determinant of the limit, and since Gi and gi all have

determinant 1, so does their limit. They must be invertible, and hence x = y = z = w = 0.

Conversely, we can check semi-stability via the Hilbert-Mumford criterion. Consider a point whose co-

ordinates all vanish. This tells us that there is a basis of C2 for which ViA = (ai, 0) and ViB = (bi, 0) for

i = 0, 1,∞. Pick a basis for C4 in which each Vi has the form (∗, ∗, ∗, 0). Then let n > 0 and G(z) =

diag(z−n, z−n, z−n, z3n). G(z) is a one parameter family in SL(4,C) for which G−1(z)Vi → 0 as z → 0. Let

g(z) = diag(z−m, zm) for some n < m < 3m. Then

GAg−1(z) =


zm−nA11 z−m−nA12

zm−nA21 z−m−nA22

zm−nA31 z−m−nA32

zm+3nA41 z3n−mA42

 (4.49)
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If the span of the Vi is 3-dimensional, then in our basis we must have A12 = A22 = A32 = 0 from equation

4.45. In this case, as z → 0 we have GAg−1(z) → 0, so this family (G, g)(z) is destabilizing. If the span

is 2-dimensional, A32 may be non-zero. In this case, we modify G(z) = diag(z−n, z−n, zn, zn) and get a

destablizing family. Similarly, if the span of the Vi is 1-dimensional, then A12 = 0 and we let G(z) =

diag(z−3n, zn, zn, zn) to get a destabilizing family. All this holds for B as well.

In the last case with all Vi = 0, we need only consider A and B. Since det(A,B) = 0, there is a basis in

which

(A,B) =


A11 A12 B11 B12

A21 A22 B21 B22

A31 A32 B31 B32

A41 A42 B41 B42

 (4.50)

has a row of zeros. Suppose without loss of generality it is the last row. Then let 0 < m < n and let

G(z) = diag(zn, zn, zn, z−3n) and g(z) = diag(z−m, zm). The family (G, g)(z) will destabilize (A,B, 0, 0, 0).

With this lemma we are ready to prove Theorem 4.18.

Proof. We will prove that Φ is bijective. To do this, we will perform a case-by-case analysis on the four

possibilities for E given by Lemma 4.16.

Case 1: E = O ⊕O. Then x = det(A,B) ̸= 0, so we can choose bases such that

A =


1 0

0 1

0 0

0 0

 , B =


0 0

0 0

1 0

0 1

 .

Then the stabiliser of (A,B) under the SL(2,C) action (equation 4.47) is all of SL(2,C). The conditions of

(4.45) tell us that

V0 = (0, 0, a, b), V1 = (c, d,−c, d), V∞ = (e, f, 0, 0). (4.51)

Next we take the geometric quotient by the SL(4,C) action (equation 4.47), which reduces to an action of

SL(2,C) on the three vectors (a, b), (c, d), (e, f) in C2. When these vectors span C2, their stabiliser will be

finite, so we obtain a stable point in the moduli space. The functions y, z, w map the set of stable points

bijectively to (C3−{0}). The semi-stable orbits are those for which the three vectors are linearly dependent.

In this case, y = z = w = 0, so the semi-stable points are all sent to (1, 0, 0, 0) in P3. Therefore, after the

quotient, the set of bundles with x ̸= 0 is in bijection with the affine set of points (1, y, z, w) in P3.
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Case 2: E = O(1) ⊕ O(−1). In this case, det(A,B) = 0, and Im(A) + Im(B) is three-dimensional. By

Theorem 4.17, (Az0 +Bz1) is injective for all (z0, z1) ̸= (0, 0). Therefore we can find bases in which

A =


1 0

0 1

0 0

0 0

 , B =


0 0

1 0

0 1

0 0

 .

Then from equations (4.45) we have

V0 = (0, 0, a, b), V1 = (c,−c, c, d), V∞ = (e, 0, 0, f). (4.52)

This allows us to compute (x, y, z, w) = (0,−ac,−ae, ec). If a, c, e are all non-zero then the stabiliser of the

SL(4,C) action is finite, so the points are stable and the projective co-ordinates are a bijection on this locus.

If one of a, c or e is zero, then we obtain a semi-stable orbit with co-ordinates [0 : 1 : 0 : 0], [0 : 0 : 1 : 0]

or [0 : 0 : 0 : 1]. If two are zero, we obtain an unstable point with co-ordinates [0 : 0 : 0 : 0] which is not

included in the moduli space.

Case 3: E has one torsion point p. Then x = det(A,B) = 0, Im(A) + Im(B) is three-dimensional, but

(Az0+Bz1) will not be injective at some non-zero (z0, z1). From Theorem 4.17, (Az0+Bz1) is injective away

from the torsion points, and from Lemma 4.11 know that the torsion subsheaf of E can only be non-zero at

0, 1 or ∞. We will compute the case with z0/z1 = 0, the other two cases are similar. Then we can find bases

such that

A =


0 1

0 0

0 0

0 0

 , B =


0 0

1 0

0 1

0 0

 ,

in which V0 = (0, a, b, g), V1 = (c, 0,−c, d) and V∞ = (e, 0, 0, f) and (x, y, z, w) = (0, ac, ae, 0). Semi-stability

ensures that a ̸= 0 and either c or e is also non-zero. If they’re both non-zero we obtain a stable point,

otherwise we obtain a semi-stable point, with co-ordinates [0 : 1 : 0 : 0] and [0 : 0 : 1 : 0].

Case 4: E has two torsion points. Then x = det(A,B) = 0 and Im(A) + Im(B) is not three dimensional.

Then since A,B are 4 × 2 and injective away from the torsion points, their image must be at least two

dimensional. Once again, we only do one case, with torsion at 0,∞, as the other cases are similar. Then we

can find bases such that

A =


0 1

0 0

0 0

0 0

 , B =


0 0

1 0

0 0

0 0

 ,
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and V0 = (0, a, b, c), V1 = (0, 0, d, e) and V∞ = (f, 0, g, h). The projective co-ordinates are (0, 0,−ag, 0) and

the unique closed orbit is that given by V0 = (0, a, 0, 0), V2 = (0, 0, 0, 0) and V3 = (f, 0, 0, 0). Permuting the

choice of torsion point, this case contains three orbits corresponding to three points in the plane at infinity;

[0 : 1 : 0 : 0], [0 : 0 : 1 : 0] and [0 : 0 : 0 : 1].

Summarizing, the sheaves in case 1 correspond to the set {[x : y : z : w] ∈ P3 | x ̸= 0} ∼= C3. Those in

case 2 correspond to the set {[0 : y : z : w] | y, z, w ̸= 0} ∪ {[0 : 0 : 0 : 1], [0 : 1 : 0 : 0], [0 : 0 : 1 : 0]}. Those in

case 3 correspond to the sets with two projective co-ordinates equal to 0, and those in case 4 correspond to

the sets with three projective co-ordinate equal to 0. Cases 2, 3 and 4 all have semi-stable points, meaning

non-closed orbits, whose projective co-ordinates are [0 : 1 : 0 : 0], [0 : 0 : 1 : 0] and [0 : 0 : 0 : 1]. For Φ to be

bijective, we must check that these non-closed orbits all share the same closure, so that they are all given

by the same point in the geometric quotient P . This is true, because we can always obtain case 4 as a limit

point of cases 2 and 3. For example, consider the family in SL(2,C)× SL(4,C) given by

gt = 12×2, Gt = diag(1, 1, t−1, t).

Given (A,B, V0, V1, V∞) semi-stable of case 3, in the limit as t→∞ (Gt, gt) · (A,B, V0, V1, V∞) will approach

a semi-stable bundle of case 4, and so the closure of an orbit in case 4 contains that of case 3.

Notice in particular that the four points [1 : 0 : 0 : 0], [0 : 1 : 0 : 0], [0 : 0 : 1 : 0] and [0 : 0 : 0 : 1]

each correspond to a unique closed semi-stable orbit in P . The rest of P3 correspond to stable points. Each

of the cases in the proof correspond to the four possible cases for E given by Lemma 4.16. In Case 1,

det(A,B) ̸= 0 tells us E = O⊕O, and there is a C3 of framed parabolic structures for the three punctures.

In Case 2, there is no torsion and so the bundle is O(−1) ⊕ O(1). In Case 3, there is one torsion point, so

E = O ⊕O(−1)⊕ Cp, and in Case 4, there are two torsion points so E = O(−1)⊕O(−1)⊕ Cp1
⊕ Cp2

.

Our moduli space is therefore P|D ∼= P3 over the trinion D. We also have an action of (C∗)3 on P|D
where each factor scales the parabolic structure at one point; for λi ∈ C∗,

(λ1, λ2, λ3) · (A,B, V0, V1, V∞) = (A,B, λ1V0, λ2V1, λ3V∞). (4.53)

In terms of our co-ordinates for P3, the action is given by

(λ1, λ2, λ3) · [x : y : z : w] = [x : λ1λ2y : λ1λ3z : λ2λ3w]. (4.54)

Consider the line bundle O(1) of homogeneous linear functions over P3. The action on P3 linearizes on O(1);

if ax+ by + cz + dw ∈ O(1)(P3) then define

(λ1, λ2, λ3) · (ax+ by + cz + dw) = ax+ bλ1λ2y + cλ1λ3z + dλ2λ3w. (4.55)
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4.7 Gluing P over Trinions

Given two Riemann surfaces Σ1, Σ2 with marked points p1 and p2, we can glue them together by identifying

p1 and p2 to form Σ = Σ1

∐
Σ2/(p1 ∼ p2). This will be a nodal complex curve. If P1 and P2 denote the

moduli space of parabolic sheaves corresponding to Σ1 and Σ2, we can also consider gluing them together.

For framed parabolic sheaves (Ei, αi), with Ei over Σi and αi : (Ei)|pi → C, we can combine the two into a

diagram:

(E1)|p1
→ C← (E2)|p2

. (4.56)

We consider two such diagrams to be equivalent if the framed parabolic bundles on each surface are isomor-

phic, and if the parabolic structures agree, by which we mean that the induced determinant maps

E1/ kerα1 ⊕ E2/ kerα2 → E1/ kerα1 ∧ E2/ kerα2
∼= C (4.57)

are the same. This determinant map is essentially multiplying α1 and α2, so taking equivalence classes under

this equivalence amounts to quotienting out the anti-diagonal action of C∗ on the framed parabolic structure

at p0 and p1, and we have PΣ = P0 × P1 // C∗.

In particular, given a compact Riemann surface Σ with trinion decomposition {Dγ}2g−2
γ=1 , we can pinch

the boundary circles Ci
3g−3
i=1 down to points to obtain a singular surface Σ̃, consisting of 2g − 2 copies of P1

with three marked points glued along those 3g − 3 total marked points. Then we can obtain the moduli

space P for Σ̃ by gluing the moduli spaces Pγ for each trinion Dγ . From the previous section we know

each Pγ is isomorphic to P3. Heuristically, this lets us estimate the dimension of P. There is a total of

3(2g − 2) dimensions for the P3 over each trinion, and we have to quotient an action of C∗ along 3g − 3

curves. Therefore, we expect that P has dimension 3(2g − 2) − 3g − 3 = 3g − 3, which agrees with our

dimension calculation for the moduli spaceM from section 2.

Given two trinions D1, D2 with moduli spaces P1
∼= P2

∼= P3, the Segre embedding lets us embed P3×P3

into P15. Let X denote the image of P3 × P3 in P15. To recall, if [x : y : z : w] and [x′ : y′ : z′ : w′] are

co-ordinates for each copy of P3, then the Segre embedding is the map

([x : y : z : w], [x′ : y′ : z′ : w′])→ [xx′ : xy′ : xz′ : xw′ : yx′ : ... : ww′], (4.58)

where the right-hand side is ordered lexicographically. Suppose the punctured points are p1, p2, p3 for D1

and q1, q2, q3 for D2, and that we wanted to glue p1 to q1. The anti-diagonal action of C∗ on P3×P3 is given

on each copy of P3 from equation (4.54):

λ · [x : y : z : w]→ [x : λy : λz : λw], λ · [x′ : y′ : z′ : w′]→ [x′ : λ−1y′ : λ−1z′ : λ−1w′].

The GIT quotient is then defined as

X // C∗ := Proj

(⊕
n≥0

Γ(X, (O(1)P15 |X)
n
)

)C∗
 . (4.59)
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Therefore to understand the quotient, we must find the ring of invariant functions under the action of C∗.

For the gluing we’re considering now, the invariant sections are the quadratic functions with equal powers

of λ and λ−1:

Γ(X, (O(1)P15 |X))C
∗
= span(xx′, xw′, wx′, ww′, yy′, zy′, yz′, zz′). (4.60)

We can also glue two points on one trinion to each other. For example, if D has punctures p1, p2 and p3 and

we glue p2 to p3, then the (C∗) action from equation (4.54) becomes

(1, µ,mu−1) · [x : y : z : w] = [x : µy : µ−1w : µµ−1z] = [x : µy : µ−1w : z]. (4.61)

In this case, the invariant functions are x, yw and z with degrees 1,2 and 1. Taking the homogeneous

spectrum we get the weighted projective space P(1, 2, 1). This can be embedded into P3 as the cone over the

twisted cubic [Rei02, Ex. 1.1]

Example: Let Σ be a genus 2 compact Riemann surface. Using the same notations as above, Σ can be

decomposed into two trinions in two ways. First, one can glue pi to qi, which we will call the symmetric

decomposition, and second one can glue p1 to p2, q1 to q2, and p3 to q3, which we call the asymmetric decom-

position. Let us perform the quotients described above to find what P is for each of these decompositions

of Σ.

First consider the symmetric decomposition. Then the anti-diagonal action of (C∗)3 on P3 × P3 is given

by

(λ, µ, ν) · [x : y : z : w] = [x : λµy : λνz : µνw]

(λ, µ, ν) · [x′ : y′ : z′ : w′] = [x : λ−1µ−1y : λ−1ν−1z : µ−1ν−1w].

Embedding P3 × P3 into P15 (and defining the image as X), to compute the quotient we must find the

graded ring of homogeneous invariant functions of Segre co-ordinates under the (C∗)3 action. Consider the

polynomial (xαyβzγwδx′α
′
y′β

′
z′γ

′
w′δ′); the power of λ, µ and ν one gains from the action of (C∗)3 can be

computed by the matrix-vector multiplication


pλ

pµ

pν

 =


1 1 0 −1 −1 0

1 0 1 −1 0 −1

0 1 1 0 −1 −1





β

γ

δ

β′

γ′

δ′


. (4.62)

Therefore, to find invariant polynomials, we can set pλ = pµ = pν = 0 and row-reduce the matrix to find the

powers of each co-ordinate which yield an invariant polynomial. Putting the matrix into row-reduced echelon

form, we obtain [13,−13] which means the only possible invariant polynomials are those with β = β′, γ = γ′
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and δ = δ′. For the polynomials to be homogeneous, we need α+β+ γ+ δ = α′ +β′ + γ′ + δ′, and therefore

α = α′ as well. Hence, the degree-1 polynomials in the Segre co-ordinates are

xx′, yy′, zz′ and ww′. (4.63)

The ring of invariant functions is C[xx′, yy′, zz′, ww′], graded in the standard way, and the moduli space is

given by the GIT quotient

P = (P3 × P3) // (C∗)3 = Proj (C[xx′, yy′, zz′, ww′]) = P3. (4.64)

Now, let us consider the asymmetric decomposition. In this case, the (C∗)3 action is

(λ, µ, ν) · [x : y : z : w] = [x : y : λµz : λµ−1w]

(λ, µ, ν) · [x′ : y′ : z′ : w′] = [x : y : λ−1νz : λ−1ν−1w].

The corresponding linear system for invariant polynomials is therefore


pλ

pµ

pν

 =


0 1 1 0 −1 −1

0 1 −1 0 0 0

0 0 0 0 1 −1





β

γ

δ

β′

γ′

δ′


. (4.65)

Therefore, the αs and βs are free variables, but γ = δ and γ′ = δ′. We also must have that γ + δ = γ′ + δ′.

The condition for homogeneity of degree gives one more constraint, that d = α + β + γ + δ = α + β + 2γ.

Therefore, the set of degree-1 invariant polynomials is

xx′, yy′, xy′, yx′. (4.66)

However in this case, the degree-2 invariant polynomials are not all generated by products of the degree-1

invariants. We have the additional invariants

(ww′)(zz′), (wz′)(zw′). (4.67)

The degree-2 invariants are the same polynomial, and the degree-1 invariants have one relation. The graded

ring of invariant polynomials is R = C[a, b, c, d, e]/⟨ab−cd⟩, where e has weight two. Taking the homogenous

spectrum we obtain a variety inside the weighted projective space P(1, 1, 1, 1, 2) defined by the ideal ⟨ab−cd⟩.

For the symmetric gluing, we have O(1)(P) = span{xx′, yy′, zz′, ww′} which is dimension 4. Similarly,

dimO(2)(P) = 4 +
(
4
2

)
= 10, from 4 squared functions and 6 cross-terms. For the asymmetric gluing,

O(1)(P) = span{xx′, yy′, xy′, yx′} which is also dimension 4. Then these give 4 squared functions and 5

cross-terms, as xx′yy′ = xy′yx′. The missing section is ww′zz′ = wz′zw′, giving again dimO(2)(P) = 10.

We see that in each of these gluings, the number of sections of O(n) agrees with the Verlinde formula of

integer graph labellings that we computed in Section 3.4.
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(a) The asymmetric decomposition.

(b) The symmetric decomposition.

Figure 4.1: The two possible trinion decompositions of a surface of genus g = 2.
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Chapter 5

Degenerating the Moduli Space

In Chapters 2, 3 and 4, we have described the moduli space M of flat SU(2) connections on a compact

Riemann surface Σ, and the corresponding spaces P and P of representations with weighted frames on Σ

and framed parabolic sheaves on Σ̃, a singular curve corresponding to Σ via degeneration. Now in this section

we will describe how this degeneration of Σ to Σ̃ induces a degeneration of M to P. This degeneration of

moduli spaces is due to Biswas and Hurtubise [BH21].

5.1 Degeneration of the Curves

The relationship between the moduli spaces M and P is given by degenerating the Riemann surface Σ to

a nodal curve by smoothly shrinking the boundary curves of the trinion decomposition. First we describe a

local model for this shrinking process.

Figure 5.1: Smoothly shrinking one boundary curve to a point.

Let Σ be a compact connected Riemann surface of genus g as before. Let Σ0 denote the nodal curve

obtained by trinion decomposition from Σ, replacing each boundary circle of the trinions with a single point

and then gluing at those points. Let x0 ∈ Σ0 be a nodal point corresponding to a boundary circle C0. Let

Σ̃0 denote the desingularization of Σ0. Let x1 and x2 denote the two points of Σ̃0 which map to x0 ∈ Σ.
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Let B be the polydisk in C2 given by the product of two disks of radius 2 centred at the origin. Then

define a family Q of quadrics for t ∈ U by

Qt = {(x, y) ∈ B | xy = t, t ∈ U}. (5.1)

For t = 0 we get the axes in C2 which is a local model for Σ0 around x0, and for t ̸= 0 we get a cylinder

which is a local model for Σ on a tubular neighbourhood of the boundary circle C0. For t ̸= 0, the boundary

of Qt is two circles, given by the equations

(x(t, θ), y(t, θ)) =

(
2eiθ,

t

2
e−iθ

)
(x(t, θ), y(t, θ)) =

(
t

2
eiθ, 2e−iθ

)
.

There is a closed curve ct in Xt given by

(x(t, θ), y(t, θ)) =
√
t(eiθ, e−iθ), (5.2)

which approaches C0 at t = 1 and x0 at t = 0. By gluing this local model to the boundaries of the disjoint

union (U × S1)
∐
(U × S1) one obtains a family over U , with fibre Σ0 at t = 0, and Σ ∼= Σt (topologically)

at t ̸= 0.

5.2 Local Model for the Connections

On our local model for the degeneration of the curve Σ, one also has a local model for the degeneration of

a unitary connection ∇ on a vector bundle E over Σ. Theorem 3.4 guarantees that there exists some α ∈ t

such that locally,

∇ = d+ i
α

2
(dθx − dθy) = ∂ +

α

4

(
dx

x
− dy

y

)
+ ∂ +

α

4

(
dx̄

x̄
− dȳ

ȳ

)
, (5.3)

where θx and θy are the arguments of the complex co-ordinates x and y. The holonomy C := Holc1(∇) will

be given in this gauge by C = e−2πiα. On our family Qt, this connection is well defined for all t ̸= 0, and it

is isomonodromic, meaning that for all t ̸= 0,

Holct(∇) = Holc1(∇) = C. (5.4)

It remains to describe the connection in the limit t = 0. Change co-ordinates on Qt from (x, y) to (x, t), and

the connection becomes

∇ = d+ i
α

2
(2dθx − dθt). (5.5)

Similarly in co-ordinates (y, t) we have

∇ = d+ i
α

2
(−2dθy + dθt). (5.6)
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Figure 5.2: Example of d1 and d2, and the degeneration to Σ̃0.

Since Qt is defined by the equation xy = t, dθt is a normal component and one may project it out to obtain

a partial connection ∇p on Qt. On the patch x ̸= 0, using x co-ordinate:

∇p = d+ iαdθx. (5.7)

This extends well to the limit y → 0, despite the original connection ∇ having a singularity. On the patch

y ̸= 0 with y co-ordinate:

∇p = d− iαdθy, (5.8)

which also passes well to the limit x→ 0. Therefore we obtain a partial connection ∇p defined everywhere

on Q0 except the nodal point x0.

This local model can also be described in terms of the holonomy of the connection. Suppose that Σ− c1
is not disconnected1, and denote by Σ̃0 the desingularized degenerated curve. In this case, Σ̃0 has genus

g − 1. Let p1, p2 denote the punctures in Σ̃ corresponding to c0 = x0. Then Σ̃ is a twice punctured curve

for which we have the extended moduli spaceMG from Chapter 4:

MG =

{(
(Ai, Bi)

g−1
i=1 , (C1, C2, D1, D2)

)
, |

g−1∏
i=1

[Ai, Bi]D1C1D
−1
1 D2C2D

−1
2 = 1

}
/SU(n) (5.9)

On the original curve Σ, a connection corresponds to a representation of π1(Σ); picking a point p ∈ Σ, let

d1 and d2 be curves from p to c1 such that d1d
−1
2 is a non-contractible loop based at p. Then let (Ai, Bi)

g−1
i=1

denote the standard generators for the rest of π1(Σ). In this notation, a connection on Σ is represented by

holonomies
(
(Ai, Bi)

g−1
i=1 , C,D1, D2

)
around these curves.

On Σ̃0 we have two circles around the punctures p1 and p2, denoted c1 and c2. Gluing open neighbour-

hoods of these points back together to obtain Σ identifies c1 and c−1
2 , meaning a connection on Σ̃0 which

can be glued to form a connection on Σ must have the relation

D−1
2 D1C1D

−1
1 D2 = C−1

2 = C1. (5.10)

1A similar analysis can be performed for disconnecting curves, see [BH21, Page 10].
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Therefore, D−1
2 D1 ∈ Stab(C1), or D1µ

−1 = D2 for some µ ∈ Stab(C1). Our local degeneration thus sends

the connection ∇ = (Ai, Bi, C,D1, D2) on Σ to the orbit under µ ∈ Stab(C)

(Ai, Bi, C,D1, D2)→
(
(Ai, Bi), (µCµ

−1, D1µ
−1)
)
,= OrbStab(C)(∇), (5.11)

inMG. If C is in exp∆0, then Stab(C) = {e} and the degeneration is bijective. Otherwise, when C = ±1,

then Stab(C) = SU(2). Notice that the action of equation 5.11 matches the action of the k-th copy of G on

MG of equation 4.6. Therefore, these orbits are points in the strata of the imploded cross-section of MG.

When we perform this local degeneration for each curve in the trinion decomposition, which corresponds to

implodingMG for each puncture, we will obtain an element in the imploded cross-section P .

5.3 Degeneration of the Moduli Space

Using this local model, one can describe the degeneration of the entire moduli spaceM as all of the boundary

curves in a trinion decomposition of Σ are degenerated to a singular curve Σ0. Let {ci}3g−3
i=1 be boundary

curves in a trinion decomposition for Σ, which degenerate to points {pi}6g−6
i=1 in the desingularized curve;

p2k−1 and p2k each come from the degeneration of the curve ck. On Σt for t ̸= 0, we simply have the moduli

space Mt of flat SU(2) connections which corresponds to the moduli space of stable holomorphic vector

bundles with SL(2,C) structure over Σt. Therefore it remains to understand the moduli space over Σ0 and

the desingularisation Σ̃0.

Let p be a nodal point in Σ0 and x1, x2 the two points in Σ̃0 which correspond to p. Any connection on

Σ0 has holonomy Ai ∈ SU(2) around each nodal point which lives in the fundamental alcove of SU(2). We

can write the alcove as

A = {exp (−2πi diag(γ,−γ)) | γ ∈ [1/2, 1]}, (5.12)

and the logarithms of the holonomies are the values of γ. Under the Mehta-Seshadri correspondence these

logarithms will define the weights for a parabolic structure of the SL(2,C) bundle corresponding to the

connection. The flags assigned to the points x1 and x2 will be determined by the eigenspaces of Ai.

Let ∆ = [1/2, 1], which divides into three faces {1/2}, {1} and (1/2, 1). When γ ∈ (1/2, 1), the corre-

sponding holonomy matrix has two distinct eigenvalues γ and −γ. If γ = 1/2 then Ai = −1, and if γ = 1

then Ai = 1.

Fix γ ∈ [1/2, 1] and consider the space of connections with holonomy whose logarithm is γ about pi.

Quotienting out the gauge choice of SL(2,C) framing around pi, the Mehta-Seshadri theorem [MS80] tells

us that this space of connections corresponds to the holomorphic moduli space of parabolic SL(n,C) vector

bundles E with parabolic structure at pi of weight γ. The parabolic structure is the flag given by the largest
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eigenspace of the holonomy, i.e. that with eigenvalue γ. When γ = 1/2 or 1, then we acquire instead a

framed parabolic sheaf with torsion at p1 and the SL(2,C) structure vanishes, as discussed in Chapter 4.

To obtain the entire moduli space of connections on Σ0 and Σ̃0, we need to allow the weights to vary and

fit the space for each weight together. This was the construction of P from Chapter 4, the space of framed

parabolic sheaves glued along a trinion decomposition, constructed by Hurtubise and Jeffrey. In summary,

we have [BH21, Theorems 3.17, 4.1]

Theorem 5.1 (Biswas and Hurtubise). There is a family π : X→ C, for which

• π : X→ C is a flat family of irreducible reduced schemes.

• For any t ∈ C∗, the fibre Xt = π−1(t) is isomorphic toM.

• The special fibre π−1(0) is P, which is a toric variety.

We refer to this bundle as the degeneration ofM to P, or simply the degeneration.

In the symplectic picture, one can rephrase this degeneration as a surjective map ϕ :M→ P , given by

taking an element A ∈ X1
∼=M to its corresponding degenerated element A0 ∈ X0

∼= P , given locally by

the model in Section 5.2. In terms of the extended moduli spaces of Chapter 4, ϕ is the composition of the

inclusion and symplectic implosion quotient maps:

M =MT ↪→MG ↠
∐
σ∈∆

Φ−1(σ) ↠ P, (5.13)

described by Hurtubise and Jeffrey [HJ00, prop 2.37]. Note that
∐

σ∈∆ Φ−1(σ) =MT , just described in a

way that respects the strata defined by the moment polytope ∆.

Lemma 5.2. Given an element A ∈M, let D(A) denote the element in P obtained by performing the local

degeneration of Section 5.2 at each curve in a trinion decomposition for Σ. Then D(A) = ϕ(A), where ϕ(A)

is the composition of maps

M =MT ↪→MG ↠
∐
σ∈∆

Φ−1(σ) ↠ P, (5.14)

where the surjections are the restriction and quotient maps of the imploded cross-section.

Proof. Fix one closed curve γk in the trinion decomposition. Then an element A ∈ M defines a holonomy

Ck ∈ T ⊂ SU(2) around γk, and we also have the local model for the degeneration D(A) on a tubular

neighbourhood around γk. First let us compute ϕ(A). Suppose A = (Ai, Bi, Cj , Dj). Then to compute

the quotient for the imploded cross-section, we have three faces {σ0, σ+, σ−} of ∆ = [0, 1] to consider. If
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C−1
j ∈ expσ0 then it is quotiented by the stabiliser [Gσ, Gσ] = {e} as discussed in Chapter 4. If C−1

j = ±1,

then it is quotiented by the stabiliser [Gσ, Gσ] = G, under the action

Dk → Dkg
−1, Cl → gClg

−1. (5.15)

In summary:

ϕ(∇) =

(Ai, Bi, Cj , Dj), Ck ∈ σ0

OrbSU(2)(∇), Ck ∈ σ±
(5.16)

On the other hand, the degeneration D(A) takes (Ai, Bi, Cj , Dj) to the set

D(A) = {((Ai, Bi, Cj , Dj)j ̸=k(Ck, Dk, Dkµ) | µ ∈ Stab(Ck))} (5.17)

For Ck in σ0, the stabilizer is {e} and we have

D(Ai, Bi, Cj , Dk) = (Ai, Bi, Cj , Dk) = ϕ(A). (5.18)

If Ck is in σ±, then the stabilizer is SU(2) and we have

D(Ai, Bi, Cj , Dk) = OrbSU(2)(∇), (5.19)

under the action of SU(2) of equation 4.6 which is the same as that defined for the imploded cross-section.

Hence on each stratum, ϕ(∇) = D(∇).

For each curve in the trinion decomposition, we can repeat this process, until it remains to perform the

final quotient by the first copy of G. After these implosions, we arrive at the set(C1,W2, ...,Wn) | C1 ∈ G,Wj ∈ D(G)impl, C1

n∏
j=2

ΦG(Wj) = 1

 . (5.20)

Where Wj = (Dj , CjDj) ∈ D(G)impl, j ̸= 1 and W1 = (1, C1). The final copy of G acts by (Equation 4.15)

g · (W1, ...,Wn) = (C1, gD2, C2, ..., gDn, Cn). (5.21)

As for the degeneration D, the final copy of G acts by conjugation on the representations Hom(π1(G), G).

However, as we already fixed the connection A to be in A.T.D. gauge, we know Cj ∈ T and hence the

conjugation action fixes Cj , and is given by

g · (C1, (Cj , Dj , Djµ)
n
j=2) = (C1, (Cj , gDj , gDjµ)

n
j=2), (5.22)

which agrees with the action for the implosion.

5.4 Toric Degenerations and Bohr-Sommerfeld Points

Theorem 5.1 gives us a relationship between the moduli spaceM of flat SU(2) connections over the Riemann

surface Σ, and a toric variety P via degeneration. Such degenerations to toric varieties have been studied in
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other contexts, where one can often prove a result about some space X by degenerating it to a toric variety

for which the result holds. In this case, one may hope to prove that the number of Bohr-Sommerfeld points

ofM is equal to the number of fiberwise flat sections by proving Sniatycki’s theorem for toric varieties and

then using the degeneration ofM to P. If the degeneration preserved the space of sections, then by relating

the fibrewise flat sections of P to the Bohr-Sommerfeld points you could obtain a similar relation forM.

However, it turns out that Sniatycki’s theorem does not hold for toric varieties. Hamilton proved in 2010

that ifM is a compact toric symplectic manifold with a singular Lagrangian fibration and a prequantum line

bundle L, then the number of fibre-wise flat sections (dimH0(Jπ,M)) is equal to the number of non-singular

Bohr-Sommerfeld points [Ham10, Theorem 8.3.2]. For example, when g = 2 we computed in Section 4.7 that

the toric variety P corresponding to the symmetric decomposition is P3. This is also a compact symplectic

manifold, so Hamilton’s result applies. In this case, P had four Bohr-Sommerfeld points, corresponding to

the vertices of its moment polytope, which are all singular. Therefore this result tells us that P has no

fibre-wise flat sections. It is conjectured that the number of fibre-wise flat sections ofM should agree with

the Verlinde formula, so if the degeneration from M to P is section-preserving, this would contradict our

expectations.

To investigate the behaviour of the holomorphic and fibre-wise flat sections of L, we take inspiration

from a result of Harada and Kaveh [HK15], which constructs an integrable system from a toric degeneration

satisfying some additional hypotheses which do not apply to the degeneration of Biswas and Hurtubise.

Definition 5.3. Let X be an n-dimensional quasi-projective irreducible reduced scheme. We call π : X→ C

a toric degeneration of X if:

1. π : X→ C is a flat family of irreducible reduced schemes.

2. The family X is trivial over C∗, namely there exists a fibre-preserving isomorphism ρ : X×C∗ → X−X0,

such that for each t ∈ C∗ ρt : X × {t} → Xt is an isomorphism.

3. The fibre X0 is a toric variety with respect to an action of (C∗)n := T.

Theorem 5.1 tells us that in this case, the moduli spaceM of flat SU(2) connections serve as our quasi-

projective scheme, and we have a toric degeneration to the moduli space of parabolic sheaves P. Now let us

describe the additional hypothesis that are required for Harada and Kaveh’s result.

Suppose π : X→ C is a toric degeneration of X, and X has a Kaehler form ω. Let Ω denote a constant

multiple of a Fubini-Study Kaehler form on PN , and equip PN × C with the Kaehler structure Ω × ωstd.

Assume that:

1. The family X is smooth away from the zero fibre X0.
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2. The family X is embedded in PN × C as an algebraic subvariety, for some projective space PN such

that:

• the map π : X→ C is the restriction of X to the projection of PN × C to C;

• the action of T on X0 extends to a linear action on PN .

Let ωt denote the restriction of Ω× ωstd to the fibre Xt embedded in PN × t. Then

3. The map ρ1 : X → X1 is an isomorphism of Kaehler manifolds; ρ∗1(ω1) = ω;

4. Let T = (S1)n denote the compact subtorus of T. The Kaehler form Ω on PN is T -invariant and in

particular the restriction ω0 to the toric variety X0 is a T -invariant Kaehler form.

Given a toric variety satisfying these conditions, Harada and Kaveh provide the following theorem:

Theorem 5.4 (Harada and Kaveh). Let π : X → C be a toric degeneration of X, and let ω be a Kaehler

structure on X. If π : X→ C satisfies conditions 1-4 above, then:

1. There exists a surjective continuous map ϕ : X → X0 which is a symplectomorphism restricted to a

dense open subset U ⊂ X.

2. There exists a completely integrable system µ = (F1, ..., Fn) on (X,ω) whose moment polytope ∆

coincides with the moment polytope of (X0, ω0).

3. Let U ⊂ X be the open dense subset of X from item 1. Then the integrable system of item 2 generates a

Hamiltonian torus action on U , and the inverse image µ−1(∆◦) of the interior of ∆ under the moment

map lies in the open subset U .

For the degeneration M → P, the spaces Mt are not smooth, so the theorem does not apply. Despite

that, in this case we still have a surjective continuous map ϕ :M→ P which is a symplectomorphism on a

dense open subset ofM, and we still have the moment polytopes ofM and P coinciding.

5.5 Polarization and Prequantum Line Bundle on P

The toric variety P is projective and has a very ample line bundle L0 whose sections are computed by

counting lattice points in P’s polytope. In this section, we want to investigate the space of holomorphic

sections H0(P,L0) and we want to define a polarization of P which will allow us to discuss the cohomology

of fibre-wise flat sections, ⊕k≥0H
k(P,Jπ,0). In particular, we ask if the degeneration fromM to P preserves

these spaces or not.
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From Section 4, P has a symplectic form ω, and the degeneration ϕ :M → P is symplectomorphic on

an open dense subset U ofM. Thus, it remains to equip P with a real polarisation πP and a line bundle L0

with curvature 2πiω. In both cases, we mirror the construction of the corresponding object forM.

ForM we defined functions fi :M→ R by taking the cosines of the holonomies of a connection around

each loop in a given trinion decomposition of the surface Σ. Now for P, we have Σ0 with n = 3g−3-punctures

and the extended moduli spaceMG; given an element x = (C1, (Di, Ci)
n
i=2) ∈ MG, it is the matrices {Cj}

which correspond to these holonomies. Taking the implosion, we obtained elements Wj ∈ D(G)impl with

Wj = (Dk, Ck), and so we want to define functions fk :MG → R by

f̃k(C1, (Di, Ci)
n
i=2) =

1

π
cos−1 (Tr Ck) (5.23)

To get functions on P , one must check that these f̃k pass to the symplectic implosion. For the action of Gk

onMG, with moment map Φk(C1, (Di, Ci)
n
i=2) = (Ck)

−1, and a given face σ of ∆ we have

Φ−1
k (σ0) = {(C1, (Di, Ci)

n
i=2) ∈MG | (Ck)

−1 ∈ σ} (5.24)

Hence f̃k is constant on on Φ−1
k (σ). To perform the quotient of [Gσ, Gσ], we have two cases: if σ = ∆0 then

[Gσ, Gσ] = {e} and so Φk passes to the quotient. If σ ∈ {0, 1}, then [Gσ, Gσ] = SU(2) and we have

f̃k(g · (C1, (Di, Ci)
n
i=2)) =

1

π
cos−1 Tr (Adg(Ck)) = f̃k(C1, (Di, Ci)

n
i=2). (5.25)

Hence f̃k is invariant and passes to the quotient by [Gσ, Gσ]. For l ̸= k, the value of f̃l depends only on

Cl, which is not acted on by Gk and therefore f̃l also passes to the quotient. It remains to check that

these functions pass under the quotient by the first copy of G. Recall that after quotienting, we obtain the

elements (W1,W2, ...,Wn), where Wi = (Di, Ci) ∈ D(G)impl (D1 = 1). The action of the first G on Wk is

given by (4.15):

(Dk, Ck)→ (gDk, Ck)). (5.26)

The functions f̃k do not depend on Dk and are therefore constant on the equivalence classes, and pass to

the quotient to obtain functions fk : P → R.

From Equation 5.11 we know that ϕ :M → P sends a connection with holonomy Ck around a trinion

decomposition curve ck to the orbit with Wk = (Dkµ
−1, µCkµ

−1), µ−1 ∈ Stab(Ck). Therefore if we define

θk,P = cos−1(fk), θk,P : P → R, we have

θk,P ◦ ϕ = θk (5.27)

where θk :M→ R were the functions defined in Section 3. Letting πP = (θ1,P , ..., θ3g−3,P ) we thus obtain

a polarisation of P with πP ◦ ϕ = π.

Next we build a prequantum line bundle on P . On the locus where ϕ :M→ P is a symplectomorphism,

we can simply define LP = L, but we must discuss the extension to the rest of P . Recall that we defined a
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function Θ : A× G → U(1) for connections over Σ, which we computed to be (Equation (3.4))

Θ(A, g) = exp

−ik ∫
Σ

Tr (dgg−1 ∧A)

 . (5.28)

For the singular curve Σ0, we can define Θ exactly the same way, which allows us to define an equivalence

relation on A0 × C by (A, z) ∼ (g · A,Θ(A, g)z). Then we can define a line bundle L0 = A0 × C/ ∼ over

A0/G0 = P.

We want this line bundle to be compatible with the degeneration ϕ :M→ P, in the sense that ϕ∗L0 = L.

Lemma 5.5. Let Vi be a tubular neighbourhood of Ci in Σ. Let V0 denote the (disconnected) image of Vi

under the surface degeneration. Then for every pair (A, g) ∈ A×G on Σ which degenerates to a pair (A0, g0)

on Σ0, there exists liftings (A,g) and (A0,g0) such that∫
Vi

Tr (g−1dg ∧A) =

∫
V0

Tr (g−1
0 dg0 ∧A0). (5.29)

Proof. Recall that Vi = Q1 = {(x, y) ∈ C2 | xy = 1}, and it degenerates to V0 = Q0 = {(x, y) ∈ C2 | xy =

0} = Q0,x ∪Q0,y, where Q0,x, Q0,y are the locus with x ̸= 0 and y ̸= 0 respectively. The curve Q1 has a loop

γ1, and cutting Q1 along γ1 disconnects it into the components with x > y and y > x. Let Qx denote where

x > y, and Qy where y > x.

Let N = {Qt}t ̸=0
∼= Vi × (0, 1]. Then one possible lifting of A from Vi to N is:

A =
α

2

(
dx

x
− dy

y
+
dt

t

)
(5.30)

Now, since t = xy we have dt = ydx+ xdy and therefore

Ax =
α

2

(
dx

x
− dy

y
+
ydx+ xdy

xy

)
= α

dx

x
.

Another possible lifting is

Ay =
α

2

(
dx

x
− dy

y
− dt

t

)
= −α dy

y
. (5.31)

These liftings are equal on the curve γ1. We define the lifting we will use, A to be Ax on Qx and Ay on Qy.

For the gauge transformation g(x, y) we can do a similar lifting process;

g(x, y, t) =

g (x, t/x) , x > y

g (t/y, y) , y > x

. (5.32)
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Then the integral over Vi becomes:∫
Vi

Tr (g−1dg ∧ dA) =

∫
Qx

Tr (g−1(x, 1/x)dg(x, 1/x) ∧ α dx

x
)−

∫
Qy

Tr (g−1(1/y, y)dg(1/y, y) ∧ α dy

y
)

On the other hand, recall that A0 is given by:

A0 =

α
dx
x , x ̸= 0

−αdy
y , y ̸= 0

(5.33)

which can be lifted to any three manifold N ′ in a horizontal manner, i.e. by not adding any tangential part.

Similarly, our gauge transformation g0 coming from g was defined by

g0(x, y) =

g (x, 0) , x ̸= 0

g (0, y) , y ̸= 0

. (5.34)

Therefore the integral over V0 becomes∫
V0

Tr (g−1
0 dg0 ∧ dA0) =

∫
Qx,0

Tr (g−1(x, 0)dg(x, 0) ∧ α dx

x
)−

∫
Qy,0

Tr (g−1(0, y)dg(0, y) ∧ α dy

y
).

Finally, all four of Qx, Qy, Qx,0 and Qy,0 are diffeomorphic to S2 with two points removed, and a diffeo-

morphism between Qx and Qx,0 is given by our local model for the curves. This diffeomorphism pulls back

g(x, 0) to g(x, x−1). The analogous equality holds for Qy and Qy,0. Thus these two integrals are equal.

Theorem 5.6. Given a pair (A, g) ∈ A×G over Σ, which degenerates to the pair (A0, g0) over Σ0, we have

Θ(A, g) = Θ(A0, g0). (5.35)

In particular, this implies that if (A, g) and (B, h) both degenerate to (A0, g0), then Θ(A, g) = Θ(B, g).

Proof. From Equation (3.4) we know

Θ(A, g) = exp

−ik ∫
Σ

Tr (dgg−1 ∧A)

 . (5.36)

Let {Ci}3g−3
i=1 be any trinion decomposition of Σ. Let Vi be a tubular neighbourhood in Σ of each Ci.

Then on U := Σ −
⋃3g−3

i=1 Vi, the degeneration does nothing, and we have (A, g)|U = (A0, g0)|U . Therefore,
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we have

Θ(A, g) = exp

−ik ∫
Σ

Tr (dg g−1 ∧A)


= exp

−ik ∫
U

Tr (dg g−1 ∧A)− ik
3g−3∑
i=1

∫
Vi

Tr (dg g−1 ∧A)



= exp

−ik ∫
U

Tr (dg0 g
−1
0 ∧A0)− ik

3g−3∑
i=1

∫
V0,i

Tr (dg0 g
−1
0 ∧A0)

 , (Lemma 5.5)

= exp

−ik ∫
Σ0

Tr (dg0 g
−1
0 ∧A0)


= Θ(A0, g0).

Using Theorem 5.6 we can show L = ϕ∗L0. By definition

ϕ∗L0 = {(x, (y, z)) ∈M×L0 | ϕ(x) = y} . (5.37)

Given a point (x, z) ∈ L we can map it to (x, (ϕ(x), z)) in ϕ∗L0. Since ϕ is surjective, this is surjective.

Suppose then that for some (x, z) and (x′, z′) ∈ L we have

(x, (ϕ(x), z)) = (x′, (ϕ(x′), z′)). (5.38)

Then x = x′ and z = z′ mod Θ, namely z′ = Θ(ϕ(x), g0)z for some g0 ∈ G0. Then to show z = z′ in L, we

need that there is some g ∈ G such that Θ(A, g)z′ = z, where A ∈ A represents x ∈ M. The surjectivity

of the degeneration gives the existence of some g that degenerates to g0, and Theorem 5.6 tells us that

Θ(A0, g0)z = Θ(A, g)z = z′ and therefore z = z′ in L.

5.6 Holomorphic Sections of L

Lemma 5.7. The line bundle L0 on the toric moduli space P (D) over a trinion D, has curvature ω equal

to the Fubini-Study metric on P (D) ∼= P3.

Proof. LetM(D) denote the moduli space of flat SU(2) connections over a single trinion. Then π(M(D)) =

∆ and over the interior ∆0 we have the symplectomorphism ϕ. Thus, on on the dense torus (C∗)3 inside

P (D), we have ϕ∗ωP = ωM. Recall that the form onM(D) is the Atiyah-Bott form (Equation (2.25)).
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The prequantum bundle L on M(D) is isomorphic to the determinant line bundle (Theorem 3.2) and

the determinant line bundle’s sections give an embedding ι ofM(D) into projective space (Proposition 4.7).

Therefore L is very ample over M(D) and L = ι∗O(1). The curvature ωfs of O(1) is the Fubini-Study

metric, so ι∗ωfs = ωM = ϕ∗ωP over (C∗)3 ⊂ P (D).

Therefore, on P (D) = P3 we have two forms, ωfs and ωP , which agree on an open dense subset. Therefore

they are equal everywhere on P (D).

Corollary 5.8. The line bundle L0 over P (D) is ample.

Proof. From the lemma, the curvature of L0 is a positive (1,1) form. Then since P (D) is a compact Kahler

manifold, the Kodaira embedding theorem says L0 is ample.

Theorem 5.9. The line bundle L0 over P is ample.

Proof. Let D be a trinion and P (D) the toric moduli space for D. By Corollary 5.8, there exists large enough

n for which L⊗n

P (D) is very ample over P (D). That is, since P (D) = P3,

O(1) = L⊗n

P (D). (5.39)

From the discussion in section 4.7 we know that P can be constructed by gluing P3s along a trinion decom-

position of the Riemann surface Σ. The decomposition consists of 2g− 2 copies of P3, and we must quotient

by 3g − 3 actions of C∗. Letting ι denote the Segre embedding (Equation 4.58) P3
∐

P3 ι−→ X ⊂ P15 and

pi : X → P3 the projection to each factor, we have

O(1)P15 |X = p∗1O(1)⊗ p∗2O(1) = p∗1L⊗n
P (D) ⊗ p

∗
2L⊗n

P (D) =
(
p∗1LP (D) ⊗ p∗2LP (D)

)⊗n
. (5.40)

Repeating this for all the copies, we can embed the product of the P3s into PN for some large N , and we

obtain an ample bundle

L̃ =

3g−3⊗
i=1

p∗iLP (D) (5.41)

Taking the GIT quotient under T := (C∗)3g−3, the result is given by the homogeneous spectrum of the

invariant sections of L̃, that is

P = Proj

⊕
k≥0

H0(X, L̃k)T

 . (5.42)

Therefore, if we denote q : X → P as the quotient, then q∗O(1)P = L̃⊗n.

On the other hand, the sections of L̃ are generated by tensor products ⊗3g−3
i=1 σi of sections in LP (D) for

each trinion D, and we can define generators of L0 over P by defining σ(x) = ⊗3g−3
i=1 σi(x̃i), where q(x̃i) = x.

For most sections, this will not be well defined as the value of σi may depend on the choice of x̃i, but a
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section will be invariant under the T action exactly if it does not depend on this choice: if x̃i and ỹi both

map to x then there is some t ∈ T with t · x̃i = ỹi and therefore σi(xi) = σi(yi). Thus L0
∼= q∗L̃ and

L{ ⊗ n} ∼= q∗O(1)P meaning L0 is ample.

Finally, L0 is very ample as by the same argument as Lemma 5.6, its curvature is given on P by the

Fubini-Study metric, and thus the curvature of Ln
0 = nωfs. The curvature of O(1) is the Fubini-Study

metric, so for these to be equal we must have n = 1.

Corollary 5.10. For k ≥ 0, Hk(P,L0) = 0.

Proof. L0 is a very ample bundle on a complex projective variety, so Hk(M,L) = 0 for k > 0 [GD60, III,

Prop 2.6.1].

The prequantum line bundle bundle L is also very ample over a complex projective variety, soHk(M,L) =

0 for k > 0 as well. Therefore, if the sections H0(M,L) and H0(P,L) are the same, then the entire

cohomologies will be the same. In fact, we know from Jeffrey and Weitsman that the dimension of H0(P,L)

is computed by the Verlinde formula, and it has also been shown that the dimension ofH0(M,L) is computed

by the Verlinde formula [Fal94][Sch08]. This argument provesH0(M,L) ∼= H0(P,L0), but in a non-canonical

way. One may hope to find a direct isomorphism via the degeneration ϕ :M→ P, and such an isomorphism

would then provide another way to prove the Verlinde formula for H0(M,L). If the degeneration were

holomorphic, then this would be doable, however it is not. The degeneration of surfaces is not holomorphic,

and since the holomorphic structure on the moduli space is determined by that of the surface, ϕ is not

holomorphic.
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Chapter 6

Conclusions and Further Discussion

The moduli space M of flat SU(2) connections over a compact genus g ≥ 2 Riemann surface Σ, has the

Atiyah-Bott symplectic structure (Section 2.4) and a complex structure. The space can be polarised using

the Kaehler polarisation associated to this complex structure, in which case the (level k) quantization of

the space is defined to be the vector space H(k, g) = H0(M,Lk) of sections of the prequantum line bundle

over M (Section 3.1). In this case, it is known that the dimension of H is given by the Verlinde formula

[Ver88][Sch08][Fal94]1, which can be given by counting integer labelling of graphs, or by the closed form

dimH(k, g) =
(
k + 2

2

)g−1 k+1∑
j=1

(
sin2

jπ

k + 2

)1−g

. (6.1)

On the other hand, we have the real polarisation of the space defined by a given trinion decomposition

of Σ, due to Weitsman [Wei92]. In this case, instead of holomorphic sections, one looks at the fibre-wise

flat sections Jπ, namely those sections of L whose restrictions to the fibres of π are covariant constant.

No such sections exist, but instead there will be a higher cohomology Hn(M,Jπ) with non-zero elements,

and so in this case we define Hπ =
⊕

n≥0H
n(M,Jπ) to be the quantization associated to the polarisation

π. This definition is inspired from the case of a smooth polarisation of a Kaehler manifold M , for which

Sniyaticki’s theorem provides an isomorphism between this space and the set of Bohr-Sommerfeld fibres of

the polarisation π [Śni77].

Jeffrey and Weitsman provided strong evidence that these two polarisations yield the same quantization

when they proved that the number of Bohr-Sommerfeld fibres of the real polarisation ofM is given by the

Verlinde formula [JW92]. However, Sniyaticki’s theorem does not apply in that case, so we do not know that

the number of Bohr-Sommerfeld fibres gives the dimension of Hπ.

1The author cannot find a copy of Falting’s article, only other articles citing it as the original mathematical proof of the

Verlinde formula.
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The moduli space M with its real polarisation π : M → R3g−3 is also equipped with Hamiltonian

functions for which π is the moment map. The image ofM under π is a polytope ∆ ∈ R3g−3. Furthermore,

the integer values of the Hamiltonians defines a lattice on the polytope, so it is natural to ask what the toric

variety corresponding to this polytope is, and how it relates toM. Hurtubise and Jeffrey constructed this

toric variety P in two different ways, as a space of representations with weighted frames, and as a space of

framed parabolic bundles (Section 4) [HJ00], in both cases over a degenerated Riemann surface Σ0 with some

punctures. The relationship betweenM and P was made explicit by Biswas and Hurtubise who showed that

P arises as a degeneration ofM as you degenerate Σ to Σ0 by collapsing the boundary curves of the trinion

decomposition defining the polarisation π (Section 5) [BH21]. Finally in Section 5.5 we construct a bundle

L0 over P that corresponds to L overM. To summarize the situation, we have the following diagram:

L M Σ

∆

L0 P Σ0

ϕ

π

πP

ϕ∗

Moving forward there are some interesting questions one can ask about this degeneration ofM to P.

1. From the theory of toric varieties, we can compute the number of holomorphic sections of L0 by count-

ing points in the moment polytope ∆ corresponding to P. This polytope is preserved by the degeneration,

and so the result of Jeffrey and Weitsman that the count point is given by the Verlinde formula remains true

for P. Therefore, the space H0(P,Lk
0) has dimension given by the Verlinde formula. We also know that

H0(M,Lk) has this dimension, and thus the dimension is preserved under the degeneration. However, we

hope that there is a more direct isomorphism of H0(P,Lk
0) and H

0(M,Lk) that can be constructed using the

degeneration, and such an isomorphism would provide a new proof of the Verlinde formula for dimH(k, g).

2. It has been proven that for toric symplectic manifolds with a singular polarisation π, that the dimension

ofHπ is given by counting the non-singular Bohr-Sommerfeld fibres of π [Ham10]. For P, this count is strictly

less than the Verlinde formula. Therefore, there are two possibilities:

(a) The degeneration preserves the fibre-wise flat cohomology:
⊕

n≥0H
n(M,Jπ) =

⊕
n≥0H

n(P,JπP
).

In this case, we would conclude dimHπ < dimH, which suggests that there may be a more careful

definition of the quantization required for real polarisations.

(b) The dimensions dimH = dimHπ are equal, and therefore the degeneration does not preserve the fibre-

wise flat cohomology. In this case, one would ask what cohomology elements are being lost, and if this

data is preserved in another form.

Currently, it is expected that dimH = dimHπ due to justifications from theoretical physics. In this case, the
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process of symplectically imploding the fibres with central holonomy must be collapsing some cohomology

elements It may be possible that the number of cohomology elements lost during the degeneration process

can be counted, and if this count is equal to the number of singular Bohr-Sommerfeld fibres then it would

provide a proof that dimH = dimHπ.
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