
HARDWARE RELATED OPTIMIZATIONS IN A JAVA VIRTUAL
MACHINE

by

Dayong Gu

School of Computer Science

McGill University, Montreal

December 2007

A THESIS SUBMITTED TO MCGLLL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF

DOCTOR OF PHILOSOPHY

Copyright © 2007 by Dayong Gu

1*1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre reference
ISBN: 978-0-494-50823-7
Our file Notre reference
ISBN: 978-0-494-50823-7

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par Plntemet, prefer,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Abstract

Java Virtual Machines provide a layer of abstraction supporting any services required

for the execution of Java programs; from the viewpoint of Java programs, a Java Virtual

Machine is a kind of "virtual hardware". However, fundamentally, any job of this virtual

hardware is done by the real low level hardware, and behavioural changes in the virtual

hardware are eventually reflected by performance variations in the real hardware. Inves

tigating the real hardware performance is thus important for understanding the behaviour

of higher levels, including virtual machines themselves and the Java programs they run.

Hardware information also has significant potential for optimizing Java Virtual Machines

and achieving better runtime performance for Java programs.

In this thesis, we introduce a series of adaptive optimizations in a Java Virtual Machine

based on hardware information. We investigate the recurrent behaviour apparent in hard

ware data and detect the recurrent, periodic phases, i.e., the repetitive behaviour, in high

level program execution. These phase detection results can be used for a variety of purposes

including optimization and program understanding. For example, phase data can be used

to select only the representative portions in program execution for runtime profiling. This

selective profiling technique achieves a similar accuracy to that of the continuous profiling

with a significant workload reduction. Based on further hardware investigation results we

roughly divide the lifetime of a program into different phases and dynamically apply ap

propriate hot method recompilation strategies which generally improve performance and

demonstrate a real world optimization using our technique. Hardware information can also

bring benefits to the selection of better garbage collection points. We implement a collec

tor with a garbage collection point analytic model based on our hardware data analyzer and

provide a deep study of the relative factors in collection point selection.

1

Our approach and set of techniques highlight a problem for optimization development

and a design that adaptively compensates. As hardware performance becomes an increas

ingly important factor it becomes a greater consideration in the construction of runtime

environments, including Java Virtual Machines. We are able to show in our work that

hardware monitoring can be the basis of both high level understanding and many new op

timizations.

n

Resume

Les machines virtuelles Java fournissent une couche d'abstraction soutenant tous les

services exiges pour l'execution de programmes en Java; du point de vue des programmes

en Java, une machine virtuelle Java est un genre de « materiel informatique virtuel ». Ce-

pendant, fondamentalement, n'importe quel travail de ce materiel virtuel est fait par le vrai

materiel de bas niveau et des changements comportementaux du materiel virtuel sont par

la suite refletes par les variations d'execution dans le vrai materiel. L'etude de la vraie

performance du materiel informatique est ainsi importante pour la comprehension du com-

portement des niveaux plus eleves, y compris les machines virtuelles elles-memes et les

programmes en Java qu'elles executent. L'information extraite du materiel informatique a

un potentiel signficatif d'etre utile pour 1'optimisation des machines virtuelles Java et pour

realiser de meilleures performances d'execution pour les programmes en Java.

Dans cette these, nous presentons une serie d'optimisations adaptatives dans une ma

chine virtuelle Java qui sont basees sur de l'information provenant du materiel informa

tique. Nous etudions le comportement recurrent evident dans des donnees de materiel infor

matique et detectons les phases recurrentes et periodiques, c.-a-d., le comportement reitere

dans l'execution de haut niveau du programme. Ces resultats de detection de phase peuvent

etre employes a une variete de fins, y compris 1'optimisation et la comprehension de pro

grammes. Par exemple, des donnees de phase peuvent etre employees pour considerer

seulement les parties significatives dans l'execution de programme pour le profilage d'execu

tion. Cette technique de profilage selectif permet d'atteindre une exactitude comparable a

celle du profilage continu avec une reduction significative de la charge de travail. En se

basant sur d'autres resultats de recherche sur le materiel informatique, nous divisons ap-

proximativement la vie d'un programme en differentes phases et nous appliquons dynami-

111

quement des strategies de recompilation de methode appropriees de type « sur le fait» (hot

strategies) qui, generalement, ameliorent la performance et demontrent une optimisation

reelle, en utilisant notre technique. L'information du materiel informatique peut egalement

apporter des avantages quant au choix de meilleurs points de recuperation de memoire

(garbage collection). Nous mettons en application un recuperateur avec un modele analy-

tique des points de recuperation de memoire base sur nos donnees de materiel informa

tique et fournissons une etude profonde des facteurs relatifs dans le choix des points de

recuperation.

Notre approche et notre ensemble de techniques mettent en lumiere un probleme du

developpement d'optimisation ainsi qu'un concept qui compense de maniere adaptative.

Comme 1'execution au niveau du materiel informatique devient un facteur de plus en plus

important, elle est davantage prise en consideration dans la construction d'environnements

d'execution, y compris les machines virtuelles Java. Nous montrons dans ce travail que des

mesures sur le materiel informatique peuvent servir a comme fois la base de comprehension

a haut niveau ainsi que pour plusieures nouvelles optimisations.

IV

Acknowledgements

Most importantly, I would like to thank my advisors, Professor Clark Verbrugge and

Professor Etienne M. Gagnon. It is undoubtedly impossible for me to finish this thesis

without your support. Your enthusiastic and patient supervision is indispensable. Thank

you, Clark! Thank you, Etienne! Many things I have learnt from you, not only knowledge

and research ability. Moreover, I appreciated the guidance from Dr. Karel Driesen. You

gave me a hand in the beginning of the journey of a Ph.D. study. This first-stage help is

definitely unforgettable.

I also like to thank other professors of SOCS, especially Laurie Hendren and Hans

Vangheluwe. Thank you Laurie, you are the best lecturer and presenter I ever met. I

enjoyed every talk from you. The impressive "Laurie's laughter" encourages every member

in the whole research group. Thank you Hans, for the excellent services you provided as my

progress committee member. Every bit of my progress is obtained under your supervision.

The Sable laboratory is a great place, full of support, friendship, and fun. Thank you

Chris Pickett, the most "picky" proofreader. No error and flaw can escape your sharp eyes

as well as no non-100%-perfect food is tolerable by your picky taste. Gregory Prokopski,

you are the best system administrator. The great working environment provided by you is

crucial to my research. The discussions about history between us were also very pleasant.

We exchanged interesting topics of China, Japan, and Korea with those of Poland, Russia,

and Deutschland. I am also particularly grateful to your friend Genevieve for her help in

translating the abstract into French. In the past several years, I said "Assalam-O-Alaikum"

("Good morning" in Urdu) to my office-mates Ahmer and Nomair every morning, and they

said "Zai Jian" ("Goodbye" in Chinese) to me every night. Most recently, I had two new

office-mates, Haiying and Xun. We are busy with thesis submission at the same time. We

v

enjoy this important period together, encourage and oversee each other. Eric, Lin, Michael,

Patrick, Richard and many more colleagues in Sable, I am proud of my experience sharing

with you!

This research would not have been completed without financial support. I would like to

thank SOCS and FQRNT for providing scholarships during my Ph.D. study course.

Finally, a big thank you to my parents. It has been a long time that I have not been

around you, chatting with you, preparing dinner for you, having a trip with you, and many

other things that I definitely should share with you. However, every day, every hour, every

minute, I can feel your caring, your love, your encouragement and your understanding,

across half of the world!

VI

Table of Contents

Abstract i

Resume iii

Acknowledgements v

Table of Contents vii

List of Figures xi

List of Tables xv

1 Introduction 1

1.1 Motivation 1

1.2 Contributions 3

1.3 Thesis Overview 6

2 Background 7

2.1 Hardware Components 8

2.1.1 Memory Hierarchy 9

2.1.2 Branch Prediction 13

2.1.3 Hardware Performance Monitoring Unit 14

2.2 The Java Virtual Machine 16

2.3 Jikes RVM 18

2.4 Summary 22

vii

3 Relative Factors of Java Virtual Machine Performance 25

3.1 Difficulty of JVM Performance Measurement 26

3.2 GC Case Study 27

3.2.1 Bi-Directional Layout and Reference Sections 27

3.2.2 Implementing RS Scanning 29

3.2.3 Experimental Results 31

3.3 Discussion of Relative Factors 33

3.3.1 General Factors: Code and Data Management 34

3.3.2 Benchmark Specific Factors 38

3.4 Summary and Future Work 42

4 Phase Detection Theory and Techniques 45

4.1 Phase Detection and Applications 45

4.2 Fixed Length Interval Based Phase Detection 48'

4.2.1 Definition 48

4.2.2 Detection 49

4.2.3 Prediction 51

4.3 Variable Length Periodic Phase Detection 54

4.3.1 Definition: Periodic Phase 56

4.3.2 Periodic Phase Detection Techniques 57'

4.4 Problem Classification 58

4.4.1 Online Hardware Based Phase Detection 60

4.4.2 Distinguishing Characteristics of Our Approach 62

4.5 Summary 62

5 Hardware Based Online Phase Detection 65.

5.1 Overview 65

5.2 Design 67

5.2.1 Pattern Construction 68

5.2.2 Pattern Analysis and Prediction 71

5.3 Evaluation Metrics 76

vni

5.3.1 Existing Metrics 77

5.3.2 Periodic Phase Evaluation 80

5.4 Experimental Results 83

5.4.1 Setting and Benchmarks '. . 83

5.4.2 Results 83

5.5 Summary 85

6 Phase Based Selective Profiling 87

6.1 Profiling Categorization 87

6.2 Related Work . 88

6.3 Methodology and Evaluation Metrics 90

6.3.1 Profiling Control Mechanism 90

6.3.2 Profiling Metrics 91

6.4 Experimental Results 92

6.5 Summary 94

7 Phase Based Adaptive Recompilation 95

7.1 Motivation 95

7.2 Related Work 99

7.3 Methodology 101

7.3.1 Adaptive Recompilation System in Jikes RVM 101

7.3.2 Offline Trace-Driven Mechanism , . 102

7.3.3 Online Mechanism 103

7.4 Experimental Results . 106

7.4.1 Offline I l l

7.4.2 Online I l l

7.4.3 Variance and Overhead 112

7.5 Discussion 113

7.5.1 Benchmark Characteristics '. 114

7.5.2 Stability and Comparison with Simple Approaches 117

7.6 Summary 121

ix

8 Garbage Collection Point Selection 125

8.1 Motivation 125

8.2 Related Work 129

8.3 Design 130

8.4 Experimental Results and Discussion 135

8.4.1 Nursery Increase 136'

8.4.2 Performance Comparison 136

8.5 Summary and Future Work 141

9 Conclusions and Future Work 145

9.1 Conclusions 145

9.2 Future Work 147.

Bibliography 149

x

List of Figures

1.1 Summary of contributions 4

2.1 Multiple levels of memory system 10

2.2 Basic structure of a Java Virtual Machine 17

2.3 Architecture of the Jikes RVM's Adaptive Optimization System 19

3.1 An instance of type C extending type B extending type A in both traditional

and bi-directional object layouts 28

3.2 GC and whole program speedup results on SableVM, Jikes RVM with a

semi-space collector, and Jikes RVM with a GenMS collector 32

3.3 COMPRESS hardware event trace 39

3.4 DB hardware event trace. 40

3.5 JACK hardware event trace 40

3.6 Benchmark cache bias 41

4.1 RLEP: Building the phase ID from the branch footprint in [SSC03] 53

4.2 RLEP: Using phase ID and the number of repetitions to predict the next

phase in [SSC03] 53

4.3 The synchronization problem for fixed length intervals techniques [LPH+05]. 54

4.4 Grammar generated for the input "aabaabaac" by SEQUITUR from [LPH+05]. 55

4.5 The obvious repetitive behaviour of JACK at a coarse granularity, LI in

struction cache miss counts are gathered every thread context switch. . . . 57

4.6 The comparison between the real measurement result (top) and the phase

prediction (offline pre-study) result (bottom) on JACK. The hardware event

used here is Level 1 instruction cache . 61

xi

1 System structure for recurrent phase detection 67

2 Main attributes used to build patterns. The top three graphs show the three

attributes of the hardware event curve: the variation level, the variation

shape, and the length of the significantly varying part. The bottom graph

shows the result of recurrent phase identification based on similarity of the

beginning part of each phase 69

3 A flow chart for pattern creation 72

4 Pattern construction example. (1) Acquire the raw hardware data. (2) Cal

culate the variation between consecutive points. (3) Coarsen the variation

into different levels; the triangles inside each circle show the direction (neg

ative/positive) of variation. (4) The final pattern creation results; the arrow

on the y-axis indicates that we obtain a level 2 pattern; the number above

each circle shows the 2-bit code for each variation. The four trailing zeros

are omitted (the pattern has died out), and the final pattern code is 010001. 73

5 Overview of the prediction mechanism 74

1 Use recurrent phase detection to control profiling. This figure is the same

as Figure 5.5 except that we replace the rightmost block "Other Adap

tive Component" with a concrete adaptive component addressed here, the

"Runtime Measurement Component" of Jikes RVM 90

2 Profiling workload reduction and accuracy results - 93

1 Sources of optimization due to improved recompilation decisions for a

given method 97

2 An overview of the algorithm used in the computation of the futureEstimator. 107

3 Dynamic Method Level Speed measurements over time for each of our

baseline, offline and online recompilation approaches. Each graph is a dis

tinct method from JACK 108

4 Weighted optimized methods: JACK, JESS, MPEGAUDIO, PSEUDOJBB and

SOOT 109

xii

7.5 Normalized execution time of SPECJVM98, SOOT and PSEUDOJBB with

99% confidence interval errorbars for each of our three test scenarios: orig

inal, online and offline . .' 113

7.6 Relative overhead in the online system compared with the original 114

7.7 Normalized execution time for benchmarks using different recompilation

optimization strategies 119

7.8 Normalized execution time for benchmarks using different recompilation

optimization strategies. These benchmarks are insensitive to strategy 120

7.9 Normalized execution time for benchmarks using different recompilation

optimization strategies. These benchmarks are quite sensitive to strategy. . . 120

7.10 Typical behaviour of benchmarks in response to different recompilation

strategies 122

8.1 Overview of GC point selection 132

8.2 Process the hardware information . 133

8.3 Process the memory allocation requirement 134

8.4 The garbage collection results of SPECJVM98 benchmarks. X-axis is the

heap size in MB; Y-axis is the collection time in milliseconds 138

8.5 The garbage collection results of SOOT and PSEUDOJBB. X-axis is the

heap size in MB; Y-axis is the collection time in milliseconds 139

xiu

xiv

List of Tables

1 Impact of the code shifting in SableVM and adding an extra never executed

component in Jikes RVM (L.V.F. for Largest Variation Found in execution

time and always positive) 36

2 Benchmark characteristics: average number of cycles between cache misses

in SableVM on a Pentium III workstation 37

1 A concrete example of the tri-distance algorithm. The difference threshold

T is set to 10% 75

2 Pattern detection evaluation results. Hardware patterns are built based on

performance data of LI instruction cache 84

1 The relation between phase detection/prediction, profiling flag and actions

of the runtime measurement component in the phase driven adaptive profiling. 91

2 Phase driven profiling workload reduction and accuracy 93

1 Program phase, hardware patterns, and recompilation aggressiveness. . . . 105

2 Execution results, number of patterns created in the online version, and

number of methods optimized for our benchmark suite. Values are the

arithmetic average of the middle 11 out of 15 runs. "Impr." stands for the

improvement over the original version 110

3 Fixed setting of futureEstimator versus the online version. The "online

average" row shows the average futureEstimator value used in the online

version, weighted proportionally over program execution 118

xv

8.1 The impact of selecting optimal GC points, using JAVAC as an example.

Thr. stands for Throughput 127

8.2 Geometric mean of nursery increment rate (increased nursery size normal

ized to default nursery size) 136

8.3 The speedup of the CPS version over the original collector 137

8.4 The speedup of the CPS version over the expected collection time of fixed

nursery increasing solution with the same increment rate 140

8.5 The speedup of the CPS version over the collection time of fixed nursery

increasing solution with an increment rate 1.8 (Fl.8) 141

xvi

Chapter 1

Introduction

Java [GJSBOO] has become one of the most popular general purpose programming lan

guages in the past decade. Java requires a specific runtime system, the Java Virtual Machine

(JVM) [LY99], to support its platform independence and security attributes. Just as indi

cated by the name, the JVM is an abstract machine or a layer of virtual hardware. The

performance of the JVM, however, can be influenced by a number of factors, including the

Java program specific behaviour, the implementation details of the virtual hardware. (JVM)

and the impact of the actual hardware components. In fact, the impact of subtle hardware

related issues on JVM performance is much bigger than intuition may lead one to think.

In this thesis, we investigate the impact of hardware on JVM performance. Following

a detailed study of hardware and other VM performance concerns, we demonstrate a de

sign for extracting high level behavioural data from low level hardware performance data.

Based on this design we are able to implement a variety of novel JVM optimizations and

analyses that exploit high level variable length repetitive program phases. This improves

both program performance and understanding, and in general shows the strong connection

between low level hardware performance and high level VM behaviour.

1.1 Motivation

Java offers a set of benefits in platform independence, runtime flexibility and security over

traditional imperative languages such as C/C++. All these benefits are provided by the Java

1

Introduction

Virtual Machine, which is an extra layer between application programs and the operating

system. The design and implementation of JVMs is currently quite complex, involving

many layers of optimization and adaptivity. The JVM performance actually depends on

a variety of factors [GVG06]. Some of the factors are surprisingly unintuitive. From our

study of JVM performance, we have found that the impact of hardware is often much more

significant than may be commonly assumed. Many virtual machine level problems or pro

gram inherent behaviours are eventually reflected by performance variations in hardware

components. In other words, there exists a tight relation between hardware performance

and program execution [LSP+05]. Hardware information can be a good indicator of pro

gram runtime behaviour and hence be used to detect program behaviour variations. Fortu

nately, hardware performance counters are widely available in modern processors. A great

deal of microarchitecture level information is thus procurable and can be used for program

understanding and adaptive optimization.

Both of these two facts, the close relation between hardware performance and program

behaviour and the existence of efficient hardware monitoring, motivate our work using

hardware information to improve adaptive optimizations in JVMs. If simple and easily

obtained hardware data is indicative of program behaviour then it can also be used for

optimization and analysis. We begin our work by detecting program repetitive behaviour,

or recurrent phases, based on the analysis of hardware information data. We translate

the problem of high level program recurrent behaviour detection into low level repetitive

hardware performance detection. Raw hardware data is gathered, coarsen and investigated.

Based on these phase analysis results, a set of high level adaptive optimizations can be

applied.

We examine that use and value of this hardware-based data on three new high level

optimization techniques. These optimizations demonstrate both how this sort of data can,

be used and the relative impact or value expected.

Runtime profiling is a critical technique for understanding dynamic program behaviour

and provides the basis for further adaptive optimizations. It is well known that programs

are highly repetitive, and most of the execution time is spent in a small portion of code. It

is thus not necessary to keep on profiling across the whole execution to get an accurate or

representative profiling result. With recurrent phase information, we can choose the most.

2

1.2. Contributions

valuable portions to do selective profiling.

Hot method recompilation is another essential technique in developing highly efficient

JVMs. The recompilation strategy of a JVM is important for the overall performance.

Fixed recompilation strategies are straightforward and usually work well. However, dy

namic strategies based on the status, or the phase, of a program execution can improve

performance and thus are more desirable. Supported by our hardware phase analysis, we

develop a dynamic recompilation strategy which better adapts to the runtime program be

haviour.

Garbage collection is one of the hot topics in JVM research and development. Data on

high level program behaviours may also be useful for optimizing collection performance.

For instance, selecting garbage collection points (more) optimally can potentially eliminate

a large portion of garbage collection workload, and program patterns of execution relate to

use of memory. Program behaviour transition points are thus good for collection; new

phases heuristically indicate a change in the liveness of a large number of objects. Our

hardware performance detector can thus help the garbage collector to postpone or anticipate

a collection until the next large program behaviour variation point.

With hardware performance data, we can get a better understanding of program be

haviour. Using hardware data to support optimizations in JVMs is the main theme of our

work. In our efforts, we highlight the importance and prove the feasibility of taking the

hardware information into consideration in the design and implementation of JVMs. Other

than the three concrete applications listed above, many other optimizations can benefit from

hardware information. The improvement space is of course still large, and includes many

aspects of program understanding as well as performance.

1.2 Contributions

This work contributes to program behaviour analysis and Java Virtual Machines in three

tiers as shown in Figure 1.1. Each prior tier motivates and serves as a base of the imple

mentation of the later tier. Each later tier works as an application and also a validation to

the previous tier.

We begin this work with hardware performance monitoring and analysis. We find that

3

Introduction

Performance Analysis
and Hardware Impact

Phase Detection

Selective
Profiling

Adaptive
Recompilation

Garbage Collection
Point Selection

Runtime Applications
> . j

Figure 1.1: Summary of contributions.

hardware components can impact program behaviour significantly and can thus be con

sidered as an indicator of variation in program behaviour. We then developed an online

phase detection technique that uses our hardware performance data. Three concrete run

time optimizations based on our hardware phase analysis results have also been designed

and implemented. The benefits we obtained from these optimizations prove the correctness

of our phase detection technique, which in turn confirms that there exists a tight relation

between hardware performance and runtime program behaviour.

• Performance Analysis and Hardware Impact

The performance of modern virtual machines can be influenced by a number of fac

tors. We investigate and categorize the relative factors which are essential for objec

tive performance measurement of Java Virtual Machines. We experimentally demon

strate the significant impact of the hardware components on the overall performance,

and in particular their surprising and often unexpected magnitude. This investiga

tion also motivates our later work in detecting program phase behaviour based on

hardware information analysis.

• Runtime Phase Detection

4

1.2. Contributions

We develop a runtime phase detection algorithm based on hardware performance

data analysis. Our technique focuses on the identification of variable length recur

rent phases in program execution, a novel and complex form of phase data not previ

ously examined or exploited. To situate our analysis and design, we further explore

the area of phase analysis and categorize phase detection problems and the corre

sponding techniques. We emphasize the importance of detection and provide a new

pair of evaluation metrics for recurrent phase detection. We implement three runtime

applications based on our hardware event analysis.

• Selective Profiling

We develop a selective runtime profiling mechanism that can reduce the profiling

workload to half while preserving the accuracy of profiling results. This technique

is a runtime optimization by itself, as well as a concrete proof of the effectiveness of

our online phase detection.

• Adaptive Recompilation

Adaptive recompilation is a key factor in the implementation of highly efficient Java

Virtual Machines. Employing our hardware phase detection scheme, we have devel

oped a novel hot method recompilation mechanism which exhibits both low overhead

and good overall performance and demonstrates a general improvement over other

designs. We implement this phase aware recompilation strategy in Jikes RVM; how

ever, the fundamental idea can be helpful for any multiple-level optimization system.

• Garbage Collection Point Selection

The selection of garbage collection points is an interesting and challenging problem.

Significant benefit can be achieved by choosing optimal collection points. We de

velop an automatic collection points selection algorithm for copying collectors. The

hardware performance data is used to move the collection point to a better heuristi-

cally predicted moment. We study the detailed behaviour of this collector and pro

vide potential improvement directions that advance the research of garbage collection

point selection further.

5

Introduction

1.3 Thesis Overview
In this thesis we mainly study the challenges and opportunities of using hardware infor

mation to explain and improve JVM performance. The structure of the JVM and modern

hardware are critical background knowledge to our work. We thus provide background

knowledge about hardware components, Java Virtual Machine and our base system, Jikes

RVM in Chapter 2. We then study a large number of relative factors for JVM performance

analysis in Chapter 3. The relation between hardware performance and program behaviour

are investigated and experimentally demonstrated. This result motivates our further work,

using hardware information to detect recurrent periodic phases in program execution.

Phase detection is a rather wide area. In Chapter 4, we investigate the phase detection

problem and corresponding techniques. We use the entire chapter to give an overview of the

phase detection problem. Typical phase detection solutions are described and categorized.

We also provide our opinion on this problem and make claims as to the importance of

detecting different types of phases, especially recurrent, periodic phases, whose importance

is not yet emphasized in current literature. This chapter introduces many related works of

Chapter 5 in which we describe our hardware data based online phase detection technique

in detail.

In the later half of the thesis, we present three runtime adaptive optimizations based on

our hardware phase analysis results. Each of them has an individual, structural complete

chapter with introduction to the question, the most important and recent related works, the

concrete implementation details, the experimental results, the discussion and the chapter

summary. The three runtime applications, selective profiling, adaptive recompilation and

garbage collection point selection are introduced in Chapters 6, 7 and 8 respectively.

Finally, we conclude the entire thesis and present directions for future improvements in

Chapter 9.

6

Chapter 2

Background

We apply adaptive optimizations in a Java Virtual Machine based on hardware infor

mation. Several hardware components in microprocessors can potentially largely impact

program execution. We gather and investigate the performance data of these hardware com

ponents. The analysis results are used to apply adaptive optimizations appropriately. We

use Jikes RVM as the base Java Virtual Machine to realize our strategy. In this chapter, we

will first give an introduction to the most important background knowledge of our work,

including:

• A concise introduction to the architecture of modern microprocessors, and details

about the memory hierarchy, branch predictors, and hardware performance monitors.

• An overview of the fundamental structure of the Java Virtual Machine.

• A brief introduction to Jikes RVM. Jikes RVM is a complex system with many com

ponents and a variety of interesting features. Among the components, the adaptive

optimization system, the hardware performance monitoring unit and the memory

management toolkit have a tight relation with our work. We thus explain their struc

ture and functionality in detail.

The rest of this chapter is organized as follows: In Section 2.1, we introduce the archi

tecture of hardware components that can have a large impact on program performance. An

7

Background

overview of the organization of JVMs in general is given in Section 2.2. A specific dis

cussion of Jikes RVM, including the adaptive optimization system, hardware performance

monitoring subsystem and the memory management toolkits is in Section 2.3. Finally, we

summarize this chapter in Section 2.4.

2.1 Hardware Components

Our work is based on monitoring and investigating low level hardware information. There

fore, we first introduce the structure and functionality of modern microprocessors, espe

cially the components that are able to significantly influence the behaviour of the running

programs.

A modern computer is a complex system composed of four main structural compo

nents [Sta99]; central processing unit (CPU), main memory, I/O system and system inter

connection. The CPU controls all operations and performs data processing functions. As

the core of the whole computer system, the speed of the CPU is considered as an important

factor to the overall system's performance. However, the CPU needs to read inputs and

instructions from memory and to store the results back to memory via system interconnec

tions. Usually, the later can not match the fast pace of the CPU. Therefore, the statement

"the gap between the CPU and the memory system" occurs frequently in research papers

about the architecture and performance optimization of computer systems. Hardware de

signers add internal memory, i.e., caches, to alleviate the problem. At the same time, the

memory requirements of today's programs becomes larger and larger, tending to exceed

the capacity of physical memory. Virtual memory is thus widely used. We thus have a

multiple-layer memory system, spanning from registers, on-chip caches (LI caches), exter

nal caches (L2+ caches), and main memory, to virtual memory. Hardware components in

each of these layers can have an impact on the final performance, specially the caches and

translation lookaside buffer. These hardware components narrow the speed gap between

the CPU and the memory system. However, the words "the gap between the CPU and the

memory system" still keeps its high overall relevance since making these components per

form well turns out to be a difficult issue. Due to the large impact of memory hierarchy on

runtime performance, we give a thorough introduction about it in Section 2.1.1.

8

2.1. Hardware Components

Other than on-chip caches, the other major components inside a CPU are the control

unit, the arithmetic and logic unit (ALU), registers and CPU interconnection. The execu

tion of one instruction includes several steps: instruction fetch, instruction decode, register

fetch, execution/effective address, memory access, and data write back [PH90]. Pipelining

is an implementation technique whereby multiple instructions are overlapped in execution.

It is one of the key techniques to make fast CPUs. Modern processors often are very deeply

pipelined. However, the benefit of pipelining can be seriously damaged by branch instruc

tions. The instruction fetcher may have no idea of which instruction to fetch next until the

branch instruction is retired. One solution is to make a guess of the address of the next

instruction, or the target of the branch; accurate guessing is the task of branch predictors

in deeply pipelined processors. Obviously, the correctness rate of the branch predictors

is essential to the performance of processor. Hence, branch predictor is another hardware

component which can have a large impact on overall processor performance. A more de

tailed introduction to branch predictors can be found in Section 2.1.2.

Monitoring the performance of the underlying hardware components can be very help

ful for explaining the behaviour of the processor and the running program. The microar

chitecture level hardware monitoring system can be a powerful tool to locate performance

bottlenecks and discover optimization opportunities. Fortunately, modern processors often

provide a specific component namely the performance monitoring unit (PMU), or hardware

counters. The PMU provides a set of low level hardware information that is worthwhile

for investigating program behaviour. We thus introduce the structure and functionality of

PMU, the software library for accessing PMU data and the development of PMU in new

generation processors in Section 2.1.3.

2.1.1 Memory Hierarchy

Memory access latency is a major performance bottleneck in modern computers. Improve

ments in memory access speed have not kept pace with the improvements in speed of

processors. For this reason, architecture designers put a fast, relatively small memory layer

of cache between the fast processor and the slow main memory. Caches keep the most

useful data for the processor. The system first copies the data required by the CPU from

9

Background

main memory into the cache(s) and then loads the data into a register in the CPU. The

data store action goes the opposite direction. Depending on the cache architecture specific

implementation, the data is either immediately copied back to memory (write-through), or

deferred (write-back) [PH90]. To amortize the cost of the memory transfer, more than one

element is loaded into the cache each time. The basic unit of transferring is named as cache

line. Accessing a single data element brings an entire line into the cache.

Faster

CPU

I
Level 1 Cache

Level 2 Cache

I
Main Memory

TLB

Page Table

Virtual Memory

Larger

Figure 2.1: Multiple levels of memory system.

As shown in Figure 2.1, multiple levels of caches are used in most architectures. The

higher the level, the farther away the cache is from the CPU. In most systems, a higher

level cache has a larger size and usually slower access speed. Level 1 (LI) cache is on-

chip, whereas the higher level(s) is external to the microprocessor.

Caches have a certain organization and a replacement policy. The organization, or

mapping scheme of a cache describes in which way the lines are organized within the

cache. The replacement policy dictates which line will be evicted from the cache in case

10

2.1. Hardware Components

an incoming line must be placed somewhere in the cache.

According to different cache mapping schemes, caches can be categorized into three

types:

• Direct Mapped

Direct mapped is a simple and efficient organization. Each line from the main mem

ory has a unique place in the cache where it can reside. Implementing a direct

mapped cache is straightforward, and is relatively simple. The placement policy

is built-in since the victim line is fully determined by the address of the new line.

This organization has the downside of replacing a cache line which will be visited

again shortly.

• Fully Associative

The fully associative design solves the potential problem of direct mapped caches.

The replacement policy is no longer a function of the new line's address. The new

line can take any position in the cache. In a fully associative system, typically the

oldest cache line is evicted from the cache which is called least recently used (LRU).

The downside of a fully associative organization is cost. The larger the capacity of

the cache, the larger the cost to track the usage of lines. Typically, only on very small

caches is a fully associative design is of practical efficiency.

• Set Associative

Set associative design is widely used in popular processors. Set associative caches

can be considered as a group of several, typically a small value of power of 2, {i.e.,

2, 4, 8) direct mapped caches. A cache controller is responsible to determine which

direct mapped cache, or set, a new line should go in. Within the set, a direct mapped

scheme is used to allocated a slot for the new line.

Set associative design can significantly reduce the address conflict problem in di

rect mapped design with a lower cost than fully associative design. Most modern

processors use set associative caches, especially for higher level caches.

11

Background

A cache miss refers to a failed attempt to read or write a piece of data in the cache,

which results in a main memory access with much longer latency. Cache misses can be

separated into compulsory misses, capacity misses and conflict misses. Compulsory miss

is something unavoidable. However, the density of capacity miss and conflict miss can

vary according to different designs and application-specific characteristics. Both data and

instruction cache miss density potentially have a significant impact on overall program per

formance. In [GVG05b], the authors show a situation that large density of data cache miss

changes the performance of a garbage collector. Similarly, code layout is another important

factor for performance measurement. Code layout changes the program performance via

changing the instruction cache miss density. Moreover, the sensitivity of applications to

cache performance is program specific. In previous work [GVG06], we study the cache

bias of a set of regular Java programs and show the different sensitivity to data and instruc

tion cache performance variations.

Compared with the size of cache, the capacity of main memory is large. However,

modern programs often require tremendous amount of memory resource. It is usual that

main memory does not have the capacity to hold the data associated with a very large

program, or a large number of programs coexist in the machine at the same time. In this

case, we have to break things down into pieces and move the pieces into and out of main

memory. In other words, we need a way to associate the blocks in main memory with

location of the same data on outernal storage device, e.g., hard disks. We thus need a

virtual memory system.

Whereas caches are used to boost performance in a transparent fashion, virtual memory

is used mainly for convenience. Virtual memory provides the illusion of memory that is

much larger than the available physical memory. Programs using a large virtual memory

address space can be executed on systems with varying amount of physical memory. How

ever, the virtual memory address must be translated to physical memory before instructions

or data are sent to the CPU.

The access unit in a virtual memory system is page, which is similar to the concept of

cache line in cache memory. A two-stage process is often used for memory access: a. page

table is consulted to find out whether a required page is in memory and if so, where it is

located then the actual memory access is performed or, in the case of a page fault, access

12

2.1. Hardware Components

from disk is initiated. While a program is in execution, the start address of its page table is

stored in a special page table register [Par05]. The virtual page number is used as an index

into the page table and the corresponding entry is read out.

Page table access essentially increases the memory access delay. This is because ac

cessing a word in memory requires two operations: one to the page table and one to the

word itself. In order to reduce this time penalty, the translation lookaside buffer (TLB) is

used to keep the record of the most recent address translations. As illustrated in Figure 2.1,

when a virtual address is to be translated to a physical address, the TLB is consulted first.

TLB can be considered as a special type of cache dedicated to page table entries. Typically,

a TLB has tens to thousands of entries, with the smaller size being fully associative and

larger ones having lower degrees of associativity.

Both cache and TLB reduce the memory access latency greatly when there is a "hit".

However, cache misses or TLB misses can be a big factor for performance reduction. In

vestigating the data reflecting the performance of these hardware components can help us

understand the program performance problems and discover further optimization opportu

nities.

2.1.2 Branch Prediction

Predicting the targets of branches is essential to the performance of a deeply pipelined

processor. Branch prediction enables the processor to begin executing instructions long

before the branch outcome is certain. Branch delay is the penalty that is incurred in the

absence of a correct prediction. Today, all state-of-art microprocessors have some form

of hardware support for dynamic branch prediction. All types of near branches, including

conditional, unconditional, calls and returns, and indirect branches, can be predicted by

these predictors.

The branch prediction subsystem always contains at least three distinct predictors for

three main classes of branches:

• Conditional Branch Predictor returns a boolean (taken or not taken) for each con

ditional branch.

• Branch Target Buffer (BTB) predicts indirect branch targets.

13

Background

• Return Address Stack (RAS) predicts return instruction based on prior calls.

Note that it is not necessary to predict the target of unconditional branches since the

address of the target is explicitly encoded.

Hardware branch prediction strategies have been studies extensively. Some of the best

known techniques are Gshare prediction [McF93], bimodal branch prediction [oCS95],

and YAGS prediction [EM98]. Basically, prediction schemes use local or (and) global his

tory information as an index to a prediction table with limited size. At the same time, the

impact of branch predictors on performance have been studied. Such as in [GZD02], the

impact of branch prediction on dynamic dispatch techniques is investigated. Our phase pre

diction scheme is also a table-based solution, sharing some similarity in prediction strategy

with branch predictors.

2.1.3 Hardware Performance Monitoring Unit

Most modern microprocessors provide a set of special purpose registers that keep track of

programmable hardware events at every cycle. This support can be logically viewed as a

single hardware component called the performance monitoring unit (PMU). The interface

of the PMU consists of a set of dedicated registers that can be programmed to count oc

currences of certain microarchitecture events, such as the number of elapsed cycles, the

number of instructions executed, or the number of cache/TLB/branch prediction misses.

Although the implementation varies largely on different concrete processors, we still can

roughly divide these registers into performance monitoring data counters (PMD), which

collect hardware event data, and performance monitoring configuration registers (PMC),

which configure what is to be monitored.

Extending the PMU

The PMU provides specific data which describes the hardware performance of the under

lying platform. It has many uses, including program understanding, system bottleneck

detection, runtime optimizations, system reconfiguration and system safety. The PMU has

received great attention from both academic researchers and the industry. Since its intro-

14

2.1. Hardware Components

duction in the Intel Pentium processor, the functionality of the PMU in modern processors

has become more and more complete and complex.

Several Intel IA32 platforms [Int02] provide two 40-bits hardware counters, allowing

two events to be monitored simultaneously. An extra 64-bit time stamp counter (TSC) is

also included to measure the relative time in machine cycles. The AMD Athlon proces

sor provides four 48-bit counters [AMD01]. A large extension is introduced in Pentium

4 processor. The Pentium 4 supports 48 event detectors and eighteen 40-bit event coun

ters [Spr02], enabling the concurrent collection of a larger set of performance event counts.

Event detectors control the selection of events and the qualification of event detection by

privilege mode (OS and/or USER) and thread ID. The Pentium 4 also provides several

instruction-tagging mechanisms that enable counting non-speculative performance events,

e.g., events generated by instructions that retire. On the most recent designs of micropro

cessors, there are further extensions to the PMU. Many interesting features which poten

tially can bring great benefit has been introduced. For example, on the Intel IA64 Itanium

processor, the major additional features include [ME01]:

• Opcode Matching: Monitoring can be constrained to certain instructions, based on

their encoding or based on the execution unit they use.

• Address Range Checking: The PMU can be programmed to record events only

when they occur within a certain range of data or code addresses.

• Event Thresholding: An event is recorded only when the occurrence number is

larger than a certain threshold per cycle.

• Event Address Registers (EAR): The PMU can record cache or TLB events misses

by data accessors or instruction fetches. Each sample collects the address where the

miss happened.

• Branch Trace Buffer: A trace of the executed branch instructions can be recorded.

Up to four branches can be recorded in the buffer, and for each, the source and target

addresses are provided.

15

Background

Hardware Performance Monitoring Tools

A number of software libraries and applications can be used to access hardware perfor

mance monitors. IBM provides a library PMAPI [IBM] as an extension of the AIX kernel to

access counters. Sweeney et al. use this library to develop a framework which can be used

to explain the behaviour of Java applications from the view of hardware events [SHC+04].

For Intel/AMD processors, PMC [Hel] and PCL [BZM] are libraries supporting hardware

event counting. PCL also supports other platforms, including PowerPC, Alpha, R12000

and Ultra SPARC I/II/III. In this work, we employ PAPI [BDG+] which is a specific library

providing cross-platform interface to hardware performance counter. The Intel VTune Per

formance Analyzer [Cor] is an application for hardware performance analysis and demon

stration with graphic user interface.

2.2 The Java Virtual Machine

Fundamentally, our work is a set of optimizations for Java Virtual Machines. The Java

Virtual Machine (JVM) [Ven96, LY99] is an abstract layer over the underlying operating

system to support the execution of Java [GJSBOO] programs. The JVM specification [LY99]

defines a set of features that every JVM must have but leaves concrete implementation

choices to the designers. The main job of a JVM is to load class files and execute their

bytecodes.

As shown in Figure 2.2, the JVM contains a class loader, which loads class files from

both Java applications and Java API library. The bytecodes are executed on the execution

engine. Different implementations can vary largely on the execution engine part, which

provides a large space for JVM designers to employ optimizations. A type of execution

engine, called interpreter just translates the bytecodes into executable code one by one.

Interpreters are easy to implement and require less resources, but usually perform slowly.

Various techniques can of course be applied to improve the efficiency, such as the inline-

threading dispatcher used in SableVM [Gag02]. Another type of execution engine, which

is faster but requires more resources, is a. just-in-time compiler (JIT). In a JIT engine, the

bytecodes are compiled to native executable code at the first time that they are executed.

16

2.2. The Java Virtual Machine

Methods are chosen as the basic compilation unit in most cases. Most state-of-art JITs

employ multiple levels of compilation, e.g., a method can be (re)compiled to different

optimization levels according to its "hotness". Method recompilation is a popular and

current topic in JVM research. We will present a hot method recompilation strategy in

Chapter 7.

Application Class Files and Java API Class Files

V
Class Loader

Execution
Engine

Java Virtua

Memory
Manager

Services:
Threads,

Reflection,

Java Native Interface (JNI)

Machine

7^
12.

Host Operating System

Figure 2.2: Basic structure of a Java Virtual Machine.

Other than Java methods which are compiled to bytecodes and stored in class files, there

is another type of methods which is essential to execute Java programs, namely native

methods. Native methods are compiled to native machine code of a particular platform

and stored in a dynamic library. Native methods work as the connection between a Java

program and the underlying host operating system. A Java program uses native methods

to access the resources of the host operating system. As demonstrated in Figure 2.2, JVM

contains a Java Native Interface (JNI) to load dynamic libraries containing native methods.

The JVM's heap stores all objects created by a Java application. This heap is automati

cally maintained by the memory manager of a JVM, i.e., the JVM uses a garbage-collected

17

Background

heap. A large number of garbage collection (GC) algorithms have been developed. We

will provide more details on garbage collection techniques in Chapter 8.

The service part consists of a set of sub-components providing the necessary internal

support for standard class library features, such as threads and reflection.

2.3 JikesRVM

Jikes RVM [AAC+99] is an open-source research virtual machine for Java developed at

the IBM T.J. Watson Research Center. It is intended to be easily extended, modular, and

object oriented. Jikes RVM is implemented mainly in Java. At build time, it is run on a

host JVM. A portion of Jikes RVM is a code generator which reads class files and generates

the corresponding machine code for the target machine. Running on a host VM, the code

generator generates the machine code for the entire optimizing and self-contained VM.

As a research virtual machine, Jikes RVM is composed of a large number of flexible

components which bring convenience to researchers that try to innovate on virtual machine

theories and techniques. Here we just introduce three components of Jikes RVM which

have a tight relation with our work. They are the adaptive optimization system, the hard

ware performance monitor, and the memory management toolkits.

The Adaptive Optimization System

The Jikes RVM's adaptive optimization system (AOS) [AFG+00] contains three compo

nents, the runtime measurement subsystem, the controller, and the recompilation subsys

tem. Figure 2.3 shows the internal structure of AOS and the relation between each subsys

tem.

The runtime measurement subsystem maintains a set of event listeners to collect dif

ferent types of information about the executing program. Usually, they perform only ex

tremely limited processing of the gathered raw data. Organizers are a set of threads in the

runtime measurement subsystem usually staying in sleep state. When awoken by listen

ers, organizers analyze raw data and package the data into a suitable form for consumption

by the controller. The data can either be stored into an AOS database for further investi-

18

2.3. JikesRVM

(Hardware J

Hardware Event Counts

(Executing Code J

1
Runtime Profiling Information

Z
Hardware

Performance
Monitor

—^r
Runtime Raw Data
Measurement 2^L.
Subsystem Recompilation

Subsystem

Figure 2.3: Architecture of the Jikes RVM's Adaptive Optimization System.

gation, or an event reflecting the information is created and inserted into a priority event

queue consumed by the controller. The controller is the core of the whole AOS system.

It conducts all the other components. It is the coordinator between the runtime measure

ment subsystem and the recompilation subsystem. The controller instantiates all runtime

measurement subsystem listeners and organizers. Based on the received information and

the current data in the AOS database, it makes decisions on the adaptive actions, such as

requiring the recompilation subsystem to do recompilations.

Jikes RVM employs a compile-only strategy. It compiles all methods to native code

before they execute. There are two types of compilers in Jikes RVM:

• The baseline compiler translates bytecodes directly into native code without perform

ing optimizations.

• The optimizing compiler translates bytecodes into an intermediate representation,

upon which it performs a variety of optimizations. This compiler has three optimiza

tion levels:

- Level 0 consists mainly of a set of optimizations performed on-the-fly during the

19

Background

translation, including constant/non-null/copy propagation, constant folding and

arithmetic simplification, dead code elimination, and elimination of redundant

null-checks, check-casts, and array store checks, etc.

- Level 1 includes additional local optimizations such as common subexpression

elimination, array bound check elimination, and redundant load elimination.

Inlining based on a static-size heuristics is employed on this level. Other opti

mizations on level 1 include copy and constant propagation, scalar replacement

and flow-insensitive dead assignment elimination, etc.

- Level 2 implements SSA-based flow sensitive optimizations.

The recompilation subsystem of AOS consists of compilation threads that invoke opti

mizing compilers at different levels. These compilation actions follow compilation plans

that are inserted into the compilation queue by the controller.

The AOS database provides a repository where the adaptive optimization system records

decisions, events, and static analysis results. The controller uses the AOS database to record

compilation plans and to track the status and history of methods selected for recompilation.

The results of runtime profilings, such as the hot method profiling and calling context pro

filing, are also stored and organized in the AOS database.

The Hardware Performance Monitor

As described in Section 2.1, hardware performance is one of the essential factors for pro

gram runtime behaviour. Furthermore, modern processors have provided special hardware

counters for monitoring important hardware events. As a JVM with runtime adaptive opti

mization feature, Jikes RVM provides a component named hardware performance monitor

(HPM) to access hardware counters.

As a part of the runtime measurement subsystem, the HPM collects hardware infor

mation following a listener-organizer cooperation mechanism. A hardware event listener

thread is woken up every time a context switch happens. The listener thread reads hard

ware event counts by invoking native calls to the PAPI [BDG+] library. The raw hardware

data is stored in one of two local buffers alternatively. When the current buffer is full, the

20

2.3. JikesRVM

listener thread activates the organizer thread and submits its data. At the same time, the

second buffer is used to store new hardware event data. Currently, Jikes RVM has a simple

hardware data organizer TraceWr i t e r . It just writes the hardware data received from

the listener into a trace file in a dedicated format. In this work, we extend the HPM of Jikes

RVM. An extra organizer of the hardware event listener is added to generate "patterns"

to represent the behaviour of hardware. More details about this extension and hardware

patterns can be found in Chapter 5.

The Memory Management Toolkit

The memory management toolkit (MMTk) [BCM04a] is a toolkit for writing high-performance

memory managers. It currently provides the memory management subsystems of the Jikes

RVM. MMTk supports a wide range of collectors: copying, mark-sweep, reference count

ing, copying generational, hybrid generational, etc..

MMTk groups regions of memory into spaces and implements garbage collection al

gorithms with a policy that couples a space with an allocation and collection mechanism.

Whole heap collectors use one policy for most objects, while generational collectors divide

the heap into age cohorts, and use one or more policies. Currently, MMTk implements

a bump pointer allocator, a free-list allocator and a reference counting scheme. MMTk

forms different policies for these spaces:

• Copy Space uses bump-pointer allocation.

• MarkSweep Space uses free-list allocation and tracing collection by mark-sweep

strategy.

• RefCount Space uses free-list allocation and a reference counting algorithm to de

tect the dead objects.

• Immortal Space uses bump-pointer allocation and no collection.

• Large Object Space (LOS) uses a coarse-grained free-list of pages and treadmill

collection [JL96].

21

Background

Based on this infrastructure, a set of different collectors can be implemented with com

paratively less effort. Just combining these policies, we can create the following collectors:

SemiSpace, MarkSweep, RefCount,GenCopy and GenMS. Here SemiSpace, MarkSweep,

RefCount are classic semi-space copying, mark-sweep and reference counting collections

respectively. GenCopy is the classic generational copying collector: it allocates into a nurs

ery copy space, and promotes survivors into a mature space based on a SemiSpace-style

copying. GenMS is a hybrid generational collector which is the same as GenCopy except it

used a MarkSweep mature space. GenRC is a hybrid generational collector using ulterior

reference counting to combine a copying nursery with a RefCount mature space.

The efficiency of different collectors is dependent upon application behaviour and avail

able resources. Soman et al. [SKB04] investigate the performance of these above collec

tors. They test a variety of programs in different resource settings and demonstrate that

garbage collection performance is application specific. In most case, GenMS is the one of

the best performing or close to the best. However, SemiSpace, which usually works poorly,

is the best choice when the heap size is huge relative to the application requirement.

Our GC work uses the MMTk and focuses on improving the performance of GenMS

garbage collector which is the best choice in most cases.

2.4 Summary

Its platform independent features make Java one of the most popular object oriented pro

gramming languages. The platform independence is provided by the JVM. The design and

implementation of components of the JVM have received a large amount of attention. In

particular, adaptive optimization in the execution unit is one of the hottest topics of current

JVM research.

On the other hand, as the structure of microprocessor becomes more and more com

plex, the performance of programs can be significantly impacted by the working state of

the underlying hardware components. Important hardware information, such as the miss

density of I/D caches, the performance of the TLB, and the hit rate of the branch predictors,

becomes essential to understanding and improving runtime performance.

In the thesis, we present our solution to apply adaptive optimizations in a JVM based

22

2.4. Summary

on hardware information. We presented the most important background of our work in this

chapter, including a basic introduction to hardware architectures, especially the memory

hierarchy and branch prediction schemes, the performance monitoring unit which can be

used to obtain runtime hardware information, and the basic organization of a JVM. Since

our work is rooted in Jikes RVM, we also gave a brief introduction to the related parts of

Jikes RVM. In the following chapters we build on this to develop and justify high level

optimizations from low level hardware data.

23

Background

24

Chapter 3

Relative Factors of Java Virtual Machine

Performance

Modern, high level languages such as Java provide many benefits, including a signifi

cant amount of runtime flexibility in terms of portability, adaptivity, and optimization. So

phisticated runtime environments like the Java Virtual Machine (JVM) are, however rather

complex systems, involving multiple layers of optimization and adaptivity. Improvements

to JVMs can be influenced by a variety of factors, many of these surprisingly unintuitive.

Understanding the source of performance variation is an essential first step in determining

if changes in performance are due to external factors or are dependent on a given optimiza

tion or design change.

We address the problem of understanding JVM performance measurement in this chap

ter. We begin with a more detailed problem description of the problem in Section 3.1. In

Section 3.2, a GC optimization is given as a case study of performance measurement for

JVM techniques. A deep discussion on the relative factors impacting performance in the

GC case study can be found in Section 3.3. Finally, in Section 3.4, we summarize the

whole chapter and point out how this investigation of performance factors influences our

subsequent work.

25

Relative Factors of Java Virtual Machine Performance

3.1 Difficulty of JVM Performance Measurement

The actual experienced performance of a Java program depends on multiple factors, with

the program itself, the JVM and the underlying hardware all contributing to the final speed.

The JVM itself has many tightly-interconnected runtime components, including class load

ing, GC, JITs, and so forth. Any modification in one component may influence other

components, and isolating the effect of a given change or optimization is correspondingly

difficult. Moreover, as we mentioned in Section 2.1, the performance of low level, actual

hardware components has a significant impact on the running programs. Many perfor

mance variations may be caused by the side-effects of hardware designs or optimizations

on software level implementations. In addition, programs show different characteristics,

responding to optimizations differently in accordance with their individual execution prop

erties. Program-specific reasons are thus important to performance measurement and pro

gram behaviour understanding. Software and hardware, both general and program-specific

reasons should therefore all be taken into consideration in JVM performance analysis. In

most cases, the final performance is a combination of these factors with different weights.

Understanding the relative impact of different influences on performance is important to

good optimization design and implementation.

In this chapter, we use a GC optimization as an example to investigate the relative

factors in performance measurement. The measures of the GC optimization show how

modifications on one component (the collector) of JVMs can impact the performance of

the other part (the mutator) both significantly and unexpectedly. We then study and discuss

both general contributing factors and benchmark-specific factors. We investigate reasons

at software and hardware levels, including both data and instruction related issues

Close inspection of relative factors shows that the impact of code positioning is surpris

ingly significant. This is in principle clear and due to large performance variation in cache

performance, especially the instruction cache; it is, however an often unintended side-effect

of otherwise benign or reasonably well isolated component changes. The study discussed

in this chapter has two main contributions to our later work.

• It demonstrates the tight relation between the hardware performance and overall pro-

26

3.2. GC Case Study

gram execution. It validates our fundamental idea of deriving high level information

by monitoring and investigating low level hardware events.

• The analysis shows that the instruction cache miss density is an outstanding candidate

for understanding significant changes in program behaviour. We thus focus on the

instruction cache miss density (and variations) in our later work based on hardware

performance monitoring.

3.2 GC Case Study

In this section we briefly describe a GC optimization and its implementations in two

distinct VM environments, a pure interpreter SableVM [Gag] and the JIT-enabled Jikes

RVM [AAC+99]. We will use this example optimization to show the number and subtlety

of factors that need to be considered when examining performance results, as well as give

concrete evidence of their relative impact.

Our optimization case study is based on a simple and general improvement to tracing

garbage collectors. Tracing collectors are found in most Java Virtual Machines. Starting

from a set of root references (static variables, stack references), a tracing GC visits each

reachable object seeking references to other reachable objects. Once the live set is deter

mined, the memory storage of non-reachable objects is reclaimed. Gagnon and Hendren

proposed a bi-directional object layout [GH01] aiming to improve the performance of GC

tracing, and here we present a reference section tracing strategy that attempts to validate

and improve that work.

Below we first describe the basic bi-directional layout design and introduce the refer

ence section concept in Section 3.2.1. We talk about our implementations in two JVMs in

Section 3.2.2. Experimental results on SPECJVM98 suite are reported in Section 3.2.3. In

the same section, we also point out the abnormalities which will be discussed in detail later.

3.2.1 Bi-Directional Layout and Reference Sections

The bi-directional layout is an alternative way of physically representing objects in mem

ory. Traditionally, all the fields of an object are located after the object header. The middle

27

Relative Factors of Java Virtual Machine Performance

graph in Figure 3.1 shows the traditional layout of an object of type C extending type B ex

tending type A. Note that in this object layout, the reference fields and non-reference fields

are interwoven. The JVM has to store the offsets of the references in some data structure.

The tracing operation is thus composed of two steps, visiting the data structure to obtain

the reference offset and accessing the reference. This overhead can be easily avoided by

using the bi-directional layout.

Class A

Class B

Class C

Non-reference
fields

--References

Non-reference
fields

References

Non-reference
fields

References

VtablePtr

Lockword

M)

a

I
a
CO

''

Fields of A
H

eader

Class A
T

^

Class B

^
 1

k

Glass C

>

Non-reference
fields in C

Non-reference
fields in B

Non-reference
fields in A
Vtable Ptr

Lockword

References....
In A

References
jn.B.

References
Iri'C

1

)

life
'

'

^

Class B

w

^

•

Cla ssC

t

Figure 3.1: An instance of type C extending type B extending type A in both traditional and bi

directional object layouts.

The right graph in Figure 3.1 shows the bi-directional layout of the same object. The

basic idea of the bi-directional layout is to relocate reference fields before the object header

and group them together in a contiguous section; we denote these sections as reference

sections. The main advantage of the bi-directional layout is the simplicity of locating all

references in an object during garbage collection. References are contiguous, and only a

single count of reference section size must be stored (usually in the object header). When

scanning an object during GC there is no need to access a table of offsets in the object's

28

3.2. GC Case Study

type information block to distinguish reference fields from non-reference fields, as must be

done with the traditional layout.

Based on the bi-directional layout, we developed a new reference section (RS) based

scanning strategy to further reduce the required work for tracing from per object to per

reference section: When a new reachable object is found, the location of its reference

section (if it does have one) is stored in a work list. The collector then uses this work list,

which only contains relevant information, to copy or mark referents.

Compared to normal bi-directional layout tracing, our solution has the following ad

vantages:

• The collector skips tracing of all reachable objects that have no references.

• The compactness of the work list may help improve cache locality while GC is in

progress.

• In copying collectors, using a work list allows for depth-first tracing instead of default

breadth-first tracing. This usually leads to better cache locality [JL96].

3.2.2 Implementing RS Scanning

RS scanning strategy changes the style of kernel workload of reference tracing. We hope it

can bring benefit to all JVMs with a tracing collector. In order to examine the performance

of our RS scanning strategy, we implemented it in two distinct JVM environments, a fully-

functional Java interpreter, SableVM [Gag] and a JVM using adaptive JIT compilation,

Jikes RVM [AAC+99]. Here we give a brief overview of the implementation designs;

more details can be found in [GVG05a].

SableVM

SableVM has a semi-space copying collector which uses a two-pointer scanning algorithm

[JL96]. The scan pointer is used to trace references in copied objects, while the free pointer

tracks the location of unallocated memory in the target semi-space.

In our RS scanning implementation, the location (start and ending addresses) of ref

erence sections is saved in 512-entry blocks organized in work lists. We use the higher

29

Relative Factors of Java Virtual Machine Performance

address end of the to-space to store these blocks, and unused blocks are maintained in a

free list, ready to be reused. The newly found references are put into a "current" block.

When the current block is full, the block is put into a "ready-for-scan" list and a new free

block is obtained from the free list to store new references. Reference tracing is accom

plished by obtaining a block from the "ready-for-scan" list. When all the references in a

block have been accessed, the block is considered as an empty block and is returned to the

free list again. Compared to the total size of the heap, the space required for this work list

is very small. One 512-entry block is enough for most SPECJVM98 programs. In practice,

at most five blocks (in JAVAC), or 20K at the end of the to-space, is enough to perform

garbage collection on a two 16M semi-spaces heap.

Since our RS scanning strategy can reduce GC workload and improve data cache local

ity, we expect a significant GC performance improvement in SableVM.

Jikes RVM

Jikes RVM is an open-source research Java Virtual Machine which uses a compile-all strat

egy, totally different from that of SableVM. We also implemented the bi-directional layout

and the RS scanning strategy in Jikes RVM version 2.3.4. We modified the object model

component, which controls the layout of the fields, and simplified the routines that compute

the offset of fields. Jikes RVM uses type information blocks to maintain the class-specific

data, including an array storing the offsets of reference fields. We replaced the array with a

single integer storing the number of references for this type (class).

A complication is introduced by Jikes RVM's hashing scheme. Jikes RVM uses a lazy

hashing style. Initially, there is no field in the object header for the hash code. Once the

JVM decides to hash an object, the hash code is inserted at the beginning of the object

header. If we follow the same mechanism, the offsets of the references to the header will

be changed by a hash code insertion, as we store references before the header. To avoid

this situation we thus change the hash storage mechanism append the hash code to the end

of an object when the object is hashed.

30

3.2. GC Case Study

3.2.3 Experimental Results

We tested the RS scanning strategy on the SPECJVM98 benchmarks [Stac] running with

input size "-s 100". We excluded MPEGAUDIO from the suite as it needs no garbage col

lection in SableVM's default heap settings. Experiments were run under the Debian Linux

operating system on an Athlon 1.4GHz workstation with 1GB memory, with some earlier

results from a Pentium III 733MHz workstation with 512MB memory. Both environments

were isolated and minimized for testing, and we report the average of the medium 3 values

in 5 runs. For Jikes RVM, we tested two versions, one using its semi-space copying collec

tion algorithm and one using the GenMS collection algorithm. We chose these two because

they are representative GC configurations; the former is a classic tracing GC which can give

better performance for some benchmarks when the heap size is large enough [SKB04],

while the latter is the best choice for most benchmarks in most heap configurations of Jikes

RVM.

The results of performance speedup are shown in Figure 3.2. Here we calculate the

speedup as:
Original Execution Time

RS Version Execution Time

On SableVM, using RS scanning, a significant 1.19 average speedup is obtained, with

a maximum of 1.43 speedup on DB. We also measured the impact of RS whole program

execution time. Although, the overall performance speedup is still positive in general,

we notice an anomalous performance decline in some benchmarks, most obviously RAY-

TRACE. Equally surprising are the > 2% performance improvements shown by COMPRESS

and DB. GC usually takes less than 1% of execution time in the SableVM interpreter envi

ronment for these benchmarks, and so this indicates a significant, unintentional impact on

the mutator.

For semi-space copying in Jikes RVM we obtained a stable improvement on the speed

of GC for all benchmarks, similar to SableVM. At the same time we also show an overall

positive performance for whole program execution time. We note that when using semi-

space GC in Jikes RVM, GC takes a large portion of execution time (up to 40%, using

semi-space GC). Whole program execution performance is therefore highly dependent on

the collector's performance.

31

Relative Factors of Java Virtual Machine Performance

SableVM SableVM
1.5

1.25

1

0.75

0.5

0.25

0

GC Speedup i i
1.5

1.25

1

0.75

0.5

0.25

0

Whole Program Speedup i i

A I
<n -c
.2. E

Jikes RVM with a semi-space collector Jikes RVM with a semi-space collector

1.5

1.25

1

0.75

0.5

0.25

0

I

GC Speedup i 1

I

1.5

1.25

1

0.75

0.5

0.25

0

vvnoie rrogram speeaup i i

a.
E
8

S. 1

Jikes RVM with a GenMS collector Jikes RVM with a GenMS collector
1.5

1.25

1

0.75

0.5

0.25

0

GC Speedup i i
1.5

1.25

1

0.75

0.5

0.25

0

Whole Program Speedup

•9>. E

Figure 3.2: GC and whole program speedup results on SableVM, Jikes RVM with a semi-space

collector, and Jikes RVM with a GenMS collector.

32

3.3. Discussion of Relative Factors

In the case of GenMS, garbage collection performance results for both GC and whole

program execution are less consistent. Although the RS strategy still delivers overall GC

improvements on most benchmarks, we find a significant negative value for JAVAC. Whole

program execution time shows no obvious stable trend, positive or negative, and in partic

ular no obvious correlation with GC performance.

Viewed in isolation our RS scanning improves GC performance in both interpreter

and adaptive JIT compiler environments. These results, however, are not well reflected

in overall execution time and anomalous measurements suggest a significant variation in

the performance of the mutator. A more detailed examination to determine and compare

the responsible influences is the subject of the next section.

3.3 Discussion of Relative Factors

To explain program performance on real platforms is tricky. Performance is affected by

a variety of factors at different levels, from low level hardware to high level program be

haviour. Here we divide potential influences as a rough taxonomy into general factors and

benchmark-specific factors. General factors affect the performance of all Java programs,

and can be further subdivided into two concerns code related, such as overall instruction

workload, hash code location, and code positioning, and data related, such as heap organi

zation, data location, and reference scan order, etc..

Benchmark-specific factors can influence performance. These properties include the

relative number and distribution of reference fields (relatively unique to our particular opti

mization), and more generic effects such as variation in GC collection points, GC strategy,

and relative cache sensitivity of the benchmarks. We use hardware counters and runtime

statistics data to investigate the impact of these factors.

Below we further explain the impact of the main factors involved in the actual per

formance of our GC study. We conclude with a detailed study of a critical, but not well

appreciated general factor, code-positioning.

33

Relative Factors of Java Virtual Machine Performance

3.3.1 General Factors: Code and Data Management

3.3.1.1 Instruction Workload

As the source code of a virtual machine is compiled, an obvious source of performance

difference is in the generated code. Even improved source code can generate an increase in

hardware workload due to code generation patterns or downstream optimizations.

We used hardware performance counter data to investigate the changes due to our im

plementation of RS. The final version of RS (used in our measurements) actually reduces

the number of instructions executed during GC for most benchmarks on both virtual ma

chines. Furthermore, there is no noticeable difference in the executed instruction count for

the mutator (variations were about 0.03% in average); clearly mutator instruction counts

are not a significant contributor to the whole program performance differences.

3.3.1.2 Hash Code Location

In support of the j ava . l a n g . Ob j e c t . hashCode () method, many virtual machines

derive object hash codes from heap addresses, and may also store calculated hashes in the

object header. Use of hash codes thus can have an indirect effect on performance if the heap

memory is laid out differently. As mentioned on page 30, the position of an object's hash

code is another implementation difference between the RS/bi-directional implementation

and the original Jikes RVM implementation.

In practice, however, our profiling results indicate that the number of objects that actu

ally use of hash code is quite small for these benchmarks. Most objects in these benchmarks

are not hashed. Even in the JAVAC benchmark, which exhibits the largest number of hashed

objects, no more than 0.5% of copied objects are hashed. Measuring the precise effect of

different hash values is of course quite difficult, but the limited use of hash codes in our

benchmarks strongly suggests that any differences have a minimal impact.

3.3.1.3 Code Positioning

Any change to the source code of a program is likely to change the precise location of parts

of compiled code, e.g., code position, and downstream code with higher memory addresses,

34

3.3. Discussion of Relative Factors

and, depending on code layout heuristics, potentially the entire program. Code positioning

changes can happen in any kind of code modifications due to optimizations. Therefore, it

can affect the performance of any program, not only Java programs running on a JVM. Our

final code-related effect is thus a study of the effect of minor changes in code positioning

on performance. In fact, among all the factors, we found that the changes in code position

in the executable binary have the largest potential impact on the whole program execution

time.

Table 3.2 shows that during GC very few instruction cache misses occur. In fact, in the

GC phase the collector mostly works by iterating over a small set of instructions; it is thus

unlikely for code position differences to cause any significant impact on GC performance.

On the other hand, Table 3.2 also shows that instruction cache misses are more frequent

in the mutator. To gain additional insight on the issue, we performed two experiments.

The second column of Table 3.1 shows the largest performance changes we found in

SPECJVM98 benchmark on a series of code shifted versions of SableVM. The only differ

ence between these versions is the length of some extra useless space, varying from 0 bytes

to double the size of a cache line, reserved in the string table section of the executable

binary. This causes later binary executable code to be shifted upward in memory, with

out actually changing the binary code. Surprisingly, such a trivial modification triggered

significant performance differences, up to 6.09%.

As a second experiment, we changed the position of some code in Jikes RVM by hand,

and we generated a set of variances. We then compiled two versions of Jikes RVM: one

with and one without the hardware performance monitoring (HPM) component. In these

measurements no HPM code was executed; i.e., we simply added a piece of non-executed

code to Jikes RVM. The results are shown in the third column of Table 3.1. Note how the

simple addition of some non-executed component to Jikes RVM can affect performance by

up to 6.4%! Performance changes due to changing code position clearly have potential to

be quite large relative to other "noise" effects.

The results of these two experiments demonstrate the significant impact of the code

positioning, which has nothing to do with the actual optimization, on the final perfor

mance measures. Fundamentally, this large effect is caused by performance variation in

the instruction cache. This fact highlights the tight relation between hardware components,

35

Relative Factors of Java Virtual Machine Performance

Benchmark

compress

db

jack

javac

jess

mtrt

raytrace

L.V.F.(%) of

Code Shifting

2.78

6.09

2.04

2.00

2.69

3.69

3.21

L.V.F.(%) of

Extra Component

1.24

4.80

5.19

4.40

6.39

4.70

6.42

Table 3.1: Impact of the code shifting in SableVM and adding an extra never executed component

in Jikes RVM (L. V.F.for Largest Variation Found in execution time and always positive).

especially instruction cache, and program execution.

3.3.1.4 Data Location Factors

Our case study optimization changes the position of fields in the object layout, and this has

an obvious potential impact on the data cache. For the majority of objects with relatively

few fields, however, proximity of data is maintained, and at least within the mutator these

changes are expected to be both minor and amortized throughout execution.

A more subtle and important data cache effect can arise from the use of scanning GCs.

In a tracing collection based system the order in which references are scanned has a direct

impact on the new location of reachable objects in the heap after collection, and thus affects

data locality in the mutator and in later collection cycles.

As the bi-directional layout changes the natural scan order of references, and thus the

natural corresponding layout after collection, we define two scan orders:

• Original Favourite Order (OFO):

This is the natural reference scan order in the traditional layout, where references of

super classes are scanned first. Thus in our case, references defined in a super class

of an object are visited and relocated before those defined by subclass.

36

3.3. Discussion of Relative Factors

Benchmark

compress

db

jack

javac

jess

mtrt

raytrace

Average

In Mutator

Instruction

239

725

145

201

176

534

475

356.4

Data

871

400

244

259

376

312

311

396.1

InGC

Instruction

128K

341K

38K

264K

80K

264K

242K

194K

Data

77

152

123

138

146

159

161

136.5

Table 3.2: Benchmark characteristics: average number of cycles between cache misses in SableVM

on a Pentium HI workstation.

• Bi-directional Favourite Order (BFO):

This is the natural reference scan order in the bi-directional layout, where references

of super classes are scanned last (after those of subclasses). In our case, this means

references defined in a subclass will be visited and relocated earlier than parent ref

erences.

We modify our implementation and change the scanning order of our collector. Switch

ing the scan order leads to a new heap layout that changes data locality in the mutator.

However, there is no obvious winner between the two orders. Most changes in data cache

misses are lower than the variance in the execution time. Table 3.2 shows the average num

ber of cycles between two consecutive LI data or instruction cache misses. Given the low

data cache miss density in the mutator part, it is safe to assert that data locality changes

due to scan order are not the key issue for the performance anomalies observed in Section

3.2.3.

37

Relative Factors of Java Virtual Machine Performance

3.3.2 Benchmark Specific Factors

It is also the case that individual benchmarks may have properties that produce very differ

ent reactions to a given optimization. Below we extend our analysis to benchmark-specific

factors which can also influence the performance. These properties include the relative

number and distribution of reference fields (relatively unique to our particular optimiza

tion), and more generic effects such as variation in GC collection points and GC strategy,

and relative cache sensitivity of the benchmarks.

3.3.2.1 Reference Field Usage

By its nature, RS scanning will bring larger benefits when accessing long, contiguous ref

erence sections. For objects with a single reference, however, the cost of RS scanning is

greater than the cost of normal scanning. The number of reference fields typically found in

objects can also thus influence performance, and so we measured the number of reference

fields in scanned objects in SPECJVM98 benchmarks.

We found that DB, MTRT and RAYTRACE have more than 40% objects with no reference

at all. These objects are skipped by the RS strategy, leading to a significant improvement

in GC speed over the original SableVM implementation. A relatively large number of

single-reference objects are found in JACK and especially JESS (43.4%), for which our RS

strategy brings less improvement. The behaviour of COMPRESS, which has the lightest

GC workload of all analyzed SPECJVM98 benchmarks, and of JAVAC, which triggers four

forced GCs, however, cannot be completely explained from the reference composition data

alone. For this we need to also consider more general properties of GC behaviour.

3.3.2.2 GC Frequency and Workload

Our code and data modifications have strong potential to adjust the workload given to GC

during program execution. This can have both obvious and subtle consequences. Jikes

RVM's garbage collector, for instance, manages both application data and VM-specific

data. Thus purely internal VM changes can be reflected in the workload experienced by

applications. Our modifications to the Jikes RVM object model in the implementation of

38

3.3. Discussion of Relative Factors

the RS strategy also causes a slight change in GC workload. In particular, the size of

surviving objects after a collection for these benchmarks is slightly different (by only a few

Kilobytes) between the original and the RS implementations. Given the large heap size,

we would not expect any significant impact from this when using a semi-space copying

collector. However, in the case of a generational collector, where most of the work is done

incrementally, a small size difference can have a much larger impact.

As a further complication, a lower number of GCs does not necessarily mean lower

total GC time. The point, or moment, at which a collection is launched can lead to totally

different GC performance. In Chapter 8, we will discuss the performance of GC in detail,

especially the impact of collection points.

3.3.2.3 Hardware Related Benchmark Characteristics

Not all benchmark characteristics of interest are most easily seen as high level consid

erations, and so we also use an instrumented Jikes RVM to study benchmark behaviour

through a variety of hardware events. Here we briefly discuss results on LI instruction

and data cache misses for some sample benchmarks, COMPRESS, DB and JACK. The cor

responding cache miss data is shown in Figures 3.3, 3.4 and 3.5 respectively, and repre

sent data gathered at each thread context switch. In these three figures, "GCs" stands for

"garbage collections", "LIDCM/Cyc" stands for "Level 1 data cache misses per cycle",

and "LIICM/Cyc" stands for "Level 1 instruction cache misses per cycle".

Compress, L1 cache performance in 0-6 billion cycles

e+10 2e+10 3e+10 4e+10 5e+10 6e+10
Elapsed Cycles

Figure 3.3: COMPRESS hardware event trace.

39

Relative Factors of Java Virtual Machine Performance

Db, L1 cache performance in 0-10 billion cycles

4e+10 6e+10
Elapsed Cycles

Figure 3.4: DB hardware event trace.

o

0.0045

0.004

0.0035

0.003

0.0025
a,
$ 0.002

| 0.0015

0.001

0.0005

Wit

Jack, L1 cache performance in 0-4 billion cycles

rim m w

p4 '4dfrM^s^^
• T + + 4 . + T I + I TT . J 1+ 1 + T + * T I 1 + +

w m
m

GCs
L1DCM/Cyc
L1ICM/Cyc

1e+10 1.5e+10 2e+10 2.5e+10
Elapsed Cycles

4e+10

Figure 3.5: JACK hardware event trace.

All these benchmarks show recurrent patterns, particularly in the instruction cache miss

rate. This corresponds to the various execution phases of these benchmarks. More inter

esting is the proportion of cache misses attributed to instruction or to data. In COMPRESS

data cache misses dominate, whereas in JACK instruction cache misses dominate; DB lies

between, with both kinds of misses equally important. Relative dominance of cache misses

should correlate with the general sensitivity of benchmarks to instruction versus data cache

effects; e.g., a benchmark with a dominant and tightly recurrent pattern of instruction cache

misses likely contains a small but very "hot" section of code, and could be strongly affected

by small changes in code positioning.

40

3.3. Discussion of Relative Factors

Figure 3.6 extends the idea of a cache sensitivity "bias" (I-Cache versus D-Cache) to

all our benchmarks. In this graph a benchmark's position is determined by the I-Cache

(x-axis) and D-Cache (y-axis) miss density. Benchmark COMPRESS, for instance, is quite

biased toward the data cache, while many benchmarks, such as JACK and JAVAC, are highly

biased toward the instruction cache. The performance of DB and MTRT have similar relative

dependencies on these two caches.

V)
ID

*
o

=p
<1>
Q.

<D
<n
w

S
&
f°
k •D
O
.c
m
O
Q

4500

4000

3500

3000

2500

2000

1500

1000

500

0

| 'Until 5616

compress *

!
UrtL
I

A

! db

1 i

A
i

'"tb ».

I I i I 1 i

- U J »• \ -
jack J a v a c

i i i i i

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
I-Cache density (Misses per million cycles)

Figure 3.6: Benchmark cache bias.

The rectangular area for each benchmark data point functions as error-bars, showing

the size of one standard deviation in the variations between consecutive measurements. A

box elongated in one direction represents a benchmark that has a larger variation in the cor

responding hardware event, and thus a larger potential for variation due to optimizations;

e.g., in COMPRESS data cache performance varies much more than I-Cache. The arrows

associated with each point show the average of the top 10% largest cache miss variations

between two consecutive sample points. A very long arrow thus means that the largest

performance variation is very different from the more typical case, whereas a small arrow

41

Relative Factors of Java Virtual Machine Performance

indicates a more uniform and stable result. The length of this arrow is thus a rough indi

cator of the validity of the measurement for detecting program phase transition points: a

measurement that varies little will not be a good indicator of program behaviour changes.

The results in these figures are heuristic indicators only, but show that individual bench

marks may have very different properties with respect to how they respond to a particular

optimization, even at a very low level: these effects are not obviously and trivially amor

tized away by a long or complex execution. An optimization may be viewed quite differ

ently given a set of benchmarks that are primarily I-Cache (resp. D-Cache) driven, and this

can easily result in a spurious overall evaluation of the optimization effect.

3.4 Summary and Future Work

Optimizations in a modern virtual machine environment clearly have the potential for com

plex interactions with various system aspects, high and low level.

The above investigations and coarse taxonomy provides a number of insights into the

sources of different influences on program and optimization performance. We have at

tempted to be exhaustive with respect to influences related to our specific optimization

case study, while demonstrating both general principles and a typical, relative weighting of

factors. From the analysis in this section we can summarize that:

• The performance of JVMs can be significantly affected by unintended code motion

side-effects. Instruction cache effects are not typically deeply considered in mod

ern, high level optimization studies, but even in cases where an optimization does

not intentionally alter I-Cache behaviour, minor code position changes can induce a

misleading understanding of the optimization effect.

• The relation between kinds of benchmarks and design choices can be a complex

source of variance, and cannot always be ignored as an amortized, unimportant cost.

The reference composition of the objects, for instance, is an important factor in de

termining the suitability of our RS scanning strategy.

• Major VM components optimized for general cases do not give a consistent improve-

42

3.4. Summary and Future Work

ment across all benchmarks. The garbage collector, for instance, behaves differently

depending on the specific benchmark and workload size. This situation exhibits some

potential for adaptively setting the nursery size to improve performance.

• Benchmarks show a wide variation in sensitivity to code versus data cache effects.

Which factor dominates for a given benchmark depends strongly on the benchmark

itself. This highlights the impact of low level system design on high level perfor

mance, as well as the need to apply quantitative methods for ensuring benchmark

representability.

Of course a potential variance is also a potential source of optimization. At a fine grain

the cache behaviour shows strong repetitive sequences. Future work on adaptive optimiza

tions that branch on early detection of these qualities may be very applicable. Monitoring

the hardware performance, detecting repetitive phase behaviours from the hardware data,

and employing adaptive optimizations according to the hardware information is thus the

main theme of our work presented in later chapters.

43

Relative Factors of Java Virtual Machine Performance

44

Chapter 4

Phase Detection Theory and Techniques

Detecting phases in program execution has been receiving more and more attention

lately. A significant part of our work is also a type of phase detection based on hardware

information. In this chapter, we introduce the fundamental idea, the basic categorization,

as well as techniques and application areas of the phase detection problem. This chapter

can be considered as the background and related work introduction to Chapter 5.

We begin with a brief introduction to the fundamental idea and main application areas

of phase detection techniques in Section 4.1. We then explore a systematic classifica

tion of phase detection theory and prediction techniques. Many existing phase techniques

are based on data collected during fixed length intervals. We will introduce a set of rep

resentative techniques in Section 4.2. Recent research has identified potential benefit in

investigating variable length phase detection. Several variable length phase techniques are

introduced in Section 4.3. Our phase detection technique is also an instance of this type

of phase detection. Program phase detection is a broad area; in Section 4.4, we classify

a large number of techniques and distinguish our technique from the others. Finally, we

summarize the whole chapter in Section 4.5.

4.1 Phase Detection and Applications

It is well known that the behaviour of a program is not random. A typical program per

forms similar work, loads similar resources, and shows stable performance over significant

45

Phase Detection Theory and Techniques

periods of time. Most programs are also quite repetitive, with similar behaviour occurring

cyclically throughout the whole execution.

We use the term phase to represent a set of intervals or portions within a program's

execution that have similar behaviour, regardless of temporal adjacency. Detecting these

intervals/portions is the process of phase detection. Phase detection techniques can be

used to capture the beginning of relatively stable executions, and also to identify repetitive

cycles during the program execution. Both of these properties are valuable for improv

ing program understanding, reducing profiling and simulation overhead, applying system

reconfigurations, and employing adaptive optimizations.

• Program Understanding and Debugging

Phase detection techniques can determine the boundaries of each sub-portion of pro

gram execution. Such results can be used to analyze the workload of a program at

different stages, locating bottlenecks and detecting program defects at a finer gran

ularity than the whole program scope. A. Georges et al. [GBEB04] associate the

major workload of a program with representative methods. By measuring hardware

events only for these selected methods, hardware related performance bottlenecks

can be located with much less effort. Compile-time data reordering frameworks can

also benefit from phase information mapped to static program structures, by focusing

optimizations within the actual critical areas [SCF03].

• Reducing Simulation and Profiling Workload

Program simulation, especially on accurate, cycle-level hardware simulators, can be

time-consuming. It is very worthwhile to select the crucial simulation periods to

model, and thus save a large portion of the total simulation time. Phase detection

techniques can be used to help simulators find the interesting points to simulate.

Sherwood et al., for example, use phase detection techniques to determine the simu

lation portion of execution and to guide computer architecture research [SPHC02].

Similarly, workloads for both offline and online profiling can be reduced by only

sampling representative parts selected by phase detectors. This also benefits trace

size; many profilers can generate huge traces, and phase detection can also function

46

4.1. Phase Detection and Applications

as a lossy compression solution to the trace files that attempts to preserve the most

meaningful information. W. Liu et al. demonstrate the use of phases for reducing pro

file cost by giving a phase-driven simulation mechanism that can obtain acceptable

accuracy while only simulating a small portion of the code [LH04]. Nagpurkar et al.

present a flexible scheme to reduce network-based remote profiling overhead based

on repetitive phase information gathered from remote programs [NKS05]. They im

plement their phase identification mechanism on S i m p l e S c a l a r [BA97] which is

a cycle-level hardware simulator. In the case of online profiling, reductions in sample

content and frequency have been recognized as important; various authors mention

that optimizations based on runtime profiling need to be applied judiciously, or the

cost will outweigh the benefit in many situations [ABD+97,KF03, AHR02].

• System Reconfiguration

Embedded or mobile systems often have demanding resource requirements. It is

valuable to reconfigure the system dynamically to minimize resource consumption.

Dhodapkar and Smith, for example, introduce tuning points based on phases; these

are selected to save power and improve overall performance by enabling or disabling

resources adaptively [DS02b]. Similarly, the phase detection technique introduced

by Shen et al. has been shown to be effective in adaptive cache resizing and memory

re-mapping [SZD04]. Trade-off between speed and energy use of a system based on

phase information have also been explored [BABD00,DS02a,HRT03].

• Adaptive Optimizations

Runtime, adaptive optimization is an exciting application of phase detection, and

many adaptive systems are built on determining and exploiting phases. The software

code trace in Dynamo, for example, is refreshed based on monitoring the generation

rate of new code traces in recent intervals [KS03]. In fact, this is a type of phase de

tection, and most systems that attempt to locate "hot" code based on runtime data can

be seen as phase detectors. M. Arnold et al. [AFG+05] give a survey of adaptive op

timization techniques, especially in a virtual machine environment. Many techniques

introduced in that work may benefit from phase information.

47

Phase Detection Theory and Techniques

Of course successful application requires a good understanding of the form of phase

detection being offered; a number of phase detection approaches exist, based on a variety

of different phase properties. Scientific and computationally-intensive applications may

benefit more from stable phase prediction techniques than irregular applications based on

dynamic data structures. We designed and developed a phase detection techniques for the

JVM. It is the basis for several further runtime adaptive applications discussed in later

chapters.

4.2 Fixed Length Interval Based Phase Detection

A large number of phase detection techniques are based on data gathered from fixed length

intervals. They share a common style:

• The program execution is divided into fixed length intervals by some means.

• Specific profiling data is collected in each intervals.

• If the difference of the profiling data between two consecutive intervals is larger than

a predefined threshold, a phase transition point is detected.

4.2.1 Definition

M. Hind et al. give a basic classification [HRS03] of phase detection. They formally give

an abstract definition of a phase detection problem that takes a profile string & as input.

Definition 1 Let PD/^T, a](£P) represent the phase detection problem based on input 8P

and parameters:

• Granularityfrj specifies how a profile is partitioned into fixed-length, atomic units

of comparison, denoted chunks. Granularity size is also the minimum size of a de

tectable phase.

• Similarityfo'J is a boolean function that, give two strings, determines if the two

strings are similar. That is Oi(Si,S2) returns true if S\ is similar to Si, and false

48

4.2. Fixed Length Interval Based Phase Detection

otherwise. Using continuous output (e.g., the interval [0.0,1.0})from such a function

can provide detail on relative similarity, although a binary decision must be made at

some level.

Using this model, Hind et al. take two input strings (traces), convert each string into

an abstract representation, and compute the similarity between the abstract representations.

They then give a generic algorithm based on this model and demonstrate it on a simple

alphabet string example.

The above approach, and its specific instantiations, are in fact based on recognizing

stable phases. A stable phase can be defined as above, or more abstractly as: a maximal

length sequence of consecutive intervals containing no large performance change. Such

definitions are very appropriate for identifying phases in programs in which long sequences

of unchanging behaviour occur frequently. Scientific benchmarks, for instance, tend to ex

hibit such activity, and studies of the SPECCPU95 [Stab] and SPECCPU2000 [Staa] suites

show the utility of this kind of phase detection [SPC01,DS02b,SSC03,LH04,LSC05].

The fundamental mechanisms of these works are more or less similar. The differences

among them are in what type of profiling data is selected, how the data is organized, how the

threshold is set, and what type of comparison algorithm is used. Below we address fixed

length interval approaches by dividing them into two major approaches, pure detection

works, and techniques that aim at phase prediction.

4.2.2 Detection

Phase detection efforts are built on a variety of basic structures and data sources. High

and low level events of different forms have been considered, and both online and offline

techniques have been developed.

Sherwood et al. make use of moderately high level program structure basic block vec

tors (BBVs) to detect phase changes [SPC01]. A BBV is an array with an entry for each

static basic block in the program. BBVs are used to track the execution frequency of indi

vidual basic blocks; the value of an array entry is simply the number of times that a given

basic block has been executed during a given interval. Phase changes are detected when

49

Phase Detection Theory and Techniques

the Manhattan distance
cc

*,(-! = % \BBVi\j\-BBVi-x\JW
7=0

between consecutive intervals i and i — 1 exceeds a predefined threshold Ar/j. In [SPC01],

this technique is applied to select crucial simulation points.

Using a lower level perspective, A. Dhodapkar and J. Smith use the instruction working

set to detect phase transitions [DS02b]. This allows the computation of a relative working

set distance

g = lw(f,-,T)UW(o,T)l-|w(rl-,T)nw(Q,T)|
\w(tht)Vw(thT)\

where a working set W(t{, T) for i=l,2,...ft), is a set of distinct segments si,S2,.-.,s0J touched

over the ith window of size T. "Segments" here are memory regions of fixed size (e.g.,

pages). The instruction working set is hashed into a n-bit vector, the working set signature.

Combined with a suitable threshold, the distance between working set signatures over time

is then the basis for a fixed interval phase analysis.

Another low level data choice is provided by Balasubramonian et al. who use con

ditional branch counts as the monitoring data [BABD00]. They use a counter to mea

sure the number of dynamic conditional branches executed over a fixed execution inter

val. In their scheme, no fixed threshold is set; instead the detection algorithm dynami

cally varies the threshold throughout the execution of the program. This work is based on

S i m p l e S c a l a r [BA97], interacting with the phase detection scheme. Phase analysis is

used to determine whether the current state is, stable or unstable. In the latter case, hard

ware reconfiguration mechanism is launched to adjust to the new state. Dhodapkar et al.

make a comparison between these detection techniques based on basic block vectors, in

struction working sets and conditional branch counts [DS03], respectively. They evaluate

the techniques mainly from their sensitivity and stability.

The techniques described above are neither aiming at Java programs nor implemented

in Java Virtual Machines. Recently, Nagpurkar et al. present an online phase detection

model [NHK+06] in Jikes RVM. Their phase detector calculates a similarity value between

the profile elements in current window (CW) and trailing window (TW). They provide an

abstract representation of inputs. Thus, their model allows a wide variety of input types,

50

file:///BBVi/j/-BBVi-x/JW

4.2. Fixed Length Interval Based Phase Detection

such as basic blocks, methods, addresses loaded, etc..

4.2.3 Prediction

Detection techniques work in a reactive manner; program behaviour changes are observed

only after the occurrence of the change. This delay is minimally one interval long, of

ten much more in order to achieve good confidence of stable behaviour. However, if the

behaviour changes can be predicted, the delay between observation and reaction can be

reduced. Prediction techniques can be roughly divided into two types:

Statistical Predictors

Simple statistical predictors can be used to estimate future behaviour based on historical

behaviour [DCD03]. Many statistical predictors have been developed, including (among

many others):

• Last value predictors assume the next value of a memory location or computation is

the same as the last. This approach works well within a stable phase, but not in phase

transitions or more complex phase behaviour.

• Average(N) predictors use the average of the last N intervals as the predicated value

for the next interval.

• Freq(N) predictors choose the most frequent value in the last N intervals as the pre

diction for the next interval.

• Exponentially weighted moving average (EWMA(N)) predictors place more emphasis

on the most recent history, weighting a historical value's contribution to a predicted

value by an exponential function of age.

Statistical prediction strategies have been widely used in optimizations based on (re

turn) value prediction [PV04, Bur02, GVdB01,OHL99]. Hu et al., for instance, present a

parameterized stride predictor and give return value prediction data for SPECJVM98 [Stac]

benchmarks on simulated hardware [HBJ03]. In general a variety of strategies can be ap

plied to estimate single value from related historical data; most are based on exploiting

51

Phase Detection Theory and Techniques

stable phases, but stride, context and a few other predictors can provide small scale "phase"

detection for individual variables.

Table-Based Predictors

Different from the statistical predictors, table-based predictors predict values using infor

mation other than just the most recent history. This approach has been applied to create a

memoization predictor for return value prediction [PV04], but can also be applied to predict

phases. In general, table-based predictors encode a current state as well as history as the

index into a prediction table. The prediction of the future is stored in the table and can be

updated when large behaviour changes are identified. The differences between individual

implementation can be:

• What type of data is used to build the prediction

• What is the detailed construction and organization strategy of the historical data

• What algorithm is used to create the index into the prediction table

• What kind of a mechanism is used to update the predicted value in accordance with

the most recent measurement

E. Duesterwald et al. give a general study on predicting program behaviour [DCD03].

A set of predictor models of both statistical and table-based types on fixed size intervals

are introduced and compared. Their experimental results show that table-based predic

tors can cope with program behaviour variability better than statistical predictors. This

work uses hardware data from Power3 and Power4 architecture on SPECCPU2000 [Staa]

benchmarks.

T. Sherwood and S. Sair [SSC03] present a run length encoding phase (RLEP) predictor

using low level branch data. First, a phase ID is built for each interval based on its footprint

for the executed branches. As shown in Figure 4.1, the PC of a branch is hashed into an

index of the accumulator table, and the number of instructions executed are added into the

corresponding entry. After the execution of an interval the most significant parts of the

accumulator entries are combined to construct the footprint of this interval. If the footprint

52

4.2. Fixed Length Interval Based Phase Detection

is "unique" enough according to their definition a new phase ID is assigned to this interval.

They evaluate their work on SPECCPU2000 benchmarks using S i m p l e S c a l a r .

Accumulator Past Footprints

Branch
H

Instructions

--•+•

- - * •

-->

- - *

- - * •

- - * •

- - •

phase ids

Figure 4.1: RLEP: Building the phase ID from the branch footprint in [SSC03].

In a subsequent step the phase ID of the current interval and the number of consecutive

repetitions of the phase are hashed into the prediction table to find the phase for the next

interval. This process is shown in figure 4.2. Similar general strategies have been followed

Marks'*' "Mule

VhMm ID

Run
Count

1 \

last
ID

~* +L

0

~* \=)

iS
ojr

I-*
H

tag m

Figure 4.2: RLEP: Using phase ID and the number of repetitions to predict the next phase in

[SSC03J.

in other work [LSC05].

53

Phase Detection Theory and Techniques

4.3 Variable Length Periodic Phase Detection

In the previous section we introduced a collection of representative, state-of-the-art phase

detection techniques. These approaches share a number of properties:

• Split the program execution into fixed length intervals.

• Use predefined metrics to measure the differences between intervals.

• Detect behavioural differences by observing noticeable variations between consecu

tive intervals.

All those techniques are able to perform well in certain situations. However, in some

situations we cannot obtain satisfying results from the data of fixed length intervals, mainly

due to two reasons: the out-of-sync problem and inappropriate granularity.

0 10 20 30 40 50 60 70 SO 90 100

0 10 20 30 40 50 60 70 80 90 100

Figure 4.3: The synchronization problem for fixed length intervals techniques [LPH+05].

Lau et al. point out that fixed lengths can become "out-of-sync" with the intrinsic period

of the program [LPH+05]. This problem can make a program's periodic phase behaviour

54

4.3. Variable Length Periodic Phase Detection

difficult to detect using fixed length interval solutions, and they graphically show that vari

able length intervals are necessary in some situations. Figure 4.3 from [LPH+05] show a

simple example of how the fixed length interval solutions can fail in capturing the actual

phase because of asychronization. A sinusoid signal is shown in the top figure. Two un

suitable fixed interval division are provided in the lower two figures. The average value of

the intervals are shown by the solid lines. It is clear that no obvious repetitive features of

the input sinusoidal curve are preserved in the lower two figures.

Lau et al. also graphically demonstrate that there are multiple levels of phases in pro

grams that current fixed length interval techniques cannot handle at all. This motivates an

initial study on variable interval phase detection using the SimPoint simulator [SE02].

Programs are instrumented with ATOM [SE94] to generate traces of each loop branch,

method call and method return. Based on these traces, they construct a hierarchy of vari

able length phases using SEQUITUR, a linear-time, context free grammar algorithm that

infers a hierarchical structure from a sequence of discrete symbols [NMW97]. SEQUITUR

recursively replaces repetitive sequences with a grammatical rule that can generate the se

quence. This result is a hierarchical representation of the original sequence that can offers

insights into its lexical structure. An example is shown in Figure 4.4.

• S := BBAc

• B := Ab

• A := aa

Figure 4.4: Grammar generated for the input "aabaabaac" by SEQUITUR from [LPH+05].

Although still at an early stage, the main contribution of this work is important. They

show that programs have a hierarchy of phase behaviour at many different levels of granu

larity, and point out limitations of fixed length interval solutions.

55

Phase Detection Theory and Techniques

4.3.1 Definition: Periodic Phase

In fact, the out-of-sync problem is also caused by using an inappropriate granularity. In

the cases where the techniques based on fixed length interval data fail to identify correct

phases, we can always make it work by cutting the program execution into finer enough

intervals. Of course, if we increase the length of intervals or phase transition threshold

greatly, we can also obtain some kind of extreme stable phase detection results, e.g., the

whole program is in one stable phase.

Unfortunately, it is not free to choose the granularity of data collection, especially for

techniques aiming at runtime/online applications. The smaller the granularity we choose,

the larger the overhead it has, and thresholds are practically necessary.

For scientific computation programs (used by many works in Section 4.2.2 as bench

marks), there do exist long term, quite flat, stable execution portions. It is not necessary

to set the granularity to a small value. On the contrary, many real world applications, in

cluding many object-oriented programs, do not share this property of scientific programs.

There can be no stable portions unless data is collected on intervals with very fine granu

larity. In the case of Java programs, due to the extra layer of the JVM, there exists more

non-determinism when measuring most kind of runtime data. At the same time, in a run

time environment, too fine-granularity in measurement is not acceptable due to the corre

sponding heavy overhead. For example, the context switch point is a good chance to apply

adaptive optimizations in a JVM. Figure 4.5 shows LI instruction cache miss (an important

runtime measurement data) gathered at each context switch point (a coarse granularity for

doing adaptive optimization on a JVM) of benchmark JACK in SPECJVM98 suite. There

is almost no stable phase which can be found even by close human inspection. However,

Figure 4.5 also demonstrate that there are obvious repetitive behaviours.

Repetitive information is very useful for understanding program behaviour and making

adaptive optimizations. However, stable phase detection techniques and even the defini

tion of stable phase given in Section 4.2.1 are insufficient to describe this situation. It is

necessary to give a new definition for such kind of periodic phases as:

Definition 2 A variable length periodic phase is a tuple & < a, 6, 8 > where,

56

4.3. Variable Length Periodic Phase Detection

Real hardware measurement result, L1 l-Cache Misses, jack
140000

120000 h

• | 100000
CO

g 80000

*
s 1

60000

40000

20000

0
0 5e+09 1e+10 1.5e+10 2e+10 2.5e+10 3e+10 3.5e+10

Elapsed Cycles

Figure 4.5: The obvious repetitive behaviour of JACK at a coarse granularity, LI instruction cache

miss counts are gathered every thread context switch.

• a is a set of segments S\,...,S„ appear in program execution and n> 1.

• 0 is a function computes the correlation between each two items in a.

• 8 is a threshold. For two arbitrary items Sx,Sy G a where 1 < x,y < n, the following

inequality must be hold: 6(Sx,Sy) > 8

More simply, periodic phases are repetitive patterns in program execution.

4.3.2 Periodic Phase Detection Techniques

Compared with fixed interval based phase detection works, investigating variable length

periodic phases is new. Researchers present techniques based on different types of data and

employ a variety of approaches.

A. Georges et ah, for example, have developed an analysis for detecting "method level

phase behaviour in Java" [GBEB04]. The authors develop an offline analysis technique for

Java workload. After the execution time is measured for each method invocation, they use

an offline tool to analyze the dynamic call graph and then identify phases corresponding

to method executions. Methods that take a large portion of the whole execution time but

57

Phase Detection Theory and Techniques

which have a less frequent invocation count are then candidates for major method level

phases.

Shen et al. [SZD04] detect long range variable phases using a quite different technique.

Their offline/online mixed phase detection solution does an offline computation on a trace

of reuse distance data of programs. Reuse distance is defined as the number of distinct data

elements accessed between two consecutive references to the same element. Apparently,

reuse distance can cover a large portion of the program execution and is not fixed length

interval. They use a discrete wavelet transform [Dau92] as a filter to remove the least

significant changes and locate the most important ones. They use ATOM [SE94] to insert

phase markers into program to label the significant phase points. Shen et al. apply their

phase analysis to "cache resizing," and test their work on the Cheetah [SA93] cache

simulator. Simulation data suggests this phase analysis can help considerably, reducing

cache size up to 40% without significantly increasing the number of cache misses.

4.4 Problem Classification

We have introduced a large number of different phase detection techniques. All these

techniques cover a broad area. Each solution is distinguished from, as well as shares some

common features with others. In order to highlight the differences and relations among

them, we categorize them in three manners. That is, we treat the whole solution space of

phase detection as a three-dimension space. Each technique can have its specific position

in this space. The three axes are:

1. Phase Type

As we said in previous sections, all phase detection works are either aiming at stable

phases or periodic phases. We actually follow this axis to introduce all the phase

detection techniques.

2. Data Source

Phase detection can work on different types of data.

• Static software data

58

4.4. Problem Classification

Some works use measurement for particular static program units, such as method

[GBEB04], basic block [SPC01] and loop or branch [LPH+05].

• Dynamic software data

Some phase detection works are based on dynamic counting for a special soft

ware concern, such as the "instruction working set" used in [DS02b] and the

"data reuse distance" used in [SZD04].

• Simulated hardware data

Hardware data has received a large attention. However, for practical reasons,

many researchers use hardware simulators to investigate their techniques. From

this precise data is possible and a set of phase detection works are developed, in

cluding the RLEP phase predictor [SSC03] and Balasubramonian's work based

on "conditional branch counts" [BABDOO].

• Hardware data

Use of real hardware data is desirable. E. Duesterwald et al. use hardware

data from Power3 and Power4 architecture to detect phases in C language

benchmarks. Shen et al. present an extension of their Wavelet based analy

sis work to hardware trace data, such as IPC (Instruction-per-cycle) and cache

hit rates [SDDS05]. Our approach is also based on real life hardware event data

for a JVM.

3. Application Time

• Offline analysis

Many phase detection techniques are actually offline data analyses [SZD04,

GBEB04, SDDS05, LPH+05]. Sophisticated analysis is applied on program

trace data. In general, offline analysis can work on trace data for as many passes

as it requires and provides comparatively accurate phase detection results, or

phase analysis results. They are very useful for program understanding, but will

not be suitable for online optimizations due to the (usually) large computation

overhead. However, the results of offline analysis can be somehow used by

runtime systems, such as the "phase markers" used in [SZD04].

59

Phase Detection Theory and Techniques

• Simulated online

Some phase detection algorithms designed for online applications are firstly

presented in a simulated manner. The "simulated" manner here either means

implemented on hardware simulators as works in [BABDOO, SSC03] or pre

sented as a prototype for online solutions working on a trace file in only one

pass. Our offline pre-study is a simulated online algorithm, as well as the phase

detection model given in [HRS03].

• Online implementation

Online phase detection technique on real world system is challenging. Nag-

purkar et al. designed an online phase detection model [NHK+06] which aims

at detecting stable phase. Their framework can accept different type of data as

input. We also implement phase detection in a purely online manner, on real

world hardware measurement data, but aim at detecting periodic phases.

4.4.1 Online Hardware Based Phase Detection

We will present a phase detection approach for detecting variable length periodic phases in

Java programs. The data source we used is obtained from realistic hardware components.

The application time of the final approach is purely online, and we do an offline pre-study

working in a simulated online manner. The results of our approach can bring benefit for

better program understanding and provide valuable information for runtime adaptive opti

mizations.

Using the hardware event data commonly available in modern processors, we detect

and predict the recurrent behaviour in programs. The hardware event data is gathered

at every context switch, e.g., we choose a coarse granularity which is practical to online

implementation in realistic systems.

Before designing and implementing the online algorithm, we first built an offline pro

totype to validate the feasibility. The prototype is actually a simulation on hardware trace

data generated using Jikes RVM.

Our algorithm captures and associates the beginning pattern (binary representation of

hardware event data) of each periodic phase with the phase itself. We thus use initial

60

4.4. Problem Classification

patterns to predict upcoming periodic phases. We analyze the similarity between patterns

and replay the other part of a period of execution when we identify that there is a recurrence

of a pattern. The algorithm just reads the trace file in one pass. Therefore, it is a simulation

of an online application, and can be transplanted into an online implementation with less

effort.

Real hardware measurement result, L1 l-Cache Misses, jack
140000

120000

100000 [

80000

60000

40000

20000

Vk
L1 l-Cache

5e+09 1e+10 1.5e+10 2e+10
Elapsed Cycles

2.5e+10 3e+10 3.5e+10

Prediction result, L1-ICache Misses, jack

5e+09 1e+10 1.5e+10 2e+10 2.5e+10 3e+10 3.5e+10
Elapsed Cycles

Figure 4.6: The comparison between the real measurement result (top) and the phase prediction

(offline pre-study) result (bottom) on JACK. The hardware event used here is Level 1 instruction

cache.

61

Phase Detection Theory and Techniques

The bottom graph in Figure 4.6 shows a sample result from our offline pre-study work

on JACK in predicting the LI instruction cache miss data. The actual program execution is

shown in the top graph. These results demonstrate that our solution performs well after the

initial learning period, with most major features quite accurately predicted in the latter half

of the program. This result is typical of the Java benchmarks we have investigated.

4.4.2 Distinguishing Characteristics of Our Approach

Our phase detection approach is a variable length periodic phase detection technique which

is based on real world hardware event data, in coarse granularity (context switch) and is

implemented in a pure online manner for non-scientific, general Java programs.

Most pre-works in phase detection are detecting stable phases. These approaches work

well for flat, stable programs or on fine-granularity. Due to the irregular bahaviour of gen

eral Java programs and the coarse granularity that an online implementation can afford, we

developed a variable length periodic phase approach which is different from many works.

The other variable phase detections presented in [GBEB04], [LPH+05] and [SZD04]

require comparatively heavy offline data analysis. Furthermore, our approach is based on

real world hardware events, implemented in an existing architecture, which is distinguish

ing from the works [BABDOO, SSC03] that are also based on hardware data but imple

mented on hardware simulators.

4.5 Summary

In this chapter we gave a general introduction to the program phase detection area. In

fact, the concept "program phase" is not well defined yet, by just using the definition for

stable phases. We gave a definition to periodic phase for irregular, real life, object oriented

programs investigated from the perspective coarse granularity.

We investigated a large set of different phase detection techniques and classified them

into different types according to three concerns: phase type, data source type and appli

cation time. We used these three concerns to build a solution space for phase detection.

Each technique can find its position in such a space. Our approach holds its own position,

62

4.5. Summary

different from all the pre-existing techniques.

Finally, we built an offline prototype to prove the feasibility of our online approach.

The offline pre-study results illustrate that it is practical to make online phase detection

on real world hardware for general Java programs. This study builds a solid base for our

further work on phase detection techniques which will be introduced in later chapters.

63

Phase Detection Theory and Techniques

64

Chapter 5

Hardware Based Online Phase Detection

In this chapter we introduce the core part of later work, detecting program phases from

hardware information analysis. The output of our phase detector is used to support further

optimizations introduced in later chapters. We begin with an overview of our phase detec

tion technique in Section 5.1. In Section 5.2 we describe the details of our phase analysis

design. A set of phase detection metrics presented by other researchers are introduced in

Section 5.3. We also point out the limitations of these metrics if applied to variable length,

recurrent, periodic phases and explain our evaluation metrics in the same section. Sec

tion 5.4 gives the experimental data and finally we summarize and discuss future work in

Section 5.5.

5.1 Overview

Most programs are highly repetitive; a large portion of execution time is typically spent in

just one or more small code segments. Detecting, or even predicting repetitive, "phase-like"

behaviour can be important for many reasons, including program understanding, identifi

cation of execution "hot spots," runtime adaptation, and so forth. In Chapter 4.1, we have

given an overview for program phase detection and the state-of-art techniques. Phase de

tection is a rather wide topic. We should be aware of the fact that phases can have different

types and hold different properties. Both the application areas and mechanisms to detect

different type of phases are varying. Similarly, we need different type of evaluation metrics

65

Hardware Based Online Phase Detection

suitable to different type of phase problems. In this chapter, we will introduce an online

algorithm for phase detection in Java programs based on real world hardware performance

data. Moreover, we propose a pair of evaluation metrics for variable length recurrent peri

odic phase detection results.

Phases can have different properties; many phase analysis techniques concentrate on

finding short-term, fixed-length phases representing periods of stable program execution.

This is appropriate and reasonable for many programs, especially "regular" and scientific

computations, but not necessarily appropriate for programs with more variable behaviour

and/or more long-term phase structure.

Understanding performance, including the nature of program phases, requires under

standing the underlying execution system as well as the program code. Modern processors

are complex, with many internal components and designs; pipelines, multiple-level caches,

TLBs, branch predictors, multiple cores, etc. These features are very effective, but intro

duce a significant amount of complexity when trying to determine why a program behaves

the way it does. In Chapter 3 and in previous work [LSP+05, GVG06], we had shown

that there exists a tight, and often unintuitive relation between the hardware performance

and program behaviour. Hardware performance data is thus critical for developing a good

understanding of program performance.

Recently, and following the general maturation of hardware performance monitoring

techniques in commercial machine designs, hardware event data has begun to receive more

and more attention as a basis for understanding program behaviour [SHC+04], detect

ing program phases [DCD03, BABDOO, GBEB04], and for employing adaptive optimiza

tions [DS02a, RSEW04, Jim05].

In this chapter we present an online technique to detect repetitive behaviour in Java pro

gram execution using hardware data. Our work considers the important problem of finding

variable length periodic phases, something we show is usefully present in many programs.

Our design is based on creating patterns representing the variation in hardware event data

collected from low level hardware profilers. These patterns can then be used to detect

higher-level phase changes, and incorporated into sophisticated table-based techniques to

help predict program behaviour and guide runtime adaptation.

Formal evaluation of phase detection and prediction is of course critical to demonstrate

66

5.2. Design

the quality of phase analysis. In previous works, a set of evaluation metrics for phase

detection have been presented, including sensitivity , stability, transition correlation, etc..

However, all these existing metrics are either only suitable to measure stable phase detec

tion results or are fairly naive and cannot cover some essential aspects of variable length,

recurrent phases. We thus propose Confidence and Possible Miss Rate (PMR) measures

to quantitatively evaluate the quality of variable length, recurrent phase detection results.

These calculations give a good understanding of the quality of phase data, and are the first

such measures to be formally described. This pair of metrics is very helpful in selecting

pattern creation algorithms that most effectively represent the similarity and regularity of

the recurrent portions in the program execution. The final algorithm we choose results in

high quality repetitive-phase detection.

5.2 Design

p a Hardware w

l iUi Events r

Hardware

Counters

Hardware

Performance

Monitor

Pattern
Creation
Extension

Patterns
- P

Pattern

Model

>
f

Phase
Information Other

Adaptive

Components

Pattern Database

Figure 5.1: System structure for recurrent phase detection.

Our work is an extension to Jikes RVM [AAC+99], and Figure 5.1 shows an overview

of the design. Raw hardware event data is read from hardware counters through the hard

ware performance monitor (HPM), a pre-existing component in Jikes RVM. We augment

the HPM with a pattern creation extension that generates patterns representing the hard

ware performance. This analyzes the hardware data between two consecutive sample

points, summarizing the "shape" or pattern of variation in low level performance. If we

observe that the same sequence of variation in events has been encountered before, a (new)

repetitive sequence will be considered.

Created patterns are transferred to a pattern analysis model for deeper analysis. The

67

Hardware Based Online Phase Detection

pattern analysis model maintains a pattern database to store the received patterns. The

pattern analysis model makes the ultimate decision pn the identification of and response to

phase changes. Below we describe the two main mechanisms in more detail: the pattern

construction mechanism, and the pattern analysis and prediction.

5.2.1 Pattern Construction

A wide variety of properties of hardware events can be used to detect repetitive behaviour:

increasing or decreasing trends, range of variation, and distance and similarity measures of

various forms. Obviously there are trade-offs in terms of complexity and data size (cost)

and improvements to phase detection and prediction. In order to select appropriate prop

erties and pattern building strategies, we implemented a variety of heuristics and evaluated

them quantitatively using the metrics developed in Section 5.3.2. Here we present our most

successful and general approach in detail. As shown in Figure 5.2 this design is mainly

based on three attributes of the hardware event curve: the level of variation (as shown in

the top graph), the shape or the direction of variations (second from the top),.and the length

of the more significant varying part of each repetitive period of the curve (third graph from

the top). Finally, we cut the whole curve into recurrent phases based on the similarity be

tween the beginning parts of each period according to these three attributes (bottom graph).

Our implementation summarizes this low level behaviour using (short) bit-vectors that

encode the overall pattern of variation. Translating hardware event data to bit-vector pat

terns involves first coarsening the (variation in) data into discrete levels, and then building

a corresponding bit-vector shape representation.

• "Levels": A basic discretization is applied to (variations in) event density data to

coarsen the data and help identify changes that indicate significant shifts in behaviour.

We compute the density of events over time for each sample. By comparing the

density of the current sample with that of the previous sample, we obtain a variation

V. The variation V is discretized to to a corresponding level, Py. For the number

of levels, we test a series number of power of 2, e.g., 2, 4, and 8. We decide to

categorize the variation into four levels for an optimal tradeoff between the ability of

distinguishment, the noise tolerance, and the overhead of encoding.

68

5.2. Design

65 70 75 80

J/

I
¥ II

i i
i i

II

\^~j

^

/*——~-^~
! ! m 1 ,

u!
i
i
||
!
I
1 !

i j . ^ _

1

1
10 15 20 25 30 35 40

Time
45 50 55 65 70 75 80

Figure 5.2: Main attributes used to build patterns. The top three graphs show the three attributes of

the hardware event curve: the variation level, the variation shape, and the length of the significantly

varying part. The bottom graph shows the result of recurrent phase identification based on similarity

of the beginning part of each phase.

69

Hardware Based Online Phase Detection

• Pattern "shapes" are then determined by observing the direction of changes, posi

tive or negative, between consecutive samples. Complexity in shape construction is

mainly driven by determining when a pattern begins or ends.

Each shape construction is represented by a pair (Py,v), where Py is a level associated

with the beginning of the shape, and v is a bit-vector encoding the sign (positive,

negative) of successive changes in event density. Given data with level Py, if there is

no shape under construction a new construction begins with an empty vector: (Py,[]).

Otherwise, there must be a shape under construction (Qw, v). If Qw = Py, or we have

seen Qw > Pv less than n times in a row, then shape creation continues based on the

current shape construction (Qw,v): a bit indicating whether V > 0 or not is added to

the end of v.

The following conditions terminate a shape construction:

1. If we find Qw < Pv we consider the current shape building complete and begin

construction of (Py, []). Increases in variation of event density are indicative

of a significant change in program behaviour, and so motivate the decision to

begin a new phase.

2. If we find Qw > Py, n times in a row the current shape has "died out." In this

case we also consider the current shape building complete. In our experiments

we use n — 2, which is long enough. In our observation, it is extremely rare that

a major variation will happen after two very flat intervals coming in a row.

3. If in (Qw,v) we find |v| has reached a predefined maximum length we also

report the current construction as complete. In our experiments we use a maxi

mum of 10 bits. We thus can store the patterns in direct-mapping table structure

of less than IK entries.

A rough overview of the pattern creation algorithm is shown in Figure 5.3. After obtaining

hardware data D, we compute the variation V between D and the same data (Z)iast) for the

previous interval. V is then mapped from a real value to an integer value Py G {0, . . . , n},

representing the "level" of V. As shown in the formal description of this algorithm, we use

Qw to represent the level of the pattern currently under construction. Initially the value of

70

5.2. Design

Qw is set to -1 to indicate no pattern is under construction. If Py > Qw then we are facing

a larger, and hence more important variation than the one that began the current pattern

construction. The current pattern is thus terminated and and a new pattern construction

associated with level Py is begun. The value of Py is assigned to Qw and the shape code

vector (denoted as ShapeCode in Figure 5.3) is blanked. Otherwise (Py < Qw) and the

current pattern building continues.

The actual pattern encoding is based on the relation between Py, Qw and the sign of V.

Two bits will be appended to the current ShapeCode each time a pattern grows: "01" means

a positive variation at level Qw, "10" represents a negative variation at level Qw, and 00

means either a positive or negative variation at a level below Qw- Binary Is in our scheme

thus indicate points of significant change. Construction continues until one of the pattern

termination conditions is met, at which point we report the pattern to the pattern analysis

model. A concrete example of the creation of a pattern is shown in Figure 5.4.

Of course choice of primary data is also important; the above strategy can be applied

to many different hardware events. In our actual system we make use of the instruction

cache miss density as a good indicator of code activity. We have considered other hardware

events and combination of events (see page 123), but a thorough study is left for future

work.

5.2.2 Pattern Analysis and Prediction

Pattern analysis and prediction consumes patterns generated by the pattern creation mod

ule. Here we further examine the patterns to discover recurrent phases and generate predic

tions of future program behaviour. All created patterns are stored into a pattern database.

The recurrent pattern detection and prediction are based on the information in the pattern

database and the incoming pattern.

The recurrent detection is straightforward: if we find a newly created pattern that shares

the same pattern code as a pattern stored in the pattern database we declare it to have

recurred. An actual recurrent phase, however, is not declared unless the current pattern

also matches the prediction results.

The prediction strategy we use is a variant of fixed-length, local/global mixed history,

71

Hardware Based Online Phase Detection

Get hardware data D
V = Variation(D,D_last)

Pv=Lev(V)

Yes

Start a new pattern construction:
Qw= Pv

ShapeCode=[]

X

Pv > Qw?

No

Compute shape bits S of V as:
case (Pv < Qw) : S =00
case (Pv==Qw) && (V >0): S =01
case (Pv==Qw) && (V < 0): S =10

ShapeCode += S;

Figure 5.3: A flow chart for pattern creation.

table-based prediction. Unlike more direct table-based methods, our predictions include

an attached "confidence" value; this allows us to track multiple prediction candidates and

select the most likely.

Figure 5.5 gives an overview of our prediction scheme. For each pattern, we keep

the three most popular repetition "distances" from a former occurrence to a later one—

the use of three candidates is based on experimentally balancing predictor performance

and accuracy. In our initial experiments, we notice a long pattern recurrent period can be

interrupted by a shorter period in the middle. By tracking three distances longer periods

72

5.2. Design

1

0.5

o

-0.5

-1
Variation (2)

Lv3

Lv2>

Lvl

LvO

01 I oo ! 01

(T)| ' (Tj
iCD
! Pattern
i i

00 00

CO V s (4)

Figure 5.4: Pattern construction example. (1) Acquire the raw hardware data. (2) Calculate the

variation between consecutive points. (3) Coarsen the variation into different levels; the triangles

inside each circle show the direction (negative/positive) of variation. (4) The final pattern creation

results; the arrow on the y-axis indicates that we obtain a level 2 pattern; the number above each

circle shows the 2-bit code for each variation. The four trailing zeros are omitted (the pattern has

died out), and the final pattern code is 010001.

are better able to survive. Prediction updates are performed by heuristically evaluating

these distances for a given incoming pattern to find the most likely, variable-length pattern

repetition. Our tri-distance selection algorithm updates the likely choices for an incoming

pattern p by tracking three repetitions D,, i e {0,1,2}:

• For each D, we keep a repetition length L(, measured by subtracting time stamps of

occurrences, and a "hotness" value H.

• The difference 7} between the current pattern occurrence p and the ending point of

each of D, is calculated.

• If the different rate DRt = \T,-Li\ x 100% between 7] and L, is smaller than a thresh

old T, the hotness Hi is doubled. The hotness of the best fit distance gets a further

73

Hardware Based Online Phase Detection

• •
• •
4 *

• •
• •
• •

Tri-Distance Selection Algorithm

Dual-Channel Selection Algorithm

£
Channel I

1 =

1
Channel I I

zzi
Comparison

c Prediction Result 2
Figure 5.5: Overview of the prediction mechanism.

doubling. We then right shift of the hotness values of all the three distances. Conse

quently, if the different rate of a distance is larger than T, the hotness of it is decreased

to a half. This adaptive approach ensures new, hot patterns can be quickly recognized

and less useful aging patterns to be discarded.

• If all the different rates of the three distances are larger than T, we replace the Dj

with the lowest hotness with a new Dj. The length, Lj is based on the distance to

the closest of the current set of D,, and hotness, Hj, is initialized to a constant value

representing a low but positive hotness in order to give the new pattern a chance to

become established. The value of Hj is chosen as five arbitrarily, which will not

become zero in two consequent right shift operations.

• We use the D, with the greatest hotness as the prediction result; Hi further functions

as a confidence value for this prediction.

74

5.2. Design

Steps

1

2

3

4

5

Distances

Di [100,200] L! = 100 //i = 10

£>2[70,180] L2 = 110 / /2 = 7

£>3[150,200] L3 = 50 H3 = 5

£>i [100,200] Li = 100 7/i = 10

D2[70,180] L2 = 110 H2 = 7

D3 [150,200] L3 = 50 H3 = 5

Dj [100,200] Li = 100 # ! = 40

D2[70,180] L2 = 110 H2 = 14

£>3 [150,200] L3 = 50 H3 = 5

Di [100,200] Li = 100 Hx = 20

D2[70,180] L2 = 110 tf2 = 7

£>3[150,200] L3 = 50 H3 = 2

£>i [200,297] Li = 9 7 //i = 20

D2[70,180] L 2 = 1 1 0 H2 = 7

D3 [150,200] L3 = 50 //3 = 2

Events and Actions

Get pattern at time 297

Compute DRi = 3.0%

Compute DR2 = 6.4%

Compute DR3 = 194.0%

Update the hotness

values, according to

the different rates

Shrink the hotness

values to half

Use D\ as the

prediction and

update its content

Table 5.1: A concrete example of the tri-distance algorithm. The difference threshold T is set to

10%.

A concrete example is shown in Table 5.1. Here we set the different threshold T as

10%. In the first step, a pattern comes at time slot 297 and the state of the distances are

shown in the second column. We then compute the different rate for each distance in step

2. In step 3, the hotness values are updated according to the different rates. D\ fits the best

and thus the hotness of Di is increased four times to 40. In step 4, we shrink all hotness

values to half. The hotness of D3, whose different rate is larger than T, is thus shrunk to a

half of the original value in step 1. Finally, in step 5, D\ is chosen for prediction and the

beginning point, the ending point, and the length are updated reflecting the latest pattern.

With the current prediction updated, we then make a final prediction from the global

set of pattern updates. It is frequently true that the current prediction, even if with a high

confidence value, does not belong to the most important recurrence of a program. We

75

Hardware Based Online Phase Detection

thus use two global prediction "channels" to avoid losing the more important prediction in

the history. We found that using two channels is sufficient to identify the most important

active period while keeping the overhead low. This setting also aims to limit the cost of

choosing among all possible patterns. Our dual-channel selection algorithm is similar to

the tri-distance selection algorithm:

• We have two prediction channels; each stores a prediction from a pattern, and each

channel holds a "hotness".

• If the current prediction from the tri-distance predictor matches one of the prediction

channels, the channel's hotness is increased by the prediction confidence

• In the case that the current prediction matches neither of the prediction stored in the

channels, the coldest channel is replaced by the current prediction.

• The channel with a higher hotness determines the global prediction result.

• After each global prediction, the hotness of both channels is shrunk to half.

5.3 Evaluation Metrics

Any specific technique provides a specific solution to a specific problem. To evaluate the

result of a technique, we specify metrics that cover the most important characteristics of

the specific problem on which the technique is applied.

A number of phase detection evaluation metrics have been provided. These metrics are

mainly rooted in their experience in different type of phase detection problems and cover

the most important aspects of particular type of phase detection problems.

In this section, we first give an introduction to the existing evaluation metrics. Most of

them are designed for evaluating stable phase detection results, and are thus not suitable for

our case. We then present a pair of novel metrics to measure the result of variable length

recurrent phase detection problems. This evaluation pair covers two important aspects of

recurrent phase detection: similarity and regularity.

76

5.3. Evaluation Metrics

5.3.1 Existing Metrics

Most stable phase detectors are based on measures of fixed length intervals. Basically,

a program is split into a set of flat, stable portions, called phases. The special portions

between phases are named phase transitions. Most of the existing metrics are based on

measures for these two different states of programs.

5.3.1.1 Stability and Average Phase Length

An outstanding stable phase detector should logically detect more stable phases than other

detectors when applied to the same program. Dhopapkar et al. [DS03] employ stability and

average phase length to compare phase detection results from different algorithms.

Stability is defined as the fraction of intervals that belong to a detected stable phase; a

higher stability means a more complete coverage of the program. Similarly, average phase

length is defined as the number of intervals that are part of stable phases, divided by the

total number of stable phases.

This pair of metrics are based on an assumption that phase detection is applied to a pro

gram with a large proportion of stable/flat portions. The metrics pair considers the phase

detection output with a larger number of intervals identified as stable and with longer con

tinuous flat intervals as a better result. These metrics are thus particularly designed for

stable phase detection and are not suitable for examining periodic phase detection tech

niques working on a data set with large variations.

5.3.1.2 Sensitivity and False Positives Rate

T. Sherwood et al. [SSC03] present a pair of measures to evaluate how often a phase detec

tion algorithm identifies phases correctly.

Sensitivity measures the ability of a phase detection mechanism to identify a phase

change after there is a "significant" performance change. It is defined as the fraction of

intervals showing significant performance changes with respect to the preceding interval

over all intervals.

The false positive rate is the fraction of intervals where the performance shows no

77

Hardware Based Online Phase Detection

"significant" change, but is nevertheless claimed as a phase transition by the detector.

Both of these measurements are dependent on the definition of "significant" changes.

They are not suitable for the case where there is no long term stable phases with respect to

a single level of granularity. For the situation shown in Figure 4.5 on page 57, if the value

of "significant" is set to a too small value, we will determine that each interval is different

from the preceding interval. Otherwise, if the significance is set too high, we will end-up

with an equally meaningless result, saying all intervals are in the same phase. Even if we

are lucky enough to select the optimal significance, this pair of metrics still fails to examine

one important aspect of the periodic phases: the regularity of the recurrences of phases.

Different from other metrics, the false positives rate measures the result from the down

side employing the concept that a better solution should also make fewer wrong decisions.

We also use the same concept when developing our evaluation metrics specific to recurrent

periodic phase detection.

5.3.1.3 Transition Correlation and Accuracy Score.

Nagpurkar et al. [NHK+06] propose an evaluation strategy based on a theoretical perfect

phase detector. The perfect detector provides a "correct" phase boundary solution for a

particular program's execution. By comparing the results of the perfect detector and a

given, real detector they define the transition correlation as

_, , BothlnPhase + BothlnTransition
TrCorrelation = ———

lotalEvents

BothlnPhase is the total number of profile elements for which both detectors agree it

is in a stable phase. Similarly, BothlnTransition is the total number of profile elements for

which both detectors agree it is in a period of phase transition.

In combination with Sensitivity and False Positive, they further introduce a novel accu

racy scoring metric, defined as
TrCorrelation Sensitivity False Positive

Score — 1 1
2 4 4

The Score weights correlation equally with the sum of sensitivity and false positive.

Although reasonable, the authors did not provide data or arguments to support the values

of weights they used, and other weightings and combinations might be possible as well.

78

5.3. Evaluation Metrics

Again, however, this pair of metrics is also designed for stable phases. More impor

tantly perhaps, it requires a "perfect detector" which is not available in many cases. Their

accuracy scoring metric examines the results from multiple directions. This idea is helpful

for us to design our evaluation metrics that will be introduced in Section 5.3.2.

5.3.1.4 Performance Variance and Coefficient of Variation

In the case where program presents relatively small performance variations, a small perfor

mance variance in a stable phase is a sign that the phase detector has identified the phase

boundary correctly [SSC03]. A poor phase detection result will show a comparatively large

performance variance within a phase due to the inclusion of more intervals than is strictly

necessary. Of course the concrete definition of this metric must be considered in the context

of the whole program variation, and thus is highly application-specific.

Coefficient of variation (CoV) is a statistical measure of standard deviation as a per

centage of the average:
stddev

CoV=
mean

Here, stddev stands for standard deviation; mean is the average of all measures of the

intervals in the same phase.

For stable phase detection, a lower CoV is desired; in an extreme case, all the intervals

in a detected phase would have exactly the same value in the measurement data, resulting

a CoV of zero, or perfect phase identification.

This metrics pair still assumes that intervals identified in the same phase performs sim

ilarly. Thus, these metrics still only work for stable phase detection results. Different from

other existing metrics, this metrics pair makes use of statistical computations other than

just fractions between the counts of intervals.

We aim at detecting periodic phases in Java programs that show larger performance

variance. More sophisticated statistical measures are required to give an evaluation on the

phase detection algorithms. The existing metrics are not enough for this situation, but some

ideas behinds these metrics are also helpful for us to design new evaluation metrics suitable

to recurrent periodic phase detection.

79

Hardware Based Online Phase Detection

5.3.2 Periodic Phase Evaluation

We have introduced a number of evaluation metrics for stable phase analysis results in

Section 5.3.1. Meanwhile, we also mentioned the reason why these metrics are not suitable

for measuring the variable-length program periodicity we investigate here. Nevertheless,

some idea behinds these metrics are valuable for developing new metrics, such as:

• To evaluate the result of a phase detection technique, it is not enough to only consider

one simple measure; a combination of multiple measures must be considered.

• To evaluate the results of a phase detection technique, it is not enough to only con

sider positive cases, but also the negative cases as well.

• To evaluate the results of a phase detection technique, it is not enough to only con

sider simple rates between different types of counts. Novel statistical computations

are required.

We define two metrics, Confidence and Possible Miss Rate (PMR). Confidence gives

a measure of the similarity between repetitive periods identified by our algorithm, while

PMR measures the amount of execution which could have been identified as repetitive but

which was not done so by the phase detection algorithm. These metrics are well-suited

long term variable length phase, and are practical to compute as well.

Both Confidence and PMR are based on the same pair of fundamental metrics measur

ing the similarity and regularity between execution segments that may be allocated to the

same repetitive group, i.e., the instances (occurrences) of the same pattern.

Suppose we have a pattern P which has N instances. All the instances P, compose

a group, which can be represented by an ordered set G(P) — {P,|/ = 1,2, ...,iV}. Each

instance P, is actually a segment in a program execution, and can be formally represented

as Pi = [bi,ei]. The bj and e, are the start and end time, measured as the time stamp number

of the data collection points of the segment P, respectively. We also have bi+\ > et, which

means the beginning point of P,+ i is later than the ending point of P,. We use two basic

metrics to quantify the similarity and regularity of a set G(P):

• Similarity:

80

5.3. Evaluation Metrics

We calculate the Pearson correlation between each pair, Px and Py, in G(P) as in in

formula 5.1,

y p p _ Z/j[Z/y

C{P»P,) = - T = " N (5.1)

V(2ra2-^)W)2-sr>
Given that 'G(P) has JV items, we can obtain totally ^ 2~ ' pearson correlation re

sults between each two segments in G(P). We thus use a mathematical average to

represent the similarity of a group. We denote this value as CG(Py.

IjC(Px,Py) 2*ZC(PX,Py) ,
Cm= w-ij = N(N\X\)

y),(x=h2,...,N-Uy = x+l,x + 2,...,N)

• Regularity:

The difference between start times for each pair of adjacent P, provides a basic "dis

tance" measure between pattern instances, i.e., the distance between Px = [bx,ex] and

Py = [by, ey] is by — bx. Without losing generality, here we assume by > bx. The extent

to which pattern instances are well clustered shows regularity; we measure it using

a k-means clustering algorithm [McQ67] applied to the set of all distance pairs. For

each cluster, we obtain the absolute value of the difference between each pair of item

and the centroid of the cluster. The sum of all these differences becomes a measure

of the regularity of the pattern group G(P), and we denote this value as DG^Py

Combining the above calculations, we provide an overall evaluation of G{P) as:

EG(P)=CG(P)*DG(P)

Given different repetition detections for the same pattern P a higher EG^ heuristically

indicates better results.

Our actual metrics can now be defined in terms of the above calculations.

• Confidence:

For each G(P), we generate a set G(P)-> by removing the / h pattern instance of G(P).

If G(P)-> has a better quality (a higher value of E) than G(P), then we have less

81

Hardware Based Online Phase Detection

confidence on the 7th pattern instance being a member of the group, and thus reduced

confidence in the grouping itself. Otherwise, the 7th instance makes the whole group

better and improves confidence.

We thus give a confidence score Conf(Pj) of j t h item of G(P) as:

/ D , , 1 0 EG(P)>EG(P)J
ConffP;) = < F

]! ^fim. otherwise

Confidence in the detection results of pattern P, denoted as Conf(P), is then the sum

of Conf(Pj) for all j .

Our final Confidence in a complete detection result on all m patterns Pl ,P2, ...,Pm

appearing in the result is the sum of confidence in each pattern weighted by the

number of the instances of the pattern.

Confidence basically indicates the degree to which the pattern detection results repre

sent at least a local maximum. High confidence indicates patterns are well-categorized,

while low confidence suggests some execution segments may be misclassified.

• Possible Miss Rate (PMR):

The PMR evaluates how much of the execution was potentially mis-identified as non-

repetitive. We define it as follows:

Number ofPMPI
PMR = — (5 2)

Number of PMPI+Number of DPI

In formula 5.2 above, PMPI stands for "Possible Missed Pattern Instances" and DPI

represents "Detected Pattern Instances". Somewhat dual to Confidence, the funda

mental idea of PMR is to add an execution segment as an instance of a pattern and

check whether this new grouping is better or worse.

Given a pattern detection result G(P), we treat all the execution segments that are not

covered by G(P) as potential elements of PMPI. We then insert each such execution

segment s into G(P) and build a new group G(P)S. Segment s is then included as a

member of PMPI if £G(P) < EG(P)S •

82

5.4. Experimental Results

Similar with that of the false positive rate described in page 77, the purpose of PMR is

also to measure the quality of the "noise resistance" property of a detection algorithm. The

difference here is that we use more novel statistics suitable for our case, detecting recurrent

period phases with less or no flat stable intervals.

5.4 Experimental Results

In this section, we make use of the metrics developed in the previous section to experimen

tally evaluate our technique.

5.4.1 Setting and Benchmarks

Our implementation is based on Jikes RVM 2.3.6; results were measured on an Athlon

1.4GHz workstation with 1GB memory (Debian Linux, 2.6.9 kernel). We report phase

detection results derived from LI instruction cache miss events. Benchmarks include the

industry standard SPECJVM98 suite [Stac], and two larger examples, SOOT and PSEU-

DOJBB. SOOT is a Java optimization framework which takes Java class files as input and

applies optimizations to the bytecode; in our experiments, we run SOOT on the class files

for JAVAC in SPECJVM98 with options "-app -O". The benchmark PSEUDOJBB is a vari

ant of SPECJBB2000 [StaOO] which executes a fixed number of transactions in multiple

warehouses. Our experiments run one to eight warehouses, 100 000 transactions in each

warehouse. For SPECJVM98 we use the recommended (large) input size "-s 100". For

quality analysis we built a canonical sample profile from 15 typical runs, while the phase

driven profiling results are the average of 5 runs. The threshold T for tri-distance selection

is set to 10%. Note that all the experimental results reported in this thesis use the same

system setting and benchmark suite introduced here. We will not repeat this basic system

and benchmark parameter settings in later chapters.

5.4.2 Results

We implement our online phase detection algorithm introduced in Section 5.2 in Jikes

RVM. Trace files recording pattern creation are generated and an offline analysis is ap-

83

Hardware Based Online Phase Detection

plied to evaluate the quality according the metrics described in Section 5.3.2.

The results are given in Table 5.2. The five data columns (columns 2 through 6) are the

number of different patterns, the number of occurrences of all patterns, Confidence results,

PMR results and PMR results on the most important (major level) patterns.

Benchmark

compress

db

jack

javac

jess

mpegaudio

mtrt

raytrace

soot

PseudoJbb

Average

Number of

Patterns

32

29

29

23

25

28

27

18

49

35

—

Number of

Occurrence

158

451

352

214

182

111

78

69

11106

7093

—

Confidence

0.94

0.95

0.94

0.93

0.88

0.91

0.85

0.85

0.99

0.98

0.92

PMR

(%)

60.78

35.94

22.65

32.42

48.71

68.71

27.58

16.17

28.45

37.80

37.98

PMR

Major(%)

2.78

1.25

0.05

6.58

5.88

13.49

0.10

4.44

0.03

0.01

3.46

Table 5.2: Pattern detection evaluation results. Hardware patterns are built based on performance

data of LI instruction cache.

On average we have a 92% Confidence that the segments identified by our algorithm

are actual repetitive portions. Unfortunately we also have a comparatively high average

PMR, 38%. This means we potentially miss over a third of repetitive segments in the exe

cution. Deeper investigation shows that most of the missed segments are likely instances of

patterns at the lowest levels (0 and 1). As described in Section 5.2, pattern constructions at

lower levels can be interrupted when a higher level variation is encountered. It is therefore

not surprising that many possible repetitions of lower level patterns are ignored by our al

gorithm; larger, more significant changes are expected to be more important for capturing

the important repetitive behaviour of a program, and our algorithm weights such patterns

higher. In Table 5.2, the "PMR Major" column gives the PMR value for only the upper

range of variance (levels 2 and 3). For these signals the data shows that we only miss on

84

5.5. Summary

average about 3.5% of possible repetitive periods.

We had tried other solutions for pattern creation and recurrence detection. Absolute

values vary a lot from program to program and are not appropriate to build a universal dis

cretization scheme for all programs. Variants such as considering only upwards or down

wards variations, encoding the distance between upwards and downwards performance di

rections, using finer or coarser level settings (8 levels or 2 levels) were also investigated.

Our design was represented we feel a local optimum with respect to obvious variation in de

sign parameters, and reasonable different settings showed no further general improvement

over our basic design for variable length phase detection.

5.5 Summary

In this chapter, we presented our approach for online phase detection for general Java pro

grams. Our technique is based on real world hardware information. There exist a number

of evaluation metrics for phase detection. However, most of them are designed only for

stable phase based on fixed interval measures. Some of them use counting on intervals

directly; some others make an assumption that the phases are flat and stable portions in

program executions. Since the existing metrics are not suitable for evaluating long term,

highly varying, periodic phases in general Java programs, we defined a set of novel metrics

to evaluate our results. Our experimental data demonstrates that our phase detection and

prediction mechanism can provide accurate results. On average, we have a high confidence

in the phase detection results, and our algorithm only misses a small number of possible

repetitions in program execution at major variation levels.

In upcoming chapters, we will show a series of runtime adaptive applications based on

our phase detection mechanism. As consumers of our phase information, we are able to use

them to further confirm the correctness and accuracy of our phase analysis results. They

are adaptive optimizations by themselves at the same time.

85

Hardware Based Online Phase Detection

86

Chapter 6

Phase Based Selective Profiling

Profiling is essential to some runtime and offline optimizations. In this chapter, we

present a selective runtime profiling technique which uses our hardware phase detection

mechanism. In Section 6.1, we first categorize the profiling technique and mention the

contributions of our work. The most important related works are given in Section 6.2. The

implementation details and the evaluation metrics of our profiling technique are discussed

in Section 6.3. Experimental results are presented in Section 6.4 and we summarize this

chapter in Section 6.5.

6.1 Profiling Categorization

Program profiling is an important technique for understanding the dynamic behaviour of

programs. To application developers, profiles provide insight into a program's resource uti

lization and help to identify performance bottlenecks. For compiler constructors, profiling

data can be used to guide static code optimization. For the designers of JVMs or other

runtime environments, both online profiling results or offline analysis on profiling data can

be used to improve runtime adaptive strategies.

Profiling data can be produced in some different ways.

• Program Instrumentation

87

Phase Based Selective Profiling

By inserting intrusive instrumentation in a running program, a wide variety of profile

data can be collected completely at a fine granularity. However, complete profiling

at a fine granularity can bring intolerable overhead for runtime system or huge trace

files for offline applications.

• Sampling

A sampling mechanism allows the system to collect a subset of the profiling events.

Most sampling systems are timer based; they examine events and program states only

once per timer interval or timeout. Sampling techniques can greatly reduce the cost

of profiling over more exhaustive techniques, albeit with a lower accuracy.

• Selective Profiling

General instrumentation or sampling techniques are actually applied throughout the

whole life of a program, i.e., profiles are continuously taken. However, a program

usually does most of its work in a comparatively small portion of its code. Hence,

it is not necessary to take profiles continuously across the whole program execution.

Compared with continuous sampling profiling, selective profiling can reduce the pro

filing overhead while keeping profiling accuracy at the same time. The key point to

benefit from selective profiling is to choose critical profiling points that reflect the

most important periods, or phases, of program execution.

Profiling techniques that provide detailed/accurate information with low overhead are

especially important for runtime environments. Even for offline work, selective profiling

can reduce the size of trace files largely without losing of important information. In this

chapter, we introduce a selective runtime profiling technique based on our hardware phase

detection results. We use low overhead hardware monitoring to reduce about half of the

profiling workload with almost no degradation in profiling accuracy.

6.2 Related Work

One of the crucial technical challenges for adaptive optimizations is to gather accurate pro

filing data with as low an overhead as possible. Profiles can be obtained from program

88

6.2. Related Work

instrumentation or from a sampling scheme. By adding instrumentation into a program,

we can gather accurate profiles at a fine granularity, and instrumentation techniques are

widely used in doing adaptive optimization. Dynamo [BDBOO], for example, uses instru

mentation to guide code transformations. Instrumentation techniques are also very useful

in program understanding; Daikon [EPG+06] is a system for dynamic detection of likely

invariants in a program through instrumentation. Even commercial JVMs provide a basic

instrumentation interface through Sun's JVMTI specification [Sunb]. Unfortunately, in

strumented profilers can also be fairly heavyweight, producing potentially large runtime

overheads [CKJA98, CFE99]. This inspires work on reducing instrumentation overhead

reduction, such as that by Kumar et al. in their "INS-op" system that optimizes (reduces)

instrumentation points [KCS05].

Alternatively, runtime profiles can be gathered by sampling. In a sampling approach,

only a subset of the execution events are considered, and this can greatly reduce costs.

Many systems, such as the Jikes RVM [AFG+00], use a timer-based approach to determine

sampling points. On some other systems, such as IBM's Tokyo JIT compiler [SYK+01]

and Intel's ORP JVM [CEG+05], a count-down scheme is used. An optimization candi

date method is chosen when an associated "counter" reaches a pre-defined value. Arnold

and Grove [AHR02] present an approach that combines the timer-based and count-down

schemes; based on the original timer-based scheme in Jikes RVM, a stride counter is set to

control a series of non-contiguous burst count-down sampling actions.

A sampling-based strategy allows the the system to reduce the profiling overhead with

the profiling accuracy as a tradeoff. Many techniques have been developed to reduce pro

filing overhead while maintaining profiling accuracy at a reasonable level. Zhuang et

al. [ZSCC06], for instance, develop an adaptive "bursting" approach to reduce the over

head while preserving accuracy. The key idea of this work is to do detailed, heavy profiling

only at selective points.

Our work uses program phase information to reduce the profiling workload. Phase

information can be very useful in locating stable or repetitive periods of execution at run

time, and has been used in various adaptive optimizations [CH02, SZD04, NKS05] and

designs for dynamic techniques. Nagpurkar et al. present a flexible scheme to reduce

network-based profiling overhead based on repetitive phase information gathered from re-

89

Phase Based Selective Profiling

mote programs [NKS05]. Their phase tracker is implemented using the S i m p l e S c a l a r

hardware simulator [BA97]. As described in Chapter 5, our implementation is done on real

world hardware and addresses the problem for general Java programs.

6.3 Methodology and Evaluation Metrics

6.3.1 Profiling Control Mechanism

Hardware
Events

Hardware

Counters

Hardware

Performance

Monitor

Pattern
Creation
Extension

Patterns
Pattern

Analysis
Model

Control
Events

Pattern Database

Runtime

Measurement

Component

Figure 6.1: Use recurrent phase detection to control profiling. This figure is the same as Figure 5.5

except that we replace the rightmost block "Other Adaptive Component" with a concrete adaptive

component addressed here, the "Runtime Measurement Component" of J ikes RVM.

As shown in Figure 6.1, we use the repetitive phase detection and prediction results to

control the normal runtime profiling mechanism of Jikes RVM. The profiling result is used

to guide adaptive optimizations. When there is no recurrent pattern, the runtime measure

ment component takes profiles as usual. When a recurrent pattern is detected, we compare

it with the previous prediction. If it changes the prediction result, we still keep collecting

profiles, but also save the profiles into an extra, variable-length local buffer. If the pre

dicted pattern is the same as the last prediction we stop the profiling and instead "replay"

the samples in the local buffer. Real program behaviour can of course drift from predicted

behaviour over time, and so to ensure profiling accuracy, we have a count-down, rechecking

scheme to re-enable the profiling periodically irrespective of prediction.

Different from a normal communication between organizers and the controller, here we

build a shortcut control channel between pattern analysis model and runtime measurement

component due to two considerations:

90

6.3. Methodology and Evaluation Metrics

• The interface to the runtime measurement component must be as simple as possible

in order to keep the perturbation to runtime measurement at a low level.

• Hardware performance may vary quickly. We want the decision made on current

hardware event data to be applied as soon as possible before it is out-of-date.

Here we simplify the control mechanism to a simple set/unset action on a profiling

flag. The runtime measurement component only works when the flag is set as TRUE. The

relation between pattern analysis and profiling actions is summarized in Table 6.3.1.

Pattern Analysis Result

No pattern

New pattern P

Recurrent pattern P

Prediction changed

Recurrent pattern P

Prediction not changed

Profiling Flag

True

True

True

False

Action

Profiling

Profiling

Profiling

Remember local results

Stop profiling

Reuse local results

Table 6.1: The relation between phase detection/prediction, profiling flag and actions of the runtime

measurement component in the phase driven adaptive profiling.

6.3.2 Profiling Metrics

Our application is an improvement to the runtime profiling component in Jikes RVM used

to support its adaptive compiler [AHR02]. This profiler samples execution periodically

in order to identify "hot methods" and make (re)compilation decisions; sampling rates

heuristically trade off accuracy for profiling cost. We provide two metrics for evaluating

the impact of phase prediction on profiling:

• Profiling Rate (Pr):

Profiling rate Pr is defined as:

Number of Actual Profiling Points „ ,.,. „
Pr = — * 100%

Number of All Possible Profiling Points

91

Phase Based Selective Profiling

An unmodified version of the runtime profiling mechanism has a Pr of 100%. Based

on phase predictions, we disable some profiling points; a lower value of Pr indicates

a reduction in the profiling workload.

• Coverage Score (Cov):

The Jikes RVM profiler makes use of the relative number of probe results in each

method. Our predicted results should thus produce the same intended effect.

A method profiling result R on methods Mi, i G {1 , . . . , m} can be represented as:

R = {<MhPerf>}

where Perf is the percentage ratio of samples in method M, to the total number of

program samples. Given a canonical sample result N = {< Mi,Perf >}. The Cov of

R is calculated as:
m

Cov(R) = ^Min(Perf,Perf)
i = l

To compare the accuracy of phase based profiling to the original profiling results,

we obtain a canonical N by averaging multiple standard executions of the original

profiling mechanism. In practice N is reasonably stable. The Cov for a phase based

profiling run compared with the average Cov of each of our standard runs provides

an accuracy score that indicates how much a given phase based profile varies from

typical runs.

6.4 Experimental Results

The profiling workload reduction and accuracy results are shown in Table 6.2. On average

we reduce the profiling workload by about a half, although results vary significantly by

benchmark. Profiling accuracy, however, is uniformly very high; on average we achieve a

94.3% accuracy, profiling at 51% of possible profiling points. For comparison purposes we

show the accuracy score for a simple profiling reduction strategy, denoted as "Simple 50%",

that just omits every other probe, also a factor of 2 workload reduction. On benchmarks

with small hot method sets, such as COMPRESS and DB, profiling results are not sensitive

92

6.4. Experimental Results

Benchmark

compress

db

jack

javac

jess

mpegaudio

mtrt

raytrace

soot

PseudoJbb

Average

Profiling Rate

52.2

37.5

46.0

54.8

47.3

49.7

77.7

97.9

27.2

30.0

51.02

Accuracy Score (%)

Phase Driven

91.72

85.61

95.55

99.32

91.92

92.47

97.15

99.97

93.83

94.71

94.31

Simple 50%

91.71

89.54

68.56

76.87

79.12

83.76

83.00

83.82

61.43

64.84

78.26

Table 6.2: Phase driven profiling workload reduction and accuracy.

Profiling Rate i i Accuracy Score tssss Simple 50% tw*awa

Figure 6.2: Profiling workload reduction and accuracy results.

93

Phase Based Selective Profiling

to profiling rate. On more complicated benchmarks, such as JACK, SOOT and PSEUDOJBB,

our technique is significantly more accurate, usually with less than a 50% profiling rate.

These results are also illustrated in Figure 6.2, in which "comp." stands for COMPRESS,

"mpeg." stands for MPEGAUDIO and "rt" stands for RAYTRACE. The obvious difference

between the "Profiling Rate" bar and the "Accuracy Score" bar for each benchmark demon

strates the effect of our profiling workload reduction mechanism. Of course, we understand

that the relation between the profiling rate and the accuracy of profiling result is not linear.

Usually, a N% reduction in profiling workload will not led to a N% in the accuracy. Just

as shown in the case for the straightforward "Simple 50%" solution, the accuracy results is

much better than the profiling rate which is 50% for all benchmarks. However, there is a

big gap between the accuracy bars for our solution and the "Simple 50%". Given the fact

that our solution takes similar or even fewer profiles than that of the simple solution, a on

average 16% better in the accuracy indicates that we select a more representative subset

to take profiles than the simple solution. This confirms that our phase detector discovers

the repetitive period in program execution well. We notice that on MTRT and RAYTRACE,

our solution cannot reduce the profiling rate as greatly as the others. The small number of

patterns for them shown in Table 5.2 on page 84 shows the reason. These benchmarks only

have a relatively small instruction working set. Thus there are only very slight changes in

the instruction cache performance, and our hardware pattern constructor cannot generate

enough patterns to feed latter processing and analysis.

6.5 Summary

In this chapter, we presented an optimized, phase-driven runtime profiling mechanism

which uses the phase detection and prediction technique described in Chapter 5. Our pro

filing mechanism achieves a significant reduction in profiling workload over the original

sampling mechanism in Jikes RVM and still ensures high accuracy. As a sample applica

tion, the profiling results confirm that our phase detection and prediction based on hardware

information is able to provide useful information to locate the most important, repetitive

behaviours in Java programs.

94

Chapter 7

Phase Based Adaptive Recompilation

Adaptive recompilation is crucial to high efficient JVMs. Better recompilation strate

gies can bring large benefits to the final performance. In this chapter, we discuss how hard

ware phase detection results can be used to improve adaptive recompilation decisions. We

provide both an offline limitation study and an online implementation. The motivation and

a list of contributions are given in Section 7.1. In Section 7.2, we discuss related work on

hot method set identification and adaptive optimizations in virtual execution environments,

e.g., JVM. Our offline and online implementation details are described in Section 7.3. Per

formance results and analytical measurements are reported in Section 7.4, and Section 7.5

provides detailed data analysis and discussion. Finally, we conclude and provide directions

for future work in Section 7.6.

7.1 Motivation

Many of today's Java Virtual Machines (JVMs) [LY99] employ dynamic recompilation

techniques as a means of improving performance in Java programs. At runtime, the dy

namic Just-in-Time (JIT) compiler locates a "hot set" of important code regions and ap

plies different optimizations, balancing the overhead costs of optimized (re)compilation

with expected gains in runtime performance. In this chapter, we introduce a mechanism to

select better (re)compilation points and optimization levels. Again, this adaptive recompi

lation mechanism is based on our hardware performance monitoring and recurrent pattern

95

Phase Based Adaptive Recompilation

construction results.

Building a high-performance, adaptive recompilation strategy in a JVM requires mak

ing resource-constrained choices as to which methods to optimize, what set or level of

optimization to apply, and when the optimized compilation should be done. Heuristically,

the earlier the method is compiled to its "optimal" optimization level, the better. Naively

assuming that optimal means more optimizations, the potential for such improvements is

illustrated schematically in Figure 7.1. In each image the x-axis is samples (normalized

time), and the y-axis is optimization level. More time at higher optimization heuristically

means better performance, and so the area under each curve roughly represents how well

a method is optimized. The upper left image shows a typical method history, compiled

initially at a low level, and progressively recompiled to higher optimization levels. Better

prediction of future behaviour allows a method to move more quickly between these steps

(upper right), or to skip intermediate steps (lower left). The lower right image demonstrates

the case of making an initial "ideal" choice, skipping all intermediate recompilation. Note

that even in the latter case at least one sample is required to identify the hot method. The

area under the curve (rectangle) summarizes the "amount" of optimized method execution.

On the bottom right a method is compiled to its highest optimization level immediately;

this roughly represents an upper limit for the potential performance gains, at least assum

ing simple models of method execution and optimization impact.

One of the key factors involved in finding ideal recompilation choices for a given

method is method lifetime. Method lifetime is an estimate of how much future execu

tion will be spent in a given method based on current and past behaviour; techniques

for estimating method lifetime are critical in making online recompilation decisions. A

straightforward solution used in the Jikes RVM [AAC+99, AFG+00, AAB+05] adaptive

recompilation component is to assume that the relative proportion of total execution time

that will be spent in a given method is the same as its existing proportion: the ratio of

future lifetime to past lifetime for every method is assumed to be 1.0. This is a generally

effective heuristic, but as an extremely simple predictor of future method execution time

it is not necessarily the best general choice for all programs or at all points in a program's

execution.

Our work aims at investigating and improving the prediction of future method execution

96

7.1. Motivation

3

2

i 1

O

OptO ^ M
Opt1 L : - I .-J
Opt2 . ' -
Opt3 c \ s s]

r rn

2

J 1
a.
O

0

0 2 4 6 8 10 12 14 16 18 20
Samples

sUH

J..M

m

H 4 , \ < J . Li.

0 2 4 6 8 10 12 14 16 18 20
Samples

J 1

i;
•

0 2 4 6 8 10 12 14 16 18 20
Samples

0 2 4 6 8 10 12 14

Samples

Figure 7.1: Sources of optimization due to improved recompilation decisions for a given method.

times in order to improve adaptive optimization decisions.

To achieve better predictions we divide Java program execution into coarse phases;

different phases imply different recompilation strategies, and by detecting or predicting

phase changes we can appropriately alter recompilation behaviour. We perform an offline

analysis of the practical "head space" (maximum potential improvement) available to such

an optimization that depends on a post mortem analysis of program traces, allowing the

method recompilation system to perform as in the bottom right of Figure 7.1. We also

develop an online analysis that is more practical and dynamically gathers and analyzes

phase information. To keep our online system lightweight, we base our phase analysis on

hardware counter information, recovering high level phase data from low level event data.

Based on our implementations in Jikes RVM, we observe an average of 8.5% and up to

21% speed improvement in our benchmark suite using the offline approach, and an average

of 4.5% and up to 18% speedup in our benchmarks using our online system, including all

97

Phase Based Adaptive Recompilation

runtime overhead.

Although these results demonstrate significant potential, changes to the dynamic re-

compilation system introduce feedback in the sense that different compilation times and

choices perturb future recompilation decisions. There are also many potential parameters

of our design, and different kinds of benchmarks can respond quite differently to adap

tive recompilation—programs with small, core method execution sets and long execution

times can be well-optimized without an adaptive recompilation strategy, while programs

with larger working sets and more variable behaviour should perform better with adaptive

recompilation. We consider a number of confounding factors and include a detailed inves

tigation of the source and extent of improvement in our benchmarks, including potential

variability due to choice of recompilation algorithm. Our results show that our phase based

optimization provides greater benefits in terms of performance, stability, and consistency

than current designs or simpler optimizations.

Contributions of this work include:

• We give the results of an offline study of the head space for optimization in the

selection of hot-method recompilation points based on our phase information. In the

case of repeated or allowed "warm up" executions our study represents an effective

optimization by itself.

• We present a new dynamic, phase based hot-method recompilation strategy. Our

implementation incorporates online data gathering and phase analysis to dynamically

and adaptively improve recompilation choices and thus overall program performance.

• We provide non-trivial experimental data, comparative results, and detailed analysis

to show that our design achieves a significant and general improvement. Potential

variations, identification of influences, and consideration of the precise source of

improvements and degradations are important for optimizations in complex runtime

services of modern virtual machines.

98

7.2. Related Work

7.2 Related Work

Virtual machines provide several advantages over traditional, statically compiled binaries,

including platform independent representation, some safety guarantees, automatic mem

ory management and dynamic program composition and optimization. However, in many

cases, these dynamic features introduce new challenges for achieving high runtime perfor

mance. In response to this situation, many adaptive techniques have been investigated to

improve performance by monitoring a program's behaviour. The most important charac

teristic of the runtime techniques used in modern virtual machines is to do optimization

selectively.

Modern interpreter-based JVMs have employed a variety of techniques to improve per

formance over the naive switch-based implementations. Using threaded code [Bel73] is

probably the most important improvement for Java interpreters. Note that the word "thread"

here has nothing to do with the thread in concurrent programming. With a basic direct-

threaded technique, the interpreter jumps with indirect branches from the implementation

of one bytecode to the next, eliminating the central dispatch. Recent work has improved

on basic threading by using runtime translation. For example, Gagnon and Hendren imple

ments an inline-threaded interpretation [GH03] scheme in SableVM [GH01].

In a compiler based JVM (JIT), bytecode is compiled into native code immediately be

fore it executes, which is much faster than interpretation. However, the JIT strategy intro

duces compilation overhead before any code can execute. This can impose a heavy burden

if complex optimization actions are employed during the compilation course. Therefore,

compiling and optimizing all the code of a program can easily introduce far too much

overhead, both in time and resources. JIT compilers thus typically attempt to identify a

smaller hot set on which to concentrate optimization efforts. This kind of adaptive opti

mization allows sophisticated optimizations to be applied selectively, and has been widely

explored in the community [KS03, PVC0.1, AFG+00]. Most of this work focuses on meth

ods as a basic compilation unit, but other choices are possible; For instance, Hansen's

AF [Han74] recompiled basic blocks and single-entry regions with loops selectively. Wha-

ley presents an approach to determining important intra-method code regions from dynamic

profile data [WhaOl]. On the other hand, Chambers and Ungar [CU91] apply optimizations

99

Phase Based Adaptive Recompilation

across method boundaries via inlining.

Modern virtual execution environments often have a compiler with more than one op

timization level. In general, code compiled at a higher optimization level provides faster

speed as a trade-off for heavier compilation overhead. In a system with multiple optimiza

tion levels, only recompiling the most important (hot) code to a higher level is a com

mon sense, i.e., making selective optimization. In a system such as in SELF-93 [HU96],

all methods are firstly compiled into a non-optimizing level and the the optimizing com

piler is invoked only for frequently executed methods. SELF-93 uses method invocation

counts to figure out hot method, the counts decaying over time. Detlef and Agesen [DA99]

use a fast JIT compiler and a slow "traditional" compiler adaptively. They found that

a combination of the fast JIT and judicious use of the slow JIT on the longest running

methods shows the best results on their benchmark suite. The Sun's HotSpot Server

JVM [PVC01] resembles the technique used in SELF-93. Similarly, the IBM Mixed-mode

interpreter system [SYK+01] also relies on invocation counts to determinate recompilation

decisions. In addition to a counter-based selective optimization heuristic, the Intel's ORP

JVM [CEG+05] also use a count-down scheme to identify hot methods.

All these counter-based policies rely on a myriad of heuristic tuning values. Recently,

more theoretically involved policies have received more and more attention. Kistler et

al. [KF03] consider a sophisticated online decision for driving compilation in the Oberon

Virtual machine. Each compiler phase estimates its own speedup based on a rich set of

profile data. Jikes RVM [AFG+00] uses call stack sampling to support a model-driven

optimization policy, relying on a cost-benefit model. Krintz [Kri03] provides a dynamic

compilation system based on Jikes RVM. Offline profiling results for the top hottest meth

ods are annotated and works as a suggestion for a compilation task to the adaptive engine.

Our offline mechanism follows a similar style, but stores all recompilation history from

multiple runs and makes a summary trace from the traces of these multiple executions.

In all these efforts, recompilation overhead is reduced by avoiding compiling and op

timizing rarely used code, based on either the assumption that "future = past," or by using

simple counter-based schemes to determine relative execution frequency. Our work here

augments these approaches by concentrating on the specific problem of providing addi

tional predictive information to the adaptive engine of a JVM in order to improve optimiza-

100

7.3. Methodology

tion decisions, rather than providing the concrete adaptive optimization framework itself.

7.3 Methodology

We have introduced our hardware event based phase detection and prediction model in

chapter 5. Employing phase information, the adaptive recompilation engine of Jikes RVM

can potentially improve performance by executing highly optimized code more often and

decreasing the overhead of successive recompilations. We investigate the improvement

from two perspectives. The first is an offline technique based on trace data; this mainly

serves to give a sense of the maximal benefit that could be achieved given optimal informa

tion. The second is a purely online implementation, that uses our low level profiling and

online phase detection systems to improve predictions of future life for methods.

7.3.1 Adaptive Recompilation System in Jikes RVM

Before describing both of the offline and online recompilation mechanisms, we first make

the current adaptive recompilation strategy used in Jikes RVM clear to our readers.

The adaptive recompilation system [AFG+00] of Jikes RVM involves three main sub

systems. A runtime measurement component is responsible for gathering method sam

ples. An analytic model reads this data and makes the decisions on whether to recompile

a method and the appropriate optimization level. These recompilation decisions are fed to

the recompilation subsystem which carries out the actual recompilation.

The crucial point is the decision-making strategy of the analytic model. This selects

between different optimization levels, based on an estimate of the potential benefit of each

level. For each optimization level i (0 <i <N), Jikes RVM gives an estimate of the exe

cution speed Spi of a method m. The value of TV can be different for different platforms; in

our system, N = 3. A recompilation decision is then made based on the following compu

tations:

• Tp: The time of the program already spent in m. It is computed as

Tp — SampleNumber * TPS

101

Phase Based Adaptive Recompilation

TPS stands for "time per sample," a constant value in Jikes RVM.

• 7}: The expected time of m at level i, if it is not recompiled. In the original imple

mentation, the system assumes:

Ti = Tp (7.1)

• Cy. The cost of recompiling method m at level j , for i< j < N.

• 7): The expected time the program will spend in m in the future, if it is recompiled

at level j :

SPj

The analytic model chooses the level j that minimizes the value of C, + 7), the compile

time overhead and expected future time in m. If Cj + 7) < 7}, then m will be recompiled to

level j .

7.3.2 Offline Trace-Driven Mechanism

Recompiling a hot method to an ideal optimization level at the earliest point will in general

maximize the benefit of executing optimized code, as well as eliminate further potential

compilation overhead from the method. For a recompilation mechanism based on runtime

sampling data, knowledge of the final optimization level of a method at the time when the

first sample of it is taken represents ideal results with minimal profiling overhead. Optimal-

ity is bounded by the accuracy of the estimation, including heuristic choices that balance

optimization costs and benefits. Here we implement an offline trace-driven optimization

technique to discover the approximate improvement head space if optimal choices are made

in the sense of attempting to maximize the heuristic benefit.

Implementation of the offline mechanism (Offline) is straightforward. A set of traces

from training runs is gathered, analyzed, averaged, and used in a subsequent replays of the

program to select an appropriate optimization level for each recompiled method. Use of

multiple runs accommodates minor variations in performance; sources of noise in recom

pilation data is discussed more fully in Section 7.5.

Implementation details include that:

102

7.3. Methodology

• First, training data is gathered; a Java program is executed N times to produce trace

files 7}(1 < i<N).

• Each trace 7} is composed of a set of pairs < M, L, >. M is a particular method, and

L{ is the last and highest optimization level of M in 7}.

• A summary trace 7̂ is constructed, composed of pairs < M,LS >. For a given M,

Ls = MOX(LI,L,2,...,LN).

• In the tested runs, Ts is loaded at the beginning of execution. Each time a method

sample M is taken, if we can find a record < M,LS > for it in 7̂ , we recompile

M to level Ls directly, and mark the recompilation as a final decision. No further

compilation will be applied to M.

• It is possible that speed gains due to better adaptive recompilation allows a method

not recompiled in any training run to be added to the hot set in an actual run. If we

cannot find a record for M in Ts, M is treated per Jikes RVM's original recompilation

strategy. Note that in our experiments such cases are rare and involve infrequently

executed methods; the impact of this divergence in hot set identification is reasonably

expected to be small.

Performance results from the offline strategy are given in Section 7.4.1. On some

benchmarks the benefit obtained is quite significant, confirming both the potential available

to a more flexible online optimization, and the value of our offline design as an optimization

unto itself.

7.3.3 Online Mechanism

The success of an online recompilation system depends on the accuracy of method life

times, or the future time spent in a method, as well as other recompilation cost and benefit

estimates. Underestimating future method execution time results in missed optimization

opportunities, while overestimating runs the risk of being overly aggressive in compila

tion, wasting time on unnecessary recompilations and/or high optimization levels. This is

particularly true early and late in program executions, where code execution variability is

103

Phase Based Adaptive Recompilation

high and the expectation of continued behaviour is lower. This can also occur when pro

grams make major phase changes, shifting into markedly different modes of execution. The

kernel of our online mechanism is thus a system that detects coarse grained and variable

length program phases and uses this information to control the relative aggressiveness of

the recompilation subsystem in Jikes RVM. The resulting improved recompilation choices

improve overall program performance.

The existence of basic startup, core execution, and shutdown phases are well known.

Our phase identification is based on identifying age, but further allows programs to reju

venate, as a means of allowing for the identification of multiple major execution phases.

These phases imply distinct patterns of control for recompilation, and are classified as fol

lows:

• Newborn: At startup a Java program tends to spend time on a set of methods that

perform initialization actions, and these are often not executed after basic setup is

complete. When considering whether past behaviour is a good predictor of future be

haviour we can heuristically expect that the future execution time of a given method

will be less than the past: Future < Past.

• Young: After a period of time, the program comes into the main application or kernel

code and will spend a comparatively long time on the same set of methods. Methods

executed at this stage are likely to be executed even more in the future: Future > Past.

• Mature: After the program works within its kernel code for a while, we consider the

program to be mature. In this case, we assume the runtime profiling subsystem has

gathered enough samples to support the recompilation engine in determining suitable

optimization levels. Here the original estimate that future and past performance will

be similar is most valid: Future RS Past.

• Rejuvenated: Experience with coarse grained phase analysis of Java programs shows

some programs will have distinct, kernel-based phases, and at runtime will have more

than one hot method set. When a program enters a new hot set it thus transitions to

the young phase again. Once so rejuvenated as such, however, we have a slightly

more cautious estimate as to the future behaviour of the new hot set: Future > Past.

104

7.3. Methodology

Phase

Newborn

Young

Mature

Rejuvenated

Hardware Event Behaviour

No recurrence of patterns

Recurrence of patterns

Less new patterns

More old patterns

More new patterns

Invalidation of old patterns

Recompilation

Less aggressive

More aggressive

Moderately

aggressive

More aggressive

Table 7.1: Program phase, hardware patterns, and recompilation aggressiveness.

The second column of Table 7.1 describes how program phases are heuristically deter

mined from the underlying hardware event data. Changes in how low level patterns are

identified in the data suggest corresponding changes in the program code, and thus phase

or age. At program startup, a wide variety of "execute-once" startup code is executed, and

few recurring low level patterns are found. A young program will start to show significant

recurrences of new patterns as it begins to execute its kernel code. The mature phase is de

tected by noticing the balance tipping from discovery of new patterns to recurrence of old

patterns, and the rejuvenated phase by a subsequent loss of old patterns and introduction of

new ones.

Understanding program phase allows for heuristic control of the relative aggressiveness

of the recompilation engine. In cases where the future performance is not equal to the past

the expected execution time should be appropriately scaled. The third column in Table 7.1

gives a summary of how age affects the behaviour of the recompilation engine. A newborn

program is less likely to repeat its behaviour, and recompilation should be more conserva

tive. A young program enters into its kernel; the new code is likely to be executed much

more than it has been in the past, and recompilation becomes aggressive. As the execution

enters a mature phase aggressiveness is decreased; in such a relatively stable environment

the recompilation engine is expected to have sufficient past data for making good decisions.

A program that enters a new significant kernel of execution requires again ramping up the

aggressiveness of recompilation.

The aggressiveness of the adaptive recompilation engine is controlled by using a scaling

105

Phase Based Adaptive Recompilation

parameter in the estimation of future execution times. We introduce a variable futureEstimator

and change the definition of 7} in Formula 7.1 to:

Ti — Tp * futureEstimator (7.2)

Figure 7.2 shows a high level overview of the complete online algorithm. Each hard

ware pattern PAT has a field occNum which remembers the number of occurrences. If the

adaptive recompilation model finds a recurring PAT, such that, PAT.occNum is more than

one, the estimated "age" of a program {Prog.age) is increased. When Prog.age is larger

than a threshold youngThresh, the program has left the newborn phase and become young.

From then on, each time there is afresh pattern PAT such that the occurrence number is

less than a threshold matureThresh, the value of futureEstimator is increased; otherwise

its value is decreased. A larger value of futureEstimator drives the adaptive recompilation

model to make more aggressive recompilation decisions, assuming methods will run for

longer than currently estimated. Fixed upper and lower bounds protect the futureEstimator

value from diverging in cases of extended bursts of fresh or mature patterns. Based on

initial experiments we limit futureEstimator to the range [0.9,5.0].

7.4 Experimental Results

The experimental platform and benchmark suite are the same as we introduced in Sec

tion 5.4.1. For performance evaluation we measured our benchmarks quantitatively using

a baseline (original), and using our offline and online strategies. Overall execution time for

the online approach includes all overhead for phase analysis and low level profiling. In the

case of the offline approach the overall execution time includes the overhead of processing

the recompilation trace. Full results for our benchmarks in absolute and relative terms are

shown in Table 7.2. The "Original" column represents the data collected from the version

of Jikes RVM where we began our work. This "Original" version already includes the

whole adaptive engine.

To gain greater insight into the source of improvement, and inspired by our intuition as

to potential performance gains in introductory Figure 7.1, we also developed more abstract,

106

7.4. Experimental Results

Get a pattern PAT

futureEstimator =
MaxValue

futureEstimator =
MinValue

~yv*~
QnT)

Figure 7.2: An overview of the algorithm used in the computation of the futureEstimator.

analytical measures that summarize the amount of optimized code executed. Our abstract

measures of optimization quality are shown in Figure 7.3 and Figure 7.4.

To measure the relative proportion of code executed at different optimization levels we

developed a method-level speed (MLS) metric that can be applied to individual methods

in individual program executions. MLS is computed as the sum of the time, measured

in samples, spent at different optimization levels, weighted by the proportion of time at

each optimization level. Each partial sum for an optimization level in this calculation is

scaled by an estimate of optimization quality, namely the speed of the code under the given

optimization level; Jikes RVM provides fixed estimates for these latter values. Figure 7.3

107

Phase Based Adaptive Recompilation

Method: getNextTokenFromStream

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

50 100 150 200
Number of Samples

Method: RunTimeNfaState.Move

20 40 60 80
Number ot Samples

Method: resolvedNewScalar

• !

;

;

i

!

!

' !

:r:: : ':
Original —

! i

'

Original '
Offline

f

1

1

1

\

,
;

(

i

Driginal ^ ^ ~
Oflline

200 250 300
Number of Samples

450 500

Figure 7.3: Dynamic Method Level Speed measurements over time for each of our baseline, offline

and online recompilation approaches. Each graph is a distinct method from JACK.

108

7.4. Experimental Results

40000

35000

30000

250O0

20000

15000

5000

Original •—
Offline
Online - - -—

•;-'-"-'"""'"'"'

_ _[
J - - . : : .

jack

i

S ^-r---""1-'1"*"""

'^-^~~

! !
_ _ * , - « • — "-''* j

j _ - 1

. 1 _ _

l : • • •

18000
16000
14000
12000
10000
8000

4000
2000

: 1S = .

—i „..! a^-.*™S.-.-w. ,:,-r

jess

. _ . . ; , - - - - -

-••^..'^.//^j~^-^'.
• ' ' ^ ^ ^ ^ — ^

la**™^*"

! • • ' -

!

_ . — - • • * " "
^_ , • » ™ — — • — . . — . »

60000

50000

40000

30000

10000

Original •
Offline •
Online —

\'"".'__—-*=

i ~ "'
i

mpegaudio

. . - -

. . - - " ;
_ - „ — "

. . . - • -

\ \ \

.'..v.:.'--*'-"-
,^..-r-^-- „ , _

>-„»-* — - - .- -

250000

150000

100000

50000

Original ——•
Offline _•
Online — / • -

,' |

• J > ^ T

i s S ^
^ ,

- - - - - ; : ^

;

PseudoJbb

-.-.-..-.-.i.w..—-^t;

200000

180000

160000

140000

120000

100000

80000

60000

40000

20000

Original -
" Offline -

Online •

__«*»

—

-!.--'

; \ I

_ _ . - - " j ; ; -V - - - - - - - " ' " *
,v * i——"•-"•-*"""" r

..s'f —i r—' " 1

^~~£ZZZZ--~-—~ *~

<* ' -

Figure 7.4: Weighted optimized methods: JACK, JESS, MPEGAUDIO, PSEUDOJBB and SOOT.

109

Phase Based Adaptive Recompilation

Benchmark

compress

db

jack

javac

jess

mpegaudio

mtrt

raytrace

soot

PseudoJbb

Average

Original

Time (s)

15.75

37.97

22.59

11.78

18.11

20.24

15.14

14.35

303.12

753.95

-

Offline

Time (s)

15.55

37.22

20.08

10.72

14.25

17.81

14.29

13.30

278.45

705.90

-

Impr. (%)

1.3

2.0

11.2

9.4

21.3

12.1

6.4

7.3

8.1

6.4

8.5

Online

Time(s)

15.73

37.72

19.78

11.10

14.87

19.79

15.42

14.21

291.28

735.62

-

Impr. (%)

0.1

0.6

12.5

5.7

17.9

2.3

-1.8

0.8

3.9

2.5

4.5

Benchmark Characteristics

Patterns

157.9

450.5

343.5

193.9

204.5

103.6

58.8

63.9

2542.3

7832.8

-

Optimized methods

17.6

25.3

90.0

36.9

50.0

58.9

36.4

35.3

408.2

331.8

-

Table 7.2: Execution results, number of patterns created in the online version, and number of

methods optimized for our benchmark suite. Values are the arithmetic average of the middle 11 out

of 15 runs. "Impr." stands for the improvement over the original version.

shows the results for a measurement of MLS for the three methods with the largest MLS

values in JACK, ordered from top to bottom. The x-axis in these graphs is time, measured

in samples, while the y-axis is the estimated speed for different optimization levels in Jikes

RVM. An upward step in the graph corresponds to a recompilation at a higher optimization

level. The size of the area under each curve gives an estimate of how MLS changes under

different recompilation strategies—greater area means greater use of optimized code, and

hence heuristically improved performance.

In Figure 7.4 we show a summary of the same basic property, but summarized over

the entire execution and all methods. To simplify calculations, method contributions are

weighted here not by actual number of runtime samples, but by static method size. Note

that we are aware that a dynamic version of executed code size is potentially more accu

rate, but we have found that the static method size is sufficient to discover the main trend

of the execution. Runtime code to measure dynamic execution sizes also brings extra run

time overhead, which if not carefully optimized may pollute the experimental results. This

therefore provides a more approximate picture of behaviour, akin to a static versus dy

namic analysis, but also demonstrates the effect is robust in the face of different and less

110

7.4. Experimental Results

precise forms of evaluation. In these figures the x-axis is normalized execution time, and

the y-axis is "weighted optimized methods", a sum of weighted method size of all sampled

methods, where each weighted sum is again scaled by the appropriate optimization speed

factor provided by Jikes RVM. The interpretation of these graphs is similar to that used

for Figure 7.3; a higher curve means there are more methods optimized to a higher level

and the execution speed should be faster, with the area underneath approximating relative

amount and quality of optimized code executed.

7.4.1 Offline

The results of our offline mechanism in absolute terms as well as relative improvement

over the original version are given in the third and fourth columns of Table 7.2. The offline

version does achieve significant improvements on some benchmarks. On JESS, it improves

execution time by 21.3%. On JACK, JAVAC and MPEGAUDIO, the improvements are also

quite large. On average, the offline version saves 8.5% of the execution time, although the

effect is not uniform; for some benchmarks, such as COMPRESS and DB, there is little to no

improvement at all. We will discuss these benchmark-specific behaviours in more detail in

Section 7.5.

In the weighted optimized methods graphs, the curves for our offline implementation

are shown as dashed lines. Corresponding with the faster execution speeds, these curves are

also the highest ones in these graphs. Interestingly, in most of the benchmarks, there is only

one major upwards trend. In the graph for SOOT, however, there are two such increasing

phases. This shows the existence of programs with multiple major phases that can require

large and relatively abrupt changes in identified hot method sets.

7.4.2 Online

The execution time results for the online mechanism are shown in the fifth and sixth

columns of Table 7.2. For benchmarks where the offline version shows a large improve

ment, the online version also performs well. We obtain up to nearly 18% improvement for

JESS, quite close to the 21 % improvement found for JESS offline. On average the online ver

sion achieves a 4.5% improvement, about 53% of the possible performance improvement

111

Phase Based Adaptive Recompilation

demonstrated in the offline version. For the 4 benchmarks that responded most positively

to the offline version, the improvement online is on average 9.6%, or 71% of the offline

result.

In the weighted optimized methods graphs, the curves for the online version are shown

as dotted lines, and typically lie between the curves for the offline and original implemen

tations. In the graph for SOOT (the bottom graph in Figure 7.4), the online curve reflects the

multiple phases that are more clearly seen in the offline curve; our online system correctly

identifies the rejuvenated phase, as we discuss in more detail in Section 7.5.1.

Further details on performance can be seen in the behaviour of specific methods, as

shown for JACK in Figure 7.3. As with the weighted optimized method results, the offline

version has the greatest area and provides higher optimization earlier, with the online im

plementation lying between the offline and original versions. Note the bottom graph shows

the offline implementation optimizing the method later than both the original and online

versions. This is a result of resource management in the recompilation system, prioritizing

requests for relatively fast lower levels of optimization over more expensive requests for

longer, highly optimized compilations.

7.4.3 Variance and Overhead

Figure 7.5 shows 99% confidence intervals for our original, offline, and online data mea

surements. Our evaluation is experimentally quite stable and deterministic, with confidence

ranges for the three variations generally showing good separation. Note that the intervals

for JACK are among the largest and have clear overlap; the « 1% performance gain for

JACK online as opposed to offline could be attributed to data variance and/or the intrinsic

imprecision of simple optimization benefit/cost estimates. We discuss accuracy and noise

concerns in depth in the following section.

Overhead in profiling systems is always a major design concern. In our case we make

use of hardware counters that are sampled at every process context switch; at a few tens

of machine cycles per read and only on the order of thousands of context switches over

a program's lifetime this technique is extremely cheap. Pattern construction and phase

analysis provide the bulk of our actual overhead, and to measure total overhead costs we

112

7.5. Discussion

1.2

- 0.8
o

o
2 0.6
CD

N

"5
E 0.4
o
Z

— - - I * *i* ftl

i: i I

^ & *

i : :

^ it

T

|i|

;-E } • • !•••;

4
It

¥ *
I;

l-i

* y
:*: i

,1 ; I
l-I;

0.2

comp db jack javac jess mpeg mtrt rt soot PJbb Avg

Original i i Online L::::::::"J Offline LV.V.V.V.V.'J

Figure 7.5: Normalized execution time O/SPECJVM98, SOOT and PSEUDOJBB with 99% confi

dence interval errorbars for each of our three test scenarios: original, online and offline.

compared the original, baseline Jikes RVM with an implementation of our online technique

that computes phases as normal but does not actually change the adaptive recompilation

settings (futureEstimator). Figure 7.6 shows the computed relative overhead. Overhead

comes from sources such as hardware monitoring, pattern construction, phase prediction,

and building control events for the recompilation component. On average there is a 1.33%

slowdown across these benchmarks due to our data gathering and phase analysis system.

There is always room for improvement, but this relatively small cost is in most cases greatly

exceeded by the benefit, and demonstrates the practical low overhead of our technique;

again, speedup and other experimental data includes all overhead.

7.5 Discussion

Initial recompilation choices affect later recompilation choices, and there are many poten

tial parameters and choices in our, or any, recompilation design. A good understanding of

113

Phase Based Adaptive Recompilation

2.5

2

g 1.5
• o
as
0)

JZ
k_
(D

a 1

0.5

0
comp db jack javac jess mpeg mtrt rt soot pjbb Avg

Figure 7.6: Relative overhead in the online system compared with the original.

potential variation and relative performance gain is therefore important to making good,

general selections of recompilation strategies.

We have chosen algorithmic parameters to include resource requirements and per

formed extensive initial experimentation and numerical validation of the parameter space

to justify our main approach; this numerical evaluation is described in [GV07]. Here we

discuss various factors that can influence our performance, and present data validating the

general stability and effectiveness of our design. We first consider different benchmark

characteristics that are important in our approach. This is followed by a detailed com

parison of our design with other simple optimizations to the recompilation system, again

showing the practicality of our work and the generally good quality of the result.

7.5.1 Benchmark Characteristics

Benchmarks in our study demonstrate a wide range of responses to our optimization. Sev

eral benchmark-specific factors can be seen to influence whether and where performance

will be realized using our techniques. Benchmark length, the stability of the hot set, as well

114

7.5. Discussion

as more general sensitivity of the program to our profiling and optimization systems can all

affect the relative success.

Benchmark Execution Time

In our benchmark suite, the SPECJVM98 benchmarks finish in a comparatively short time

while SOOT and PSEUDOJBB execute for an order of magnitude or so longer, and also

recompile many more methods than other benchmarks, as seen in the last column of Ta

ble 7.2. Longer running programs have an advantage in that recompilation has more data

to work with as there are more sample points. Furthermore, any reduction in speed due

to less optimal recompilation choices can be amortized over a longer period and often a

larger hot set. For shorter programs our mechanism helps the VM locate the hot set more

quickly; the reduction in overhead obtained by promoting methods more quickly to their

final optimization level is also a greater benefit. This factor can be seen in the results for the

longer and shorter running programs. SOOT and PSEUDOJBB show an average improve

ment of 7.3% and 3.2% using offline and online analyzes respectively, while the other,

shorter benchmarks improve on average of 8.9% and 4.8%.

Hot Set Stability

We observe that many programs contain a single hot set of methods that is more-or-less

stable over the course of execution. Some benchmarks, however, do have large, distinct

execution phases, and show a clear hot set variation. SOOT in our benchmarks demonstrates

this quite clearly; in Figure 7.4, the SOOT curve of the offline version obviously has multiple

stages. Each large incline corresponds to a major change in the hot set.

Using our offline implementation with perfect knowledge of the future, we can detect

the hot set variation or rejuvenated phase correctly and quickly, resulting in relatively steep

slopes upward as the new hot set is optimized. The original implementation, on the other

hand, has no apparent sensitivity to this change in program behaviour and shows a gradu

ally increasing curve with no obvious bursts of optimization. Our online implementation

achieves an intermediate level between these two. It has a moderate sensitivity to the hot

set variation and goes through a couple of smaller steps at approximately the same points

115

Phase Based Adaptive Recompilation

in time, rising more quickly to the level of the offline analysis.

An unfortunate side effect of our optimization for detecting rejuvenation, or variations

in the hot set is a certain overzealousness of optimization toward the end of execution.

The online curves of JACK, MPEGAUDIO and SOOT in Figure 7.4 tend to rise above even

that of the offline curve by the end of execution, indicating that optimized recompilation

may be being overused, recompiling and optimizing methods that will only be used in the

final fraction of program execution. We experimented with identifying a termination phase,

but termination tends to look like any other phase change (rejuvenation) with our current

pattern analysis and data. Solutions based on incorporating extra, high level information

such as knowledge of termination-specific methods may be more profitable. In practice,

these sub-optimal online decisions at termination time do not have an overly large impact,

and so we leave reducing this "tail" problem to future work.

Appropriateness of Data Source

It is interesting that low level events can expose high level behaviour, even for complex,

object-oriented programs with non-trivial control flow. We have successfully used the I-

cache miss rate as a base event, but this does impact not only what can be measured but also

how it can be measured, and of course other choices and event combinations are possible.

Although a good choice in general, for some benchmarks I-cache miss rate provides

somewhat reduced information. RAYTRACE and MPEGAUDIO, for instance, have a rela

tively small instruction working set. Thus we observe only slight changes in I-cache per

formance, and as can be seen from the 2nd-last column in Table 7.2 our pattern creator finds

significantly fewer patterns in these cases. This provides less information to the recompila

tion engine, and thus recompilation choices are not much better than in the original version:

RAYTRACE and MPEGAUDIO show marginally positive improvements, while MTRT shows

a 2% reduction. The fact that performance even in this situation is close to the original and

not significantly degraded is evidence of the low overhead of our implementation design in

general, and sample-based hardware monitoring specifically.

Other benchmarks have instruction working sets large enough to produce significant

misses as different code paths are exercised, allowing our online solution to identify pat-

116

7.5. Discussion

terns easily. The performance difference resulting from the improved information is evident

in benchmarks such as JACK, JESS, and JAVAC. Some benchmarks, however, exhibit cache

performance changes, but the actual hot method set remains quite small. If a small set of

methods are called frequently, as for COMPRESS and DB, the original adaptive recompi-

lation engine has the chance to gather enough samples to recompile a method relatively

quickly. In these cases, the potential improvement available by reducing the delay of re-

compilation is small. The marginal benefit achieved by our offline solution can be mainly

attributed to reductions in optimization overhead due to skipping redundant intermediate

recompilations for some methods.

Programs can also exhibit bias with respect to different hardware events. We previously

showed, for instance, that some programs like JESS and JACK are highly "instruction cache

sensitive", meaning that from a processor-level point of view the instruction cache perfor

mance has a large impact on the execution time of the program [GVG06]. On the other

hand, DB and especially COMPRESS are highly data cache biased. There is limited room to

improve performance from the code side if data usage has a dominating impact. In these

cases even the offline version only obtains a small improvement. We expect that programs

with large memory requirements and hence garbage collection overhead, heavy I/O, and so

forth will also respond less well to our design, as in general programs that are dominated

by other costs than code execution speed will receive reduced benefits from adaptive code

optimization techniques.

The above discussion suggests that monitoring different or multiple hardware events

may be a route to further optimization. We have explored a few hybrid forms of pattern-

building based on combinations of I-cache miss rate, D-cache miss rate, branch instruction

counts, and brand prediction miss rates. So far, these designs have not shown useful im

provement above that of one based on a simple I-cache miss rate; further exploring this

space is, however, potentially fruitful future work.

7.5.2 Stability and Comparison with Simple Approaches

Understanding which benchmarks can work well is important, but differentiating them on

line may be non-trivial, and a good recompilation system should perform reasonably well

117

Phase Based Adaptive Recompilation

over a range of benchmarks. For our adaptive system to be useful, it is also important

to know that the adaptivity is effective. Both our online and offline strategies generally

increase the aggressiveness of recompilation choices, and we must consider that similar

effects could be achieved by simply making the the Jikes RVM estimator more aggressive

without adaptation.

Testing the effects of trivial, constant increases in recompilation aggressiveness pro

vides a baseline that shows both the variability of performance of different recompilation

strategies and in comparison with our online approach, the actual impact of adapting to

program phases. We evaluate several versions of Jikes RVM with no hardware monitor

ing or phase analysis, but incorporating our scaled time estimate formula in Formula 7.2

with futureEstimator set to different fixed, constant factors to increase recompilation ag

gressiveness. Table 7.3 shows the normalized overall execution time for our benchmarks

when the future time estimate of methods is increased by values between 1.5 x and 3.0x;

this represents the range of average increase in aggressiveness used by our online system

for benchmarks in our suite (Table 7.3, last row).

futureEstimator

1.5x

2.0x

2.5x

3.0x

online

online average

compress

0.997

0.970

1.018

1.018

0.999

3.06

db

0.991

1.008

1.022

1.025

0.993

1.98

jack

0.987

1.041

1.063

1.080

0.876

2.16

javac

0.970

0.955

0.975

0.991

0.942

2.40

jess

0.924

0.879

0.856

0.852

0.821

2.34

mpegaudio

0.960

0.924

0.925

0.948

0.978

2.44

mtrt

1.017

1.039

1.127

1.151

1.018

2.22

raytrace

0.983

1.010

1.057

1.053

0.990

1.99

soot

0.966

0.950

0.945

0.969

0.961

1.35

Pseudojbb

0.991

0.978

0.969

0.975

0.976

1.09

Table 7.3: Fixed setting of futureEstimator versus the online version. The "online average" row

shows the average futureEstimator value used in the online version, weighted proportionally over

program execution.

The data in Table 7.3 shows that there is certainly no one fixed setting that is optimal

for all benchmarks; benchmarks respond differently, and simply increasing aggressiveness

overall is not a generally effective strategy. This is more apparent graphically, as seen in

Figure 7.7. Some benchmarks have a large variance in performance as futureEstimator

changes, and some are relatively unaffected. For all benchmarks except MPEGAUDIO and

118

7.5. Discussion

COMPRESS, our online version is optimal or within variance of optimal. In comparison with

simple approaches, our online design provides stable and good results overall, significantly

more so than the base version or any of the constant aggressiveness settings.

O.i

- v

h :
^ \ // \
.-•\\\ //,»-...., \

0^=*".
comp db jack javac jess mpeg mtrt rt soot pjbb

Orig —i—
1.5X — *•--

2.0X -—*••• 3.0X •
2.5X a Online •

Figure 7.7: Normalized execution time for benchmarks using different recompilation optimization

strategies.

Recompilation Algorithm Sensitivity

We can separate benchmarks into those that exhibit a low sensitivity to recompilation de

cisions (less than « 5 % variance between approaches), and those that show relatively high

variance due to such choices. The former are shown in Figure 7.8 and the latter in Fig

ure 7.9.

The less sensitive benchmarks in Figure 7.8 correspond reasonably well with our dis

cussion of benchmark-specific behaviours that impair the effectiveness of our technique.

SOOT and PSEUDOJBB are long-running with large hot sets, while COMPRESS and DB

contain hot sets that are easily identified under all scenarios. JAVAC is a marginal inclu

sion; like RAYTRACE it has a small working set, but falls within the threshold of insensitive

benchmarks in our simple binary division.

More sensitive benchmarks where recompilation decisions can have a relatively large

119

Phase Based Adaptive Recompilation

1.15

1.1

1.05

0.95

0.9

0.85

- ^ ^ ^ S ^

""""H--:^, :~~~:^:.:; "~*""".

K.,
—-i»

*..
_ _

Orig. 2.0X 2.5X 3.OX

compress — i — javac •
soot •

Online

Figure 7.8: Normalized execution time for benchmarks using different recompilation optimization

strategies. These benchmarks are insensitive to strategy.

4)

.§
f-H

s -S G
3
u u
&
•g

3 1 §
0

a

I.I

1.05

1

0.95

0.9

0.85

Orig.

/ • '

-~^t^\-
B"""^-^----—

***** ""'"*-...
* * * . . % " " ' • • « »

-M

^ " \
\

\ "N
\ J

• — • ; • . • » " • ' • • • ' • V -

O n l i n e

jack — i — mpegaudio ••••»••• raytrace
jess —**•— mtrt B

Figure 7.9: Normalized execution time for benchmarks using different recompilation optimization

strategies. These benchmarks are quite sensitive to strategy.

120

7.6. Summary

performance impact are shown separately in Figure 7.9. Adaptivity accommodates bench

marks where greater aggressiveness usually improves performance such as JESS, and bench

marks where greater aggressiveness decreases performance, such as JACK and MTRT. A

more detailed view of typical benchmark behaviour found in our experimental data is

shown in Figure 7.10, with the upper row showing the normalized performance of bench

marks that improve or degrade performance as an almost linear function of recompilation

aggressiveness. More aggressive recompilation is in general good for benchmarks like

JESS (upper left), bad for others like MTRT (upper right), while some such as SOOT and

MPEGAUDIO have an intermediate sweet spot in terms of overall recompilation aggressive

ness. In the first three cases the online system adapts well; for MPEGAUDIO the online

performance is improved over the baseline but does not achieve optimal performance. For

benchmarks such as SOOT and MPEGAUDIO, however, a "sweet spot" exists in terms of

overall aggressiveness, in both cases here around 2.0-2.5. Adaptation is not as successful

overall for MPEGAUDIO while for SOOT adaptation finds a good performance level, albeit

in a context where the total performance variation is small. Universally good performance

under these conditions is hard to achieve; however, the online system, generally does quite

well in adapting to different benchmark conditions and is clearly an overall better choice

than either the current or other fixed aggressiveness schemes.

7.6 Summary

For many programs, sub-optimal choices in recompilation can result in reduced perfor

mance. We have shown how improvements to recompilation strategy can result in better

performance, and provided a design using coarse grained, variable length phase predic

tion to adaptively improve recompilation choices. Using offline trace data for prediction

provides an experimental high performance watermark for such a technique, and functions

as a useful optimization when program executions are repeated exactly. Our fully online

implementation makes choices based on dynamically acquired data, and exhibits both low

overhead and good overall performance.

Multiple factors influence performance in a recompilation system, and to show mean

ingful improvement a close evaluation of performance under different scenarios and with

121

Phase Based Adaptive Recompilation

I

1.2

1

0.8

0.6

0.4

0.2

jess

—

mtrt

Orig. 1.5X 2.0X 2.5X 3.0X Online

SOOt

1.2

1

0.8

0.6 -

0.4

0.2 (-

0

1

0.8

0.6

0.4

0.2

Orig.

1

0.8

0.6

0.4

0.2

n

1.5X

.

2.0X 2.5X 3.0X Online

mpegaudio

•

Orig. 1.5X 2.0X 2.SX 3.0X Online Orig. 1.5X 2.0X 2.5X 3.0X Online

Figure 7.10: Typical behaviour of benchmarks in response to different recompilation strategies.

different levels of detail is important. We have explored our optimization in terms of ex

ecution time, and further validated our results with analytical measurements. Detailed

examination of benchmark behaviour reveals that benchmarks respond in different ways to

the relative aggressiveness of a recompilation engine, and we considered a wide variety of

benchmark-specific factors, including high level considerations such as overall runtime and

low level influences such as the density of hardware event data. Under these highly vari

able and "noisy" conditions our adaptive online system achieves a significantly improved

performance.

There exist a number of possible extensions to this work. The success of our approach,

like most adaptive online systems, depends on the extent of variability in runtime execution

data. We have expended a great deal of effort to understand and experimentally validate po

tentially critical factors, ensuring our approach is a generally robust optimization. Further

understanding and detection of benchmark characteristics may improve our design, and

122

7.6. Summary

could also be used to help select benchmark-specific responses by the adaptive optimiza

tion system. Profile repositories, aggregating profile data from multiple executions may be

a useful way of moving online performance closer to that of offline performance [AWR05].

Mixing profile data from multiple runs or using offline/online hybrid data might also help

with the "tail problem" of predicting the termination phase of a program.

We intentionally exploit coarse grained phase information to allow complex optimiza

tions time to act and improve performance. Startup phases are well-known, but the use of

high level and variable length phase information, when cheaply gathered, is also obviously

of value. Predicting major phase changes may be useful for scheduling garbage collection,

heap data reorganization or any other design for larger scale adaptive execution. Additional

or different hardware event data may be useful for more "data-centric" applications, and

part of our current investigations include the use of multiple and hybrid hardware event

sources.

123

Phase Based Adaptive Recompilation

124

Chapter 8

Garbage Collection Point Selection

Programmers are increasingly turning to object-oriented languages with automatic mem

ory management (garbage collection). Java provides a garbage-collected heap which im

proves productivity of programmers by reducing errors that result from explicit memory

deallocation. The implementation, optimization, and performance analysis of garbage col

lection (GC) algorithms have been a hot topic for a while. A variety of factors can impact

the overall garbage collection performance, including the collection point selection (CPS)

addressed here. In this chapter, we present our exploration in improving GC performance

by selecting garbage collection point.

In Section 8.1, we show our motivation on studying the CPS problem, the reason why it

matters, and the fundamental idea of our solution. We discuss the algorithm, optimization

and performance factors of garbage collection in Section 8.2. The details of our design

are introduced in Section 8.3 followed by experimental results and a deep discussion in

Section 8.4. Finally, we summarize our study on CPS, both achievements and limitations,

and then provide a list of potential improvements as future work in Section 8.5.

8.1 Motivation

The implementation of garbage collection is JVM-specific. Most JVMs employ a tracing

garbage collector. When the heap runs out of space, a tracing collector begins its work

gathering objects that are directly reachable from root set. The root set consists of global

125

Garbage Collection Point Selection

and stack local references (or pointers) and other references in JVM internal data structures.

The collector then traverses all the references in the currently identified reachable objects

to find other reachable objects. This tasks is done recursively. Finally, all the memory oc

cupied by non-reachable objects, i.e., garbage, is collected and the space is made available

for the future objects. One interesting observation of tracing GC is that the GC work will

be accomplished faster when there are fewer reachable objects and it will claim more free

space. In other words, the collector produces more product (the free space) when it does

less work. When the workload is heavy, the collector produces less product. This "less

work, more achievement" phenomenon contradicts usual intuition. Picking a suitable point

to do collection can thus potentially improve the performance significantly, if collection

points correspond to small reachable sets.

A good garbage collection point is a moment at which the program just leaves an old

phase and reaches a new phase in its execution. In such a moment, a large amount of

objects may reach the end of their life range and turn into garbage. If a collection happens

at this moment, it can be accomplished with a light workload and release a large amount

of memory. On the contrary, when a collections happen at an inappropriate point, it may

endure a very heavy workload, and only release a small amount of memory. An impressive

example is the JAVAC benchmark in SPECJVM98 suite. As we know, JAVAC invokes four

passes during a Java program compilation. After each pass, it forces the JVM to make a

collection. Apparently, at the forced GC points lying between two passes of compilation,

a large set of objects just become garbage. Hence, these forced GC points are the optimal

GC points for this program. On the other hand, if a collection happens shortly before these

forced GC points, it is very likely to be less efficient.

Table 8.1 shows the GC statistics on two settings for JAVAC. Here we use a GenMS

collector pre-existing in Jikes RVM. In the "Inappropriate Setting", there is a normal GC

right before each forced GC. In the "Appropriate Setting", we slightly increase the size of

nursery space and remove all the normal collections before the forced collections except

the first one.

The total number of pages released across the running are similar in both cases. How

ever, the appropriate setting accomplishes the same task with fewer collections. All col

lections, except the first one, finish in a much shorter time. The overall Throughput, i.e.,

126

8.1. Motivation

GC#

1

2

3

4

5

6

7

8

Sum

Thr.

Inappropriate Setting

GCType

Normal

Forced

Normal

Forced

Normal

Forced

Normal

Forced

—

Time(ms)

2208.24

75.38

1414.05

196.49

1269.71

425.15

938.81

663.59

7191.42

Released Pages

25152

1372

21184

1620

15468

4128

11216

3564

83704

11.63 pages/ms

Appropriate Setting

GC Type

Normal

Forced

Forced

Forced

Forced

—

—

—

—

Time(ms)

1975.25

255.46

40.01

34.57

48.18

—

—

—

2353.47

Released Pages

26496

4880

21896

16344

17752

—

—

—

87368

37.12 pages/ms

Table 8.1: The impact of selecting optimal GC points, using JAVAC as an example. Thr. stands for

Throughput.

the measures of released pages per millisecond, of the appropriate setting is 3.2 x of that of

the inappropriate setting. If we do not count the first normal GC which is unavoidable and

performs similarly for both cases, the difference of throughput is an astonishingly 13.4x!

Table 8.1 demonstrates the large impact of the GC points selection. Making a collection

at an appropriate point can possibly reduce collection time greatly. In order to choose these

appropriate GC points, here we make a hypothesis that:

Major program behaviour transition points are also appropriate GC points; a large

hardware performance variation reflects a major program variation.

Our hardware phase detector detects large performance variations by generating hard

ware patterns at a high variation level (details of hardware patterns are described in Sec

tion 5.2). By this hypothesis, we translate the the appropriate CPS problem into postponing

a collection until the next occurrence of a high level hardware pattern, which is much more

implementation-friendly.

Is it possible to postpone a collection when there is a collection request? There is a

positive answer for copying style collectors, by reducing the copy reserve. The copy reserve

127

Garbage Collection Point Selection

is a space in the heap held by the collector for copying reachable object from the "from-

space" or nursery space. In practice, the survival rate of objects is usually very low. This

is especially true for objects in the nursery space maintained by a generational collector.

In Jikes RVM using a GenMS collector, we observe the survival ratio is frequently below

20%. As a result, most of the space allocated as a copy reserve for the nursery is wasted.

Therefore, we reduce the copy reserve to delay the collections until the next appropriate

point. Our solution can thus obtain benefit from two directions, selecting a potentially

more productive collection point and reducing the copy reserve overhead. In most time,

it is safe to do so. However, a garbage collection algorithm must account for the worst

case. In our situation, the worst case is when the copy reserve overflows because of too

aggressive reduction. We solve this problem by launching a full heap GC. However, full

heap GC is very expensive, and thus should be avoided as much as possible. We thus use

several mechanisms to shield from extreme situations.

• We maintain an upper bound on the copy reserve reduction rate based on the survival

ratio of the last nursery GC.

• We start a collection after receiving a hardware pattern for major program variation.

It usually happens before the copy reserve reduction reaches the upper bound, and

thus keeps the system safe.

• Based on the history of received patterns, we make a prediction of future pattern oc

currence time and associate it with the memory allocation amount. We only postpone

a collection when the predictor indicates that it is valuable to postpone GC until the

upper bound. This prediction can further reduce the probability of the worse case.

However, selecting GC points is something very tricky. A large number of factors or

noise can influence the overall performance of garbage collection. Our solution does obtain

an improvement over the original collector used when we began this work, but it is already

not a perfect solution for this problem. We investigate and discuss the current results and

possible actions that can be taken for further improvement. Our work is a worthwhile initial

study of this interesting problem, selecting garbage collection points.

128

8.2. Related Work

8.2 Related Work

A detailed and rather complete introduction to GC algorithms and GC related problems

can be found in Jones and Lin's [JL96] GC book. The three classical methods of garbage

collection are reference counting, mark-sweep and copying. Reference counting is a direct

method, based on counting the number of references to each memory cell from others. The

strength of the reference counting method is that memory management overheads are dis

tributed throughout the computation. The major drawback of primitive reference counting

is the inability to reclaim cyclic structures. Both mark-sweep and copying algorithms are

tracing collections, which can handle cyclic data naturally. Usually, a mark-sweep GC of

fers a better performance but tends to fragment memory, scattering cells across the heap and

reducing data locality. Copying GC involves moving a large number of reachable objects

and therefore has more overhead, however it compacts reachable objects together and elim

inates the fragmentation problem. Furthermore, copying GC usually uses a bump-pointer

allocator. Hence, the cost of allocation is low.

GC has been a target of optimization for decades. Many improvements have been made

to these classic algorithms in a variety of directions, concerning different factors that affect

GC performance. Ungar's generational scavenging [Ung84] technique and more recent

works on Age-based GC [SMM99] Older-first GC [SHB+02] and Beltway GC [BJMM02],

for instance, all aim to improve performance by adjusting collection time according to

object lifetimes.

Other approaches for improving GC are available. Reachable objects can be aggre

gated into regions in the heap based on a selection of object attributes. This either aims to

improve data locality in the program [HBM+04, GM04], or to reduce the memory access

overhead of the collector [QH02]. Optimizations on data prefetching and lazy sweep

ing [CHV04, BoeOO] aim to improve data cache performance. Gagnon et al. use a bi

directional layout in SableVM [GH01]. By grouping all the reference fields together, the

copying GC algorithm can be greatly simplified. Further improved reference scanning

strategies based bi-directional layout are described in [GVG05b, GVG06]. Both the pre

sented RS and the TBP reference tracing strategies can largely reduce the tracing workload.

Some other works specifically study GC performance. S. Blackburn et al. [BCM04b]

129

Garbage Collection Point Selection

discuss performance myths of canonical GC algorithms on widely used Java benchmarks.

They compare the performance of classic GC and memory allocation algorithms in different

configurations and environments. The impact of special implementation factors, such as

"write barriers" and the size of nursery space of generational collectors, on mutator and

GC performance are carefully studied. The impact of the heap size on garbage collection

is further studied in [SKB04]. A set of garbage collection algorithms in Jikes RVM are

investigated. GenMS is usually the one performing the best. However, SemiSpace performs

well in some special heap setting.

Usually, the garbage collection points are only determined by the heap size and pro

gram memory requirement. A collection is triggered when the heap is full. However, adap-

tively adjusting the garbage collection points is possible. Chen et al. [kCBC+06] present

a proactive garbage collection. Collection is triggered before the moment it should be in

order to reorganize the heap and improve data locality. Our garbage collection solution

also changes the collection points. However, we delay the collection point for a better col

lection point. Delaying the collection point is practical for any GC algorithm with copy

reserve space. The copy reserve can be reduced to support the delay. Reduced copy re

serve is used in Sun's Hotspot JVM [Suna]. However, Hotspot uses a fixed size nursery,

rather than an Appel-style variable-sized nursery addressed by our solution. Variable-sized

nursery reduces the space wasted in nursery with a low survival rate [App89]. McGachey

et al. presents [MH06] an improvement on the GenCopy GC of Jikes RVM by reducing

the copy reserve which makes use of the same concern of our work. Their work set the

rate of reserve to a fixed value before execution. They investigate the impact of a large

set of different fixed settings for the benchmarks. Our solution is based on GenMS GC of

Jikes RVM, which is a best choice in general, and we adjust the reserve rate dynamically,

according to the runtime behaviour of programs.

8.3 Design

In Chapter 5, we described our extension to the HPM component of Jikes RVM. With

this extension, we can generate patterns to represent performance variations in hardware

and use these hardware patterns to discover important program behaviours. Still using

130

8.3. Design

the hardware patterns, here we aim to obtain appropriate GC points. As mentioned in

Section 8.1, we assume that large variations in hardware performance reflect behaviour

transitions in programs. These behaviour change points are the appropriate GC points as

well. Launching a GC just after such a moment has a higher potential to achieve a better

throughput, e.g., releasing more pages in shorter collection time. The crucial point here is

to defer a collection until the next detected major phase transition. This collection delay

is possible for any collector with a copy reserve. Usually, the size of the copy reserve is

the same as that of the from-space (in a semi-space collector) or the nursery space (in a

generational copying collector). We can postpone GC by reducing the copy reserve.

Copy reserve reduction is safe most of the time. In the case when the survival ratio is

very high, a rescue space is allocated to store the objects until the accomplishment of the

current nursery collection. We use the emergency allocation mechanism pre-existing in the

heap growth manager of Jikes RVM to allocate this rescue space. A full heap collection

is then launched immediately afterwards. Of course, several heuristics have been used to

avoid this situation as much as possible.

Our GC mechanism is rooted in the pre-existing GenMS collector of Jikes RVM. GenMS

is a generational copying and mark-sweep hybrid collector. It uses a variable size nursery

space and reserves the same amount of memory in the mature space. Each time a nursery

collection happens, the surviving objects are promoted into mature space. The size of the

nursery is thus shrunk after each nursery collection accordingly. When the nursery runs out

of memory, a full heap collection is scheduled.

We implemented a Garbage Collection (GC) point analyzer that uses information from

the hardware performance detector, memory allocation requirement and the heap. The co

operation of GC point analyzer, HPM and memory allocator is shown in Figure 8.1. The

layout of the heap is shown in the bottom of the figure. From left to right, we have the

nursery space, the copy reserve for nursery in mature space, the mature space occupied

by surviving objects from former GC(s) and the other special spaces, e.g.,immortal space,

large object space (LOS), etc.. Two thresholds MinGCThresh and MaxGCThresh label the

lower and upper bound of an "GC enabled" area. Within this area, the GC point analyzer

decides whether or not to launch a GC based on the state of two internal flags. The value

of the internal flags are set depending on the hardware patterns transfered from our ex-

131

Garbage Collection Point Selection

Return allocated memory

Allocator

Trigger GC, it necessary

GC Point Analyzer

Do nothing for less
important patterns

Process
Hardware

Pattern

^ • . ^ Set Flags A

**.^Internal Flags

MinGCThresh

GC enabled area

"V * *
MaxGCThresh

Heap

Mature Space

Figure 8.1: Overview of GC point selection.

HPM

Nursery ; Reserved space Occupied space
Other spaces

(Immortal, LOS...)

tended version of HPM. Recall that the generated patterns represent hardware performance

variations.

The GC point analyzer is actually composed of two parts: the hardware information

processing and the memory allocation processing. As shown in Figure 8.2, the hardware

pattern generator feeds the GC point analyzer with hardware patterns. In this special case,

the concrete pattern code is not important. We are only concerned with the variation level

of the pattern. If the pattern is in a major level (see page 84) which means there is a

large performance variation, we set a boolean flag HW-Flag to true. We use the value

of HW_Flag to remember whether we have met a major behaviour change point, e.g., a

potentially appropriate GC point. The next step is to make a prediction of the next possible

major hardware variation point based on the history of hardware patterns. We associate the

amount of memory allocated to the patterns received by the GC point analyzer and reuse

the the tri-distance prediction mechanism introduced in Chapter 5 to make a prediction.

The prediction result indicates the distance to the next major performance variation point

measured by the memory allocation in bytes. We denote this value by NextHW. Then,

we compare the value of NextHW with a threshold MaxGCThresh. This comparison tells

whether the predicted next behaviour change point is within the current setting of the largest

nursery extension. If not, this prediction is invalidated and the process finishes. Otherwise,

132

8.3. Design

C End J4

Hardware Pattern

Major Levels?

Yes

HW_Flag = T

NextHW =

getPrediction()

NextHW <
MaxNurserylnc?

WaiLFlag = T

Figure 8.2: Process the hardware information.

it is worthwhile to wait for the next major behaviour change point. In the latter case, a

boolean flag WaitJFlag is set to true to tell the collector to postpone a GC if there is a

collection request.

The main flow of how the GC point analyzer responses to a memory allocation request

is illustrated in Figure 8.3. After receiving a N bytes memory requirement from the alloca

tor, the GC point analyzer adds N to the current allocated memory in the nursery space. If

the sum is lower than a threshold MinGCThresh, there is still plenty of memory in nursery

space. It is not necessary to make a GC even if the HWJ'lag is set. In this case, no col

lection will be scheduled and the flag HWJ'lag is set to false. If the sum is larger than the

prediction value NextHW which sets the Wait-Flag, this prediction becomes invalided and

Wait-Flag is set to false. If the sum is larger than the MaxGCThresh threshold, we have

increased the nursery to a large amount. In order to avoid an out-of-memory problem, the

GC point analyzer decides to launch a GC anyway, and sets the boolean flags to false. If

133

Garbage Collection Point Selection

the sum lies between the upper and lower threshold, whether there is a GC is depend on

the value of the boolean flags. A collection is scheduled if the HW-Flag is true or the both

HWJFlag and WaitJFlag are false, i.e., there is neither a prediction or an actual occurrence

of a major performance variation in hardware.

Memory Requirement: N

HW_Flag = F

Wait_Flag =F
Wait_Flag =F

(G C) (N o G C)

Figure 8.3: Process the memory allocation requirement.

The value of the upper and lower bounding thresholds are set as follows:

• Initially, the MaxGCThresh is set to 1.33 x of the nursery size, which is the half of

expected free memory reserved for the nursery. The MinGCThresh is initialized with

the nursery size.

• After each GC, given a nursery survival ratio R and a current expected nursery size

5, the value of these two thresholds are reset as follows,

MaxGCThresh = Sx
l+R

134

8.4. Experimental Results and Discussion

MinGCThresh = Sx —
1+R

• When the size of the nursery is extremely small, say less than 4KB, we suspend the

copy reserve reduction by setting both MaxGCThresh and MinGCThresh to the size

of the nursery space.

These overflow avoiding mechanisms work well. In practice, no nursery reserve over

flow is encountered.

8.4 Experimental Results and Discussion

The basic experimental setting is the same as in Chapter 5. We choose the same benchmark

suites and testing platform. The reported results are collected from the median 27 of 33

runs. Other than our automatic garbage collection selection version (CPS) and the original

implementation, we also test a set of fixed nursery copy reserve versions. Here we test to

fixed increases of 1.2, 1.4, 1.6 and 1.8 times to the default nursery size. We refer them

as F1.2, F1.4, F1.6, and F1.8 respectively. For SPECJVM98 benchmarks, we test seven

different heap settings from 40MB to 100MB, increasing 10MB in each step. SOOT and

PSEUDOJBB apparently require larger heap. PSEUDOJBB fails with an out-of-memory

error on a 128MB heap. The same benchmark requires very frequent collections when the

heap is set to 192MB, which indicates that even a 192MB heap is still not enough for this

program. We thus test seven heap size settings from 256MB to 640MB, increasing 64MB

in each step.

We first report the nursery increment results of the CPS version. We record the increase

rate of the nursery at each collection time and calculate the geometric mean (Geomean).

CPS obtains a significant speedup over the original implementation. We also make the

comparison between the CPS version and the fixed nursery increment rate versions and

evaluate the CPS solution and potential further improvement for it.

135

Garbage Collection Point Selection

Benchmark

compress

db

jack

javac

jess

mpegaudio

mtrt

ray trace

soot

PseudoJbb

Geomean of Nursery Increment Rate

40M

1.55

1.25

1.47

1.14

1.48

1.32

1.44

1.43

256M

1.40

1.44

50M

1.56

1.38

1.46

1.10

1.47

1.04

1.41

1.38

320M

1.35

1.47

60M

1.37

1.40

1.52

1.23

1.47

1.04

1.40

1.36

384M

1.31

1.55

70M

1.45

1.39

1.43

1.08

1.48

1.03

1.36

1.33

448M

1.23

1.48

80M

1.45

1.30

1.57

1.12

1.47

1.00

1.35

1.30

512M

1.22

1.52

90M

1.42

1.30

1.55

1.29

1.48

1.00

1.35

1.28

576M

1.44

1.55

100M

1.46

1.22

1.47

1.13

1.44

1.00

1.35

1.29

640M

1.46

1.57

Table 8.2: Geometric mean of nursery increment rate (increased nursery size normalized to default

nursery size).

8.4.1 Nursery Increase

The geometric mean of the nursery space increase results are shown in Table 8.2. The

nursery increment rate in different situations varies a lot, from 1.0 to 1.57. Comparatively,

the increment rate for one individual benchmark with different heap sizes varies less, but is

not stable. JACK, JESS and PSEUDOJBB have a comparatively stable increment rate. The

rate of MPEGAUDIO becomes 1.0 when the heap gets larger than 80MB due to the fact there

is no collection needed.

8.4.2 Performance Comparison

The speedup of CPS over the original version is demonstrated in Table 8.3. In general, CPS

performs much better than the original. COMPRESS is the only benchmark both versions

have a similar behaviour. For the other programs, we obtain speedup ranging from 1.05 to

1.31, measured by the geometric mean across all the heap settings used. There are even

large speedups at particular heap settings, e.g., the 1.43 speedup obtained on JACK with a

136

8.4. Experimental Results and Discussion

100MB heap and 1.52 speedup obtained on PSEUDOJBB with a 512MB heap. Note that we

do not count the extremely large speedup in the 70MB heap data of JAVAC. JAVAC together

with MPEGAUDIO are the pair of benchmarks that show special behaviours. The large

performance speedup on JAVAC is mainly due to the number of unnecessary collections

eliminated before the forced collection, as mentioned in Section 8.1. For MPEGAUDIO, no

collection is needed when the heap is larger than 80MB.

Benchmark

compress

db

jack

javac

jess

mpegaudio

mtrt

raytrace

soot

PseudoJbb

Geomean of Speedup

40M

0.99

1.02

1.21

0.93

1.17

1.02

1.06

1.15

256M

1.03

1.16

50M

1.05

1.05

1.33

1.03

1.17

0.98

1.07

1.13

320M

1.06

1.20

60M

1.00

1.07

1.24

1.24

1.17

1.06

1.06

1.11

384M

1.05

1.20

70M

0.95

1.16

1.31

2.33

1.14

1.02

1.09

1.12

448M

1.02

1.19

80M

0.98

1.01

1.39

1.01

1.13

—

1.02

1.11

512M

1.01

1.52

90M

1.01

0.91

1.27

1.02

1.10
__

1.04

1.09

576M

1.01

1.18

100M

1.00

1.38

1.43

1.03

1.15

—

1.07

1.00

640M

1.13

1.56

Average

1.00

1.08

1.31

1.16

1.15

—

1.06

1.10

Average

1.05

1.28

Table 8.3: The speedup of the CPS version over the original collector.

The significant performance improvement of CPS comes from two sources: the in

crease of the nursery size and selecting the collection points after hardware performance

variations. We further investigate the impact of these two sources. We build and test a

series of fixed nursery increment versions F1.2, F1.4, F1.6 and F1.8 as described above.

The performance of all these fixed nursery increment versions together with CPS solution

(CPS) and original implementation (Orig(l.O)) are illustrated in Figure 8.4 and Figure 8.5.

Not surprisingly, a version with a larger nursery space increment rate usually performs

better. However, this is not necessarily true for all data points. In some specific bench

marks and particular heap settings, a larger increment in the nursery space can end up with

a slowdown, e.g., on DB with a 80MB heap. Most benchmarks are sensitive to nursery

137

Garbage Collection Point Selection

12000

10000

8000

6000

4000

2000

•

Sv
T k

^k^

"S^-^
C P S_^^v
F1.2 -----
F1.4 -"-"B-
F1.6 — ••—
Fl.S - - * • -

db

3500

3000

2500

2000

1500

1000

500

> \
*V.- " \

NL-N-..

CPS — • —
Orig(l.O) -•••--

F1.2 »•-

F1.6 - - - - -
F1.8 — ^ - -

jack

• • • * > »

* " * • —

-

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

\ ^

Orig(l.O) • - » - •
F1.2 ---»--
F1.4 --•••«

F1.6 —••-
Fl.S -••-

40 50 60 70 90 100

0000

8000

6000

4000

2000

|SK!

Orig(l.O)
F1.2
F1.4
F1.6
F1.8

^ v
\ \ \
AVNK A

::::\
- - • * - - ,

javac

^x"**--._
,

.

,

2000

1800

1600

1400

1200

1000

800

600

400

200

jess

*"•"•;
. ^ c a « - ...—M

-*

Orig(l.O) ••-•»••-

F1.4 - •
F1.6 - - - - -
Fl.S - - •» - -

800

700

600

500

400

300

200

mpegaudio

\ \

\ \
CPS — — \

Orig(l.O) — —
FL2 -
F1.4 °
F1.6
F1.8 --••»--

\ \
\ \

3000

2000

1500

1000

500

I "*""""*—-»

•̂̂ r̂̂ *-....

CPS •
Orig(l.O) — • —

F1.2 *•-
F1.4 ~«B~~
F1.6 - - - - -
Fl.S - - * - •

mtrt

^
"~ rr ~-M

raytrace

^*^Q-" -:

CPS »
Origd.O) -™»--

|.'*.*1 " * * * " » • — —p
IU | .

F1.4 a
F1.6 --•—-
Fl.S --©•--

Figure 8.4: The garbage collection results O/SPECJVM98 benchmarks. X-axis is the heap size in

MB; Y-axis is the collection time in milliseconds.

138

8.4. Experimental Results and Discussion

soot PseudoJbb

260000

240000

220000

200000

180000

160000

140000

120000

100000

Figure 8.5: The garbage collection results of SOOT and PSEUDOJBB. X-axis is the heap size in

MB; Y-axis is the collection time in milliseconds.

changes. However, COMPRESS shows a unique behaviour. The nursery increase does not

have observable impact on collection time.

Our CPS implementation is among/close to the best solution in most test points. Es

pecially on DB, CPS performs better than all of the other versions. Comparatively, the

performance variation on JAVAC is large until the heap is larger than 80MB. When the

heap is smaller than 80MB, the performance of different collection algorithms is mainly

determined by how many collections before the four forced collections are eliminated. As

soon as the heap is equal to or larger than 80MB, all versions eliminate all the unnecessary

collections and perform similarly. MPEGAUDIO requires less memory resource than others

and thus requires no collection when the heap reaches 80MB (or larger). F1.8 increases the

nursery size more than others and requires no collection even on a 70MB heap setting. For

the same reason, Fl .8 gives the best overall performance.

Our experimental results show that the nursery increment is a major factor for perfor

mance improvement. To investigate the the impact of hardware information, we calculate

an expected performance for fixed nursery increment at the same increment rate as that of

the CPS solution.

We use the the four fixed increment rates to split the range [1.0,2.0] into five sections.

Within each section, we assume the performance changes linearly. Formally, suppose the

nursery increment rate of CPS is X, X e [L,H], the collection times of fixed solutions at

rate L and H are Fi and FH, then the expected collection time of Fx is calculated as,

139

. I**>^;~--*^
C P S — ^***rw*« i if

" Orig(l.O) -•••*--•
F1.2 »
F1.4 u
F1.6 - - • - -
F1.8 -•<•--

/ J? A

!/'/*

.

Garbage Collection Point Selection

Fx = FL+——x(FH-FL)

Benchmark

compress

db

jack

javac

jess

mpegaudio

mtrt

raytrace

soot

PseudoJbb

Geomean of Speedup

40M

0.99

0.94

1.03

0.92

1.11

0.90

1.02

1.06

256M

1.02

1.05

50M

1.05

1.08

1.09

1.02

1.01

0.99

1.01

1.00

320M

1.03

1.03

60M

1.00

1.08

1.07

0.97

1.05

1.06

1.03

1.09

384M

1.05

1.05

70M

0.96

1.23

1.01

1.82

1.06

1.01

1.03

1.06

448M

1.01

1.05

80M

0.97

1.03

1.07

1.02

1.04

—

1.03

1.04

512M

1.01

1.03

90M

1.01

1.03

1.10

1.03

1.04

—

0.98

1.02

576M

1.03

1.06

100M

1.00

1.44

1.08

1.04

1.05

—

1.01

1.03

640M

1.08

1.15

Average

1.00

1.14

1.07

1.11

1.05

—

1.01

1.04

Average

1.03

1.06

Table 8.4: The speedup of the CPS version over the expected collection time of fixed nursery in

creasing solution with the same increment rate.

The comparison between CPS and the expected fixed result with the same rate is shown

in Table 8.4. In support of using hardware information, the CPS version performs better.

We obtain a speedup of more than 1.05 in half of the benchmarks. The best case is DB

where the speedup is 1.14. Moreover, CPS never performs worse than the expected value.

Unfortunately, CPS is still slightly weaker than that of F1.8 solution which is usually the

best one across all the tested implementations. The speedup of CPS compared with F1.8

is shown in Table 8.5. In all the 63 validating data points, CPS is better in 29 of them and

F1.8 wins 32 points. If we only count the points where the difference is larger than 0.05,

i.e., 5% performance variation, the rate is 11 versus 12. Therefore, in general, CPS gives a

comparable performance with the fixed version with a much larger nursery increment rate.

In summary, the CPS solution performs significantly better than the original version.

The nursery increase takes an important role in the performance gain. CPS is slightly

140

8.5. Summary and Future Work

Benchmark

compress

db

jack

javac

jess

mpegaudio

mtrt

raytrace

soot

PseudoJbb

Geomean of Speedup

40M

0.98

1.04

0.97

0.90

0.99

0.85

1.02

1.00

256M

1.00

0.95

50M

1.05

1.12

1.06

1.02

0.95

1.09

0.97

0.97

320M

1.03

0.95

60M

0.99

1.18

0.94

0.16

0.99

1.04

0.98

1.04

384M

1.02

0.99

70M

0.95

1.19

0.96

1.05

1.02

—
1.02

0.94

448M

1.00

1.02

80M

0.98

1.24

1.06

0.95

1.02

—

1.01

0.98

512M

1.01

0.99

90M

1.00

0.88

0.97

1.06

1.02

—

0.95

0.94

576M

1.00

1.05

100M

0.98

1.12

1.02

1.04

1.02

—

0.97

0.99

640M

0.96

0.92

Average

0.99

1.11

1.00

0.77

1.00

—

0.99

0.98

Average

1.00

0.96

Table 8.5: The speedup of the CPS version over the collection time of fixed nursery increasing

solution with an increment rate 1.8 (F1.8).

weaker than Fl .8 since the latter increases the nursery more aggressively. Another impor

tant observation is that CPS also performs better than the estimation of a fixed solution

with the same increment rate. This fact supports that choosing collection points according

to runtime analysis results, such as in the hardware variation we used here, we are able to

obtain benefits for the collector. However, we do not claim the current CPS is a perfect im

plementation due to the fact that it does not win over a more aggressive fixed setting F1.8.

We also notice that there are a number of ways to improve it further and better address the

problem of garbage collection point selection. We will discuss these potential improvement

as future work in the following section.

8.5 Summary and Future Work

The performance of garbage collection can be impacted by a large number of factors, in

cluding the algorithm, program characteristics, the heap size, and garbage collection points.

In this chapter, we introduced an exploration for improving garbage collection perfor-

141

Garbage Collection Point Selection

mance by selecting appropriate garbage collection points. We began with a special example

to show the significant potential effect of choosing collection points on the final perfor

mance. We then presented a solution to do selective GC according to hardware pattern

detection results. The fundamental idea is to postpone collection points later until the next

major performance variation point.

We achieved a large improvement over the original implementation on which we be

gan this work. We then made a deep investigation on the possible factors affecting our

experimental results. We studied the impacts of increasing of the heap size and hardware

information on the collector. Our solution, in general, works better than straightforward

solution with the same nursery increment rate. The improvement we obtained is thus not

purely from the use of a larger nursery space.

Adjusting collection points is a complex problem. Although, the current CPS is not a

perfect solution for this problem, we consider that our work is a valuable exploration of

this hard problem. We addressed a challenging problem and obtained a large improvement

over the original algorithm. We also investigated several internal issues of this problem. A

number of possible improvements can be employed in the future. A simple improvement

could be developing better heuristics for determining the lower bound of the GC enabled

area.

There are other major potential improvements:

• First, associating hardware variation with software structures, such as methods, or

loops, can potentially improve the accuracy of selecting the optimal collection points

and reduce the overhead.

• Second, runtime data shape profiling [PV06] traces could be used to figure out poten

tial good collection points. We can apply an offline analysis of the runtime data shape

analysis to locate large variation points of data shapes and mark them as suggested

collection points.

• Moreover, a novel static analysis could be developed to locate possible optimal GC

points by discovering the points at which a large amount of the objects just leave

their reachable region.

142

8.5. Summary and Future Work

• A combination of offline static analysis and online hardware variation detection

mechanism is another very hopeful direction for addressing the problem discussed

here.

143

Garbage Collection Point Selection

144

Chapter 9

Conclusions and Future Work

Modern hardware architectures are getting increasingly complex. The impact of hard

ware performance on software execution thus becomes more and more significant. There

fore, hardware performance has become a critical concern of Java Virtual Machine design

and implementation. We have presented our exploration on developing virtual machine

techniques based on hardware information. In this last chapter, we summarize the entire

thesis. We give conclusions in Section 9.1 and discuss several future research directions in

Section 9.2.

9.1 Conclusions

Modern virtual machines are complex runtime environments. Any optimization in a mod

ern virtual machine has the potential for complex interactions with various factors, high and

low level. We have investigated and provided a coarse taxonomy for the relative factors.

Our efforts provide a number of insights into the sources of different influences on program

performance. Using our investigation results, we have discovered that the performance of

Java Virtual Machines can be significantly affected by hardware related issues, such as un

intended code motion side-effects. These hardware related factors make the performance

measurement of JVMs become more challenging, but opportunities can co-exist with chal

lenges. The correlation between changes in program behaviour and hardware performance

variations suggests that there is a chance to improve JVM performance through hardware

145

Conclusions and Future Work

information analysis. In this thesis, we used hardware data to detect recurrent, periodic

phases in program execution as an example of the latter.

Program phase detection has been a hot topic for a while. However, most existing

phase detection techniques focus on the identification of stable phases. We thus gave a

definition to and clarified the importance of recurrent periodic phase for irregular, real life,

object oriented programs investigated from the perspective of a coarse granularity. We have

presented our approach to online phase detection for general Java programs based on real

world hardware information. Most pre-existing phase evaluation metrics are specifically

designed for stable phase detection results. We thus have defined a set of novel metrics

which are suitable for the recurrent periodic phase detection problem, and demonstrated a

practical implementation with potential many applications.

Our hardware information analysis results can bring benefits to many adaptive opti

mizations in JVMs and other runtime environments. Our selective profiling mechanism

reduces the profiling workload significantly over the original sampling mechanism and still

ensures high accuracy. Other than a concrete runtime technique itself, the selective profil

ing mechanism also serves as a sample application for our recurrent behaviour detection.

The profiling accurate results confirm that our hardware data based phase detection scheme

provides useful information to locate the most important, repetitive portions in the execu

tion of Java programs.

Adaptive recompilation is an essential factor for highly efficient JIT. We have shown

improvements to adaptive recompilation by employing a dynamic strategy based on pro

gram phases. Our online adaptive recompilation engine makes recompilation choices based

on dynamically acquired hardware phase data, and exhibits good overall performance. We

have also evaluated this optimization in terms of several analytical measurements.

We have made an exploration of improving garbage collection using hardware varia

tion information. A solution have been provided to select good garbage collection points

according to hardware patterns. Hardware patterns reflect the hardware performance vari

ations which, in turn, represent large behaviour changes in the running program. Our so

lution performs much better than the original implementation. We also have made a deep

discussion on the garbage collection point problem. Our work touched on a variety of

important aspects of this problem and is helpful for further investigating this topic.

146

9.2. Future Work

9.2 Future Work

Several improvements can be applied to our hardware phase detection mechanism. The

most direct optimization over the current implementation is to use a combination of several

hardware events as the performance indicator. Of course, the concrete composition and

the weights of events in this combination require further study. We have discovered that

programs have different sensitivities to different hardware events. To further optimize the

hardware phase detection, one potential solution is to use benchmark-specific performance

indicators. The event or event combination that are appropriate for a particular program

can be found from offline analysis. In fact, an offline/online hybrid implementation can

bring benefit in many aspects of the current implementation in general, e.g., supporting

the online engine to choose benchmark-specific values for the settings, such as the bounds

of variation levels in pattern construction. Moreover, better hardware pattern construction

algorithms might also be further investigated.

Concrete adaptive optimizations can get benefit from wider directions other than us

ing offline-online mixed mechanisms and considering benchmark specific issues. One po

tential improvement is to employ a hardware-software hybrid strategy. We can associate

hardware detection results with concrete software structures of the programs. This can be

used to calculate better garbage collection points or fix the "tail" problem (discussed in

page 116) in the adaptive recompilation strategy. Several techniques presented by other re

searchers can also be integrated with our work, such as the profile repositories introduced

in [AWR05] and the fall-back compaction [MH06] technique presented by McGachey et

ah. Furthermore, static analysis of program structures can still bring benefit to the opti

mizations addressed here, e.g., locating better garbage collection point by analyzing the

life range of objects, or the dominating area for important allocation sites.

The functionality of hardware performance monitoring, and in particular the perfor

mance monitoring unit (PMU) has become stronger and more and more complete. Many

impressive new features of PMU (details of these features are described in page 15) had

been introduced in recent processors. These new features provide more chances for hard

ware related optimizations. For example, with the event address register, we can easily

locate the address of regions with serious data cache conflicts. We can thus design accu-

147

Conclusions and Future Work

rately targeted solutions for dynamic data relocation. The branch trace buffer can also be

helpful to identify hot code traces of a program and also changes in hot code regions. We

could employ dynamic code reordering and deliver better runtime code layout.

148

Bibliography

[AAB+05] Bowen Alpern, Steven Augart, Stephen M. Blackburn, Maria Butrico, An

thony Cocchi, Perry Cheng, Julian Dolby, Stephen Fink, David Grove,

Michael Hind, Kathryn S. McKinley, Mark Mergen, J. Eliot B. Moss, Ton

Ngo, Vivek Sarkar, and Martin Trapp. The Jikes Research Virtual Machine

project: Building an open-source research community. IBM Systems Journal,

44(2):399-417, April 2005.

[AAC+99] Bowen Alpern, C. R. Attanasio, Anthony Cocchi, Derek Lieber, Stephen

Smith, Ton Ngo, John J. Barton, Susan Flynn Hummel, Janice C. Sheperd,

and Mark Mergen. Implementing Jalapeno in Java. In OOPSLA '99: Proceed

ings of the 14th ACM SIGPLAN conference on Object-oriented programming,

systems, languages, and applications, pages 314-324, Oct. 1999.

[ABD+97] Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean, Sanjay Ghemawat,

Monika R. Henzinger, Shun-Tak A. Leung, Richard L. Sites, Mark T. Van-

devoorde, Carl A. Waldspurger, and William E. Weihl. Continuous profiling:

where have all the cycles gone? ACM Trans. Computer Systems, 15(4):357-

390, Nov. 1997.

[AFG+00] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F.

Sweeney. Adaptive optimization in the Jalapeno JVM. ACM SIGPLAN No

tices, 35(10):47-65, 2000.

149

Bibliography

[AFG+05] Matthew Arnold, Stephen J. Fink, David Grove, Michael Hind, and Peter F.

Sweeney. A survey of adaptive optimization in virtual machines. Proceedings

of the IEEE, 93(2), 2005. special issue on "Program Generation, Optimiza

tion, and Adaptation".

[AHR02] Matthew Arnold, Michael Hind, and Barbara G. Ryder. Online feedback-

directed optimization of Java. In OOPSLA '02: Proceedings of the 17th ACM

SIGPLAN conference on Object-oriented programming, systems, languages,

and applications, pages 111-129, New York, NY, USA, 2002. ACM Press.

[AMD01] AMD. Amd athlon processor x86 code optimization guide. 2001.

http://www.amd.com/.

[App89] A. W. Appel. Simple generational garbage collection and fast allocation.

Softw. Pract. Exper., 19(2):171-183, 1989.

[AWR05] Matthew Arnold, Adam Welc, and V. T. Rajan. Improving virtual machine

performance using a cross-run profile repository. In OOPSLA '05: Proceed

ings of the 20th annual ACM SIGPLAN conference on Object oriented pro

gramming, systems, languages, and applications, pages 297-311, New York,

NY, USA, 2005. ACM Press.

[BA97] Douglas C. Burger and Todd M. Austin. The SimpleScalar tool set, version

2.0. Technical Report CS-TR-1997-1342, 1997.

[BABD00] R. Balasubramonian, D. H. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas.

Memory hierarchy reconfiguration for energy and performance in general pur

pose architectures. In MICRO 33:the 33rd Annual Intl. Sym. on Microarchi

tecture, pages 245-257, Dec. 2000.

[BCM04a] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. Oil and Wa

ter? High Performance Garbage Collection in Java with MMTk. In ICSE '04:

Proceedings of the 26th International Conference on Software Engineering,

pages 137-146. IEEE Computer Society, May 2004.

150

http://www.amd.com/

Bibliography

[BCM04b] Steve M. Blackburn, P. Cheng, and Kathryn S. McKinley. Myths and realities:

The performance impact of garbage collection. In Proceedings of the ACM

SIGMETRICS Conference on Measurement & Modeling Computer Systems,

pages 25-36, June 2004.

[BDB00] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: a trans

parent dynamic optimization system. In PLDI '00: Proceedings of the ACM

SIGPLAN 2000 conference on Programming language design and implemen

tation, pages 1-12, New York, NY, USA, 2000. ACM Press.

[BDG+] S. Brown, J. Dongarra, N. Garner, K. London, and P. Mucci. PAPI.

http://icl.cs.utk.edu/papi.

[Bel73] James R. Bell. Threaded code. Communications of the ACM, 16(6):370-372,

1973.

[BJMM02] Stephen M. Blackburn, Richard Jones, Kathryn S. McKinley, and J Eliot B

Moss. Beltway: getting around garbage collection gridlock. SIGPLAN Not.,

37(5): 153-164, June 2002.

[BoeOO] Hans-J. Boehm. Reducing garbage collector cache misses. In ISMM '00:

Proceedings of the 2nd international symposium on Memory management,

pages 59-64, Oct. 2000.

[Bur02] Martin Burtscher. An improved index function for (D)FCM predictors. Com

puter Architecture News, 30(3):19-24, June 2002.

[BZM] Rudolf Berrendorf, Heinz Ziegler, and Bernd Mohr. PCL-the performance

counter library, h t t p : //www. f z ~ j u e l i c h . d e / z a m / P C L / .

[CEG+05] Michal Cierniak, Marsha Eng, Neal Glew, Brian Lewis, and James Stichnoth.

The open runtime platform: a flexible high-performance managed runtime

environment: Research articles. Concurr. Comput. : Pract. Exper., 17(5-

6):617-637, 2005.

151

http://icl.cs.utk.edu/papi
http://fz~juelich.de/zam/PCL/

Bibliography

[CFE99] B. Calder, P. Feller, and A. Eustace. Value profiling and optimization, 1999.

[CH02] Trishul M. Chilimbi and Martin Hirzel. Dynamic hot data stream prefetching

for general-purpose programs. In PLDI '02: Proceedings of the ACM SIG-

PLAN 2002 Conference on Programming language design and implementa

tion, pages 199-209, New York, NY, USA, 2002. ACM Press.

[CHV04] Chen-Yong Cher, Antony L. Hosking, and T. N. Vijaykumar. Software

prefetching for mark-sweep garbage collection: hardware analysis and soft

ware redesign. In ASPLOS-XI: Proceedings of the 11th international con

ference on Architectural support for programming languages and operating

systems, pages 199-210, Oct. 2004.

[CKJA98] Brad Calder, Chandra Krintz, Simmi John, and Todd Austin. Cache-conscious

data placement. SIGPLANNot., 33(11):139-149,1998.

[Cor] Intel Corporation. VTune performance analyzer.

http://www.Intel.com/software/products/vtune/.

[CU91] Craig Chambers and David Ungar. Making pure object-oriented languages

practical. In OOPSLA '91: Conference proceedings on Object-oriented pro

gramming systems, languages, and applications, pages 1-15, New York, NY,

USA, 1991. ACM Press.

[DA99] David Detlefs and Ole Agesen. The case for multiple compilers. In OOP

SLA '99 Workshop on Peformance Portability, and Simplicity in Virtual Ma

chine Design, pages 180-194, 1999.

[Dau92] Ingrid Daubechies. Ten lectures on wavelets. Society for Industrial and Ap

plied Mathematics, Philadelphia, PA, USA, 1992.

[DCD03] Evelyn Duesterwald, Calin Cascaval, and Sandhya Dwarkadas. Characteriz

ing and predicting program behavior and its variability. In PACT '03: Pro

ceedings of the 12th International Conference on Parallel Architectures and

Compilation Techniques, page 220. IEEE Computer Society, Sep. 2003.

152

http://www.Intel.com/software/products/vtune/

Bibliography

[DS02a] A. Dhodapkar and J. Smith. Dynamic microarchitecture adaptation via co-

designed virtual machines, 2002.

[DS02b] Ashutosh S. Dhodapkar and James E. Smith. Managing multi-configuration

hardware via dynamic working set analysis. In ISCA '02: Proceedings of the

29th annual international symposium on Computer architecture, pages 233-

244. IEEE Computer Society, 2002.

[DS03] Ashutosh S. Dhodapkar and James E. Smith. Comparing program phase de

tection techniques. In Proceedings of the 36th Annual IEEE/ACM Interna

tional Symposium on Microarchitecture, page 217. IEEE Computer Society,

2003.

[EM98] A. N. Eden and T. Mudge. The yags branch prediction scheme. In MICRO

31: Proceedings of the 31st annual ACM/IEEE international symposium on

Microarchitecture, pages 69-77, Los Alamitos, CA, USA, 1998. IEEE Com

puter Society Press.

[EPG+06] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Car

los Pacheco, Matthew S. Tschantz, and Chen Xiao. The Daikon system for

dynamic detection of likely invariants. Science of Computer Programming,

2006.

[Gag] Etienne M. Gagnon. SableVM. http://www.sablevm.org/.

[Gag02] Etienne M. Gagnon. A Portable Research Framework for the Execution of

Java Bytecode. PhD thesis, McGill University, 2002.

[GBEB04] Andy Georges, Dries Buytaert, Lieven Eeckhout, and Koen De Bosschere.

Method-level phase behavior in Java workloads. In OOPSLA '04: Proceed

ings of the 19th annual ACM SIGPLAN Conference on Object-oriented pro

gramming, systems, languages, and applications, pages 270-287, Oct. 2004.

[GH01] Etienne M. Gagnon and Laurie J. Hendren. SableVM:A Research Framework

for the Efficient Execution of Java Bytecode. In Proceedings of the Java

153

http://www.sablevm.org/

Bibliography

Virtual Machine Research and Technology Symposium (JVM '01), pages 27-

40. USENIX Association, April 2001.

[GH03] E. Gagnon and L. Hendren. Effective inline-threaded interpretation of Java

bytecode using preparation sequences. 2622:170-184, 2003.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java Language Spec

ification, Second Edition: The Java Series. Addison-Wesley Longman Pub

lishing Co., Inc., Boston, MA, USA, 2000.

[GM04] Samuel Z. Guyer and Kathryn S. McKinley. Finding your cronies: static

analysis for dynamic object colocation. In OOPSLA '04: Proceedings of the

19th annual ACM SIGPLAN Conference on Object-oriented programming,

systems, languages, and applications, pages 237-250, Oct. 2004.

[GV07] Dayong Gu and Clark Verbrugge. Using hardware data to detect repetitive

program behavior. Technical Report SABLE-TR-2007-2, Sable Research

Group, School of Computer Science, McGill University, Montreal, Quebec,

Canada, March 2007.

[GVdBOl] Bart Goeman, Hans Vandierendonck, and Koen de Bosschere. Differen

tial FCM: Increasing value prediction accuracy by improving table usage

efficiency. In Proceedings of the 7th International Symposium on High-

Performance Computer Architecture (HPCA), pages 207-216. IEEE Com

puter Society, January 2001.

[GVG05a] Dayong Gu, Clark Verbrugge, and Etienne Gagnon. Assessing the impact of

optimization in Java virtual machines. Technical Report SABLE-TR-2005-4,

Sable Research Group, McGill University, October 2005.

[GVG05b] Dayong Gu, Clark Verbrugge, and Etienne Gagnon. Code layout as a source

of noise in JVM performance. Studia Informatica Universalis, 4(l):83-99,

March 2005.

154

Bibliography

[GVG06] Dayong Gu, Clark Verbrugge, and Etienne Gagnon. Relative factors in perfor

mance analysis of Java virtual machines. In VEE '06: Proceedings of the 1st

ACM/USENIX international conference on Virtual execution environments,

New York, NY, USA, June 2006. ACM Press.

[GZD02] Dayong Gu, Olivier Zendra, and Karel Driesen. The impact of branch pre

diction on control structures for dynamic dispatch in Java. Technical Report

RR-4547, Publication INRIA, 2002.

[Han74] Gilbert Joseph Hansen. Adaptive Systems for the Dynamic Run-time Opti

mization of Programs. PhD thesis, Carnegie-Mellon University, 1974.

[HBJ03] Shiwen Hu, Ravi Bhargava, and Lizy Kurian John. The role of return value

prediction in exploiting speculative method-level parallelism. JILP, 5:1—21,

November 2003.

[HBM+04] Xianglong Huang, Stephen M. Blackburn, Kathryn S. McKinley, J Eliot B.

Moss, Zhenlin Wang, and Perry Cheng. The garbage collection advantage:

improving program locality. In OOPSLA '04: Proceedings of the 19th an

nual ACM SIGPLAN Conference on Object-oriented programming, systems,

languages, and applications, pages 69-80, Oct. 2004.

[Hel] Don Heller. Performance monitoring counter.

http://www.scl.ameslab.gov/Projects/Rabbit/.

[HRS03] Michael J. Hind, Vadakkedathu T. Rajan, and Peter F. Sweeney. Phase shift

detection: A problem classification. Technical Report IBM Research Report

RC-22887, IBM T. J. Watson, August 2003.

[HRT03] Michael C. Huang, Jose Renau, and Josep Torrellas. Positional adaptation

of processors: application to energy reduction. In ISCA '03: Proceedings

of the 30th annual international symposium on Computer architecture, pages

157-168, New York, NY, USA, 2003. ACM Press.

155

http://www.scl.ameslab.gov/Projects/Rabbit/

Bibliography

[HU96] Urs Holzle and David Ungar. Reconciling responsiveness with perfor

mance in pure object-oriented languages. ACM Trans. Program. Lang. Syst.,

18(4):355^tt)0, 1996.

[IBM] IBM. Pmapi. h t t p : / / w w w . a l p h a w o r k s . ibm. c o m / t e c h / p m a p i .

[Int02] Intel. Intel architecture software developer's manual. 2002.

http://developer.intel.com/.

[Jim05] Daniel A. Jimenez. Code placement for improving dynamic branch prediction

accuracy. In PLDI '05: Proceedings of the 2005 ACM SIGPLAN conference

on Programming language design and implementation, pages 107-116, New

York, NY, USA, 2005. ACM Press.

[JL96] Richard Jones and Rafael Lins. Garbage Collection: Algorithms for Auto

matic Dynamic Memory Management. John Wiley and Sons, July 1996.

[kCBC+06] Wen ke Chen, Sanjay Bhansali, Trishul Chilimbi, Xiaofeng Gao, and Weihaw

Chuang. Profile-guided proactive garbage collection for locality optimization.

In PLDI '06: Proceedings of the 2006 ACM SIGPLAN conference on Pro

gramming language design and implementation, pages 332-340, New York,

NY, USA, 2006. ACM Press.

[KCS05] Naveen Kumar, Bruce R. Childers, and Mary Lou Soffa. Low overhead pro

gram monitoring and profiling. In PASTE '05: The 6th ACM SIGPLAN-

SIGSOFT workshop on Program analysis for software tools and engineering,

pages 28-34, New York, NY, USA, 2005. ACM Press.

[KF03] Thomas Kistler and Michael Franz. Continuous program optimization: A

case study. ACM Trans. Program. Lang. Syst., 25(4):500-548, 2003.

[Kri03] Chandra Krintz. Coupling on-line and off-line profile information to improve

program performance. In CGO '03: Proceedings of the international sym

posium on Code generation and optimization, pages 69-78, Washington, DC,

USA, 2003. IEEE Computer Society.

156

http://www.alphaworks
http://developer.intel.com/

Bibliography

[KS03] Ho-Seop Kim and James E. Smith. Dynamic software trace caching. In the

30th International Symposium on Computer Architecture (ISCA 2003), 2003.

[LH04] Wei Liu and Michael C. Huang. Expert: expedited simulation exploiting

program behavior repetition. In ICS '04: Proceedings of the 18th annual

international conference on Supercomputing, pages 126-135, New York, NY,

USA, 2004. ACM Press.

[LPH+05] Jeremy Lau, Erez Perelman, Greg Hamerly, Timothy Sherwood, and Brad

Calder. Motivation for variable length intervals to find hierarchical phase

behavior. In 2005 IEEE International Symposium on Performance Analysis

of Systems and Software (ISPASS'05), March 2005.

[LSC05] Jeremy Lau, Stefan Schoenmackers, and Brad Calder. Transition phase clas

sification and prediction. In HPCA, pages 278-289, 2005.

[LSP+05] Jeremy Lau, Jack Sampson, Erez Perelman, Greg Hamerly, and Brad Calder.

The strong correlation between code signatures and performance. In ISPASS

'05: Proceedings of the IEEE International Symposium on Performance Anal

ysis of Systems and Software, page 220. IEEE Computer Society, March 2005.

[LY99] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[McF93] Scott McFarling. Combining Branch Predictors. Technical Report TN-36,

Digital Western Research Lab, June 1993.

[McQ67] J. McQueen. Some methods for classification and analysis of multivariate

observations. In L. M. LeCam and N. Neyman, editors, the fifth Berkeley

symposium on mathematical statistics and probability, volume 1, pages 281-

297,1967.

[ME01] David Mosberger and Stephane Eranian. IA-64 Linux Kernel: Design and

Implementation. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

157

Bibliography

[MH06] Phil McGachey and Antony L. Hosking. Reducing generational copy reserve

overhead with fallback compaction. In ISMM '06: Proceedings of the 2006

international symposium on Memory management, pages 17-28, New York,

NY, USA, 2006. ACM Press.

[NHK+06] Priya Nagpurkar, Michael Hind, Chandra Krintz, Peter Sweeney, and V.T.

Raj an. Online phase detection algorithms. In CGO '06: Proceedings of the

international symposium on Code generation and optimization, Washington,

DC, USA, March 2006. IEEE Computer Society.

[NKS05] Priya Nagpurkar, Chandra Krintz, and Timothy Sherwood. Phase-aware re

mote profiling. In CGO '05: Proceedings of the international symposium on

Code generation and optimization, pages 191-202, Washington, DC, USA,

2005. IEEE Computer Society.

[NMW97] C. Nevill-Manning and I. Witten. Identifying hierarchical structure in se

quences: A linear-time algorithm, 1997.

[oCS95] IEEE Transactions on Computers Staff. Optimal 2-bit branch predictors.

IEEE Trans. Comput., 44(5):698-702, 1995.

[OHL99] Jeffrey T. Oplinger, David L. Heine, and Monica S. Lam. In search of specu

lative thread-level parallelism. In PACT '99, pages 303-313. IEEE, 1999.

[Par05] Behrooz Parhami. Computer Architecture: From Microprocessors to Super

computers (Oxford Series in Electrical and Computer Engineering). Oxford

University Press, Inc., New York, NY, USA, 2005.

[PH90] David A. Patterson and John L. Hennessy. Computer architecture: a quantita

tive approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

1990.

[PV04] Christopher J. F. Pickett and Clark Verbrugge. Return value prediction in a

Java virtual machine. In Proceedings of the 2nd Value-Prediction and Value-

Based Optimization Workshop (VPW2), pages 40-47, October 2004.

158

Bibliography

[PV06] Sokhom Pheng and Clark Verbrugge. Dynamic data structure analysis for

Java programs. In ICPC '06: Proceedings of the 14th IEEE International

Conference on Program Comprehension (ICPC'06), pages 191-201. IEEE

Computer Society, 2006.

[PVC01] Michael Paleczny, Christopher A. Vick, and Cliff Click. The Java HotSpot

server compiler. In Java Virtual Machine Research and Technology Sympo

sium, pages 1-12, 2001.

[QH02] Feng Qian and Laurie Hendren. An adaptive, region-based allocator for Java.

In ISMM '02: Proceedings of the 3rd international symposium on Memory

management, pages 127-138, June 2002.

[RSEW04] Rodric M. Rabbah, Hariharan Sandanagobalane, Mongkol Ekpanyapong, and

Weng-Fai Wong. Compiler orchestrated prefetching via speculation and pred

ication. In ASPLOS-XI: Proceedings of the 11th international conference

on Architectural support for programming languages and operating systems,

pages 189-198, Oct. 2004.

[SA93] Rabin A. Sugumar and Santosh G. Abraham. Efficient simulation of caches

under optimal replacement with applications to miss characterization. In Mea

surement and Modeling of Computer Systems, pages 24-35, 1993.

[SCF03] Michelle Mills Strout, Larry Carter, and Jeanne Ferrante. Compile-time com

position of run-time data and iteration reorderings. SIGPLANNot., 38(5):91-

102, 2003.

[SDDS05] Xipeng Shen, Chen Ding, Sandhya Dwarkadas, and Michael

Scott. Characterizing phases in service-oriented applications.

http://www.cs.rochester.edU/u/xshen/Abstracts/tr848.html, 2005.

[SE94] A. Srivastava and A. Eustace. ATOM: a system for building customized pro

gram analysis tools. In Conference on Programming Language Design and

Implementation, pages 196-205, 1994.

159

http://www.cs.rochester.edU/u/xshen/Abstracts/tr848.html

Bibliography

[SE02] A. Srivastava and A. Eustace. Automatically characterizing large scale pro

gram behavior. In Tenth International Conference on Architectural Support

for Programming Languages and Operating Systems, October 2002.

[SHB+02] Darko Stefanovic, Matthew Hertz, Stephen M. Blackburn, Kathryn S. McKin-

ley, and J. Eliot B. Moss. Older-first garbage collection in practice: evaluation

in a Java virtual machine. In MSP '02: Proceedings of the 2002 workshop on

Memory system performance, pages 25-36, June 2002.

[SHC+04] Peter F. Sweeney, Matthias Hauswirth, Brendon Cahoon, Perry Cheng, Amer

Diwan, David Grove, and Michael Hind. Using hardware performance mon

itors to understand the behavior of Java applications. In VM'04:Proceedings

of the 3rd Virtual Machine Research and Technology Symposium, May 2004.

[SKB04] Sunil Soman, Chandra Krintz, and David F. Bacon. Dynamic selection of

application-specific garbage collectors. In ISMM '04: Proceedings of the 4th

international symposium on Memory management, pages 49-60, Oct 2004.

[SMM99] Darko Stefanovic, Kathryn S. McKinley, and J. Eliot B. Moss. Age-based

garbage collection. In OOPSLA '99: Proceedings of the 14th ACM SIGPLAN

conference on Object-oriented programming, systems, languages, and appli

cations, pages 370-381, Oct. 1999.

[SPC01] Timothy Sherwood, Erez Perelman, and Brad Calder. Basic block distribu

tion analysis to find periodic behavior and simulation points in applications.

In PACT '01: Proceedings of the 2001 International Conference on Paral

lel Architectures and Compilation Techniques, pages 3-14, Washington, DC,

USA, 2001. IEEE Computer Society.

[SPHC02] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically char

acterizing large scale program behavior, 2002. In Tenth International Con

ference on Architectural Support for Programming Languages and Operating

Systems, October 2002. http://www.cs.ucsd.edu/users/calder/simpoint/.

160

http://www.cs.ucsd.edu/users/calder/simpoint/

ibliography

[Spr02] Brinkley Sprunt. Pentium 4 performance-monitoring features. IEEE Micro,

22(4):72-82, 2002.

[SSC03] Timothy Sherwood, Suleyman Sair, and Brad Calder. Phase tracking and pre

diction. In ISCA '03: Proceedings of the 30th annual international symposium

on Computer architecture, pages 336-349, 2003.

[Staa] Standard Performance Evaluation Corporation. SPECCPU2000 benchmarks.

http://www.spec.org/cpu2000/.

[Stab] Standard Performance Evaluation Corporation. SPECCPU95 benchmarks.

http://www.spec.org/cpu95/.

[Stac] Standard Performance Evaluation Corporation. SPECjvm98 benchmarks.

http://www.spec.org/osg/jvm98.

[Sta99] William Stallings. Computer Organization and Architecture: Designing for

Performance. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999.

[StaOO] Standard Performance Evaluation Corporation. SPECjbb2000.

http: //www. spec . org/osg/jbb2000,2000.

[Suna] Sun Microsystems, Inc. The Java Hotspot Virtual Machine VI.4.1.

http://Java.sun.com/products/hotspot/index.html.

[Sunb] Sun Microsystems, Inc. The Java Virtual Machine Tools Interface.

http://Java.sun.com/j2se/l.5.0/docs/guide/jvmti/.

[SYK+01] Toshio Suganuma, Toshiaki Yasue, Motohiro Kawahito, Hideaki Komatsu,

and Toshio Nakatani. A dynamic optimization framework for a Java just-in-

time compiler. In OOPSLA '01: Proceedings of the 16th ACM SIGPLAN

conference on Object oriented programming, systems, languages, and appli

cations, pages 180-195, New York, NY, USA, 2001. ACM Press.

[SZD04] Xipeng Shen, Yutao Zhong, and Chen Ding. Locality phase prediction. SIG

PLAN Not., 39(11):165-176, 2004.

161

http://www.spec.org/cpu2000/
http://www.spec.org/cpu95/
http://www.spec.org/osg/jvm98
http://Java.sun.com/products/hotspot/index.html
http://Java.sun.com/j2se/l.5.0/docs/guide/jvmti/

Bibliography

[Ung84] David Ungar. Generation scavenging: A non-disruptive high performance

storage reclamation algorithm. In SDE 1: Proceedings of the first ACM SIG-

SOFT/SIGPLAN software engineering symposium on Practical software de

velopment environments, pages 157-167, Apr. 1984.

[Ven96] Bill Venners. Inside the Java Virtual Machine. McGraw-Hill, Inc., New York,

NY, USA, 1996.

[WhaOl] John Whaley. Partial method compilation using dynamic profile informa

tion. In OOPSLA '01: Proceedings of the 16th ACM SIGPLAN conference on

Object oriented programming, systems, languages, and applications, pages

166-179, New York, NY, USA, 2001. ACM Press.

[ZSCC06] Xiaotong Zhuang, Mauricio J. Serrano, Harold W. Cain, and Jong-Deok Choi.

Accurate, efficient, and adaptive calling context profiling. In PLDI '06: Pro

ceedings of the 2006 ACM SIGPLAN conference on Programming language

design and implementation, pages 263-271, New York, NY, USA, 2006.

ACM Press.

162

