
Automatic basis function construction
for reinforcement learning

and approximate dynamic programming

Philipp W. Keller

Master of Science in Computer Science

School of Computer Science

McGill University

Montreal, Quebec

February 2008

A Thesis submitted to McGill University
in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

c© Copyright Philipp W. Keller, 2008

ACKNOWLEDGEMENTS

Most of all, I thank my advisors, Doina Precup and Shie Mannor. Doina was the

first to get me excited about the possibilities of artificial intelligence, first introduced

me to research, and taught me a great deal of the knowledge that went into this thesis,

besides much else. Shie, of course, provided the idea at the root of this work, was never

without ideas when the going got tough, and also taught me a great deal. But I thank him

most of all for broadening my perspectives at a crucial point in my academic life, and

helping me decide on a future career path.

I will be eternally grateful to both Doina and Shie for their help and teaching. But

I would never have finished this thesis, had they not been so understanding, patient and

supportive while I went through a very difficult time personally. They never gave up on

me, and didn’t let me give up on myself, for which I owe them another great debt.

I also thank the many members of, and visitors to, the Reasoning and Learning

Lab, on whom I could always count for support, friendship, and pleasant distraction.

They are the people who made my time there enjoyable, and who made my academic

and personal challenges seem manageable. I thank the entire faculty of the School of

Computer Science, who have collectively taught me much of what I know, and of whom

many members have given me invaluable suggestions and personal support at the right

moment.

Finally, I thank my family for always remaining supportive of my plans and

concerned for my happiness despite everything they were going through while I was

completing my degree.

ii

ABSTRACT

We address the problem of automatically constructing basis functions for linear ap-

proximation of the value function of a Markov decision process (MDP). Our work builds

on results by Bertsekas and Castañon (1989) who proposed a method for automatically

aggregating states to speed up value iteration. We propose to use neighbourhood com-

ponent analysis , a dimensionality reduction technique created for supervised learning,

in order to map a high-dimensional state space to a low-dimensional space, based on the

Bellman error, or on the temporal difference (TD) error. We then place basis functions

in the lower-dimensional space. These are added as new features for the linear function

approximator. This approach is applied to a high-dimensional inventory control problem,

and to a number of benchmark reinforcement learning problems.

iii

ABRÉGÉ

Nous addressons la construction automatique de fonctions base pour l’approximation

linéaire de la fonction valeur d’un processus de décision Markov. Cette thèse se base sur

les résultats de Bertsekas et Castañon (1989), qui ont proposé une méthode pour automa-

tiquement grouper des états dans le but d’accélérer la programmation dynamique. Nous

proposons d’utiliser une technique récente de réduction de dimension afin de projeter

des états en haute dimension dans un espace à basse dimension. Nous plaçons alors des

fonctions base radiales dans ce nouvel espace. Cette technique est appliquée à plusieurs

problèmes de référence standards pour les algorithmes d’apprentissage par renforcement,

ainsi qu’à un problème de contrôle d’inventaire en haute dimension.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

ABSTRACT . iii

ABRÉGÉ . iv

LIST OF FIGURES . vii

1 Introduction . 1

2 Background and Notation . 4

2.1 Markov Decision Processes . 4
2.2 Dynamic Programming and Reinforcement Learning 6
2.3 Value Function Approximation . 7
2.4 Least Squares Temporal-Difference Learning 10

2.4.1 LSTD and LSTDQ . 10
2.4.2 Bellman Residual Minimization 11
2.4.3 Regularization . 13
2.4.4 Choice of Algorithm . 13

2.5 Policy Iteration and Least Squares Policy Iteration 14

3 Automatic Basis Function Selection in Reinforcement Learning 15

3.1 Adaptive State Aggregation . 15
3.2 Basis Function Adaptation and Selection 18
3.3 Proto-value Functions . 20
3.4 Bellman Error Basis Functions . 21

4 Dimensionality Reduction . 23

4.1 Neighbourhood Component Analysis 23
4.2 NCA for Regression . 25
4.3 NCA Optimization . 28

v

4.4 Dimensionality Reduction . 29
4.5 Performance and Potential Improvements 29
4.6 Downsampling . 31

5 Automatic Basis Function Construction . 32

5.1 Oveview of the Algorithm . 32
5.2 Value Function Correction . 35
5.3 Solving the Correction MPD . 36
5.4 Estimating Bellman errors . 40
5.5 Fitting the Value Function . 40
5.6 Dimensionality Reduction . 41
5.7 Feature Pruning . 41

5.7.1 Optimal Brain Surgeon Feature Pruning 41
5.7.2 Function Change Feature Pruning 43

6 Experimental Results . 48

6.1 Discrete MDPs . 48
6.1.1 Chain Walk MDP . 48
6.1.2 Three-room MDP . 50

6.2 Mountain Car . 59
6.2.1 Robustness to Noise . 65

6.3 Inventory Control . 65
6.3.1 Problem Description . 68
6.3.2 Inventory Control Policies . 69
6.3.3 Basis Function Selection for the Inventory Control Problem . . 75
6.3.4 Experiments . 76

7 Conclusions and Future Work . 81

7.1 Contribution . 81
7.2 Discussion . 81
7.3 Future Directions . 83

References . 84

vi

LIST OF FIGURES
Figure page

6–1 Chain walk action value function estimates during policy evaluation . . . 51

6–2 Chain walk action value function estimates during policy iteration 52

6–3 Final chain walk action value function estimate 53

6–4 Chain walk action value function error 53

6–5 Optimal value function for the Three-Room problem 54

6–6 Value function approximations for the Three-Room problem 55

6–7 Performance for the Three-Room problem 57

6–8 Performance for the sparse Three-Room problem with sparse representation 58

6–9 Mountain car problem illustration . 59

6–10 Mountain Car problem value function 61

6–11 Mountain Car trajectories . 62

6–12 Mountain Car value function evolution 63

6–13 Mountain Car value function evolution when solving correction MDP . . 64

6–14 Mountain Car problem Bellman error and cost 66

6–15 Noisy Mountain Car problem Bellman error and cost 67

6–16 Inventory control problem parameters 70

6–17 Initial inventory control value function approximations 73

6–18 Inventory Control problem performance 78

6–19 Large Inventory Control problem performace 80

vii

CHAPTER 1
Introduction

A reinforcement learning (RL) agent adapts its behaviour in an unknown environ-

ment in response to reward signals generated as a result of its actions. The agent’s goal

is to learn a policy maximizing its long-term reward. As a sub-area of machine learning,

RL differs from supervised and unsupervised learning in that no explicit set of training

data is used to learn fixed relationships among the data. Instead, the agent’s behavious is

updated in response to data and reward signals resulting directly from interactions with

the environment.

Markov Decision Processes (MDPs) are generally used to model the environment.

In value-based RL, the agent maintains estimates of the total expected return given a

behaviour policy when starting in each state. In this context, statistical and dynamic

programming methods are used to compute the estimates and update the agent’s policy.

A closely related field is optimal stochastic control.

In environments with a large discrete state space, or a continuous state space,

function approximation methods must be used to represent value functions since it is not

possible to store a value for each state. The majority of current research in reinforcement

learning relies on linear function approximators which represent the value of a state as a

linear combination of basis functions. The coefficients are learned from data, but in most

work to date, the basis functions themselves are specified by the designer of the system.

1

2

This is a significant barrier to the application of RL since designing an approximator

for a given task can be difficult and time consuming. Moreover, even with careful

engineering, continuous problems with more than 10-12 dimensions cannot be handled

by current techniques [18]. Recently, a significant amount of work has been devoted to

constructing bases for value functions automatically[13, 14, 17, 22, 28]. While these

methods look very promising, there is no empirical or theoretical evidence to date of

their efficiency in large problems.

This thesis proposes a different approach for constructing basis functions auto-

matically. The state space of the MDP is projected to a lower dimensional space based

on estimates of error in the current value function approximation. New basis functions

are defined in this low-dimensional space to compensate for the errors. The function

approximator is trained as usual, and the process is repeated. The novel properties of the

algorithm are:

1. The ability to deal with high-dimensional state representations: the state of many

realistic problems is naturally described by relatively large real-valued vectors.

Dimensionality reduction is used to identify relevant features of the state space,

and thus avoid the “curse of dimensionality” faced when working in the original

space.

2. An efficient heuristic RBF selection procedures to build easily evaluated basis

functions suitable for use in reinforcement learning with large sample sizes.

3. Rather than directly using the Bellman error as a basis function as in previous

work, a lower-dimensional policy evaluation problem is solved to yield more

3

appropriate basis functions for the original MDP. Choosing basis functions for the

low-dimensional MDP is tractable.

4. Instead of fixing the approximate Bellman error at a given iteration as a basis

function, the set of RBFs used to represent all the Bellman errors seen so far are

used as the basis functions for the value function approximation.

5. A pruning algorithm is used to eliminate redundant RBFs, discard RBFs which

become obsolete as the approximation to the value function changes, and bound

the total number of RBFs used in the approximator.

This thesis is organised as follows. Chapter 2 summarizes the necessary background

and notation for MDPs and RL algorithms. Chapter 3 discusses various exitsting

automatic basis function selection approaches and motivates the approach taken here.

Chapter 4 describes neighbourhood component analysis (NCA), the dimensionality

reduction method used in the algorithm. Chapter 5 presents the algorithm for automatic

basis function construction. Chapter 6 outlines experimental results obtained for a

discrete MDP, a continuous-state control problem, and an inventory control problem.

Finally, Chapter 7 discusses recent related approaches and concludes with some proposed

future work in the area.

CHAPTER 2
Background and Notation

This chapter reviews relevant background on Markov Decision Processes and stan-

dard reinforcement learning algorithms. Extensive treatments of dynamic programming

and reinforcement learning are provided by Bertsekas [1], and Sutton and Barto [24]

respectively.

2.1 Markov Decision Processes

A Markov Decision Process (MDP) is a tuple 〈S,A,P ,R, γ〉 where

• S is the space of possible states of the environment,

• A is a set of actions available to the agent at any time

• P : S × A × S → [0, 1] defines a conditional probability distribution over state

transitions given an action,

• R : S × A → R is a reward function assigning immediate rewards to an action

taken in a given state, and

• γ ∈ (0, 1) is a discount factor.

A stationary policy π : S × A → [0, 1] defines the probability of selecting each

action in each state. The value function V π : S → R for a given policy π is defined as

V π(s) = Eπ

[
∞∑
k=0

γkR(st+k, at+k)

∣∣∣∣∣ st = s

]
,

4

5

where st and at represents the state and action at time t when actions are selected ac-

cording to the policy π. The value function assigns to each state the expected discounted

return of the agent when starting in that state and following the fixed policy.

Similarly, the action-value function Qπ : S ×A → R is defined as

Qπ(s, a) = Eπ

[
∞∑
k=0

γkR(st+k, at+k)

∣∣∣∣∣ st = s, at = a

]
.

Thus

V π(s) =

∫
a∈A

π(s, a)Qπ(s, a).

The goal of the agent is to find a policy maximizing it’s expected discounted return

for each state. Such a policy yields the unique optimal value function

V ∗(s) = max
π

V π(s) = max
a∈A

Q∗(s, a) ∀s ∈ S.

A deterministic optimal policy is to act greedily with respect to the optimal value

function V ∗, i.e.

π∗(st) ∈ arg max
a∈A

E [R(st, a) + γV ∗(st+1)] ,

where, by abuse of notation, π∗(s) denotes the deterministic action to be taken in state s.

A standard approach to finding the optimal value function is policy iteration, where

a policy π is fixed and the corresponding value function V π is computed. This value

function is then used to improve the policy, and the process is repeated. This thesis is

mainly concerned with the policy evaluation step, algorithms for which are discussed in

the next section.

6

Without loss of generality the rewards in this and the following discussion may be

replaced with costs. In such a case the optimal policy minimizes rather than maximizes

the action-value function.

2.2 Dynamic Programming and Reinforcement Learning

In this section the state space S is assumed to be large but finite. Hence, the

expected immediate reward under policy π can be represented as a vector R ∈ R|S|, and

the transition probabilities under π can be represented as a matrix P ∈ R|S|×|S|, where

both P and R are indexed by the elements of S with

Rπ
s = E [R(st, at)|st = s, at = π(st)]

and

P π
ss′ = P [st+1 = s′|st = s, at = π(st)] .

When considering a single fixed policy, we may drop the superscript π. The parameters

R and P depend on π,R and P , and define a Markov chain with rewards on the state

space with transition probability matrix P .

A value function can also be represented as a vector. For the given policy π, the

value function V π ∈ R|S| is the unique solution to the Bellman equations:

V π = R + γPV π. (2.1)

Successive approximations of V π can be obtained by repeatedly applying the Bellman

backup operator

V k+1 = T (V k)
def
= R + γPV k. (2.2)

7

This method is known as dynamic programming, and is known to converge to the true

value function.

Often the matrices R and P are not known but sample trajectories of the form

〈s0, r0, s1, r1, . . . , sT , rT 〉 consisting of the sequence of states and rewards observed when

following a policy are available. In this case one can estimate the model parameters

(P,R) and apply the method just described.

Alternatively, temporal difference (TD) learning can be used to learn the value

function directly from trajectories without explicitely representing the model parameters

R and P . In TD learning, the value function is updated after each state transition

according to

V̂ (st)← V̂ (st) + α
(
rt + γV̂ (st+1)− V̂ (st)

)
, (2.3)

where 0 < α < 1 is a step-size parameter. This approach assumes that a seperate

estimate for each state is maintained in a lookup table, as in dynamic programming. This

is a specific instance of the TD(λ) family of algorithms. The reader is referred to Sutton

and Barto [24] for details.

2.3 Value Function Approximation

Whether or not the model parameters P and R are available, it is not possible to

compute an explicit representation of the value function V π if the cardinality of the state

space is large, or if the state space is continuous. In such cases an approximation V̂ of

the value function can be computed and subsequently used for policy improvement.

When no model is available, the reinforcement learning algorithm TD(λ) can still be

used. Instead of applying the TD updates (2.3) to a tabular value function estimate,

analogous updates are applied directly to the value function approximator.

8

Theoretical results [26, 25] show that some convergence guarantees can still be

obtained for linear function approximators. This is consequently the most commonly

studied type of approximator. The value function approximation has the form V̂ = Φθ,

where Φ is a |S|×m matrix in which each row contains the feature vector for a particular

state, and θ is a vector of m parameters. Typically it is desirable to have m � |S|.

Usually, Φ is assumed to be given, and the learning algorithm adjusts θ.

Some common types of linear approximators are state aggregation, tile coding and

radial basis functions. State aggregation is perhaps the simplest type of approximator.

Conceptually, states are grouped together and a single value is stored for each group of

states. The feature vector for a given state s is defined as

φj(s) =

 1 if state s is in group j

0 otherwise
, ∀j ∈ {1, 2, . . . ,m}.

And the feature matrix has the form

Φ =



φ>(s1)

φ>(s2)

...

φ>(s|S|)


.

In soft state aggregation each state may belong to multiple groups with a certain weight.

Thus multiple or all entries in a row of Φ may be nonzero, but they must sum to 1. Radial

basis functions (RBF) networks are another common type of approximator where, when

9

using Gaussian basis functions and assuming S ⊂ Rn,

φj(si) = exp

(
−1

2
(s− cj)>W−1

j (s− cj)
)
,

and cj ∈ Rn,Wj ∈ Rn×n are the center and covariance respectively of the j th Gaussian

basis function.

Approximate dynamic programming (ADP) and temporal difference learning

(TD(λ)) are methods for learning the vector of parameters θ given a feature matrix Φ.

The main difference between the two is that ADP assumes that the model (the vectors R

and P) is known, while TD relies solely on sampled trajectories of the system.

In ADP, one seeks to find θ such that V̂ = Φθ is a good approximation to V π. This

can be accomplished by sampling some representative subset of the states, computing

the feature matrix for the sampled subset of states Φsample and solving the for the least-

squares fit

min
θ
‖Φsampleθ −R− αPΦsampleθ‖2 .

This step is repeated analogously to the dynamic programming algorithm for smaller

discrete MDPs. Convergence of this algorithm is not guaranteed.

In TD learning, an estimate of the value function is updated in response to observed

state transitions as

θ ← θzt (rt + (γφ(st+1)− φ(st)) θ)

z0 = φ(s0) , zt = γλzt−1 + φ(st) ∀t > 0.

10

The vectors zt are eligibility traces. Using positive values for λ accelerates convergence

in practice and yields a different solution. This aspect of TD learning is not treated

further since the effect of the λ parameter in the batch version of TD(λ) actually used in

this work is less important and the parameter will be set to λ = 0.

2.4 Least Squares Temporal-Difference Learning

Least squares TD is a batch method for computing a linear approximation to the

value function of an MDP from sampled data. This section describes the LSTDQ

extension of LSTD, as well as a related Bellman residual minimizing algorithm.

2.4.1 LSTD and LSTDQ

LSTD(λ) was introduced by Bradtke & Barto [5] for the important case λ = 0 and

extended by Boyan [3] to general λ ∈ [0, 1]. LSTD(λ) converges in the limit to the same

parameters as the incremental TD(λ) algorithm but does not require a learning rate, and

makes more efficient use of data samples at the expense of increased complexity per

iteration. In this work we consider only the case where λ = 0. LSTDQ is an extension of

LSTD used in of least-squares policy iteration, a method discussed below. This algorithm

is described here since it reduces to LSTD when there is a single action available to the

agent.

LSTDQ learns the state-action value function Qπ for a fixed policy π from a set of

sampled MDP transitions

D = {(st, at, rt, s′t)|t = 1, 2, . . . , L}

by computing

A = Φ>(Φ− γΦ′) and b = Φ>R

11

where

Φ =



φ(s1, a1)
>

...

φ(st, at)
>

...

φ(sL, aL)>


, Φ′ =



φ(s′1, π(s′1))
>

...

φ(s′t, π(s′t))
>

...

φ(s′L, π(s′L))>


, R =



r1
...

rt
...

rL


,

and solving the system

Aw = b.

If a model of the MDP is available, the tth row of the matrix Φ′ and vector R may be

replaced by estimates

Φ′t,· =
∑
s∈S

P(st, at, s
′)φ(s′, π(s′)) (2.4)

and

Rt =
∑
s′∈S

P(st, at, s
′)R((st, at, s

′).

Alternatively, for large or continuous state spaces, terms of the summation may be

sampled according to P(st, at, ·). This may allow for greater accuracy when solving

problems with stochastic transition probabilities, compared to simply using the single

successor state.

2.4.2 Bellman Residual Minimization

Alternatively, the Bellman residual minimizing solution given a sample may be

computed as the least-squares solution to

Φw ≈ R + γΦ′w

(Φ− γΦ′)w ≈ R

12

with

A = (Φ− γΦ′)>(Φ− γΦ′) and b = (Φ− γΦ′)>R.

This method is discussed by Lagoudakis and Parr [12] in relation to LSTDQ, as well

as by Sutton and Barto [24] and Baird [10] in the on-line setting. For non-deterministic

MDPs it would be necessary do use “doubled samples” to obtain unbiased estimates. The

matrix A has the form

A =
∑
t

(φ(st, at)− γφ(s′t, π(s′t))) (φ(s, a)− γφ(s′t, π(s′t)))
>
. (2.5)

When normalized, it is intended to estimate the expectation over all state-action pairs

A = E
[
(φ(s, a)− γφ(s′, π(s′))) (φ(s, a)− γφ(s′′, π(s′′)))

>
]

where (s, a) is sampled from a given distribution while s′ and s′′ are sampled indepen-

dently according to P(s, a, ·). In order to obtain an unbiased sample for A, it would be

necessary to sample two successor states independently using a generative model of the

environment.

This is not a problem when the MDP is deterministic or nearly deterministic, such

is in many control problems. If the features for the successor states are sampled from the

sum (2.4) using a model, each term of (2.5) has the form

At =

(
1

N

∑
s′∈T

(φ(st, at)− γφ(s′t, π(s′t)))

)(
1

N

∑
s′′∈T

(φ(st, at)− γφ(s′′t , π(s′′t)))

)>
=

1

N2

∑
s′∈T

∑
s′′∈T

(φ(st, at)− γφ(s′t, π(s′t))) (φ(st, at)− γφ(s′′t , π(s′′t)))
>

13

where T consists of N independently sampled successor states. The states s′ and s′′ are

independent in all but N of the N2 terms. This approach may be preferable to actually

drawing independent samples since only a single term needs to be computed for each

sample (st, at) when building the estimate A.

2.4.3 Regularization

The matrix A may not have full rank or be ill-conditioned if the sample is too small,

or if the features are not linearly independent. For both LSTDQ and Bellman residual

minimization, ridge regression may be employed to ensure a unique solution to the

system Aw = b. The system

(A+ Λ)w = b

is solved instead, where Λ is a diagonal matrix, generally a small multiple of the identity.

In the case of Bellman residual minimization, rather than minimising ‖(Φ−γΦ′)w−

R‖2, the solution w minimizes the objective

‖(Φ− γΦ′)w −R‖2 + ‖Λw‖2.

Such regularization can also act as a safeguard against overfitting since it penalizes

large weights. One way to select the diagonal elements of Λ is via a validation set, where

Λ is selected to minimize the Bellman residual of a second validation sample different

from that used to compute the actual estimates.

2.4.4 Choice of Algorithm

Lagoudakis and Parr [12] provide a comparison between the two methods.

Schoknecht [20] showed that the solution found by both algorithm minimizes a dif-

ferent quadratic objective. In essence, LSTD finds a fixed point of the projected Bellman

14

operator in the range of the feature matrix Φ, and thus the Bellman residual is orthogonal

to the range space of Φ. In contrast, the Bellman error minimizing solution is in general

not a fixed point of the projected Bellman operator.

LSTD has been observed to provide better policies and is generally preferred in

practice. However, the Bellman error minimizing approach provides a different insight

on the representation power of a given set of features.

2.5 Policy Iteration and Least Squares Policy Iteration

In standard policy iteration, a value function approximation is computed via LSTD

after each policy update. Thus on-policy samples are required at each policy iteration.

Furthermore, a model of the environment is required in order to complete the policy

update since one must solve the optimization problem

π(st) ∈ arg max
a∈A

E
[
R(s, a) + γV̂ (st+1)|at = a, st = s

]
.

In contrast, least-squares policy iteration (LSPI) uses LSTDQ to compute an

approximate action-value function Q̂ given a sample of MDP transitions D and an initial

policy π. This facilitates the policy improvement step if no model or only an approximate

model are available, as the above optimization problem is replaced by

π(st) ∈ arg max
a∈A

Q̂(s, a).

Since the transitions need not be sampled according to the current policy, it is also

possible to reuse samples if the available data is limited or costly to obtain.

CHAPTER 3
Automatic Basis Function Selection in Reinforcement Learning

This chapter reviews methods for automatically selecting basis functions for use

in linear approximators. The algorithm presented in Chapter 5 is largely inspired by the

adaptive state aggregation algorithm for solving discrete MDPs with explicit models,

which is outlined in the first section. A number of methods for adapting or creating

basis functions during learning are briefly discussed. Two current broad approaches are

contrasted: on the one hand, proto-value functions are a framework for constructing

global basis functions based on an analysis of state transitions, and on the other, Bellman

error based methods seek to create new basis functions using information available

during learning, namely the Bellman residual.

3.1 Adaptive State Aggregation

Bertsekas and Castañon [2] propose a state aggregation method for the purpose of

speeding up policy evaluation in the case where the state space is sufficiently small that

the value function can be explicitely represented as a vector V ∈ R|S|, and where the R

and P matrices are available explicitely.

Dynamic programming is used to compute V π, but applications of the Bellman

backup operator,

V k+1 = T (V k) = R + γPV k,

15

16

are interleaved with aggregation iterations of the form

V
k

= V k + Ψy,

V k+1 = T (V
k
) = R + γPV

k

where Ψ is an |S| ×m matrix for a small value of m (e.g. m = 2) and y ∈ Rm. Here,

Ψy is a low rank correction to V k.

Though the value function is being represented explicitely, the correction takes the

form of a linear function approximator. This will be exploited in chapter 5 to generalize

the approach to the case where we are defining new basis functions for an existing linear

approximator V̂ .

Under the assumptions that Ψ†(I − γP)Ψ is nonsingular and that Ψ†Ψ = I , y is

chosen to solve the system

y = RA + γPAy ⇔ y = (I − γPA)−1RA, (3.1)

where

PA = Ψ†PΨ,

RA = Ψ†(T (V k)− V k).

Ψ† = (Ψ>Ψ)−1Ψ> denotes the pseudoinverse, and we thus require that the columns

of Ψ be linearly independent so that the pseudoinverse can be computed and so that

Ψ†Ψ = I . The matrix Ψ is selected to be a state aggregation matrix, though this is not

required by the error analysis.

The system (3.1) is a small policy evalution defined on the aggregate Markov chain

with trasition probabilities PA and rewards RA. Each state corresponds to a group of

17

states in the original MDP, PA contains the group-to-group transition probabilities, and

the rewards RA represent the average Bellman residuals for the states in each group.

The choice of y is intended to provide and additive correction to V k which will

bring it close to the solution V π of (3.1). The Bellman residual can be expressed as,

T (V k)− V k = R + γPV k − V k

= V π − γPV π + γPV k − V k

= (I − γP)(V π − V k),

where we would like to have Ψy ≈ V π − V k. Substituting in Ψy and multiplying the

equation be Ψ† yields the system (3.1) :

Ψ†(T (V k)− V k) = Ψ†(I − γP)Ψy,

RA = (I − γPA)y.

Bertsekas and Castañon show that the Bellman error after an aggregation iteration is

described by a sum of two terms:

T (V k+1)− V k+1 = E1 + E2

E1 = (I − Π)(T (V k)− V k)

E2 = γ(I − Π)PΨy

(3.2)

where the matrix Π = ΨΨ† is an orthogonal projection onto the range space of Ψ (it

is symmetric and Π2 = Π.) In fact, for any x ∈ R|S|, (Πx)s is the mean value of the

elements of x in state s’s aggregate group. Then the first error term E1 is the projection

of the Bellman errors onto the nullspace of Ψ, and its s-th element is the Bellman error at

state s minus the mean Bellman error in state s’s aggregate group. A careful choice of Ψ

18

can bound the contribution of E1 in terms of the Bellman error (T (V k)− V k) at iteration

k.

Indeed, Bertsekas and Castañon propose to divide the range of Bellman errors at

iteration k into m equally sized intervals of length F (T (V k) − V k)/m, with F (x) =

(maxs xs − mins xs), and group the states with errors in each interval. This is shown

to provide a reduction in the first term by a factor of at least 2/m in terms of the F

pseudonorm defined above. The second term E2 depends on how well the aggregation

Ψ preserves the action of the transition matrix P , and is shown to be small for certain

interesting classes of transition matrices. The final algorithm ensures convergence in

general despite any error introduced by E2 by interleaving applications of the Bellman

operator with the aggregation steps.

3.2 Basis Function Adaptation and Selection

A number of function approximators for reinforcement learning have been pro-

posed in recent years. This section briefly describes some methods for automatically

constructing or updating basis functions for reinforcement learning.

Singh et al. propose an algorithm to update a soft state aggregation [21]. Unfortu-

nately the number of parameters required remains larger than the number of states, since

the feature vector for each state must be stored. The method is shown to converge almost

surely for Q-learning, and consequently for TD(0), when a fixed aggregation is used.

A heuristic for adaptive state aggregation is proposed, which uses stochastic gradient

descent on the squared Bellman error to update the feature matrix Φ.

Menache et al. [14] propose algorithms to update the parameters of radial basis

functions during TD learning, using gradient descent or the cross-entropy method.

19

Unlike state aggregation, radial basis functions have a compact representation. The

algorithms interleave applications of LSTD with optimization of the basis functions,

using estimates of the weighted squared Bellman error as the objective. It is observed

that the gradient-descent algorithm converges to local minima, while the cross-entropy

method avoids this problem.

Ratitch & Precup [17] propose an approximator similar to normalized radial

basis function networks, where basis functions are selected online during learning to

be centered near visited states. The resulting approximator has the property of being

local, which is not necessarily the case for unnormalized RBF networks. Thus it aims

to allocate limited resources to approximate the value function only in relevant regions

of the state space. The online nature of the algorithm allows the approximator to be

constructed and updated in a simple, efficient and intuitive as learning takes place.

In a similar spirit, explicit manifold representations apply knowledge of the state

space topology to construct local approximators. The approach avoids the problem that

states whose representations are close in Euclidean space, may in fact not be quickly

reachable from each other and thus have wildly different values. In the work of Smart

[22], short trajectories are used to determine reachable states from a starting point, and

the visited states are grouped into a “chart” with its own function approximator. This

is repeated for a number of states, and the resulting overlapping local approximators

are blended to construct a global value function approximator. This approximator

successfully represents discontinuities in the value function, but requires the additional

step of constructing the local charts before learning the value function. Moreover, the

topology of the state space may depend strongly on the policy. Thus the topology must

20

be updated on policy improvement steps in policy iteration, or for Q-learning, a seperate

approximator is needed for each action.

3.3 Proto-value Functions

Mahadevan and Maggioni propose proto-value functions [13]. This approach

applies spectral analysis of the state space topology to build global basis functions. In

the discrete case, trajectories following some policy are used to construct a weighted

graph in which successively visited states are connected. A subset of the eigenvectors

of a diffusion operator on the graph are used as basis functions. The framework is quite

different from the methods considered in this thesis, and the reader is directed to [13] for

a comprehensive exposition, and for extensions to continuous-state MDPs.

A major advantages of the approach is that the construction of the basis functions

depends only on the trasition function of the MDP. Once basis functions are constructed,

they can be reused to solve MDPs with different reward structures. This may be helpful

if one wishes to solve a number of problems on the same state space, and is also an

advantage of manifold learning. However, proto-value functions reflect global properties

of the state space such as symmetries or bottleneck states, which avoids the duplication

of effort required with local approximators. Finally, errors in the reward estimates have

no negative impact.

On the other hand, significant changes to the policy may change the topology of

the state space enough to require the entire analysis to be repeated, possibly negating the

utility of re-using basis functions. Furthermore, learning an accurate transition model is

non-trivial and may require a large number of samples. This is the major disadvantage of

the approach, since most of the methods mentioned in the previous section do not require

21

any expensive pre-processing steps. Of course, when a complete model is available, this

limitation is less serious.

3.4 Bellman Error Basis Functions

An alternative approach, which includes the method proposed in this thesis, is to

generate new basis functions based on the Bellman error of an existing value function

approximation. Earlier work relating to this thesis was presented in [11], and that

approach was applied in conjunction with LSPI to a three-dimensional maze navigation

problem by Sprague [23]. The relationship of these methods to the other approaches

mentioned is discussed further in Section 7.2. The norm of the Bellman error is also used

to determine basis functions in earlier works mentioned above [21, 14], thought they do

not directly use Bellman error information to construct basis functions.

From a more theoretical point of view, Parr et al. [16] provide a theoretical analysis

of Bellman error basis functions (BEBFs). A BEBF is simply the Bellman error

(T V̂ − V̂) where V̂ is the current value function approximation. It may be stored exactly

if the state space is small enough, or it may be approximated. In the case where an MDP

model is available and the exact Bellman error for each state is stored, BEBFs are shown

to form an orthonormal basis. Moreover, successively generating new exact BEBFs is

shown to provide an improved approximation at each step. In the case where only sample

trajectories are available, and the Bellman error is approximated, the authors provide a

condition guaranteeing an improvement in the approximator.

While both Proto-value functions and BEBFs provide an orthogonal basis for the

value function, it is important to note that the bases are of a different nature, and that

Proto-value functions generate an orthogonal basis regardless of whether an exact model

22

is used, in contrast to BEBFs. Further differences between the approaches are discussed

in Section 7.2.

CHAPTER 4
Dimensionality Reduction

A key idea of the proposed basis function construction method is to find a low

dimensional projection of the state space in which to work. This chapter presents

a dimensionality reduction algorithm originally developped for optimizing nearest

neighbour classification, and its adaptation for the purpose of computing projections of

the state space.

The state of the MDP is assumed to be represented as a vector of real numbers. The

goal of the dimensionality reduction algorithm is to find a linear projection A ∈ Rd×n

from the state space to a lower-dimensional space Rd which preserves only the relevant

features of the MDP value function. We are presented with a set of pairs 〈xi, yi〉, where

each xi ∈ Rn is the representation of an MDP state, and yi is a measure of the value

funtion approximation error at that state. In the supervised learning context of NCA, xi is

the input and yi is the target output.

4.1 Neighbourhood Component Analysis

Neighbourhood Component Analysis (NCA) is a method for computing a distance

metric to optimize nearest-neighbour classification performance [7]. NCA is designed to

learn weighted distance metrics between points x, y ∈ Rn,

D(x, y) = (x− y)>Q(x− y),

23

24

where Q is a matrix weighting each dimension. NCA searches for a Q of the form A>A

where A may be restricted to be in Rd×n for a fixed d � n. In this case, the distance

metric can be re-written as:

D(x, y) = (x− y)>A>A(x− y) = (Ax− Ay)>(Ax− Ay).

Hence, A is in fact a linear transformation from Rn to Rd, and classification can

take place in this lower dimensional space using the Euclidean norm. This reduces

computational and storage requirements and provides an effective dimensionality

reduction algorithm.

In the classification context, the metric is learned maximizing the objective

fclass(A) =
∑
i

∑
j∈Ci

pij =
∑
i

∑
j∈Ci

exp
(
−‖Axi − Axj‖2

)∑
k 6=i exp

(
−‖Axi − Axk‖2

)
where pij defines the probability of selecting point j as the neighbour of point i when

using a stochastic nearest neighbour selection rule for classification, i.e. one where

the class returned for a query point i is the class of the neighbour randomly selected

according to the neighbourhood probabilities pij . The objective fclass(A) is then

effectively the expected number of points correctly classified under leave-one-out

cross-validation.

A local maximum of fclass is found for A ∈ Rd×n using a gradient descent

algorithm such as delta-bar-delta or conjugate-gradient. The optimization takes place

over Rd×n for a predetermined d. Though only a local minimum is found by this

algorithm, Goldberger et al. report success with no or few restarts on a number of

25

standard machine learning benchmarks, as well as on an image classification task [7].

The main compurational cost of the algorithm is the computation of the gradient of fclass.

A shortcoming of the approach is the need to explicitely choose the target di-

mension d a priori. This parameter may be chosen via cross-validation if the metric is

being learned off-line for performing classification, but this is not desireable if the NCA

algorithm is being used as a subroutine without direct intervention.

The original authors suggest extending their algorithm to the case where continuous

target values are given instead of class labels by assigning points with nearby labels to

the same class. The following section uses a different approach however, preferring to

directly incorporate the continus targets into the objective.

4.2 NCA for Regression

The method is extended nearest-neighbour regression by modifying the objective

appropriately.

For brevity, xij = (xi − xj) and yij = (yi − yj) denote the differences between the

points i and j, and between their target values, respectively. Let the objective be the sum

of the expected square regression errors under leave-one-out cross-validation:

f(Q) =
∑
i

∑
j 6=i

(yi − yj)2pij =
∑
i

∑
j 6=i

y2
ij exp(−x>ijQxij)∑
k 6=i exp(−x>ikQxik)

=
∑
i

ti
si
, (4.1)

where

si =
∑
j 6=i

exp(−x>ijQxij) and ti =
∑
j 6=i

y2
ij exp(−x>ijQxij)

26

Denoting φij = exp(−x>ijQxij), the gradient of f with respected to the factor A in

Q = A>A is

∂f

∂A
=
∑
i

s−2
i

(
∂ti
∂A

si −
∂si
∂A

ti

)

=
∑
i

s−2
i

((
−2si

∑
j 6=i

y2
ijφijAxijx

>
ij

)
−

(
−2ti

∑
j 6=i

φijAxijx
>
ij

))

= 2
∑
i

∑
j 6=i

(
ti
s2
i

−
y2
ij

si

)
φijAxijx

>
ij

= 2
∑
i

∑
j 6=i

αijAxij
(
x>i − x>j

)
= 2

∑
i

(∑
j

αijAxij

)
x>i − 2

∑
j

(∑
i

αijAxij

)
x>j

= 2
(
M1X

> −M2X
>)

where

αij =

(
ti
s2
i

−
y2
ij

si

)
exp(−x>ijQxij)

is a scalar multiplier for each of the N2 − N terms, X is the n-by-N matrix containing

the points xi in the columns, M1 is the d-by-N matrix with ith row
∑

j αijAxij , and M2

has j th row
∑

i αijAxij . The constraint j 6= i for the summation can be dropped since

when i = j, xij = 0.

The gradient can be evaluated efficiently by precomputing the values of si and ti

for each point. The result of a single evaluation of the factor φij = exp(−x>ijQxij)

for each pair of points is stored and reused. The evaluation of si, ti and αij then only

require scalar operations. The distances between all pairs of points in low dimensions,

27

Axij = Axi − Axj , are precomputed and reused to form the matrices M1 and M2 and the

factors φij .

Minimizing the objective f would ideally also optimize the norm of the matrix

Q, however it was observed that in many cases ‖Q‖ tended to become large. This is

problematic, since for sufficiently large Q, the value of exp(−x>ijQxij) becomes too

small and causes floating-point underflows.

In terms of the original nearest-neighbour classification formulation, this effect was

seen as desirable. The norm of Q determines the variance of the the probability distribu-

tion used to select neighbours during classification, and leaving it free during learning is

intended to optimize this parameter. In this spirit it is considered undesireable to fix the

norm of the metric. In a previous formulation, presented in [11], a regularization term

proportional to the Frobenius norm of Q was added. However this required the choice of

an extra parameter determining the strength of the preference for small Q which needed

to be chosen based on the data being used.

Instead a hard nonlinear constraint bouding the norm of Q may be added to the

optimization problem . This is integrated into the objective using the log-barrier method

[4], yielding the objective

g(A) = f(A)− 1

t
log

(
1− ‖A‖

2
F

qmax

)
,

with gradient

∂g

∂A
=
∂f

∂A
+

2

t

(
1− ‖A‖

2
F

qmax

)−1

A.

When the xi and yi are normalized to the [0, 1] range, a suitable bound on the norm of

A is qmax = 100. This bounds the value of exp(−x>ijQxij) from below by exp(−100),

28

which is amply large to avoid underflow when using double-precision floating point

numbers. The value of t is gradually increased during optimization.

A simpler and more efficient approach is to simply prevent φij from going to zero

by setting it to φij = exp(−x>ijQxij) + ε where ε is near the machine epsilon. This has

the effect of assigning all neighbours with equal probability to a point if the norm of Q

becomes too large. This last approach is preferred for its simplicity.

4.3 NCA Optimization

Two minimization algorithms were tried to optimize the objective over the set Rd×n.

The first used the Fletcher-Reeves conjugate-gradient method [15, 4]. For each search

direction, the line search algorithm provided by Nocedal and Wright [15] is used to find

a local minimum. The search is halted when no progress is made during a line search in

the direction of the gradient, i.e. after having reset the search direction.

The second algorithm is MATLAB’s fminunc function, which uses the BFGS

Quasi-Newton method with a mixed quadratic and cubic line search procedure.

The latter approach requires fewer objective evaluations at the expense of more

gradient evaluations. As implemented, the difference in evaluation time for the objective

and its gradient is generally within a factor of 2-3, so this method is preferred.

It was noted that when the optimization reached a local minimum, further progress

could be achieved by restarting the search at the Cholesky factor of Q = A>A. Besides

this observation, the choice of starting point seems to have little impact: the attained

objective value is similar even though the actual solutions may vary greatly. Thus the

initial transformation is chosen randomly.

29

4.4 Dimensionality Reduction

When the search terminates, only the principal eigenvectors of Q = A>A are

retained to provide for dimensionality reduction. Two criteria are used to determine the

number of eigenvectors to keep: first the leading eigenvalues whose sum is greater than

95% of the sum of all the eigenvalues are kept, then any eigenvalues representing less

that 5% of the total sum are discarded. This is a slightly more agressive version of the

percent-of-variance criterion commondly used in principal component analysis. There

is also a hard limit on the number of dimensions permited by the choice of d used in the

optimization, thus this value should be chosen to be sufficiently large. This procedure

yields the transformation

A∗ =



√
λ1v

>
1

√
λ2v

>
2

...
√
λkv

>
k


where λ1, . . . , λk are the k ≤ d largest eigenvalues of Q and v1, . . . , vk are the corre-

sponding eigenvectors.

4.5 Performance and Potential Improvements

The NCA algorithm finds satisfactory projections in all the data sets considered.

Many modifications are possible however. First, note that the computation of the gradient

is independent of the regression loss function used. The squared error was used because

it is common and provides satisfactory results, however an arbitrary cost measure could

be used. Indeed, if the appropriate binary loss function is used, the algorithm reduces to

the orginial NCA method for classification.

30

The optimization algorithm may yield different solutions depending on the starting

point, but the value of the objective and the number of dimensions selected is usually

the same. In practice, the search may be repeated and the solution yielding the minimum

output dimension with the highest “percent-of-variance” measure is retained. The final

dimension k has not been observed to change by more than 1 for the same data set.

The time needed to compute the objective grows quadratically in the number of

points, and linearly in the input dimension. The optimization generally takes less than

5 seconds for an eight-dimensional problem with a sample of 200 points. Gradient

evaluations take less than one second for input dimensions up to ≈ 4000 with sample

sizes of 400 points, though memory limitations become a concern at this point and using

sparse matrices may degrade performance.

It is not necessary to use the same set of points as “centers” and “test points”. That

is, the sets of points indexed by i and j in the objective may be different. In particular, it

may be preferable to have a reduced set of centers to which a point may be assigned to

accelerate gradient evaluations.

Other modifications to the objective were considered. Using an un-normalized

version of the objective, i.e. simply taking f(Q) =
∑

i ti, yielded similar solutions in

most cases, but seemed less robust. Finally, a formulation more similar to the original

NCA formulation for classification was presented in a prior paper [11]. This approach

was less efficient overall, required an a priory choice of the the low dimension d, and

required the selection of a regularization constant.

31

4.6 Downsampling

For large data sets it is possible to sample terms from both the inner and outer sums

of the objective (4.1). To handle the case where most of the points have similar labels

and a small portion of points have significantly different labels, such downsampling

is not done uniformly. Instead, the range of the labels is divided into N bins, and the

points in each bin are assigned equal probability of being retained such that their total

probability is 1/N . Distinct sets of points are used for the inner and outer sum.

CHAPTER 5
Automatic Basis Function Construction

This chapter presents the proposed method for automatically constructing basis

function. The algorithm can be used in various reinforcement learning settings whether

or not a model or a generative model of the problem are available.

5.1 Oveview of the Algorithm

The algorithm extends the approach of Bertsekas and Castañon described in

Section 3.1 to the case where the value function is being represented by a linear function

approximator V̂ = Φθ. Given a current approximation, a new set of basis functions is

created to fit an additive correction of the form Ψw to the approximator. Since the new

features share the linear form of the original approximator, the new basis functions can

be added to the old ones to augment the feature matrix Φ:

V̂ k+1 = V̂ k + Ψw = Φkθk + Ψw

=

[
Φk Ψ

]θk
w

 = Φk+1

θk
w

 .
The weight vector could be set to θk+1 = [θk w]>, but all the elements of θk+1 are

recomputed since this may provide an improved solution. Since the weights θk+1 are

recomputed, the choice of w appears to have little importance, as only the range of the

new basis functions Ψ affects the final result. However, the correction Ψw plays an

32

33

important role conceptually. It links this work to that of Bertsekas and Castañon and

provides the motivation for the approach.

The choice of the correction Ψw is made based on the Bellman error of the current

value function approximation. In order to tackle problems with high-dimensional state

spaces, dimensionality reduction is used to map the state space to a lower-dimensional

space while preserving the structure of the Bellman error. The NCA formulation of

Section 4.2 is used for this purpose, but other algorithms may be appropriate. In the

resulting low-dimensional projection of the state space, it is tractable to efficiently

place new basis functions which aim to approximate the Bellman error, rather than

the unknown value function directly. The method considered here for selecting basis

functions is a single-layer radial basis function network.

In effect, two seperate mappings are created and ψ : Rn → Rm is their composition.

First, the linear projection A : Rn → Rd computed by NCA transforms states to low-

dimensional vectors in Rd. Then a set of features defined in Rd maps these vectors to Rm

where m is the number of basis functions added. Different algorithms that those selected

here may be used to create either mapping.

A pruning algorithm is used to eliminate any redundant features which may be

added, to remove features which have become obsolete as the algorithm progresses, and

to limit the total number of features as more are generated. The overall procedure for

learning a value function from a given trajectory is shown in Algorithm 1.

34

BFS (dmax,mmax, K1, K2, tol, 〈st, rt, s′t〉t=1...T , γ)

dmax : maximum dimension of each projection

mmax : maximum number of basis functions to add per iteration

K1 : maximum number of iterations

K2 : maximum number of NCA calls per iteration

tol : tolerance on value function accuracy

〈st, rt, s′t〉t=1...T : sampled MDP transitions

γ : MDP discount factor

k ← 0

φ0(·)← 1(·)
V̂ 0 ← FITVF(Φ0, [rt], γ)

repeat
k ← k + 1

[ek−1
t]← ESTIMATEERRORS([st], [rt], [s

′
t], V̂

k−1)

ψ(·)← CREATEFEATURES (dmax,mmax, K2, [st], [et], [s
′
t], γ)

φk(·)← PRUNE([φk−1(·) ψ(·)], [st], [rt], tol/2)

V̂ k ← FITVF(φk([st]), [rt], φ
k([s′t]), γ)

until ‖V̂ k − V̂ k−1‖2 ≤ tol or k = K1

return φk(·)
Algorithm 1: Basis function selection for approximating V (s). This is the main pro-
cedure which iteratively updates a set of features. For approximating an action-value
function, state-action pair samples 〈(st, at), rt, (st+1, at+1)〉 may be substituted for the
state-only samples. The subroutines ESTIMATEERRORS, CREATEFEATURES, FITVF
and PRUNE may have different implementations depending on the context.

35

5.2 Value Function Correction

Given the current value function approximation V̂ k, the aim is to find a correction

W such that

V̂ k +W = R + γP
(
V̂ k +W

)
.

Rearranging the terms yields

R + γP V̂ k − V̂ k = W − γPW

TV̂ k − V̂ k = W − γPW

W = (T V̂ k − V̂ k) + γPW.

This defines a new policy evaluation problem with the same transition probabilities

on the same state space, but with the current Bellman errors as the costs in each state.

Call this new problem the correction MDP. If this problem could be solved exactly, the

corrected value function would be the solution to the original problem. However only

an approximate solution can be obtained. We seek to find basis functions and weights

Ψw ≈ W . Denote the orthogonal projection onto the range of Ψ by Π = Ψ(Ψ>Ψ)−1Ψ>,

and define E = (T V̂ k − V̂ k) as shorthand for the current Bellman error.

If the correction is simply taken to be the projection of E onto the range of Ψ, the

Bellman error for the corrected value function is given by

TV
k − V k

= T (V̂ k + ΠE)− (V̂ k + ΠE)

= g + γP V̂ k − V̂ k + γPΠE − ΠE

= (I − Π)E + γPΠE. (5.1)

36

The first term is the portion of the Bellman error which cannot be represented as a

linear combination of the new basis functions. The second term results from the action of

the transition matrix P on the correction, which may produce a new error orthogonal to

the new and the existing basis functions.

Without taking into account any knowlegde of the transition matrix P one can

attempt to minimize the resulting Bellman error by selecting Ψ to efficiently represent

E and ignore the second term. This is in fact the approach taken by Bertsekas and

Castañon to accelerate the convergence of dynamic programming: a state aggregator is

automatically constructed to aggregate states with similar Bellman errors. See Section

3.1 for details. The approach is also valid for function approximation. However, the next

section describes how information from sampled trajectories can be used to reduce the

second term above.

5.3 Solving the Correction MPD

Consider instead the error resulting from adding an approximate solution to the

correction MDP. Let Ŵ = ΠW be the least-squares projection of the fixed point W onto

the range of the the features Ψ. The Bellman error of the corrected value function is

TV
k − V k

= T (V̂ k + Ŵ)− (V̂ k + Ŵ)

= g + γP V̂ k − V̂ k + γPΠW − ΠW

= E + γPΠW − ΠW

= TE(ΠW)− ΠW

where TE denotes the Bellman operator on the correction MDP. This quantity is simply

the Bellman error for the correction MDP. Using the fact that W = E + γPW It can be

37

written as

TV
k − V k

= E + (γP − I)ΠW

= E + (γP − I)Π(E + γPW)

= (I − Π)E + γPΠ(E + γPW)− ΠγPW

= (I − Π)E + γ(PΠ− ΠP)W,

where the last expression is comparable to equation (5.1). The magnitude of W may be

much larger that E in general. We have only the bound

‖W‖∞ ≤
∞∑
t=0

γt‖E‖∞ =
‖E‖∞
1− γ

.

Thus there is only an improvement if (PΠW ≈ ΠPW).

In terms of the solution W , the updated error is

TV
k − V k

= E + γPΠW − (I − (I − Π))W

= E + γPΠW −W + (I − Π)W

= E + γPΠW − (E + γPW) + (I − Π)W

= (I − Π)W − γP (I − Π)W.

= (I − γP)(I − Π)W.

This quantity may be minimized by selecting Π to minimize the second factor. That

is, we seek simply to choose features to minimize the Bellman error of the correction

MDP. Algorithm 2 is used to choose features. An approximation Ŵ of the value function

at each state in the sample is maintained. On each iteration, NCA is used to learn a

38

mapping to a low-dimensional space and a number of basis functions are placed in this

new space. An approximate solution to the correction MDP is computed using these

basis functions, and this new approximation of W is used on the subsequent iteration.

The method is only a heuristic, and there is no guarantee that the solution improves

over the iterations. However, on the first iteration, the algorithm is simply choosing

features to fit the Bellman error. Thus, even if there is no improvement in subsequent

iterations, the same basis functions will be returned as when using Bellman error basis

functions as in [11] and [16]. It should be noted that the norm of the Bellman error may

be a bad indicator of the quality of basis functions: in the experiments presented here, as

in the previous results of [11], an initial increase of the Bellman error norm is observed

when adding new features.

The specific feature selection method is shown in Algorithm 3. A number of points

are chosen at random from the sample to be RBF centers, with probability proportional

to the Bellman error magnitude, and the widths are chosen to minimize the Bellman

error on a validation sample. A variable resolution grid search is done on the width

parameter σ for all RBFs. Then redundant features are pruned using the algorithm

descrived in section 5.7. This methode requires a large number of calls to the FITVF

procedure to approximately solve the policy evaluation problem. However, the expense

is minimal as long as the number of features mmax and the sample size T are small.

The first parameter is arbitrary and affects the accuracy of the approximator, while the

second may be adjusted by downsampling, as for NCA. A moderately efficient MATLAB

implementation of LSTD can quickly compute the solution for samples of size ∼ 10000,

which should be sufficient given the low-dimensional state space.

39

CREATEFEATURES (dmax,mmax, K2, [st], [et], [s
′
t], γ)

Ŵ ← [et]
for ` = 1, 2, . . . , K2 do
A← NCA([st], Ŵ , dmax)

ψ`(·)← SELECTFEATURES([st], Ŵ , A,mmax)

Ŵ ← FITVF(ψ`([st]), [e
k−1
t], γ)

err` ←
∥∥∥ESTIMATEERRORS([st], [e

k−1
t], [s′t], Ŵ)

∥∥∥
2

end for
return ψL(·) such that L = arg min` err`

Algorithm 2: Feature creation through the solution of the corrective MDP. The Bell-
man errors serve as the initial value function approximation Ŵ . On each iteration, an
NCA transformation is computed and features are selected in the low-dimensional space.
The value function approximation obtained after fitting is used as the new Ŵ on the
subsequent iteration. The set of features yielding the minimum Bellman error for the
correction MDP is retained. Setting K2 to 1 results in basing the choice of eatures only
on the Bellman error.

SELECTFEATURES (A,mmax, [st], [et], [s
′
t], γ, tol)

pt ← |et|/
∑

i |ei| ∀t
Choose mmax points at random according to probabilities pt,

denote them c1, c2, . . . , cmmax
Define radial basis functions

ψj(s) = exp

(
− 1

2σ
(As− cj)>(As− cj)

)
Select the parameter σ via a grid search
ψ(·)← PRUNE(ψ(·), [st], [et], tol)
return ψ(·)

Algorithm 3: Low-dimensional feature selection heuristic.

40

5.4 Estimating Bellman errors

If a complete MDP model is available, the Bellman errors may be computed exactly.

If only a generative model is available, they can be estimated by sampling. If no model is

available, they must be estimated from available observations. We seek an approximation

ek−1
t ≈ R(st) + γ

∑
s∈S

Pst,sV̂ k−1(s)− V̂ k−1(st).

If only sampled transitions are available, the error is set to the TD error

ek−1
t = rt + γV̂ k−1(st+1)− V̂ k−1(st).

This is equivalent to simply taking a single sample for each state.

5.5 Fitting the Value Function

The subroutine FITVF computes weights for the features in order to approximate

the value function. Different algorithms are used, reflecting the discussion of Section 2.4.

The availability of a generative model and the degree of stochasticity would generally

determine whether or not to resample transitions. The more difficult decision is on the

choice between LSTD and Bellman residual minimizing fits. One the one hand, LSTD

usually results in better policies, and in a Bellman error which is orthogonal to the range

of the current basis functions. On the other hand, since the algorithm uses the norm of

the Bellman error as a criterion, minimizing this quantity may be preferable. Different

approaches are explored emprirically in Chapter 6. It appears best to use LSTD in the

main BFS procedure, however, for some problems the residual minimizing fit seems

better when selecting features.

41

5.6 Dimensionality Reduction

The NCA algorithm is used to find a linear projection A from the state space to Rd.

The dimension of the state space is determined by the NCA algorithm as described in

Section 4.4. Generally sub-sambling is required, for the purpose of the experiments in

this thesis, 400 points and 400 centers are selected for the inner and outter sums of the

NCA objective, respectively.

5.7 Feature Pruning

In order to avoid maintaining an excessive number of basis functions as the

algorithm progresses, features irrelevant to the current approximation of the value

function are removed at each iteration. Two approaches are considered: the first is a

general purpose pruning algorithm for neural networks, the second explicitely computes

the change in the value function resulting from fitting it without using one of the features.

5.7.1 Optimal Brain Surgeon Feature Pruning

The Optimal Brain Surgeon (OBS) algorithm [9]. The method is a successor to

magnitude-based pruning and Optimal Brain Damage, and was originally developped to

prune weights in large neural networks.

Given a linear approximator f̂(s) = φ(s)>w The weight vector w is assumed to

minimize the training error

E =
1

2N

N∑
k=1

(
w>φ(sk)− f(sk)

)
The Taylor series of the error with respect to the network weights is

δE =

(
∂E

∂w

)>
δw +

1

2
δw>Hδw +O(‖δw‖3)

42

If the weights w minimize the error, the first term is zero. Terms of order higher than

3 are ignored, and only the second term involving the Hessian H = δ2E
δw2 is retained,

implying the assumption that the error is locally quadratic. Thus the estimated change in

error for a weight change δw is given by δE = 1
2
δw>Hδw.

If dealing with very large networks, the inverse Hessian cannot be computed

efficiently. A crucial contribution of Hassibi and Stork was to provide a recursive

algorithm for updating the approximation. However, for relatively small basis function

sets, this is not required.

PRUNEOBS(φ(·), [st], [rt], tol)
repeat
w ← FitV F (φ([st]), [rt], γ)
Compute H−1, L, δw
N ← dim(w)
repeat

Choose weights q1, . . . , qn for n ≤ N such that
∑L

i=1(qi) ≤ tol
w′ ← w +

∑
δw(qi)

N ← n/2
until N = 0
φ(·)← rows of φ(·) with nonzero weight

until Bellman error increase for φ([st])w
′ is less than tol

Algorithm 4: Optimal Brain Surgeon pruning procedure.

Unfortunately, applying the algorithm directly when using LSTD fitting violates the

assumptions on the objective. Indeed, the removal of a basis function which minimally

changes a least-squares fit, may substantially change a LSTD fit. Since OBS assumes

that the initial fit is the optimum on the training set, though possible overfit, and

essentially limits the change induces by the removal of a basis function, it is noted

43

that this change can also be computed explicitely. This approach is pursued, rather than

extending OBS.

5.7.2 Function Change Feature Pruning

Since linear function approximators are being used, a more specific pruning method

can be used. Both LSTD and Bellman residual minizing least-squares compute the

weights as the solution to a linear system

Aw = b

Assume that A is full-rank, i.e. that the features are linearly independent and that the

sample used to form A and b is sufficiently large. Partition A asA11 A12

A21 A22


w1

w2

 =

b1
b2

 .
Then the inverse of A can be expressed in terms of the Shur complement of A22 as

B = A−1 =

B11 B12

B21 B22


=

 (A11 − A12A
−1
22 A21)

−1 A−1
11 A12(A21A

−1
11 A12 − A22)

−1

(A21A
−1
11 A12 − A22)

−1A21A
−1
11 (A22 − A21A

−1
11 A12)

−1

 .
The submatrix of the inverse

B11 = (A11 − A12A
−1
22 A21)

−1

44

is thus available, and using the matrix inversion lemma [8],

A−1
11 = (B−1

11 + A12A
−1
22 A21)

−1

= B11 −B11A12(A21B11A21 + A22)
−1A21B11.

The weight change resulting from eliminating the weights of w2 is

δw =

A−1
11 b1

0

− A−1b

=


B11 −B11A12(A21B11A21 + A22)

−1A21B11 0

0 0

−
B11 B12

B21 B22


 b

=−

B11A12(A21B11A21 + A22)
−1A21B11 B12

B21 B22

 b def
= δB · b (5.2)

=−

B11A12(A21B11A21 + A22)
−1A21B11b1 +B12b2

w2


Rather than recomputing the inverse of A11, the new weights after removing a

subset of the features can be obtained with this formula. Requiring only the inversion of

the smaller matrix. If only a single weight is being eliminated, the weight change is given

by

δw1 = − A21B11b1
(A21B11A21 + A22)

(B11A12)−B12b2

δw =

 δw1

−w2

 (5.3)

45

since A12, A21 and B12 are vectors, and A22 is scalar. There is a risk of innaccuray due

to numerical cancellation when computing the weights in this manner since the weight

change δw1 tends to be very small relative to the two terms of the equation. However, if

a higher accuracy is required, this situation can be detected and avoided by explicitely

forming the matrix in (5.2) and computing δw = (B + δB)b−Bb.

From the weight change, one can estimate the change in the value of the function by

ε = ‖Φ(w + δw) − Φw‖2 = ‖Φδw‖2, where Φ is the feature matrix for a representative

set of states.

Algorithm 5 greedily prunes features causing minimal change in the function

approximator based on two criteria: first, any set of features of which the removal causes

a change in the function of less than tol is accepted, and second, as long as there are

more than N features, the single feature of which the removal causes the least change in

the function is pruned. In the latter case, the function changes are recomputed between

each pruning step. In the first case however, the changes are not recomputed so that

features having a very small impact on the results may be pruned quickly.

In practice, it may become necessary to recompute the inverse from scratch if the

residual of Aw = b becomes too large due to compounded numerical errors. Similarly,

the residual of the pruned matrix A11(B11 + δB11)b1 = b1 may become largre, limiting

the number of features which can be pruned per step. Regardless, it is desirable to limit

the number of features pruned at a time to bound the time required to compute δB. The

verification of these conditions is omitted from the pseudo-code for clarity.

46

PRUNE(φ(·), [st], [rt], tol, N)
[w,A, b]← FitV F (φ([st]), [rt], γ)
B = A−1

repeat
for i = 1, 2, . . . , n do

Compute δw when removing feature i using equation (5.3)
δi ← ‖Φδw‖2

end for
I = {}
while ∃δi ≤ tol or I is empty and n > N do
j = arg mini δi
Compute δB when removing features I ∪ {j} using equation (5.2)
δw ← δBb
if ‖Φδw‖2 ≤ tol or I is empty and n > N then
I ← I ∪ {j}
ε← ‖Φδw‖2
B′ ← B + δB

end if
δj ←∞

end while
B ← B′

tol← tol − ε
Remove rows and columns in I from A, b, B

until δw > tol + ε and n ≤ N

Algorithm 5: Pruning procedure

47

The problem of numerical cancellation in computing the δi mentioned above is of

little consequence since the weight changes are only used to prioritize the features and

this has not been observed to cause any problems using double-precision arithmetic.

CHAPTER 6
Experimental Results

The algorithm is applied to an inventory control problem as well as to extended

versions of benchmark problems for reinforcement learning. It is important to note that

for all the benchmark problems, the state space is mapped up to a higher dimension with

noise.

6.1 Discrete MDPs

Discrete MDPs allow the exact value function to be computed for comparison with

the results of the algorithm. Two problems adapted from the litterature are examined:

a chain-walk and a three-room robot navigation problem. The first provides a simple

vizualization of the value function, while the second represents a relatively large discrete

MDP.

6.1.1 Chain Walk MDP

The chain walk MDP is considered by Lagoudakis & Parr [12] and by Parr et al.

[16]. The version considered here consists of 50 states indexed 1 through 50, with two

actions denoted LEFT and RIGHT. The LEFT action moves to the previous state with

probability 0.9 and the next state with probability 0.1 while the RIGHT action does the

reverse, except in states 1 and 50 where either actions moves to state 2 or 49 respectively.

A reward of +1 is obtained on a transition out of states 10 and 41, otherwise the reward

is 0. The discount factor is 0.9. Clearly, the optimal policy is to move toward the nearer

of the states 10 or 41.

48

49

For the purpose of testing the algorithm, the states are represented as 20-

dimensional vectors obtained by

xt = M

Pst
wt

 , wt ∈ Rn/2, (wt)i ∼ N(0, σ2), (6.1)

where M is a random but fixed orthogonal matrix, P maps the low-dimensional state to

the set [0, 1]n/2, and wt is Gaussian noise. This scheme is used again later, and serves

to provide a high-dimensional, noisy state representation of an underlying MDP. The

parameter n controls the dimension of the representation, and the parameter σ controls

the noise. This scheme allows the underlying state to be recovered by applying the

linear transformation (P>P)−1P>M>, thus ensuring that NCA can at least recover the

underlying state representation (though this may not be the best NCA solution).

For the chain walk problem discussed here, n = 20, σ = 0.01 and P is a

10 dimensional vector with all entries set to 1
49

. The LEFT and RIGHT actions are

represented by the scalars −1 and +1 respectively. Thus the action value function

Q(x, a) is a mapping from the 21-dimensional vector obtained by concatenating the state

and action representation, to the reals. This is a somewhat unusual approach, since a

seperate set of bases is often used for each action. However, using a single approximator

may be more economical when the action-value functions for different actions are

similar.

The LSPI algorithm is applied with samples of 5000 random transitions out of

uniformly selected random states, with an exploration rate of 0.4 (the optimal action is

chosen with probability 0.8). At most 100 basis functions are kept in total, and at most

50

25 are added per iteration. Figures 6–1 and 6–2 show the action-value functions obtained

after the first six policy evaluation and policy iterations steps respectively.

In Figure 6–1, we see that on the first iteration the value of each state is already

fairly well approximated (Recall that the initial policy is random). However, there is no

difference between the values for the LEFT and RIGHT actions since NCA has identified

the more important position dimension first. Subsequent iterations result in the value

function seen in the first panel of figure 6–2. This should be contrasted with a similar

experiment presented in [16] using exact Bellman error basis functions. With the latter

approach, the support of the early basis functions is a single state, since the Bellman

error for a constant value function is zero everywhere except at the states with positive

reward. The difference is due to the fact that the correction MDP is solved approximately

here. The difference between the estimated and optimal action-value function is plotted

in figure 6–4.

We see that the algorithm has essentially converged to the optimal policy after

the fourth policy iteration, though it does not achieve the optimum do to the positive

exploration rate. Figure 6–3 shows the final action value function obtained. The action-

value function plot is generated by mapping sampled states according to (6.1) without

noise, and evaluating the approximator at the resulting points. Note that the controller

only evaluates the function at the points shown, so the value at other points is irrelevant.

6.1.2 Three-room MDP

The algorithm is evaluated on a three-room MDP similar to one described by

Mahadevan [13]. The discrete state space consists of three 11-by-10 rooms, connected

by doors of width 1. The goal of the agent is to reach the upper right corner of the final

51

0 10 20 30 40 50

0

1

2

3

4

5

0 10 20 30 40 50

0

1

2

3

4

5

0 10 20 30 40 50

0

1

2

3

4

5

0 10 20 30 40 50

0

1

2

3

4

5

0 10 20 30 40 50

0

1

2

3

4

5

0 10 20 30 40 50

0

1

2

3

4

5

Figure 6–1: Action-value functions computed for the chain walk in the first six iterations
of the algorithm. Panels progress from left to right and then top to bottom. The solid
curve represents the estimated value of the LEFT action and the dashed curve that of the
RIGHT action. The dotted curve shows the optimal value function.

52

0 10 20 30 40 50

0

1

2

3

4

5

0 10 20 30 40 50

0

1

2

3

4

5

0 10 20 30 40 50

0

1

2

3

4

5

0 10 20 30 40 50

0

1

2

3

4

5

0 10 20 30 40 50

0

1

2

3

4

5

0 10 20 30 40 50

0

1

2

3

4

5

Figure 6–2: Action-value functions computed for the chain walk for the first six policies.
Ten iterations of the algorithm are executed for each policy, starting with the basis func-
tions from the previous policy. Panels progress from left to right and then top to bottom.
The solid curve represents the estimated value of the LEFT action and the dashed curve
that of the RIGHT action. The dotted curve shows the optimal value function. Furter
policy iterations do not significantly change the value funtion from the last panel, where
the true value function is nearly attained. It is less than the optimal value function due to
the exploration policy, but induces the optimal policy.

53

State

A
ct

io
n

0 10 20 30 40 50
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 6–3: Action-value function for the chain walk after 10 policy iterations, each
interleaved with 10 iterations of the algorithm. The size of the dots is proportional to the
estimated value for the 100 state-action pairs.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

Iteration

M
ea

n
sq

ua
re

 d
iff

er
en

ce
 fr

om
 Q

*

Figure 6–4: Difference between the action-value function approximation for the chain
walk and the optimal action-value function.

54

Figure 6–5: Optimal value function for the Three-Room problem, with a sampling of
optimal trajectories. The goal is in the upper right corner at coordinates (30, 11). Note
the discontinuity due to the wall between the second and third rooms.

room, where a reward of +1 (or negative cost of -1, here) is obtained. There are four

possible actions for the agent: it may move UP, DOWN, LEFT or RIGHT. The state

space and optimal value function are shown in Figure 6–5. The formula 6.1 is used with

σ = 0.01, n = 20 and P mapping the two-dimensional state space to a 10-dimensional

vector containing five copies of each coordinate normalized to an interval of unit length.

The problem poses a challenge for two reasons. First, the walls induce a discontinu-

ity in the value function. This issue is handled well by manifold-based techniques or with

proto-value functions, but causes difficulties when smooth basis functions are used as is

the case here. Second, the doorways are bottleneck states, since any transition between

rooms passes through them, and thus the accuracy at theses states has a large impact

on the entire value function estimate. Thus it may be desired to place many local basis

functions near the doors.

Fixed training and validation samples consisting of 840 trajectories starting at

randomly selected positions and following the optimal policy are used. This yields

55

Figure 6–6: Value function approximation for the Three Room problem using the least-
squares and LSTD algorithms, along with induced trajectories. After only a few itera-
tions, the induced policies result in the agent getting “stuck” in the top half of the middle
room. This effect is due to difficulty in representing the discontinuity in the value func-
tion. The LS algorithm eventually places small, local basis functions around the wall,
resulting in a near-optimal policy. The LSTD algorithm does not resolve the problem.

56

approximately 35000 transitions in total. The algorithm is applied using both Bellman

residual minimizing fits (denoted LS) and LSTD fits. Figure 6–6 illustrates the value

function estimates and policies obtained in either case. While both methods yield good

approximations of the value function after few iterations, only LS achieves an optimal

policy. This is due to the fact that LSTD fails to place local basis functions near the

discontinuity in the value function, and thus underestimates the value function in states

near the top of the middle room near the wall.

Figure 6–7 shows the performance of the two versions of the algorithm, along with

the case where Bellman residual minimizing fits are used but the underlying MDP is not

solved. That is, the Bellman error is approximated directly when constructing new basis

functions. As may be expected, minimizing the Bellman error results in lower Bellman

errors in the approximation. However, LSTD provides a more accurate appximation

to the value function. There is little difference whether or not the correction MDP is

solved. Yet only the Bellman residual minimizing algorithm which solves the correction

MDP achieves the optimal policy. This is surprising since LSTD is generally assumed to

provide better policies in practice, and it does indeed yield a better approximation of the

true value function.

Under the conjecture that this effect may be due to the particular state represen-

tation, the experiment is repeated with a different encoding. In Figure 6–8, the state

is represented as a 330-dimensional vector with all elements set to 0 except the index

corresponding to the current state, which is set to 1. Thus there is no notion of distance

between states intrinsic to the state representation (besides the ordering of state variables,

which has no impact on the algorithm). The use of sparse matrices where possible limits

57

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

Iteration

R
oo

t M
ea

n
S

qu
ar

e
B

el
lm

an
 E

rr
or

LSTD
LS − nosolve
LS − solve

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

Iteration

R
oo

t M
ea

n
S

qu
ar

e
D

iff
er

en
ce

 fr
om

 V
π

LSTD
LS − nosolve
LS − solve

0 5 10 15 20 25

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Iteration

A
ve

ra
ge

 D
is

co
un

te
d

C
os

t

LSTD
LS − nosolve
LS − solve
OPTIMAL

Figure 6–7: Bellman error, value function error, and induced policy performance for
the three-room problem. The LS algorithms achieve a lower Bellman error but a worse
approximation of the optimal value function. Only the LS algorithm achieves the op-
timal performance, and only when solving the correction MDP. The average costs are
computed as the mean discounted cost over 440 trajectories starting at random but fixed
locations.

58

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

Iteration

R
oo

t M
ea

n
S

qu
ar

e
B

el
lm

an
 E

rr
or

LSTD
LS − nosolve
LS − solve

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

Iteration

R
oo

t M
ea

n
S

qu
ar

e
D

iff
er

en
ce

 fr
om

 V
π

LSTD
LS − nosolve
LS − solve

0 5 10 15 20 25

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Iteration

A
ve

ra
ge

 D
is

co
un

te
d

C
os

t

LSTD
LS − nosolve
LS − solve
OPTIMAL

Figure 6–8: Same experiment as in Figure 6–7 when using the sparse state representa-
tion. The LS algorithm again achieves a lower Bellman error but higher approximation
error. The LS algorithm yields a significantly better policy, but learning is very slow for
both algorithms.

59

memory and computation requirements close to those when using the original represen-

tation. Learning transformations from this representations to a low dimensional space

is thus closely related to the concept of state aggregation considered by Bertsekas and

Castañon and discussed in Section 3.1. Though the performance of the algorithm in this

case is much worse, the effect remains, and LSTD yields significantly worse policies

than Bellman residual minimization. It should be noted that the perfomance levels of

both algorithms corresponds to cases where the agent only reaches the goal when starting

in certain states of the rightmost room, or near the middle of the other rooms. The poor

performance is due to the removal of important state connectivity information from the

representation.

6.2 Mountain Car

Figure 6–9: In the mountain car problem, the goal is for the car to reach the top of the
hill with zero velocity. At each time step, the thrust may be either negative or positive.
However, the car is not powerful enough to climb the hill if it starts partway up at a low
speed. In such a case, it must first back up and then accelarate to gain enough momentum
to reach the goal. A cost of 1 is incurred at each time step, except when the car reaches
the goal or exceeds the minimum position or maximum velocity. If the car reaches the
goal, the final cost varies from 0 to 100 proportionally to the final velocity. In the other
cases, a final cost of 100 is incurred. A discount factor of 0.99 is used.

60

The mountain car problem, illustrated in figure 6–9 is a well-studied reinforcement

learning benchmark [24, 18, 17]. Despite having only a two-dimensional state-space, it

presents many of the difficulties commonly encountered in reinforcemenet learning. The

algorithm is tested on the mountain car problem simulator included with the CLSquare

simulation system [19], with the state space dimension increased to n = 20 using

equation (6.1), and with the matrix P mapping the position and velocity state variables

to a 10-dimensional vector containing 5 normalized copies of each. Unless otherwise

mentioned, the noise parameter is set to σ = 0.01.

A sample of approximately 10,000 transitions is drawn according the near-optimal

policy obtained by policy iteration using a tile coding approximator, with five 9-by-

9 uniform tilings of the state space. At most 25 new basis functions are added at

each iteration, and at most 100 basis functions are maintained in total. The LSTD or

the Bellman residual minimizing algorithm is used to fit the value function, and the

simulator’s model is used to select actions based on the value function estimate.

Figure 6–10 shows a contour plot of the final value function approximations

obtained when building features to approximate the Bellman error directly and when

creating features to solve the correction MDP. Figure 6–11 shows the corresponding

trajectories. The latter version of the algorithm produces a smoother approximation.

Indeed Figures 6–12 and 6–13 show the evolution of the approximations. When the

Bellman error is approximated direcly, the first features are localised in the areas of the

state space with large cost differences. In this case, most sample trajectories reach the

goal with low velocity, thus the Bellman error is identical almost everywhere except at

61

Position

V
el

oc
ity

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−3

−2

−1

0

1

2

3

Position

V
el

oc
ity

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−3

−2

−1

0

1

2

3

Figure 6–10: Mountain Car problem value function after 12 iterations when fitting only
the Bellman error (above), and when solving the correction MDP with K2 = 5 (be-
low). Both algorithms yield approximations of similar quality, but the solution is much
smoother when solving the correction MDP since the basis functions tend to be less
local.

62

Figure 6–11: Mountain Car problem trajectories induced by the value function after 12
iterations when fitting Bellmand error directly (above) and when solving the correction
MDP with K2 = 5 (below).

63

Figure 6–12: Mountain Car value function after each of the first twelve iterations when
fitting the Bellman error directly. One can observe that local features are added where
the Bellman error is significan, and then “spread” accross the state space in a manner
reminiscent of table-based dynamic programming.

64

Figure 6–13: Mountain Car value function after each of the first twelve iterations when
solving the correction MDP with K2 = 5. In contrast to Figure 6–12, the initial features
allow a rough approximation of the entire state space. Subsequent iterations refine the
approximation.

65

the states terminating a trajectory. Subsequent iterations propagate the value across the

state space in a manner akin to classic dynamic programming in finite MDPs.

In contrast, when the correction MDP is solved approximately, the early features are

much less localised, and better able to represent the actual value function. Figure 6–14

shows that the second algorithm learns features much faster, in terms of the reduction

in Bellman error, as well as in terms of minimizing the cost. This holds whether

using Bellman residual minimizing fits (LS) or least-squares TD (LSTD). Both LSTD

algorithms achieve a performace comparable to the tile-coding approximator, while the

LS algorithms yield much less stable performance, but lower Bellman error. This last

point contrasts with the results for the three room problem, but confirms the accepted

wisdom that LSTD provides better policies in practice.

6.2.1 Robustness to Noise

To explore the effect of the noise in the state representation, the mountain car

problem is solved using different values for the parameter σ when mapping the state

space to higher dimensions. Figure 6–15 shows the degradation of the approximation’s

Bellman error and the performance of the resulting policy as the noise increases. Recall

that the elements of the state vector are normalized to the range [0, 1], thus setting the

standard deviation to σ = 0.5 for instance, represents a significant amount of noise.

Though the Bellman error increases with noise, the performance loss is small for

σ ≤ 0.5.

6.3 Inventory Control

The algorithm is applied to the inventory control problem in order to improved

an existing value function approximation, rather than learn one from scratch. Unlike

66

0 5 10 15 20 25
0

2

4

6

8

IterationR
oo

t m
ea

n
sq

ua
re

d
B

el
lm

an
 e

rr
or

0 5 10 15 20 25
2

4

6

8

IterationR
oo

t m
ea

n
sq

ua
re

d
B

el
lm

an
 e

rr
or

LS / BEBF
LS / K

2
 = 1

LS / K
2
 = 5

LSTD / BEBF
LSTD / K

2
 = 1

LSTD / K
2
 = 5

0 5 10 15 20 25
40

50

60

70

80

90

Iteration

M
ea

n
di

sc
ou

nt
ed

 c
os

t

LS / BEBF
LS / K

2
 = 1

LS / K
2
 = 5

0 5 10 15 20 25
40

50

60

70

80

90

Iteration

M
ea

n
di

sc
ou

nt
ed

 c
os

t

LSTD / BEBF
LSTD / K

2
 = 1

LSTD / K
2
 = 5

Figure 6–14: Mountain Car problem Bellman error when using the Bellman resid-
ual minimizing algorithm (LS) and LSTD. For the LS algorithm, the Bellman error is
smaller, but the performance is worse and less stable. In either case, learning is much
faster when solving the correction MDP, but the effect is more pronounced for LSTD.
The two bottom panels show the mean discounted costs over 10000 steps with identical
random initial positions.

67

0 5 10 15 20 25
3

4

5

6

7

8

Iteration

R
oo

t m
ea

n
sq

ua
re

d
B

el
lm

an
 e

rr
or

LSTD fits

0 5 10 15 20 25
2

3

4

5

6

7

Iteration

R
oo

t m
ea

n
sq

ua
re

d
B

el
lm

an
 e

rr
or

Least−squares fits

0 5 10 15 20 25
40

50

60

70

80

90

Iteration

M
ea

n
di

sc
ou

nt
ed

 c
os

t

LSTD fits

σ = 0.1
σ = 0.2
σ = 0.5
σ = 1.0
σ = 2.0

σ = 0.1
σ = 0.2
σ = 0.5
σ = 1.0
σ = 2.0

σ = 0.1
σ = 0.2
σ = 0.5
σ = 1.0
σ = 2.0

Figure 6–15: Mountain Car problem Bellman error for varying amounts of noise in the
state representation. The top panel shows the Bellman error of the LSTD fit, the cen-
ter panel shows the Bellman error of the residual minimizing fit when using the basis
functions yielded by LSTD (in contrast to using LS to generate the basis function also),
and the bottom panel shows the mean discounted costs over 10000 steps with identical
random initial positions.

68

the other problems considered, the state space intrinsically has a hign dimension. Two

instances are considered, the first where the state consists of the inventory of 16 products

with correlated demand, and the second deals with 64 products.

6.3.1 Problem Description

In the inventory control problem, the goal is to maintain an inventory of products

such as to minimize a cost function. The state is denoted by xt ∈ Rn where element

(xt)i represents the inventory of the i-th product at the beginning of period t. The state is

updated at each time period according to

xt+1 = min(max(xt + ut, x
min), xmax)− wt,

where ut is the quantity of each good ordered (or salvaged, if negative) at the beginning

of the period, and wt is a random variable representing the demand in time period t. The

demand wt is normally distributed according to N(µ,Σ),Σi,j = ρijσiσj , thus the demand

may be negative in a given period. At the beginning of time period t, the decision maker

is presented with the inventory xt and decides on order quantities ut. The bounds on the

achievable inventory levels serve to limit the domain of the value function. The actual

end of period inventory level may exceed the bounds. However, the order quantities are

constrained to be in the range

max(−x+
t , x

min − xt) ≤ ut ≤ xmax − xt

to ensure the order achieves at least the minimum inventory level, salvages at most the

current inventory level, and salvages at least the excess inventory. The shorthand x+ and

69

x− denote max(x, 0) and max(−x, 0) respectively. Subject to these constraints, the state

transitions simplify to xt+1 = xt + ut − wt.

The cost at each time period is given by

ft = f(xt, ut) = k> sign(KIut>0) + c>u+
t + d>u−t

+ h>x+
t+1 + p>x−t+1 + q

(∑
i

(xt)
+
i −R

)+

,

where the parameter vectors are as defined in Table 6–16, sign(·) returns a vector with

positive, zero and negative entries replaced by 1, 0 and −1 respectively, and Iut>0

is a binary vector with the ith entry indicating whether (ut)i is positive. The product

group matrix K partitions the products into sets which share a fixed order cost incurred

whenever a positive amount one of the grouped products is ordered. For instance, the

parameters

K =


1 1 1 0 0 0

0 0 0 1 1 0

0 0 0 0 0 1

 , k =


1

7

3


would specify that a fixed cost of 4 is incurred when ordering a positive amounts of

products 1,3 and 6 since these belong to the first and third groups.

6.3.2 Inventory Control Policies

A class of policies known as (s, S) policies is well studied studied in inventory

control litterature. Here S ∈ Rn is a vector of target inventory level, and s ≤ S is a

vector of re-order levels. The order quantities are determined as

(ut)i =

S − (xt)i if (xt)i ≤ si

0 otherwise
.

70

Parameter Description Example value
n Number of products 64
m Number of product groups 2
ci Unit order cost 1
di Unit salvage cost 2
hi Unit holding cost 0.5
pi Unit backlog penalty 10
q Unit excess inventory penalty 10
R Total Inventory capacity 10n
µi Product demand mean 1
σ2
i Product demand variance 1
ρij Product demand correlation [−1, 1]
k` Product group ` fixed order cost 1
K Product group matrix (m× n)
xmini Minimum inventory level -3
xmaxi Maximum inventory level 20

Figure 6–16: Inventory control problem parameters. The indices i and j range over the
set of products {1, 2, . . . , n}. The index ` ranges over the product groups {1, 2, . . . ,m}.
The quantities q and R apply to all products.

71

That is, the quantity (Si − (xt)i) is ordered whenever the inventory of the ith product has

fallen below the re-order level. Otherwise no order is placed for that product.

For the single-product case, it is known that policies of this form are optimal.

A policy iteration algorithm for computing optimal (S, s) policies with continuous

demands without relying on discretizations was developped in 1985 [6]. An efficient

algorithm for the case of discrete demands is known [27], and an efficient algorithm for

the continuous demands has been developped [6]. However, these methods apply only to

the single-product case, and an extensive review is beyond the scope of this thesis.

In this work, (s, S) policies are used to determine an initial value function. A

smooth approximation to the value functions of (s, S) policies is used as a starting point

for the policy iteration algorithm applied to the general multiple product case.

If the demands are assumed to be deterministic and there is a single product with

fixed order cost k̄, the value function under an (s, S) policy is given by the following

equation, where T = bx−s
µ

+ 1c+ is the number of time periods remaining until the

inventory falls below the re-order level when starting at x0 = x.

V0(x) =
T−1∑
t=0

γtf(x− tµ, 0) + γTf(x− Tµ, S − x+ Tµ) + γT+1V0(S − µ)

=
T−1∑
t=0

γth(x− Tµ− µ) + γT
(
k̄ + c(S − x+ Tµ) + h(S − µ)

)
+ γT+1V0(S − µ)

= h(x− µ)
1− γT

1− γ
− hµ 1

(1− γ)2

(
γ − γT − (T − 1)γT (1− γ)

)
+

γT
(
k̄ + c(S − x+ Tµ) + h(S − µ)

)
+ γT+1V0(S − µ),

where one uses the fact that
∑T

t=1 tγ
t = γ(1 − γ)−2

(
1− γT − TγT (1− γ)

)
to

obtain the final expression. The penalty terms of the cost function are ignored since an

72

appropriate (s, S) policy avoids any shortages and excesses under deterministic demand.

The quantity V0(S − µ) does not depend on x. Furthermore, since the inventory will be

replenished to S − µ followind the next re-order point, the constant V0(S − µ) in the last

term can be expressed as

V0(S − µ) =
∞∑
t=0

(
γT

(S,s,µ)+1
)t
·T (S,s,µ)−1∑

t=0

γtf(S − µ− tµ, 0) + γT
(S,s,µ)

f(S − µ− T (S,s,µ)µ, µ+ T (S,s,µ)µ)

 ,

where T (S,s,µ) =
⌊
S−µ−s

µ
+ 1
⌋+

is the number of time periods between orders. This

quantity can be evaluated by taking the constant factor outside of the summation and

computing it in a manner similar to the closed-form terms of V0(x) above. Thus V0(x)

itself can be expressed in closed form, and is differentiable everywhere T 6= 0. A smooth

approximation V̂0 to V0 is obtained by replacing T with
(
x−s
µ
− 1

2

)+

to approximate

the floor function. A value function with fewer breakpoints facilitates optimization, and

since the final aim is to model a problem with stochastic state transitions, it is reasonable

to locally smooth the value function.

The choice of the parameters (s, S) nonetheless determines the initial policy. The

inventory levels and bounds are set to

si = µ+ σi Si =
µi∑n
i=1 µi

R + (µi − σi)

xmini = si − 2µi xmaxi = Si + 2µi

The target inventories and re-order levels are chosen to avoid excess inventory and

backlog penalties when the next demand falls within one standard deviation of the mean.

73

−1 0 1 2 3 4

36

38

40

42

44

x

V
0(x

)

−1 0 1 2 3

38

39

40

41

42

43

u

Q
0(x

,u
)

Figure 6–17: Initial value function approximation for µ = 1, c = d = 1, k̄ = 2, h =
0.2, p = q = 5, R = 4, s = 0.25, S = 4.75 and γ = 0.95. The dashed lines represent
the exact value functions under deterministic demand. The right panel shows the action-
value function when the current inventory level is x = 2.5. The optimal order quantity is
zero.

The target inventory Si is somewhat conservative since the variance of the total inventory

will be equal to the sum of the variances of the individual inventories. The choice of Si

is motivated by the fact that, if the holding cost is sufficiently low, it is optimal to fill

the entire inventory capacity. The choice of inventory bounds is somewhat arbitrary and

assume that the inventory levels achieved under the optimal policy will not deviate much

from those achieved under the initial policy.

When considering multiple products, the value function is taken to be the sum of

the value functions for the individual products, using k̄ = K>(KK>)−1k as individual

fixed ordering costs. This provides an initial guess for the value function of the problem

with stochastic demands. An (s, S) policy for the multiple product case would ignore

the joint fixed order costs k and the joint inventory excess penalty. There would be no

74

coordination between orders for different products. Instead the policy induced by the

initial value function is used for sampling.

Given any value function V , the action-value function Q is approximated by the

action-value function Q̂ under deterministic demands

Q̂(x, u) = f(x, u) + γV (x− µ),

which is differentiable where its two terms are. Thus the policy induced by a value

function V may be approximated by selecting order quantities ut minimizing Q̂(xt, u)

given the current state xt. In practice, a conjugate-gradient algorithm with multiple

starting points is used to find approximate minima of the action-value function. Neither f

nor V is assumed to be convex, though both are well-behaved enough to allow effective

optimization if appropriate safeguards are taken.

In addition to any breakpoints of V , the cost function f has discontinuities due

to the fixed ordering costs. For this reasons a seperate search is done where the order

quantity is constrainted to be zero for each possible subset of products groups. Under

this scheme, the choice of product groups is actually made from a discrete set of possible

actions, and the order quantities within a group are continuous decision variables. The

approach results in satisfactory practical performance.

In order to ensure that a relevant subset of the state space is visited during sampling

it may be necessary to add an exploration term to the policy. Thus the order levels are

75

perturbed as

ui =


(u∗i + εi)

+ if u∗i > 0

(u∗i + εi)
− if u∗i < 0

0 if u∗i = 0

, εi ∼ N

(
0,

((µi
4

)2

− σ2
i

)+
)
,

where u∗ contains the estimated optimal order quantities. The variance of the noise term

is chosen so that the conditional variance of the inventory xt+1 = xt + ut + wt is at

least (µi/4)2 when u replenishes the inventory. When the demand variance is sufficiently

large, there is no need for an exploration term and εi = 0.

6.3.3 Basis Function Selection for the Inventory Control Problem

Two sets of 100 trajectories of 20 time steps with uniformly distributed initial

inventory levels are sampled to serve as the training and validation samples, resulting in

2000 state-action pairs for each sample. The model is used again to sample the transition

resulting from each pair 10 times to improve the accuracy of the next-state value-function

estimate and immediate rewards estimates, as described by equation (2.4). Thus each

sample is computed from 20,000 transitions.

The LSTD version of the algorithm is used to create basis functions and fit the value

function starting with th initial value function V0. The policy is updated on every tenth

iteration, for a total of 60 iterations with 5 policy improvement steps. The total number

of bases is limited to 100, and at most 25 new bases are added on each iteration. The

pruning procedure of Algorithm 5 is used to prune redundant or excessive features at

each step, with parameters tol = 0.005 and N = 100.

76

6.3.4 Experiments

A problem with 16 products where the first and last eight product demands have

respective correlation matrices

ρA =



1 0.9571 0.9143 0.8714 0.8286 0.7857 0.7429 0.7

0.9571 1 0.9571 0.9143 0.8714 0.8286 0.7857 0.7429

0.9143 0.9571 1 0.9571 0.9143 0.8714 0.8286 0.7857

0.8714 0.9143 0.9571 1 0.9571 0.9143 0.8714 0.8286

0.8286 0.8714 0.9143 0.9571 1 0.9571 0.9143 0.8714

0.7857 0.8286 0.8714 0.9143 0.9571 1 0.9571 0.9143

0.7429 0.7857 0.8286 0.8714 0.9143 0.9571 1 0.9571

0.7 0.7429 0.7857 0.8286 0.8714 0.9143 0.9571 1


and

ρB =



1 0.9857 0.9714 0.9571 0.9429 0.9286 0.9143 0.9

0.9857 1 0.9857 0.9714 0.9571 0.9429 0.9286 0.9143

0.9714 0.9857 1 0.9857 0.9714 0.9571 0.9429 0.9286

0.9571 0.9714 0.9857 1 0.9857 0.9714 0.9571 0.9429

0.9429 0.9571 0.9714 0.9857 1 0.9857 0.9714 0.9571

0.9286 0.9429 0.9571 0.9714 0.9857 1 0.9857 0.9714

0.9143 0.9286 0.9429 0.9571 0.9714 0.9857 1 0.9857

0.9 0.9143 0.9286 0.9429 0.9571 0.9714 0.9857 1



,

77

while demands are uncorrelated between the two subsets, yielding

ρ =

ρA 0

0 ρB

 .
Two product groups are used, with any orders of products {1, 2, 3, 4, 9, 10, 11, 12}

incurring a fixed cost of 20, and orders of products {5, 6, 7, 8, 13, 14, 15, 16} incurring

a fixed cost of 40. Even numbered products have mean demand µi = 1, while odd

numbered products have mean demand µi = 2. The demand standard deviation is

set to σ = 0.25 for products {1, 2, 5, 6, 9, 10, 13, 14} and to σ = 0.5 for products

{3, 4, 7, 8, 11, 12, 15, 16}. The other parameters are set to pi = 10, ci = 1, di = 2

and hi = 0.2 for all products, with q = 10 and R = 160. The discount factor is set to

γ = 0.95.

The resulting Bellman error and discounted costs are shown in Figure 6–18. There

is a significant decrease in the Bellman error over the early iterations as new basis

functions are added, but little change after each of the policy iterations. Between policy

iterations, there is a large change in Bellman error because a new sample is taken using

the updated policy. There is a large increase in cost after the second iteration, but the

average cost returns to the level of the initial value function estimate by the 11th iteration.

There is a small improvement in cost over the initial policy by iteration 40.

Figure 6–19 shows the result on a larger problem. There are 64 products where

demand in four groups of 16 products have correlation greater than 0.8, 0.9, 0.95, and

0.95. Products in different groups have uncorrelated demand. Half of the products from

each group are obtained from one supplier with a fixed cost of 40, and the other half

share a fixed cost of 80. Penalties for an equal number of products in each group are set

78

0 5 10 15 20 25 30 35 40
4

5

6

7

8

9

10

Iteration

R
oo

t M
ea

n
S

qu
ar

e
B

el
lm

an
 E

rr
or

0 5 10 15 20 25 30 35 40
1000

1050

1100

1150

1200

Iteration

M
ea

n
D

is
co

un
te

d
C

os
t

Figure 6–18: Bellman error and mean discounted cost as the algorithm is run on the
16-product Inventory Control problem. In the top panel, the solid line shows the root
mean square Bellman error for the transitions in the validation sample, while the dashed
line shows the Bellman error resulting from a Bellman error minimizing fit (rather than
LSTD). The average shown in the bottom panel is computed for each iteration over 100
20-step trajectories with fixed but randomly chosen initial inventory levels. The error
bars show one standard deviation (the variance is largely due to the effect of the initial
inventory levels on the discounted cost, as evidenced by the smoothness of the curve).
There is a small improvement in the mean discounted cost.

79

to each of p = 10 or p = 20. Demands have either mean µi = 1 or µi = 2, and standard

deviation σi = 0.5 or sigmai = 0.25, with each combination of parameters appearing

twice in each group. The inventory capacity is set to R = 525.

The experiment is repeated using both the LS and LSTD variants of the algorithm,

and solving the correction MDP or not. A policy improvement step is taken after every

30 iterations. A similar pattern as with the smaller problem is observed when using

the Bellman residual minimizing fits, with the plain BEBFs offering the best Bellman

error reduction except at the beginning. The is some reduction of cost after an initial

increase, but the performance level of the initial value function is not achieved despite

the reduction in Bellman error.

80

0 20 40 60 80 100 120 140 160 180 200
15

20

25

30

35

40

IterationR
oo

t m
ea

n
sq

ua
re

d
B

el
lm

an
 e

rr
or

LS / BEBF
LS / K

2
 = 1

LS / K
2
 = 5

0 20 40 60 80 100 120 140 160 180 200
20

25

30

35

40

IterationR
oo

t m
ea

n
sq

ua
re

d
B

el
lm

an
 e

rr
or

LSTD / BEBF
LSTD / K

2
 = 1

LSTD / K
2
 = 5

0 20 40 60 80 100 120 140 160 180 200
2500

3000

3500

4000

Iteration

M
ea

n
di

sc
ou

nt
ed

 c
os

t

LS / BEBF
LS / K

2
 = 1

LS / K
2
 = 5

0 20 40 60 80 100 120 140 160 180 200
2400

2600

2800

3000

3200

Iteration

M
ea

n
di

sc
ou

nt
ed

 c
os

t

LSTD / BEBF
LSTD / K

2
 = 1

LSTD / K
2
 = 5

Figure 6–19: Bellman error and cost for the 64-product inventory control problem. A
policy improvement step is taken on every 30th iteration. With the initial sample (pol-
icy), there is a clear improvement of Bellman error with all the algorithms, but all yield
a worse discounted cost. There is little change in the Bellman error or cost after each
policy iteration. Solving the underlying MDP does not appear to yield better approxima-
tions, indeed it appears to be detrimental.

CHAPTER 7
Conclusions and Future Work

7.1 Contribution

The proposed algorithm was successfully applied to augmented versions of

benchmark reinforcement learning problems, and shows some promise in solving the

multiple product inventory control problem. It can be applied to problems with natural

high-dimensional state representations, and can be used to improve an existing value

function approximation, as shown with the inventory control problem.

7.2 Discussion

A major innovation in the current algorithm is the solution of the correction MDP

in order to obtain more appropriate basis function. This was shown to have a significant

effect in the mountain car domain in particular. This observation suggests that rather than

simply creating approximate Bellman error basis functions as in [11, 16], the information

contained in sampled transitions Bellman error should be exploited more fully. However,

as evidenced by the three room problem and inventory control results, the approach

taken here does not always outperform the algorithm which simply fits the Bellman error.

Yet, the positive effect of solving the correction MDP is dramatic for the mountain car

problem.

On the other hand, the proposed algorithm does not require as much pre-processing

as the approximate transition model built to generate proto-value functions or the

connectivity information gathered to create an explicit manifold representation. This may

81

82

prove particularly useful when available sample trajectories are limited, or simulation is

costly.

The particular choice of dimentionality reduction and pruning algorithms used

allows an efficient implementation, but other methods may be substituded to better

suit a particular problem. Indeed, NCA performed well on the artificially augmented

benchmark problems, even in the presence of significant noise, and succeeded in

providing transformation suitable for reducing the Bellman error of the value function

approximation in the inventory control problem. The method as implemented is efficient

and can deal with high-dimensional inputs, as it was applied to 64-coordinate dense

vector, and 300-coordinate sparse vector state representation.

The pruning algorithm exhibited stable performance in that it did not prune useful

basis functions, as was observed with the direct application of the optimal brain surgeon

procedure. Pruning is necessary to keep the set of features from growing too large.

The method of selecting basis function in the low dimensional space is a heuristic

bases on minimizing the Bellman error on a validation set. Many other approaches are

possible, but the use of radial basis functions provides a simple and suitably efficient

class of approximators. Since the transformation from the state representation is linear,

the radial basis functions added on a given iteration can be considered as RBFs in the

original state space with a common rank-deficient width matrix. The choice of radial

basis functions as features is common in reinforcement learning, and allows the basis

functions generated on each iteration to be partially reused. This differs from proto-value

functions or BEBFs, where a smaller number of global basis functions are generated.

83

The Bellman error norm is used as an evaluation criterion of the algorithm, a

pruning criterion, and a feature selection criterion. There may be better objectives which

may be used for each of these tasks. This is especially important when one considers the

differences between LSTD and Bellman residual minimizing fits.

7.3 Future Directions

A possible next step in this line of research is to find bounds on the improvement

due to new basis function, as in the work of Parr et al. [16], but when using more

elaborate ways to generate basis functions than simply fitting the Bellman error. Such

work would likely require an exploration of the relation between the LSTD and residual

minimizing solutions to the value function fit.

The application of the algorithm to realistic large-scale problems is nontrivial,

as evidenced by the inventory control results. It may be possible to taylor the various

aspects of the algorithm in order to solve a particular class of problems.

References

[1] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, Two Volume Set.
Athena Scientific, 2001.

[2] D.P Bertsekas and D.A. Castanon. Adaptive aggregation methods for infinite
horizon dynamic programming. IEEE Transactions on Automatic Control,
34:589–598, 1989.

[3] Justin A. Boyan. Technical update: Least-squares temporal difference learning.
Machine Learning, 49(2-3):233–246, 2002.

[4] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge
University Press, March 2004.

[5] Steven J. Bradtke and Andrew G. Barto. Linear least-squares algorithms for
temporal difference learning. Machine Learning, 22(1-3):33–57, 1996.

[6] Federgruen, A. and Zipkin, P. Computing optimal (s, s) policies in inventory
models with continuous demands. Advances in Applied Probability, 17(2):424–442,
jun 1985.

[7] Jacob Goldberger, Sam T. Roweis, Geoffrey E. Hinton, and Ruslan Salakhutdinov.
Neighbourhood components analysis. In NIPS, 2004.

[8] Gene H. Golub and Charles F. Van Loan. Matrix Computation. John Hopkins
Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore,
Maryland, third edition, 1996.

[9] Babak Hassibi and David G. Stork. Second order derivatives for network pruning:
Optimal brain surgeon. In Stephen José Hanson, Jack D. Cowan, and C. Lee Giles,
editors, Advances in Neural Information Processing Systems, volume 5, pages
164–171. Morgan Kaufmann, San Mateo, CA, 1993.

[10] Leemon C. Baird III. Residual algorithms: Reinforcement learning with function
approximation. In International Conference on Machine Learning, pages 30–37,
1995.

84

85

[11] Philipp W. Keller, Shie Mannor, and Doina Precup. Automatic basis function
construction for approximate dynamic programming and reinforcement learning. In
William W. Cohen and Andrew Moore, editors, ICML, pages 449–456. ACM, 2006.

[12] Michail G. Lagoudakis and Ronald Parr. Least-squares policy iteration. J. Mach.
Learn. Res., 4:1107–1149, 2003.

[13] S. Mahadevan and M. Maggioni. Proto-value functions: A laplacian framework for
learning representation and control. Journ. Mach. Learn. Res., September 2007.

[14] Ishai Menache, Shie Mannor, and Nahum Shimkin. Basis function adaptation
in temporal difference reinforcement learning. Annals of Operations Research,
134:215–238(24), February 2005.

[15] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Series in
Operations Research. Springer, New York, 1999.

[16] Ronald Parr, Christopher Painter-Wakefield, Lihong Li, and Michael Littman.
Analyzing feature generation for value-function approximation. In ICML ’07:
Proceedings of the 24th international conference on Machine learning, pages
737–744, New York, NY, USA, 2007. ACM.

[17] Bohdana Ratitch and Doina Precup. Sparse distributed memories for on-line
value-based reinforcement learning. In Jean-François Boulicaut, Floriana Esposito,
Fosca Giannotti, and Dino Pedreschi, editors, ECML, volume 3201 of Lecture Notes
in Computer Science, pages 347–358. Springer, 2004.

[18] Andrew Moore Remi Munos. Variable resolution discretization in optimal control.
Machine Learning, 49, Numbers 2/3:291–323, November/December 2002.

[19] Martin Riedmiller, Sascha Lange, Stephan Timmer, and Roland Hafner. Clsquare:
Closed loop simulation system, September 2005.

[20] Ralf Schoknecht. Optimality of reinforcement learning algorithms with linear
function approximation. In S. Thrun S. Becker and K. Obermayer, editors,
Advances in Neural Information Processing Systems 15, pages 1555–1562. MIT
Press, Cambridge, MA, 2003.

[21] Satinder P. Singh, Tommi Jaakkola, and Michael I. Jordan. Reinforcement learning
with soft state aggregation. In G. Tesauro, D. Touretzky, and T. Leen, editors,
Advances in Neural Information Processing Systems, volume 7, pages 361–368.
The MIT Press, 1995.

86

[22] William D. Smart. Explicit manifold representations for value-functions in
reinforcement learning. In Proceedings of the Eighth International Symposium
on Artificial Intelligence and Mathematics, January 2004. Paper number AI&M
25-2004.

[23] Nathan Sprague. Basis iteration for reward based dimensionality reduction.
Development and Learning, 2007. ICDL 2007. IEEE 6th International Conference
on, pages 187–192, 11-13 July 2007.

[24] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction.
MIT Press, 1998.

[25] Vladislav Tadic. On the convergence of temporal-difference learning with linear
function approximation. Mach. Learn., 42(3):241–267, 2001.

[26] J.N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with
function approximation. IEEE Transactions on Automatic Control, 42:674–690,
1997.

[27] Zheng, Yu-Sheng and Federgruen, A. Finding optimal (s, S) policies is about as
simple as evaluating a single policy. Operations Research, 39(4):654–665, July
1991.

[28] O. Ziv and N. Shimkin. Multigrid algorithms for temporal difference reinforcement
learning. In Proceedings of the ICML workshop on rich representations for RL,
2005.

