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Abstract
The biomolecular interactions that take place between a virus and its host are

complex in nature and play a significant role in governing functional and evolu-

tionary dynamics within a cell. Moreover, the mechanics by which viruses infect,

replicate, and otherwise impact its host varies across individuals, species, and

between generations. Therefore, determining what interactions occur, how they

evolve, and their importance within the context of the set of all known interac-

tions that take place between genes within a cell, known as the interactome, is

of significant value and has yet to be fully established. This gap in knowledge

makes it difficult to develop therapeutic interventions for active viral infections,

as well as hinders the establishment of efficient cell-based vaccine manufacturing

platforms, which rely on viruses to make their product.

To this end, a systems biology approach has been taken to elucidate a com-

prehensive set of human-influenza genetic and functional interactions. These

are relationships that occur between and within viral and host genes, all the

way from the level of the genome, up to the proteome, and beyond. To charac-

terize these interactions, host genes that have evidence of interacting with the

influenza virus, also known as host factors, were curated from the literature.

These genes were then classified, with varying degrees of confidence based on

the nature of the interaction and experimental source, as either being essential

for or acting against viral propagation. Next, a candidate set of antiviral genes

was derived computationally from the analysis of second-generation sequencing

data obtained from a genome-wide CRISPR/Cas9-mediated knockout screen of

HEK-293SF cells that were infected with the influenza virus. This powerful type

of experiment, whereby the human genome is systematically perturbed and the

resulting phenotypic effects are measured, can be used to probe the function of

genes, and therefore the nature of their interactions, under a variety of condi-

tions, and, more importantly, at the level of the cell. These annotated datasets,

one with support from the literature and the other derived from experimen-

tal data, were then used as a framework to investigate the human interactome,
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wherein various biological properties and functional relationships were explored.

From this, a set of antiviral genes has been identified and characterized as po-

tential targets for knocking out, or otherwise genetically engineering, as a way to

increase viral titres in cell-based vaccine manufacturing platforms. This study

also extends upon the knowledge base for proviral genes, which may be used to

develop more effective or novel treatments for inhibiting active viral infections.
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Résumé
Les interactions biomoléculaires qui ont lieu entre un virus et son hôte sont de na-

ture complexe et jouent un rôle important dans la gouvernance de la dynamique

fonctionnelle et évolutive au sein d’une cellule. De plus, les mécanismes par les-

quels les virus infectent, se reproduisent et ont un impact sur leur hôte varient

selon les individus, les espèces et les générations. Par conséquent, déterminer

quelles interactions se produisent, comment elles évoluent et leur importance

dans le contexte de l’ensemble de toutes les interactions identifiées qui ont lieu

entre les gènes au sein d’une cellule, autrement connu sous le nom d’interactome,

est d’une valeur significative et doit encore être pleinement établi. Cette lacune

du point de vu des connaissances rend difficile la mise au point de protocoles

d’interventions thérapeutiques contre les infections virales actives, et entrave la

mise en place de plateformes cellulaires de fabrication de vaccins efficaces, qui

dépendent des virus pour produire les composantes du dit vaccin.

À cette fin, une approche de biologie systémique a été adoptée pour élucider un

ensemble complet d’interactions génétiques et fonctionnelles entre le virus de la

grippe et le système immunitaire humain. Il s’agit de relations qui se produisent

entre et au sein des gènes viraux et hôtes, depuis le niveau du génome jusqu’au

protéome, et au-delà. Pour caractériser ces interactions, les gènes de l’hôte, col-

lectivement appelés facteurs de l’hôte lorsqu’ils sont étudiés par rapport aux

agents pathogènes, qui ont été identifiés comme interagissant avec le virus de

la grippe, ont été tirés de la littérature. Ces gènes ont ensuite été classés, avec

des degrés de confiance variables en fonction de la nature de l’interaction et de

la source expérimentale, comme étant essentiels à la propagation du virus ou

agissant contre celle-ci. Ensuite, un ensemble candidat de gènes antiviraux a

été dérivé par calcul à partir de l’analyse des données de séquençage deuxième

génération obtenues en effectuant un criblage pangénomique, via la technologie

CRISPR/Cas9, de cellules HEK-293SF infectées par le virus de la grippe. Ce

type d’expérience, qui consiste à perturber systématiquement le génome humain

et à mesurer les effets phénotypiques qui en résultent, peut être utilisé pour son-
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der la fonction des gènes, et donc la nature de leurs interactions, dans diverses

conditions et, surtout, au niveau de la cellule. Ces ensembles de données anno-

tées, l’un étayé par la littérature et l’autre dérivé de données expérimentales, ont

ensuite été utilisés comme cadre d’étude de l’interactome humain, dans lequel

diverses propriétés biologiques et relations fonctionnelles ont été explorées. À

partir de là, des gènes antiviraux ont été identifiés et caractérisés comme cibles

potentielles pour l’élimination par génie génétique, afin d’augmenter les titres

viraux dans les plateformes cellulaires de fabrication de vaccins. Cette étude

élargit également la base de connaissances sur les gènes proviraux, qui peuvent

aussi être utilisés pour développer des traitements plus efficaces, plus innovants

pour inhiber les infections virales actives.
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Chapter 1: Introduction

The ubiquitous nature of viruses as biological entities within our ecosystems has had,

and continues to have, profound effects on living organisms. The extent of their impact

on life is significant and far-reaching, especially when one considers their ability to scale

rapidly by infecting a host, hijacking its molecular machinery, and subsequently replicat-

ing, packaging, and producing itself orders of magnitude over. This reliance of a virus on

its host for survival and replication reinforces the notion that there exists an intimate re-

lationship between them; viruses are, by their very nature, obligate parasites. The pursuit

of understanding their relationship is complicated by the variability in their interactions

across viral and host species, the stage of viral life cycle that they are in, their molecular

environment, and numerous other factors. As such, this necessitates a careful and critical

analysis to understand what is going on at a systems-wide level. Therefore, this thesis

sets out to characterize some of the interactions that viruses—specifically, influenza—have

with their living hosts by relying upon insights derived from large biological datasets. By

doing so, a systems-level understanding of the set of all known molecular interactions that

take place between host and viral genes, known as the host-virus interactome, may be de-

veloped. Importantly, this type of analysis compliments the knowledge derived from more

traditional, reductionist-style experimental approaches. Whichever strategy is taken, the

common goal remains to understand the extent and impact that viruses have had, and

continue to have, on human health and disease, and, more broadly, on the evolutionary

trajectory of life.

1.1 Motivation and Rationale of Research

The interactions that viruses have with their living hosts range from simple, direct phys-

ical interactions to more complex and nuanced indirect relationships; as such, the extent

to which viruses perturb their hosts, the identity of the interacting components, and the

methods by which they perform their function are all areas of study that are currently

under intensive research10,38,39,43,62,64,89,119. This is especially the case in the year of 2020,

with the advent of coronavirus disease 2019 (COVID-19) and the ensuing pandemic caused
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by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The threat of in-

fectious disease outbreaks also remains for other viruses; in particular, the influenza virus

has a comparatively high burden of disease through its seasonal epidemics54,91 and contin-

ues to have the potential to develop into much worse70. These factors have significantly

increased the pressure to understand the intricacies of host-virus interactions; by doing

so, more effective antiviral therapies may be developed, and, improvements may be made

to cell-based vaccine production platforms.

Although the methods that different viral species use to hijack the cellular machinery of

their host varies, similarities do exist. Therefore, knowledge of the mechanisms of infection

and viral production—and, more generally, the targets of the host cell—from one species

of virus can provide insight to the understanding of others. It is with this theme that

this thesis sets out to explore and characterize the interactions that viruses—specifically,

influenza—have with their hosts through the analysis of large biological datasets. Im-

portantly, the work in this thesis aims to disambiguate the critical differences between

anti- and pro-viral host genes, which have historically been studied independently of one

another, given their distinct motivations. This unique aspect allows for the exploration of

host factors that either improve viral production for use in cell-based vaccine development,

or, restrict viral infection for use as an antiviral therapeutic.

1.2 Objectives

The main objective of this thesis is to use bioinformatic techniques to further characterize

human-influenza genetic and functional interactions; by doing so, antiviral genes—those

which may be inhibited to increase viral production for applications in cell-based vaccine

development—and proviral genes—those which may be targeted for inhibition as a host-

based antiviral therapy, or over-expressed to improve viral production capacity—will be

identified. To achieve this, three specific aims have been defined:

1. Curate, annotate, and analyze host factors from the literature that have evidence of

interacting with viruses, and specifically that of influenza.
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2. Identify and rank antiviral host factors through the analysis of second-generation se-

quencing (SGS) reads derived from a genome-wide knockout screen of human embry-

onic kidney (HEK-293SF) cells infected with influenza. This bioinformatic analysis

is included as part of the study conducted by Sharon et al. (2020)89.

3. Build interactomes based on various interaction types and perform network analyses

on them using both the literature-derived host factors from (1) and the computationally-

derived putative antiviral host factors from (2) as a guide.

Through fulfillment of the three specific aims listed above, influenza-specific anti- and pro-

viral host factors—along with a subset of their within-host and viral interactions—will be

identified and further characterized within the context of several interactome networks.

This information may be used to engineer and optimize cell-based vaccine production

platforms, and, to extend upon the knowledge base for proviral genes, which may be used

to develop more effective or novel treatments for inhibiting active viral infections.

1.3 Thesis Outline

This thesis is divided into six chapters, including this introductory one.

Chapter two provides some background information to set the stage for the thesis, as

well as surveys the relevant literature pertaining to the topics of gene function, systems

biology, and the applications of host-virus interactions in cell-based vaccine development

and antiviral therapy.

Then, chapter three introduces a framework for classifying host factors (figure 1), pro-

vides several sets of literature-curated host factors, and walks through the computational

analysis of SGS reads derived from a genome-wide knockout screen of HEK-293SF cells

infected with influenza, as published in the Sharon et al. (2020) study89. It then concludes

with a simple comparison of putative antiviral gene screen hits identified in a selection of

influenza-specific host factor screening studies.

Chapter four introduces several different interactome datasets and explores their network

properties (4.2.1 and 4.2.2). The host factors identified in chapter three are then used to
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probe the various interactomes as an integrative approach for exploring their properties

at the systems-level (4.2.3 and 4.2.4).

Finally, a general discussion is given in chapter five on: (5.1) methods for improving host

factor curation efforts; (5.2) variations in high-throughput screening experiments that

complicate their integration; and, (5.3) potential strategies for further characterization of

host-virus interactions.

The thesis then concludes with chapter six, which provides a concise summary of the

research findings with specific reference to the objectives.
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Chapter 2: Literature Review

A literature review has been conducted that focuses on three main topics: (2.1) a se-

lection of methods used to determine gene function; (2.2) computational techniques in

systems biology that are used to probe large biological datasets; and, (2.3) the various

applications that host-virus interactions have within the context of improving cell-based

vaccine development, or, identifying targets for antiviral therapy.

2.1 Gene Function

This section introduces the gene as one of the basic units of function within a cell or

virus. Then, a selection of methods used for determining the function of a gene of interest

are discussed. Finally, some terminology is provided around the types of genes that are

involved in host-virus interactions, and the ways in which they can be classified. By

defining the function of a gene and exploring the methods that are used to determine it,

we introduce a formal way of thinking about the nature of the interactions between a

virus and its host.

2.1.1 Genes as Heritable Units of Function

At the most basic level, genes are sequences of DNA that are transcribed into messenger

RNA (mRNA), translated into a sequence of amino acids, and then folded into a three-

dimensional structure; this structure, the protein, is then capable of carrying out molecular

function. At each level of this exchange in information between the different biopolymers,

modifications may be made or regulation imparted.

Importantly, the complete sequence of DNA (genome), the set of transcribed RNA molecules

(transcriptome), and the set of translated proteins (proteome) are all major biological

components that contain the variation for which the mechanisms of evolution act upon.

By extension, the interactions between an invading pathogen and its host also occur be-

tween these functional molecules, among others. As a consequence of these interactions,

many pathogen and host genes are specifically designed, constrained, or otherwise altered
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due to inter-species co-evolution; for the influenza virus, many of the mechanisms that

drive this form of evolution and adaptation are unknown96. Furthermore, the impact that

these processes have on host-virus interactions is significant, although the extent to which

this occurs, and how it does so, remains unclear85.

When considering the evolution of the influenza virus—where the scale of viral infection

and replication is high within the host—there is more than sufficient opportunity for

mutations to be introduced and subsequent selection to act upon. With recent advance-

ments that have significantly reduced the cost per nucleotide of sequencing, it has made it

possible to measure these genetic changes and therefore track the source and subsequent

evolution of specific influenza virus species and their subtypes115. One such resource that

has accomplished this is the ‘Virus Pathogen Resource’2 and its associated ‘Influenza Re-

search Database’118, which actively collects and stores a compendium of data on viruses.

However, the numerous other molecules that may act as the intermediary between viruses

and their hosts—such as lipid, carbohydrate, and phosphate post-translational modifica-

tions on proteins—further complicates the understanding and tracking of heritable units

of function; this makes it difficult to predict the functional consequences of host-virus

interaction evolution.

2.1.2 Probing Gene Function

The majority of approaches aimed at determining the function of a gene—and thereby

the nature of its interactions—involve perturbing the gene under study in some way and

observing the phenotypic effect that it has on the organism, cell, or virus. However, the

process of identifying a biological signal that corresponds to some aspect of the function of

the gene under study, qualitatively or quantitatively measuring it, and finally distinguish-

ing it from biological noise, is a formidable challenge. A selection of techniques used for

measuring gene function—directly or indirectly—are discussed in the following sections.
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Forward and Reverse Genetics

In many cases, the underlying genetic determinants of a given phenotype are unknown,

especially with complex traits, where many genes act in combination to influence the final

observable phenotype. As such, the process of forward genetics may be applied to discover

the gene, or genetic elements, that contribute to a phenotype.

This process begins by identifying a specific qualitative or quantitative phenotype of in-

terest. If sufficient phenotype and genotype data is available, patterns of heritability may

be analyzed, which can roughly narrow down candidate genomic loci that are associated

with the phenotype. Prior to the introduction of many of the essential tools of molecular

genetics, this approach relied heavily on the presence of naturally occurring mutations

within a population; this eventually evolved with the ability to synthetically induce tar-

geted or random genetic mutations within an organism or cell at scale. This molecular

genetic ‘toolset’—which includes CRISPR/Cas9 and RNA interference (RNAi) systems,

among others—then became essential for probing gene function and led to the feasibility

of reverse genetics. Here, genetic modifications are purposely introduced into an organ-

ism, and any phenotypic alterations that result can be screened for and traced back to

the corresponding genetic mutation. The principles of reverse genetics has paved the

way towards numerous technological advancements in high-throughput genetic screening,

making it possible to individually probe gene function at a genome-wide scale and thereby

advance our fundamental understanding of cell biology59,107.

High-Throughput Genetic Screening

High-throughput genetic screening is a systems-wide approach for probing gene function

that is an incredibly powerful strategy for understanding basic biology. This screen-

ing strategy works by introducing a genetic perturbation to each gene—or other genetic

element—within the target genome in turn and subsequently measuring the phenotypic

effect that is produced by each of the perturbations. The general technique can be adapted

in numerous ways to probe various aspects of cellular biology and gene function; examples

7
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of this include: changing the method of gene perturbation, altering the experimental read-

out that is measured, or conducting the screen in a pooled versus arrayed format83. Each

of these experimental alterations has their own positives and negatives. For example, the

arrayed screening format has superior options for sensitivity in signal readout, but re-

quires significant investment in time and equipment to efficiently carry out the screen and

tends to introduce variation into the results; in contrast, the pooled format of a genetic

screen—where a population of cells is perturbed within a single vessel and subsequently

sorted based on a specific selection criteria—ensures that all cells are subjected to similar

experimental conditions and can be conducted in a fraction of the cost, time, and effort26.

As alluded to, one of the big limitations of high-throughput screening strategies is the

comparatively low signal obtained from the readout of the experiments. As such, studies

have to be carefully planned out in order to discover anything meaningful, let alone

significant. Moreover, the methods used to distinguish signal from noise often rely on the

application of statistical techniques that can deal with the high false discovery rates (FDR)

that are inherent in biology. Given that such a large number of tests are being carried out

simultaneously in high-throughput genetic screens, a number of different algorithms and

software suites have been developed to deal with this challenge. A selection of commonly

used software for the analysis of the output of perturbation-based genetic screens includes:

MAGeCK65,66,105, HiTSelect25, PinAPL-Py92, and CRISPRBetaBinomial55. Importantly,

MAGeCK was selected to be used in the genome-wide knockout screen analysis described in

chapter three of this thesis because of its ease of customization as a command-line tool,

statistical rigour, supporting documentation, and publicly available code repository44.

High-throughput genetic screening is increasingly being used to probe gene function under

numerous experimental conditions, each of which provides significant value and potential

for discovery in a wide variety of applications. Of particular interest is the use of these

genetic screens for understanding and modelling host-virus interactions. By systematically

perturbing host genes at a genome-wide scale, host factors may be identified that either

positively or negatively alter viral production. One such study by Deans et al. (2016)

used RNAi- and CRISPR/Cas9-based perturbations together in two separate screens to

characterize the mechanism of action of a specific antiviral drug, for which improvements

8



Sean Nesdoly CHAPTER 2: LITERATURE REVIEW

were then made to an existing treatment regime against RNA viruses24. In another study

by Orchard et al. (2016), a critical host factor that serves as the point of attachment for a

norovirus was identified through screening; subsequent functional validation by analysis of

its crystal structure identified the exact site of attachment79. Similarly, Park et al. (2017)

utilized a genome-wide CRISPR/Cas9 screen to identify host factors that are essential

for HIV infection and—importantly—not essential for the host cell, thereby making them

prime host targets for therapy81. In conclusion, there are numerous studies that have used

high-throughput genetic screening as a strategy for understanding host-virus interactions;

further discussion on influenza-specific host factor screens is given in chapter three.

Observing Gene Function via Protein Structure

An alternative to indirectly measuring gene function through perturbation-based exper-

iments is to observe the gene itself. Structural characteristics of the protein product of

a gene can provide insight into its mechanism of action, potential binding partners, sites

of post-translational modification, or location within the cell. In addition, the function

of a given protein can be deduced if it has sequence or structural conservation with a

homologous protein in another species for which its function is already known.

To obtain this type of insight into the function of a protein, its three-dimensional structure

must first be determined. X-ray crystallography has been the primary method of doing

this, whereby a ‘snapshot’ of the crystal structure of a macromolecule is taken by shooting

X-ray’s at it and subsequently analyzing the diffraction patterns made. This technology

has made a significant impact on biomedical research since its discovery, and continues

to do so; however, one limitation is in its requirement for the macromolecule under study

to be in a crystal form. The process of protein crystallization can be quite difficult, and,

more importantly, restricts molecular motion. Therefore, observing protein structure in

its native environment of water—where molecular motion is not completely lost—would

provide further mechanistic insight into protein function. In May of 2020, a breakthrough

in cryo-electron microscopy—which images proteins in solution and thus addresses one

of the limitations of X-ray crystallography—was made, where the individual atoms of a
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protein were observed at an unprecedented resolution72,117; it is believed that this marks

the turning point for the next-generation of protein structure determination, and, by

extension, for probing gene function.

To conclude, the indirect measurement of gene function is often required as an alterna-

tive to directly observing gene function via its protein structure due to: the inherent

complexities contained within cellular machinery that make it difficult to observe or de-

duce function from directly; the necessity for probing function under native conditions,

rather than isolated; and, the significant amount of time and effort that is required to

determine protein structure, especially under certain conditions of interest, such as during

viral infection.

2.1.3 Host and Viral Factors

Interacting host and viral genes—collectively referred to as host and viral factors, respectively—

are in a never-ending ‘arms race’ against one another in a battle to win the ‘competition’

of evolution; this also extends to the RNA- and protein-based functional counterparts of

genes, along with any other functional genetic element. Mutations on one side that convey

a functional advantage for itself or against its opponent are promptly responded to—in

the timescale of evolution—with the positive or purifying selection of counter-mutations in

the other115. It is this interplay between host and viral factors that has largely determined

the severity of viral infections throughout history, with a significant turning point for the

influenza virus being the 1918 flu pandemic, which introduced a highly pathogenic version

of the virus (H1N1) to humans70. Furthermore, the small size of viral genomes—which

is indicative of their role as obligate parasites—makes annotating the function of each of

their genes a comparatively easier task than that of the human genome, which is signifi-

cantly larger and more complex. This suggests that the host has a larger pool of available

genetic components with which one may engineer to their advantage. Furthermore, the

fact that viruses, by necessity, directly and indirectly interact with—and often perturb—a

large proportion of the host genome, transcriptome, proteome, and other functional com-

ponents, reinforces how important it is to have knowledge of the interactions that occur
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between host and viral factors, along with the mechanisms by which they do so. To this

end, specific definitions for the different types of host factors that are involved in the life

cycle of a virus, and methods for their detection, are given in the following sections.

Antiviral Host Factors

A host factor whose function is antiviral in nature acts to restrict or inhibit invading

viruses, thereby preventing or reducing viral infection. Collectively, antiviral host factors

can be thought of as the set of immune system genes within a host. The function of each

antiviral host factor varies considerably, with some directly interacting with viral compo-

nents to restrict or inhibit infection, and others indirectly doing so, such as through the

activation of other host factors. Moreover, some antiviral host factors completely abolish

virus production, whereas others only reduce it; importantly, many viruses carry specific

genes whose function is to inhibit antiviral host factors—with emphasis on those that

completely restrict their production—so that they may successfully infect and replicate.

As a concrete example, the human innate immune response is triggered in part by pattern

recognition receptors, such as the gene DDX58 (HGNC:19102∗) and toll-like receptors

TLR7 (HGNC:15631) and TLR8 (HGNC:15632)19. These antiviral host factors specifically

recognize pathogen-associated molecular patterns that are present on invading viruses

or their products, and in response, trigger various signalling cascades that eventually

culminate in the innate immune response.

Proviral Host Factors

In contrast to that of antiviral host factors, proviral host factors are necessary for or

support the viral infection process. For example, membrane-bound sialic acid-containing

host cell receptors act as the site of attachment for the influenza virus; without these, the

virus cannot recognize, attach, and enter the host cell for infection14.

Proviral factors may also be referred to as ‘host dependency factors’, such as in Li et al.

(2020)64, meaning that they assist, or are required for, viral function; that is, the virus
∗ ‘HGNC’ refers to the set of unique, official gene symbols & identifiers from the HUGO Gene Nomenclature Committee

at the European Bioinformatics Institute100.
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depends on a specific set of host factors in order for it to complete its life cycle. Impor-

tantly, targeting proviral factors in host cells with drugs that inhibit their function may

result in a reduction or complete loss of viral production by the host cell. As such, provi-

ral factors are considered to be powerful therapeutic targets109 that are able to mitigate

viral infection without having to rely on the conservation of specific structural domain

targets on viral proteins, which are comparatively fewer in number and under significant

evolutionary pressure115, thus making them susceptible to mutations that render their

respective antivirals ineffective52,78.

Viral Factors

The DNA-, RNA-, and protein-based functional components of a virus, or a subset of

these depending on the type of virus, make up the set of viral factors that interact with

anti- and pro-viral host factors. Viral factors tend to be highly specific to each family

of virus, with significant variation also existing between subtypes of a single species;

this is especially the case for the influenza virus, where numerous factors can alter its

evolutionary trajectory (e.g. pandemic vs. seasonal subtypes of influenza)115. As viruses

have compact DNA- or RNA-based genomes out of constraints in their size, each of their

genes performs a critical function that is necessary for host infection. An example of a

viral factor is the nonstructural protein 1 (NS1) of the influenza A virus; it functions

as one of the major inhibitors of the host antiviral innate immune response, and has

been shown to directly impair a number of antiviral host factors that are expressed upon

detection of viral infection95. This reinforces that research conducted on viral factors is

an important endeavour, as knowledge of the underlying genetic elements that determine

virus pathogenicity, host range, and mechanisms of transmission is critical for informing

infectious disease treatment and management34,96.

Detecting Host-Virus Interactions by Probing Gene Function

Most of the techniques introduced in section 2.1.2 are applicable for the detection of

interactions between host and viral factors. This is rationalized due to gene function
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being partly defined by who a gene interacts with and how it does so, which is in turn

defined by its sequence and associated protein structure. Therefore, knowledge of gene

function—and having the ability to directly or indirectly probe it—is critical for detecting

and characterizing host-virus interactions. A selection of experimental techniques specific

to the detection of interactions between host and viral factors is herein discussed.

The first major technique for detecting host-virus interactions is through the measure-

ment of viral titre upon perturbation of one or many target host factors, as introduced

in the section on ‘High-Throughput Genetic Screening’. Here, the viral titre of a cell

with a specific perturbation is compared to that of a control; any observed differences can

then be attributed to the perturbation, and further functional validation or rationaliza-

tion can provide insight into the corresponding mechanism of action. Common genetic

perturbations include: CRISPR/Cas9-mediated knockout, knockins, and transcriptional

activation or inhibition; RNAi-based knockdown of gene expression; and gene inhibition,

such as with a drug inhibitor. Importantly, many of these perturbations can be adapted

to work within a screening strategy, whereby genes can be systematically probed at a

genome-wide scale69.

In contrast to perturbing host factors, viral factors may also be perturbed. Any changes in

viral titre produced by the mutant virus may provide insight into the relative importance

of the perturbed viral factor, as well as its mechanism of action. A study by Gack et al.

(2009) used this strategy to identify host factor targets of the influenza A NS1 protein35.

An alternative technique for probing the function of host and viral factors at a systems-

wide level is the measurement of viral infection-induced host gene expression. By tracking

the expression of host genes over various time-points of the viral life cycle, one can ob-

tain molecular ‘snapshots’ of what is going on. The ‘Virus Pathogen Resource’ and its

associated ‘Influenza Research Database’ is one such resource that has conducted these

time-course transcriptomic experiments for numerous different strains of influenza, and

other viruses2,118. However, characterizing the dynamic nature of host-virus interactions

over the course of the life cycle of a virus is particularly challenging, especially when it

requires the analysis of large datasets. Reproducibility of experimental results can be dif-
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ficult, as technical artifacts—such as batch effects, or any number of other experimental

variations—can easily introduce false positives or false negatives. Nonetheless, improve-

ment in sequencing technology, which has led to the widespread use of RNA-sequencing

over microarray-based technology, and software suites for rigorous bioinformatic analysis,

has greatly improved the sensitivity of detection.

Lastly, host-virus interactions may be determined directly by querying for interactions

between a specified ‘bait’ protein—such as the host or viral factor that is under study—

and a set of possible interactors, also known colloquially as its ‘prey’. This type of

experiment, known as affinity purification followed by mass spectrometry (AP-MS), has

been an instrumental technique for the detection and understanding of protein-protein

interactions (PPIs)71. One such study by Thulasi Raman and Zhou (2016) used AP-MS

to identify and analyze the set of host factors that interact with the influenza virus NS1

protein97.

The recurrent theme of systems biology that underlies many of the techniques used to

detect host-virus interactions, as presented in this section, is the core of what this thesis

is based upon; as such, a more formal introduction to the field of systems biology is given

next.
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2.2 Systems Biology

In this section, basic terminology for the representation of large biological networks is

introduced. Then, a selection of studies that use computational techniques to understand

biological interactions and other cellular properties, at the systems-level, are described.

Importantly, it should be kept in mind that each of the approaches used in systems biology

share the common theme of collectively building towards a cellular-wide understanding,

or model, of the cell.

2.2.1 Graph Theory and Network Analysis

The main data structure underpinning many of the computational techniques in systems

biology is that of the graph. This data structure can be used to efficiently represent the

set of all known biological interactions that take place between genes, or their products,

within a cell; when a graph is used in this context, it is referred to as an interactome.

The formal definition of a graph G is as follows:

G = {V,E}

Here, V is the set of vertices and E is the set of edges—or interactions—between vertices:

V = {v1, v2, ..., vn}

E = {(a, b) | a, b ∈ V }

Importantly, edges can be directed, as in enzyme a catalyzes the reaction of substrate b,

but not the other way around; or, undirected, where an interaction (a, b) is equivalent to

(b, a), such as a binary physical interaction between two proteins a and b. The majority

of the edges that will be considered in this thesis are undirected.

The function N(v) denotes the neighbourhood of a vertex v; that is, the subgraph of G

formed by the vertices adjacent to that of v and the edges that connect those neighbours,
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if any. This can be thought of as all of the interacting partners of a protein v, along

with any interactions that occur between them (excluding v). Importantly, the degree

of a vertex v is the number of edges that connect to the vertex within the graph G (its

‘neighbours’). The degree sequence of a graph G is the set of all vertex degree values,

sorted in decreasing order, and is denoted by the variable k.

If we have a set S of vertices S = {s1, s2, ..., sm}, we can compute the induced subgraph

of G, denoted G[S], by restricting vertices and edge endpoints to those in the set S. This

notation is particularly useful when analyzing a set of genes of interest; for example, we

can consider a set of antiviral host factors that are known to interact with the influenza

virus and compute its induced subgraph within a target interactome G to get a sense of

how they relate to one another.

Another important concept is that of a path; this is the sequence of edges that connects

two vertices a and b (e.g. {(a, x), (x, y), (y, b)}). This can be used to query how ‘close’

two genes are in the ‘space’ of an interactome, which provides some measure of biological

similarity.

Lastly, the operations performed on a graph may be thought of in terms of their com-

putational complexity, which is often expressed using ‘big O notation’. This gives an

approximation as to how the run time or space requirements grow as the input to a given

function grows; this has important implications for what can and cannot be computed

in reasonable amounts of time or space. As interactome datasets inevitably grow in size,

more and more consideration will have to be given to efficiently use storage space and

optimize algorithm run times.

2.2.2 Host-Virus Interactions and their Network Properties

It has long been a goal of molecular biology to determine and understand the mechanisms

of a cell at a systems-wide level6; by doing so, this would enable the ability to truly

engineer and refine cellular systems, which has significant implications for the treatment

of human disease. Moving beyond the ‘single-gene’ approach to disease and viewing the

cell in its entirety—where combinations of genes act together to create a disease phenotype
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or fight against invading pathogens—opens up the door to a new frontier of ‘network-based

medicine’7. Of particular importance for this thesis is the mapping and characterization

of host-virus interactions within the context of various interactomes.

Current approaches for identifying host-virus interactions—as discussed in the section on

gene function (2.1)—involves systematically perturbing individual host genes and ana-

lyzing the effect that it has on a phenotypic trait of interest (here, viral titre). The set

of gene ‘hits’ and their phenotypic effects may then be further probed by constructing

a biological network—or interactome—that allows for the identification of patterns and

the ability to compare with other networks derived from other experiments. When host

factors of interest are analyzed in combination with biological interactions through the

lens of graph theory, emergent properties of the system may be discovered that perhaps

would not have been identifiable when considered individually.

For instance, Ackerman et al. (2018)1 used human PPI networks integrated with known

virus-host interactions to predict—using a network algorithm that takes advantage of

shortest paths between genes of interest—proviral host factors that are likely ‘druggable’

candidates for the inhibition of influenza virus replication. In another study by Watan-

abe et al. (2014)111, a comprehensive co-immunoprecipitation screen for host-influenza

interactions, followed by validation in a small interfering RNA (siRNA) screen and func-

tional annotation within an interactome, identified even more candidate antiviral drug

targets. With many host-virus interaction datasets available for computational analysis,

such as the Host-Pathogen Interaction Database (HPIDB3.0)3 and the ‘Virus Pathogen

Resource’2 (with its associated ‘Influenza Research Database’118), there remains signifi-

cant opportunity for the discovery of systems-wide properties of cells, especially as they

relate to host-virus interactions38,94.
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2.3 Host Factors in Vaccine Development and Antiviral

Therapy

This section provides a review of the following: (2.3.1) the human immune system and

the role of vaccines in priming it; (2.3.2) the influenza virus and some of its mechanisms

of infection; (2.3.3) current developments in upstream influenza vaccine manufacturing

techniques for cell-based and other host platforms; (2.3.4) and, the role of antivirals in the

treatment of viral infections. These topics highlight the relevant applications of anti- and

pro-viral host factors in the improvement of cell-based vaccine manufacturing platforms,

and, for the identification of host-virus interactions that may be targeted for therapeutic

intervention in viral infections, respectively. Importantly, these applications would not be

possible without the initial identification and characterization of host factors, as already

discussed in the gene function and systems biology sections of this chapter.

2.3.1 The Human Immune System and Vaccines

The human immune system has developed in a competitive evolutionary ‘arms race’

against invading pathogens for a significant period of time. Both humans and pathogens

have developed strategic mechanisms of defence and infection, respectively, in an attempt

to outcompete the other. As a first line of defence against invading pathogens, humans

have the innate immune system, which broadly identifies and initiates a nonspecific attack

against unfamiliar antigens. The subsequent priming and action of the adaptive immune

system—through activation of helper T cells, cytotoxic T cells, and B cells—ensures a co-

ordinated destruction of infected cells to prevent further spread of the invading pathogen.

Importantly, the activation of B cells leads to the secretion of antibodies that bind directly

to their target antigen on the invading pathogen, which flags it for destruction by other

immune cells; it may also suppress its function directly. Immunity against the invading

pathogen persists through the production of memory B and T cells, which ensures that

subsequent infection by the same pathogen is met with an already-primed immune system.

Within this context, vaccines play an incredibly important role as an artificial, controlled
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immune system stimulant. The introduction of an attenuated version of a pathogen, or

a modified functional component of it, leads to an immune response and the subsequent

persisting immunity that accompanies it. By taking advantage of the incredibly complex

and effective human immune system, vaccines have become one of the most important

and effective prophylactic measures for infectious disease intervention that is available in

the world today. However, that being said, vaccine development does not come without

its challenges, as has been observed in the current coronavirus disease 2019 pandemic87,

as well as others in the past. If anything, this supports further research into vaccines,

host factors, and the mechanisms of viral infection that are able to subvert our immune

system.

2.3.2 Influenza

The influenza virus is an enveloped, single-stranded, negative-sense RNA virus that be-

longs to the Orthomyxoviridae family. Influenza type A is the most clinically relevant

influenza virus among that of genera—or types—A, B, and C; it can be further charac-

terized by its subtype (e.g. H1N1), which denotes the type of hemagglutinin (HA) and

neuraminidase (NA) proteins that are present on its surface11. Influenza A is highly con-

tagious, with a recent study estimating that 10% of unvaccinated adults are infected in

any given year91. Moreover, it has a comparatively high burden of disease through its

seasonal epidemics, with yearly deaths estimated to be between 291,000 and 646,00054.

Of serious concern is the potential for the introduction of pandemic strains of influenza,

which can be highly pathogenic; for instance, the deadly 1918 flu pandemic resulted in

approximately 50 million deaths, with descendants of this strain of virus continuing to

persist within the population, threatening future pandemics70. Given this, having the

capacity to rapidly manufacture influenza vaccines for pandemic situations is imperative;

as such, a discussion on methods for influenza vaccine manufacturing, and considerations

related to vaccine efficacy, is provided next.
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2.3.3 Influenza Vaccine Manufacturing

Vaccine development and manufacturing is a complex process, with many different strate-

gies available. As each pathogen is unique in its structure and function, so to are the

vaccines that induce immunity against them. Each type of vaccine, as discussed here,

differs in their method and ease of production, efficacy, and safety. Nonetheless, vaccines

remain as a powerful prophylactic against a wide variety of infectious diseases.

Selection of Influenza Virus Subtypes for Seasonal Vaccination

Seasonal vaccination is recommended due to the ability of the influenza virus to rapidly

adapt and subvert our immune system11. It has been shown that a significant reduction in

influenza disease can be achieved through modest increases in influenza vaccine coverage,

along with the accurate selection of vaccine formulations51. The process of vaccination

works by eliciting an antibody response against the currently circulating HA influenza

surface protein. A vaccine that is deemed effective will have induced a humoral immune

response that is capable of recognizing—and successfully responding to—future infections

by the same subtype of virus; however, the significant capacity for mutations to occur in

circulating influenza A subtypes115 makes it difficult to predict which vaccine to produce

to have the greatest impact in any given season.

As such, the World Health Organization (WHO) monitors changes in circulating influenza

A virus subtypes through their ‘Global Influenza Programme’120 and its associated initia-

tives, like that of the ‘FluWatch’ system in Canada. Through this, they report annually,

or more frequently for some regions, the expected set of subtypes that will likely dom-

inate the upcoming flu season for a specific region of the world. These predictions are

made based on data gathered in the most recent flu season in the opposite hemisphere

of the globe, as influenza virus infections typically follow a cyclical pattern within each

individual hemisphere73. Based on this data, the HA and NA influenza surface proteins

from the selected strains are formulated into a vaccine that is then administered to the

population.
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After a specific influenza vaccine is produced, it is essential to determine the extent to

which it induces an immune response, as vaccine and circulating influenza strain mis-

matches frequently occur due to the necessary reliance on strain predictions. One method

used to measure this is the hemagglutination inhibition assay; this tests for the ability

of the generated antibody to inhibit the natural agglutination property of HA in a sam-

ple of red blood cells. Despite this and other sophisticated techniques and programs for

influenza virus surveillance, such as the ‘Influenza Research Database’118 and the previ-

ously mentioned ‘Global Influenza Programme’120, there remains the issue of having the

sufficient capacity to rapidly generate vaccines at scale in response to a pandemic strain

of influenza. This challenge is discussed after a brief introduction to influenza vaccine

types.

Influenza Vaccine Types

The most commonly administered influenza vaccine types are the inactivated and live-

attenuated viral vaccines. The inactivated form is derived from live influenza viruses

that have been subjected to various downstream processing steps, the goal of which is to

restrict its ability to replicate while also retaining the structural integrity of the HA viral

surface protein, which contains the majority of its immunogenic properties; in contrast,

the live-attenuated version actively replicates within its host, but does so only in regions

that are below body temperature—like that of the nose—as the virus has been adapted to

efficiently replicate at colder temperatures31. The methods by which each of these vaccine

types are produced is an area of active research, and is discussed next.

Methods for Accelerating Influenza Vaccine Manufacturing

The ability to rapidly generate and scale-up the production of a vaccine against pandemic

strains of influenza—which may spread very quickly within a population—is of paramount

importance. Moreover, production of the seasonal influenza vaccine, which differs from

year to year, will benefit from further developments in technology that accelerate the

vaccine manufacturing pipeline. Two general approaches that aim to improve the vaccine
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manufacturing process are the intensification of bioprocess technologies and the genetic

engineering of host factors for increasing viral yield per cell. An integrated discussion of

each of these strategies is given below, starting with the selection of a suitable host for

virus production.

Irrespective of the final influenza vaccine format, a host system must first be selected to

initially produce the influenza virus. This is one of the areas where the work presented in

this thesis may be applied, as knowledge of specific host factors that may be engineered

to increase influenza virus production, as well as for other viral species, can lead to

improvements in existing vaccine manufacturing platforms.

Currently, the majority of influenza vaccines that are approved for use are produced in

embryonated chicken eggs. The importance of having alternative methods for influenza

vaccine production is particularly relevant when considering the potential threat of pan-

demic strains of the influenza virus. Here, the virus tends to spread very rapidly and often

has a greater potential to be lethal within its host57, which, among other negative effects,

can severely complicate production platforms that rely on generating the live virus. For

example, when producing an influenza virus vaccine in embryonated chicken eggs, the

wildtype strain of virus used—which, in pandemic strains, often have genetic components

that are of avian origin90 —should not be lethal to the host, or else viral production can

be significantly impacted. Furthermore, it is critical to have a consistent and reliable

source of embryonated chicken eggs; however, lengthy production times and susceptibil-

ity to infectious diseases, among other factors, limits the capacity for rapid scale-up68,80.

Therefore, recent developments in alternative host platforms, such as mammalian cells

and plants, are challenging the egg-based production of influenza vaccines.

One such strategy for egg-independent influenza vaccine manufacturing uses recombinant

technology to insert the influenza HA protein into a viral vector, which then infects a host

and leads to the expression of HA. This production strategy can rapidly generate recom-

binant HA, contingent on knowing its subtype-specific genetic sequence. The ‘FluBlok’

recombinant influenza vaccine—which relies on a baculovirus as the viral vector and insect

22



Sean Nesdoly CHAPTER 2: LITERATURE REVIEW

cells as the production platform—was shown to be safe and immunogenic for the prophy-

laxis of influenza98. More recently, the Quebec City-based company Medicago completed

a phase III clinical trial for its candidate seasonal influenza vaccine that is produced in the

plant Nicotiana benthamiana as a recombinant virus-like particle (VLP)108. The vaccine

production process involves infection of the plant by the bacterial vector Agrobacterium

tumefaciens; this vector carries the gene encoding the influenza HA protein, which is

taken up by the plant and subsequently expressed on the surface of VLPs that it pro-

duces22. Importantly, both of these manufacturing platforms show that the shift towards

egg-independent influenza vaccine production is possible, with significant potential for

scale-up68.

The second general strategy for optimizing influenza vaccine manufacturing is through

the identification of host factors that may be genetically engineered for the improvement

of cell-based viral yields. Importantly, one may either knockout or knockdown an antivi-

ral factor, or over-express a proviral factor, as methods for theoretically improving viral

production in host cells. Notably, a number of perturbation-based genetic screens have

been conducted with the goal of identifying influenza-specific anti- or pro-viral host fac-

tors43,47,56,64,88,89,99,111; however, the majority of these have focused on identifying proviral

factors as candidate drug targets for the restriction or inhibition of viral infection. Stud-

ies that have conducted perturbation-based screens followed by genetic engineering of cell

lines—with the specific goal of improving viral yield—include those by van der Sanden

et al. (2016)101 and Hoeksema et al. (2018)49 for the production of poliovirus, and by

Wu et al. (2017)114 for rotavirus. Each of these studies used the Vero cell line as their

choice of host, and have had variable success. This suggests that more research is re-

quired to understand the intricacies of host-virus interactions. An in-depth analysis of

the genome-wide perturbation screen by Sharon et al. (2020)89, which was conducted to

identify influenza-specific antiviral host factors, is given as part of this thesis.

In conclusion, the selection of a host that is robust, can be rapidly generated from a

reliable source, has sufficient capacity to adapt to variations in influenza strains that may

impact production, and is amenable to genetic engineering for optimization of viral output,

is highly desirable. The ideal situation would have the technology sufficiently developed
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and readily available for a variety of manufacturing platforms; this would enable flexibility

in the choice of response to changes in seasonal influenza strains, or, to the introduction

of a novel pandemic strain, for which a new vaccine must be generated quickly and at

scale.

2.3.4 Antiviral Therapeutics: a Last Line of Defence

A number of pharmaceutical antimicrobial drugs exist for the treatment of a wide variety

of infectious diseases. Each one can be classified based on their mechanism of action;

this, in turn, depends upon the molecular characteristics of their target pathogen. For

example, antiviral drugs are often designed to inhibit a particular stage of the virus life

cycle, such as viral replication, viral subunit assembly, or release from its host; in contrast,

many antibiotics work by directly destroying the target bacteria itself—rather than its

ability to replicate—through disruption of an essential molecular function. In the case

of the penicillin group of antibiotics, interference with the synthesis of the bacterial cell

wall, which is a critical function necessary for the survival of many bacterial species, leads

to lysis and eventual cell death30. An example of an antiviral is the well-established

mechanism of neuraminidase inhibitors (NAIs) for interfering with the influenza virus;

here, inhibition of the NA viral protein, which normally catalyzes the release of a budding

virion from the host cell membrane, leads to blocking of viral release and a concomitant

reduction in its spread within the host42. Extrapolating from these examples, there is

a tendency for antiviral therapeutics to be designed with their target virus specifically

in mind, which differs from that of antibiotics, where the more commonly administered

types target a comparatively larger number of species. This minor distinction between

antibiotics and antivirals, among others, has implications for the way in which each one

is used in practice. Antibiotics tend to be administered proactively as a form of empirical

therapy; whereas, antivirals are more often used in cases of active viral infections where

the disease-causing virus is definitively known, or, where there is a potential for severe

illness32. In either case, antimicrobial drugs have been and continue to be used extensively

in modern medicine as a critical component of the never-ending fight against infectious

diseases.
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Limitations of Antivirals as a Strategy for Disease Intervention

In contrast to the extensive use of antibiotics for infectious disease treatment and preven-

tion, antiviral therapeutics play a comparatively less significant role, albeit still of impor-

tance. This can be attributed to the use of vaccination as an effective method of disease

intervention. For the vast majority of viral infections—and particularly for influenza—the

use of an antiviral is typically reserved for cases where patients are critically ill and re-

quire hospitalization, or, are at higher risk of developing severe complications32. In these

circumstances, having an immediate treatment option in the form of an antiviral drug

for preventing the onset of severe symptoms—or, in some cases, for reducing the risk of

death—is critical. However, for influenza, their ability to effectively treat disease declines

rapidly with the amount of time elapsed since the initial infection102. More importantly,

antivirals are only applicable to the subset of people that are infected with the virus;

as such, their capacity to impart a long-lasting global impact is limited in comparison

to that of vaccines, as they fail to prevent the spread of disease. These factors suggest

that antiviral therapeutics be treated as one of the last lines of defence against influenza

infection; by doing so, they may reduce the chance that serious complications develop in

at-risk patients. Therefore, other avenues of intervention should be emphasized—like that

of vaccine development and immunization campaigns—in order to effectively reduce the

rates of infectious disease morbidity and mortality.

For viruses that spread quickly and that have a vaccine available with sufficient efficacy,

like that of influenza, preventing infection through immunization is more cost-effective63

and less burdensome51 for both people and health care systems. This is especially the case

for influenza, where those at high risk for infection-related complications have significant

overall improvements when vaccinated40,74. The stockpiling of antivirals in preparation

for potential viral outbreaks, although important, is more of a reactionary precaution

that fails to address the higher priority factors that aim to limit the spread of disease.

Additionally, a major point of concern with relying on antivirals is the potential for the

selection of viral mutants that are resistant to the administered drug41,52. If such an

event occurs, treatment options for infection become limited and the reliance is shifted
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to that of the human immune system to do its job as best it can. In direct response

to this ever-present threat, circulating strains of the influenza virus are constantly moni-

tored by the ‘Global Influenza Programme’ and its associated initiatives, like the ‘Global

Influenza Surveillance and Response System’, for mutations that make antivirals ineffec-

tive120. Moreover, there is an increasing demand for new antivirals with novel mechanisms

of action. However, barriers to such discoveries remain; the enormous cost and time in-

vestment that is required for the initial research and development of such a drug is often

significant. This further complicates matters, making it unclear as to the amount of effort

that should be put into such endeavours. Nonetheless, this reinforces the major advantage

that vaccines have over antiviral therapeutics: a novel virus, or strain of an existing one,

can emerge, and, without in-depth knowledge of its molecular characteristics, a vaccine

can be formulated that triggers the human immune system to recognize and attack it. As

is often the case, utilizing such a system that has had millions of years of evolutionary

pressure to hone its function is the superior choice over trying to invent a new antiviral

that, if successfully made, only reduces the risk of developing severe complications from

the infection.

Antivirals for the Treatment of Influenza

The earliest class of antiviral drug for the treatment of influenza—which includes that of

amantadine and rimantadine—was discovered by Davies et al.23 in 1964 as an inhibitor

of the M2 ion channel protein of influenza A45. However, these antiviral drugs—despite

being shown to be effective for the treatment of influenza A infection28 —are particularly

susceptible to the development of viral resistance29, do not have activity against many

other viral strains like that of influenza B23, and can have negative side effects28.

The next class of influenza antivirals that were discovered—introduced as NAIs at the

beginning of this section—work by inhibiting the viral NA protein on budding virions to

prevent release of its HA from host cell membrane receptors that contain sialic acid42. By

doing so, new virions are prevented from escaping their host cell, thereby stopping the

spread of infection. It is worth noting that NAIs were discovered through rational drug
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design based on the crystal structure of NA in complex with sialic acid15 —an impressive

feat for structural biology at the time. Commonly administered NAIs, listed in order of

their discovery, include zanamivir104, oseltamivir58, and peramivir4; these antivirals are

active against both influenza types A and B. However, like that of the M2 ion channel

antivirals, the threat of emerging viral strains that are increasingly resistant to NAIs is

still present52,86.

Finally, the most recent class of influenza antivirals works through a novel mechanism

of action by targeting the viral polymerase complex for inhibition; of these, the viral

endonuclease inhibitor baloxavir marboxil has shown significant efficacy in reducing the

duration of infection in people without comorbidities46. A clinical trial (NCT02949011)

has been completed to test baloxavir marboxil in at-risk patients, which showed that

it has similar efficacy to that of oseltamivir53. Again, despite it targeting a new viral

protein, strains of influenza have been identified that exhibit resistance78. Nonetheless,

this discovery has provided a new option for the treatment of influenza in the case that

other antiviral types prove ineffective.
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Chapter 3: Host Factor Curation

To fulfill the first objective of this thesis, the literature was searched for experimental

evidence of host factors interacting with viruses. This was initially conducted to under-

stand the common techniques used for the detection of host factors, and to generate a

‘gold-standard’ list to which comparisons may be made to. Then, the priority shifted to

the identification of host factors specifically involved in the mechanisms of influenza virus

infection; to ensure sufficient numbers were obtained, evidence from perturbation-based

screening experiments were included. Lastly, to address the second objective of this the-

sis, SGS reads—derived from a genome-wide knockout screen of HEK-293SF cells infected

with influenza—were analyzed computationally to identify and rank antiviral host factors;

this analysis is included as part of the study by Sharon et al. (2020)89.

3.1 Methodology

3.1.1 Host Factor Classification Scheme

To introduce a formal way of thinking about the nature of the interactions between a

virus and its host, a classification scheme for host factors has been defined, as depicted in

figure 1. Four different categories exist, each providing an indication of the relationship

that a given host factor has with an invading virus: restriction, inhibitory, auxiliary, and

essential. A specific host factor can be classified into one of the categories based on the

extent to which its perturbation within a host alters the viral production capacity of a

target virus. Importantly, the perturbation considered here is that of gene knockouts,

such as those made by the CRISPR/Cas9 system; however, the type and direction of

perturbation can be freely altered, with the only requirement being a corresponding change

in the predicted viral output upon the application of the specific perturbation. As host-

virus interactions may be direct or indirect in their interference or support of the life

cycle of a virus, this classification scheme attempts to remove this complexity and focus

on the resulting output that is produced by a given perturbation. This makes this scheme

particularly useful for applications in the engineering of mammalian cell lines for the
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improvement of vaccine manufacturing platforms.

Shown in figure 1 is the predicted relative viral titre produced by a host cell upon per-

turbation of a particular type of host factor. Importantly, the host factors are assumed

to be host genes, but the general framework may be extended to that of other cellular

components, such as noncoding (regulatory) DNA, post-translational modifications, and

metabolites. The specific function of each gene within a given host factor category likely

varies substantially between one another; however, they relate to each other through their

common ability to, upon perturbation, alter a host cell’s viral production capacity in the

same direction and relative magnitude. It should be noted that for antiviral factors, the

predicted impact on the cell’s viral titre is assumed to be in the absence of any viral

regulatory or accessory proteins that alter the host cell state to make it more susceptible

to infection.

Figure 1: Host factor classification scheme as a tool to reason about the nature of host-virus inter-
actions. The predicted impact of a gene-level genetic perturbation on the viral production capacity of
a host cell is represented schematically in terms of arbitrary viral titre units (y-axis, diagrams of blue
virus); here, titre is understood to be relative to the production capacity of a control cell (grey) that has
no genetic perturbations. The classification of a given host factor into one of four types, as depicted along
the x-axis, is therefore based on the nature of the interaction that occurs between the host factor and the
virus. The interaction, and by extension, the host factor type, can be deduced indirectly by perturbing
the host factor under study—through gene knockout, knockdown, or over-expression experiments—and
comparing the viral titre produced to that of a control cell (grey) that lacks the genetic perturbation.
Figure adapted from Gélinas et al. (2018)37 with permission from the American Society for Microbiology
(copyright 2018).
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In the subsequent sections, specific definitions for each type of host factor are given, along

with an example of each.

Restriction Factor

Under normal cell conditions and in the absence of any viral-encoded antagonists of

host factors, a restriction factor completely—or nearly—abolishes viral production; upon

knockout, the virus is free to infect and replicate without ‘restriction’.

Examples of restriction factors include the interferon-inducible transmembrane (IFITM)

family of proteins, specifically that of IFITM2 (HGNC:5413) and IFITM3 (HGNC:5414),

which have been shown to restrict influenza A viral replication as part of the host innate

immune system12.

Inhibitory Factor

Under normal cell conditions and in the absence of any viral-encoded antagonists of host

factors, an inhibitory factor partially reduces viral production; upon knockout, the virus

has an increased capacity to replicate without ‘inhibition’.

An example of an inhibitory factor is DDX58 (HGNC:19102), which senses viral double-

stranded RNA within the cytosol and initiates a non-specific immune response cascade

against it. For a review on influenza A-specific host restriction and inhibitory factors, see

the review paper by Villalón-Letelier et al. (2017)103.

Auxiliary Factor

Under normal cell conditions, an auxiliary factor assists in the life cycle of a virus, but is

not necessary for it to progress to completion; upon knockout, viral titre is reduced, but

not entirely.

The host factor UBR4 (HGNC:30313) has been shown to increase the efficiency at which

influenza virions transit to the cell membrane when escaping; importantly, this factor is

not essential for virus production99.
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Essential Factor

Under normal cell conditions, an essential factor is explicitly necessary for the completion

of the life cycle of a virus; upon knockout, viral titre is completely lost.

The host factor UVRAG (HGNC:12640) has been shown to be an essential component

of the mechanisms of host cell membrane-mediated entry for influenza A and vesicular

stomatitis virus (VSV)82.

Another example is the host cell membrane-bound sialic acid-containing glycan receptors

that act as the site of attachment for the influenza virus by specifically binding to HA;

without these glycans, the virus cannot recognize, attach, and enter the host cell through

receptor-mediated endocytosis to initiate infection14. Although glycans themselves are

not encoded by a gene within the host cell, it is indirectly encoded through the proper

production of host glycosylation enzymes that decorate the cell membrane with cell-type

specific glycans via post-translational modification of host cell proteins48.

3.1.2 Curation of Host Factors from the Literature

Two rounds of literature-based host factor curation were conducted. The first identified

host factors as part of an exploratory exercise, without restriction of the type of virus

involved; however, a slight bias towards influenza is present. The second took a more

targeted approach and identified host factors from screening experiments that specifically

were involved in interactions with the influenza virus. A brief description of the methods

for each are discussed in the following two sections.

Exploratory Curation of Host Factors from the Literature

A general set of host factors—without restriction on the type of virus involved—was

curated from the literature as an exploratory exercise to become familiar with the exper-

imental techniques used for their detection, and to generate a ‘gold-standard’ set, where

each of the host factors have experimental evidence of interacting with a virus.
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To do so, the following databases and search engines were queried: Google Scholar,

PubMed, and UniProt. In addition, the section on PubMed that lists ‘similar’ publi-

cations to that of the currently selected was used to identify host factors that were ‘close’

in the PubMed search space. Finally, the bibliography of already-selected publications

were searched to find similar experiments.

Importantly, for each publication that has evidence supporting a given host factor, manual

extraction of the following data was done: a snippet of text that describes the mechanism

by which viral activity is altered, the technique used to detect the host factor, and the

extent to which viral production was perturbed. This supporting evidence was excluded

from the results for brevity, but it assisted in classification of the host factors and with

the understanding of the methods by which host-virus interactions are detected.

With regards to classification of the host factors, this was manually done based on the

supporting publication and is thus a subjective measurement.

Curation of Influenza Host Factors Identified in Screening Experiments

To create a sufficiently large set of host factors specific to that of the influenza virus, stud-

ies that performed a perturbation-based screening strategy for the identification of genes

that alter influenza viral production—either positively or negatively—were identified in

the literature.

To ensure that the host factors identified in each study could be compared to one an-

other, all gene hits were converted to the common format of NCBI gene identifiers using

the DAVID gene conversion tool50 and the Ensembl BioMart database116. In addition,

study-specific details were noted, such as the method of gene perturbation—for exam-

ple, knockdowns with siRNA vs. knockouts with CRISPR/Cas9-based systems—and the

method of detection—for example, viral titre measurements vs. co-immunoprecipitation

pull-down experiments.
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3.1.3 Computational Analysis of a Genome-wide Knockout Screen

to Identify Anti-influenza Host Factors

A significant component of the work in this thesis was dedicated to the analysis of SGS

reads that were produced from a genome-wide CRISPR/Cas9-mediated knockout screen of

HEK-293SF cells that were infected with the influenza virus. The methods and results of

this computational analysis are published as part of the study by Sharon et al. (2020)89.

This section presents an overview of the bioinformatic methods that were used in this

study, with some of the text having been published as part of it.

Background on Screening Strategy used to Identify Putative Influenza-specific

Antiviral Host Factors

To introduce the problem, it is necessary to give some background. This part of the

experiment was designed and executed by David Sharon; for more details than what is

described here, refer to the paper (specifically, figure 1)89. The general objective of

the screening strategy is to identify host factors within the genome of the HEK-293SF

cell line whose perturbation—in this case, a knockout mutation—increases the amount of

influenza viral titre produced by the cell. It is assumed that the host factors identified

by the screen will be classified as antiviral—as per the host factor classification scheme

described in figure 1—but, this does not necessarily have to be the case, as long as the

perturbation increases the relative viral titre in comparison to that of a control. The screen

probes a heterogeneous mix of gene knockouts—where each cell has one knockout event—

in a pooled screening format within a single vessel, which has the unique characteristic

of exposing each cell to a similar environmental condition; moreover, it allows for the

number of genes queried to be scaled easily to reach a genome-wide coverage, which is

not trivial to achieve in an array-based screening format.

In order to query the effect that knocking out a gene has on the influenza viral pro-

duction capacity of an HEK-293SF cell, a knockout mutation must first be introduced.

To do this for every gene in the human genome, a pool of HEK-293SF cells were in-
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fected with a library of single-guide RNAs (sgRNA) packaged within lentiviral vectors,

with each one also carrying the sequence for Cas9 to complete the CRISPR/Cas9 system;

this sgRNA library—known as the ‘Brunello Human CRISPR/Cas9 Knockout Pooled

Library’—contains 76, 441 unique sgRNA sequences that target 19, 114 genes with four-

fold redundancy, and an additional 1, 000 sgRNAs reserved as non-targeting controls27.

The Brunello library of sgRNAs thus permits the generation of a heterogeneous pool of

HEK-293SF cells—where each cell has one gene knocked out—with genome-wide coverage

being achieved in the population of cells.

With the heterogeneous population of HEK-293SF knockout cells established, there re-

mains the problem of detecting influenza viral titre at the level of each individual cell.

To do so, an influenza virus with the HA gene swapped out for the gene encoding green

fluorescent protein (GFP)—which permits measurement of its relative viral titre via the

intensity of its fluorescence—is used to infect the heterogeneous pool of HEK-293SF cells.

The cells are then subjected to a selection step that sorts them into two populations based

on the relative viral titre produced by each individual cell; this selection is accomplished

using fluorescence-activated cell sorting. The ‘high yield’ population is enriched for gene

knockouts that improve influenza virus production capacity, and thus contains putative

antiviral host factors. The other population—referred to as the ‘control’—contains all

of the other cells that did not meet the minimum relative viral titre during selection,

as measured by GFP fluorescence intensity; gene knockouts that correspond to putative

proviral host factors may be present, but the cell population is not specifically depleted

for this.

Now that a ‘high yield’ population of HEK-293SF knockout cells has been enriched for via

sorting by GFP fluorescence intensity—which is used as a proxy for influenza viral titre

as it is expressed in direct proportion to that of wild-type HA—all that remains is the

quantification and identification of the individual gene knockouts that are present within

each population (‘high yield’ vs. ‘control’). To do so, the sgRNA inserts used to induce

gene knockouts are extracted from the two cell populations and sequenced on an Illumina

HiSeq 4000 machine. The next task, as described in the following sections, quantifies the

differences in sgRNA abundance between the ‘high-yield’ and ‘control’ cell populations in
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order to identify genes that are enriched or depleted.

Sequencing and Knockout Screen Quality Control Metrics

First, FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc) was

used to assess the quality of raw sequencing data; given raw reads in FASTQ format, it

detects any biases or errors that may have been introduced during sample preparation or

the sequencing itself.

Next, the Brunello sgRNA library file27 —which maps each sgRNA sequence to its corre-

sponding target gene name and unique identifier—was modified from its original format

to work in the subsequent analyses.

Then, the ‘Model-based Analysis of Genome-wide CRISPR/Cas9 Knockout’ (MAGeCK)

software suite (version 0.5.9.2)65,66,105 was used to assess a number of CRISPR screen

quality control metrics that are calculated at the levels of: raw sequencing data, aligned

sgRNA read counts, collapsed gene counts, and between samples; descriptions of these

and their expected thresholds are neatly summarized in table 1 of the paper by Li et al.

(2015)66.

Quantification of sgRNA Abundance using MAGeCK count

Quantification of sgRNA abundance in the two HEK-293SF knockout cell populations

(‘high yield’ and ‘control’ conditions, three biological replicates each) was carried out

using the MAGeCK software suite (version 0.5.9.2)65,66,105. Specifically, the count function

of MAGeCK was used in command-line mode to map the reads to the Brunello sgRNA

library, thereby ‘counting’ up the number of cells with a given sgRNA sequence, for each

sgRNA in the library. The sgRNA sequence contained within a given cell indicates the

occurrence of a gene knockout event corresponding to the target gene of that sgRNA.

Importantly, MAGeCK count only keeps primary alignments with no mismatches, which

prevents the mapping of one read to two library sgRNAs, effectively counting it twice;

additionally, reads that contain an ‘N’ nucleotide, indicating a low-confidence base call,

are discarded.
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Custom code was also written in the Julia programming language9 to analyze the output

of MAGeCK count for the purpose of exploration, verification, and adjustment of input

parameters.

Comparing sgRNA Abundance Between High Yield and Control Cell Popu-

lations using MAGeCK test

To test for the significance of enrichment or depletion of sgRNA abundance between the

‘high yield’ and ‘control’ cell populations, the MAGeCK function test was used.

Briefly, MAGeCK test identifies significantly enriched or depleted genes by modelling the

relationship between the mean and variance of sgRNA abundance in the control condition

in order to estimate the parameters of a negative binomial distribution; this is then used to

conduct a hypothesis test which robustly quantifies the significance of a change in average

sgRNA abundance between conditions65. In this analysis, read counts were normalized

using a set of 1,000 non-targeting control sgRNAs that were provided in the Brunello

sgRNA library27. The initial set of 1,000 was reduced to 963 after the removal of outliers

whose difference in normalized read counts between conditions were outside of the range:

[Q1− 1.5 ∗ IQR,Q3 + 1.5 ∗ IQR] (1)

where Q1, Q3, and IQR are the first quartile, third quartile, and interquartile range

(Q3−Q1), respectively.

MAGeCK test was then used on the sgRNA read counts, as produced by MAGeCK count,

with additional parameters --remove-zero and --remove-zero-threshold set to ‘con-

trol’ and ‘30’, respectively. This removed 1,760 sgRNAs that have a median read count in

the control condition that is less than 30, indicating insufficient representation. All other

parameters were left at the default setting. Of note, sgRNA-level p-values were adjusted

using the Benjamini-Hochberg procedure8, which was set to control the FDR at level

α = 0.25. To obtain gene-level p-values from multiple sgRNAs targeting a single gene,

version 0.5.9 of the modified Robust Rank Aggregation (RRA) algorithm60 —named α-
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RRA and included as part of MAGeCK—was used65. Similarly, the log fold change (LFC)

of a gene is calculated as the median of the LFC values corresponding to the individ-

ual sgRNAs that target it. Custom analyses for exploration and verification of results

were carried out using the programming language Julia9; plots were generated from the

MAGeCK software suite65,66,105 and the R84 package ggplot2112.

Replication of Results in PinAPL-Py

The ‘Platform-independent Analysis of Pooled Screens using Python’ (PinAPL-Py) web

service92 was used to replicate the results obtained from the MAGeCK software suite. The

purpose of doing this was to verify the accuracy of results in another system that uses

similar, but distinct normalization and statistical testing techniques. The results of this

analysis were excluded from the results section for brevity, as they—for the most part—

matched that of what was produced by MAGeCK.

3.1.4 Fold Enrichment Calculations for Gene Set Overlaps

Given two gene sets A = {a1, a2, ..., an} and B = {b1, b2, ..., bm}, which each correspond to

gene hits derived from different perturbation-based genome-wide screens of cells infected

with influenza, we can calculate a measure of enrichment for the overlapping genes by

comparing the observed value to the number that are expected to overlap by chance.

We first calculate how many genes are expected to be overlapping between sets A and B:

Expected Overlap(A,B) =
|A|
n

× |B|
n

× n (2)

where n is the number of genes targeted for perturbation in each screen; for simplicity,

we assume that n = 20, 000 for both screens. The actual value of n may differ between

screening experiments, but its effect on fold enrichment calculations is insignificant.

We then compare the observed and expected number of overlapping genes to obtain a fold

enrichment value:
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Fold Enrichment(A,B) =
|A ∩B|

Expected Overlap(A,B)
(3)

The results of applying these enrichment calculations to a selection of the gene sets in

table 3 are given in section 3.2.4.

3.2 Results

3.2.1 Host Factors from the Literature

To get a sense of the various types of host factors, the methods by which they are detected,

and the nature of their interactions with invading viruses, the literature was searched for

experimental evidence of host factors interacting with viruses.

In total, n = 47 host factors—each with experimental evidence of interacting with a

virus—were curated from 45 publications and subsequently classified based on the scheme

described in figure 1. The number of genes in each host factor type are as follows: 14

restriction, 21 inhibitory, 6 auxiliary, and 6 essential. Importantly, the classification of

each host factor was manually annotated based on the supporting evidence given in its

associated publication. The set of literature-curated host factors are given in table 1.

As previously stated, the exercise of curating host factors from the literature was initially

conducted to understand the common techniques used for the detection of host factors,

and to generate a ‘gold-standard’ list to which comparisons may be made to. Subsequent

analyses that use this list of host factors may not use the complete set, depending on the

data that is available; for example, gene Fv1 (NCBI gene ID 14349) is only found in Mus

musculus (mice), and thus is not included in human-specific analyses.
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Table 1: Host factors with literature-based evidence of interacting with a virus (n = 47).

HGNC Symbol* NCBI Gene ID Effect on Virus** Virus† PubMedID
ADAR 103 inhibitory InfluenzaA; MeV 21159878
APOBEC3G 60489 inhibitory HIV-1 12167863;12808465
ATP6V0D1 9114 essential Influenza 18615016
BST2 684 restriction HIV-1 18200009; 18342597
CCL5 6352 inhibitory HIV-1 8525373
CDKN1B 1027 auxiliary Influenza 20081832
CH25H 9023 inhibitory Enveloped viruses 23273844
CLK1 1195 auxiliary Influenza 20081832
COX6A1 1337 essential Influenza 18615016
DDX58 23586 inhibitory dsRNA viruses 15208624
EIF2AK2 5610 inhibitory HIV-1 19229320
Fv1 14349 restriction MLV 16474118
GNPTAB 79158 essential Ebola virus 30655525
HDAC6 10013 restriction InfluenzaA; HIV-1 30518648; 16148047; 25031336
HERC5 51191 inhibitory InfluenzaA 20385878
IFI16 3428 inhibitory KSHV 21575908
IFIH1 64135 inhibitory HIV-1 14645903
IFIT1 3434 inhibitory InfluenzaA; VSV 21642987
IFIT5 24138 inhibitory NDV; SeV 23942572
IFITM1 8519 restriction InfluenzaA 20064371
IFITM2 10581 restriction InfluenzaA 20064371
IFITM3 10410 restriction InfluenzaA 20064371
IFNB1 3456 inhibitory RSV 19193793
ISG15 9636 restriction InfluenzaA 20133869
MAVS 57506 inhibitory SeV 16125763
METTL3 56339 essential InfluenzaA 28910636
MOV10 4343 inhibitory RNA viruses 27016603
MX1 4599 inhibitory InfluenzaA 26202236
MX2 4600 restriction HIV-1 24048477
NXF1 10482 essential Influenza 18615016
OAS1 4938 inhibitory Dengue virus 19923450
RNASEL 6041 inhibitory SeV 17653195
RSAD2 91543 inhibitory InfluenzaA 18005719
SAMHD1 25939 restriction HIV-1 21720370; 21613998
SERINC3 10955 restriction HIV-1 26416733
SERINC5 256987 restriction HIV-1 26416733
SLFN11 91607 restriction HIV-1 23000900
SON 6651 auxiliary Influenza 20081832
STING1 340061 inhibitory VSV; HSV-1 18724357
TP53 7157 auxiliary InfluenzaA 29904383
TREX1 11277 auxiliary HIV-1 20871604
TRIM25 7706 inhibitory InfluenzaA 19454348
TRIM26 7726 inhibitory VSV; NDV; SeV 26611359
TRIM28 10155 restriction MLV 17923087
TRIM5 85363 restriction HIV-1; MLV 16474118; 17156811
UVRAG 7405 essential InfluenzaA; VSV 24550300
YTHDF2 51441 auxiliary InfluenzaA; KSHV 28910636; 29659627

* ‘HGNC Symbol’ refers to the set of unique, official gene symbols from the HUGO Gene Nomenclature

Committee at the European Bioinformatics Institute100.

** The column ‘Effect on Virus’ denotes the manually annotated host factor classification, as supported by

the evidence given in its associated publication (column ‘PubMedID’); consult figure 1 for reference.

† Viruses are referred to by: type of virus; general class of virus, as defined by the Baltimore classification
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system (e.g. ‘dsRNA viruses’); or, a common characteristic shared by a group of viruses (e.g. ‘Enveloped

viruses’).

Abbreviations: MeV, Measles morbillivirus; HIV-1, Human immunodeficiency virus type 1; MLV, Murine

leukemia virus; KSHV, Kaposi’s sarcoma-associated herpesvirus; VSV, Vesicular stomatitis virus; NDV, New-

castle disease virus; SeV, Sendai virus; RSV, Respiratory syncytial virus; HSV-1, Herpes simplex virus 1.

By going through the process of searching for and reading relevant publications that

contain evidence of interactions occurring between viruses and their hosts, common ex-

perimental techniques used for identifying and validating host factors were determined.

This provided the necessary background for the section in chapter 2 on probing gene

function, where a selection of these experiments are described.

In the next section, results from the computational analysis of a genome-wide knockout

screen of HEK-293SF cells—where the relative viral titre produced by each cell was used

as a selection step—are presented. The results from this screen provide an experimental

source of evidence for influenza-specific host factors, which supports the literature-curated

set of nonspecific host factors provided here, in table 1.

3.2.2 Genome-wide Knockout Screen of HEK-293SF Cells In-

fected with Influenza for the Identification of Antiviral Host

Factors

A genome-wide screening strategy for the identification of putative antiviral host factors,

which may be used to genetically engineer cell-based vaccine cell lines to improve viral

titres, is presented in the study by Sharon et al. (2020)89. Here, the results from the

computational analysis of SGS reads derived from the application of the screening strategy

to the HEK-293SF cell line—where a modified version of the influenza A virus was used

for infection—is described in detail. For more details on the screening strategy, refer to the

paper (specifically, figure 1) or the brief description already provided in the methods

section of this chapter.
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Knockout Screen Quality Control Metrics

To begin, a series of knockout screen quality control metrics were calculated using FastQC

and MAGeCK65,66,105. This step is crucial for validating the screen output, as it detects the

presence of any experimental biases and defines thresholds for each metric that should

ideally be met to ensure proper interpretation of downstream functional analyses.

The first metric considered was the quality of sequencing data generated for each sample

by the Illumina HiSeq 4000 machine. The figures associated with this analysis have been

left out for brevity; refer to figure 4, subplots a and b, in the Sharon et al. (2020)89 paper

for a subset of these results.

Briefly, the reads generated for all six samples (‘control’ and ‘high yield’ conditions, each

with three replicates) individually met the necessary quality control thresholds for the

following metrics:

• Median per base sequence quality: Phred score >30 across all base pairs.

• Mean per sequence quality: single peak observed in distribution at Phred score of

39.

• Distribution of mean GC content over all sequences matches that of a theoretical

normal distribution; here, GC content is defined as the percentage of G and C nu-

cleotides in a given sequence.

• All reads are 50 base pairs in length, as defined by the sequencer.

Given the satisfactory quality of the sequencing data, the reads were mapped to the

Brunello sgRNA library using the count function of MAGeCK; this ‘counts’ the number of

cells with a given sgRNA sequence—each of which indicates a knockout corresponding to

the target gene of that sgRNA—for each sgRNA in the Brunello library. A number of

sgRNA-level quality control metrics associated with this mapping procedure are given in

table 2.
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Table 2: Knockout screen read mapping and sgRNA-level quality control metrics. sgRNA reads
were aligned to the Brunello sgRNA library—which contains 77, 441 targets—using the MAGeCK software
suite65,66,105. Data corresponds to figure 4 (subplots c, d, and e) of the Sharon et al. (2020) study89 and
is under a Creative Commons license.

Sample* Total Reads Mapped Reads** Zero Counts† Gini index††

R1 high yield 36,119,880 24,370,285 (0.67) 209 0.09
R1 control 37,159,178 24,492,676 (0.66) 151 0.08
R2 high yield 37,239,926 25,136,938 (0.67) 187 0.09
R2 control 34,066,043 22,924,926 (0.67) 192 0.09
R3 high yield 38,394,069 25,419,311 (0.66) 248 0.09
R3 control 34,406,196 23,112,824 (0.67) 202 0.09

* R1, R2, and R3 denote biological replicates.

** The fraction of total reads successfully mapped to the Brunello sgRNA library is given in brackets.

† Zero counts are the number of unique sgRNAs in the Brunello library for which no read was mapped.

†† The Gini index is a measure for how even the distribution of sgRNA read counts is; values less than 0.1

indicate that the sgRNA representation in the population of cells is of high quality.

An important conclusion from table 2 is that the average number of reads per sgRNA

in the Brunello library is ∼ 300, indicating that there is sufficient representation of each

gene knockout within the population of cells, for each sample66.

The count function of MAGeCK also performs normalization on the sgRNA read counts;

specifically, they are median-normalized—using the ‘median ratio method’65 —and then

log2 –transformed. Histograms of these transformed sgRNA read counts for all knockout

screen samples are given in figure 2.
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Figure 2: Frequency polygon (histogram) of median-normalized, log2 –transformed sgRNA read counts
for all knockout screen samples. Here, ‘Top10’ refers to the top 10% of GFP-expressing cells, which is
synonymous with the ‘high yield’ cell population. Figure generated by the MAGeCK software suite65,66,105.

Lastly, to assess the similarity of samples within an experimental condition (either the

‘control’ or ‘high yield’ cell populations), pairwise Pearson Correlation Coefficients (PCC)

were calculated based on the sgRNA read count distributions of each sample; a heat

map depicting the clustering of the knockout screen samples—which, importantly, cluster

together within their respective conditions—is given in figure 3.
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Figure 3: Heat map of knockout screen samples, clustered by pairwise PCCs of log2 –transformed,
median-normalized sgRNA read counts. As expected, the ‘high yield’ and ‘control’ cell populations each
cluster together, indicating that their within-condition sgRNA read count distributions are similar. Here,
‘Top10’ refers to the top 10% of GFP-expressing cells, which is synonymous with the ‘high yield’ cell
population. Figure generated by the MAGeCK software suite65,66,105 and corresponds to figure 4f of the
Sharon et al. (2020) study89, which is under a Creative Commons license.

Comparison of sgRNA Abundance Between High Yield and Control Cell Pop-

ulations Identifies Putative Antiviral Host Factors

After mapping reads to the Brunello sgRNA library and normalizing the resulting counts

across samples, the abundance of each sgRNA is compared between ‘high yield’ and ‘con-

trol’ conditions using the test function of MAGeCK, as described in the methods section. As

a brief reminder, the strategy used by MAGeCK to identify gene knockouts of biological im-

portance is to identify those that are both enriched/depleted between conditions—as mea-
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sured by the LFC in sgRNA abundance—and considered to be statistically significant—as

tested using the negative binomial distribution65. To get an informative view of how the

sgRNA abundances differ between conditions—where the median value is taken across

replicates—individual log2 –transformed sgRNA pseudocounts are plotted against each

other, as depicted in figure 4.

Figure 4: Scatter plot comparing sgRNA abundance between ‘high yield’ and ‘control’ cell popu-
lations. Abundance of normalized sgRNAs are depicted as the median value across replicates, with a
log2 transformation applied to values with a pseudocount of +1. Each sgRNA has been classified as:
having a median read count in the control condition < 30 (n=1,760; grey); a non-targeting control
(n=1,000; red); statistically significant with an FDR-adjusted p-value < 0.01 (n=754; green); or, none
of the prior classifications (black). The blue dotted line denotes y = x, where points above or below
this indicate enrichment or depletion of the corresponding sgRNA. Here, ‘Top10’ refers to the top 10%
of GFP-expressing cells, which is synonymous with the ‘high yield’ cell population. Figure generated
using Julia9 and ggplot2112, with data produced by the MAGeCK software suite65,66,105; it corresponds
to figure 5a of the Sharon et al. (2020) study89, which is under a Creative Commons license.

From this, the sgRNAs with median read counts of less than 30 in the control condition
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(n=1,760; grey) were removed from subsequent downstream analyses, as they do not have

sufficient representation in the population of cells.

Next, sgRNA-level FDR-adjusted p-values and LFCs were converted to the level of the

gene using MAGeCK, as described in the methods section. To consider the LFC of gene

abundance between conditions as a measure of biological significance, a volcano plot was

produced—shown in figure 5—which compares individual gene FDR-adjusted p-values to

their corresponding LFC. Putative gene hits were considered to be those with a |LFC| >

0.4 and an FDR-adjusted p-value < 0.01.

Figure 5: Volcano plot depicting significantly enriched and depleted knockout screen gene hits by
comparing FDR-adjusted p-values to the LFC in gene abundance between conditions. Vertical dashed
lines indicate arbitrarily chosen thresholds for putative gene hits as |LFC| > 0.4 and FDR-adjusted
p-values < 0.01; genes coloured red (n = 64) and blue (n = 37) indicate putative anti- & pro-viral gene
hits, respectively. Figure generated by the MAGeCK software suite65,66,105 and corresponds to figure 6a of
the Sharon et al. (2020) study89, which is under a Creative Commons license.

In total, MAGeCK test identified 135 significant genes under the FDR-adjusted p-value

threshold of 0.01. With the additional biological significance restriction of |LFC| >

0.4, 64 and 37 putative anti- and pro-viral influenza-specific host factors were identified,

respectively. As noted by Sharon et al. (2020)89, there is a lack of adequate controls

within the screening strategy for the identification of proviral genes; thus, they should be

interpreted with caution, especially when used as the basis for other functional analyses,

46



Sean Nesdoly CHAPTER 3: HOST FACTOR CURATION

such as those presented in chapter four. The putative anti- and pro-viral influenza-specific

host factors—corresponding to the red and blue gene ‘hits’ in figure 5—are included in

section C of the appendix; there, the significance threshold was lowered to α = 0.05 to

increase numbers.

In conclusion, individual cells with specific gene knockouts that result in an abnormal level

of viral replication—as measured by the expression of GFP-tagged influenza—have been

identified computationally through the analysis of SGS reads derived from the Sharon et

al. (2020)89 genome-wide knockout screen of HEK-293SF cells. The candidate antiviral

host factors identified will be used to further the understanding of host viral defence mech-

anisms, and, for guiding the development of optimized cell-based vaccine manufacturing

platforms.

3.2.3 Summary of Influenza Host Factors Identified in Screening

Experiments

To compliment the set of putative antiviral host factors identified in the screen by Sharon

et al. (2020)89, a selection of perturbation-based influenza-specific screening studies were

found in the literature. Each study identified anti- and/or pro-viral host factors, with

each one varying in their motivation for conducting the screen and in their method of

perturbation. The curated screen ‘hit lists’ have all been converted to a common gene

identifier for the purpose of comparison and are included in section C of the appendix.
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Table 3: A selection of studies that have performed a perturbation-based screening strategy to identify
host factors that are involved in the influenza virus life cycle, sorted by year of publication. Although
each study was conducted in the form of a screen, it is worth noting that they differ from one another
in experimental setup and statistical methods used and thus the comparison of their raw count values is
not appropriate. See table for corresponding citations; the curated sets of host factors are provided in
section C of the appendix.

First Author Year Journal Perturbation Method Number of Screen Hits

Antiviral Genes Proviral Genes
Brass12 2009 Cell siRNA 4 129
Carette16 2009 Science Insertional Mutagenesis 0 2
Shapira88 2009 Cell siRNA 176 221
Karlas56 2010 Nature siRNA 0 168
Watanabe111 2014 Cell Host & Microbe siRNA 34 358
Tripathi99 2015 Cell Host & Microbe Meta-analysis 485 1445
Heaton47 2017 Cell Reports CRISPR activation 1190 0
Sharon89 2020 Scientific Reports CRISPR knockout 64 (89*) 37 (60*)
Total 1953 2360

*Number of genes identified in the screening study by Sharon et al. (2020)89 under a significance level

threshold of α = 0.05; the values not in brackets correspond to α = 0.01.

3.2.4 Comparison of Putative Antiviral Gene Screen Hits

To get a sense of the overlap of antiviral gene screen hits identified in perturbation-based

genome-wide screening studies of cells infected with the influenza virus, a subset of studies

from table 3 were compared by creating a Venn diagram, as shown in figure 6. This depicts

their intersections at the level of the gene, where comparisons are made using NCBI gene

identifiers; see section C of the appendix for the host factor sets.
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Figure 6: Venn diagram depicting the overlap of putative antiviral gene sets identified in two
perturbation-based genome-wide screens of cells infected with influenza47,89 and one meta-analysis
study99. The three gene sets correspond to the following studies: Sharon et al. (2020)89 as ‘sharon’
(n = 64; refers to those under a significance level threshold of α = 0.01); Heaton et al. (2017)47 as
‘heaton2017’ (n = 1190); Tripathi et al. (2015)99 as ‘tripathi2015’ (n = 485). Refer to table 3 for further
details on the studies. A gene-to-gene comparison of screen hits does not necessarily capture the full
output of each study, as between-experiment variation exists, and thus the overlaps should be interpreted
with caution. Figure created in R84.

A caveat to this analysis is that gene-to-gene comparisons of screen hits do not necessarily

capture the full output of each study, as between-experiment variation and other nuances

exist; thus the gene set overlaps should be interpreted with caution. Importantly, the

studies by Sharon et al. (2020)89 (‘sharon’) and Heaton et al. (2017)47 (‘heaton2017’) use

CRISPR-mediated technologies to induce gene knockouts and activations, respectively;

in contrast, Tripathi et al. (2015)99 conducted a meta-analysis of previously published

genome-wide RNA interference (RNAi) screens and integrated these results with protein

interaction datasets—one of which was generated as part of their study. Although these

differences exist, it does not preclude performing this trivial type of analysis, as it re-

inforces the level of care that must be taken when comparing screen-based studies. A

few reasons for the lack of congruity between systems-level technologies are given in the

49



Sean Nesdoly CHAPTER 3: HOST FACTOR CURATION

discussion chapter of this thesis (5).

That being said, the main takeaways from the intersections of these putative antiviral

gene screen hits can be summarized by calculating relative fold enrichments between each

pair of sets (see 3.1.4 for details); this is given in table 4.

Table 4: Fold enrichments of overlapping putative antiviral gene sets identified in two perturbation-
based genome-wide screens of cells infected with influenza47,89 and one meta-analysis study99. See
section 3.1.4 for calculation details. As noted previously, gene-by-gene comparison of screen hits is only
one measure for comparing screens against each other and thus should be interpreted with caution. These
calculations are contained in supplemental S1 of the Sharon et al. (2020) study89 and is under a Creative
Commons license.

Gene Set A Gene Set B Fold Enrichment(A,B)
Sharon et al. (2020)89 Heaton et al. (2017)47 1.1
Sharon et al. (2020)89 Tripathi et al. (2015)99 1.9
Heaton et al. (2017)47 Tripathi et al. (2015)99 0.6

In conclusion, the putative antiviral genes derived from the selected perturbation-based

genome-wide screens of cells infected with influenza—when compared at the level of the

gene—have weak, if any, enrichment between each other. This supports further computa-

tional or experimental validation of the screen hits; therefore, the next chapter carries out

a series of network-based computational analyses on various interactome datasets—using

the host factors identified in this chapter as a guide—with the aim of further characterizing

host-virus interactions.
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Chapter 4: Host-Virus Interactome Analysis

This chapter addresses the third objective of this thesis by using a systems biology ap-

proach to further characterize host-virus interactions. This is accomplished by applying

a number of network-based computational analyses on several interactome datasets—

each of which has distinct properties due to the variation in their underlying interaction

types—using the host factors identified in chapter three as a guide.

4.1 Methodology

4.1.1 Interactome Datasets

The interactome datasets used in the network analyses of this chapter are described in

the following sections. Each interactome is represented as a graph G = {V,E}, where V

is the set of vertices (genes) and E is the set of edges (interactions) that occur between

them. For all datasets used in this thesis, an edge connecting two genes is undirected,

meaning that (a, b) = (b, a). The existence of a weight on an edge, which denotes the

strength or confidence of an interaction, is variable within the datasets used and as such

will be specifically noted.

The Human Reference Interactome (HuRI and HI-union)

The ‘Human Reference Interactome’ (HuRI) and the ‘union of Human Interactomes’

(HI-union) are primary binary PPI datasets that can be downloaded from the Human

Reference Protein Interactome Mapping Project website as part of the study by Luck et

al. (2020)67. These datasets are part of the larger effort to map all human PPIs, as led

by the Center for Cancer Systems Biology (CCSB) at the Dana-Farber Cancer Institute.

Binary interactions in these datasets are identified using the yeast two-hybrid screening

experiment; here, an interaction is detected by proxy through the transcription of a re-

porter gene, which only occurs if the bait and prey query proteins physically associate.

As with all biological experiments, false positives and false negatives do occur; however,
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significant effort has been made to reduce the extent of these errors through the use of

technical and biological replicates. The HI-union dataset is an aggregate of all PPIs

that have been identified by protein interaction mapping efforts at the CCSB; as such,

HI-union is a superset of HuRI in both its vertex (V ) and edge (E) sets. As this database

is based on primary evidence, it is considered as the ‘gold-standard’ for binary PPIs.

STRING: A Database of Known and Predicted Protein-Protein Interactions

The STRING database (‘Search Tool for Retrieval of Interacting Genes/Proteins’) contains

a collection of both direct and indirect PPIs that are curated from public sources, as well

as computationally predicted93. This resource, available online at https://string-db.

org/, supports large query sets, produces interactive web-based graphs with various edge

weights (‘scores’) as a measure of confidence for exploration purposes, and provides nu-

merous downstream functional analysis tools. Importantly, the interactions used for the

analyses in this thesis were taken from STRING version 11.0 and were restricted to physical

associations, thereby excluding those that relate proteins by function, as is defined by

STRING.

COXPRESdb: An Aggregated Source for Ranked Gene Coexpression Data

COXPRESdb is a database of aggregated, ranked gene coexpression data, available online at

https://coxpresdb.jp/77. Data used in this thesis corresponds to COXPRESdb version

7.2 (correlation tables Hsa-r.c4-0 & Hsa-u.c2-0, released on 2019-02-25). Instead of

storing physical interactions, it calculates the functional, indirect relationship between two

genes based on the correlation of their expression across a large number of transcriptomic

experiments; gene expression, in turn, is measured by counting the number of messenger

RNA transcripts expressed by a gene under a given environmental condition. As such,

the coexpression of two genes is used as a proxy for their indirect interaction; the nature

and extent of this relationship is left up to interpretation, and often requires further

experimental validation.
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4.1.2 Basic Network Properties

Representing Interactome Data as an Adjacency List

Interactome datasets are typically stored in files as a list of interactions in the form (a, b),

separated by some delimiter. When working with interactome data in practice, however,

it is often more efficient to transform the list of edges into an adjacency list or matrix.

By doing so, the computational complexity of common graph operations is significantly

reduced. As such, each interactome dataset was read from file as a list of edges and

subsequently converted into an adjacency list; this data structure is represented as an

array of vertices, with each array element consisting of an array of all of its neighbours

within the graph.

Calculating General Network Properties for an Interactome

Calculating general network properties for a graph that is stored as an adjacency list

(or matrix) is trivial, and, for many of the common graph operations, computationally

efficient. For a brief overview of the graph theory concepts that are used in this chapter,

refer to section 2.2.1.

For example, to calculate the degree of a vertex v, one only has to lookup the array of

neighbours corresponding to vertex v within the adjacency list and retrieve its length,

which is a constant time operation (∈ O(1)). To calculate the degree sequence of a graph

G, the degree operation is simply repeated for each vertex in the graph, and the resulting

values are sorted (operation is ∈ O(n log n)).

One property of importance is that of the ‘self-loop’: it is defined as an edge (a, a) that

connects the vertex a to itself. Within the context of an interactome network, this might

refer to a protein that physically interacts with itself. Calculating the number of self-

loops within a graph G involves iterating over all edges within the graph and checking for

equivalence between the two vertices in each edge (operation is ∈ O(|E|)).
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Power-law Distribution of Interactome Networks

The probability that a given gene (vertex) participates in k interactions (its degree) within

an interactome has been shown to follow a power-law distribution5; this means that many

empirical interactome datasets approximate a scale-free network, wherein a large number

of genes have very few interactions and only a few genes—known as hubs—have a large

number of interactions6. The power-law probability distribution, typically reserved for

explaining large values of k, or the tail end of the distribution, is given below:

P (k) ≈ k−α (4)

where α > 1. When the log function is applied to both sides of this equation, we can plot

the following relationship:

log(P (k)) ≈ log(k−α) (5)

If the above relationship is plotted and a straight-line relationship is observed, this indi-

cates that the degree distribution of the interactome under analysis approximates that of

a power-law.

One property that arises from the nature of the power-law relation is that it is invariant

under scaling of its parameter k; that is, when multiplying the variable k by a constant

factor c, the resulting function is a multiple, or scaling, of that factor:

P (ck) = (ck)−α = (c−αk−α) = c−αP (k) (6)

This property leads to the definition of ‘scale-free networks’, as already described.

4.1.3 Candidate Gene Set Network Analysis

The methods contained within this section all share the common theme of analyzing a

set of query genes—or ‘candidate’ host factors—within the space of a target interactome
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G. By conducting these gene set analyses within the context of an interactome network,

systems-level properties may be determined.

Comparing Network Connectivity Between Gene Sets S1 and S2

To begin, the problem of quantifying the network connectivity for a single set of genes S

within an interactome G is defined as follows:

Given an undirected graph G = {V,E} and a set of vertices S, such that S ⊆ V ,

compute the fraction of vertices in S that have at least one direct neighbour

(edge) with a different vertex in the same set S; this can be interpreted as

testing N(v), the neighbourhood of a vertex v where v ∈ S, for set membership

in S. From a biological standpoint, this problem aims to determine how well

connected a set of genes is within a particular interaction network. If many of

the genes within the query set S have neighbours that are also within S, this

may suggest that they are functionally related. In any case, this simple analysis

can efficiently test whether or not it is worth further investigating a particular

set of genes.

To calculate the observed number of intra-set interactions that occur between genes in

the set S within the induced subgraph G[S], as described above, we can use the following

equation:

∑
v∈S

∑
x∈N(v)

⎧⎪⎪⎨
⎪⎪⎩

1 if (v, x) ∈ E

0 otherwise
, such that x ∈ S (7)

where N(v) is the neighbourhood of vertex v; that is, the subgraph of G formed by the

vertices adjacent to v. To normalize this value, we calculate the maximum number of

edges possible for a graph with the same number of vertices. A graph with this property

is known as a complete graph, where every pair of unique vertices is connected by an edge;

the number of edges in a complete graph with |V | = n vertices is given by the equation:

55



Sean Nesdoly CHAPTER 4: HOST-VIRUS INTERACTOME ANALYSIS

(
n

2

)
=

n(n− 1)

2
(8)

At this point, we are now able to compare the relative connectivity of two gene sets

S1 and S2 within their corresponding induced subgraphs, G[S1] and G[S2]. To do so,

we normalize the observed number of intra-set interactions, calculated in equation 7, by

dividing by the maximum number of edges possible for a complete graph with the same

number of vertices (|V | = |S1| or |S2|, respectively), as calculated by equation 8.

Simulated Network Connectivity Enrichment Analysis

The ‘simulated network connectivity enrichment analysis’ attempts to answer the follow-

ing question: do a set of genes tend to be enriched for the number of interactions that

they have within an interactome?

More formally, this is testing if the induced subgraph G[S], formed by an input set of

vertices S and their 1-degree neighbours, has a distribution of vertex degree values that

is, on average, larger than the degree distributions of randomly sampled, equivalent-sized

sets of vertices from the same graph G.

To test this, two scoring schemes were used to compare between two vertex degree distri-

butions:

1. Scoring scheme 1: Given a set S of vertices {v1, v2, ..., vn}, where vi ∈ V and V is

the vertex set of graph G, calculate the arithmetic mean of vertex degree values:

s1(S,G) =

∑n
i=1 deg(vi)

n
(9)

2. Scoring scheme 2: Given a set S of vertices {v1, v2, ..., vn}, where vi ∈ V and V is

the vertex set of graph G, calculate the geometric mean of vertex degree values:

s2(S,G) =

(
n∏

i=1

deg(vi)

) 1
n

(10)

Scoring scheme 2 (s2) was selected as a way to put less emphasis on values that may be
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very large in comparison to the rest of the set. As the vertex degree distribution of HuRI

was shown to approximate the power law—where few vertices have large degree values and

many are small—this is applicable. The geometric mean can be expressed alternatively

in terms of logarithms, where multiplication becomes addition, as shown below:

(
n∏

i=1

deg(vi)

) 1
n

= e[
1
n

∑n
i=1 ln(deg(vi))] (11)

This alternative formulation of the geometric mean—which is essentially taking the arith-

metic mean of the log –transformed degrees—puts less weight on extremely large values.

This effectively removes any bias introduced by the presence of a few genes that have very

large degree values, which, in the context of the biological world, are known as hub genes.

Induced Subgraph of Host Factors within the STRING Physical Interactome

For this analysis, the putative anti- and pro-viral host factors identified in the genome-

wide knockout screen by Sharon et al. (2020)89 (n = 89 and 60, respectively) were both

used as input to the STRING database93. The STRING network was restricted to physical

associations by selecting the ‘physical’ network type setting.

4.1.4 Gene Coexpression Network Analysis

Genes that have similar expression profiles over a number of different conditions and

experiments are defined as being coexpressed and thus can be considered to be function-

ally related. However, in order to compare between experiments and different detection

modalities, a framework of normalization, aggregation, and comparison must be defined.

This has been done by the COXPRESdb database77, whose methods and contents are briefly

described in the following section. Use of this valuable dataset for the analysis of host

factors is also described in detail.
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The ‘Mutual Rank’ Score as a Measure of Gene Coexpression

To begin, it is useful to understand what gene expression data looks like; an example is

given below in table 5.

Table 5: Structure of gene expression data. The number of transcripts expressed by a given gene gi
is measured across n samples (S = {s1, s2, ..., sn}); here, samples may be partitioned into two sets that
correspond to two different experimental conditions being tested. Comparison of counts between these
two conditions across all genes may lead to the identification of those that are differentially expressed,
and thus of interest for further analysis.

s1 s2 . . . sn
g1
g2
. . .
gm

COXPRESdb calculates a score, referred to as a ‘Mutual Rank’, for every pair of genes in

the human genome; that is,
(
n
2

)
=

(
22897

2

)
= 262, 124, 856 gene pairs (the n here is based

on COXPRESdb). A single score is derived from two corresponding sets of transcriptomic

experiments for the two genes being analyzed, each of which looks like table 5. Impor-

tantly, potential variations in environmental conditions and detection modalities exist

both within and between gene expression datasets. As such, the transcriptomic datasets

for each gene undergo a series of transformations that permit data integration, prior to

calculating the PCCs† between them; then, the set of correlations for a given gene A

against all other genes (PCC(A,X) for X ∈ All Genes) is ranked, producing a list of

rank-based scores (PCCrank). Taking the rank of a correlation coefficient normalizes for

variability in sample conditions, choice of method for normalizing gene expression data,

and the relative strength of expression required for a gene to perform its function with

its partners76. The final step forces the scoring system to be symmetric by taking the

geometric average of the two ranks for a gene pair (A,B)76:

MutualRank(A,B) =
√

PCCrank(A,B) ∗ PCCrank(B,A) (12)

Importantly, the smaller the ‘Mutual Rank’ value is, the greater the coexpression between

two genes.
† PCC = Pearson Correlation Coefficient
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For all figures created in the corresponding results section, data wrangling and analysis

was performed in Julia9 and plots were produced using ggplot2112 in R84.

4.2 Results

4.2.1 Basic Network Properties of the Human Reference Interac-

tome

To get an idea of what the PPI networks HuRI and HI-union look like, a number of general

network properties were calculated; the results are summarized in table 6 and were used

to inform subsequent analyses.

Table 6: General network properties of two human interactome datasets. Data wrangling and analysis
was performed in Julia9.

Network Property Interactome Dataset

HuRI HI-union
Number of vertices (|V |) 8272 9094
Number of edges (|E|) 52548 64006
Number of self-loops* 480 764
Mean vertex degree (k̄) 12.65 13.99
Geometric mean of vertex degrees 4.65 4.98
Median vertex degree (k̃) 4.0 4.0
Q1 of vertex degree values 1 2
Q3 of vertex degree values 12 13
s(vertex degree)** 25.53 29.67
Range of vertex degree values [1, 499] [1, 641]

Here, V and E denote the vertex and edge sets of the specified interactome dataset, respectively. The variable

k refers to the degree sequence of the vertices in a graph, which is the set of all vertex degree values, sorted

in descending order. Q1 and Q3 denote the first and third quartiles, respectively.

* Self-loops within a graph represent interactions that occur between a given protein and itself, often at the

quaternary-structure level; a case example is the heterotetramer hemoglobin, which consists of two α and two

β protein subunits that assemble together to form the final protein product ((αβ)2). When a self-interacting

protein is used as both the bait and prey within a yeast two-hybrid screening experiment—such as that used

by Luck et al. (2020)67 to generate HuRI—the reporter gene will be transcribed, denoting that the protein

interacts with itself.

**Function s() is the corrected sample standard deviation.

Based on the relative similarity in network properties between HuRI and HI-union, HuRI

was selected as the interactome for which subsequent analyses will be performed on.

Apart from being a rather arbitrary decision, this was partially motivated by the fact
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that HI-union is an aggregation of data from multiple experiments, some of which differ

in the specifics of their methodology.

4.2.2 Degree Distribution of HuRI Approximates a Power-law Dis-

tribution

To further characterize the network properties of HuRI—prior to conducting further down-

stream analyses that are specific to host factors—its vertex degree distribution was ex-

plored with various transformations applied in succession. This analysis is important for

calculating other network properties, as the expected results, and therefore biological in-

terpretations, can change based on the type of degree distribution exhibited by a given

graph.

To begin, a histogram of the vertex degree values for HuRI is plotted in figure 7. To give

an idea of the density of vertices with small values of k, 98.5% (8146
8272

) of vertices have

degree values in the range [1, 100]; as such, the x-axis of figure 7 is restricted to only show

values in this interval.
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Figure 7: Degree histogram of the Human Reference Interactome (HuRI). This figure shows the
distribution of vertex degree values by plotting the number of vertices (nk) for each vertex degree value
(k). Each bin has a width of 1, meaning that each bin in the histogram corresponds to nk for one value
of k. As nk quickly decreases as k increases, the x-axis has been restricted to only show values in the
interval [1, 100] for clarity; in the full set of degree values, k goes all the way up to 499. The interactome
dataset HuRI was obtained from Luck et al. (2020)67. Data wrangling and analysis was performed in
Julia9; plots were produced using ggplot2112 in R84.

It is immediately clear by the characteristic heavy upper-tail region of figure 7 that the

distribution of degrees within HuRI is highly skewed to the right. This observation sup-

ports further investigation into this network property: what is the expected number of

vertices with degree k within a graph G? That is, how does the probability P (k) relate

to the degree k of a vertex? To answer this question, we can plot P (k) against k and

observe the effect that log –transforming each axis in turn has on their relationship. The

motivation behind the choice of the log function is to spread out the density of values

along the axis in order to aid in visualization. This exploratory analysis of the degree

distribution of HuRI is given in figure 8; for the same analysis on HI-union, see figure 15

in section A of the appendix.
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Figure 8: Exploration of the degree distribution of the Human Reference Interactome (HuRI). Each
vertex within the graph, or interactome, represents a human protein-coding gene. The degree of a vertex,
denoted as k, is the number of edges, or interactions, that it has with other vertices within the interactome.
Each subplot depicts the relationship between P (k) = nk

|V | , the number of vertices with degree k (nk)
divided by the total number of vertices in the graph (|V |), and k, the vertex degree value. To ensure that
log2 transformations may be applied to P (k), we make P (k) > 0, ∀k by adding a pseudocount of 1 to
the numerator, giving P (k) = nk+1

|V | . To better show the relationship between P (k) and k, scatter plots
(a, b, c, and d), each with 499 data points based on |V | = 8272 degree values, were created with log2
–transformations applied successively to each axis in turn. The log2 transformation effectively spreads
out the distribution of values along a given axis, making it easier to visualize. Subplot (d) has the log2
transform applied to both axes; here, the depiction of a linear correlation between log2(P (k)) and log2(k)
suggests that HuRI, at its current stage of completeness, approximates a power-law relationship5. That is,
many genes have few interactions, and few genes have many. The interactome dataset HuRI was obtained
from Luck et al. (2020)67. Data wrangling and analysis was performed in Julia9; plots were produced
using ggplot2112 in R84.

This exploratory analysis of the degree distribution of HuRI suggests that it approximates

a power-law distribution. Of interest, the genes with the largest values of k are MEOX2

(HGNC:7014; k = 498) and CYSRT1 (HGNC:30529; k = 499).

Although the accuracy of estimating the exponent α from the slope of a log – log plot

of P (k) vs. k has been debated—as it depends partly on the completeness of the inter-

actome13,20 —this analysis still shows that the majority of genes within HuRI have few

connections, and only a few genes have many. This, by itself, is interesting enough to

warrant further investigation into HuRI; this will be accomplished by probing it with the

host factors identified in chapter three. To conclude, the relationship discerned between
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P (k) and k is a guiding principle that must be kept in mind when making biological

interpretations based on the HuRI dataset.

4.2.3 A Candidate Gene Set Network Analysis Reveals Emergent

Systems-level Properties

The aim of this section is to use the candidate anti- and pro-influenza host factors iden-

tified in the genome-wide knockout screen by Sharon et al. (2020)89 to probe the inter-

actomes HuRI and STRING; as such, this is referred to as a ‘candidate gene set network

analysis’, as the genes under study require further characterization. Specific focus will

be kept on the putative anti-influenza host factors, as the screening strategy used was

carried out with the primary motivation of improving cell-based vaccine manufacturing

platforms.

Host Factor Interactome Network Properties

To begin, an in-depth analysis of the candidate anti- and pro-viral host factors identified

in the Sharon et al. (2020) study89 has been conducted within the target binary PPI

interactomes HuRI and HI-union. A comprehensive set of the network properties resulting

from this analysis are given in table 7. For reference, a summary of the interactome

datasets that these network properties are based on—both of which were obtained from

Luck et al. (2020)67 —can be found in table 6.
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Table 7: Interactome network properties for the candidate anti- & pro-viral host factors identified in
the genome-wide influenza screen by Sharon et al. (2020)89. Values are given based on the query gene
set used (S) and the version of the human binary interactome that was probed (G). Data wrangling and
analysis was performed in Julia9. See table footnotes for specific details of network properties.

Query Gene Set (S) Network Property Interactome Dataset ( G )

HuRI HI-union

Antiviral genes (n=89)

(1) Fraction of genes in S present in inter-
actome

41
89 (46.1%) 48

89 (53.9%)

(2.1) Fraction of intra-set interactions
present†

11
820 (1.34%) 13

1128 (1.15%)

(2.2) Fraction of intra-set interactions that
are self-loops*

7
11 (63.6%) 8

13 (61.5%)

(2.3) Fraction of genes in S that participate
in intra-set interactions, including self-
loops*

14
41 (34.1%) 17

48 (35.4%)

(2.4) Fraction of genes in S that participate
in intra-set interactions, not including
self-loops*

8
41 (19.5%) 10

48 (20.8%)

(3.1) Fraction of simulated trials with scores
> score(S, G), using scoring scheme 1
(9) and target interactome G

136,236
1×106 (13.6%) 262,632

1×106 (26.3%)

(3.2) Fraction of simulated trials with scores
> score(S, G), using scoring scheme 2
(10) and target interactome G

9,832
1×106 (0.98%) 56,516

1×106 (5.7%)

Proviral genes (n=60)

(1) Fraction of genes in S present in inter-
actome

30
60 (50%) 36

60 (60%)

(2.1) Fraction of intra-set interactions
present†

4
435 (0.92%) 5

630 (0.79%)

(2.2) Fraction of intra-set interactions that
are self-loops*

3
4 (75%) 4

5 (80%)

(2.3) Fraction of genes in S that participate
in intra-set interactions, including self-
loops*

4
30 (13.3%) 5

36 (13.9%)

(2.4) Fraction of genes in S that participate
in intra-set interactions, not including
self-loops*

2
30 (6.7%) 2

36 (5.6%)

(3.1) Fraction of simulated trials with scores
> score(S, G), using scoring scheme 1
(9) and target interactome G

258,324
1×106 (25.8%) 372,124

1×106 (37.2%)

(3.2) Fraction of simulated trials with scores
> score(S, G), using scoring scheme 2
(10) and target interactome G

166,790
1×106 (16.7%) 289,571

1×106 (29.0%)
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Network properties have been categorized into three general groups: (1) trivial; (2) network connectivity of

the induced subgraph G[S], as described in ‘Comparing Network Connectivity Between Gene Sets S1 and

S2’ within section 4.1.3; (3) simulated network connectivity of the induced subgraph G[S], as described in

‘Simulated Network Connectivity Enrichment Analysis’ within section 4.1.3.

*Self-loops within a graph represent interactions that occur between a given protein and itself; see footnotes

of table 6 for further details. Where a network property states that it does not include self-loops, the property

is calculated on the set of edges with the self-interactions removed ((a, a) /∈ E).

†The denominator here is the maximum number of edges possible for the induced subgraph G[S]; that is, the

number of edges in a complete graph—where every pair of unique vertices is connected by an edge—of size

|V | = 41 or 30 for the anti- & pro-viral query gene sets, respectively. For a complete graph with n vertices,

there are n(n−1)
2

edges. See ‘Comparing Network Connectivity Between Gene Sets S1 and S2’ in section 4.1.3

for specific details of this analysis.

As noted by Sharon et al. (2020)89, any insight gleaned from the analysis of the proviral

candidate gene set must be interpreted with caution, as the screening strategy lacked ad-

equate controls for their proper identification. Nonetheless, it is still valuable to calculate

their network properties, as they can be considered as a ‘background’ gene set for which

comparisons to the putative antiviral host factors may be made.

Through analysis of the candidate host factors within the interactome HuRI, as presented

in table 7, the following basic properties are observed (organized by network property

category):

• 2.1: Antiviral genes have slightly more intra-set interactions than proviral genes

(1.34% vs. 0.92%).

• 2.2: Both have high proportions of intra-set interactions that are self-loops (63.6%

and 75%).

• 2.3 and 2.4: Significantly more antiviral genes participate in intra-set interactions

compared to proviral genes (34.1% vs. 13.3%), including when self-loops are omitted

(19.5% vs. 6.7%).

To get a grasp of the values from network property (2.1)—the fraction of intra-set inter-

actions that are present—we can consider the following logic:

What is the probability of choosing two different genes a and b (a 	= b) from

a set V , where |V | = n, such that a, b ∈ S, S ⊂ V with |S| << n, and

(a, b) ∈ E? Said in simpler terms, what is the probability that two antiviral
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genes are neighbours within an interactome? This turns out to be quite difficult

to calculate if the constraints of |V | and |E| are included; so, instead, we keep

it simple by asking what the probability is of selecting genes a and b from V

without replacement, such that a, b ∈ S:

P (a ∩ b | a, b ∈ S) =
|S|
|V | ×

|S| − 1

|V | − 1
(13)

For the candidate anti- and pro-viral gene sets from Sharon et al. (2020)89, with HuRI as

the target interactome, the probability of this occurring is, respectively:

P (a ∩ b | a, b ∈ Antiviral Gene Set) =
41

8272
× 40

8271
= 0.0024%

P (a ∩ b | a, b ∈ Proviral Gene Set) =
30

8272
× 29

8271
= 0.0013%

These probabilities give some perspective on the values calculated for network property

2.1, where 11
820

(1.34%) and 4
435

(0.92%) edges have endpoints that are both anti- or

proviral genes, respectively.

With regards to network properties 3.1 and 3.2—calculated as part of the ‘simulated

network connectivity enrichment analysis’—when genes were sampled randomly without

replacement from HuRI one million times, 13.6% and 0.98% of these trials were larger

than that of the candidate antiviral gene set based on the arithmetic (equation 9) and

geometric (equation 10) mean scoring schemes, respectively. This can be interpreted as the

candidate antiviral gene set being enriched for large vertex degree values, or interactions,

within the interactome HuRI compared to that of randomly sampled sets of genes of the

same size. Thus, the candidate antiviral genes identified in the genome-wide knockout

screen by Sharon et al. (2020)89 tend to have higher degree values than that expected by

chance alone.

Furthermore, there is a comparatively larger reduction in percentages between scoring

schemes s1 (9) and s2 (10) for antiviral genes in comparison to that of proviral genes

(13.6% → 0.98%, difference of 12.6% vs. 25.8% → 16.7%, difference of 9.1%). This
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indicates that the candidate antiviral gene set has a greater proportion of hub genes

(those with large degrees), as scoring scheme s2 (10) places less weight on degree outliers

through the use of the geometric mean function (see methods section for details).

Lastly, all of the observations just described regarding the network properties given in

table 7 also hold for the interactome HI-union.

Next, figure 9 was created to present the results of the candidate gene set network analysis

in a more visual, non-tabular format. This analysis stratifies the distributions of vertex

degree values for comparison of the candidate anti- and pro-viral host factors identified

in the genome-wide knockout screen by Sharon et al. (2020)89.
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Figure 9: HuRI log10 –transformed vertex degree distributions, stratified by gene type. The anti- &
pro-viral host factors depicted (red and blue distributions, respectively) are the putative host factors
identified in the genome-wide knockout screen by Sharon et al. (2020)89, restricted to those that are
present in HuRI. The bottom dotted and upper dashed lines indicate the median and mean vertex degree
for all vertices within HuRI, respectively. Data wrangling and analysis was performed in Julia9; plots
were produced using ggplot2112 in R84.

Importantly, the candidate antiviral gene distribution (red) is shifted more towards the

higher degree values; this supports the observations previously made from the analysis

of table 7, which suggests that there is an enrichment in the candidate antiviral set for
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genes that interact with each other more (so-called ‘hubs’). In conclusion, this supports

the hypothesis that antiviral genes tend to work together to—in the form of an immune

response—to fight against an invading virus; in contrast, proviral genes tend to be more

specific in their functions, with a lower proportion of ‘hubs’ and fewer intra-set interac-

tions. Viruses that target proviral genes are therefore likely doing so to inhibit a specific

function, thereby permitting continuation of their life cycle and the process of infection.

Induced Subgraphs of Host Factors within the STRING Physical Interactome

The STRING networks, created by querying the STRING database with either candidate

anti- or pro-viral genes, was restricted to physical associations by selecting the ‘physi-

cal’ network type setting, thereby reducing the possible evidence types for interactions

to: curated databases (blue), experimentally determined (pink), textmining (green), and

protein homology (purple). The induced subgraph of STRING formed by the candidate

antiviral gene set from the Sharon et al. (2020) study89 is given in figure 10.
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Figure 10: Physical interaction network of the 89 candidate antiviral genes identified in Sharon et
al.’s (2020)89 genome-wide influenza screen, as computed by STRING93. 67 physical interactions, where
the type of evidence supporting a given interaction is denoted by the colour of the edge (see legend), are
displayed between 88 vertices, with an average vertex degree of 1.52; these numbers are based on the
inclusion of only physical—and not functional—associations (‘physical’ network type selected in STRING
settings, minimum interaction score of 0.4). As calculated by STRING, the query antiviral gene set has
an enrichment for interactions between themselves, as only 19 edges are expected to occur by chance
from a random network of the same size with genes drawn from the entire human genome. The missing
gene DPH3P1 (HGNC:16136) was not recognized by STRING, as evidence for its existence as an expressed
protein in common databases is lacking. Network produced using STRING version 11.093; permanent link
to network: https://version-11-0b.string-db.org/cgi/network?networkId=bwurWAxHj381.

The molecular function Gene Ontology (GO) term ‘N6-methyladenosine-containing RNA

binding’ (GO:1990247) is enriched within this network—with a strength of 1.8 at a
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FDR of 0.0255 —by the presence of genes HNRNPA2B1 (HGNC:5033) and YTHDF2

(HGNC:31675); here, strength is computed as log10(
observed
expected

), where the ‘expected’ term is

defined as the number of genes with the corresponding GO term that one would expect

to find within a random network of the same size93.

This enrichment can be partially explained, as the influenza A virus has been shown to

express RNAs with methylated adenosines on the N6 position (denoted m6A), and removal

of this methylation mark significantly decreases viral gene expression and replication; in

the opposite case, over-expression of the m6-A ‘reader’ YTHDF2 results in an increase

in viral gene expression and replication21. Furthermore, Winkler et al. (2019) found

that deletion of YTHDF2 after viral infection resulted in an increase in expression of

interferon-stimulated genes, which collectively act to inhibit viral replication113. As this

is the opposite effect of what one would expect from a putative antiviral gene, this is

likely a false positive hit in the Sharon et al. (2020)89 screen.

Similar to that of figure 10, the induced subgraph of STRING formed by the candidate

proviral gene set from the Sharon et al. (2020) study89 is given in figure 11.
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Figure 11: Physical interaction network of the 60 candidate proviral genes identified in Sharon et
al.’s (2020)89 genome-wide influenza screen, as computed by STRING93. 18 physical interactions, where
the type of evidence supporting a given interaction is denoted by the colour of the edge (see legend),
are displayed between 60 vertices, with an average vertex degree of 0.6; these numbers are based on the
inclusion of only physical—and not functional—associations (‘physical’ network type selected in STRING
settings, minimum interaction score of 0.4). As calculated by STRING, the query proviral gene set has an
enrichment for interactions between themselves, as only 5 edges are expected to occur by chance from a
random network of the same size with genes drawn from the entire human genome. Network produced
using STRING version 11.093; permanent link to network: https://version-11-0b.string-db.org/
cgi/network?networkId=beMuD57KN5Ei.

Both of the presented induced subgraphs of the STRING database provide a helpful graphi-

cal representation of host factors and how they relate to one another. This permits critical

analysis of their interactions, and, as such, may guide in the identification of ‘druggable’

proviral targets that are capable of mitigating active influenza infections, or, for the pro-

posal of a set of candidate antiviral genes that may be perturbed for optimization of

vaccine cell lines.
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4.2.4 Host Factors in Gene Coexpression Space

As an alternative to exploring host factors in the space of binary PPIs, like that of

HuRI, gene coexpression values from the COXPRESdb77 database were considered. Gene

coexpression is a form of interaction between genes that is considered to be the most

permissive type, with binary PPIs being the most restrictive. As such, the analysis of

host factors within the gene coexpression space is both unique and interesting.

In all of the figures presented in this section, the query set of host factors used are those

that were curated from the literature, as provided in table 1. The advantage of using

this set of host factors is that each one has literature-based evidence of interacting with

a virus and thus has been classified according to the ‘host factor classification scheme’

presented in figure 1. However, the disadvantage of their use is that the host factors are

not specific to that of the influenza virus; nonetheless, this provides valuable insight into

the general nature of host factors, irrespective of their associated virus.

To begin, the distribution of ‘Mutual Rank’ scores corresponding to all pairs of genes

(n = 1035) from the complete set of literature-curated host factors (N = 46, which

excludes Fv1 ) was plotted alongside a randomly sampled (without replacement) set of

genes (N = 46, with n = 1035 gene pairs). Then, to remove any doubt, the background

set of genes was randomly sampled 100 times from the set of all genes in COXPRESdb, and

for each iteration, the mean gene coexpression ‘Mutual Rank’ value—corresponding to all

gene pairs—was calculated. This analysis is given in figure 12. A violin plot of this same

figure, without the 100 randomly sampled sets of background genes, is given in figure 16

within section B of the appendix.
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Figure 12: Distribution of COXPRESdb ‘Mutual Rank’ scores corresponding to all pairs of genes (n =
1035) from the complete set of literature-curated host factors (N = 46), as contained in table 1, is plotted
alongside a randomly sampled (without replacement) set of genes (N = 46, with n = 1035 gene pairs).
The additional ‘mean’ distribution contains the mean ‘Mutual Rank’ value from 100 randomly sampled
sets of background genes. The black dotted line indicates the mean ‘Mutual Rank’ score for all values in
COXPRESdb.

This indicates that the literature-curated host factors have an enrichment for coexpression

between each other—as indicated by the lower ‘Mutual Rank’ distribution—in comparison

to that of randomly sampled background gene sets.

Next, the same type of analysis was conducted, except that the host factors were stratified

as either ‘antiviral’ or ‘proviral’ based on their manually annotated classification; this is

given in figure 13.
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Figure 13: Distribution of COXPRESdb ‘Mutual Rank’ scores, stratified by antiviral (N = 34, with
n = 561 gene pairs) and proviral (N = 12 with n = 66 gene pairs) host factor types. Annotations were
done manually based on evidence from the literature, as given in table 1. The black dotted line indicates
the mean ‘Mutual Rank’ score for all values in COXPRESdb.

From this, it can be posited that there is a subset of antiviral genes—perhaps those related

to the innate immune system—that are significantly enriched for coexpression between

each other; this is indicated by the smaller median value and the peak in the antiviral

distribution (red) at the lower end of the ‘Mutual Rank’ scale. However, further curation

of a wider selection of proviral genes may have to be done for a more accurate comparison

to be made.

Lastly, the distribution of ‘Mutual Rank’ scores was further stratified by considering the

complete set of host factor types, as defined by the classification scheme given in figure

1; the result of this analysis is provided in figure 14.
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Figure 14: Distribution of COXPRESdb ‘Mutual Rank’ scores, stratified by restriction (N = 13, with
n = 78 gene pairs), inhibitory (N = 21, with n = 210 gene pairs), auxiliary (N = 6, with n = 15 gene
pairs), and essential (N = 6 with n = 15 gene pairs) host factor types. Annotations were done manually
based on evidence from the literature, as given in table 1. The black dotted line indicates the mean
‘Mutual Rank’ score for all values in COXPRESdb. Note that the low numbers corresponding to auxiliary
and essential host factor types may skew the graphical depiction of the distribution.

By stratifying the distribution of ‘Mutual Rank’ scores by the complete set of host factor

types, the relative utility of the classification scheme given in figure 1 was tested. From

this, the antiviral host factors (restriction and inhibitory) have coexpression distributions

that are lower than that of proviral host factors (auxiliary and essential); this was also

supported by figure 13. Of interest, the inhibitory host factors seem to have a significant

number of highly-coexpressed genes, as indicated by the skewed distribution; these may

be genes that are part of the innate immune system, which act together to initiate the

immune response cascade and thus may not fully inhibit viral infection on their own. In

contrast, the set of restriction host factors were annotated as such because of their ability

to completely abolish virus production; therefore, the function of these antiviral genes

may be more specific, in that they directly interact with viral components to restrict

infection. However, it may also be the case that some of the host factors were annotated

incorrectly within their anti- or pro-viral superset.
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Chapter 5: Discussion

5.1 Improving and Extending Host Factor Curation Ef-

forts

The large-scale curation of genes along with their associated functions has been going

on for many decades, with the publishing of the draft sequence of the human genome

in 2001 marking a significant turning point. This opened the door to a myriad of func-

tional genomic experiment types—such as the yeast two-hybrid method and perturbation-

based screening—along with a concomitant increase in the generation and storage of

high-throughput biological data. As such, a major goal of contemporary biology is to

integrate and make sense of all of this data in order to move towards a systems-level

understanding of the cell. This was a large motivation for chapter three of this thesis,

in which a classification scheme for host factors—presented in figure 1—was proposed as

a general framework to reason about host-virus interactions. The importance of having

specific definitions for host factors has been made clear, as there is currently ambiguity

in the terminology used in the literature, which makes manual curation a particularly

laborious task. Moreover, as numerous experiments are able to detect host-virus inter-

actions in many different ways, it very quickly becomes overwhelming to try to parse

through and make sense of heterogeneous sources of evidence. As such, many biological

databases—such as UniProt, BioGRID, IntAct, and STRING—are moving increasingly to-

wards the annotation of gene function using automated pipelines that mine the literature

for specific key words, often with a manual verification step in place. Therefore, by using

curation techniques that have already been well established, along with the appropriate

implementation of database and software tools, more virus-specific host factors may be

derived from the literature. Ultimately, the ideal goal of host factor curation efforts should

be to move towards the identification and complete characterization of all host factors

and their interactions, irrespective of the virus type.

A secondary goal of host factor curation efforts is to know the stage of the virus life cycle
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that a given host or viral factor functions in. This would enable the ability to integrate

this valuable information into the bioprocess of cell-based vaccine platforms, thereby un-

locking a new avenue for engineering in which host factors may be perturbed at very

specific time points as a way of optimizing their effect. Moreover, knowing when specific

proviral host factors function during the course of a viral infection would permit optimiza-

tion of potential drugs that inhibit them, resulting in improved therapeutic outcomes.

The ‘Virus Pathogen Resource’2 and its associated ‘Influenza Research Database’118 are

two prominent resources that have attempted to do this by carrying out numerous viral

infection-induced time-course transcriptomics experiments. By characterizing host gene

expression patterns over time upon infection with specific viruses, one may up- or down-

regulate genes at specific points in cell culture platforms to attempt to optimize viral

output.

Moreover, the definition of a host factor may be extended to that of other functional

components of the cell, such as noncoding DNA, post-translational modifications, and

metabolites. Of specific interest is that of the so-called ‘dark matter’ of the human

genome, which has since been shown to encode many functional molecules and regulatory

elements that have diverse roles within the cell. This has the potential to open up the

‘flood gates’ for the number of possible modifications that can be made to a cell; how-

ever, as the vast majority of the noncoding region of the genome remains a mystery in

terms of its function, its potential for use is currently limited. As current genome-wide

screening techniques predominantly target protein-coding regions of the genome, expand-

ing the available repertoire of genomic perturbations would have a significant impact on

the potential for discovery.

5.2 Variations in the Output of High-Throughput Screen-

ing Experiments

As explored in section 3.2.4 with figure 6 and table 4, there seems to be an apparent lack

of congruity in the output of perturbation-based screening experiments. This has also
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been observed elsewhere, especially in RNAi-based screens, where a significant amount of

variation in screen output has been observed in the detection of influenza18 and HIV81

host factors. Although the comparison between screens presented in this thesis was trivial

and only considered the matching of gene identifiers as a measure of screen overlap,

there are a few underlying reasons for why this occurs—not only in perturbation-based

screens, but also in other high-throughput technologies. First and foremost is the presence

of false positives and false negatives; with any biological experiment, these are almost

unavoidable. Furthermore, Tripathi et al. (2015) proposed that a general lack of congruity

in the output of systems-level technologies can be attributed to: perturbation methods

having a tendency to have some level of off-target activity; the lack of complete silencing

within RNAi experiments; and, issues with limits of detection and the presence of non-

specific binding in AP-MS experiments99. Therefore, further technology improvements

and methods of integration must be developed to overcome this, as the current variation

observed in the output of genome-wide screening strategies complicates the pursuit of

conclusive results.

5.3 Further Characterization of Host-Virus Interactions

using Techniques from Systems Biology

Despite the comprehensive analysis of host factors within the context of various inter-

actome datasets presented in chapter four, further characterizing can—and should—be

done. Firstly, to get a better sense of the extent of perturbation that the influenza virus

has on the human interactome, within-host interaction data can be integrated with virus-

host and virus-virus interaction data; these types of datasets can be found in the HPIDB3.0

database3, among others. By doing so, host-virus interactions may be further character-

ized at a whole new level of resolution, whereby individual host and viral factors can be

specifically engineered through targeted perturbation for use in numerous applications. To

extend this even further, one may consider integrating in protein structural information

to host-virus interactomes, thereby improving the resolution even further; efforts have

previously been made to do this, each of which has produced interesting results17,33,36.
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Furthermore, techniques for the prediction of host-virus interactions are also being devel-

oped61,75, which may improve the response efforts to novel viruses that may arise in the

future. A recent example of this is with SARS-CoV-2 and its associated COVID-19, for

which comprehensive interactome datasets already exist39 and efforts have been made to

repurpose antiviral drugs through integrative network analyses119.

A critical limitation of extracting meaningful insight from host-virus interactomes, or

any big dataset, is where to begin to look. Expert knowledge of a domain can greatly

assist in this, but gaps may still remain, especially when tackling systems-scale biological

problems. More and more, the limitation on novel discoveries is not on the generation of

data, but rather on the question that is being asked and the choice of methods for data

analysis. As such, the comparison of host-influenza interactomes, followed by functional

validation of interesting hits, is another powerful technique for the identification of novel

interactions106 from large biological datasets. An advantage of this type of analysis is that

it can be conducted on datasets that already exist to produce new insights. By varying

the influenza virus strain used, one can identify common mechanisms or interactions of

interest that may be taken advantage of for therapeutic intervention, or, engineered to

increase viral production in cell-based vaccine manufacturing platforms. In either case, it

shows the importance of systematically comparing high-throughput datasets to discover

commonalities or disparities that arise from variation inherent in the biological world.

Although determining which interactions are specific to a given strain of influenza and

which are not—or even which are of importance—is a difficult task given the scale of data

under analysis, new approaches that are both efficient and accurate are being developed

to accomplish this61,119.

When considering the integration of interaction datasets for which the types of interactions

differ, careful consideration must be placed on the biological interpretations that are made.

For example, one notable caveat in the analysis of gene coexpression data in section 4.2.4

is that it only reflects the regulation of genes at the level of the transcriptome; any other

form of regulation or control is lost. This can be addressed to some extent by incorporating

other types of interactions to bolster the available sources of evidence, much like that of

the STRING database93; however, as already mentioned, caution in the interpretation of
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results from this type of network is required. As such, one may consider using high-

quality interaction data that are deemed to be ‘gold standard’—such as that of the HuRI

dataset from Luck et al. (2020)67 —as a basis for the interpretation of other types of

interactions. These ideas thus support the extension of network analyses to integrate in

other datasets—or combinations of other datasets—to obtain a broader understanding of

the cell.

Goodacre et al. (2020) describes the perturbation of host factors by viruses as ‘shells’ of

viral interactions that ‘reach’ into the human interactome38. This perspective is enlight-

ening, as it emphasizes that both viral and host factors contribute to the pathogenicity

of a given virus; this is especially the case for pandemic strains of influenza, which tend

to be particularly pathogenic and deadly to its host by virtue of certain mutations within

its HA and NA surface proteins34. Therefore, knowledge of which factors do what, and

how certain host or influenza mutations confer increased virulence, is incredibly impor-

tant for reducing its burden of disease. As is a recurrent theme of this thesis, the use of

systems-level approaches for understanding the mechanisms of viral infection and host-

virus interactions is a natural choice. A series of studies by Watanabe et al. (2010, 2014)

has experimentally identified and critically analyzed many of the host factors and networks

that the influenza virus utilizes for the completion of its life cycle110,111. A comprehensive

understanding of the host-virus interactome for a given species of virus permits the appli-

cation of targeted modulations of subcellular networks for either mitigating active viral

infections, or, for improving viral titre for use in cell-based vaccine production platforms.

Importantly, candidate sets of host factor targets may be reduced in size—in order to

minimize disruption of cellular systems while also achieving the maximum impact—only

if there is a thorough understanding of host-virus interactions to begin with. Therefore,

there is sufficient motivation to conduct more high-throughput screening experiments,

such as those performed by Sharon et al. (2020)89 and others (see table 3), to further

characterize host factors.

80



Sean Nesdoly CHAPTER 6: CONCLUSION

Chapter 6: Conclusion

To conclude, this thesis has presented a general framework for the detection, understand-

ing, classification, and characterization of host factors; the subsequent integration of this

information with techniques from systems biology and graph theory provided a unique

approach to further characterize these host factors, especially with regards to how they

function within host-virus interactions.

This thesis was introduced by emphasizing the ubiquitous influence of viruses throughout

biological history; this fact alone supports the ever-increasing need to understand the

nature of the interactions that viruses have with their hosts. In doing so, the increased

knowledge of host factors permits their potential use in mitigating active viral infections,

or, in improving upon existing cell-based vaccine manufacturing platforms. Specific aims

were given for how this thesis approached this problem, including: (1) the curation,

annotation, and analysis of host factors derived from the literature, as introduced in

chapter two and carried out in parts of chapter three; (2) the computational analysis of the

output from a genome-wide knockout screen of HEK-293SF cells infected with influenza

for the identification of antiviral host factors, also included in chapter three; and, (3) the

integrated analysis of these host factors within the space of various interactome datasets

to further characterize the nature of their host-virus interactions, as presented in chapter

four.
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Appendix

A. Degree Distribution of the ‘union of Human Interac-

tomes’ ( HI-union )
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Figure 15: Exploration of the degree distribution of the union of Human Interactomes (HI-union).
Each vertex within the graph, or interactome, represents a human protein-coding gene. The degree of
a vertex, denoted as k, is the number of edges, or interactions, that it has with other vertices within
the interactome. Each subplot depicts the relationship between P (k) = nk

|V | , the number of vertices with
degree k (nk) divided by the total number of vertices in the graph (|V |), and k, the vertex degree value. To
ensure that log2 transformations may be applied to P (k), we make P (k) > 0, ∀k by adding a pseudocount
of 1 to the numerator, giving P (k) = nk+1

|V | . To better show the relationship between P (k) and k, scatter
plots (a, b, c, and d), each with 641 data points based on |V | = 9094 degree values, were created with log2
–transformations applied successively to each axis in turn. The log2 transformation effectively spreads
out the distribution of values along a given axis, making it easier to visualize. Subplot (d) has the log2
transform applied to both axes; here, the depiction of a linear correlation between log2(P (k)) and log2(k)
suggests that HI-union, at its current stage of completeness, approximates a power-law relationship5.
That is, many genes have few interactions, and few genes have many. The interactome dataset HI-union
was obtained from Luck et al. (2020)67. Data wrangling and analysis was performed in Julia9; plots
were produced using ggplot2112 in R84. These plots are the same as those in figure 8, except with the
target interactome being HI-union instead of HuRI.
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B. Literature-curated Host Factors in Gene Coexpres-

sion Space
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Figure 16: Distribution of COXPRESdb ‘Mutual Rank’ scores corresponding to all pairs of genes (n =
1035) from the complete set of literature-curated host factors (N = 46), as contained in table 1, is plotted
alongside a randomly sampled (without replacement) set of genes (N = 46, with n = 1035 gene pairs).
Data wrangling and analysis was performed in Julia9 and plots were produced using ggplot2112 in R84.
The black dotted line indicates the mean ‘Mutual Rank’ score for all values in COXPRESdb.
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C. Curated Sets of Influenza Host Factors Identified in

Genome-wide Perturbation-based Screening Experiments

The putative influenza host factor sets are organized based on the study that they were

identified in and their classification as either ‘antiviral’ or ‘proviral’; refer to table 3 for

a summary of the screening studies. Importantly, each screening study has variations in

their experimental setup, and thus care must be taken when comparing between them at

the level of the gene. Genes are given as NCBI gene identifiers for ease of comparison and

the guarantee of unique values. This information is included in the Sharon et al. (2020)

study89 as ‘Supplemental S1’ and is thus under a Creative Commons license.

Putative Antiviral Gene Hits by Paper

• Brass et al. (2009)12 (n = 4)
– 10410, 126789, 8460, 55339

• Shapira et al. (2009)88 (n = 176)
– 154, 60489, 9048, 57130, 567, 637, 29760, 657, 659, 694, 54930, 56913, 23523, 8913, 786, 59284, 23705, 57658, 810,

29775, 836, 10344, 1019, 55602, 1031, 1050, 1052, 79643, 1153, 23529, 57396, 122011, 1487, 10217, 1491, 56259, 2919,
91966, 54205, 23500, 1616, 64421, 1677, 1718, 23312, 4189, 1871, 55840, 1960, 5610, 2048, 2113, 2131, 2149, 81558,
22868, 26234, 55030, 23768, 8061, 2299, 8456, 7855, 7107, 94239, 3052, 8334, 3099, 3106, 3159, 3228, 79803, 26353,
10581, 10410, 51447, 3551, 9641, 8517, 22806, 3556, 246778, 80895, 3620, 80789, 3661, 3705, 3709, 3714, 23030, 9665,
57148, 22920, 10365, 8609, 9903, 55958, 3976, 3988, 9516, 114569, 5609, 10746, 4293, 11184, 5598, 145282, 8569, 2872,
10884, 4627, 9612, 4814, 28511, 338321, 64127, 7025, 8829, 5029, 11235, 5195, 5298, 5277, 5287, 30849, 8399, 5322,
5333, 5362, 23654, 5371, 56342, 80148, 166336, 5566, 8575, 3275, 5699, 5997, 22838, 6102, 6195, 6197, 23076, 23168,
23429, 56681, 27111, 5272, 5054, 6432, 4091, 81848, 6772, 6788, 23075, 11346, 6867, 6934, 23424, 7029, 375346, 55281,
8718, 8600, 10766, 7157, 84676, 54970, 56995, 7342, 79465, 7390, 83878, 7484, 9589

• Watanabe et al. (2014)111 (n = 34)
– 71, 87, 128272, 908, 64708, 8727, 7818, 8663, 1973, 1975, 11160, 2664, 2771, 9328, 8570, 3875, 10226, 23787, 4673,

5315, 5518, 5631, 5644, 22931, 6223, 6201, 6281, 6432, 154091, 7922, 6636, 10972, 10959, 10382

• Tripathi et al. (2015)99 (n = 485)
– 148, 242, 725, 758, 1559, 2259, 3182, 3622, 3660, 4025, 5082, 5149, 5738, 6041, 6249, 6275, 6650, 6904, 7148, 8406,

8876, 9567, 9997, 10036, 10406, 22980, 26093, 26278, 27285, 29128, 51388, 51517, 54707, 56673, 56850, 57165, 57480,
58476, 79717, 79868, 80790, 81629, 83446, 83937, 84261, 85462, 90416, 92565, 93010, 117196, 121274, 136371, 148808,
197196, 285368, 400935, 6150, 6155, 6183, 6187, 6900, 6314, 8295, 9913, 10629, 1, 9, 20, 29, 87, 140, 176, 309, 384,
567, 611, 694, 786, 810, 908, 1031, 1050, 1052, 1102, 1130, 1153, 1305, 1404, 1420, 1491, 1667, 1668, 1947, 1960, 1982,
2041, 2048, 2299, 2328, 2533, 2664, 2872, 2880, 2919, 3052, 3099, 3106, 3159, 3228, 3275, 3502, 3661, 3705, 3875,
4293, 4617, 4627, 4814, 4951, 5029, 5099, 5195, 5272, 5277, 5298, 5303, 5362, 5426, 5598, 5699, 5731, 5780, 5997,
6102, 6195, 6251, 6281, 6303, 6449, 6451, 6523, 6607, 6730, 6788, 7025, 7054, 7107, 7328, 7342, 7347, 7371, 7484,
7772, 7855, 8243, 8260, 8334, 8427, 8456, 8460, 8539, 8569, 8570, 8575, 8600, 8609, 8674, 8682, 8718, 8727, 8879, 8880,
8904, 9048, 9125, 9205, 9211, 9217, 9276, 9328, 9516, 9612, 9641, 9665, 9739, 9829, 9903, 9929, 9953, 10217, 10344,
10365, 10425, 10581, 10746, 10766, 10873, 10959, 11160, 11184, 11235, 11274, 11346, 22838, 22856, 22868, 22920,
22931, 23075, 23076, 23312, 23357, 23410, 23424, 23429, 23500, 23523, 23527, 23641, 23654, 23768, 25875, 26234,
26353, 27111, 27173, 28511, 29079, 29775, 30811, 30820, 30849, 50804, 51032, 51057, 51275, 51480, 53342, 53944,
54345, 54407, 54441, 54467, 54555, 54577, 54930, 54970, 54981, 55030, 55164, 55281, 55339, 55602, 55894, 55958,
56259, 56342, 56547, 56913, 56916, 56924, 56979, 57127, 57130, 57148, 57182, 57188, 57396, 57512, 57531, 57541,
57544, 57578, 57580, 57658, 58489, 59284, 60489, 60558, 64063, 64130, 64421, 64708, 64711, 64776, 65264, 66000,
79025, 79074, 79096, 79176, 79465, 79643, 79682, 79741, 79799, 79803, 79876, 79902, 79922, 79933, 80148, 80174,
80198, 80339, 80789, 81848, 83551, 83638, 83878, 83935, 84056, 84191, 84553, 84676, 84978, 85235, 85301, 85508,
90233, 91181, 91966, 92579, 93650, 94239, 96626, 114928, 114984, 116138, 117156, 117195, 122011, 124411, 125206,
126248, 126789, 140597, 140686, 144383, 145282, 146850, 150275, 152206, 154091, 158800, 163071, 164832, 166336,
168448, 201305, 203111, 203611, 220906, 246778, 252839, 254048, 283554, 283742, 284001, 319101, 338321, 338799,
339977, 340596, 344807, 345757, 353345, 374819, 375346, 387590, 387680, 388815, 389217, 389630, 389692, 391533,
391560, 392255, 393078, 403274, 404552, 414062, 440097, 494115, 497048, 729264, 6432, 10410, 60, 2280, 3586, 23729,
55824, 83860, 125, 238, 335, 762, 1371, 2147, 2712, 2782, 2785, 3239, 3263, 3726, 3763, 3785, 4040, 5127, 5128, 5617,
5796, 6261, 6657, 6934, 7088, 7094, 8471, 8833, 9942, 10045, 10577, 10606, 23542, 51129, 51270, 51720, 54764, 84941,
117245, 170575, 1504, 3752, 7157, 8794, 23168, 51447, 57082, 93973, 3551, 4673, 6147, 6201, 6223, 7818, 8517, 10884,
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71, 154, 301, 637, 657, 836, 983, 1019, 1677, 1718, 1871, 2113, 2149, 2771, 3620, 3976, 3988, 4091, 5054, 5322, 5333,
5371, 5518, 5609, 5631, 6772, 7029, 7390, 8399, 8829, 10226, 23529, 23787, 29760, 54205, 56681, 64127

• Heaton et al. (2017)47 (n = 1190)
– 124872, 200150, 5884, 101059938, 5521, 92104, 63970, 54453, 9843, 252995, 83882, 10553, 400823, 283403, 5005,

79097, 100287171, 9375, 122664, 653720, 346517, 158326, 645425, 55638, 4000, 10979, 11067, 55731, 4717, 5510, 1031,
3006, 253635, 8091, 23384, 401124, 6046, 84541, 23025, 55975, 57761, 2543, 323, 79888, 3167, 7752, 10980, 57523,
90233, 374768, 3554, 161436, 9203, 60561, 5157, 94030, 11184, 91074, 56204, 10775, 6236, 6480, 100507055, 351, 9628,
9908, 7021, 9722, 10795, 727837, 333926, 10170, 283635, 5239, 56916, 9725, 253012, 5425, 6857, 4589, 59067, 1129,
51333, 441308, 5146, 100505841, 10189, 9229, 94, 5553, 64598, 6228, 140893, 2651, 64078, 57094, 202243, 162968,
5781, 10870, 337959, 2217, 100131094, 60680, 84335, 64320, 11190, 5641, 10044, 144347, 353143, 22871, 56896, 51326,
57096, 7084, 7306, 54900, 53829, 168391, 7067, 6492, 144125, 64772, 1017, 9537, 285242, 339559, 311, 4345, 3418,
8390, 80099, 9382, 81341, 55810, 27111, 9069, 143503, 23729, 9625, 132660, 124783, 5454, 55885, 1675, 10396, 130340,
112885, 6543, 2597, 9454, 970, 27244, 57447, 4281, 10044, 54970, 2258, 27297, 23526, 2348, 1846, 10621, 8715, 64062,
58538, 6907, 9185, 9201, 4543, 4654, 10076, 26100, 5284, 4995, 23779, 116238, 56899, 27018, 8874, 271, 149840, 7707,
4940, 57209, 2074, 23600, 25902, 339366, 1395, 93474, 940, 58499, 64506, 1829, 1734, 80221, 4062, 126695, 203447,
115572, 80823, 147929, 9788, 26223, 163479, 51473, 255743, 344658, 143678, 128674, 5787, 80700, 51399, 79939, 11036,
1496, 51002, 9813, 53826, 51300, 7763, 389792, 55139, 644150, 1435, 5144, 390916, 10465, 140578, 142891, 388341,
254428, 23671, 2306, 10612, 8218, 255252, 64840, 7374, 463, 5339, 10114, 138199, 3029, 163589, 9337, 84826, 6541,
2495, 9703, 23063, 712, 25911, 1278, 79676, 3656, 352999, 653125, 51441, 250, 51204, 10720, 627, 9610, 392862, 13,
112939, 56751, 54823, 57705, 51542, 57150, 130367, 5409, 51555, 55735, 84219, 2932, 317719, 2180, 145748, 3755,
144124, 11200, 84223, 401427, 23366, 55755, 6871, 7164, 8881, 157848, 9315, 521, 23399, 475, 1368, 823, 11170,
57633, 11252, 51134, 4481, 85416, 10749, 631, 55101, 285550, 3842, 90141, 285180, 90557, 129401, 55585, 191, 166979,
64168, 51729, 4831, 84707, 23360, 60468, 80254, 4151, 27010, 8189, 341947, 23142, 80255, 3707, 26095, 7453, 23648,
6651, 10232, 440093, 10399, 25925, 11174, 85465, 10935, 4838, 28999, 220323, 145258, 5723, 10678, 23366, 54940,
10390, 144715, 23185, 7140, 7884, 9955, 22882, 1307, 2832, 4239, 55240, 9633, 11259, 65250, 3422, 137682, 10585,
728279, 4255, 221302, 100288801, 9663, 221322, 6206, 5916, 8398, 6560, 124222, 164395, 7579, 10788, 494118, 92521,
5295, 9750, 29780, 2537, 283899, 50650, 23369, 124925, 283710, 55230, 3776, 5340, 4288, 9746, 120406, 55854, 80168,
353135, 85015, 64837, 23126, 2903, 29090, 1108, 7494, 169270, 91942, 94032, 4308, 168417, 257236, 390261, 60437,
80059, 5325, 6559, 56975, 388561, 5339, 55898, 8540, 3949, 9130, 25843, 200844, 80312, 89953, 3158, 2837, 2559,
51705, 10103, 388963, 27128, 9140, 79567, 5696, 100130988, 3028, 8505, 6156, 4594, 51035, 23710, 165100, 10409,
7419, 2132, 3670, 23081, 11186, 1836, 493860, 25970, 56243, 1102, 201625, 200185, 4665, 121130, 51751, 9470, 1731,
6520, 22894, 283870, 3416, 5568, 92196, 10468, 57621, 222642, 1048, 26999, 1769, 10089, 3185, 10138, 119391, 257364,
10371, 55088, 93408, 10590, 55565, 134265, 1456, 8139, 167838, 245928, 51435, 55651, 51088, 79858, 51206, 7490,
163126, 6522, 80739, 388523, 55341, 221477, 83636, 10717, 285601, 9881, 6582, 7365, 7700, 9473, 64756, 54466, 10333,
57717, 87178, 5775, 55862, 9644, 5704, 26270, 81892, 948, 81624, 10093, 26164, 58531, 55041, 1201, 54780, 23197,
7712, 9075, 9611, 56142, 79918, 11277, 146664, 2122, 10534, 80142, 7111, 266747, 6397, 5982, 254187, 10342, 140873,
23012, 10114, 389874, 196415, 23383, 51715, 49, 497190, 8975, 140890, 862, 4282, 5308, 55973, 9891, 9217, 643418,
51208, 5218, 57582, 51554, 6141, 145501, 5167, 58511, 25915, 5007, 10020, 100505591, 79712, 90060, 126402, 4284,
1981, 169270, 6455, 57658, 64754, 2099, 9472, 55778, 26166, 285242, 29128, 286514, 4070, 3615, 54494, 8631, 404281,
51118, 150082, 11126, 150221, 100038246, 3915, 256356, 79949, 11186, 4791, 6738, 50636, 51380, 341019, 5446, 1029,
27304, 10288, 9046, 51649, 23125, 84311, 255626, 56964, 30000, 201973, 10087, 79755, 58487, 5021, 8554, 57054,
10763, 54360, 57508, 9643, 80324, 64121, 70, 282770, 218, 199, 5464, 5509, 142685, 255738, 64926, 81539, 147700,
56834, 339287, 221786, 168451, 145482, 58485, 388931, 245911, 57111, 56915, 4975, 9931, 54520, 10249, 56341, 4277,
64761, 50832, 342898, 90627, 9133, 9517, 9718, 9087, 22848, 10848, 85415, 90427, 158431, 1837, 348262, 55635, 84264,
131920, 51363, 140690, 85417, 54462, 2954, 4174, 1434, 820, 3155, 256643, 678, 56243, 5291, 54989, 157869, 4208,
6138, 27095, 9672, 30014, 4148, 64419, 1959, 83853, 135886, 8819, 401541, 83872, 353134, 79973, 26074, 65018, 29071,
91584, 54906, 9607, 2057, 5236, 117157, 10533, 149465, 10509, 2982, 84292, 199, 84696, 79838, 181, 757, 84226, 3326,
84146, 137392, 80157, 91768, 151393, 90293, 399939, 390037, 10880, 64344, 10276, 7323, 51246, 387640, 27091, 8858,
55596, 83548, 7341, 51082, 90273, 51512, 2554, 83259, 2203, 2768, 338657, 30815, 64400, 6160, 984, 80209, 219557,
56907, 79772, 78986, 28988, 57097, 2982, 2286, 416, 653567, 10855, 1605, 26333, 55254, 6943, 27284, 30820, 55229,
3120, 8895, 391356, 25788, 8482, 25865, 4210, 283897, 643853, 100170229, 5190, 8386, 285311, 56133, 147183, 7138,
222584, 1780, 919, 10084, 9289, 1582, 5288, 6358, 27201, 83759, 390648, 286256, 219293, 26168, 9938, 7881, 8514,
390445, 4329, 7369, 353513, 84418, 22800, 55793, 64326, 26995, 25980, 7179, 142680, 55344, 55657, 92610, 4332,
8453, 26996, 58485, 9122, 100130274, 79661, 124790, 10991, 154075, 9892, 2208, 5635, 546, 54496, 283652, 51114,
79770, 9201, 2998, 9528, 90843, 81671, 10747, 3091, 120400, 3170, 5899, 7652, 27033, 120, 269, 126129, 160492, 56673,
4157, 80323, 100463482, 84305, 128338, 5745, 7401, 337967, 114134, 345079, 11154, 558, 100129924, 81627, 9320,
399687, 18, 140690, 100526739, 29946, 5803, 2115, 128153, 5136, 5158, 58493, 51506, 91227, 84933, 9860, 339965,
1996, 115677, 51530, 2208, 353333, 163688, 8706, 7634, 55532, 4009, 26150, 10229, 627, 26205, 838, 147841, 5744,
54914, 6829, 23327, 130026, 50856, 2852, 22994, 143425, 390152, 6002, 6504, 126205, 442361, 51324, 902, 54878,
5049, 93436, 148867, 121129, 55802, 64648, 5866, 80183, 51365, 4800, 221443, 55143, 5431, 23533, 283171, 100131980,
51021, 54587, 8796, 80110, 100131378, 219432, 388199, 79839, 8406, 283209, 23609, 6101, 8436, 83988, 7474, 7421,
9330, 84220, 399, 54785, 5524, 153657, 55322, 441150, 55130, 4108, 55997, 22999, 1436, 219479, 2052, 27085, 54212,
84539, 80346, 3007, 81788, 9815, 26137, 2180, 31, 10201, 350383, 6939, 64782, 7769, 27067, 219927, 245932, 9191,
4659, 54873, 23209, 154865, 83900, 93589, 346653, 55135, 55061, 84154, 653145, 2813, 57003, 221491, 50833, 59338,
5408, 337879, 377630, 3557, 10144, 1016, 83986, 57187, 7089, 316, 118812, 7767, 116113, 54107, 3663, 445, 55607,
10299, 1460, 5067, 3823, 6103, 392376, 10908, 3698, 79414, 29093, 100132476, 283777, 1359, 79981, 25833, 51117,
93978, 116441, 23746, 643, 84318, 54108, 55353, 2773, 149371, 10699, 90381, 9568, 4956, 27430, 51661, 27044, 6331,
221092, 1015, 4640, 29887, 90423, 9805, 81470, 54112, 11073, 2160, 2358, 79831, 10349, 653550, 27094, 8600, 55174,
5999, 6130, 93134, 4898, 137886, 1390, 84532, 10785, 57158, 23395, 55216, 55213, 10152, 29100, 139135, 11026, 79174,
55636, 338699, 1062, 10169, 10916, 8292, 4681, 400120, 10875, 64852, 83449, 390439, 152503, 254783, 135932, 57555,
9802, 3357, 9447, 126133, 341799, 79893, 22902, 282616, 84276, 51142, 5580, 11160, 80352, 55293, 79696, 2796, 3685,
56113, 2908, 272, 4681, 9028, 10859, 9666, 64981, 282991, 2263, 56606, 55277, 94234, 114926, 26231, 219348, 375190,
7352, 84520, 23644, 64859, 148545, 4898, 4795, 284618, 51147, 10514, 25961, 80036, 5494, 90342, 9913, 222235, 7760,
57711, 7139, 403273, 149233, 81602, 203547, 57569, 388394, 6902, 7167, 7091, 1807, 55246, 79728, 29999, 203100,
57708, 85452, 1292, 3694, 151516, 79713, 57786, 8618, 427

• Sharon et al. (2020)89 (n = 89 at significance threshold α = 0.05)
– 9921, 23644, 51663, 9410, 3340, 5915, 8570, 23193, 51530, 10762, 9739, 51386, 9567, 8664, 79882, 8480, 1457, 22919,

58490, 116092, 8131, 7249, 11140, 56006, 4899, 1656, 4928, 80018, 57472, 10641, 9887, 9295, 6794, 2733, 79886, 56943,
3181, 79002, 262, 27304, 57688, 57343, 5901, 29107, 56923, 84872, 11137, 11097, 79798, 84916, 10498, 4651, 51256,
84928, 8667, 5531, 26019, 347734, 29101, 10482, 7248, 10501, 8772, 140834, 54851, 7690, 167227, 51126, 348180,
84823, 27335, 64864, 8241, 126382, 256714, 4733, 54584, 219436, 129080, 286380, 5094, 51441, 112970, 390144, 51451,
22828, 51750, 56111, 100132911
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• Brass et al. (2009)12 (n = 129)

– 215, 191, 154810, 27329, 9716, 372, 515, 537, 533, 155066, 9550, 8704, 23621, 331, 65990, 58509, 253559, 10241, 90557,
91409, 25978, 1198, 1203, 53942, 1314, 1315, 9276, 22820, 10980, 22818, 10815, 8738, 51340, 286464, 51167, 64858,
1659, 84222, 1756, 1825, 1780, 9343, 1965, 2058, 90952, 132884, 9780, 2212, 220042, 2521, 81544, 51659, 2700, 2931,
3192, 8739, 11185, 9922, 57703, 163233, 51149, 53353, 80740, 4236, 84730, 255758, 197259, 4350, 9019, 9650, 93649,
4714, 4809, 4846, 115677, 57122, 4928, 9818, 10204, 10482, 56114, 84108, 27295, 5226, 5304, 9651, 56342, 26121,
10594, 80863, 5652, 5868, 8934, 10432, 25813, 9092, 57147, 85465, 23451, 10992, 23450, 118980, 6507, 6514, 10559,
54946, 10569, 6628, 6633, 6634, 6729, 246329, 80765, 27233, 96764, 7069, 284355, 10155, 7319, 59286, 57418, 91746,
7691, 7710, 7564, 7767, 9668, 25888, 79818

• Carette et al. (2009)16 (n = 2)
– 55907, 7355

• Shapira et al. (2009)88 (n = 221)
– 53, 2182, 88, 101, 9510, 113, 113146, 29929, 269, 116519, 64860, 1386, 468, 8553, 9184, 26175, 8209, 773, 10241, 818,

6348, 57018, 25819, 8837, 79094, 1154, 9976, 25932, 1191, 1277, 1314, 51226, 10898, 1437, 1452, 51076, 4283, 1540,
1573, 23002, 8527, 1746, 1847, 9451, 8894, 2002, 2033, 2043, 9415, 54537, 2194, 26190, 2263, 2289, 10691, 2802, 2820,
9289, 2885, 55127, 79654, 3105, 3135, 8091, 3383, 3433, 24138, 3460, 3489, 3601, 84639, 11009, 133396, 90865, 388324,
3621, 54556, 3654, 3659, 3660, 3664, 3394, 3707, 10625, 3726, 55709, 9711, 9675, 23379, 57707, 11004, 1316, 3845,
3911, 3953, 3959, 55957, 4000, 23175, 51599, 84445, 4110, 5606, 10454, 5600, 5603, 4236, 9645, 10797, 9788, 51594,
4683, 4758, 4763, 4779, 4783, 4790, 4792, 4794, 338322, 338323, 3164, 10482, 4938, 8638, 9180, 51585, 5106, 51449,
5154, 57162, 5226, 51230, 23469, 5286, 5293, 5296, 8503, 64600, 113026, 10714, 55703, 11230, 5578, 5616, 9266, 5698,
5781, 10076, 10966, 9693, 10235, 5930, 10616, 23180, 8780, 6038, 6041, 7844, 285830, 23521, 6160, 8986, 9252, 65117,
64108, 6258, 60485, 59342, 6385, 6464, 51763, 6507, 4092, 10073, 6653, 10252, 80765, 11329, 6830, 6840, 6850, 8867,
51347, 26000, 6904, 54103, 9338, 6942, 7020, 7022, 7046, 9874, 81793, 25880, 25816, 8793, 8771, 79931, 10346, 7706,
7726, 5987, 7316, 80329, 7372, 64854, 8936, 10810, 23001, 22884, 7474, 7494, 55596, 23503, 7545, 7586, 79698, 57178,
7764, 57473

• Karlas et al. (2010)56 (n = 168)
– 10768, 64400, 1173, 54518, 8260, 9048, 85300, 477, 27032, 537, 10159, 527, 9114, 523, 526, 567, 8938, 343472, 9256,

115708, 56911, 132001, 85417, 962, 965, 975, 1027, 1056, 23563, 25932, 1195, 9746, 26507, 1314, 1315, 9276, 22820,
57585, 1409, 10663, 1586, 113612, 1629, 166614, 10202, 1740, 55929, 196403, 92235, 1915, 8661, 8663, 8666, 9775,
64772, 2051, 2197, 10517, 115548, 83706, 54508, 2729, 2797, 115330, 2905, 9776, 8341, 3248, 3299, 3329, 23765, 3552,
3660, 9636, 55600, 3725, 10300, 3768, 23277, 284058, 3832, 3837, 23367, 8022, 84894, 9361, 9890, 4125, 4148, 10001,
84292, 4609, 4654, 284086, 91754, 4913, 23165, 4928, 10482, 611, 54510, 5253, 23533, 5300, 5328, 5338, 1263, 5437,
5441, 54866, 10594, 5631, 83886, 55851, 5682, 10213, 5708, 5798, 51560, 29127, 79171, 56729, 117584, 57484, 11224,
6204, 6208, 6217, 6233, 6193, 861, 6294, 6404, 10291, 23451, 51639, 6439, 10280, 9356, 55234, 6625, 6636, 22938,
58533, 51429, 6651, 23524, 23166, 55959, 6830, 10607, 6929, 7030, 8784, 10188, 55809, 9830, 6737, 166655, 83983,
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