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Abstract 

Java Virtual Machines provide a layer of abstraction supporting any services required 

for the execution of Java programs; from the viewpoint of Java programs, a Java Virtual 

Machine is a kind of "virtual hardware". However, fundamentally, any job of this virtual 

hardware is done by the real low level hardware, and behavioural changes in the virtual 

hardware are eventually reflected by performance variations in the real hardware. Inves

tigating the real hardware performance is thus important for understanding the behaviour 

of higher levels, including virtual machines themselves and the Java programs they run. 

Hardware information also has significant potential for optimizing Java Virtual Machines 

and achieving better runtime performance for Java programs. 

In this thesis, we introduce a series of adaptive optimizations in a Java Virtual Machine 

based on hardware information. We investigate the recurrent behaviour apparent in hard

ware data and detect the recurrent, periodic phases, i.e., the repetitive behaviour, in high 

level program execution. These phase detection results can be used for a variety of purposes 

including optimization and program understanding. For example, phase data can be used 

to select only the representative portions in program execution for runtime profiling. This 

selective profiling technique achieves a similar accuracy to that of the continuous profiling 

with a significant workload reduction. Based on further hardware investigation results we 

roughly divide the lifetime of a program into different phases and dynamically apply ap

propriate hot method recompilation strategies which generally improve performance and 

demonstrate a real world optimization using our technique. Hardware information can also 

bring benefits to the selection of better garbage collection points. We implement a collec

tor with a garbage collection point analytic model based on our hardware data analyzer and 

provide a deep study of the relative factors in collection point selection. 
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Our approach and set of techniques highlight a problem for optimization development 

and a design that adaptively compensates. As hardware performance becomes an increas

ingly important factor it becomes a greater consideration in the construction of runtime 

environments, including Java Virtual Machines. We are able to show in our work that 

hardware monitoring can be the basis of both high level understanding and many new op

timizations. 
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Resume 

Les machines virtuelles Java fournissent une couche d'abstraction soutenant tous les 

services exiges pour l'execution de programmes en Java; du point de vue des programmes 

en Java, une machine virtuelle Java est un genre de « materiel informatique virtuel ». Ce-

pendant, fondamentalement, n'importe quel travail de ce materiel virtuel est fait par le vrai 

materiel de bas niveau et des changements comportementaux du materiel virtuel sont par 

la suite refletes par les variations d'execution dans le vrai materiel. L'etude de la vraie 

performance du materiel informatique est ainsi importante pour la comprehension du com-

portement des niveaux plus eleves, y compris les machines virtuelles elles-memes et les 

programmes en Java qu'elles executent. L'information extraite du materiel informatique a 

un potentiel signficatif d'etre utile pour 1'optimisation des machines virtuelles Java et pour 

realiser de meilleures performances d'execution pour les programmes en Java. 

Dans cette these, nous presentons une serie d'optimisations adaptatives dans une ma

chine virtuelle Java qui sont basees sur de l'information provenant du materiel informa

tique. Nous etudions le comportement recurrent evident dans des donnees de materiel infor

matique et detectons les phases recurrentes et periodiques, c.-a-d., le comportement reitere 

dans l'execution de haut niveau du programme. Ces resultats de detection de phase peuvent 

etre employes a une variete de fins, y compris 1'optimisation et la comprehension de pro

grammes. Par exemple, des donnees de phase peuvent etre employees pour considerer 

seulement les parties significatives dans l'execution de programme pour le profilage d'execu

tion. Cette technique de profilage selectif permet d'atteindre une exactitude comparable a 

celle du profilage continu avec une reduction significative de la charge de travail. En se 

basant sur d'autres resultats de recherche sur le materiel informatique, nous divisons ap-

proximativement la vie d'un programme en differentes phases et nous appliquons dynami-
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quement des strategies de recompilation de methode appropriees de type « sur le fait» (hot 

strategies) qui, generalement, ameliorent la performance et demontrent une optimisation 

reelle, en utilisant notre technique. L'information du materiel informatique peut egalement 

apporter des avantages quant au choix de meilleurs points de recuperation de memoire 

(garbage collection). Nous mettons en application un recuperateur avec un modele analy-

tique des points de recuperation de memoire base sur nos donnees de materiel informa

tique et fournissons une etude profonde des facteurs relatifs dans le choix des points de 

recuperation. 

Notre approche et notre ensemble de techniques mettent en lumiere un probleme du 

developpement d'optimisation ainsi qu'un concept qui compense de maniere adaptative. 

Comme 1'execution au niveau du materiel informatique devient un facteur de plus en plus 

important, elle est davantage prise en consideration dans la construction d'environnements 

d'execution, y compris les machines virtuelles Java. Nous montrons dans ce travail que des 

mesures sur le materiel informatique peuvent servir a comme fois la base de comprehension 

a haut niveau ainsi que pour plusieures nouvelles optimisations. 
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Chapter 1 

Introduction 

Java [GJSBOO] has become one of the most popular general purpose programming lan

guages in the past decade. Java requires a specific runtime system, the Java Virtual Machine 

(JVM) [LY99], to support its platform independence and security attributes. Just as indi

cated by the name, the JVM is an abstract machine or a layer of virtual hardware. The 

performance of the JVM, however, can be influenced by a number of factors, including the 

Java program specific behaviour, the implementation details of the virtual hardware. (JVM) 

and the impact of the actual hardware components. In fact, the impact of subtle hardware 

related issues on JVM performance is much bigger than intuition may lead one to think. 

In this thesis, we investigate the impact of hardware on JVM performance. Following 

a detailed study of hardware and other VM performance concerns, we demonstrate a de

sign for extracting high level behavioural data from low level hardware performance data. 

Based on this design we are able to implement a variety of novel JVM optimizations and 

analyses that exploit high level variable length repetitive program phases. This improves 

both program performance and understanding, and in general shows the strong connection 

between low level hardware performance and high level VM behaviour. 

1.1 Motivation 

Java offers a set of benefits in platform independence, runtime flexibility and security over 

traditional imperative languages such as C/C++. All these benefits are provided by the Java 
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Introduction 

Virtual Machine, which is an extra layer between application programs and the operating 

system. The design and implementation of JVMs is currently quite complex, involving 

many layers of optimization and adaptivity. The JVM performance actually depends on 

a variety of factors [GVG06]. Some of the factors are surprisingly unintuitive. From our 

study of JVM performance, we have found that the impact of hardware is often much more 

significant than may be commonly assumed. Many virtual machine level problems or pro

gram inherent behaviours are eventually reflected by performance variations in hardware 

components. In other words, there exists a tight relation between hardware performance 

and program execution [LSP+05]. Hardware information can be a good indicator of pro

gram runtime behaviour and hence be used to detect program behaviour variations. Fortu

nately, hardware performance counters are widely available in modern processors. A great 

deal of microarchitecture level information is thus procurable and can be used for program 

understanding and adaptive optimization. 

Both of these two facts, the close relation between hardware performance and program 

behaviour and the existence of efficient hardware monitoring, motivate our work using 

hardware information to improve adaptive optimizations in JVMs. If simple and easily 

obtained hardware data is indicative of program behaviour then it can also be used for 

optimization and analysis. We begin our work by detecting program repetitive behaviour, 

or recurrent phases, based on the analysis of hardware information data. We translate 

the problem of high level program recurrent behaviour detection into low level repetitive 

hardware performance detection. Raw hardware data is gathered, coarsen and investigated. 

Based on these phase analysis results, a set of high level adaptive optimizations can be 

applied. 

We examine that use and value of this hardware-based data on three new high level 

optimization techniques. These optimizations demonstrate both how this sort of data can, 

be used and the relative impact or value expected. 

Runtime profiling is a critical technique for understanding dynamic program behaviour 

and provides the basis for further adaptive optimizations. It is well known that programs 

are highly repetitive, and most of the execution time is spent in a small portion of code. It 

is thus not necessary to keep on profiling across the whole execution to get an accurate or 

representative profiling result. With recurrent phase information, we can choose the most. 

2 



1.2. Contributions 

valuable portions to do selective profiling. 

Hot method recompilation is another essential technique in developing highly efficient 

JVMs. The recompilation strategy of a JVM is important for the overall performance. 

Fixed recompilation strategies are straightforward and usually work well. However, dy

namic strategies based on the status, or the phase, of a program execution can improve 

performance and thus are more desirable. Supported by our hardware phase analysis, we 

develop a dynamic recompilation strategy which better adapts to the runtime program be

haviour. 

Garbage collection is one of the hot topics in JVM research and development. Data on 

high level program behaviours may also be useful for optimizing collection performance. 

For instance, selecting garbage collection points (more) optimally can potentially eliminate 

a large portion of garbage collection workload, and program patterns of execution relate to 

use of memory. Program behaviour transition points are thus good for collection; new 

phases heuristically indicate a change in the liveness of a large number of objects. Our 

hardware performance detector can thus help the garbage collector to postpone or anticipate 

a collection until the next large program behaviour variation point. 

With hardware performance data, we can get a better understanding of program be

haviour. Using hardware data to support optimizations in JVMs is the main theme of our 

work. In our efforts, we highlight the importance and prove the feasibility of taking the 

hardware information into consideration in the design and implementation of JVMs. Other 

than the three concrete applications listed above, many other optimizations can benefit from 

hardware information. The improvement space is of course still large, and includes many 

aspects of program understanding as well as performance. 

1.2 Contributions 

This work contributes to program behaviour analysis and Java Virtual Machines in three 

tiers as shown in Figure 1.1. Each prior tier motivates and serves as a base of the imple

mentation of the later tier. Each later tier works as an application and also a validation to 

the previous tier. 

We begin this work with hardware performance monitoring and analysis. We find that 
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Performance Analysis 
and Hardware Impact 

Phase Detection 

Selective 
Profiling 

Adaptive 
Recompilation 

Garbage Collection 
Point Selection 

Runtime Applications 
> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . j 

Figure 1.1: Summary of contributions. 

hardware components can impact program behaviour significantly and can thus be con

sidered as an indicator of variation in program behaviour. We then developed an online 

phase detection technique that uses our hardware performance data. Three concrete run

time optimizations based on our hardware phase analysis results have also been designed 

and implemented. The benefits we obtained from these optimizations prove the correctness 

of our phase detection technique, which in turn confirms that there exists a tight relation 

between hardware performance and runtime program behaviour. 

• Performance Analysis and Hardware Impact 

The performance of modern virtual machines can be influenced by a number of fac

tors. We investigate and categorize the relative factors which are essential for objec

tive performance measurement of Java Virtual Machines. We experimentally demon

strate the significant impact of the hardware components on the overall performance, 

and in particular their surprising and often unexpected magnitude. This investiga

tion also motivates our later work in detecting program phase behaviour based on 

hardware information analysis. 

• Runtime Phase Detection 

4 



1.2. Contributions 

We develop a runtime phase detection algorithm based on hardware performance 

data analysis. Our technique focuses on the identification of variable length recur

rent phases in program execution, a novel and complex form of phase data not previ

ously examined or exploited. To situate our analysis and design, we further explore 

the area of phase analysis and categorize phase detection problems and the corre

sponding techniques. We emphasize the importance of detection and provide a new 

pair of evaluation metrics for recurrent phase detection. We implement three runtime 

applications based on our hardware event analysis. 

• Selective Profiling 

We develop a selective runtime profiling mechanism that can reduce the profiling 

workload to half while preserving the accuracy of profiling results. This technique 

is a runtime optimization by itself, as well as a concrete proof of the effectiveness of 

our online phase detection. 

• Adaptive Recompilation 

Adaptive recompilation is a key factor in the implementation of highly efficient Java 

Virtual Machines. Employing our hardware phase detection scheme, we have devel

oped a novel hot method recompilation mechanism which exhibits both low overhead 

and good overall performance and demonstrates a general improvement over other 

designs. We implement this phase aware recompilation strategy in Jikes RVM; how

ever, the fundamental idea can be helpful for any multiple-level optimization system. 

• Garbage Collection Point Selection 

The selection of garbage collection points is an interesting and challenging problem. 

Significant benefit can be achieved by choosing optimal collection points. We de

velop an automatic collection points selection algorithm for copying collectors. The 

hardware performance data is used to move the collection point to a better heuristi-

cally predicted moment. We study the detailed behaviour of this collector and pro

vide potential improvement directions that advance the research of garbage collection 

point selection further. 
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Introduction 

1.3 Thesis Overview 
In this thesis we mainly study the challenges and opportunities of using hardware infor

mation to explain and improve JVM performance. The structure of the JVM and modern 

hardware are critical background knowledge to our work. We thus provide background 

knowledge about hardware components, Java Virtual Machine and our base system, Jikes 

RVM in Chapter 2. We then study a large number of relative factors for JVM performance 

analysis in Chapter 3. The relation between hardware performance and program behaviour 

are investigated and experimentally demonstrated. This result motivates our further work, 

using hardware information to detect recurrent periodic phases in program execution. 

Phase detection is a rather wide area. In Chapter 4, we investigate the phase detection 

problem and corresponding techniques. We use the entire chapter to give an overview of the 

phase detection problem. Typical phase detection solutions are described and categorized. 

We also provide our opinion on this problem and make claims as to the importance of 

detecting different types of phases, especially recurrent, periodic phases, whose importance 

is not yet emphasized in current literature. This chapter introduces many related works of 

Chapter 5 in which we describe our hardware data based online phase detection technique 

in detail. 

In the later half of the thesis, we present three runtime adaptive optimizations based on 

our hardware phase analysis results. Each of them has an individual, structural complete 

chapter with introduction to the question, the most important and recent related works, the 

concrete implementation details, the experimental results, the discussion and the chapter 

summary. The three runtime applications, selective profiling, adaptive recompilation and 

garbage collection point selection are introduced in Chapters 6, 7 and 8 respectively. 

Finally, we conclude the entire thesis and present directions for future improvements in 

Chapter 9. 
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Chapter 2 

Background 

We apply adaptive optimizations in a Java Virtual Machine based on hardware infor

mation. Several hardware components in microprocessors can potentially largely impact 

program execution. We gather and investigate the performance data of these hardware com

ponents. The analysis results are used to apply adaptive optimizations appropriately. We 

use Jikes RVM as the base Java Virtual Machine to realize our strategy. In this chapter, we 

will first give an introduction to the most important background knowledge of our work, 

including: 

• A concise introduction to the architecture of modern microprocessors, and details 

about the memory hierarchy, branch predictors, and hardware performance monitors. 

• An overview of the fundamental structure of the Java Virtual Machine. 

• A brief introduction to Jikes RVM. Jikes RVM is a complex system with many com

ponents and a variety of interesting features. Among the components, the adaptive 

optimization system, the hardware performance monitoring unit and the memory 

management toolkit have a tight relation with our work. We thus explain their struc

ture and functionality in detail. 

The rest of this chapter is organized as follows: In Section 2.1, we introduce the archi

tecture of hardware components that can have a large impact on program performance. An 
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Background 

overview of the organization of JVMs in general is given in Section 2.2. A specific dis

cussion of Jikes RVM, including the adaptive optimization system, hardware performance 

monitoring subsystem and the memory management toolkits is in Section 2.3. Finally, we 

summarize this chapter in Section 2.4. 

2.1 Hardware Components 

Our work is based on monitoring and investigating low level hardware information. There

fore, we first introduce the structure and functionality of modern microprocessors, espe

cially the components that are able to significantly influence the behaviour of the running 

programs. 

A modern computer is a complex system composed of four main structural compo

nents [Sta99]; central processing unit (CPU), main memory, I/O system and system inter

connection. The CPU controls all operations and performs data processing functions. As 

the core of the whole computer system, the speed of the CPU is considered as an important 

factor to the overall system's performance. However, the CPU needs to read inputs and 

instructions from memory and to store the results back to memory via system interconnec

tions. Usually, the later can not match the fast pace of the CPU. Therefore, the statement 

"the gap between the CPU and the memory system" occurs frequently in research papers 

about the architecture and performance optimization of computer systems. Hardware de

signers add internal memory, i.e., caches, to alleviate the problem. At the same time, the 

memory requirements of today's programs becomes larger and larger, tending to exceed 

the capacity of physical memory. Virtual memory is thus widely used. We thus have a 

multiple-layer memory system, spanning from registers, on-chip caches (LI caches), exter

nal caches (L2+ caches), and main memory, to virtual memory. Hardware components in 

each of these layers can have an impact on the final performance, specially the caches and 

translation lookaside buffer. These hardware components narrow the speed gap between 

the CPU and the memory system. However, the words "the gap between the CPU and the 

memory system" still keeps its high overall relevance since making these components per

form well turns out to be a difficult issue. Due to the large impact of memory hierarchy on 

runtime performance, we give a thorough introduction about it in Section 2.1.1. 
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Other than on-chip caches, the other major components inside a CPU are the control 

unit, the arithmetic and logic unit (ALU), registers and CPU interconnection. The execu

tion of one instruction includes several steps: instruction fetch, instruction decode, register 

fetch, execution/effective address, memory access, and data write back [PH90]. Pipelining 

is an implementation technique whereby multiple instructions are overlapped in execution. 

It is one of the key techniques to make fast CPUs. Modern processors often are very deeply 

pipelined. However, the benefit of pipelining can be seriously damaged by branch instruc

tions. The instruction fetcher may have no idea of which instruction to fetch next until the 

branch instruction is retired. One solution is to make a guess of the address of the next 

instruction, or the target of the branch; accurate guessing is the task of branch predictors 

in deeply pipelined processors. Obviously, the correctness rate of the branch predictors 

is essential to the performance of processor. Hence, branch predictor is another hardware 

component which can have a large impact on overall processor performance. A more de

tailed introduction to branch predictors can be found in Section 2.1.2. 

Monitoring the performance of the underlying hardware components can be very help

ful for explaining the behaviour of the processor and the running program. The microar

chitecture level hardware monitoring system can be a powerful tool to locate performance 

bottlenecks and discover optimization opportunities. Fortunately, modern processors often 

provide a specific component namely the performance monitoring unit (PMU), or hardware 

counters. The PMU provides a set of low level hardware information that is worthwhile 

for investigating program behaviour. We thus introduce the structure and functionality of 

PMU, the software library for accessing PMU data and the development of PMU in new 

generation processors in Section 2.1.3. 

2.1.1 Memory Hierarchy 

Memory access latency is a major performance bottleneck in modern computers. Improve

ments in memory access speed have not kept pace with the improvements in speed of 

processors. For this reason, architecture designers put a fast, relatively small memory layer 

of cache between the fast processor and the slow main memory. Caches keep the most 

useful data for the processor. The system first copies the data required by the CPU from 
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main memory into the cache(s) and then loads the data into a register in the CPU. The 

data store action goes the opposite direction. Depending on the cache architecture specific 

implementation, the data is either immediately copied back to memory (write-through), or 

deferred (write-back) [PH90]. To amortize the cost of the memory transfer, more than one 

element is loaded into the cache each time. The basic unit of transferring is named as cache 

line. Accessing a single data element brings an entire line into the cache. 

Faster 

CPU 

I 
Level 1 Cache 

Level 2 Cache 

I 
Main Memory 

TLB 

Page Table 

Virtual Memory 

Larger 

Figure 2.1: Multiple levels of memory system. 

As shown in Figure 2.1, multiple levels of caches are used in most architectures. The 

higher the level, the farther away the cache is from the CPU. In most systems, a higher 

level cache has a larger size and usually slower access speed. Level 1 (LI) cache is on-

chip, whereas the higher level(s) is external to the microprocessor. 

Caches have a certain organization and a replacement policy. The organization, or 

mapping scheme of a cache describes in which way the lines are organized within the 

cache. The replacement policy dictates which line will be evicted from the cache in case 
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an incoming line must be placed somewhere in the cache. 

According to different cache mapping schemes, caches can be categorized into three 

types: 

• Direct Mapped 

Direct mapped is a simple and efficient organization. Each line from the main mem

ory has a unique place in the cache where it can reside. Implementing a direct 

mapped cache is straightforward, and is relatively simple. The placement policy 

is built-in since the victim line is fully determined by the address of the new line. 

This organization has the downside of replacing a cache line which will be visited 

again shortly. 

• Fully Associative 

The fully associative design solves the potential problem of direct mapped caches. 

The replacement policy is no longer a function of the new line's address. The new 

line can take any position in the cache. In a fully associative system, typically the 

oldest cache line is evicted from the cache which is called least recently used (LRU). 

The downside of a fully associative organization is cost. The larger the capacity of 

the cache, the larger the cost to track the usage of lines. Typically, only on very small 

caches is a fully associative design is of practical efficiency. 

• Set Associative 

Set associative design is widely used in popular processors. Set associative caches 

can be considered as a group of several, typically a small value of power of 2, {i.e., 

2, 4, 8) direct mapped caches. A cache controller is responsible to determine which 

direct mapped cache, or set, a new line should go in. Within the set, a direct mapped 

scheme is used to allocated a slot for the new line. 

Set associative design can significantly reduce the address conflict problem in di

rect mapped design with a lower cost than fully associative design. Most modern 

processors use set associative caches, especially for higher level caches. 
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A cache miss refers to a failed attempt to read or write a piece of data in the cache, 

which results in a main memory access with much longer latency. Cache misses can be 

separated into compulsory misses, capacity misses and conflict misses. Compulsory miss 

is something unavoidable. However, the density of capacity miss and conflict miss can 

vary according to different designs and application-specific characteristics. Both data and 

instruction cache miss density potentially have a significant impact on overall program per

formance. In [GVG05b], the authors show a situation that large density of data cache miss 

changes the performance of a garbage collector. Similarly, code layout is another important 

factor for performance measurement. Code layout changes the program performance via 

changing the instruction cache miss density. Moreover, the sensitivity of applications to 

cache performance is program specific. In previous work [GVG06], we study the cache 

bias of a set of regular Java programs and show the different sensitivity to data and instruc

tion cache performance variations. 

Compared with the size of cache, the capacity of main memory is large. However, 

modern programs often require tremendous amount of memory resource. It is usual that 

main memory does not have the capacity to hold the data associated with a very large 

program, or a large number of programs coexist in the machine at the same time. In this 

case, we have to break things down into pieces and move the pieces into and out of main 

memory. In other words, we need a way to associate the blocks in main memory with 

location of the same data on outernal storage device, e.g., hard disks. We thus need a 

virtual memory system. 

Whereas caches are used to boost performance in a transparent fashion, virtual memory 

is used mainly for convenience. Virtual memory provides the illusion of memory that is 

much larger than the available physical memory. Programs using a large virtual memory 

address space can be executed on systems with varying amount of physical memory. How

ever, the virtual memory address must be translated to physical memory before instructions 

or data are sent to the CPU. 

The access unit in a virtual memory system is page, which is similar to the concept of 

cache line in cache memory. A two-stage process is often used for memory access: a. page 

table is consulted to find out whether a required page is in memory and if so, where it is 

located then the actual memory access is performed or, in the case of a page fault, access 
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from disk is initiated. While a program is in execution, the start address of its page table is 

stored in a special page table register [Par05]. The virtual page number is used as an index 

into the page table and the corresponding entry is read out. 

Page table access essentially increases the memory access delay. This is because ac

cessing a word in memory requires two operations: one to the page table and one to the 

word itself. In order to reduce this time penalty, the translation lookaside buffer (TLB) is 

used to keep the record of the most recent address translations. As illustrated in Figure 2.1, 

when a virtual address is to be translated to a physical address, the TLB is consulted first. 

TLB can be considered as a special type of cache dedicated to page table entries. Typically, 

a TLB has tens to thousands of entries, with the smaller size being fully associative and 

larger ones having lower degrees of associativity. 

Both cache and TLB reduce the memory access latency greatly when there is a "hit". 

However, cache misses or TLB misses can be a big factor for performance reduction. In

vestigating the data reflecting the performance of these hardware components can help us 

understand the program performance problems and discover further optimization opportu

nities. 

2.1.2 Branch Prediction 

Predicting the targets of branches is essential to the performance of a deeply pipelined 

processor. Branch prediction enables the processor to begin executing instructions long 

before the branch outcome is certain. Branch delay is the penalty that is incurred in the 

absence of a correct prediction. Today, all state-of-art microprocessors have some form 

of hardware support for dynamic branch prediction. All types of near branches, including 

conditional, unconditional, calls and returns, and indirect branches, can be predicted by 

these predictors. 

The branch prediction subsystem always contains at least three distinct predictors for 

three main classes of branches: 

• Conditional Branch Predictor returns a boolean (taken or not taken) for each con

ditional branch. 

• Branch Target Buffer (BTB) predicts indirect branch targets. 
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• Return Address Stack (RAS) predicts return instruction based on prior calls. 

Note that it is not necessary to predict the target of unconditional branches since the 

address of the target is explicitly encoded. 

Hardware branch prediction strategies have been studies extensively. Some of the best 

known techniques are Gshare prediction [McF93], bimodal branch prediction [oCS95], 

and YAGS prediction [EM98]. Basically, prediction schemes use local or (and) global his

tory information as an index to a prediction table with limited size. At the same time, the 

impact of branch predictors on performance have been studied. Such as in [GZD02], the 

impact of branch prediction on dynamic dispatch techniques is investigated. Our phase pre

diction scheme is also a table-based solution, sharing some similarity in prediction strategy 

with branch predictors. 

2.1.3 Hardware Performance Monitoring Unit 

Most modern microprocessors provide a set of special purpose registers that keep track of 

programmable hardware events at every cycle. This support can be logically viewed as a 

single hardware component called the performance monitoring unit (PMU). The interface 

of the PMU consists of a set of dedicated registers that can be programmed to count oc

currences of certain microarchitecture events, such as the number of elapsed cycles, the 

number of instructions executed, or the number of cache/TLB/branch prediction misses. 

Although the implementation varies largely on different concrete processors, we still can 

roughly divide these registers into performance monitoring data counters (PMD), which 

collect hardware event data, and performance monitoring configuration registers (PMC), 

which configure what is to be monitored. 

Extending the PMU 

The PMU provides specific data which describes the hardware performance of the under

lying platform. It has many uses, including program understanding, system bottleneck 

detection, runtime optimizations, system reconfiguration and system safety. The PMU has 

received great attention from both academic researchers and the industry. Since its intro-
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duction in the Intel Pentium processor, the functionality of the PMU in modern processors 

has become more and more complete and complex. 

Several Intel IA32 platforms [Int02] provide two 40-bits hardware counters, allowing 

two events to be monitored simultaneously. An extra 64-bit time stamp counter (TSC) is 

also included to measure the relative time in machine cycles. The AMD Athlon proces

sor provides four 48-bit counters [AMD01]. A large extension is introduced in Pentium 

4 processor. The Pentium 4 supports 48 event detectors and eighteen 40-bit event coun

ters [Spr02], enabling the concurrent collection of a larger set of performance event counts. 

Event detectors control the selection of events and the qualification of event detection by 

privilege mode (OS and/or USER) and thread ID. The Pentium 4 also provides several 

instruction-tagging mechanisms that enable counting non-speculative performance events, 

e.g., events generated by instructions that retire. On the most recent designs of micropro

cessors, there are further extensions to the PMU. Many interesting features which poten

tially can bring great benefit has been introduced. For example, on the Intel IA64 Itanium 

processor, the major additional features include [ME01]: 

• Opcode Matching: Monitoring can be constrained to certain instructions, based on 

their encoding or based on the execution unit they use. 

• Address Range Checking: The PMU can be programmed to record events only 

when they occur within a certain range of data or code addresses. 

• Event Thresholding: An event is recorded only when the occurrence number is 

larger than a certain threshold per cycle. 

• Event Address Registers (EAR): The PMU can record cache or TLB events misses 

by data accessors or instruction fetches. Each sample collects the address where the 

miss happened. 

• Branch Trace Buffer: A trace of the executed branch instructions can be recorded. 

Up to four branches can be recorded in the buffer, and for each, the source and target 

addresses are provided. 
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Hardware Performance Monitoring Tools 

A number of software libraries and applications can be used to access hardware perfor

mance monitors. IBM provides a library PMAPI [IBM] as an extension of the AIX kernel to 

access counters. Sweeney et al. use this library to develop a framework which can be used 

to explain the behaviour of Java applications from the view of hardware events [SHC+04]. 

For Intel/AMD processors, PMC [Hel] and PCL [BZM] are libraries supporting hardware 

event counting. PCL also supports other platforms, including PowerPC, Alpha, R12000 

and Ultra SPARC I/II/III. In this work, we employ PAPI [BDG+] which is a specific library 

providing cross-platform interface to hardware performance counter. The Intel VTune Per

formance Analyzer [Cor] is an application for hardware performance analysis and demon

stration with graphic user interface. 

2.2 The Java Virtual Machine 

Fundamentally, our work is a set of optimizations for Java Virtual Machines. The Java 

Virtual Machine (JVM) [Ven96, LY99] is an abstract layer over the underlying operating 

system to support the execution of Java [GJSBOO] programs. The JVM specification [LY99] 

defines a set of features that every JVM must have but leaves concrete implementation 

choices to the designers. The main job of a JVM is to load class files and execute their 

bytecodes. 

As shown in Figure 2.2, the JVM contains a class loader, which loads class files from 

both Java applications and Java API library. The bytecodes are executed on the execution 

engine. Different implementations can vary largely on the execution engine part, which 

provides a large space for JVM designers to employ optimizations. A type of execution 

engine, called interpreter just translates the bytecodes into executable code one by one. 

Interpreters are easy to implement and require less resources, but usually perform slowly. 

Various techniques can of course be applied to improve the efficiency, such as the inline-

threading dispatcher used in SableVM [Gag02]. Another type of execution engine, which 

is faster but requires more resources, is a. just-in-time compiler (JIT). In a JIT engine, the 

bytecodes are compiled to native executable code at the first time that they are executed. 
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Methods are chosen as the basic compilation unit in most cases. Most state-of-art JITs 

employ multiple levels of compilation, e.g., a method can be (re)compiled to different 

optimization levels according to its "hotness". Method recompilation is a popular and 

current topic in JVM research. We will present a hot method recompilation strategy in 

Chapter 7. 

Application Class Files and Java API Class Files 

V 
Class Loader 

Execution 
Engine 

Java Virtua 

Memory 
Manager 

Services: 
Threads, 

Reflection, 

Java Native Interface (JNI) 

Machine 

7^ 
12. 

Host Operating System 

Figure 2.2: Basic structure of a Java Virtual Machine. 

Other than Java methods which are compiled to bytecodes and stored in class files, there 

is another type of methods which is essential to execute Java programs, namely native 

methods. Native methods are compiled to native machine code of a particular platform 

and stored in a dynamic library. Native methods work as the connection between a Java 

program and the underlying host operating system. A Java program uses native methods 

to access the resources of the host operating system. As demonstrated in Figure 2.2, JVM 

contains a Java Native Interface (JNI) to load dynamic libraries containing native methods. 

The JVM's heap stores all objects created by a Java application. This heap is automati

cally maintained by the memory manager of a JVM, i.e., the JVM uses a garbage-collected 
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heap. A large number of garbage collection (GC) algorithms have been developed. We 

will provide more details on garbage collection techniques in Chapter 8. 

The service part consists of a set of sub-components providing the necessary internal 

support for standard class library features, such as threads and reflection. 

2.3 JikesRVM 

Jikes RVM [AAC+99] is an open-source research virtual machine for Java developed at 

the IBM T.J. Watson Research Center. It is intended to be easily extended, modular, and 

object oriented. Jikes RVM is implemented mainly in Java. At build time, it is run on a 

host JVM. A portion of Jikes RVM is a code generator which reads class files and generates 

the corresponding machine code for the target machine. Running on a host VM, the code 

generator generates the machine code for the entire optimizing and self-contained VM. 

As a research virtual machine, Jikes RVM is composed of a large number of flexible 

components which bring convenience to researchers that try to innovate on virtual machine 

theories and techniques. Here we just introduce three components of Jikes RVM which 

have a tight relation with our work. They are the adaptive optimization system, the hard

ware performance monitor, and the memory management toolkits. 

The Adaptive Optimization System 

The Jikes RVM's adaptive optimization system (AOS) [AFG+00] contains three compo

nents, the runtime measurement subsystem, the controller, and the recompilation subsys

tem. Figure 2.3 shows the internal structure of AOS and the relation between each subsys

tem. 

The runtime measurement subsystem maintains a set of event listeners to collect dif

ferent types of information about the executing program. Usually, they perform only ex

tremely limited processing of the gathered raw data. Organizers are a set of threads in the 

runtime measurement subsystem usually staying in sleep state. When awoken by listen

ers, organizers analyze raw data and package the data into a suitable form for consumption 

by the controller. The data can either be stored into an AOS database for further investi-
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Figure 2.3: Architecture of the Jikes RVM's Adaptive Optimization System. 

gation, or an event reflecting the information is created and inserted into a priority event 

queue consumed by the controller. The controller is the core of the whole AOS system. 

It conducts all the other components. It is the coordinator between the runtime measure

ment subsystem and the recompilation subsystem. The controller instantiates all runtime 

measurement subsystem listeners and organizers. Based on the received information and 

the current data in the AOS database, it makes decisions on the adaptive actions, such as 

requiring the recompilation subsystem to do recompilations. 

Jikes RVM employs a compile-only strategy. It compiles all methods to native code 

before they execute. There are two types of compilers in Jikes RVM: 

• The baseline compiler translates bytecodes directly into native code without perform

ing optimizations. 

• The optimizing compiler translates bytecodes into an intermediate representation, 

upon which it performs a variety of optimizations. This compiler has three optimiza

tion levels: 

- Level 0 consists mainly of a set of optimizations performed on-the-fly during the 
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translation, including constant/non-null/copy propagation, constant folding and 

arithmetic simplification, dead code elimination, and elimination of redundant 

null-checks, check-casts, and array store checks, etc. 

- Level 1 includes additional local optimizations such as common subexpression 

elimination, array bound check elimination, and redundant load elimination. 

Inlining based on a static-size heuristics is employed on this level. Other opti

mizations on level 1 include copy and constant propagation, scalar replacement 

and flow-insensitive dead assignment elimination, etc. 

- Level 2 implements SSA-based flow sensitive optimizations. 

The recompilation subsystem of AOS consists of compilation threads that invoke opti

mizing compilers at different levels. These compilation actions follow compilation plans 

that are inserted into the compilation queue by the controller. 

The AOS database provides a repository where the adaptive optimization system records 

decisions, events, and static analysis results. The controller uses the AOS database to record 

compilation plans and to track the status and history of methods selected for recompilation. 

The results of runtime profilings, such as the hot method profiling and calling context pro

filing, are also stored and organized in the AOS database. 

The Hardware Performance Monitor 

As described in Section 2.1, hardware performance is one of the essential factors for pro

gram runtime behaviour. Furthermore, modern processors have provided special hardware 

counters for monitoring important hardware events. As a JVM with runtime adaptive opti

mization feature, Jikes RVM provides a component named hardware performance monitor 

(HPM) to access hardware counters. 

As a part of the runtime measurement subsystem, the HPM collects hardware infor

mation following a listener-organizer cooperation mechanism. A hardware event listener 

thread is woken up every time a context switch happens. The listener thread reads hard

ware event counts by invoking native calls to the PAPI [BDG+] library. The raw hardware 

data is stored in one of two local buffers alternatively. When the current buffer is full, the 
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listener thread activates the organizer thread and submits its data. At the same time, the 

second buffer is used to store new hardware event data. Currently, Jikes RVM has a simple 

hardware data organizer TraceWr i t e r . It just writes the hardware data received from 

the listener into a trace file in a dedicated format. In this work, we extend the HPM of Jikes 

RVM. An extra organizer of the hardware event listener is added to generate "patterns" 

to represent the behaviour of hardware. More details about this extension and hardware 

patterns can be found in Chapter 5. 

The Memory Management Toolkit 

The memory management toolkit (MMTk) [BCM04a] is a toolkit for writing high-performance 

memory managers. It currently provides the memory management subsystems of the Jikes 

RVM. MMTk supports a wide range of collectors: copying, mark-sweep, reference count

ing, copying generational, hybrid generational, etc.. 

MMTk groups regions of memory into spaces and implements garbage collection al

gorithms with a policy that couples a space with an allocation and collection mechanism. 

Whole heap collectors use one policy for most objects, while generational collectors divide 

the heap into age cohorts, and use one or more policies. Currently, MMTk implements 

a bump pointer allocator, a free-list allocator and a reference counting scheme. MMTk 

forms different policies for these spaces: 

• Copy Space uses bump-pointer allocation. 

• MarkSweep Space uses free-list allocation and tracing collection by mark-sweep 

strategy. 

• RefCount Space uses free-list allocation and a reference counting algorithm to de

tect the dead objects. 

• Immortal Space uses bump-pointer allocation and no collection. 

• Large Object Space (LOS) uses a coarse-grained free-list of pages and treadmill 

collection [JL96]. 
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Based on this infrastructure, a set of different collectors can be implemented with com

paratively less effort. Just combining these policies, we can create the following collectors: 

SemiSpace, MarkSweep, RefCount,GenCopy and GenMS. Here SemiSpace, MarkSweep, 

RefCount are classic semi-space copying, mark-sweep and reference counting collections 

respectively. GenCopy is the classic generational copying collector: it allocates into a nurs

ery copy space, and promotes survivors into a mature space based on a SemiSpace-style 

copying. GenMS is a hybrid generational collector which is the same as GenCopy except it 

used a MarkSweep mature space. GenRC is a hybrid generational collector using ulterior 

reference counting to combine a copying nursery with a RefCount mature space. 

The efficiency of different collectors is dependent upon application behaviour and avail

able resources. Soman et al. [SKB04] investigate the performance of these above collec

tors. They test a variety of programs in different resource settings and demonstrate that 

garbage collection performance is application specific. In most case, GenMS is the one of 

the best performing or close to the best. However, SemiSpace, which usually works poorly, 

is the best choice when the heap size is huge relative to the application requirement. 

Our GC work uses the MMTk and focuses on improving the performance of GenMS 

garbage collector which is the best choice in most cases. 

2.4 Summary 

Its platform independent features make Java one of the most popular object oriented pro

gramming languages. The platform independence is provided by the JVM. The design and 

implementation of components of the JVM have received a large amount of attention. In 

particular, adaptive optimization in the execution unit is one of the hottest topics of current 

JVM research. 

On the other hand, as the structure of microprocessor becomes more and more com

plex, the performance of programs can be significantly impacted by the working state of 

the underlying hardware components. Important hardware information, such as the miss 

density of I/D caches, the performance of the TLB, and the hit rate of the branch predictors, 

becomes essential to understanding and improving runtime performance. 

In the thesis, we present our solution to apply adaptive optimizations in a JVM based 
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on hardware information. We presented the most important background of our work in this 

chapter, including a basic introduction to hardware architectures, especially the memory 

hierarchy and branch prediction schemes, the performance monitoring unit which can be 

used to obtain runtime hardware information, and the basic organization of a JVM. Since 

our work is rooted in Jikes RVM, we also gave a brief introduction to the related parts of 

Jikes RVM. In the following chapters we build on this to develop and justify high level 

optimizations from low level hardware data. 
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Chapter 3 

Relative Factors of Java Virtual Machine 

Performance 

Modern, high level languages such as Java provide many benefits, including a signifi

cant amount of runtime flexibility in terms of portability, adaptivity, and optimization. So

phisticated runtime environments like the Java Virtual Machine (JVM) are, however rather 

complex systems, involving multiple layers of optimization and adaptivity. Improvements 

to JVMs can be influenced by a variety of factors, many of these surprisingly unintuitive. 

Understanding the source of performance variation is an essential first step in determining 

if changes in performance are due to external factors or are dependent on a given optimiza

tion or design change. 

We address the problem of understanding JVM performance measurement in this chap

ter. We begin with a more detailed problem description of the problem in Section 3.1. In 

Section 3.2, a GC optimization is given as a case study of performance measurement for 

JVM techniques. A deep discussion on the relative factors impacting performance in the 

GC case study can be found in Section 3.3. Finally, in Section 3.4, we summarize the 

whole chapter and point out how this investigation of performance factors influences our 

subsequent work. 
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3.1 Difficulty of JVM Performance Measurement 

The actual experienced performance of a Java program depends on multiple factors, with 

the program itself, the JVM and the underlying hardware all contributing to the final speed. 

The JVM itself has many tightly-interconnected runtime components, including class load

ing, GC, JITs, and so forth. Any modification in one component may influence other 

components, and isolating the effect of a given change or optimization is correspondingly 

difficult. Moreover, as we mentioned in Section 2.1, the performance of low level, actual 

hardware components has a significant impact on the running programs. Many perfor

mance variations may be caused by the side-effects of hardware designs or optimizations 

on software level implementations. In addition, programs show different characteristics, 

responding to optimizations differently in accordance with their individual execution prop

erties. Program-specific reasons are thus important to performance measurement and pro

gram behaviour understanding. Software and hardware, both general and program-specific 

reasons should therefore all be taken into consideration in JVM performance analysis. In 

most cases, the final performance is a combination of these factors with different weights. 

Understanding the relative impact of different influences on performance is important to 

good optimization design and implementation. 

In this chapter, we use a GC optimization as an example to investigate the relative 

factors in performance measurement. The measures of the GC optimization show how 

modifications on one component (the collector) of JVMs can impact the performance of 

the other part (the mutator) both significantly and unexpectedly. We then study and discuss 

both general contributing factors and benchmark-specific factors. We investigate reasons 

at software and hardware levels, including both data and instruction related issues 

Close inspection of relative factors shows that the impact of code positioning is surpris

ingly significant. This is in principle clear and due to large performance variation in cache 

performance, especially the instruction cache; it is, however an often unintended side-effect 

of otherwise benign or reasonably well isolated component changes. The study discussed 

in this chapter has two main contributions to our later work. 

• It demonstrates the tight relation between the hardware performance and overall pro-
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gram execution. It validates our fundamental idea of deriving high level information 

by monitoring and investigating low level hardware events. 

• The analysis shows that the instruction cache miss density is an outstanding candidate 

for understanding significant changes in program behaviour. We thus focus on the 

instruction cache miss density (and variations) in our later work based on hardware 

performance monitoring. 

3.2 GC Case Study 

In this section we briefly describe a GC optimization and its implementations in two 

distinct VM environments, a pure interpreter SableVM [Gag] and the JIT-enabled Jikes 

RVM [AAC+99]. We will use this example optimization to show the number and subtlety 

of factors that need to be considered when examining performance results, as well as give 

concrete evidence of their relative impact. 

Our optimization case study is based on a simple and general improvement to tracing 

garbage collectors. Tracing collectors are found in most Java Virtual Machines. Starting 

from a set of root references (static variables, stack references), a tracing GC visits each 

reachable object seeking references to other reachable objects. Once the live set is deter

mined, the memory storage of non-reachable objects is reclaimed. Gagnon and Hendren 

proposed a bi-directional object layout [GH01] aiming to improve the performance of GC 

tracing, and here we present a reference section tracing strategy that attempts to validate 

and improve that work. 

Below we first describe the basic bi-directional layout design and introduce the refer

ence section concept in Section 3.2.1. We talk about our implementations in two JVMs in 

Section 3.2.2. Experimental results on SPECJVM98 suite are reported in Section 3.2.3. In 

the same section, we also point out the abnormalities which will be discussed in detail later. 

3.2.1 Bi-Directional Layout and Reference Sections 

The bi-directional layout is an alternative way of physically representing objects in mem

ory. Traditionally, all the fields of an object are located after the object header. The middle 
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graph in Figure 3.1 shows the traditional layout of an object of type C extending type B ex

tending type A. Note that in this object layout, the reference fields and non-reference fields 

are interwoven. The JVM has to store the offsets of the references in some data structure. 

The tracing operation is thus composed of two steps, visiting the data structure to obtain 

the reference offset and accessing the reference. This overhead can be easily avoided by 

using the bi-directional layout. 
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Figure 3.1: An instance of type C extending type B extending type A in both traditional and bi

directional object layouts. 

The right graph in Figure 3.1 shows the bi-directional layout of the same object. The 

basic idea of the bi-directional layout is to relocate reference fields before the object header 

and group them together in a contiguous section; we denote these sections as reference 

sections. The main advantage of the bi-directional layout is the simplicity of locating all 

references in an object during garbage collection. References are contiguous, and only a 

single count of reference section size must be stored (usually in the object header). When 

scanning an object during GC there is no need to access a table of offsets in the object's 
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type information block to distinguish reference fields from non-reference fields, as must be 

done with the traditional layout. 

Based on the bi-directional layout, we developed a new reference section (RS) based 

scanning strategy to further reduce the required work for tracing from per object to per 

reference section: When a new reachable object is found, the location of its reference 

section (if it does have one) is stored in a work list. The collector then uses this work list, 

which only contains relevant information, to copy or mark referents. 

Compared to normal bi-directional layout tracing, our solution has the following ad

vantages: 

• The collector skips tracing of all reachable objects that have no references. 

• The compactness of the work list may help improve cache locality while GC is in 

progress. 

• In copying collectors, using a work list allows for depth-first tracing instead of default 

breadth-first tracing. This usually leads to better cache locality [JL96]. 

3.2.2 Implementing RS Scanning 

RS scanning strategy changes the style of kernel workload of reference tracing. We hope it 

can bring benefit to all JVMs with a tracing collector. In order to examine the performance 

of our RS scanning strategy, we implemented it in two distinct JVM environments, a fully-

functional Java interpreter, SableVM [Gag] and a JVM using adaptive JIT compilation, 

Jikes RVM [AAC+99]. Here we give a brief overview of the implementation designs; 

more details can be found in [GVG05a]. 

SableVM 

SableVM has a semi-space copying collector which uses a two-pointer scanning algorithm 

[JL96]. The scan pointer is used to trace references in copied objects, while the free pointer 

tracks the location of unallocated memory in the target semi-space. 

In our RS scanning implementation, the location (start and ending addresses) of ref

erence sections is saved in 512-entry blocks organized in work lists. We use the higher 
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address end of the to-space to store these blocks, and unused blocks are maintained in a 

free list, ready to be reused. The newly found references are put into a "current" block. 

When the current block is full, the block is put into a "ready-for-scan" list and a new free 

block is obtained from the free list to store new references. Reference tracing is accom

plished by obtaining a block from the "ready-for-scan" list. When all the references in a 

block have been accessed, the block is considered as an empty block and is returned to the 

free list again. Compared to the total size of the heap, the space required for this work list 

is very small. One 512-entry block is enough for most SPECJVM98 programs. In practice, 

at most five blocks (in JAVAC), or 20K at the end of the to-space, is enough to perform 

garbage collection on a two 16M semi-spaces heap. 

Since our RS scanning strategy can reduce GC workload and improve data cache local

ity, we expect a significant GC performance improvement in SableVM. 

Jikes RVM 

Jikes RVM is an open-source research Java Virtual Machine which uses a compile-all strat

egy, totally different from that of SableVM. We also implemented the bi-directional layout 

and the RS scanning strategy in Jikes RVM version 2.3.4. We modified the object model 

component, which controls the layout of the fields, and simplified the routines that compute 

the offset of fields. Jikes RVM uses type information blocks to maintain the class-specific 

data, including an array storing the offsets of reference fields. We replaced the array with a 

single integer storing the number of references for this type (class). 

A complication is introduced by Jikes RVM's hashing scheme. Jikes RVM uses a lazy 

hashing style. Initially, there is no field in the object header for the hash code. Once the 

JVM decides to hash an object, the hash code is inserted at the beginning of the object 

header. If we follow the same mechanism, the offsets of the references to the header will 

be changed by a hash code insertion, as we store references before the header. To avoid 

this situation we thus change the hash storage mechanism append the hash code to the end 

of an object when the object is hashed. 

30 



3.2. GC Case Study 

3.2.3 Experimental Results 

We tested the RS scanning strategy on the SPECJVM98 benchmarks [Stac] running with 

input size "-s 100". We excluded MPEGAUDIO from the suite as it needs no garbage col

lection in SableVM's default heap settings. Experiments were run under the Debian Linux 

operating system on an Athlon 1.4GHz workstation with 1GB memory, with some earlier 

results from a Pentium III 733MHz workstation with 512MB memory. Both environments 

were isolated and minimized for testing, and we report the average of the medium 3 values 

in 5 runs. For Jikes RVM, we tested two versions, one using its semi-space copying collec

tion algorithm and one using the GenMS collection algorithm. We chose these two because 

they are representative GC configurations; the former is a classic tracing GC which can give 

better performance for some benchmarks when the heap size is large enough [SKB04], 

while the latter is the best choice for most benchmarks in most heap configurations of Jikes 

RVM. 

The results of performance speedup are shown in Figure 3.2. Here we calculate the 

speedup as: 
Original Execution Time 

RS Version Execution Time 

On SableVM, using RS scanning, a significant 1.19 average speedup is obtained, with 

a maximum of 1.43 speedup on DB. We also measured the impact of RS whole program 

execution time. Although, the overall performance speedup is still positive in general, 

we notice an anomalous performance decline in some benchmarks, most obviously RAY-

TRACE. Equally surprising are the > 2% performance improvements shown by COMPRESS 

and DB. GC usually takes less than 1% of execution time in the SableVM interpreter envi

ronment for these benchmarks, and so this indicates a significant, unintentional impact on 

the mutator. 

For semi-space copying in Jikes RVM we obtained a stable improvement on the speed 

of GC for all benchmarks, similar to SableVM. At the same time we also show an overall 

positive performance for whole program execution time. We note that when using semi-

space GC in Jikes RVM, GC takes a large portion of execution time (up to 40%, using 

semi-space GC). Whole program execution performance is therefore highly dependent on 

the collector's performance. 
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Figure 3.2: GC and whole program speedup results on SableVM, Jikes RVM with a semi-space 

collector, and Jikes RVM with a GenMS collector. 

32 



3.3. Discussion of Relative Factors 

In the case of GenMS, garbage collection performance results for both GC and whole 

program execution are less consistent. Although the RS strategy still delivers overall GC 

improvements on most benchmarks, we find a significant negative value for JAVAC. Whole 

program execution time shows no obvious stable trend, positive or negative, and in partic

ular no obvious correlation with GC performance. 

Viewed in isolation our RS scanning improves GC performance in both interpreter 

and adaptive JIT compiler environments. These results, however, are not well reflected 

in overall execution time and anomalous measurements suggest a significant variation in 

the performance of the mutator. A more detailed examination to determine and compare 

the responsible influences is the subject of the next section. 

3.3 Discussion of Relative Factors 

To explain program performance on real platforms is tricky. Performance is affected by 

a variety of factors at different levels, from low level hardware to high level program be

haviour. Here we divide potential influences as a rough taxonomy into general factors and 

benchmark-specific factors. General factors affect the performance of all Java programs, 

and can be further subdivided into two concerns code related, such as overall instruction 

workload, hash code location, and code positioning, and data related, such as heap organi

zation, data location, and reference scan order, etc.. 

Benchmark-specific factors can influence performance. These properties include the 

relative number and distribution of reference fields (relatively unique to our particular opti

mization), and more generic effects such as variation in GC collection points, GC strategy, 

and relative cache sensitivity of the benchmarks. We use hardware counters and runtime 

statistics data to investigate the impact of these factors. 

Below we further explain the impact of the main factors involved in the actual per

formance of our GC study. We conclude with a detailed study of a critical, but not well 

appreciated general factor, code-positioning. 

33 



Relative Factors of Java Virtual Machine Performance 

3.3.1 General Factors: Code and Data Management 

3.3.1.1 Instruction Workload 

As the source code of a virtual machine is compiled, an obvious source of performance 

difference is in the generated code. Even improved source code can generate an increase in 

hardware workload due to code generation patterns or downstream optimizations. 

We used hardware performance counter data to investigate the changes due to our im

plementation of RS. The final version of RS (used in our measurements) actually reduces 

the number of instructions executed during GC for most benchmarks on both virtual ma

chines. Furthermore, there is no noticeable difference in the executed instruction count for 

the mutator (variations were about 0.03% in average); clearly mutator instruction counts 

are not a significant contributor to the whole program performance differences. 

3.3.1.2 Hash Code Location 

In support of the j ava . l a n g . Ob j e c t . hashCode () method, many virtual machines 

derive object hash codes from heap addresses, and may also store calculated hashes in the 

object header. Use of hash codes thus can have an indirect effect on performance if the heap 

memory is laid out differently. As mentioned on page 30, the position of an object's hash 

code is another implementation difference between the RS/bi-directional implementation 

and the original Jikes RVM implementation. 

In practice, however, our profiling results indicate that the number of objects that actu

ally use of hash code is quite small for these benchmarks. Most objects in these benchmarks 

are not hashed. Even in the JAVAC benchmark, which exhibits the largest number of hashed 

objects, no more than 0.5% of copied objects are hashed. Measuring the precise effect of 

different hash values is of course quite difficult, but the limited use of hash codes in our 

benchmarks strongly suggests that any differences have a minimal impact. 

3.3.1.3 Code Positioning 

Any change to the source code of a program is likely to change the precise location of parts 

of compiled code, e.g., code position, and downstream code with higher memory addresses, 
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and, depending on code layout heuristics, potentially the entire program. Code positioning 

changes can happen in any kind of code modifications due to optimizations. Therefore, it 

can affect the performance of any program, not only Java programs running on a JVM. Our 

final code-related effect is thus a study of the effect of minor changes in code positioning 

on performance. In fact, among all the factors, we found that the changes in code position 

in the executable binary have the largest potential impact on the whole program execution 

time. 

Table 3.2 shows that during GC very few instruction cache misses occur. In fact, in the 

GC phase the collector mostly works by iterating over a small set of instructions; it is thus 

unlikely for code position differences to cause any significant impact on GC performance. 

On the other hand, Table 3.2 also shows that instruction cache misses are more frequent 

in the mutator. To gain additional insight on the issue, we performed two experiments. 

The second column of Table 3.1 shows the largest performance changes we found in 

SPECJVM98 benchmark on a series of code shifted versions of SableVM. The only differ

ence between these versions is the length of some extra useless space, varying from 0 bytes 

to double the size of a cache line, reserved in the string table section of the executable 

binary. This causes later binary executable code to be shifted upward in memory, with

out actually changing the binary code. Surprisingly, such a trivial modification triggered 

significant performance differences, up to 6.09%. 

As a second experiment, we changed the position of some code in Jikes RVM by hand, 

and we generated a set of variances. We then compiled two versions of Jikes RVM: one 

with and one without the hardware performance monitoring (HPM) component. In these 

measurements no HPM code was executed; i.e., we simply added a piece of non-executed 

code to Jikes RVM. The results are shown in the third column of Table 3.1. Note how the 

simple addition of some non-executed component to Jikes RVM can affect performance by 

up to 6.4%! Performance changes due to changing code position clearly have potential to 

be quite large relative to other "noise" effects. 

The results of these two experiments demonstrate the significant impact of the code 

positioning, which has nothing to do with the actual optimization, on the final perfor

mance measures. Fundamentally, this large effect is caused by performance variation in 

the instruction cache. This fact highlights the tight relation between hardware components, 
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Benchmark 

compress 

db 

jack 

javac 

jess 

mtrt 

raytrace 

L.V.F.(%) of 

Code Shifting 

2.78 

6.09 

2.04 

2.00 

2.69 

3.69 

3.21 

L.V.F.(%) of 

Extra Component 

1.24 

4.80 

5.19 

4.40 

6.39 

4.70 

6.42 

Table 3.1: Impact of the code shifting in SableVM and adding an extra never executed component 

in Jikes RVM (L. V.F.for Largest Variation Found in execution time and always positive). 

especially instruction cache, and program execution. 

3.3.1.4 Data Location Factors 

Our case study optimization changes the position of fields in the object layout, and this has 

an obvious potential impact on the data cache. For the majority of objects with relatively 

few fields, however, proximity of data is maintained, and at least within the mutator these 

changes are expected to be both minor and amortized throughout execution. 

A more subtle and important data cache effect can arise from the use of scanning GCs. 

In a tracing collection based system the order in which references are scanned has a direct 

impact on the new location of reachable objects in the heap after collection, and thus affects 

data locality in the mutator and in later collection cycles. 

As the bi-directional layout changes the natural scan order of references, and thus the 

natural corresponding layout after collection, we define two scan orders: 

• Original Favourite Order (OFO): 

This is the natural reference scan order in the traditional layout, where references of 

super classes are scanned first. Thus in our case, references defined in a super class 

of an object are visited and relocated before those defined by subclass. 
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Benchmark 
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Data 
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400 
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312 
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396.1 

InGC 

Instruction 

128K 

341K 

38K 

264K 

80K 

264K 

242K 

194K 

Data 

77 

152 

123 

138 

146 

159 

161 

136.5 

Table 3.2: Benchmark characteristics: average number of cycles between cache misses in SableVM 

on a Pentium HI workstation. 

• Bi-directional Favourite Order (BFO): 

This is the natural reference scan order in the bi-directional layout, where references 

of super classes are scanned last (after those of subclasses). In our case, this means 

references defined in a subclass will be visited and relocated earlier than parent ref

erences. 

We modify our implementation and change the scanning order of our collector. Switch

ing the scan order leads to a new heap layout that changes data locality in the mutator. 

However, there is no obvious winner between the two orders. Most changes in data cache 

misses are lower than the variance in the execution time. Table 3.2 shows the average num

ber of cycles between two consecutive LI data or instruction cache misses. Given the low 

data cache miss density in the mutator part, it is safe to assert that data locality changes 

due to scan order are not the key issue for the performance anomalies observed in Section 

3.2.3. 
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3.3.2 Benchmark Specific Factors 

It is also the case that individual benchmarks may have properties that produce very differ

ent reactions to a given optimization. Below we extend our analysis to benchmark-specific 

factors which can also influence the performance. These properties include the relative 

number and distribution of reference fields (relatively unique to our particular optimiza

tion), and more generic effects such as variation in GC collection points and GC strategy, 

and relative cache sensitivity of the benchmarks. 

3.3.2.1 Reference Field Usage 

By its nature, RS scanning will bring larger benefits when accessing long, contiguous ref

erence sections. For objects with a single reference, however, the cost of RS scanning is 

greater than the cost of normal scanning. The number of reference fields typically found in 

objects can also thus influence performance, and so we measured the number of reference 

fields in scanned objects in SPECJVM98 benchmarks. 

We found that DB, MTRT and RAYTRACE have more than 40% objects with no reference 

at all. These objects are skipped by the RS strategy, leading to a significant improvement 

in GC speed over the original SableVM implementation. A relatively large number of 

single-reference objects are found in JACK and especially JESS (43.4%), for which our RS 

strategy brings less improvement. The behaviour of COMPRESS, which has the lightest 

GC workload of all analyzed SPECJVM98 benchmarks, and of JAVAC, which triggers four 

forced GCs, however, cannot be completely explained from the reference composition data 

alone. For this we need to also consider more general properties of GC behaviour. 

3.3.2.2 GC Frequency and Workload 

Our code and data modifications have strong potential to adjust the workload given to GC 

during program execution. This can have both obvious and subtle consequences. Jikes 

RVM's garbage collector, for instance, manages both application data and VM-specific 

data. Thus purely internal VM changes can be reflected in the workload experienced by 

applications. Our modifications to the Jikes RVM object model in the implementation of 
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the RS strategy also causes a slight change in GC workload. In particular, the size of 

surviving objects after a collection for these benchmarks is slightly different (by only a few 

Kilobytes) between the original and the RS implementations. Given the large heap size, 

we would not expect any significant impact from this when using a semi-space copying 

collector. However, in the case of a generational collector, where most of the work is done 

incrementally, a small size difference can have a much larger impact. 

As a further complication, a lower number of GCs does not necessarily mean lower 

total GC time. The point, or moment, at which a collection is launched can lead to totally 

different GC performance. In Chapter 8, we will discuss the performance of GC in detail, 

especially the impact of collection points. 

3.3.2.3 Hardware Related Benchmark Characteristics 

Not all benchmark characteristics of interest are most easily seen as high level consid

erations, and so we also use an instrumented Jikes RVM to study benchmark behaviour 

through a variety of hardware events. Here we briefly discuss results on LI instruction 

and data cache misses for some sample benchmarks, COMPRESS, DB and JACK. The cor

responding cache miss data is shown in Figures 3.3, 3.4 and 3.5 respectively, and repre

sent data gathered at each thread context switch. In these three figures, "GCs" stands for 

"garbage collections", "LIDCM/Cyc" stands for "Level 1 data cache misses per cycle", 

and "LIICM/Cyc" stands for "Level 1 instruction cache misses per cycle". 

Compress, L1 cache performance in 0-6 billion cycles 

e+10 2e+10 3e+10 4e+10 5e+10 6e+10 
Elapsed Cycles 

Figure 3.3: COMPRESS hardware event trace. 
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Db, L1 cache performance in 0-10 billion cycles 
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Figure 3.4: DB hardware event trace. 
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Figure 3.5: JACK hardware event trace. 

All these benchmarks show recurrent patterns, particularly in the instruction cache miss 

rate. This corresponds to the various execution phases of these benchmarks. More inter

esting is the proportion of cache misses attributed to instruction or to data. In COMPRESS 

data cache misses dominate, whereas in JACK instruction cache misses dominate; DB lies 

between, with both kinds of misses equally important. Relative dominance of cache misses 

should correlate with the general sensitivity of benchmarks to instruction versus data cache 

effects; e.g., a benchmark with a dominant and tightly recurrent pattern of instruction cache 

misses likely contains a small but very "hot" section of code, and could be strongly affected 

by small changes in code positioning. 

40 



3.3. Discussion of Relative Factors 

Figure 3.6 extends the idea of a cache sensitivity "bias" (I-Cache versus D-Cache) to 

all our benchmarks. In this graph a benchmark's position is determined by the I-Cache 

(x-axis) and D-Cache (y-axis) miss density. Benchmark COMPRESS, for instance, is quite 

biased toward the data cache, while many benchmarks, such as JACK and JAVAC, are highly 

biased toward the instruction cache. The performance of DB and MTRT have similar relative 

dependencies on these two caches. 
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Figure 3.6: Benchmark cache bias. 

The rectangular area for each benchmark data point functions as error-bars, showing 

the size of one standard deviation in the variations between consecutive measurements. A 

box elongated in one direction represents a benchmark that has a larger variation in the cor

responding hardware event, and thus a larger potential for variation due to optimizations; 

e.g., in COMPRESS data cache performance varies much more than I-Cache. The arrows 

associated with each point show the average of the top 10% largest cache miss variations 

between two consecutive sample points. A very long arrow thus means that the largest 

performance variation is very different from the more typical case, whereas a small arrow 
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indicates a more uniform and stable result. The length of this arrow is thus a rough indi

cator of the validity of the measurement for detecting program phase transition points: a 

measurement that varies little will not be a good indicator of program behaviour changes. 

The results in these figures are heuristic indicators only, but show that individual bench

marks may have very different properties with respect to how they respond to a particular 

optimization, even at a very low level: these effects are not obviously and trivially amor

tized away by a long or complex execution. An optimization may be viewed quite differ

ently given a set of benchmarks that are primarily I-Cache (resp. D-Cache) driven, and this 

can easily result in a spurious overall evaluation of the optimization effect. 

3.4 Summary and Future Work 

Optimizations in a modern virtual machine environment clearly have the potential for com

plex interactions with various system aspects, high and low level. 

The above investigations and coarse taxonomy provides a number of insights into the 

sources of different influences on program and optimization performance. We have at

tempted to be exhaustive with respect to influences related to our specific optimization 

case study, while demonstrating both general principles and a typical, relative weighting of 

factors. From the analysis in this section we can summarize that: 

• The performance of JVMs can be significantly affected by unintended code motion 

side-effects. Instruction cache effects are not typically deeply considered in mod

ern, high level optimization studies, but even in cases where an optimization does 

not intentionally alter I-Cache behaviour, minor code position changes can induce a 

misleading understanding of the optimization effect. 

• The relation between kinds of benchmarks and design choices can be a complex 

source of variance, and cannot always be ignored as an amortized, unimportant cost. 

The reference composition of the objects, for instance, is an important factor in de

termining the suitability of our RS scanning strategy. 

• Major VM components optimized for general cases do not give a consistent improve-
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ment across all benchmarks. The garbage collector, for instance, behaves differently 

depending on the specific benchmark and workload size. This situation exhibits some 

potential for adaptively setting the nursery size to improve performance. 

• Benchmarks show a wide variation in sensitivity to code versus data cache effects. 

Which factor dominates for a given benchmark depends strongly on the benchmark 

itself. This highlights the impact of low level system design on high level perfor

mance, as well as the need to apply quantitative methods for ensuring benchmark 

representability. 

Of course a potential variance is also a potential source of optimization. At a fine grain 

the cache behaviour shows strong repetitive sequences. Future work on adaptive optimiza

tions that branch on early detection of these qualities may be very applicable. Monitoring 

the hardware performance, detecting repetitive phase behaviours from the hardware data, 

and employing adaptive optimizations according to the hardware information is thus the 

main theme of our work presented in later chapters. 
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Chapter 4 

Phase Detection Theory and Techniques 

Detecting phases in program execution has been receiving more and more attention 

lately. A significant part of our work is also a type of phase detection based on hardware 

information. In this chapter, we introduce the fundamental idea, the basic categorization, 

as well as techniques and application areas of the phase detection problem. This chapter 

can be considered as the background and related work introduction to Chapter 5. 

We begin with a brief introduction to the fundamental idea and main application areas 

of phase detection techniques in Section 4.1. We then explore a systematic classifica

tion of phase detection theory and prediction techniques. Many existing phase techniques 

are based on data collected during fixed length intervals. We will introduce a set of rep

resentative techniques in Section 4.2. Recent research has identified potential benefit in 

investigating variable length phase detection. Several variable length phase techniques are 

introduced in Section 4.3. Our phase detection technique is also an instance of this type 

of phase detection. Program phase detection is a broad area; in Section 4.4, we classify 

a large number of techniques and distinguish our technique from the others. Finally, we 

summarize the whole chapter in Section 4.5. 

4.1 Phase Detection and Applications 

It is well known that the behaviour of a program is not random. A typical program per

forms similar work, loads similar resources, and shows stable performance over significant 
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periods of time. Most programs are also quite repetitive, with similar behaviour occurring 

cyclically throughout the whole execution. 

We use the term phase to represent a set of intervals or portions within a program's 

execution that have similar behaviour, regardless of temporal adjacency. Detecting these 

intervals/portions is the process of phase detection. Phase detection techniques can be 

used to capture the beginning of relatively stable executions, and also to identify repetitive 

cycles during the program execution. Both of these properties are valuable for improv

ing program understanding, reducing profiling and simulation overhead, applying system 

reconfigurations, and employing adaptive optimizations. 

• Program Understanding and Debugging 

Phase detection techniques can determine the boundaries of each sub-portion of pro

gram execution. Such results can be used to analyze the workload of a program at 

different stages, locating bottlenecks and detecting program defects at a finer gran

ularity than the whole program scope. A. Georges et al. [GBEB04] associate the 

major workload of a program with representative methods. By measuring hardware 

events only for these selected methods, hardware related performance bottlenecks 

can be located with much less effort. Compile-time data reordering frameworks can 

also benefit from phase information mapped to static program structures, by focusing 

optimizations within the actual critical areas [SCF03]. 

• Reducing Simulation and Profiling Workload 

Program simulation, especially on accurate, cycle-level hardware simulators, can be 

time-consuming. It is very worthwhile to select the crucial simulation periods to 

model, and thus save a large portion of the total simulation time. Phase detection 

techniques can be used to help simulators find the interesting points to simulate. 

Sherwood et al., for example, use phase detection techniques to determine the simu

lation portion of execution and to guide computer architecture research [SPHC02]. 

Similarly, workloads for both offline and online profiling can be reduced by only 

sampling representative parts selected by phase detectors. This also benefits trace 

size; many profilers can generate huge traces, and phase detection can also function 
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as a lossy compression solution to the trace files that attempts to preserve the most 

meaningful information. W. Liu et al. demonstrate the use of phases for reducing pro

file cost by giving a phase-driven simulation mechanism that can obtain acceptable 

accuracy while only simulating a small portion of the code [LH04]. Nagpurkar et al. 

present a flexible scheme to reduce network-based remote profiling overhead based 

on repetitive phase information gathered from remote programs [NKS05]. They im

plement their phase identification mechanism on S i m p l e S c a l a r [BA97] which is 

a cycle-level hardware simulator. In the case of online profiling, reductions in sample 

content and frequency have been recognized as important; various authors mention 

that optimizations based on runtime profiling need to be applied judiciously, or the 

cost will outweigh the benefit in many situations [ABD+97,KF03, AHR02]. 

• System Reconfiguration 

Embedded or mobile systems often have demanding resource requirements. It is 

valuable to reconfigure the system dynamically to minimize resource consumption. 

Dhodapkar and Smith, for example, introduce tuning points based on phases; these 

are selected to save power and improve overall performance by enabling or disabling 

resources adaptively [DS02b]. Similarly, the phase detection technique introduced 

by Shen et al. has been shown to be effective in adaptive cache resizing and memory 

re-mapping [SZD04]. Trade-off between speed and energy use of a system based on 

phase information have also been explored [BABD00,DS02a,HRT03]. 

• Adaptive Optimizations 

Runtime, adaptive optimization is an exciting application of phase detection, and 

many adaptive systems are built on determining and exploiting phases. The software 

code trace in Dynamo, for example, is refreshed based on monitoring the generation 

rate of new code traces in recent intervals [KS03]. In fact, this is a type of phase de

tection, and most systems that attempt to locate "hot" code based on runtime data can 

be seen as phase detectors. M. Arnold et al. [AFG+05] give a survey of adaptive op

timization techniques, especially in a virtual machine environment. Many techniques 

introduced in that work may benefit from phase information. 
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Of course successful application requires a good understanding of the form of phase 

detection being offered; a number of phase detection approaches exist, based on a variety 

of different phase properties. Scientific and computationally-intensive applications may 

benefit more from stable phase prediction techniques than irregular applications based on 

dynamic data structures. We designed and developed a phase detection techniques for the 

JVM. It is the basis for several further runtime adaptive applications discussed in later 

chapters. 

4.2 Fixed Length Interval Based Phase Detection 

A large number of phase detection techniques are based on data gathered from fixed length 

intervals. They share a common style: 

• The program execution is divided into fixed length intervals by some means. 

• Specific profiling data is collected in each intervals. 

• If the difference of the profiling data between two consecutive intervals is larger than 

a predefined threshold, a phase transition point is detected. 

4.2.1 Definition 

M. Hind et al. give a basic classification [HRS03] of phase detection. They formally give 

an abstract definition of a phase detection problem that takes a profile string & as input. 

Definition 1 Let PD/^T, a](£P) represent the phase detection problem based on input 8P 

and parameters: 

• Granularityfrj specifies how a profile is partitioned into fixed-length, atomic units 

of comparison, denoted chunks. Granularity size is also the minimum size of a de

tectable phase. 

• Similarityfo'J is a boolean function that, give two strings, determines if the two 

strings are similar. That is Oi(Si,S2) returns true if S\ is similar to Si, and false 
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otherwise. Using continuous output (e.g., the interval [0.0,1.0})from such a function 

can provide detail on relative similarity, although a binary decision must be made at 

some level. 

Using this model, Hind et al. take two input strings (traces), convert each string into 

an abstract representation, and compute the similarity between the abstract representations. 

They then give a generic algorithm based on this model and demonstrate it on a simple 

alphabet string example. 

The above approach, and its specific instantiations, are in fact based on recognizing 

stable phases. A stable phase can be defined as above, or more abstractly as: a maximal 

length sequence of consecutive intervals containing no large performance change. Such 

definitions are very appropriate for identifying phases in programs in which long sequences 

of unchanging behaviour occur frequently. Scientific benchmarks, for instance, tend to ex

hibit such activity, and studies of the SPECCPU95 [Stab] and SPECCPU2000 [Staa] suites 

show the utility of this kind of phase detection [SPC01,DS02b,SSC03,LH04,LSC05]. 

The fundamental mechanisms of these works are more or less similar. The differences 

among them are in what type of profiling data is selected, how the data is organized, how the 

threshold is set, and what type of comparison algorithm is used. Below we address fixed 

length interval approaches by dividing them into two major approaches, pure detection 

works, and techniques that aim at phase prediction. 

4.2.2 Detection 

Phase detection efforts are built on a variety of basic structures and data sources. High 

and low level events of different forms have been considered, and both online and offline 

techniques have been developed. 

Sherwood et al. make use of moderately high level program structure basic block vec

tors (BBVs) to detect phase changes [SPC01]. A BBV is an array with an entry for each 

static basic block in the program. BBVs are used to track the execution frequency of indi

vidual basic blocks; the value of an array entry is simply the number of times that a given 

basic block has been executed during a given interval. Phase changes are detected when 
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the Manhattan distance 
cc 
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between consecutive intervals i and i — 1 exceeds a predefined threshold Ar/j. In [SPC01], 

this technique is applied to select crucial simulation points. 

Using a lower level perspective, A. Dhodapkar and J. Smith use the instruction working 

set to detect phase transitions [DS02b]. This allows the computation of a relative working 

set distance 

g = lw(f,-,T)UW(o,T)l-|w(rl-,T)nw(Q,T)| 
\w(tht)Vw(thT)\ 

where a working set W(t{, T) for i=l,2,...ft), is a set of distinct segments si,S2,.-.,s0J touched 

over the ith window of size T. "Segments" here are memory regions of fixed size (e.g., 

pages). The instruction working set is hashed into a n-bit vector, the working set signature. 

Combined with a suitable threshold, the distance between working set signatures over time 

is then the basis for a fixed interval phase analysis. 

Another low level data choice is provided by Balasubramonian et al. who use con

ditional branch counts as the monitoring data [BABD00]. They use a counter to mea

sure the number of dynamic conditional branches executed over a fixed execution inter

val. In their scheme, no fixed threshold is set; instead the detection algorithm dynami

cally varies the threshold throughout the execution of the program. This work is based on 

S i m p l e S c a l a r [BA97], interacting with the phase detection scheme. Phase analysis is 

used to determine whether the current state is, stable or unstable. In the latter case, hard

ware reconfiguration mechanism is launched to adjust to the new state. Dhodapkar et al. 

make a comparison between these detection techniques based on basic block vectors, in

struction working sets and conditional branch counts [DS03], respectively. They evaluate 

the techniques mainly from their sensitivity and stability. 

The techniques described above are neither aiming at Java programs nor implemented 

in Java Virtual Machines. Recently, Nagpurkar et al. present an online phase detection 

model [NHK+06] in Jikes RVM. Their phase detector calculates a similarity value between 

the profile elements in current window (CW) and trailing window (TW). They provide an 

abstract representation of inputs. Thus, their model allows a wide variety of input types, 
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such as basic blocks, methods, addresses loaded, etc.. 

4.2.3 Prediction 

Detection techniques work in a reactive manner; program behaviour changes are observed 

only after the occurrence of the change. This delay is minimally one interval long, of

ten much more in order to achieve good confidence of stable behaviour. However, if the 

behaviour changes can be predicted, the delay between observation and reaction can be 

reduced. Prediction techniques can be roughly divided into two types: 

Statistical Predictors 

Simple statistical predictors can be used to estimate future behaviour based on historical 

behaviour [DCD03]. Many statistical predictors have been developed, including (among 

many others): 

• Last value predictors assume the next value of a memory location or computation is 

the same as the last. This approach works well within a stable phase, but not in phase 

transitions or more complex phase behaviour. 

• Average(N) predictors use the average of the last N intervals as the predicated value 

for the next interval. 

• Freq(N) predictors choose the most frequent value in the last N intervals as the pre

diction for the next interval. 

• Exponentially weighted moving average (EWMA(N)) predictors place more emphasis 

on the most recent history, weighting a historical value's contribution to a predicted 

value by an exponential function of age. 

Statistical prediction strategies have been widely used in optimizations based on (re

turn) value prediction [PV04, Bur02, GVdB01,OHL99]. Hu et al., for instance, present a 

parameterized stride predictor and give return value prediction data for SPECJVM98 [Stac] 

benchmarks on simulated hardware [HBJ03]. In general a variety of strategies can be ap

plied to estimate single value from related historical data; most are based on exploiting 
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stable phases, but stride, context and a few other predictors can provide small scale "phase" 

detection for individual variables. 

Table-Based Predictors 

Different from the statistical predictors, table-based predictors predict values using infor

mation other than just the most recent history. This approach has been applied to create a 

memoization predictor for return value prediction [PV04], but can also be applied to predict 

phases. In general, table-based predictors encode a current state as well as history as the 

index into a prediction table. The prediction of the future is stored in the table and can be 

updated when large behaviour changes are identified. The differences between individual 

implementation can be: 

• What type of data is used to build the prediction 

• What is the detailed construction and organization strategy of the historical data 

• What algorithm is used to create the index into the prediction table 

• What kind of a mechanism is used to update the predicted value in accordance with 

the most recent measurement 

E. Duesterwald et al. give a general study on predicting program behaviour [DCD03]. 

A set of predictor models of both statistical and table-based types on fixed size intervals 

are introduced and compared. Their experimental results show that table-based predic

tors can cope with program behaviour variability better than statistical predictors. This 

work uses hardware data from Power3 and Power4 architecture on SPECCPU2000 [Staa] 

benchmarks. 

T. Sherwood and S. Sair [SSC03] present a run length encoding phase (RLEP) predictor 

using low level branch data. First, a phase ID is built for each interval based on its footprint 

for the executed branches. As shown in Figure 4.1, the PC of a branch is hashed into an 

index of the accumulator table, and the number of instructions executed are added into the 

corresponding entry. After the execution of an interval the most significant parts of the 

accumulator entries are combined to construct the footprint of this interval. If the footprint 
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is "unique" enough according to their definition a new phase ID is assigned to this interval. 

They evaluate their work on SPECCPU2000 benchmarks using S i m p l e S c a l a r . 
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Figure 4.1: RLEP: Building the phase ID from the branch footprint in [SSC03]. 

In a subsequent step the phase ID of the current interval and the number of consecutive 

repetitions of the phase are hashed into the prediction table to find the phase for the next 

interval. This process is shown in figure 4.2. Similar general strategies have been followed 
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Figure 4.2: RLEP: Using phase ID and the number of repetitions to predict the next phase in 

[SSC03J. 

in other work [LSC05]. 
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4.3 Variable Length Periodic Phase Detection 

In the previous section we introduced a collection of representative, state-of-the-art phase 

detection techniques. These approaches share a number of properties: 

• Split the program execution into fixed length intervals. 

• Use predefined metrics to measure the differences between intervals. 

• Detect behavioural differences by observing noticeable variations between consecu

tive intervals. 

All those techniques are able to perform well in certain situations. However, in some 

situations we cannot obtain satisfying results from the data of fixed length intervals, mainly 

due to two reasons: the out-of-sync problem and inappropriate granularity. 

0 10 20 30 40 50 60 70 SO 90 100 

0 10 20 30 40 50 60 70 80 90 100 

Figure 4.3: The synchronization problem for fixed length intervals techniques [LPH+05]. 

Lau et al. point out that fixed lengths can become "out-of-sync" with the intrinsic period 

of the program [LPH+05]. This problem can make a program's periodic phase behaviour 
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difficult to detect using fixed length interval solutions, and they graphically show that vari

able length intervals are necessary in some situations. Figure 4.3 from [LPH+05] show a 

simple example of how the fixed length interval solutions can fail in capturing the actual 

phase because of asychronization. A sinusoid signal is shown in the top figure. Two un

suitable fixed interval division are provided in the lower two figures. The average value of 

the intervals are shown by the solid lines. It is clear that no obvious repetitive features of 

the input sinusoidal curve are preserved in the lower two figures. 

Lau et al. also graphically demonstrate that there are multiple levels of phases in pro

grams that current fixed length interval techniques cannot handle at all. This motivates an 

initial study on variable interval phase detection using the SimPoint simulator [SE02]. 

Programs are instrumented with ATOM [SE94] to generate traces of each loop branch, 

method call and method return. Based on these traces, they construct a hierarchy of vari

able length phases using SEQUITUR, a linear-time, context free grammar algorithm that 

infers a hierarchical structure from a sequence of discrete symbols [NMW97]. SEQUITUR 

recursively replaces repetitive sequences with a grammatical rule that can generate the se

quence. This result is a hierarchical representation of the original sequence that can offers 

insights into its lexical structure. An example is shown in Figure 4.4. 

• S := BBAc 

• B := Ab 

• A := aa 

Figure 4.4: Grammar generated for the input "aabaabaac" by SEQUITUR from [LPH+05]. 

Although still at an early stage, the main contribution of this work is important. They 

show that programs have a hierarchy of phase behaviour at many different levels of granu

larity, and point out limitations of fixed length interval solutions. 
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4.3.1 Definition: Periodic Phase 

In fact, the out-of-sync problem is also caused by using an inappropriate granularity. In 

the cases where the techniques based on fixed length interval data fail to identify correct 

phases, we can always make it work by cutting the program execution into finer enough 

intervals. Of course, if we increase the length of intervals or phase transition threshold 

greatly, we can also obtain some kind of extreme stable phase detection results, e.g., the 

whole program is in one stable phase. 

Unfortunately, it is not free to choose the granularity of data collection, especially for 

techniques aiming at runtime/online applications. The smaller the granularity we choose, 

the larger the overhead it has, and thresholds are practically necessary. 

For scientific computation programs (used by many works in Section 4.2.2 as bench

marks), there do exist long term, quite flat, stable execution portions. It is not necessary 

to set the granularity to a small value. On the contrary, many real world applications, in

cluding many object-oriented programs, do not share this property of scientific programs. 

There can be no stable portions unless data is collected on intervals with very fine granu

larity. In the case of Java programs, due to the extra layer of the JVM, there exists more 

non-determinism when measuring most kind of runtime data. At the same time, in a run

time environment, too fine-granularity in measurement is not acceptable due to the corre

sponding heavy overhead. For example, the context switch point is a good chance to apply 

adaptive optimizations in a JVM. Figure 4.5 shows LI instruction cache miss (an important 

runtime measurement data) gathered at each context switch point (a coarse granularity for 

doing adaptive optimization on a JVM) of benchmark JACK in SPECJVM98 suite. There 

is almost no stable phase which can be found even by close human inspection. However, 

Figure 4.5 also demonstrate that there are obvious repetitive behaviours. 

Repetitive information is very useful for understanding program behaviour and making 

adaptive optimizations. However, stable phase detection techniques and even the defini

tion of stable phase given in Section 4.2.1 are insufficient to describe this situation. It is 

necessary to give a new definition for such kind of periodic phases as: 

Definition 2 A variable length periodic phase is a tuple & < a, 6, 8 > where, 
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Real hardware measurement result, L1 l-Cache Misses, jack 
140000 

120000 h 

• | 100000 
CO 

g 80000 

* 
s 1 

60000 

40000 

20000 

0 
0 5e+09 1e+10 1.5e+10 2e+10 2.5e+10 3e+10 3.5e+10 

Elapsed Cycles 

Figure 4.5: The obvious repetitive behaviour of JACK at a coarse granularity, LI instruction cache 

miss counts are gathered every thread context switch. 

• a is a set of segments S\,...,S„ appear in program execution and n> 1. 

• 0 is a function computes the correlation between each two items in a. 

• 8 is a threshold. For two arbitrary items Sx,Sy G a where 1 < x,y < n, the following 

inequality must be hold: 6(Sx,Sy) > 8 

More simply, periodic phases are repetitive patterns in program execution. 

4.3.2 Periodic Phase Detection Techniques 

Compared with fixed interval based phase detection works, investigating variable length 

periodic phases is new. Researchers present techniques based on different types of data and 

employ a variety of approaches. 

A. Georges et ah, for example, have developed an analysis for detecting "method level 

phase behaviour in Java" [GBEB04]. The authors develop an offline analysis technique for 

Java workload. After the execution time is measured for each method invocation, they use 

an offline tool to analyze the dynamic call graph and then identify phases corresponding 

to method executions. Methods that take a large portion of the whole execution time but 
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which have a less frequent invocation count are then candidates for major method level 

phases. 

Shen et al. [SZD04] detect long range variable phases using a quite different technique. 

Their offline/online mixed phase detection solution does an offline computation on a trace 

of reuse distance data of programs. Reuse distance is defined as the number of distinct data 

elements accessed between two consecutive references to the same element. Apparently, 

reuse distance can cover a large portion of the program execution and is not fixed length 

interval. They use a discrete wavelet transform [Dau92] as a filter to remove the least 

significant changes and locate the most important ones. They use ATOM [SE94] to insert 

phase markers into program to label the significant phase points. Shen et al. apply their 

phase analysis to "cache resizing," and test their work on the Cheetah [SA93] cache 

simulator. Simulation data suggests this phase analysis can help considerably, reducing 

cache size up to 40% without significantly increasing the number of cache misses. 

4.4 Problem Classification 

We have introduced a large number of different phase detection techniques. All these 

techniques cover a broad area. Each solution is distinguished from, as well as shares some 

common features with others. In order to highlight the differences and relations among 

them, we categorize them in three manners. That is, we treat the whole solution space of 

phase detection as a three-dimension space. Each technique can have its specific position 

in this space. The three axes are: 

1. Phase Type 

As we said in previous sections, all phase detection works are either aiming at stable 

phases or periodic phases. We actually follow this axis to introduce all the phase 

detection techniques. 

2. Data Source 

Phase detection can work on different types of data. 

• Static software data 
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Some works use measurement for particular static program units, such as method 

[GBEB04], basic block [SPC01] and loop or branch [LPH+05]. 

• Dynamic software data 

Some phase detection works are based on dynamic counting for a special soft

ware concern, such as the "instruction working set" used in [DS02b] and the 

"data reuse distance" used in [SZD04]. 

• Simulated hardware data 

Hardware data has received a large attention. However, for practical reasons, 

many researchers use hardware simulators to investigate their techniques. From 

this precise data is possible and a set of phase detection works are developed, in

cluding the RLEP phase predictor [SSC03] and Balasubramonian's work based 

on "conditional branch counts" [BABDOO]. 

• Hardware data 

Use of real hardware data is desirable. E. Duesterwald et al. use hardware 

data from Power3 and Power4 architecture to detect phases in C language 

benchmarks. Shen et al. present an extension of their Wavelet based analy

sis work to hardware trace data, such as IPC (Instruction-per-cycle) and cache 

hit rates [SDDS05]. Our approach is also based on real life hardware event data 

for a JVM. 

3. Application Time 

• Offline analysis 

Many phase detection techniques are actually offline data analyses [SZD04, 

GBEB04, SDDS05, LPH+05]. Sophisticated analysis is applied on program 

trace data. In general, offline analysis can work on trace data for as many passes 

as it requires and provides comparatively accurate phase detection results, or 

phase analysis results. They are very useful for program understanding, but will 

not be suitable for online optimizations due to the (usually) large computation 

overhead. However, the results of offline analysis can be somehow used by 

runtime systems, such as the "phase markers" used in [SZD04]. 

59 



Phase Detection Theory and Techniques 

• Simulated online 

Some phase detection algorithms designed for online applications are firstly 

presented in a simulated manner. The "simulated" manner here either means 

implemented on hardware simulators as works in [BABDOO, SSC03] or pre

sented as a prototype for online solutions working on a trace file in only one 

pass. Our offline pre-study is a simulated online algorithm, as well as the phase 

detection model given in [HRS03]. 

• Online implementation 

Online phase detection technique on real world system is challenging. Nag-

purkar et al. designed an online phase detection model [NHK+06] which aims 

at detecting stable phase. Their framework can accept different type of data as 

input. We also implement phase detection in a purely online manner, on real 

world hardware measurement data, but aim at detecting periodic phases. 

4.4.1 Online Hardware Based Phase Detection 

We will present a phase detection approach for detecting variable length periodic phases in 

Java programs. The data source we used is obtained from realistic hardware components. 

The application time of the final approach is purely online, and we do an offline pre-study 

working in a simulated online manner. The results of our approach can bring benefit for 

better program understanding and provide valuable information for runtime adaptive opti

mizations. 

Using the hardware event data commonly available in modern processors, we detect 

and predict the recurrent behaviour in programs. The hardware event data is gathered 

at every context switch, e.g., we choose a coarse granularity which is practical to online 

implementation in realistic systems. 

Before designing and implementing the online algorithm, we first built an offline pro

totype to validate the feasibility. The prototype is actually a simulation on hardware trace 

data generated using Jikes RVM. 

Our algorithm captures and associates the beginning pattern (binary representation of 

hardware event data) of each periodic phase with the phase itself. We thus use initial 
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patterns to predict upcoming periodic phases. We analyze the similarity between patterns 

and replay the other part of a period of execution when we identify that there is a recurrence 

of a pattern. The algorithm just reads the trace file in one pass. Therefore, it is a simulation 

of an online application, and can be transplanted into an online implementation with less 

effort. 
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Figure 4.6: The comparison between the real measurement result (top) and the phase prediction 

(offline pre-study) result (bottom) on JACK. The hardware event used here is Level 1 instruction 

cache. 
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The bottom graph in Figure 4.6 shows a sample result from our offline pre-study work 

on JACK in predicting the LI instruction cache miss data. The actual program execution is 

shown in the top graph. These results demonstrate that our solution performs well after the 

initial learning period, with most major features quite accurately predicted in the latter half 

of the program. This result is typical of the Java benchmarks we have investigated. 

4.4.2 Distinguishing Characteristics of Our Approach 

Our phase detection approach is a variable length periodic phase detection technique which 

is based on real world hardware event data, in coarse granularity (context switch) and is 

implemented in a pure online manner for non-scientific, general Java programs. 

Most pre-works in phase detection are detecting stable phases. These approaches work 

well for flat, stable programs or on fine-granularity. Due to the irregular bahaviour of gen

eral Java programs and the coarse granularity that an online implementation can afford, we 

developed a variable length periodic phase approach which is different from many works. 

The other variable phase detections presented in [GBEB04], [LPH+05] and [SZD04] 

require comparatively heavy offline data analysis. Furthermore, our approach is based on 

real world hardware events, implemented in an existing architecture, which is distinguish

ing from the works [BABDOO, SSC03] that are also based on hardware data but imple

mented on hardware simulators. 

4.5 Summary 

In this chapter we gave a general introduction to the program phase detection area. In 

fact, the concept "program phase" is not well defined yet, by just using the definition for 

stable phases. We gave a definition to periodic phase for irregular, real life, object oriented 

programs investigated from the perspective coarse granularity. 

We investigated a large set of different phase detection techniques and classified them 

into different types according to three concerns: phase type, data source type and appli

cation time. We used these three concerns to build a solution space for phase detection. 

Each technique can find its position in such a space. Our approach holds its own position, 
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different from all the pre-existing techniques. 

Finally, we built an offline prototype to prove the feasibility of our online approach. 

The offline pre-study results illustrate that it is practical to make online phase detection 

on real world hardware for general Java programs. This study builds a solid base for our 

further work on phase detection techniques which will be introduced in later chapters. 
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Chapter 5 

Hardware Based Online Phase Detection 

In this chapter we introduce the core part of later work, detecting program phases from 

hardware information analysis. The output of our phase detector is used to support further 

optimizations introduced in later chapters. We begin with an overview of our phase detec

tion technique in Section 5.1. In Section 5.2 we describe the details of our phase analysis 

design. A set of phase detection metrics presented by other researchers are introduced in 

Section 5.3. We also point out the limitations of these metrics if applied to variable length, 

recurrent, periodic phases and explain our evaluation metrics in the same section. Sec

tion 5.4 gives the experimental data and finally we summarize and discuss future work in 

Section 5.5. 

5.1 Overview 

Most programs are highly repetitive; a large portion of execution time is typically spent in 

just one or more small code segments. Detecting, or even predicting repetitive, "phase-like" 

behaviour can be important for many reasons, including program understanding, identifi

cation of execution "hot spots," runtime adaptation, and so forth. In Chapter 4.1, we have 

given an overview for program phase detection and the state-of-art techniques. Phase de

tection is a rather wide topic. We should be aware of the fact that phases can have different 

types and hold different properties. Both the application areas and mechanisms to detect 

different type of phases are varying. Similarly, we need different type of evaluation metrics 
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suitable to different type of phase problems. In this chapter, we will introduce an online 

algorithm for phase detection in Java programs based on real world hardware performance 

data. Moreover, we propose a pair of evaluation metrics for variable length recurrent peri

odic phase detection results. 

Phases can have different properties; many phase analysis techniques concentrate on 

finding short-term, fixed-length phases representing periods of stable program execution. 

This is appropriate and reasonable for many programs, especially "regular" and scientific 

computations, but not necessarily appropriate for programs with more variable behaviour 

and/or more long-term phase structure. 

Understanding performance, including the nature of program phases, requires under

standing the underlying execution system as well as the program code. Modern processors 

are complex, with many internal components and designs; pipelines, multiple-level caches, 

TLBs, branch predictors, multiple cores, etc. These features are very effective, but intro

duce a significant amount of complexity when trying to determine why a program behaves 

the way it does. In Chapter 3 and in previous work [LSP+05, GVG06], we had shown 

that there exists a tight, and often unintuitive relation between the hardware performance 

and program behaviour. Hardware performance data is thus critical for developing a good 

understanding of program performance. 

Recently, and following the general maturation of hardware performance monitoring 

techniques in commercial machine designs, hardware event data has begun to receive more 

and more attention as a basis for understanding program behaviour [SHC+04], detect

ing program phases [DCD03, BABDOO, GBEB04], and for employing adaptive optimiza

tions [DS02a, RSEW04, Jim05]. 

In this chapter we present an online technique to detect repetitive behaviour in Java pro

gram execution using hardware data. Our work considers the important problem of finding 

variable length periodic phases, something we show is usefully present in many programs. 

Our design is based on creating patterns representing the variation in hardware event data 

collected from low level hardware profilers. These patterns can then be used to detect 

higher-level phase changes, and incorporated into sophisticated table-based techniques to 

help predict program behaviour and guide runtime adaptation. 

Formal evaluation of phase detection and prediction is of course critical to demonstrate 
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the quality of phase analysis. In previous works, a set of evaluation metrics for phase 

detection have been presented, including sensitivity , stability, transition correlation, etc.. 

However, all these existing metrics are either only suitable to measure stable phase detec

tion results or are fairly naive and cannot cover some essential aspects of variable length, 

recurrent phases. We thus propose Confidence and Possible Miss Rate (PMR) measures 

to quantitatively evaluate the quality of variable length, recurrent phase detection results. 

These calculations give a good understanding of the quality of phase data, and are the first 

such measures to be formally described. This pair of metrics is very helpful in selecting 

pattern creation algorithms that most effectively represent the similarity and regularity of 

the recurrent portions in the program execution. The final algorithm we choose results in 

high quality repetitive-phase detection. 

5.2 Design 
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Figure 5.1: System structure for recurrent phase detection. 

Our work is an extension to Jikes RVM [AAC+99], and Figure 5.1 shows an overview 

of the design. Raw hardware event data is read from hardware counters through the hard

ware performance monitor (HPM), a pre-existing component in Jikes RVM. We augment 

the HPM with a pattern creation extension that generates patterns representing the hard

ware performance. This analyzes the hardware data between two consecutive sample 

points, summarizing the "shape" or pattern of variation in low level performance. If we 

observe that the same sequence of variation in events has been encountered before, a (new) 

repetitive sequence will be considered. 

Created patterns are transferred to a pattern analysis model for deeper analysis. The 
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pattern analysis model maintains a pattern database to store the received patterns. The 

pattern analysis model makes the ultimate decision pn the identification of and response to 

phase changes. Below we describe the two main mechanisms in more detail: the pattern 

construction mechanism, and the pattern analysis and prediction. 

5.2.1 Pattern Construction 

A wide variety of properties of hardware events can be used to detect repetitive behaviour: 

increasing or decreasing trends, range of variation, and distance and similarity measures of 

various forms. Obviously there are trade-offs in terms of complexity and data size (cost) 

and improvements to phase detection and prediction. In order to select appropriate prop

erties and pattern building strategies, we implemented a variety of heuristics and evaluated 

them quantitatively using the metrics developed in Section 5.3.2. Here we present our most 

successful and general approach in detail. As shown in Figure 5.2 this design is mainly 

based on three attributes of the hardware event curve: the level of variation (as shown in 

the top graph), the shape or the direction of variations (second from the top),.and the length 

of the more significant varying part of each repetitive period of the curve (third graph from 

the top). Finally, we cut the whole curve into recurrent phases based on the similarity be

tween the beginning parts of each period according to these three attributes (bottom graph). 

Our implementation summarizes this low level behaviour using (short) bit-vectors that 

encode the overall pattern of variation. Translating hardware event data to bit-vector pat

terns involves first coarsening the (variation in) data into discrete levels, and then building 

a corresponding bit-vector shape representation. 

• "Levels": A basic discretization is applied to (variations in) event density data to 

coarsen the data and help identify changes that indicate significant shifts in behaviour. 

We compute the density of events over time for each sample. By comparing the 

density of the current sample with that of the previous sample, we obtain a variation 

V. The variation V is discretized to to a corresponding level, Py. For the number 

of levels, we test a series number of power of 2, e.g., 2, 4, and 8. We decide to 

categorize the variation into four levels for an optimal tradeoff between the ability of 

distinguishment, the noise tolerance, and the overhead of encoding. 
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Figure 5.2: Main attributes used to build patterns. The top three graphs show the three attributes of 

the hardware event curve: the variation level, the variation shape, and the length of the significantly 

varying part. The bottom graph shows the result of recurrent phase identification based on similarity 

of the beginning part of each phase. 
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• Pattern "shapes" are then determined by observing the direction of changes, posi

tive or negative, between consecutive samples. Complexity in shape construction is 

mainly driven by determining when a pattern begins or ends. 

Each shape construction is represented by a pair (Py,v), where Py is a level associated 

with the beginning of the shape, and v is a bit-vector encoding the sign (positive, 

negative) of successive changes in event density. Given data with level Py, if there is 

no shape under construction a new construction begins with an empty vector: (Py,[]). 

Otherwise, there must be a shape under construction (Qw, v). If Qw = Py, or we have 

seen Qw > Pv less than n times in a row, then shape creation continues based on the 

current shape construction (Qw,v): a bit indicating whether V > 0 or not is added to 

the end of v. 

The following conditions terminate a shape construction: 

1. If we find Qw < Pv we consider the current shape building complete and begin 

construction of (Py, [ ]). Increases in variation of event density are indicative 

of a significant change in program behaviour, and so motivate the decision to 

begin a new phase. 

2. If we find Qw > Py, n times in a row the current shape has "died out." In this 

case we also consider the current shape building complete. In our experiments 

we use n — 2, which is long enough. In our observation, it is extremely rare that 

a major variation will happen after two very flat intervals coming in a row. 

3. If in (Qw,v) we find |v| has reached a predefined maximum length we also 

report the current construction as complete. In our experiments we use a maxi

mum of 10 bits. We thus can store the patterns in direct-mapping table structure 

of less than IK entries. 

A rough overview of the pattern creation algorithm is shown in Figure 5.3. After obtaining 

hardware data D, we compute the variation V between D and the same data (Z)iast) for the 

previous interval. V is then mapped from a real value to an integer value Py G {0, . . . , n}, 

representing the "level" of V. As shown in the formal description of this algorithm, we use 

Qw to represent the level of the pattern currently under construction. Initially the value of 
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Qw is set to -1 to indicate no pattern is under construction. If Py > Qw then we are facing 

a larger, and hence more important variation than the one that began the current pattern 

construction. The current pattern is thus terminated and and a new pattern construction 

associated with level Py is begun. The value of Py is assigned to Qw and the shape code 

vector (denoted as ShapeCode in Figure 5.3) is blanked. Otherwise (Py < Qw) and the 

current pattern building continues. 

The actual pattern encoding is based on the relation between Py, Qw and the sign of V. 

Two bits will be appended to the current ShapeCode each time a pattern grows: "01" means 

a positive variation at level Qw, "10" represents a negative variation at level Qw, and 00 

means either a positive or negative variation at a level below Qw- Binary Is in our scheme 

thus indicate points of significant change. Construction continues until one of the pattern 

termination conditions is met, at which point we report the pattern to the pattern analysis 

model. A concrete example of the creation of a pattern is shown in Figure 5.4. 

Of course choice of primary data is also important; the above strategy can be applied 

to many different hardware events. In our actual system we make use of the instruction 

cache miss density as a good indicator of code activity. We have considered other hardware 

events and combination of events (see page 123), but a thorough study is left for future 

work. 

5.2.2 Pattern Analysis and Prediction 

Pattern analysis and prediction consumes patterns generated by the pattern creation mod

ule. Here we further examine the patterns to discover recurrent phases and generate predic

tions of future program behaviour. All created patterns are stored into a pattern database. 

The recurrent pattern detection and prediction are based on the information in the pattern 

database and the incoming pattern. 

The recurrent detection is straightforward: if we find a newly created pattern that shares 

the same pattern code as a pattern stored in the pattern database we declare it to have 

recurred. An actual recurrent phase, however, is not declared unless the current pattern 

also matches the prediction results. 

The prediction strategy we use is a variant of fixed-length, local/global mixed history, 
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No 

Compute shape bits S of V as: 
case (Pv < Qw) : S =00 
case (Pv==Qw) && (V >0): S =01 
case (Pv==Qw) && (V < 0): S =10 

ShapeCode += S; 

Figure 5.3: A flow chart for pattern creation. 

table-based prediction. Unlike more direct table-based methods, our predictions include 

an attached "confidence" value; this allows us to track multiple prediction candidates and 

select the most likely. 

Figure 5.5 gives an overview of our prediction scheme. For each pattern, we keep 

the three most popular repetition "distances" from a former occurrence to a later one— 

the use of three candidates is based on experimentally balancing predictor performance 

and accuracy. In our initial experiments, we notice a long pattern recurrent period can be 

interrupted by a shorter period in the middle. By tracking three distances longer periods 
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Figure 5.4: Pattern construction example. (1) Acquire the raw hardware data. (2) Calculate the 

variation between consecutive points. (3) Coarsen the variation into different levels; the triangles 

inside each circle show the direction (negative/positive) of variation. (4) The final pattern creation 

results; the arrow on the y-axis indicates that we obtain a level 2 pattern; the number above each 

circle shows the 2-bit code for each variation. The four trailing zeros are omitted (the pattern has 

died out), and the final pattern code is 010001. 

are better able to survive. Prediction updates are performed by heuristically evaluating 

these distances for a given incoming pattern to find the most likely, variable-length pattern 

repetition. Our tri-distance selection algorithm updates the likely choices for an incoming 

pattern p by tracking three repetitions D,, i e {0,1,2}: 

• For each D, we keep a repetition length L(, measured by subtracting time stamps of 

occurrences, and a "hotness" value H. 

• The difference 7} between the current pattern occurrence p and the ending point of 

each of D, is calculated. 

• If the different rate DRt = \T,-Li\ x 100% between 7] and L, is smaller than a thresh

old T, the hotness Hi is doubled. The hotness of the best fit distance gets a further 
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Figure 5.5: Overview of the prediction mechanism. 

doubling. We then right shift of the hotness values of all the three distances. Conse

quently, if the different rate of a distance is larger than T, the hotness of it is decreased 

to a half. This adaptive approach ensures new, hot patterns can be quickly recognized 

and less useful aging patterns to be discarded. 

• If all the different rates of the three distances are larger than T, we replace the Dj 

with the lowest hotness with a new Dj. The length, Lj is based on the distance to 

the closest of the current set of D,, and hotness, Hj, is initialized to a constant value 

representing a low but positive hotness in order to give the new pattern a chance to 

become established. The value of Hj is chosen as five arbitrarily, which will not 

become zero in two consequent right shift operations. 

• We use the D, with the greatest hotness as the prediction result; Hi further functions 

as a confidence value for this prediction. 
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Steps 

1 

2 

3 

4 

5 

Distances 

Di [100,200] L! = 100 //i = 10 

£>2[70,180] L2 = 110 / /2 = 7 

£>3[150,200] L3 = 50 H3 = 5 

£>i [100,200] Li = 100 7/i = 10 

D2[70,180] L2 = 110 H2 = 7 

D3 [150,200] L3 = 50 H3 = 5 

Dj [100,200] Li = 100 # ! = 40 

D2[70,180] L2 = 110 H2 = 14 

£>3 [150,200] L3 = 50 H3 = 5 

Di [100,200] Li = 100 Hx = 20 

D2[70,180] L2 = 110 tf2 = 7 

£>3[ 150,200] L3 = 50 H3 = 2 

£>i [200,297] Li = 9 7 //i = 20 

D2[70,180] L 2 = 1 1 0 H2 = 7 

D3 [150,200] L3 = 50 //3 = 2 

Events and Actions 

Get pattern at time 297 

Compute DRi = 3.0% 

Compute DR2 = 6.4% 

Compute DR3 = 194.0% 

Update the hotness 

values, according to 

the different rates 

Shrink the hotness 

values to half 

Use D\ as the 

prediction and 

update its content 

Table 5.1: A concrete example of the tri-distance algorithm. The difference threshold T is set to 

10%. 

A concrete example is shown in Table 5.1. Here we set the different threshold T as 

10%. In the first step, a pattern comes at time slot 297 and the state of the distances are 

shown in the second column. We then compute the different rate for each distance in step 

2. In step 3, the hotness values are updated according to the different rates. D\ fits the best 

and thus the hotness of Di is increased four times to 40. In step 4, we shrink all hotness 

values to half. The hotness of D3, whose different rate is larger than T, is thus shrunk to a 

half of the original value in step 1. Finally, in step 5, D\ is chosen for prediction and the 

beginning point, the ending point, and the length are updated reflecting the latest pattern. 

With the current prediction updated, we then make a final prediction from the global 

set of pattern updates. It is frequently true that the current prediction, even if with a high 

confidence value, does not belong to the most important recurrence of a program. We 
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thus use two global prediction "channels" to avoid losing the more important prediction in 

the history. We found that using two channels is sufficient to identify the most important 

active period while keeping the overhead low. This setting also aims to limit the cost of 

choosing among all possible patterns. Our dual-channel selection algorithm is similar to 

the tri-distance selection algorithm: 

• We have two prediction channels; each stores a prediction from a pattern, and each 

channel holds a "hotness". 

• If the current prediction from the tri-distance predictor matches one of the prediction 

channels, the channel's hotness is increased by the prediction confidence 

• In the case that the current prediction matches neither of the prediction stored in the 

channels, the coldest channel is replaced by the current prediction. 

• The channel with a higher hotness determines the global prediction result. 

• After each global prediction, the hotness of both channels is shrunk to half. 

5.3 Evaluation Metrics 

Any specific technique provides a specific solution to a specific problem. To evaluate the 

result of a technique, we specify metrics that cover the most important characteristics of 

the specific problem on which the technique is applied. 

A number of phase detection evaluation metrics have been provided. These metrics are 

mainly rooted in their experience in different type of phase detection problems and cover 

the most important aspects of particular type of phase detection problems. 

In this section, we first give an introduction to the existing evaluation metrics. Most of 

them are designed for evaluating stable phase detection results, and are thus not suitable for 

our case. We then present a pair of novel metrics to measure the result of variable length 

recurrent phase detection problems. This evaluation pair covers two important aspects of 

recurrent phase detection: similarity and regularity. 
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5.3.1 Existing Metrics 

Most stable phase detectors are based on measures of fixed length intervals. Basically, 

a program is split into a set of flat, stable portions, called phases. The special portions 

between phases are named phase transitions. Most of the existing metrics are based on 

measures for these two different states of programs. 

5.3.1.1 Stability and Average Phase Length 

An outstanding stable phase detector should logically detect more stable phases than other 

detectors when applied to the same program. Dhopapkar et al. [DS03] employ stability and 

average phase length to compare phase detection results from different algorithms. 

Stability is defined as the fraction of intervals that belong to a detected stable phase; a 

higher stability means a more complete coverage of the program. Similarly, average phase 

length is defined as the number of intervals that are part of stable phases, divided by the 

total number of stable phases. 

This pair of metrics are based on an assumption that phase detection is applied to a pro

gram with a large proportion of stable/flat portions. The metrics pair considers the phase 

detection output with a larger number of intervals identified as stable and with longer con

tinuous flat intervals as a better result. These metrics are thus particularly designed for 

stable phase detection and are not suitable for examining periodic phase detection tech

niques working on a data set with large variations. 

5.3.1.2 Sensitivity and False Positives Rate 

T. Sherwood et al. [SSC03] present a pair of measures to evaluate how often a phase detec

tion algorithm identifies phases correctly. 

Sensitivity measures the ability of a phase detection mechanism to identify a phase 

change after there is a "significant" performance change. It is defined as the fraction of 

intervals showing significant performance changes with respect to the preceding interval 

over all intervals. 

The false positive rate is the fraction of intervals where the performance shows no 
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"significant" change, but is nevertheless claimed as a phase transition by the detector. 

Both of these measurements are dependent on the definition of "significant" changes. 

They are not suitable for the case where there is no long term stable phases with respect to 

a single level of granularity. For the situation shown in Figure 4.5 on page 57, if the value 

of "significant" is set to a too small value, we will determine that each interval is different 

from the preceding interval. Otherwise, if the significance is set too high, we will end-up 

with an equally meaningless result, saying all intervals are in the same phase. Even if we 

are lucky enough to select the optimal significance, this pair of metrics still fails to examine 

one important aspect of the periodic phases: the regularity of the recurrences of phases. 

Different from other metrics, the false positives rate measures the result from the down

side employing the concept that a better solution should also make fewer wrong decisions. 

We also use the same concept when developing our evaluation metrics specific to recurrent 

periodic phase detection. 

5.3.1.3 Transition Correlation and Accuracy Score. 

Nagpurkar et al. [NHK+06] propose an evaluation strategy based on a theoretical perfect 

phase detector. The perfect detector provides a "correct" phase boundary solution for a 

particular program's execution. By comparing the results of the perfect detector and a 

given, real detector they define the transition correlation as 

_, , BothlnPhase + BothlnTransition 
TrCorrelation = ——— 

lotalEvents 

BothlnPhase is the total number of profile elements for which both detectors agree it 

is in a stable phase. Similarly, BothlnTransition is the total number of profile elements for 

which both detectors agree it is in a period of phase transition. 

In combination with Sensitivity and False Positive, they further introduce a novel accu

racy scoring metric, defined as 
TrCorrelation Sensitivity False Positive 

Score — 1 1 
2 4 4 

The Score weights correlation equally with the sum of sensitivity and false positive. 

Although reasonable, the authors did not provide data or arguments to support the values 

of weights they used, and other weightings and combinations might be possible as well. 
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Again, however, this pair of metrics is also designed for stable phases. More impor

tantly perhaps, it requires a "perfect detector" which is not available in many cases. Their 

accuracy scoring metric examines the results from multiple directions. This idea is helpful 

for us to design our evaluation metrics that will be introduced in Section 5.3.2. 

5.3.1.4 Performance Variance and Coefficient of Variation 

In the case where program presents relatively small performance variations, a small perfor

mance variance in a stable phase is a sign that the phase detector has identified the phase 

boundary correctly [SSC03]. A poor phase detection result will show a comparatively large 

performance variance within a phase due to the inclusion of more intervals than is strictly 

necessary. Of course the concrete definition of this metric must be considered in the context 

of the whole program variation, and thus is highly application-specific. 

Coefficient of variation (CoV) is a statistical measure of standard deviation as a per

centage of the average: 
stddev 

CoV= 
mean 

Here, stddev stands for standard deviation; mean is the average of all measures of the 

intervals in the same phase. 

For stable phase detection, a lower CoV is desired; in an extreme case, all the intervals 

in a detected phase would have exactly the same value in the measurement data, resulting 

a CoV of zero, or perfect phase identification. 

This metrics pair still assumes that intervals identified in the same phase performs sim

ilarly. Thus, these metrics still only work for stable phase detection results. Different from 

other existing metrics, this metrics pair makes use of statistical computations other than 

just fractions between the counts of intervals. 

We aim at detecting periodic phases in Java programs that show larger performance 

variance. More sophisticated statistical measures are required to give an evaluation on the 

phase detection algorithms. The existing metrics are not enough for this situation, but some 

ideas behinds these metrics are also helpful for us to design new evaluation metrics suitable 

to recurrent periodic phase detection. 
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5.3.2 Periodic Phase Evaluation 

We have introduced a number of evaluation metrics for stable phase analysis results in 

Section 5.3.1. Meanwhile, we also mentioned the reason why these metrics are not suitable 

for measuring the variable-length program periodicity we investigate here. Nevertheless, 

some idea behinds these metrics are valuable for developing new metrics, such as: 

• To evaluate the result of a phase detection technique, it is not enough to only consider 

one simple measure; a combination of multiple measures must be considered. 

• To evaluate the results of a phase detection technique, it is not enough to only con

sider positive cases, but also the negative cases as well. 

• To evaluate the results of a phase detection technique, it is not enough to only con

sider simple rates between different types of counts. Novel statistical computations 

are required. 

We define two metrics, Confidence and Possible Miss Rate (PMR). Confidence gives 

a measure of the similarity between repetitive periods identified by our algorithm, while 

PMR measures the amount of execution which could have been identified as repetitive but 

which was not done so by the phase detection algorithm. These metrics are well-suited 

long term variable length phase, and are practical to compute as well. 

Both Confidence and PMR are based on the same pair of fundamental metrics measur

ing the similarity and regularity between execution segments that may be allocated to the 

same repetitive group, i.e., the instances (occurrences) of the same pattern. 

Suppose we have a pattern P which has N instances. All the instances P, compose 

a group, which can be represented by an ordered set G(P) — {P,|/ = 1,2, ...,iV}. Each 

instance P, is actually a segment in a program execution, and can be formally represented 

as Pi = [bi,ei]. The bj and e, are the start and end time, measured as the time stamp number 

of the data collection points of the segment P, respectively. We also have bi+\ > et, which 

means the beginning point of P,+ i is later than the ending point of P,. We use two basic 

metrics to quantify the similarity and regularity of a set G(P): 

• Similarity: 
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We calculate the Pearson correlation between each pair, Px and Py, in G(P) as in in 

formula 5.1, 

y p p _ Z/j[Z/y 

C{P»P,) = - T = " N (5.1) 

V(2ra2-^)W)2-sr> 
Given that 'G(P) has JV items, we can obtain totally ^ 2~ ' pearson correlation re

sults between each two segments in G(P). We thus use a mathematical average to 

represent the similarity of a group. We denote this value as CG(Py. 

IjC(Px,Py) 2*ZC(PX,Py) , 
Cm= w-ij = N(N\X\)

y),(x=h2,...,N-Uy = x+l,x + 2,...,N) 

• Regularity: 

The difference between start times for each pair of adjacent P, provides a basic "dis

tance" measure between pattern instances, i.e., the distance between Px = [bx,ex] and 

Py = [by, ey] is by — bx. Without losing generality, here we assume by > bx. The extent 

to which pattern instances are well clustered shows regularity; we measure it using 

a k-means clustering algorithm [McQ67] applied to the set of all distance pairs. For 

each cluster, we obtain the absolute value of the difference between each pair of item 

and the centroid of the cluster. The sum of all these differences becomes a measure 

of the regularity of the pattern group G(P), and we denote this value as DG^Py 

Combining the above calculations, we provide an overall evaluation of G{P) as: 

EG(P)=CG(P)*DG(P) 

Given different repetition detections for the same pattern P a higher EG^ heuristically 

indicates better results. 

Our actual metrics can now be defined in terms of the above calculations. 

• Confidence: 

For each G(P), we generate a set G(P)-> by removing the / h pattern instance of G(P). 

If G(P)-> has a better quality (a higher value of E) than G(P), then we have less 
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confidence on the 7th pattern instance being a member of the group, and thus reduced 

confidence in the grouping itself. Otherwise, the 7th instance makes the whole group 

better and improves confidence. 

We thus give a confidence score Conf(Pj) of j t h item of G(P) as: 

/ D , , 1 0 EG(P)>EG(P)J 
ConffP;) = < F 

]! ^fim. otherwise 

Confidence in the detection results of pattern P, denoted as Conf(P), is then the sum 

of Conf(Pj) for all j . 

Our final Confidence in a complete detection result on all m patterns Pl ,P2, ...,Pm 

appearing in the result is the sum of confidence in each pattern weighted by the 

number of the instances of the pattern. 

Confidence basically indicates the degree to which the pattern detection results repre

sent at least a local maximum. High confidence indicates patterns are well-categorized, 

while low confidence suggests some execution segments may be misclassified. 

• Possible Miss Rate (PMR): 

The PMR evaluates how much of the execution was potentially mis-identified as non-

repetitive. We define it as follows: 

Number ofPMPI 
PMR = — (5 2) 

Number of PMPI+Number of DPI 

In formula 5.2 above, PMPI stands for "Possible Missed Pattern Instances" and DPI 

represents "Detected Pattern Instances". Somewhat dual to Confidence, the funda

mental idea of PMR is to add an execution segment as an instance of a pattern and 

check whether this new grouping is better or worse. 

Given a pattern detection result G(P), we treat all the execution segments that are not 

covered by G(P) as potential elements of PMPI. We then insert each such execution 

segment s into G(P) and build a new group G(P)S. Segment s is then included as a 

member of PMPI if £G(P) < EG(P)S • 
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Similar with that of the false positive rate described in page 77, the purpose of PMR is 

also to measure the quality of the "noise resistance" property of a detection algorithm. The 

difference here is that we use more novel statistics suitable for our case, detecting recurrent 

period phases with less or no flat stable intervals. 

5.4 Experimental Results 

In this section, we make use of the metrics developed in the previous section to experimen

tally evaluate our technique. 

5.4.1 Setting and Benchmarks 

Our implementation is based on Jikes RVM 2.3.6; results were measured on an Athlon 

1.4GHz workstation with 1GB memory (Debian Linux, 2.6.9 kernel). We report phase 

detection results derived from LI instruction cache miss events. Benchmarks include the 

industry standard SPECJVM98 suite [Stac], and two larger examples, SOOT and PSEU-

DOJBB. SOOT is a Java optimization framework which takes Java class files as input and 

applies optimizations to the bytecode; in our experiments, we run SOOT on the class files 

for JAVAC in SPECJVM98 with options "-app -O". The benchmark PSEUDOJBB is a vari

ant of SPECJBB2000 [StaOO] which executes a fixed number of transactions in multiple 

warehouses. Our experiments run one to eight warehouses, 100 000 transactions in each 

warehouse. For SPECJVM98 we use the recommended (large) input size "-s 100". For 

quality analysis we built a canonical sample profile from 15 typical runs, while the phase 

driven profiling results are the average of 5 runs. The threshold T for tri-distance selection 

is set to 10%. Note that all the experimental results reported in this thesis use the same 

system setting and benchmark suite introduced here. We will not repeat this basic system 

and benchmark parameter settings in later chapters. 

5.4.2 Results 

We implement our online phase detection algorithm introduced in Section 5.2 in Jikes 

RVM. Trace files recording pattern creation are generated and an offline analysis is ap-
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plied to evaluate the quality according the metrics described in Section 5.3.2. 

The results are given in Table 5.2. The five data columns (columns 2 through 6) are the 

number of different patterns, the number of occurrences of all patterns, Confidence results, 

PMR results and PMR results on the most important (major level) patterns. 

Benchmark 

compress 

db 

jack 

javac 

jess 

mpegaudio 

mtrt 

raytrace 

soot 

PseudoJbb 

Average 

Number of 

Patterns 

32 

29 

29 

23 

25 

28 

27 

18 

49 

35 

— 

Number of 

Occurrence 

158 

451 

352 

214 

182 

111 

78 

69 

11106 

7093 

— 

Confidence 

0.94 

0.95 

0.94 

0.93 

0.88 

0.91 

0.85 

0.85 

0.99 

0.98 

0.92 

PMR 

(%) 

60.78 

35.94 

22.65 

32.42 

48.71 

68.71 

27.58 

16.17 

28.45 

37.80 

37.98 

PMR 

Major(%) 

2.78 

1.25 

0.05 

6.58 

5.88 

13.49 

0.10 

4.44 

0.03 

0.01 

3.46 

Table 5.2: Pattern detection evaluation results. Hardware patterns are built based on performance 

data of LI instruction cache. 

On average we have a 92% Confidence that the segments identified by our algorithm 

are actual repetitive portions. Unfortunately we also have a comparatively high average 

PMR, 38%. This means we potentially miss over a third of repetitive segments in the exe

cution. Deeper investigation shows that most of the missed segments are likely instances of 

patterns at the lowest levels (0 and 1). As described in Section 5.2, pattern constructions at 

lower levels can be interrupted when a higher level variation is encountered. It is therefore 

not surprising that many possible repetitions of lower level patterns are ignored by our al

gorithm; larger, more significant changes are expected to be more important for capturing 

the important repetitive behaviour of a program, and our algorithm weights such patterns 

higher. In Table 5.2, the "PMR Major" column gives the PMR value for only the upper 

range of variance (levels 2 and 3). For these signals the data shows that we only miss on 
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average about 3.5% of possible repetitive periods. 

We had tried other solutions for pattern creation and recurrence detection. Absolute 

values vary a lot from program to program and are not appropriate to build a universal dis

cretization scheme for all programs. Variants such as considering only upwards or down

wards variations, encoding the distance between upwards and downwards performance di

rections, using finer or coarser level settings (8 levels or 2 levels) were also investigated. 

Our design was represented we feel a local optimum with respect to obvious variation in de

sign parameters, and reasonable different settings showed no further general improvement 

over our basic design for variable length phase detection. 

5.5 Summary 

In this chapter, we presented our approach for online phase detection for general Java pro

grams. Our technique is based on real world hardware information. There exist a number 

of evaluation metrics for phase detection. However, most of them are designed only for 

stable phase based on fixed interval measures. Some of them use counting on intervals 

directly; some others make an assumption that the phases are flat and stable portions in 

program executions. Since the existing metrics are not suitable for evaluating long term, 

highly varying, periodic phases in general Java programs, we defined a set of novel metrics 

to evaluate our results. Our experimental data demonstrates that our phase detection and 

prediction mechanism can provide accurate results. On average, we have a high confidence 

in the phase detection results, and our algorithm only misses a small number of possible 

repetitions in program execution at major variation levels. 

In upcoming chapters, we will show a series of runtime adaptive applications based on 

our phase detection mechanism. As consumers of our phase information, we are able to use 

them to further confirm the correctness and accuracy of our phase analysis results. They 

are adaptive optimizations by themselves at the same time. 
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Chapter 6 

Phase Based Selective Profiling 

Profiling is essential to some runtime and offline optimizations. In this chapter, we 

present a selective runtime profiling technique which uses our hardware phase detection 

mechanism. In Section 6.1, we first categorize the profiling technique and mention the 

contributions of our work. The most important related works are given in Section 6.2. The 

implementation details and the evaluation metrics of our profiling technique are discussed 

in Section 6.3. Experimental results are presented in Section 6.4 and we summarize this 

chapter in Section 6.5. 

6.1 Profiling Categorization 

Program profiling is an important technique for understanding the dynamic behaviour of 

programs. To application developers, profiles provide insight into a program's resource uti

lization and help to identify performance bottlenecks. For compiler constructors, profiling 

data can be used to guide static code optimization. For the designers of JVMs or other 

runtime environments, both online profiling results or offline analysis on profiling data can 

be used to improve runtime adaptive strategies. 

Profiling data can be produced in some different ways. 

• Program Instrumentation 
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By inserting intrusive instrumentation in a running program, a wide variety of profile 

data can be collected completely at a fine granularity. However, complete profiling 

at a fine granularity can bring intolerable overhead for runtime system or huge trace 

files for offline applications. 

• Sampling 

A sampling mechanism allows the system to collect a subset of the profiling events. 

Most sampling systems are timer based; they examine events and program states only 

once per timer interval or timeout. Sampling techniques can greatly reduce the cost 

of profiling over more exhaustive techniques, albeit with a lower accuracy. 

• Selective Profiling 

General instrumentation or sampling techniques are actually applied throughout the 

whole life of a program, i.e., profiles are continuously taken. However, a program 

usually does most of its work in a comparatively small portion of its code. Hence, 

it is not necessary to take profiles continuously across the whole program execution. 

Compared with continuous sampling profiling, selective profiling can reduce the pro

filing overhead while keeping profiling accuracy at the same time. The key point to 

benefit from selective profiling is to choose critical profiling points that reflect the 

most important periods, or phases, of program execution. 

Profiling techniques that provide detailed/accurate information with low overhead are 

especially important for runtime environments. Even for offline work, selective profiling 

can reduce the size of trace files largely without losing of important information. In this 

chapter, we introduce a selective runtime profiling technique based on our hardware phase 

detection results. We use low overhead hardware monitoring to reduce about half of the 

profiling workload with almost no degradation in profiling accuracy. 

6.2 Related Work 

One of the crucial technical challenges for adaptive optimizations is to gather accurate pro

filing data with as low an overhead as possible. Profiles can be obtained from program 
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instrumentation or from a sampling scheme. By adding instrumentation into a program, 

we can gather accurate profiles at a fine granularity, and instrumentation techniques are 

widely used in doing adaptive optimization. Dynamo [BDBOO], for example, uses instru

mentation to guide code transformations. Instrumentation techniques are also very useful 

in program understanding; Daikon [EPG+06] is a system for dynamic detection of likely 

invariants in a program through instrumentation. Even commercial JVMs provide a basic 

instrumentation interface through Sun's JVMTI specification [Sunb]. Unfortunately, in

strumented profilers can also be fairly heavyweight, producing potentially large runtime 

overheads [CKJA98, CFE99]. This inspires work on reducing instrumentation overhead 

reduction, such as that by Kumar et al. in their "INS-op" system that optimizes (reduces) 

instrumentation points [KCS05]. 

Alternatively, runtime profiles can be gathered by sampling. In a sampling approach, 

only a subset of the execution events are considered, and this can greatly reduce costs. 

Many systems, such as the Jikes RVM [AFG+00], use a timer-based approach to determine 

sampling points. On some other systems, such as IBM's Tokyo JIT compiler [SYK+01] 

and Intel's ORP JVM [CEG+05], a count-down scheme is used. An optimization candi

date method is chosen when an associated "counter" reaches a pre-defined value. Arnold 

and Grove [AHR02] present an approach that combines the timer-based and count-down 

schemes; based on the original timer-based scheme in Jikes RVM, a stride counter is set to 

control a series of non-contiguous burst count-down sampling actions. 

A sampling-based strategy allows the the system to reduce the profiling overhead with 

the profiling accuracy as a tradeoff. Many techniques have been developed to reduce pro

filing overhead while maintaining profiling accuracy at a reasonable level. Zhuang et 

al. [ZSCC06], for instance, develop an adaptive "bursting" approach to reduce the over

head while preserving accuracy. The key idea of this work is to do detailed, heavy profiling 

only at selective points. 

Our work uses program phase information to reduce the profiling workload. Phase 

information can be very useful in locating stable or repetitive periods of execution at run

time, and has been used in various adaptive optimizations [CH02, SZD04, NKS05] and 

designs for dynamic techniques. Nagpurkar et al. present a flexible scheme to reduce 

network-based profiling overhead based on repetitive phase information gathered from re-

89 



Phase Based Selective Profiling 

mote programs [NKS05]. Their phase tracker is implemented using the S i m p l e S c a l a r 

hardware simulator [BA97]. As described in Chapter 5, our implementation is done on real 

world hardware and addresses the problem for general Java programs. 

6.3 Methodology and Evaluation Metrics 

6.3.1 Profiling Control Mechanism 

Hardware 
Events 

Hardware 

Counters 

Hardware 

Performance 

Monitor 

Pattern 
Creation 
Extension 

Patterns 
Pattern 

Analysis 
Model 

Control 
Events 

Pattern Database 

Runtime 

Measurement 

Component 

Figure 6.1: Use recurrent phase detection to control profiling. This figure is the same as Figure 5.5 

except that we replace the rightmost block "Other Adaptive Component" with a concrete adaptive 

component addressed here, the "Runtime Measurement Component" of J ikes RVM. 

As shown in Figure 6.1, we use the repetitive phase detection and prediction results to 

control the normal runtime profiling mechanism of Jikes RVM. The profiling result is used 

to guide adaptive optimizations. When there is no recurrent pattern, the runtime measure

ment component takes profiles as usual. When a recurrent pattern is detected, we compare 

it with the previous prediction. If it changes the prediction result, we still keep collecting 

profiles, but also save the profiles into an extra, variable-length local buffer. If the pre

dicted pattern is the same as the last prediction we stop the profiling and instead "replay" 

the samples in the local buffer. Real program behaviour can of course drift from predicted 

behaviour over time, and so to ensure profiling accuracy, we have a count-down, rechecking 

scheme to re-enable the profiling periodically irrespective of prediction. 

Different from a normal communication between organizers and the controller, here we 

build a shortcut control channel between pattern analysis model and runtime measurement 

component due to two considerations: 

90 



6.3. Methodology and Evaluation Metrics 

• The interface to the runtime measurement component must be as simple as possible 

in order to keep the perturbation to runtime measurement at a low level. 

• Hardware performance may vary quickly. We want the decision made on current 

hardware event data to be applied as soon as possible before it is out-of-date. 

Here we simplify the control mechanism to a simple set/unset action on a profiling 

flag. The runtime measurement component only works when the flag is set as TRUE. The 

relation between pattern analysis and profiling actions is summarized in Table 6.3.1. 

Pattern Analysis Result 

No pattern 

New pattern P 

Recurrent pattern P 

Prediction changed 

Recurrent pattern P 

Prediction not changed 

Profiling Flag 

True 

True 

True 

False 

Action 

Profiling 

Profiling 

Profiling 

Remember local results 

Stop profiling 

Reuse local results 

Table 6.1: The relation between phase detection/prediction, profiling flag and actions of the runtime 

measurement component in the phase driven adaptive profiling. 

6.3.2 Profiling Metrics 

Our application is an improvement to the runtime profiling component in Jikes RVM used 

to support its adaptive compiler [AHR02]. This profiler samples execution periodically 

in order to identify "hot methods" and make (re)compilation decisions; sampling rates 

heuristically trade off accuracy for profiling cost. We provide two metrics for evaluating 

the impact of phase prediction on profiling: 

• Profiling Rate (Pr): 

Profiling rate Pr is defined as: 

Number of Actual Profiling Points „ ,.,. „ 
Pr = — * 100% 

Number of All Possible Profiling Points 
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An unmodified version of the runtime profiling mechanism has a Pr of 100%. Based 

on phase predictions, we disable some profiling points; a lower value of Pr indicates 

a reduction in the profiling workload. 

• Coverage Score (Cov): 

The Jikes RVM profiler makes use of the relative number of probe results in each 

method. Our predicted results should thus produce the same intended effect. 

A method profiling result R on methods Mi, i G {1 , . . . , m} can be represented as: 

R = {<MhPerf>} 

where Perf is the percentage ratio of samples in method M, to the total number of 

program samples. Given a canonical sample result N = {< Mi,Perf >}. The Cov of 

R is calculated as: 
m 

Cov(R) = ^Min(Perf,Perf) 
i = l 

To compare the accuracy of phase based profiling to the original profiling results, 

we obtain a canonical N by averaging multiple standard executions of the original 

profiling mechanism. In practice N is reasonably stable. The Cov for a phase based 

profiling run compared with the average Cov of each of our standard runs provides 

an accuracy score that indicates how much a given phase based profile varies from 

typical runs. 

6.4 Experimental Results 

The profiling workload reduction and accuracy results are shown in Table 6.2. On average 

we reduce the profiling workload by about a half, although results vary significantly by 

benchmark. Profiling accuracy, however, is uniformly very high; on average we achieve a 

94.3% accuracy, profiling at 51% of possible profiling points. For comparison purposes we 

show the accuracy score for a simple profiling reduction strategy, denoted as "Simple 50%", 

that just omits every other probe, also a factor of 2 workload reduction. On benchmarks 

with small hot method sets, such as COMPRESS and DB, profiling results are not sensitive 
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Benchmark 

compress 

db 

jack 

javac 

jess 

mpegaudio 

mtrt 

raytrace 

soot 

PseudoJbb 

Average 

Profiling Rate 

52.2 

37.5 

46.0 

54.8 

47.3 

49.7 

77.7 

97.9 

27.2 

30.0 

51.02 

Accuracy Score (%) 

Phase Driven 

91.72 

85.61 

95.55 

99.32 

91.92 

92.47 

97.15 

99.97 

93.83 

94.71 

94.31 

Simple 50% 

91.71 

89.54 

68.56 

76.87 

79.12 

83.76 

83.00 

83.82 

61.43 

64.84 

78.26 

Table 6.2: Phase driven profiling workload reduction and accuracy. 

Profiling Rate i i Accuracy Score tssss Simple 50% tw*awa 

Figure 6.2: Profiling workload reduction and accuracy results. 
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to profiling rate. On more complicated benchmarks, such as JACK, SOOT and PSEUDOJBB, 

our technique is significantly more accurate, usually with less than a 50% profiling rate. 

These results are also illustrated in Figure 6.2, in which "comp." stands for COMPRESS, 

"mpeg." stands for MPEGAUDIO and "rt" stands for RAYTRACE. The obvious difference 

between the "Profiling Rate" bar and the "Accuracy Score" bar for each benchmark demon

strates the effect of our profiling workload reduction mechanism. Of course, we understand 

that the relation between the profiling rate and the accuracy of profiling result is not linear. 

Usually, a N% reduction in profiling workload will not led to a N% in the accuracy. Just 

as shown in the case for the straightforward "Simple 50%" solution, the accuracy results is 

much better than the profiling rate which is 50% for all benchmarks. However, there is a 

big gap between the accuracy bars for our solution and the "Simple 50%". Given the fact 

that our solution takes similar or even fewer profiles than that of the simple solution, a on 

average 16% better in the accuracy indicates that we select a more representative subset 

to take profiles than the simple solution. This confirms that our phase detector discovers 

the repetitive period in program execution well. We notice that on MTRT and RAYTRACE, 

our solution cannot reduce the profiling rate as greatly as the others. The small number of 

patterns for them shown in Table 5.2 on page 84 shows the reason. These benchmarks only 

have a relatively small instruction working set. Thus there are only very slight changes in 

the instruction cache performance, and our hardware pattern constructor cannot generate 

enough patterns to feed latter processing and analysis. 

6.5 Summary 

In this chapter, we presented an optimized, phase-driven runtime profiling mechanism 

which uses the phase detection and prediction technique described in Chapter 5. Our pro

filing mechanism achieves a significant reduction in profiling workload over the original 

sampling mechanism in Jikes RVM and still ensures high accuracy. As a sample applica

tion, the profiling results confirm that our phase detection and prediction based on hardware 

information is able to provide useful information to locate the most important, repetitive 

behaviours in Java programs. 
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Chapter 7 

Phase Based Adaptive Recompilation 

Adaptive recompilation is crucial to high efficient JVMs. Better recompilation strate

gies can bring large benefits to the final performance. In this chapter, we discuss how hard

ware phase detection results can be used to improve adaptive recompilation decisions. We 

provide both an offline limitation study and an online implementation. The motivation and 

a list of contributions are given in Section 7.1. In Section 7.2, we discuss related work on 

hot method set identification and adaptive optimizations in virtual execution environments, 

e.g., JVM. Our offline and online implementation details are described in Section 7.3. Per

formance results and analytical measurements are reported in Section 7.4, and Section 7.5 

provides detailed data analysis and discussion. Finally, we conclude and provide directions 

for future work in Section 7.6. 

7.1 Motivation 

Many of today's Java Virtual Machines (JVMs) [LY99] employ dynamic recompilation 

techniques as a means of improving performance in Java programs. At runtime, the dy

namic Just-in-Time (JIT) compiler locates a "hot set" of important code regions and ap

plies different optimizations, balancing the overhead costs of optimized (re)compilation 

with expected gains in runtime performance. In this chapter, we introduce a mechanism to 

select better (re)compilation points and optimization levels. Again, this adaptive recompi

lation mechanism is based on our hardware performance monitoring and recurrent pattern 
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construction results. 

Building a high-performance, adaptive recompilation strategy in a JVM requires mak

ing resource-constrained choices as to which methods to optimize, what set or level of 

optimization to apply, and when the optimized compilation should be done. Heuristically, 

the earlier the method is compiled to its "optimal" optimization level, the better. Naively 

assuming that optimal means more optimizations, the potential for such improvements is 

illustrated schematically in Figure 7.1. In each image the x-axis is samples (normalized 

time), and the y-axis is optimization level. More time at higher optimization heuristically 

means better performance, and so the area under each curve roughly represents how well 

a method is optimized. The upper left image shows a typical method history, compiled 

initially at a low level, and progressively recompiled to higher optimization levels. Better 

prediction of future behaviour allows a method to move more quickly between these steps 

(upper right), or to skip intermediate steps (lower left). The lower right image demonstrates 

the case of making an initial "ideal" choice, skipping all intermediate recompilation. Note 

that even in the latter case at least one sample is required to identify the hot method. The 

area under the curve (rectangle) summarizes the "amount" of optimized method execution. 

On the bottom right a method is compiled to its highest optimization level immediately; 

this roughly represents an upper limit for the potential performance gains, at least assum

ing simple models of method execution and optimization impact. 

One of the key factors involved in finding ideal recompilation choices for a given 

method is method lifetime. Method lifetime is an estimate of how much future execu

tion will be spent in a given method based on current and past behaviour; techniques 

for estimating method lifetime are critical in making online recompilation decisions. A 

straightforward solution used in the Jikes RVM [AAC+99, AFG+00, AAB+05] adaptive 

recompilation component is to assume that the relative proportion of total execution time 

that will be spent in a given method is the same as its existing proportion: the ratio of 

future lifetime to past lifetime for every method is assumed to be 1.0. This is a generally 

effective heuristic, but as an extremely simple predictor of future method execution time 

it is not necessarily the best general choice for all programs or at all points in a program's 

execution. 

Our work aims at investigating and improving the prediction of future method execution 
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Figure 7.1: Sources of optimization due to improved recompilation decisions for a given method. 

times in order to improve adaptive optimization decisions. 

To achieve better predictions we divide Java program execution into coarse phases; 

different phases imply different recompilation strategies, and by detecting or predicting 

phase changes we can appropriately alter recompilation behaviour. We perform an offline 

analysis of the practical "head space" (maximum potential improvement) available to such 

an optimization that depends on a post mortem analysis of program traces, allowing the 

method recompilation system to perform as in the bottom right of Figure 7.1. We also 

develop an online analysis that is more practical and dynamically gathers and analyzes 

phase information. To keep our online system lightweight, we base our phase analysis on 

hardware counter information, recovering high level phase data from low level event data. 

Based on our implementations in Jikes RVM, we observe an average of 8.5% and up to 

21% speed improvement in our benchmark suite using the offline approach, and an average 

of 4.5% and up to 18% speedup in our benchmarks using our online system, including all 

97 



Phase Based Adaptive Recompilation 

runtime overhead. 

Although these results demonstrate significant potential, changes to the dynamic re-

compilation system introduce feedback in the sense that different compilation times and 

choices perturb future recompilation decisions. There are also many potential parameters 

of our design, and different kinds of benchmarks can respond quite differently to adap

tive recompilation—programs with small, core method execution sets and long execution 

times can be well-optimized without an adaptive recompilation strategy, while programs 

with larger working sets and more variable behaviour should perform better with adaptive 

recompilation. We consider a number of confounding factors and include a detailed inves

tigation of the source and extent of improvement in our benchmarks, including potential 

variability due to choice of recompilation algorithm. Our results show that our phase based 

optimization provides greater benefits in terms of performance, stability, and consistency 

than current designs or simpler optimizations. 

Contributions of this work include: 

• We give the results of an offline study of the head space for optimization in the 

selection of hot-method recompilation points based on our phase information. In the 

case of repeated or allowed "warm up" executions our study represents an effective 

optimization by itself. 

• We present a new dynamic, phase based hot-method recompilation strategy. Our 

implementation incorporates online data gathering and phase analysis to dynamically 

and adaptively improve recompilation choices and thus overall program performance. 

• We provide non-trivial experimental data, comparative results, and detailed analysis 

to show that our design achieves a significant and general improvement. Potential 

variations, identification of influences, and consideration of the precise source of 

improvements and degradations are important for optimizations in complex runtime 

services of modern virtual machines. 

98 



7.2. Related Work 

7.2 Related Work 

Virtual machines provide several advantages over traditional, statically compiled binaries, 

including platform independent representation, some safety guarantees, automatic mem

ory management and dynamic program composition and optimization. However, in many 

cases, these dynamic features introduce new challenges for achieving high runtime perfor

mance. In response to this situation, many adaptive techniques have been investigated to 

improve performance by monitoring a program's behaviour. The most important charac

teristic of the runtime techniques used in modern virtual machines is to do optimization 

selectively. 

Modern interpreter-based JVMs have employed a variety of techniques to improve per

formance over the naive switch-based implementations. Using threaded code [Bel73] is 

probably the most important improvement for Java interpreters. Note that the word "thread" 

here has nothing to do with the thread in concurrent programming. With a basic direct-

threaded technique, the interpreter jumps with indirect branches from the implementation 

of one bytecode to the next, eliminating the central dispatch. Recent work has improved 

on basic threading by using runtime translation. For example, Gagnon and Hendren imple

ments an inline-threaded interpretation [GH03] scheme in SableVM [GH01]. 

In a compiler based JVM (JIT), bytecode is compiled into native code immediately be

fore it executes, which is much faster than interpretation. However, the JIT strategy intro

duces compilation overhead before any code can execute. This can impose a heavy burden 

if complex optimization actions are employed during the compilation course. Therefore, 

compiling and optimizing all the code of a program can easily introduce far too much 

overhead, both in time and resources. JIT compilers thus typically attempt to identify a 

smaller hot set on which to concentrate optimization efforts. This kind of adaptive opti

mization allows sophisticated optimizations to be applied selectively, and has been widely 

explored in the community [KS03, PVC0.1, AFG+00]. Most of this work focuses on meth

ods as a basic compilation unit, but other choices are possible; For instance, Hansen's 

AF [Han74] recompiled basic blocks and single-entry regions with loops selectively. Wha-

ley presents an approach to determining important intra-method code regions from dynamic 

profile data [WhaOl]. On the other hand, Chambers and Ungar [CU91] apply optimizations 
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across method boundaries via inlining. 

Modern virtual execution environments often have a compiler with more than one op

timization level. In general, code compiled at a higher optimization level provides faster 

speed as a trade-off for heavier compilation overhead. In a system with multiple optimiza

tion levels, only recompiling the most important (hot) code to a higher level is a com

mon sense, i.e., making selective optimization. In a system such as in SELF-93 [HU96], 

all methods are firstly compiled into a non-optimizing level and the the optimizing com

piler is invoked only for frequently executed methods. SELF-93 uses method invocation 

counts to figure out hot method, the counts decaying over time. Detlef and Agesen [DA99] 

use a fast JIT compiler and a slow "traditional" compiler adaptively. They found that 

a combination of the fast JIT and judicious use of the slow JIT on the longest running 

methods shows the best results on their benchmark suite. The Sun's HotSpot Server 

JVM [PVC01] resembles the technique used in SELF-93. Similarly, the IBM Mixed-mode 

interpreter system [SYK+01] also relies on invocation counts to determinate recompilation 

decisions. In addition to a counter-based selective optimization heuristic, the Intel's ORP 

JVM [CEG+05] also use a count-down scheme to identify hot methods. 

All these counter-based policies rely on a myriad of heuristic tuning values. Recently, 

more theoretically involved policies have received more and more attention. Kistler et 

al. [KF03] consider a sophisticated online decision for driving compilation in the Oberon 

Virtual machine. Each compiler phase estimates its own speedup based on a rich set of 

profile data. Jikes RVM [AFG+00] uses call stack sampling to support a model-driven 

optimization policy, relying on a cost-benefit model. Krintz [Kri03] provides a dynamic 

compilation system based on Jikes RVM. Offline profiling results for the top hottest meth

ods are annotated and works as a suggestion for a compilation task to the adaptive engine. 

Our offline mechanism follows a similar style, but stores all recompilation history from 

multiple runs and makes a summary trace from the traces of these multiple executions. 

In all these efforts, recompilation overhead is reduced by avoiding compiling and op

timizing rarely used code, based on either the assumption that "future = past," or by using 

simple counter-based schemes to determine relative execution frequency. Our work here 

augments these approaches by concentrating on the specific problem of providing addi

tional predictive information to the adaptive engine of a JVM in order to improve optimiza-
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tion decisions, rather than providing the concrete adaptive optimization framework itself. 

7.3 Methodology 

We have introduced our hardware event based phase detection and prediction model in 

chapter 5. Employing phase information, the adaptive recompilation engine of Jikes RVM 

can potentially improve performance by executing highly optimized code more often and 

decreasing the overhead of successive recompilations. We investigate the improvement 

from two perspectives. The first is an offline technique based on trace data; this mainly 

serves to give a sense of the maximal benefit that could be achieved given optimal informa

tion. The second is a purely online implementation, that uses our low level profiling and 

online phase detection systems to improve predictions of future life for methods. 

7.3.1 Adaptive Recompilation System in Jikes RVM 

Before describing both of the offline and online recompilation mechanisms, we first make 

the current adaptive recompilation strategy used in Jikes RVM clear to our readers. 

The adaptive recompilation system [AFG+00] of Jikes RVM involves three main sub

systems. A runtime measurement component is responsible for gathering method sam

ples. An analytic model reads this data and makes the decisions on whether to recompile 

a method and the appropriate optimization level. These recompilation decisions are fed to 

the recompilation subsystem which carries out the actual recompilation. 

The crucial point is the decision-making strategy of the analytic model. This selects 

between different optimization levels, based on an estimate of the potential benefit of each 

level. For each optimization level i (0 <i <N), Jikes RVM gives an estimate of the exe

cution speed Spi of a method m. The value of TV can be different for different platforms; in 

our system, N = 3. A recompilation decision is then made based on the following compu

tations: 

• Tp: The time of the program already spent in m. It is computed as 

Tp — SampleNumber * TPS 
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TPS stands for "time per sample," a constant value in Jikes RVM. 

• 7}: The expected time of m at level i, if it is not recompiled. In the original imple

mentation, the system assumes: 

Ti = Tp (7.1) 

• Cy. The cost of recompiling method m at level j , for i< j < N. 

• 7): The expected time the program will spend in m in the future, if it is recompiled 

at level j : 

SPj 

The analytic model chooses the level j that minimizes the value of C, + 7), the compile 

time overhead and expected future time in m. If Cj + 7) < 7}, then m will be recompiled to 

level j . 

7.3.2 Offline Trace-Driven Mechanism 

Recompiling a hot method to an ideal optimization level at the earliest point will in general 

maximize the benefit of executing optimized code, as well as eliminate further potential 

compilation overhead from the method. For a recompilation mechanism based on runtime 

sampling data, knowledge of the final optimization level of a method at the time when the 

first sample of it is taken represents ideal results with minimal profiling overhead. Optimal-

ity is bounded by the accuracy of the estimation, including heuristic choices that balance 

optimization costs and benefits. Here we implement an offline trace-driven optimization 

technique to discover the approximate improvement head space if optimal choices are made 

in the sense of attempting to maximize the heuristic benefit. 

Implementation of the offline mechanism (Offline) is straightforward. A set of traces 

from training runs is gathered, analyzed, averaged, and used in a subsequent replays of the 

program to select an appropriate optimization level for each recompiled method. Use of 

multiple runs accommodates minor variations in performance; sources of noise in recom

pilation data is discussed more fully in Section 7.5. 

Implementation details include that: 
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• First, training data is gathered; a Java program is executed N times to produce trace 

files 7}(1 < i<N). 

• Each trace 7} is composed of a set of pairs < M, L, >. M is a particular method, and 

L{ is the last and highest optimization level of M in 7}. 

• A summary trace 7̂  is constructed, composed of pairs < M,LS >. For a given M, 

Ls = MOX(LI,L,2,...,LN). 

• In the tested runs, Ts is loaded at the beginning of execution. Each time a method 

sample M is taken, if we can find a record < M,LS > for it in 7̂ , we recompile 

M to level Ls directly, and mark the recompilation as a final decision. No further 

compilation will be applied to M. 

• It is possible that speed gains due to better adaptive recompilation allows a method 

not recompiled in any training run to be added to the hot set in an actual run. If we 

cannot find a record for M in Ts, M is treated per Jikes RVM's original recompilation 

strategy. Note that in our experiments such cases are rare and involve infrequently 

executed methods; the impact of this divergence in hot set identification is reasonably 

expected to be small. 

Performance results from the offline strategy are given in Section 7.4.1. On some 

benchmarks the benefit obtained is quite significant, confirming both the potential available 

to a more flexible online optimization, and the value of our offline design as an optimization 

unto itself. 

7.3.3 Online Mechanism 

The success of an online recompilation system depends on the accuracy of method life

times, or the future time spent in a method, as well as other recompilation cost and benefit 

estimates. Underestimating future method execution time results in missed optimization 

opportunities, while overestimating runs the risk of being overly aggressive in compila

tion, wasting time on unnecessary recompilations and/or high optimization levels. This is 

particularly true early and late in program executions, where code execution variability is 
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high and the expectation of continued behaviour is lower. This can also occur when pro

grams make major phase changes, shifting into markedly different modes of execution. The 

kernel of our online mechanism is thus a system that detects coarse grained and variable 

length program phases and uses this information to control the relative aggressiveness of 

the recompilation subsystem in Jikes RVM. The resulting improved recompilation choices 

improve overall program performance. 

The existence of basic startup, core execution, and shutdown phases are well known. 

Our phase identification is based on identifying age, but further allows programs to reju

venate, as a means of allowing for the identification of multiple major execution phases. 

These phases imply distinct patterns of control for recompilation, and are classified as fol

lows: 

• Newborn: At startup a Java program tends to spend time on a set of methods that 

perform initialization actions, and these are often not executed after basic setup is 

complete. When considering whether past behaviour is a good predictor of future be

haviour we can heuristically expect that the future execution time of a given method 

will be less than the past: Future < Past. 

• Young: After a period of time, the program comes into the main application or kernel 

code and will spend a comparatively long time on the same set of methods. Methods 

executed at this stage are likely to be executed even more in the future: Future > Past. 

• Mature: After the program works within its kernel code for a while, we consider the 

program to be mature. In this case, we assume the runtime profiling subsystem has 

gathered enough samples to support the recompilation engine in determining suitable 

optimization levels. Here the original estimate that future and past performance will 

be similar is most valid: Future RS Past. 

• Rejuvenated: Experience with coarse grained phase analysis of Java programs shows 

some programs will have distinct, kernel-based phases, and at runtime will have more 

than one hot method set. When a program enters a new hot set it thus transitions to 

the young phase again. Once so rejuvenated as such, however, we have a slightly 

more cautious estimate as to the future behaviour of the new hot set: Future > Past. 
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Phase 

Newborn 

Young 

Mature 

Rejuvenated 

Hardware Event Behaviour 

No recurrence of patterns 

Recurrence of patterns 

Less new patterns 

More old patterns 

More new patterns 

Invalidation of old patterns 

Recompilation 

Less aggressive 

More aggressive 

Moderately 

aggressive 

More aggressive 

Table 7.1: Program phase, hardware patterns, and recompilation aggressiveness. 

The second column of Table 7.1 describes how program phases are heuristically deter

mined from the underlying hardware event data. Changes in how low level patterns are 

identified in the data suggest corresponding changes in the program code, and thus phase 

or age. At program startup, a wide variety of "execute-once" startup code is executed, and 

few recurring low level patterns are found. A young program will start to show significant 

recurrences of new patterns as it begins to execute its kernel code. The mature phase is de

tected by noticing the balance tipping from discovery of new patterns to recurrence of old 

patterns, and the rejuvenated phase by a subsequent loss of old patterns and introduction of 

new ones. 

Understanding program phase allows for heuristic control of the relative aggressiveness 

of the recompilation engine. In cases where the future performance is not equal to the past 

the expected execution time should be appropriately scaled. The third column in Table 7.1 

gives a summary of how age affects the behaviour of the recompilation engine. A newborn 

program is less likely to repeat its behaviour, and recompilation should be more conserva

tive. A young program enters into its kernel; the new code is likely to be executed much 

more than it has been in the past, and recompilation becomes aggressive. As the execution 

enters a mature phase aggressiveness is decreased; in such a relatively stable environment 

the recompilation engine is expected to have sufficient past data for making good decisions. 

A program that enters a new significant kernel of execution requires again ramping up the 

aggressiveness of recompilation. 

The aggressiveness of the adaptive recompilation engine is controlled by using a scaling 
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parameter in the estimation of future execution times. We introduce a variable futureEstimator 

and change the definition of 7} in Formula 7.1 to: 

Ti — Tp * futureEstimator (7.2) 

Figure 7.2 shows a high level overview of the complete online algorithm. Each hard

ware pattern PAT has a field occNum which remembers the number of occurrences. If the 

adaptive recompilation model finds a recurring PAT, such that, PAT.occNum is more than 

one, the estimated "age" of a program {Prog.age) is increased. When Prog.age is larger 

than a threshold youngThresh, the program has left the newborn phase and become young. 

From then on, each time there is afresh pattern PAT such that the occurrence number is 

less than a threshold matureThresh, the value of futureEstimator is increased; otherwise 

its value is decreased. A larger value of futureEstimator drives the adaptive recompilation 

model to make more aggressive recompilation decisions, assuming methods will run for 

longer than currently estimated. Fixed upper and lower bounds protect the futureEstimator 

value from diverging in cases of extended bursts of fresh or mature patterns. Based on 

initial experiments we limit futureEstimator to the range [0.9,5.0]. 

7.4 Experimental Results 

The experimental platform and benchmark suite are the same as we introduced in Sec

tion 5.4.1. For performance evaluation we measured our benchmarks quantitatively using 

a baseline (original), and using our offline and online strategies. Overall execution time for 

the online approach includes all overhead for phase analysis and low level profiling. In the 

case of the offline approach the overall execution time includes the overhead of processing 

the recompilation trace. Full results for our benchmarks in absolute and relative terms are 

shown in Table 7.2. The "Original" column represents the data collected from the version 

of Jikes RVM where we began our work. This "Original" version already includes the 

whole adaptive engine. 

To gain greater insight into the source of improvement, and inspired by our intuition as 

to potential performance gains in introductory Figure 7.1, we also developed more abstract, 
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Get a pattern PAT 

futureEstimator = 
MaxValue 

futureEstimator = 
MinValue 

~yv*~ 
QnT) 

Figure 7.2: An overview of the algorithm used in the computation of the futureEstimator. 

analytical measures that summarize the amount of optimized code executed. Our abstract 

measures of optimization quality are shown in Figure 7.3 and Figure 7.4. 

To measure the relative proportion of code executed at different optimization levels we 

developed a method-level speed (MLS) metric that can be applied to individual methods 

in individual program executions. MLS is computed as the sum of the time, measured 

in samples, spent at different optimization levels, weighted by the proportion of time at 

each optimization level. Each partial sum for an optimization level in this calculation is 

scaled by an estimate of optimization quality, namely the speed of the code under the given 

optimization level; Jikes RVM provides fixed estimates for these latter values. Figure 7.3 
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Figure 7.3: Dynamic Method Level Speed measurements over time for each of our baseline, offline 

and online recompilation approaches. Each graph is a distinct method from JACK. 
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Figure 7.4: Weighted optimized methods: JACK, JESS, MPEGAUDIO, PSEUDOJBB and SOOT. 
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Benchmark 

compress 

db 

jack 

javac 

jess 

mpegaudio 

mtrt 

raytrace 

soot 

PseudoJbb 

Average 

Original 

Time (s) 

15.75 

37.97 

22.59 

11.78 

18.11 

20.24 

15.14 

14.35 

303.12 

753.95 

-

Offline 

Time (s) 

15.55 

37.22 

20.08 

10.72 

14.25 

17.81 

14.29 

13.30 

278.45 

705.90 

-

Impr. (%) 

1.3 

2.0 

11.2 

9.4 

21.3 

12.1 

6.4 

7.3 

8.1 

6.4 

8.5 

Online 

Time(s) 

15.73 

37.72 

19.78 

11.10 

14.87 

19.79 

15.42 

14.21 

291.28 

735.62 

-

Impr. (%) 

0.1 

0.6 

12.5 

5.7 

17.9 

2.3 

-1.8 

0.8 

3.9 

2.5 

4.5 

Benchmark Characteristics 

Patterns 

157.9 

450.5 

343.5 

193.9 

204.5 

103.6 

58.8 

63.9 

2542.3 

7832.8 

-

Optimized methods 

17.6 

25.3 

90.0 

36.9 

50.0 

58.9 

36.4 

35.3 

408.2 

331.8 

-

Table 7.2: Execution results, number of patterns created in the online version, and number of 

methods optimized for our benchmark suite. Values are the arithmetic average of the middle 11 out 

of 15 runs. "Impr." stands for the improvement over the original version. 

shows the results for a measurement of MLS for the three methods with the largest MLS 

values in JACK, ordered from top to bottom. The x-axis in these graphs is time, measured 

in samples, while the y-axis is the estimated speed for different optimization levels in Jikes 

RVM. An upward step in the graph corresponds to a recompilation at a higher optimization 

level. The size of the area under each curve gives an estimate of how MLS changes under 

different recompilation strategies—greater area means greater use of optimized code, and 

hence heuristically improved performance. 

In Figure 7.4 we show a summary of the same basic property, but summarized over 

the entire execution and all methods. To simplify calculations, method contributions are 

weighted here not by actual number of runtime samples, but by static method size. Note 

that we are aware that a dynamic version of executed code size is potentially more accu

rate, but we have found that the static method size is sufficient to discover the main trend 

of the execution. Runtime code to measure dynamic execution sizes also brings extra run

time overhead, which if not carefully optimized may pollute the experimental results. This 

therefore provides a more approximate picture of behaviour, akin to a static versus dy

namic analysis, but also demonstrates the effect is robust in the face of different and less 
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precise forms of evaluation. In these figures the x-axis is normalized execution time, and 

the y-axis is "weighted optimized methods", a sum of weighted method size of all sampled 

methods, where each weighted sum is again scaled by the appropriate optimization speed 

factor provided by Jikes RVM. The interpretation of these graphs is similar to that used 

for Figure 7.3; a higher curve means there are more methods optimized to a higher level 

and the execution speed should be faster, with the area underneath approximating relative 

amount and quality of optimized code executed. 

7.4.1 Offline 

The results of our offline mechanism in absolute terms as well as relative improvement 

over the original version are given in the third and fourth columns of Table 7.2. The offline 

version does achieve significant improvements on some benchmarks. On JESS, it improves 

execution time by 21.3%. On JACK, JAVAC and MPEGAUDIO, the improvements are also 

quite large. On average, the offline version saves 8.5% of the execution time, although the 

effect is not uniform; for some benchmarks, such as COMPRESS and DB, there is little to no 

improvement at all. We will discuss these benchmark-specific behaviours in more detail in 

Section 7.5. 

In the weighted optimized methods graphs, the curves for our offline implementation 

are shown as dashed lines. Corresponding with the faster execution speeds, these curves are 

also the highest ones in these graphs. Interestingly, in most of the benchmarks, there is only 

one major upwards trend. In the graph for SOOT, however, there are two such increasing 

phases. This shows the existence of programs with multiple major phases that can require 

large and relatively abrupt changes in identified hot method sets. 

7.4.2 Online 

The execution time results for the online mechanism are shown in the fifth and sixth 

columns of Table 7.2. For benchmarks where the offline version shows a large improve

ment, the online version also performs well. We obtain up to nearly 18% improvement for 

JESS, quite close to the 21 % improvement found for JESS offline. On average the online ver

sion achieves a 4.5% improvement, about 53% of the possible performance improvement 
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demonstrated in the offline version. For the 4 benchmarks that responded most positively 

to the offline version, the improvement online is on average 9.6%, or 71% of the offline 

result. 

In the weighted optimized methods graphs, the curves for the online version are shown 

as dotted lines, and typically lie between the curves for the offline and original implemen

tations. In the graph for SOOT (the bottom graph in Figure 7.4), the online curve reflects the 

multiple phases that are more clearly seen in the offline curve; our online system correctly 

identifies the rejuvenated phase, as we discuss in more detail in Section 7.5.1. 

Further details on performance can be seen in the behaviour of specific methods, as 

shown for JACK in Figure 7.3. As with the weighted optimized method results, the offline 

version has the greatest area and provides higher optimization earlier, with the online im

plementation lying between the offline and original versions. Note the bottom graph shows 

the offline implementation optimizing the method later than both the original and online 

versions. This is a result of resource management in the recompilation system, prioritizing 

requests for relatively fast lower levels of optimization over more expensive requests for 

longer, highly optimized compilations. 

7.4.3 Variance and Overhead 

Figure 7.5 shows 99% confidence intervals for our original, offline, and online data mea

surements. Our evaluation is experimentally quite stable and deterministic, with confidence 

ranges for the three variations generally showing good separation. Note that the intervals 

for JACK are among the largest and have clear overlap; the « 1% performance gain for 

JACK online as opposed to offline could be attributed to data variance and/or the intrinsic 

imprecision of simple optimization benefit/cost estimates. We discuss accuracy and noise 

concerns in depth in the following section. 

Overhead in profiling systems is always a major design concern. In our case we make 

use of hardware counters that are sampled at every process context switch; at a few tens 

of machine cycles per read and only on the order of thousands of context switches over 

a program's lifetime this technique is extremely cheap. Pattern construction and phase 

analysis provide the bulk of our actual overhead, and to measure total overhead costs we 
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Figure 7.5: Normalized execution time O/SPECJVM98, SOOT and PSEUDOJBB with 99% confi

dence interval errorbars for each of our three test scenarios: original, online and offline. 

compared the original, baseline Jikes RVM with an implementation of our online technique 

that computes phases as normal but does not actually change the adaptive recompilation 

settings (futureEstimator). Figure 7.6 shows the computed relative overhead. Overhead 

comes from sources such as hardware monitoring, pattern construction, phase prediction, 

and building control events for the recompilation component. On average there is a 1.33% 

slowdown across these benchmarks due to our data gathering and phase analysis system. 

There is always room for improvement, but this relatively small cost is in most cases greatly 

exceeded by the benefit, and demonstrates the practical low overhead of our technique; 

again, speedup and other experimental data includes all overhead. 

7.5 Discussion 

Initial recompilation choices affect later recompilation choices, and there are many poten

tial parameters and choices in our, or any, recompilation design. A good understanding of 
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Figure 7.6: Relative overhead in the online system compared with the original. 

potential variation and relative performance gain is therefore important to making good, 

general selections of recompilation strategies. 

We have chosen algorithmic parameters to include resource requirements and per

formed extensive initial experimentation and numerical validation of the parameter space 

to justify our main approach; this numerical evaluation is described in [GV07]. Here we 

discuss various factors that can influence our performance, and present data validating the 

general stability and effectiveness of our design. We first consider different benchmark 

characteristics that are important in our approach. This is followed by a detailed com

parison of our design with other simple optimizations to the recompilation system, again 

showing the practicality of our work and the generally good quality of the result. 

7.5.1 Benchmark Characteristics 

Benchmarks in our study demonstrate a wide range of responses to our optimization. Sev

eral benchmark-specific factors can be seen to influence whether and where performance 

will be realized using our techniques. Benchmark length, the stability of the hot set, as well 
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as more general sensitivity of the program to our profiling and optimization systems can all 

affect the relative success. 

Benchmark Execution Time 

In our benchmark suite, the SPECJVM98 benchmarks finish in a comparatively short time 

while SOOT and PSEUDOJBB execute for an order of magnitude or so longer, and also 

recompile many more methods than other benchmarks, as seen in the last column of Ta

ble 7.2. Longer running programs have an advantage in that recompilation has more data 

to work with as there are more sample points. Furthermore, any reduction in speed due 

to less optimal recompilation choices can be amortized over a longer period and often a 

larger hot set. For shorter programs our mechanism helps the VM locate the hot set more 

quickly; the reduction in overhead obtained by promoting methods more quickly to their 

final optimization level is also a greater benefit. This factor can be seen in the results for the 

longer and shorter running programs. SOOT and PSEUDOJBB show an average improve

ment of 7.3% and 3.2% using offline and online analyzes respectively, while the other, 

shorter benchmarks improve on average of 8.9% and 4.8%. 

Hot Set Stability 

We observe that many programs contain a single hot set of methods that is more-or-less 

stable over the course of execution. Some benchmarks, however, do have large, distinct 

execution phases, and show a clear hot set variation. SOOT in our benchmarks demonstrates 

this quite clearly; in Figure 7.4, the SOOT curve of the offline version obviously has multiple 

stages. Each large incline corresponds to a major change in the hot set. 

Using our offline implementation with perfect knowledge of the future, we can detect 

the hot set variation or rejuvenated phase correctly and quickly, resulting in relatively steep 

slopes upward as the new hot set is optimized. The original implementation, on the other 

hand, has no apparent sensitivity to this change in program behaviour and shows a gradu

ally increasing curve with no obvious bursts of optimization. Our online implementation 

achieves an intermediate level between these two. It has a moderate sensitivity to the hot 

set variation and goes through a couple of smaller steps at approximately the same points 
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in time, rising more quickly to the level of the offline analysis. 

An unfortunate side effect of our optimization for detecting rejuvenation, or variations 

in the hot set is a certain overzealousness of optimization toward the end of execution. 

The online curves of JACK, MPEGAUDIO and SOOT in Figure 7.4 tend to rise above even 

that of the offline curve by the end of execution, indicating that optimized recompilation 

may be being overused, recompiling and optimizing methods that will only be used in the 

final fraction of program execution. We experimented with identifying a termination phase, 

but termination tends to look like any other phase change (rejuvenation) with our current 

pattern analysis and data. Solutions based on incorporating extra, high level information 

such as knowledge of termination-specific methods may be more profitable. In practice, 

these sub-optimal online decisions at termination time do not have an overly large impact, 

and so we leave reducing this "tail" problem to future work. 

Appropriateness of Data Source 

It is interesting that low level events can expose high level behaviour, even for complex, 

object-oriented programs with non-trivial control flow. We have successfully used the I-

cache miss rate as a base event, but this does impact not only what can be measured but also 

how it can be measured, and of course other choices and event combinations are possible. 

Although a good choice in general, for some benchmarks I-cache miss rate provides 

somewhat reduced information. RAYTRACE and MPEGAUDIO, for instance, have a rela

tively small instruction working set. Thus we observe only slight changes in I-cache per

formance, and as can be seen from the 2nd-last column in Table 7.2 our pattern creator finds 

significantly fewer patterns in these cases. This provides less information to the recompila

tion engine, and thus recompilation choices are not much better than in the original version: 

RAYTRACE and MPEGAUDIO show marginally positive improvements, while MTRT shows 

a 2% reduction. The fact that performance even in this situation is close to the original and 

not significantly degraded is evidence of the low overhead of our implementation design in 

general, and sample-based hardware monitoring specifically. 

Other benchmarks have instruction working sets large enough to produce significant 

misses as different code paths are exercised, allowing our online solution to identify pat-
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terns easily. The performance difference resulting from the improved information is evident 

in benchmarks such as JACK, JESS, and JAVAC. Some benchmarks, however, exhibit cache 

performance changes, but the actual hot method set remains quite small. If a small set of 

methods are called frequently, as for COMPRESS and DB, the original adaptive recompi-

lation engine has the chance to gather enough samples to recompile a method relatively 

quickly. In these cases, the potential improvement available by reducing the delay of re-

compilation is small. The marginal benefit achieved by our offline solution can be mainly 

attributed to reductions in optimization overhead due to skipping redundant intermediate 

recompilations for some methods. 

Programs can also exhibit bias with respect to different hardware events. We previously 

showed, for instance, that some programs like JESS and JACK are highly "instruction cache 

sensitive", meaning that from a processor-level point of view the instruction cache perfor

mance has a large impact on the execution time of the program [GVG06]. On the other 

hand, DB and especially COMPRESS are highly data cache biased. There is limited room to 

improve performance from the code side if data usage has a dominating impact. In these 

cases even the offline version only obtains a small improvement. We expect that programs 

with large memory requirements and hence garbage collection overhead, heavy I/O, and so 

forth will also respond less well to our design, as in general programs that are dominated 

by other costs than code execution speed will receive reduced benefits from adaptive code 

optimization techniques. 

The above discussion suggests that monitoring different or multiple hardware events 

may be a route to further optimization. We have explored a few hybrid forms of pattern-

building based on combinations of I-cache miss rate, D-cache miss rate, branch instruction 

counts, and brand prediction miss rates. So far, these designs have not shown useful im

provement above that of one based on a simple I-cache miss rate; further exploring this 

space is, however, potentially fruitful future work. 

7.5.2 Stability and Comparison with Simple Approaches 

Understanding which benchmarks can work well is important, but differentiating them on

line may be non-trivial, and a good recompilation system should perform reasonably well 
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over a range of benchmarks. For our adaptive system to be useful, it is also important 

to know that the adaptivity is effective. Both our online and offline strategies generally 

increase the aggressiveness of recompilation choices, and we must consider that similar 

effects could be achieved by simply making the the Jikes RVM estimator more aggressive 

without adaptation. 

Testing the effects of trivial, constant increases in recompilation aggressiveness pro

vides a baseline that shows both the variability of performance of different recompilation 

strategies and in comparison with our online approach, the actual impact of adapting to 

program phases. We evaluate several versions of Jikes RVM with no hardware monitor

ing or phase analysis, but incorporating our scaled time estimate formula in Formula 7.2 

with futureEstimator set to different fixed, constant factors to increase recompilation ag

gressiveness. Table 7.3 shows the normalized overall execution time for our benchmarks 

when the future time estimate of methods is increased by values between 1.5 x and 3.0x; 

this represents the range of average increase in aggressiveness used by our online system 

for benchmarks in our suite (Table 7.3, last row). 

futureEstimator 

1.5x 

2.0x 

2.5x 

3.0x 

online 

online average 

compress 

0.997 

0.970 

1.018 

1.018 

0.999 

3.06 

db 

0.991 

1.008 

1.022 

1.025 

0.993 

1.98 

jack 

0.987 

1.041 

1.063 

1.080 

0.876 

2.16 

javac 

0.970 

0.955 

0.975 

0.991 

0.942 

2.40 

jess 

0.924 

0.879 

0.856 

0.852 

0.821 

2.34 

mpegaudio 

0.960 

0.924 

0.925 

0.948 

0.978 

2.44 

mtrt 

1.017 

1.039 

1.127 

1.151 

1.018 

2.22 

raytrace 

0.983 

1.010 

1.057 

1.053 

0.990 

1.99 

soot 

0.966 

0.950 

0.945 

0.969 

0.961 

1.35 

Pseudojbb 

0.991 

0.978 

0.969 

0.975 

0.976 

1.09 

Table 7.3: Fixed setting of futureEstimator versus the online version. The "online average" row 

shows the average futureEstimator value used in the online version, weighted proportionally over 

program execution. 

The data in Table 7.3 shows that there is certainly no one fixed setting that is optimal 

for all benchmarks; benchmarks respond differently, and simply increasing aggressiveness 

overall is not a generally effective strategy. This is more apparent graphically, as seen in 

Figure 7.7. Some benchmarks have a large variance in performance as futureEstimator 

changes, and some are relatively unaffected. For all benchmarks except MPEGAUDIO and 
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COMPRESS, our online version is optimal or within variance of optimal. In comparison with 

simple approaches, our online design provides stable and good results overall, significantly 

more so than the base version or any of the constant aggressiveness settings. 
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Figure 7.7: Normalized execution time for benchmarks using different recompilation optimization 

strategies. 

Recompilation Algorithm Sensitivity 

We can separate benchmarks into those that exhibit a low sensitivity to recompilation de

cisions (less than « 5 % variance between approaches), and those that show relatively high 

variance due to such choices. The former are shown in Figure 7.8 and the latter in Fig

ure 7.9. 

The less sensitive benchmarks in Figure 7.8 correspond reasonably well with our dis

cussion of benchmark-specific behaviours that impair the effectiveness of our technique. 

SOOT and PSEUDOJBB are long-running with large hot sets, while COMPRESS and DB 

contain hot sets that are easily identified under all scenarios. JAVAC is a marginal inclu

sion; like RAYTRACE it has a small working set, but falls within the threshold of insensitive 

benchmarks in our simple binary division. 

More sensitive benchmarks where recompilation decisions can have a relatively large 
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Figure 7.8: Normalized execution time for benchmarks using different recompilation optimization 

strategies. These benchmarks are insensitive to strategy. 
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Figure 7.9: Normalized execution time for benchmarks using different recompilation optimization 

strategies. These benchmarks are quite sensitive to strategy. 
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performance impact are shown separately in Figure 7.9. Adaptivity accommodates bench

marks where greater aggressiveness usually improves performance such as JESS, and bench

marks where greater aggressiveness decreases performance, such as JACK and MTRT. A 

more detailed view of typical benchmark behaviour found in our experimental data is 

shown in Figure 7.10, with the upper row showing the normalized performance of bench

marks that improve or degrade performance as an almost linear function of recompilation 

aggressiveness. More aggressive recompilation is in general good for benchmarks like 

JESS (upper left), bad for others like MTRT (upper right), while some such as SOOT and 

MPEGAUDIO have an intermediate sweet spot in terms of overall recompilation aggressive

ness. In the first three cases the online system adapts well; for MPEGAUDIO the online 

performance is improved over the baseline but does not achieve optimal performance. For 

benchmarks such as SOOT and MPEGAUDIO, however, a "sweet spot" exists in terms of 

overall aggressiveness, in both cases here around 2.0-2.5. Adaptation is not as successful 

overall for MPEGAUDIO while for SOOT adaptation finds a good performance level, albeit 

in a context where the total performance variation is small. Universally good performance 

under these conditions is hard to achieve; however, the online system, generally does quite 

well in adapting to different benchmark conditions and is clearly an overall better choice 

than either the current or other fixed aggressiveness schemes. 

7.6 Summary 

For many programs, sub-optimal choices in recompilation can result in reduced perfor

mance. We have shown how improvements to recompilation strategy can result in better 

performance, and provided a design using coarse grained, variable length phase predic

tion to adaptively improve recompilation choices. Using offline trace data for prediction 

provides an experimental high performance watermark for such a technique, and functions 

as a useful optimization when program executions are repeated exactly. Our fully online 

implementation makes choices based on dynamically acquired data, and exhibits both low 

overhead and good overall performance. 

Multiple factors influence performance in a recompilation system, and to show mean

ingful improvement a close evaluation of performance under different scenarios and with 
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Figure 7.10: Typical behaviour of benchmarks in response to different recompilation strategies. 

different levels of detail is important. We have explored our optimization in terms of ex

ecution time, and further validated our results with analytical measurements. Detailed 

examination of benchmark behaviour reveals that benchmarks respond in different ways to 

the relative aggressiveness of a recompilation engine, and we considered a wide variety of 

benchmark-specific factors, including high level considerations such as overall runtime and 

low level influences such as the density of hardware event data. Under these highly vari

able and "noisy" conditions our adaptive online system achieves a significantly improved 

performance. 

There exist a number of possible extensions to this work. The success of our approach, 

like most adaptive online systems, depends on the extent of variability in runtime execution 

data. We have expended a great deal of effort to understand and experimentally validate po

tentially critical factors, ensuring our approach is a generally robust optimization. Further 

understanding and detection of benchmark characteristics may improve our design, and 
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could also be used to help select benchmark-specific responses by the adaptive optimiza

tion system. Profile repositories, aggregating profile data from multiple executions may be 

a useful way of moving online performance closer to that of offline performance [AWR05]. 

Mixing profile data from multiple runs or using offline/online hybrid data might also help 

with the "tail problem" of predicting the termination phase of a program. 

We intentionally exploit coarse grained phase information to allow complex optimiza

tions time to act and improve performance. Startup phases are well-known, but the use of 

high level and variable length phase information, when cheaply gathered, is also obviously 

of value. Predicting major phase changes may be useful for scheduling garbage collection, 

heap data reorganization or any other design for larger scale adaptive execution. Additional 

or different hardware event data may be useful for more "data-centric" applications, and 

part of our current investigations include the use of multiple and hybrid hardware event 

sources. 
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Chapter 8 

Garbage Collection Point Selection 

Programmers are increasingly turning to object-oriented languages with automatic mem

ory management (garbage collection). Java provides a garbage-collected heap which im

proves productivity of programmers by reducing errors that result from explicit memory 

deallocation. The implementation, optimization, and performance analysis of garbage col

lection (GC) algorithms have been a hot topic for a while. A variety of factors can impact 

the overall garbage collection performance, including the collection point selection (CPS) 

addressed here. In this chapter, we present our exploration in improving GC performance 

by selecting garbage collection point. 

In Section 8.1, we show our motivation on studying the CPS problem, the reason why it 

matters, and the fundamental idea of our solution. We discuss the algorithm, optimization 

and performance factors of garbage collection in Section 8.2. The details of our design 

are introduced in Section 8.3 followed by experimental results and a deep discussion in 

Section 8.4. Finally, we summarize our study on CPS, both achievements and limitations, 

and then provide a list of potential improvements as future work in Section 8.5. 

8.1 Motivation 

The implementation of garbage collection is JVM-specific. Most JVMs employ a tracing 

garbage collector. When the heap runs out of space, a tracing collector begins its work 

gathering objects that are directly reachable from root set. The root set consists of global 
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and stack local references (or pointers) and other references in JVM internal data structures. 

The collector then traverses all the references in the currently identified reachable objects 

to find other reachable objects. This tasks is done recursively. Finally, all the memory oc

cupied by non-reachable objects, i.e., garbage, is collected and the space is made available 

for the future objects. One interesting observation of tracing GC is that the GC work will 

be accomplished faster when there are fewer reachable objects and it will claim more free 

space. In other words, the collector produces more product (the free space) when it does 

less work. When the workload is heavy, the collector produces less product. This "less 

work, more achievement" phenomenon contradicts usual intuition. Picking a suitable point 

to do collection can thus potentially improve the performance significantly, if collection 

points correspond to small reachable sets. 

A good garbage collection point is a moment at which the program just leaves an old 

phase and reaches a new phase in its execution. In such a moment, a large amount of 

objects may reach the end of their life range and turn into garbage. If a collection happens 

at this moment, it can be accomplished with a light workload and release a large amount 

of memory. On the contrary, when a collections happen at an inappropriate point, it may 

endure a very heavy workload, and only release a small amount of memory. An impressive 

example is the JAVAC benchmark in SPECJVM98 suite. As we know, JAVAC invokes four 

passes during a Java program compilation. After each pass, it forces the JVM to make a 

collection. Apparently, at the forced GC points lying between two passes of compilation, 

a large set of objects just become garbage. Hence, these forced GC points are the optimal 

GC points for this program. On the other hand, if a collection happens shortly before these 

forced GC points, it is very likely to be less efficient. 

Table 8.1 shows the GC statistics on two settings for JAVAC. Here we use a GenMS 

collector pre-existing in Jikes RVM. In the "Inappropriate Setting", there is a normal GC 

right before each forced GC. In the "Appropriate Setting", we slightly increase the size of 

nursery space and remove all the normal collections before the forced collections except 

the first one. 

The total number of pages released across the running are similar in both cases. How

ever, the appropriate setting accomplishes the same task with fewer collections. All col

lections, except the first one, finish in a much shorter time. The overall Throughput, i.e., 
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GC# 

1 

2 

3 

4 

5 

6 

7 

8 

Sum 

Thr. 

Inappropriate Setting 

GCType 

Normal 

Forced 

Normal 

Forced 

Normal 

Forced 

Normal 

Forced 

— 

Time(ms) 

2208.24 

75.38 

1414.05 

196.49 

1269.71 

425.15 

938.81 

663.59 

7191.42 

Released Pages 

25152 

1372 

21184 

1620 

15468 

4128 

11216 

3564 

83704 

11.63 pages/ms 

Appropriate Setting 

GC Type 

Normal 

Forced 

Forced 

Forced 

Forced 

— 

— 

— 

— 

Time(ms) 

1975.25 

255.46 

40.01 

34.57 

48.18 

— 

— 

— 

2353.47 

Released Pages 

26496 

4880 

21896 

16344 

17752 

— 

— 

— 

87368 

37.12 pages/ms 

Table 8.1: The impact of selecting optimal GC points, using JAVAC as an example. Thr. stands for 

Throughput. 

the measures of released pages per millisecond, of the appropriate setting is 3.2 x of that of 

the inappropriate setting. If we do not count the first normal GC which is unavoidable and 

performs similarly for both cases, the difference of throughput is an astonishingly 13.4x! 

Table 8.1 demonstrates the large impact of the GC points selection. Making a collection 

at an appropriate point can possibly reduce collection time greatly. In order to choose these 

appropriate GC points, here we make a hypothesis that: 

Major program behaviour transition points are also appropriate GC points; a large 

hardware performance variation reflects a major program variation. 

Our hardware phase detector detects large performance variations by generating hard

ware patterns at a high variation level (details of hardware patterns are described in Sec

tion 5.2). By this hypothesis, we translate the the appropriate CPS problem into postponing 

a collection until the next occurrence of a high level hardware pattern, which is much more 

implementation-friendly. 

Is it possible to postpone a collection when there is a collection request? There is a 

positive answer for copying style collectors, by reducing the copy reserve. The copy reserve 
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is a space in the heap held by the collector for copying reachable object from the "from-

space" or nursery space. In practice, the survival rate of objects is usually very low. This 

is especially true for objects in the nursery space maintained by a generational collector. 

In Jikes RVM using a GenMS collector, we observe the survival ratio is frequently below 

20%. As a result, most of the space allocated as a copy reserve for the nursery is wasted. 

Therefore, we reduce the copy reserve to delay the collections until the next appropriate 

point. Our solution can thus obtain benefit from two directions, selecting a potentially 

more productive collection point and reducing the copy reserve overhead. In most time, 

it is safe to do so. However, a garbage collection algorithm must account for the worst 

case. In our situation, the worst case is when the copy reserve overflows because of too 

aggressive reduction. We solve this problem by launching a full heap GC. However, full 

heap GC is very expensive, and thus should be avoided as much as possible. We thus use 

several mechanisms to shield from extreme situations. 

• We maintain an upper bound on the copy reserve reduction rate based on the survival 

ratio of the last nursery GC. 

• We start a collection after receiving a hardware pattern for major program variation. 

It usually happens before the copy reserve reduction reaches the upper bound, and 

thus keeps the system safe. 

• Based on the history of received patterns, we make a prediction of future pattern oc

currence time and associate it with the memory allocation amount. We only postpone 

a collection when the predictor indicates that it is valuable to postpone GC until the 

upper bound. This prediction can further reduce the probability of the worse case. 

However, selecting GC points is something very tricky. A large number of factors or 

noise can influence the overall performance of garbage collection. Our solution does obtain 

an improvement over the original collector used when we began this work, but it is already 

not a perfect solution for this problem. We investigate and discuss the current results and 

possible actions that can be taken for further improvement. Our work is a worthwhile initial 

study of this interesting problem, selecting garbage collection points. 
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8.2 Related Work 

A detailed and rather complete introduction to GC algorithms and GC related problems 

can be found in Jones and Lin's [JL96] GC book. The three classical methods of garbage 

collection are reference counting, mark-sweep and copying. Reference counting is a direct 

method, based on counting the number of references to each memory cell from others. The 

strength of the reference counting method is that memory management overheads are dis

tributed throughout the computation. The major drawback of primitive reference counting 

is the inability to reclaim cyclic structures. Both mark-sweep and copying algorithms are 

tracing collections, which can handle cyclic data naturally. Usually, a mark-sweep GC of

fers a better performance but tends to fragment memory, scattering cells across the heap and 

reducing data locality. Copying GC involves moving a large number of reachable objects 

and therefore has more overhead, however it compacts reachable objects together and elim

inates the fragmentation problem. Furthermore, copying GC usually uses a bump-pointer 

allocator. Hence, the cost of allocation is low. 

GC has been a target of optimization for decades. Many improvements have been made 

to these classic algorithms in a variety of directions, concerning different factors that affect 

GC performance. Ungar's generational scavenging [Ung84] technique and more recent 

works on Age-based GC [SMM99] Older-first GC [SHB+02] and Beltway GC [BJMM02], 

for instance, all aim to improve performance by adjusting collection time according to 

object lifetimes. 

Other approaches for improving GC are available. Reachable objects can be aggre

gated into regions in the heap based on a selection of object attributes. This either aims to 

improve data locality in the program [HBM+04, GM04], or to reduce the memory access 

overhead of the collector [QH02]. Optimizations on data prefetching and lazy sweep

ing [CHV04, BoeOO] aim to improve data cache performance. Gagnon et al. use a bi

directional layout in SableVM [GH01]. By grouping all the reference fields together, the 

copying GC algorithm can be greatly simplified. Further improved reference scanning 

strategies based bi-directional layout are described in [GVG05b, GVG06]. Both the pre

sented RS and the TBP reference tracing strategies can largely reduce the tracing workload. 

Some other works specifically study GC performance. S. Blackburn et al. [BCM04b] 
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discuss performance myths of canonical GC algorithms on widely used Java benchmarks. 

They compare the performance of classic GC and memory allocation algorithms in different 

configurations and environments. The impact of special implementation factors, such as 

"write barriers" and the size of nursery space of generational collectors, on mutator and 

GC performance are carefully studied. The impact of the heap size on garbage collection 

is further studied in [SKB04]. A set of garbage collection algorithms in Jikes RVM are 

investigated. GenMS is usually the one performing the best. However, SemiSpace performs 

well in some special heap setting. 

Usually, the garbage collection points are only determined by the heap size and pro

gram memory requirement. A collection is triggered when the heap is full. However, adap-

tively adjusting the garbage collection points is possible. Chen et al. [kCBC+06] present 

a proactive garbage collection. Collection is triggered before the moment it should be in 

order to reorganize the heap and improve data locality. Our garbage collection solution 

also changes the collection points. However, we delay the collection point for a better col

lection point. Delaying the collection point is practical for any GC algorithm with copy 

reserve space. The copy reserve can be reduced to support the delay. Reduced copy re

serve is used in Sun's Hotspot JVM [Suna]. However, Hotspot uses a fixed size nursery, 

rather than an Appel-style variable-sized nursery addressed by our solution. Variable-sized 

nursery reduces the space wasted in nursery with a low survival rate [App89]. McGachey 

et al. presents [MH06] an improvement on the GenCopy GC of Jikes RVM by reducing 

the copy reserve which makes use of the same concern of our work. Their work set the 

rate of reserve to a fixed value before execution. They investigate the impact of a large 

set of different fixed settings for the benchmarks. Our solution is based on GenMS GC of 

Jikes RVM, which is a best choice in general, and we adjust the reserve rate dynamically, 

according to the runtime behaviour of programs. 

8.3 Design 

In Chapter 5, we described our extension to the HPM component of Jikes RVM. With 

this extension, we can generate patterns to represent performance variations in hardware 

and use these hardware patterns to discover important program behaviours. Still using 
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the hardware patterns, here we aim to obtain appropriate GC points. As mentioned in 

Section 8.1, we assume that large variations in hardware performance reflect behaviour 

transitions in programs. These behaviour change points are the appropriate GC points as 

well. Launching a GC just after such a moment has a higher potential to achieve a better 

throughput, e.g., releasing more pages in shorter collection time. The crucial point here is 

to defer a collection until the next detected major phase transition. This collection delay 

is possible for any collector with a copy reserve. Usually, the size of the copy reserve is 

the same as that of the from-space (in a semi-space collector) or the nursery space (in a 

generational copying collector). We can postpone GC by reducing the copy reserve. 

Copy reserve reduction is safe most of the time. In the case when the survival ratio is 

very high, a rescue space is allocated to store the objects until the accomplishment of the 

current nursery collection. We use the emergency allocation mechanism pre-existing in the 

heap growth manager of Jikes RVM to allocate this rescue space. A full heap collection 

is then launched immediately afterwards. Of course, several heuristics have been used to 

avoid this situation as much as possible. 

Our GC mechanism is rooted in the pre-existing GenMS collector of Jikes RVM. GenMS 

is a generational copying and mark-sweep hybrid collector. It uses a variable size nursery 

space and reserves the same amount of memory in the mature space. Each time a nursery 

collection happens, the surviving objects are promoted into mature space. The size of the 

nursery is thus shrunk after each nursery collection accordingly. When the nursery runs out 

of memory, a full heap collection is scheduled. 

We implemented a Garbage Collection (GC) point analyzer that uses information from 

the hardware performance detector, memory allocation requirement and the heap. The co

operation of GC point analyzer, HPM and memory allocator is shown in Figure 8.1. The 

layout of the heap is shown in the bottom of the figure. From left to right, we have the 

nursery space, the copy reserve for nursery in mature space, the mature space occupied 

by surviving objects from former GC(s) and the other special spaces, e.g.,immortal space, 

large object space (LOS), etc.. Two thresholds MinGCThresh and MaxGCThresh label the 

lower and upper bound of an "GC enabled" area. Within this area, the GC point analyzer 

decides whether or not to launch a GC based on the state of two internal flags. The value 

of the internal flags are set depending on the hardware patterns transfered from our ex-
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Figure 8.1: Overview of GC point selection. 
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tended version of HPM. Recall that the generated patterns represent hardware performance 

variations. 

The GC point analyzer is actually composed of two parts: the hardware information 

processing and the memory allocation processing. As shown in Figure 8.2, the hardware 

pattern generator feeds the GC point analyzer with hardware patterns. In this special case, 

the concrete pattern code is not important. We are only concerned with the variation level 

of the pattern. If the pattern is in a major level (see page 84) which means there is a 

large performance variation, we set a boolean flag HW-Flag to true. We use the value 

of HW_Flag to remember whether we have met a major behaviour change point, e.g., a 

potentially appropriate GC point. The next step is to make a prediction of the next possible 

major hardware variation point based on the history of hardware patterns. We associate the 

amount of memory allocated to the patterns received by the GC point analyzer and reuse 

the the tri-distance prediction mechanism introduced in Chapter 5 to make a prediction. 

The prediction result indicates the distance to the next major performance variation point 

measured by the memory allocation in bytes. We denote this value by NextHW. Then, 

we compare the value of NextHW with a threshold MaxGCThresh. This comparison tells 

whether the predicted next behaviour change point is within the current setting of the largest 

nursery extension. If not, this prediction is invalidated and the process finishes. Otherwise, 
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C End J4 

Hardware Pattern 
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Figure 8.2: Process the hardware information. 

it is worthwhile to wait for the next major behaviour change point. In the latter case, a 

boolean flag WaitJFlag is set to true to tell the collector to postpone a GC if there is a 

collection request. 

The main flow of how the GC point analyzer responses to a memory allocation request 

is illustrated in Figure 8.3. After receiving a N bytes memory requirement from the alloca

tor, the GC point analyzer adds N to the current allocated memory in the nursery space. If 

the sum is lower than a threshold MinGCThresh, there is still plenty of memory in nursery 

space. It is not necessary to make a GC even if the HWJ'lag is set. In this case, no col

lection will be scheduled and the flag HWJ'lag is set to false. If the sum is larger than the 

prediction value NextHW which sets the Wait-Flag, this prediction becomes invalided and 

Wait-Flag is set to false. If the sum is larger than the MaxGCThresh threshold, we have 

increased the nursery to a large amount. In order to avoid an out-of-memory problem, the 

GC point analyzer decides to launch a GC anyway, and sets the boolean flags to false. If 
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the sum lies between the upper and lower threshold, whether there is a GC is depend on 

the value of the boolean flags. A collection is scheduled if the HW-Flag is true or the both 

HWJFlag and WaitJFlag are false, i.e., there is neither a prediction or an actual occurrence 

of a major performance variation in hardware. 

Memory Requirement: N 

HW_Flag = F 

Wait_Flag =F 
Wait_Flag =F 

( G C ) ( N o G C ) 

Figure 8.3: Process the memory allocation requirement. 

The value of the upper and lower bounding thresholds are set as follows: 

• Initially, the MaxGCThresh is set to 1.33 x of the nursery size, which is the half of 

expected free memory reserved for the nursery. The MinGCThresh is initialized with 

the nursery size. 

• After each GC, given a nursery survival ratio R and a current expected nursery size 

5, the value of these two thresholds are reset as follows, 

MaxGCThresh = Sx 
l+R 
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MinGCThresh = Sx — 
1+R 

• When the size of the nursery is extremely small, say less than 4KB, we suspend the 

copy reserve reduction by setting both MaxGCThresh and MinGCThresh to the size 

of the nursery space. 

These overflow avoiding mechanisms work well. In practice, no nursery reserve over

flow is encountered. 

8.4 Experimental Results and Discussion 

The basic experimental setting is the same as in Chapter 5. We choose the same benchmark 

suites and testing platform. The reported results are collected from the median 27 of 33 

runs. Other than our automatic garbage collection selection version (CPS) and the original 

implementation, we also test a set of fixed nursery copy reserve versions. Here we test to 

fixed increases of 1.2, 1.4, 1.6 and 1.8 times to the default nursery size. We refer them 

as F1.2, F1.4, F1.6, and F1.8 respectively. For SPECJVM98 benchmarks, we test seven 

different heap settings from 40MB to 100MB, increasing 10MB in each step. SOOT and 

PSEUDOJBB apparently require larger heap. PSEUDOJBB fails with an out-of-memory 

error on a 128MB heap. The same benchmark requires very frequent collections when the 

heap is set to 192MB, which indicates that even a 192MB heap is still not enough for this 

program. We thus test seven heap size settings from 256MB to 640MB, increasing 64MB 

in each step. 

We first report the nursery increment results of the CPS version. We record the increase 

rate of the nursery at each collection time and calculate the geometric mean (Geomean). 

CPS obtains a significant speedup over the original implementation. We also make the 

comparison between the CPS version and the fixed nursery increment rate versions and 

evaluate the CPS solution and potential further improvement for it. 
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Benchmark 
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db 
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jess 

mpegaudio 

mtrt 

ray trace 

soot 

PseudoJbb 

Geomean of Nursery Increment Rate 

40M 

1.55 

1.25 

1.47 

1.14 

1.48 

1.32 

1.44 

1.43 

256M 

1.40 

1.44 

50M 

1.56 

1.38 

1.46 

1.10 

1.47 

1.04 

1.41 

1.38 

320M 

1.35 

1.47 

60M 

1.37 

1.40 

1.52 

1.23 

1.47 

1.04 

1.40 

1.36 

384M 

1.31 

1.55 

70M 

1.45 

1.39 

1.43 

1.08 

1.48 

1.03 

1.36 

1.33 

448M 

1.23 

1.48 

80M 

1.45 

1.30 

1.57 

1.12 

1.47 

1.00 

1.35 

1.30 

512M 

1.22 

1.52 

90M 

1.42 

1.30 

1.55 

1.29 

1.48 

1.00 

1.35 

1.28 

576M 

1.44 

1.55 

100M 

1.46 

1.22 

1.47 

1.13 

1.44 

1.00 

1.35 

1.29 

640M 

1.46 

1.57 

Table 8.2: Geometric mean of nursery increment rate (increased nursery size normalized to default 

nursery size). 

8.4.1 Nursery Increase 

The geometric mean of the nursery space increase results are shown in Table 8.2. The 

nursery increment rate in different situations varies a lot, from 1.0 to 1.57. Comparatively, 

the increment rate for one individual benchmark with different heap sizes varies less, but is 

not stable. JACK, JESS and PSEUDOJBB have a comparatively stable increment rate. The 

rate of MPEGAUDIO becomes 1.0 when the heap gets larger than 80MB due to the fact there 

is no collection needed. 

8.4.2 Performance Comparison 

The speedup of CPS over the original version is demonstrated in Table 8.3. In general, CPS 

performs much better than the original. COMPRESS is the only benchmark both versions 

have a similar behaviour. For the other programs, we obtain speedup ranging from 1.05 to 

1.31, measured by the geometric mean across all the heap settings used. There are even 

large speedups at particular heap settings, e.g., the 1.43 speedup obtained on JACK with a 
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100MB heap and 1.52 speedup obtained on PSEUDOJBB with a 512MB heap. Note that we 

do not count the extremely large speedup in the 70MB heap data of JAVAC. JAVAC together 

with MPEGAUDIO are the pair of benchmarks that show special behaviours. The large 

performance speedup on JAVAC is mainly due to the number of unnecessary collections 

eliminated before the forced collection, as mentioned in Section 8.1. For MPEGAUDIO, no 

collection is needed when the heap is larger than 80MB. 

Benchmark 

compress 

db 

jack 

javac 

jess 

mpegaudio 

mtrt 

raytrace 

soot 

PseudoJbb 

Geomean of Speedup 

40M 

0.99 

1.02 

1.21 

0.93 

1.17 

1.02 

1.06 

1.15 

256M 

1.03 

1.16 

50M 

1.05 

1.05 

1.33 

1.03 

1.17 

0.98 

1.07 

1.13 

320M 

1.06 

1.20 

60M 

1.00 

1.07 

1.24 

1.24 

1.17 

1.06 

1.06 

1.11 

384M 

1.05 

1.20 

70M 

0.95 

1.16 

1.31 

2.33 

1.14 

1.02 

1.09 

1.12 

448M 

1.02 

1.19 

80M 

0.98 

1.01 

1.39 

1.01 

1.13 

— 

1.02 

1.11 

512M 

1.01 

1.52 

90M 

1.01 

0.91 

1.27 

1.02 

1.10 
__ 

1.04 

1.09 

576M 

1.01 

1.18 

100M 

1.00 

1.38 

1.43 

1.03 

1.15 

— 

1.07 

1.00 

640M 

1.13 

1.56 

Average 

1.00 

1.08 

1.31 

1.16 

1.15 

— 

1.06 

1.10 

Average 

1.05 

1.28 

Table 8.3: The speedup of the CPS version over the original collector. 

The significant performance improvement of CPS comes from two sources: the in

crease of the nursery size and selecting the collection points after hardware performance 

variations. We further investigate the impact of these two sources. We build and test a 

series of fixed nursery increment versions F1.2, F1.4, F1.6 and F1.8 as described above. 

The performance of all these fixed nursery increment versions together with CPS solution 

(CPS) and original implementation (Orig(l.O)) are illustrated in Figure 8.4 and Figure 8.5. 

Not surprisingly, a version with a larger nursery space increment rate usually performs 

better. However, this is not necessarily true for all data points. In some specific bench

marks and particular heap settings, a larger increment in the nursery space can end up with 

a slowdown, e.g., on DB with a 80MB heap. Most benchmarks are sensitive to nursery 
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Figure 8.4: The garbage collection results O/SPECJVM98 benchmarks. X-axis is the heap size in 

MB; Y-axis is the collection time in milliseconds. 
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Figure 8.5: The garbage collection results of SOOT and PSEUDOJBB. X-axis is the heap size in 

MB; Y-axis is the collection time in milliseconds. 

changes. However, COMPRESS shows a unique behaviour. The nursery increase does not 

have observable impact on collection time. 

Our CPS implementation is among/close to the best solution in most test points. Es

pecially on DB, CPS performs better than all of the other versions. Comparatively, the 

performance variation on JAVAC is large until the heap is larger than 80MB. When the 

heap is smaller than 80MB, the performance of different collection algorithms is mainly 

determined by how many collections before the four forced collections are eliminated. As 

soon as the heap is equal to or larger than 80MB, all versions eliminate all the unnecessary 

collections and perform similarly. MPEGAUDIO requires less memory resource than others 

and thus requires no collection when the heap reaches 80MB (or larger). F1.8 increases the 

nursery size more than others and requires no collection even on a 70MB heap setting. For 

the same reason, Fl .8 gives the best overall performance. 

Our experimental results show that the nursery increment is a major factor for perfor

mance improvement. To investigate the the impact of hardware information, we calculate 

an expected performance for fixed nursery increment at the same increment rate as that of 

the CPS solution. 

We use the the four fixed increment rates to split the range [1.0,2.0] into five sections. 

Within each section, we assume the performance changes linearly. Formally, suppose the 

nursery increment rate of CPS is X, X e [L,H], the collection times of fixed solutions at 

rate L and H are Fi and FH, then the expected collection time of Fx is calculated as, 
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Fx = FL+——x(FH-FL) 
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1.09 
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1.05 

70M 

0.96 

1.23 

1.01 

1.82 

1.06 

1.01 

1.03 

1.06 
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1.05 
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0.97 

1.03 

1.07 

1.02 

1.04 

— 

1.03 

1.04 

512M 

1.01 

1.03 

90M 

1.01 

1.03 

1.10 

1.03 

1.04 

— 

0.98 

1.02 

576M 

1.03 

1.06 

100M 

1.00 

1.44 

1.08 

1.04 

1.05 

— 

1.01 

1.03 

640M 

1.08 

1.15 

Average 

1.00 

1.14 

1.07 

1.11 

1.05 

— 

1.01 

1.04 

Average 

1.03 

1.06 

Table 8.4: The speedup of the CPS version over the expected collection time of fixed nursery in

creasing solution with the same increment rate. 

The comparison between CPS and the expected fixed result with the same rate is shown 

in Table 8.4. In support of using hardware information, the CPS version performs better. 

We obtain a speedup of more than 1.05 in half of the benchmarks. The best case is DB 

where the speedup is 1.14. Moreover, CPS never performs worse than the expected value. 

Unfortunately, CPS is still slightly weaker than that of F1.8 solution which is usually the 

best one across all the tested implementations. The speedup of CPS compared with F1.8 

is shown in Table 8.5. In all the 63 validating data points, CPS is better in 29 of them and 

F1.8 wins 32 points. If we only count the points where the difference is larger than 0.05, 

i.e., 5% performance variation, the rate is 11 versus 12. Therefore, in general, CPS gives a 

comparable performance with the fixed version with a much larger nursery increment rate. 

In summary, the CPS solution performs significantly better than the original version. 

The nursery increase takes an important role in the performance gain. CPS is slightly 
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— 
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— 
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1.11 
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1.00 

— 

0.99 
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Average 

1.00 

0.96 

Table 8.5: The speedup of the CPS version over the collection time of fixed nursery increasing 

solution with an increment rate 1.8 (F1.8). 

weaker than Fl .8 since the latter increases the nursery more aggressively. Another impor

tant observation is that CPS also performs better than the estimation of a fixed solution 

with the same increment rate. This fact supports that choosing collection points according 

to runtime analysis results, such as in the hardware variation we used here, we are able to 

obtain benefits for the collector. However, we do not claim the current CPS is a perfect im

plementation due to the fact that it does not win over a more aggressive fixed setting F1.8. 

We also notice that there are a number of ways to improve it further and better address the 

problem of garbage collection point selection. We will discuss these potential improvement 

as future work in the following section. 

8.5 Summary and Future Work 

The performance of garbage collection can be impacted by a large number of factors, in

cluding the algorithm, program characteristics, the heap size, and garbage collection points. 

In this chapter, we introduced an exploration for improving garbage collection perfor-

141 



Garbage Collection Point Selection 

mance by selecting appropriate garbage collection points. We began with a special example 

to show the significant potential effect of choosing collection points on the final perfor

mance. We then presented a solution to do selective GC according to hardware pattern 

detection results. The fundamental idea is to postpone collection points later until the next 

major performance variation point. 

We achieved a large improvement over the original implementation on which we be

gan this work. We then made a deep investigation on the possible factors affecting our 

experimental results. We studied the impacts of increasing of the heap size and hardware 

information on the collector. Our solution, in general, works better than straightforward 

solution with the same nursery increment rate. The improvement we obtained is thus not 

purely from the use of a larger nursery space. 

Adjusting collection points is a complex problem. Although, the current CPS is not a 

perfect solution for this problem, we consider that our work is a valuable exploration of 

this hard problem. We addressed a challenging problem and obtained a large improvement 

over the original algorithm. We also investigated several internal issues of this problem. A 

number of possible improvements can be employed in the future. A simple improvement 

could be developing better heuristics for determining the lower bound of the GC enabled 

area. 

There are other major potential improvements: 

• First, associating hardware variation with software structures, such as methods, or 

loops, can potentially improve the accuracy of selecting the optimal collection points 

and reduce the overhead. 

• Second, runtime data shape profiling [PV06] traces could be used to figure out poten

tial good collection points. We can apply an offline analysis of the runtime data shape 

analysis to locate large variation points of data shapes and mark them as suggested 

collection points. 

• Moreover, a novel static analysis could be developed to locate possible optimal GC 

points by discovering the points at which a large amount of the objects just leave 

their reachable region. 
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• A combination of offline static analysis and online hardware variation detection 

mechanism is another very hopeful direction for addressing the problem discussed 

here. 
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Chapter 9 

Conclusions and Future Work 

Modern hardware architectures are getting increasingly complex. The impact of hard

ware performance on software execution thus becomes more and more significant. There

fore, hardware performance has become a critical concern of Java Virtual Machine design 

and implementation. We have presented our exploration on developing virtual machine 

techniques based on hardware information. In this last chapter, we summarize the entire 

thesis. We give conclusions in Section 9.1 and discuss several future research directions in 

Section 9.2. 

9.1 Conclusions 

Modern virtual machines are complex runtime environments. Any optimization in a mod

ern virtual machine has the potential for complex interactions with various factors, high and 

low level. We have investigated and provided a coarse taxonomy for the relative factors. 

Our efforts provide a number of insights into the sources of different influences on program 

performance. Using our investigation results, we have discovered that the performance of 

Java Virtual Machines can be significantly affected by hardware related issues, such as un

intended code motion side-effects. These hardware related factors make the performance 

measurement of JVMs become more challenging, but opportunities can co-exist with chal

lenges. The correlation between changes in program behaviour and hardware performance 

variations suggests that there is a chance to improve JVM performance through hardware 
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information analysis. In this thesis, we used hardware data to detect recurrent, periodic 

phases in program execution as an example of the latter. 

Program phase detection has been a hot topic for a while. However, most existing 

phase detection techniques focus on the identification of stable phases. We thus gave a 

definition to and clarified the importance of recurrent periodic phase for irregular, real life, 

object oriented programs investigated from the perspective of a coarse granularity. We have 

presented our approach to online phase detection for general Java programs based on real 

world hardware information. Most pre-existing phase evaluation metrics are specifically 

designed for stable phase detection results. We thus have defined a set of novel metrics 

which are suitable for the recurrent periodic phase detection problem, and demonstrated a 

practical implementation with potential many applications. 

Our hardware information analysis results can bring benefits to many adaptive opti

mizations in JVMs and other runtime environments. Our selective profiling mechanism 

reduces the profiling workload significantly over the original sampling mechanism and still 

ensures high accuracy. Other than a concrete runtime technique itself, the selective profil

ing mechanism also serves as a sample application for our recurrent behaviour detection. 

The profiling accurate results confirm that our hardware data based phase detection scheme 

provides useful information to locate the most important, repetitive portions in the execu

tion of Java programs. 

Adaptive recompilation is an essential factor for highly efficient JIT. We have shown 

improvements to adaptive recompilation by employing a dynamic strategy based on pro

gram phases. Our online adaptive recompilation engine makes recompilation choices based 

on dynamically acquired hardware phase data, and exhibits good overall performance. We 

have also evaluated this optimization in terms of several analytical measurements. 

We have made an exploration of improving garbage collection using hardware varia

tion information. A solution have been provided to select good garbage collection points 

according to hardware patterns. Hardware patterns reflect the hardware performance vari

ations which, in turn, represent large behaviour changes in the running program. Our so

lution performs much better than the original implementation. We also have made a deep 

discussion on the garbage collection point problem. Our work touched on a variety of 

important aspects of this problem and is helpful for further investigating this topic. 
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9.2 Future Work 

Several improvements can be applied to our hardware phase detection mechanism. The 

most direct optimization over the current implementation is to use a combination of several 

hardware events as the performance indicator. Of course, the concrete composition and 

the weights of events in this combination require further study. We have discovered that 

programs have different sensitivities to different hardware events. To further optimize the 

hardware phase detection, one potential solution is to use benchmark-specific performance 

indicators. The event or event combination that are appropriate for a particular program 

can be found from offline analysis. In fact, an offline/online hybrid implementation can 

bring benefit in many aspects of the current implementation in general, e.g., supporting 

the online engine to choose benchmark-specific values for the settings, such as the bounds 

of variation levels in pattern construction. Moreover, better hardware pattern construction 

algorithms might also be further investigated. 

Concrete adaptive optimizations can get benefit from wider directions other than us

ing offline-online mixed mechanisms and considering benchmark specific issues. One po

tential improvement is to employ a hardware-software hybrid strategy. We can associate 

hardware detection results with concrete software structures of the programs. This can be 

used to calculate better garbage collection points or fix the "tail" problem (discussed in 

page 116) in the adaptive recompilation strategy. Several techniques presented by other re

searchers can also be integrated with our work, such as the profile repositories introduced 

in [AWR05] and the fall-back compaction [MH06] technique presented by McGachey et 

ah. Furthermore, static analysis of program structures can still bring benefit to the opti

mizations addressed here, e.g., locating better garbage collection point by analyzing the 

life range of objects, or the dominating area for important allocation sites. 

The functionality of hardware performance monitoring, and in particular the perfor

mance monitoring unit (PMU) has become stronger and more and more complete. Many 

impressive new features of PMU (details of these features are described in page 15) had 

been introduced in recent processors. These new features provide more chances for hard

ware related optimizations. For example, with the event address register, we can easily 

locate the address of regions with serious data cache conflicts. We can thus design accu-
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rately targeted solutions for dynamic data relocation. The branch trace buffer can also be 

helpful to identify hot code traces of a program and also changes in hot code regions. We 

could employ dynamic code reordering and deliver better runtime code layout. 
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