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ROBIN
I get it! You’re gonna try to remote control
the Batmobile circuit via the Batcave relay
link.

BATMAN
Right, Robin. It’s our only chance.

(speaking into radio)
Batman to Batcave. Voice-Control Batmobile
Relay-Circuit, switch on.

The VOICE-CONTROL BATMOBILE RELAY-CIRCUIT begins beeping.

BATMAN
Batmobile Ejection Seat, fire.

The beeping gets faster. Then the VOICE-CONTROL BATMOBILE
RELAY-CIRCUIT goes silent. BATMAN’s radio down-chirps dejectedly.

ROBIN
What the heck! The failure signal.

BATMAN
Circuit’s on the blink, I’m afraid.

ROBIN
How can it be?

BATMAN
Human mechanisms are made by human hands,
Robin. None of them is infallible. It’s
a lesson which must be faced.

— Batman, Season 1 Episode 28: “The Pharaoh’s In A Rut”



ABSTRACT

Voice control systems enable people to control their computers by speaking to them.

After a review of the state-of-the-art in sequence modeling, speech recognition, and lan-

guage understanding using deep learning, this thesis describes a number of contributions

to the art of voice control. The first contribution is a study of large-scale semi-supervised

learning through pseudo-labeling for massively multilingual speech recognition. The sec-

ond contribution is a study of the use of autoregressive models for conditional computation

with neural networks, using speech recognition as a test case. The third contribution is a

method for training end-to-end spoken language understanding models using speech syn-

thesis. The fourth contribution is a crowdsourced dataset, Timers and Such, for spoken

language understanding involving numbers, along with baseline experimental results and

open-source software infrastructure for using the dataset. The fifth contribution is our

part in the design and implementation of SpeechBrain, an open-source software toolkit for

speech processing. Finally, using some of the tools and techniques developed earlier in the

thesis, we propose a simplified and unified approach to voice control in which the entire

traditional pipeline, composed of an automatic speech recognition subsystem, a natural

language understanding subsystem, and human-programmed control logic, is subsumed

within a single deep neural network.
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ABRÉGÉ

Les systèmes de commande vocale permettent aux utilisateurs de contrôler leur ordi-

nateur en leur parlant. Après un examen de l’état de l’art en matière de modélisation de

séquences, de reconnaissance vocale et de compréhension du langage à l’aide de réseaux

de neurones profonds, cette thèse décrit un certain nombre de contributions à l’art du

contrôle vocal. La première contribution est une étude de l’apprentissage semi-supervisé

à grande échelle par pseudo-étiquetage pour la reconnaissance vocale massivement multi-

lingue. La deuxième contribution est une étude de l’utilisation de modèles autorégressifs

pour le calcul conditionnel avec des réseaux de neurones, en utilisant la reconnaissance

de la parole comme cas test. La troisième contribution est une méthode d’entrâınement de

modèles de compréhension de langue parlée de bout en bout à l’aide de la synthèse vocale.

La quatrième contribution est un ensemble de données crowdsourcé, Timers and Such,

pour la compréhension du langage parlé impliquant des nombres, ainsi que des résultats

expérimentaux de base et une infrastructure logicielle open source pour l’utilisation de

l’ensemble de données. La cinquième contribution est notre rôle dans la conception et la

mise en œuvre de SpeechBrain, une bôıte à outils logicielle open source pour le traitement

de la parole. Enfin, en utilisant certains des outils et techniques développés plus tôt dans

la thèse, nous proposons une approche simplifiée et unifiée du contrôle vocal dans laque-

lle l’ensemble du pipeline traditionnel, composé d’un sous-système de reconnaissance au-

tomatique de la parole, d’un sous-système de compréhension du langage naturel et logique

de contrôle, est subsumé dans un seul réseau de neurones profonds.
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Chapter 1

Introduction

This thesis considers the problem of voice control. We define “voice control” as the task of

mapping a speech signal to a sequence of actions that the speaker wants to be performed.

We can define “actions” rather broadly: for instance, one action a voice control system

might take is to respond to the speaker in natural language, in which case the system is

referred to as a “dialog” system. Other examples of actions a system might take include

actuating physical devices (in response to e.g. “Open the pod bay doors, HAL”), setting

values in a computer application (e.g. “Set a timer for five minutes”), retrieving informa-

tion from a knowledge base (e.g. “Who’s the Prime Minister of Canada?”), or pondering

an existential question (e.g. “Siri, what am I doing with my life?”).

Current voice control systems work well for simple tasks like setting timers or opening

pod bay doors, but in many ways they fall short of the capabilities and flexibility we might

expect from an actual human assistant. For instance, the thesis author tried asking the

following question of his iPhone voice assistant:

Est-ce que je peux parler Franglais when I make a Siri request?

which was transcribed as

Squish Papale throng lay when I make a Siri request

and pawned off onto a Google search instead of being understood. In another instance,

the following unfruitful dialog occurred:
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ASR NLU Control
Logic

Audio Transcript Semantics Actions
SET TIMER
FOR FIVE
MINUTES

{
’intent’: ’SetTimer’,
’slots’: {

’hours’: 0,
’minutes’: 5,
’seconds’: 0

}
}

Figure 1.1: The voice control pipeline.

[Loren:] Create a note called “Brainstorming” for me.

[Siri:] OK, I’ve created a note called “Brainstorming For Me”.

[Loren:] Change the title of the note to “Brainstorming”.

[Siri:] What do you want me to add?

[Loren:] I don’t want to add anything. Just change the title of the note to

“Brainstorming”.

[Siri:] OK, I added “I don’t want to add anything just change the title of the

note to brainstorming” to your note “Brainstorming For Me”.

How might we go about solving these problems? Let’s start by examining the way

voice control is currently implemented. A diagram of a typical voice control system is

shown in Fig. 1.1. The system is composed of an automatic speech recognition (ASR)

module, a natural language understanding (NLU) module, and a control logic module.

The ASR module transcribes the speech signal, producing a sequence of words called the

“transcript”. The NLU module parses the transcript to extract the meaning of the utterance

in the form of a data structure referred to as the “semantics”. The control logic module

inserts the values of the semantics into some application, resulting in some actions being

performed.
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Many of the flaws of state-of-the-art voice control systems implemented using the

pipeline in Fig. 1.1 stem from the fact that they are ultimately rule-based systems — what

Batman referred to in the epigraph of this thesis as “human mechanisms [. . . ] made by

human hands”. Conventional wisdom once held that advanced artificial intelligence (AI)

would be explicitly programmed by humans: in the 1983 movie Star Wars: Episode VI

— Return of the Jedi, for instance, the droid C-3P0 says “it’s against my programming to

impersonate a deity!” The philosopher Hubert Dreyfus has argued that the idea of im-

plementing intelligence by programming rules goes all the way back to Plato, in whose

dialogues Socrates confronts various Athenians to ask what rules they follow when deter-

mining, e.g., what is “just” [8].

But it seems that, pace Socrates, we humans do not follow rules most of the time:

instead, we act on unconscious knowledge and pattern recognition. Machine learning

attempts to emulate humans’ unconscious ability to find and act on patterns. In machine

learning, instead of having rules programmed by a human, a computer learns its program

from experience, using examples of the correct behavior, or using a teacher that gives

rewards for good behavior. It has gradually become apparent that the solutions to some

AI problems are simply too difficult for humans to program and might be solved using

machine learning instead. ASR and NLU in the conventional voice control pipeline are two

such problems: we train an ASR system by showing it examples of correctly transcribed

audio signals, and we train an NLU system by showing it examples of correctly semantically

labeled sentences.

Moreover, the extent to which ASR and NLU are learned rather than programmed has

grown. The AI pioneer Fred Jelinek is famously reported to have said that “every time I

fire a linguist, the performance of our speech recognizer goes up.” Whereas earlier ASR

systems required orchestrating a dazzling variety of techniques — Mel frequency cepstral

coefficient feature extraction, Gaussian mixture models, simple framewise neural network

acoustic models, hidden Markov models, forced alignment, phonetic pronunciation dictio-

naries, context-dependent triphones, state tying, weighted finite state transducers, search

algorithms, n-gram language models, hypothesis rescoring using recurrent neural network

language models — it is now possible to train a deep neural network to map directly from
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the speech waveform to the letters of the transcript and attain near state-of-the-art results.

Deep neural networks — for the reader who has been living under a rock — are brain-like

statistical models that extract many layers of features from an input to implement a de-

sired function with minimal engineering required. With the growth of data through the

Internet and the growth of compute power through Moore’s Law, we now have enough of

both ingredients to make many interesting AI capabilities possible using deep learning.

Unlike ASR and NLU, control logic (the third box in Fig. 1.1) is not implemented using

machine learning because writing the program to do what a user wants is generally trivial

given the semantics. But are we using the right semantics? Suppose that a user makes a

request slightly more complicated than the one in Fig. 1.1, like “set a timer for five minutes

— and beep twice when there’s one minute left”. Unless the designer of the NLU system has

thought to include that possibility in the semantic structure, there is no chance the system

will be able to handle it (and indeed no voice assistant that we have tested has been able

to handle this particular example). It is also questionable whether the division of labor in

Fig. 1.1 is correct in the first place. In the same way that ASR can now use a single end-

to-end-trained neural network instead of a collection of separately trained or programmed

modules, could we not use a single deep neural network to implement both ASR and NLU

at the same time, or even go all the way and implement the entire pipeline, from audio

to actions? What advantages and disadvantages might these end-to-end approaches have

compared to the conventional pipeline?

This thesis makes a number of contributions to the art of voice control. We begin

with ASR, then move on to spoken language understanding (SLU; = ASR + NLU), and

finally consider the problem as a whole. Throughout the thesis, we try to apply a simple

problem-solving method:

1. If labeled data is unavailable for a task, make it (or fake it).

2. Then train a deep neural network to implement the task directly.

The thesis runs as follows:

• In Chapter 2, we provide background knowledge on machine learning and the speech

and language technology used in subsequent chapters.
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• In Chapter 3, we show how to make use of unlabeled audio for ASR in a challenging

multilingual setting. Work described in this chapter was published as:

[9] L. Lugosch, T. Likhomanenko, G. Synnaeve, R. Collobert, “Pseudo-Labeling for

Massively Multilingual Speech Recognition”, Proceedings of the International Confer-

ence on Acoustics, Speech, and Signal Processing (ICASSP), pp. 7687-7691, Singapore,

May 2022.

Contribution of co-authors: T. Likhomanenko helped with code and computing infras-

tructure and the use of slimIPL; G. Synnaeve helped with code and edited the paper and

suggested experiments; R. Collobert debugged code and ran experiments on behalf of the

thesis author and edited the paper and suggested experiments.

• In Chapter 4, we show how autoregressive models can be used to reduce the compu-

tational cost of neural networks for streaming applications, using ASR as a test case.

Work described in this chapter was published as:

[10] L. Lugosch, D. Nowrouzezahrai, B. H. Meyer, “Surprisal-Triggered Conditional

Computation with Neural Networks”, arXiv, June 2020.

Contribution of co-authors: D. Nowrouzezahrai and B. H. Meyer edited the paper and

suggested experiments.

• In Chapter 5, we move from ASR to SLU, and show how the lack of labeled audio

for end-to-end SLU can be overcome using speech synthesis. Work described in this

chapter was published as:

[11] L. Lugosch, B. H. Meyer, D. Nowrouzezahrai, M. Ravanelli, “Using Speech Syn-

thesis to Train End-to-End Spoken Language Understanding Models”, Proceedings of

the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp.

8499-8503, Barcelona, Spain, May 2020.

Contribution of co-authors: B. H. Meyer, D. Nowrouzezahrai, and M. Ravanelli edited

the paper and suggested experiments.

• In Chapter 6, we fill a gap in existing open source SLU datasets with the design and

creation of Timers and Such, an SLU dataset for numeric commands. Work described

in this chapter was published as:
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[12] L. Lugosch, P. Papreja, M. Ravanelli, A. Heba, T. Parcollet, “Timers and Such: A

Practical Benchmark for Spoken Language Understanding with Numbers”, Proceed-

ings of the 35th Conference on Neural Information Processing Systems (NeurIPS) —

Track on Datasets and Benchmarks, pp. 1-11, (virtual), December 2021.

Contribution of co-authors: P. Papreja implemented the recording website; M. Ravanelli

edited the paper and implemented the ASR encoder; A. Heba and T. Parcollet imple-

mented the LibriSpeech ASR recipe.

• In Chapter 7, we describe SpeechBrain, a PyTorch toolkit for speech processing, and

the state-of-the-art SLU recipes we contributed to it. Work described in this chapter

was published as:

[13] M. Ravanelli, T. Parcollet, P. Plantinga, A. Rouhe, S. Cornell, L. Lugosch, C.

Subakan, N. Dawalatabad, A. Heba, J. Zhong, J. Chou, S. Yeh, S. Fu, C. Liao, E. Ras-

torgueva, F. Grondin, W. Aris, H. Na, Y. Gao, R. De Mori, Y. Bengio, “SpeechBrain: A

General-Purpose Speech Toolkit”, arXiv, June 2021.

Contribution of co-authors: SpeechBrain is a large software project with many contrib-

utors; most of the functionality described in Section 7.1 was designed and implemented

by other contributors. The thesis author’s main contributions are the SLU recipes.

• In Chapter 8, we move beyond SLU and sketch the outline of a fully neural end-to-

end voice control system, with no hardcoded semantics or control logic, and describe

some preliminary experimental work in this direction.

• Chapter 9 concludes.
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Chapter 2

Background

Abstract
We assume that the reader is familiar with linear models for regression and classifi-

cation and how they can be trained through maximum likelihood estimation using

stochastic gradient descent. We do not assume that the reader knows anything about

sequence modeling, deep learning, speech recognition, or language understanding,

and in this chapter provide enough background on those topics for the rest of the

thesis to make sense.

2.1 Inputs and outputs

2.1.1 Waveforms

Speech is represented in computers as a digital signal. The signal is recorded by sampling

the output voltage of a microphone at a regular interval (say, 16,000 times per second)

and using an analog-to-digital converter to store the audio sample using a finite amount

of memory (say, 16 bits). Some voice-controlled devices, such as Google Home [14], use

multiple microphones to record a multi-channel signal. In this thesis, we consider only

the single-microphone setup with a one-channel output. Fig. 2.1 shows an example of the

type of speech signal, or waveform, that we will deal with.
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Figure 2.1: A 16 kHz recording of the thesis author saying the phrase “it’s all Greek to me”.

2.1.2 Spectrograms

Speech signals can be understood using the “source-filter” production model: the speaker’s

vocal cords produce a simple “excitation” (a sequence of pulses for voiced sounds, or

random noise for unvoiced sounds), which is then filtered by the vocal tract to produce

the acoustic signal [15, 16]. The vocal tract, much like the Internet, can be seen as a

series of tubes, where the dimensions of each tube control a set of resonant frequencies

called “formant frequencies”. Fig. 2.2 shows English vowel sounds plotted by their first

two formant frequencies. The vowels are nicely separated in this space: for instance, the

/i/ sounds (top left) can be separately perfectly from the /u/ sounds (bottom left) using a

linear classifier.

For that reason, speech is often processed in the frequency domain. Formant frequen-

cies, and other useful features, can be extracted from a spectrogram representation. A

spectrogram is computed by extracting overlapping segments (often 25 ms long, and

shifted by 10 ms) from the raw waveform, computing the windowed short-time Fourier

transform (STFT) [17], and taking the log magnitude of each resulting complex value.

The spectrogram computed from the speech signal in Fig. 2.1 is shown in Fig. 2.3.
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Figure 2.2: Scatter plot of English vowel sounds from 76 speakers [1]. (Plot generated
using phonTools [2].)

2.1.3 Filterbanks

While some ASR systems use the spectrogram as input [18], it is more common to first

compress the spectrogram using a set of Mel scale filterbanks. The Mel scale is a log-

arithmic mapping from frequencies to units that are thought to match human auditory

perception [19]. Mel filterbank (or FBANK) features are extracted by computing a set of

triangular windows spaced across the frequency spectrum according to the Mel scale and

adding up the energy within each window. A sequence of FBANK features is shown in Fig.

2.4.

Older speech recognizers go a step further and compute cepstral features called Mel

frequency cepstral coefficients (MFCC) using the inverse discrete cosine transform. (“Cep-

stral” terminology inverts “spectral” terminology: spectral → cepstral, frequency → que-

frency, filter → lifter.) MFCC features are less correlated than FBANK features, which is

useful for Gaussian mixture model (GMM)-based acoustic models, but not for neural net-

work acoustic models, for which FBANK features yield better performance [20].

Some more recent speech models, such as wav2letter [21] and wav2vec [22], do not
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Figure 2.3: Spectrogram of the thesis author saying “it’s all Greek to me” (computed using
speechbrain.processing.features.spectral magnitude).

Figure 2.4: FBANK representation of the thesis author saying “it’s all Greek to me” (com-
puted using speechbrain.processing.features.Filterbank).
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perform any kind of hardcoded feature extraction and instead learn to extract features

directly from the raw waveform [23, 24]. SincNet [25] is a sort of hybrid approach: it

uses sinc filters with trainable frequency parameters to process the input signal. Hardcoded

FBANK features are still a strong baseline and are used throughout much of this thesis.

2.1.4 Phonemes and graphemes

Phonemes are speech sounds that distinguish words. For instance, the English words

heed, hid, head, had, hod, hawed, hood, who’d, hud, heard

are each composed of three phonemes: /h/, a vowel sound, and /d/.

Linguists draw a distinction between phonemes (which are meaning-contrastive within

a specific language) and phones (which are not). Speech technology researchers often use

the two terms interchangeably, a practice that has been criticized by some [26]. In this

thesis we too will cheerfully ignore this linguistic distinction and use the word “phoneme”

the way it is used in the speech technology literature, trusting that the reader will be able

to infer the sense of the word in context, the way one might infer the sense of other such

highly polysemic words as “model”, “neuron”, “decoder”, and “batch”.

Whereas phonemes are spoken, graphemes — a.k.a., letters, or characters — are writ-

ten: “who’d” consists of the graphemes “w”, “h”, “o”, “”’, and “d”. A single grapheme

does not necessarily correspond to a single phoneme, nor vice versa. Languages differ in

orthographic regularity: whereas Spanish has a nearly perfect correspondence between

phonemes and graphemes, English orthography is particularly irregular: e.g. in the words

rough, cough, dough, bough, through

the grapheme sequence “ough” corresponds to a different phoneme sequence in each case

(/r2f/, /kAf/, /doU/, /bæU/, and /Tru/, respectively, using the International Phonetic Al-

phabet (IPA)).

The output of a speech recognizer ultimately needs to be graphemes. Because of ortho-

graphic irregularity, it is often significantly more difficult for a machine learning system to

learn to “spell” than to learn to recognize phonemes [27, 28].
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2.1.5 Words and subwords

In English and many other languages, written words are separated by spaces. In other

languages like Chinese, there are no spaces in writing, so words are not explicitly indicated.

A space between written words usually does not correspond to silence between spoken

words.

Words are composed of meaning-bearing units called morphemes: e.g., the English

word “learning” is composed of the free morpheme “learn” and the bound morpheme “-

ing”. Words are not always formed by concatenating morphemes: a morpheme composed

of a sequence of phonemes (e.g. Arabic “ktb”: “to write”) may be interleaved with other

phonemes to form different words (e.g. “kitab”: “book”; “yaktubu”: “he writes”).

Morphemes, or other subword units such as syllables or common grapheme subse-

quences, may be easier for a machine learning system to process than whole words. A

tokenizer may be used to split words into smaller units called tokens. Tokenization can

use human-built rules [29], or the tokens may be derived automatically from a text corpus

using a tool such as SentencePiece [30].

2.1.6 Word error rate

Measuring the performance of an ASR system requires comparing the sequence of words

output by the system with the sequence of words in the reference transcript. Because

the hypothesis length and reference length may not be the same, it is not possible to

straightforwardly compare each word in the hypothesis with the corresponding word in

the reference. Instead, word error rate (WER) is used to measure performance. WER is

defined as

WER =
ED(reference,hypothesis)

|reference|
× 100, (2.1)

where ED denotes the edit distance (a.k.a. Levenshtein distance [31]) between the ref-

erence and the hypothesis in terms of words, and |reference| denotes the number of words

in the reference. Edit distance is defined as the minimum number of insertions, deletions,

and substitutions needed to change the reference into the hypothesis. An insertion adds a
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— •

G • •

E •

E •

K •

S •

(a) Possible path through edit table.

G R E E K —

↓ D ↓ I
G — E E K S

(b) Corresponding alignment.

Figure 2.5: An alignment between “GREEK” and “GEEKS” with cost 2.

word to the transcript (e.g. “It’s all Greek to me”→ “It’s all too Greek to me”); a deletion

removes a word (e.g. “It’s all Greek to me” → “all Greek to me”); a substitution changes

a word (e.g. “It’s all Greek to me” → “It’s all geeks to me”). It is also possible to split

the transcripts into characters instead of words, in which case using the edit distance will

compute character error rate (CER).

It is not immediately obvious how to compute edit distance, since there are many pos-

sible ways to change one sequence into another sequence. We can use a table to visualize

the space of possible transformations. Fig. 2.5 shows an edit table (using characters as the

base unit) for the reference sequence “GREEK” and hypothesis sequence “GEEKS”, with

a path through the table (Fig. 2.5a), along with the corresponding reference-hypothesis

alignment (Fig. 2.5b). The cost of the alignment is 2 because the alignment uses two

edit operations: one deletion and one insertion. Fig. 2.6 shows another alignment with a

(worse) cost of 5.

It is inefficient to compute edit distance by enumerating over all possible alignments, so

a dynamic programming algorithm [32] is used (Algorithm 1). The algorithm loops over

each cell of the edit table computing the minimum cost of all possible alignments leading

to that cell, and finally the entry in the lower-right cell is returned (e.g. Fig. 2.7a). An

optimal alignment can also be recovered by noting the operation that would be used to

13
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E •

E •

K •
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(a) Possible path through edit table.

G — R E E K

↓ I ↓ S ↓ S ↓ S ↓ D
G E E K S —

(b) Corresponding alignment.

Figure 2.6: An alignment between “GREEK” and “GEEKS” with cost 5.

enter each cell (breaking ties using some arbitrary ordering when computing an argmin)

and backtracking through the table of operations starting from the last cell (Fig. 2.7b).

2.2 Models and algorithms

2.2.1 Autoregressive models

This thesis deals mostly with sequence data. One important technique for handling se-

quence data is the autoregressive model, a technique that has been referred to as “a uni-

versal unsupervised learning algorithm” [33]. Autoregressive models take advantage of

the chain rule of probability to model arbitrary data distributions over sequences, in the

following way. Let x = {x1, x2, . . . , xT} denote a length-T data sequence of interest: for

example, a sequence of words. By repeatedly applying the chain rule

p(A,B) = p(A|B) · p(B), (2.2)
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Algorithm 1: Compute edit distance (and optimal alignment)
Input: r (reference sequence of length T ), h (hypothesis sequence of length U)
Output: Edit distance, optimal alignment
Initialize cost table C of shape (U + 1)× (T + 1) with zeros
Initialize operation table O of shape (U + 1)× (T + 1) with K
# (K=keep, I=insertion, D=deletion, S=substitution)
C[0, 0] := 0; O[i, 0] := K
for i = 1 to U do

C[i, 0] := i; O[i, 0] := I
for j = 1 to T do

C[0, j] := j; O[0, j] := D
for i = 1 to U do

for j = 1 to T do
if r[j − 1] = h[i− 1] then

costS := C[i− 1, j − 1]; op := K
else

costS := C[i− 1, j − 1] + 1; op := S
costI := D[i− 1, j] + 1; costD := D[i, j − 1] + 1
if costS < costI and costS < costD then

C[i, j] := costS

else if costD < costI then
C[i, j] := costD; op := D

else
C[i, j] := costI; op := I

O[i, j] := op
# Backtrack through the operation table to get alignment
i := T ; j := U ; a := ∅
while (i, j) != (0, 0) do

Prepend O[i, j] to a
if O[i, j] = K or O[i, j] = S then

i := i− 1; j := j − 1
else if O[i, j] = I then

i := i− 1
else if O[i, j] = D then

j := j − 1
return C[U, T ], a
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— G R E E K

— 0 1 2 3 4 5

G 1 0 1 2 3 4

E 2 1 1 1 2 3

E 3 2 2 1 1 2

K 4 3 3 2 2 1

S 5 4 4 3 3 2

(a) Edit table filled with partial alignment
costs.

— G R E E K

— K D D D D D

G I K D D D D

E I I S K D D

E I I I K K D

K I I I I I K

S I I I I I I

(b) Edit table with operations used to enter
each cell and backtracking path indicated.

Figure 2.7: Results of running the dynamic programming algorithm for edit distance.

we can write the joint distribution p(x) = p(x1, x2, . . . , xT ) as the product of the conditional

distributions of each of the xt terms, that is,

p(x) =
∏
t

p(xt|xt−1, xt−2, . . . , x1︸ ︷︷ ︸
a.k.a. “x<t”

). (2.3)

For instance, let T = 4. Then the autoregressive chain rule decomposition yields

p(x) = p(x1, x2, x3, x4) (2.4)

= p(x4|x3, x2, x1) · p(x3|x2, x1) · p(x2|x1) · p(x1). (2.5)

An autoregressive model uses a single pθ(xt|x<t) with trainable parameters θ to imple-

ment all the conditional distributions in Equation 2.3. (It is also possible to use a distinct

model to implement each conditional distribution, but such a model does not have the

desirable capability of generalizing to arbitrarily long sequences.)

Given a training set of data sequences, autoregressive models can be trained using
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maximum likelihood estimation [34, 35]:

argmax
θ

Ex∼p(x)[log pθ(x)]. (2.6)

Autoregressive models are generative models: that is, they can be used to sample new

data sequences similar to those in the training set. It is easy to sample from the distribution

defined by the model by repeatedly sampling the next xt from pθ(xt|x<t) (Algorithm 2) and

concatenating, though more sophisicated sampling algorithms also exist [36].

Algorithm 2: Sampling from an autoregressive model
x := ∅
while not bored do

Sample x ∼ pθ(x|x)
Append x to x

The “universality” of autoregressive models lies in the fact that they can be applied to

any data modality: any data structure can be represented as a sequence of bytes, so any

data structure can be modeled and generated autoregressively. Video data can be treated

as sequences of pixels, audio data can be treated as sequences of microphone samples, text

data can be treated as sequences of characters — and autoregressive models have been

trained for all of these modalities [37, 38, 39] and many more [33, 40, 41, 42, 43, 44],

with varying degrees of success.

2.2.2 n-gram models

Until the invention of recurrent neural networks [45, 46] (see Section 2.2.7), it was not

clear how an autoregressive model of the form pθ(xt|x<t), with an unlimited history over

previous xt terms, could actually be implemented. Instead, many models approximate

Equation 2.3 by assuming that xt can be predicted using only the previous n− 1 terms:

p(x) ≈
∏
t

p(xt|xt−1, xt−2, . . . , xt−(n−1)). (2.7)

A model that implements p(xt|xt−1, xt−2, . . . , xt−(n−1)) using a lookup table is known
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“0-gram” model (all characters equiprobable):
XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD

QPAAMKBZAACIBZLHJQD.

1-gram model:
OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA

NAH BRL.

2-gram model:
ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TU

COOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE.

3-gram model:
IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF

DEMONSTURES OF THE REPTAGIN IS REGOACTIONA OF CRE.

Figure 2.8: n-gram model samples for increasing n (from [3]).

as an n-gram model. Maximum likelihood estimation for an n-gram model has a simple

closed-form solution: set each entry of the lookup table equal to the relative frequency of

the corresponding n-gram in the training data. For large n, many entries of the lookup

table will never appear in the training data, and so will be assigned 0 probability by the

model. To help the model generalize to unseen n-grams, “smoothing” of various forms can

be applied [47, 48]. O((size of vocabulary)n) bytes of storage are required to implement

an n-gram model, so only small n may practically be used.

Claude Shannon famously showed in [3] how increasingly realistic English text can be

generated by fitting character-level n-gram models of increasing n to a text corpus and

sampling from the model using Algorithm 2. Some of the text samples from [3] are shown

in Fig. 2.8. n-gram models are of course not only useful for generation; they can be used

to score a sequence by computing p(x) using the chain rule.

2.2.3 Gaussian mixture models

Lookup tables, such as are used in n-gram models, can be used to model distributions over

a finite set of discrete outcomes, but not over an infinite set of real-valued outcomes where

x ∈ Rd, e.g. for audio signals. One simple model for arbitrary continuous distributions is
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(a) GMM with 10 components. (b) GMM with 25 components.

Figure 2.9: Fitting an elephant using a GMM. (Elephant data taken from [4]; GMM imple-
mentation provided by scikit-learn [5].)

the Gaussian mixture model (GMM), which expresses the likelihood of a data point x as

pθ(x) =
∑
z

pθ(x, z) (2.8)

=
∑
z

pθ(x|z) · pθ(z), (2.9)

where

pθ(x|z) =
1√

(2π)d|Σz|
exp

(
−1

2
(x− µz)TΣ−1z (x− µz)

)
, (2.10)

pθ(z) = ρz, (2.11)

and the parameters θ = {ρz ∈ R, µz ∈ Rd,Σz ∈ Rd×d|z = 1, . . . , k} are constrained such that

pθ(x|z) and pθ(z) are valid probability distributions. Since Gaussian distributions (Equation

2.10) are simple blobs, any more complex distribution may be modelled by a GMM [49]

by forming the distribution using a number of these blobs, like a pointillist painting. (This

does not necessarily mean a GMM can model a given distribution efficiently: an intractably

large number of blobs may be needed [50, 51].) Fig. 2.9 shows the use of GMMs with

different k (numbers of Gaussian components) to fit an elephant-shaped distribution.

Maximum likelihood estimation for a GMM has no closed-form solution, so iterative

optimization methods like gradient descent need to be used. The method conventionally

employed for training GMMs is the Expectation-Maximization (EM) algorithm [52]. The

EM algorithm is based on the observation that if the mixture component z that generated x
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were known for each x, there would be a simple closed-form solution for the parameters of

each pθ(x|z) using the Gaussian maximum likelihood estimator. But we do not know which

z corresponds to which x, or even what the value of k should be: only the x values are

visible, and the z values are “hidden” or “latent”. The EM algorithm alternates between

estimating the latent variables (the E-step) and re-estimating the parameters given the

estimates of the latent variables (the M-step).

Algorithm 3: The EM algorithm (for GMMs)
Given x1, x2, · · · ∼ p(x)
while not bored do

# E-step
for each xi and z do

w(z,i) := pθ(xi|z)ρz∑
z′ pθ(xi|z′)ρz′

# = pθ(z|xi)
# M-step
for each z do

ρz :=
∑

iw(z,i)

µz :=
∑
i w(z,i)xi∑
i w(z,i)

Σz :=
∑
i w(z,i)(xi−µz)(xi−µz)T∑

i w(z,i)

2.2.4 Hidden Markov models

The hidden Markov model (HMM) [53] takes the idea of a latent variable introduced with

GMMs and extends it to handling sequences. Instead of observing a single x, we observe

a sequence x = {x1, x2, . . . , xT}, which depends on an underlying correlated sequence of

latent variables z = {z1, z2, . . . , zT}. An HMM models a system that is in a particular state

(zt) at any given time — one out of N possible states — and produces an output (xt) at

each timestep that depends on the state. At each timestep, the system randomly jumps to

a new state. The model makes two further assumptions:

1. The state at time t depends only on the state at time t− 1.

2. The output at time t depends only on the state at time t.

Hence

pθ(z) =
∏
t

pθ(zt|z<t) =
∏
t

pθ(zt|zt−1) (2.12)
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pθ(x|z) =
∏
t

pθ(xt|z,x<t) =
∏
t

pθ(xt|zt) (2.13)

and

pθ(x) =
∑
z

pθ(x, z) (2.14)

=
∑
z

pθ(x|z) · pθ(z) (2.15)

=
∑
z

∏
t

pθ(xt|zt)︸ ︷︷ ︸
emission model

· pθ(zt|zt−1)︸ ︷︷ ︸
transition model

. (2.16)

The parameters θ are composed of the parameters of the emission model bs(xt) (for

continuous xt, a GMM), the transition model A (a square matrix where As,s′ = pθ(zt =

s|zt−1 = s′), the probability of jumping from state s′ to state s), and a set of initial state

priors π (where πs denotes the probability of starting in state s).

Directly summing over all possible z to compute pθ(x) in Eq. 2.16 is intractable, since

there are NT possible state sequences. Instead, we can use a dynamic programming al-

gorithm (similar to Algorithm 1 used for computing edit distance) to compute the sum in

just O(N2T ) time: the Forward algorithm (Algorithm 4).

Algorithm 4: The Forward algorithm (for HMMs)
for s = 1→ N do

αs,1 := bs(x1) · πs
for t = 2→ T do

for s = 1→ N do
αs,t := bs(xt) ·

∑
s′ As,s′ · αs′,t−1

pθ(x) :=
∑

s αs,T
return pθ(x)

The Forward algorithm computes, in addition to pθ(x), a set of “forward probabilities”

α for each state and timestep, where αs,t = pθ(x1, x2, . . . , xt, zt = s). Running the algorithm

in reverse (the “Backward algorithm”) yields analogous “backward probabilities” β. The

Forward-Backward algorithm combines αs,t and βs,t to compute γs,t, the probability of

being in state s at time t. γs,t can be plugged into the EM algorithm (the E-step) to train

the model.
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A B C

p(B | B)

p(B | A)

Figure 2.10: 3 states of a left-to-right HMM, with two transition probabilities indicated.

Inferring the most likely state sequence z from the observed sequence x is similar to

computing pθ(x): instead of summing over state sequences, we take the maximum of their

probabilities. The Viterbi algorithm [54] (Algorithm 5) modifies the Forward algorithm to

compute the maximum, and then, like the edit distance algorithm, backtracks through the

dynamic programming table to find the argmax state sequence.

Algorithm 5: The Viterbi algorithm (for HMMs)
for s = 1→ N do

δs,1 := bs(x1) · πs
ψs,1 := 0

for t = 2→ T do
for s = 1→ N do

δs,t := bs(xt) · (maxs′ As,s′ · δs′,t−1)
ψs,t := argmaxs′ As,s′ · δs′,t−1

z∗T := argmaxs δs,T
for t = T-1→ 1 do

z∗t := ψz∗t+1,t+1

z∗ = {z∗1 , . . . , z∗T}
return z∗

2.2.5 Acoustic models and language models

While HMMs are naturally unsupervised learners of p(x), it is possible to shoehorn them

into a supervised learning setup by forcing certain states to be associated with certain out-

put labels. This setup has been used for applications like speech recognition and machine

translation [55, 56].

In an HMM speech recognizer [57, 58], each phoneme is represented using a left-to-

right HMM (Fig. 2.10). A left-to-right HMM has a chain of states in which transitions

are allowed from one state only to one other state or to itself. The HMM for a word

is formed by concatenating the HMM for each phoneme of the word stored in a lexicon
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ɪ t s

g r i k

p(it's | it's)

p(it's | Greek)

p(Greek | it's)

p(Greek | Greek)

Figure 2.11: 2-word composite HMM for “it’s” and “Greek” with 3 states per phoneme,
with bigram word transition probabilities.

(or “pronunciation dictionary” or “pronunciation model”). A composite HMM (Fig. 2.11)

can be formed by connecting the HMM for each word in the vocabulary to every other

word, where the transition probability between two words is the probability according to

a bigram LM trained on an external text dataset. A trigram LM can be used instead by

creating a virtual HMM corresponding to each word in the context of each other word,

and so forth for higher-order n-gram models. The size of the composite HMM grows

exponentially with n, since a sub-HMM needs to be formed for each n-gram. Decoding1 a

speech signal works by running the Viterbi algorithm and returning the sequence of words

corresponding to the sub-HMMs traversed by the best path.

Training the HMM uses a variant of the EM algorithm:

1. Form the left-to-right HMM corresponding to the transcript for each example.

2. Generate a “flat” alignment for each example, with an equal number of timesteps for

each state in the HMM.

3. Estimate the GMM parameters given the alignments.

4. Realign data using the Viterbi algorithm (or Forward-Backward algorithm) with the

new GMM parameters.

1The use of “decoding” to refer to the Viterbi algorithm and other search algorithms for sequence models
is due to early researchers such as Fred Jelinek, who originally worked on digital communication systems
and ported the terminology of error-correcting codes to speech recognition and machine translation.
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5. (Back to 3. until bored.)

A human annotator can manually align the data instead of using the Viterbi algorithm,

but it is extremely precise and time-consuming work to align phonemes with the audio

signal — only a small number of small datasets, like TIMIT [59], have manual alignments.

It is much more common to use the EM algorithm as described above to align the data.

HMM ASR has an aesthetically pleasing interpretation in terms of Bayes’ rule: since

we are trying to find the most likely transcript given the audio, we can formulate the

problem in terms of the probability assigned by an acoustic model and a language model

[60, 57, 61]:

argmax
transcript

p(transcript|audio) = argmax
transcript

p(audio|transcript) · p(transcript)
p(audio)

(2.17)

= argmax
transcript

p(audio|transcript)︸ ︷︷ ︸
acoustic model

· p(transcript)︸ ︷︷ ︸
language model

, (2.18)

where the acoustic model is an HMM and the language model is an n-gram LM. Intuitively,

while an acoustic model should assign the same score to “I ATE FOOD” and “I EIGHT

FOOD” for a given audio, a language model should assign a higher score to the former

sentence. The term “acoustic model” is also often used more generally for any kind of

model where the input is audio: for instance, end-to-end models that directly estimate

p(transcript|audio) are also referred to as “acoustic models” (we will sometimes use this

terminology in the thesis), and even purely unsupervised models of p(audio) have been

referred to as “acoustic models” [62].

Practical decoding diverges from the pleasant Bayes’ rule interpretation in a number of

ways: the LM score needs to be multiplied by a scaling factor to get good performance;

the transcript corresponding to the Viterbi path may not actually have the highest prob-

ability because another transcript might have multiple paths whose probabilities sum to

a higher value; a pruned version of the Viterbi algorithm must be used because the state

space is too large to consider all possible states and transitions. Toolkits like Kaldi [63]

efficiently implement decoding by taking advantage of the fact that HMMs, n-gram mod-

els, pronunciation dictionaries, and other optional components can be regarded as special
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cases of a powerful gadget called a finite state transducer (FST) [64]. FSTs assign a score

to a mapping between an input string and an output string, and can be composed with

each other to form more sophisticated mappings. The acoustic model, language model,

and lexicon can be welded together into a single FST, compressed, composed with an FST

corresponding to the GMM scores for each input audio frame to form a search graph, and

decoded using the Viterbi algorithm.

There are a number of issues with HMM speech recognition: these systems require very

complicated software implementation; the hardcoded pronunciation dictionary requires

some linguistic expertise to develop and does not allow for learning speakers’ unantici-

pated pronunciations; only simple small n-gram LMs can be used without dramatically

expanding the size of the search graph; and the strong probabilistic assumptions of GMMs

and HMMs are not realistic for speech. For a single model that aims to solve these problems

(for ASR and beyond), we now turn to neural networks.

2.2.6 Neural networks

Neural networks were first conceived in 1943 [65] and have experienced many waves of

hype and disillusionment since.2 The first true implementation of an artificial neural net-

work was the 1957 Perceptron [67], a linear model with a hard binary decision at the

output. Minsky and Papert showed in 1969 [68] that certain problems (e.g., the “XOR

problem”) could not be solved using a Perceptron but could be solved by a “multi-layer

Perceptron”, with the output of some Perceptrons fed as input to other Perceptrons. It was

not known how such a multi-layer model could be efficiently trained until the backprop-

agation paper [69], which showed that a multi-layer model, with differentiable outputs

instead of the Perceptron’s hard decision output, could be trained by computing the gra-

dient using the chain rule and running gradient descent. (Backpropagation, like many

algorithms, has a long history of multiple invention [70].)

Despite a few early successes like TD-Gammon [71], the Graph Transformer Network

check reading system [72], the SENNA parser [73], and CTC handwriting recognition

2In 2010, professors at MIT considered removing neural networks from their AI course to make room for
more important topics [66].
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[74], neural networks were initially not widely used because they were found to be finicky

[75] and often did not perform much better than other machine learning models. Re-

newed widespread interest came in 2012 when AlexNet [76], a very large and deep neural

network, won the challenging ImageNet [77] image classification competition by a large

margin compared to more handcrafted systems.

Neural networks are suitable for implementing end-to-end learned systems because

they lack many of the flaws of other machine learning algorithms. Unlike n-gram models,

HMMs, and FSTs, they can model arbitrarily long-term dependencies in a sequence without

an exponential increase in model size. Unlike linear models, they can fit non-linear pat-

terns and decision regions without feature engineering. Unlike support vector machines,

they can learn complex feature extractors suited to the task at hand, rather than relying on

a human-designed kernel. Unlike nearest neighbors models, they can absorb large datasets

without any increase in runtime complexity. Unlike decision trees, they can learn online

and can be backpropagated through, enabling new applications like generative adversarial

networks [78] and gradient-based meta-learning [79, 80]. Systems that could not possibly

have been implemented using one of those other models, such as we will see in this thesis,

can be implemented with ease using neural networks. In what follows, we describe the

neural network variants and training tricks we will use in the thesis.

The basic feedforward network

Feedforward networks — also called “multi-layer perceptrons (MLP)”, though unlike the

original Perceptron they do not use non-differentiable hard decision outputs — map an

input vector to an output vector by multiplying it with a sequence of trainable weight

matrices. The input to the network must be a vector: if the data is discrete (e.g., letters),

it must first be mapped to vectors using a lookup table (or “embedding”).

Each matrix multiplication is followed by a nonlinear function applied elementwise to

the product, so a “hidden layer” computes:

hout = σ(Whin + b), (2.19)
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where hin ∈ Rdin, hout ∈ Rdout, W ∈ Rdout×din (the “weights”), and b ∈ Rdin (the “biases”). A

hidden layer with dout outputs is sometimes said to have dout “hidden units” or “neurons”.

Hidden layer outputs both before and after the nonlinearity are referred to as “activations”.

The output layer is a simple linear transformation of the last hidden layer’s activations,

WouthL + bout. Without the nonlinearity, a feedforward network would be equivalent to a

linear model; including nonlinearities allows the model to fit more complex functions. The

nonlinearity σ(·) used in some models is the (logistic) sigmoid function

y =
1

1 + exp (−x)
. (2.20)

Another often used sigmoidal nonlinearity is the hyperbolic tangent (tanh) function. (Both

the logistic and tanh functions are “sigmoidal”, but more often “sigmoid” is used to mean

“logistic sigmoid”.)

Sigmoid functions have been found to make gradient-based training for deeper net-

works more difficult because their derivative is only non-zero within a small input range,

resulting in “vanishing gradients” for the weights of earlier layers [81, 82]. More recent

models use the rectified linear unit (ReLU) nonlinearity [76]

y = max(0, x) (2.21)

or “leaky” ReLU

y = max(αx, x) (2.22)

instead, where α is frozen at some small positive value like 0.1.

Backprop and SGD

Neural networks are trained by minimizing a loss function using stochastic gradient de-

scent (SGD). Often the loss function is the negative log-likelihood, which for a classifica-

tion problem is the negative log of the softmax [83] output for the target label. To compute

the gradient of the loss using the chain rule of calculus, the backpropagation (or “back-

prop”) algorithm is used [69]. Backprop, like the Forward and Viterbi algorithms [84],
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is a dynamic programming algorithm: it avoids needless computations for the chain rule

by reusing earlier computations. The algorithm works as follows: given a computational

graph — a cycle-free directed graph, where each node of the graph computes a function

of the outputs of the nodes connected to it — we compute the forward pass by computing

the output of each node, given its inputs; then, starting from the last node, we compute

the derivative of the final output with respect to the output of each node by working back-

wards through the graph using the chain rule. A more thorough treatment of backprop and

computational graphs in general can be found in Chapter 6 of the Deep Learning textbook

[49].

Once the gradient g of all parameters θ has been computed for a random minibatch of

inputs and targets using backprop, the SGD update for θ is

θ := θ − ηbg, (2.23)

where ηb denotes the learning rate for the bth minibatch. It often helps to apply “mo-

mentum”, so that instead of using the raw gradient to update the parameters, a smoothed

exponential moving average m is used:

m := βm− ηbg (2.24)

θ := θ +m, (2.25)

where β = e.g. 0.9. Sometimes the component-wise square of the gradient g2 is also used,

in e.g. the Adagrad [85] and Adam [86] update rules. More detail on the different variants

of SGD used for neural networks can be found in [87].

2.2.7 Deep neural networks

The importance of depth

While shallow neural networks with a single hidden layer are universal approximators

(as are decision trees, GMMs, and many other models), deep neural networks with many

layers work better. Using a shallow neural network can be likened to writing a program
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without using any function calls. In a program with no function calls, every time a certain

function is performed, all of its instructions must be copied out anew, resulting in a very

large and unwieldy program. Using function calls allows code to be reused for a more

efficient program. Likewise, a feature computed by one hidden layer in a neural network

may be reused by a subsequent hidden layer to form more complex hierarchical features:

if one layer finds edges in an image, a subsequent layer can find objects made out of

those edges. [88] gives a more concrete example where depth helps: the d-input parity

function (given d bits, compute whether there is an even or odd number of 1s) can be

computed using O(d2) parameters with a 1-layer network, O(d) parameters with a network

with O(log2 d) layers, and O(1) parameters with an “infinitely deep” recurrent network.

Networks with 10s, 100s, or even 1000s of layers routinely attain state-of-the-art results

on benchmark tasks.

Other important tricks

In addition to being deep, neural networks need a few more tricks to work well.

• Weight initialization: The gradient is computed by multiplying a sequence of Jaco-

bian matrices. If the initial random weights are too small, the gradient will be too

small, and training will not proceed; if too large, the gradient will be too large, and

training will diverge. The weight matrices can be initialized so that the distribution

of magnitudes of the activations does not change from layer to layer, which helps

convergence. Which initial distribution should be used depends on the nonlinearity

used in each hidden layer [81, 89].

• Normalization: Just as normalizing inputs to mean 0 and variance 1 is common

practice for many machine learning models, normalizing activations within a neu-

ral network can improve performance as well. Batch norm [90] uses the statistics

across a minibatch to do normalization, whereas layer norm normalizes layer out-

puts within a single example [91]. Batch norm sometimes interacts in unexpected

and unpleasant ways with other sources of randomness during training [92], so other

types of normalization have grown more popular.
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• Residual connections — so-named because of their resemblance to the additive

adjustments made to minimize residual errors in algorithms like gradient boosting

[93] — are shortcut connections between the input and output of a hidden layer [94,

95]. In other words, instead of computing σ(Whin + b), a residual block computes

σ(Whin + b) + hin. Each layer of a residual network makes a small additive change

to the previous layer’s output, similar to unrolled iterative algorithms [96]. Residual

connections are crucial for training very deep networks and transformer networks.

• Dropout: In dropout, some of the outputs of a layer are randomly set to zero during

training [97]. Similarly, layer drop [98] randomly skips an entire layer in a residual

network, sending hin instead of σ(Whin + b) + hin to the next layer. Both techniques

regularize the model, and layer drop enables using a smaller subnetwork instead of

the entire network for more efficient inference.

• Learning rate scheduling: SGD converges to a global minimum for convex opti-

mization problems if
∑∞

b=1 ηb = ∞ and
∑∞

b=1 η
2
b < ∞, e.g. if ηb = 1

b
[99]. For

non-convex neural network losses, there is no such convergence guarantee, but sim-

ilar learning rate schedules have been found to work well. Simply decreasing the

learning rate once in the middle of training is a strong baseline [100]. In fact, virtu-

ally any learning rate schedule — even one set using the pixel values from a picture

of Geoff Hinton’s face [101] — outperforms a fixed learning rate. For transformer ar-

chitectures, it seems to be important to use a “warmup” schedule, where the learning

rate starts small, gradually ramps up to some maximum value, and then is scheduled

as normal [102, 103].

• Data augmentation: Small changes to the input can produce new training exam-

ples. For audio data, this may take the form of adding noise, slightly speeding up or

slowing down the recording [104], or deleting portions of the frequency spectrum

(SpecAugment) [105]. For text data, when using a tokenizer, subword regulariza-

tion [106] takes advantage of the fact that a given text sequence can be tokenized in

multiple ways, and randomly selects different tokenizations during training.
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• Early stopping: It is good practice to train a neural network for as long as possible

and keep a checkpoint of the weights for the epoch or update with the best vali-

dation performance. The actual metric of interest (e.g., WER) should be used for

checkpointing rather than the loss (e.g., negative log-likelihood), since the metric of

interest sometimes does not correlate well with the loss [107].

Vivid demonstrations of the utility of these tricks were given in [108] and [109], which

revisited the classic feedforward network language model of [110] and the digit recognizer

of [111], respectively, and updated them to use modern techniques without changing the

rest of the setup, greatly improving both systems’ performance and highlighting the enor-

mous progress in the intervening years since those systems were published.

Convolutional networks

The basic feedforward network maps a vector to another vector. If the input is instead a

sequence of vectors, possibly of variable length, the network can be applied to each input

vector in the sequence. However, doing so does not take advantage of the context in which

each vector appears — for instance, to determine whether “stick” is a noun or a verb, one

ought to look at the neighboring words.

A convolutional layer [112] instead takes as input a window of neighboring vectors

from the input sequence, and multiplies it by a weight matrix. The same weight matrix is

used for each window. The weight matrix can thus be thought of as a set of finite impulse

response filters convolved with the input sequence, where each filter produces a scalar

output. The dimension of each input vector is referred to as the number of “input chan-

nels”, and the number of filters in the weight matrix is the number of “output channels”.

An 80-dimensional FBANK sequence could be processed by a convolutional layer with 80

input channels and an arbitrary number of output channels, using an arbitrarily long filter.

Convolutional neural networks (CNNs) are built up using convolutional layers, each

followed by a nonlinearity, e.g. ReLU(·). The input sequence is thereby transformed into

an output sequence with the same length, and a possibly different dimension for each

vector. Padding (with e.g. zeros) must be appended to the beginning and end of the input
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sequence at each layer so that each vector has enough neighboring vectors for the filter to

be applied.

A layer within a CNN can be used to make the input sequence shorter in two ways:

stride and pooling. “Stride” refers to the number of steps a filter moves forward as the

filter is scanned from the beginning of the sequence to the end. If the stride is 1, the filter

moves forward by one vector each timestep, and the number of output vectors is the same

as the number of input vectors; if the stride is 2, the input length is halved because the

filter is only applied to every other input, and so on. “Pooling” refers to aggregating the

values of each neighboring vector within the same channel: e.g., max pooling applied to

the (1-channel) sequence [1, 2, 3, 2] would return 3. Pooling can be applied globally,

producing a single output vector, or like a convolutional layer, by scanning the pooling

operation across the input sequence.

In some cases, the input sequence may always have some fixed length or maximum

length, in which case it is possible to concatenate the inputs into a single vector and just

use a normal feedforward “fully-connected” network. However, it may still make sense to

use a convolutional layer on fixed-length sequences because of the the layer’s “inductive

bias”, which refers to built-in assumptions made by a model that would otherwise have

to be learned from scratch. A convolutional layer has the inductive bias of “translational

equivariance”, which means the same pattern may appear in multiple different places in

the input, and if the pattern is shifted in the input, the model should produce the same

output, different only by a shift. Convolutional layers also have the inductive bias of

“locality”, which means neighboring vectors are more likely to be correlated. The inductive

biases of convolutional networks make them especially well suited for image data, where

a 2-D convolution may be used instead.

Recurrent networks

A convolutional network can only find relationships between inputs that are close enough

to appear together within its “receptive field”. To enable finding relationships between

inputs that may be arbitrarily far apart in the input sequence, we need to equip the network

with memory. A recurrent neural network (RNN) [46] uses feedback connections to store
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information between timesteps, thereby allowing information to be kept in memory and

combined with new information for an arbitrary amount of time.

The basic recurrent network computes

ht = σ(Wxxt +Whht−1 + b), (2.26)

where xt is the tth vector in the input sequence, ht is the “(hidden) state” of the RNN, and

h0 is initialized to some (trainable) vector.

RNNs are theoretically very exciting because they can implement general-purpose dig-

ital computers [113]. Whether this is learnable or feasible using reasonably sized RNNs

and SGD is a different question [114]. In practice the basic RNN does not work well, due

to the vanishing gradient problem [82]. The solution researchers have found is to use an

additive update to the state, as in residual networks, and a “gating mechanism” to (dif-

ferentiably) allow or disallow information to be added to the state. The Long Short-Term

Memory (LSTM) architecture [115] uses the following gated state update:

it = sigmoid(Wixxt +Wihht−1 + bi) (2.27)

ft = sigmoid(Wfxxt +Wfhht−1 + bf ) (2.28)

gt = tanh(Wgxxt +Wghht−1 + bg) (2.29)

ot = sigmoid(Woxxt +Wohht−1 + bo) (2.30)

ct = ft · ct + it · gt (2.31)

ht = ot · tanh(ct) (2.32)

where W∗, b∗ are the weights and biases for the various gates (input gate i, forget gate f ,

cell gate g, and output gate o). The putative function of each gate is not that important

for our purposes; more detail can be found in e.g. [116]. Because the sigmoid activation

is between 0 and 1, it can either completely allow another activation to pass to another

part of the network (=1), or completely block it (=0), or somewhere in between. The dif-

ferentiability of the sigmoid function allows backpropagating through the gating function.

The “cell” state ct receives an additive update, and the hidden state ht is typically used as
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the output for downstream modules.

The simpler Gated Recurrent Unit (GRU) [116], which we will also use, has the follow-

ing update:

rt = sigmoid(Wrxxt +Wrhht−1 + br) (2.33)

zt = sigmoid(Wzxxt +Wzhht−1 + bz) (2.34)

nt = tanh(Wnxxt + bnx + rt · (Wnhht−1 + bnh)) (2.35)

ht = (1− zt) · nt + zt · ht−1, (2.36)

where again W∗, b∗ are the weights and biases.

Like convolutional layers, recurrent layers can be stacked up to create deep networks

and trained with backpropagation, with the hidden state sequence from one RNN layer

forming the input sequence for another RNN layer [117]. It also may help to use bidirec-

tional RNNs [118], where a forward RNN and backward RNN process the input sequence

in different directions and concatenate their outputs. Whereas a unidirectional RNN can

process a streaming sequence of inputs, a bidirectional RNN cannot: it must wait until the

sequence has ended before the backward RNN can begin processing, making it unsuitable

for real-time applications.

Transformers

Convolutional networks are fast to train because they can be implemented using parallel

matrix multiplications, but they have no long-term memory unless their filters are made

very large. Recurrent networks have “infinite” memory, but are slow to train because each

timestep cannot be computed in parallel. Transformers [119] (or “transformer networks”

or “self-attention networks”) cleverly attempt to get the best of both worlds using an “at-

tention” operation.

There are many variants of attention for neural networks [121]. All of them in some

way allow one part of the network to “focus on”, or “attend to”, some subset of signals

produced by another part of the network. Transformers use key-value attention, which

works as follows. The sequence of input vectors is treated as a single matrix X, which
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(a) The original encoder-decoder
transformer model (from [119]).

(b) A Tatooine moisture vaporator (from [120]).

Figure 2.12: Two suspiciously similar-looking objects.
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is multiplied by three weight matrices, Wq, Wk, and Wv, to obtain the queries Q, keys

K, and values V , respectively. The queries are multiplied by the keys to get a score for

each timestep, which for each query indicates how relevant each timestep is to that query.

The scores are normalized using a softmax operation to form attention weights that add

up to 1. (If one input score is much larger than any other, its attention weight will be

1, and all others’ will be 0, thereby focusing attention only on that timestep.) It is easy

to mask out certain timesteps, so that they do not contribute at all to the output, by

setting their attention weights to 0 — this is used when training autoregressive models

implemented using transformers to prevent the model from looking at future timesteps

while still parallelizing computation over time.

The values are weighted by the attention weights and added up to get a single output

vector for each timestep:

attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (2.37)

where dk is the dimension of the keys (and queries), and the
√
dk term helps the magnitude

of the activations not grow too large. This describes a single attention head: multi-headed

attention uses multiple heads, each with its own set of query, key, and value weight matri-

ces, to compute a different attention pattern, and the output of each head is concatenated.

Because the queries are computed from the same input sequence as the keys and values,

this operation is called “self-attention”; the queries can also come from somewhere else

(i.e., another neural network), in which case the operation is just called “attention” (or

“cross-attention”).

A transformer layer uses multi-headed self-attention, followed by feedforward layers

(i.e., convolutional layers with a filter length of 1), along with layer norm and residual

connections. Without any further modifications, a transformer layer is permutation equiv-

ariant, meaning that the order of the inputs in a sequence does not matter — which we

usually do not want. (“The lion eats the man” does not mean the same thing as “The man

eats the lion”.) To distinguish between timesteps, transformers add position embeddings to

each timestep. Absolute position embeddings simply use a lookup table with one entry per
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time index, which does not allow for arbitrarily long input sequences. Sinusoidal position

embeddings (computed using the sin and cos of the current timestep) in theory generalize

to longer sequences than were observed in training. In practice sinusoidal embeddings do

not generalize well, a problem which ALiBi embeddings [122] attempt to solve by adding

an increasing bias over timesteps. Other commonly used position embeddings are relative

[123] and CAPE [124].

Transformers are more general than convolutional networks: while multi-headed self-

attention can implement a convolution [125], a convolutional layer cannot implement a

global operation as a self-attention layer can. The generality of transformers comes at a

cost: whereas convolutional networks come with built-in translational equivariance and

locality, transformers must learn these notions from scratch if they are needed. However,

datasets in some domains have grown so large that the inductive biases have actually

begun to hurt performance, with the Vision Transformer [126] ultimately outperforming

CNNs at scale for image classification. The downside of transformers is that the self-

attention operation has O(T 2) complexity. Processing very long sequences requires modi-

fied versions of the architecture, using e.g. downsampling and time-restricted self-attention

[127].

The transformer architecture has enabled large performance gains in virtually every

application domain for which large datasets exist [128, 6, 126]. However, transformers

won’t be the last word in neural network architecture. If the goal of AI is general-purpose

agents that can handle infinitely long incoming streams of data, some kind of memory

will be necessary for their architecture — consider a simple task like remembering the

number of times an event has occurred in the past. The self-attention operation can’t

be extended into indefinitely into the past without eventually running out of memory

and computational resources on any realizable physical computer. The block-recurrent

transformer [129] is a recent good example of an attempt in the direction of stateful

neural architectures that keep the benefits of transformers.

An excellent resource for understanding the transformer architecture is [130], an an-

notated version of the transformer paper, with PyTorch code implementing each piece of

the architecture alongside the original text descriptions.
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2.2.8 Neural networks for speech recognition

Now that we have introduced the various neural network architectures used in the thesis,

we can discuss how to use these architectures to implement ASR and NLU.

Neural networks have been used for speech recognition for decades [131],3 but only

recently came to dominate the field. The first forays of neural networks into ASR were

so-called “hybrid” neural network hidden Markov model systems [132, 131], in which

almost all of the GMM-HMM machinery was kept intact, except for the emission model.

Using the alignments from a trained GMM system, a neural network in a hybrid system is

trained to predict the HMM state of the alignment at a given timestep, given a window of

FBANK or MFCC audio frames centered at that timestep. At test time, the softmax output

of the neural network is fed into the HMM decoder to transcribe the audio. Because

the softmax computes p(HMM state|xt), but the Viterbi algorithm expects p(xt|HMM state)

from the emission model, the softmax posteriors are first divided by the “state priors”

p(HMM state), which can be computed by counting the number of times each HMM state

occurs in all the alignments. (To correctly compute p(xt|HMM state) using Bayes’ rule, we

would also need to multiply by p(xt), but the neural network cannot compute this value,

and the rest of the computation is invariant to it anyways.) Like the GMM before it, the

trained neural network can be used to realign the data and compute new state priors, so

that a new neural network can be trained, and so forth, iteratively.

Over the years, more sophisticated networks were used as emission models, such as

2-D convolutional networks [133], time-delay neural networks (TDNNs) [134], and bidi-

rectional LSTMs [135]. What we would really like, though, is a neural network that can

be trained to do the task of interest directly without any additional HMM machinery. The

problem is that the networks we have described cannot produce variable-length outputs:

they can only produce an output sequence that is the same length as the input sequence, or

shorter by some fixed factor (e.g., divided by 2 if using a stride of 2). But in ASR and other

problems, the correct output may be shorter or longer than the input by some arbitrary

factor that cannot be anticipated. We will now see how to deal with this issue.

3Bourlard and Morgan in [131] write (in 1994): “Since we use large networks (with hundred of thou-
sands of parameters), overtraining was a real problem.” How quaint.
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2.2.9 Sequence-to-sequence models

Speech recognition can be regarded as one of many AI problems in which the goal is to

transform one sequence (the speech signal) into another sequence (the transcript), where

the input and output sequence lengths are not known in advance. Such problems can

be solved using the sequence-to-sequence model, an ingenious generalization of the au-

toregressive model (Sec. 2.2.1) that enables mapping arbitrarily long input sequences to

arbitrarily long output sequences using neural networks. Given an input sequence x of

length T and an output sequence y of length U , sequence-to-sequence (or “seq2seq”, or

“encoder-decoder”) models compute the probability of y given x as

pθ(y|x) =
∏
u

pθ(yu|y<u,x). (2.38)

Sequence-to-sequence models were invented independently and simultaneously by mul-

tiple groups [136, 137, 138]. These first variants of the model function by encoding the

input sequence into a single vector of fixed length. An encoder RNN consumes the input

sequence, vector by vector, and the final state vector of the encoder RNN after all inputs

are consumed is the encoding (Fig. 2.13). A decoder RNN then predicts each output vec-

tor given all the previous output vectors and the encoding. The decoder is another RNN:

the encoder vector can be input to the decoder RNN at each timestep, in addition to the

previous output, or it can be used as the initial state of the decoder RNN. The first input to

the decoder is a special “SOS” (start-of-sequence) token, and an “EOS” (end-of-sequence)

token is appended to y during training.

The authors of [139] found that sequence-to-sequence models with a fixed-length vec-

tor encoding did not generalize well to long sequences, especially sequences longer than

those in the training set. The fixed-length encoding forms a bottleneck through which it

may be difficult to send all the information about the input necessary for the decoder to

predict the output. The solution proposed in [140] uses attention to query all the encoder

outputs based on the decoder state, greatly improving performance for longer sequences.

(A similar “sliding window” attention had been proposed earlier in [141].) Gehring et

al. showed afterwards in [142] that RNNs are not necessary for sequence-to-sequence
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learning: CNNs can be used in both encoders and decoders in conjunction with the atten-

tion mechanism instead, speeding up training by parallelizing computation over encoder

and decoder timesteps. The encoder-decoder transformer model originally described in

[119] improved the performance of sequence-to-sequence learning even further by using

self-attention in the encoder and decoder instead of RNNs or CNNs.

Maximum likelihood training of sequence-to-sequence models is sometimes referred to

as “teacher forcing” [143] because the correct previous outputs are fed to the decoder,

as opposed to the model’s own predictions. Another training strategy, scheduled sam-

pling [144], attempts to reduce the discrepancy between the way the model works dur-

ing inference and the way the model is trained by occasionally feeding a sample from

pθ(yu−1|y<u−1,x) into the decoder instead of yu−1 during training. In a similar vein, meth-

ods like reward-augmented maximum likelihood (RAML) [145] and minimum word error

rate (MWER) training [146] attempt to reduce the discrepancy between maximum likeli-

hood training (which, for discrete outputs, implicitly considers all output sequences other

than the truth to be equally wrong) and the way the model is actually evaluated by in-

stead minimizing a loss based on the metric ultimately used for evaluating the model

(WER, BLEU score, etc.). Similar techniques are employed in text generation models for

learning from human feedback [147].

2.2.10 Beam search

Inference with sequence-to-sequence models requires finding

y∗ = argmax
y

log pθ(y|x). (2.39)

Just as there are too many possible state sequences to perform a brute force exhaustive

search for the most likely state sequence in an HMM, it is too expensive to solve Equation

2.39 directly. However, unlike HMMs, sequence-to-sequence models do not make any

probabilistic assumptions that would allow for an efficient exact search algorithm like the

Viterbi algorithm. Instead, an approximate search needs to be used.

A reasonable first approximation to Equation 2.39 is greedy decoding (Fig. 2.13).
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Figure 2.13: Greedy decoding for encoder-decoder model.

In greedy decoding, the argmax of the decoder’s output distribution is selected at each

decoding timestep and appended to y∗, until the decoder predicts EOS.

It is easy to show that greedy decoding does not always find the output sequence with

the highest score. Suppose that in the first decoding timestep pθ(a|x) = 0.4 and pθ(b|x) =

0.6. Greedy decoding would select “b”. But now suppose that in the next decoding timestep

pθ(aa|x) = 0.4, pθ(ab|x) = 0.0, pθ(ba|x) = 0.35, and pθ(bb|x) = 0.25. Greedy decoding,

having already selected “b”, would then select “a” to form the output “ba” — but a higher-

scoring sequence is “aa”, since 0.4 is greater than 0.35.

In beam search [58, 148], the decoder instead maintains a set of B hypotheses and

their probabilities, with greedy decoding as the special case where B = 1. (The list is

called the “beam”, though sometimes the hypotheses themselves are called “beams”.) At

each timestep, the decoder extends each hypothesis with every possible output label and

computes the probability of each new extended hypothesis (= the probability of the old

hypothesis multiplied by the softmax probability of the new label). There are now BL

hypotheses, where L is the number of labels. If we do not prune the beam, we will quickly

run out of memory as the size of the beam grows exponentially with each step. To prune

the beam, we keep only the top B highest scoring hypotheses at each step. This continues

until every hypothesis ends in EOS (Algorithm 6). Fig. 2.14 shows the hypotheses returned

by beam search for an attention-based RNN sequence-to-sequence model trained to insert

missing vowels into disemvoweled text.

A few additional tricks can improve beam search. First, decoding will sometimes loop

forever, never producing EOS (especially at the beginning of training, when the model does

not yet have a good estimate of p(EOS|y<u,x)), so some maximum number of decoding
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Algorithm 6: Beam search (for sequence-to-sequence models)
beamprev := {∅}
while not (all hypotheses in beamprev end in EOS or maximum number of decoding
steps reached) do

beamnext := {}
for h in beamprev do

if h ends in EOS then
Add h to beamnext

else
for l in labels do

hextended := concat(h, l)
score(hextended) := log pθ(hextended|x)
Add hextended to beamnext

beamprev := top B hypotheses in beamnext
return beamprev

input: t's ll Grk t m.
truth: It's all Greek to me.
guess: it's all Gurk to me.
beam:

it's all Gurk to me. (score = -3.27)
t's all Gurk to me. (score = -3.32)
it's all Gark to me. (score = -4.23)
t's all Gark to me. (score = -4.26)
t's all Grike to me. (score = -4.49)
it's all Gurk at me. (score = -4.49)
it's all Grike to me. (score = -4.50)
t's all Gurk at me. (score = -4.52)

Figure 2.14: Output of a beam search of width 8.

timesteps can be set to ensure that decoding terminates. Second, additional terms can be

added to Equation 2.39 [149] — for example, if there is an additional set of y-only data,

we can train a model for p(y) (in ASR, this would correspond to a language model), and

instead search for

y∗ = argmax
y

log pθ(y|x) + α log pθother(y), (2.40)

where α can be set to minimize error using a validation set [150]. Finally, given the set

of hypotheses returned by beam search, it is possible to rescore those hypotheses using a

second model that computes either p(y) or p(y|x), possibly one for which beam search is

slow but computing p(·) is fast (e.g., a large feedforward decoder) [28].
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2.2.11 Connectionist Temporal Classification

Encoder-decoder models are theoretically flexible enough to handle any sequence-to-sequ-

ence problem, including ASR [151, 152, 153], but there are sometimes reasons to use

a model with more specific domain assumptions. One such reason is that the attention

operation does not allow for streaming inference, where outputs are predicted in real-

time as inputs arrive; the encoder must have access to the entire input sequence before

the decoder can attend to it. Another reason is that attention does not take advantage

of the fact that the alignment between input and output sequences is monotonic for ASR,

meaning that if word A comes after word B in the transcript, word A must come after word

B in the audio signal — attention-based encoder-decoder models are more difficult to train

for ASR as a result [154].

Connectionist Temporal Classification (CTC) [155, 156] is a sequence model that takes

advantage of monotonic alignments and can be used for streaming inference. Like encoder-

decoder models, CTC does not require a label for each timestep: the model itself learns the

alignment. CTC models can be thought of as “encoder-only” sequence-to-sequence mod-

els, or encoder-decoder models where the decoder is a simple linear output layer instead

of an autoregressive model. At each timestep, a CTC model uses a neural network encoder

to assign a probability to each of the labels and a “blank” symbol, which corresponds to

“no output”. Fig. 2.15 shows a subset of the softmax outputs of a trained character-level

CTC model (M-CTC-T; see Chapter 3) for an example utterance.

In CTC, an alignment a is defined as a length T sequence of labels and blanks. The

per-timestep softmax probabilities define the probability of a as

pθ(a|x) =
∏
t

pθ(at|x), (2.41)

where pθ(at|x) represents the softmax output for symbol at at time t.

The probability of an output sequence y is defined as the sum of the probabilities of all
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<blank>abcdefghijklmnopqrstuvwxyz' 

Figure 2.15: CTC model softmax output representation of the thesis author saying the
phrase “it’s all Greek to me”.

possible alignments between x and y:

pθ(y|x) =
∑

a∈B−1(y)

pθ(a|x), (2.42)

where B−1(y) represents the set of valid alignments. The function B(·) “collapses” an

alignment to a label sequence by removing repetitions and then removing blanks: e.g.,

B( GGR EE E KK) = B( GR E E K) = GREEK. (2.43)

The model is trained by minimizing the negative log-likelihood. Computing− log pθ(y|x)

by computing Eq. 2.42 directly is intractable; the CTC Forward algorithm, like the Forward

algorithm for HMMs (Sec. 2.2.4), computes the sum with dynamic programming, using

the recursion

αs,t =

(αs,t−1 + αs−1,t−1) · pθ(at = ls|x) if ls = ls−2 or ls = blank

(αs,t−1 + αs−1,t−1 + αs−2,t−1) · pθ(at = ls|x) otherwise
(2.44)

for t = 1 → T and s = 1 → 2U + 1, where l = {blank, y1, blank, y2, . . . , blank, yU , blank}.

At the end of the recursion, pθ(y|x) is equal to α2U,T + α2U+1,T .
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Because the output probabilities produced by a CTC network tend to be very “peaky”

[157], an extremely simple greedy algorithm can be used to decode: take the argmax of

pθ(at|x) for each timestep and collapse using B(·). (The reader is invited to try applying

this algorithm to Fig. 2.15.) Greedy decoding often works well, but it is not guaranteed

to find the most likely label sequence. Like encoder-decoder models, CTC models can

also be decoded using beam search [28, 158]. Beam search is more complicated for CTC

because multiple alignments per hypothesis need to be considered. The algorithm works

by computing the per-timestep softmax outputs s using the neural network and updating

a list of B hypotheses at each timestep, where two probabilities are maintained for each

hypothesis: pb (the probability of all alignments for that hypothesis ending in a blank) and

pnb (the probability of all alignments ending in a label). A simplified version of the CTC

beam search from [159] is given by Algorithm 7.

Algorithm 7: Beam search (for CTC)
beamprev := {∅}
pb(∅) := 1
pnb(∅) := 0
for t = 1→ T do

beamnext := {}
for h in beamprev do

for l in labels ∪ blank do
if l = blank then

pb(h) := st[blank] · (pb(h) + pnb(h))
Add h to beamnext

else
hextended := concat(h, l)
if l = last label of h then

pnb(hextended) := st[l] · pb(h)
pnb(h) := st[l] · pnb(h)

else
pnb(hextended) := st[l] · (pb(h) + pnb(h))

if hextended not in beamprev then
pb(hextended) := st[blank] · (pb(hextended) + pnb(hextended))
pnb(hextended) := st[l] · pnb(hextended)

Add hextended to beamnext
beamprev := top B hypotheses in beamnext, sorted by pb + pnb

return beamprev

Both greedy decoding and beam search decoding for character-level CTC models are
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“open-vocabulary”, which means the system can produce arbitrary words that are not nec-

essarily found in a lexicon. It is also possible to constrain the decoder to only output

in-vocabulary words by proposing an extension only if the resulting output sequence is a

prefix of some word in the lexicon — e.g., if the lexicon contains only the words “IT’S”,

“ALL”, and “GREEK”, the hypothesis “IT’S ALL GREE” can only be extended by “K”, and

not by “N” or any other character. Checking whether an extension is a prefix can be im-

plemented efficiently by storing the lexicon in a trie and only proposing extensions that

are children of the trie node corresponding to the hypothesis [160]. A language model

can be integrated into decoding [159] by multiplying the probability of the hypothesis by

pLM(new word|previous words) whenever a new word is formed by extending the hypoth-

esis with a space label.

There are many similarities between HMMs and CTC [161]. HMM systems with a neu-

ral network emission model can in principle be trained in an end-to-end fashion similar

to CTC by backpropagating the negative log-likelihood through the HMM Forward algo-

rithm (Algorithm 4). Some early work demonstrating the use of this idea to improve a

phoneme recognition system for TIMIT was described in [162, 163]. However, it seems

to be very difficult to train neural network-HMM hybrids from scratch in this way. The

CTC blank symbol has been found to be essential for training without alignments: train-

ing from a random initialization without a blank symbol diverges [164, 165, 166]. Like

HMMs, CTC models can also be composed with FSTs for decoding [167, 168, 169], or

even during training, backpropagating through the decoding graph into the neural net-

work [72, 170, 171, 172].

2.2.12 Transducers

While CTC models are suitable for problems with a monotonic input-output alignment,

they have two theoretical flaws compared to encoder-decoder models:

1. The output sequence length must be less than or equal to the input sequence length,

since only one label or blank can be decoded per input timestep.

2. Each output at is conditionally independent of each other given the input x (i.e.,
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(a) Architecture with encoder, predictor, and
joiner.

(b) Joiner output for a 3-label alphabet.

Figure 2.16: The Transducer model.

pθ(at|a<t,x) = pθ(at|x)). The famous example of this being an issue was given in

[152]: if the model is decoding a recording in which the speaker says “triple A”, both

“TRIPLE A” and “AAA” are correct transcriptions, but if the first decoded output is

“T”, the next output must be “R”, which requires remembering which outputs have

previously been predicted.

The Transducer4 [175, 176] (or “RNN-Transducer”, or “RNN-T”, though the model need

not be implemented using RNNs) elegantly solves both problems, while retaining some of

CTC’s advantages over encoder-decoder models. It solves 1) by changing the interpretation

of a label from “output this symbol and transition to the next timestep” to simply “output

this symbol”; and 2) by adding a predictor network and joiner network to the encoder

network.
4We prefer to capitalize it to disambiguate from “(finite state) transducers”, though the naming conven-

tion is still in flux. “Neural transducer” is also sometimes used [173], though there is unfortunately already
a collision with [174].
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Figure 2.17: Illustration of Transducer decoding.

Fig. 2.16a shows a diagram of the Transducer. The predictor is autoregressive, but does

not take x as input (unlike an encoder-decoder model), so it is easy to pre-train it using

y-only examples [177, 178, 179]. The joiner (not present in the original formulation but

added in [117]) is a simple feedforward network that combines the encoder vector ft and

predictor vector gu and outputs a softmax ht,u over all the labels, as well as a “null” output

∅ (Fig. 2.16b). The null ∅ differs from the CTC blank in that only ∅ indicates “move to

the next timestep”, whereas in CTC every other label also has that interpretation. Greedy

decoding for the Transducer works by computing ft using the encoder, computing gu using

the predictor, computing ht,u using ft and gu, taking the argmax of ht,u, and appending the

argmax to the output (if it is a label) or moving to the next timestep (if it is a blank) (Fig.

2.17).

Similar to CTC, Transducer models assign a probability to any alignment, and the full

negative log-likelihood is computed by marginalizing over all possible alignments. The

probability of an alignment is the product of the weights of the corresponding edges of the

alignment graph (Figs. 2.18a and 2.18b), where the edge weights are computed using the

corresponding joiner output (Fig. 2.18c). The Transducer Forward recursion computes,

for each node (t, u) of the graph, the probability of all possible alignments ending at that

node:

αt,u = αt−1,u · ht−1,u[∅] + αt,u−1 · ht,u−1[yu], (2.45)
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(a) a = {∅, C,A,∅, T,∅,∅} (b) a = {C,∅, A,∅, T,∅,∅}
(c) Mapping from joiner outputs
to edge weights.

Figure 2.18: Transducer alignments illustrated using the alignment graph.

and then pθ(y|x) can be computed using the last node of the graph as:

pθ(y|x) = αT,U · hT,U [∅]. (2.46)

Computing αt,u for all nodes may consume a very large amount of memory. Suppose

that T = 1000, U = 100, L = 1000 labels, and the batch size B = 32 (realistic numbers for

ASR). Then just to store ht,u for all (t, u) pairs to run the Forward(-Backward) algorithm,

we need a tensor of size B×T ×U ×L = 3, 200, 000, 000, or 12.8 GB using single-precision

floats, not including the memory for the intermediate joiner activations for each (t, u). Sim-

plifying the training of Transducer models is an active area of research: some examples

include using forced alignment via the Viterbi algorithm with a second model to reduce the

size of the alignment graph [180, 181, 182], using simple addition instead of a feedfor-

ward network so that the joiner operation becomes separable [183], and broadcasting the

encoder and predictor outputs for each example in the batch separately to avoid wasted

padding [184]. Transducers are only memory-intensive during training; during decoding,

only a small amount of memory is required to store previous outputs.

The flaws of CTC that Transducers were designed to correct are often not actually a

dealbreaker in practice. The output sequence length for ASR is almost always smaller

than the input sequence length, unless a dramatic amount of stride/pooling is used in
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the encoder, so the ability to produce a longer output sequence is not terribly important;

and while CTC models explicitly consider the outputs to be conditionally independent,

they implicitly learn a language model over the outputs [6], especially when using deep

encoder networks with high parameter counts [185]. (In applications outside of ASR, the

Transducer’s assumptions can in fact be important, e.g. for speech synthesis [186].) Empir-

ically, however, Transducers often outperform CTC models and encoder-decoder models:

they have attained state-of-the-art performance on the challenging LibriSpeech benchmark

[187] and are at present the de facto neural architecture used for streaming ASR in devices

such as Google’s Pixel phone [188].

2.2.13 Natural language understanding: Intents and slots

The natural language understanding (NLU) stage of the conventional voice control pipeline

infers the meaning of the transcript. But what is the meaning of “meaning”? As Collobert

et al. put it in [189]:

Will a computer program ever be able to convert a piece of English text into a data

structure that unambiguously and completely describes the meaning of the natural

language text? Among numerous problems, no consensus has emerged about the

form of such a data structure.

Instead, more specific NLU tasks are defined, and the designers of NLU systems derive the

appropriate semantic structures therefrom. The GLUE benchmark [190] provides a useful

sample of various NLU tasks, including:

• linguistic acceptability: whether a sentence is a grammatical English sentence;

• sentiment analysis: whether the text has a positive or negative sentiment;

• semantic equivalence: whether two sentences have the same meaning, or “how sim-

ilar” (on a scale from 1 to 5) they are; and

• entailment: given a premise sentence and hypothesis sentence, predict whether the

premise entails the hypothesis.
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Each of these tasks can be treated as a classification task, where the output is a discrete

label. Such tasks are typically solved by extracting some kind of fixed-length feature vector

from the text sequence and using it as the input to a traditional classifier. A bag-of-words

[191], which is a vector containing the number of times each word in the vocabulary

appears in the sentence, is a remarkably difficult-to-beat baseline representation. Neural

networks can also be used to extract a representation, with different types of networks

used in different ways. Convolutional networks use global pooling to aggregate the output

activations into a single feature vector [73, 192, 193]. Recurrent networks can use global

pooling or take the final hidden state as the feature vector [194]. Transformers can also

use pooling; another common method is to feed a special token (“[CLS]”) into the model

along with the input sequence, and use the output representation at that token’s position

as the feature vector [195], thereby allowing the model itself decide how to aggregate

information using the self-attention mechanism instead of it being hardcoded.

Other NLU tasks require a sequential output. Some of these tasks are described in

[189]:

• part-of-speech tagging: labeling each word of a sentence as noun, verb, adjective,

adverb, etc.;

• chunking: labeling sections of a sentence as noun phrase, verb phrase, etc.;

• named entity recognition: labeling sections of a sentence as categories such as “per-

son” or “location”; and

• semantic role labeling: labeling the semantic role of each syntactic constituent of the

sentence.

Each of these tasks assigns a label to each word. The IOB (“inside, outside, beginning”)

tagging format [196] is commonly used to label words within a “chunk” (i.e., a noun

phrase, a named entity, a verb argument): words at the beginning of a chunk are labeled

“B (chunk type)”, words thereafter in the chunk are labeled “I (chunk type)”, and “filler”

words not within a meaningful chunk are labeled “O” — for instance, “find, recent, come-

dies, by, james, cameron” might be labeled as “O, B-date, B-genre, O, B-director, I-director”
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[197]. These tasks have traditionally been solved using conditional random fields (CRF), a

discriminative variant of the HMM [198], using the Viterbi algorithm for decoding. Neural

networks can be used with [199, 200] or without [201, 202] Viterbi decoding.

For voice control, NLU usually takes the form of intent detection (a classification task)

and slot filling (a sequence labeling task, formulated using IOB outputs) [203, 197]. The

downsides of treating the problem in this way are that it is somewhat inflexible; it requires

word-aligned labels, which require more effort to create and might not be available for

some problems; it assumes that the intents and slots are conditionally independent of each

other given the input; and most importantly, it cannot directly solve tasks like question

answering and machine translation, where an arbitrarily long unaligned output might be

required (“Siri, how do you say ‘It’s all Greek to me’ in French?”).

In contrast, an encoder-decoder model trained directly to output the information of

interest (an approach that is used by e.g. T5 [204, 205]) does not have these flaws.

(Encoder-decoder models were first used in [206] for intent detection and slot filling,

but with separate decoders for intents and slots and using word-aligned slot labels.) In

Chapters 5, 6, and 7 we use a simple and flexible encoder-decoder model that predicts

any semantic structure, with no a priori information about the intents or slot structure, by

splitting the semantics into characters and predicting each character autoregressively. A

similar approach is used in [207] and [208], but with a hardcoded set of intents and slots

baked into the decoder.

2.2.14 Sesame Street and unsupervised pre-training

Labeling data using human labor is expensive and time-consuming, so in most domains one

finds much more unlabeled data than labeled data; for example, YouTube contains millions

of hours of unlabeled audio, whereas the largest labeled audio datasets only have on the

order of thousands of hours [209]. With larger datasets, more computational power, and

improved neural network recipes has come more interest in unsupervised learning algo-

rithms that can take advantage of the ocean of unlabeled data to train a feature extractor

potentially useful for many different downstream tasks.
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The first great success of unsupervised pre-training was the deep belief network [210,

88], a neural network trained layer-by-layer as a sequence of latent variable models. Deep

belief net pre-training greatly improved neural network acoustic models [50, 211], draw-

ing heightened interest in neural networks from industrial speech recognition groups [51].

Unsupervised pre-training fell out of fashion for a time when it became clear that purely su-

pervised training with improved architectures and simple backpropagation could succeed

without the need for a separately programmed pre-training step [212, 76].

Another line of research on unsupervised pre-training developed in parallel in NLU.

In [73], a convolutional network was trained with multi-task learning on a number of

supervised text sequence labeling tasks, as well as a “language modeling” task in which

a word in a sentence is possibly replaced with a random other word, and the model is

trained to guess using the surrounding context whether the word is replaced. Since no

human labels are required for this task, the authors were able to use large unlabeled

text corpora (Wikipedia) in addition to the small supervised training sets. Isolated-word

models like word2vec [213] pre-trained word embeddings using similar contextual tasks,

yielding improved performance in models that reused these embedding weights.

Subsequent work pre-trained LSTMs as conventional language models (predicting the

next word given previous words), followed by fine-tuning on downstream supervised

learning tasks [214, 194]. The Generative Pre-Trained (GPT) model [215] applied the

same idea with transformers, enabling larger models and faster training. To take advan-

tage of both forward and backward contexts, ELMo [216] combined the representations

of LMs operating forwards and backwards on the text, instead of just a forward LM. BERT

[195] (followed by ERNIE [217], both named after Sesame Street characters, as a nod

to ELMo) improved upon ELMo by using a “Cloze” task [218]: instead of predicting the

next word using only the previous words, certain words in the input are replaced with a

“[MASK]” token, and a “bidirectional” (full context, not forward or backward) transformer

is trained to predict the masked word given the rest of the sentence. The BERT model

outperformed existing work on all GLUE tasks by a large margin.

The success of BERT and other pre-trained models [219] for text led to unsupervised

pre-training being revisited for other domains. In audio, Autoregressive Predictive Coding
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[220] used an autoregressive LSTM (as in [214, 194]) trained on FBANK features as a

pre-trained feature extractor. wav2vec [22] (a play on “word2vec”) instead used the raw

waveform as input, processing it using a two-tier (causal) convolutional network: one tier

with a number of layers downsampling the input sequence, and a second tier that solves

a contrastive predictive coding (CPC) task [221]. In CPC, the model is trained to predict,

for a collection of samples, which one actually comes next in the sequence, and which are

randomly sampled from elsewhere. Contrastive estimation is thought to be an easier task

than full autoregressive modeling, and therefore possibly better suited for representation

learning, because it does not require reconstructing all the information in the input [222].

In wav2vec 2.0 [7], the authors improve upon wav2vec by using a transformer for the

second tier, quantizing the outputs of the first tier by mapping each vector to the nearest

vector in a trainable codebook, and using the quantized vectors as training targets for a

contrastive loss. wav2vec 2.0 dramatically reduced the amount of labeled data required

to train a supervised ASR model. The model became popular with practitioners when

Hugging Face provided scripts for finetuning it for ASR using CTC, during an event in

which the company invited participants to train ASR models for a number of low-resource

languages [223].

Feature extractors obtained through unsupervised (or supervised) pre-training can have

their parameters frozen, so that they are not updated when training on the downstream

task, or unfrozen, in which case they are updated, possibly using a smaller learning rate

[224]. The advantage of a frozen feature extractor is reduced memory consumption and

gradient computation during training, and possibly more stable training. The advantage

of fine-tuning the pre-trained parameters is that the model may be able adapt better to the

downstream task. We will use both techniques in this thesis.

A final note on terminology: what we have here called “unsupervised” is also sometimes

called “self-supervised”. Though the term “self-supervised” is old [225], it has only recently

become more popular: the authors of the BERT and wav2vec papers both refer to their

work as “unsupervised”, whereas the authors of wav2vec 2.0 and other subsequent work

use the term “self-supervised”.
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2.3 Software

It is often said that the astonishing progress in AI of the last decade has been due to the

confluence of larger datasets, improved learning algorithms, and faster computing hard-

ware [226]. Another important factor is open-source software. The experiments described

in this thesis make use of a variety of open-source machine learning software tools, es-

pecially PyTorch [227]. In addition to allowing programmers to avoid reimplementing

commonly used models and algorithms [5, 228], machine learning software has a number

of other benefits:

1. Efficiency: Building on low-level libraries like the Basic Linear Algebra Subroutines

(BLAS) and cuDNN [229], libraries like numpy [230] and (and gnumpy [231]) make

it possible to efficiently use modern CPUs, and hardware accelerators like GPUs

[212], in a high-level language without writing careful low-level code [232].

2. Reproducibility: It is not always easy to read a paper and exactly reproduce the

authors’ results. While there have been efforts like the “Reproducibility Checklist”

[233] to make reproducing experiments easier, often the experiment code itself is

the simplest and clearest description of the experiment. There is a strong ethos of

“release your experiment code!” in machine learning research, which is helped by

standard libraries written in high-level languages and tools like Jupyter Notebooks

[234] and Google Colab that provide an interface that interleaves code with textual

descriptions and persistent visualizations [235]. It has also become common practice

to release the results of experiments as pre-trained models, which machine learning

libraries make easy to reuse.

3. Automatic differentiation: Tools like Autograd [236] derive the backward pass of a

computation from a program for the forward pass, allowing programmers to define

sophisticated forward passes without needing to program backpropagation by hand

[237]. This essentially cuts the work programmers have to do to implement gradient-

based learning in half (or more, since deriving the backward pass of an operation by

hand is error-prone).
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Deep learning frameworks like Torch [238], Theano [239], TensorFlow [240], PyTorch

[227], and JAX [241] combine these concerns with an emphasis on neural networks.

Higher-level frameworks like fastai [242] and SpeechBrain (see Chapter 7) implement

additional features on top of deep learning frameworks, such as the commonly used tricks

described in Section 2.2.7 above.

56



Chapter 3

Pseudo-Labeling for Massively

Multilingual Speech Recognition

Abstract
Semi-supervised learning through pseudo-labeling has become a staple of state-of-

the-art monolingual speech recognition systems. In this chapter, we extend pseudo-

labeling to massively multilingual speech recognition with 60 languages. We propose

a simple pseudo-labeling recipe that works well even with low-resource languages:

train a supervised multilingual model, fine-tune it with semi-supervised learning

on a target language, generate pseudo-labels for that language, and train a final

model using pseudo-labels for all languages, either from scratch or by fine-tuning.

Experiments on the labeled Common Voice and unlabeled VoxPopuli datasets show

that our recipe can yield a model with better performance for many languages that

also transfers well to LibriSpeech.

3.1 Semi-supervised learning

In Chapter 2, we discussed unsupervised learning methods that train a feature extractor

on unlabeled data and subsequently train on labeled data. In this chapter, we discuss

an alternative (complementary [243, 244]) way of using unlabeled data, semi-supervised

57



learning, which uses both labeled and unlabeled data to train a model [245, 246].

A few assumptions about the data distribution are reasonable for many domains:

1. Points belonging to the same cluster found in the data are likely to have the same

label.

2. More confident predictions on unlabeled data by a model trained on labeled data are

more likely to be correct.

3. “Low-density separation”: the decision boundary for a classification problem lies in

a low-density region of input space.

4. Augmentations or small changes to the input do not change the correct output. (A

scenario where this assumption would not apply is if the label is “noisy/not noisy”.)

Semi-supervised learning methods try to take advantage of these assumptions to learn

from the unlabeled data. For example, Assumption 2 can be combined with Assumption 4

by training on augmented versions of unlabeled examples for which the supervised model

predicts confidently for the nonaugmented versions.

3.2 Self-training

A number of semi-supervised learning algorithms of varying complexity and with different

assumptions have been proposed [247]. One very simple method that has been found to

work well across domains, dataset sizes, and models is self-training, or pseudo-labeling

[248, 249]. Let DL denote a labeled dataset of {x,y} pairs and DU denote unlabeled data

with x only. In self-training, a supervised model is trained on DL and used to generate

pseudo-labels for (some subset of) DU for use in “pseudo-supervised”1 learning.

Self-training can be regarded as an instance of the EM algorithm (Section 2.2.3), with

labels in the place of latent variables, where the latent variables are known for some data

points and not for others.2 In hard pseudo-labeling, each data point is assigned to exactly

1Pseupervised?
2Cf. Chapter 3 of [246].
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Figure 3.1: Supervised performance (left) vs semi-supervised performance (right) of dif-
ferent models on LibriSpeech. (Figure reproduced from [6].)

one latent z in the E-step (as in the Viterbi algorithm); in soft pseudo-labeling [250], a

distribution over z is used. Hard pseudo-labels are often easier to work with because they

require less memory and can be stored in a text file and easily inspected by a human.

3.2.1 Iterative pseudo-labeling

The simplest form of self-training trains a single supervised model to convergence with

DL, uses it to generate pseudo-labels for DU , and then trains a model on the labeled

and pseudo-labeled data to convergence using the original supervised learning method

[251]. In ASR [252], better results can be obtained by using data augmentation (such

as SpecAugment [105] or speed perturbation [104]) on the unlabeled audio, generating

better pseudo-labels using beam search decoding with an external language model, and

filtering out pseudo-labels with a length not expected relative to the length of the input

signal (e.g., we would not expect a one-word transcript for a 30-second long recording).

Fig. 3.1 from [6] shows the effect of combining the 1,000 hour labeled LibriSpeech dataset

with 60,000 hours of pseudo-labeled LibriVox data: WER dramatically improves for the

semi-supervised models across all types of acoustic models and language models, and the

gap between different neural network architectures is reduced.

Given that a model trained on both labeled and pseudo-labeled data has better per-
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formance than the original supervised model, might it not produce better pseudo-labels?

This is the idea behind iterative pseudo-labeling (IPL) [253, 254]. In IPL, a sequence of

models is trained on pseudo-labels generated by previous models, and iterations can con-

tinue until validation performance stops improving. The IPL setup is somewhat similar

to old-school HMM ASR recipes (Section 2.2.5 and 2.2.8), but with no constraints on the

type of models and labels used in each round. If the same neural network architecture is

used in each round, it is possible to continue training the model by initializing its weights

to the weights from the previous round; but in some instances, training new weights from

scratch has been found to work better.

3.2.2 Continuous pseudo-labeling and slimIPL

IPL works by pseudo-labeling the entire unlabeled dataset before training, and subse-

quently does not update the pseudo-labels until convergence. Just as it is sensible to

use online learning algorithms like SGD instead of batch learning algorithms for large-

scale datasets [255], it is sensible to use online or continuous pseudo-labeling instead of

batch IPL for semi-supervised learning [256, 257]. Online pseudo-labeling methods avoid

“stale” pseudo-labels from an older model for better results by immediately using the best

pseudo-labels as the model improves.

However, online methods seem to be more unstable, often diverging or producing

empty transcripts. Two strategies have been developed to deal with the instability of online

pseudo-labeling:

1. Generating pseudo-labels using a second model whose weights are an exponential

moving average (EMA) of the (more quickly) changing weights of the model being

trained [258, 259]. Additional memory is required to store the EMA weights.

2. Using a cache of pseudo-labels generated from previous minibatches. Memory is

required to store the cache, but only one copy of the model is required.

The caching method is used by slimIPL [100], which uses greedy decoding instead of beam

search decoding to produce pseudo-labels (Algorithm 8). Using greedy decoding speeds
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up pseudo-label generation and, by not using a language model, avoids letting the acoustic

model overfit to the language model, which has been observed in the basic self-training

setting [6]. slimIPL yields state-of-the-art results for LibriSpeech with additional unlabeled

data, using fewer GPU hours, even outperforming methods that do use a language model

to generate pseudo-labels.

Algorithm 8: slimIPL
Train acoustic modelMθ on DL with augmentation for M updates
while cache is not full at size C do

Draw a random batch of x from DU

Generate pseudo-label ŷ usingMθ with greedy decoding
Store {x, ŷ} in cache
TrainMθ on DL with augmentation for 1 update

Decrease dropout ofMθ

while not bored do
TrainMθ on DL with augmentation for NL updates;
for NU updates do

Draw a random batch B = {x, ŷ} from the cache
w.p. p, remove B from cache and add new x′ ∈ DU and its pseudo-label ŷ′

generated byMθ to cache
Apply augmentation to batch B and make an optimization step to update
Mθ

3.3 Multilingual ASR

One of the long-term goals of automatic speech recognition (ASR) research is a single

system that can transcribe speech in any language [260, 261]. Such a multilingual system

would be simpler to maintain than a collection of monolingual models, enable users to

comfortably speak any language without needing to tell the system which language to

expect in advance, and share knowledge between all languages for improved performance.

Given that pseudo-labeling has become a key ingredient of state-of-the-art monolingual

ASR systems, we propose in this chapter to go beyond the monolingual setting and demon-

strate the use of pseudo-labeling to improve a massively multilingual speech recognizer

trained on all 60 languages of the Common Voice dataset [262] simultaneously. First, we

show that self-training on all unlabeled data in the multilingual VoxPopuli dataset [263] at
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Figure 3.2: Illustration of our method: to produce better pseudo-labels for a given lan-
guage, we first fine-tune the multilingual model on that language.

once tends to produce poor PLs for low-resource languages, and instead propose a simple

recipe (Fig. 3.2) in which the model is first fine-tuned for a particular language before

pseudo-labeling. Next, we compare a number of methods for training with the generated

PLs, and find that training a larger model from scratch on all labeled and pseudo-labeled

data, followed by fine-tuning on labeled data, works best. Finally, we show that the use of

pseudo-labeled data improves out-of-domain generalization through experiments on Lib-

riSpeech [264]. Unlike much previous work on this topic, our experiments use only open-

source data, and we release our code and models for those who would like to experiment

with them further.3

3For Flashlight code, model checkpoints, and a Colab notebook showing how to perform inference, see:
https://github.com/flashlight/wav2letter/tree/main/recipes/mling pl. The PyTorch
version can be found at https://huggingface.co/speechbrain/m-ctc-t-large.
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3.4 Model

The model used in our experiments (Fig. 3.3) is identical to the neural network used

for LibriSpeech in [100], except for the output layer(s). The input to the encoder is a

sequence of 80-dimensional log mel filterbank frames, extracted using 25 ms Hamming

windows every 10 ms from the 16 kHz audio signal. The encoder has a single convolutional

layer with a filter length of 7 and a stride of 3, followed by 36 transformer layers with 4

heads, feedforward dimension 3072, and self-attention dimension 768, using the relative

position embeddings of [123]. The output of the encoder is fed to a CTC [155] head and a

language identification (LID) head. The CTC head is a linear layer with 8065 outputs: one

for each character (most of which are Chinese characters), including punctuation, space,

and the CTC <blank> symbol. The CTC head is shared across all languages: it is a “joint”

multilingual model, using the terminology of [261]. The LID head is a linear layer with

60 outputs (one per language), followed by mean-pooling to aggregate the variable-length

sequence of output vectors into a single vector of logits. The LID head outputs are only

used during training: during inference, standard decoding algorithms can be applied to

the CTC head outputs. The model — which we refer to as M-CTC-T (“multilingual CTC

transformer”) — is implemented and trained using Flashlight [160].

While we do not perform explicit empirical comparisons with other multilingual models

in the literature (as the focus of this work is on pseudo-labeling), it is worth noting that

M-CTC-T is significantly simpler than existing multilingual models, forgoing the use of

language- or language-family-specific parameters, decoders, and tokenizers. We are not

the first to use an encoder-only CTC architecture for multilingual ASR [265, 266, 267],

but we believe we are the first4 to demonstrate this for massively multilingual end-to-

end ASR. Previous work on this topic [268, 269, 270, 271, 272] has instead used more

sophisticated sequence transduction models with autoregressive decoder networks [153,

151, 152, 175, 188], citing the flaw of CTC’s conditional independence assumption. In

practice, CTC models implemented using modern neural network architectures are able to

learn strong implicit language models [6, 100] and achieve state-of-the-art results for the

4We learned afterwards of an unpublished similar model based on XLSR-53 [267]: https://t.co/y
rr7pfuVVo
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Figure 3.3: Illustration of M-CTC-T, with optional language identification head (Sec. 3.6)
shown in grey.

low-resource setting [7, 100]. For those reasons, we focus on CTC models here.

3.5 Data

The model is trained using the December 2020 release (6.1) of Common Voice (CV) [262],

which has 3.6k hours of training data. CV is a continuously growing multilingual speech

dataset recorded online by volunteer speakers. The 60 constituent languages vary greatly

in the amount of available data: 7 languages have more than 100h of data, and 10 lan-

guages have less than 1h of data. We do not remove punctuation and capitalization from

the CV transcripts, as this makes it easier to replicate our setup5 and learning speed was

not noticeably impacted. We downsample all audio to 16 kHz.

In addition to CV, we use VoxPopuli (VP) [263], a very large scale (384k hours) unla-

beled multilingual dataset of European languages. The dataset is split into 23 languages.

19 of the 23 VP languages are in CV (Czech, German, Greek, English, Spanish, Esto-

nian, Finnish, French, Hungarian, Italian, Lithuanian, Latvian, Maltese, Dutch, Polish,

5While there have been attempts to standardize the formatting of transcripts for Common Voice for En-
glish [273], most reported results use an ad-hoc normalization scheme, and so cannot readily be compared.
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Portuguese, Romanian, Slovenian, and Swedish): we use only those 19 languages for

semi-supervised learning.

3.6 Supervised training

We train supervised models on CV for ∼500k updates. The hyperparameters and training

procedure are identical to those used in [100], except we use 2 SpecAugment [105] time

masks instead of 10 (using 10 masks was found to cover too much of the shorter CV audio),

and the learning rate is halved just once, at 250k updates. We do not use the language

balancing technique of [269, 261] to sample languages evenly (which we found easily

overfit to the low-resource languages), or curriculum learning as in [261]. In addition to

the base model (275M params), we also train larger models (1.06B params) by doubling

the feedforward and self-attention dimensions of the transformer layers. The base models

are trained on 16 GPUs with dynamic batching using 200s of audio per batch per GPU,

and the large models are trained using 64 GPUs with 50s of audio per GPU, resulting in

the same effective batch size.

Following [274], we add an LID loss, so that the loss ` used for training is ` = `CTC +

γ · `LID, where `CTC represents the CTC loss, `LID represents the LID loss (the cross-entropy

between the LID head outputs and the one-hot language label for a given utterance), and

γ is a hyperparameter. We trained models on CV with γ ∈ {0, 0.1, 1, 10}: γ = 1 yielded the

best results, with 2.6% absolute improvement in average validation character error rate

(CER) over the baseline with γ = 0 (no LID), using greedy decoding. Some examples of

greedy decoding outputs for the base supervised model are shown in Fig. 3.4 and Fig. 3.5.

3.7 Semi-supervised training

To train on the unlabeled data in VP, we use slimIPL with a cache size of 1000, replacement

probability 0.1, and λ = 10 (ratio of unlabeled batches to labeled batches).
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ref:

hyp:

The Nawabs of Bengal and Morshadab were the rulers of Bengal, Bihar and Orisa.

The Nawabs of Bengal and Murshidabad were the rulers of Bengal, Bihar and Orissa.

ref:

hyp:

新努库茨基市镇是俄罗斯联邦伊尔库茨克州努库茨基区所属的一个市镇。

西姆库茨基市镇是俄罗斯联邦伊尔库茨克州努库自基区所属的一个市镇。

ref:

hyp:

Наконец, многие члены подтвердили свою официальную политику в
пользу расширения членского состава Конференции.

Наконец, многие члены потвердили свою официальную политику в
пользурасширения членского состава Конференции.

ref:

hyp:

Col Rose Kabuye yatawe muri yombi, bakurikiranyweho ibyaha byo guhungabanya
umutekano w’igihugu.

Colonel Rose Kabo yatawe muri yombi bamukurikiranyweho ibyaha byo guhungabanya
umutekano w’igihugu

ref:

hyp:

"Il a effectué des résidences d'écritures à Ouagadougou, en Guinée et à Paris."

"Il a effectué des résidences d'écriture à Wagadougu, en Guinée et à Paris."

ref:

hyp:

Humfried war zunächst Mönch, dann Dompropst in Würzburg und Kaplan am
kaiserlichen Hofe.

Humfried war zunächst Münch, dann Dompropst in Würzburg und Kablan am
Kaiserlichen Hofe.

Figure 3.4: Example greedy decoding outputs from the base supervised model for 6 ut-
terances from the validation sets of some of the higher-resource CV languages: English,
Chinese (China), Russian, Kinyarwanda, French, and German.
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ref:

hyp:

what do you mean sir

What do you mean, sir?

ref:

hyp:

george

Gرجe

ref:

hyp:

mister shimerda went with him

Mr. Shameridta went with him.

ref:

hyp:

il popolo e una bestia

Lo popolo è una bestia.

ref:

hyp:

its yellow bristles rather a mane
than a head of hair covered and
concealed a lofty brow evidently

made to contain thought

Its yellow bristles, rather amain
than ahead of hair, covered and
concealed a lofty brow, evidently

made to contain thought.

ref:

hyp:

mode pare and slice the
cucumbers as for the table
sprinkle well with salt and let
them remain for twenty four
hours strain off the liquor pack
in jars a thick layer of
cucumbers and salt alternately
tie down closely and when
wanted for use take out the
quantity required

twent-fr-r alternately

ref:

hyp:

three days later minnitaki
became newsome's wife at the

hudson bay post

"Three days later, Minnitauke
became Newsom's wife at the

Hudson Bay Post."

Figure 3.5: Examples of LibriSpeech dev-clean outputs with greedy decoding for base
supervised model, trained only on CV, not on LibriSpeech. (Substitutions are colored: red
= genuine error, blue = punctuation/truecasing counted as error.) Note that the model
almost correctly transcribes the unusual Italian sentence in dev-clean, unlike a typical
LibriSpeech model (cf. [7, Table 12]). The supervised model fails to transcribe the final,
longer utterance — see Section 3.7.2.
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basic:

finetuned:

αναfeoρisi του κιακτiμανου sengen, μeταγιακρατi, criteρia ποsμo πisamα
καiγατisυπopψήfiεs χoρeς, ενoτosenginsiζitiτe δiακi βerνitiκa, tα proclimaτaθαs
neχήsουnaifista, γαrtoθα πrέπι nαδiadramatisμe, μeγαliteroorol δitε τηsiζiti si γατi
Rumania, κhe tη vulgaria to, efricaicoκi propecocino volie caneoti, boruse eni.

αναθεώρηση του κι κτημένου σέγγαν μεταίδιακκρητήρια που χρισμοπίσαμε και για
τις υποψήφιες χώρες ενώ το σέγγαν συζητήτε διακυβερνητικά τα προλήματαθα
συνεχήσου να ηφήσταντα, γι αυτό θα πρέπει να διατραματήσουμε μεγαλύτερορόλο,
δίτε τη σηζήτηση γιατη ρουμανία και τη βουλγαρίατο ευρωκαικόκικρωπακό
κινοβούλιο έκανε ότηπορούσεεγή

Figure 3.6: Pseudo-labels for an utterance from the Greek subset of VP with basic slim-
IPL (top) or with slimIPL after monolingual fine-tuning (bottom). Red letters are Latin
characters.

Table 3.1: (Semi-)supervised learning results with slimIPL for the CV Greek data given
different training sets.

Labeled Unlabeled Valid CER Test CER

CV All – 53.2 47.8
CV Greek – 30.6 33.6
CV Greek VP Greek 23.9 25.1
CV Greek VP English6 24.3 28.4

CV All→ CV Greek – 9.9 9.6
CV All→ CV Greek VP Greek 8.7 8.5

3.7.1 Fine-tuning before pseudo-labeling

The simplest way to perform semi-supervised learning would be to pool the unlabeled data

for all languages, as we do for the labeled data, and run slimIPL. We found that doing so

led to poor PLs for low-resource languages, such as Greek, which has only 2.75h of training

data (see top of Fig. 3.6 — the transcript has a mix of Greek and Latin characters).

Instead, to produce PLs for a VP language, we first fine-tune the trained multilingual

model by training only on CV data for that language for 10k updates, and then run slimIPL

using the corresponding VP data (bottom of Fig. 3.6). The same effect could also be

achieved by generating PLs using a monolingual model, but our proposed approach yields

better results by taking advantage of multi-task learning (Table 3.1).

After training slimIPL models for all 19 languages in (CV languages ∩ VP languages),

6See Sec. 3.10 for a more detailed discussion of semi-supervised learning with language mismatch.
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we generate a final set of PLs7 for all unlabeled VP utterances using the appropriate slimIPL

models. We filter out all utterances for which the PL length is 0 or >630 (maximum label

length supported by the CTC loss implementation). The PLs for all languages can then

be pooled and used either by continuing training the non-fine-tuned multilingual model

checkpoint with all available CV and VP data, or by training a new model on that data

from scratch. When training a model from scratch, we found it necessary for convergence

to lower the learning rate from 0.03 to 0.01 and to delay SpecAugment until 50k updates;

we also lower the learning rate when using VP data to fine-tune the base model already

trained on CV.

Distilling the per-language fine-tuned models’ knowledge back into a single final model

is similar to the recently proposed multi-task self-training (MuST) [275]. In MuST, a

separate teacher model is trained for each task and used to pseudo-label every available

training example, and a general student model with one head for each task is then trained

on all the pseudo-labels. The difference here is that our final model only performs one

“task”, since we use a single shared CTC head over all languages, and the model itself

must determine which language is being spoken.

3.7.2 Avoiding collapse: cropping warmup period

Another difficulty arose from the fact that the utterances of VP (average duration of 30s)

are much longer than those of CV (average duration of 5.3s). The model trained only on

CV generates mostly empty transcripts for VP, a commonly observed failure mode for out-

of-domain audio or utterances longer than those observed during training [258, 124, 276].

Semi-supervised learning failed as a result, usually collapsing to generating all blanks even

for the labeled data. To acclimate the model to the longer VP utterances, we use a warmup

period of 10k updates during which we crop unlabeled audio into 10s segments before

running the acoustic model, then stitch the resulting logit sequences back together and

decode to obtain PLs. The model is then trained on the original uncropped utterance using

those PLs. Cropping the utterances results in poor pseudo-labels, so after a number of

7Pseudo-labels can be found at https://dl.fbaipublicfiles.com/wav2letter/mling pl/al
l pseudo labeled.lst
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Figure 3.7: Validation CER for CV Greek (after training on CV All) with supervised fine-
tuning or semi-supervised fine-tuning with VP Greek via slimIPL, using either a cropping
warmup period or always cropping.

updates, we stop cropping the unlabeled utterances during pseudo-labeling. This warmup

period approach works better than simply always cropping (Fig. 3.7).

3.8 Performance on Common Voice

Table 3.2 lists the performance of the multilingual model averaged over all CV languages

in various settings.8 Table 3.3 reports the same information for CV languages that are in

VP. All results for CV are reported using greedy decoding in terms of character error rate

(CER), as suggested in [262].

In addition to the base model (trained only on CV), we report performance when the VP

audio with the final set of PLs is added back into the training set, either by fine-tuning the

model already trained on CV (“+ all PLs (fine-tune)”) or by training a model from scratch

on CV+VP (“+ all PLs (from scratch)”). We only report results for the large model when

training it from scratch on CV+VP, as the large model overfit to CV after a few epochs (see

Fig. 3.8, “CV (large)”). Test CER is measured by selecting the checkpoint with the best

average validation CER across all languages. While performance is degraded on average

(Fig. 3.8), it is greatly improved for the VP languages (Fig. 3.9a), with the best results

achieved training a larger model from scratch.

The degradation for CV languages on average can be explained by the fact that VP

8Detailed per-language training logs and decoded outputs for all 60 languages can be found at https:
//dl.fbaipublicfiles.com/wav2letter/mling pl/supplementary.zip.
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Table 3.2: CER averaged over all CV languages.

Model Valid CER Test CER

Base model 26.8 28.8
+ all PLs (fine-tune) 27.6 29.7
+ all PLs (from scratch, base) 38.0 39.9
↪→ fine-tune on CV only 26.6 28.2
+ all PLs (from scratch, large) 33.0 34.9
↪→ fine-tune on CV only 21.4 23.3

Monolingual baseline 33.8 35.5
Supervised fine-tuning 10.6 11.4

is much larger than CV, leading to an imbalance in favor of the 19 languages in (CV

languages ∩ VP languages). If we then fine-tune the models trained on CV+VP on only CV

(“↪→ fine-tune on CV only”), they not only still have improved performance over the base

model when averaging over the VP languages, but also close the gap when averaging over

all CV languages.

We also train a monolingual model for each language separately using the same hyper-

parameters as the multilingual model, and report the performance of those models along

with the performance of the multilingual model when fine-tuned using only labeled data

for that language (“supervised fine-tuning”) or, when unlabeled data is available (Table

3.3), using both labeled and unlabeled data for that language (“slimIPL fine-tuning”). For

monolingual models, or multilingual models with monolingual fine-tuning, the test CER

is measured using the checkpoint with the best validation CER. There is still a large gap

between the base model and fine-tuned models (see e.g. Greek in Table 3.1), but the gap

is reduced for the VP languages when training on the pseudo-labeled data.

Fig. 3.10 shows the performance of the multilingual model being improved by pseudo-

labeled data for three low-resource CV languages. In Fig. 3.11, for three high-resource lan-

guages, performance is worse when fine-tuning on CV+VP and much worse when training

a new model from scratch on CV+VP, but the performance gap is closed by fine-tuning the

larger model on CV only.

There is a straightforward explanation for why the model trained from scratch on

CV+VP initially performs so much worse on Catalan and Kabyle, before the model is fine-
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Table 3.3: CER averaged over languages in (CV languages ∩ VP languages).

Model Valid CER Test CER

Base model 24.4 24.8
+ all PLs (fine-tune) 17.5 17.9
+ all PLs (from scratch, base) 15.0 15.6
↪→ fine-tune on CV only 13.8 14.0
+ all PLs (from scratch, large) 11.5 12.0
↪→ fine-tune on CV only 10.1 10.6

Monolingual baseline 25.1 26.8
Supervised fine-tuning 7.7 8.3
slimIPL fine-tuning 6.9 7.5

tuned only on CV: those languages are not in VP, so the amount of training data observed

by the model for those languages is dwarfed by the amount of training data observed for

the VP languages. However, English is among the VP languages, so it is surprising that the

performance of English is also worse for the model trained from scratch on CV+VP, and

that performance becomes worse when the model trained on CV is fine-tuned on CV+VP.

It is worth noting that VP data is somewhat noisy: much of it is spoken by interpreters

attempting to translate, in real-time, what is being said by another speaker in another

language—sometimes stumbling over a word or repeating themselves. The domain mis-

match between this type of speech, as opposed to the prompted speech in CV, may explain

the performance gap. Even though performance is degraded for the English subset of CV,

the use of VP data does improve the model’s ability to process English in a new domain, as

we show in the next section.

3.9 Transferring to LibriSpeech

To see how well the multilingual models perform on out-of-domain audio, we evaluate

them on LibriSpeech in Table 3.4. Word error rate (WER) is reported both using greedy

decoding and using a beam search for

argmax
y

log pθ(y|x) + α log pLM(y) + β|y|, (3.1)
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Figure 3.8: Validation CER curves for CV averaged over all languages for various training
settings.

where pθ(y|x) is the probability of transcript y given input audio x according to the acous-

tic model, pLM(y) is the probability of y according to an external 4-gram word-level LM

trained on the LibriSpeech LM corpus, |y| denotes the length of y, and α, β are set using

a small grid search on the dev sets. We find that the multilingual model fine-tuned with

all VP PLs performs much better on LibriSpeech across all settings. It can be seen from

Table 3.5, in which test-other is split by the duration of utterances, that the improvement

is due mostly to the model’s ability to process longer sequences acquired from training on

the longer VP utterances (see Sec. 3.7.2).

We also demonstrate the base model’s transfer capability by fine-tuning it either on the

100h or 960h subset of LibriSpeech (Table 3.4, “CV→ LS-{100,960}”). During fine-tuning,

instead of 2 SpecAugment masks (Sec. 3.6), we use 10 masks, as in [100], which we

found yielded better performance. With fine-tuning on LibriSpeech, performance is greatly

improved for the 100h setup over the 100h-only training, while with 960h performance is

similar or slightly worse. We have not yet made these comparisons for the CV+VP models,
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Figure 3.9: Validation CER curves for CV when averaging over the subset of languages in
VP (left) and the subset of languages not in VP (right).
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Figure 3.10: Validation CER curves for the base and large multilingual models’ perfor-
mance on three low-resource CV languages with a corresponding subset in VP.
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Figure 3.11: Validation CER curves for the base and large multilingual models’ perfor-
mance on three high-resource CV languages: English (∈ VP), Catalan ( 6∈ VP), Kabyle ( 6∈
VP).

but our other results suggest that similar benefits may be observed.

3.10 Pseudo-labeling the wrong language

To our surprise, we found that training a monolingual speech recognizer by pseudo-

labeling the wrong language could also improve test performance. Fig. 3.12 shows the

validation CER of CV Greek when no unlabeled data, unlabeled data in the right language

(VP Greek), and unlabeled data in the wrong language (VP English) is used.

This result may not currently be of much practical interest, since we can easily train a
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Labeled = CV Greek, Unlabeled = VP English

Figure 3.12: Validation CER for CV Greek for purely supervised monolingual training on
CV Greek, using VP Greek as unlabeled data for slimIPL, or using VP English as unlabeled
data. It’s all Greek to me, indeed.
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Table 3.4: LibriSpeech WER for different training sets (275M parameter model).

Data LM
Dev WER Test WER

clean other clean other

CV
- 59.7 60.1 62.0 62.8

4-gram 33.7 34.3 37.6 37.7

CV - 34.1 41.7 33.5 42.5
→ CV+VP 4-gram 8.8 15.9 9.0 16.8

CV+VP - 39.7 47.9 39.0 49.4
→ CV 4-gram 10.1 17.8 10.4 19.5

CV - 4.8 13.7 5.1 13.6
→ LS-100 4-gram 3.3 9.7 3.8 9.9

CV - 3.0 7.5 3.1 7.4
→ LS-960 4-gram 2.1 5.3 2.6 5.8

LS-100
- 6.2 16.8 6.2 16.8

4-gram 4.1 12.4 4.5 12.7

LS-960
- 2.7 6.8 2.8 6.9

4-gram 2.0 5.1 2.6 5.7

Table 3.5: WERs for test-other split over audio duration.

Data LM
Duration

<10s 10-15s 15-20s >20s

CV
- 46.6 83.6 99.1 99.9

4-gram 15.6 54.7 93.3 98.7

CV - 43.5 38.6 41.3 47.7
→ CV+VP 4-gram 17.0 15.2 17.2 20.8

CV+VP - 48.2 47.3 52.8 63.5
→ CV 4-gram 17.9 18.8 23.0 33.3
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better monolingual Greek speech recognizer through other methods (Table 3.1). Still, we

believe it may be useful for understanding how and why semi-supervised learning works,

and we hope to explore the phenomenon for more language pairs in the future.

3.11 Conclusion

We have demonstrated the use of pseudo-labeling to improve an end-to-end joint model

for massively multilingual ASR with Common Voice. Fine-tuning a multilingual model

with semi-supervised learning on each language of VoxPopuli separately, and then train-

ing on all VoxPopuli pseudo-labels combined, i) significantly improves the performance

of the model for those 19 languages, ii) helps the model generalize to a new domain

(LibriSpeech), and iii) enables training a larger model than was possible with Common

Voice alone without overfitting. Many interesting questions and problems remain, such

as reducing the gap between the performance of the multilingual model on its own and

after fine-tuning on a particular language, improving performance for languages without

unlabeled data, integrating language models into the PL generation process, and running

iterative pseudo-labeling instead of a single round with all languages. The method we

have employed requires knowledge of which language is spoken in the unlabeled audio:

overcoming this requirement, so that even more data in the wild can be used, would also

be worth exploring.
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Chapter 4

Surprisal-Triggered Conditional

Computation with Neural Networks

Abstract
Autoregressive neural network models have been used successfully for sequence gen-

eration, feature extraction, and hypothesis scoring. This chapter presents yet another

use for these models: allocating more computation to more difficult inputs. In our

model, an autoregressive model is used both to extract features and to predict ob-

servations in a stream of input observations. The surprisal of the input, measured as

the negative log-likelihood of the current observation according to the autoregres-

sive model, is used as a measure of input difficulty. This in turn determines whether

a small, fast network, or a big, slow network, is used. Experiments on two speech

recognition tasks show that our model can match the performance of a baseline in

which the big network is always used with 15% fewer FLOPs.

4.1 Introduction

In “Thinking, Fast and Slow”, Daniel Kahneman hypothesizes that human cognition oper-

ates in one of two modes: “System 1” cognition, which is fast, automatic, and effortless,

and “System 2” cognition, which is slow, deliberate, and effortful [277, 278]. What de-
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termines whether System 1 or System 2 is active at a given time is roughly the current

level of cognitive ease: most of the time System 1 dominates, and only when something

breaks down and the environment becomes difficult to predict or control does System

2 activate. An example of experimental support for this hypothesis, or at least for the

weaker hypothesis that environmental surprisal controls cognitive effort in some way, can

be found in studies of reading time: words that are surprising (in the sense that a statis-

tical language model assigns lower probability to them), as well as the words that follow,

require more time for human subjects to read, suggesting that more effort is being used

[279, 280, 281, 282].

In contrast to human cognition, the deep neural networks used in artificial intelligence

typically do not perform any less computation for any input: the model always multiplies

the input by the same sequence of weight matrices to compute an output, no matter how

difficult or easy the input may be. This seems like a waste of energy. As neural networks

have gotten bigger [283, 284] and more expensive to run [285, 286], it has become more

pressing to find ways to address this waste. The question this chapter asks is: can we

emulate human cognition to improve the computational efficiency of neural networks?

To try to answer this question, we present a simple model of conditional computation

for neural networks that mirrors the System 1/System 2 division of labor. The model

is depicted in Figure 4.1. An autoregressive neural network model is used to process a

stream of input observations, both to extract features and to predict the next observation.

A small, fast network, loosely analogous to System 1, runs most of the time, minimizing

the amount of computation that must be performed on average, and a big, slow network,

loosely1 analogous to System 2, runs only when the autoregressive component is unable

to accurately predict the current input.

In addition to resembling certain theories about human cognition, our model can

be thought of as taking advantage of the “low-density separation” assumption of semi-

supervised learning [246, p.7] (Section 3.1): namely, that the optimal decision boundary

for a classifier lies in a low-density region of the input space. The autoregressive model

1Here we are not considering more “logical” operations, like sequential reasoning and symbol manipula-
tion; rather, we are focusing on the aspects of this model relevant to the control of computational resources.
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Figure 4.1: Architecture of the proposed system. Here the autoregressive component of
the model (blue) is depicted as an RNN.

in our setup explicitly detects when the input is in such a region. Under the low-density

separation assumption, the less surprising the input is, the farther away the input is from

the complex decision boundary defined by the big network. Hence, it may be expected

that less error will be incurred when approximating that decision boundary using the small

network—though for now, we have no formal proof of how good this approximation might

be.

In our experiments, we observe an improved tradeoff between computation and accu-

racy using our model: it can perform as well as or even better than models that always

use the big network at lower cost. The improvement is consistent over a variety of hy-

perparameter settings for two datasets, which gives strong evidence that surprisal is a

useful inductive bias for conditional computation. Another interesting contribution our

work makes is that while other work has used autoregressive models either as pre-trained

feature extractors or for predicting future observations, our work seems to be the first to

show that it is possible and worthwhile to use them for both functions at the same time.
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4.2 Related work

Conditional computation In conditional computation, only a fraction of a model’s pa-

rameters are used to process any given input. Some machine learning algorithms, like

decision trees, natively support conditional computation, but neural networks do not. In

the last few years, researchers have begun thinking more about how to incorporate condi-

tional computation into neural networks [287, 288].

Perhaps the two most commonly used approaches to conditional computation with neu-

ral networks are the early exiting and score margin techniques. In early exiting, a classifier

is attached to an intermediate layer of a network and trained to determine whether stop-

ping at that layer will result in a misclassification; if a misclassification is not predicted,

subsequent layers are not computed [289, 290, 291, 292, 293]. In the score margin ap-

proach, a small model is used to compute scores for each class in a classification problem;

if the margin between the largest score and the second largest score is below a certain

threshold, then a bigger model is used [294, 295, 296, 297, 298].

In other approaches, the model itself learns when to use its various components. This

often takes the form of a mixture-of-experts [299, 300], in which a learned controller is

used to select the experts relevant for a given input [301, 302, 303, 304, 305, 306], pos-

sibly hierarchically [307, 308, 309, 310]. The binary decision of selecting or not selecting

an expert is not differentiable, so it is not possible to perform standard backpropagation in

a mixture-of-experts. Instead, these approaches treat the expert selection as a policy, and

use reinforcement learning to train the policy. To avoid the difficulties of reinforcement

learning, often a soft approximation to the hard selection decision is used during training

[287, 311, 312, 313, 314, 315, 316, 317, 318].

The model we propose strikes a balance between the more “innate” and the more

“learned” approaches to conditional computation. It is hard-wired to use surprisal to de-

termine when to use the bigger network, but this measure of surprisal is learned in an

unsupervised way. Unlike more innate approaches, our model makes few assumptions

about the nature of the problem or domain: only that it is sensible to express the input

as a sequence of observations, which is true of many data modalities, like audio, text, and
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video. Unlike more learned approaches, our model is more suitable for scenarios where

there is very limited labeled training data (as long as there is sufficient unlabeled data

available to train the autoregressive model).

Surprisal-based models and autoregressive models Surprisal is a useful notion for

many tasks, such as anomaly detection [319] and comparing the difficulty of modeling

different languages [320]. Using surprisal as an input feature in a neural network model

has been explored in the past: for instance, in [321], He He et al. generate puns2 using a

model with surprisal-based features. [322] uses prediction error as an input to the model,

though not for the purposes of conditional computation. In [323, 324], surprisal is used

to determine whether to apply zoneout to units in LSTMs.

Autoregressive neural network models have not only been used to predict future obser-

vations or as generative models; they have also been used more recently with great success

as unsupervised pre-trained feature extractors [214, 325, 326, 194, 327, 328, 219]. This

seems to work well because accurately predicting the future necessitates extracting infor-

mative features from the past [329, 330]. Hence, we use the autoregressive model in our

setup not only for measuring surprisal, but also to preprocess the input, which amortizes

the additional cost incurred by running the autoregressive model.

Other related ideas Our model is similar to certain techniques in data compression and

signal processing. In arithmetic coding, less effort is allocated to less surprising inputs, in

the sense that shorter bitstrings (less bandwidth) are assigned to more predictable symbols

[331, 332]. In linear predictive coding, a linear filter is used to predict the next sample

of the input signal from previous samples, and the filter coefficients and error signal are

transmitted instead [333, 334, 221]. According to the predictive coding hypothesis in

neuroscience, human brains communicate information in a similar way: not as the raw

signals themselves but rather in the form of prediction error [335, 336].

The Neural Sequence Chunker model proposed in [337] is very similar to our model, in

that the prediction error of an autoregressive model is used to control a subsequent model;

2Nominative determinism.
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but in that work, the subsequent model simply does not process predictable inputs at all,

so as to reduce the input sequence length, whereas here we assume that every input must

result in a corresponding output, which is often the case in sequence modeling. Another

idea related to our model is the Expert Gate [338], which uses the reconstruction error of

a set of autoencoders to select an expert in a mixture-of-experts to use. In [339], a rein-

forcement learning agent uses both a habitual controller and a planning-based controller

and arbitrates between them using state prediction error and reward prediction error. Sim-

ilarly, the Variational Bandwidth Bottleneck of [340] uses a notion of channel capacity to

determine whether to run an expensive model-based planner. Our model is somewhat

simpler and more broadly applicable than these approaches; it can be used outside of re-

inforcement learning and makes no constraints on the exact nature of the big and small

networks.

4.3 Model architecture

Here we describe how our model works in more detail. Overall, the input to the model is

a sequence of observations (x1, x2, x3, . . . ), and for each timestep t, the model produces an

output yt.

4.3.1 Autoregressive model

An autoregressive model (Sec. 2.2.1) expresses the joint distribution of a sequence p(x1, x2, x3, . . . )

as the product of the conditional distributions of the elements of the sequence given the

previous elements:

p(x1, x2, x3, . . . ) =
∏
t

p(xt|xt−1, xt−2, . . . ), (4.1)

where p(xt|xt−1, xt−2, . . . ) can be estimated using a neural network [46, 341, 342].

The surprisal of an observation is defined as the negative log-likelihood of that obser-

vation under the distribution defined by the autoregressive model. For real-valued inputs,

a reasonable choice for the distribution is an isotropic Gaussian with variance 1, in which
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case surprisal is equivalent (minus a constant term) to the squared error between the

model’s prediction x̂t and the actual observation xt:

Surprisal(xt) = − log p(xt|xt−1, xt−2, . . . ) ≈
1

2
||xt − x̂t||22. (4.2)

We use a neural network encoder to compute a feature vector ht = f(xt, xt−1, . . . )

and a linear model to compute the prediction x̂t of the observation xt given the feature

vector from the previous timestep ht−1. In our experiments, we use RNNs to implement

the encoder, but other causal neural network layers, like causal convolutions [142] and

masked self-attention [119], could be used as well.

Because the autoregressive model is unsupervised, it could be trained either using the

input data for the target task or on a larger source of unlabeled data in the same domain.

For example, in our experiments, we train conditional computation models on the small

TIMIT dataset, but we train the autoregressive part on the much larger LibriSpeech dataset.

It is natural to ask whether it is worthwhile to backpropagate through the entire model,

including the autoregressive model, when training on the downstream task [224]. In the

experiments for this chapter, however, we simply keep the weights of the autoregressive

model frozen. The reason is that if its weights are trained along with the rest of the

model, it may not remain autoregressive, in which case it will not accurately compute

surprisal. It should be possible to jointly train the entire model for better performance

by adding a term to the final loss function that encourages the autoregressive model to

remain autoregressive, but then this term would require its own regularization strength,

which would mean another hyperparameter to be tuned, adding further complexity and

variability to our experiments.

4.3.2 Controller

The controller uses the surprisal of the current observation xt to compute the probability

of sampling the big network pbig:

pbig = sigmoid(w · Surprisal(xt) + b), (4.3)
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where w and b are scalars.

We may want the distribution of pbig to have a certain mean (to achieve a certain

computational budget) and variance (to ensure that both networks have the chance to be

sampled for any given input, instead of only greedily sampling one or the other). We can

train the controller so that pbig has a specified mean µ and variance σ2 by minimizing the

following loss function with respect to the controller parameters w and b:

Lcontroller =
1

2
(µ̂− µ)2 +

1

2
(σ̂2 − σ2)2, (4.4)

where µ̂ and σ̂2 are the sample mean and variance of pbig. Alternately, one could

specify a target budget in terms of FLOPs, and set w and b so that the resulting expected

amount of computation is equal to this budget. Like the autoregressive encoder, training

the controller can be done either using the target dataset/environment or using a separate

stream of unlabelled data.

4.3.3 Big and small networks

We use simple fully-connected neural networks to implement the big and small networks.

An interesting aspect of the model is that if gradients are not backpropagated into the

autoregressive model, non-gradient-based learners like decision trees could easily be used

here, similar to the way that evolutionary algorithms are used in conjunction with neural

world models in [327].

One caveat for the big and small networks is that it may not be straightforward to

implement them using stateful models. For example, if we were to use RNNs as the big

and small networks, where the state vector for the small RNN is not the same size as the

state vector for the big RNN, it would not be possible to switch between these networks

without introducing some additional machinery. A workaround that makes it easier to use

stateful models is described in the next subsection. In the future, it could be interesting to

find ways to overcome this limitation, possibly using models like Neural ODEs [343] that

can maintain state across arbitrary timespans.
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4.3.4 Pre-net and post-net

It is optionally possible to sandwich the conditional part of the model between a non-

conditional “pre-net” and “post-net”, as was done in the Sparsely Gated Mixture-of-Experts

of [313]. In this case, the output of the autoregressive model ht is instead fed to the pre-

net, and the output yt is taken from the post-net. This could be used to more easily add

state, for example, since the pre-net and post-net can be implemented using RNNs.

4.4 Experiments

There are a number of questions one might ask about our model. How much computation

does it save? Is surprisal actually a good heuristic for effort allocation? In other words,

do we get better results using surprisal-triggered sampling than if we were to learn a

controller or to just sample the big or small networks at random? Is our decision to use

the features computed by the autoregressive model instead of the original inputs justified?

How robust are the results to the choice of hyperparameters? We ran experiments to

answer each of these questions.

4.4.1 Datasets

We use two small speech recognition datasets for our experiments3: TIMIT and Mini-

LibriSpeech. TIMIT [344] is a 3-hour dataset with hand-aligned phoneme labels. Mini-

Librispeech4 is a 5-hour subset of the 960-hour LibriSpeech dataset [264] with transcripts

but no phoneme labels; we used the Montreal Forced Aligner [345] to obtain label se-

quences from the transcripts.

3Our PyTorch [227] experiment code can be found online at https://github.com/lorenlugosch/
conditional-computation-using-surprisal.

4https://www.openslr.org/31/
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4.4.2 Setup

The small network in these experiments is a fully connected leaky ReLU layer with 512

hidden units. The big network is a fully connected layer with 2048 hidden units followed

by another fully connected layer with 512 hidden units. The pre-net is a bidirectional GRU

[346] with 256 hidden units in each direction and 50% dropout [347]. The post-net uses

the same architecture as the pre-net, followed by a fully connected layer with (n + 1)

outputs, where n is the number of phonemes (39 for TIMIT, 41 for Mini-LibriSpeech) and

1 is for the CTC “blank” symbol.

The autoregressive model has two unidirectional GRU layers with 512 hidden units and

50% dropout, each followed by a fully connected layer with 512 hidden units. The inputs

to the autoregressive model are sequences of 80-dimensional filterbank frames extracted

using a 25 ms Hamming window every 10 ms from the 16,000 Hz audio signal. We skip

every second frame [348], since this made our experiments much faster to run at a small

cost in accuracy. We train the autoregressive model with maximum likelihood estimation

on the full 960 hours of LibriSpeech.

The controller is trained for TIMIT to have mean 0.5 and variance 0.04 for pbig, which

is the mean and variance that result from a standard normal distribution for the input to

the sigmoid. Having this distribution ensures that pbig does not saturate at 0 or 1 and the

range in between 0 and 1 is covered, so a given input observation is not always presented

to only the big network or only the small network. For Mini-LibriSpeech, we instead train

the controller to have mean 0.65 for pbig to bias it more towards using the big network,

since its validation set has much lower surprisal. We use one pass of SGD through the

training set of the task of interest to train the controller.

The number of parameters (which for this architecture happens to translate exactly to

the number of FLOPs5 performed by the network for each input timestep) for each part of

the model is shown in Table 4.1. Each model is trained using CTC [155] for 50 epochs. The

validation performance is measured at the end of every epoch or every 5 epochs (we do

5A FLOP can be defined in different ways. We use the convention that one multiply-accumulate = one
FLOP. (FLOP count does not always precisely correspond to an actual useful metric, like latency or power
consumption, but we leave more realistic evaluations like these for the future.)
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Table 4.1: Parameter counts for model used in main experiments.

Component Number of parameters

Autoregressive model 3.05M
Pre-net 1.18M
Small network 0.26M
Big network 2.10M
Post-net 1.20M
Controller 2

this for Mini-LibriSpeech to speed up our experiments, since decoding its validation set is

much slower than training for one epoch). The model checkpoint with the best validation

phoneme error rate over the course of training is used for the test set [107]. The test set

is decoded using a beam search of width 10. Each model is trained with 5 random seeds,

and we report the mean and standard deviation of results over the 5 trials.

4.4.3 Comparison with existing conditional models

We first compare our model with existing techniques for conditional computation. Early

exiting is not applicable here because our experiments use CTC models, not classifiers, so

it is not possible to implement the misclassification predictor; likewise, the score margin

technique is not applicable because there are more intermediate stages between the big

and small networks and the softmax output. We therefore compare with a simple baseline

model that is identical in every respect, except that a learned controller is used instead

of using surprisal. The learned controller is a feedforward gating network which takes as

input ht and outputs st, a binary decision to select the big network or small network. The

network has a single hidden layer with 80 hidden units so that this controller is roughly

the same size as the linear model used in the autoregressive model to estimate x̂t (which is

80-dimensional) from ht−1. We use the straight-through estimator [287]: in other words,

we treat the threshold function used to compute st as the identity function during back-

propagation so that the controller receives a non-zero gradient. The overall loss function
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Table 4.2: Results for TIMIT and Mini-LibriSpeech. (For all tables, rows in grey are Pareto-
optimal.)

TIMIT Mini-LibriSpeech

Model PER
Avg. FLOPs
per input

PER
Avg. FLOPs
per input

Random controller 20.52% ± 0.28% 6.63M 26.16% ± 0.35% 6.62M
Learned controller 19.91% ± 0.58% 6.63M 25.93% ± 0.32% 6.50M

Surprisal-based controller 20.00% ± 0.15% 6.41M 25.80% ± 0.10% 6.43M

Big network only 20.09% ± 0.24% 7.54M 25.69% ± 0.30% 7.54M
Mid-sized network 20.29% ± 0.44% 6.62M 25.89% ± 0.36% 6.62M

used for training this model is:

L = LCTC + λ ·
∑
t

(st − 0.5)2, (4.5)

where the second term encourages the model to use the big network roughly half of the

time, and λ = 0.001 (chosen using a grid search in {0.1, 0.01, 0.001, 0.0001, 0.00001}).

The results of the experiment—the phoneme error rate (PER) and average FLOPs per

input timestep for the test set of TIMIT and Mini-LibriSpeech—are shown in Table 4.2. The

learned controller and the surprisal-based controller have similar performance; however,

the surprisal-based model has lower variance in PER and a lower cost in FLOPs for both

datasets. The performance of the learned controller model also seems to be sensitive to

the more opaque hyperparameter λ: when λ is set to 0.0001 instead of 0.001, its PER and

FLOPs for TIMIT increase to 23.97% and 6.99M, respectively (see Sec. 4.8). In contrast,

the µ and σ2 target hyperparameters for the surprisal-based controller are easy to interpret

and do not need an expensive grid search to be set. This is an important consideration be-

cause when training extremely large models—where conditional computation may prove

especially useful—there is often only enough budget for a small number of training runs

[128].
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Table 4.3: Results of ablation study for TIMIT.

Autoregressive
features?

Surprisal-based
during training?

Surprisal-based
during testing?

PER
Avg. FLOPs
per input

7 7 7 22.81% ± 0.27% 2.91M
7 7 3 22.49% ± 0.28% 5.75M
7 3 7 22.73% ± 0.44% 2.91M
7 3 3 22.58% ± 0.05% 5.75M
3 7 7 20.52% ± 0.28% 6.63M
3 7 3 20.52% ± 0.17% 6.41M
3 3 7 20.28% ± 0.17% 6.63M
3 3 3 20.00% ± 0.15% 6.41M

Small network only 20.61% ± 0.24% 5.70M
Big network only 20.09% ± 0.24% 7.54M

4.4.4 Ablation study

Our model essentially makes three independent design choices: it uses features computed

by the autoregressive model instead of the original inputs, it samples the big network

according to surprisal (as opposed to just randomly with probability 0.5) during training,

and it samples the big network according to surprisal during testing. We trained models

where each of these choices is ablated and report the results, as well as the baseline results

when just the small network or just the big network is used. The results6 of the ablation

study with TIMIT are shown in Table 4.3.

First, we find that across all experiments, using the features computed by the autore-

gressive model results in significantly lower PER than using the original input features.

This is perhaps not surprising, but it does independently confirm the efficacy of filterbank-

based autoregressive models as pre-trained feature extractors for speech recently proposed

in [328]. For this reason, we use the autoregressive features in subsequent experiments

and when using the big network only or the small network only (the last two rows of

Tables 4.3 and 4.4).

Next, we find that surprisal-based sampling yields Pareto-optimal results, with perfor-

6Note that the FLOP counts are lower for the models that do not use autoregressive features because the
input-to-hidden weight matrices in the pre-net have input dimension 80 (the dimension of the filterbank
features) instead of 512 (the dimension of the autoregressive features). Also, the FLOP counts for the first
and third rows are lower by 3.05M because for them the autoregressive model does not need to be run at all
during test time.
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Table 4.4: Results of ablation study for Mini-LibriSpeech.

Surprisal-based
during training?

Surprisal-based
during testing?

PER
Avg. FLOPs
per input

7 7 26.16% ± 0.35% 6.62M
7 3 26.04% ± 0.26% 6.43M
3 7 26.44% ± 0.06% 6.62M
3 3 25.80% ± 0.10% 6.43M

Small network only 26.31% ± 0.33% 5.70M
Big network only 25.69% ± 0.30% 7.54M

mance closer to or even slightly outperforming the models that only use the big network

compared to the models that do not use surprisal. Similar results are obtained for Mini-

LibriSpeech (Table 4.4) and when using other neural network architectures (Sec. 4.5).

Also, if only the models not using autoregressive features are considered (the first four

rows of Table 4.3), the model with surprisal-based sampling during both training and test-

ing is still Pareto-optimal.

Fig. 4.2 shows the validation PER of models with and without surprisal-based sam-

pling at test time over the course of training: the models with surprisal-based sampling

during training and testing consistently outperform those without over time, despite mak-

ing slightly less use of the big model (due to the discrepancy between the surprisal levels

for the training set and for the test set).

Whether it is crucial that surprisal is used during training is less clear. When surprisal

is not used during training, the models that use it during testing do perform slightly better

than those that do not for Mini-LibriSpeech (PER of 26.16% vs. 26.04%) and TIMIT when

not using autoregressive features (22.81% vs. 22.49%), but not for TIMIT when using au-

toregressive features (both 20.52%). Section 4.6 further explores the effect of a mismatch

between train time and test time.

4.5 Effect of varying hyperparameters

We re-ran the ablation experiment on TIMIT using three other neural architectures differ-

ent from the one used in our main experiments, listed here in more concise PyTorch-like
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Figure 4.2: Validation PER over the course of training for models with and without sur-
prisal. Similar curves are obtained with a mismatch between train and test (not shown
here for clarity of presentation).

notation. For these models, the controller trained to have mean 0.65 for pbig, instead of 0.5.

The results show that using surprisal for effort allocation at test time improves PER across

different hyperparameter settings, and that the pre-net, post-net, and recurrent layers are

not essential for the idea to work. Using different hyperparameters for the autoregressive

model would also be worthwhile to explore, but as training it is time-consuming, we have

restricted the autoregressive model to a single configuration.

Table 4.5: Model 1 results for TIMIT.

Surprisal-based
during training?

Surprisal-based
during testing?

PER
Avg. FLOPs
per input

7 7 26.94% ± 0.48% 6.52M
7 3 26.89% ± 0.20% 6.49M
3 7 28.86% ± 0.31% 6.52M
3 3 27.51% ± 0.39% 6.49M

Small network only 27.72% ± 0.53% 5.96M
Big network only 26.75% ± 0.13% 7.07M

Model 1:

Pre-net:

Conv1D(length 11, 512 filters)

LeakyReLU(0.125)

92



Small network:

Linear(512, 40)

LogSoftmax()

Big network:

Linear(512, 2048)

LeakyReLU(0.125)

Linear(2048, 40)

LogSoftmax()

Post-net: (none)

Table 4.6: Model 2 results for TIMIT.

Surprisal-based
during training?

Surprisal-based
during testing?

PER
Avg. FLOPs
per input

7 7 26.76% ± 0.11% 6.52M
7 3 26.30% ± 0.36% 6.49M
3 7 28.16% ± 0.27% 6.52M
3 3 26.54% ± 0.32% 6.49M

Small network only 27.60% ± 0.60% 5.96M
Big network only 25.91% ± 0.41% 7.07M

Model 2:

Model 2 is the same as Model 1, except we add Dropout(0.5) to the end of the pre-

net. (We found that the variants of Model 1 trained with surprisal easily overfit, which we

believe happens because it is easier for the big and small networks to model either only

surprising inputs or only unsurprising inputs separately than a mixture of both types.)

Model 3:

Pre-net: (none)

Small network:

Dropout(0.5),

Conv1D(length 11, 40 filters)

LogSoftmax()
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Table 4.7: Model 3 results for TIMIT.

Surprisal-based
during training?

Surprisal-based
during testing?

PER
Avg. FLOPs
per input

7 7 32.30% ± 0.66% 4.62M
7 3 31.14% ± 0.54% 4.54M
3 7 34.07% ± 0.58% 4.62M
3 3 30.37% ± 0.31% 4.54M

Small network only 35.47% ± 0.68% 3.28M
Big network only 28.04% ± 0.55% 5.96M

Big network:

Dropout(0.5),

Conv1D(length 11, 512 filters)

LeakyReLU(0.125)

Linear(512, 40)

LogSoftmax()

Post-net: (none)

4.6 Effect of varying controller bias

To investigate the effect of a mismatch between train time and test time further, we ran

an experiment with Mini-LibriSpeech in which the bias parameter of the controller of

models trained with surprisal is gradually increased from (average bias value learned when

training the controller) to (that value + 4) in uniform increments. This increases the

probability of using the big network from what it was during training.

The resulting sweep of mean test PERs with standard deviations is shown in Figure

4.3. Using the big network more does decrease PER up to a point, but when the bias is

increased to the point where the big network is always sampled, the conditional model

does not attain the same PER as the model that only ever uses the big network during

training and testing. In fact, PER begins to increase, which may be because the big network

is exposed to a distribution of more unsurprising inputs than it was shown during training.

In general, though, always using the big network may not be expected to yield the
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Figure 4.3: Test PER for Mini-LibriSpeech when increasing the controller bias.

best performance; using both the big and small networks at different times may have an

ensemble effect, which may explain how the conditional models in our main experiments

were able to slightly outperform the model using only the big network for TIMIT.

4.7 Effect of deterministic execution

In our main experiments, the big network is selected stochastically with probability pbig,

rather than deterministically when pbig is greater than 0.5. This makes the comparison with

randomized controllers in the ablation study more appropriate and removes the possibility

of certain unlucky edge cases—for example, if pbig is just barely less than 0.5 for the entirety

of an input sequence, the big network would never be sampled in deterministic execution.

However, it is sometimes desirable for the execution of a model to be deterministic,

e.g. to make software testing easier and to obviate the need for random number generation

when implementing the model in on a resource-limited device. We therefore also report

the test results when the big network is selected deterministically in Tables 4.8 and 4.9.

It appears that when training stochastically, deterministic execution at test time causes a

small increase in PER, though this is not reflected in the test loss. Also, it appears crucial

to train stochastically, as otherwise overfitting occurs more easily, possibly because the big

and small networks always see the same input observations.
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Table 4.8: Results comparing deterministic and stochastic execution for Mini-LibriSpeech.

Stochastic
during training?

Stochastic
during testing?

Train loss Test loss Test PER
Avg. FLOPs
per input

7 7 69.96 ± 0.41 62.80 ± 0.76 26.45% ± 0.23% 6.43M
7 3 69.72 ± 0.43 63.69 ± 0.36 26.48% ± 0.14% 6.43M
3 7 73.76 ± 0.31 62.15 ± 0.60 25.98% ± 0.26% 6.43M
3 3 74.30 ± 0.52 62.18 ± 0.64 25.80% ± 0.10% 6.43M

Table 4.9: Results comparing deterministic and stochastic execution for TIMIT.

Stochastic
during training?

Stochastic
during testing?

Train loss Test loss Test PER
Avg. FLOPs
per input

7 7 16.19 ± 0.14 24.61 ± 0.52 21.00% ± 0.19% 6.41M
7 3 16.21 ± 0.08 25.11 ± 0.24 20.81% ± 0.24% 6.41M
3 7 17.58 ± 0.20 23.88 ± 0.31 20.08% ± 0.22% 6.41M
3 3 17.55 ± 0.26 24.04 ± 0.22 20.00% ± 0.15% 6.41M

(It is possible to train a model either stochastically or deterministically, and then test

it both stochastically and deterministically, thus avoiding redundant training runs. The

train loss is only different between the first and second rows and between the third and

fourth rows because it did not occur to us at the time of this experiment to implement this

optimization.)

4.8 More detail on the learned controller baseline

When comparing the performance of surprisal-based controllers with learned controllers in

Section 4.4.3, we noted that the learned controllers’ performance is sensitive to the hyper-

parameter λ used in the loss function. This observation is illustrated for Mini-LibriSpeech

in Figure 4.4.

Of course, this result should be taken with a grain of salt: the space of possible models

for implementing the learned controller is vast, and there may be others that are more

robust. Still, the fact that a gating network using the straight-through estimator—the

simplest and best-performing approach to learned conditional computation considered in

[287]—behaves this way suggests that other learned conditional computation methods,
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Figure 4.4: Test PER for Mini-LibriSpeech for models with a learned controller as a function
of λ.

such as those based on reinforcement learning, may encounter similar difficulties.

4.9 Conclusion

We have shown that it is possible to use the surprisal of an autoregressive model to de-

termine whether to use a big neural network or a small neural network for processing a

stream of inputs, using the big network only for more difficult inputs and thereby reducing

overall computation—in one instance reducing FLOP count by 15% at no cost in accuracy.

We also find that while a baseline with a learned controller can achieve similar results,

our model has lower variance and is less sensitive to hyperparameters. This suggests that

the simple inductive bias of surprisal may make it easier to train much larger conditional

models, where rounds of hyperparameter tuning are more expensive.

To return to the analogy with human cognition given in the introduction, a valid crit-

icism of our model is that it does not take into account the expected reward resulting
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from using more cognitive effort. Given a difficult task, a human decision maker might

give more thought to the task if there is a big enough potential reward but might also

decide not to waste energy if the reward is small [349]. In this work, we have effectively

assumed a uniform potential benefit for using the big network, which turned out to be a

reasonable assumption for the tasks we considered; in the future, we hope to compare our

technique with a more data-driven evaluation of costs and benefits in a complete reinforce-

ment learning setup. Also, here we have only run experiments in which there is single task

to be performed; another interesting setting to study might be multi-tasking, in which an

agent must allocate a limited computational budget among various tasks simultaneously

[350].
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Chapter 5

Using Speech Synthesis to Train

End-To-End Spoken Language

Understanding Models

Abstract
End-to-end models are an attractive new approach to spoken language understand-

ing (SLU) in which the meaning of an utterance is inferred directly from the raw

audio without employing the standard pipeline composed of a separately trained

speech recognizer and natural language understanding module. The downside of

end-to-end SLU is that in-domain speech data must be recorded to train the model.

In this chapter, we propose a strategy for overcoming this requirement in which

speech synthesis is used to generate a large synthetic training dataset from several

artificial speakers. Experiments on two open-source SLU datasets confirm the effec-

tiveness of our approach, both as a sole source of training data and as a form of data

augmentation.
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ASR NLU

Audio Transcript Semantics
SET TIMER
FOR FIVE
MINUTES

{
’intent’: ’SetTimer’,
’slots’: {

’hours’: 0,
’minutes’: 5,
’seconds’: 0

}
}

Figure 5.1: The conventional SLU pipeline, in which an automatic speech recognition
(ASR) module transcribes the input speech, and a natural language understanding (NLU)
module infers the semantics from the ASR transcript.

5.1 Spoken language understanding

We now turn from ASR to the next stage of the voice control pipeline: semantics. We give

a brief overview of the state-of-the-art in spoken language understanding (SLU) before

describing our contribution.

5.1.1 Decoupled SLU models

The designers of SLU systems have assumed from the beginning [351, 352, 353, 354]

that SLU needs to be implemented using a decoupled ASR module and NLU module (Fig.

5.1). A good open-source example of a decoupled SLU system is the Snips Voice Platform

(SVP), described in [355]. The SVP uses an hybrid ASR system, with a TDNN-LSTM neural

network acoustic model and an n-gram language model trained on queries collected for

the domain of interest. After extracting a number of handcrafted features from the ASR

transcript, the NLU module uses a linear classifier to predict the intent, and, given the

intent, selects the appropriate CRF to do slot filling using BILOU labels (similar to the IOB

labels described in Section 2.2.13). The baseline system for the SLURP dataset (Chapter

7) is very similar but instead uses a BERT-based feature extractor to produce the input to

the CRF.
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5.1.2 End-to-end SLU models

Decoupled systems have the usual software engineering advantages of interpretability and

separation of concerns. They were the natural choice for SLU at a time when it was

(rightly) assumed that there were no machine learning models capable of learning the

complex mapping required to implement the entire SLU pipeline from input to output.

However, now that neural networks (and other models [356]) have become more power-

ful, researchers have begun experimenting with end-to-end SLU models that map the audio

to semantics without an explicit intermediate text step. End-to-end models have a number

of advantages over the conventional decoupled setup:

• Instead of two decoding steps — the ASR search algorithm and the NLU search al-

gorithm — an end-to-end SLU model requires only one decoding step at the output.

Removing the intermediate decoding step can significantly speed up inference and

simplify the software implementation.

• Whereas ASR models are optimized for WER (which does not always correlate well

with semantic accuracy [357]), end-to-end SLU models have all their parameters op-

timized directly for the actual end task of interest. (It is possible to backpropagate

through the NLU module into the ASR parameters, but that requires backpropagat-

ing through a search algorithm, which is slow and possibly non-differentiable.) By

optimizing for semantic accuracy instead of WER, the model can implicitly learn to

give more priority to recognizing words that are more relevant to the SLU task, as

opposed to less informative words like “the” and “please”.

• Operating directly on audio enables using information contained in the speech signal

other than the transcript, such as prosody [358, 359, 360]. (Consider the difference

in meaning between “I didn’t kill him” and “I didn’t kill him”.)

Similar considerations have been made for text: processing a document visually (as a

human does) may work better than a two-stage pipeline with text decoding followed by

interpretation [361].
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An early instance of transcription-free SLU is the “self-taught vocal interface” described

in [362, 363, 356, 364], which uses nonnegative matrix factorization (NMF) [365] to

model the relationship between acoustics and semantics. In their system, the variable-

length audio input is encoded into a fixed-length acoustic feature vector using a “bag-

of-words”-like operation: a phoneme-level acoustic model (a GMM or neural network)

computes the per-timestep probability of each phoneme, and p(zt = a) · p(zt−delay = b) is

summed over time for each pair of phonemes (a, b), yielding a “soft count” of how many

times a follows b in the utterance. The labels for the utterance are also encoded as a fixed-

length vector, with a binary value for each semantic slot (e.g., activate, deactivate, lights,

temperature control, kitchen, bedroom, . . . ). The acoustic feature vectors va ∈ Rda ≥ 0

and semantic feature vectors vs ∈ Rds ≥ 0 for each training example are collected into

matrices Va and Vs, respectively, and a single data matrix V ∈ R(da+ds)×n is formed by

concatenating Va and Vs, where n is the number of training examples. NMF attempts to

find W ∈ R(da+ds)×k ≥ 0 and H ∈ Rk×n ≥ 0 such that

V ≈ WH, (5.1)

where W (= concat(Wa,Ws)) represents a set of k recurring latent patterns in the data, and

H represents, for each training example, which patterns are “active”. The semantics for a

new utterance can be inferred by extracting the acoustic feature vector va, finding h such

that

va ≈ Wah, (5.2)

computing vs = Wsh, and decoding the semantics from vs. While this model avoids ASR

decoding, inference is still somewhat slow because it requires solving a convex optimiza-

tion problem using an iterative algorithm to find h.

Subsequent work has used neural networks instead [366]. The first work to demon-

strate fully end-to-end SLU (intent classification) without any sort of ASR outputs or train-

ing targets was [367]. Their system uses a bidirectional LSTM to encode the audio, fol-

lowed by max pooling over time to create a feature vector and a feedforward network to

classify the utterance. While the end-to-end model underperformed the decoupled models
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in [367], the end-to-end models were much smaller and faster, which has led to some

interest in using end-to-end SLU models for embedded systems. [368] extended the end-

to-end setup to predicting IOB-style slots using Transducer models. In [208], a number

of different types of sequence-to-sequence models were trained for end-to-end SLU on a

large production dataset, directly predicting the output dictionary as in Fig. 5.1, and were

found to outperform decoupled systems.

5.1.3 Transfer learning

An end-to-end SLU model must implicitly learn to do both ASR and NLU, so the learning

problem is potentially more difficult than for decoupled ASR and NLU models — the model

does not even know to begin with that the same word spoken by two different people has

the same meaning, whereas a decoupled system has this invariance baked in because the

transcript is the same for both speakers.

To make training easier, a number of pre-training strategies for SLU models have been

proposed. [369] use an auto-encoding task to initialize the model, training a decoder

RNN to reconstruct the input audio from the final hidden state of an encoder RNN. [370]

pre-train the first stage of the SLU model on grapheme ASR targets. In [371], both word

targets and phoneme targets (which help with learning word targets) are extracted using

Viterbi forced alignment [345] and used to pre-train the encoder1 — in fact, three papers

describing similar ASR-based pre-training methods appeared at the same conference [372,

373, 374]. In addition to ASR pre-training, BERT-style NLU pre-training has also been

explored, solving a Cloze task on text and/or speech [375, 376, 377, 378, 379].

5.2 The problem: labeled audio data

Because the input to an end-to-end model is speech and not text, end-to-end models cannot

learn directly from text data. This means that new audio data must be recorded to train the

1The original motivation for using word-level outputs in [371] was to be able to use word2vec embed-
dings as additional targets, thereby helping the model to generalize to synonymous words not encountered
in the SLU training audio. But there was not enough time to implement this before the conference paper
submission deadline. (Personal communication with the first author of [371].)
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model for every new SLU domain or application. In contrast, the conventional ASR-NLU

pipeline can be trained just once on a generic speech corpus to learn the mapping from

speech to text, and subsequently only on text data. Thus, end-to-end SLU can be more

difficult to implement in practice than conventional SLU because audio is more expensive

and time-consuming to obtain than text data.

We propose a method for reducing, or avoiding entirely, the need to record audio data

to train an end-to-end SLU model. Given a dataset of semantically labeled text data, we

use a generic speech synthesizer, or text-to-speech (TTS), to read out these texts, thus

generating an audio dataset that can be used for training the model. The ability to use

synthetic data greatly lowers the barrier to entry for people who want to develop an SLU

model for a new application: even if the accuracy of a model trained on synthetic speech

is not satisfactory for end users, it may be good enough to allow fast prototyping of voice

interfaces without waiting on the slow, expensive process of recording real speakers. Our

method is useful not only when no real data is available: it also acts as data augmentation

by exposing the model to more speaking styles and more ways of pronouncing the same

phrases.

Our main contributions in this chapter are as follows:2

• We show that it is possible to train an end-to-end SLU model using only synthetic

speech and achieve high accuracy on a test set of real speech.

• We run experiments using synthetic speech to augment an existing dataset of real

speech and show that this augmentation can significantly improve accuracy, espe-

cially when few real speakers are available.

5.3 Related work

Our method is closely related to the idea of using speech synthesis to generate training data

for end-to-end ASR [380, 381]. In end-to-end ASR, instead of using a separate acoustic

model, language model, and pronunciation model, a single sequence-to-sequence model
2The PyTorch code for our experiments is available online at

https://github.com/lorenlugosch/end-to-end-SLU.
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predicts the transcript from the audio [28]. Because the language model in end-to-end

ASR is only implicit and not decoupled from the rest of the model, it is difficult to train on

standalone text data, so it does not easily handle certain types of utterances that are not

well represented in the training audio, such as numeric sequences [382, 383]. To help the

model recognize these domain-specific types of utterances, they can be synthesized and

added to the training set.

Outside of speech recognition, backtranslation (or back-training [384]) is another tech-

nique in a similar vein often used for data augmentation in machine translation [385, 386].

In backtranslation, given three languages A, B, and C and paired data for (A,B) and

(B,C), synthetic paired data for (A,C) is generated by translating the B text in (B,C)

data into language A using a model trained on (A,B) data, and vice versa. If we think

of the three modalities of audio, text, and semantics as three “languages”, then our pro-

posed technique is just backtranslation from semantically labeled text into audio. The

back-training method proposed here is also akin to the self-training method in Chapter 3:

instead of synthesizing ŷ from x, we now synthesize x̂ from (a related) y.

Another related idea is “sim2real” transfer in robotics [387]. In sim2real transfer, a

policy is learned in a simulated environment, avoiding the risks involved in physically op-

erating a robot, such as breaking the robot or harming humans in the environment. The

speed of simulation can also give the robot more experiences than would be possible in a

limited amount of time in the real world. Likewise, fast speech synthesis can allow gener-

ating more audio than would be possible with a human speaker, due to time constraints or

fatigue for the speaker.

5.4 Proposed method

The method proposed in this chapter is simple. Two ingredients are required: 1) a text

dataset, where each example consists of a transcript (e.g., “turn it up a couple notches”)

and corresponding semantic label (e.g., {"intent": "ChangeVolume", "slots":

[{"action": "increase"}, {"amount": "two"}]}), and 2) a TTS for the lan-

guage in which the transcripts are written. The TTS is used to synthesize each transcript.
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The label assigned to the synthesized audio is the label for the transcript used to synthe-

size the audio. If the TTS has multiple speakers, each speaker is used to synthesize the

transcript, so that multiple training examples per transcript are generated. A subset of the

available speakers can be used for a given transcript if it is too expensive to use all speak-

ers. If spoken training examples from real speakers are available, the real and synthetic

datasets can be concatenated to form a single larger dataset. An end-to-end SLU model

can then be trained using the generated dataset.

We have identified three criteria that are important for choosing the TTS:

1. Multi-speaker: In the past, we have found that having multiple speakers in the train-

ing set is crucial to achieving high test accuracy in end-to-end SLU. We anticpated

that this would also be the case when using synthetic speakers.

2. “Everyday” voices: Commercial TTS voices typically speak in refined “actor speech”,

which is pleasant for the listener. But this type of speech sounds very different from

the casual speech in which most people naturally speak to voice interfaces. To avoid

this mismatch, casual, everyday voices should be used to synthesize training data.

3. Open-source: Like most researchers, we have a limited budget and want to perform

research that is easy to reproduce, so we avoid commercial services like Google’s

Cloud TTS.

For our experiments, the TTS that best met these criteria was Facebook’s VoiceLoop

[388]. We used the pre-trained US English model included with the VoiceLoop repo, which

has 22 synthetic speakers trained using the VCTK dataset [389]. We have listened to some

of the synthesized audios selected at random and found the VoiceLoop speech to sound

fairly natural. However, the synthesized speech does have some flaws: it contains audible

vocoder artifacts, punctuation is ignored, and in some instances the model did not correctly

pronounce the input text. Despite these imperfections, the synthesized speech works quite

well for training, as we will show.
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5.5 Experiments

To test our method, we run a number of experiments on two open-source SLU datasets.

5.5.1 Datasets

For the main set of experiments, we use the Fluent Speech Commands dataset [371].

Fluent Speech Commands is a dataset of 30,043 English audios with 77 speakers, each

labeled with “action”, “object”, and “location” slots. There are 248 distinct sentences, each

spoken by multiple speakers in both the training set and validation/test sets.

We also use the Snips SLU Dataset [390], more specifically the “smart lights” near-field

subset of the dataset. This dataset is smaller and more challenging than Fluent Speech

Commands: it contains numbers and has only 1,660 audios, each corresponding to a dif-

ferent sentence, so the model is tested entirely on sentences it has never heard before and

must generalize to them to achieve high accuracy. Also, the number of slots varies across

sentences: for example, the sentence “Could you turn the lights on please?” has the label

{"intent": "SwitchLightOn", "slots": []} with no slots, but the sentence

“Turn the flat light to twelve” has the label {"intent": "SetLightBrightness",

"slots": [{"entity": "house room unique", "slot name": "room", "text":

"flat"}, {"entity": snips/number", "slot name": "brightness", "text":

"twelve"}]} with two slots. The dataset is intended to be split into five folds for cross-

validation and has multiple speakers, but the splits and speaker identities are not included

in the dataset.

5.5.2 Models

We use encoder-decoder models in our experiments. The encoder is a deep neural network

with multiple convolutional layers and recurrent layers, with max-pooling in some layers to

reduce the sequence length. The encoder is pre-trained using the LibriSpeech ASR dataset

[391], and the encoder parameters are unfrozen over the course of SLU training; more

details on how the pre-training and unfreezing are done are given in [371]. The decoder

107



Figure 5.2: Model with max-pooling decoder. The portion of the model shaded in blue is
pre-trained using an ASR task.

for Fluent Speech Commands is a linear classifier applied to the output of the encoder at

each timestep separately, followed by global max-pooling to convert the variable-length

sequence of vectors of slot scores into a single vector (Fig. 5.2). For simplicity, we use

the same hyperparameters and transfer learning methodology as were used in the best

performing model in [371] across all experiments.

For the Snips SLU Dataset, since the number of slots varies across utterances, it is not

possible to use the simple max-pooling decoder with a fixed-length output. Instead, we

use an attention-based autoregressive decoder [140], as was proposed for SLU in [208]

(Fig. 5.3). The decoder uses two gated recurrent unit (GRU) layers of 256 hidden units

each [116], with key-value attention [119], and sequentially predicts the semantic label

string, character by character, using a beam search.3 We trained autoregressive encoder-

3The thesis author’s beam search implementation (https://github.com/lorenlugosch/end-
to-end-SLU/blob/e94bd479de1a82663c38363979309089acebcd36/models.py#L558)
incorrectly selects the top B extensions for each hypothesis before collecting all extended hypotheses, unlike
the standard beam search described in Section 2.2.10. This means there are B2 hypotheses instead of BL
hypotheses before pruning. Effectively this just amounts to using a smaller beam width. Mea culpa.
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Figure 5.3: Model with autoregressive decoder used for the Snips SLU Dataset.

decoder models on Fluent Speech Commands and used the test accuracy to determine the

hyperparameters used in the models for the Snips SLU Dataset.

5.5.3 Results for purely synthetic training sets

We first present results for models trained using only synthetic speakers. We used all 22

synthetic VoiceLoop speakers to synthesize all sentences in Fluent Speech Commands4. To

quantify how many speakers are needed to achieve good accuracy, we train models using

the data from one speaker, two speakers, and so on, and report the resulting accuracy. The

accuracy is measured on the test set of real speakers in Fluent Speech Commands. Note

that we only report test results on real speech, never on synthetic speech.

Not every speaker is equally high-quality or useful for training, so the randomly chosen

subset of speakers can have a big impact on test accuracy, in addition to other sources of

4The synthesized dataset can be downloaded here: https://zenodo.org/record/3509828
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Figure 5.4: Test accuracy on Fluent Speech Commands as a function of the number of
synthetic speakers.

stochasticity, like the initial model weights and the order in which training examples are

presented. To reduce the variance of the results, we run each experiment five times using

different random seeds, and record the mean and standard deviation (shown as shading

in our plots).

Fig. 5.4 shows the test accuracy as a function of the number of speakers. The accuracy

increases sharply up to about 15 speakers, and plateaus afterwards, with a very slight

upward trend. The conclusion we draw is that one should use all available synthetic

speakers if possible, but if synthesis is expensive, or if the resulting dataset is too large

to train on exhaustively, it may make sense to incrementally add new synthetic speakers

and stop when adding more speakers does not improve accuracy much. In subsequent

experiments when using synthetic speakers, we use all 22 available synthetic speakers.

5.5.4 Results combining real and synthetic speech

We next present results for when the model is trained using real speech and augmented

with synthetic speech. We simulate the scenario where only a few real speakers are avail-

able by selecting a random subset of speakers from the full training set. The experiments

here take longer to run since there are more speakers, so we run each experiment just

three times instead of five times.

Fig. 5.5 shows the results, presented alongside the accuracy when all 22 synthetic
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Figure 5.5: Test accuracy on Fluent Speech Commands as a function of the number of real
speakers.

speakers are used (green bar on bottom) and the accuracy when all 77 real speakers are

used (grey bar on top). Unsurprisingly, real speech is more useful than synthesized speech.

The model trained using only real speech is about 4% more accurate than the model

trained using only synthetic speech (99.1% ± 0.1% versus 94.9% ± 0.2%). Also, with

only three real speakers and no synthetic speakers, the model already performs better

than when using all 22 synthetic speakers.

Up to 40 real speakers, including the synthetic speakers in the training set results in

better accuracy in 38 out of 40 cases. When using more than 40 real speakers, it is less

clear from our experiments if including synthetic speakers is helpful. We measured the

difference in accuracy across the number of real speakers with more than 40 real speakers;

the accuracy was 0.07% higher on average when synthetic speakers were included. The

difference is not significant, but it at least suggests that it is not harmful to include synthetic

speakers even when a large number of real speakers is available.

Finally, we present results for the more challenging Snips SLU Dataset. Again, we

synthesize each sentence using all 22 speakers, which boosts the size of the training set for

each fold from 1,328 audios to 30,544 audios. The autoregressive model requires many

more SGD updates to fit a dataset than the simpler max-pooling model, so we upsample

the real-only dataset so that an equivalent number of updates are taken each epoch for

that dataset as for the dataset with synthetic speakers. The model is able to overfit the

dataset without synthetic speakers; we therefore record the best test accuracy achieved
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Table 5.1: Cross-validation results for Snips SLU Dataset.

Data type Best accuracy Best loss

Real 65.5% ± 2.9% 2.81 ± 0.42
Real + synthetic 71.4% ± 1.4% 1.67 ± 0.16

over the course of training for each fold, instead of the final test accuracy. To use another

metric to confirm that this improvement is not just a fluke for this small dataset, we also

record the best loss. Table 5.1 reports these results: both the best accuracy and best loss

are significantly better when synthetic speakers are included.

5.6 Conclusion

In this chapter, we have shown that it is possible to use synthetic speech to train an end-to-

end SLU model. Including synthesized speech in the training set improves accuracy across

a variety of settings, in some cases by a large amount. Our results strongly suggest that

practitioners should try our method to augment their datasets.

In the future, we hope to find ways to reduce the gap between the performance of a

model trained solely on synthetic speech and a model trained on a comparable amount

of real speech. Also, our method is limited to high-resource languages, like English, for

which it is possible to train a high-quality TTS. While our method should become more

useful for low-resource languages as more data becomes available, it would be interesting

to find a way to avoid this restriction.
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Chapter 6

Timers and Such: A Practical Benchmark

for Spoken Language Understanding

with Numbers

Abstract
This chapter introduces Timers and Such, a new open source dataset of spoken En-

glish commands for common voice control use cases involving numbers. We describe

the gap in existing spoken language understanding datasets that Timers and Such

fills, the design and creation of the dataset, and experiments with a number of ASR-

based and end-to-end baseline models, the code for which has been made available

as part of the SpeechBrain toolkit.

6.1 The need for Timers and Such

Spoken language understanding (SLU) research has begun to emphasize the importance of

both testing and training SLU systems end-to-end on audio. Testing on audio is important

because an independently trained automatic speech recognition (ASR) system and natu-

ral language understanding (NLU) system will not necessarily work well when combined

[392, 390]. Training SLU systems end-to-end on audio is likewise worthwhile because it
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can make the NLU model more robust to transcription errors [393], and because it enables

training a single neural network to perform the entire SLU pipeline without an interme-

diate search step, a technique with advantages over ASR-based approaches, as we saw in

Chapter 5.

Experiments involving end-to-end training and testing of SLU models require audio

data. Over the last few years, a number of open source audio datasets have been released

to enable high-quality, reproducible end-to-end SLU research. The Snips SLU Dataset

[390] is a small dataset of English and French commands for a smart home setting, such

as controlling smart lights, speaker volume, and music selection. Fluent Speech Com-

mands [371] is a somewhat larger, though simpler, dataset of similar English smart home

commands. The most recently released SLURP dataset [394] is an even larger and much

more semantically complex multi-domain SLU dataset.

An important feature missing from these datasets is a thorough coverage of numbers.

Numbers are necessary for many SLU domains, especially for very common use cases like

setting timers and converting units of measurement while cooking. While there do exist

datasets of digits spoken in isolation [395, 396, 397], and the Snips SLU Dataset and

SLURP do have a small number of commands involving simple numbers, there does not

to our knowledge exist any open source SLU dataset that covers more general multi-digit

numbers (e.g. “13.57”, “-21.4”) spoken in context. The dataset introduced here—Timers

and Such—fills this gap, with each command containing one or two numbers with one or

more digits.

One of the original motivations for the development of end-to-end SLU models was

the need for more compact models that can easily fit on resource-limited devices and

operate without an Internet connection [367]. Whereas existing SLU datasets focus mostly

on Internet-connected smart home commands or queries that require an Internet search,

Timers and Such is composed only of commands that can be executed without the need

for the Internet. This makes the dataset ideal for training or testing a simple offline voice

assistant. While the baselines described in this chapter all use rather comfortably large

neural networks (>100 million parameters), we hope that researchers and developers

working on machine learning for edge devices will improve upon our models in terms of
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storage requirements and computational complexity; we believe they will find Timers and

Such to be a challenging and interesting test case for their models.

The dataset should also be useful for researchers working on representation learning

for audio and language to use as a downstream test task, as Fluent Speech Commands has

been [398, 399]. While in the past we have found supervised ASR-based pre-training to

be essential for getting good results with end-to-end SLU models, we believe unsupervised

feature extractors may ultimately prove to be a better general-purpose solution for SLU

and other audio tasks [400, 7].

A final, more mundane motivation for Timers and Such was the need for an SLU dataset

that could easily be downloaded programmatically using tools like wget or curl, simi-

lar to MNIST or LibriSpeech.1 Fluent Speech Commands requires users to sign up on a

web page, and the Snips SLU dataset requires filling in an online form and waiting to be

approved. In contrast to these, Timers and Such is hosted on Zenodo2 under the very per-

missive CC0 license, and the experiment code3 we provide downloads the dataset if it is

not already present in the location specified by the user. These features should lower the

barrier to entry for anyone interested in training or testing their first SLU model.

In what follows, we outline the design and creation of Timers and Such, describe some

baseline models for the dataset, discuss their experimental performance, and end by listing

some ideas for future research.

6.2 Dataset design

The dataset has four intents, corresponding to four common offline voice assistant uses:

SetTimer, SetAlarm, SimpleMath, and UnitConversion. The semantic label for

each utterance is a dictionary with the intent and a number of slots. An example of a

command and its corresponding semantics is shown in Listing 6.1.

1SLURP, released after the start of this work, can also be downloaded programmatically.
2The dataset can be found at https://zenodo.org/record/4623772.
3The code can be found at https://github.com/speechbrain/speechbrain/tree/develop/

recipes/timers-and-such.
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1 ("what’s 37.67 minus 75.7",
2 {
3 ’intent’: ’SimpleMath’,
4 ’slots’: {
5 ’number1’: 37.67,
6 ’number2’: 75.7,
7 ’op’: ’ minus ’
8 }
9 })

Listing 6.1: A SimpleMath command and its label dictionary.

The prompts to be recorded by speakers were generated using a script written by the

thesis author with a simple “grammar” that produced a few variations of set phrases for

each of the four intents (“set a timer for. . . ”, “set timer for. . . ”, “start timer for. . . ”). Ran-

dom numbers were inserted from a range that made sense for the given intent (for in-

stance, when converting temperatures, temperatures less than 0 Kelvin were not used).4

A better way to collect different ways of phrasing commands than introspection is to

place speakers in a voice control scenario (or have them imagine themselves in one) and

ask them what they would say to have the system complete a certain task. This method

was used to create part of the closed source Facebook dataset in [367] and the open source

SLURP [394]. However, this approach is complicated to set up and much more taxing on

speakers. Given that our speakers were volunteers, we decided instead to simply prompt

them with randomly generated phrases for each of the intents, similar to the approach

used in Mozilla’s Common Voice project [401].

6.3 Preliminary small-scale study

A preliminary version of Timers and Such was made between November 2019 and October

2020. 11 colleagues recorded themselves reading a list of prompts, some using the thesis

author’s laptop, and others using their own computers. The thesis author then segmented

these audio files into the individual commands and split the resulting 271 audios into a

training set with 144 audios (4 speakers), a dev set with 72 audios (2 speakers), and a

test set with 55 audios (5 speakers). Models trained on this small dataset were found

4The script for generating prompts can be found at https://gist.github.com/lorenlugosch/5
df9e30227aa5c67ff51cd28271414f0.
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Figure 6.1: The recording interface used by speakers.

to have high variability in performance for the test set, which was hypothesized to be

because of the small test set size. (This actually seems not to have been the real reason;

see Sec. 6.5.4.) To make a dataset that could be used more reliably to train and compare

SLU models, we decided to reach out to a larger pool of speakers by asking volunteers

online to donate their voices.

6.4 Data collection

6.4.1 Recording website

The second author of the paper built a website to allow speakers to record themselves

reading prompts. Speakers using the website were first asked for their age, gender, and

spoken English proficiency. For each demographic field, users also had the option to re-

spond “Prefer not to say”. After giving their consent to have their demographic information

and recordings released in a publicly available dataset, speakers used the interface shown

in Fig. 6.1 to record a set of 24 randomly generated prompts.

6.4.2 Speaker recruitment

Starting on February 18, 2021, we advertised the project and recording website on various

social media platforms (Twitter, LinkedIn, Reddit, Hacker News, Facebook). In response to
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this advertisement, 89 sessions were recorded from the first day until March 12, 2021.

Whether the 89 recorded sessions correspond to exactly 89 different speakers is un-

known. We neglected to ask speakers in the recording instructions not to record more

than one session. Because speakers were (deliberately) not asked to provide any infor-

mation that would uniquely identify them, such as their name or email address, there is

no way to ascertain whether two sessions correspond to the same speaker (as is the case

for recording platforms like Common Voice’s, which allow a speaker to record without

entering any personally identifiable information). To avoid an overlap between speakers

in the training set and the test set, we examined the demographic information provided

by speakers (age, gender, fluency) and selected only sessions with a unique demographic

triple to be in the test set. Assuming speakers provided their demographic information

truthfully, this means there are no speakers from the test set in the training set.

6.4.3 Data preprocessing and cleaning

All recordings were converted from their original formats to single-channel 16,000 Hz

.wav files for compatibility with the acoustic model used in our baseline experiments.

Data cleaning for the smaller set of audios collected during the preliminary small-scale

study was done manually by the thesis author. The 271 audios collected in the preliminary

study were assigned to the dev-real subset. Those speakers were not asked for their

demographic information, so that information is not provided for this split.

For the larger set of audios recorded using the recording website, we used a more au-

tomated form of cleaning: the audios were transcribed using an acoustic model (described

in Sec. 6.5.1), and the word error rate (WER) between each prompt and transcript was

computed. Audios for which the ASR transcript was empty or looked significantly different

from the prompt were listened to and kept or deleted as appropriate. (A simple automatic

decision rule that was found to yield nearly the same subset was to select all audios with

WER less than 100%.) After this cleaning procedure, the remaining 1,880 audios were split

into train-real and test-real subsets. A .csv file for each subset ({train-real,

dev-real, test-real}.csv) lists, for each utterance, the .wav filename, the semantic
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label dictionary, the session ID (≈ speaker ID), and the transcript.

6.4.4 Synthetic data

As in Chapter 5 [11], we used VoiceLoop [388] to synthesize a large set of audios from

22 synthetic speakers. (The VoiceLoop model is trained on the VCTK dataset [389].) That

set was split by speaker into the train-synth (192,000 audios), dev-synth (24,000

audios), and test-synth (36,000 audios) subsets. As for the data from the real speakers,

we include a .csv file ({train-synth, dev-synth, test-synth}.csv) listing the

filename, semantics, speaker ID (a number 1 to 22 indicating which VoiceLoop synthetic

speaker was used), and transcript. The VoiceLoop speech synthesizer is deterministic:

running it on the same prompt twice produces the same audio signal. As a result, some of

the rows in the .csv file describing the synthetic subset are redundant: they point to the

same audio file with the same labels. We have not removed the redundant rows because we

found that doing so led to an unbalanced training set: for example, there were many more

instances of “set alarm for <hour> <minute> AM” than of “set alarm for <hour> AM”, so

models trained on this unbalanced dataset tended to hallucinate an erroneous value for the

<minute> slot for the latter type of utterance. (Alternately, users can rebalance the data

in a different way, if they choose, using e.g. pandas.DataFrame.drop duplicates()

on the filename column of the .csv file.) We encourage users of Timers and Such not to

think of the synthetic subset as fixed (except to avoid unfair comparisons between two

models differing in some other respects), but rather to try adding more synthetic speakers

and using improved speech synthesis techniques.

6.4.5 Dataset statistics

The overall statistics for both the real and synthetic subsets of Timers and Such after data

cleaning are listed in Table 6.1. At 2,151 non-synthetic utterances, Timers and Such is a

fairly small dataset, but like TIMIT (6,300 utterances [59]) and the Snips “smart lights”

dataset (1,660 utterances [390]), we have found the dataset nonetheless very useful for

experimentation. It is more challenging than Fluent Speech Commands (which can be
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Table 6.1: Timers and Such speaker counts and recording statistics. (∗Speaker counts are
approximate; see Section 6.4.2.)

Split # of speakers∗ # of audios # hours

train-synth 16 192,000 132.2
dev-synth 2 24,000 15.8
test-synth 3 36,000 23.5

train-real 74 1,640 1.9
dev-real 11 271 0.3
test-real 10 240 0.3

all-real 95 2,151 2.5

Table 6.2: Speaker gender statistics. (dev-real demographics not included; see Section
6.4.3.)

Split Man Woman Non-
Binary

(Prefer not
to say)

train-real 54 17 0 3
test-real 5 4 1 0

treated as a simple classification problem and for which accuracy as high as 99.7% has

been achieved [378]), but it is smaller and simpler than SLURP. By training only on text or

synthetic speech, and testing on all available real audio, it is possible to obtain a relatively

large test set (cf. the LibriSpeech test-clean subset with 2,620 audios).

6.5 Baseline models

Here we describe extensive experiments with a set of baseline neural network models for

Timers and Such. All experiments are conducted using the open source SpeechBrain [13]

toolkit.

Table 6.3: Speaker English proficiency statistics.

Split Native
speaker

Fluent Somewhat
fluent

(Prefer not
to say)

train-real 20 42 9 3
test-real 4 2 4 0
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Table 6.4: Speaker age ranges. (See train-demographics.csv and
test-demographics.csv for more granularity.)

Split 18-
25

26-
35

36-
45

46+ (Prefer not
to say)

train-real 11 41 6 1 15
test-real 3 5 2 0 0

6.5.1 Acoustic model and language models

The baseline ASR models use an acoustic model trained on the 960-hour LibriSpeech En-

glish ASR dataset [391]. The acoustic model is an autoregressive attention-based sequence-

to-sequence model [140, 152] that achieves 3.08% WER on the test-clean subset of

LibriSpeech. The encoder of the acoustic model is a convolutional recurrent deep neural

network (CRDNN) that extracts 40-dimensional FBANK features from the input signal and

has two 2-D convolutional layers that downsample the input sequence by a factor of 4 in

the time dimension, followed by four bidirectional LSTM layers and two fully-connected

layers. The decoder is a GRU network that uses the location-aware attention mechanism

of [151] to process the encoder outputs. The encoder outputs are additionally passed

through a linear CTC [155] head; during training, the output of the CTC head is used

to compute an auxiliary CTC loss term [154]. Both the CTC head and the autoregressive

decoder have 1000 outputs for a 1000-token SentencePiece [30] BPE vocabulary.5 (This

acoustic model was chosen because it was the best performing English acoustic model in

SpeechBrain at the time when these experiments were conducted.)

The acoustic model transcribes the input signal x using a beam search for

argmax
y

log pAM(y|x)

+ α log pCTC(y|x)

+ β log pLM(y)

+ γc(x,y),

5More detailed hyperparameters for the acoustic model can be found at https://github.com/spe
echbrain/speechbrain/blob/develop/recipes/LibriSpeech/ASR/seq2seq/hparams/trai
n BPE 1000.yaml.
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where pCTC(y|x) is the likelihood of transcript y according to the CTC head [154],

pLM(y) is the likelihood according to an external language model (LM), c(x,y) is a coverage

penalty term [402], and α, β, γ were set to minimize WER on the LibriSpeech dev sets.

The default LM is an LSTM trained on the LibriSpeech language modeling resources.6

In addition to the default LibriSpeech LM (LS LM), we also trained an LSTM LM on the

Timers and Such training set transcripts (TAS LM). For ASR-based baseline models, we

present results both using the LS LM and TAS LM.

6.5.2 SLU models

We provide code, pre-trained models, and results for a traditional decoupled SLU model

and (using the terminology suggested by Haghani et al. in [208]) two types of “end-to-

end” models: a multistage model and a direct model.

The decoupled model uses a sequence-to-sequence model to map the transcript to

the semantics. During training (and when decoding the validation set), the ground-truth

transcripts are used as the input, and during testing, the transcripts produced by the Lib-

riSpeech acoustic model are used. For all models, the semantic dictionaries are treated as

raw sequences of characters and split using a 51-token SentencePiece tokenizer.

The multistage model likewise uses a sequence-to-sequence model to map the tran-

script to the semantics, but instead of training on the ground-truth transcripts, it is trained

on the ASR transcripts. The transcripts are not precomputed: rather, each minibatch of

audio signals is transcribed on the fly during training, which simplifies the implementa-

tion of our experiments. In theory, transcribing training examples on the fly should also

make the NLU model more robust, as it is exposed to more types of transcription errors

resulting from different noise samples (e.g. from dropout, batch normalization, data aug-

mentation) across minibatches—though we have not compared the results with simply

training on a single set of precomputed ASR transcripts, and leave this as an avenue for

other researchers to explore. The downside of on-the-fly transcription is that the inher-

ently sequential ASR beam search becomes a bottleneck on training step time. Using the

6https://www.openslr.org/11/
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default ASR beam width of 80, the time for one epoch on train-synth was about 12

hours (compared with about 0.5 hours for the decoupled model). Reducing the ASR beam

width to 1 reduced the time for one epoch to about 2.5 hours. The results presented below

use an ASR beam width of 1 for the multistage model.

The direct model uses a single sequence-to-sequence model to map audio directly to

semantics, without an intermediate ASR search step. Compared to the multistage model,

the direct model is significantly faster both in training and decoding, at about 1.5 hours

per epoch with train-synth instead of 2.5 hours. Pre-training using related ASR or NLU

tasks has consistently been found to improve the performance of direct models [371, 375,

403, 404, 405], so we pre-train the encoder here as well. In our experiments described

in previous papers, the encoder of the direct model was pre-trained using force-aligned

phoneme and word labels [371, 11]. The pre-training strategy used in our baselines here

is somewhat simpler: we extract the encoder from the LibriSpeech acoustic model and use

it as a feature extractor in the direct SLU model. Another difference is that we do not

backpropagate into the pre-trained encoder and leave its weights frozen, which greatly

reduces training time and memory consumption. A more thorough ablation study and

comparison of pre-training strategies would be worthwhile to conduct, but we leave that

for the future, since the point here is just to establish some reasonable baseline models for

this dataset.

While the SLU models do use a beam search to produce the output sequence, there

are a number of differences between the SLU decoder and the ASR decoder. The SLU

beam search does not use a coverage penalty (which was found to hurt performance both

for Timers and Such and for the SLURP dataset) or an external “language model” over

the space of output dictionaries. Instead of location-aware attention (which assumes a

monotonic alignment between input and output sequences), the SLU decoder uses a simple

one-headed key-value attention mechanism. The SLU models also do not use an auxiliary

CTC head: whereas CTC’s assumptions (monotonic alignments; output length < input

length) make sense for ASR, they generally do not hold for SLU, unless the dataset has

word-aligned slot labels (Timers and Such does not). Other hyperparameters for these

models were not optimized and chosen simply by copying the decoder hyperparameters
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from the LibriSpeech recipe, which were optimized for the validation set of that dataset.

6.5.3 Experiments

For all baseline models, we provide results for three composite training sets: train-real

only (trained for 50 epochs), train-real plus train-synth (trained for 2 epochs),

and train-synth only (trained for 2 epochs). For all three training sets, we measure

performance on test-real and test-synth. When training on train-synth only,

we additionally report performance for all-real, a subset obtained by combining all the

real data in train-real, dev-real, and test-real. (We do not test models trained

on train-real on all-real because all-real contains train-real. For the same

reason, we use dev-synth, not dev-real, to select the model checkpoint from the epoch

with the best validation performance when testing on all-real.)

As in previous work, we report performance in terms of accuracy, where an output is

deemed “correct” if all predicted slots and slot values are correct. Bastianelli et al. in

[394] have argued for the use of metrics more informative than simple accuracy when

evaluating end-to-end SLU models. They propose SLU-F1, a metric based on word-level

and character-level edit distance between the model’s output and the true labels. The SLU-

F1 metric sensibly penalizes errors like “pizzas” → “pizza” less than errors like “pizzas”

→ “fries”. It is unclear, though, whether character-level edit distance is suitable for the

numeric commands of Timers and Such: should “11” → “111” (character error rate of

50%) be regarded as less of an error than “11” → “22” (character error rate of 100%)

when setting a cooking timer in minutes? For this reason, we do not recommend using

character-level error to evaluate systems for this task. As a compromise, we also suggest

reporting “SLU WER”, an easy-to-compute metric that treats the space-delimited output of

the SLU model and the true output dictionary as regular sequences of words and simply

computes the usual WER metric. Note that no “normalization” of the outputs (e.g., ”twelve

and a half”, ”twelve point five” → “12.5”) is necessary before evaluating, since the labels

are always written in the correct numeric format.
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Table 6.5: Results (mean and stdev. over 5 random seeds) for all baseline models. See
Sec. 6.5.3 for the definition of “SLU WER”.

test-real test-synth

Model Training set Accuracy SLU WER Accuracy SLU WER

Decoupled
(LS LM)

train-real 24.1%±1.1% 34.4%±3.3% 16.1%±1.4% 33.2%±8.7%
(both) 31.4%±4.3% 26.5%±5.0% 22.5%±2.1% 25.2%±2.5%

train-synth 32.3%±3.9% 26.5%±2.5% 23.7%±1.6% 24.2%±0.7%

Decoupled
(TAS
LM)

train-real 43.5%±2.0% 20.3%±3.5% 34.6%±1.2% 18.5%±3.8%
(both) 46.8%±2.1% 16.5%±2.2% 38.4%±1.3% 15.2%±0.9%

train-synth 49.1%±2.3% 16.3%±1.1% 39.9%±0.7% 13.9%±0.8%

Multistage
(LS LM)

train-real 55.5%±3.4% 10.1%±0.6% 43.1%±2.9% 10.8%±0.8%
(both) 67.8%±1.4% 7.4%±0.4% 79.4%±0.4% 3.2%±0.1%

train-synth 66.6%±0.8% 7.7%±0.8% 79.1%±0.2% 3.2%±0.0%

Multistage
(TAS
LM)

train-real 64.0%±3.3% 7.4%±0.9% 51.5%±2.9% 8.7%±0.7%
(both) 72.6%±1.6% 5.9%±0.1% 85.4%±0.2% 2.4%±0.0%

train-synth 72.2%±1.4% 6.2%±0.4% 85.4%±0.3% 2.4%±0.1%

Direct
train-real 81.6%±5.4% 2.6%±1.1% 70.0%±5.7% 15.2%±19.1%

(both) 77.5%±1.6% 3.3%±0.4% 96.7%±0.3% 1.1%±0.0%
train-synth 68.0%±5.5% 8.9%±3.4% 96.4%±0.2% 1.1%±0.0%

6.5.4 Results

A few trends in the results shown in Table 6.5 are worth noting.

• The direct model and multistage TAS LM work best. This is perhaps unsurpris-

ing, since these two models effectively have the most opportunity to train on the

downstream SLU task.

• The direct model “overfits” to synthetic speech. It seems that because the di-

rect model has access to the raw speech features instead of a transcript, it can learn

the idiosyncratic pronunciations of the speech synthesizer and achieve much better

performance than the ASR-based models (96.7% vs. 85.4%). This model still per-

forms well on the real test data—we mention this simply to explain why this model

suddenly performs so much better for the synthetic test data.

• Test accuracies and SLU WERs7 have high variability. Some test accuracies have a
7The 19.1% stdev. in SLU WER for the direct model on test-synth is due to a single outlier random
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Table 6.6: Baseline results for the all-real set.

all-real

Model Training set Accuracy SLU WER

Decoupled (LS LM) train-synth 26.8%±3.3% 29.0%±2.2%

Decoupled (TAS LM) train-synth 44.6%±2.4% 17.3%±1.1%

Multistage (LS LM) train-synth 64.6%±0.7% 7.2%±0.2%

Multistage (TAS LM) train-synth 69.9%±0.9% 6.0%±0.2%

Direct train-synth 68.9%±5.4% 8.2%±3.4%

standard deviation as high as 5.7%. We observed this phenomenon with the prelimi-

nary version of Timers and Such and suspected that the variance was because of the

smaller test set size (55 audios). However, this does not seem to be the explanation

here, since all-real (Table 6.6) has 2,151 audios and still has highly variable test

accuracy (stdev. of 3.3%, 2.4%, 0.7%, 0.9%, 5.4%). We will not venture further here

to diagnose this problem; instead, we leave it as a problem for future research on

this dataset to solve.

6.5.5 Computing resource usage

Training and testing all the SLU models across all random seeds, models, and training

set compositions required about 233 GPU-hours on an Nvidia Quadro RTX 8000 GPU.

Additionally, the LibriSpeech acoustic model was trained using one Nvidia Tesla V100 GPU

for 194 hours, and the LibriSpeech LM was trained using 4 V100s for about 84 hours.

However, we hasten to note for those with limited computing resources interested in

experimenting with Timers and Such that i) the pre-trained LibriSpeech models are avail-

able online and are downloaded automatically by the recipes, and ii) training a single

model on Timers and Such can be done relatively quickly, at around a minute per epoch

for the direct recipe when training on train-real. The decoupled recipe can also be

sped up significantly by using a larger batch size during training, since the input is text

instead of speech and requires less memory. Note also that all the recipes have also been

seed for which the decoder produced many infinitely looping outputs (“unit1 unit1 unit1 unit1. . . ”).
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successfully tested on an older 12 GB Nvidia Tesla K80 GPU without any hyperparameter

modifications.

6.6 Risks and rewards

A risk of recording speech data is that a malicious actor could use the data to imitate the

speaker and use the speaker’s voice for purposes the speaker did not intend [406]. Similar

to Common Voice, it is unlikely that this could happen to the speakers of Timers and Such,

since they did not provide any information that could uniquely identify them.

On the whole, we think Timers and Such will be a great benefit to the research com-

munity and (indirectly) to users of voice interfaces. Speech datasets are often recorded

by professional speakers in clean conditions unlike the conditions in which voice inter-

faces are typically used. This leads to brittle, overfitted models that break when applied to

real-world speech [273]. Timers and Such will contribute to research and development of

more robust models that can understand speech in a variety of accents and conditions.

6.7 Conclusion

Timers and Such is a new dataset of numeric commands that should be useful for SLU

researchers, hackers aiming to train their own offline voice assistant, and researchers de-

veloping new representation learning methods for audio and language [398, 399, 400, 7]

looking for another downstream task to test on. Some directions for the future of Timers

and Such we hope to see worked on include: diagnosing and fixing the high variability

of test performance; exploring the acoustic model architecture (e.g., using a CTC model

or Transducer model [175]); speeding up the multistage approach, e.g. by using transfer

learning to initialize a multistage model using a decoupled model; improving the perfor-

mance of the direct model on all-real; using an ASR dataset with a more diverse set of

accents and recording conditions, like Common Voice [401]; using different tokenizers or

other hand-crafted output labels; improving the speech synthesis (using systems such as

the RTVC multispeaker TTS [407, 408] to add even more synthetic speakers) and balance
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between real and synthetic training data; and enabling streaming inference [409, 410],

which cannot be performed with the baseline models as-is, due to their global attention

mechanism.
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Chapter 7

SpeechBrain: A General-Purpose Speech

Toolkit

Abstract
This chapter discusses our contributions to SpeechBrain, a general-purpose open-

source PyTorch speech toolkit. The chapter is divided into two sections: in the

first, we give a brief introduction to the toolkit; in the second, we focus on our

contribution most relevant to the thrust of this thesis: state-of-the-art recipes for

spoken language understanding.

7.1 Introduction to SpeechBrain

As discussed in Section 2.3, open-source software is important for the progress of AI re-

search. Existing speech toolkits like Kaldi [63] and HTK [411] are written in C++, which

makes fast prototyping of new systems more difficult than when using a higher-level lan-

guage like Python. Most of speech processing is done using deep neural networks, or

can be expressed using neural network primitives like convolutions (much of signal pro-

cessing), so it makes sense to take advantage of the Python deep learning ecosystem to

implement a general-purpose toolkit for speech problems. By combining recipes and func-

tionalities for many different speech problems within a single Python toolkit, SpeechBrain
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makes it easy to prototype new applications and combine state-of-the-art systems — e.g.,

backpropagating through a speech recognizer into a speech enhancement system [412].

SpeechBrain is an efficient, easy-to-use,1 pip-installable PyTorch-based library. It takes

care many of the fiddly algorithms, tricks, and implementation details described in Chapter

2, and many more. Below we describe some of the useful features of SpeechBrain. (Note

that the functionality described in this section was contributed by many people other than

the thesis author, and it is described in fuller detail in the SpeechBrain paper [13].)

Training loop A SpeechBrain training run defines and creates a “Brain” object, and

Brain.fit() trains the model for a specified number of epochs, with validation after

each epoch. It is also possible to define an “epoch” as a certain number of SGD updates,

rather than a complete pass through the training set. What happens in each training step,

evaluation step, forward computation step, and loss computation step can be overridden

by the programmer, as well as what happens at the beginning and end of each epoch.

Lobes “Lobes” in SpeechBrain (like lobes in an animal brain) implement sets of commonly-

used functions and modules, such as the FBANK feature extraction pipeline and various

neural network encoders and decoders. Unlike older toolkits [63], which pre-compute the

features for the entire dataset before training, SpeechBrain computes features on-the-fly,

enabling a larger and more sophisticated set of data augmentations to be performed.

Variable-length sequence management Speech and text are variable-length sequences.

To be able to perform the same operations operations on each example in a minibatch for

efficiency, SpeechBrain dataloaders take care of padding each example out to the same

length. The actual lengths of the inputs are passed between modules and used to ensure

the correctness of certain operations (e.g., input normalization computes the mean and

variance using only the non-padded inputs). The lengths are normalized to the range [0, 1]

so that the programmer does not need to worry about whether each module changes the

1Colab notebook tutorials for learning to use SpeechBrain can be found on the toolkit website: https:
//speechbrain.github.io/. A reader with basic knowledge of Python and the neural network concepts
in Chapter 2 can easily follow these tutorials.
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1 from speechbrain.pretrained import EncoderDecoderASR
2

3 asr_model = EncoderDecoderASR.from_hparams(
4 source ="speechbrain/asr-transformer-transformerlm-librispeech",
5 savedir ="pretrained_models/asr")
6 asr_model.transcribe_file("its_all_greek_to_me.wav")
7 >>> ["IT’S ALL GREEK TO ME"]

Listing 7.1: Pre-trained model example usage.

absolute lengths, e.g., through pooling.

Pre-trained models Inference with pre-trained models for various applications can be

implemented using the pretrained module. Listing 7.1 shows an example of loading a

pre-trained speech recognizer and using it to transcribe an audio file.

Checkpointing and fault tolerance If training stops prematurely (e.g., due to a SLURM

job ending on a cluster computer), re-running the training command will resume training

from the latest checkpoint. A checkpoint is a periodically saved collection of files contain-

ing objects such as the current model parameters and the minibatch index. A checkpoint

can also be saved at each validation step, where the programmer provides the metric (e.g.,

WER) used to determine whether a new “best” set of parameters has been found.

Optimizers The Brain class initializes optimizers for the parameters and uses them to

update the weights at each step. The default optimizer setup can be overridden, e.g. to

use different optimizers for different parts of the model. The optimizer state is saved

in the checkpoint along with other state variables, so that restarting training correctly

implements optimizer updates that have memory.

Recipes SpeechBrain comes with state-of-the-art recipes for training and inference for

many popular datasets, like LibriSpeech, Common Voice, TIMIT, and VoxCeleb.2 Each

recipe uses a Python file to run the experiment and a YAML file to control the experiment

hyperparameters. Different YAML files can be used in conjunction with the same Python

file.
2https://github.com/speechbrain/speechbrain/tree/develop/recipes
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1 ("Make a calendar entry for brunch on Saturday morning with Aaronson.",
2 {
3 "scenario": "calendar",
4 "action": "create_entry",
5 "entities": [
6 {"type": "event_name", "filler": "brunch"},
7 {"type": "date", "filler": "Saturday"},
8 {"type": "timeofday", "filler": "morning"},
9 {"type": "person", "filler": "Aaronson"}

10 ]
11 })

Listing 7.2: A SLURP transcript and its label dictionary.

7.2 Recipes for SLU

The thesis author contributed code for various components, such as the pre-trained model

interface, forced alignment, grapheme-to-phoneme conversion, and ASR recipes for the

AISHELL-1 Chinese speech dataset [413], as well as high-level design decisions, documen-

tation, and user testing, to the toolkit. Here we specifically describe the contribution most

relevant to the thesis, namely the SLU recipes. In addition to the decoupled, multistage,

and direct end-to-end SLU recipes for Timers and Such described in the previous chapter,

we have recipes for two more datasets: SLURP and Fluent Speech Commands.

7.2.1 SLURP

SLURP [394] is much larger and more semantically challenging than other SLU datasets,

with more distinct tokens, bigrams, trigrams, Lexical Sophistication [414], Corrected Verb

Sophistication [415], and Mean Segmental Text-to-Token Ratio [416]. Whereas Timers

and Such and Fluent Speech Commands can be solved with perfect accuracy given the

transcript (i.e., there is no real NLU challenge, given the original splits), SLURP cannot. A

SLURP example is shown in Listing 7.2.

The creators of SLURP intended for the dataset to be a challenge for end-to-end SLU

models. They write:

SLURP is not only bigger, but also a magnitude more challenging than previous

datasets. The purpose of this new data release is not to provide yet another bench-
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Table 7.1: Performance on SLURP (audio as input).

Model scenario
(accuracy)

action
(accuracy)

intent
(accuracy)

Word-
F1

Char-
F1

SLU-
F1

HerMiT [394] 85.69 81.42 78.33 69.34 72.39 70.83
CTI [378] — — 86.92 — — 74.66

Ours (CRDNN) 82.15 77.79 75.64 62.35 66.45 64.34
Ours (wav2vec 2.0) 89.49 86.40 85.34 72.60 76.76 74.62

mark dataset, but to provide a use-case inspired new challenge, which is currently

beyond the capabilities of SOTA E2E approaches (due to scalability, lack of data

efficiency, etc.).

We have tested several SOTA E2E-SLU systems on SLURP, including (Lugosch et

al., 2019b) [[371] in this thesis] which produces SOTA results on the FSC corpus.

However, re-training these models on this more complex domain did not converge

or result in meaningful outputs. Note that these models were developed to solve

much easier tasks (e.g. a single domain). Developing an appropriate model archi-

tecture is left for future work.

SLURP performance is measured using accuracy for the “scenario” and “action” labels,

as well as “intent” (= “scenario” + “action”), and using Word-F1, Char-F1, and SLU-F1

measures [394] for the slots. The SLURP authors provide a decoupled baseline using

HerMiT [200]. The HerMiT architecture uses a stack of LSTMs pre-trained using ELMo,

each followed by a self-attention layer and a CRF decoded using the Viterbi algorithm. In

addition to HerMiT, we compare our recipes with the Continuous Token Interface (CTI)

[378]. CTI trains a transformer encoder with RoBERTa NLU pre-training [417] as an

intent classifier and CRF. The inputs to the encoder are either the softmax outputs of an

autoregressive ASR decoder or the gold transcript during training; at test time the ASR

decoder softmax outputs are used.

We train an encoder-decoder model similar to the one described in Chapter 6, with a

frozen pre-trained LibriSpeech CRDNN encoder followed by a randomly initialized LSTM

encoder and an attention-based autoregressive decoder. We train a 58-token SentencePiece

tokenizer on the serialized semantic dictionaries and use the tokenized dictionaries as the
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Table 7.2: Performance on SLURP (gold transcripts as input).

Model scenario
(accuracy)

action
(accuracy)

intent
(accuracy)

HerMiT [394] 90.15 86.99 84.84
CTI [378] — — 87.73

Ours 91.45 89.46 88.68

output targets. The model is trained for 20 epochs, and the learning rate is lowered by a

factor of 0.8 whenever error on the validation set increases.3 Our model performs rea-

sonably well, but worse than both HerMiT and CTI. When the CRDNN encoder is replaced

with a wav2vec 2.0 encoder fine-tuned for ASR on LibriSpeech, the encoder-decoder beats

the CRF models across most metrics.4

To what extent can the performance differences be attributed to the use of an encoder-

decoder model instead of a CRF, and to what extent to the difference in (implicit) ASR

capability? To find out, we train an encoder-decoder model on the ground-truth transcripts

instead of the audio. The architecture is identical, except instead of the pre-trained audio

encoder, we use a simple text embedding layer before the LSTM encoder. The transcripts

are tokenized using the 1000-token ASR tokenizer (Section 6.5.1) and fed into the encoder.

Our simple NLU model significantly outperforms HerMiT and CTI when those systems are

applied to the gold transcripts, and unlike either baseline uses no additional NLU pre-

training and does not take advantage of the word-aligned CRF slot labels or the list of

intents and slot values.

7.2.2 Fluent Speech Commands

We implemented a recipe for the Fluent Speech Commands dataset [371] using the same

CRDNN model and hyperparameters as for SLURP. This recipe outperforms our previous

results for the dataset, while CTI slightly outperforms our recipe (Table 7.3). Fluent Speech

Commands is a simple dataset and is essentially “solved” in its original form.

3https://github.com/speechbrain/speechbrain/blob/develop/recipes/SLURP/dire
ct/hparams/train.yaml

4Thanks to Boumadane Abdelmoumene for running the wav2vec 2.0 experiment.
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Table 7.3: Performance on Fluent Speech Commands (original splits).

Model Accuracy

Ours (Chapter 5) 99.2
CTI [378] 99.7

Ours (SpeechBrain) 99.6

7.3 Conclusion

SpeechBrain is a powerful and easy-to-use toolkit for speech and other sequence data.

Our SLU recipes demonstrate using it to develop state-of-the-art systems using the toolkit’s

sequence dataloaders, pre-trained model interface, and built-in neural modules and de-

coders. In the next chapter we will see a somewhat more exotic use for SpeechBrain.
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Chapter 8

Towards End-to-End Voice Control

Through Gesture Imitation

Abstract
In this chapter, we introduce an imitation learning framework which attempts to

implement the idea floated at the beginning of this thesis: fully learned end-to-end

voice control, from audio to actions. We discuss the advantages of agent-based voice

control over hard-coded control logic, and the design and creation of our system.

8.1 Disadvantages of handcrafted semantic representations

In Chapters 1 and 2, we argued that the conventional way of doing language understand-

ing in voice control — intent classification and slot filling using human-defined labels —

is insufficient for implementing useful general-purpose assistants. Consider the semantics

defined in our own Timers and Such dataset in Chapter 6: any request that cannot be con-

strued as one of SetTimer, SetAlarm, SimpleMath, and UnitConversion will be

handled incorrectly. Even more sophisticated systems, such as Amazon Alexa [418] or SLU

systems built using SLURP (Chapter 7), still have this flaw because they are implemented

the same way. We would like to build voice control systems that can generalize to new

intents, not just the ones observed in training.
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There are other flaws with conventional voice control apart from the inability to gen-

eralize to new types of requests. Even if one somehow got ahold of the “correct” data

structure for representing semantics — a hypothetical data structure containing “sufficient

statistics” for understanding any possible request — and amassed a sufficiently large cor-

pus labeled with such semantics, one would still need to program the control logic. While

programming the logic may be easy for a restricted set of intents like setting timers and

doing math, it becomes more difficult and time-consuming for a broader domain. Another

problem is streaming inference. Handling an utterance like “set a timer for five minutes —

no, sorry, four minutes” is awkward with the conventional setup. A really useful assistant

would be capable of reacting in real-time to what the speaker is saying, the way a human

can, instead of the clunky “say wakeword/push to talk → make your request, then stop

talking→ wait for the assistant to react” interactions one has to go through today.

In this chapter we attempt to show how these desiderata may be met using a neural

network agent radically different from the conventional voice control pipeline. We begin

by discussing an alternative paradigm for machine learning — reinforcement learning and

imitation learning — in which an agent learns to take actions to interact with an envi-

ronment, which we believe is more suitable for the problem of voice control. We review

existing agents for mapping language to actions, categorizing methods by their “action

space”. We then introduce an architecture for an agent that uses “gestures” as its action

space to control a smartphone in real-time in response to spoken commands. Using Timers

and Such, we create a dataset of demonstrations following the spoken commands and at-

tempt to train an agent on it. We find that the agent has difficulty learning and end with

some suggestions of ways in which it could be improved.

8.2 Agents: reinforcement learning and imitation learn-

ing

Since voice control is about performing actions that the speaker wants, it makes sense to

think of it as a reinforcement learning (RL) problem. In RL, an agent learns to interact with
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its environment to maximize some long-term reward. Usually the RL problem is described

using the Markov decision process (MDP) formalism. In an MDP, at each timestep t, the

agent is in a given state st and takes an action at. The environment responds with a

reward rt, and the state changes to st+1, where rt, st+1 ∼ p(rt, st+1|st, at). Interactions can

continue indefinitely, or until an “episode” is complete. The goal of RL is to find a policy

πθ(st) — a mapping from the current state to the action that should be taken — such

that the expected sum of rewards (the return) is as large as possible. In an MDP with a

small number of discrete states and actions, there are efficient algorithms for finding the

optimal policy [419]. If the input space is large or continuous (images, audio, text, . . . ),

a function approximator needs to be learned instead. The flexibility and online learning

capabilities of neural networks make them a natural choice for implementing the function

approximator.

RL methods are classified into “model-based” and “model-free” methods. Model-based

methods learn and use a model of the environment p(rt, st+1|st, at) to plan a trajectory of

actions that maximizes return. Model-free methods try to learn a policy πθ(st) that works

well without learning an explicit model of the environment. Model-free methods are in

turn classified into value-based methods (which attempt to learn the expected return from

starting in a given state and/or taking a given action in that state) and policy gradient

methods (which attempt to maximize the return directly by pushing up the probability of

the actions taken in an episode in proportion to some function of the return).

RL requires a teacher to give the agent a reward signal. Sometimes the reward signal

can be generated automatically, as in a video game, where “win/lose” or “points scored”

can be computed easily from the game state. Sometimes the reward requires a human

teacher, as in the case where the reward is “how well-written is this text?”. If no reward

signal is available, an alternative approach called imitation learning (IL) can be used.

In IL, a human expert performs actions in the environment of interest, and the agent

learns to copy the expert’s demonstrations. IL reduces the RL problem to a (typically

much easier) supervised learning problem by learning to predict the taken action given

the state. Sometimes this process is referred to more specifically as “behavior cloning”,

and “imitation learning” is used to refer to a broader set of techniques, e.g. DAgger [420].
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8.3 Action spaces for voice control

8.3.1 RAM reads and writes

Think of the microprocessor running your AI program as an agent, and the external devices

it controls and communicates with as its environment. At the lowest level of abstraction,

the only actions this agent can take are reading from and writing to locations in random

access memory (RAM), since modern computers use memory-mapped I/O. One could con-

ceivably train a voice control agent to operate a computer using a humongous softmax

output layer over all possible memory locations, using IL or RL with a reward given based

on whether the agent’s memory accesses ultimately do what the user wants.

This approach is not as farfetched as one might think. In [421], Sygnowski and

Michalewski train an agent to play Atari 2600 games using only information stored in

RAM. The Neural Turing Machine [114] and Differentiable Neural Computer [422] are

able to learn algorithms for copying, sorting, and graph traversal using a small (= 128

slots) external memory. But computers for implementing sophisticated behavior will re-

quire large memory spaces — even 1 MB of RAM would correspond to millions of possible

actions. In RL, generalization to new actions is obtained using e.g. Gaussian policy param-

eterizations, which assign similar probability mass to nearby points in action space. For a

large, discrete, unstructured action space like RAM, it is not clear how to generalize across

actions — two nearby memory locations might correspond to two very different devices or

pieces of information — so a higher level of abstraction than raw RAM locations may be

necessary for an agent to be able to learn.

8.3.2 Handcrafted high-level actions

Instead of low-level memory accesses or microprocessor instructions, some work has at-

tempted to train a model to predict higher-level actions from the language input [423,

424, 425, 426], such as API calls [427] — a good review of such approaches can be found

in [428]. There is a long history of using RL specifically for dialog systems [429, 430, 431],

where the actions taken are commonly used routines for the application in question, like

139



ListHotelOptions or BookFlight, and the user rewards the system for making it

through an episode of dialog turns successfully.

The disadvantage of these approaches is that the higher the level of abstraction, the

more engineering effort needs to be expended to implement the actions — at one extreme,

we effectively return to the original “hard-coded semantics and control logic” setup, which

is precisely what we wanted to avoid by using machine learning. Ideally we would reuse

as much existing code as possible, or generate the code automatically instead.

8.3.3 Large language models and code generation

Another possible action space involves the use of models that have recently become known

collectively under the name “large language models (LLMs)” [432] (or the sleek and

vaguely sci-fi-ish “foundation models” [433], or the charmingly simple “big models” [434]).

Neural network LMs prior to the invention of transformers in 2017 were known to be ca-

pable of generating semi-coherent text for a sentence or two using (variants of) Algorithm

2 [435], but their generations quickly devolved into nonsense. Shortly after the invention

of transformers, [436] showed that transformer LMs could generate long, coherent text by

training on Wikipedia articles. The quality of the samples was found to be strongly related

to the number of parameters in the model [437] — when generating the article for “Abra-

ham Lincoln”, for example, the mean squared error of the estimates for Abraham Lincoln’s

birth and death dates in the generated text decreased as the size of the model increased

[438]. OpenAI’s GPT-2 [330] — sequel to GPT (Section 2.2.14) — used a 1.5 billion pa-

rameter transformer LM trained on a large dataset scraped from the Internet and produced

even more impressive generations. GPT-3 [128], weighing in at 175 billion parameters,

was found to be capable not only of long, coherent generations, but also of “few-shot”/“in-

context” learning, whereby prompts provide the model with “training data” on-the-fly. Fig.

8.1 shows the use of prompting with GPT-3 to infer labels for examples from Timers and

Such.

A text generator may at first not seem useful for producing actions, since the outputs are

text and not actions. But much of the text scraped from the Internet contains code. GitHub
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The following are examples of transcripts and their semantic labels.

("what's 37.67 minus 75.7",
{

'intent': 'SimpleMath',
'slots': {
'number1': 37.67,
'number2': 75.7,
'op': ' minus '

}
})

("convert 79 degrees Kelvin to Fahrenheit",
{

'intent': 'UnitConversion',
'slots': {

'unit1': 'Kelvin',
'unit2': 'Fahrenheit',
'amount': 79

}
})

("set the timer for 1 minute and 56 seconds",
{

'intent': 'Timer',
'slots': {

'minutes': 1,
'seconds': 56

}
})

("it's all Greek to me",
{

'intent': 'Idiom',
'slots': {}

})

Figure 8.1: Few-shot NLU using GPT-3 (text-davinci-003). Unbolded lines are written
by the thesis author, bolded lines are written by the model.
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[Loren:] Write a Python function called “set timer” that parses the user’s input
and sets a timer for the amount of time they ask for. For example, if I call
set timer(“set timer for an hour and a half”), a timer should be set for 1 hour,
30 minutes, and 0 seconds, and if I call set timer(“timer for 10m 30s”), a timer
should be set for 0 hours, 10 minutes, and 30 seconds.

[ChatGPT:] Here is one way you could implement a set timer function in
Python:

import re
import time

def set_timer(input_string: str):
# Parse the input string to get the time values
hours_match = re.search(r"(\d+) hours?", input_string)
minutes_match = re.search(r"(\d+) minutes?", input_string)
seconds_match = re.search(r"(\d+) seconds?", input_string)
hours = int(hours_match.group(1)) if hours_match else 0
minutes = int(minutes_match.group(1)) if minutes_match else 0
seconds = int(seconds_match.group(1)) if seconds_match else 0

# Calculate the total number of seconds that the timer should run for
total_seconds = 3600 * hours + 60 * minutes + seconds

# Sleep for the specified number of seconds
time.sleep(total_seconds)

Figure 8.2: Code generation using ChatGPT.
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Copilot, based on OpenAI’s Codex [439], is trained on publicly available code from GitHub.

The tool has become very popular among programmers as a way to autocomplete portions

of their code. Another method, InstructGPT [440], trains a GPT model on unlabeled text

as usual, then applies supervised fine-tuning (human labelers respond to prompts, and

their responses are used as training targets), trains a reward model on samples from the

fine-tuned GPT model ranked by human labelers, and then uses RL to train the GPT model

using the reward model [147]. Fig. 8.2 shows an example of using ChatGPT, a system

based on InstructGPT, to generate code for implementing part of a voice assistant.1

8.3.4 Human gestures

Instead of imitating actions in the form of text outputs, it is possible to imitate gestures.

By “gestures”, we mean the non-code actions that humans take to control computers:

e.g., typing on a keyboard, touching a touchscreen, clicking a mouse, or moving one’s

limbs in a virtual reality setup. Like code generation, gesture imitation can reuse already-

composed high-level actions: by implicitly making use of the code invoked through the

gestures a user makes. Gesture imitation has the advantage over code generation that only

a relatively small portion of the population knows how to write code to control computers,

whereas a much larger portion of the population knows how to control computers using

interfaces like touchscreens — so there is potentially a much larger source of training data

that could be gathered. Gestures may also generalize across computers, operating systems,

and programming languages in a way that code cannot: moving a mouse does the same

thing on Windows and on Mac, though the underlying code looks different.

A good recent example of gesture imitation is [441]. Using the screen and the Docu-

ment Object Model (DOM) as inputs, the team behind [441] train an neural network agent

to control a computer using keyboard and mouse inputs. The task the agent solves is the

browser-based MiniWob++ task [442], where the agent must complete online goals like

booking a flight from a text instruction. Previous work on MiniWob++ uses hard-coded

higher-level actions (e.g., “Click(Near(Text(“Bob”)))”); in [441], the actions instead are

1Unfortunately the code does not work correctly.
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in the form [action type, (x, y) cursor coordinates, keyboard key index, task field index],

where the action type is one of {mouse (move, click, double click, press, release, wheel up,

wheel down), keyboard (key press, emit text), no-op}. Actions and observations are taken

at 30 Hz. The agent is trained using a combination of IL and RL, and it attains human-level

performance on the task.

Similar approaches have had some success in the domain of robotics. BC-Z [443]

collects a large dataset of recordings of video and gestures made by human operators

using a robot arm in response to commands like “pick up the ceramic bowl”. Using pre-

trained language models to embed the text command, an agent is trained to imitate the

operators’ gestures in response to the commands. In “Grounding Language in Play” [444,

445], a clever alternative way of collecting data for gesture imitation is introduced. The

experimenters ask human operators to play with a robot arm, using it to manipulate objects

with no particular goal in mind, and recordings of the video and gestures made during

these play sessions are made. Human labelers then annotate each recorded play example

with their answer to “what instruction would you give the agent to get from first frame to

last frame?” The annotations can then be inverted to be used as the input commands by

training a neural network to map from the annotation text to the gestures performed by

the robot. In their follow-up work [446], real-time voice control of the robot is enabled by

periodically embedding the decoded ASR transcript using CLIP [447] and feeding it to the

neural network agent.

8.4 Android gesture imitation

Following this work on gesture imitation, we propose to do something similar for control-

ling an Android smartphone as a testbed for end-to-end voice control. The action space is

simple (touching or lifting a finger on the 2-D plane), but unlike the robot arm or Mini-

Wob++ interface, there is potentially a much larger set of tasks that can be performed

using an Android phone — one can even open up an SSH connection and remotely log in
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Figure 8.3: Frame-level view of voice control implemented by human gestures on a smart-
phone. See Section 8.5 for a description of the gesture action structure.

to and control a more powerful computer.2 Using a smartphone as the environment may

also allow for interesting comparisons with existing phone-based voice assistants.

We are not the first to propose using Android as an environment: AndroidEnv [448]

provides a Python platform for running RL experiments on an Android emulator, using

touchscreen gestures as the action space, with the ability to define a “task” that computes

a reward signal and manages the beginnings and ends of episodes. We did not use An-

droidEnv for our work because it is not currently capable of recording video and gestures

for the purposes of imitation learning. AndroidEnv uses the Android Debug Bridge (ADB)

to send individual commands to the emulator, which we found to be too high-latency for

our purposes.

Fig. 8.3 shows how voice control looks from the perspective of an agent using the

phone. At each timestep, the agent observes an audio frame and a video frame, and takes

actions in the form of touchscreen gestures. There are only actions and states/observations

in this setup, not rewards. One could derive a reward signal from whether the final frame

of an episode is “the same” as the final frame of the demonstration — which would require

2An eccentric colleague of ours performed much of his graduate research in this way while living in his
van or in the woods in British Columbia, using a solar charger to power the phone.
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Figure 8.4: Screenshot of the home screen of the emulated phone used in experiments.

some engineering to determine what counts as “the same” (for example, should the clock

time at the top of the screen matter?). It would also be possible to use RL from human

feedback to fine-tune the agent. In this chapter we only consider imitation learning.

8.5 Data generation using Timers and Such

We generate training data for imitation learning on the smartphone using Timers and

Such as the source of natural language commands. The thesis author listened to all 2,151

non-synthetic examples in Timers and Such and acted out the command spoken in each

example using the emulated phone — for instance, for the command “set the timer for 1

minute and 56 seconds”, we open the “Clock” app on the home screen, tap on the “Timer”

tab, and enter 1’56” by tapping the appropriate numbers. The phone is a Google Pixel 3 XL

API 30 (Android 11.0 x86), emulated on the thesis author’s laptop using Android Studio.

146



Fig. 8.4 shows the home screen of the emulated device. We set up the “Simple Calculator”

app3 on the home screen alongside the “Clock” app. (We also have a “Unit Converter”

app on the home screen, but we use the Google searchbar for unit conversion commands

instead for simplicity. An icon for the default APK is also shown on the home screen, but

we don’t use it for anything.)

The training data4 is generated by synchronously collecting audio frames, video frames,

and gestures. We use PyAudio5 to record the microphone in real-time at a sampling rate

of 16,000 Hz. Samples are returned in chunks from the audio buffer: we use a chunk

size of 1,600 samples, which corresponds to 0.1s (10 Hz). Every time an audio frame

is returned, we record a video frame by taking a screenshot using MSS6 — hence the

video has a 10 Hz frame rate. The touchscreen gestures are recorded by reading directly

from /dev/input/event2. There are only two types of gestures: touching the finger

to the screen and lifting the finger from the screen. Gestures in Android are registered

as a sequence of 16-byte “events” (Fig. 8.5): a Unix timestamp, followed by 3 (= signals

an event containing information) or 0 (= signals that there are no more events for this

gesture), then one of {57 (= an event indicating the type of gesture), 53 (= event indicat-

ing an x-coordinate), 54 (= event indicating an x-coordinate), or 58 (= event indicating

the pressure with which the screen is touched — on our emulator, only 0 or 1024)}, and

finally a signed 4-byte integer (the x- or y- coordinate, pressure, or 0/-1 for touch/lift,

respectively). If the x- or y-coordinate is the same as the previous gesture’s, an event for

that coordinate is not generated.

Raw video is too expensive to store without compression. Downsampling by a factor

of 2, and no more, was possible without making any text in the videos illegible. Because

many frames do not change much from the previous frame (see Fig. 8.3), a simple way to

compress the video is to save only the indices and values of changed pixels. Sparse coding

combined with the highest level of zip compression gives us the best results (Table 8.1).

3https://apkpure.com/simple-calculator/com.veronicaapps.veronica.simplecalc
ulator

4The data can be found at https://zenodo.org/record/7529704. The code for recording each
episode can be found at https://github.com/lorenlugosch/AGI/blob/main/record.py.

5https://pypi.org/project/PyAudio/ — when collecting the demonstration dataset, audio
recording is only used for synchronization, since we already have the Timers and Such audio.

6https://pypi.org/project/mss/
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(1666801105, 913352, 3, 57, 0)
(1666801105, 913352, 3, 53, 32084)
(1666801105, 913352, 3, 54, 32678)
(1666801105, 913352, 3, 58, 1024)
(1666801105, 913352, 0, 0, 0)
(1666801105, 927943, 3, 58, 0)
(1666801105, 927943, 3, 57, -1)
(1666801105, 927943, 0, 0, 0)

Figure 8.5: Events for two gestures: touching the bottom-right corner of the screen (first
five events), followed by lifting the finger (last three events). The first two fields are
seconds and fractions of a second in Unix time.

Table 8.1: File size for a single typical episode video using different compression methods.

Method Size

Uncompressed 296 MB
Downsampled 74 MB
Downsampled + zip -9 3 MB
Downsampled + sparse encode 13 MB
Downsampled + sparse encode + zip -9 232 KB
Downsampled + MP4 262 KB

However, MP4 decoding was found to be much faster than decoding with our method, so

we use MP4 instead, so that dataloading does not become a bottleneck during training.

MP4 is lossy, so this introduces a small amount of artifact noise, but never enough to

obscure what is happening on the screen.

8.6 Agent architecture

8.6.1 Transducer

Our agent, which we will refer to using the innocent name Android Gesture Imitator (AGI),

needs to be capable of taking more than one action per time step, as we have tried to

illustrate in Fig. 8.3. (This can happen when dragging the finger across the touchscreen,

which is registered as a sequence of “touch” gestures without corresponding “lift” gestures,

but also sometimes when tapping quickly.) We therefore implement the AGI baseline using
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JoinerPredictor

Figure 8.6: Streaming Transducer for gesture imitation.

a Transducer (Section 2.2.12) neural network architecture (Fig. 8.6).

The Transducer has an encoder, predictor, and joiner network. The encoder trunk is a

unidirectional 3-layer LSTM with 1024 hidden units per layer and dropout 0.15 applied

after each layer. We choose LSTMs so that the model can run online with no modifications,

but other streaming networks could also be used [188]. The input to the encoder is a video

frame and a set of audio frames. Audio frames contain 1,600 samples, which corresponds

to 10 FBANK frames (extracting FBANK features with a 10 ms stride, as we have done

throughout the thesis). Thus there are 10 FBANK frames for each video frame. Each 630

× 300 (downsampled) video frame is encoded using a single 2-D convolutional layer with

3 input channels, 128 output channels, a stride of 7, and a filter length of 7, followed

by global max pooling, to produce a much smaller feature vector of size 128. The audio

features and video features are concatenated into a single vector and passed through a

single linear layer before being fed into the encoder trunk LSTM. Unlike [446], we do not

perform ASR decoding, which gives us the advantages of end-to-end SLU discussed in the

previous chapters.

The predictor is a 1-layer LSTM with 1024 hidden units, which takes the (decoded or

teacher-forced) gestures as input. The encoder and predictor feed into the joiner network,
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a feedforward ReLU network with 1024 hidden units followed by a linear transformation

to the output activations.

8.6.2 Output parameterization

The output layer of the joiner has a slightly different interpretation from the joiner softmax

described in Section 2.2.12: it has a sigmoid output for the “null” ∅ output (instead of

having a softmax over ∅ and a set of labels); a sigmoid output for the gesture type (touch

or lift); and real-valued outputs for an x-coordinate and y-coordinate, normalized to be

between 0 and 1. The ∅ output is equivalent to “no op”: move to the next timestep

without making a gesture.

Real values (a Gaussian parameterization) are not the only possible way to code the

output coordinates. Another option is tile coding [449, 450, 451], which partitions output

space into (possibly overlapping) sections and uses their indices as a discrete set. Other

options include mixtures of Gaussians (Section 2.2.3) or mixtures of logistics [452].

8.7 Training

The agent can be trained on the episode dataset by maximizing the likelihood of the

demonstration gestures.7 Since the input is a sequence of audio and video frames, and out-

put is a sequence of gestures, one could imagine training a sequence-to-sequence model to

output the gestures without an alignment. However, in this instance, the alignment mat-

ters because the time at which a gesture is made matters: for example, making a gesture

before the required screen has loaded will not register correctly.

Instead of using the full-sum Transducer loss (marginalizing over all possible align-

ments), we maximize the likelihood of the ground-truth alignment from the demonstra-

tion. The probability of a single alignment can be computed using the joiner outputs along

the edges of the alignment graph corresponding to the correct (t, u) pairs. Fig. 8.7 shows

how the encoder output vectors and predictor output vectors are gathered to form the

7Our SpeechBrain code for AGI can be found at https://github.com/lorenlugosch/AGI.
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Figure 8.7: Aligned Transducer encoder and predictor outputs.

input to the joiner for a particular alignment during training.

8.8 Decoding

We use a greedy decoding algorithm (similar to the one in Section 2.2.12) to run the

agent. At each timestep, we run the encoder, predictor, and joiner to compute the sigmoid

probability for ∅: if it is greater than 0.5, we move to the next timestep; else, we check

the sigmoid probability for the gesture type (“touch” or “lift”) and output the appropriate

gesture. If the gesture is a “touch” gesture, we output the predicted (x, y) coordinates. It

might be possible to use Monte Carlo tree search (MCTS) instead of greedy decoding for

action selection; we leave exploring this to the future.

8.9 Evaluation

In increasing order of difficulty, four ways in which the agent can be evaluated are

1. Teacher forcing: given the correct alignment, measure the accuracy of the predicted

gesture types and the mean squared error of the predicted coordinates.

2. Decoding (video from demonstration): instead of conditioning on the correct

alignment, use greedy decoding. The videos from demonstrations are not the correct

visual inputs in this case, since the visual results of the agent’s actions will diverge

from the demonstration. This scenario is more difficult than when the alignment is

provided, but the agent can still “cheat” by observing that a gesture has been made

in the demonstration video when deciding whether to output a gesture.
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3. Decoding (video from environment): the actual scenario in which the agent would

work. This requires the agent to interact with the emulator environment in real-time,

since the Android emulator itself (not an app within the emulator) does not currently

allow for single-step execution. We have found that the computer on which we have

conducted our experiments was not fast enough to run even a much smaller baseline

network in real-time without skipping input frames. Careful low-level implementa-

tion on a faster machine might be necessary to run this type of experiment.

4. Decoding (blind): provide no video input. Because this scenario does not require

feedback from the environment, it is possible to evaluate it without interacting with

the emulator in real-time. Though this scenario is more challenging, it is worth

noting that in the case of Timers and Such commands, much of the time the agent

only needs the very first video frame to be able to determine whether to exit the

current app and open another app.

We have trained a number of baseline agents on the demonstration dataset. We use

the Adam optimizer with a learning rate of 3e-4, higher than which led to training diverg-

ing. Because the video data consumes a large amount of memory, we have only been able

to train using a small batch size of 4 on the Mila cluster. In addition to the architecture

described above, we have tested a baseline in which dropout is applied to the video fea-

tures, a baseline in which the video stream is dropped entirely, and a baseline in which the

(character-level, one-hot-encoded) transcript is fed into the encoder instead of the audio.

So far we have not had success with the baseline agents, in any of the different evalu-

ation modes. We find that with teacher forcing, while the loss goes down and “no op” is

correctly predicted for most frames, the agent does not do a good job predicting gesture

types or coordinates — by which we mean that the predicted gesture coordinates are often

not even in the correct upper/lower half or left/right half of the screen. When decoding

with or without video input, we find that the agent often does not even start by correctly

predicting a “touch” gesture (it is impossible to make a “lift” gesture by lifting the finger

without having first made a “touch” gesture).

It is not clear what steps need to be taken for the agent to successfully learn the task. It
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could be that the dataset is too small, or that it is necessary to pre-train the encoder for the

different modalities in some way using larger external datasets. We leave this exploration

for future work.

8.10 Conclusion

We have not yet achieved the ideal of a fully end-to-end deep neural network voice control

system — but with the environment, dataset, code, and conceptual framework introduced

by this chapter, we hope that future researchers will be able to make “AGI” a reality. We

conclude with a few simple suggestions that others might wish to try.

• More data: To enable large-scale data collection using crowdsourcing, it would be

necessary to replicate the thesis author’s recording setup in a way easy for anyone

with a computer to use. This could make the dataset a lot larger and provide more

trajectories for the same commands and a more diverse set of “gesture styles” for

the agent to learn from. Different users training on different emulated devices could

enable the agent to generalize to new devices. This setup could also be used to

implement the “learning from play” setup in [444] mentioned earlier.

• Improved loss functions: Training may be helped by introducing some of the aux-

iliary loss terms seen earlier, such as the predictor-only autoregressive loss, or an

encoder-only transcription loss (CTC). In addition to training on the aligned gestures,

the full-sum Transducer loss might help (at the cost of more memory consumption),

since learning to match the exact frame in which the demonstrator performs a ges-

ture might be difficult initially. Finally, a CLIP-like loss, in which the agent must learn

to guess which gesture sequence corresponds to which audio sequence, might serve

to teach the agent the different “intents”, without the help of hard-coded semantics.

Some work might need to be done to reduce memory consumption to make it possi-

ble to use the Transducer loss or use large enough minibatches for the CLIP loss to

work.

• Other imitation learning methods: DAgger and Upside-Down RL [453, 42] may
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also be interesting to explore, in addition to our simple behavior cloning setup.

• Conditional computation: State-of-the-art language understanding models seem to

require a large number of parameters to store all the world knowledge necessary for

accurate prediction. Sophisticated language understanding might not be necessary

for AGI to learn the Timers and Such tasks, but it certainly will be for more diffi-

cult tasks. Running a model as large as GPT-3 at 10 Hz with low latency will be

challenging. Conditional computation, such as the streaming variety we introduced

in Chapter 4, might be useful for enabling very large models to do real-time voice

control.

• Alternate training targets: A limitation of directly imitating gestures is that imple-

menting some functionality using a sequence of gestures takes more time than simply

executing the underlying APIs that get called. An alternative worth exploring is to

trace which APIs get called by the user’s gestures and learn to imitate those calls

instead. The disadvantage of imitating API calls is that timing information conveyed

by the gesture trajectories might be important for certain functionalities.
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Chapter 9

Conclusion

The thesis author recently found himself pretending to be a robot for his 8-year-old nephew,

responding with pedantic literality to spoken commands for the young man’s amusement

and edification. The point was to demonstrate how “computers are stupid and you need

to program them to tell them exactly what to do or they won’t do it correctly”. With each

passing year this lesson grows less true. Deep neural networks are now capable of being

trained to usefully understand spoken and written language by taking advantage of large

labeled and unlabeled datasets in various ways. This thesis has described some of our small

contributions to this larger trend, our view of the current limitations of the technology, and

our hopes for the future.

Starting with ASR, in Chapter 3 we ported the successful semi-supervised learning

recipes used in end-to-end ASR from the monolingual setting to the multilingual setting,

greatly improving the performance of a massively multilingual speech recognizer using

unlabeled audio with only a few simple modifications to existing techniques. This work re-

sulted in the creation of the open-source M-CTC-T acoustic model, a step towards practical

speech recognizers with the code-switching capability alluded to in Chapter 1. In Chapter

4 we explored a very different way to use unlabeled audio for ASR, and a new use for un-

supervised pre-training and autoregressive models in general, namely as the front-end of

a conditional computation system for neural networks. We showed that using the autore-

gressive model both to extract features from the input, and to select a bigger downstream

network to process surprising inputs, could solve an ASR task with the same performance
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as the bigger network using fewer FLOPs.

Next, we turned from ASR to SLU and discussed end-to-end SLU, where a single model

maps from audio to semantics instead of composing distinct ASR and NLU models. We

advocated the use of end-to-end SLU for its flexibility, simpler software implementation,

faster decoding, and ability to optimize all parameters jointly for the actual task of inter-

est. But training and testing SLU models is challenging due to the variability of speech

compared to text, the lack of inductive biases conferred by a text representation, and

the scarcity of labeled data. Our work in this thesis has mitigated some of these chal-

lenges. In Chapter 5, we showed that synthesizing speech from multiple speakers could

enable end-to-end SLU without recording new audio or modifying the neural network ar-

chitecture, and using synthetic speech as data augmentation improved upon our previous

state-of-the-art results for the Fluent Speech Commands dataset. In Chapter 6, we de-

scribed the design and creation of the open-source Timers and Such SLU dataset, along

with a set of extensively tested pre-trained LMs, NLU models, SLU models, and code for

using the dataset that should be useful for experiments on other SLU benchmarks and

beyond. In Chapter 7 on the SpeechBrain toolkit, we described our end-to-end and non-

end-to-end SLU recipes in SpeechBrain. In so doing we showed that the SLURP dataset,

previously thought to be too challenging for end-to-end models, could in fact be solved

with them, the first such proof using a public dataset with non-trivial semantic difficulty.

Subsequent state-of-the-art recipes for SLURP have followed our lead in using end-to-end

models [454].

Finally, in Chapter 8 we noted the disadvantages of both conventional and end-to-end

SLU setups and expressed our hope of getting past the bottleneck of text and handcrafted

labels entirely using a more agentic approach. We discussed a number of possible archi-

tectures for voice control based on reinforcement learning and imitation learning, more

or less handcrafted high-level actions, LLMs and code generation, and directly imitating

a human demonstrator in the environment of interest. Focusing on gesture imitation, we

created and released a dataset of trajectories for following Timers and Such commands in

an Android environment and SpeechBrain code for training agents to control the environ-

ment, in the hope that other researchers will solve this task or use it as inspiration for a
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more tractable task.

We conclude by listing some ideas for future work.

• The cross-lingual semi-supervised learning experiment described in Section 3.10, in

which unlabeled data for the wrong language is used in self-training, raises many

questions. Under what circumstances does this work? How different can the lan-

guages be, and how much labeled and unlabeled data is required? Answering these

questions would be useful for both for practitioners interested in getting as much use

out of their unlabeled data as possible and for researchers working on theories of

semi-supervised learning.

• Speech synthesizers have improved considerably since we ran the experiments de-

scribed in Chapters 5 and 6 [455]. It would be worth revisiting these experiments

using newer state-of-the-art TTS models and varying the speaking style in addition

to the speaker identity.

• Much of the work describing mixture-of-experts models has found them to be un-

stable during training [456], as we found with even the simple 2-expert model in

Chapter 4. Designing auxiliary training targets for learned expert selection, possibly

based on surprisal, may help stabilize mixtures-of-experts.

• We only briefly discuss the use of LLMs for end-to-end voice control in Section 8.3.3,

but we feel that this is the most promising avenue for improving voice control in

the short term. In the long term, we believe the constraints of text-based models in

turn-based interactions will make alternative approaches more attractive. Gesture

imitation is one such approach. The gesture imitation agent proposed in Chapter 8

may already be capable of useful behavior with some tuning. A missing ingredient

that may be necessary is a large-scale dataset of gesture data from human-computer

interaction for unsupervised pre-training. Figuring out how to create such a dataset

is itself a great challenge.
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[27] F. Eyben, M. Wöllmer, B. Schuller, and A. Graves, “From speech to letters-using a novel neural network

architecture for grapheme based ASR,” in 2009 IEEE Workshop on Automatic Speech Recognition &

Understanding. IEEE, 2009, pp. 376–380.

[28] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with recurrent neural networks,” in

International conference on machine learning. PMLR, 2014, pp. 1764–1772.

[29] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B. Cowan, W. Shen,

C. Moran, R. Zens et al., “Moses: Open source toolkit for statistical machine translation,” in Pro-

ceedings of the 45th annual meeting of the association for computational linguistics companion volume

proceedings of the demo and poster sessions, 2007, pp. 177–180.

[30] T. Kudo and J. Richardson, “SentencePiece: A simple and language independent subword tokenizer

and detokenizer for neural text processing,” arXiv preprint arXiv:1808.06226, 2018.

[31] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,” in Soviet

physics doklady, vol. 10, no. 8. Soviet Union, 1966, pp. 707–710.

[32] R. A. Wagner and M. J. Fischer, “The string-to-string correction problem,” Journal of the ACM (JACM),

vol. 21, no. 1, pp. 168–173, 1974.

[33] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever, “Generative pretraining from

pixels,” in International Conference on Machine Learning, 2020, pp. 1691–1703.

[34] R. A. Fisher, “On the mathematical foundations of theoretical statistics,” Philosophical Transactions of

the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, vol.

222, no. 594-604, pp. 309–368, 1922.

[35] S. M. Stigler, “The epic story of maximum likelihood,” Statistical Science, pp. 598–620, 2007.

[36] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The curious case of neural text degeneration,”

ICLR, 2020.
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[314] V. Campos, B. Jou, X. Giró-i Nieto, J. Torres, and S.-F. Chang, “Skip RNN: Learning to skip state

updates in recurrent neural networks,” NeurIPS Time Series Workshop, 2017.

[315] Y. Jernite, E. Grave, A. Joulin, and T. Mikolov, “Variable computation in recurrent neural networks,”

ICLR, 2017.

[316] T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama, “Adaptive neural networks for efficient inference,”

in Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org, 2017,

pp. 527–536.

[317] M. Dehghani, S. Gouws, O. Vinyals, J. Uszkoreit, and Ł. Kaiser, “Universal transformers,” ICLR, 2019.

[318] A. Bapna, N. Arivazhagan, and O. Firat, “Controlling computation versus quality for neural sequence

models,” arXiv preprint arXiv:2002.07106, 2020.

180



[319] J. Ren, P. J. Liu, E. Fertig, J. Snoek, R. Poplin, M. Depristo, J. Dillon, and B. Lakshminarayanan, “Like-

lihood ratios for out-of-distribution detection,” in Advances in Neural Information Processing Systems

32, 2019.

[320] S. J. Mielke, R. Cotterell, K. Gorman, B. Roark, and J. Eisner, “What kind of language is hard to

language-model?” ACL, 2019.

[321] H. He, N. Peng, and P. Liang, “Pun generation with surprise,” NAACL, 2019.

[322] K. M. Rocki, “Surprisal-driven feedback in recurrent networks,” arXiv preprint arXiv:1608.06027,

2016.

[323] K. Rocki, T. Kornuta, and T. Maharaj, “Surprisal-driven zoneout,” NeurIPS - Continual Learning and

Deep Networks Workshop, 2016.

[324] T. Alpay, F. Abawi, and S. Wermter, “Preserving activations in recurrent neural networks based on

surprisal,” Neurocomputing, vol. 342, pp. 75–82, 2019.

[325] W. Lotter, G. Kreiman, and D. Cox, “Deep predictive coding networks for video prediction and unsu-

pervised learning,” ICLR, 2017.

[326] A. Radford, R. Jozefowicz, and I. Sutskever, “Learning to generate reviews and discovering senti-

ment,” arXiv preprint arXiv:1704.01444, 2017.

[327] D. Ha and J. Schmidhuber, “Recurrent world models facilitate policy evolution,” NeurIPS, 2018.

[328] Y.-A. Chung, W.-N. Hsu, H. Tang, and J. Glass, “An unsupervised autoregressive model for speech

representation learning,” Interspeech, 2019.

[329] N. Srivastava, E. Mansimov, and R. Salakhudinov, “Unsupervised learning of video representations

using LSTMs,” in International Conference on Machine Learning, 2015, pp. 843–852.

[330] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language models are unsupervised

multitask learners,” OpenAI Blog, vol. 1, no. 8, p. 9, 2019.

[331] J. J. Rissanen, “Generalized Kraft inequality and arithmetic coding,” IBM Journal of Research and

Development, vol. 20, no. 3, pp. 198–203, 1976.

[332] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data compression,” Communications

of the ACM, vol. 30, no. 6, pp. 520–540, 1987.

[333] G. A. Frantz and R. H. Wiggins, “Design case history: Speak & Spell learns to talk,” IEEE Spectrum,

vol. 19, no. 2, pp. 45–49, 1982.

[334] D. O’Shaughnessy, “Linear predictive coding,” IEEE Potentials, vol. 7, no. 1, pp. 29–32, 1988.

181



[335] Y. Huang and R. P. Rao, “Predictive coding,” Wiley Interdisciplinary Reviews: Cognitive Science, vol. 2,

no. 5, pp. 580–593, 2011.

[336] A. Clark, “Whatever next? Predictive brains, situated agents, and the future of cognitive science,”

Behavioral and Brain Sciences, vol. 36, no. 3, pp. 181–204, 2013.

[337] J. Schmidhuber, “Neural sequence chunkers,” 1991.

[338] R. Aljundi, P. Chakravarty, and T. Tuytelaars, “Expert gate: Lifelong learning with a network of ex-

perts,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp.

3366–3375.

[339] F. S. Fard and T. Trappenberg, “A novel model for arbitration between planning and habitual control

systems,” Frontiers in Neurorobotics, vol. 13, p. 52, 2019.

[340] A. Goyal, Y. Bengio, and M. B. S. Levine, “The variational bandwidth bottleneck: Stochastic evaluation

on an information budget,” ICLR, 2020.

[341] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural probabilistic language model,” Journal

of machine learning research, vol. 3, no. Feb, pp. 1137–1155, 2003.

[342] H. Larochelle and I. Murray, “The neural autoregressive distribution estimator,” in Proceedings of the

Fourteenth International Conference on Artificial Intelligence and Statistics, 2011, pp. 29–37.

[343] T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary differential equa-

tions,” in Advances in neural information processing systems, 2018, pp. 6571–6583.

[344] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S. Pallett, “DARPA TIMIT acoustic-

phonetic continous speech corpus CD-ROM. NIST speech disc 1-1.1,” NASA STI/Recon technical report

n, vol. 93, 1993.

[345] M. McAuliffe, M. Socolof, S. Mihuc, M. Wagner, and M. Sonderegger, “Montreal Forced Aligner:

Trainable Text-Speech Alignment Using Kaldi.” in Interspeech, 2017, pp. 498–502.

[346] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural net-

works on sequence modeling,” NeurIPS 2014 Deep Learning and Representation Learning Workshop,

2014.

[347] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network regularization,” arXiv preprint

arXiv:1409.2329, 2014.

[348] H. Sak, A. Senior, K. Rao, and F. Beaufays, “Fast and accurate recurrent neural network acoustic

models for speech recognition,” Interspeech, 2015.

[349] F. Lieder, A. Shenhav, S. Musslick, and T. L. Griffiths, “Rational metareasoning and the plasticity of

cognitive control,” PLoS computational biology, vol. 14, no. 4, p. e1006043, 2018.

182



[350] A. R. Otto, S. J. Gershman, A. B. Markman, and N. D. Daw, “The curse of planning: dissecting multiple

reinforcement-learning systems by taxing the central executive,” Psychological science, vol. 24, no. 5,

pp. 751–761, 2013.

[351] A. Newell, “A tutorial on speech understanding systems,” Speech recognition, pp. 4–54, 1975.

[352] D. R. Reddy, Speech recognition: invited papers presented at the 1974 IEEE symposium. Elsevier, 1975.

[353] D. H. Klatt, “Review of the ARPA speech understanding project,” The Journal of the Acoustical Society

of America, vol. 62, no. 6, pp. 1345–1366, 1977.

[354] L. D. Erman, F. Hayes-Roth, V. R. Lesser, and D. R. Reddy, “The Hearsay-II speech understanding

system: Integrating knowledge to resolve uncertainty,” ACM Computing Surveys (CSUR), vol. 12,

no. 2, pp. 213–253, 1980.

[355] A. Coucke, A. Saade, A. Ball, T. Bluche, A. Caulier, D. Leroy, C. Doumouro, T. Gisselbrecht, F. Calta-

girone, T. Lavril et al., “Snips voice platform: an embedded spoken language understanding system

for private-by-design voice interfaces,” arXiv preprint arXiv:1805.10190, 2018.

[356] B. Ons, J. F. Gemmeke, and H. Van hamme, “The self-taught vocal interface,” EURASIP Journal on

Audio, Speech, and Music Processing, vol. 2014, no. 1, pp. 1–16, 2014.

[357] Y.-Y. Wang, A. Acero, and C. Chelba, “Is word error rate a good indicator for spoken language under-

standing accuracy,” in 2003 IEEE workshop on automatic speech recognition and understanding (IEEE

Cat. No. 03EX721). IEEE, 2003, pp. 577–582.

[358] E. Shriberg, A. Stolcke, D. Hakkani-Tür, and G. Tür, “Prosody-based automatic segmentation of speech

into sentences and topics,” Speech communication, vol. 32, no. 1-2, pp. 127–154, 2000.

[359] T. Tran, Neural models for integrating prosody in spoken language understanding. University of Wash-

ington, 2020.

[360] T. Tran and M. Ostendorf, “Assessing the use of prosody in constituency parsing of imperfect tran-

scripts,” arXiv preprint arXiv:2106.07794, 2021.

[361] E. Salesky, D. Etter, and M. Post, “Robust open-vocabulary translation from visual text representa-

tions,” EMNLP, 2021.

[362] V. Stouten, K. Demuynck, and H. Van hamme, “Discovering phone patterns in spoken utterances by

non-negative matrix factorization,” IEEE Signal Processing Letters, vol. 15, pp. 131–134, 2008.

[363] L. ten Bosch, L. Boves, H. Van hamme, and R. K. Moore, “A computational model of language acqui-

sition: the emergence of words,” Fundamenta Informaticae, vol. 90, no. 3, pp. 229–249, 2009.

183



[364] V. Renkens, V. Tomar, and H. Van hamme, “Incrementally learn the relevance of words in a dictionary

for spoken language acquisition,” in 2016 IEEE Spoken Language Technology Workshop (SLT). IEEE,

2016, pp. 144–150.

[365] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,”

Nature, vol. 401, no. 6755, pp. 788–791, 1999.

[366] J. Poncelet, V. Renkens, and H. Van hamme, “Low resource end-to-end spoken language understand-

ing with capsule networks,” Computer Speech & Language, vol. 66, p. 101142, 2021.

[367] D. Serdyuk, Y. Wang, C. Fuegen, A. Kumar, B. Liu, and Y. Bengio, “Towards end-to-end spoken lan-

guage understanding,” ICASSP, 2018.
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