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ABSTRACT 

Sulfuric acid hydrolysis of native cellulose fibers produces stable suspensions of 

cellulose nanocrystals. Within a specifie concentration range, the suspenSIOns 

spontaneously fonn an anisotropie chiral nematic liquid crystal phase. This thesis 

examines the phase separation behaviour of these suspensions, alone and in the presence 

of added macromolecules. Initially, the effect of hydrolysis conditions on the nanocrystal 

and phase separation properties for hydrolyzed softwood pulp were investigated and 

compared to suspensions prepared from hardwood pulp. The macromolecules studied, 

blue dextrans of varying molecular weights and dye ligand densities, were synthesized 

and characterized with a number of techniques. The polye1ectrolytic nature of these 

macromolecules was found to strongly influence their physico-chemical properties. 

Added blue dextran causes separation of an isotropie phase from highly concentrated, 

complete1y anisotropic suspensions. The observed phase separation was found to be 

associated with the charged dye molecules attached to the dextran. The partitioning 

behaviour of blue dextrans in biphasic aqueous suspensions of native cellulose 

nanocrystals was also studied with regard to the effect of total concentration of blue 

dextran, degree of dye substitution and dextran molecular weight on the blue dextran 

partition coefficient. Electrostatic and entropic contributions to the partition coefficient of 

blue dextran were discussed. Triphase isotropic-isotropic-nematic (Il-h-N) equilibria 

are observed in suspensions containing both neutral dextrans and polye1ectrolytic blue 

dextrans of varying molecular weight. Based on these results, phase diagrams for 

cellulose nanocrystal suspensions with different combinations of dextran and blue 

dextran are presented. 
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RÉSUMÉ 

L'hydrolyse acide des fibres de cellulose par l'acide sulfurique donne une suspension 

stable de nanocristaux de cellulose. Dans une gamme de concentration donnée, la 

suspension presente spontanément une phase chirale nématique. Cette thèse étudie le 

phénomène de séparation de phase de telles suspensions qui peut se produire soit de 

façon naturelle soit par l'addition d'une seconde macromolécule. Initialement, les effets 

des conditions d'hydrolyse sur les nanocristaux et les propriétés de séparation de phase 

s'y rattachant pour les pâtes provenant de feuillus ont été étudiées et comparées aux 

suspensions préparées à partir de pâtes de résineux. Les macromolécules étudiées, des 

dextrans bleus à différents poids moléculaires et taux de colorant, ont été synthétisés et 

caractérisés à l'aide de différentes techniques physico-chimiques. La nature 

polyélectrolytique de telles molécules leur confère des propriétés physico-chimiques 

différentes par rapport au dextran. L'ajout de dextran bleu dans une suspension de 

cellulose très concentrée, anisotrope, induit une séparation de phase et l'obtention d'une 

phase isotrope, due principalement au caractère ionique du colorant. L'effet de partition 

du dextran bleu dans une suspension de nanocristaux de cellulose biphasique aqueuse a 

donc été étudiée en mettant l'attention tout particulièrement sur la concentration totale du 

dextran bleu, le degré de substitution du colorant et l'influence de la masse molaire. Les 

contributions entropiques et électrostatiques sur les coefficients de partition du dextran 

bleu sont aussi discutées. Un équilibre triphasique isotrope-isotrope-nématique (Il-h-N) 

a été observé dans des suspensions contenant et le dextran bleu et le dextran et ce sur 

différentes masses molaires. A partir de ces résultats, différents diagrammes de phases 

ont été imaginés et discutés. 
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Chapter 1 

Introduction: 

Phase Behaviour of Cellulose Nanocrystal Suspensions 



1.1 OVERVIEW 

Cellulose whiskers or nanocrystals are obtainable by acid hydrolysis from a wide 

variety of low-cost renewable sources, are easily recyclable by combustion, and have 

reactive surfaces to which chemical groups can be grafted to tailor their chemical and 

physical properties. Together, these attributes make highly crystalline cellulose whiskers 

attractive for various applications, such as reinforcing materials in nanocomposites.I,2 

Electrostatically-stabilized cellulose whiskers may also be used as a model system to 

verify theoretical models describing the phase separation in suspensions of rodlike 

polyelectrolytes, alone or with added macromolecules. 

An initial background on the molecular and supermolecular structure of native cellulose 

and the historical development of cellulose nanocrystal production and characterization is 

essential to an understanding of their unique properties. Following this, the molecular 

structure and properties of blue dextran, the macromolecule most studied in cellulose 

nanocrystal suspensions, will be examined. Finally, the theoretical and experimental 

phase behaviour of colloidal suspensions containing added macromolecules will be 

discussed. 

1.2 CELLULOSE NANOCRYSTALS 

1.2.1 Chemical and supermolecular structure of cellulose 

Cellulose is a linear polymer of /3-(1 ,4)-D-glucose residues (Figure 1.1). Because the /3-

(1,4) linkage rotates the successive glucose units through 1800 relative to each other, the 

cellulose repeat unit, called cellobiose, consists of two anhydroglucose residues. 
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Figure 1.1. Chemical structure of cellulose showing cellobiose repeat unit. The 

anhydroglucose residues adopt the energetically favourable chair conformation with the 

hydroxyl groups in the equatorial positions.3 

In nature, cellulose has a hierarchical structure, from the polymeric glucose chains to 

the microfibrils which make up the cell walls of plants (Figure 1.2). The molecular, 

crystallographic and supermolecular structures of cellulose, and their characterization, 

have been the subject of several recent reviews.4-7 However, we are mostly concemed 

with the elementary fibrils within the microfibrils. The rigidity of the cellulose molecule, 

coupled with strong intra- and intermolecular hydrogen bonding among the many 

hydroxyl groups along the cellulose chains, i means that the cellulose chains can pack 

c10sely to give areas of high crystallinity within the elementary fibril (Figure 1.3).8 

According to the fringed micellar model, the e1ementary fibril also contains amorphous 

regions distributed randomly among the crystalline regions, or crystallites.9 

Cellulose has six different interconvertible polymorphs (l, II, III}, IIIn, IV! and IVn);4 in 

this thesis, only native cellulose (cellulose 1) is studied. The crystal structure and 

morphology of native cellulose, in particular the crystallographic unit cell, have been the 

subject ofmuch controversy over the years: 10-14 Many inconsistencies existed among the 

i The principal intramolecular hydrogen bond is between the hydrogen of the C3 hydroxyl group and the 05 
oxygen of the adjacent ring; the principal intermolecular hydrogen bond lies between the hydrogen of the 
primary C6 hydroxyl group and the 03 oxygen. 
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early crystallographic studies and fibre X-ray diffraction studies were unable to account 

for all of the diffraction features recorded from algal cellulose l samples. 15 

Figure 1.2. Hierarchical structure of native cellulose, from the molecular leve1 to the 

supermolecular leveI.16 Cellulose is biosynthesized by assemblies of enzymes in the cell 

wall. The polymer chains instantly crystallize and aggregate to form microfibrils, which 

are held together by hydrogen bonding between adjacent chains to form fibrils. 8 A detail 

ofthe microfibril (circ1ed area) is shown in Figure 1.3. 

Figure 1.3. Cross-section of a microfibril composed of six elementary fibrils. 8 
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~'. The breakthrough in understanding native cellulose crystallography came in 1984, 

when Atalla and VanderHart showed by BC CPIMAS NMR that cellulose l was actually 

composed of two different crystal forms, cellulose la and cellulose I~.I7,18 An e1ectron 

diffraction study on native algal cellulose several years later supported this model, 

suggesting a one-chain triclinic unit cell for cellulose la and a two-chain monoc1inic unit 

cell for I~, in both ofwhich the molecular chains are arranged in paralle1 conformation. 19 

The la phase is metastable and can be converted to the more stable I~ form by 

annealing.20,21 Recent Synchrotron X-ray and fibre neutron diffraction studies have 

provided high-resolution coordinates for the atoms in the crystal structure of the 

polymorphs, as weIl as the positions of the hydrogen atoms involved in hydrogen­

bonding.22,23 

The proportion of each crystal phase in a cellulose sample depends on the source of the 

cellulose; marine algae such as Valonia contain approximately two-thirds cellulose la, 

while cellulose from higher plants, inc1uding wood and cotton cellulose, is mainly 

cellulose I~. Owing to its high degree of crystallinity, the crystallographic structure of 

Valonia cellulose has been extensive1y studied by several methods.24-29 Wood cellulose, 

on the other hand, is much less crystalline and has not been studied as much. 

1.2.2 Cellulose nanocrystal suspensions 

Cellulose microfibrils contain amorphous regions surrounding the crystalline regions 

and more or less randomly distributed along their length (Figure 1.3).30,31 The amorphous 

regions are what permit acid hydrolysis of cellulose to provide stable aqueous 

suspensions of insoluble colloidal cellulose partic1es. During acid hydrolysis, the 

amorphous regions act as structural defects (Figure 1.4), leading to transverse c1eavage of 
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the microfibrils to give tiny monocrystalline fragments, "nanocrystals", of cellulose.32,33 

The less-dense amorphous regions have more rapid hydrolysis kinetics than the 

crystalline regions, as they are more susceptible to acid attack. In addition, the tight 

intermolecular hydrogen bonding of the crystalline regions effectively prevents the acid 

from penetrating into the crystal structure, making them less accessible to the acid. The 

resulting monocrystals have been (more-or-Iess interchangeably) ca1led crystallites, 

micro crystal s, nanocrystals, or whiskers. 

Microfibrils 
3-20 nm x 100 J.lm 

Amorphous region 

Figure 1.4. Each microfibril can be considered as a string of cellulose microcrystals 

linked by amorphous domains which act as structural defects.34 

Cellulose nanocrystals are rodlike in shape with an aspect ratio, LlD, where L is the 

length and D is the diameter, which can vary from 1 to 100. The degree of cellulose 
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crystallinity, degree of cellulose polymerization (DP)ii and the cross-sectional dimensions 

of the crystallites all depend on the cellulose source. For example, it is thought that 

cellulose chains have a DP of approximately 15 000 in cotton, and only 10 000 in 

WOOd.35,36 Cotton also has a higher degree of crystallinity than wood,35,37,38 rendering it 

less accessible to attack by acids.iii Both factors tend to increase the LlD of cotton 

nanocrystals relative to wood nanocrystals, as well as the yield of nanocrystals per gram 

starting cellulose. Nanocrystal dimensions also depend, naturally, on the hydrolysis time, 

temperature, and acid concentration used to obtain them. Measured nanocrystal 

dimensions are also a function of the method used to measure them. For example, atomic 

force microscopy (AFM),24,39 transmission electron microscopy (TEM),40 and light 

scattering41,42 all have inherent artifacts which affect the measured dimensions; see 

Chapter 2 for an example with AFM. 

Rânbyand co-workers were the first to discover that sulfuric acid-hydrolyzed cellulose 

fibers form stable suspensions of colloidal-sized crystals.43-45 The nanocrystals were 

found by electron microscopy to be approximately 50 nm long by 5-10 nm wide, which 

agreed with previous X-ray diffraction experiments.46 Wood pulp and cotton were among 

the most widely-studied cellulose sources.47,48 The hydrolysis conditions for sulfuric acid 

and cotton cellulose have been optimized for yield and nanocrystal dimensions by Dong 

and co-workers.49 

The stability of the aqueous colloidal cellulose suspensions studied in this thesis is 

electrostatic in nature and is derived from sulfate ester groups randomly grafted onto the 

ii The degree of polymerization also depends greatly on the purification process the cellulose has 
undergone. 
iii For this reason, all the suspensions studied in this thesis, apart from those in Chapter 2, are obtained from 
cotton cellulose. 
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cellulose nanocrystal surfaces by the sulfuric acid, imparting a negative charge to the 

nanocrystals (Figure 1.5).33,40,45,47,48,50-55 Hydrochloric acid has also been used to 

pro duce cellulose nanocrystals from bleached softwood kraft pulp.54 In contrast to 

sulfuric acid, hydrochloric acid does not introduce charged surface groups, which means 

that HCI-prepared nanocrystal suspensions are not electrostatically stabilized. Post­

sulfation of such nanocrystals by treatment with sulfuric acid55 or by oxidation56,57 can 

provide similar leve1s of surface charge to sulfuric acid hydrolysis. AlI the cellulose 

suspensions studied in this thesis are produced by sulfuric acid hydrolysis; unless 

otherwise stated, the term "cellulose nanocrystals" will refer to nanocrystals obtained by 

this procedure. 

-0 

Figure 1.5. Schematic representation of the surface cellulose chains in a nanocrystal, 

showing sulfate groups introduced by the action of sulfuric acid. Weak carboxylic acid 

groups are also shown (see below). 

Unmodified cellulose nanocrystals have polar hydrophilic surfaces and therefore form 

electrostatically stable suspensions in water. Dispersion in non-polar organic solvents is 

also possible if the nanocrystals are appropriately treated. Treatment methods include: 

coating the nanocrystals with surfactants such as Beycostat NA (to suspend them in 
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toluene and cyclohexane),58 partial silylation of the nanocrystal surface (tetrahydrofuran, 

THF),59 and grafting low molecular weight polyethylene glycol onto the surface 

(chloroform).56 Redispersion of cellulose nanocrystals in polar organic sol vents has also 

been achieved by partial surface silylation (acetone),l as weIl as in the absence of 

surfactants or chemical modification (dimethylformamide, DMF).60 Recently, stable 

dispersions of unmodified cellulose nanocrystals were obtained in the dipolar aprotic 

solvents dimethylsulfoxide (DMSO) and DMF; a small amount of water appears to be 

critical to the suspension stability in this case.61 

1.2.3 Characterization of cellulose nanocrystal suspensions 

The stability of aqueous cellulose nanocrystal suspensions depends on the geometry 

and dimensions of the dispersed particles, their size polydispersity and surface charge. 

Transmission electron microscopy,62-64 atomic force microscopy,40 and scattering 

techniques41 ,42 have been used to measure nanocrystal dimensions and polydispersity. It 

is possible to estimate the average length of the nanocrystals based on the residual degree 

of polymerization (DP):45 Wood cellulose nanocrystals average 180-200 nm in length2 

and cotton nanocrystals average about 200-350 nm,36 while Valonia (al gal) and tunicate 

whiskers average greater than 1000 nm in length.2,24,36,62 Table 2.1 in Chapter 2 lists the 

lengths and cross-sectional dimensions of cellulose nanocrystals from various sources. As 

can be seen in Figure 1.6, cellulose nanocrystals tend to be quite polydisperse in length, 

due to the random nature of the acid hydrolysis, variation in hydrolysis conditions, and 

different percent ages and distributions of amorphous regions in the cellulose 

microfibrils.2,51,65 The lateral dimensions have a much smaller distribution, presumably 

arising from the inaccessibility of the monocrystals to the acid. 
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Figure 1.6. Transmission electron micrographs of a) cotton whiskers and b) tunicate 

whiskers. Images obtained by Jean-Luc Putaux, CERMAV-CNRS, France. 

Conductometric titration and e1emental analysis can be used to measure the sulfur 

content and surface charge density of the cellulose nanocrystals (see Chapter 2). Sulfur 

content depends on the hydrolysis conditions;40,49 typical values vary from 1 to 2 %.33,48 

Typical charge densities, calculated based on average nanocrystal dimensions, vary from 

0.2 to 0.3 e/nm2
, where e is the elementary charge. Araki et al. found a surface charge 

density of 0.155 e/nm2 for nanocrystals prepared from wood pulp.54,55 Nanocrystals 

prepared by HCI hydrolysis exhibit negligible surface charge densities, as they contain 

only a few weak carboxylic acid groups. 52 

The anisometry (axial ratio » 1) and appreciable surface charge of cellulose 

nanocrystals result in suspensions which have highly-sensitive phase separation 

behaviour, as discussed below. These attributes also influence their rheological behaviour 

such as viscosity and shear thinning;66 the introduction of surface charge in particular 

reduces the viscosity relative to uncharged nanocrystals, due to se1f-ordering of the 
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ordered phase.55 These properties, along with optical and orientation properties, and the 

use of nanocrystals in nanocomposites, are discussed in two recent reviews.67,68 

1.3 LIQUID CRYSTALLINE PHASES OF CELLULOSE NANOCRYSTAL SUSPENSIONS 

Liquid crystalline behaviour of cellulose suspensions was first reported by Rânby in 

1951.45 However, it was not until more than four decades later that detailed study ofthis 

system was begun.47 This section begins with an introduction to liquid crystal phases 

followed by a closer examination of the liquid crystalline behaviour of cellulose 

derivatives and cellulose nanocrystals. 

1.3.1 Liquid crystals 

Liquid crystals are an intermediate state of matter having the characteristics of both 

liquids (fluidity) and solids (sorne long-range order and anisotropy). They are typically 

formed by anisotropic molecules or particles that are rigid and rodlike.69 Figure 1.7 

illustrates the classification of liquid crystals according to the arrangement of the 

particles. Nematic liquid crystals possess orientational order, but no positional order, as 

the rods are free to slide or roll past each other. Smectic phases have a higher degree of 

positional order, as the rods are arranged in layers with their long axes perpendicular to 

the plane of the layers. 

Chiral nematic liquid crystals possess a further degree of order compared to smectic 

and nematic textures. The rods are aligned parallel to each other and to the plane of the 

layer, each layer being rotated slightly with respect to the layers above and below it,ïv 

thereby giving the liquid crystal a long-range helical order. The pitch of the helix is 

iv Because the rods are free to move perpendicularly to the plane of the layer (i.e. they do not have any 
positional order in this direction), the term "pseudo-layer" or "quasi-nematic layer" is more appropriate. 
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defined as the distance required for the layers to make one full rotation about a line 

perpendicular to the layers (the chiral nematic or cholesteric axis). 

Nematic Smectic Chiral nematic 
(Cholesteric) 

Figure 1.7. Schematic diagram of the different types of liquid crystal structure. 

The phase transition from an isotropie liquid to an ordered liquid crystal can be effected 

by a change in temperature (thennotropic mesomorphism) or a change in concentration of 

the system (lyotropic mesomorphism),7o Lyotropic colloidal liquid crystals were first 

recognized in the 1920s by Zocher, who investigated nematic textures in solutions of 

colloidal rodlike V20S particles,71-73 Similar lyotropic isotropic-nematic transitions of 

colloidal particles were later reported by Langmuir for clay platelets74 and Bawden et al. 

for tobacco mosaic virus (TMV) rods,75,76 More recently, the isotropic-nematic transition 

has been observed in systems of polytetrafluoroethylene (PTFE) whiskers,77 other stiff 
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virus es such as fd bacteriophage and M13 virus,86-89 rodlike micelles of amphiphilic 

surfactants,78 and colloidal boehmite rods.79,80 

Cellulose nanocrystal suspensions also form lyotropic liquid crystals. Figure 1.8 shows 

a suspension of cellulose nanocrystals which has formed a chiral nematic liquid crystal 

phase. 

Isotropie 
phase 

P/2 

Cholesteric axis 

Chiral ne matie 
phase 

Figure 1.8. A suspension of cellulose nanocrystals viewed between crossed polarizers, 

displaying an upper isotropie phase and a lower chiral nematic phase (helicoidal packing 

of severa! nematic planes in which the rods are aligned on average with a vector). Half a 

pitch, P!2, is shown in the diagram. 

Chiral nematic cellulose nanocrystalliquid crystals form two optical "textures" which 

are identifiable when a sample is placed on a light microscope stage between two linear 

polarizers crossed at 90°. The birefringence (anisotropic refractive index; !ln ~ 0.05) of 
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the cellulose nanocrystals and the order of the liquid crystal allow light to pass through 

areas of the sample. The planar texture is observed when the cholesteric axis is parallel to 

the viewing direction; disclinations show up between crossed polars as dark lines against 

a coloured background.81 When the cholesteric axis is perpendicular to the viewing 

direction, a characteristic "fingerprint" texture is seen, in which dark and light lines 

altemate, the width of each line corresponding to one quarter of the chiral nematic pitch 

(Figure 2-E in Chapter 2). 

1.3.2 Liquid crystalline phases of cellulose derivatives 

Liquid crystalline properties of cellulose derivatives were discovered in 1976 by 

Werbowyj and Gray, who found that concentrated aqueous solutions of hydroxypropyl 

cellulose (HPC) appeared to form the helicoidal structure of a cholesteric liquid crystal. 82 

Acetoxypropyl cellulose was subsequently found to exhibit thermotropic cholesteric 

liquid crystal phases,83 in contrast to the lyotropic HPC.84 Other cellulose derivatives 

including ethyl cellulose and ether and ester derivatives of HPC in various sol vents 

including water, methanol and acetic acid were studied. The handedness of the chiral 

nematic helices was found to vary with the substituents on the cellulose backbone,85,86 as 

weIl as with the solvent. 87 

1.3.3 Liquid crystalline phases of cellulose nanocrystals 

Liquid crystal phases of cellulose nanocrystals are easier to work with than molecular 

cellulose derivatives for several reasons. Because molecular cellulose derivatives are 

somewhat flexible, they do not behave as predictably as the rigid rodlike nanocrystals. In 

addition, concentrated solutions (55-70 % for HPC82) of these polymers are required to 

obtain the liquid crystal phase, which makes handling the viscous solutions difficult. 
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Cellulose nanocrystals, in contrast, begin to fonn chiral nematic phases at concentrations 

of only 1-7 wt%, depending on their axial ratio.49,52,88 

In order to understand the liquid crystal phase behaviour of cellulose nanocrystals, it is 

necessary to understand how and why the phases fonn. It seems counterintuitive that 

randomly-distributed particles should spontaneously align to give an ordered phase, and 

even more counterintuitive that entropy should be the driving force behind this 

phenomenon. However, this is the case, as explained be1ow. 

1.3.3.1 Stability of colloidal suspensions 

To model the stability of e1ectrostatically stabilized colloids, Detjaguin, Landau, 

Verweyand Overbeek (DLVO) theory can be used. It combines the effects of van der 

Waals attractions, present for all particles, and the effects of e1ectrostatic repulsions, 

detennining the dominant force as a function of particle separation. The total potential 

energy of interaction between the colloids is the sum of the repulsion energy and the 

attraction energy, as shown in Figure 1.9. At very small interparticle separations, steep 

hard core repulsion is experienced, such as that exhibited by sterically stabilized colloids 

such as boehmite rods grafted with polyisobutylene (PIB).19 

The positive energy barrier between the secondary and primary minima prevents the 

colloidal particles from coming into contact and aggregating. A higher energy barrier 

arises when the particle surface potentials are larger, leading to more stable suspensions. 

If the surface charge is negligible, as for HCI-hydrolyzed nanocrystals, or excess ionic 

strength is present to screen the electrostatic double layer repulsions, the suspension 

becomes unstable and the particles precipitate or flocculate. 
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Figure 1.9. Schematic representation of the total energy of interaction between two 

colloidal partic1es, according to DL VO theory. 

Even if they are electrostatically stabilized, the random behaviour of the colloidal 

partic1es is altered as their concentration in suspension increases. For N hard partic1es in a 

volume V, the free volume Vfree available to the partic1es is only a fraction of the total 

volume because each partic1e exc1udes the other partic1es from a certain volume 

surrounding it. This reduces the total number of configurations available to the set of N 

partic1es and therefore lowers the system entropy. At a given density of colloidal 

partic1es, it can be demonstrated that if the exc1uded volume regions overlap, the free 

volume available to each partic1e increases, thereby increasing the entropy of the system 

and decreasing its free energy. In order to achieve this more thermodynamically 

Iavourable state, the system must phase shift to maximize the free volume. 

The plot in Figure 1.10 shows qualitative1y the calculated free energy for both the fluid 

phase and solid phase of a suspension of colloidal spheres as a function of the suspension 
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density. It can be seen that at low densities, the random fluid phase is favoured, while at 

high sphere densities, the c1ose-packed solid phase is more stable.89 The system thus 

undergoes a phase shift in order to maximize its free volume and hence its entropy. 
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Figure 1.10. Qualitative representation of the free energy of a dispersion of colloidal 

spheres as a function of the sphere density for the fluid (random) and solid (ordered) 

phases. At low partic1e densities, the fluid phase is energetically favoured, while above a 

critical density (dotted line), the solid phase becomes more stable and a phase transition 

occurs. Adapted from Baus et al. (1996).89 

1.3.3.2 Onsager theory for the isotropie-nematie phase separation of neutral rodlike 

particles 

Phase shifts are also observed in suspensions of rod-like partic1es for entropie reasons. 

The Onsager theory90 is a comerstone in the theory of liquid crystal phase formation for 

systems of long monodisperse rodlike partic1es. It accurately predicts an isotropie to 
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nematic transition, and although the predicted critical concentration of the phase 

transition is far from typical experimental values, it provides a simple explanation for the 

phase separation of dispersions of repulsive rodlike particles. The theory is based on the 

free energy of rigid rods in the limit of the second virial coefficient. The second virial 

coefficient was obtained by averaging the excluded volume over the equilibrium 

distribution of orientations at the minimum free energy. For a pair of rods with a high 

axial ratio (LI »DI + D2 «L2), the excluded volume is given by 

(1.1) 

where y is the angle between the rods. 

The angular dependence function of the excluded volume of a pair of long rods gives a 

maximum when the rods are oriented perpendicularly to each other, and a minimum 

when they are parallel. For charged rods, the potential of the average force OJ between 

two cylindrical particles based on the Poisson-Boltzmann equation for electric potential is 

a minimum when the rods are oriented perpendicularly to each other and a maximum 

when they are parallel. The potential of average force between the rodlike particles at the 

equilibrium state must be calculated by summing over the total number of particles in the 

system. The free energy, osmotic pressure and chemical potential can then be found in 

terms ofthe average force.v Assuming the forces to be pairwise additive, two-particle and 

three-particle interactions can be evaluated and used to correct the average force as first-

and second-order correction terms (virial coefficients). The two-particle interaction term, 

~1, given by 

v In order for the isotropie and anisotropie phases to eoexist, their ehemieal potential and osmotie pressure 
must be equal. 
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(1.2) 

where 't is a volume element and V is the volume of the system, is equivalent to the 

excluded volume above (equation 1.1); the more complex three-particle interactions were 

approximated by Onsager, who limited the theory to dilute suspensions in which two­

particle interactions predominate.90 The free energy of the system can then be calculated 

using the virial coefficients. 

The Onsager theory is somewhat restricted as it is accurate only in the limit of very 

long rods, i.e. LlD ~ 00, and low particle concentration. However, in this limit, excellent 

agreement between experiment and theory has been observed for suspensions of 

monodisperse rods.91 

Another way of looking at the Onsager theory is to consider the entropy of the particles. 

The anisotropy of the rods means that in addition to positional or translational entropy of 

the spheres, the particles also have orientational entropy. When the ordered phase is 

formed, the system's orientational entropy is decreased (the density of particles is no 

longer uniform), but the gain in translational entropy more than offsets this loss. Thus, 

the phase transition is a purely entropic one, based on particle shape.vi The critical 

concentration for phase separation is determined only by the axial ratio L/D:90 

tA = 3.34DIL 

tPa = 4.48 DIL 

(1.3) 

(1.4) 

where tA and tPa are the volume fractions of the rods in the isotropic and anisotropic 

phases, respective1y. That is, tA represents the critical concentration at which the nematic 

vi Attractive forces are therefore not required for ordered phase fonnation in these systems. 
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phase initially forms from an isotropic suspenSlOn and f/Ja represents the (higher) 

concentration at which the suspension becomes completely anisotropic. Between these 

two concentrations, the suspension will separate into two phases.90 As shown in Figure 

2.4, this region spans a range of approximately 5-8 wt% for cellulose nanocrystals. It can 

be seen in equations 1.3 and 1.4 that longer rods decrease the critical concentration for 

anisotropic phase formation. That is, longer rods experience a larger excluded volume 

effect: Suspensions of boehmite rods with an axial ratio of 20 were found to phase 

separate, while rods of axial ratio 8 did not. 80 Fractionation of longer rods into the 

anisotropic phase was also predicted by Onsager,90 and has been observed for cellulose 

nanocrystals.4o 

Other theories such as the lattice-based theories of Flory and co-workers92-98 and 

DiMarzio,99 also mode1 the phase separation behaviour ofliquid crystalline polymers, for 

example at higher densities and in length-bidisperse systems. However, these theories are 

qualitative and do not lead to the exact Onsager results for infinite1y thin hard rods. 

Experimentally, systems of sterically-stabilized rods are used to approximate hard-core 

rod-rod repulsions, for example the PIB-grafted boehmite partic1es mentioned above.79 

The slender fd virus, although it is highly charged, also leads to results in agreement with 

Onsager's theory when the double layer is taken into account. 100 In sorne systems, the 

partic1e length can be tailored to obtain bidisperse or polydisperse systems to examine the 

effect on the phase separation behaviour,79 For example, broadening the partic1e length 

distribution introduces curvature into (and increases the range of) the biphasic 

coexistence region of the experimental phase diagram and increases the coexisting phase 

concentrations tA and tPa with increasing partic1e concentration according to a lattice 
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theory of the phase separation of rodlike partic1es.101 Such curvature has been seen for 

sterically stabilized boehmite rods102 as well as cellulose nanocrystals. 103 

It is worth noting that the free energy difference between a chiral nematic phase and a 

nematic phase is much smaller than the free energy difference between an isotropie phase 

and an anisotropie phase of rod-like partic1es.70 Experimental data for chiral nematic 

liquid crystals can therefore be compared with theories deve10ped for nematic phases. 

1.3.3.3 Isotropie-chiral nematic phase separation of cellulose nanocrystal suspensions 

After the hydrolysis conditions for obtaining cellulose nanocrystals were optimized,40 

Marchessault and co-workers in 1959 and Hermans in 1963 demonstrated that such 

suspensions displayed nematic liquid crystalline order.51 ,104 Marchessault reported 

macroscopic birefringence of cellulose whisker suspensions observed through crossed 

polarizers, due to the birefringence of the nanocrystals as well as to a flow anisotropy 

resulting from the alignment of the nanocrystals under shear.51 In 1992, Revol and co­

workers showed that the suspensions in fact formed a cholesteric, or chiral nematic, 

liquid crystalline phase.47 

As the concentration of cellulose nanocrystals is increased, phase separation proceeds 

as follows: In dilute (isotropie) suspensions, spherical "droplets" of ordered nanocrystals 

called tactoids form and are visible by polarizing microscopy.48 Order in dilute cellulose 

nanocrystal suspensions has also been observed using static and dynamic light 

scattering105 and ultra-small-angle X-ray scattering, by which almost identical scattering 

profiles were found for the anisotropie and isotropie phases.106 As the cellulose 

concentration increases, the tactoids coalesce to eventually give an anisotropie phase 

once a critical concentration has been reached. The ordered phase, as has been stated, 
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displays the optical characteristics of a chiral nematic liquid crystaJ.33,47,48,5l,52 

Interestingly, the concentrations of cellulose nanocrystals in the two phases do not differ 

greatly from each other, in contrast to similar coexisting phases of, e.g., ionic polymer 

latex particle dispersions. 107 A typical chiral nematic pitch for cotton nanocrystals is 

between 10-25 /-lm.47 

It is interesting to consider the self-ordering of rodlike cellulose nanocrystals to form a 

chiral nematic phase as opposed to a nematic phase when one remembers that there is no 

enthalpic advantage in forming the chiral nematic organization over the nematic. The 

molecular chirality of cellulose (section 1.2.1) cannot be transmitted between the rods 

because the distances separating them are too great, being on the order of 20-40 

nm. 108,109 The arrangement of charged groups in a spiral on the nanocrystal surface has 

also been ruled out. 56 Packing by chiral interaction of twisted rods in order to minimize 

excluded volume has been proposed:108,110 Although the nanocrystal separation prevents 

actual physical contact, the electrostatic double layer surrounding the rods may be thick 

enough to transmit the chiral twist if it is of the same order as the lateral dimensions of 

the rod. lll A helicoidal organization of opposite handedness to the twist along the 

nanocrystals would be generated from this interaction. The formation of chiral nematic 

phases by PEG-grafted nanocrystals56 and rodlike fd virus,112 as weIl as surfactant­

stabilized cellulose nanocrystals in nonpolar solvents58 supports this hypothesis. 

The order of liquid crystalline phases of cellulose nanocrystals can be enhanced by 

placing them in an applied magnetic field. l13 Such ordered suspensions have been used 

as a medium in which to measure residual dipolar coupling of proteins by C' decoupled 

IH_1SN IPAP-HSQC13 NMR.114 
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1.3.3.4 Effect of the polyelectrolytic nature of cellulose nanocrystals on phase 

separation 

Interparticle electrostatic interactions have a large effect on the free energy of the 

system. They provide stability and promote order: The addition of salts screens the 

electrostatic charges, destroying the order of anisotropic cellulose nanocrystal 

suspensions106 and causing them to flocculate.52 As Flory stated, " ... the importance of 

electrical forces in bringing about separation of a dilute anisotropic phase from an even 

more dilute solution of highly anisotropic particles ... is clearly indicated, for the effect 

with (TMV) vanishes ... at salt concentrations exceeding 5xl0-3 M. The phase separation 

... is not adequately explained by consideration ofparticle asymmetry alone."92 

According to Onsager's theory for neutral rods, the axial ratio determines the critical 

concentration for phase separation. Cellulose nanocrystals, while rodlike, are far from 

being infinitely long rods (typical axial ratios lie in the range 20-30 for cotton), and 

moreover are not electrostatically neutral owing to the charged sulfate groups on their 

surfaces. As previously stated, they also have quite large length distributions. It is 

therefore not surprising that the phase behaviour of this system agrees only qualitatively 

with Onsager' s theory; the experimental critical concentration tends to be higher than the 

theoretical value.52 The critical concentration and the width of the biphasic coexistence 

region of suspensions of polyelectrolytic rodlike particles are also very sensitive to 

variables such as length polydispersity, axial ratio,vii surface charge density, solution 

ionic strength and the nature ofthe counterions.54,55,113,115 

vii The first two variables naturally apply to monodisperse neutral rods as weIl. 
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The stability and phase separation behaviour of polyelectrolytic cellulose nanocrystals 

is very sensitive to changes in inter-rod interactions such as e1ectrostatic repulsion, steric 

interactions, hydrophobic and hydration forces. 113 The nature (e.g. size, hydrophobicity) 

of the counterions associated with the sulfate groups is therefore also an important 

consideration. Inorganic counterions tend to increase the critical concentration - in other 

words, to decrease the tendency for ordered phase formation - in the order Na+ < K+ < 

Cs +, most likely due to decreasing repulsive hydration forces as the hydration number and 

hydrated ion size decrease as one goes down the periodic table. For bulky organic 

counterions, the phase equilibrium is govemed by a balance between hydrophobic 

attractions and steric repulsions.56,113 

1.3.3.5 Theoretical treatment of the phase separation of charged rodlike particles 

As seen in section 1.3.3.2, Onsager took the electrostatic repulsion of charged partic1es 

into account by treating the double layer as part of the partic1e, with the effect of 

increasing the effective partic1e diameter.90 However, the phase separation still could not 

be accurate1y predicted, despite taking the e1ectrostatic double layer into account up to 

the second virial coefficient. 

Other theories have been developed to predict the phase separation of rodlike 

polye1ectrolytes.116-119 Stroobants, Lekkerkerker and Odjik's theory (SLO theory) of the 

phase equilibrium of charged rods modifies Onsager's equations to account for the 

increased effective rod diameter (DefI) as well as a twisting effect h characterizing the 

e1ectrostatic interactions between the charged rods: A perpendicular orientation between 

two rods minimizes the repulsion between them, while the larger effective diameter 

favours a parallel orientation to minimize the effect of the amplified exc1uded volume 
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and consequent increase in free energy. The magnitude of the twisting effect is given by 

h, which represents a balance between the electrostatic and entropic factors. The 

coexisting number densities Ci and Ca of the rods in the isotropic and anisotropic phases 

are given by the SLO theory by the following equations: 120 

Ci = 3.290[(1- 0.675h)br l 

Ca = 4.191[(1 - 0.730h)br l 

(1.5) 

(1.6) 

where h is the twisting factor and b is the second virial coefficient of the system. The 

values of h and b are given by 

1t 2 
b=-LDff 4 e 

(1.7) 

(1.8) 

where KI is the Debye length (electrostatic double layer "thickness") and L is the rod 

length. The effect of the increase in effective diameter due to the electrostatic double 

layer is to decrease Ci and Ca relative to analogous neutral rods. Dong et al. (1996) 

showed that particle dimensions and ionic strength govem the phase separation of 

cellulose nanocrystal suspensions. 52 Ionic strength affects phase separation by screening 

out the electrostatic repulsions of the surface sulfate groups, thereby reducing the 

effective rod diameter. Increasing the sodium chloride concentration from 0.13 to 1.95 

mM increased the critical concentration for phase separation from 6.5 to 9.0 wt% 

cellulose. The same effect can be observed by examining the volume fraction of 

anisotropic phase which decreases as salt is added. Figure 1.11 summarizes the effects of 

ionic strength on the phase separation behaviour of cellulose suspensions. 
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Figure 1.11. Summary of the effects of added electrolyte on the phase separation 

behaviour of a suspension of cellulose nanocrystals at constant concentration. 

The chiral nematic pitch of the anisotropic phase also decreases as the solvent ionic 

strength increases, indicating a strengthening of chiral interactions, which are thought to 

be screened by the e1ectrostatic double layer.52 Experimental results for cellulose and 

other systems are not in complete agreement with SLO theory, possibly because of 

factors such as difficulty in estimating the contribution of the polyionic partic1es to the 

ionic strength of the system. 115,121 

1.4 ADDITION OF MACROMOLECULES TO CELLULOSE NANOCRYSTAL SUSPENSIONS 

As discussed in the previous section, the stability of colloidal partic1es in suspension 

depends on the forces acting between them. DLVO theory of colloid stability examines 

the contributions of attractive van der Waals forces and electrostatic repulsion between 

charged partic1es. The balance between these forces determines whether the partic1es 

remain suspended or form reversible or irreversible aggregates or gels. 
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When a non-adsorbing macromolecule is added to a suspension of colloidal partic1es, a 

new attractive force develops and acts between the partic1es, although there is no direct 

interaction between any of the partic1es or the added macromolecule. The action of this 

force pro duces phenomena unaccountable for by DLVO theory alone. For example, for 

many years, X-ray crystallographers added polyethylene glycol (PEG) to protein 

suspensions to induce crystallization without having a complete theoretical understanding 

of the mechanism.I22,123 Asakura and Oosawa124,125 and Vrij126 explained this attractive 

force according to the depletion model described below. 

1.4.1 The depletion attraction 

When free, non-adsorbing polymer is added to a suspension of colloidal partic1es, a 

shell with thickness equal to the polymer's radius of gyration Rg is exc1uded to the 

centres of mass of ideal polymers in solution (Figure 1.12). When the colloids are far 

apart, a uniform osmotic pressure is exerted on the partic1es. When the colloids approach 

at distances less than 2Rg, the exc1uded volumes overlap and the total free volume 

available to the polymers increases. As a result, the osmotic pressure is unbalanced and 

tends to drive the colloidal partic1es together; an effective attractive force acts on the 

partic1es. This lowering of the free energy is the driving force for depletion flocculation, 

or, under the right circumstances, for phase separation of the system. The range of the 

depletion attraction potential Udep(R) is determined by the radius of gyration Rg of the 

pol ymer, and its depth or strength is determined by the concentration of the 

macromolecules in solution: 125 

(1.9) 

where TIp is the osmotic pressure of the pol ymer, and VOY is the overlap volume of 
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neighbouring depletion layers. At low polymer concentrations, the mixing entropy 

dominates in binary macromolecule-colloid suspensions, but at higher concentrations, 

the translational entropy dominates, and phase separation occurs to minimize the free 

energy of the system. Adding a polymer thus shifts the system's critical point to a more 

"accessible" location in its phase diagram. The net attractive potential is intensified when 

the pol ymer contains electric charges, because the osmotic pressure and molecular 

dimensions of polyelectrolytes are greater than those of analogous nonionic polymers. 125 

exeluded volume 1 depletion layer 

~ 
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1 

• 

eolloid 

isotropie 
osmotie 
pressure 

anisotropie 
osmotie 
pressure 

Figure 1.12. The depletion mechanism. Free, non-adsorbing polymers are excluded from 

a shell of thickness Rg surrounding the colloidal partic1es of radius R. Initially, the 

osmotic pressure exerted on the colloids is uniform (top). As the colloids approach, the 

polymers cannot penetrate into the shaded volume. The osmotic pressure on the colloids 

becomes uneven (bottom), leading to an effective attraction between the partic1es. 
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1.4.2 Theories of depletion attraction for spherical colloid + polymer coil mixtures 

Following other workers' attempts to predict the phase diagrams of colloid-polymer 

mixtures using thermodynamic perturbation theory,127,128 Lekkerkerker and co-workers 

used a statistical mechanical model to treat the phase behaviour of a spherical colloid and 

nonadsorbing polymer mixture. 129 This approach has the advantage that it does not 

assume that the polymer concentration is the same in coexisting phases, which 

assumption directly contradicts experimental observations of pol ymer partitioning 

between the phases in polystyrene latex-dextran systems. 130,131 The colloid partic1es are 

assumed to be hard spheres and the polymers are treated as freely interpenetrable coils. A 

phase diagram similar to that predicted by Flory (see section 1.4.3) was obtained, and 

three-phase gas-liquid-crystal coexistence was predicted for certain conditions.129 

Depletion attraction has been thoroughly verified experimentally. Direct measurements 

of the potential ofmean force have been obtained for several model systems.132-134 It has 

been found through the study of these model colloid-polymer mixtures, for example 

nearly-hard-sphere partic1es of polymethyl methacrylate (PMMA) and random-coil 

polystyrene (PS) dispersed in simple hydrocarbon solvents,135,136 that the depletion-

induced attraction is not sufficient in itself to cause the separation of a "vapor" phase 

from a "liquid" colloid phase. viii The range of the attraction must be sufficiently long; 

that is, the polymer must be sufficiently large in comparison to the colloidal partic1es. 

Additionally, there have been many experimental studies of depletion-driven 

phenomena, particularly of phase behaviour in mode1 colloid systems such as polystyrene 

latex mixed with water-soluble polymers138-140 and PMMA mixed with PS in cis-

viii These phases are "thermodynamieally stable phases of dilute and dense disordered arrangements of 
diffusing particles,,137 and ean be eonsidered analogous to the isotropie and anisotropie phases ofrodlike 
particles. 
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decalin. 135 It was found that the polymer-colloid size ratio is the key factor determining 

the topology of the phase diagram for the latter system. In fact, it has been shown that if a 

physical property of the polymer, such as shape or flexibility, differs enough from that of 

the colloid, bulk demixing can occur. 141 Small rods have been used as depletion agents 

for much larger colloidal spheres, for example.142 

1.4.3 Theories of phase behaviour of rodIike colloid + polymer coU mixtures 

U sing a lattice-based theory, Flory examined the phase equilibria of athermal mixtures 

of rodlike solutes and random coiled chains in a solvent.97 The diameters of all three 

components were considered equal and rods of axis ratio lOto 100 were simulated. The 

length L and the diameter D of the rods, and the effective radius af2 of the pol ymer coils 

are related by D/2 « L ~ 0'/2. For all axis ratios, addition of coils to the biphasic rod­

solvent system increased the volume fraction of rodlike partic1es in the anisotropie 

phaseix and broadened the isotropie-anisotropie coexistence region. The coils were found 

to partition almost exc1usive1y into the isotropie phase, preferentially replacing the 

rodlike partic1es rather than the solvent. That is, the overall concentration of solute in the 

isotropie phase increased very little with addition of the coils to the binary system. For 

rods with the highest axis ratios (which therefore give results that most c10sely agree with 

Onsager theory), this partitioning occurred at re1atively low concentrations of the rodlike 

partic1es. 

Figure 1.13 shows a schematic drawing of a phase diagram of a system of rodlike 

partic1es and polymer coils. The downward slope of the isotropie phase boundary 

indicates that the rod density in the isotropie phase decreases as the pol ymer coil 

ix The 1088 of orientational entropy is more than offset by the gain in translational entropy. 
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concentration increases; this is because as the coils partition into the isotropie phase, the 

osmotic pressure in the isotropie phase increases; to balance this, cellulose rods migrate 

from the isotropie to the nematic phase, causing the widening of the biphasic region. The 

tie lines, which join the coexisting isotropie and nematic phases, slope downwards, 

indicating that the coiled polymer has a greater concentration in the isotropie phase . 

fi) -.-o o 

............. 

Rods 

Figure 1.13. Theoretical phase diagram for a mixture of rodlike partic1es and coiled 

pol ymer. The isotropic-nematic coexistence region is broadened by the addition of coiled 

pol ymer. As the coil concentration increases, the rod density in the isotropie phase 

decreases. The downward-sloping tie lines indicate that the coiled pol ymer partitions into 

the isotropie phase. The inset shows the region in which most experiments in this thesis 

are performed. 
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A later theory143 obtained the attractive depletion force by calculating the overlap of the 

excluded volume shells of a pair ofhard rods and employing a virial expansion of the free 

volume available to the polymer, truncated at the second virial level. An expression for 

the free energy of the system was then obtained in terms of an orientational distribution 

function and calculated numericaIly. The isotropic-nematic phase transition is also 

widened by addition of the pol ymer, and the pol ymer is predicted to partition into the 

isotropic phase, albeit to a much lesser extent than predicted by Flory's theory. The 

dimensions of the partic1es in this theory are related by al2 - D/2 < < L; like Onsager' s 

theory, it is limited to very long hard rods as weIl as very low polymer concentrations. 

Lekkerkerker and Stroobants144 examined the phase behaviour of rodlike colloid and 

flexible polymer mixtures using the same statistical mechanical model as mentioned 

above. 129 However, their treatment is not limited to the second viriallevel and is valid for 

shorter rods and higher polymer concentrations.144 At large LlD values, isotropic­

nematic equilibria are predicted with the pol ymer partitioning into the isotropic phase as 

usual. Shorter rods, on the other hand, showed richer phase behaviour: a three-phase 

equilibrium consisting of two isotropic phases (dilute and concentrated) and a nematic 

phase was observed. An equilibrium consisting of one isotropic and two nematic phases 

was also predicted for longer rods and smaller polymer coils. The nature of the triphase 

equilibria depended on the relative values of LlD and a/Do 

1.4.4 Experimental mixtures of rodlike colloids and polymer coils 

To a good approximation, sterically stabilized boehmite rods in cyclohexane can be 

considered as hard rods. 102 Much work has been done examining their phase behaviour79 

as weIl as the partitioning behaviour of polydimethylsiloxane (PDMS) added to PIB-
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grafted boehmite rods.1 03,145 Electrostatically stabilized boehmite rods have also been 

studied.80 Other systems inc1ude rigid poly(p-benzamide) (PBA) plus semi-rigid X-500x 

in dimethylacetamide / 3% LiCI,146 rodlike poly(a,l-glutamate) with triethylene glycol 

side chains plus polyethylene glycol in DMF,147 and K-carrageenan plus polysaccharides 

in solutions of 0.1 M NaI.148 A preliminary investigation of aqueous cellulose 

nanocrystal suspensions plus blue dextran has also been carried out. 149 

Mixtures of rodlike TMV and globular PEO have been found to exhibit rich phase 

behaviour, with the formation of isotropic, nematic, lamellar, and crystalline phases as a 

function of the constituents' concentration and the ionic strength. 141 In addition, 

microphase separation may occur in mixtures having particular partic1e geometries or 

geometry relationships, leading to the coexistence of even more complex and numerous 

phases. For example, this occurs in binary mixtures of hard spheres at certain sphere 

diameter ratios, 150 and in mixtures ofrods and spheres such as viroses and PS or PEO at 

certain rod length to sphere diameter ratios. 151 

1.4.5 Partitioning of coiled or flexible macromolecules 

Two basic findings are common to all the theories of phase behaviour of rod-coiI 

systems described above: Adding a coiled polymer to a system of rodlike partic1es causes 

a widening of the isotropic-nematic coexistence. Sorne degree of pol ymer partitioning 

also occurs, leading to rod-rich, coiI-poor and coil-rich, rod-poor phases at equilibrium. 

The extent of partitioning of flexible or coiled macromolecule between the isotropic 

and anisotropic phases of rodlike polymers or partic1es depends on the interplay among 

x This species has a confonnation intennediate between that of a rodlike polymer and that of a random 

coiled polymer. 146 
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physical and chemical factors such as the relative geometries, chemical compatibility, 

and the concentrations of the two components. Sorne systems exhibit a total exclusion of 

the coiled species,146 in line with predictions by Abe and Flory for systems oftwo rodlike 

particles which differ in length.94 In other cases, appreciable quantities of coiled species 

remain in the anisotropic phase,149 for ex ample when the miscibility between the rods 

and coils is enhanced by flexible side chains on the rods. 147 Altematively, there may be 

an even distribution of the coiled polymer throughout the system.148 The charge on the 

polymer is also important, as ionic macromolecules tend to partition more evenly than 

neutral macromolecules, owing to the entropy of mixing of the counterions. It is 

important to remember that all else being equal, a higher concentration of added 

macromolecule willlead to greater partitioning into the isotropic phase. 

A theory of partitioning for rigid-rod and flexible polymers has been proposed by Sear 

(1997).152 It is described in more detail in Chapter 5. In general, the partition coefficient 

depends on (a) the difference in the rod concentration between the two phases, (b) the 

second virial coefficient of rod-coil interactions and (c) the dimensions of the rods and 

coils. Characterization of both the system components is therefore important when 

predicting the partition coefficient. Experimental partition coefficients K for blue dextran 

in cellulose nanocrystal suspensions are several times larger than predicted by this theory, 

for reasons discussed in Chapter 5, although the theory does predict the correct order of 

magnitude of K. 
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1.5 DYE-LABELED DEXTRAN IN CELLULOSE NANOCRYSTAL SUSPENSIONS 

Blue dextran has been studied as a coiled macromolecule added to suspensions of 

rodIike cellulose nanocrystals. 149 

1.5.1 Properties and structure of dextran 

The properties of dextran, a pol ymer of glucose with a-(1,6) linkages containing sorne 

a-(1,3) branching (Figure 1.14), have been thoroughly studied. Dextrans of commercial 

interest are obtained mainly from Leuconostoc mesenteroides NRRL B-512(F).153 Values 

from 9x 1 06 to 500x 1 06 have been obtained for the molecular weight of native 

dextran.154-156 Dextran is soluble in water and other solvents such as DMSO, glycerol 

and ethylene glycol, and is insoluble in ethanol. 153 The solubility of dextran in ethanol­

water mixtures depends on its molecular weight (Figure 1.15).157 Its insolubility in 

ethanol is exploited in the fractional precipitation of clinical fractions of dextran having 

specifie molecular weights,153 and in the purification of blue dextrans (see Chapter 3). 

The a-(1,6)-linked polysaccharides are very flexible, in contrast with the rigidity and 

crystallinity of a-(1,4)-linked cellulose.153 Dextrans with molecular weights between 

2,000 - 10,000 Da behave as expandable coils in solution; above this molecular weight, 

they behave as though they were highly branched. 

Periodate oxidation158 and methylation analysesl59-161 indicate that the degree of 

dextran branching is approximately 5%. At lower molecular weights, the degree of 

branching is found to decrease slightly.160 The average branch length is generally thought 

to be less than three glucose units, although conflicting data exist. 160,162 

Partial acid hydrolysis of native dextran can be used to obtain dextran fractions of 

narrow molecular weight distribution, designated e.g. T -2000, where the "T" indicates 
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"technical grade" and the number indicates the molecular weight in kDa. 163,164 

Fractionation to give even narrower distributions of specific molecular weights can be 

achieved by ethanol fractionation, which precipitates the largest dextrans first,165 or by 

size exclusion chromatography.166 
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Figure 1.14. Schematic structure of native dextran showing a-(1,3) branching and a-

(1,6)-linked backbone. 

Unmodified dextran fractions have been used in a wide variety of biomedical 

applications, inc1uding plasma extenders,167 centrifugation and organelle separation, 168 

and inhibition of platelet aggregation.169 Lower molecular weight dextrans are also used 

in a wide variety of applications involving aqueous two-phase systems, particularly 

dextran-PEG systems, for partitioning sub-cellular particles and macromolecules.17o 
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Figure 1.15. Solubility of dextrans in ethanol-water mixtures at 25°C. The Mw axis refers 

to the highest molecular weight dextran soluble in the given percentage composition of 

ethanol. Adapted from Basedow and Ebert (1979).157 

1.5.2 Dextran derivatives 

The reactivity of dextran is derived mainly from the secondary, equatorially oriented 

hydroxyl groups, namely 02, 03 and 04.153 Reactions of dextran inc1ude partial 

methylation,171 substitution with ethylene oxide,l72 acylation with acetic anhydride in 

pyridine173 or in aqueous alkali,153 and sulfation.153 More importantly for this thesis, the 

hydroxyl groups are also reactive to nuc1eophilic substitution reactions with halides in 

basic media, for example the chloride moiety of reactive dyes such as Cibacron blue 

3G-A (Figure 3.1).174 The product ofthis reaction is called blue dextran and is sold as a 

void volume marker for gel filtration columns. Dextran also reacts to give conjugates 

with other dyes inc1uding Reactive red 4, Reactive green 19, Rhodamine B isothiocyanate 
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and fluorescein isothiocyanate (FITC), aIl of which are commercially available. FITC­

dextran, which is used as a macromolecular tracer in vascular permeability studies,175 is 

also studied in this thesis. 

Our particular interest in dye-Iabeled dextrans lies in their utility as visible 

macromolecules for quantification of the phase separation and partitioning phenomena 

that occur when they are added to aqueous suspensions of cellulose nanocrystals. The 

phase behaviour studies in this thesis are an extension of work begun by Edgar and 

Gray149 using blue dextran to initially examine rod-coil systems. Blue dextran was 

chosen because the UV-visible absorption spectra of unmodified dextran and cellulose 

nanocrystals suspensions overlap; light scattering by the nanocrystals and absorption 

increases greatly at lower wavelengths, making it very difficult to detect variations in 

dextran concentration when measuring partitioning. The highly-coloured dyes also 

provide useful initial visible confirmation of partitioning. 

1.6 MOTIVATION OF RESEARCU AND OUTLINE OF TUESIS 

As we have seen, studying systems of colloidal partic1es and added pol ymer can lead to 

insights which have greater relevance than just the physical chemistry or theoretical 

predictions. Colloidal suspensions frequently contain dissolved pol ymer additives which 

may be intended to stabilize them or to control their rheology, or at the other end of the 

spectrum, to de-stabilize and induce flocculation. In order to manipulate these systems to 

the desired end, we must understand the polymer-partic1e interactions and their effect on 

the macroscopic system properties. It is the goal of this thesis to gain an in-depth 
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comprehension of the factors controlling the interactions of dextran-dye ligands and 

native cellulose nanocrystals in aqueous suspension. 

Apart from comparing experimental phase behaviour with theoretical predictions, it is 

essential to know the properties of nanocrystal suspensions on their own, to better 

understand the consequences of adding macromolecules. Cotton cellulose suspensions 

have been well-characterized.40,52,113 Chapter 2 instead looks at the less-investigated 

wood cellulose nanocrystals, comparing the properties of individual nanocrystals and 

their suspensions from softwood (black spruce) and hardwood (eucalyptus) sources. 

Atomic force microscopy is used to measure nanocrystal dimensions, and conductometric 

titration is used to measure the surface charge density of the nanocrystals. Bulk 

suspension properties are also examined and compared. The effect of reaction conditions 

on the nanocrystals is also considered, as it is important to be able to tailor the suspension 

to have the desired properties. 

Just as it is important to characterize cellulose nanocrystal suspensions, it is also 

necessary to have an idea of the properties of the macromolecule being added to the 

suspension. In Chapter 3, blue dextrans are synthesized from Cibacron blue 3G-A dye 

and dextran. The physico-chemical properties of the resulting blue dextrans of varying 

molecular weights and degrees of substitution are then studied. Parameters such as 

hydrodynamic radii and radii of gyration, molecular weight and intrinsic viscosity are 

obtained by various methods such as light scattering, viscosimetry, and UV-visible 

spectroscopy. Together, such data can help elucidate properties and behaviour of these 

dextran-dye derivatives in solution. 
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The properties of cellulose nanocrystal suspensions and blue dextrans are united in 

Chapters 4 and 5. As an extension of previous work on the interactions of blue dextran 

and cellulose nanocrystals,149 the phase separation induced by addition ofblue dextran to 

anisotropic cotton cellulose nanocrystal suspensions is investigated in greater detail in 

Chapter 4: the effect of degree of dye substitution, dextran molecular weight, and the 

ionic nature of the dye ligand are aIl examined. In Chapter 5, the focus is on the 

partitioning of blue dextrans and FITC-dextrans between the isotropic and anisotropic 

phases of somewhat more dilute cellulose nanocrystal suspensions in which the isotropic 

and anisotropic phases coexist. Partitioning occurs to a lesser extent than in more 

concentrated cellulose suspensions, such as the (initially) anisotropic suspensions in 

Chapter 4; however, it is easier to work at lower cellulose concentrations because the 

equilibration times are much shorter due to the lower sample viscosity. Blue dextrans of 

decreasing molecular weight are obtained by acid hydrolysis, and the dependence of the 

extent of partitioning effects on dye substitution and molecular weight is determined. 

Partition coefficients of anionic blue dextrans and nonionic FITC-dextran are compared 

with each other and with theoretical predictions. The values of partition coefficients 

coincide nicely with those from the previous study. 

Chapters 6 and 7 are an in-depth study of a phenomenon accidentally discovered while 

working on Chapter 5. When a certain concentration of an unmodified dextran along with 

a certain concentration of a blue dextran, is mixed with even a fairly dilute cotton 

cellulose nanocrystal suspension, an equilibrium among three phases results. In Chapter 

6, the nature of the three phases is elucidated by optical microscopy, concentrations of 

cellulose in each phase are obtained by gravimetry, and blue dextran partitioning among 
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the phases is measured. Blue dextran partitioning is exaggerated compared to that 

observed in Chapter 5, with most of the blue dextran located in the upper isotropie phase. 

Phase diagrams for various combinations of unmodified and blue dextrans of different 

molecular weight, as well as cellulose nanocrystal concentration, are created and 

discussed in Chapter 7. 
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Introduction to Cellulose Nanocrystal Suspension 

Characterization Methods 



In the following chapter, the properties of wood cellulose nanocrystals and aqueous 

suspensions thereof are examined with respect to the hydrolysis conditions used to 

produce them. Several characterization methods are employed: Atomic force microscopy 

(AFM) and conductometric titration detennine the average dimensions and surface 

charge density of the cellulose nanocrystals, which influence the suspension behaviour, 

while phase diagrams and optical microscopy offer infonnation on the properties of the 

suspension as a whole. A brief description of each method follows. 

The atomic force microscope employs a probe tip mounted on a sensitive cantilever­

type spring. As the tip is scanned across the surface of the sample, the force interaction 

between the sample and the tip causes the cantilever to deflect according to Hooke's law. 

The resulting vertical and horizontal displacement is measured by detecting the deflection 

of a laser beam reflected off the rear side of the cantilever (Figure 2-A), and translated 

into a three-dimensional image ofthe sample. 

Figure 2-A. Principle of operation of the atomic force microscope (AFM). 
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One of the great advantages of AFM is the minimal sample preparation required as 

compared to electron microscopy. A drop of dilute suspension is dried onto a freshly-

c1eaved mica surface, which has been coated with positively charged poly-L-Iysine to 

which the nanocrystals stick, reducing the c1usters or c1umps of nanocrystals that form 

when the surface tension of the drying water droplet pulls them together. This results in 

more representative samples in which many individual nanocrystals can be imaged. 

Tip-sample convolution (Figure 2-B) can create image artifacts which interfere with 

accurate measurement, particularly in the x-y plane. In order to avoid these artifacts as 

much as possible, nanocrystallength is measured at the top of the cross-section (asterisk 

in Figure 2-B), while the diameter is measured vertically, assuming the nanocrystal is a 

cylinder or has a square cross-section. 

tip 

~ ........ ~ ~ 
----r"'" ......... . ..•.. . ..... 

•• + +. .... , ... * .......... ~ ....... . 
+. .+ ...... 

feature image 

Figure 2-B. Schematic diagram showing examples of tip-sample convolution originating 

from the relative sizes of the tip and the sample feature being measured. 

Apart from the surface sulfate ester groups introduced during sulfuric acid hydrolysis, 

cellulose nanocrystals may also contain carboxylic acid groups which can arise from the 

oxidation of the C6 hydroxyl group. Conductometric titration is a simple and accurate 

method used to quantify the surface charge on the cellulose nanocrystals. A dilute 
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suspension of nanocrystals in the acid form will contain -COOH and -OS03 - groups and 

the associated H+ counterions. The conductance of the suspension will depend mainly on 

the hydrogen and hydroxyl ions present; however, conductometric titrations of 

polyelectrolytes must be carried out in the presence of a neutral salt (1 mM NaCl) to 

avoid the Donnan equilibrium.1 Figure 2-C shows the set-up for a conductivity titration. 

A typical titration curve for nanocrystals containing both surface carboxylate and sulfate 

groups is shown in Figure 2-D. 

automatic 
burette 

__ -~~- NaOH(aq) 

conductivity 
cell plates ----+..-... 

cellulose suspension 
--r+--- in 1 mM NaCI (aq) 

~~p~-- stir bar 

Figure 2-C. Equipment used for conductometric titration of cellulose nanocrystals. 

Initially, the measured conductance decreases as the H+ ions dissociated from the 

sulfate esters (strong acid) are neutralized by the hydroxyl anions from the NaOH until 

the first equivalence point is reached. The weaker carboxylic acid groups are then 

1 Neale, S.M.; Stringfellow, W.A. Trans. Faraday Soc. 1937,31,881-889; and Grignon, J.; Scallan, A.M. 
J. Appl. Polym. Sei. 1980,25,2829-2843. 
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neutralized by the NaOH; the conductance remains relatively constant because there is a 

small concentration of H+ ions in equilibrium with the carboxylic acid as it is titrated. 

Past the second equivalence point, the conductance again increases as excess NaOH is 

added. The equivalence points are determined by extrapolation of the linear portions of 

the titration curve. 

160 

-150 
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Us 140 
::t -
~130 
> 
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Volume of 2 mM NaOH added (ml) 

Figure 2-D. Conductometric titration curve for suspension of cellulose nanocrystals 

containing strong and weak acid groups at their surfaces. 

Conductometric titration can be used to determine the sul fur content of the 

nanocrystals, their surface charge density (using cellulose nanocrystal dimensions 

measured by AFM), and the amount of NaOH required to convert the suspension to the 

sodium form, in which all the counterions are Na+ and the suspension pH is neutral. 

Phase diagrams (see Figure 2.4 in Chapter 2) show the critical concentration at which 

the chiral nematic phase first forms as well as the concentration range over which the 

isotropie-chiral nematic phase coexistence occurs for a given suspension. This can 
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provide corroboration of parameters such as nanocrystal length, on which the critical 

concentration is inversely dependent, length polydispersity, which tends to broaden the 

coexistence region, as well as ionic strength and the nature of the counterion.2 In 

addition, phase diagrams are a useful and simple way of comparing one suspension with 

another. 

Optical microscopy takes advantage of the birefringence of cellulose to measure the 

pitch of the chiral nematic liquid crystalline phase of a biphasic sample (Figure 2-E). The 

pitch gives an indication of the strength of the chiral interaction between the nanocrystals, 

which in tum depends on factors such as the cellulose concentration, nanocrystal surface 

charge density and the ionic strength of the suspension. 

Figure 2-E. Photomicrograph of the chiral nematic liquid crystal texture of a cellulose 

nanocrystal suspension viewed in a polarizing microscope. The nanocrystals lie paralle1 

to the plane of the page in the light regions (-) and perpendicular in the dark regions (.). 

2 Onsager, L. Ann. N. Y. Acad. Sei. 1949, 51, 627-659. 
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Chapter 2 

Effect of Reaction Conditions on the Properties and Behaviour 
,/~' 

of Wood Cellulose N anocrystal Suspensions 

Reproduced with pennission from 
Beck-Candanedo, s.; Roman, M.; Gray, D.G. Biomacromolecules 2005,6, 1048-1054. 

Copyright 2005 American Chemical Society. . 



2.1 INTRODUCTION 

Acid hydrolysis of cellulose fibres yields highly crystalline rodlike particles through 

selective degradation of the more accessible material. The cellulose nanocrystals that 

result from this degradation are of colloidal dimensions, and when stabilized they form 

aqueous suspensions, the properties and applications of which are reviewed in a recent 

article. 1 

Rânbyand Ribi were the first to produce stable suspensions of colloidal-sized cellulose 

crystals by sulfuric acid hydrolysis ofwood and cotton cellulose.2,3 The nanocrystals were 

found to be approximately 50-60 nm long by 5-10 nm wide, which agreed with previous 

X-ray diffraction experiments as weIl as electron microscopy investigations of cellulose 

fibres.3 The first electron microscopy images of the cellulose nanocrystals themselves 

were obtained in 1953.4 Marchessault and co-workers in 1959 and Hermans in 1963 

demonstrated that such cellulose nanocrystal suspensions displayed liquid crystalline 

order.5,6 However, it was not until several decades later that Revol and co-workers 

showed that the aqueous cellulose nanocrystal suspensions in fact formed a stable chiral 

nematic liquid crystalline phase.7 

Using acid hydrolysis, native cellulose suspensions have been prepared from a variety 

of sources, including bacterial cellulose,8,9 microcrystalline cellulose,IO sugar beet 

primary cell wall cellulose, Il cotton,12 tunicate cellulose,l3 and softwood pulp (mostly 

black spruce).7,14 The hydrolysis conditions are known to affect the properties of the 

resulting nanocrystals. For example, a longer reaction time leads to shorter 

nanocrystals. 12 Different acids also affect the suspension properties: hydrochloric acid 

hydrolysis yields cellulose rods with minimal surface charge,IO while the use of sulfuric 

acid pro vides highly stable aqueous suspensions, due to the esterification of surface 
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r--.... hydroxyl groups to give charged sulfate groups.2 Above a critical concentration, the 

rodlike shape of the charged cellulose nanocrystals leads to the formation of anisotropie 

liquid crystalline phases, which have been extensively studied.5,7,12,14-17 

N anocrystal size, dimensions, and shape are also determined to a certain extent by the 

nature of the cellulose source. The degree of crystallinity of the cellulose within the 

organism as well as the dimensions of the microfibrils vary widely from species to 

species. 18,19 Thus, algal and tunicate cellulose microfibrils, which are highly 

crystalline,20-23 yield nanocrystals up to several micrometers in length. In contrast, wood 

microfibrils, which have lower crystallinity (50-83 %)24-26 yield much shorter 

nanocrystals.26 Table 2.1 lists the nanocrystal dimensions for various cellulose sources; 

cross sectional dimensions are similar to those of the microfibril. Microfibril dimensions 

are similar for tunicate,13,22 bacterial,27,28 and algal cellulose,29,30 while cotton and wood 

microfibrils are smaller.14,26 

Table 2.1. Dimensions of cellulose nanocrystals from various sources. 

Cellulose type Length Cross-section 

Tunicate a 100 nm - several Jlm 10-20 nm 

Bacterial b 100 nm - several Jlm 5-10 nm by 30-50 nm 

Aigai (Valonia) C > 1000 nm lOto 20 nm 

Cotton d 200 - 350 nm 5nm 

Wood e 100 - 300 nm 3-5 nm diameter 

a References 13 and 22. b References 27 and 28. C References 29 and 30. d Reference 26. 
e References 14,26; this work. 
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There are of course important differences between the cell wall structures ofhardwoods 

and softwoods; native softwood tracheids tend to be longer (3--4 mm) than hardwood 

tracheids (0.5-1.5 mm), as weIl as somewhat wider (~35 J..lm vs. ~20 J..lm, respectively).26 

Data on the difference between the dimensions of softwood and hardwood microfibrils is 

less accessible. It is generally accepted that in wood the cellulose molecules initially 

form long crysta1line elements with cross-section dimensions around 2-5 nm (sometimes 

called elementary fibrils or protofibrils) that aggregate into larger microfibrils with lateral 

dimensions in the tens of nanometers. Determining the exact dimensions of cellulose 

microfibrils is complicated by the specifie limitations of the different analytical methods 

used. For ex ample, in this study, we observed microfibril widths on the surface of pulp 

fibres of ~ 70 nm, which corresponds with previous atomic force microscopy (AFM) 

results from Hanley and Gray,3l and also with electron microscopy results.32 However, a 

much smaller cross-sectional dimension of about 3-5 nm has been observed for wood 

microfibrils by electron diffraction33 and AFM measurements.l4,26,3l,34 In the case of 

AFM, tip/sample broadening represents the main limitation, resulting in an 

overestimation of microfibril dimensions. 

In the present study we compare the properties of cellulose nanocrystals obtained by 

hydrolysis of a softwood (black spruce) pulp to those of nanocrystals produced from a 

hardwood (eucalyptus) pulp. To our knowledge, the properties and behaviour of 

hardwood cellulose nanocrystal suspensions have not previously been examined in detail. 

We also examine the effects of reaction time and acid-to-pulp ratio for suspensions of 

black spruce nanocrystals. Nanocrystal dimensions and surface charge are measured, and 

the phase separation behaviour and liquid crystalline properties investigated. 
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2.2 EXPERIMENTAL METROnS 

2.2.1 Materials 

Bleached softwood (black spruce, Picea mariana) sulfite pulp (Temalfa 93) was 

provided by Tembec Inc., Temiscaming, Québec. Bleached hardwood (eucalyptus, 

Eucalyptus spp.) ECF pulp was provided by Cenibra S.A., Brazil. Sulfuric acid (95-98 %) 

for hydrolysis was purchased from Fisher Scientific. Sodium hydroxide, sodium chloride 

and sulfuric acid volumetrie standards for titration were purchased from Aldrich. AlI 

water used was purified (Millipore Milli-Q purification system). 

2.2.2 Sulfuric acid hydrolysis of wood pulp 

Suspensions of cellulose nanocrystals were prepared as follows. Wood pulp was ground 

in a Wiley mill (Thomas-Wiley Laboratory Mill Model 4, Thomas Scientific, V.S.A.) to 

pass through a 20-mesh screen. Hydrolysis was performed at 45 oC, using 64 wt% 

sulfuric acid at various acid-to-pulp ratios for varying times (see Table 2.2 for details). 

Immediately following hydrolysis, suspensions were diluted tenfold to stop the reaction. 

The suspensions were then centrifuged, washed once with water, and re-centrifuged. The 

resulting precipitate was placed in Spectrum Spectra/por® regenerated cellulose dialysis 

membranes having a molecular weight cut-offof 12000-14000 Da and dialyzed against 

water for several days until the water pH remained constant. To achieve colloidal 

cellulose partic1es, suspensions were sonicated for 7 minutes at 60 % output control 

(Vibracell sonicator, Sonies & Materials Inc., Danbury, CT, U.S.A.), while cooling in an 

ice bath to avoid overheating. Finally, suspensions were allowed to stand over a mixed 

bed resin (Sigma-Aldrich) for 24 to 48 hours and then filtered through hardened ashless 

filter paper (Whatman, 541). The final aqueous suspensions were approximately 1 % 
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concentration by weight; concentration was increased by evaporation at ambient 

conditions. 

Table 2.2. Experimental conditions: reaction time and acid-to-pulp ratios. 

Sample Pulp source Reaction time 
Acid-to-

pulp ratio 

E Eucalyptus 25 min 8.75 mLig 

SI Black spruce 25 min 8.75 mLig 

S2 Black spruce 45 min 8.75 mLig 

S3 Black spruce 45 min 17.5 mLig 

2.2.3 Gravimetric analysis 

The concentration of cellulose in the samples was determined by weighing aliquots of 

the samples before and after the evaporation of water (typically, by heating for 10 to 15 

minutes in an oyen at 105 OC). 

2.2.4 Atomic force microscopy (AFM) 

The size distribution of the cellulose nanocrystals was determined by AFM. Original 

cellulose suspensions were diluted to about 10-3 to 10-4 % concentration by weight, and 

filtered though a 0.45-Jlm membrane (Schleicher & Schuell, NH, U.S.A.). A 20-JlL drop 

of 0.1 % w/v solution ofpoly-L-Iysine (Ted Pella, Inc.) was placed on a -1 cm2 piece of 

freshly c1eaved mica for 3 minutes and then washed off with water and the mica dried. A 

10-JlL drop of suspension was allowed to stand on the mica for 1 minute and then rinsed 

off with water and dried. The mica was attached to an AFM specimen disc and analyzed. 

Images were obtained using a NanoScope IlIa Atomic Force Microscope (Digital 
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Instruments), using an NP tip (Digital Instruments) having a nominal spring constant of 

0.12 N/m. Tips have a nominal radius in the range of 20 to 60 nm (given by the 

manufacturer). Samples were scanned in contact mode under ambient conditions at 2 Hz 

with scan sizes ranging from 5 to 10 j.lm using the J piezoelectric scanner (Digital 

Instruments). Partic1e diameters were determined using the section analysis tool provided 

with the AFM software (Digital Instruments, Version 4.32r1). Since the nanocrystals are 

assumed to be cylindrical in shape, the height of the nanocrystals was taken to be 

equivalent to the diameter, to compensate for image widening due to the convolution of 

the tip and the partic1e. Length measurements were obtained from printouts of several 

height mode AFM images for each sample. The uncertainty in the AFM length 

measurements is about 4-7 nm, and the uncertainty in the diameter measurements is 

about 0.2-0.5 nm. Samples of black spruce and eucalyptus pulp fibres were prepared for 

AFM as follows: pulp sheets were uniformly dispersed in distilled water (~0.3 % w/v) by 

prolonged vigorous stirring. The slurry was then filtered through a 200-mesh screen. The 

mini-handsheet was then removed and pressed between blotting paper and Teflon disks, 

to yield a flat surface. When the sheet was almost dry, it was pressed with a warm steel 

disk between Teflon disks. Sections of the mini-handsheets were glued to metal pucks for 

examination on the AFM. 

2.2.5 Phase separation behaviour 

Samples of increasing cellulose concentration were prepared from a concentrated 

"stock" suspension by dilution with water. Suspensions were allowed to stand for 48 

hours to equilibrate complete1y. The volume fraction of the anisotropie phase was 

determined by measuring the height of the lower phase in each cylindrical vial. 
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2.2.6 Conductometric titrations 

The sodium hydroxide (0.002 N) used in the conductometric titrations was standardized 

against carefully diluted volumetric standard sulfuric acid. A Contiburette® f.l1O 

automatic burette (Ing. CAT, Staufen, Germany) was used for aIl titrations. Titrations 

were performed with mechanical stirring and under a flow of nitrogen, using an Orion 

conductivity cell 018010 (cell constant K = 0.987 cm-1
) attached to a Fisher Scientific 

accumet® pH meter 50. Sulfur content and surface charge density calcu1ations were made 

using the dimensions determined by AFM, assuming a cylindrica1 shape and a density of 

1.6 glcm3 for the cellulose nanocrystals. 

2.2.7 Pitch measurement 

The chiral nematic pitch of the liquid crystalline phase was determined for each sample 

at a variety of total cellulose concentrations. An aliquot of each suspension was placed in 

a rectangular cross-section glass capillary tube having an optical path length of 004 mm 

(VitroCom Inc., NJ, U.S.A.). Photomicrographs were taken using a polarized light 

microscope (Nikon Microphot-FXA) and the chiral nematic pitch was measured directly 

from the spacing of the fingerprint texture in the images, where the distance between the 

lines is equivalent to one half the full pitch. 
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2.3 RESULTS AND DISCUSSION 

The effects of varying cellulose source, reaction time, and acid-to-pulp ratio were 

investigated for suspensions of wood cellulose nanocrystals. 

2.3.1 Eucalyptus vs. black spruce cellulose suspensions 

Figure 2.1 shows AFM deflection images of eucalyptus and black spruce pulp fibre 

surfaces before acid hydrolysis. For both starting materials, the cellulose microfibrils are 

clearly visible. The microfibril width is on the order of 70 nm and appears to be slightly 

(:5 10 %) larger for black spruce than for eucalyptus. These dimensions may be influenced 

by AFM tip broadening artifacts, but are in accord with the dimensions of aggregates of 

elementary fibrils. 26 

Figure 2.1. Deflection mode AFM images taken in air showing microfibrils on the 

surface of a) eucalyptus pulp fibre, and b) black spruce pulp fibre. Scale bar = 0.5 /lm. 
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Images taken of the nanocrystals, produced from the two pulps by sulfuric acid 

hydrolysis, are shown in Figure 2.2, parts a and b. The images were used to determine the 

distribution of nanocrystal dimensions. Tip artifacts remain a problem in quantifying the 

widths of the rods, and the different apparent widths of the nanocrystals in Figure 2.2 may 

be due to the fact that different tips were used to image the black spruce and the 

eucalyptus sampi es. To eliminate the effect of tip radius on width measurements, we 

measured the heights of the nanocrystals, which are not subject to peak broadening 

artifacts, and assumed the nanocrystals to he cylindrical in shape (see Table 2.3 helow). 

The cross-sectional dimensions of the nanocrystals clustered around 5 nm for both wood 

species. This is clearly smaller than the apparent size of the microfibril aggregates 

observed on the pulp fibre surfaces, but close to the dimensions of microfibrillar material 

observed in fines generated by beating spruce kraft fibres.31 

The distribution of particle lengths in suspensions E and SI was obtained from image 

analysis and is shown in Figure 2.3, parts a and b. The samples show a similar mean 

particle length, and length polydispersity. The number average particle length was 147 ± 

7 nm for the eucalyptus cellulose, and 141 ± 6 nm for the black spruce. 

As shown in Table 2.3, the two suspensions are essentially identical in terms of 

nanocrystal dimensions and surface charge, which suggests that these properties are 

controlled by reaction conditions such as time, temperature, and acid-to-pulp ratio, all of 

which were identical for the two samples. Differences in microfibril structure and size do 

not appear to affect the suspension properties, implying that the basic unit of wood 

cellulose organization is the same for the two species. 
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Figure 2.2. Height mode AFM images of cellulose nanocrystals from a) eucalyptus pulp 

(E), b) black spruce pulp (SI), c) black spruce pulp (S2), and d) black spruce pulp (S3). 

Scale bar = 1 ~m. The herringbone pattern seen in the background is an artifact. 
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Figure 2.3. Distribution of partic1e length of cellulose nanocrystals from suspensions a) 

E, b) SI, c) S2, and d) S3. 

Table 2.3. Effect ofhydrolysis conditions on suspension properties. 

E SI S2 S3 

Nanocrystallength, L 147±7nm 141 ±6nm 120±5nm 105±4nm 

Standard deviation in L 65nm 60nm 45nm 36nm 

Nanocrystal diameter, D 

Axial ratio, L/D 

4.8 ±0.4nm 5.0± 0.3 nm 4.9±0.3 nm 4.5 ± 0.3 nm 

30.6 28.2 24.5 23.3 

Sulfur content 0.80 ± 0.03 0.89 ± 0.06 1.06 ± 0.02 (0.86 ± 0.02 
S% S% S% S~a 

S Co h d' 0.29 ± 0.01 urlace c arge enslty, (j e/nm2 

Critical concentration, c* 4.6 wt% 

Chiral nematic pitch, pb 21 J.lm 

0.33 ± 0.02 
e/nm2 

4.8 wt% 

18 J.lm 

0.38 ± 0.01 
e/nm2 

5.3 wt% 

10 J.lm 

a 

6.9wt% 

a See text for explanation. Measured at a total cellulose concentration of7 wt%. 
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The eucalyptus and black spruce suspensions do not differ noticeably in the value of the 

critical cellulose concentration, c*, required for the fonnation of an anisotropie liquid 

crystalline phase. Figure 2.4, parts a and b, shows the phase separation diagrams of the 

two suspensions. The biphasic range is also essentially the same for the two pulps. Phase 

separation ofrod-like partic1es is govemed by the axial ratio and the surface charge of the 

rods, with a decrease in either variable tending to increase the critical concentration for 

anisotropie phase fonnation. 15,35 These properties are also nearly identical for the two 

suspensions; there are no differences that can be attributed to the wood species. 

1.0 1.0 

10.9 alE ii 0.9 • • b)S1 
-ao.s -a 0.8 • .. • u 

10.7 lo.7 
"50.6 • "50.6 .. .. 
] 0.5 • ]0.5 • 
~ DA ~OA 

j 0.3 
ti 

~' • ~ 0.3 • ~ 0.2 Ê 0.2 
i 0.1 • i 0.1 
:> 0.0 :> 0.0 

0 1 2 3 4 5 6 7 8 9 10 11 
Total celluloie concentration (WrY4 

12 13 14 15 0 1 2 3 4 6 6 1 8 9 10 11 12 13 14 15 
Total cellulo.e concentrallon (wt'llj 

1.0 1.0 

50.9 • j 0.9 d)S3 
.1: c)S2 • 11.0.6 • "'0.8 u u 

10.7 • 1°·7 • e 0.6 • 
p.6 

]0.5 li 0.5 • 
iOA li DA 

"li 0.3 ~ 0.3 • .:: 
• 0.2 ~ 0.2 • ! $! 0.1 • "0 0.1 

• 0.0 
:> 0.0 

° 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 
Total cellulose concentration (wt'llj Total cellulo.e concentration (Wt'IIj 

Figure 2.4. Phase separation diagrams for suspensions a) E, b) SI, c) S2, and d) S3. The 

region in which the volume fraction of the anisotropie phase, ~aniso, lies between 0 and 1 

is the biphasic region. To the left of the biphasic region, ~so = 0, and the suspensions are 

completely isotropie. To the right of the biphasic region, ~so = l, and the suspensions 

are completely anisotropie. 
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2.3.2 Effect of reaction time on softwood suspension properties 

Reaction time is one of the most important parameters to consider in the acid hydrolysis 

of wood pulp. Too long a reaction will digest the cellulose completely to yield its 

component sugar molecules; too short a reaction will yield only large undispersable fibres 

and aggregates. There exists a fairly narrow range of reaction time which yields the 

desired suspension of well-dispersed colloidal nanocrystals. Within this range, the 

reaction time must be optimized to obtain the largest yield possible. 

Black spruce pulp was subjected to 25- or 45-minute hydrolysis using an acid-to-pulp 

ratio of 8.75 mLig (SI and S2, respectively). Figure 2.2, parts b and c, shows AFM 

images of the nanocrystals. The distribution of partic1e lengths in S2 is shown in Figure 

2.3c. Suspension S2 shows a smaller mean partic1e length (120 ± 5 nm) than SI (141 ± 6 

nm), as well as a narrower, less polydisperse length distribution, attributable to the longer 

hydrolysis time. 

Table 2.3 shows that at the longer reaction time, suspension S2 has a higher sulfur 

content. The production of shorter, less polydisperse rods with higher sulfur content at 

longer reaction times is consistent with previous literature results. 12,36 As expected from 

the larger sulfur content, the surface charge density a of the nanocrystals, calculated using 

the sul fur content and the nanocrystal dimensions, appears to increase with increasing 

reaction time for this acid-to-pulp ratio. Suspension SI has a surface charge density of 

0.33 ± 0.02 e/nm2
, which is smaller than the value of 0.38 ± 0.01 e/nm2 obtained for S2. 

Figure 2.4, parts b and c, shows the phase separation diagrams for suspensions SI and 

S2. Increasing the reaction time from 25 to 45 minutes causes an increase in the critical 

concentration for the formation of anisotropic phase, from 4.8 wt% to 5.3 wt%. 
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According to Onsager' s phase separation theory for uncharged rods, c * decreases with 

increasing axial ratio (L/D).15 However, due to the charged surface sulfate esters, the rod­

like cellulose nanocrystals are polye1ectrolytic in nature. The e1ectrostatic interactions 

between the rods result in an increase in effective diameter and a twisting factor that 

govems partic1e orientation,37,38 Thus, the interpartic1e forces are not only govemed by 

the axial ratio, but also by the ionic strength38 and the nature of the counterions.39 Phase 

separation behaviour and therefore critical concentration is very sensitive to variation in 

partic1e geometry and electrostatic interactions,38 For example, Dong et al. found that 

longer hydrolysis times result in a rapid decrease in the critical concentration; more 

extensive hydrolysis generates cellulose rods with larger axial ratios (due to the breaking 

up of coarse aggregates of cellulose), as well as increased total surface charge,12 In 

addition, theory predicts that the polydispersity plays a role in determining the critical 

concentration: The narrower length distribution of suspensions resulting from longer 

hydrolysis times increases the critical concentration.40 The effect of reaction time on the 

critical concentrations of suspensions SI and S2 can therefore be summarized as follows. 

(1) Suspension S2 has a narrower length distribution and smaller average partic1e length 

and a slightly smaller axial ratio than SI. These factors would increase the value of c * for 

S2, as observed. 

(2) However, suspension S2 has a higher total surface charge (measured as sulfur 

content), as well as surface charge density, which would decrease the value of c* for S2. 

Based on our observations of SI and S2, rod dimensions and geometry appear to 

influence critical concentration to a greater extent than surface charge in this case . 
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2.3.3 Effeet of acid-to-pulp ratio on softwood suspension properties 

Black spruce pulp was subjected to 45-min hydrolysis using acid-to-pulp ratios of 8.75 

mLig and 17.5 mLig (suspensions S2 and S3, respectively). AFM images of the 

nanocrystals are shown in Figure 2.2, parts c and d. 

The distribution of partic1e lengths in suspension S3 is shown in Figure 2.3d. 

Suspensions S2 and S3 show comparable mean partic1e lengths, the higher acid-to-pulp 

ratio affording a smaller mean length (120 ± 5 nm for S2 and 105 ± 4 nm for S3) as well 

as smaller polydispersity (Table 2.3). 

The effect of acid-to-pulp ratio on suspension properties has not been thoroughly 

investigated in the literature; it has been found in this lab that larger volumes of the 64 

wt% acid used tend to hydrolyze a given amount of pulp faster, and thus yield shorter 

rods for a given reaction time. This is somewhat unexpected, as in all cases, the acid is in 

excess relative to the pulp. The effect is not large, as shown in Table 2.3: doubling the 

acid-to-pulp ratio resulted in a decrease in rod length of about 12.5 % for a reaction time 

of 45 min. A recent study found the sulfur content of bacterial cellulose to increase with 

acid-to-cellulose ratio and hydrolysis time.9 Acid-to-pulp ratio was not seen to have a 

well-detined effect on sulfur content of the wood cellulose suspensions (see below); 

suspension S3 has a lower sul fur content than S2 (0.86 vs. 1.06 S %). However, it should 

be noted that the sulfur content listed for S3 in Table 2.3 was obtained using a different 

batch of suspension produced under the same reaction conditions as the suspension which 

was used for all other measurements. 

The phase separation diagrams for suspensions S2 and S3 are shown in Figure 2.4, 

parts c and d. Doubling the acid-to-pulp ratio leads to an increase in the critical 
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concentration (from 5.3 to 6.9 wt%). The smaller mean rod length and the lower total 

surface charge of the rods would also tend to increase the critical concentration of83. 

When comparing suspensions 83 and 8 1, it can be seen that the combination of longer 

reaction time and higher acid-to-pulp ratio yields a suspension having a smaller mean rod 

length and narrower length distribution (i.e., smaller polydispersity), as expected. Because 

the critical concentration of 83 is significantly larger than that of 8 1, it follows that the 

decreases in length polydispersity affect the critical concentration to a greater extent than 

do decreases in average rod length under the conditions used. 

2.3.4 Chiral nematie piteh 

Figure 2.5 shows the fingerprint texture of the chiral nematic phase of a eucalyptus 

suspension. The chiral nematic pitch measured from the fingerprint texture in 

photomicrographs of the suspensions decreased with increasing cellulose concentration. 

For example, when 81 concentration was increased from 7 wt% to 13 wt%, pitch 

decreased from - 20 !lm to - 10 !lm. This decrease in pitch with increasing concentration 

of chiral rods has been observed in several chiral rod systems. There are however few 

reports of the effect of rod length or charge on the liquid crystal chiral nematic pitch P. 

We measured the chiral nematic pitch at a total cellulose concentration of 7 wt% for aIl 

suspensions, which have varying average nanocrystal lengths. The pitch was found to 

increase with increasing rod length (Figure 2.6), in accord with an observation of Grelet 

and Fraden on mutant virus fd suspensions.41 Thus, the longer rods show less tendency to 

form the twisted chiral nematic structure, presumably because at the same volume 

fraction of rods in the suspension, longer rods show a greater tendency to align in a 

parallel (untwisted) arrangement. The suspensions show a similar tendency to align and 

increase the pitch when the ionic strength is decreased.38 The pitch found for suspensions 
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E and SI was close to that found for the sodium form of cotton cellulose nanocrystals by 

Dong and Gray at similar total cellulose concentrations.39 

Figure 2.5. Fingerprint texture in chiral nematic phase of 10 wt% eucalyptus suspension, 

viewed in polarizing microscope. Scale bar = 200 /-lm. Chiral nematic pitch P = 17 /-lm. 

25r-----------------------------------~ 
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100 110 120 130 140 150 
Average nanocrystallength (nml 

Figure 2.6. The effect of average cellulose nanocrystallength on the chiral nematic pitch 

P measured at 7 wt% cellulose suspension concentration. 
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2.4 CONCLUSIONS 

The properties of colloidal eucalyptus cellulose suspensions produced by sulfuric acid 

hydrolysis are essentially identical to those of similarly prepared black spruce cellulose 

suspensions. For black spruce pulp, longer hydrolysis times lead to shorter cellulose rods 

with narrower partic1e length distribution; the effect on sul fur content and surface charge 

is less c1ear. Higher acid-to-pulp ratio decreases nanocrystal dimensions to sorne extent at 

the reaction time of 45 minutes. At the shorter reaction time of 25 minutes, the effect of 

acid-to-pulp ratio on critical concentration and rod dimensions may be more apparent. An 

effect of the reaction conditions on cellulose nanocrystal surface charge and sulfur 

content was not apparent. The surface charge of nanocrystals is highly sensitive to heat, 

as an increase in temperature can cause de-esterification of the sulfate groups on the 

surface of the crystals. Although we cooled the suspensions in an ice bath during 

sonication, an increase in temperature, in particular local temperature, cannot be 

completely ruled out. Surface charge and sul fur content of the cellulose may therefore be 

controlled by factors other than hydrolysis conditions. Chiral nematic pitch decreases 

with increasing cellulose concentration and decreasing nanocrystallength. 
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Introduction to the Characterization of Blue Dextran 



Determining the properties of a cellulose nanocrystal suspension is essential to 

understanding its behaviour when mixed with a macromolecule. However, knowledge of 

the properties of the macromolecule itse1f can be equally important in interpreting its 

effect on the resulting phase separation phenomena. Blue dextran is at the core of the 

phase separation studies performed in this thesis. Because the dye ligands in blue dextran 

c1early contribute to the observed phase behaviour when it is mixed with cellulose 

nanocrystal suspensions, it was thought necessary to characterize these macromolecules 

in greater detail. In the following chapter, the physico-chemical properties of a range of 

blue dextrans are investigated. A brief introduction to some of the characterization 

methods is presented here. 

Dextrans are hygroscopic and can absorb up to 10-20 % moisture at 50 % relative 

humidity. l Thermogravimetric analysis (TGA) was therefore used to quantify the dextran 

and blue dextrans' moi sture content in order to obtain accurate concentrations of dextran 

solutions, important in the measurement ofviscosity and dnldc (see below). 

The viscosity of dilute solutions of polymers can be used to measure their 

hydrodynamic dimensions and molecular weights via the intermolecular interactions in 

the solvent: the intrinsic viscosity of random coil polymers is re1ated to the volume 

occupied by a single molecule in the solution (i.e., the radius of gyration)? Blue dextrans' 

polye1ectrolytic nature greatly modifies their viscosity behaviour as compared to 

unmodified dextrans. The lack of data in the literature made viscosity experiments 

essential, as, for example, information regarding the dilution regime is provided by the 

critical concentration C*. 

1 Fakes, M.G.; Dali, M.V.; Haby, T.A., Morris, K.R.; Varia, S.A.; Serajuddin, A.T. PDA J. Pharm. Sei. 
Technol. 2000,54, 144-149. 
2 Hiemenz, P.C. Polymer Chemistry: The Basic Concepts; Marcel Dekker, Inc.: New York, 1984, p 583. 
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Gel permeation chromatography (GPC) was performed to determine the purity of blue 

dextrans synthesized in this labo A high ionic strength solvent (0.8 M aqueous NaN03) 

was used to screen the charges of the blue dextran and prevented the dextran-dye 

derivatives from interacting with and sticking to the column, which contain macroporous 

copolymer beads with an extremely hydrophilic "neutral" polyhydroxyl functionality.3 

Light scattering detection coupled to the GPC was used to obtain both number- and 

weight-average molecular weights, as well as radii of gyration. A differential refractive 

index detector was used to obtain values of the specific refractive index increment dn/de 

(the change in solution refractive index versus the change in concentration of the blue 

dextran). Calculating the "instantaneous" concentrations and molecular weights by light 

scattering is only possible knowing dn/de, which may be obtained by one of two means. 

First, normalizing the concentration chromatogram based on the accurately-known mass 

of polymer injected allows the concentration e eluted from the GPC to be calculated. The 

term dn/de is then found based on e and the calibration of the infrared (IR) detector in 

volts per !l.n. Altematively, the dn/de term may be found in published tables or from 

previous characterizations of similar polymers. Calibration of the IR detector can then be 

performed using polymer standards having precisely-known dn/de values. The second 

option was not available to us, as the blue dextrans had not been previously characterized. 

The value of dn/de depends on the wavelength at which it is measured, particularly at 

shorter wavelengths. In theory, the dn/de found at 633 nm by multi-angle light scattering 

will differ from that measured by IR refractometry at 900 nm; however, the discrepancies 

are small in this wavelength range. 

3 Polymer Laboratories Aqueous GPC / SEC columns, URL http://www.polymerlabs.comlgpc/aqueous.htm 
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Chapter 3 

Synthesis and Characterization of Blue Dextrans. 

A Comparative Study of the Physico-chemical Properties for 

Various Molecular Weights and Dye Loadings 



3.1 INTRODUCTION 

Dextran, a polymer of a-D-(1,6)-linked anhydroglucose containing ~ 5 % a-(1,3) 

branching, produced by strains of Leuconostoc mesenteroides bacteria, has been used in 

clinical applications such as plasma extenders and centrifugation. I -5 Blue dextran, a 

soluble dextran complex consisting of the triazinyl dye Cibacron blue F3GA covalently 

bound to high molecular weight (2000 kDa) dextran,6 was developed for use as a visible 

marker for void volume in gel filtration chromatography columns.7,8 Further, certain 

proteins were found to elute in the void volume of the gel filtration column when they 

were co-chromatographed with blue dextran, allowing them to be separated from other 

proteins of similar molecular weight. It was established in 1968 that the dye ligand was 

responsible for binding to these proteins.9-11 This phenomenon has been widely exploited 

in protein purification by affinity chromatography,ll-13 the low cost, high affinity and 

high protein-binding capacity of various triazine dyes making them attractive and useful 

as substitutes for more specific coenzymes.7,13 Initially, blue dextran was bound to 

various supports; later the dye alone was conjugated directly to matrices such as agarose 

and cross-linked dextran gels to improve the column capacity and reduce leakage of the 

dye into the eluate. 14,15 Triazine dyes are also used to immobilize or link other affinity 

ligands to matrices for affinity gel filtration.7 The need for a means of selecting the dye 

having optimal affinity for a particular protein was recognized in 1990,16 and within two 

years, rational design allowed ligands to be "designed specifically to interact with the 

protein to be purified."17 More recently, blue dextran and other dextran derivatives such 

as FITC-dextran have been used as easily-visualized macromolecules in studies of 

demixing (phase separation) and partitioning phenomena for systems of rodlike colloidal 

particles. 18-20 
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Blue dextran preparation methods are adapted from those used to couple dyes to 

support matrices such as cross-linked dextran and agarose.13,21,22 The dye-dextran 

coupling occurs as a nuc1eophilic substitution reaction between the chlorine moiety of the 

triazine dye and the hydroxyl groups of the dextran substrate.23 Dextran is dissolved in 

water, and a base (typically Na2C03, NaOH,13 or Na3P049,22) and the dye are added. The 

mixture is then heated (25-90 OC) for a period of hours to days.13 Precipitation of the 

dextran with ethanol followed by redissolution in water is repeated several times; other 

purification steps, such as dialysis or treatment with diethylaminoethyl cellulose as an 

anion exchanger, may also be used to remove unbound dye.22 The addition of sodium 

chloride to the dye/dextran mixture prior to the addition of base, essential for optimal 

coupling of the dye to a cross-linked matrix, is not necessary for the free dextran 

polymer.13 Reaction conditions significantly affect the degree of dye substitution which 

may be obtained with both cross-linked dextran gels and dextran itself.7,13,22,24,25 Mayes 

et al. found that increasing the reaction time led to higher dye ligand density on the 

dextran.24 Reaction completion times decrease with increasing temperature; for 

monochlorotriazinyl dyes such as Cibacron blue, coupling takes 3 to 5 days at room 

temperature, as compared to 2 hours at 60 °CP Optimum base concentrations also vary 

from 0.10 M Na2C03 to 0.05-0.20 M NaOH for monochlorotriazinyl dyes. 13,26,27 Blue 

dextran is produced commercially, but the effect of altering the reaction conditions on the 

properties of the dextran-dye conjugate has not been assessed. 

The physico-chemical properties of dextrans have been thoroughly studied. The 

molecular weight distribution of native and fractionated dextrans,28,29 as well as the 

radius of gyration30,31 have been obtained by light scattering and other methods such as 
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size exclusion chromatography.32,33 Branching and dextran structure have been studied 

by several methods,34-37 yielding conflicting data which suggest branches shorter than 3 

glucose units38,39 or as long as 50 units.28,40 Viscosity behaviour of dextrans in various 

solvents has been explored for a variety of molecular weight fractions.28,29,32,41 Dextran 

derivatives such as dextran sulfates have also been characterized.42 

Perhaps not surprisingly given their principal use as bound ligands for affinity 

chromatography, blue dextrans have been characterized mainly with regard to degree of 

dye substitution.24 The dextran concentration in a solution can be determined by 

polarimetry or dry weight measurements combined with spectroscopy, while the dye 

concentration is determined by UV-visible spectrometry.22,24 Care must be taken to avoid 

conditions leading to dye-stacking in solution, which causes a concentration-dependent 

red-shift for Cibacron blue.7 The optical properties of blue dextran have also been 

exploited in order to test an optical detection system for molecular weight measurement 

of dye-Iabe1ed polysaccharides by analytical ultracentrifugation, during which study the 

molecular weight of blue dextran 2000 was verified.43 However, no in-depth studies of 

the physico-chemical properties of blue dextran 2000 have been performed, as noted by 

Ohta et a1.44 While dextran properties such as branching and polydispersity remain 

unchanged upon binding the dye ligands to the dextran chain, it is reasonable to assume 

that the nature of the attached dye can significantly affect the physico-chemical properties 

of the polymer. The bound aromatic sulfonate dye introduces both hydrophobic and ionic 

e1ements into the dextran macromolecule, which will alter its properties and behaviour in 

solution as compared to unmodified dextrans. This chapter examines the effect of 

Cibacron blue dye ligands on the physico-chemical properties ofblue dextrans of nominal 

molecular weights ranging from 70 to 2000 kDa. It presents a first step towards the 
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optimization of the tailored synthesis of blue dextrans of different molecular weights and 

provides an initial look at their physico-chemical properties in solution. An understanding 

of the effect of dye ligands on the properties of blue dextrans may ultimately provide 

insight into their interactions (e1ectrostatic, hydrophobic and steric) with other 

polye1ectrolytes such as cellulose nanocrystals with surface sulfate groups. It is hoped that 

this data will be useful in elucidating the effect of charged and uncharged dextrans on the 

phase behaviour of aqueous cellulose nanocrystal suspensions. 18,20 

3.2 METRODS AND MATERIALS 

3.2.1 Chemicals 

Dextrans T-70, T-llO, T-500, T-2000 (nominalMw = 70 000, 106 000, 532 000 and 

2 000 000, respectively, manufacturer's data) were purchased from Pharmacia Fine 

Chemicals (Sweden). Blue dextran 2000 ( Mw ::::; 2 000 000 with 0.1 mmol Reactive blue 

2 dye per gram of dextran bonded randomly via an ether linkage to the polymer 

backbone6) was purchased from Aldrich. Cibacron blue 3G-A (CB, 55 % dye content) 

was purchased from Aldrich and used without further purification; see Figure 3.1 for the 

structure. Sodium chloride (ACS reagent grade) was purchased from Fisher Scientific. 

Sodium carbonate (ACS reagent grade) was purchased from Anachemia. AlI reactions 

were performed using water purified with a Millipore Milli-Q purification system. 

3.2.2 Preparation of blue dextrans 

Blue dextrans ofvarious molecular weights and degree of dye substitution (Table 3.1) 

were prepared using methods adapted from Mayes et aI.24 and Tang et a1.45 (Figure 3.1). 

A typical preparation is as follows: A solution of 4 g of dextran T-2000 in 120 mL of 
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water was mixed with solutions of 0.8 g of Cibacron blue 3G-A (55 % dye content) in 40 

mL ofwater and 0.2 g of Na2C03 in 40 mL ofwater. The mixture was shaken in a water 

bath at 45 oC. After around 75 h, the free reactive dye is consumed24 and another 0.8 g of 

CB was added. To precipitate the dextran-dye conjugate, an equal volume of ethanol was 

added to the mixture, which was allowed to stand at -20 oC for at least 60 min. The 

precipitate was then spun down and rinsed with ethanol. Following resuspension in 40 

mL of water, the dextran was dialyzed (Spectrum Spectra/Por membrane, molecular 

weight cutoff 12 000-14 000) against distilled water to remove any traces of unreacted 

dye and salt. Cleavage of the chromophore from the dextran chain has not been found to 

occur in aqueous solution;46,47 this was confirmed by gel filtration using Bio-Gel P-30 

size exclusion polyacrylamide gel (nominal exclusion limit 40 kDa, Bio-Rad 

Laboratories), which indicated the absence ofunreacted or free dye. Solutions of the blue 

dextrans were filtered through glass mÎcrofiber filters (Ahlstrom, 0.7 /-lm pore sÎze). The 

final product was lyophilized and stored as a solid. Final yields were comparable to 

literature values.24 

3.2.3 Thermogravimetric analysis (TGA) 

Moisture contents of the dextrans and dextran-dye conjugates were determined by 

thermogravimetric analysis (TA Instruments TGA Q500). The dextrans contained 

10.5-11.5 % water by mass, and the blue dextrans contained 9-15 % water by mass. All 

dextran concentrations were calculated taking moisture contents into account. 
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/-- Table 3.1. Preparation conditions and dye ligand densities for blue dextrans. 

Dextran Reaction Dyeillxratio [Na2C031 Dye ligand density Yield 
time (h) (mol:mol) a (M) (DS/AGUb

, 10-4) (%) 

Blue Dx 200016 21.5 300 0.010 16 46 

Blue Dx 200030 48.0 300 0.010 30 60 

Blue Dx 200036 96.5 300 0.010 36 46 

Blue Dx 200056 144.5 300 0.010 56 48 

Blue Dx 2000161 nia C nia C nia C 161 nia C 

Blue Dx 20007 48 150 0.018 7 22 

Blue Dx 20008 48 300 0.018 8 40 

Blue Dx 200015 48 600 0.018 15 19 

Blue Dx 200012 48 300 0.036 12 72 

Blue Dx 200017 48 300 0.072 17 87 
~~. 

/ 

Blue Dx 200019 48 300 0.126 19 84 

Blue Dx 50011 24.0 300 0.008 11 39 

Blue Dx 11023 24.0 300 0.040 23 28 

Blue Dx 7066 144.0 10 0.189 66 47 

a Initial ratio. b Degree of substitution per anhydroglucose repeat unit. C Commercially 
available blue dextran 2000 (Aldrich). 
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1 = R-CI 
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Figure 3.1. Coupling of Cibacron blue 3G-A (1 = R-CI) with dextran (II) to give blue 

dextran (III), showing the random binding sites of the dye.6 

3.2.4 UV-visible spectroscopy 

The dye content of the dextran-dye conjugates was determined from UV-visible 

spectra (Figure 3.2a) measured with a Varian Cary 300 Bio spectrophotometer. A 

calibration curve was obtained from solutions of commercially-available blue dextran 

2000 (Figure 3.2b). Adherence to the Beer-Lambert law was established. The molar 

extinction coefficient for blue dextran 2000 at 609 nm was found to be 8870 M-Icm-l. 

The extinction coefficient at 620 nm was 8970 M-Icm-l 
= 0.823 g-ldm3cm-l, which agrees 

well with the value of 0.812 g-ldm3cm-1 found by Champ et al. for commercially 

available blue dextran 2000.47 The ligand density was estimated from absorbance 
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·r--. measurements at 609 nm for solutions of the dextran-dye conjugates, and calculated in 

terms of the degree of substitution (DS) per anhydroglucose (AGU) repeat unit. 

Absorbance measurements in dilute aqueous solution and in 6 M HCI (aq)24,48 have 

shown that negligible intramolecular dye stacking occurs at dye ligand densities 

comparable to those reported in this chapter. 
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Figure 3.2. a) Absorption spectrum for blue dextran in water (0.266 mg/mL). b) 

Calibration curve of absorbance at 609 nm versus concentration c in mg/mL. 

Blue dextran samples are denoted by their molecular weight followed by a subscript 

number indicating the degree of dye substitution per anhydroglucose repeat unit. 

However, according to convention, commercially available blue dextran 2000 purchased 

from Aldrich will be referred to as "blue dextran 2000" in the text, except where 

necessary for clarity. 

3.2.5 Viscosity measurements 

Viscosity measurements were carried out in a capillary viscometer of Cannon-Fenske 

type at a constant temperature of 25 ± 0.01 oC. Solvent flow times were on the order of 

10 seconds; the kinetic energy correction was performed. Each data point is the average 

of at least three trials. Samples contained from 3xl0-4 to 2xl0-2 g/mL polymer and were 

filtered with a 0.45 Ilm membrane prior to analysis. 
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If the viscosity of the solution 11 is defined as the sum of the solvent viscosity l1s and the 

viscosity due to the dissolved polymer l1p, the specific viscosity of the polymer in the 

solvent is given by equation 3.1 :49 

(3.1) 

The reduced viscosity l1red is calculated dividing the specific viscosity l1sp by the 

concentration c of the polymer in glmL:49 

(3.2) 

The Huggins equation, 

(3.3) 

allows us to calculate the intrinsic viscosity [11], which gIves an indication of the 

hydrodynamic volume of the polymer coils, by plotting l1red against concentration and 

extrapolating to c = o. The slope of the plot yields the empirical Huggins constant kH, 

which is a measure of the intermolecular interactions for a given polymer-solvent 

system.49 

The transition from the dilute regime, where pol ymer coils interact mainly with the 

solvent, to the semi-dilute regime, where the polymer coils interpenetrate and 

intermolecular interactions dominate the solution flow properties, is denoted by the 

critical concentration C*. At this point the solution volume is completely filled with 

pol ymer coils. Assuming the pol ymer coils behave as non-draining coils in solution 

(Einstein's ideal viscosity correlation), the critical concentration can be calculated from 

the intrinsic viscosity:49 
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c. = 2.5 
[1]] 

(3.4) 

Other authors have experimentally determined the constant in the numerator to be 1.2 for 

unmodified dextrans of molar mass 10--500 kDa.41 In this chapter, the ideal viscosity 

value of 2.5 will be used to estimate C* for both blue and unmodified dextrans. Branching 

of the dextrans will hinder draining somewhat, particularly at lower molecular weights. 

Blue dextrans willlikely have more "non-draining" character owing to osmotic effects of 

the charged ligands, sorne ofwhich will be located in the interior ofthe dextran cciI. 

The intrinsic viscosity and the molar mass M of a polymer are related by the Kuhn-

Mark -Houwink -Sakurada relation 

(3.5) 

where K and a are constant for a given polymer/solvent system at a particular temperature 

and must be determined experimentally. The exponent a is an indication of the solvent 

quality.49 

3.2.6 Refractive index increments 

Specifie refractive index increments, dn/dc, were measured at 690 nm by injecting 2-

mL samples ofblue dextrans (0.05-0.60 mg/mL) in 0.8 M NaN03 and 0.01 M NaH2P04 

solution containing 0.2 % NaN3 (pH 7) into a Wyatt Optilab rEX IR deteetor (Figure 3.3). 

3.2.7 Gel permeation chromatography (GPC) 

Blue dextrans (1 mg/mL) were dissolved in the eluent (pH 7, 0.8 M NaN03 and 0.01 M 

NaH2P04 containing 0.2 % NaN3) and filtered using 0.45-~m membranes. Samples 

(100 ~L) were injected onto a OPC column (300x75 mm PL aquagel-OH mixed 8 ~m, 

100--1x107 Da separation, Polymer Laboratories) at a flow rate of 1.0 mL/min using a 

Merck Hitachi AS-2000A autosampler and Waters 510 HPLC pump. The column was 
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coupled to a Wyatt Optilab rEX IR detector and Wyatt Technology Corporation DA WN 

EOS light scattering detector. Data were analyzed with Astra v5.3.0 18 software (Wyatt 

Technology Corporation). 
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Figure 3.3. DifferentiaI refractive index as a function of blue dextran 200056 

concentration at 690 nm. 

3.2.8 Dynamic Iight scattering (DLS) 

Hydrodynamic radii (RH) were detennined by dynamic light scattering. Solutions of 

dextrans and blue dextrans (0.2 to 1.0 g/L) were prepared in 0.200 M NaCl (aq). The 

solutions and solvents were c1arified by filtration through a nylon filter of pore size 0.2 

J..tm (Millipore); samples were filtered directly into the light scattering cells. Light 

scattering measurements were made at 21-22 oC on a Brookhaven Research BI-200SM 

laser light scattering goniometer and BI-2030AT digital correlator, using a polarized 

incident beam of wave1ength 632.8 nm from a He-Ne laser (35 mW total power). DLS 

measurements were made at a 90° angle with sample times of 20 J..tsec over a duration of 

15-30 seconds. Results are the average of 5 or more measurements. The data were 

analyzed with BI-2030AT software. 
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3.2.9 Static light scattering (SLS) 

Molecular weights ( Mw, Mn)' radii of gyration (Rg) and indices of polydispersity (Ip) 

were determined using a Wyatt Technology Corporation DAWN EOS light scattering 

detector (690 nm) coupled to the GPC column (Tables 3.6 and 3.7) Data were analyzed 

with Astra v5.3.0 18 software (Wyatt Technology Corporation). Refractive index 

increments dnldc obtained offline using the Wyatt Optilab rEX IR detector were used in 

the molecular weight calculations. 

3.3 RESUL TS AND DISCUSSION 

3.3.1 Effect of reaction conditions on blue dextran properties 

According to Mayes et al.,24 for a given set of initial reaction conditions, increasing the 

reaction time increases the degree of dye substitution of the final product, despite the 

decrease in the rate of dye loading as the free dye reacts with both the dextran and the 

hydroxyl group of the solvent water. Not unexpectedly, increasing the initial dye-to­

dextran molar ratio from 150: 1 to 600: 1 also increases the degree of dye substitution 

somewhat (Table 3.1). Higher base concentrations appear to significantly increase the 

yie1d ofblue dextran obtained (Table 3.1). 

3.3.2 Viscosity 

In water, blue dextran 2000 shows typical polye1ectrolyte behaviour (Figure 3.4). As 

polymer concentrations decrease from high to intermediate values (13 to 1 mg/mL), 77red 

leve1s off and then increases with further decreasing concentration. At very low pol ymer 

concentrations 77red decreases again. This rheological behaviour has been seen for other 

polye1ectrolytes.50,51 The sharp increase in reduced viscosity is attributed to expansion of 
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the polyelectrolyte coils caused by gradually increasing dissociation of the ionic groups 

(dye ligands). Increasing coulomb repulsions result in an expansion of the coil and 

increase its hydrodynamic volume, leading to the maximum in 17red observed at low 

polymer concentration. At concentrations below this maximum 17red, the polymer is in a 

dilute state even for nearly fully expanded polyelectrolyte coils, which reduces 

intermolecular interactions to such an extent that the reduced viscosity decreases again.49 

Although it is not shown, at high concentrations (greater than those shown in Figure 3.4), 

the reduced viscosity 17red should again increase with increasing polymer concentration. 

At increasing ionic strengths, the shielding of inter- and intramolecular coulomb forces 

by the additional counterions attenuates the increase of 17red, until at 0.200 M sodium 

chloride the blue dextran behaves as a neutral polymer. Viscosity measurements were 

performed in 0.200 M NaCI (aq) solutions to allow the extrapolation of the reduced 

viscosityto c ~ o. 

It is important to note that although the dye ligands contain ionic groups which tend to 

improve the polymer-solvent interactions, their aromatic rings also impart a hydrophobic 

character to the blue dextrans. Hydrophobic association in hydrophobically modified 

polyelectrolytes, such as anionic polyvinyl alcohol (PV A-) or polymethacrylic acid/ethyl 

acrylate (MAA/EA), has been found to reduce the polyelectrolyte effect and lower the 

values of the reduced viscosity at low polymer concentrations, suggesting that the chains 

are less expanded.52,53 A similar phenomenon may occur in blue dextran, with the result 

that the overall structure may be more tightly coiled than an unmodified dextran of the 

same molecular weight. 
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Figure 3.4. Reduced viscosity 17red as a function of concentration c for blue dextran 2000 

in solutions of increasing ionic strength. 

AlI viscometric measurements were performed in the dilute regime at concentrations 

clearly below C*, such that polymer-solvent interactions determine the flow properties. 

Experiments were performed at relative viscosities 1]r.r;.1 = 1]/1] between 1.2 and 2.0 to 

ensure accurate data. Over the concentration range studied, both unmodified and blue 

dextrans showed decreasing 17red with decreasing polymer concentration (Figure 3.5). This 

confirms that the 0.200 M ionic strength was sufficient to suppress the chain expansion 

which would occur during dilution of the pol ymer due to a large increase in 

intramolecular coulombic repulsion forces between the increasingly dissociated sulfonate 

groups. The slopes of the plots increased with dextran mo1ecu1ar weight; plots of 1Jred vs. 

c are steeper for blue dextrans than for unmodified dextrans of a given molecular weight. 

The decrease in intrinsic viscosity [17] and the increase in critical concentration C* with 
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decreasing molecular weight (Table 3.2) is attributed to the smaller coiI size of the lower 

molecular weight polymers; dynamic light scattering data supports this conclusion. 
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Figure 3.5. Reduced viscosity 17red as a function of the concentration c for unmodified 

dextrans (open symbols) and blue dextrans (filled symbols) in 0.200 M NaCI (aq). Values 

were taken from the linear portion of the 17red vs. c curve. 

The differences in the parameters (smaller [17] and larger C* values for blue dextrans) 

shown in Table 3.2 indicate that blue dextrans experience poorer polymer-solvent 

interactions than their unmodified counterparts. This phenomenon can be explained by 

the presence of hydrophobie association of the aromatic dye ligands in the blue dextran 

structure. The effect is particularly noticeable in the most highly substituted blue dextran 

2000, which contains the most aromatic rings and therefore shows a large decrease in 

intrinsic viscosity [17] as compared to dextran T-2000, for example. For a given dextran 
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molecular weight, the critical concentration values are higher for blue dextrans because 

they are more tightly coiled, so a higher concentration is needed before the coil overlap 

point is reached. 

These results differ from those obtained for branched and linear dextran sulfates, where 

the intrinsic viscosity increased upon sulfation and with increasing sulfation (see 

be1ow).42 However, sulfate groups are not hydrophobie and the intrinsic viscosity is likely 

govemed by the coil expansion caused by repulsion of the charged sulfate groups. 

Table 3.2. Intrinsic viscosity [1]] and critical concentration C* for unmodified and blue 

dextrans in 0.200 M NaCI (aq). 

Dextran [1]] (mL/g) C* (g/mL) 

Dextran T -2000 34 0.07 

Dextran T -500 26 0.10 

Dextran T-II0 17 0.15 

Dextran T-70 13 0.20 

Blue dextran 2000161 12 0.21 

Blue dextran 50011 16 0.16 

Blue dextran 11023 9 0.28 

Blue dextran 7066 7 0.36 

Viscosity data taken in 0.200 M NaCI (aq) for blue dextrans 2000 with different 

degrees of substitution support this hypothesis (Table 3.3). Critical concentration values 

increase with increasing degree of dye substitution, which would not be expected if only 

the ionic groups on the dye ligands affected the viscometric behaviour. Blue dextran 
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20008, with the lowest DS (and therefore the lowest degree of hydrophobicity) has the 

highest intrinsic viscosity and the lowest critical concentration. Blue Dx 200016 has 

similar [77] and C* values to those of dextran T-2000, suggesting that at low degrees of 

substitution, the ionic character and coulombic repulsion of the dye ligands dominates 

over the effect of hydrophobicity and causes coil expansion (cf. blue dextran 20008), 

while at higher dye substitutions, the coils shrink due to the hydrophobie nature of the dye 

molecules. 

Table 3.3. Effect of increasing degree of dye substitution on intrinsic viscosity [17] and 

critical concentration C* for blue dextrans 2000 in 0.200 M NaCI (aq). 

Dextran 
Dye ligand density 

[17] (mL/g) c* (glmL) (DS per AGU, 10-4) 

Dextran T -2000 0 34 0.07 

Blue dextran 20008 8 36 0.07 

Blue dextran 200016 16 34 0.07 

Blue dextran 200030 30 33 0.08 

Blue dextran 200036 36 28 0.09 

Blue dextran 200056 56 26 0.10 

Blue dextran 2000161 161 12 0.21 

The value of [77] was found to decrease with decreasing dextran molecular weight Mw. 

A plot of [17] against Mw shows behaviour somewhat resembling that of branched 

polymers (Figure 3.6). Branched polymers are denser than linear polymers of the same 

molar mass and therefore have lower intrinsic viscosities.49 The effect is more important 
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at higher molar masses, where the intrinsic viscosity of branched polymers levels into a 

plateau. Similar behaviour has been observed for dextran and dextran sulfates.28,42 
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Figure 3.6. Intrinsic viscosity [17] as a function ofmolar mass Mw for dextran T-2000 and 

blue dextran 2000 in 0.200 M NaCI (aq). 

That the ionic groups on the dye ligands do play a role in the viscosity behaviour of 

blue dextran is shown by the effect of increasing the ionic strength of the solvent 

(Figure 3.7). The hydrodynamic volume of each blue dextran coil will depend on the 

electrostatic interactions (and hydrophobic associations) present, which are sensitive to 

the solvent ionic strength. The intrinsic viscosity of blue dextran 2000 decreases 

monotonically with increasing ionic strength (Table 3.4), indicating a decreasing coil 

expansion due to further shielding of the coulomb repulsion forces between the ionic 

sulfonate groups of the dye ligands.54,55 A concurrent increase in the critical 

concentration with increasing ionic strength is consistent with this finding. Ohta et al. 

also observed a decrease in the "charge effect" upon increasing the solution ionic 

strength.44 The intrinsic viscosity was found to be proportional to rl/2 (Figure 3.8), in 

agreement with the literature.56,57 Hydrodynamic radii of blue dextran 2000 in solutions 
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of increasing ionic strength obtained by dynamic light scattering (see Table 3.8) support 

these data. 
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Figure 3.7. Reduced viscosity l1red as a function of the concentration c for blue dextran 

2000 in solutions of increasing ionic strength. 
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It is interesting to note that increasing the degree of dye substitution of blue dextran 

2000 in 0.200 M NaCI solution has an effect of similar magnitude on the intrinsic 

viscosity and critical concentration to that of increasing the ionic strength of solutions of 

blue dextran 2000161 (compare Tables 3.3 and 3.4). Specifically, increasing the dextran 

2000 dye substitution from 16xlO-4 to 56xlO-4 in 0.200 M NaCI and increasing the ionic 

strength from 0.010 M to 0.025 M for blue dextran 2000161 both result in similar values 

of [1]] and C*. 

Table 3.4. Effect of ionic strength on intrinsic viscosity [1]] and critical concentration C* 

for blue dextran 2000161. 

Ionie strength (M) [1]] (mL/g) ë* (glmL) 

0.010 34 0.07 

0.025 27 0.09 

0.050 23 0.11 

0.100 16 0.16 

0.200 12 0.21 

Values of the Huggins constant kH are greater than 2 for all samples, as reported for a 

number of polyelectrolyte systems.54,56,58 Sorne authors propose that the Huggins 

constant can be much greater than 0.5 in cases of association or aggregation.59 The 5-J.1M 

dye concentration required for aggregation of free dye in solution24 suggests that 

intennolecular dye stacking or aggregation is possible at the blue dextran concentrations 

used for the viscosity measurements. However, the absorbance behaviour ofblue dextran 

solutions at dye ligand concentrations up to 70 J.1M is linear, implying that no aggregation 
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occurs at these concentrations. In addition, the solutions of blue dextran are at 

concentrations below C*, which should inhibit aggregation owing to the minimal 

polymer-polymer interactions. 

3.3.3 Refractive index increments 

The refractive index increments dnldc of the blue dextrans lie in the range 0.120 to 

0.175 at 690 nm (Table 3.5). It has been found that the dn/dc of unmodified dextran 

increases with increasing molecular weight over a wide range ofvalues.30,60 For example, 

aqueous solutions of dextrans of molecular weight 80--7400 kDa have been found to have 

dnldc values of 0.150--0.154 at 436 nm.30 According to the Cauchy equation, the dnldc 

for dextran at 690 nm should be slightly lower;61 the high salt content of the solvent will 

also tend to reduce the dnldc below the typicai values of ~ 0.150, owing to the increase in 

the solvent refractive index.62 Table 3.5 shows that increasing dye substitution increases 

the refractive index increment, which may explain the anomaiously high value obtained 

for blue dextran 7066. The refractive index increments were used in the molecular weight 

caiculations from the OPC data. 

3.3.4 Gel permeation chromatography 

Ethanol precipitation/centrifugation and exhaustive dialysis were used to purify blue 

dextrans and remove unreacted dye and residual sodium carbonate. OPC chromatograms 

confirm the purity of the samples; peaks are sharp, indicating the absence of any 

unreacted dextran (Figure 3.9). 
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Table 3.5. Refractive index increments dnldc at 690 nm for blue dextrans of various 

molecular weights and dye loadings. 

Dextran Dye ligand density (DS per AGU, 10-4) 

Blue dextran 200012 12 

Blue dextran 200036 36 

Blue dextran 200056 56 

Blue dextran 2000161 161 

Blue dextran 11023 23 

Blue dextran 7066 66 

a In pH 7 0.80 M NaN03 and 0.01 M NaH2P04 (aq) with 0.2 % NaN3. 
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Figure 3.9. Sample GPe chromatogram for blue dextran 200012. 
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3.3.5 Molecular weights 

Molecular weights were calculated for the blue dextrans using nominal weight-average 

molecular weights for unmodified dextrans and dye loadings from UV-visible 

spectroscopy (see Table 3.1): 

(3.6) 

where M:1c is the calculated molecular weight, M~x is the nominal molecular weight for 

unmodified dextran, M CR = 840.12 Da is the molecular weight of the Cibacron blue dye, 

DS is the degree of dye substitution per anhydroglucose unit of the blue dextran and 

M AGU = 162.2 Da is the molecular weight of the anhydroglucose repeat unit. 

The molecular weights and indices of polydispersity of the blue dextrans were 

determined by GPC-LS. Table 3.6 presents the theoretical molecular weights together 

with the weight- and number-average molecular weights and indices of polydispersity of 

several blue dextrans. Masses calculated by GPC-LS are in agreement with the theoretical 

molecular weights. The molar mass distribution is very narrow, as indicated by the 

indices of polydispersity. 

Table 3.6. Molecular weights and indices of polydispersity ofblue dextrans. 

Dextran M:a1c (kDa) M~PC (kDa) M:PC (kDa) Ip 

Blue dextran 200056 2060 2 100± 20 1 800 ± 90 1.16 

Blue dextran 11 023 107 130±5 130±7 1.03 

Blue dextran 7066 72 65 ±3 52± 3 1.25 
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3.3.6 Hydrodynamic radii and radii of gyration 

The hydrodynamic radii of unmodified and blue dextrans were determined by DLS in 

0.010-0.200 M NaCI solutions. Blue dextrans were found to have larger radii of 

hydration than the unmodified dextrans owing to coulomb repulsion between the ionic 

dye ligands; values decrease with decreasing dextran molecular weight (Table 3.7). Our 

RH value for dextran T-2000 (37.7 nm) is somewhat larger than the value found by 

Nordmeier for dextran T-2000 in deionized water at 25 oC (27 nm); values for the smaller 

dextrans are comparable to literature values.63 Overall, the hydrodynamic radii of the blue 

dextrans and unmodified dextrans lie in the same range, except for blue dextran 110, 

which shows a much larger radius. This may be because the blue dextran RH values were 

measured using 0.2 glL solutions and were not extrapolated to zero concentration due to 

limited sample amounts. 

Increasing the solution ionic strength from 0.010 to 0.200 M resulted in a decrease of 

about 5 nm of the hydrodynamic radius of blue dextran 2000 (Table 3.8). The increased 

shielding of electrostatic repulsions between the dye ligand sulfonate groups would 

contribute to the observed coi! shrinkage. No specifie trend in the hydrodynamic radius 

was observed among blue dextrans 2000 ofincreasing DS (Table 3.7). 

The radii of gyration of the blue dextrans were obtained with a static light scattering 

detector in 0.8 M NaN03 and 0.01 M NaH2P04 (aq). Blue dextrans exhibit larger values 

of Rg as compared to their unmodified counterparts. Because particles with physical 

dimensions Rg « ').,)20 (Rg < 10 nm for 690 nm incident radiation) scatter light 

isotropically, molecular size data cannot be obtained for these species.64 Blue dextran 70 

falls into this category (Rg of dextran T -70 = 8.3 nm65); its radius of gyration could not be 
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determined. Values of Rg for the unmodified dextrans are comparable to literature 

values.30,66 

Table 3.7. Experimental and literature values of RH and Rg for unmodified and blue 

dextrans. 

Dextran 
Dye ligand density 

RH (nm) a Rg (nm) (DS per AGU, 10-4) 

Blue dextran 2000161 161 40.2 ± 0.8 

Blue dextran 200056 56 36.9 ± 0.9 40.8 ± 2.0 b 

Blue dextran 200036 36 35.1 ± 1.1 

Blue dextran 200016 16 37.9 ± 0.8 

Blue dextran 200015 15 46.2 ± 0.8 

~~, Blue dextran 200012 12 40.8 ± 1.0 

Dextran T -2000 0 37.7 ± 0.8 34 C 

Blue dextran 50011 11 18.4 ± 0.7 

Dextran T -500 0 17.8±0.3 19.8 c,d 

Blue dextran 11 023 23 30.7 ± 3.1 16.3 ± 1.6 b 

Dextran T-II0 0 7.7 ± 1.3 9.7 C 

Blue dextran 7066 66 < 10 e < 10 e 

Dextran T -70 0 < 10 e 8.3 C 

a Measured at 0.2 glL by DLS in 0.200 M NaCl (aq). b Measured by GPC-SLS in 0.80 
M NaN03 and 0.01 M NaH2P04 (aq) with 0.2 % NaN3. C Fishman et a1.65 d Nordmeier et 
al. 30 e Isotropie scatterer; dimensions too small for measurement by light scattering. 
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Table 3.8. The effect ofionic strength on RH values of 0.4 g1L blue dextran 2000161. 

Dextran 
Dye ligand density 

[NaCl] (M) RH (nm) (DS per AGU, 10.4) 

0.200 40.2 ± 0.8 

0.100 41.7 ± 1.0 

Blue dextran 2000 161 0.050 43.0 ± 1.0 

0.025 43.7 ± 0.5 

0.010 45.4 ± 0.9 

3.4 CONCLUSIONS 

Blue dextrans of varying molecular weights and dye ligand densities have been 

synthesized and characterized. The ionic dye ligands turn dextran into a polyelectrolyte 

and have a significant effect on the physico-chemical properties of the polymer. The 

viscosity behaviour of the blue dextrans demonstrated their polyelectrolytic nature as 

compared to the unmodified dextrans. Increasing solvent ionic strength decreased the coil 

expansion, as shown by the decrease in intrinsic viscosity and increase in critical 

concentration. Specifie refractive index increments were higher for blue dextrans than for 

unmodified dextrans. Purity of the blue dextrans was confirmed by gel permeation 

chromatography, which showed the absence of unreacted dextrans and low sample 

polydispersity. Molecular weights determined by static light scattering compared 

favourably with theoretical values calculated from the dextran molar mass and dye 

loading from UV-visible spectroscopy. Hydrodynamic radii and radii of gyration were 

found by light scattering. 
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Introduction to Cellulose-Dye Ligand Interactions 



High-molecular-weight blue dextran has been found to induce the separation of an 

isotropie phase from a completely ordered cellulose nanocrystal suspension, l while an 

unmodified dextran of similar dimensions do es not. The distinct properties imparted to 

blue dextran by the sulfonated triazine dye Cibacron blue 3G-A (CB), characterized in 

the previous chapter, account for this disparity. In the following chapter, the effect of 

these properties on the induced phase separation behaviour in anisotropie cellulose 

suspensions caused by blue dextrans is further elucidated. The effect of free dye 

molecules having various charges has also been studied;2 anionic dyes which do not 

(strongly) adsorb on cellulose surfaces were found to induce phase separation at low 

concentrations. A brief background on the physical interactions between dyes and 

cellulose surfaces is given below. 

Reactive dyes are dyes that react with hydroxyl groups in cellulose to form covalent 

bonds. It is believed that the reaction proceeds in two steps: the adsorption of the pl anar 

portion of the dye molecule, followed by the reaction of the dye with the hydroxyl group 

of the glucose monomer.3 More recent experiments and theoretical studies have been 

performed to determine the mechanisms of dye-cellulose interactions. Several factors 

including ionic strength, solvent conditions and molecular weight are thought to affect 

the interparticle forces, but the mechanisms and driving force for the adsorption 

pro cesses are still being debated. Several types of interactions have been reported, 

including electrostatic, van der Waals, hydrogen-bonding, and hydrophobic interactions.4 

While it has been suggested that van der Waals forces are more important tha"n hydrogen 

1 Edgar, C.D.; Gray, D.G. Macromolecules 2002, 35, 7400-7406. 
2 Beck-Candanedo, S.; Viet, D.; Gray, D.G. Cellulose 2006, 13,629-635. 
3 Zollinger, H. Senryo To Yakuhin 1968, 13,349-360. 
4 Yamaki, S.B. et al. Langmuir 2005,21,5414-5420. 
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bonding, these forces are aIl strongly distance-dependent: the dye core must be able to 

c1ose1y approach the cellulose surface to ensure a good enthalpy ofbinding.5 The number 

and relative position of the sulfonate groups, which are thicker than the conjugated 

aromatic core, control the distance between the core and the cellulose surface and 

therefore the binding enthalpy of the dye.5 

Congo red (CR, Figure 4-A) is a direct diazo dye known to physically adsorb strongly 

onto cellulose surfaces.4 The adsorption is thought to be based on hydrogen bonds with 

azo and amino groups, and e1ectrostatic interactions with sulfonate groups. 

Figure 4-A. Molecular structure of Congo red (CR). 

Acid dyes are negatively-charged species which can dye tissues by ionic bonding and 

are thought to adsorb onto cellulose from acid solution by hydrogen bonding.6 Acid red 

17 (AR17, Figure 4-B) has two sulfonate groups at one si de of the molecule, which allow 

the aromatic chromophore to approach the cellulose surface more c10sely than if they 

were on opposite sides of the molecule. 

Dye-cellulose interactions similar to those described above may occur between 

cellulose and CB, which contains similar chemical moieties to these dyes (Figure 4-C). 

5 Bird, J.; Brough, N.; Dixon, S.; Batchelor, S.N. J. Phys. Chem. B 2006,110, 19557-19561. 
6 Stains file - Acid dyes, URL http://stainsfile.info/StainsFile/dyes/class/acid.htm 
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Figure 4-B. Molecular structure of Acid red 17 (ARI7). 

Figure 4-C. Molecular structure of Cibacron blue 3G-A (CB). 

CB has been found to adsorb onto microcrystalline cellulose (MCC),7 which is a system 

that more closely resembles the cellulose nanocrystals we are studying than the typical 

macroscopic cellulose fibres used in such studies. However, its physical interaction with 

cellulose surfaces is much less studied. The adsorption enthalpy of CB may be weaker 

than that of CR, for example, as it contains three bulky sulfonate groups distributed 

throughout the molecule. The CB-cellulose interaction may be further reduced by the 

attached dextran pol ymer, which may hold the dye ligand in such a configuration as to 

7 Stevenson, D.L.; Kennedy, J.F.; White, C.A. Starch 1988, 11,433-437. 
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increase the distance between the conjugated aromatic chromophore and the cellulose 

nanocrystal surfaces. 
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Chapter 4 

Induced Phase Separation in Low-Ionic-Strength 

Cellulose N anocrystal Suspensions 

Containing High-Molecular-Weight Blue Dextrans 

Reproduced with permission from 
Beck-Candanedo, S.; Viet, D.; Gray, D.G. Langmuir 2006, 22, 8690-8695. 

Copyright 2006 American Chemical Society. 



4.1 INTRODUCTION 

Phase separation phenomena occur ln a wide range of systems containing highly 

anisotropie (rod-like) colloidal partic1es, as predicted by Onsager in 1949.1 Neutral 

partic1es, such as sterically stabilized boehmite rods2 or suspensIOns of 

polytetrafluoroethylene whiskers and surfactant,3 as well as charged partic1es, such as 

tobacco mosaic virus (TMV),4 chitin microcrystals5,6 and cellulose nanocrystals,5,7 

spontaneously separate into anisotropie and isotropie phases when the partic1e 

concentration exceeds a critical value (e.g., 5 to 7 wt% for cotton cellulose nanocrystals 7). 

This critical value is govemed by several parameters, inc1uding partic1e dimensions 

(length L and diameter D), partic1e size polydispersity and surface charge of the 

partic1es.1,8 The critical number density ofpartic1es is proportional to 1/(L2D).1,9 Charged 

partic1es can be modelled as hard rods with an effective diameter Deff larger than the hard 

rod diameter D, which depends on the surface charge of the rod and the ionic properties 

of the solution.1,l0 Increasing the ionic strength by adding salt to a suspension of charged 

partic1es increases the critical concentration at which the isotropic-nematic phase 

transition occurs: Il Ions in the bulk solution screen the repulsive electrostatic double 

layer interactions; as the ionic strength increases, Deff decreases and approaches the hard 

rod diameter D. The smaller value of Deff shifts the phase transition to higher partic1e 

concentrations. The nature of the counterions also affects the phase transition behaviour 

of our cellulose suspension12 due to the differing repulsive hydration forces;13,14 

counterion type is known to affect electrostatic interactions such as ion ex change 

selectivity.15 

Perhaps most interestingly, the addition of a nonadsorbing, spherical macromolecule 

can induce phase separation in anisotropie suspensions of rodlike partic1es. According to 
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Asakura and Oosawa,16,17 this so-called depletion-induced phase separation is based on 

the imbalance in osmotic pressure that results when a macromolecule is excluded from 

the region between two colloidal particles when they are separated by a distance smaller 

than the macromolecule diameter, giving rise to an effective attractive force between the 

colloids. This behaviour has been observed for the neutral system of polyisobutylene­

grafted boehmite rods/polydimethyl siloxane in organic solvents,2,18 as well as aqueous 

ionic systems such as silica particles/carboxymethyl cellulose,19 TMV/polyethylene 

oxide20 and filamentous fd virus/ dextran.21 

A previous study conducted in our laboratory on the effect of added polymer on the 

phase separation of colloidal cellulose nanocrystal suspensions used blue dextran (Dx) 

2000 as an easily quantifiable non-adsorbing macromolecule.22 Blue dextran contains a 

sulfonated triazine dye, Cibacron blue 3G-A, which is bound to random hydroxyl groups 

on the dextran chain and has three charged sulfonate groups per molecule.23 Blue dextran 

was added to completely anisotropic cellulose nanocrystal suspensions and phase 

separation into an upper isotropic and lower anisotropic phase occurred over a period of 

several days.22 Higher concentrations of blue dextran led to faster separation and larger 

volume fractions of isotropic phase. Although the exact mechanism by which the phase 

separation was induced was not discussed in detail, the introduction implied that 

depletion attractions due to the macromolecular dextran were the cause. This article 

further investigates the induced phase separation behaviour in anisotropie cellulose 

suspensions caused by blue dextrans ofvarying dye content and molecular weight. 
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4.2 EXPERIMENTAL METROnS 

4.2.1 Chemicals 

Dextrans T-llO, T-500, T-2000 (Mw 106 000, 532 000 and 2 000 000, respectively) 

and blue dextran 2000 (Mw ~ 2 000 000) were purchased from Phannacia Fine 

Chemicals. Cibacron blue 3G-A (CB, 55 % dye content) was purchased from Aldrich and 

used without further purification; see Figure 3.1 in Chapter 3 for the structure. Whatman 

ashless cotton cellulose powder was purchased from Cole-Panner. Sulfuric acid (95-98 

%) for hydrolysis was purchased from Fisher Scientific. Sodium hydroxide, sodium 

chloride, and sulfuric acid volumetric standards for conductometric titration were 

purchased from Aldrich. AlI water used was purified with a Millipore Milli-Q 

purification system. 

4.2.2 Cellulose nanocrystal suspensions 

Cellulose nanocrystal suspensions were prepared as described previously.7,24,25 

Whatman ashless cotton cellulose powder (40 g) was hydrolyzed with sulfuric acid (700 

mL, 64 wt%) at 45 oC for 45 minutes and then quenched by 10-foid dilution in cold 

distilled water. Samples were centrifuged and the precipitate washed once with distilled 

water and re-centrifuged. Excess acid was then removed from the precipitate by dialysis 

against distilled water untii the suspension pH was between 5 and 7. The suspension was 

then sonified (Vibracell, Sonics & Materials, Inc., Danbury CT) in 500-mL batches for 3-

minute intervals for a total of 15 minutes, taking care to ensure that the temperature did 

not exceed 40 oC. Well-dispersed suspensions displayed shear birefringence and no 

visible aggregates when viewed between crossed polars. The suspension was placed over 

a small amount of mixed bed ion-exchange resin (Sigma-Aldrich) for several hours with 
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gentle shaking in order to remove excess ionic materials, and the resin was removed by 

filtration and centrifugation if necessary. The initial dilute aqueous suspensions were 

around 1-2 % cellulose by weight. 

The concentration of cellulose III the samples was determined by gravimetry. 

Conductometric titration was used to determine the quantity of sodium hydroxide 

required to neutralize the H+ counterions associated with the sulfate ester groups on the 

nanocrystal surfaces. Sodium chloride (0.001 N, 100 mL) was added to the suspension 

sampi es (3-5 mL). A Contiburette ,u10 (Ing. CAT, Staufen, Germany) was used for aIl 

titrations. Titrations were performed under a flow of nitrogen using an Orion conductivity 

cell 018010 (cell constant K = 0.987 cm-1
) attached to a Fisher Scientific accumet pH 

meter 50. The suspension was then neutralized with sodium hydroxide. Finally, the 

suspension was concentrated by evaporation at ambient conditions to give a completely 

anisotropic cellulose suspension. A final concentration of 13.8 wt% cellulose was chosen, 

as the suspension viscosity is inconveniently high above this concentration. 

4.2.3 Blue dextrans 

Blue dextrans of various molecular weights and ligand densities (Table 4.1) were 

prepared using methods adapted from Mayes et al. (1990)26 and Tang et al.(2004)27 (see 

Figure 3.1 in Chapter 3). A typical preparation is as follows: A solution of 4 g dextran T-

2000 in 120 mL water was mixed with solutions of 0.8 g Cibacron blue 3G-A (55 % dye 

content) in 40 mL water and 0.2 g NaZC03 in 40 mL water. The mixture was shaken in a 

water bath at 45 oC. After around 75 h another 0.8 g CB was added. To precipitate the 

dextran-dye conjugate, an equal volume of ethanol was added to the mixture, which was 

allowed to stand at -20 oC for at least 60 min. The precipitate was then spun down and 
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rinsed with ethanol. Following resuspension in 40 mL water, the dextran was dialyzed 

(Spectrum Spectra/Por membrane, molecular weight cutoff 12 000-14 000 Da) against 

distilled water to remove any traces of unreacted dye and salt. Gel filtration indicated the 

absence of low-molecular-weight material of high absorbance. The final product was 

lyophilized and stored as a solid. 

Table 4.1. Preparation conditions and ligand densities for blue dextrans. 

Dextran Reaction Initial dye-dextran [Na2C03] Ligand density 
time (h) ratio (mol:mol) (M) (DS per AGU a, 10-4) 

24.0 280 0.100 3 

18.5 300 0.010 9 

21.5 300 0.010 16 

48.0 300 0.010 30 
T-2000 

96.5 300 0.010 36 

120.0 300 0.010 44 

144.5 300 0.010 56 

b 161 

T-500 48.0 300 0.010 49 

T-110 48.0 300 0.040 23 

a Degree of substitution per anhydroglucose repeat unit. b Commercial blue dextran 
2000 (Pharmacia). 

Moisture contents of the dextrans and dextran-dye conjugates were determined by 

thermogravimetric analysis (TA Instruments TGA Q500). The dextrans contained from 

10.5-11.5 % water by mass, and the blue dextrans from 9-15 % water by mass. 
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The dye content of the dextran-dye conjugates was detennined usmg UV -visible 

spectroscopy (Varian Cary 300 Bio spectrophotometer). Solutions of blue dextran 2000 

(Phannacia) were prepared with ligand concentrations below 5 IlM to avoid dye stacking 

in solution29 and a calibration curve prepared (see Appendix, Section 4.6). Ligand density 

was estimated from absorbance measurements at 609 nm for solutions of the conjugates, 

and calculated in tenns of the degree of substitution per anhydroglucose repeat unit 

(AGU). It was assumed that the molar extinction coefficient of Cibacron blue 3G-A at 

this wavelength is not affected by its coupling to dextran.26,30 In this paper, the tenn 

"dye" refers to the free dye unless otherwise indicated, while "ligand" refers to the dye 

molecules covalently attached to the dextran, and "ionic group" refers to the charged 

sulfonate groups on the dye molecules or ligands. 

4.2.4 Preparation of cellulose-dextran suspensions 

Samples were prepared by adding solid dextran to aliquots of concentrated cellulose 

nanocrystal suspension and vortexing until homogeneous dispersion was achieved. 

Suspensions were allowed to equilibrate and monitored over a period of at least two 

weeks. The anisotropic and isotropic phase volume fractions, ~aniso and rAso, were 

detennined by measuring the heights of the anisotropic and isotropic phases in each vial. 

The number density of the blue dextran and dextran molecules in the samples was 

calculated using equation 4.1 : 

(4.1) 

where M is the number of molecules of species i, Vrot is the volume of the sample, NA is 

Avogadro's number, mi is the mass of species i, and Mi is the molar mass of species i. It 

should be noted that while number average molecular weight, Mn , should be used in the 
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fonnula for number density, the molecular weights given for the dextrans are weight 

average, Mw (supplier data). The polydispersity Mw/Mn of the dextrans decreases with 

decreasing molar mass (Table 4.1).31 

4.3 RESULTS AND DISCUSSION 

4.3.1 Dextrans 

We prepared an initial series of anisotropie cellulose nanocrystal suspensions (13.8 

wt%) to which we added dextrans T-2000, T-500 and T-II0. The objective was to get a 

sense of the magnitude of phase separation induced by the different dextrans, particularly 

those of lower molecular weight, prior to using the blue dextrans, of which we had only 

limited quantities. However, phase separation was not observed in any of the samples; 

dextran T-2000 at volume fractions similar to those reported by Edgar and Gray for blue 

dextran 200022 did not cause phase separation after a period of more than three weeks. 

This unexpected result led us to question the basis for the phase separation observed upon 

addition ofblue dextran: were depletion attractions really the cause? 

The range over which depletion forces act depends on the size of the added 

macromolecule;16,17 the influence of a macromolecule will be dependent not only on its 

size, but also on the geometry and spacing of the partic1es on which it acts. To obtain a 

rough estimate of the distances separating the cellulose nanocrystals in the ordered, 

concentrated suspension, we assume that each nanocrystal is a rectangular rod of square 

cross-section, measuring 120 by 10 by 10 nanometers (average dimensions from atomic 

force microscopy). The number density Ccell of the cellulose rods is given by equation 4.2: 

C = W 

cell [w+(100-w)p JLh2 ' 
(4.2) 

137 



where w is the weight percent cellulose concentration, p is the density of cellulose in 

water (assumed to be 1.6 glcm\ and L and h2 are the length and the area of the square 

cross-section of the rods, respective1y.32 A 13.8 wt% cellulose suspension thus has an 

approximate number density of 8x 1 0-6 nm-3
• If the rods are perfectly aligned in "pseudo-

nematic" planes, and separated by equal distances d on aIl sides, calculation of the 

volume occupied by a rod and surrounding area (the "unit cell") gives the average space 

between the partic1es d ~ 20 nm (Figure 4.1). 

lrl=d============p=, =21, <-;-~'I=( =============?=tlI; 

d t ( P r ( I}t 10 nm 

~==============~I ~10nm 

End view 

d 

D<--~D 
~ 

d 1 

Ô Dt --10 nm 

120 nm 

10 nm 

Figure 4.1. Schematic of idealized "nematic" nanocrystal distribution in the 13.8 wt% 

cellulose suspension. Separation between the cellulose rods d ~ 20 nm. 

Unmodified dextran molecules T-2000, T-500 and T-II0 have radii of gyration of 34, 

19.8 and 9.7 nm, respective1y (Table 4.3 be1ow). These values are of the same magnitude 

as the nanocrystal separation d, indicating that the dextran coils would not be able to fit 

into the chiral nematic structure of the cellulose nanocrystal suspension without sorne 
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distortion and loss of entropy associated with the individual coils. Since the suspension 

remains stable, this entropy loss is insufficient to drive an isotropic phase separation. On 

the other hand, blue dextrans prepared from dextrans T-2000, T-500 and T-II0 will have 

radii of gyration larger than the values given above, due to the charges arising from the 

anionic dye ligands. Presumably, the dimensions and e1ectrostatic charge on the chains 

increase the entropic cost of chain distortion necessary to fit into the concentrated 

anisotropie suspension, and phase separation occurs. 

The answer to our initial question lies in the interactions between the colloidal cellulose 

rods and dextran in solution. For neutral colloids, the total interaction energy between a 

pair of colloidal partic1es in polymer solution is the sum of the van der Waals attraction, 

the hard core repulsion and the depletion attraction caused by the polymers. When 

sufficient macromolecule has been added such that the attraction dominates, the system 

will phase separate. The failure of neutral dextran T -2000 to induce phase separation in 

anisotropie cellulose suspensions, even at much higher number densities than the blue 

dextrans shown in Tables 4.2 to 4.4 (see below), may be explained by the fact that 

cellulose nanocrystals are negatively charged colloids, and therefore e1ectrostatic forces 

must be taken into account. The total interaction potential between the negatively charged 

cellulose rods is thus a combination of the van der Waals attraction, hard core repulsion, 

and depletion attraction in addition to the repulsion between the electrostatic double 

layers. An exact description of the interaction potential is difficult to obtain, as the high 

cellulose concentration of the suspensions (colloidal, but not dilute) gives rise to complex 

interactions between the colloidal nanocrystals. For example, the distribution of 

counterions surrounding the cellulose crystallites is likely not uniform and may influence 

the interactions between the cellulose nanocrystals.33 Because the cellulose suspensions 
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are of low ionic strength ("salt-free" conditions: the only counterions present are those 

associated with the sulfate ester groups on the nanocrystal surfaces: surface charge 

density 0.19 e/nm2 
= 1.63xl0-4 mol OH- per gram cellulose ~ 25 mM ionic strength [i.e., 

equivalent to 25 mM NaCI] for a 14 wt% suspension), the range of the electrostatic 

repulsion may be large enough to dominate the effective depletion attraction due to the 

added dextran, stabilizing the suspension and preventing phase separation. 

This phenomenon has been observed by Dogic et al. for an analogous system consisting 

of an aqueous mixture of charged semiflexible rods (fd virus) and neutral polymer 

(dextran T-500, Rg = 19.8nm).21 At low ionic strength (1 = 50 mM added NaCI), added 

dextran T -500 did not affect the phase transition behaviour, while at high ionic strength (1 

= 100-200 mM added NaCI), it widened the isotropic-nematic coexistence region, with 

the polymer partitioning preferentially into the isotropic phase, as predicted by theory.34 

The experimental phase diagram obtained at low added ionic strength showed that 

addition of the polymer to a completely nematic suspension of the fd virus partic1es 

would not induce phase separation (a verticalline indicating increased polymer volume 

fraction drawn in the nematic region would not intersect the phase coexistence region). 

Blue dextrans were added to anisotropic cellulose nanocrystal suspensions to verify our 

assumptions regarding the effect of molecular size/depletion forces and to determine the 

cause of the induced phase separation. 

4.3.2 Blue dextrans of increasing number density 

The depth of the attractive depletion potential depends on the concentration of 

macromolecule in solution. 17,35 As shown in Table 4.2, we added blue dextrans of 

different ligand density to an anisotropic cellulose nanocrystal suspension such that the 

dextran number density increased while maintaining an equal total dye (ligand) 
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concentration in the samples. The volume fraction of isotropie phase at equilibrium was 

approximately equal for aIl samples, suggesting that depletion attractions are not effective 

at these conditions. 

Table 4.2. Blue dextrans of increasing number density added to anisotropie suspension 

(13.8 wt% cellulose nanocrystals). 

Sample 
Ligand density 

(DS per AGU, 10-4) 
CDx (10-6 nm-3) I dye (J.1M) a ~so b 

2000-A 30 4.86 1.45 0.26 

2000-B 36 4.05 1.45 0.29 

2000-C 56 2.68 1.45 0.29 

2000-D 161 0.90 1.45 0.26 

a Ionic strength due to charged sulfonate groups on dye ligands attached to blue dextran. 
b Volume fraction of isotropic phase in sample vial. 

4.3.3 Blue dextrans of increasing molecular weight 

The range of the depletion potential is determined by the Slze of the added 

macromolecule, which is on the order of its diameter.l 6,17,35 At approximately equal 

ligand concentrations (Table 4.3), dextran molecular weight did not have a systematic 

effect on extent of phase separation. If depletion attractions were contributing to the 

observed phase separation, the molecular weight of the dextran should have an effect on 

the phase separation, with larger dextrans causing increased phase separation 

(Rg = 0.66Mw°.43 over a MW range of 400 to 2,700 kDa; a < 0.5 due to dextran 

branching36).37 The absence of any molecular weight or size effect also suggests that 

depletion attractions do not induce phase separation in this system. 
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Table 4.3. Blue dextrans of increasing molecular weight added to anisotropie suspension 

(13.8 wt% cellulose nanocrystals). 

Sample 
Ligand density Rg (nm) MWcalc CDx I dye Aso (DS per AGU, 10-4) 31,38,39 (kDa) (nm-3

, 106
) Ü.lM) 

2000-1 30 34.0 a 2000 2.0 0.60 0.17 

500-1 49 19.8 a 532 7.6 0.95 0.23 

110-1 23 9.7 a 106 36.8 0.45 0.24 

2000-11 30 34.0 2000 1.4 0.40 0.14 

500-11 49 19.8 532 5.1 0.65 0.20 

110-11 23 9.7 106 24.6 0.30 0.20 

a Radii of gyration detennined by light scattering. 

/' -~', 

4.3.4 Blue dextrans of increasing dye ligand density 

Blue dextrans of increasing dye ligand density were added to vials of completely 

anisotropie cellulose suspension (13.8 wt%), as shown in Table 4.4. After several hours 

to days, a dark blue upper phase and a lighter blue lower phase fonned (Figure 4.1). Over 

a period of two weeks, the volume fraction of the upper phase increased and then leve1ed 

off. Higher initial rates of phase separation were observed for dextrans with the highest 

ligand density, the dextran with the lowest ligand density having a "lag time" of four days 

(Figure 4.2). The dextran with the highest ligand density (commercial blue dextran 2000) 

produced gelation in the suspension; no phase separation was observed. 
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>~~ Table 4.4. Blue dextrans 2000 of inereasing ligand density added to anisotropie 

suspension (13.8 wt% cellulose nanoerystals). 

Sample Ligand density (DS per AGU, 10-4) CDx (10-6 nm-3) I dye (!lM) ;'50 

2000-1 9 3.7 0.35 0.12 

2000-2 16 3.7 0.60 0.13 

2000-3 30 3.6 1.10 0.19 

2000-4 36 3.7 1.35 0.26 

2000-5 56 3.8 2.15 0.32 

2000-6 161 3.7 6.00 a 

a Gelation of suspension prevented phase separation. 

Figure 4.2. Indueed phase separation eaused by the addition ofblue dextrans T-2000 of 

inereasing ligand density to vials eontaining anisotropie cellulose nanocrystal suspension 

(13.8 wt%). Blue dextran partitions preferentially into the isotropie phase. 
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Figure 4.3. Volume fraction of upper isotropic phase as a function of time for phase 

separation of initially anisotropic sarnples (13.8 wt% nanocrystals) induced by adding 

blue dextrans 2000 with increasing ligand density. Sarnples: 2000-1 +; 2000-2 -; 2000-3 

Â; 2000-4 x; 2000-5 +. 

The results shown in Figures 4.2 and 4.3 support the hypothesis that the phase 

separation is caused by the increase in ionic strength owing to the ionic dye ligands of the 

blue dextran. Depletion attraction may also be a contributing factor at higher ligand 

densities (see below). The higher rates of phase separation seen in Figure 4.3 at higher 

dye concentrations are similar to those observed previously,22 although the final volume 

fractions of isotropie phase are slightly larger in this case, despite lower total 

concentrations of dye. This may be attributed to the suspension properties, which vary 

from batch to batch and depend greatly on the concentration of cellulose rods, their 

surface charge and dimensions. The gelation of sample 2000-6 is likely caused by much 

higher ionic strength owing to the higher dye loading for commercial blue dextran 2000 

(Table 4.4). Biphasic suspensions of cellulose nanocrystals are stable at ionic strengths up 

to about 50 mM;40 higher ionic strengths screen the electrostatic repulsions between the 
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cellulose nanocrystals and lead to ge1ation or precipitation (salting-out effect).25,41 

Because the effective ionic strength of sample 2000-6 is only 6.0 /-lM, the gelation is most 

like1y due to the very high cellulose concentration of the suspension used. Ionic strength 

strongly influences the properties of systems consisting of charged colloids and 

polyelectrolytes. 

4.3.5 Blue dextran and Cibacron blue 3G-A 

Adding free Cibacron blue 3G-A dye to complete1y anisotropic cellulose suspensions 

also induced phase separation. Commercial dyes often contain stabilizing and diluent 

agents, as well as dispersants and anti-dusting agents.42 In the case of Cibacron blue 3G­

A, the impurities are likely to be salts such as NaCI or Na2S04, urea, and dodecyl 

alcoho1.43 Because the exact quantity of "ionic material" in each batch of dye is unknown, 

the final ionic strength of a solution of a given dye cannot be accurately calculated. 

However, simple ionic salts do not appear to have the same effect on the phase separation 

behaviour that the dye Cibacron blue 3G-A does: even at up to 1000 times the nominal 

ionic strength of the dye and blue dextran samples, added sodium chloride does not 

induce phase separation in cellulose nanocrystal suspension of the same concentration.44 

Figure 4.4 shows the phase separation for samples containing Cibacron blue 3G-A dye at 

concentrations resulting in ionic strengths equal to those in the blue dextran samples with 

increasing ligand density shown in Table 4.4. Increasing the total ligand concentration in 

suspension with constant dextran number density resulted in the formation of larger 

volume fractions of isotropic phase. At lower dye concentrations, the blue dextran and 

free dye result in approximately the same amount of phase separation, while at higher dye 

concentrations, the curves diverge, the blue dextran inducing more phase separation than 

the dye alone. 
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Figure 4.4. Volume fraction isotropic phase as a function of ionic strength due to 

sulfonate groups on dye ligands for blue dextran 2000 (.) and on Cibacron blue 3G-A 

If depletion attractions were the only source of phase separation in this case (constant 

dextran number density), phase separation should increase with increasing concentration 

of dextran and not with increasing dye content. It is not unreasonable to assume that the 

charged dye ligands on the blue dextran screen sorne of the electrostatic repulsion 

between the charged cellulose rods, allowing depletion attractions to contribute to the 

phase separation in similar fashion to the system of Dogic et al. (2004).21 We can 

conc1ude that the phase separation caused by the blue dextran is in part due to the 

increase in critical cellulose concentration resulting from the higher ionic strength, and in 

part due to a contribution from the depletion attraction at higher dye concentrations, when 

the nanocrystal-nanocrystal electrostatic repulsion is screened enough by the ionic dye 

molecules. At low dye ligand concentrations, depletion effects are not present, and only 

the increased critical cellulose concentration causes phase separation, such that the free 

dye and blue dextran induce the same amount of phase separation. Additionally, 
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increasing ligand densities may result in significant increases in the dimensions of the 

blue dextran coil (as discussed above), leading to greater disruption of the ordered phase 

structure and increased depletion attraction forces. 

Overall, the addition of anionic dye molecules attached to neutral dextran to an 

anisotropic suspension of negatively charged cellulose rods produces phase separation by: 

1) shifting the critical cellulose concentration to a higher value, as previously observed, Il 

and 2) screening the electrostatic repulsion between the particles allowing the depletion 

attraction to be effective, particularly at the higher concentrations of the dye ligand. In 

addition, the attractive depletion force between colloidal particles is known to be stronger 

and of longer range in solutions of macroions as compared to neutral 

macromolecules.16,17 However, particularly at low ionic strengths, the depletion 

interactions between macromolecules and colloids with like charges are complicated, and 

theories allowing computation of the behaviour of these systems have not been 

developed.45 
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4.4 CONCLUSIONS 

Adding blue dextran induces the separation of an isotropic phase in completely 

anisotropic cellulose nanocrystal suspensions, while no phase separation is observed on 

the addition of uncharged dextran. The anionic dye ligands attached to the dextran raise 

the ionic strength of the system, producing a two-fold effect: Initially, the critical 

cellulose concentration required for phase separation increases, shifting the phase 

equilibrium into the region of isotropic-chiral nematic phase coexistence. At higher ionic 

strengths, the electrostatic repulsions between the rods are sufficiently screened to allow 

depletion attractions from the dextran macromolecules to contribute to the phase 

separation. 
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4.6 ApPENDIX 

The calibration curve for blue dextran 2000 at 609 nm and concentrations < 5 f-LM dye 

is shown be1ow. 
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Dye ligand concentrations correspond to blue dextran concentrations of 1-40 mg/mL. 

UV-visible spectra (in triplicate) of the blue dextrans used for the calibration curve are 

shown below. 
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Introduction to Partitioning in Biphasic Systems 

.~. 



The previous chapter discussed phase separation of cellulose nanocrystal suspensions 

caused by blue dextran. Figure 4.2 in Chapter 4 shows sampi es in which it is c1ear that 

the concentration of blue dextran in the upper isotropic phase is higher than in the lower 

liquid crystalline phase. The low surface tension between the phases (10-3 to 10-4 mN/m)l 

facilitates the partitioning and do es not disturb the macromolecular structure. The 

equilibrium distribution of the components of a system is determined by the properties of 

the polymer and its physico-chemical interactions with itself, with any other species 

present (e.g., salts, cellulose nanocrystals), and with the solvent. The preferential 

partitioning of a solute between two phases is often the basis for the purification and 

separation of that species (e.g., from a solvent, from dissimilar contaminants or from 

other similar related species). 

Different types of partitioning systems exploit different properties and interactions of 

the system components. Aqueous two-phase systems (ATPS) containing two or more 

dissolved polymers such as polyethylene glycol and dextran are widely used to partition 

biological materials such as proteins, DNA, cells and cell organelles.2 These systems use 

the differences in solubility, polarity, partic1e size, and so forth to separate the system 

components and offer greater possibilities for fractionation and purification than 

conventional techniques. Phase-separated aqueous micellar systems are also used to 

partition proteins, based on exc1uded-volume interactions between nonionic surfactant 

micelles and biomolecules.3 Affinity partitioning, on the other hand, employs chemical 

and physicochemical interactions of the partitioned species with either non-specific 

1 Chen, W.; Gray, D.G. Langmuir 2002,18,633-637. 
2 Albertsson, P.-À. Partition of Cel! Partie/es and Macromolecules; 3rd ed.; Wiley-Interscience: New 
York, 1986,323 pp. 
3 For example: van Roosmalen, D. et al. Biotechnol. Bioeng. 2004,87,695-703. 
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ligands (e.g. triazine dyes such as blue dextran) or specifie ligands (e.g. antibodies), 

which themselves are partitioned preferentially into one phase of the ATPS.4 Specifie 

partitioning phenomena can even be used to determine the chemical nature of the species 

being partitioned by tailoring the partitioning system. In biphasic rod-coil or rod-sphere 

systems in which the difference in shape is the main difference (for example, sterically-

stabilized boehmite rods and polystyrene in orthodichlorobenzene),5 partitioning of the 

rods and coils occurs due to excluded-volume interactions (i.e., entropy) and osmotic 

pressure effects. 

The work in the following chapter is an extension of a preliminary study,6 in which we 

attempt to further understand the partitioning of blue dextran in cellulose nanocrystal 

suspensions by isolating and studying the effect of variables such as dye ligand density. 

The experimental partition coefficients are also compared with predictions using Sear's 

partitioning theory for coiled and rodlike polymers. It should be noted that this is one 

case in which it is important to characterize not only the cellulose nanocrystal suspension, 

but also the blue dextran macromolecule, as the theory is only applicable in the dilute 

regime for the coiled pol ymer. 7 

4 For example: Johansson, G.; Joelsson, M. J. Chromatogr. 1987,393, 195-208. 
5 Buitenhuis, J. et al. J. Colloid Inteiface Sei. 1995, 175,46-56. 
6 Edgar, C.D.; Gray, D.G. Macromolecules 2002, 35, 7400-7406. 
7 Sear, R.P. J. Phys. II 1997, 7,877-886. 
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Chapter 5 

Partitioning of Charged and Neutral Dextran-Dye Derivatives 

in Biphasic Cellulose N anocrystal Suspensions 



5.1 INTRODUCTION 

It is well-established that the drive to maximize entropy can cause ordering1 and bulk 

demixing in systems containing components of sufficiently different physical properties, 

such as shape or flexibility.2 The bulk demixing is predicted to give rise to phases 

enriched in one of the components of the system.1,3 Ordered phases of rodlike partic1es 

coexisting with random phases have been shown to exc1ude random coil polymers and 

spherical partic1es for several experimental systems,2,4-10 inc1uding cellulose nanocrystals 

and blue dextran. 11 Assuming only exc1uded-volume interactions between the 

components, Flory predicted the phase separation of a solution containing a rigid rod-like 

pol ymer and a flexible randomly coiled polymer and concomitant partitioning to give a 

rod-rich, coil-poor phase and a coil-rich, rod-poor phase.3 The phase separation is 

entropy-driven, based on depletion attractions observed in colloid-polymer systems. 12 

The extent of the partitioning depends on the relative size and concentration of the two 

components as well as their chemical nature. This has been shown experimentally6,8,9 as 

well as theoretically.13 

Preliminary results obtained in this laboratory for blue dextran in cellulose nanocrystal 

suspensions have shown that the partitioning behaviour is not affected by the nature of 

the phase separation, that is, whether the suspension concentration lies in the isotropic­

chiral nematic (I-N) coexistence region, or whether phase separation is induced by the 

addition of a macromolecule to a completely ordered suspension. 1 1 This chapter further 

investigates the partitioning behaviour of blue dextrans in biphasic cellulose nanocrystal 

suspensions. It is our goal to c1arify the factors driving the partitioning of such 

polye1ectrolytic species, in particular the effect of the ionic charge due to the dye 

substituents on the partition coefficient. 
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5.2 EXPERIMENTAL METROnS 

5.2.1 Materials 

Whatman ashless cotton cellulose powder was purchased from Cole-Parmer. Sulfuric 

acid (95-98 %) for hydrolysis was purchased from Fisher Scientific. Cibacron blue 3G-A 

dye (CB, 55 % dye content, MW 840.12 Da), and sodium hydroxide, sodium chloride and 

sulfuric acid volumetric standards for conductometric titration were purchased from 

Sigma-Aldrich. Anhydrous sodium carbonate was purchased from Anachemia. 

Concentrated hydrochloric acid, ACS reagent grade, was purchased from ACP 

Chemicals. Methanol, HPLC grade, was purchased from Fisher Scientific. Blue dextran 

2000 (nominal Mw 2000000 Da) and FITC-dextrans 2000,500 and 150 (Mw 2000000, 

525 000, 130 000 and 77 000 Da, respectively) were purchased from Sigma-Aldrich. 

Dextrans (Dx) T-2000, T-500, T-110 and T-70 (Mw 2 000 000, 532 000, 106 000 and 

70000 Da, respectively) were purchased from Pharmacia Fine Chemicals. AlI water used 

was purified using a Millipore Milli-Q purification system. 

5.2.2 Cellulose nanocrystal suspensions 

Suspensions of cellulose nanocrystals were prepared as described in Chapter 4,14-16 The 

aqueous suspensions, 0.5-2 % cellulose by weight, were evaporated with stirring at 

ambient conditions to obtain the desired final nanocrystal concentrations. Conductometrlc 

titration was used to determine the surface charge density of the cellulose nanocrystals 

associated with surface sulfate ester groups as described in Chapter 4. Equivalence points 

were used to calculate the amount of sodium hydroxide required to convert the 

suspensions to the sodium form (Na+ counterions). 
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5.2.3 Preparation of blue dextrans 

Blue dextrans of various molecular weights and ligand densities were prepared using 

methods adapted from Mayes et al,17 and Tang et al. 18 (Figure 3.1 in Chapter 3), as 

described in previous publications. 19,20 

5.2.4 Acid hydrolysis of dextran T -2000 

To obtain fractions of dextran with molecular mass greater than 500 kDa, degradation 

of a high molecular weight dextran (T -2000) by acid hydrolysis was carried out according 

to starch hydrolysis methods21 ,22 adapted for dextran by Joan et aI.23 Dextran T-2000 

(1 g) was suspended in 4 mL of methanol to which various amounts of concentrated 

hydrochloric acid were added (0.02, 0.04, 0.06 and 0.09 mL, which yielded dextrans 

d1700, d1400, d1200 and d980, respectively). The suspensions were shaken for 4 days, at 

which point the limiting molar mass value was reached.24 The degraded dextrans were 

neutralized with 1 M NaOH and washed with 1:1 methanol-water. The hydrolyzed 

dextran fractions were dialyzed against milliQ water to remove any traces of base or 

small dextran fragments, lyophilized and stored as solids. Following characterization (see 

below and Table 5.1), the solid dextrans were reacted with CB dye to give blue dextrans 

as mentioned above. It is important to note that the degradation is not fully random; the 

cleavage rate of the 0.-(1,6) bonds differs from that of the 0.-(1,3) bonds and leads to a 

change in the branching density which may affect the partitioning.25 

5.2.5 Characterization of blue dextrans 

Moisture contents of the dextran-dye conjugates and degraded dextrans were 

determined by thermogravimetric analysis (TGA, TA Instruments TGA Q500). 

The dye content of the dextran-dye conjugates was determined using UV-visible 

spectroscopy (Varian Cary 300 Bio spectrophotometer). A calibration curve was obtained 
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from solutions of commercially-available blue dextran 2000 and adherence to the Beer­

Lambert law was established. The molar extinction coefficient for blue dextran 2000 at 

609 nm was found to be 8865 M-1cm-1
• The molar extinction coefficient at 620 nm was 

found to be 8966 M-1cm-I = 0.823 g-Idm3cm-1
, which agrees well with the value of 

0.812 i 1dm3cm-I found by Champ et a1.26 for commercially available blue dextran 2000. 

The ligand density was estimated from absorbance measurements at 609 nm for solutions 

of the dextran-dye conjugates, and calculated in terms of the degree of dye substitution 

(DS) per anhydroglucose repeat unit (AGU). Absorbance measurements in dilute aqueous 

solution and in 6 M HCI (aq)17,27 have shown that negligible intramolecular dye stacking 

occurs at dye ligand densities comparable to those reported in this chapter. It should be 

noted that the blue dye is bound randomly to the dextran backbone.28 

A combination of gel permeation chromatography (GPC) and static light scattering 

(SLS) was used to obtain molecular weights ( Mw , Mn)' and radii of gyration (Rg) for the 

hydrolyzed dextrans and for FITC-Dx 2000 (see Figure 5.3 for the structure). Dextrans 

(2 mg/mL) were dissolved in the e1uent (pH 7, 0.2 M NaN03 and 0.01 M NaH2P04 

containing 0.2 % NaN3) and filtered using 0.45-llm membranes. Samples (100 ilL) were 

injected onto a GPC column (300x75 mm PL aquagel-OH mixed 8 Ilm, 1x102-1x107 Da 

separation, Polymer Laboratories) at a flow rate of 1.0 mL/min using a Merck Hitachi 

AS-2000A autosampler and Waters 510 HPLC pump. The column was coupled to a 

Wyatt Optilab rEX IR detector (690 nm) and a Wyatt Technology Corporation DAWN 

EOS light scattering detector. Data were analyzed with Astra v5.3.0 18 software (Wyatt 

Technology Corporation). 
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,~--~- Table 5.1. ProEerties ofblue dextrans and FITC-dextrans. 

Dextran-dye MWDx MW Dye ligand densi!l R (nm) d 
conjugate a (kDa) b (kDa) C (DS per AGU, 10 ) 

Blue dextran 20007 2000 2007 7 

Blue dextran 200012 2000 2010 12 40.8 ± 1.0 

Blue dextran 200016 2000 2017 16 37.9 ± 0.8 

Blue dextran 200030 2000 2031 30 

Blue dextran 200036 2000 2038 36 35.1 ± 1.1 

Blue dextran 200056 2000 2058 56 36.9 ± 0.9 

Blue dextran 2000161 2000 2167 161 40.2 ± 0.8 

Blue dextran 50049 532 545 49 

Blue dextran 50011 532 535 11 18.4 ± 0.7 

Blue dextran 11 0143 106 114 143 

/-

Blue dextran 70280 70 80.2 280 <10 

Blue dextran 7066 70 72.4 66 <10 

Blue dextran dl700 1690 ± 10 e 1720 33 40.1 ± 0.4 e 

Blue dextran dl400 1380 ± 10 e 1410 27 37.2 ± 0.4 e 

Blue dextran d1200 1180 ± 10 e 1200 25 35.4 ± 1.4 e 

Blue dextran d980 980 ± 20 e 1000 20 30.9 ± 2.8 e 

FITC-dextran 2000 2000 2065 130 16 

FITC-dextran 500 525 543 140 

FITC-dextran 150 130 134 120 

FITC-dextran 70 77 79.5 130 

a The designation "d" indicates dextrans prepared by acid degradation of dextran T-
2000. b Supplier data, unless otherwise indicated. C Molecular weights calculated based 
on the DS per AGU obtained by UV-visible spectroscopy. d Hydrodynamic radius RH, 

"'''''--'''''' Beck-Candanedo et a1.,20 unless otherwise indicated. e Molecular weight Mw and radius of 
gyration Rg obtained by GPC coupled with SLS (see text). 
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5.2.6 Preparation of cellulose suspensions containing dextran-dye conjugate 

Solid dextran-dye derivatives were added to samples of biphasic cellulose suspension, 

which were mixed and allowed to re-equilibrate for 24 to 48 hours. When phase 

separation was complete, samples were taken from the upper and lower phases and 

diluted prior to analysis to minimize scattering caused by the cellulose nanocrystals. 

Linear correlations between absorbance and concentration were observed for blue dextran 

2000 and FITC-dextran 2000 in cellulose suspension. The volume fraction of the phases 

was determined by measuring the heights of the anisotropic and isotropic phases in each 

vial. 

5.2.7 Determination of partition coefficients 

UV-visible absorption spectra were taken and the absorbance measured at 609 nm for 

blue dextrans and 490 nm for FITC-dextrans. Suspensions of cellulose nanocrystals 

containing no dextran-dye conjugate, but otherwise identical to the sample suspensions, 

were used as references. Because calibration measurements showed that measured 

absorbance is proportional to the concentration of macromolecule, partition coefficients 

were calculated from the relative absorbance values of the two phases: 

Kmeas = AisJAaniso (5.1) 

In this chapter, the partition coefficient is defined as the concentration in the isotropic 

phase divided by the concentration in the anisotropic phase. 

The concentration of cellulose in the samples was determined by gravimetry. The 

number density of the dextran-dye conjugates and dextran molecules in the sampi es was 

calculated using equation 4.1, using the weight-average molecular weights of the dextrans 

as discussed in Chapter 4.29 

164 



5.3 RESUL TS AND DISCUSSION 

5.3.1 Partition theory 

The concentrations of hard core monodisperse rodlike partic1es in the isotropie and 

nematic phases are predicted to remain constant across the I-N coexistence region. 1 

However, because the cellulose nanocrystals contain ionic sulfate groups on their surface, 

increasing the total cellulose concentration causes the partic1e densities in the isotropie 

and anisotropie phases to increase and diverge slightly due to the change in ionic strength 

in the aqueous medium, as previously observed for this system. Il ,30 Partitioning of the 

blue dextran coils between the coexisting isotropie and nematic or chiral nematic phases 

causes the rod densities in the phases to diverge further as more pol ymer coils are 

added.13 Because the concentration of coils is higher in the isotropie phase, adding blue 

dextran increases the osmotic pressure of the isotropie phase relative to the nematic 

phase. To compensate, the rod density decreases in the isotropie phase and increases in 

the nematic phase, resulting in a widening of the I-N coexistence region of the phase 

diagram. 13 

Sear has studied the phase behaviour of athermal lyotropic mixtures of rodlike and 

flexible polymers, obtaining an expression for the partition coefficient K of a flexible 

polymer:13 

(5.2) 

where c~ and C; are the number densities of the polymer in the isotropie and the 

anisotropie (nematic) phases, respectively, L is the rod length, D is the rod diameter, Rg is 
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the radius of gyration of the polymer and C: and C: are the number densities of the 

rodlike polymer in the isotropie and anisotropie (nematic) phases. 

The rodlike polymer is modelled as a hard rod with a diameter much smaller than the 

radius ofthe flexible coiled polymer, D« Rg. Interactions between the rods and coils are 

based on exc1uded volume; there are no attractive interactions between the rods, which is 

required for the suspension to be stable. The equation is valid in the dilute regime, that is, 

at small volume fractions of polymer. 13 It predicts that polymers with larger radii of 

gyration will partition to a greater extent, while for a given radius of gyration, a larger 

difference in cellulose rod concentration between the two phases will increase 

partitioning (i.e., K increases with total cellulose concentration, as previously 

observedll). This expression for K has been used previously to predict blue dextran 

partitioning in cellulose nanocrystal suspensions; despite the fact that the expression only 

provides an order of magnitude for K, it predicted an increase in partition coefficient with 

increasing blue dextran concentration. 1 1 

The critical concentration C* (at which the semi-dilute regime begins) for blue dextran 

2000161 is calculated to be around 73 mg/mL in 10 mM NaCI and 209 mg/mL in 200 mM 

NaCPo Sear's theory is valid only in the dilute regime, where the volume fraction of 

polymers and colloidal rods is smal1.13 The dextran concentrations used in this study do 

not exceed 50 mg/mL; Sear's theory is therefore valid for our samples. However, 

although we are working in the dilute regime for the blue dextran, it should be noted that 

the cellulose nanocrystals also contribute to the sample viscosity; their volume fraction is 

fairly low (about 6.5 % for 10 wt% nanocrystals with L = 120 nm and D = 10 nm). Sear' s 

theory also assumes constant rod concentration across the biphasic region, as predicted by 
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Onsager.1 As stated above, this is not the case for suspensions of cellulose nanocrystals, 

which may contribute to any discrepancy between the theoretical predictions and 

experimental results. 

The partition coefficient K of a macromolecule in a two-phase system can be expressed 

in general as 

Kmeas = Khphob • Ke1 . Ksize • Ksoi . Kaff· Ko , (5.3) 

where Khphob, Keh Ksize, Ksoi and Kaff represent the contributions to the total partition 

coefficient of the effects of hydrophobicity, electrostatic forces, size factors, solubility 

and affinity, respectively, and Ko represents other effects on partitioning, such as the 

dimensions of the rodlike partic1es and their relative concentrations in the two phases)1 

These factors may be competing with each other; their relative importance will depend on 

the composition of the biphasic system and the properties of the molecule being 

partitioned. The main contributions to K for blue dextran are likely to be Kel and Khphob 

(the sulfonated triazine dye introduces both ionic and hydrophobie elements into the 

macromolecule). Ksize is also expected to play a role for blue dextrans of different 

molecular weights. Because FITC-dextran is electrostatically neutral, Ke1 should not be an 

important factor in its partitioning behaviour; Khphob may dominate due to the 

hydrophobie aromatic rings in the FITC dye. 

5.3.2 Blue dextran partitioning 

The effect of increasing blue dextran 2000161 concentration on its partition coefficient 

is shown in Figure 5.1, which also contains data from a previous publication. Il The 

agreement is good and the partition coefficient increases linearly with increasing blue 

dextran concentration. 
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The effect of the DS ofblue dextran 2000 at constant AGU monomer concentration on 

its partition coefficient is shown in Table 5.2. The partition coefficients increased from 

around 1.3 to greater than 2 when the DS was increased from 7xl0-4 to 1.61xl0-2
• A two-

fold increase in the AGU concentration did not have a significant effect on the partition 

coefficients. 

4.5.-----------------------------------------------, 

~ 4.0 

1: 
CD 
'u lE 3.5 

CD 

8 
g 3.0 

:;:: 
1:: ca 
a.. 2.5 • This work 

<> Reference 11 

2.0+-----.-----.-----.-----.-----.-----.-----.-----~ 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 

Blue dextran 2000161 concentration (J.l.M) 

Figure 5,1. Partition coefficients for given total concentrations ofblue dextran 2000161 in 

~ 10 wt% cellulose suspension. The line is the best fit to the data. Closed symbols were 

obtained in 10.1 wt% cellulose nanocrystal suspension; open symbols were obtained in 

10.3 wt% cellulose nanocrystal suspension. 

The effect of DS of blue dextran 2000 at constant dye concentration on its partition 

coefficient is shown in Table 5.3. The partition coefficients increased from 1.1 to greater 

than 3 when the DS increased from 1.60xl0-3 to 1.61xl0-2
• A 2.5-fold increase in the 
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total dye concentration did not have a significant effect on the partition coefficients (they 

increased slightly). 

It can be concluded from the results in Tables 5.2 and 5.3 that increasing the DS results 

in larger K values for blue dextrans 2000 at constant AGU concentration and at constant 

dye concentration. The DS of the blue dextran 2000 thus determines the magnitude of K 

in this biphasic system; that is, the contribution of Keb which increases with increasing 

DS, dominates K. 

Table 5.2. Partition coefficients of blue dextrans 2000 in 10.1 wt% cellulose nanocrystal 

suspension at two constant total dextran anhydroglucose monomer concentrations. 

Series Dextran 
DSper [AGU] [Dye] [Cellulose] K AGU, 10-4 (!lM) (!lM) (wt%) 

~. 

Blue dextran 200016 16 18 29 10.1 1.46 

Blue dextran 200030 30 18 54 10.1 1.60 

1 Blue dextran 200036 36 18 65 10.1 1.72 

Blue dextran 200056 56 18 99 10.1 1.83 

Blue dextran 2000161 161 18 290 10.1 4.02 

Blue dextran 20007 7 40 29 10.1 1.28 

Blue dextran 200017 17 40 70 10.1 1.37 

Blue dextran 200030 30 40 121 10.1 1.47 
II 

Blue dextran 200036 36 40 150 10.1 1.51 

Blue dextran 200056 56 40 228 10.1 1.55 

Blue dextran 2000161 161 40 661 10.1 2.01 

(~~" 
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Table 5.3. Partition coefficients for blue dextrans 2000 in 10.1 wt% cellulose nanocrystal 

suspension at two constant dye concentrations. 

Series Dextran 
DSper [AGU] [Dye] [Cellulose] 

K AGU, 10-4 (f.lM) (f.lM) (wt%) 

Blue dextran 200016 16 123 197 10.1 1.10 

Blue dextran 200036 36 54 196 10.1 1.43 
III 

Blue dextran 200056 56 35 193 10.1 1.41 

Blue dextran 2000161 161 12 189 10.1 3.39 

Blue dextran 200016 16 47 78 10.1 1.23 

Blue dextran 200036 36 21 78 10.1 1.45 
IV 

Blue dextran 200056 56 13 76 10.1 1.54 

Blue dextran 2000161 161 4.7 78 10.1 3.11 

~-

5.3.3 Effect of molecular weight on partition coefficient K 

The partition coefficients for blue dextrans and FITC-dextrans of various molecular 

weights and DS are given in Table 5.4. In this case, it is particularly difficult to separate 

the effect of the DS of dye ligands (Ke1) from the effect of the blue dextran molecular 

weight (Ksize). For non-hydrolyzed blue dextrans with similar DS (shown in italics), K 

decreases from 1.48 to 1.12 when the molecular weight decreases from 2000 to 70 kDa. 

Partition coefficients for blue dextrans prepared from acid-hydrolyzed dextrans measured 

at similar AGU and dye concentrations (blue dextrans d170O-d980 contain 

0.020 ± 0.001 g dye per g blue dextran) also decrease with decreasing dextran molecular 

weight. As shown in Figure 5.2, this is in qualitative agreement with Sear's partitioning 
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theory, in which K is proportional to exp( Ri3 ).13 It should be noted that the hydrolyzed 

dextrans are more polydisperse (Ip values for dextrans d1700, d1400, d1200 and d980 are 

2.74, 2.98, 2.39 and 2.45, respectively) than the blue dextrans prepared from commercial 

dextrans, which have Ip values of around 1-1.25.20 Lower molecular weight FITC-

dextrans appear to partition more strongly into the anisotropie phase. 
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0.30 -fi) 

~ 0.25 

~0.20 
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0.15 

0.10 • 
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O.OE+OO 

R2 = 0.9425 

• 

5.0E+03 1.0E+04 

o • 

• blue Dx 2000, 500 and 70 

o blue Dx d1700 - d980 

1.5E+04 2.0E+04 

R 9 5/3 (nmS/3) 

Figure 5.2. Naturallogarithm of the measured partition coefficient Kmeas as a function of 

Rg
S/3 for blue dextrans of different molecular weights. Radii of gyration of the dextrans 

were calculated using the equation Rg = 0.66M~.43 , which is valid over the Mw range 400 

to 2,700 kDa.32 
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-~ Table 5.4. Partition coefficients for blue dextrans and FITC-dextrans of different 

molecular weight. Entries in italics denote blue dextrans of different molecular weights 

having similar DS values. 

MW 
Dextran 

DSper [Dye) [AGU) [Cellulose) 
K 

(kDa) AGU, 10-4 (J.LM) (J.LM) (wt%) 

2167 Blue dextran 2000161 161 997 61700 10.1 3.38 

2058 Blue dextran 200056 56 344 61900 10.1 1.48 

2010 Blue dextran 200012 12 85 66000 10.1 1.39 

2017 Blue dextran 200016 16 81 49700 10.1 1.13 

1722 Blue dextran d1700 33 96 24400 9.8 1.50 

1410 Blue dextran d1400 27 94 24200 9.8 1.45 

1202 Blue dextran d1200 25 101 24000 9.8 1.37 

1003 Blue dextran d980 20 97 24500 9.8 1.36 

----~ 

545 Blue dextran 50049 49 82 16600 10.1 1.30 

545 Blue dextran 50049 49 86 17200 10.1 1.30 

114 Blue dextran 110143 143 79 5400 10.1 1.09 

80.2 Blue dextran 70280 280 55.0 1900 10.1 2.04 

72.4 Blue dextran 7066 66 110 16100 10.1 1.12 

72.4 Blue dextran 7066 66 110 12400 10.1 1.11 

2065 FITC-dextran 2000 130 963 74000 9.8 0.98 

543 FITC-dextran 500 140 256 18300 9.8 0.98 

134 FITC-dextran 150 120 58 4800 9.8 0.88 

79.5 FITC-dextran 70 130 36 2700 9.8 0.81 

172 



5.3.4 FITC-dextran partitioning 

The partition coefficients for FITC-dextrans in the same biphasic system were all 

around 0.8-1.0, indicating slight preferential partitioning into the lower anisotropic phase 

(Table 5.5). FITC-dextran is neutral at basic pH,33 or at most slightly positive at the pH of 

4-5 in the cellulose suspensions, but contains several hydrophobie aromatic rings, 

similarly to blue dextran (Figure 5.3). 

Table 5.5. Partition coefficients for FITC-dextrans. 

Dextran 
DS per AGU, [AGU] [Dye] [Cellulose] 

K 10-4 (J.1M) (J.1M) (wt%) 

Increasing FITC-dextran concentration 

130 9000 117 9.8 1.05 
r' 

130 9900 129 9.8 0.90 

130 14900 194 9.8 1.07 

130 20400 265 9.8 1.02 
FITC-dextran 2000 

130 21000 272 9.8 1.02 

130 42500 552 9.8 0.91 

130 65000 846 9.8 0.91 

130 95400 1240 9.8 1.03 

Increasing total cellulose nanocrystal concentration 

130 27600 360 7.9 0.90 

130 21000 272 9.8 1.02 
FITC-dextran 2000 

130 27600 331 9.9 0.97 

130 27600 386 11.0 0.89 
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Figure 5.3. Structure of PITC-dextran. *PITC is assumed to associate randomly with any 

free hydroxyl group.34 

The observed partitioning behaviour of charged and neutral dye-Iabeled dextrans 

suggests that the blue dextran partitioning is partly electrostatic in nature, as mentioned 

above. 

5.3.5 Increasing degree of dye substitution (DS) 

Cibacron blue 3G-A dye has been found to adsorb onto the surface ofmicrocrystalline 

cellulose (MCC, A vicel PH 102) in studies of the hydrolysis of amylose by CB-dyed 

amylases in the presence of MCC.35 The adsorption of CB dye onto cellulose 

nanocrystals containing anionic surface sulfate esters was also verified by exhaustively 

dialyzing cellulose suspensions to which small amounts of CB dye were added. The 

absorption spectra of the resulting samples showed a peak in the range of 590-630 nm, 

indicating the presence of CB dye. Pree CB dye was not found to partition in biphasic 

cellulose nanocrystal suspensions. Because CB contains three anionic sulfonate groups 

per molecule, it is soluble in water and it is therefore conceivable that many dye ligands 
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will be exposed on the surface of a blue dextran molecule in aqueous solution and be 

available to adsorb onto the surfaces of cellulose nanocrystals. This presumably occurs 

during the mixing and early equilibration stages of sample preparation. Upon formation 

of the anisotropic phase, the adsorbed blue dextrans may desorb and be expelled into the 

isotropic phase, as they are too large and interfere with the chiral nematic structure 

(excluded volume effect);19 the entropy gain and the associated reduction in free energy is 

greater than the reduction in free energy due to adsorption. The increase in K with 

increasing DS of the blue dextran may be caused by an electrostatic effect: the negatively­

eharged cellulose nanocrystals in the anisotropie phase may be more efficient at expelling 

the more highly-substituted blue dextrans which are more negatively-charged. This may 

explain why the observed blue dextran K values are much higher than predicted by Sear' s 

theory (Figure 5.4),* which does not take electrostatic factors into account. Using surface 

charge density values measured by conductometric titration, the ratio of surface charge 

(and corresponding counterions) between the anisotropie and isotropie phases of8.7 wt% 

and 9.8 wt% (total cellulose concentration) suspensions was calculated to be around 1.3 

for both samples (which differed in nanocrystal surface charge density). There is therefore 

an electric potential difference between the phases, which may affect the partitioning 

behaviour of the negatively-charged blue dextrans. That is, blue dextrans with higher DS 

may be more strongly repelled by the negatively-charged nanocrystals, and prefer the 

more dilute isotropic phase. Thus, Kel increases with increasing blue dextran DS.31 

* Although it only gives the order of magnitude for K. 
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5.3.6 Increasing blue dextran concentration 

The divergence in the cellulose concentrations of the two phases (as predicted by Flory3 

and observed by Edgar and Gray11) caused by the increase in ionic strength from 0.4 to 

7.3 J.!M due to the increasing concentration of blue dextran dye ligands is likely too small 

to affect K according to Sear' s theory,13 as increasing the ionic strength from 0 to 2.5 mM 

was found to cause only a very slight divergence of the isotropie and anisotropie phase 

concentrations.30 At low concentrations of dextran-dye conjugate, the mixing entropy 

dominates, resulting in a weak driving force for partitioning that increases with increasing 

pol ymer concentration. Increasing the total concentration of an ionic dextran-dye 

conjugate did not have an effect on the value of K in an aqueous two-phase system 

consisting of dextran and PEG, where such electrostatic and entropie (exc1uded volume) 

factors would not be present. 36 

5.3.7 Nonionic FITC-dextran vs. anionic blue dextran 

In the context of the above observations, the lack of preferential partitioning observed 

in the FITC-dextran samples is plausible. It has been found that in suspensions of rodlike 

fd virus suspensions at low ionic strength, neutral FITC-dextran has no effect on the 

coexistence concentrations of the I-N transition, and no partitioning is observed, in 

contrast to the strong partitioning predicted theoretically.33 Dogic et al. explained this by 

stating that the depletion attraction caused by the polymer is screened by long-range 

electrostatic repulsion of the rods.33 A similar phenomenon may be occurring here. 

In addition, the nonionic FITC dye ligand is more hydrophobie than CB dye ligand due 

to its lack of charged groups, and is more likely to be found in the interior of the dextran 

coil, where it is not available to adsorb onto cellulose nanocrystals. Although free FITC 

dye has been found to adsorb somewhat onto cellulosic materials,37,38 there may be a high 
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concentration of nonadsorbed neutral FITC-dextran, which may be better tolerated in the 

anisotropic phase because it is more mobile and can fit in the defects (although blue 

dextran also fits in defectsll) and is not electrostatically repelled by the nanocrystals. If 

sorne PITC dye molecules are available for binding, they may not adsorb on cellulose to 

as great an extent as CB (the binding energy may be weaker for FITC than for CB dye); 

FITC-dextrans with higher DS may possibly partition more strongly. FITC-dextran 2000 

has a radius of gyration ofaround 16 nm (measured by GPC-LS in pH 7 0.20M NaN03 + 

0.01 M NaH2P04), which is significantly smaller than the radii obtained for blue dextrans 

2000 (see Table 5.1). The smaller size of FITC-Dx is likely caused by its higher 

hydrophobicity and lack of intramolecular electrostatic repulsions (internaI hydrophobic 

interactions of the aromatic rings cause the macromolecule to contract inwards). FITC­

dextran partition coefficient values were found to be slightly lower than predicted 

theoretically (Figure 5.4). 

Sear's theoretical calculation considers only the effect of the relative sizes of the rods 

and coils, in conjunction with the concentration of the rods in each phase, to predict K for 

a given system. The relative concentrations of the two species may also play a role in 

determining K, particularly in the case of electrostatically charged rods and coils, as in the 

case of blue dextran and cellulose nanocrystals. For blue dextrans, Kel (>1) appears to 

dominate the contribution to Kmeas, while for FITC-Dx, the hydrophobic interactions 

(Khphob < 1) of the dye ligands are of greater importance. The theoretical K values for both 

dextran-dye derivatives therefore lie on the same line (Figure 5.4), while their 

experimental values are very different. 
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Figure 5.4. Theoretical and experimental K values for blue dextrans and FITC-dextrans 

in cellulose nanocrystal suspension. The error bars for experimental K values are on the 

order of the size of the data points. 
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5.4 CONCLUSIONS 

The partitioning behaviour of blue dextrans and FITC-dextrans of high molecular 

weight in biphasic suspensions of negatively-charged cellulose nanocrystals was 

investigated. Increasing the total concentration of blue dextran increased the partition 

coefficient by causing a divergence in cellulose concentrations of the isotropic and 

nematic phases, in agreement with theory and previous experiments conducted in this 

laboratory. Increased blue dextran-nanocrystal electrostatic repulsions led to larger 

partition coefficients at higher degrees of CB dye substitution. The total concentration of 

anionic CB dye present in the sample and the DS per AGU affected the electrostatic and 

entropie contributions to the blue dextran partition coefficient in the cellulose suspension. 

For blue dextrans and hydrolyzed blue dextrans with similar DS at similar total dextran 

and dye concentrations, the natural logarithm of the partition coefficient varied linearly 

with Rg
5
/
3

, in agreement with Sear's partition theory. Dextrans labeled with fluorescein 

isothiocyanate were found to have partition coefficients of around 1 in this system, 

possibly due to the lack of electrostatic repulsion and/or dye adsorption onto cellulose 

nanocrystals. Blue dextran partition coefficients were larger than predicted theoretically 

using a second virial coefficient approximation, while FITC-dextran partition coefficients 

were smaller. 
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Introduction to Triphase Equilibria 

in Cellulose N anocrystal + Dextran Systems 



The following two chapters, Chapters 6 and 7, deal with the spontaneous formation of a 

third (isotropic) phase when blue dextran and unmodified dextran are both added to a 

biphasic isotropic-nematic cellulose nanocrystal suspension. The initial observation of the 

Il-lz-N triphase equilibrium may be qualified as serendipitous: It is difficult to isolate the 

effects of dextran (i.e., AGU) and dye ligand concentration on the blue dextran partition 

coefficient (see Chapter 5) without having a series of blue dextrans with precise1y­

tailored dye loadings, which is near impossible to achieve, there being no easy way to 

monitor dye loading during synthesis. We attempted to measure the effect of dextran 

concentration by adding unmodified dextran to samples having identical concentrations 

of commercial blue dextran 2000. Rather unexpectedly, an equilibrium state containing 

three phases formed (Figure 6-A), sparking an investigation into the nature and properties 

of this new equilibrium. 

Figure 6-A. Cellulose nanocrystal suspensions containing identical concentrations of 

unmodified dextran T -2000 and blue dextran 2000 increasing in concentration from b to 

h. Sample a contains only dextran T-2000 and is designated lz-N; sample h is designated 

II-N. 
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In retrospect, however, the formation of a third phase should not have been entirely 

unexpected, as an examination of Gibbs' phase role shows. Gibbs' phase role (equation 

6-A) states: l 

F=C+N-P (6-A) 

where F is the number of independent variables that can be changed independently 

without affecting the number of phases present (i.e., the degrees of freedom), C is the 

number of components (in this case, water, cellulose nanocrystals, blue dextran and 

dextran = 4), N is the number of non-compositional variables (generally, pressure and 

temperature, although for condensed systems the pressure is often negligible, and N = 1) 

and P is the number of phases. When we put P = 3, we have F = 4 + 1 - 3 = 2 degrees of 

freedom. This means that any two of the component concentrations can be independently 

changed within this region up to the phase boundaries. It also indicates that a four-phase 

equilibrium is also theoretically possible ;- although the concentrations at which we were 

working either did not lead to the fourth phase or it cannot be reached due to kinetic (i.e., 

viscosity) considerations. 

1 Gibbs, J.W. Trans. Conn. Acad. Oct. 1875 - May 1876, 3, 108-248; and May 1877 - July 1878, 3, 343-
524. 
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Chapter 6 

Triphase Equilibria in Cellulose N anocrystal Suspensions 

Containing Neutral and Charged Macromolecules. 

Reproduced with pennission from 
Beck-Candanedo, s.; Viet, D.; Gray, D.G. Macromolecules 2007, 40, 3429-3436. 

Copyright 2007 American Chemical Society. 



6.1 INTRODUCTION 

The spontaneous phase separation of suspensions of rod- and plate-like colloidal 

particles to give isotropic and nematic liquid crystalline phases is well-known and was 

reported as early as the 1920s.1-8 The isotropic-nematic phase transition is purely entropic 

in nature: although the orientational entropy of the system decreases due to alignment of 

the rods in the nematic phase, this loss is more than offset by the increase in positional or 

translational entropy of the system. In other words, the free volume available to 

individual rods increases as the rods align. Such systems can display rich phase 

behaviour; triphase isotropic-nematic-nematic (I-N-N) have been observed in 

suspensions of colloidal boehmite particles9 as well as in suspensions of tunicate 

cellulose whiskers. 1 0 

Widening of the biphasic coexistence region by the addition of coiled macromolecules, 

and their preferential partitioning into the isotropic phase, was predicted theoretically by 

Flory, who stated that the addition of a coiled pol ymer increases the volume fraction of 

rodlike particles in the anisotropic phase. 1I Non-interacting macromolecules thus create 

attractive depletion forces between rodlike colloids, inducing phase separation in 

anisotropic suspensions.l2-14 The range of the depletion force depends on the size of the 

macromolecule, while the strength of the force depends on its concentration. Electrically 

charged macromolecules have been found to greatly increase the magnitude of the 

interaction.13 Depletion-induced phase separation has been studied experimentally and 

theoretically for a variety of colloid-polymer systems.S,IS-19 Attractive depletion forces 

due to added macromolecules have been predicted to enrich the phase behaviour of 
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suspensions of rodlike partic1es, but the exact nature of the effect depends on the rod 

dimensions and polydispersity as weIl as the macromolecule concentration.20-22 

Suspensions of electrostatically stabilized rodlike cellulose nanocrystals can be 

produced by acid hydrolysis of various types of cellulose, inc1uding bacterial, tunicate, 

cotton and wood cellulose.23-28 Within a narrow concentration range, these suspensions 

separate into isotropie and chiral nematic phases. Their phase separation behaviour 

depends on the nanocrystal dimensions and surface charge density and on the ionic 

strength of the suspension and the nature of the counterions.24,29-32 The addition of the 

polymer blue dextran 2000 has been shown to alter the phase separation behaviour of 

aqueous suspensions of cotton cellulose nanocrystals by inducing the separation of an 

isotropie phase from completely anisotropie suspensions.27 Blue dextran 2000 consists of 

a non-adsorbing glucose polymer containing approximately 5% a-(1,3)-branching with a 

branched coil-like conformation.33,34 It contains a sulfonated triazine dye, Cibacron blue 

3G-A (CB), is covalently bound to random hydroxyl groups on the dextran chain.35 

However, later work has found that equivalent concentrations of unmodified dextran 

T-2000 do not induce phase separation in similar suspensions.36 If the phase separation 

were caused by attractive depletion forces induced by added macromolecules, blue and 

plain dextran of equivalent molar masses should have the same effect. The apparent 

inconsistency can be explained by the low ionic strength of the suspensions (no added 

salt), which allows the electrostatic repulsion between the nanocrystals to screen the 

attractive depletion forces caused by the neutral dextran. An analogous phenomenon has 

been observed by Dogic et al. for suspensions of fd virus containing the neutral polymer 

dextran T-500. 18 Blue dextran contains anionic sulfonate groups as part of the dye 
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molecules, which increase the ionic strength when added to the suspension, thereby 

increasing the critical concentration required for phase separation, and at higher ionic 

strengths, masking the electrostatic repulsion sufficiently to allow depletion attraction to 

dominate.36,37 

Preferential partitioning of blue dextran into the isotropic phase has been measured for 

biphasic and initially anisotropic suspensions, and a widening of the isotropic-nematic 

(I-N) coexistence region was observed.27 Greater partitioning occurred at higher blue 

dextran concentrations, in qualitative agreement with Sear's partitioning theory.38 The 

effects of ionic strength (i.e., dye concentration) and macromolecule concentration being 

essentially inseparable when working with a particular blue dextran, increasing amounts 

ofunmodified dextran were added to aliquots ofbiphasic cellulose suspension containing 

equal amounts of blue dextran in an attempt to measure the effect of only the dextran 

portion on the partitioning of blue dextran between the isotropic and chiral nematic 

phases. However, after mixing and equilibration, the samples unexpectedly displayed 

three phases: an upper isotropic (Il) phase into which the blue dextran appears to partition 

preferentially, a middle isotropic (h) phase, and a lower chiral nematic (N) phase. 

Triphase isotropic-isotropic-nematic (I-I-N) and isotropic-nematic-nematic (I-N-N) 

equilibria have been predicted theoretically for rodlike colloid and flexible pol ymer 

systems20,39 and have been observed in sterically-stabilized boehmite rod suspensions, 

both with5 and without9 added pol ymer. To our knowledge, triphase I-I-N equilibria in 

cellulose nanocrystal suspensions have not been reported in the literature. The present 

chapter describes the formation of the triphase equilibrium as well as the partitioning of 
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the dextrans among the phases. The following chapter examines the phase diagram for 

various dextran/blue dextran/nanocrystal compositions.40 

It should be noted that although the liquid crystalline phase of the cellulose suspensions 

is chiral nematic, the term nematic (N) will be used; the free energy difference between 

nematic and chiral nematic phases is much smaller than that between isotropic and 

anisotropic (whether nematic or chiral nematic).41 This allows results for systems 

containing chiral nematic phases to be compared with theories developed for nematic 

phases. 

Unless otherwise specified, "dextran" refers to neutral, unmodified dextran and "blue 

dextran" refers to dextran with dye ligands attached. 

6.2 EXPERIMENTAL METHODS 

6.2.1 Chemicals 

Dextrans T-110, T-500 and T-2000 (see Table 6.1) and blue dextran 2000 

( Mw :::::: 2 000 000 with 0.1 mmol Reactive Blue 2 dye per gram of dextran bonded 

randomly via an ether linkage to the polymer backbone42) were purchased from 

Pharmacia Fine Chemicals. Cibacron blue 3G-A (55% dye content) and fluorescein 

isothiocyanate-Iabelled dextran 2000 (FITC-dextran 2000) were purchased from Sigma­

Aldrich and used without further purification. Whatman ashless cotton cellulose powder 

was purchased from Cole-Parmer. Sulfuric acid (95-98%) for hydrolysis was purchased 

from Fisher Scientific. Sodium hydroxide, sodium chloride, and sulfuric acid volumetric 

standards for conductometric titration were purchased from Aldrich. AlI water used was 

purified with a Millipore Milli-Q purification system. 
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Table 6.1. Molecular weights, polydispersities and radii of gyration of dextrans used.43-45 

Dextran Mw (kDa) Mn (kDa) Ip Rg (nm) 

T-2000 2000 34.0 

T-500 532 183 2.91 19.8 

T-110 106 80.9 1.31 9.7 

6.2.2 Cellulose nanocrystal suspensions 

Cellulose nanocrystal suspensions were prepared as described in Chapter 4.23,24,31 The 

final aqueous suspensions were 1-2 % cellulose by weight, detennined by gravimetry. 

Conductometric titration was used to detennine the surface charge density of the 

cellulose nanocrystals as described in Chapter 4. The suspension was then concentrated 

to 8.7 wt% by evaporation under ambient conditions. 

6.2.3 Blue dextrans 

Blue dextrans of various molecular weights and ligand densities (Table 6.2) were 

prepared using methods adapted from Mayes et al.46 and Tang et a1.47, as described in 

Chapter 3. 

6.2.4 Preparation of cellulose-dextran suspensions 

Samples were prepared by adding solid dextran to aliquots of concentrated cellulose 

nanocrystal suspension and vortexing until homogeneous dispersion was achieved. 

Suspensions were allowed to equilibrate and monitored over a period of at least two 

weeks. The phase volume fractions were detennined by measuring the heights of the 

anisotropic and isotropic phases in each vial. 
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Table 6.2. Preparation conditions and ligand densities ofblue dextrans. 

Blue Reaction Initial dye-dextran [Na2C03l Ligand density 
dextran a time (h) ratio (mol:mol) (M) (DS per AGU, 10-4) 

200030 48 260 0.010 30 

2000161 
b b b 161 

50049 48 300 0.010 49 

110130 120 300 0.45 130 

a Subscripts indicate dye ligand density. b Commercially available blue dextran 2000 
(Phannacia Fine Chemicals). 

The number density, C, of the blue dextran and dextran molecules in the samples was 

calculated using equation 4.1 : 

(4.1) 

where Ni is the number of molecules of species i, Vtot is the volume of the sample, Na is 

Avogadro's number, mi is the mass of species i, and Mi is the molar mass of species i. It 

should be noted that while number average molecular weight, Mn , should be used in the 

formula for number density, the molecular weights given for the dextrans are weight 

average, i( (supplier's data). The polydispersity M w/ Mn of the dextrans decreases with 

decreasing molar mass (Table 6.1).43 

6.2.5 Characterization methods 

Photomicrographs of the three phases were taken using a polarized light microscope 

(Nikon Microphot-FXA). Pitch measurements were performed on microscope images of 

the chiral nematic (N) phase. 
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Moisture contents of the dextrans and dextran-dye conjugates were determined by 

thermogravimetric analysis (TA Instruments TGA Q500). The dextrans contained 

10.5-11.5 % water by mass, and the blue dextrans contained 11.1-16.5 % water by mass. 

All dextran concentrations were calculated taking the moi sture content into account. 

The dye content of the dextran-dye conjugates was determined using UV-visible 

spectroscopy (Varian Cary 300 Bio spectrophotometer). A calibration curve was obtained 

from solutions of commercially-available blue dextran 2000 and adherence to the Beer­

Lambert law was established. The ligand density was estimated from absorbance 

measurements at 609 nm for solutions of the dextran-dye conjugates, and calculated in 

terms of the degree of substitution (DS) per anhydroglucose (AGU) repeat unit (Table 

6.2). According to convention, commercially available blue dextran 2000 purchased from 

Pharmacia will be referred to as "blue dextran 2000", except where necessary for c1arity. 

The hydrodynamic radii of the blue dextran 2000 and dextran T -2000 (Table 6.3) were 

calculated using dynamic light scattering (DLS). Solutions of dextran and blue dextran 

were prepared in 0.200 M NaCI (aq). The solutions and solvents were c1arified by 

filtration through a nylon filter of pore size 0.2 J.lm (Millipore); samples were filtered 

directly into the light scattering cells. Light scattering measurements were made at 

21-22 oC on a Brookhaven Research BI-200SM laser light scattering goniometer and 

BI-2030AT digital correlator, using a polarized incident beam of wavelength 632.8 nm 

from a He-Ne laser (35 mW total power). DLS measurements were made at a 90° angle 

with sample times of20 J.lsec over a duration of30 seconds. 
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Table 6.3. Hydrodynamic radii of unmodified dextrans and blue dextrans in 0.200 M 

NaCI (aq) obtained by dynamic light scattering. 

Dextrana 

Dextran T -2000 

Blue dextran 2000161 

Dextran T-500 

Blue dextran 50011 

Dextran T -110 

Blue dextran 11022 

a Subscripts indicate dye ligand density (DS per AGU, 104 ). 

RH (nm) 

37.7 ± 0.8 

40.2 ± 0.8 

17.8 ± 0.3 

18.4 ± 0.7 

7.7 ± 1.2 

30.7 ± 3.1 

To measure the partitioning ofblue dextran and FTIC-dextran among the phases of the 

suspensions, aliquots of each phase were carefully removed and diluted to minimize 

scattering by the cellulose nanocrystals. Concentrations of blue Dx 2000 and FITC-Dx 

2000 in each phase were measured spectrophotometrically using dextran-free cellulose 

nanocrystal suspensions as the reference. 

Tapping-mode atomic force microscopy (TM-AFM) images were obtained using an 

Asylum MFP 3D atomic force microscope (Asylum Research). Aliquots were taken from 

each phase of a triphasic sample (8.7 wt% cellulose nanocrystal suspension containing 

CblueDx2000 = 4.42x 1 0-6 nm-3 and CDxT-2000 = 4.80xlO-6 nm-3
), diluted to about 5xlO-5 wt% 

concentration and dried down onto freshly c1eaved mica, which was attached to a glass 

microscope slide. Samples were scanned under ambient conditions at 160 kHz with scan 

sizes ranging from 2-10 !lm. Ultrasharp NSC 14/ AIBS (MikroMasch) tips have a 
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nominal radius < 10 nrn and a nominal force constant of 5 N/m, as given by the 

manufacturer. Nanocrystallength measurements were obtained from printouts of several 

height mode AFM images for each sarnple. The uncertainty in the AFM length 

measurements is approximately 10-15 nrn. 

6.3 RESULTS 

6.3.1 Triphase equilibrium 

When dextran and blue dextran are added to an 8.7 wt% biphasic cellulose nanocrystal 

suspension (~niso = 0.40), a three-phase coexistence develops (Figure 6.1). The 

appearance of the phases when viewed between partially crossed polarizers (Figure 6.1 b) 

and using polarized light microscopy (Figure 6.2) suggests that the new phase is a dilute 

isotropie phase. No birefringence or "order" is visible in the upper phase, while the 

birefringence seen in the middle phase can be explained by a thin layer of nematic 

ordering on the surface of the glass (cf. Buitenhuis et a1.5). Any tactoids are due to 

incomplete equilibration - it takes at least 24 hours for the phase separation to be distinct, 

and 2 to 3 days for it to near completion. In addition, the upper and middle phases mix 

more easily than the middle and lower phases upon gentle shaking, and the lower phase is 

barely disturbed. Based on its much larger volume fraction, the middle phase corresponds 

to the isotropie phase norrnally observed in biphasic cellulose nanocrystal suspensions. 

The three phases in equilibrium are designated, from top to bottom, as II, h and N. 

197 



Figure 6.1. Sample of 8.7 wt% cellulose nanocrystal suspension containing blue dextran 

2000 (Chlue Dx = 8.3xlO-7 nm-3
) and dextran T-2000 (COx = l.lxl0-5 nm-3

), showing 

separation into three phases: from top to bottom, II, h and N. Photos taken a) in incident 

light, and b) between partially crossed polarizers. 

Figure 6.2. Photomicrographs of a) II, b) h and c) N phases of the sample in Figure 6.l. 

Taken at 10x magnification between 90° crossed polars with 530 nm full-wave 

retardation plate. Streaks and droplets are visible in b) due to ordering at the surface of 

the glass. Characteristic chiral nematic fingerprint texture with approximately 38 J.!m 

pitch is visible in c). Scale bar = 250 J.!m. 
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In cellulose nanocrystal suspensions, mixtures of blue dextran 2000 and dextran T-

2000 induce triphase equilibria at number densities of around 4xlO-7 nm-3 and 

lxlO-6 nm-3
, respectively (Table 6.4). When mixtures of medium-molecular-weight 

dextrans (blue dextran 50049 and dextran T -500) are used, three phases eventually form, 

but at such high dextran number densities that the samples are very viscous (equilibration 

times on the order of days to weeks), limiting the number of data points in the high-

concentration regimes. When mixtures of low-molecular-weight dextrans (blue dextran 

11 0130 and dextran T -11 0) are used, no third phase is seen at similar number densities to 

those used for dextran 2000; before reaching concentrations favoring triphase 

equilibrium, the increasing viscosity and time required for macroscopic phase separation 

render the experiments impractical. 

Table 6.4. Minimum number densities of blue and unmodified dextrans required to 

obtain triphase equilibria in 8.7 wt% cellulose suspension, for dextrans of equal 

molecular weight. 

2000161a T-2000 0.3-0.4 ~1 

50049 T-500 ~25 70-75 

T-IlO 

Phases 

Il + h + N 

Il + h + N 

h+Nb 

a Commercially available blue dextran 2000 (Pharmacia Fine Chemicals). b Dextran 
concentrations so high as to render the suspension too viscous for phase separation are 
reached prior to formation of triphase equilibrium in this system. 

If the triphase equilibrium is caused by the interaction of bidisperse mixtures of 

spherical polymers of different diameter with the colloidal cellulose rods, then a 
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difference in polymer size would be expected to modify the phase behaviour. To test this 

premise, mixtures of blue dextrans and unmodified dextrans of different molecular 

weight were prepared (Table 6.5) and compared with the mixtures of blue dextran and 

unmodified dextrans of equal molecular weight in Table 6.4. 

It can be seen in Tables 6.4 and 6.5 that the number densities ofblue dextran 2000 and 

dextran T -500 required to obtain triphase equilibrium are similar to those needed when 

blue dextran 2000 and dextran T-2000 are mixed, whereas when blue dextran 50049 and 

dextran T-2000 are used, around 30x as much blue dextran and around 15x as much plain 

dextran is required. In addition, triphase equilibrium is observed at much Iower number 

densities (30x less blue dextran and 2x less unmodified dextran) when blue dextran 2000 

is mixed with dextran T-500 than when blue dextran 50049 is mixed with dextran T-2000. 

The molecular weight of the blue dextran species appears to be more important than that 

ofunmodified dextran in determining the "ons et" ofthree-phase coexistence. 

Table 6.5. Minimum number densities of blue and unmodified dextrans required to 

obtain triphase equilibria in 8.7 wt% cellulose suspension, for dextrans of different 

molecular weight. 

Blue dextran Dextran CblueDx (nm-3
, 10-6) C Dx (nm-3, 10-6) Phases 

2000161 
a T-500 0.2-0.4 4-6 Il + h + N 

50049 T-2000 ~ 10-15 ~11-15 Il + h + N 

2000161 
a T-II0 1.6 200 Il + h + N 

110130 T-2000 3.9 12 h+N 

a Commercially available blue dextran 2000 (Pharmacia Fine Chemicals). 
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Mixtures of blue dextran 2000 and dextran T -110 also gtve triphase equilibria at 

relatively high dextran volume fractions, but mixtures ofblue dextran 110130 and dextran 

T -2000 do not. These results suggest that the size of the blue dextran is a determining 

factor in inducing the triphase equilibrium. All the samples in Tables 6.4 and 6.5 have the 

same dye concentration; there are evidently complex interactions among the system 

components that lead to the triphasic equilibrium. 

We prepared samples of similar ionic strength, l, and total number density of dextran as 

previous samples, but without using blue dextran. We also prepared a sample with the 

same total number density of dextran and the same dye concentration using only a blue 

dextran 2000 with a lower dye ligand density (Table 6.6). None of the samples formed 

three phases upon equilibration. 

Table 6.6. Samples of 8.7 wt% cellulose suspension containing oruy unmodified dextran 

or only blue dextran, with dextran number density and ionic strength identical to those 

shown in Table 6.4. 

Blue dextran Dextran CDxtotaI (nm-3
, 10-6

) [dye] (mM) I(M) Phases 

T-2000 5.7 0.0015a I+N 

T-2000 6.2 0.0015a I+N 

200030 6.2 0.37 0.0019 I+N 

a 10 ~L of 0.45 M NaCI(aq) added to 3.00 mL of suspension. 

It should be noted that dissolving blue dextran 2000 and dextran T -2000 in deionized 

water at concentrations similar to those used in the cellulose nanocrystal suspensions, as 

well as much higher concentrations, yielded only homogeneous isotropie solutions. 
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It can be conc1uded from these experiments that both polyelectrolytic blue dextran and 

neutral unmodified dextrans must be present for triphase equilibria to occur. The size of 

the blue dextran also appears to be a deciding factor. 

6.3.2 Phase separation mechanism 

The Il phase separation differs from the N-Iz equilibration. To measure the phase 

separation kinetics, an 8.7 wt% cellulose nanocrystal suspension containing blue dextran 

and unmodified dextran is vortexed until homogeneity is achieved (to), and the initially 

uniform sample is allowed to equilibrate (t > to). As shown in Figure 6.3, the Il phase 

generally separates out within hours (macroscopic droplets move upwards), followed by 

the N and h phases within two to four days, except at high dextranlblue dextran 

concentrations, when equilibration can take much longer (weeks to months) due to the 

high suspension viscosity. 

(1) (II) (III) (IV) 

Figure 6.3. Schematic representation of the evolution of phase separation as typically 

observed in the three-phase coexistence region. (I) to, initially uniform sample; (II) t = 

10-20 min, droplets of Il phase moving upwards (bicontinuous structure of Il and h * 

phases); (III) t = 1-3 hours, well-defined Il phase with metastable h* phase; (IV) t = 48-

96 hours, final Il-h-N coexistence. 
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Our observations are similar to those made by Poon et al. and Renth et al. for hard­

sphere-like sterically stabilized polymethylmethacrylate (PMMA) particles and linear 

polystyrene (PS) in cis-decalin.48-5o The rapidity of the demixing of our Il phase suggests 

that the phase separation proceeds by a spinodal decomposition mechanism.48 

6.3.3 Cellulose nanocrystal fractionation 

TM-AFM images of nanocrystals isolated by evaporation from the Il, h and N phases 

of a triphasic suspension are shown in Figure 6.4. Cellulose nanocrystal lengths L were 

measured for the h and N phases. Nanocrystals in the Il phase could not be imaged 

because of the high pol ymer concentration coupled to the low nanocrystal concentration 

(see the Dextran partitioning section in the Discussion). Nanocrystals from the h phase 

were less well-dispersed than those from the N phase (Figure 6.4), which contained the 

lowest pol ymer concentration and highest cellulose concentration. Length measurements 

were made on the isolated nanocrystals in the 12 phase samples. 

6.3.4 Dextran partitioning 

Blue dextran is known to partition preferentially into the isotropic phase of an I-N 

biphasic cellulose suspension. 27 UV-visible spectroscopy was used to obtain partition 

coefficients for blue dextran in the three phases of one sample. Partition coefficients K = 

c/ca were calculated by dividing the absorbance due to blue dextran in the isotropie 

phases by the absorbance ofblue dextran in the anisotropie phase (Table 6.7).51 

Partition coefficients for the unmodified dextran cannot be measured directly by UV­

visible spectroscopy due to the overlapping absorbance and scattering of the cellulose 

nanocrystals. In order to estimate the partition coefficient for undyed dextran, 

electrostatically neutral FITC-Iabelled dextran of molecular weight 2x 1 06 Da was 
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substituted for the undyed dextran in a sample of cellulose nanocrystal suspension.18 The 

absorbance of the FITC-Dx 2000 was determined at Àrnax = 494 nm by UV-visible 

spectroscopy (Table 6.8). FITC-Dx 2000 number densities were calculated assuming 

10 wt% moi sture and 0.009 moles of fluorescein isothiocyanate per mole anhydroglucose 

monomer.52 The structure ofFITC-dextran is shown in Figure 5.3 in Chapter 5. 
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Figure 6.4. TM-AFM images (height mode) of dilute samples from a triphasic cellulose 

nanocrystal suspension containing blue dextran 2000 and dextran T-2000: a) Il phase 

showing polymer blobs on the mica; b) h phase showing nanocrystaIs; c) and d) N phase 

showing well-dispersed nanocrystals. 
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Table 6.7. Partitioning of blue dextran in a triphasic 8.7 wt% cellulose nanocrystal 

suspension containing blue Dx 2000161 (CblueOx 2000 = 8.2xlO-7 nm-3
) and Dx T-2000 

(COxT-2000 = 1.1x10-5 nm-3
). 

Phase ~hase Dilution factor A 609 
a 

KblueDx 

Il 0.04 100 16.9 34.5 

h 0.69 24 2.02 4.1 

N 0.27 20 0.49 b 

a Absorbances corrected for dilution. b Partition coefficients are relative to blue dextran 
2000161 concentration in the nematic N phase. 

Cellulose concentrations in each phase were determined gravimetrically, subtracting 

the FITC-dextran and blue dextran concentrations found spectrophotometrically. 

Table 6.8. Concentrations of FITC-dextran 2000 (total CFITC-Ox = 2.28x10-6 nm-3
) and 

blue dextran 2000 (total Cblue Dx = 2.72xlO-6 nm-3
) in the three phases of a triphasic 

cellulose nanocrystal suspension (8.7 wt% total cellulose concentration). 

Phase ~hase 

Il 0.34 

h 0.15 

N 0.51 

[FITC-Dx] 
(mg/mL) 

28 

2.2 

1.2 

[Blue Dx] 
(mg/mL) 

29 

2.5 

1.1 

[Cellulose] 
(wt%) 

0.6 

8.4 

14 

0.3 

4.8 

8.3 
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6.4 DISCUSSION 

6.4.1 Triphase equilibrium 

Theoretical predictions and experimental evidence for dispersions of sterically 

stabilized boehmite rods and polystyrene in orthodichlorobenzene, a comparable system, 

suggest that the three phases in equilibrium are, from top to bottom, dilute isotropie (11), 

concentrated isotropie (lz), and chiral nematic (N).5,9,20 The terms "dilute" and 

"concentrated" refer to the relative cellulose nanocrystal concentrations of the phases. A 

diagram of the dependence of the type of phase behaviour of rodlike colloid and flexible 

polymer mixtures on the size parameters of the components is shown in Figure 6.5. The 

theory is not limited to the second viriallevel and is therefore not restricted to very long 

rods and very low polymer concentrations.20 When blue dextran 2000 and dextran 

T -2000 are used as the polymer, the parameters for our system are L ~ 200 nm, 

D = 5-10 nm, and a ~ Rg = 34 nm. Thus, LlD ~ 20-40 and a1D ~ 6.8-13.6. For blue 

dextran 500 and dextran T-500 (Rg = 19.8 nm), we obtain a1D ~ 4.0-8.0. Our systems 

c1early lie in the I1-h-N region of the diagram. However, because the colloidal cellulose 

rods are e1ectrostatically rather than sterically stabilized, their interactions will be 

complicated by repulsion between the charged species, so the diagram may not 

correspond quantitatively to our system. Additionally, the coil-to-polymer diameter ratio 

in our system is somewhat larger than those shown in Figure 6.5; this parameter also 

influences the phase behaviour. For example, the range of the depletion attraction is 

determined by the ratio of the radii of colloidal and polymer spheres.5 

According to the literature, mixtures of relatively short rods and large polymers should 

pro duce I1-h-N phase behaviour,2o but this does not explain why it appears only when a 
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combination of neutral undyed dextran and ionic blue dextran is added to cellulose 

nanocrystal suspensions. Similarly to mixtures of rods and coils, binary mixtures of rods 

(thin and thick or long and short) exhibit much richer phase behaviour than suspensions 

of monodisperse rods.9,53-55 Our system can be considered a temary mixture of rods and 

two sizes of coils: because blue dextran is a polyelectrolyte, presumably it is more 

expanded in solution than the analogous plain dextran, owing to hydration and 

e1ectrostatic repulsion56 - as can be seen in Table 6.3, the hydrodynamic radii of blue 

dextrans are larger than those of unrnodified dextrans of similar molecular weight. 

2.5 

2.0 11-12-N 

alO 1.5 
I-N 

t 1.0 

0.5 

0 
10 20 30 

LlO 

Figure 6.5. Type of phase behaviour shown by mixtures of rodlike colloids and flexible 

polyrners as a function ofthe geometrical pararneters L/D and alD.5,20 Lis the rod length, 

D is the rod diameter and (J'is the diarneter of the polyrner coi!. "Il-h-N" indicates a 

phase diagrarn with two isotropie phases and a nematic phase. Figure adapted from 

Lekk:erkerker and Stroobants.20 
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The triphase equilibrium may arise from the competition of demixing in the binary 

subsystems comprising the temary cellulose-blue dextran-dextran system. Schmidt and 

Denton used density function theory to study the demixing behaviour of a model temary 

system of hard colloidal spheres, ideal pol ymer spheres, and rigid vanishingly thin 

needles.57 Neither the polymer spheres nor the needles interact with themselves; the 

colloidal spheres experience hard core repulsion. That is, the colloid-colloid potential 

energy Vcc = 0 ifthe interpartic1e distance exceeds 2Re; otherwise Vcc = 00. The colloidal 

spheres interact with both the other components via excluded volume. When hard needle­

polymer interactions are allowed, rich phase diagrams with three-phase coexistence and 

re-entrant demixing behaviour are predicted. The demixing behaviour is designated 

colloid-polymer (CP) and colloid-needle (CN). If the polymers are smaller than the 

colloids, e.g. Up = ucl2, a weaker depletion attraction is generated between the colloids at 

a given number density of polymers, and the needles are also long, L = 2ue, a stronger 

depletion is generated between the colloids, then the number density of needles required 

for demixing is reduced. Our system can be considered using the model of Schmidt and 

Denton ifwe take N as the cellulose nanocrystal "needles", P as the blue dextran polymer 

and C as the plain dextran. Similarly to the conditions set by Schmidt and Denton, our 

cellulose needles have L = 120nm > Ue = 68nm, and the polye1ectrolytic blue dextran 

polymer has Up > Ue for plain dextran. The NP interaction of the cellulose "needles" with 

the blue dextran pol ymer due to repulsive electrostatic forces (instead of hard core 

interactions as mode1ed by Schmidt and Denton) is also likely to be stronger than the 

dextran-blue dextran CP interactions in this system. Schmidt and Denton also noted that, 
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"The temary region ... grows solely out of the N-rich-poor coexistence, whereby CP 

coexistence is only a spectator, separated by mixed states."57 

The theory Asakura and Oosawa devised to explain the depletion effect is a first-order 

approximation, as they assumed that no direct interaction existed between the colloidal 

particles and macromolecules (i.e., at low concentration).13 In reality, the depletion 

attraction is the short-range component of a more general effect caused by adding 

macromolecules to a suspension of colloidal particles.58 When interactions between 

nonadsorbing macromolecules are taken into account, longer-range repulsions at higher 

depletant concentrations are observed.58-60 At lower depletant concentrations, 

flocculation or demixing is induced, whereas at higher concentrations, depletion 

stabilization prevents demixing.59,60 Higher-order concentration effects are particularly 

important for polyelectrolytes because of their larger effective volume fraction. 60 

ExperimentallY and theoreticallY' the depletion interactions of polyelectrolyte species 

are not as well understood as those of neutral polymers.61 Any depletion attraction 

produced outside the depleted volume will be counteracted by repulsive double-layer 

interactions from within, leading to a complex net force that depends on the interstitial 

ionic structure.58 Force balance studies of mixtures of like-charged colloids and flexible 

polymers (e.g., nanocrystals and blue dextran) have shown that the ion-averaged, 

screened coulombic repulsion between the particles magnifies the effective depletion 

interaction between them.22,58-60 Long-range electrostatic repulsion between particles is 

found to greatly increase the range and magnitude of the depletion interaction as 

compared to hard core interactions between neutral particles.12,13 

The effect of attractive depletion forces on the phase behaviour of rodlike particles 
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depends on the axial ratio L/D and polydispersity of the rods.20,21 Polydispersityalways 

increases the range of the depletion interaction; at constant number density of neutral 

partic1es, increasing polydispersity increases the magnitude of depletion attraction, while 

the opposite effect is seen at constant volume fraction.22 For charged partic1es, the 

situation is reversed, with increasing polydispersity slightly decreasing the magnitude of 

the interaction at constant number density. The cellulose nanocrystals in our suspensions 

are quite polydisperse (see Figure 6.6), which may further increase the complexity of the 

interactions and phase behaviour. 

6.4.1.1 Blue-to-plain dextran ratio required to obtain l] phase Irom IrN equilibrium 

Consistently, smaller amounts of blue dextran than undyed dextran are required to 

produce the formation ofthe Il phase (Tables 6.4 and 6.5), in agreement with the findings 

by Asakura and Oosawa for charged macromolecules. 13 For the most part, the II-Iz-N 

and Iz-N equilibria exist at blue-to-plain dextran number density ratios smaller than 1, 

while II-N equilibrium exists at ratios greater than 1. 

Similar ratios ofblue to plain dextran are necessary to obtain formation of the Il phase 

for homogeneous mixtures of dextrans of molecular weights 2000 and 500 kDa 

(Table 6.4), suggesting that the ratio is independent of dextran molecular weight or size. 

The high viscosity of the 110-kDa-dextran samples prevents calculation of the ratio 

required for low-molecular-weight dextran. 

6.4.1.2 Effect 01 dextran molecular weight on phase equilibrium 

The data in Table 6.4 show that unmodified and blue dextrans of molecular weight 

500 kDa are large enough (RH ~ 20 nm) to induce formation of the Il phase. The range of 

depletion forces depends on the macromolecule size,13 so it is not surprising that, 
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compared to dextrans 2000 (RH ~ 40 nm), higher concentrations of dextrans 500 are 

necessary to obtain the triphase equilibrium of a given suspension. In Figure 6.6, the alD 

ratio for dextrans 500 lies doser to the boundary separating phase diagrams with two 

isotropic phases from those with only one. Dextrans of molecular weight 110 kDa are 

apparently too small (RH ~ 10 nm for unmodified dextran T -110) for the depletion forces 

to overcome the electrostatic forces at these dextran concentrations. Phase separation was 

very slow: the much higher ratios of blue dextran 110 to dextran T -110 that would be 

required to give triphase equilibrium would make the sample too viscous for phase 

separation. 

The nature of the effect of dextran molecular weight on the phase equilibrium is not 

dear. It seems evident that if the triphase equilibrium were caused by the interaction with 

the colloidal cellulose rods of bidisperse mixtures of spherical polymers of different 

diameter, then an increase in the difference in polymer size would have a noticeable 

effect on the induction of triphase equilibria. However, this did not happen (see Tables 

6.4 and 6.5), suggesting that the dextran molecular weight does not, in itself, play a 

deciding role in goveming the phase equilibrium. However, differences in molecule 

shape as dictated by molecular weight, may play a role. It is known, for example, that as 

their molecular weight increases, dextran molecules become more symmetrical,33,62,63 

The shape of the depletant greatlY affects the interpartide potential energy; prolates with 

an axis ratio of 5 increase the depth of the secondary energy well, as compared to spheres 

(axis ratio = 1) at constant volume fraction. At constant number density, however, 

depletant shape does not have as strong an effect on the dispersion stability.60 The lower 

symmetry of the smaller dextrans may therefore contribute to the complexity of 
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interparticle interactions. 

6.4.2 Cellulose nanocrystal fractionation 

The partitioning of longer particles into the anisotropie phase upon phase separation of 

a polydisperse suspension of rodlike colloids was first predicted by Onsager2 and has 

been used to fractionate (i.e., obtain more monodisperse fractions) a variety of rodlike 

colloidal particles.29,31,53,64 Depletion attraction has been found to enhance size 

fractionation between coexisting phases of platelike colloids.l9 Figure 6.6 shows that 

some partitioning of the longer nanocrystals into the N phase has occurred, the average 

length ofthe nanocrystals being significantly greater than that ofthose in the h phase. No 

data was obtained regarding the length of the nanocrystals in the Il phase; it is assumed 

that they are shorter, as cotton cellulose nanocrystals produced under the hydrolysis 

conditions employed here average around 200 ± 30 nm in length,31 which is shorter than 

the overall average value found to be 222 ± 68 nm for aIl the nanocrystals measured in 

the h and N phases. Cellulose nanocrystal concentrations differ among the phases in the 

triphase equilibrium, and are discussed in the next section. 
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Figure 6.6. Distribution of particle length L of cellulose nanocrystals for the a) h and b) 

N phases of a triphasic cellulose nanocrystal suspension containing blue dextran 2000 

and dextran T-2000. 
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6.4.3 Dextran partitioning 

Random coil polymers and spherical colloids tend to be excluded from an anisotropic 

phase made up of rodlike particles, in order to preserve its orientationally ordered 

structure. This phenomenon has been found to occur for numerous experimental systems, 

includingp-benzamide and X-500,65 TMV and PEO/BSA,66 bacteriophage fd virus and 

polystyrene,16 and K-carrageenan and dextran.67 Blue dextran has been found to partition 

preferentially into the isotropic phases of the triphasic samples.27 For a sample in the blue 

dextran 2000/dextran T -2000 system, the partition coefficients for partitioning of blue 

dextran between the N-II-and N-h phases are KN1 = 34.5 and KNJ = 4.1, respectively 
1 2 

(Table 6.9). Partitioning between the two isotropic phases is stronger even than 

partitioning between the N and h phases (KI 1 ~ 8.5), indicating a marked preference of 
2 1 

the blue dextran for the dilute isotropic phase. Blue dextran 2000 partitioning from the N 

phase into the Il phase is much stronger than partitioning into the isotropic phase of 

biphasic I-N cellulose nanocrystal suspensions,27 for which the partition coefficient 

ranges from 1.5 to 7.6. These values are comparable to the N-12 partition coefficients 

observed in this study. 

Theoretical partition coefficients for blue dextran in cellulose suspensions have been 

calculated using equation 6.1 38 

(6.1) 

where Brc is the second viriai coefficient of the rod-coil interactions (the order of 

magnitude of which is given by Brc - LD1/3 Ri3
) and Ca and Ci are the number densities 

of the cellulose rods in the nematic and isotropic phases, respective1y. Sear's theory38 is 
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applicable to our system because the radius of gyration of of the dextran is much greater 

than the diameter of the cellulose nanocrystals. Theoretical and experimental partition 

coefficient values for the FITC-dextran and blue dextran 2000 in a triphasic cellulose 

nanocrystal suspension are presented in Table 6.9. 

Table 6.9. Theoretical and experimental values of the partition coefficients for FITC-

dextran 2000 (total C = 2.28x10-6 nm-3
) and blue dextran 2000 (total C = 2.72x 1 0-6 nm-3

) 

in triphasic 8.7 wt% cellulose nanocrystal suspension. 

Phases Ktheor/ Kexp FITC-Dx Kexp blueDx 

II-N 2.1 24 28 

Iz-N 1.4 1.9 2.3 

II-Iz 1.5 13 12 

a Parameters used to calculate Ktheory: Rg = 34 nm; L = 200 nm; D = 10 nm; C~ll 

5.0xl0-6 nm-3
; C::ll = 3.0xlO-6 nm-3

; and C:!ll = 0.2x 1 0-6 nm-3
• 

Although the experimental partition coefficients are in general much larger than 

predicted by the theory, they follow the same trend, in that N-It partition coefficient is 

largest, followed by Iz-Il and finally the N-Iz partition coefficient. Sear's theory has 

previously been found to underestimate the partition coefficients, the discrepancy being 

due to the fact that the theory gives an order of magnitude only.27 

How are the three components (cellulose nanocrystaIs, dextran, and blue dextran) 

distributed among the three phases of a triphasic sample? According to Schmidt and 

Denton, when aIl the binary subsystems of a needle-colloid-polymer temary mixture are 
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demixed, " .. .it is evident that the system will ultimate1y display coexistence between 

three phases, each one enriched by one of the components ... ".57 Spectroscopic 

measurements tell us that the Il phase is (greatly) enriched in blue dextran compared to 

the other two phases. The nematic phase contains the highest cellulose concentration 

(14.3 wt%), the lowest cellulose concentration (0.6 wt%) being found in the least dense Il 

phase. Although the values found are reasonable, they are only accurate to about 

± 2 wt%. The difference in the h and N cellulose concentrations is larger than the 

difference observed in biphasic suspensions, which is explained by the presence of the 

second isotropic phase. Cellulose concentrations in the different phases also depend on 

the concentration of added macromolecule, as predicted by Floryll and observed for the 

blue dextran 2000-cellulose system.27 The cellulose concentration of the h phase 

(8.4 wt%), however, is only slightly lower than the total cellulose concentration of 

8.7 wt%, similarly to the 1 phase in previous work on biphasic suspensions, which was 

about 0.3 to 1.3 wt% lower than the total concentration.27 According to the theory of 

Schmidt and Denton,57 the middle h phase should be enriched in undyed dextran. 

However, FITC-dextran 2000 was found to be most abundant in the Il phase. 

The exclusion of blue dextran 2000 from the nematic phase is not complete (non-zero 

absorbance at Âmax CB = 609 nm is observed for the nematic phase; see Tables 6.8 and 

6.9). Sorne blue dextran coils are therefore able to be incorporated into the ordered 

structure of the liquid crystalline nematic phase. This behaviour has been seen by Adams 

et al. for the lamellar phase of bacteriophage fd virus and polystyrene,16 as weIl as by 

Edgar and Gray for blue dextran 2000 and cellulose nanocrystals,27 where the lower 
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nematic phase showed distorted fingerprint textures and many disc1inations relative to a 

dextran-free nematic phase. 

6.5 CONCLUSIONS 

Within certain concentration ranges, aqueous mixtures of blue dextrans, undyed 

dextrans and cellulose nanocrystals produce three-phase coexistence of a dilute isotropie 

(Il), a concentrated isotropie (h) and a chiral nematic (N) phase. To the best of our 

knowledge, this represents the first triphasic equilibrium of cellulose nanocrystal 

suspensions to exhibit two isotropie phases. The separation of the Il phase appears to 

follow a spinodal decomposition mechanism. The molecular weight of the 

macromolecules, in particular that of the blue dextrans, has a significant effect on the 

macromolecule concentrations needed to pro duce the II-12-N phase behaviour. 

Partitioning of longer cellulose nanocrystals into the N phase relative to the 12 phase is 

observed, in agreement with theoretical predictions. Blue dextran and FITC-dextran 

partition very strongly into the Il phase compared to the h and N phases. While the 

interactions governing the equilibria are not c1ear, phase formation could result from the 

complex interplay of electrostatic and entropie forces. 
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Chapter 7 

Triphase Equilibria in Cellulose Nanocrystal Suspensions 

Containing Neutral and Charged Macromolecules. 

Phase Diagrams 
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7.1 INTRODUCTION 

Within a narrow concentration range, suspensions of rodlike cellulose nanocrystals 

obtained by acid hydrolysis undergo entropically-driven phase separation based on the 

excluded volume effectl -3 as predicted by Onsager for anisotropic colloidal partic1es.4 

Such systems can display rich phase behaviour; triphase isotropic-nematic-nematic 

(I-N-N) equilibria have been observed in suspensions of colloidal boehmite partic1es5,6 

as weIl as in suspensions of tunicate cellulose whiskers.7 It has been found that added 

partic1es or macromolecules of different shapes can further enrich the phase separation 

behaviour of such suspensions of rodlike colloidal partic1es, leading to the formation of 

multiple phases.8-11 An isotropic-isotropic-nematic (I-I-N) phase equilibrium has been 

observed upon the addition of a combination of blue dextran and unmodified dextran of 

high molecular weight to cotton cellulose nanocrystal suspensions (Figure 7.1).12 Blue 

dextran partitions strongly into the upper isotropic (Il) phase, which is very dilute in 

cellulose nanocrystals; the lower nematic phase is enriched in cellulose but contains far 

less dextran. The middle isotropic (h) phase contains intermediate concentrations of both 

cellulose and pol ymer. To our knowledge, no I-I-N equilibrium has been previously 

reported in cellulose nanocrystal suspensions. 

The present chapter examines the phase behaviour for vanous dextran/blue 

dextran/cellulose nanocrystal systems and investigates the effect of variables such as 

dextran molecular weight and degree of dye substitution, and cellulose concentration on 

the appearance of the associated phase diagrams. The previous chapter describes the 

formation of the triphase equilibrium as weIl as the partitioning of the dextrans among the 

phases. 
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Figure 7.1. Vials of triphasic Il-h-N cellulose nanocrystal suspension (8.7 wt%) 

containing blue dextran 2000 (from left to right, 0.45 to 2.50xl0-6 nm-3
) and dextran 

T-2000 (5.3xlO-6 nm-3
). The preferential partitioning ofblue dextran into the Il phase is 

evident. The volume fraction of the Il phase increases from left to right as more blue 

dextran 2000 is added. 

7.2 EXPERIMENTAL METHOnS 

Dextrans T-II0, T-500, T-2000 and blue dextran 2000 were purchased from Pharmacia 

Fine Chemicals. Cibacron Blue 3G-A (55 % dye content) was purchased from Sigma­

Aldrich. Whatman ashless cotton cellulose powder was purchased from Cole-Parmer. 

Sulfuric acid (95-98 %) for hydrolysis was purchased from Fisher Scientific. AlI water 

used was purified using a Millipore Milli-Q purification system. Further samples of blue 

dextrans and cellulose nanocrystal suspensions were prepared and characterized, and 

their phase compositions were measured, as described previously.12 
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7.3 RESULTS AND DISCUSSION 

7.3.1 Phase diagram 

When a combination of high molecular weight dextran and blue dextran is added to a 

biphasic I-N cellulose suspension, a three-phase Il-h-N coexistence develops.12 Figure 

7.2 presents a detailed diagram of the phase behaviour of cellulose nanocrystal 

suspensions containing blue dextran 2000 and dextran T -2000. AlI measurements were 

taken after several weeks to allow sufficient time for equilibration of the more viscous 

samples. The phase diagram is restricted to number densities below 4xlO-5 nm-3 dextran 

and 1.2xl0-5 nm-3 blue dextran; above these limits, the viscosity of the samples rend ers 

the phase separation kinetics impractical. Around 200 samples were prepared for the 

phase diagram in Figure 7.2. 

For the ranges of dextran concentration used, the majority of the sampI es are triphasic. 

At low blue dextran concentrations, the suspensions remain h-N biphasic, while at 

higher blue dextran concentrations and low dextran concentrations, the suspensions 

become II-N biphasic. The boundary between the 12-N and II-N coexistences (line 

indicated by * in Figure 7.2) is somewhat arbitrary, as no distinct transition was seen 

when adding blue dextran 2000 at low dextran T -2000 concentration. The designations 

h-N and II-N were assigned according to the relative volume fractions of the three 

phases upon reaching triphase equilibrium. For example, in Figure 7.4, the h phase 

dominates the triphasic sample, so the initial and final biphasic sampI es are designated 

h-N; in contrast, the Il phase dominates the initial triphasic sample Figure 7.6. Using this 

nomenclature, there will be a continuous change from h-N to II-N coexistence, rather 

than a sharp boundary. 
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Figure 7.2. Phase diagram for 8.7 wt% cellulose nanocrystal suspension containing blue 

dextran 2000 and dextran T -2000. Dotted line indicates equal number densities of dextran 

and blue dextran. The boundaries between the regions of the phase diagram are intended 

as a guide to the eye. Sorne data points have been omitted for c1arity. Compositions of 

phases along the arrows are shown in Figures 7.4 to 7.6 below. Shaded areas correspond 

to mixtures ofblue dextrans of different DS; see text. 

As described in Chapter 6, smaller amounts of polyelectrolytic blue dextran are 

necessary for the formation of the Il phase compared to undyed dextran.12 The dotted line 

in Figure 7.2 indicates equai number densities of blue and unmodified dextran 2000; the 

Il-h-N and h-N equilibria mostly lie above the dotted line, while II-N equilibrium lies 

below the Hne. 
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7.3.2 Re-entrant phase behaviour 

An interesting feature of the phase diagram in Figure 7.2 is the re-entrant h-N ~ 11-

h-N ~ h-N phase behaviour observed with increasing plain dextran concentration at 

low blue dextran concentration. The re-entrant portion of the phase diagram is shown at 

higher resolution in Figure 7.3. As dextran T-2000 is added to a suspension containing a 

given concentration of blue dextran 2000, the Il phase appears, increases in volume 

fraction, then decreases in volume fraction and disappears (Figure 7.4). At the same time, 

the N phase decreases in volume fraction. 
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Figure 7.3. Area of phase diagram showing re-entrant h-N ~ II-h-N ~ 12-N phase 

behaviour for 8.7 wt% cellulose nanocrystal suspension containing blue dextran 2000 and 

dextran T-2000. The boundaries between the regions of the phase diagram are intended as 

a guide to the eye. 
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Figure 7.4. Example ofre-entrant Iz-N ~ II-Iz-N ~ Iz-N phase behaviour for 8.7 wt% 

cellulose nanocrystal suspension containing 8.2x10-7 nm-3 blue dextran 2000 and dextran 

T-2000 increasing from 0 to 2.0x10-s nm-3 (concentrations correspond to arrow AB in 

Figure 7.2). As more dextran T-2000 is added, the N phase volume fraction decreases and 

the Iz phase volume fraction increases; the Il phase increases and then decreases in 

volume fraction before disappearing. 

Re-entrant phase behaviour has been observed in both thermotropic and lyotropic 

molecular liquid crystal systems. 13 However, it is not well understood, particularly for 

lyotropic liquid crystalline systems. The only lyotropic liquid crystalline system in which 

the phenomenon is observed is the potassium laurate/decanol/water system,14 for which 

re-entrant isotropic-discotic nematic phase transition was first documented by Yu and 

Saupe in 1980.15 

It should be noted that the "re-entrant" h-N biphasic suspension has a smaller volume 

fraction of N phase than the initial biphasic sample. This may be due to depletion 

attractions caused by the dextran; the ionic strength due to the sulfonate groups on the 

dye ligands and their sodium counterions is around 1.4 /-lM, comparable to values at 
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which blue dextran has been observed to induce greater phase separation than that 

produced in equal ionic strength suspension containing only free CB dye. 16 A similar 

phenomenon was also reported by Dogic and Fraden for suspensions of fd virus 

containing dextran of molecular weight 500 kDa. 17 

7.3.3 Effect of increasing blue dextran concentration 

Adding blue dextran 2000 to a biphasic h-N cellulose nanocrystal suspension 

containing dextran T-2000 affects the phase coexistences as follows (Figure 7.5): 

a) Initially, the h phase volume fraction increases while the N phase volume fraction 

decreases. Eventually the Il phase forms. 

b) The h phase volume fraction continues to decrease, eventually disappearing, while 

the Il phase increases in volume fraction. The N phase also increases in volume 

fraction. 

c) Finally, the Il phase volume fraction continues to increase while the N phase again 

decreases in volume fraction (not shown in Figure 7.5). 

The phase coexistences corresponding to a), b) and c) are h-N, II-h-N and II-N, 

respective1y. 

Adding blue dextran to a biphasic h-N cellulose suspension containing a fixed quantity 

of undyed dextran results in the development of the triphase 11-12-N equilibrium, 

followed by the II-N equilibrium. The blue dextran concentration is fairly low at the first 

formation oftriphase equilibrium, as shown in Figure 7.2, arrow CD. The initial increase 

in h phase volume fraction with a corresponding decrease in N phase volume fraction 

probably results from a combination of (1) the higher ionic strength due to the charged 

dye ligands on the blue dextran and the resulting increase in critical cellulose 
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concentration required for phase separation, and (2) destabilizing attractive depletion 

forces, both of which would tend to favor the fonnation of Iz phase. 

Once the Il phase appears, the decrease in volume fraction of the Iz phase with 

increasing blue dextran concentration indicates that the Il phase is more favorable than 

the Iz phase. Increasing blue dextran appears to favor demixing to give the Il phase: The 

stability of the N-Il equilibrium is enhanced relative to that of the N-Iz equilibrium as the 

blue dextran concentration increases. 

b-N 
---------~---------

-h 
Db 
DN 

C Increasing blue dextran concentration ~ D 

Figure 7.5. Example of phase behaviour for 8.7 wt% cellulose nanocrystal suspension 

with dextran T -2000 number density = 2.2x 1 0-5 nm-3 and increasing blue dextran 2000 

number density (concentrations correspond to arrow CD in Figure 7.2). 

The observed decrease in N phase volume fraction as the blue dextran number density 

continues to increase is most likely due to the increasing ionic strength due to the dye 

ligands. Depletion attraction is also a possibility, as oscilla tory interactions which depend 

on the interpartic1e distance between the depletants (and hence on their concentration), 
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have been seen18 but we cannot verify the occurrence ofthis phenomenon in our samples, 

as the sample viscosity becomes prohibitive at such high blue dextran concentrations. 

7.3.4 Effect of increasing dextran concentration 

At blue dextran concentrations favoring re-entrant phase behaviour, adding increasing 

quantities of dextran T-2000 to a mixture of cellulose nanocrystal suspension and blue 

dextran 2000 causes the Il phase to appear, increase in volume fraction, then decrease and 

disappear, while the 12 phase increases slightly in volume fraction and the volume 

fraction of the N phase decreases somewhat overall (see Figure 7.4). 

At blue dextran concentrations lying in the II-N ~ II-Iz-N region of the phase 

diagram (i.e., at Chlue Dx ;?: 2xlO-6 nm-3
), increasing the dextran concentration leads to a 

decrease in the volume fraction of the Il phase and formation of the Iz phase as the 

triphase equilibrium is reached. The volume fraction of the N phase also decreases, as 

would be expected due to depletion-induced phase separation. Figure 7.6 shows the phase 

behaviour of samples with Chiue Ox = 2.7xlO-6 nm-3
• Because the volume fraction of II 

phase decreases with increasing dextran concentration, it is like1y that the Iz-N 

coexistence region would be reached at higher dextran concentrations if sample viscosity 

permitted. 

Increasing the concentration of the electrostatically neutral dextran should theoretically 

increase the magnitude of the depletion attraction.19 However, the presence of 

polye1ectrolytic blue dextran may complicate the situation even though its number 

density is held constant for these experiments. Phase behaviour in the re-entrant Iz-N ~ 

II-Iz-N ~ Iz-N region of the phase diagram may be an example of this interplay 

between the attractive depletion and repulsive e1ectrostatic forces. 
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Figure 7.6. Example of phase behaviour for 8.7 wt % cellulose nanocrystal suspension at 

blue dextran 2000 number density = 2.7xl0-6 nm-3 and increasing dextran T-2000 number 

density (concentrations correspond to arrow EF in Figure 7.2). 

7.3.5 Effect of cellulose nanocrystal concentration 

A series of samples was prepared using a cellulose suspension of lower concentration 

(6.3 wt% cellulose; ~niso = 0.29). The nematic phase almost disappears upon addition of 

dextran T-2000, leaving mostly h phase (Figure 7.7). The phase diagram in Figure 7.8 

shows that, in comparison with Figure 7.2, more blue dextran 2000 is needed to obtain 

triphase equilibrium when the suspension is more dilute. 

In order to determine whether triphase equilibrium was attainable starting from a 

monophasic suspension, two series of dilute (complete1y isotropie) suspensions with 

increasing cellulose concentration were prepared and dextran T-2000 and blue dextran 

2000 were added (Table 7.1). The dextran concentrations were comparable to those used 

in the 8.7 wt% cellulose suspensions, as were the blue-to-plain dextran ratios used (0.3 

and 0.5 in Series 1 and II, respective1y). 
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Figure 7.7. Relative volume fractions of the phases obtained when blue dextran 2000 and 

dextran T-2000 were added to a dilute nanocrystal suspension containing 6.3 wt% 

cellulose with ~aniso = 0.29. The number density ofblue dextran is 8.3xlO-7 nm-3 and the 

dextran T-2000 number density increases from 0 to 1.3xl0-5 nm-3 (concentrations 

correspond to arrow GR in Figure 7.8). 
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Figure 7.8. Partial phase diagram for dilute biphasic (6.3 wt%; ~aniso = 0.29) cellulose 

suspension. The boundary between the regions of the phase diagram is intended as a 

guide to the eye. 
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At the dextran concentrations used in the first series, it can be seen that triphase 

equilibrium was not obtained until the cellulose concentration reached 6 wt%. The 

second series showed triphase equilibrium in all but the most dilute cellulose suspension, 

which was biphasic Il-N, because of the higher dextran concentrations (Figure 7.9). In 

both series, it is evident that the number density ratio of (total) dextran to cellulose 

necessary for triphase equilibrium increases with decreasing cellulose concentration. 

Table 7.1. Effect of cellulose nanocrystal concentration on dextran and cellulose number 

densities required to obtain triphase equilibrium. 

Series 
[Cellulose] 

Phases CblueDx 
a 

C Dx 
a 

Ccell 
a 

CblueDxfCDx CDxtotfCcell (wt%) 

2.0 Iz 1.6 5.5 1.1 0.3 6.5 
/'--

2.5 Iz 1.6 5.4 1.4 0.3 5.0 

3.0 Iz 1.6 5.5 1.7 0.3 4.2 
1 

3.5 Iz 1.6 5.4 2.0 0.3 4.3 

4.0 Iz 1.6 5.3 2.3 0.3 3.0 

6.0 II-Iz-N 1.6 5.6 3.4 0.3 2.1 

2.0 It-N 5.9 11.5 1.1 0.5 15.8 

2.5 II-Iz-N 5.9 11.5 1.4 0.5 12.8 

II 3.0 II-Iz-N 5.9 11.5 1.6 0.5 10.9 

3.5 II-Iz-N 5.9 11.5 1.9 0.5 9.2 

4.0 II-Iz-N 5.9 11.5 2.2 0.5 7.9 

a Number density in nm-3, 10-6. 

236 



b-N Irb-N 

--------~--------

• 11 

[J .. 12 

D N 

2.0 wt% 2.5 wt% 3.0 wt% 3.5 wt% 4.0 wt% 

Figure 7.9. Relative volume fractions of the phases obtained when blue dextran 2000 and 

dextran T-2000 (Cblue Dx = 6.0x10-6 nm-3 and CDx = 1.2x10-5 nm-3
) were added to dilute 

cellulose suspensions (concentrations in wt% indicated). 

The cellulose nanocrystal suspension evidently does not have to be biphasic for 

triphase equilibria to occur, since isotropie suspensions at cellulose concentrations well 

below the I-N transition show triphase equilibria upon addition of dextran and blue 

dextran. This is similar to experimental evidence found by Koenderink et al.,20 who 

observed a depletion-induced phase transition in a mixture of colloidal silica spheres and 

silica-coated boehmite rods at rod concentrations well below the isotropic-nematic 

transition. Anisotropie rods give rise to larger attractions than equivalent volume 

fractions of spheres because ofthe much higher rod number density,21 which may explain 

the ability of the dilute suspensions to phase separate. As the cellulose suspension 

becomes more dilute, however, a higher total dextran-to-cellulose ratio is required to 

obtain three-phase coexistence (Table 7.1). 

It is known that electrostatic interactions stabilize mixtures of charged colloids and 

polymers against depletion-induced phase separation, and that increasing the range of the 
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electrostatic interactions enhances the stabilization.22,23 The more dilute cellulose 

suspensions contain fewer total surface sulfate groups and their associated counterions in 

solution, and therefore have lower ionic strengths, which reduces the screening of 

electrostatic interactions between charged macromolecules. This has a weakening effect 

on the (neutral or charged) pol ymer depletion-induced attraction between cellulose 

nanocrystals, ultimately resulting in increased stability toward demixing. In addition, 

since the nanocrystals themselves are farther apart in dilute suspensions, higher 

concentrations of macromolecular depletant would be needed to increase the strength of 

the depletion attraction to the point where phase separation occurs. (We can also predict 

that molecular weight effects will be stronger in the dilute suspensions, because the range 

of depletion attraction is dependent on this variable; if the nanocrystals are farther apart, 

the equilibrium will be more sensitive to the range of the attraction force.) 

7.3.6 Blue-to-plain dextran ratio required to obtain Il phase from 12-N biphasic 

equilibrium 

The ratio of blue dextran to plain dextran appears to have an important effect on the 

phase equilibria observed. As the concentration of added plain dextran increases, the ratio 

of blue dextran 2000 to plain dextran T-2000 required for the initial formation of the 

triphase equilibrium decreases greatly, starting at about 2.00 and leveling off at 0.06 

(Figure 7.10). 
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Figure 7.10. Blue-dextran-to-dextran ratio required for the formation of II-I2-N 

equilibrium in 8.7 wt% cellulose nanocrystal suspension. 

7.3.7 Effect of dextran molecular weight 

Phase diagrams for mixtures of medium molecular weight dextrans are shown in Figure 

7.11. The triphase coexistence region for mixtures ofblue dextran 500 and dextran T-500 

(Figure 7.11a) is shifted to higher number densities of both blue dextran and plain 

dextran relative to mixtures of blue dextran 2000 and dextran T-2000 (Figure 7.2). In 

contrast, mixtures ofblue dextran 2000 and dextran T-500 (Figure 7.11b) are shifted only 

slightly toward higher number densities of plain dextran. Finally, mixtures of blue 

dextran 500 and plain dextran T-2000 are shifted to higher number densities for both 

types of dextran (Figure 7.11c), although not to as great an extent as for the 

"homogeneous" dextran 500 mixture in Figure 7.11 a. As mentioned above and in Chapter 

6, the molecular weight of the blue dextran used seems to dominate the phase behaviour, 

determining when the formation of the triphase equilibrium occurs. Undyed dextran also 

has an effect, but to a much lesser degree. The phase diagrams in Figure 7.11 are not 

complete, owing to the difficulty of working at the necessary higher dextran 

concentrations (higher sample viscosities). 
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Figure 7.11. Phase diagrams for 8.7 wt% cellulose nanocrystal suspension containing a) 

blue dextran 500 and dextran T-500; b) blue dextran 2000 and dextran T-500; and c) blue 

dextran 500 and dextran T-2000. The boundaries between the regions of the phase 

diagram are intended as a guide to the eye. Note: the phase diagrams are not on identical 

scales. 
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The previous chapter shows that dextrans ofhigh and medium moiecular weights (500-

2000 kDa) induce formation ofthe Il phase, while dextrans oflow moiecular weight (110 

kDa) do not induce formation of the Il phase in the concentration range studied. Higher 

concentrations of the smaller dextrans are required, as the range of depletion forces 

depends on the macromoiecule size. 19 These differences are reflected in the phase 

diagrams in Figure 7.1l. 

7.3.8 Effect ofblue dextran charge density 

Blue dextrans 2000 having low ligand densities (blue Dx's 200016, 200018, 200036 and 

200056) were used instead of unmodified dextran T-2000 in mixtures with highly­

substituted commercial blue dextran 2000161 and 8.7 wt% cellulose nanocrystal 

suspension at two different number density combinations. For comparison with the blue 

Dx 2000161IDx T-2000 system, the number density combinations are indicated by shaded 

areas in Figure 7.2. At dextran concentrations corresponding to the shaded square, 

triphase equilibrium was observed only when blue dextran 200016 was used, the other 

blue dextrans with higher degrees of substitution aIl yielding biphasic I-N suspensions. 

However, at higher blue dextran/dextran concentrations corresponding to the shaded 

circ1e in Figure 7.2, aIl the samples showed triphase equilibrium. It can be conc1uded that 

a minimum difference in charge density between the two blue dextrans is necessary for 

triphase equilibrium to occur at a given number density of each pol ymer species. In other 

words, the triphase coexistence regions of the phase diagrams for combinations of blue 

dextrans shift to higher concentrations of each macromolecular component as the 

difference in their charge density diminishes. This phenomenon may aiso partially 

explain the shift to higher concentrations between the phase diagrams when unmodified 
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dextran T -2000 is used (cf. Figures 7.2 and 7.11 c), as blue dextran 50049 has a smaller DS 

and therefore smaller charge density than commercial blue dextran 2000161. 

7.4 CONCLUSIONS 

Within certain concentration ranges, aqueous mixtures of blue dextrans, undyed 

dextrans and cellulose nanocrystals produce a three-phase Il-h-N coexistence. To the 

best of our knowledge, this represents the first triphasic equilibrium of cellulose 

nanocrystal suspensions to exhibit two isotropie phases. The molecular weight of the 

macromolecules, in particular that of the blue dextrans, appears to govem the 

macromolecule concentrations needed to produce the Il-h-N phase behaviour. Re­

entrant I2-N ~ Il-h-N ~ h-N phase behaviour as weIl as regions of h-N and II-N 

biphase coexistence are seen. For mixtures of blue dextrans with different levels of dye 

substitution, there exists a threshold difference in charge density above which the triphase 

equilibrium develops. Triphase equilibrium is also obtained upon addition of unmodified 

and blue dextrans to dilute (isotropie) cellulose suspensions. While the interactions 

goveming the equilibria are not clear, phase formation could result from the complex 

interplay of e1ectrostatic and entropie forces. 
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Chapter 8 

General Conclusions 



CONCLUSIONS 

It has been the objective of this thesis to gain a better understanding of the interactions 

between colloidal rods and polymer coils and the macroscopic phase behaviour which 

results from them. To this end, an in-depth examination of phase separation phenomena 

in cellulose nanocrystal suspensions containing dextran-dye derivatives has been carried 

out. The dextran polymer was chosen to have monomer segments which chemically 

resembled the surface of the cellulose nanocrystals. Incorporation of the relatively small 

number (10-3-10-2 per dextran monomer) of anionic aromatic dye units into the polymer 

chain produced significant effects that impacted the results in almost every chapter. 

While e1ectrostatic effects were dominant, hydrophobic interactions were also important, 

as were the generalized rod-coil mixing effects that were the initial motivation for this 

work. 

Softwood and hardwood pulps yield similar nanocrystals in terms of dimensions and 

surface charge density when hydrolyzed with sulfuric acid under identical conditions. 

Increasing the hydrolysis time and acid-to-pulp ratio measurably affects the nanocrystal 

length distributions and suspension phase separation behaviour (e.g., the critical 

concentration for formation of anisotropic phase), which depend particularly on the acid­

to-pulp ratio, increasing with greater amounts of acid. The chiral nematic pitch of the 

anisotropic phase decreases with increasing hydrolysis time and acid-to-pulp ratio, 

indicating an increase in chiral interactions, possibly due to higher surface charge density. 

Surface charge density of cellulose nanocrystals is not as sensitive to hydrolysis 

conditions and may be controlled by other factors. 
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The physico-chemical properties and polyelectrolytic nature of blue dextran were 

established by various characterization methods; blue dextrans have significantly 

different properties from their unmodified counterparts. Increasing the solvent ionic 

strength causes a decrease in the intrinsic viscosity of solutions of blue dextrans. The 

ionic dye ligands cause the specific refractive index increment to increase relative to the 

values for unmodified dextrans, and also lead to an increase in molecular weight, as 

shown by UV-visible spectroscopy and GPC-LS measurements. The polymer coil 

dimensions ofblue dextrans are also increased by the ligands, although the simultaneous 

hydrophobic and ionic natures of the dye are at odds with each other. 

The separation of an isotropic phase from completely anisotropic cellulose nanocrystal 

suspensions upon addition ofblue dextran is attributed to the anionic dye ligands attached 

to the dextran. The ionic strength of the suspension increases, raising the critical cellulose 

concentration required for phase separation and screening inter-rod electrostatic 

repulsions, thereby allowing depletion attractions caused by dextran macromolecules to 

dominate. 

Blue dextran partitions preferentially into the isotropic phase of biphasic, isotropic­

chiral nematic cellulose nanocrystal suspensions. The partition coefficient K varies with 

the total blue dextran concentration and the degree of dye substitution, as well as the size 

(Rg) of the dextran, in agreement with theoretical predictions. That is, Kel appears to 

dominate the partitioning behaviour of blue dextran. Nonionic FITC-dextran does not 

partition preferentially in this system, presumably due to lack of ionic groups on the dye 

ligand. 
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Within certain concentration ranges, aqueous mixtures of blue dextrans, undyed 

dextrans and cellulose nanocrystals produce a three-phase II-Iz-N coexistence. To the 

best of our knowledge, this represents the first triphasic equilibrium of cellulose 

nanocrystal suspensions to exhibit two isotropie phases (one dilute and one concentrated). 

The molecular weight of the macromolecules, in particular that of the blue dextrans, has a 

significant effect on the macromolecule concentrations needed to produce the triphase 

equilibrium. In addition, the difference in the charge density (determined by the degree of 

dye substitution, DS) oftwo blue dextrans also determines the component concentrations 

at which triphase equilibrium develops, larger differences favouring the formation of Il 

phase. Re-entrant Iz-N ~ II-12-N ~ I2-N phase behaviour as well as regions of I2-N 

and II-N biphase coexistence are seen. While the interactions goveming the equilibria are 

not c1ear, phase formation must result from the complex interplay of electrostatic and 

entropie forces. 

ORIGINAL CONTRIBUTIONS TO KNOWLEDGE 

(1) An addition to the knowledge base on the effect of hydrolysis conditions on the 

dimensions and surface charge density of cellulose nanocrystals deriving from 

wood pulp, in particular from black spruce and eucalyptus, was made. 

(2) A range of physico-chemical properties (viscosity behaviour, radii of gyration and 

hydrodynamic radii, specifie refractive index increments) for a selection of blue 

dextrans of variable molecular weights and dye loading were measured for the first 

time, there being no in-depth studies in the literature. 

(3) The polyelectrolytic nature of blue dextran tumed out to be an important factor in 

induced phase separation and partitioning, as the ionic groups have significant and 
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somewhat unexpected consequences for the phase behaviour of cellulose 

nanocrystal suspensions to which this macromolecule is added. The experiments in 

Chapter 4 reveal that, contrary to the initial belief, blue dextran cannot be treated 

simply as neutral "nonadsorbing", "noninteracting" macromolecules when added to 

cellulose nanocrystal suspensions. The increased ionic strength of the suspension 

drives the phase separation (and partitioning). 

(4) The partitioning of blue dextran in cellulose nanocrystal suspensions has been 

found to have a significant electrostatic contribution; the partitioning does not 

depend solely on entropie (depletion) factors. 

(5) Triphase isotropic-isotropic-nematic equilibria were observed for the first time in 

cellulose nanocrystal suspensions. It was determined that the addition of blue 

dextran and unmodified dextran in certain proportions to cellulose nanocrystal 

suspensions yields this triphase equilibrium. The molecular weight and relative 

degree of dye substitution of the blue dextrans appears to strongly affect the onset 

of the triphase equilibria. Phase diagrams for several systems were constructed. The 

concentration of cellulose nanocrystals determines the relative volume fractions of 

the three phases at a given concentration ofblue dextran and dextran. 

SUGGESTIONS FOR FUTURE WORK 

Further physico-chemical characterization ofblue dextran should be carried out in order 

to clarify the hydrophobie and ionic contributions of dye ligands to the hydrophobie and 

polyelectrolytic character ofblue dextran. 
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This will lead to a better understanding of the behaviour of cellulose nanocrystal 

suspensions containing the macromolecule. In particular, more in-depth viscosimetric 

studies should be performed in solvents ofvarying ionic strength and counterion type. 

To study the effective depletion attraction caused by the dextran portion of the blue 

dextran macromolecule, the electrostatic repulsion of the cellulose nanocrystals should be 

screened by an excess of a simple ionic salt, such as NaCI, KCI, CsCI, etc. The difficulty 

lies in finding a range of "added" ionic strength which will not excessively increase the 

suspension viscosity or cause gelation of the suspension. Once this range is found, 

dextran and blue dextran may be added to complete1y anisotropic suspensions of varying 

"added ionic strengths" and their effect on the induced phase separation determined. The 

effect of the total ionic strength of the (biphasic) suspension on the partition coefficient of 

the blue dextran should also be measured. 

In view of the effect of blue dextran DS on the triphase equilibria in cellulose 

nanocrystal suspensions, the effect of the surface charge density of cellulose nanocrystals 

on the induced phase separation behaviour and partitioning of blue dextrans should be 

studied. To e1ucidate the contribution of electrostatic repulsions (Kel) to the partitioning 

of blue dextrans, nanocrystal suspensions of varying surface charge densities can be 

prepared by varying the hydrolysis conditions under which they are produced. SimilarIy, 

the effect of nanocrystallength on phase separation and partitioning can also be studied 

(for example, tunicate whiskers, which have a much greater axial ratio, could be used). 

Different dextran-dye derivatives can be produced, incIuding Dx-Reactive green 19, 

Dx-Reactive red 4 and Dx-Rhodamine B isothiocyanate (see be1ow), all of which are 

sold by Sigma-Aldrich. These dextrans can also, presumably, be prepared from the dyes 
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and unmodified dextrans according to the procedures given in this thesis. While CB has 

three anionic sulfonate groups, Reactive green 19 and Reactive red 4 both have four. In 

addition, they may be able to adsorb differently onto the cellulose nanocrystals because 

their structure is different from CB. Rhodamine B isothiocyanate may be particularly 

interesting because it is positively-charged, which may make it bind more strongly or 

even irreversibly to the nanocrystals. These dextran derivatives may be used to measure 

the effect of the charge on the dye ligands, both on partitioning and induced phase 

separation. For example, the extent to which Kel controls the partitioning may be studied 

by synthesizing and using dextran-dye derivatives with very low DS. Hydrophobically 

modified polyelectrolytic dextrans are another interesting possibility which may permit 

the hydrophobie association to be studied, if different dyes, sorne with small 

chromophores and sorne much larger with many aromatic groups, are used to colour the 

dextrans. 
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To study in greater detail and with greater precision the effect of dextran size on the 

extent of its partitioning, blue dextrans of different molecular weight with identical dye 

loadings (assuming random distribution of dye) should be used. Assuming the dye ligand 

will not bind to the enzyme, dextranases may be used to "cut up" blue dextrans into 

different sizes. Partitioning and induced phase separation can then be studied and the 

results compared to theoretical predictions. 

A broader view of the effects of polyelectrolytes on the phase behaviour of cellulose 

nanocrystal suspensions should be obtained. Polymers which do not contain bulky, 

hydrophobic/ionic dye ligands and varying charge density could be used. The suspension 

pH could be altered to vary the charge density on the polymers (although this also affects 

the suspension phase separation behaviour, so co-polymers with different contents of the 

charged monomers could also be used). The effect of charge density on partitioning and 

induced phase separation could then be studied. These experiments may also elucidate 

the role of the bulky aromatic dye group in the experiments performed in this thesis. 

The most promising area for future in-depth study is the triphase equilibrium observed 

when blue and undyed dextrans are added to cellulose nanocrystal suspensions. Three-

dimensional phase diagrams having axes defined by blue dextran, dextran and cellulose 
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nanocrystal concentrations would provide more detailed information, particularly 

regarding the one-phase (isotropic) region at low cellulose nanocrystal concentration. A 

detailed systematic investigation of the role of dextran molecular weight should be 

carried out with acid-hydrolyzed dextrans and blue dextrans. Different polyelectrolytes 

may also be used as described above to further determine the role of pol ymer charge 

density as well as polymer. In addition, the effect of cellulose nanocrystal charge density 

should be investigated in conjunction with its effect on phase separation and partitioning 

as described above. Finally, microscopy and laser light scattering studies can be used to 

determine the kinetics and mechanism of phase separation, as well as the nature and 

morphology of the phases. 
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